Science.gov

Sample records for entrainment inherent relationships

  1. Entrainment.

    ERIC Educational Resources Information Center

    Carrier, Romance F.

    1978-01-01

    Presents a literature review including: (1) theoretical studies concerned with the development of methdology to determine the significance of entrainment effects to whale populations and ecosystems; and (2) site and laboratory studies. A list of 107 references drawn from the 1976 and 1977 literature is also presented. (HM)

  2. Ethanol consumption in mice: relationships with circadian period and entrainment

    PubMed Central

    Trujillo, Jennifer L.; Do, David T.; Grahame, Nicholas J.; Roberts, Amanda J.; Gorman, Michael R.

    2011-01-01

    A functional connection between the circadian timing system and alcohol consumption is suggested by multiple lines of converging evidence. Ethanol consumption perturbs physiological rhythms in hormone secretion, sleep and body temperature, and conversely, genetic and environmental perturbations of the circadian system can alter alcohol intake. A fundamental property of the circadian pacemaker, the endogenous period of its cycle under free-running conditions, was previously shown to differ between selectively bred High- (HAP) and Low- (LAP) Alcohol Preferring replicate 1 mice. To test whether there is a causal relationship between circadian period and ethanol intake, we induced experimental, rather than genetic, variations in free-running period. Male inbred C57Bl/6J mice and replicate 2 male and female HAP2 and LAP2 mice were entrained to light:dark cycles of 26 h or 22 h or remained in a standard 24 h cycle. Upon discontinuation of the light:dark cycle, experimental animals exhibited longer and shorter free-running periods, respectively. Despite robust effects on circadian period and clear circadian rhythms in drinking, these manipulations failed to alter the daily ethanol intake of the inbred strain or selected lines. Likewise, driving the circadian system at long and short periods produced no change in alcohol intake. In contrast with replicate 1 HAP and LAP lines, there was no difference in free-running period between ethanol naïve HAP2 and LAP2 mice. HAP2 mice, however, were significantly more active than LAP2 mice as measured by general home-cage movement and wheel running, a motivated behavior implicating a selection effect on reward systems. Despite a marked circadian regulation of drinking behavior, the free-running and entrained period of the circadian clock does not determine daily ethanol intake. PMID:20880659

  3. Ethanol consumption in mice: relationships with circadian period and entrainment.

    PubMed

    Trujillo, Jennifer L; Do, David T; Grahame, Nicholas J; Roberts, Amanda J; Gorman, Michael R

    2011-03-01

    A functional connection between the circadian timing system and alcohol consumption is suggested by multiple lines of converging evidence. Ethanol consumption perturbs physiological rhythms in hormone secretion, sleep, and body temperature; and conversely, genetic and environmental perturbations of the circadian system can alter alcohol intake. A fundamental property of the circadian pacemaker, the endogenous period of its cycle under free-running conditions, was previously shown to differ between selectively bred high- (HAP) and low- (LAP) alcohol preferring replicate 1 mice. To test whether there is a causal relationship between circadian period and ethanol intake, we induced experimental, rather than genetic, variations in free-running period. Male inbred C57Bl/6J mice and replicate 2 male and female HAP2 and LAP2 mice were entrained to light:dark cycles of 26 or 22 h or remained in a standard 24 h cycle. On discontinuation of the light:dark cycle, experimental animals exhibited longer and shorter free-running periods, respectively. Despite robust effects on circadian period and clear circadian rhythms in drinking, these manipulations failed to alter the daily ethanol intake of the inbred strain or selected lines. Likewise, driving the circadian system at long and short periods produced no change in alcohol intake. In contrast with replicate 1 HAP and LAP lines, there was no difference in free-running period between ethanol naïve HAP2 and LAP2 mice. HAP2 mice, however, were significantly more active than LAP2 mice as measured by general home-cage movement and wheel running, a motivated behavior implicating a selection effect on reward systems. Despite a marked circadian regulation of drinking behavior, the free-running and entrained period of the circadian clock does not determine daily ethanol intake. PMID:20880659

  4. Relationships of Entrainment Rate with Dynamical and Thermodynamic Properties in Shallow Convection

    NASA Astrophysics Data System (ADS)

    Lu, C.; Liu, Y.; Zhang, G. J.; Wu, X.; Endo, S.; Cao, L.; Li, Y.; Guo, X.

    2015-12-01

    This work examines the relationships of entrainment rate to vertical velocity, buoyancy, turbulent dissipation rate by applying stepwise principal component regression to observational data from shallow cumulus clouds collected during the Routine AAF [Atmospheric Radiation Measurement (ARM) Aerial Facility] Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign over the ARM Southern Great Plains (SGP) site near Lamont, Oklahoma. The cumulus clouds during the RACORO campaign simulated using a large eddy simulation (LES) model are also examined with the same approach. The analysis shows that combination of multiple variables can better represent entrainment rate in both the observations and LES than the single-variable fitting equations and the three commonly used parameterizations. A new parameterization is thus presented that relates entrainment rate to vertical velocity, buoyancy and dissipation rate; the effects of treating clouds as ensembles and humid shells surrounding cumulus clouds on the new parameterization are discussed. Physical mechanisms underlying the relationships of entrainment rate to vertical velocity, buoyancy and dissipation rate are also explored. Furthermore, the effects of relative humidity in the entrained dry air on the above relationships are discussed; a possible physical mechanism for the effects is explored.

  5. On the relationship between air entrainment, internal flows and closure mechanism in a ventilated supercavity

    NASA Astrophysics Data System (ADS)

    Karn, Ashish; Arndt, Roger; Hong, Jiarong

    2015-11-01

    An understanding of underlying physics behind ventilation demand is critical for the operation of underwater vehicles based on ventilated supercavitation for a number of reasons viz. gas entrainment requirements for cavity formation and sustenance. The prior studies on the ventilation demand have reported that the gas entrainment requirement to form a supercavity is substantially larger than that needed to sustain it. This phenomenon, known as ventilation hysteresis, is particularly important from the viewpoint of reduction in gas requirements. However, little physical insights into this phenomenon has yet been provided. In this study, systematic investigations are conducted into ventilation hysteresis with respect to the formation and collapse behaviors of ventilated supercavities. It is suggested that the supercavity formation process is driven by bubble coalescence, whereas its collapse is related to the pressure difference across the supercavity interface at its rear portion. Further, we examine the relationship between ventilation hysteresis, supercavity closures and air entrainment requirements for supercavity formation and sustenance under steady and unsteady flow conditions. These observations are directly related to the internal flows inside the supercavity.

  6. A multimethod examination of the relationship between coaching behavior and athletes' inherent self-talk.

    PubMed

    Zourbanos, Nikos; Hatzigeorgiadis, Antonis; Tsiakaras, Nikos; Chroni, Stiliani; Theodorakis, Yannis

    2010-12-01

    The aim of the present research was to investigate the relationship between coaching behavior and athletes' inherent self-talk (ST). Three studies were conducted. The first study tested the construct validity of the Coaching Behavior Questionnaire (CBQ) in the Greek language, and provided support for its original factor structure. The second study examined the relationships between coaching behavior and athletes' ST in field, with two different samples. The results showed that supportive coaching behavior was positively related to positive ST (in one sample) and negatively related to negative ST (in both samples), whereas negative coaching behavior was negatively related to positive ST (in one sample) and positively related to negative ST (in both samples). Finally, the third study examined the relationships experimentally, to produce evidence regarding the direction of causality. The results showed that variations in coaching behavior affected participants' ST. Overall, the results of the present investigation provided considerable evidence regarding the links between coaching behavior and athletes' ST and suggested that coaches may have an impact on athletes' thoughts. PMID:21282837

  7. ENTRAINMENT MODELS

    EPA Science Inventory

    This presentation presented information on entrainment models. Entrainment models use entrainment hypotheses to express the continuity equation. The advantage is that plume boundaries are known. A major disadvantage is that the problems that can be solved are rather simple. The ...

  8. Cloud microphysical relationships and their implication on entrainment and mixing mechanisms for marine and continental stratocumulus clouds

    NASA Astrophysics Data System (ADS)

    Yum, S. S.; Yeom, J. M.; Wang, J.; Liu, Y.; Senum, G.; Springston, S. R.; McGraw, R. L.; Lu, C.

    2015-12-01

    Cloud microphysical data obtained from aircraft measurements of stratocumulus clouds over the southeastern pacific during the VOCALS-Rex field campaign and over the Great Plains region in Oklahoma during the RACORO field campaign were analyzed for evidence of entrainment mixing of air from above cloud top. Mixing diagram analysis was made for the horizontal flight data recorded at various rates (1 Hz, 10 Hz and 40 Hz). For the maritime stratocumulus clouds, the dominant observed feature, a positive relationship between cloud droplet mean volume (V) and liquid water content (L), suggested occurrence of homogeneous mixing. On the other hand, estimation of the relevant scale parameters (i.e., transition length scale and transition scale number) consistently indicated inhomogeneous mixing. Importantly, the flight altitudes of the measurements were significantly below cloud top. We speculate that mixing of the entrained air near the cloud top may have indeed been inhomogeneous; but due to vertical circulation mixing the correlation between V and L became positive at the measurement altitudes in mid-level of clouds, because during their descent, cloud droplets evaporate, faster in more diluted cloud parcels, leading to a positive correlation between V and L regardless of the mixing mechanism near the cloud top. For the continental stratocumulus clouds, the positive relationship between V and L was even more pronounced while the scale parameters were less indicative of inhomogeneous mixing. Finding evidence for vertical circulation mixing was difficult for these clouds because flight plans in this campaign were not designed to investigate such process.

  9. Cloud microphysical relationships and their implication on entrainment and mixing mechanism for the stratocumulus clouds measured during the VOCALS project

    DOE PAGESBeta

    Yum, Seong Soo; Wang, Jian; Liu, Yangang; Senum, Gunnar; Springston, Stephen; McGraw, Robert; Yeom, Jae Min

    2015-05-27

    Cloud microphysical data obtained from G-1 aircraft flights over the southeastern pacific during the VOCALS-Rex field campaign were analyzed for evidence of entrainment mixing of dry air from above cloud top. Mixing diagram analysis was made for the horizontal flight data recorded at 1 Hz and 40 Hz. The dominant observed feature, a positive relationship between cloud droplet mean volume (V) and liquid water content (L), suggested occurrence of homogeneous mixing. On the other hand, estimation of the relevant scale parameters (i.e., transition length scale and transition scale number) consistently indicated inhomogeneous mixing. Importantly, the flight altitudes of the measurementsmore » were significantly below cloud top. We speculate that mixing of the entrained air near the cloud top may have indeed been inhomogeneous; but due to vertical circulation mixing, the correlation between V and L became positive at the measurement altitudes in mid-level of clouds, because during their descent, cloud droplets evaporate, faster in more diluted cloud parcels, leading to a positive correlation between V and L regardless of the mixing mechanism near the cloud top.« less

  10. Cloud microphysical relationships and their implication on entrainment and mixing mechanism for the stratocumulus clouds measured during the VOCALS project

    SciTech Connect

    Yum, Seong Soo; Wang, Jian; Liu, Yangang; Senum, Gunnar; Springston, Stephen; McGraw, Robert; Yeom, Jae Min

    2015-05-27

    Cloud microphysical data obtained from G-1 aircraft flights over the southeastern pacific during the VOCALS-Rex field campaign were analyzed for evidence of entrainment mixing of dry air from above cloud top. Mixing diagram analysis was made for the horizontal flight data recorded at 1 Hz and 40 Hz. The dominant observed feature, a positive relationship between cloud droplet mean volume (V) and liquid water content (L), suggested occurrence of homogeneous mixing. On the other hand, estimation of the relevant scale parameters (i.e., transition length scale and transition scale number) consistently indicated inhomogeneous mixing. Importantly, the flight altitudes of the measurements were significantly below cloud top. We speculate that mixing of the entrained air near the cloud top may have indeed been inhomogeneous; but due to vertical circulation mixing, the correlation between V and L became positive at the measurement altitudes in mid-level of clouds, because during their descent, cloud droplets evaporate, faster in more diluted cloud parcels, leading to a positive correlation between V and L regardless of the mixing mechanism near the cloud top.

  11. New insights into the wind-dust relationship in sandblasting and direct aerodynamic entrainment from wind tunnel experiments

    NASA Astrophysics Data System (ADS)

    Parajuli, Sagar Prasad; Zobeck, Ted M.; Kocurek, Gary; Yang, Zong-Liang; Stenchikov, Georgiy L.

    2016-02-01

    Numerous parameterizations have been developed for predicting wind erosion, yet the physical mechanism of dust emission is not fully understood. Sandblasting is thought to be the primary mechanism, but recent studies suggest that dust emission by direct aerodynamic entrainment can be significant under certain conditions. In this work, using wind tunnel experiments, we investigated some of the lesser understood aspects of dust emission in sandblasting and aerodynamic entrainment for three soil types, namely, clay, silty clay loam, and clay loam. First, we explored the role of erodible surface roughness on dust emitted by aerodynamic entrainment. Second, we compared the emitted dust concentration in sandblasting and aerodynamic entrainment under a range of wind friction velocities. Finally, we explored the sensitivity of emitted dust particle size distribution (PSD) to soil type and wind friction velocity in these two processes. The dust concentration in aerodynamic entrainment showed strong positive correlation, no significant correlation, and weak negative correlation, for the clay, silty clay loam, and clay loam, respectively, with the erodible soil surface roughness. The dust in aerodynamic entrainment was significant constituting up to 28.3, 41.4, and 146.4% compared to sandblasting for the clay, silty clay loam, and clay loam, respectively. PSD of emitted dust was sensitive to soil type in both sandblasting and aerodynamic entrainment. PSD was sensitive to the friction velocity in aerodynamic entrainment but not in sandblasting. Our results highlight the need to consider the details of sandblasting and direct aerodynamic entrainment processes in parameterizing dust emission in global/regional climate models.

  12. Large-scale turbulent structures in jets and in flows over cavities and their relationship to entrainment and mixing

    NASA Technical Reports Server (NTRS)

    Sarohia, V.; Massier, P. F.

    1979-01-01

    Large scale structures in jets and in flows over cavities were investigated experimentally to determine their role in entrainment, mixing, and noise production. The presence of these structures resulted in growth of the shear layer and entrainment. Merging of adjacent large scale structures caused the near field pressure signal in excited flows. It is believed that both the entrained fluid as well as its eventual mixing with the jet flow can be controlled by introducing pulsation in the jet flow at a frequency for which the flow is most unstable.

  13. Power plant intake entrainment analysis

    SciTech Connect

    Edinger, J.E.; Kolluru, V.S.

    2000-04-01

    Power plant condenser cooling water intake entrainment of fish eggs and larvae is becoming an issue in evaluating environmental impacts around the plants. Methods are required to evaluate intake entrainment on different types of water bodies. Presented in this paper is a derivation of the basic relationships for evaluating entrainment from the standing crop of fish eggs and larvae for different regions of a water body, and evaluating the rate of entrainment from the standing crop. These relationships are coupled with a 3D hydrodynamic and transport model that provides the currents and flows required to complete the entrainment evaluation. Case examples are presented for a simple river system, and for the more complex Delaware River Estuary with multiple intakes. Example evaluations are made for individual intakes, and for the cumulative impacts of multiple intakes.

  14. Optimal entrainment of heterogeneous noisy neurons

    PubMed Central

    Wilson, Dan; Holt, Abbey B.; Netoff, Theoden I.; Moehlis, Jeff

    2015-01-01

    We develop a methodology to design a stimulus optimized to entrain nonlinear, noisy limit cycle oscillators with uncertain properties. Conditions are derived which guarantee that the stimulus will entrain the oscillators despite these uncertainties. Using these conditions, we develop an energy optimal control strategy to design an efficient entraining stimulus and apply it to numerical models of noisy phase oscillators and to in vitro hippocampal neurons. In both instances, the optimal stimuli outperform other similar but suboptimal entraining stimuli. Because this control strategy explicitly accounts for both noise and inherent uncertainty of model parameters, it could have experimental relevance to neural circuits where robust spike timing plays an important role. PMID:26074762

  15. The performative pleasure of imprecision: a diachronic study of entrainment in music performance

    PubMed Central

    Geeves, Andrew; McIlwain, Doris J.; Sutton, John

    2014-01-01

    This study focuses in on a moment of live performance in which the entrainment amongst a musical quartet is threatened. Entrainment is asymmetric in so far as there is an ensemble leader who improvises and expands the structure of a last chorus of a piece of music beyond the limits tacitly negotiated during prior rehearsals and performances. Despite the risk of entrainment being disturbed and performance interrupted, the other three musicians in the quartet follow the leading performer and smoothly transition into unprecedented performance territory. We use this moment of live performance to work back through the fieldwork data, building a diachronic study of the development and bases of entrainment in live music performance. We introduce the concept of entrainment and profile previous theory and research relevant to entrainment in music performance. After outlining our methodology, we trace the evolution of the structure of the piece of music from first rehearsal to final performance. Using video clip analysis, interviews and field notes we consider how entrainment shaped and was shaped by the moment of performance in focus. The sense of trust between quartet musicians is established through entrainment processes, is consolidated via smooth adaptation to the threats of disruption. Non-verbal communicative exchanges, via eye contact, gesture, and spatial proximity, sustain entrainment through phase shifts occurring swiftly and on the fly in performance contexts. These exchanges permit smooth adaptation promoting trust. This frees the quartet members to play with the potential disturbance of equilibrium inherent in entrained relationships and to play with this tension in an improvisatory way that enhances audience engagement and the live quality of performance. PMID:25400567

  16. The performative pleasure of imprecision: a diachronic study of entrainment in music performance.

    PubMed

    Geeves, Andrew; McIlwain, Doris J; Sutton, John

    2014-01-01

    This study focuses in on a moment of live performance in which the entrainment amongst a musical quartet is threatened. Entrainment is asymmetric in so far as there is an ensemble leader who improvises and expands the structure of a last chorus of a piece of music beyond the limits tacitly negotiated during prior rehearsals and performances. Despite the risk of entrainment being disturbed and performance interrupted, the other three musicians in the quartet follow the leading performer and smoothly transition into unprecedented performance territory. We use this moment of live performance to work back through the fieldwork data, building a diachronic study of the development and bases of entrainment in live music performance. We introduce the concept of entrainment and profile previous theory and research relevant to entrainment in music performance. After outlining our methodology, we trace the evolution of the structure of the piece of music from first rehearsal to final performance. Using video clip analysis, interviews and field notes we consider how entrainment shaped and was shaped by the moment of performance in focus. The sense of trust between quartet musicians is established through entrainment processes, is consolidated via smooth adaptation to the threats of disruption. Non-verbal communicative exchanges, via eye contact, gesture, and spatial proximity, sustain entrainment through phase shifts occurring swiftly and on the fly in performance contexts. These exchanges permit smooth adaptation promoting trust. This frees the quartet members to play with the potential disturbance of equilibrium inherent in entrained relationships and to play with this tension in an improvisatory way that enhances audience engagement and the live quality of performance. PMID:25400567

  17. Entrainment Rate in Shallow Cumuli: Dependence on Entrained Dry Air Sources and Probability Density Functions

    NASA Astrophysics Data System (ADS)

    Lu, C.; Liu, Y.; Niu, S.; Vogelmann, A. M.

    2012-12-01

    In situ aircraft cumulus observations from the RACORO field campaign are used to estimate entrainment rate for individual clouds using a recently developed mixing fraction approach. The entrainment rate is computed based on the observed state of the cloud core and the state of the air that is laterally mixed into the cloud at its edge. The computed entrainment rate decreases when the air is entrained from increasing distance from the cloud core edge; this is because the air farther away from cloud edge is drier than the neighboring air that is within the humid shells around cumulus clouds. Probability density functions of entrainment rate are well fitted by lognormal distributions at different heights above cloud base for different dry air sources (i.e., different source distances from the cloud core edge). Such lognormal distribution functions are appropriate for inclusion into future entrainment rate parameterization in large scale models. To the authors' knowledge, this is the first time that probability density functions of entrainment rate have been obtained in shallow cumulus clouds based on in situ observations. The reason for the wide spread of entrainment rate is that the observed clouds are affected by entrainment mixing processes to different extents, which is verified by the relationships between the entrainment rate and cloud microphysics/dynamics. The entrainment rate is negatively correlated with liquid water content and cloud droplet number concentration due to the dilution and evaporation in entrainment mixing processes. The entrainment rate is positively correlated with relative dispersion (i.e., ratio of standard deviation to mean value) of liquid water content and droplet size distributions, consistent with the theoretical expectation that entrainment mixing processes are responsible for microphysics fluctuations and spectral broadening. The entrainment rate is negatively correlated with vertical velocity and dissipation rate because entrainment

  18. Entrainment region phenomena for a large plane shear layer

    NASA Technical Reports Server (NTRS)

    Ali, S. K.; Klewicki, C. L.; Disimile, P. J.; Lawson, I.; Foss, J. F.

    1985-01-01

    The subatmospheric test section of the present free shear layer facility allows the entrainment air to be introduced with a negligible disturbance level. The very low frequency oscillations, which are prominently observed in the entrainment stream and which are present throughout the shear layer, are attributed to an inherent instability in the transition from a boundary layer to a free shear layer state. The basic features of the disturbance field are documented herein.

  19. An observational study of entrainment rate in deep convection

    SciTech Connect

    Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang; Zhang, Guang Jun; Liu, Yangang

    2015-09-22

    This study estimates entrainment rate and investigates its relationships with cloud properties in 156 deep convective clouds based on in-situ aircraft observations during the TOGA-COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment) field campaign over the western Pacific. To the authors’ knowledge, this is the first study on the probability density function of entrainment rate, the relationships between entrainment rate and cloud microphysics, and the effects of dry air sources on the calculated entrainment rate in deep convection from an observational perspective. Results show that the probability density function of entrainment rate can be well fitted by lognormal, gamma or Weibull distribution, with coefficients of determination being 0.82, 0.85 and 0.80, respectively. Entrainment tends to reduce temperature, water vapor content and moist static energy in cloud due to evaporative cooling and dilution. Inspection of the relationships between entrainment rate and microphysical properties reveals a negative correlation between volume-mean radius and entrainment rate, suggesting the potential dominance of homogeneous mechanism in the clouds examined. The entrainment rate and environmental water vapor content show similar tendencies of variation with the distance of the assumed environmental air to the cloud edges. Their variation tendencies are non-monotonic due to the relatively short distance between adjacent clouds.

  20. An observational study of entrainment rate in deep convection

    DOE PAGESBeta

    Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang; Zhang, Guang Jun; Liu, Yangang

    2015-09-22

    This study estimates entrainment rate and investigates its relationships with cloud properties in 156 deep convective clouds based on in-situ aircraft observations during the TOGA-COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment) field campaign over the western Pacific. To the authors’ knowledge, this is the first study on the probability density function of entrainment rate, the relationships between entrainment rate and cloud microphysics, and the effects of dry air sources on the calculated entrainment rate in deep convection from an observational perspective. Results show that the probability density function of entrainment rate can be well fitted by lognormal,more » gamma or Weibull distribution, with coefficients of determination being 0.82, 0.85 and 0.80, respectively. Entrainment tends to reduce temperature, water vapor content and moist static energy in cloud due to evaporative cooling and dilution. Inspection of the relationships between entrainment rate and microphysical properties reveals a negative correlation between volume-mean radius and entrainment rate, suggesting the potential dominance of homogeneous mechanism in the clouds examined. The entrainment rate and environmental water vapor content show similar tendencies of variation with the distance of the assumed environmental air to the cloud edges. Their variation tendencies are non-monotonic due to the relatively short distance between adjacent clouds.« less

  1. Inherent Stability of Helicopters

    NASA Technical Reports Server (NTRS)

    Crocco, G Arturo

    1923-01-01

    The equilibrium, in still air, of a "stationary" helicopter (i.e., of one having neither vertical nor translational velocity, but a tendency to remain practically motionless within restricted limits of space) presents some difficulty in practice and justifies a theoretical investigation of its "inherent stability," i.e., independent of the pilot.

  2. Physiology of circadian entrainment.

    PubMed

    Golombek, Diego A; Rosenstein, Ruth E

    2010-07-01

    Mammalian circadian rhythms are controlled by endogenous biological oscillators, including a master clock located in the hypothalamic suprachiasmatic nuclei (SCN). Since the period of this oscillation is of approximately 24 h, to keep synchrony with the environment, circadian rhythms need to be entrained daily by means of Zeitgeber ("time giver") signals, such as the light-dark cycle. Recent advances in the neurophysiology and molecular biology of circadian rhythmicity allow a better understanding of synchronization. In this review we cover several aspects of the mechanisms for photic entrainment of mammalian circadian rhythms, including retinal sensitivity to light by means of novel photopigments as well as circadian variations in the retina that contribute to the regulation of retinal physiology. Downstream from the retina, we examine retinohypothalamic communication through neurotransmitter (glutamate, aspartate, pituitary adenylate cyclase-activating polypeptide) interaction with SCN receptors and the resulting signal transduction pathways in suprachiasmatic neurons, as well as putative neuron-glia interactions. Finally, we describe and analyze clock gene expression and its importance in entrainment mechanisms, as well as circadian disorders or retinal diseases related to entrainment deficits, including experimental and clinical treatments. PMID:20664079

  3. DEVELOPMENT OF SUPERIOR ENTRAINMENT SEPARATORS

    EPA Science Inventory

    An experimental and theoretical program was carried out to develop an improved design for entrainment separators for scrubbers. The problems of separation efficiency, suspended solids deposition and plugging of the entrainment separator were of primary concern. A pilot scale entr...

  4. On dust entrainment in photoevaporative winds

    NASA Astrophysics Data System (ADS)

    Hutchison, Mark A.; Price, Daniel J.; Laibe, Guillaume; Maddison, Sarah T.

    2016-09-01

    We investigate dust entrainment by photoevaporative winds in protoplanetary discs using dusty smoothed particle hydrodynamics. We use unequal-mass particles to resolve more than five orders of magnitude in disc/outflow density and a one-fluid formulation to efficiently simulate an equivalent magnitude range in drag stopping time. We find that only micron-sized dust grains and smaller can be entrained in extreme-UV radiation-driven winds. The maximum grain size is set by dust settling in the disc rather than aerodynamic drag in the wind. More generally, there is a linear relationship between the base flow density and the maximum entrainable grain size in the wind. A pileup of micron-sized dust grains can occur in the upper atmosphere at critical radii in the disc as grains decouple from the low-density wind. Entrainment is a strong function of location in the disc, resulting in a size sorting of grains in the outflow - the largest grain being carried out between 10 and 20 au. The peak dust density for each grain size occurs at the inner edge of its own entrainment region.

  5. Holes and Entrainment in Stratocumulus.

    NASA Astrophysics Data System (ADS)

    Gerber, H.; Frick, G.; Malinowski, S. P.; Brenguier, J.-L.; Burnet, F.

    2005-02-01

    Aircraft flights through stratocumulus clouds (Sc) during the Dynamics and Chemistry of Marine Stratocumulus II (DYCOMS-II) study off the California coast found narrow in-cloud regions with less liquid water content (LWC) and cooler temperatures than average background values. The regions are named cloud holes and are assumed to be a result of water evaporated by the entrainment of dryer air from above the Sc. While such features have been noted previously, this study provided a unique opportunity to investigate in much greater detail the nature of the holes, as well as their relationship to the entrainment rate, because high-speed temperature and LWC probes with maximum spatial resolution of 10 cm were flown together for the first time. Nine long-duration flights were made through mostly unbroken Sc for which conditional sampling was used to identify the location and size of the holes. The holes are concentrated near cloud top, their average width near cloud top is about 5 m, their relative length distribution is nearly constant for all flights, and they can penetrate hundreds of meters deep into the Sc before being lost by mixing. Entrainment velocities at cloud top are estimated from measurements of fluxes of reduced LWC and vapor mixing ratios in holes, the fraction of cloud area covered by holes, and the total water jump between cloud top and the free atmosphere. Rates as large as 10 mm s-1 are found for nocturnal flights, and these rates are about 3 times larger than for daytime flight segments. The rates correlate best with the size of the buoyancy jump above the Sc; the present conditional-sampling approach for measuring the rates gives larger rates than the "flux jump" rates determined by others for the same flights by a factor of about 2. The stability criterion for all Sc predicts thinning and breakup of the Sc, which does not occur. The minimal amount of cloud-top evaporative cooling caused by entrainment contributes little to the top-down convection

  6. Mesler entrainment in alcohols

    NASA Astrophysics Data System (ADS)

    Saylor, J. R.; Sundberg, R. K.

    2012-11-01

    When a drop impacts a flat surface of the same liquid at an intermediate velocity, the impact can result in the formation of a very large number of very small bubbles. At lower velocities, drops bounce or float, and at larger velocities a single bubble forms, or there is a splash. The formation of large numbers of small bubbles during intermediate velocity impacts is termed Mesler entrainment and its controlling mechanism is poorly understood. Existing research has shown that Mesler entrainment is highly irreproducible when water is the working fluid, and very reproducible when silicone oil is the working fluid. Whether this is because water is problematic, or silicone oil is uniquely well-suited, is unclear. To answer this question, experiments were conducted using three different alcohols. The results of these experiments were very reproducible for all alcohols tested, suggesting that there is something unique about water which accounts for its lack of reproducibility. The data from these experiments were also used to develop a dimensionless group that quantifies the conditions under which Mesler entrainment occurs. This dimensionless group is used to provide insight into the mechanism of this unique method of bubble formation.

  7. Can cloud-top entrainment promote cloud growth?

    NASA Technical Reports Server (NTRS)

    Randall, D. A.

    1984-01-01

    The primary significance of Cloud Deepening through Entrainment (CDE) is that it can prevent the cloud top entrainment instability from destroying a cloud deck. Without suppressing the instability, CDE transforms it from a cloud destroyer to a cloud builder. The analysis does not depend on an entrainment hypothesis. Moreover, it is not restricted to PBL stratocumulus sheets. Stratiform clouds in the free atmosphere can be subject to CDE we need only reinterpret Ps as the pressure at the base of an elevated turbulent mixed layer. Modest departures from well mixedness will alter the results quantitatively but not qualitatively. Processes other than entrainment, such as surface evaporation, radiative cooling, and advection will often work with CDE to build a cloud layer; but of course they can also oppose CDE by reducing the relative humidity. If we make the weak assumption that the deepening of a cloud layer favors an increase in the cloud top entrainment rate (without specifying any particular functional relationship) we are led to speculate that CDE can cause runaway cloud growth, even in the absence of cloud top entrainment instability. through CDE entrainment leads to a deeper cloud, which leads to stronger entrainment.

  8. Stratocumulus cloud deepening through entrainment

    NASA Technical Reports Server (NTRS)

    Randall, D. A.

    1984-01-01

    Under a substantial range of realistic conditions, stratocumulus cloud top entrainment is noted to either deepen an existing cloud layer or produce clouds in an unsaturated mixed layer, though the entrained air is warmer and drier than the mixed-layer air. These results, which apply irrespective of entrainment rate-determining mechanism, imply that the cloud top entrainment instability discussed by Randall (1980) and Deardorff (1980) does not necessarily destroy a layer cloud. Examples are given which include soundings, marine layer data, and simulation results produced by the UCLA general circulation model.

  9. High-Resolution Entrainment in Stratocumulus During the POST Campaign

    NASA Astrophysics Data System (ADS)

    Gerber, H. E.

    2012-12-01

    In July and August of 2008 an NSF-supported field campaign called POST (Physics of Stratocumulus Top) was conducted off the California coast using the fully-instrumented Twin Otter aircraft from the Naval Post Graduate School. POST provided the first opportunity to closely co-locate on an aircraft high-rate and time synchronized microphysics (PVM; LWC and effective radius) and thermodynamics (UFT; Ultra-Fast Temperature) probes and a gust probe to produce measurements of entrainment fluxes and features over entrainment scales thought to be important in warm stratocumulus (Sc). This combination of probes permitted investigating the properties of individual entrained parcels Seventeen flights were conducted during POST in a quasi-Lagrangian fashion in largely unbroken stratocumulus. The horizontal fight path was adjusted to follow the mean air velocity in the Sc. The vertical flight path concentrated on flying between 100-m above and below the cloud-top interface; and some additional profiles were flown to various higher and lower levels where flux runs were made. This presentation describes the analysis of this unique and excellent data set including the following: The data permitted testing Lilly's classical theory for the entrainment velocity where its application requires strong jumps of temperature and moisture across the inversion located above cloud top, a linear flux of the entrained scalar below cloud top, and entrained parcels that descend. All flights showed Sc with wind shear and mixing at cloud top with some strong enough to dissipate the Sc. The relationship between shear and entrainment velocity is described. The pdf of the horizontal size of entrainment parcels vs entrainment flux is established for all flights to help in choosing grid-sizes for modeling. High -resolution in-cloud temperature and LWC measurements in entrained parcels reveal the relative importance of radiative cooling vs cooling by liquid water evaporation in causing buoyancy reversal

  10. Audience entrainment during live contemporary dance performance: physiological and cognitive measures.

    PubMed

    Bachrach, Asaf; Fontbonne, Yann; Joufflineau, Coline; Ulloa, José Luis

    2015-01-01

    Perceiving and synchronizing to a piece of dance is a remarkable skill in humans. Research in this area is very recent and has been focused mainly on entrainment produced by regular rhythms. Here, we investigated entrainment effects on spectators perceiving a non-rhythmic and extremely slow performance issued from contemporary dance. More specifically, we studied the relationship between subjective experience and entrainment produced by perceiving this type of performance. We defined two types of entrainment. Physiological entrainment corresponded to cardiovascular and respiratory coordinated activities. Cognitive entrainment was evaluated through cognitive tasks that quantified time distortion. These effects were thought to reflect attunement of a participant' internal temporal clock to the particularly slow pace of the danced movement. Each participant' subjective experience-in the form of responses to questionnaires-were collected and correlated with cognitive and physiological entrainment. We observe: (a) a positive relationship between psychological entrainment and attention to breathing (their own one or that of dancers); and (b) a positive relationship between cognitive entrainment (reflected as an under-estimation of time following the performance) and attention to their own breathing, and attention to the muscles' dancers. Overall, our results suggest a close relationship between attention to breathing and entrainment. This proof-of-concept pilot study was intended to prove the feasibility of a quantitative situated paradigm. This research is inscribed in a large-scale interdisciplinary project of dance spectating (labodanse.org). PMID:25999831

  11. Audience entrainment during live contemporary dance performance: physiological and cognitive measures

    PubMed Central

    Bachrach, Asaf; Fontbonne, Yann; Joufflineau, Coline; Ulloa, José Luis

    2015-01-01

    Perceiving and synchronizing to a piece of dance is a remarkable skill in humans. Research in this area is very recent and has been focused mainly on entrainment produced by regular rhythms. Here, we investigated entrainment effects on spectators perceiving a non-rhythmic and extremely slow performance issued from contemporary dance. More specifically, we studied the relationship between subjective experience and entrainment produced by perceiving this type of performance. We defined two types of entrainment. Physiological entrainment corresponded to cardiovascular and respiratory coordinated activities. Cognitive entrainment was evaluated through cognitive tasks that quantified time distortion. These effects were thought to reflect attunement of a participant’ internal temporal clock to the particularly slow pace of the danced movement. Each participant’ subjective experience—in the form of responses to questionnaires—were collected and correlated with cognitive and physiological entrainment. We observe: (a) a positive relationship between psychological entrainment and attention to breathing (their own one or that of dancers); and (b) a positive relationship between cognitive entrainment (reflected as an under-estimation of time following the performance) and attention to their own breathing, and attention to the muscles’ dancers. Overall, our results suggest a close relationship between attention to breathing and entrainment. This proof-of-concept pilot study was intended to prove the feasibility of a quantitative situated paradigm. This research is inscribed in a large-scale interdisciplinary project of dance spectating (labodanse.org). PMID:25999831

  12. The entraining moist boundary layer

    NASA Technical Reports Server (NTRS)

    Randall, D. A.

    1978-01-01

    A unified theory of entrainment into the planetary boundary layer is presented. It is assumed that the rates of buoyant and shear production of turbulence kinetic energy can be determined in terms of the entrainment mass flux. An expression is derived from the conservation law for turbulence kinetic energy, which, with the introduction of an empirical parameter, can be used together with a second relation between turbulence kinetic energy and the turbulence velocity scale to obtain the mass entrainment flux. The theory provides descriptions of storage-limited entrainment, buoyancy-limited entrainment into a clear mixed layer, and shallowing. It has been incorporated into a simulation of Day 33 of the Wangara experiment using a simple mixed layer model.

  13. Cortical entrainment to music and its modulation by expertise

    PubMed Central

    Doelling, Keith B.; Poeppel, David

    2015-01-01

    Recent studies establish that cortical oscillations track naturalistic speech in a remarkably faithful way. Here, we test whether such neural activity, particularly low-frequency (<8 Hz; delta–theta) oscillations, similarly entrain to music and whether experience modifies such a cortical phenomenon. Music of varying tempi was used to test entrainment at different rates. In three magnetoencephalography experiments, we recorded from nonmusicians, as well as musicians with varying years of experience. Recordings from nonmusicians demonstrate cortical entrainment that tracks musical stimuli over a typical range of tempi, but not at tempi below 1 note per second. Importantly, the observed entrainment correlates with performance on a concurrent pitch-related behavioral task. In contrast, the data from musicians show that entrainment is enhanced by years of musical training, at all presented tempi. This suggests a bidirectional relationship between behavior and cortical entrainment, a phenomenon that has not previously been reported. Additional analyses focus on responses in the beta range (∼15–30 Hz)—often linked to delta activity in the context of temporal predictions. Our findings provide evidence that the role of beta in temporal predictions scales to the complex hierarchical rhythms in natural music and enhances processing of musical content. This study builds on important findings on brainstem plasticity and represents a compelling demonstration that cortical neural entrainment is tightly coupled to both musical training and task performance, further supporting a role for cortical oscillatory activity in music perception and cognition. PMID:26504238

  14. Cortical entrainment to music and its modulation by expertise.

    PubMed

    Doelling, Keith B; Poeppel, David

    2015-11-10

    Recent studies establish that cortical oscillations track naturalistic speech in a remarkably faithful way. Here, we test whether such neural activity, particularly low-frequency (<8 Hz; delta-theta) oscillations, similarly entrain to music and whether experience modifies such a cortical phenomenon. Music of varying tempi was used to test entrainment at different rates. In three magnetoencephalography experiments, we recorded from nonmusicians, as well as musicians with varying years of experience. Recordings from nonmusicians demonstrate cortical entrainment that tracks musical stimuli over a typical range of tempi, but not at tempi below 1 note per second. Importantly, the observed entrainment correlates with performance on a concurrent pitch-related behavioral task. In contrast, the data from musicians show that entrainment is enhanced by years of musical training, at all presented tempi. This suggests a bidirectional relationship between behavior and cortical entrainment, a phenomenon that has not previously been reported. Additional analyses focus on responses in the beta range (∼15-30 Hz)-often linked to delta activity in the context of temporal predictions. Our findings provide evidence that the role of beta in temporal predictions scales to the complex hierarchical rhythms in natural music and enhances processing of musical content. This study builds on important findings on brainstem plasticity and represents a compelling demonstration that cortical neural entrainment is tightly coupled to both musical training and task performance, further supporting a role for cortical oscillatory activity in music perception and cognition. PMID:26504238

  15. Direct numerical simulation of sediment entrainment in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Ji, C.; Munjiza, A.; Avital, E.; Ma, J.; Williams, J. J. R.

    2013-05-01

    In this paper, the entrainment and movement of coarse particles on the bed of an open channel is numerically investigated. Rather than model the sediment transport using a concentration concept, this study treats the sediment as individual particles and investigates the interaction between turbulent coherent structures and particle entrainment. The applied methodology is a combination of the direct numerical simulation of turbulent flow, the combined finite-discrete element modeling of particle motion and collision, and the immersed boundary method for the fluid-solid interaction. In this study, flow over a water-worked rough-bed consisting of 2-3 layers of densely packed spheres is adopted and the Shields function is 0.065 which is just above the entrainment threshold to give a bed-load regime. Numerical results for turbulent flow, sediment entrainment statistics, hydrodynamic forces acting on the particles, and the interaction between turbulence coherent structures and particle entrainment are presented. It is shown that the presence of entrained particles significantly modifies the mean velocity and turbulence quantity profiles in the vicinity of a rough-bed and that the instantaneous lift force can be larger than a particle's submerged weight in a narrow region above the effective bed location, although the mean lift force is always smaller than the submerged weight. This, from a hydrodynamic point of view, presents strong evidence for a close cause-and-effect relationship between coherent structures and sediment entrainment. Furthermore, instantaneous numerical results on particle entrainment and the surrounding turbulent flow are reported which show a strong correlation between sediment entrainment and sweep events and the underlying mechanisms are discussed.

  16. Entrainment across density interfaces

    NASA Astrophysics Data System (ADS)

    Sanchez, M. A.; Carrillo, A.; Mahjoub, O. B.

    2010-05-01

    The structure of non-homogeneous turbulence affected by stratification and rotation is investigated both by means of laboratory and numerical experiments. The experiments investigate zero mean flow across a stably stratified density interface and are used to quantify the entrainment, the mixing efficiency and different types of dominant instability and the topological aspects of the turbulent cascades detected both horizontally and vertically [1,2]. Grid turbulence in a rotating stratified two layer system is measured with PIV as well as with sonic velocimetry. Observations of the horizontal and vertical velocity energy spectra as well as the structure functions are used to estimate local mixedness, entrainment and intermittency [3,4]. The method of estimation of the average eddy diffusivity from the time series images of a sharp density interface marked by fluoresceine also take anisotropy into account. but on the long run, horizontal ( and 2D type flow such as [5]) flow directions will average out so using a single integral length scale defined in Sanchez and Redondo(1998) varying in height will be enough together with the internal frequency. The method of calculating vertical fluxes in time allows to estimate different intermittency parameters as a function of local instability e.g. Kelvin/Helmholtz, Rayleigh-Taylor or Holbmoe[6-8]. Different concentration interfaces show different fractal dimensions, that are also a power function of the local Richardson number, this may be due to different levels of intermittency and thus different spectra, which are not necessarily inertial nor in equilibrium [8,9]. [1] Sanchez M.A. and Redondo J.M.Observations from Grid Stirred Turbulence. Applied Scientific Research 59, 191-204. 1998. [2] Redondo, J.M. and Cantalapiedra I.R. Mixing in Horizontally Heterogeneous Flows . Jour. Flow Turbulence and Combustion. 51, 217-222. 1993. [3] Castilla R, Redondo J.M., Gamez P.J., Babiano A. Coherent vortices and Lagrangian Dynamics in 2D

  17. Entrainment and mixing in thrust augmenting ejectors

    NASA Technical Reports Server (NTRS)

    Bernal, L.; Sarohia, V.

    1983-01-01

    An experimental investigation of two-dimensional thrust augmenting ejector flows has been conducted. Measurements of the shroud surface pressure distribution, mean velocity, turbulent intensities and Reynolds stresses were made in two shroud geometries at various primary nozzle pressure ratios. The effects of shroud geometry and primary nozzle pressure ratio on the shroud surface pressure distribution, mean flow field and turbulent field were determined. From these measurements the evolution of mixing within the shroud of the primary flow and entrained fluid was obtained. The relationship between the mean flow field, the turbulent field and the shroud surface pressure distribution is discussed.

  18. Disordered speech disrupts conversational entrainment: a study of acoustic-prosodic entrainment and communicative success in populations with communication challenges.

    PubMed

    Borrie, Stephanie A; Lubold, Nichola; Pon-Barry, Heather

    2015-01-01

    Conversational entrainment, a pervasive communication phenomenon in which dialogue partners adapt their behaviors to align more closely with one another, is considered essential for successful spoken interaction. While well-established in other disciplines, this phenomenon has received limited attention in the field of speech pathology and the study of communication breakdowns in clinical populations. The current study examined acoustic-prosodic entrainment, as well as a measure of communicative success, in three distinctly different dialogue groups: (i) healthy native vs. healthy native speakers (Control), (ii) healthy native vs. foreign-accented speakers (Accented), and (iii) healthy native vs. dysarthric speakers (Disordered). Dialogue group comparisons revealed significant differences in how the groups entrain on particular acoustic-prosodic features, including pitch, intensity, and jitter. Most notably, the Disordered dialogues were characterized by significantly less acoustic-prosodic entrainment than the Control dialogues. Further, a positive relationship between entrainment indices and communicative success was identified. These results suggest that the study of conversational entrainment in speech pathology will have essential implications for both scientific theory and clinical application in this domain. PMID:26321996

  19. Disordered speech disrupts conversational entrainment: a study of acoustic-prosodic entrainment and communicative success in populations with communication challenges

    PubMed Central

    Borrie, Stephanie A.; Lubold, Nichola; Pon-Barry, Heather

    2015-01-01

    Conversational entrainment, a pervasive communication phenomenon in which dialogue partners adapt their behaviors to align more closely with one another, is considered essential for successful spoken interaction. While well-established in other disciplines, this phenomenon has received limited attention in the field of speech pathology and the study of communication breakdowns in clinical populations. The current study examined acoustic-prosodic entrainment, as well as a measure of communicative success, in three distinctly different dialogue groups: (i) healthy native vs. healthy native speakers (Control), (ii) healthy native vs. foreign-accented speakers (Accented), and (iii) healthy native vs. dysarthric speakers (Disordered). Dialogue group comparisons revealed significant differences in how the groups entrain on particular acoustic–prosodic features, including pitch, intensity, and jitter. Most notably, the Disordered dialogues were characterized by significantly less acoustic-prosodic entrainment than the Control dialogues. Further, a positive relationship between entrainment indices and communicative success was identified. These results suggest that the study of conversational entrainment in speech pathology will have essential implications for both scientific theory and clinical application in this domain. PMID:26321996

  20. DE-ENTRAINMENT COLUMN

    DOEpatents

    Mooradian, A.J.

    1958-07-01

    A de-entrainnnent colunnn is described for removing substances from a stream of vapor coming from a distillation apparatus. The device comprises a hollow cylindrical body mounted with its axis vertical on a flange on the upper slde of a vaporizing vessel; two sintered metal circular discs through which all the vapor passes mounted in axially spaced relationship in the cylindrical body; and two semi-circular baffle plates mounted in spaced relationship between the discs.

  1. Air entrainment in hairy surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Regli, Marianne; Brun, P.-T.; Alvarado, José; Clanet, Christophe; Hosoi, A. E.

    2016-07-01

    Motivated by diving semiaquatic mammals, we investigate the mechanism of dynamic air entrainment in hairy surfaces submerged in liquid. Hairy surfaces are cast out of polydimethylsiloxane elastomer and plunged into a fluid bath at different velocities. Experimentally, we find that the amount of air entrained is greater than what is expected for smooth surfaces. Theoretically, we show that the hairy surface can be considered as a porous medium and we describe the air entrainment via a competition between the hydrostatic forcing and the viscous resistance in the pores. A phase diagram that includes data from our experiments and biological data from diving semiaquatic mammals is included to place the model system in a biological context and predict the regime for which the animal is protected by a plastron of air.

  2. Timescales of massive human entrainment.

    PubMed

    Fusaroli, Riccardo; Perlman, Marcus; Mislove, Alan; Paxton, Alexandra; Matlock, Teenie; Dale, Rick

    2015-01-01

    The past two decades have seen an upsurge of interest in the collective behaviors of complex systems composed of many agents entrained to each other and to external events. In this paper, we extend the concept of entrainment to the dynamics of human collective attention. We conducted a detailed investigation of the unfolding of human entrainment--as expressed by the content and patterns of hundreds of thousands of messages on Twitter--during the 2012 US presidential debates. By time-locking these data sources, we quantify the impact of the unfolding debate on human attention at three time scales. We show that collective social behavior covaries second-by-second to the interactional dynamics of the debates: A candidate speaking induces rapid increases in mentions of his name on social media and decreases in mentions of the other candidate. Moreover, interruptions by an interlocutor increase the attention received. We also highlight a distinct time scale for the impact of salient content during the debates: Across well-known remarks in each debate, mentions in social media start within 5-10 seconds after it occurs; peak at approximately one minute; and slowly decay in a consistent fashion across well-known events during the debates. Finally, we show that public attention after an initial burst slowly decays through the course of the debates. Thus we demonstrate that large-scale human entrainment may hold across a number of distinct scales, in an exquisitely time-locked fashion. The methods and results pave the way for careful study of the dynamics and mechanisms of large-scale human entrainment. PMID:25880357

  3. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system

    PubMed Central

    Thaut, Michael H.; McIntosh, Gerald C.; Hoemberg, Volker

    2015-01-01

    Entrainment is defined by a temporal locking process in which one system’s motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy. PMID:25774137

  4. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system.

    PubMed

    Thaut, Michael H; McIntosh, Gerald C; Hoemberg, Volker

    2014-01-01

    Entrainment is defined by a temporal locking process in which one system's motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy. PMID:25774137

  5. Entrainment in oscillatory zero-mean flow

    NASA Astrophysics Data System (ADS)

    Medina, P.; Sanchez, M. A.

    2009-04-01

    relationship between the Flux Richardson number and the Gradient or local one and the ways in which the interface extracts energy from the turbulence source via internal waves Internal gravity (or buoyancy) waves are characteristic of the stable boundary layer and contribute to its transport processes, both directly, and indirectly via internal waveinduced turbulence. These proceses are able to control entrainment across strong density interfaces as those defined by Kings et al (1989) in the Antartica. A comparison of the range of entrainment values from laboratory experiments with those ocurring in nature, both in the atmosphere and ocean shows the importance of modeling correctly the integral lengthscales of the environmental turbulence.

  6. Flow Dynamics and Sediment Entrainment in Natural Turbidity Currents Inferred from Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Traer, M. M.; Hilley, G. E.; Fildani, A.

    2009-12-01

    Submarine turbidity currents derive their momentum from gravity acting upon the density contrast between sediment-laden and clear water, and so unlike fluvial systems, the dynamics of such flows are inextricably linked to the rates at which they deposit and entrain sediment. We have analyzed the sensitivity of the growth and maintenance of turbidity currents to sediment entrainment and deposition using the layer-averaged equations of conservation of fluid and sediment mass, and conservation of momentum and turbulent kinetic energy. Our model results show that the dynamics of turbidity currents are extremely sensitive to the functional form and empirical constants of the relationship between sediment entrainment and friction velocity. Data on the relationship between sediment entrainment and friction velocity for submarine density flows are few and as a result, entrainment formulations are populated with data from sub-aerial flows not driven by the density contrast between clear and turbid water. If we entertain the possibility that sediment entrainment in sub-aerial rivers is different than in dense underflows, flow parameters such as velocity, height, and concentration were found nearly impossible to predict beyond a few hundred meters based on the limited laboratory data available that constrain the sediment entrainment process in turbidity currents. The sensitivity of flow dynamics to the functional relationship between friction velocity and sediment entrainment indicates that independent calibration of a sediment entrainment law in the submarine environment is necessary to realistically predict the dynamics of these flows and the resulting patterns of erosion and deposition. To calibrate such a relationship, we have developed an inverse methodology that utilizes existing submarine channel morphology as a means of constraining the sediment entrainment function parameters. We use a Bayesian Metropolis-Hastings sampler to determine the sediment entrainment

  7. Entrainment by the jet in HH 47

    NASA Technical Reports Server (NTRS)

    Raymond, John C.; Morse, Jon A.; Hartigan, P.; Curiel, S.; Heathcote, Steve

    1994-01-01

    Fabry-Perot images of the HH 47 optical jet show that the velocity decreases from the center toward the edges which is interpreted as evidence for entrainment. Those images can be used to investigate the rate of entrainment required to account for the observed luminosity. Entrainment along the jet can account for only small fractions of the jet mass and the molecular outflow seen in CO. We compare the density, excitation, and velocity structure of the jet with the predictions of viscous entrainment models and models of entrainment by expulsion of jet material by internal shocks, and find that either type of model can explain the general features.

  8. Timescales of Massive Human Entrainment

    PubMed Central

    Fusaroli, Riccardo; Perlman, Marcus; Mislove, Alan; Paxton, Alexandra; Matlock, Teenie; Dale, Rick

    2015-01-01

    The past two decades have seen an upsurge of interest in the collective behaviors of complex systems composed of many agents entrained to each other and to external events. In this paper, we extend the concept of entrainment to the dynamics of human collective attention. We conducted a detailed investigation of the unfolding of human entrainment—as expressed by the content and patterns of hundreds of thousands of messages on Twitter—during the 2012 US presidential debates. By time-locking these data sources, we quantify the impact of the unfolding debate on human attention at three time scales. We show that collective social behavior covaries second-by-second to the interactional dynamics of the debates: A candidate speaking induces rapid increases in mentions of his name on social media and decreases in mentions of the other candidate. Moreover, interruptions by an interlocutor increase the attention received. We also highlight a distinct time scale for the impact of salient content during the debates: Across well-known remarks in each debate, mentions in social media start within 5–10 seconds after it occurs; peak at approximately one minute; and slowly decay in a consistent fashion across well-known events during the debates. Finally, we show that public attention after an initial burst slowly decays through the course of the debates. Thus we demonstrate that large-scale human entrainment may hold across a number of distinct scales, in an exquisitely time-locked fashion. The methods and results pave the way for careful study of the dynamics and mechanisms of large-scale human entrainment. PMID:25880357

  9. Entrainment in electrohydrodynamic heat pipes

    NASA Technical Reports Server (NTRS)

    Jones, T. B.; Perry, M. P.

    1972-01-01

    A theoretical analysis for predicting the onset of the Kelvin-Helmholtz instability is reported. The model for the analysis is described, and the derived stability criterion are given. It is concluded that surface tension plays a role in the entrainment limit of electro hydrodynamic heat pipes. The surface of the liquid in an EHD flow structure is open, with no restriction placed on the wavenumbers of perturbations.

  10. Inherent emotional quality of human speech sounds

    PubMed Central

    Myers-Schulz, Blake; Pujara, Maia; Wolf, Richard C.; Koenigs, Michael

    2012-01-01

    During much of the past century, it was widely believed that phonemes—the human speech sounds that constitute words—have no inherent semantic meaning, and that the relationship between a combination of phonemes (a word) and its referent is simply arbitrary. Although recent work has challenged this picture by revealing psychological associations between certain phonemes and particular semantic contents, the precise mechanisms underlying these associations have not been fully elucidated. Here we provide novel evidence that certain phonemes have an inherent, non-arbitrary emotional quality. Moreover, we show that the perceived emotional valence of certain phoneme combinations depends on a specific acoustic feature—namely, the dynamic shift within the phonemes' first two frequency components. These data suggest a phoneme-relevant acoustic property influencing the communication of emotion in humans, and provide further evidence against previously held assumptions regarding the structure of human language. This finding has potential applications for a variety of social, educational, clinical, and marketing contexts. PMID:23286242

  11. The importance of entrainment and bulking on debris flow runout modeling: examples from the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Frank, F.; McArdell, B. W.; Huggel, C.; Vieli, A.

    2015-11-01

    This study describes an investigation of channel-bed entrainment of sediment by debris flows. An entrainment model, developed using field data from debris flows at the Illgraben catchment, Switzerland, was incorporated into the existing RAMMS debris-flow model, which solves the 2-D shallow-water equations for granular flows. In the entrainment model, an empirical relationship between maximum shear stress and measured erosion is used to determine the maximum potential erosion depth. Additionally, the average rate of erosion, measured at the same field site, is used to constrain the erosion rate. The model predicts plausible erosion values in comparison with field data from highly erosive debris flow events at the Spreitgraben torrent channel, Switzerland in 2010, without any adjustment to the coefficients in the entrainment model. We find that by including bulking due to entrainment (e.g., by channel erosion) in runout models a more realistic flow pattern is produced than in simulations where entrainment is not included. In detail, simulations without entrainment show more lateral outflow from the channel where it has not been observed in the field. Therefore the entrainment model may be especially useful for practical applications such as hazard analysis and mapping, as well as scientific case studies of erosive debris flows.

  12. Crustal entrainment and pulsar glitches.

    PubMed

    Chamel, N

    2013-01-01

    Large pulsar frequency glitches are generally interpreted as sudden transfers of angular momentum between the neutron superfluid permeating the inner crust and the rest of the star. Despite the absence of viscous drag, the neutron superfluid is strongly coupled to the crust due to nondissipative entrainment effects. These effects are shown to severely limit the maximum amount of angular momentum that can possibly be transferred during glitches. In particular, it is found that the glitches observed in the Vela pulsar require an additional reservoir of angular momentum. PMID:23383772

  13. Partial entrainment of gravel bars during floods

    USGS Publications Warehouse

    Konrad, C.P.; Booth, D.B.; Burges, S.J.; Montgomery, D.R.

    2002-01-01

    Spatial patterns of bed material entrainment by floods were documented at seven gravel bars using arrays of metal washers (bed tags) placed in the streambed. The observed patterns were used to test a general stochastic model that bed material entrainment is a spatially independent, random process where the probability of entrainment is uniform over a gravel bar and a function of the peak dimensionless shear stress ??*0 of the flood. The fraction of tags missing from a gravel bar during a flood, or partial entrainment, had an approximately normal distribution with respect to ??*0 with a mean value (50% of the tags entrained) of 0.085 and standard deviation of 0.022 (root-mean-square error of 0.09). Variation in partial entrainment for a given ??*0 demonstrated the effects of flow conditioning on bed strength, with lower values of partial entrainment after intermediate magnitude floods (0.065 < ??*0 < 0.08) than after higher magnitude floods. Although the probability of bed material entrainment was approximately uniform over a gravel bar during individual floods and independent from flood to flood, regions of preferential stability and instability emerged at some bars over the course of a wet season. Deviations from spatially uniform and independent bed material entrainment were most pronounced for reaches with varied flow and in consecutive floods with small to intermediate magnitudes.

  14. Entrainment of Dungeness Crab in the Desdemona Shoals Reach of the Lower Columbia River Navigation Channel

    SciTech Connect

    Pearson, Walter H.; Kohn, Nancy P.; Skalski, J. R.

    2006-09-30

    high age 1+ entrainment rate at Desdemona Shoals in June 2002 unusual, or would it be observed again under similar conditions? PNNL and USACE personnel directly measured crab entrainment by the USACE hopper dredge Essayons working in Desdemona Shoals in June 2006. In addition to quantifying crab entrainment of all age classes, bottom salinity was directly measured in as many samples as possible, so that the relationship between crab entrainment and salinity could be further evaluated. All 2006 data were collected and analyzed in a manner consistent with the previous entrainment studies (Pearson et al. 2002, 2003, 2005).

  15. Entrained neural oscillations in multiple frequency bands comodulate behavior

    PubMed Central

    Henry, Molly J.; Herrmann, Björn

    2014-01-01

    Our sensory environment is teeming with complex rhythmic structure, to which neural oscillations can become synchronized. Neural synchronization to environmental rhythms (entrainment) is hypothesized to shape human perception, as rhythmic structure acts to temporally organize cortical excitability. In the current human electroencephalography study, we investigated how behavior is influenced by neural oscillatory dynamics when the rhythmic fluctuations in the sensory environment take on a naturalistic degree of complexity. Listeners detected near-threshold gaps in auditory stimuli that were simultaneously modulated in frequency (frequency modulation, 3.1 Hz) and amplitude (amplitude modulation, 5.075 Hz); modulation rates and types were chosen to mimic the complex rhythmic structure of natural speech. Neural oscillations were entrained by both the frequency modulation and amplitude modulation in the stimulation. Critically, listeners’ target-detection accuracy depended on the specific phase–phase relationship between entrained neural oscillations in both the 3.1-Hz and 5.075-Hz frequency bands, with the best performance occurring when the respective troughs in both neural oscillations coincided. Neural-phase effects were specific to the frequency bands entrained by the rhythmic stimulation. Moreover, the degree of behavioral comodulation by neural phase in both frequency bands exceeded the degree of behavioral modulation by either frequency band alone. Our results elucidate how fluctuating excitability, within and across multiple entrained frequency bands, shapes the effective neural processing of environmental stimuli. More generally, the frequency-specific nature of behavioral comodulation effects suggests that environmental rhythms act to reduce the complexity of high-dimensional neural states. PMID:25267634

  16. Evidence of inherent spontaneous polarization in the metazoan integument epithelia.

    PubMed Central

    Athenstaedt, H; Claussen, H

    1983-01-01

    The live integument epithelia of the metazoa have an inherent spontaneous polarization (an inherent permanent electric dipole moment) of corresponding direction perpendicular to the integument surface. The existence of the inherent polarization was proved by their temperature dependence, i.e., by the pyroelectric (PE) effect. Quantitative PE measurements were carried out on a number of integument epithelia of vertebrates (a) in vivo, (b) on fresh epidermis preparations, and (c) on dead, air-dried epidermis specimens of the same species. The demonstrated spontaneous polarization is not dependent on the living state and not caused by a potential difference between the outer and inner integument surface. Dead, dry epidermis samples (potential difference less than 0.01 mV) as well as dead, dry integument appendages (bristles, hairs), and dead cuticles (of arthropoda, annelida, nematoda) showed an inherent dipole moment of the same orientation as the live epidermis. The findings reveal a relationship between the direction (vector) of inherent spontaneous polarization and that of growth (morphogenesis) in the animal epidermis, their appendages, and cuticles. We conclude (a) that the inherent spontaneous polarization is present in live individual epithelial cells of the metazoan integument, and (b) that this physical property is related to the structural and functional cell polarity of integument epithelia and possibly of other epithelia. Images FIGURE 10 PMID:6838974

  17. Entrainment of respiratory frequency to exercise rhythm during hypoxia.

    PubMed

    Paterson, D J; Wood, G A; Marshall, R N; Morton, A R; Harrison, A B

    1987-05-01

    Breathing frequency (f) is often reported as having an integer-multiple relationship to limb movement (entrainment) during rhythmic exercise. To investigate the strength of this coupling while running under hypoxic conditions, two male Caucasians and four male Nepalese porters were tested in the Annapurna region of the Himalayas at altitudes of 915, 2,135, 3,200, 4,420, and 5,030 m. In an additional study in a laboratory at sea level, three male and four female subjects inspired various O2-N2 mixtures [fraction of inspired O2 (FIO2) = 20.93, 17.39, 14.40, 11.81%] that were administered in a single-blind randomized fashion during a treadmill run (40% FIO2 maximum O2 consumption). Breathing and gait signals were stored on FM tape and later processed on a PDP 11/73 computer. The subharmonic relationships between these signals were determined from Fourier analysis (power spectrum), and the coincidence of coupling occurrence was statistically modeled. Entrainment decreased linearly during increasing hypoxia (P less than 0.01). Moreover, a significant linear increase in f occurred during hypoxia (P less than 0.05), whereas stride frequency and metabolic rate remained constant, suggesting that hypoxic-induced increases in f decreased the degree of entrainment. PMID:3597249

  18. Laboratory experiments investigating entrainment by debris flows and associated increased mobility

    NASA Astrophysics Data System (ADS)

    Moberly, D.; Maki, L.; Hill, K. M.

    2014-12-01

    As debris flows course down a steep hillside they entrain bed materials such as loose sediments. The entrainment of materials not only increases the size of the debris flows but the mobility as well. The mechanics underlying the particle entrainment and the associated increased mobility are not well-understood. Existing models for the entrainment process include those that explicitly consider stress ratios, the angle of inclination, and the particle fluxes relative to those achieved under steady conditions. Others include an explicit consideration of the physics of the granular state: the visco-elastic nature of particle flows and, alternatively, the role of macroscopic force chains. Understanding how well these different approaches account for entrainment and deposition rates is important for accurate debris flow modeling, both in terms of the rate of growth and also in terms of the increased mobility associated with the entrainment. We investigate how total and instantaneous entrainment and deposition vary with macroscopic stresses and particle-scale interactions for different particle sizes and different fluid contents using laboratory experiments in an instrumented experimental laboratory debris flow flume. The flume has separate, independent water supplies for the bed and "supply" (parent debris flow), and the bed is instrumented with pore pressure sensors and a basal stress transducer. We monitor flow velocities, local structure, and instantaneous entrainment and deposition rates using a high speed camera. We have found that systems with a mixture of particle sizes are less erosive and more depositional than systems of one particle size under otherwise the same conditions. For both mixtures and single-sized particle systems, we have observed a relatively linear relationship between total erosion and the slope angle for dry flows. Increasing fluid content typically increases entrainment. Measurements of instantaneous entrainment indicate similar dependencies

  19. Clouds and entrainment. [cumulus convective turbulence in clear air

    NASA Technical Reports Server (NTRS)

    Randall, D. A.

    1982-01-01

    The concept of entrainment is discussed, and the knowledge that has been acquired about entraining turbulence in clear air is surveyed. Attention is then given to observations and models of stratocumulus entrainment, which show some of the ways in which cloudiness modifies the entrainment process. Entraining cumuli are also considered, with some of the differences between cumulus entrainment and stratocumulus entrainment noted. Emphasis is placed on the dynamical aspects of entrainment; its effects on droplet spectra and other microphysical aspects are mentioned only briefly.

  20. Temperature compensation and entrainment in circadian rhythms

    NASA Astrophysics Data System (ADS)

    Bodenstein, C.; Heiland, I.; Schuster, S.

    2012-06-01

    To anticipate daily variations in the environment and coordinate biological activities into a daily cycle many organisms possess a circadian clock. In the absence of external time cues the circadian rhythm persists with a period of approximately 24 h. The clock phase can be shifted by single pulses of light, darkness, chemicals, or temperature and this allows entrainment of the clock to exactly 24 h by cycles of these zeitgebers. On the other hand, the period of the circadian rhythm is kept relatively constant within a physiological range of constant temperatures, which means that the oscillator is temperature compensated. The mechanisms behind temperature compensation and temperature entrainment are not fully understood, neither biochemically nor mathematically. Here, we theoretically investigate the interplay of temperature compensation and entrainment in general oscillatory systems. We first give an analytical treatment for small temperature shifts and derive that every temperature-compensated oscillator is entrainable to external small-amplitude temperature cycles. Temperature compensation ensures that this entrainment region is always centered at the endogenous period regardless of possible seasonal temperature differences. Moreover, for small temperature cycles the entrainment region of the oscillator is potentially larger for rectangular pulses. For large temperature shifts we numerically analyze different circadian clock models proposed in the literature with respect to these properties. We observe that for such large temperature shifts sinusoidal or gradual temperature cycles allow a larger entrainment region than rectangular cycles.

  1. Individual Differences in Rhythmic Cortical Entrainment Correlate with Predictive Behavior in Sensorimotor Synchronization.

    PubMed

    Nozaradan, Sylvie; Peretz, Isabelle; Keller, Peter E

    2016-01-01

    The current study aims at characterizing the mechanisms that allow humans to entrain the mind and body to incoming rhythmic sensory inputs in real time. We addressed this unresolved issue by examining the relationship between covert neural processes and overt behavior in the context of musical rhythm. We measured temporal prediction abilities, sensorimotor synchronization accuracy and neural entrainment to auditory rhythms as captured using an EEG frequency-tagging approach. Importantly, movement synchronization accuracy with a rhythmic beat could be explained by the amplitude of neural activity selectively locked with the beat period when listening to the rhythmic inputs. Furthermore, stronger endogenous neural entrainment at the beat frequency was associated with superior temporal prediction abilities. Together, these results reveal a direct link between cortical and behavioral measures of rhythmic entrainment, thus providing evidence that frequency-tagged brain activity has functional relevance for beat perception and synchronization. PMID:26847160

  2. Individual Differences in Rhythmic Cortical Entrainment Correlate with Predictive Behavior in Sensorimotor Synchronization

    PubMed Central

    Nozaradan, Sylvie; Peretz, Isabelle; Keller, Peter E.

    2016-01-01

    The current study aims at characterizing the mechanisms that allow humans to entrain the mind and body to incoming rhythmic sensory inputs in real time. We addressed this unresolved issue by examining the relationship between covert neural processes and overt behavior in the context of musical rhythm. We measured temporal prediction abilities, sensorimotor synchronization accuracy and neural entrainment to auditory rhythms as captured using an EEG frequency-tagging approach. Importantly, movement synchronization accuracy with a rhythmic beat could be explained by the amplitude of neural activity selectively locked with the beat period when listening to the rhythmic inputs. Furthermore, stronger endogenous neural entrainment at the beat frequency was associated with superior temporal prediction abilities. Together, these results reveal a direct link between cortical and behavioral measures of rhythmic entrainment, thus providing evidence that frequency-tagged brain activity has functional relevance for beat perception and synchronization. PMID:26847160

  3. Entrainment ranges of forced phase oscillators.

    PubMed

    Previte, Joseph P; Sheils, Natalie; Hoffman, Kathleen A; Kiemel, Tim; Tytell, Eric D

    2011-04-01

    In the vertebrate spinal cord, a neural circuit called the central pattern generator produces the basic locomotory rhythm. Short and long distance intersegmental connections serve to maintain coordination along the length of the body. As a way of examining the influence of such connections, we consider a model of a chain of coupled phase oscillators in which one oscillator receives a periodic forcing stimulus. For a certain range of forcing frequencies, the chain will match the stimulus frequency, a phenomenon called entrainment. Motivated by recent experiments in lampreys, we derive analytical expressions for the range of forcing frequencies that entrain the chain, and how that range depends on the forcing location. For short intersegmental connections, in which an oscillator is connected only to its nearest neighbors, we describe two ways in which entrainment is lost: internally, in which oscillators within the chain no longer oscillate at the same frequency; and externally, in which the the chain no longer has the same frequency as the forcing. By analyzing chains in which every oscillator is connected to every other oscillator (i.e., all-to-all connections), we show that the presence of connections with lengths greater than one do not necessarily change the entrainment ranges based on the nearest-neighbor model. We derive a criterion for the ratio of connection strengths under which the connections of length greater than one do not change the entrainment ranges produced in the nearest-neighbor model, provided entrainment is lost externally. However, when this criterion holds, the range of entrained frequencies is a monotonic function of forcing location, unlike experimental results, in which entrainment ranges are larger near the middle of the chain than at the ends. Numerically, we show that similar non-monotonic entrainment ranges are possible if the ratio criterion does not hold, suggesting that in the lamprey central pattern generator, intersegmental

  4. Enhanced entrainability of genetic oscillators by period mismatch

    PubMed Central

    Hasegawa, Yoshihiko; Arita, Masanori

    2013-01-01

    Biological oscillators coordinate individual cellular components so that they function coherently and collectively. They are typically composed of multiple feedback loops, and period mismatch is unavoidable in biological implementations. We investigated the advantageous effect of this period mismatch in terms of a synchronization response to external stimuli. Specifically, we considered two fundamental models of genetic circuits: smooth and relaxation oscillators. Using phase reduction and Floquet multipliers, we numerically analysed their entrainability under different coupling strengths and period ratios. We found that a period mismatch induces better entrainment in both types of oscillator; the enhancement occurs in the vicinity of the bifurcation on their limit cycles. In the smooth oscillator, the optimal period ratio for the enhancement coincides with the experimentally observed ratio, which suggests biological exploitation of the period mismatch. Although the origin of multiple feedback loops is often explained as a passive mechanism to ensure robustness against perturbation, we study the active benefits of the period mismatch, which include increasing the efficiency of the genetic oscillators. Our findings show a qualitatively different perspective for both the inherent advantages of multiple loops and their essentiality. PMID:23389900

  5. Robust Entrainment of Circadian Oscillators Requires Specific Phase Response Curves

    PubMed Central

    Pfeuty, Benjamin; Thommen, Quentin; Lefranc, Marc

    2011-01-01

    The circadian clocks keeping time in many living organisms rely on self-sustained biochemical oscillations entrained by external cues, such as light, to the 24-h cycle induced by Earth's rotation. However, environmental cues are unreliable due to the variability of habitats, weather conditions, or cue-sensing mechanisms among individuals. A tempting hypothesis is that circadian clocks have evolved so as to be robust to fluctuations in the signal that entrains them. To support this hypothesis, we analyze the synchronization behavior of weakly and periodically forced oscillators in terms of their phase response curve (PRC), which measures phase changes induced by a perturbation applied at different times of the cycle. We establish a general relationship between the robustness of key entrainment properties, such as stability and oscillator phase, on the one hand, and the shape of the PRC as characterized by a specific curvature or the existence of a dead zone, on the other hand. The criteria obtained are applied to computational models of circadian clocks and account for the disparate robustness properties of various forcing schemes. Finally, the analysis of PRCs measured experimentally in several organisms strongly suggests a case of convergent evolution toward an optimal strategy for maintaining a clock that is accurate and robust to environmental fluctuations. PMID:21641300

  6. Washing of the AN-107 entrained solids

    SciTech Connect

    GJ Lumetta; FV Hoopes

    2000-03-31

    This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing on the composition of the entrained solids in the diluted AN-107 low-activity waste (LAW) sample. The objective of this work was to gather data on the solubility of the AN-107 entrained solids in 0.01 M NaOH, so that BNFL can evaluate whether these solids require caustic leaching.

  7. Informational Constraints on Spontaneous Visuomotor Entrainment

    PubMed Central

    Varlet, Manuel; Bucci, Colleen; Richardson, Michael J.; Schmidt, R. C.

    2015-01-01

    Past research has revealed that an individual's rhythmic limb movements become spontaneously entrained to an environmental rhythm if visual information about the rhythm is available and its frequency is near that of the individual's movements. Research has also demonstrated that if the eyes track an environmental stimulus, the spontaneous entrainment to the rhythm is strengthened. One hypothesis explaining this enhancement of spontaneous entrainment is that the limb movements and eye movements are linked through a neuromuscular coupling or synergy. Another is that eye-tracking facilitates the pick up of important coordinating information. Experiment 1 investigated the first hypothesis by evaluating whether any rhythmic movement of the eyes would facilitate spontaneous entrainment. Experiment 2 and 3 (respectively) explored whether eye-tracking strengthens spontaneous entrainment by allowing the pickup of trajectory direction change information or allowing an increase in the amount of information to be picked-up. Results suggest that the eye-tracking enhancement of spontaneous entrainment is a consequence of increasing the amount of information available to be picked-up. PMID:25866944

  8. Tuning the phase of circadian entrainment.

    PubMed

    Bordyugov, Grigory; Abraham, Ute; Granada, Adrian; Rose, Pia; Imkeller, Katharina; Kramer, Achim; Herzel, Hanspeter

    2015-07-01

    The circadian clock coordinates daily physiological, metabolic and behavioural rhythms. These endogenous oscillations are synchronized with external cues ('zeitgebers'), such as daily light and temperature cycles. When the circadian clock is entrained by a zeitgeber, the phase difference ψ between the phase of a clock-controlled rhythm and the phase of the zeitgeber is of fundamental importance for the fitness of the organism. The phase of entrainment ψ depends on the mismatch between the intrinsic period τ and the zeitgeber period T and on the ratio of the zeitgeber strength to oscillator amplitude. Motivated by the intriguing complexity of empirical data and by our own experiments on temperature entrainment of mouse suprachiasmatic nucleus (SCN) slices, we present a theory on how clock and zeitgeber properties determine the phase of entrainment. The wide applicability of the theory is demonstrated using mathematical models of different complexity as well as by experimental data. Predictions of the theory are confirmed by published data on Neurospora crassa strains for different period mismatches τ - T and varying photoperiods. We apply a novel regression technique to analyse entrainment of SCN slices by temperature cycles. We find that mathematical models can explain not only the stable asymptotic phase of entrainment, but also transient phase dynamics. Our theory provides the potential to explore seasonal variations of circadian rhythms, jet lag and shift work in forthcoming studies. PMID:26136227

  9. Coupling governs entrainment range of circadian clocks

    PubMed Central

    Abraham, Ute; Granada, Adrián E; Westermark, Pål O; Heine, Markus; Kramer, Achim; Herzel, Hanspeter

    2010-01-01

    Circadian clocks are endogenous oscillators driving daily rhythms in physiology and behavior. Synchronization of these timers to environmental light–dark cycles (‘entrainment') is crucial for an organism's fitness. Little is known about which oscillator qualities determine entrainment, i.e., entrainment range, phase and amplitude. In a systematic theoretical and experimental study, we uncovered these qualities for circadian oscillators in the suprachiasmatic nucleus (SCN—the master clock in mammals) and the lung (a peripheral clock): (i) the ratio between stimulus (zeitgeber) strength and oscillator amplitude and (ii) the rigidity of the oscillatory system (relaxation rate upon perturbation) determine entrainment properties. Coupling among oscillators affects both qualities resulting in increased amplitude and rigidity. These principles explain our experimental findings that lung clocks entrain to extreme zeitgeber cycles, whereas SCN clocks do not. We confirmed our theoretical predictions by showing that pharmacological inhibition of coupling in the SCN leads to larger ranges of entrainment. These differences between master and the peripheral clocks suggest that coupling-induced rigidity in the SCN filters environmental noise to create a robust circadian system. PMID:21119632

  10. Tuning the phase of circadian entrainment

    PubMed Central

    Bordyugov, Grigory; Abraham, Ute; Granada, Adrian; Rose, Pia; Imkeller, Katharina; Kramer, Achim; Herzel, Hanspeter

    2015-01-01

    The circadian clock coordinates daily physiological, metabolic and behavioural rhythms. These endogenous oscillations are synchronized with external cues (‘zeitgebers’), such as daily light and temperature cycles. When the circadian clock is entrained by a zeitgeber, the phase difference ψ between the phase of a clock-controlled rhythm and the phase of the zeitgeber is of fundamental importance for the fitness of the organism. The phase of entrainment ψ depends on the mismatch between the intrinsic period τ and the zeitgeber period T and on the ratio of the zeitgeber strength to oscillator amplitude. Motivated by the intriguing complexity of empirical data and by our own experiments on temperature entrainment of mouse suprachiasmatic nucleus (SCN) slices, we present a theory on how clock and zeitgeber properties determine the phase of entrainment. The wide applicability of the theory is demonstrated using mathematical models of different complexity as well as by experimental data. Predictions of the theory are confirmed by published data on Neurospora crassa strains for different period mismatches τ − T and varying photoperiods. We apply a novel regression technique to analyse entrainment of SCN slices by temperature cycles. We find that mathematical models can explain not only the stable asymptotic phase of entrainment, but also transient phase dynamics. Our theory provides the potential to explore seasonal variations of circadian rhythms, jet lag and shift work in forthcoming studies. PMID:26136227

  11. Entrainment and the cranial rhythmic impulse.

    PubMed

    McPartland, J M; Mein, E A

    1997-01-01

    Entrainment is the integration or harmonization of oscillators. All organisms pulsate with myriad electrical and mechanical rhythms. Many of these rhythms emanate from synchronized pulsating cells (eg, pacemaker cells, cortical neurons). The cranial rhythmic impulse is an oscillation recognized by many bodywork practitioners, but the functional origin of this impulse remains uncertain. We propose that the cranial rhythmic impulse is the palpable perception of entrainment, a harmonic frequency that incorporates the rhythms of multiple biological oscillators. It is derived primarily from signals between the sympathetic and parasympathetic nervous systems. Entrainment also arises between organisms. The harmonizing of coupled oscillators into a single, dominant frequency is called frequency-selective entrainment. We propose that this phenomenon is the modus operandi of practitioners who use the cranial rhythmic impulse in craniosacral treatment. Dominant entrainment is enhanced by "centering," a technique practiced by many healers, for example, practitioners of Chinese, Tibetan, and Ayurvedic medicine. We explore the connections between centering, the cranial rhythmic impulse, and craniosacral treatment. PMID:8997803

  12. Nonphotic entrainment of the human circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Klerman, E. B.; Rimmer, D. W.; Dijk, D. J.; Kronauer, R. E.; Rizzo, J. F. 3rd; Czeisler, C. A.

    1998-01-01

    In organisms as diverse as single-celled algae and humans, light is the primary stimulus mediating entrainment of the circadian biological clock. Reports that some totally blind individuals appear entrained to the 24-h day have suggested that nonphotic stimuli may also be effective circadian synchronizers in humans, although the nonphotic stimuli are probably comparatively weak synchronizers, because the circadian rhythms of many totally blind individuals "free run" even when they maintain a 24-h activity-rest schedule. To investigate entrainment by nonphotic synchronizers, we studied the endogenous circadian melatonin and core body temperature rhythms of 15 totally blind subjects who lacked conscious light perception and exhibited no suppression of plasma melatonin in response to ocular bright-light exposure. Nine of these fifteen blind individuals were able to maintain synchronization to the 24-h day, albeit often at an atypical phase angle of entrainment. Nonphotic stimuli also synchronized the endogenous circadian rhythms of a totally blind individual to a non-24-h schedule while living in constant near darkness. We conclude that nonphotic stimuli can entrain the human circadian pacemaker in some individuals lacking ocular circadian photoreception.

  13. Flowmeter for gas-entrained solids flow

    DOEpatents

    Porges, Karl G.

    1990-01-01

    An apparatus and method for the measurement of solids feedrate in a gas-entrained solids flow conveyance system. The apparatus and method of the present invention include a vertical duct connecting a source of solids to the gas-entrained flow conveyance system, a control valve positioned in the vertical duct, and a capacitive densitometer positioned along the duct at a location a known distance below the control valved so that the solid feedrate, Q, of the gas entrained flow can be determined by Q=S.rho..phi.V.sub.S where S is the cross sectional area of the duct, .rho. is the density of the solid, .phi. is the solid volume fraction determined by the capacitive densitometer, and v.sub.S is the local solid velocity which can be inferred from the konown distance of the capacitive densitometer below the control valve.

  14. Food entrainment: major and recent findings

    PubMed Central

    Carneiro, Breno T. S.; Araujo, John F.

    2012-01-01

    Mammals exhibit daily anticipatory activity to cycles of food availability. Studies on such food anticipatory activity (FAA) have been conducted mainly in nocturnal rodents. They have identified FAA as the behavioral output of a food entrained oscillator (FEO), separate of the known light entrained oscillator (LEO) located in the suprachiasmatic nucleus (SCN) of hypothalamus. Here we briefly review the main characteristics of FAA. Also, we present results on four topics of food anticipation: (1) possible input signals to FEO, (2) FEO substrate, (3) the importance of canonical clock genes for FAA, and (4) potential practical applications of scheduled feeding. This mini review is intended to introduce the subject of food entrainment to those unfamiliar with it but also present them with relevant new findings on the issue. PMID:23205007

  15. Resonant entrainment of a confined pulsed jet

    NASA Technical Reports Server (NTRS)

    Parikh, P. G.; Moffat, R. J.

    1982-01-01

    This paper reports the discovery of a new resonant entrainment phenomenon associated with a confined, pulsed jet flow. It was found that a confined jet, when pulsed at an organ-pipe resonant frequency of the confinement tube, experiences greatly enhanced entrainment and mixing near the exit end of the confinement tube compared to a steady confined jet. The mixing and entrainment rates for the resonantly pulsed confined jet approach, and in some cases slightly exceed, those for an unconfined pulsed jet. Both visual and quantitative evidence of this phenomenon is presented. The new effect should be of considerable interest in ejector and combustor design, both of which benefit from any enhancement in mixing between a primary and a secondary flow

  16. Entrainment and mixing mechanism in monsoon clouds

    NASA Astrophysics Data System (ADS)

    Bera, Sudarsan; Prabhakaran, Thara; Pandithurai, Govindan; Brenguier, Jean-Louis

    2015-04-01

    Entrainment and consequent mixing impacts the cloud microphysical parameters and droplet size distribution (DSD) significantly which are very important for cloud radiative properties and the mechanism for first rain drop formation. The entrainment and mixing mechanisms are investigated in this study using in situ observations in warm cumulus clouds over monsoon region. Entrainment is discussed in the framework of the homogeneous and inhomogeneous mixing concepts and their effects on cloud droplet size distribution, number concentration, liquid water content and mean radius are described. The degree of homogeneity increases with droplet number concentration and adiabatic fraction, indicating homogeneous type mixing in the cloud core where dilution is less. Inhomogeneous mixing is found to be a dominating process at cloud edges where dilution is significant. Cloud droplet size distribution (DSD) is found to shift towards lower sizes during a homogeneous mixing event in the cloud core whereas spectral width of DSD decreases due to inhomogeneous mixing at cloud edges. Droplet size spectra suggests that largest droplets are mainly formed in the less diluted cloud core while diluted cloud edges have relatively smaller droplets, so that raindrop formation occurs mainly in the core of the cloud. The origin of the entrained parcels in deep cumulus clouds is investigated using conservative thermodynamical parameters. The entrained parcels originate from a level close to the observation level or slightly below through lateral edges. Cloud edges are significantly diluted due to entrainment of sub-saturated environmental air which can penetrate several hundred meters inside the cloud before it gets mixed completely with the cloud mass. Less diluted parcels inside the cloud core originates from a level much below the cloud base height. Penetrating downdraft from cloud top is seldom observed at the observation level and strong downdrafts may be attributed to in-cloud oscillation

  17. Ozone conservation and entrainment in cumulus congestus

    NASA Technical Reports Server (NTRS)

    Pearson, R., Jr.; Weaver, C. J.

    1989-01-01

    This study demonstrates that ozone mixing ratio is conserved during moist convection and can be used as a tracer for cloud entrainment studies. The approach is to apply mixing line analysis to pairs of liquid water potential temperature, total water mixing ratio, O3 and pseudo-equivalent potential temperature derived from aircraft penetrations of growing cumulus congestus. Conclusions about entrainment from the mixing diagrams employing O3 agree with those using thermodynamic quantities. Any disagreement uncovered deficiencies in the water substance measurement technique.

  18. Inherent freeze protection for solar water heaters

    SciTech Connect

    Jeter, S.M.; Leonaitis, L.L.; Leonaitis, L.L.

    1981-05-01

    Research and development of a method for protection of a solar collector from freezing is described. The method is shown to be technically and economically feasible. A prototype water heating system using the inherent freeze protection method was successfully operated during the winter of 1980 to 1981.

  19. Harnessing Collective Knowledge Inherent in Tag Clouds

    ERIC Educational Resources Information Center

    Cress, U.; Held, C.

    2013-01-01

    Tagging systems represent the conceptual knowledge of a community. We experimentally tested whether people harness this collective knowledge when navigating through the Web. As a within-factor we manipulated people's prior knowledge (no knowledge vs. prior knowledge that was congruent/incongruent to the collective knowledge inherent in the tags).…

  20. Critical Social Theory: Core Tenets, Inherent Issues

    ERIC Educational Resources Information Center

    Freeman, Melissa; Vasconcelos, Erika Franca S.

    2010-01-01

    This chapter outlines the core tenets of critical social theory and describes inherent issues facing evaluators conducting critical theory evaluation. Using critical pedagogy as an example, the authors describe the issues facing evaluators by developing four of the subtheories that comprise a critical social theory: (a) a theory of false…

  1. Mutual regulation causes co-entrainment between a synthetic oscillator and the bacterial cell cycle.

    PubMed

    Dies, Marta; Galera-Laporta, Leticia; Garcia-Ojalvo, Jordi

    2016-04-18

    The correct functioning of cells requires the orchestration of multiple cellular processes, many of which are inherently dynamical. The conditions under which these dynamical processes entrain each other remain unclear. Here we use synthetic biology to address this question in the case of concurrent cellular oscillations. Specifically, we study at the single-cell level the interaction between the cell division cycle and a robust synthetic gene oscillator in Escherichia coli. Our results suggest that cell division is able to partially entrain the synthetic oscillations under normal growth conditions, by driving the periodic replication of the genes involved in the oscillator. Coupling the synthetic oscillations back into the cell cycle via the expression of a key regulator of chromosome replication increases the synchronization between the two periodic processes. A simple computational model allows us to confirm this effect. PMID:26674636

  2. Washing of the AW-101 entrained solids

    SciTech Connect

    GJ Lumetta

    2000-03-31

    BNFL Inc. (BNFL) is under contract with the US Department of Energy, River Protection Project (DOE-RPP) to design, construct, and operate facilities for treating wastes stored in the single-shell and double-shell tanks at the Hanford Site, Richland, Washington. The DOE-BNFL RPP contract identifies two feeds to the waste treatment plant: (1) primarily liquid low-activity waste (LAW) consisting of less than 2 wt% entrained solids and (2) high-level waste (HLW) consisting of 10 to 200 g/L solids slurry. This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing on the composition of the entrained solids in the diluted AW-101 low-activity waste (LAW) sample. The objective of this work was to gather data on the solubility of the AW-101 entrained solids in 0.01 M NaOH, so that BNFL can evaluate whether these solids require caustic leaching. The work was conducted according to test plan BNFL-TP-29953-9, Rev. 0, LAW Entrained Solids Water Wash and Caustic Leach Testing. The test went according to plan, with no deviations from the test plan. Based on the results of the 0.01 M NaOH washing, a decision was made by BNFL to not proceed with the caustic leaching test. The composition of the washed solids was such that caustic leaching would not result in significant reduction in the immobilized HLW volume.

  3. Laminar Entrained Flow Reactor (Fact Sheet)

    SciTech Connect

    Not Available

    2014-02-01

    The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

  4. LIQUID ENTRAINMENT FROM A MOBILE BED SCRUBBER

    EPA Science Inventory

    The paper gives results of the measurement of liquid entrainment rate and drop size distribution in the exhaust gas stream from a mobile bed scrubber. The pilot plant scrubber was 46 cm square and was packed with 3.8 cm diameter hollow polyethylene spheres to a static depth of 25...

  5. Attentional entrainment and perceived event duration

    PubMed Central

    McAuley, J. Devin; Fromboluti, Elisa Kim

    2014-01-01

    This study considered the contribution of dynamic attending theory (DAT) and attentional entrainment to systematic distortions in perceived event duration. Three experiments were conducted using an auditory oddball paradigm, in which listeners judged the duration of a deviant (oddball) stimulus embedded within a series of identical (standard) stimuli. To test for a role of attentional entrainment in perceived oddball duration, oddballs were presented at either temporally expected (on time) or unexpectedly early or late time points relative to extrapolation of the context rhythm. Consistent with involvement of attentional entrainment in perceived duration, duration judgements about the oddball were least distorted when the oddball occurred on time with respect to the entrained rhythm, whereas durations of early and late oddballs were perceived to be shorter and longer, respectively. This pattern of results was independent of the absolute time interval preceding the oddball. Moreover, as expected, an irregularly timed sequence context weakened observed differences between oddballs with on-time and late onsets. Combined with other recent work on the role of temporal preparation in duration distortions, the present findings allot at least a portion of the oddball effect to increased attention to events that are more expected, rather than on their unexpected nature per se. PMID:25385779

  6. Cloud top entrainment instability and cloud top distributions

    NASA Technical Reports Server (NTRS)

    Boers, Reinout; Spinhirne, James D.

    1990-01-01

    Classical cloud-top entrainment instability condition formulation is discussed. A saturation point diagram is used to investigate the details of mixing in cases where the cloud-top entrainment instability criterion is satisfied.

  7. Entrainability of cell cycle oscillator models with exponential growth of cell mass.

    PubMed

    Nakao, Mitsuyuki; Enkhkhudulmur, Tsog-Erdene; Katayama, Norihiro; Karashima, Akihiro

    2014-01-01

    Among various aspects of cell cycle, understanding synchronization mechanism of cell cycle is important because of the following reasons. (1)Cycles of cell assembly should synchronize to form an organ. (2) Synchronizing cell cycles are required to experimental analysis of regulatory mechanisms of cell cycles. (3) Cell cycle has a distinct phase relationship with the other biological rhythms such as circadian rhythm. However, forced as well as mutual entrainment mechanisms are not clearly known. In this study, we investigated entrainability of cell cycle models of yeast cell under the periodic forcing to both of the cell mass and molecular dynamics. Dynamics of models under study involve the cell mass growing exponentially. In our result, they are shown to allow only a limited frequency range for being entrained by the periodic forcing. In contrast, models with linear growth are shown to be entrained in a wider frequency range. It is concluded that if the cell mass is included in the cell cycle regulation, its entrainability is sensitive to a shape of growth curve assumed in the model. PMID:25571564

  8. Speech Entrainment Compensates for Broca's Area Damage

    PubMed Central

    Fridriksson, Julius; Basilakos, Alexandra; Hickok, Gregory; Bonilha, Leonardo; Rorden, Chris

    2015-01-01

    Speech entrainment (SE), the online mimicking of an audiovisual speech model, has been shown to increase speech fluency in patients with Broca's aphasia. However, not all individuals with aphasia benefit from SE. The purpose of this study was to identify patterns of cortical damage that predict a positive response SE's fluency-inducing effects. Forty-four chronic patients with left hemisphere stroke (15 female) were included in this study. Participants completed two tasks: 1) spontaneous speech production, and 2) audiovisual SE. Number of different words per minute was calculated as a speech output measure for each task, with the difference between SE and spontaneous speech conditions yielding a measure of fluency improvement. Voxel-wise lesion-symptom mapping (VLSM) was used to relate the number of different words per minute for spontaneous speech, SE, and SE-related improvement to patterns of brain damage in order to predict lesion locations associated with the fluency-inducing response to speech entrainment. Individuals with Broca's aphasia demonstrated a significant increase in different words per minute during speech entrainment versus spontaneous speech. A similar pattern of improvement was not seen in patients with other types of aphasia. VLSM analysis revealed damage to the inferior frontal gyrus predicted this response. Results suggest that SE exerts its fluency-inducing effects by providing a surrogate target for speech production via internal monitoring processes. Clinically, these results add further support for the use of speech entrainment to improve speech production and may help select patients for speech entrainment treatment. PMID:25989443

  9. Inherent uncertainties in meteorological parameters for wind turbine design

    NASA Technical Reports Server (NTRS)

    Doran, J. C.

    1982-01-01

    Major difficulties associated with meteorological measurments such as the inability to duplicate the experimental conditions from one day to the next are discussed. This lack of consistency is compounded by the stochastic nature of many of the meteorological variables of interest. Moreover, simple relationships derived in one location may be significantly altered by topographical or synoptic differences encountered at another. The effect of such factors is a degree of inherent uncertainty if an attempt is made to describe the atmosphere in terms of universal laws. Some of these uncertainties and their causes are examined, examples are presented and some implications for wind turbine design are suggested.

  10. Inherent uncertainties in meteorological parameters for wind-turbine design

    SciTech Connect

    Doran, J.C.

    1981-08-01

    One of the major difficulties associated with meteorological measurements is the inability to duplicate the experimental conditions from one day to the next. This lack of consistency is compounded by the stochastic nature of many of the meteorological variables of interest. Moreover, simple relationships derived in one location may be significantly altered by topographical or synoptic differences encountered at another. The effect of such factors is a degree of inherent uncertainty if an attempt is made to describe the atmosphere in terms of universal laws. In this paper some of these uncertainties and their causes are examined, examples are presented and some implications for wind turbine design are suggested.

  11. Simple estimate of entrainment rate of pollutants from a coastal discharge into the surf zone.

    PubMed

    Wong, Simon H C; Monismith, Stephen G; Boehm, Alexandria B

    2013-10-15

    Microbial pollutants from coastal discharges can increase illness risks for swimmers and cause beach advisories. There is presently no predictive model for estimating the entrainment of pollution from coastal discharges into the surf zone. We present a novel, quantitative framework for estimating surf zone entrainment of pollution at a wave-dominant open beach. Using physical arguments, we identify a dimensionless parameter equal to the quotient of the surf zone width l(sz) and the cross-flow length scale of the discharge la = M(j) (1/2)/U(sz), where M(j) is the discharge's momentum flux and U(sz) is a representative alongshore velocity in the surf zone. We conducted numerical modeling of a nonbuoyant discharge at an alongshore uniform beach with constant slope using a wave-resolving hydrodynamic model. Using results from 144 numerical experiments we develop an empirical relationship between the surf zone entrainment rate α and l(sz)/(la). The empirical relationship can reasonably explain seven measurements of surf zone entrainment at three diverse coastal discharges. This predictive relationship can be a useful tool in coastal water quality management and can be used to develop predictive beach water quality models. PMID:24006887

  12. ENTRAINMENT BY LIGAMENT-CONTROLLED EFFERVESCENT ATOMIZER-PRODUCED SPRAYS

    EPA Science Inventory

    Entrainment of ambient air into sprays produced by a new type of effervescent atomizer is reported. Entrainment data were obtained using a device similar to that described by Ricou & Spalding (1961). Entrainment data were analyzed using the model of Bush & Sojka (1994), in concer...

  13. Phase Sensitivity and Entrainment in a Modeled Bursting Neuron

    PubMed Central

    Demir, S. S.; Butera, R. J.; DeFranceschi, A. A.; Clark, J. W.; Byrne, J. H.

    1997-01-01

    A model of neuron R15 in Aplysia was used to study the mechanisms determining the phase-response curve (PRC) of the cell in response to both extrinsic current pulses and modeled synaptic input and to compare entrainment predictions from PRCs with those from actual simulations. Over the range of stimulus parameters studied, the PRCs of the model exhibited minimal dependence upon stimulus amplitude, and a strong dependence upon stimulus duration. State-space analysis of the effect of transient current pulses provided several important insights into the relationship between the PRC and the underlying dynamics of the model, such as a correlation between the prestimulus concentration of Ca2+ and the poststimulus phase of the oscillation. The system nullclines were also found to provide well-defined limits upon the perturbatory extent of a hyperpolarizing input. These results demonstrated that experimentally applied current pulses are sufficient to determine the shape of the PRC in response to a synaptic input, provided that the duration of the current pulse is of a duration similar to that of the evoked synaptic current. Furthermore, we found that predictions of phase-locked 1:m entrainment from PRCs were valid, even when the duration of the periodically applied pulses were a significant portion of the control limit cycle. ImagesFIGURE 5FIGURE 7FIGURE 8 PMID:9017188

  14. Role of entrainment in convectively-coupled equatorial waves in an aquaplanet model

    NASA Astrophysics Data System (ADS)

    Peatman, Simon; Methven, John; Woolnough, Steve

    2016-04-01

    Equatorially-trapped waves are known to be one of the key phenomena in determining the distribution of convective precipitation in the tropics as well as being crucial to the dynamics of the Madden-Julian Oscillation. However, numerical weather prediction models struggle to sustain such waves for a realistic length of time, which has a significant impact on forecasting precipitation for regions such as equatorial Africa. It has been found in the past that enhancing the rate of moisture entrainment can improve certain aspects of parametrized tropical convection in climate models. A parameter F controls the rate of entrainment into the convective plume for deep- and mid-level convection, with F = 1 denoting the control case. Here it is found in an aquaplanet simulation that F > 1 produces more convective precipitation at all zonal wavenumbers. Furthermore, Kelvin wave activity increases for waves with low frequency and zonal wavenumber but is slightly suppressed for shorter, higher-frequency waves, and vice versa for westward-propagating waves. A change in entrainment rate also brings about a change in the basic state wind and humidity fields. Therefore, the question arises as to whether changes in wave activity are due directly to changes in the coupling to the humidity in the waves by entrainment or due to changes in the basic state. An experiment was devised in which the convective parametrization scheme is allowed to entrain a weighted sum of the environmental humidity and a prescribed zonally-symmetric climatology, with a parameter α controlling the extent of the decoupling from the environment. Experiments with this new mechanism in the parametrization scheme reveal a complex relationship. For long waves at low frequency (period > ˜13 days), removing zonal asymmetry in the humidity seen by the entrainment scheme has very little influence on the ratio of eastward- to westward-propagating power. At higher frequencies and zonal wavenumbers, removing this zonal

  15. Measurement of air entrainment in plasma jets

    SciTech Connect

    Fincke, J.R.; Rodriquez, R.; Pentecost, C.G.

    1990-01-01

    The concentration and temperature of air entrained into argon and helium plasma jets has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The argon plasma flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition of turbulence occurs, air is rapidly mixed into the jet core. The location of the transition region is determined by the rapid cooling of the jet and the resulting increase in Reynolds number. In contrast, the helium plasma flow field never exceeds a Reynolds number of 200 and remains laminar. The entrainment process in this case is controlled by molecular diffusion rather than turbulent mixing. 9 refs., 5 figs., 1 tab.

  16. Measurement of air entrainment in plasma jets

    NASA Astrophysics Data System (ADS)

    Fincke, J. R.; Rodriquez, R.; Pentecost, C. G.

    The concentration and temperature of air entrained into argon and helium plasma jets has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The argon plasma flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition of turbulence occurs, air is rapidly mixed into the jet core. The location of the transition region is determined by the rapid cooling of the jet and the resulting increase in Reynolds number. In contrast, the helium plasma flow field never exceeds a Reynolds number of 200 and remains laminar. The entrainment process in this case is controlled by molecular diffusion rather than turbulent mixing.

  17. AW-101 entrained solids - Solubility versus temperature

    SciTech Connect

    GJ Lumetta; RC Lettau; GF Piepel

    2000-03-31

    This report describes the results of a test conducted by Battelle to assess the solubility of the solids entrained in the diluted AW-101 low-activity waste (LAW) sample. BNFL requested Battelle to dilute the AW-1-1 sample using de-ionized water to mimic expected plant operating conditions. BNFL further requested Battelle to assess the solubility of the solids present in the diluted AW-101 sample versus temperature conditions of 30, 40, and 50 C. BNFL requested these tests to assess the composition of the LAW supernatant and solids versus expected plant-operating conditions. The work was conducted according to test plan BNFL-TP-29953-7, Rev. 0, Determination of the Solubility of LAW Entrained Solids. The test went according to plan, with no deviations from the test plan.

  18. Exploring Entrainment Patterns of Human Emotion in Social Media

    PubMed Central

    Luo, Chuan; Zhang, Zhu

    2016-01-01

    Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace. PMID:26953692

  19. Exploring Entrainment Patterns of Human Emotion in Social Media.

    PubMed

    He, Saike; Zheng, Xiaolong; Zeng, Daniel; Luo, Chuan; Zhang, Zhu

    2016-01-01

    Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace. PMID:26953692

  20. Alignment strategies for the entrainment of music and movement rhythms.

    PubMed

    Moens, Bart; Leman, Marc

    2015-03-01

    Theories of entrainment assume that spontaneous entrainment emerges from dynamic laws that operate via mediators on interactions, whereby entrainment is facilitated if certain conditions are fulfilled. In this study, we show that mediators can be built that affect the entrainment of human locomotion to music. More specifically, we built D-Jogger, a music player that functions as a mediator between music and locomotion rhythms. The D-Jogger makes it possible to manipulate the timing differences between salient moments of the rhythms (beats and footfalls) through the manipulation of the musical period and phase, which affect the condition in which entrainment functions. We conducted several experiments to explore different strategies for manipulating the entrainment of locomotion and music. The results of these experiments showed that spontaneous entrainment can be manipulated, thereby suggesting different strategies on how to embark. The findings furthermore suggest a distinction among different modalities of entrainment: finding the beat (the most difficult part of entrainment), keeping the beat (easier, as a temporal scheme has been established), and being in phase (no entrainment is needed because the music is always adapted to the human rhythm). This study points to a new avenue of research on entrainment and opens new perspectives for the neuroscience of music. PMID:25773621

  1. Auditory-motor entrainment in vocal mimicking species

    PubMed Central

    2010-01-01

    We have recently found robust evidence of motor entrainment to auditory stimuli in multiple species of non-human animal, all of which were capable of vocal mimicry. In contrast, the ability remained markedly absent in many closely related species incapable of vocal mimicry. This suggests that vocal mimicry may be a necessary precondition for entrainment. However, within the vocal mimicking species, entrainment appeared non-randomly, suggesting that other components besides vocal mimicry play a role in the capacity and tendency to entrain. Here we discuss potential additional factors involved in entrainment. New survey data show that both male and female parrots are able to entrain, and that the entrainment capacity appears throughout the lifespan. We suggest routes for future study of entrainment, including both developmental studies in species known to entrain and further work to detect entrainment in species not well represented in our dataset. These studies may shed light on additional factors necessary for entrainment in addition to vocal mimicry. PMID:20714417

  2. Inherently Tunable Electrostatic Assembly of Membrane Proteins

    SciTech Connect

    Liang, H.; Whited, G.; Nguyen, C.; Okerlund, A.; Stucky, G.D.

    2009-05-19

    Membrane proteins are a class of nanoscopic entities that control the matter, energy, and information transport across cellular boundaries. Electrostatic interactions are shown to direct the rapid co-assembly of proteorhodopsin (PR) and lipids into long-range crystalline arrays. The roles of inherent charge variations on lipid membranes and PR variants with different compositions are examined by tuning recombinant PR variants with different extramembrane domain sizes and charged amino acid substitutions, lipid membrane compositions, and lipid-to-PR stoichiometric ratios. Rational control of this predominantly electrostatic assembly for PR crystallization is demonstrated, and the same principles should be applicable to the assembly and crystallization of other integral membrane proteins.

  3. Inherently Chiral Spider-Like Oligothiophenes.

    PubMed

    Sannicolò, Francesco; Mussini, Patrizia R; Benincori, Tiziana; Martinazzo, Rocco; Arnaboldi, Serena; Appoloni, Giulio; Panigati, Monica; Quartapelle Procopio, Elsa; Marino, Valentina; Cirilli, Roberto; Casolo, Simone; Kutner, Wlodzimierz; Noworyta, Krzysztof; Pietrzyk-Le, Agnieszka; Iskierko, Zofia; Bartold, Katarzyna

    2016-07-25

    The racemate of an inherently chiral "spider-like" octathiophene monomer T83 , in which chirality is generated by torsion in its backbone, was synthesized. The racemate was resolved into configurationally stable antipodes by HPLC on a chiral stationary phase. Electrooxidation of the enantiomers resulted in materials displaying high enantiorecognition ability towards the antipodes of some chiral probes. Moreover, the T83 racemate demonstrated great aptitude to stimulate formation of 3D rigid architectures if used as a cross-linking monomer for molecular imprinting. This feature was exploited to devise a molecularly imprinted polymer-based chemosensor selective for a thymine-adenine oligonucleotide. PMID:27321902

  4. Inherent contradictions in the ego ideal.

    PubMed

    Dendy, Errol B

    2010-10-01

    The author puts forth a concept of the ego ideal as the fantasied self that the child believes will bring it gratification and happiness. He then shows how the ego ideal's content evolves through the various stages of psychosexual development in accordance with its mission. A picture emerges of an ego ideal in inherent conflict because it is shaped by contradictory wishes, as well as contradictory fantasies of how to make those wishes come true. A section on romantic love points to a second contradiction within the ego ideal, beyond its contradictory content: a contradiction of aim. PMID:21141785

  5. Apparent subdiffusion inherent to single particle tracking.

    PubMed Central

    Martin, Douglas S; Forstner, Martin B; Käs, Josef A

    2002-01-01

    Subdiffusion and its causes in both in vivo and in vitro lipid membranes have become the focus of recent research. We report apparent subdiffusion, observed via single particle tracking (SPT), in a homogeneous system that only allows normal diffusion (a DMPC monolayer in the fluid state). The apparent subdiffusion arises from slight errors in finding the actual particle position due to noise inherent in all experimental SPT systems. A model is presented that corrects this artifact, and predicts the time scales after which the effect becomes negligible. The techniques and results presented in this paper should be of use in all SPT experiments studying normal and anomalous diffusion. PMID:12324428

  6. Apparent subdiffusion inherent to single particle tracking.

    PubMed

    Martin, Douglas S; Forstner, Martin B; Käs, Josef A

    2002-10-01

    Subdiffusion and its causes in both in vivo and in vitro lipid membranes have become the focus of recent research. We report apparent subdiffusion, observed via single particle tracking (SPT), in a homogeneous system that only allows normal diffusion (a DMPC monolayer in the fluid state). The apparent subdiffusion arises from slight errors in finding the actual particle position due to noise inherent in all experimental SPT systems. A model is presented that corrects this artifact, and predicts the time scales after which the effect becomes negligible. The techniques and results presented in this paper should be of use in all SPT experiments studying normal and anomalous diffusion. PMID:12324428

  7. Rod Driven Frequency Entrainment and Resonance Phenomena.

    PubMed

    Salchow, Christina; Strohmeier, Daniel; Klee, Sascha; Jannek, Dunja; Schiecke, Karin; Witte, Herbert; Nehorai, Arye; Haueisen, Jens

    2016-01-01

    A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α) of each volunteer in the range from 0.40 to 2.30(∗)α. Three hundred and six-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90-1.10(∗)α) and half of the alpha frequency (0.40-0.55(∗)α). No signs of resonance and frequency entrainment phenomena were revealed around 2.00(∗)α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30-2.30(∗)α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex. PMID:27588002

  8. Rod Driven Frequency Entrainment and Resonance Phenomena

    PubMed Central

    Salchow, Christina; Strohmeier, Daniel; Klee, Sascha; Jannek, Dunja; Schiecke, Karin; Witte, Herbert; Nehorai, Arye; Haueisen, Jens

    2016-01-01

    A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α) of each volunteer in the range from 0.40 to 2.30∗α. Three hundred and six-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90–1.10∗α) and half of the alpha frequency (0.40–0.55∗α). No signs of resonance and frequency entrainment phenomena were revealed around 2.00∗α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30–2.30∗α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex. PMID:27588002

  9. Fluid Dynamics of Pressurized, Entrained Coal Gasifiers

    SciTech Connect

    1997-12-31

    Pressurized, entrained gasification is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal gasifier at a high inlet gas velocity to increase the inflow of reactants, and at an elevated pressure to raise the overall efficiency of the process. Unfortunately, because of the extraordinary difficulties involved in performing measurements in hot, pressurized, high-velocity pilot plants, its fluid dynamics are largely unknown. Thus the designer cannot predict with certainty crucial phenomena like erosion, heat transfer and solid capture. In this context, we are conducting a study of the fluid dynamics of Pressurized Entrained Coal Gasifiers (PECGs). The idea is to simulate the flows in generic industrial PECGs using dimensional similitude. To this end, we employ a unique entrained gas-solid flow facility with the flexibility to recycle -rather than discard- gases other than air. By matching five dimensionless parameters, suspensions in mixtures of helium, carbon dioxide and sulfur hexafluoride simulate the effects of pressure and scale-up on the fluid dynamics of PECGS. Because it operates under cold, atmospheric conditions, the laboratory facility is ideal for detailed measurements. These activities are conducted with Air Products & Chemicals, Inc., which is a member of a consortium that includes Foster Wheeler and Deutsche Babcock Energie- und Umwelttechnik AG.

  10. Diurnally entrained anticipatory behavior in archaea.

    PubMed

    Whitehead, Kenia; Pan, Min; Masumura, Ken-ichi; Bonneau, Richard; Baliga, Nitin S

    2009-01-01

    By sensing changes in one or few environmental factors biological systems can anticipate future changes in multiple factors over a wide range of time scales (daily to seasonal). This anticipatory behavior is important to the fitness of diverse species, and in context of the diurnal cycle it is overall typical of eukaryotes and some photoautotrophic bacteria but is yet to be observed in archaea. Here, we report the first observation of light-dark (LD)-entrained diurnal oscillatory transcription in up to 12% of all genes of a halophilic archaeon Halobacterium salinarum NRC-1. Significantly, the diurnally entrained transcription was observed under constant darkness after removal of the LD stimulus (free-running rhythms). The memory of diurnal entrainment was also associated with the synchronization of oxic and anoxic physiologies to the LD cycle. Our results suggest that under nutrient limited conditions halophilic archaea take advantage of the causal influence of sunlight (via temperature) on O(2) diffusivity in a closed hypersaline environment to streamline their physiology and operate oxically during nighttime and anoxically during daytime. PMID:19424498

  11. Improving Parameterization of Entrainment Rate for Shallow Convection with Aircraft Measurements and Large-Eddy Simulation

    DOE PAGESBeta

    Lu, Chunsong; Liu, Yangang; Zhang, Guang J.; Wu, Xianghua; Endo, Satoshi; Cao, Le; Li, Yueqing; Guo, Xiaohao

    2016-02-01

    This work examines the relationships of entrainment rate to vertical velocity, buoyancy, and turbulent dissipation rate by applying stepwise principal component regression to observational data from shallow cumulus clouds collected during the Routine AAF [Atmospheric Radiation Measurement (ARM) Aerial Facility] Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign over the ARM Southern Great Plains (SGP) site near Lamont, Oklahoma. The cumulus clouds during the RACORO campaign simulated using a large eddy simulation (LES) model are also examined with the same approach. The analysis shows that a combination of multiple variables can better represent entrainment ratemore » in both the observations and LES than any single-variable fitting. Three commonly used parameterizations are also tested on the individual cloud scale. A new parameterization is therefore presented that relates entrainment rate to vertical velocity, buoyancy and dissipation rate; the effects of treating clouds as ensembles and humid shells surrounding cumulus clouds on the new parameterization are discussed. Physical mechanisms underlying the relationships of entrainment rate to vertical velocity, buoyancy and dissipation rate are also explored.« less

  12. Inherently safe in situ uranium recovery.

    SciTech Connect

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-05-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  13. Photoreponsive Hybrid Nanoparticles with Inherent FRET Activity.

    PubMed

    Achilleos, Demetra S; Hatton, T Alan; Vamvakaki, Maria

    2016-06-14

    The photoactivated inherent fluorescence resonance energy transfer (FRET) properties of a hard-and-soft hybrid nanosystem comprising poly(1'-(2-methacryloxyethyl)-3',3'-dimethyl-6-nitrospiro-(2H-1-benzopyran-2,2'-indoline))-co-poly[2-(dimethylamino)ethyl methacrylate] (PSPMA-co-PDMAEMA) random copolymer brushes on silica nanoparticles are described. This unique FRET process is switched on by the simultaneous generation of isomer X and merocyanine (MC), which are bipolar in nature and comprise donor-acceptor dyads, from a single spiropyran (SP) chromophore upon UV irradiation. These X-MC species exhibit sufficient lifetimes to allow the read-out of the FRET process. The phenomenon is gradually switched off because of the thermal relaxation of the bipolar chromophores. This inherent property of the nanoemitters is employed in the development of biosensors of high specificity by monitoring variations in the FRET efficiency and lifetime of the hybrids in the presence of biological substances. More specifically, bovine serum albumin (BSA) augments the formation of MC species and retards the MC photobleaching process, leading to the enhancement of the FRET efficiency and lifetime, respectively. On the other hand, amino acid l-histidine further retards the MC thermal relaxation and prolongs the FRET process. We envisage that this platform opens new perspectives in the development of novel, optical nanosensors for applications in various fields including healthcare products and environmental monitoring. PMID:27222922

  14. Human organ markets and inherent human dignity.

    PubMed

    MacKellar, Calum

    2014-01-01

    It has been suggested that human organs should be bought and sold on a regulated market as any other material property belongingto an individual. This would have the advantage of both addressing the grave shortage of organs available for transplantation and respecting the freedom of individuals to choose to do whatever they want with their body parts. The old arguments against such a market in human organs are, therefore, being brought back into question. The article examines the different arguments both in favour and against the sale of human organs. It concludes that the body and any of its elements is a full expression of the whole person. As such, they cannot have a price if the individual is to retain his or her full inherent dignity and if society is to retain and protect this very important concept. PMID:24979876

  15. Magnetic latch trigger for inherent shutdown assembly

    DOEpatents

    Sowa, Edmund S.

    1976-01-01

    An inherent shutdown assembly for a nuclear reactor is provided. A neutron absorber is held ready to be inserted into the reactor core by a magnetic latch. The latch includes a magnet whose lines of force are linked by a yoke of material whose Curie point is at the critical temperature of the reactor at which the neutron absorber is to be inserted into the reactor core. The yoke is in contact with the core coolant or fissionable material so that when the coolant or the fissionable material increase in temperature above the Curie point the yoke loses its magnetic susceptibility and the magnetic link is broken, thereby causing the absorber to be released into the reactor core.

  16. Inherently safe in situ uranium recovery

    DOEpatents

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  17. Microfabricated mechanical biosensor with inherently differential readout

    NASA Astrophysics Data System (ADS)

    Savran, C. A.; Burg, T. P.; Fritz, J.; Manalis, S. R.

    2003-08-01

    We report measurements with a micromachined mechanical biosensor that inherently suppresses background effects by producing a differential signal with respect to a reference. The sensor comprises two adjacent cantilevers with interdigitated fingers between them that allow interferometric detection of the differential, i.e., relative bending. We demonstrate that differential detection can efficiently suppress unspecific chemical effects that result in cantilever bending. We show that the differential deflection noise is up to an order of magnitude lower than the absolute deflection noise in the low-frequency range of 0.0003-1 Hz, where many types of biologically relevant reactions occur. We also demonstrate the sensor's applicability to biological receptor-ligand systems by reporting experimental results on direct differential detection of biotin-streptavidin binding.

  18. Sensors and actuators inherent in biological species

    NASA Astrophysics Data System (ADS)

    Taya, Minoru; Stahlberg, Rainer; Li, Fanghong; Zhao, Ying Joyce

    2007-04-01

    This paper addresses examples of sensing and active mechanisms inherent in some biological species where both plants and animals cases are discussed: mechanosensors and actuators in Venus Fly Trap and cucumber tendrils, chemosensors in insects, two cases of interactions between different kingdoms, (i) cotton plant smart defense system and (ii) bird-of-paradise flower and hamming bird interaction. All these cases lead us to recognize how energy-efficient and flexible the biological sensors and actuators are. This review reveals the importance of integration of sensing and actuation functions into an autonomous system if we make biomimetic design of a set of new autonomous systems which can sense and actuate under a number of different stimuli and threats.

  19. Development of an inherently digital transducer

    NASA Technical Reports Server (NTRS)

    Richard, R. R.

    1972-01-01

    The term digital transducer normally implies the combination of conventional analog sensors with encoders or analog-to-digital converters. Because of the objectionable characteristics of most digital transducers, a program was instituted to investigate the possibility of producing a transducer that is inherently digital, instead of a transducer that is digital in the usual sense. Such a device would have improved accuracy and reliability and would have reduced power and bulk requirements because two processes, sensing and conditioning, would be combined into one processes. A Curie-point-temperature sensor is described that represents realization of the stated goal. Also, a metal-insulator semiconductor is described that does not conform precisely to the program goals but that appears to have applications as a new and interesting transduction device.

  20. The Macroscopic Entrainment Processes of Simulated Cumulus Ensemble. Part II: Testing the Entraining-Plume Model.

    NASA Astrophysics Data System (ADS)

    Lin, Chichung; Arakawa, Akio

    1997-04-01

    According to Part I of this paper, it seems that ignoring the contribution from descendent cloud air in a cloud model for cumulus parameterization (CMCP), such as the spectral cumulus ensemble model in the Arakawa-Schubert parameterization, is an acceptable simplification for tropical deep convection. Since each subensemble in the spectral cumulus ensemble model is formally analogous to an entraining plume, the latter is examined using the simulated data from a cloud-resolving model (CRM). The authors first follow the analysis procedure of Warner. With the data from a nonprecipitating experiment, the authors show that the entraining-plume model cannot simultaneously predict the mean liquid water profile and cloud top height of the clouds simulated by the CRM. However, the mean properties of active elements of clouds, which are characterized by strong updrafts, can be described by an entraining plume of similar top height.With the data from a precipitating experiment, the authors examine the spectral cumulus ensemble model using the Paluch diagram. It is found that the spectral cumulus ensemble model appears adequate if different types of clouds in the spectrum are interpreted as subcloud elements with different entrainment characteristics. The resolved internal structure of clouds can thus be viewed as a manifestation of a cloud spectrum. To further investigate whether the fractional rate of entrainment is an appropriate parameter for characterizing cloud types in the spectral cumulus ensemble model, the authors stratify the simulated saturated updrafts (subcloud elements) into different types according to their eventual heights and calculate the cloud mass flux and mean moist static energy for each type. Entrainment characteristics are then inferred through the cloud mass flux and in-cloud moist static energy. It is found that different types of subcloud elements have distinguishable thermodynamic properties and entrainment characteristics. However, for each cloud

  1. The ecology of entrainment: Foundations of coordinated rhythmic movement

    PubMed Central

    Phillips-Silver, Jessica; Aktipis, C. Athena; Bryant, Gregory A.

    2011-01-01

    Entrainment has been studied in a variety of contexts including music perception, dance, verbal communication and motor coordination more generally. Here we seek to provide a unifying framework that incorporates the key aspects of entrainment as it has been studied in these varying domains. We propose that there are a number of types of entrainment that build upon pre-existing adaptations that allow organisms to perceive stimuli as rhythmic, to produce periodic stimuli, and to integrate the two using sensory feedback. We suggest that social entrainment is a special case of spatiotemporal coordination where the rhythmic signal originates from another individual. We use this framework to understand the function and evolutionary basis for coordinated rhythmic movement and to explore questions about the nature of entrainment in music and dance. The framework of entrainment presented here has a number of implications for the vocal learning hypothesis and other proposals for the evolution of coordinated rhythmic behavior across an array of species. PMID:21776183

  2. AN-107 entrained solids - Solubility versus temperature

    SciTech Connect

    GJ Lumetta; RC Lettau

    2000-03-31

    This report describes the results of a test conducted by Battelle to assess the solubility of the solids entrained in the diluted AN-107 low-activity waste (LAW) sample. BNFL requested Battelle to dilute the AN-107 sample using sodium hydroxide and de-ionized water to mimic expected plant operating conditions. BNFL further requested Battelle to assess the solubility of the solids present in the diluted AN-107 sample versus temperature conditions of 30, 40, and 50 C. BNFL requested these tests to assess the composition of the LAW supernatant and solids versus expected plant-operating conditions.

  3. On-line ultrasonic gas entrainment monitor

    DOEpatents

    Day, Clifford K.; Pedersen, Herbert N.

    1978-01-01

    Apparatus employing ultrasonic energy for detecting and measuring the quantity of gas bubbles present in liquids being transported through pipes. An ultrasonic transducer is positioned along the longitudinal axis of a fluid duct, oriented to transmit acoustic energy radially of the duct around the circumference of the enclosure walls. The back-reflected energy is received centrally of the duct and interpreted as a measure of gas entrainment. One specific embodiment employs a conical reflector to direct the transmitted acoustic energy radially of the duct and redirect the reflected energy back to the transducer for reception. A modified embodiment employs a cylindrical ultrasonic transducer for this purpose.

  4. Increasing jet entrainment, mixing and spreading

    DOEpatents

    Farrington, Robert B.

    1994-01-01

    A free jet of air is disturbed at a frequency that substantially matches natural turbulences in the free jet to increase the entrainment, mixing, and spreading of air by the free jet, for example in a room or other enclosure. The disturbances are created by pulsing the flow of air that creates the free jet at the desired frequency. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

  5. Increasing jet entrainment, mixing and spreading

    DOEpatents

    Farrington, R.B.

    1994-08-16

    A free jet of air is disturbed at a frequency that substantially matches natural turbulences in the free jet to increase the entrainment, mixing, and spreading of air by the free jet, for example in a room or other enclosure. The disturbances are created by pulsing the flow of air that creates the free jet at the desired frequency. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct. 11 figs.

  6. Photic Resetting and Entrainment in CLOCK-Deficient Mice

    PubMed Central

    Dallmann, Robert; DeBruyne, Jason P.; Weaver, David R.

    2012-01-01

    Mice lacking CLOCK protein have a relatively subtle circadian phenotype, including a slightly shorter period in constant darkness, differences in phase resetting after 4-hr light pulses in the early and late night, and a variably advanced phase angle of entrainment in a light-dark (LD) cycle (DeBruyne et al., Neuron 50:465–477, 2006). The present series of experiments was conducted to more fully characterize the circadian phenotype of Clock−/− mice under various lighting conditions. A phase-response curve (PRC) to 4-hour light pulses in free-running mice was conducted; the results confirm that Clock−/− mice exhibit very large phase advances after 4 hrs light pulses in the late subjective night, but have relatively normal responses to light at other phases. The abnormal shape of the PRC to light may explain the tendency of CLOCK-deficient mice to begin activity before lights-out when housed in a 12 hrs light: 12 hrs dark lighting schedule. To assess this relationship further, Clock−/− and wild-type control mice were entrained to skeleton lighting cycles (1L:23D, and 1L:10D:1L:12D). Comparing entrainment under the two types of skeleton photoperiods revealed that exposure to 1 hr light in the morning leads to a phase advance of activity onset (expressed the following afternoon) in Clock−/− mice, but not in the controls. Constant light typically causes an intensity-dependent increase in circadian period in mice, but this did not occur in CLOCK-deficient mice. The failure of Clock−/− mice to respond to the period-lengthening effect of constant light likely results from the increased functional impact of light falling in the phase advance zone of the PRC. Collectively, these experiments reveal that alterations in the response of CLOCK-deficient mice to light in several paradigms are likely due to an imbalance in the shape of the PRC to light. PMID:21921293

  7. Aerosol entrainment from a sparged non-Newtonian slurry.

    PubMed

    Fritz, Brad G

    2006-08-01

    Previous bench-scale experiments have provided data necessary for the development of empirical models that describe aerosol entrainment from bubble bursting. However, previous work has not been extended to non-Newtonian liquid slurries. Design of a waste treatment plant on the Hanford Site in Washington required an evaluation of the applicability of these models outside of their intended range. For this evaluation, aerosol measurements were conducted above an air-sparged mixing tank filled with simulated waste slurry possessing Bingham plastic rheological properties. Three aerosol-size fractions were measured at three sampling heights and for three different sparging rates. The measured entrainment was compared with entrainment models. One model developed based on bench-scale air-water experiments agreed well with measured entrainment. Another model did not agree well with the measured entrainment. It appeared that the source of discrepancy between measured and modeled entrainment stemmed from application beyond the range of data used to develop the model. A possible separation in entrainment coefficients between air-water and steam-water systems was identified. A third entrainment model was adapted to match experimental conditions and fit a posteri to the experimental data, resulting in a modified version that resulted in estimated entrainment rates similar to the first model. PMID:16933643

  8. Why electronic mail is inherently private

    SciTech Connect

    Granger, S.

    1994-12-31

    Electronic Mail originated in Large-Area Networks and computer Bulletin Board Systems. On LAN`s in offices, it served the purpose of replacing office memos to make work more efficient. On BBS`s, it became a personal way of sending notes back and forth between acquaintances and frields. From the beginning e-mail was private. The Arpanet formed as a way for researchers to discuss their work over long-distances. The Arpanet, solely in existence as a government venture to assist in furthering of research, enjoyed a certain secrecy for a while. Once the Internt formed, the system allowed others inside as it no longer existed merely for the government. Much of the work on the Arpanet/Internet was necessarily private due to its nature. This made it even more important for e-mail to be private. Today the Internet includes not only what was the Arpanet (NSFNet), but companies and several BBS`s as well. Privacy is mor eimportant today than ever and should not even be an option on e-mail systems. It should be considered inherent in all systems.

  9. The effect of entrainment on starting vortices

    NASA Astrophysics Data System (ADS)

    Rosi, Giuseppe; Rival, David

    2015-11-01

    Recent work shows that vortex detachment behind accelerating plates coincides with when streamlines enclosing the starting vortex (SV) form a full saddle. In the case of a linearly accelerating plate, it can be shown that vorticity-containing mass, and thus the SV's development scale with only dimensionless towed distance, while the SV's circulation scales with the acceleration rate. This results in shear-layer instabilities whose structure is Reynold-number independent, but whose strength scale with Reynolds number. It is hypothesized that the increased strength of the instabilities promotes entrainment, which causes the formation of the full saddle and thereby detachment to occur at an earlier dimensionless towed distance. To test this hypothesis, a circular plate is linearly accelerated from rest to pinch-off with chord-based Reynolds numbers of 103, 104, and 105 at the midpoint of the motion. Planar PIV data is acquired, from which FTLE and enstrophy fields are calculated. Vortex detachment is identified from the dynamics of the FTLE saddles, while the enstrophy fields are used to calculate both the vorticity-containing mass entering from the shear layer and the mass entrained from the quiescent surroundings.

  10. Stochastic entrainment of a stochastic oscillator.

    PubMed

    Wang, Guanyu; Peskin, Charles S

    2015-11-01

    In this work, we consider a stochastic oscillator described by a discrete-state continuous-time Markov chain, in which the states are arranged in a circle, and there is a constant probability per unit time of jumping from one state to the next in a specified direction around the circle. At each of a sequence of equally spaced times, the oscillator has a specified probability of being reset to a particular state. The focus of this work is the entrainment of the oscillator by this periodic but stochastic stimulus. We consider a distinguished limit, in which (i) the number of states of the oscillator approaches infinity, as does the probability per unit time of jumping from one state to the next, so that the natural mean period of the oscillator remains constant, (ii) the resetting probability approaches zero, and (iii) the period of the resetting signal approaches a multiple, by a ratio of small integers, of the natural mean period of the oscillator. In this distinguished limit, we use analytic and numerical methods to study the extent to which entrainment occurs. PMID:26651734

  11. Observing of entrainment using small UAS

    NASA Astrophysics Data System (ADS)

    Martin, S.; Bange, J.; Beyrich, F.

    2012-04-01

    Entrainment processes between the atmospheric boundary layer and the free atmosphere are important concerning vertical exchange of momentum, energy, water vapor, trace gases and aerosol. The transition zone between the convectively mixed boundary layer and the stably stratified free atmosphere is called the entrainment zone (EZ). The EZ restrains the domain of turbulence by a temperature inversion and acts as a lid to pollutants. Measurement flights of the mini meteorological aerial vehicle (M2AV) of the Technische Universität Braunschweig were performed in spring 2011 to determine the capability of the unmanned aerial system (UAS) to measure the structure of the EZ. The campaign took place at the Meteorological Observatory Lindenberg / Richard-Aßmann-Observatory of the German Meteorological Service, which is located close to Berlin. Besides the M2AV flights, standard observations were performed by a 12 m and 99 m tower, a sodar, ceilometer and radiosondes. A tethered balloon with measurement units at six different levels was operated especially for this campaign. The measurements of these systems were used to determine the inversion layer and to capture its diurnal cycle. The talk will be focused on vertical profiles of the M2AV up to the free atmosphere, detailed analysis of spatial series of w'θ' at different altitudes and on vertical profiles of normalized variances of the vertical wind component and the potential temperature.

  12. Changes in music tempo entrain movement related brain activity.

    PubMed

    Daly, Ian; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Roesch, Etienne; Weaver, James; Williams, Duncan; Miranda, Eduardo; Nasuto, Slawomir J

    2014-01-01

    The neural mechanisms of music listening and appreciation are not yet completely understood. Based on the apparent relationship between the beats per minute (tempo) of music and the desire to move (for example feet tapping) induced while listening to that music it is hypothesised that musical tempo may evoke movement related activity in the brain. Participants are instructed to listen, without moving, to a large range of musical pieces spanning a range of styles and tempos during an electroencephalogram (EEG) experiment. Event-related desynchronisation (ERD) in the EEG is observed to correlate significantly with the variance of the tempo of the musical stimuli. This suggests that the dynamics of the beat of the music may induce movement related brain activity in the motor cortex. Furthermore, significant correlations are observed between EEG activity in the alpha band over the motor cortex and the bandpower of the music in the same frequency band over time. This relationship is observed to correlate with the strength of the ERD, suggesting entrainment of motor cortical activity relates to increased ERD strength. PMID:25571015

  13. Defining the Entrainment Zone in Stratocumulus-topped Boundary Layers

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Zhou, M.; Kalogiros, J. A.; Lenschow, D. H.; Dai, C.; Wang, S.

    2010-12-01

    The presence of an entrainment zone near the top of the stratocumulus-topped boundary layers has been identified by many early studies. However, the definition of the entrainment zone was rather vague. We have examined the fine vertical variations of cloud liquid water content, wind, temperature and humidity near the stratocumulus top and developed a new method to identify the entrainment zone objectively. Aircraft measurements from various field projects in stratocumulus-topped boundary layers are used, taking advantage of the fast sampling capability of many of the aircraft sensors. Because of the inhomogeneous mixing of two air masses with distinctively different thermodynamic properties, the magnitude of temperature perturbations within the entrainment zone is significantly larger than those above or below. This characteristics is used to define the upper and lower boundaries of the entrainment zone using a wavelet spectra analyses. The definition of the entrainment zone is further evaluated by the presence of a linear mixing line through mixing line analyses. Various other interfaces at the cloud top are also examined, including the cloud interface, temperature interface (inversion), and moisture interface. The heights of these interfaces are examined relative to the height of the entrainment zone. This study also systematically revealed the presence of turbulence above the local cloud top and/or above the entrainment zone. Wind shear near the cloud top is one possible source that generated local turbulence. Other potential sources of turbulence will also be discussed.

  14. Modeling of neutral entrainment in an FRC thruster

    SciTech Connect

    Brackbill, Jeremiah; Gimelshein, Natalia; Gimelshein, Sergey; Cambier, Jean-Luc; Ketsdever, Andrew

    2012-11-27

    Neutral entrainment in a field reversed configuration thruster is modeled numerically with an implicit PIC code extended to include thermal and chemical interactions between plasma and neutral particles. The contribution of charge exchange and electron impact ionization reactions is analyzed, and the sensitivity of the entrainment efficiency to the plasmoid translation velocity and neutral density is evaluated.

  15. Entrainment and Interfacial Stability in Capillary - Heat Pipes

    NASA Astrophysics Data System (ADS)

    Kim, Bong Hun

    Entrainment phenomena in capillary-driven heat pipes were studied and both analytical and experimental approaches were utilized to identify and better understand the parameters that govern the entrainment of liquid in operating heat pipes. Two experimental investigations, i.e., an aerodynamic simulation and a heat pipe experiment, were conducted using an air-water test channel and a high power heat pipe, respectively. The air-water experiment was used to study the effects of the vapor velocity and wick dimensions on the entrainment phenomenon in heat pipes. The heat pipe experiment was designed to verify the existence of the various modes of entrainment and measure the corresponding entrainment limits. From the comparison of critical velocities obtained in these two experiments, the effectiveness of previous aerodynamic simulations (Ishii and Grolmes, 1975; Matveev et al., 1977) was examined. For both experiments, entrainment was detected by various methods and classified into representative types according to the relative position of the liquid interface to the wick structure and operating conditions. Results of the two experiments were compared with those obtained from previous investigations presented by Cotter (1967), Tien and Chung (1979) and Prenger and Kemme (1981), etc. In addition, the entrainment limit data were theoretically verified using a computer model designed to predict the maximum performance for the given operating conditions. Finally, the entrainment phenomena observed in both the air-water and steam-water experiments were examined from a physical perspective using hydrodynamic instability theories (Kelvin, 1871; Jeffreys, 1926; Miles, 1960).

  16. Rhythm as a Coordinating Device: Entrainment with Disordered Speech

    ERIC Educational Resources Information Center

    Borrie, Stephanie A.; Liss, Julie M.

    2014-01-01

    Purpose: The rhythmic entrainment (coordination) of behavior during human interaction is a powerful phenomenon, considered essential for successful communication, supporting social and emotional connection, and facilitating sense-making and information exchange. Disruption in entrainment likely occurs in conversations involving those with speech…

  17. No Time To Kill: Entrainment and Accelerating Courseware Development.

    ERIC Educational Resources Information Center

    Millington, Paula Crnkovich

    This paper examines the concept of time in multimedia, World Wide Web-based courseware development. The biological concept of entrainment (the alignment of rhythms within and between systems) to accelerate courseware development is explored. The discussion begins with the foundational concepts of entrainment from biological systems and social…

  18. The Impact of Rhythmic Entrainment on a Person with Autism.

    ERIC Educational Resources Information Center

    Orr, Tracy Jo; Myles, Brenda Smith; Carlson, Judith K.

    1998-01-01

    A study investigated the impact of rhythmic entrainment on an 11-year-old girl with autism who engaged in head jerking and screaming. Rhythmic entrainment intervention was more effective when she exhibited behavior that resulted from a moderate level of stress and less effective when stressors were more severe. (CR)

  19. Controls on the Entrainment of Juvenile Chinook Salmon (Oncorhynchus tshawytscha) into Large Water Diversions and Estimates of Population-Level Loss

    PubMed Central

    Zeug, Steven C.; Cavallo, Bradley J.

    2014-01-01

    Diversion of freshwater can cause significant changes in hydrologic dynamics and this can have negative consequences for fish populations. Additionally, fishes can be directly entrained into diversion infrastructure (e.g. canals, reservoirs, pumps) where they may become lost to the population. However, the effect of diversion losses on fish population dynamics remains unclear. We used 15 years of release and recovery data from coded-wire-tagged juvenile Chinook Salmon (Oncorhynchus tshawytscha) to model the physical, hydrological and biological predictors of salvage at two large water diversions in the San Francisco Estuary. Additionally, entrainment rates were combined with estimates of mortality during migration to quantify the proportion of total mortality that could be attributed to diversions. Statistical modeling revealed a strong positive relationship between diversion rate and fish entrainment at both diversions and all release locations. Other significant relationships were specific to the rivers where the fish were released, and the specific diversion facility. Although significant relationships were identified in statistical models, entrainment loss and the mean contribution of entrainment to total migration mortality were low. The greatest entrainment mortality occurred for fish released along routes that passed closest to the diversions and certain runs of Chinook Salmon released in the Sacramento River suffered greater mortality but only at the highest diversion rates observed during the study. These results suggest losses at diversions should be put into a population context in order to best inform effective management of Chinook Salmon populations. PMID:25019205

  20. Fluvial entrainment of low density peat blocks (block carbon)

    NASA Astrophysics Data System (ADS)

    Warburton, Jeff

    2014-05-01

    In many fluvial environments low density materials are transported in significant quantities and these form an important part of the stream load and /or have a distinct impact on sedimentation in these environments. However, there are significant gaps in understanding of how these materials are entrained and transported by streams and rivers. Eroding upland peatland environments in particular, frequently have fluvial systems in which large eroded peat blocks, often exceeding 1 m in length; form an important component of the stream material flux. Transport of this material is significant in determining rates of erosion but also has important impacts in terms of damage to infrastructure and carbon loss. This paper describes a field experiment designed to establish for the first time the conditions under which large peat blocks (c. > 0.1 m b axis) are initially entrained from a rough gravel bed. The field site is Trout Beck, in the North Pennines, Northern England which is an upland wandering river channel with occasional lateral and mid channel bars. Mean low flow stage is typically 0.2 m but during flood can rapidly rise, in one to two hours, to over 1.5 m. To study peat block entrainment a bespoke data acquisition system consisting of two pressure transducers, four release triggers and time lapse camera was set up. The pressure transducers provided a record of local depth and the release triggers were embedded in peat blocks to record initial motion and arranged on the rough stream bed. The time lapse camera provided verification of timing of block entrainment (during daylight hours) and also provided information on the mechanism of initial movement. Peat blocks were cut from a local source and were equidimensional, ranging in size from 0.1 to 0.7 m. The derived entrainment function is related to a critical depth of entrainment. Results demonstrate that peat blocks are entrained when the local depth approximates the height of the peat block. Blocks frequently shift

  1. Scalar entrainment in the mixing layer

    NASA Technical Reports Server (NTRS)

    Sandham, N. D.; Mungal, M. G.; Broadwell, J. E.; Reynolds, W. C.

    1988-01-01

    New definitions of entrainment and mixing based on the passive scalar field in the plane mixing layer are proposed. The definitions distinguish clearly between three fluid states: (1) unmixed fluid, (2) fluid engulfed in the mixing layer, trapped between two scalar contours, and (3) mixed fluid. The difference betwen (2) and (3) is the amount of fluid which has been engulfed during the pairing process, but has not yet mixed. Trends are identified from direct numerical simulations and extensions to high Reynolds number mixing layers are made in terms of the Broadwell-Breidenthal mixing model. In the limit of high Peclet number (Pe = ReSc) it is speculated that engulfed fluid rises in steps associated with pairings, introducing unmixed fluid into the large scale structures, where it is eventually mixed at the Kolmogorov scale. From this viewpoint, pairing is a prerequisite for mixing in the turbulent plane mixing layer.

  2. Ground-Based Remote Retrievals of Cumulus Entrainment Rates

    SciTech Connect

    Wagner, Timothy J.; Turner, David D.; Berg, Larry K.; Krueger, Steven K.

    2013-07-26

    While fractional entrainment rates for cumulus clouds have typically been derived from airborne observations, this limits the size and scope of available data sets. To increase the number of continental cumulus entrainment rate observations available for study, an algorithm for retrieving them from ground-based remote sensing observations has been developed. This algorithm, called the Entrainment Rate In Cumulus Algorithm (ERICA), uses the suite of instruments at the Southern Great Plains (SGP) site of the United States Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility as inputs into a Gauss-Newton optimal estimation scheme, in which an assumed guess of the entrainment rate is iteratively adjusted through intercomparison of modeled liquid water path and cloud droplet effective radius to their observed counterparts. The forward model in this algorithm is the Explicit Mixing Parcel Model (EMPM), a cloud parcel model that treats entrainment as a series of discrete entrainment events. A quantified value for measurement uncertainty is also returned as part of the retrieval. Sensitivity testing and information content analysis demonstrate the robust nature of this method for retrieving accurate observations of the entrainment rate without the drawbacks of airborne sampling. Results from a test of ERICA on three months of shallow cumulus cloud events show significant variability of the entrainment rate of clouds in a single day and from one day to the next. The mean value of 1.06 km-¹ for the entrainment rate in this dataset corresponds well with prior observations and simulations of the entrainment rate in cumulus clouds.

  3. Spatiotemporal Phase Characteristics of Brain Alpha Wave Entrained to Alternating Red and Blue Flicker Stimuli

    NASA Astrophysics Data System (ADS)

    Nishifuji, Seiji; Ohkado, Hironori; Tanaka, Shogo

    2006-05-01

    We investigate spatiotemporal phase characteristics of the brain alpha waves in the entrainment to red, blue and alternating red/blue flicker stimuli. The alternating red/blue stimuli induce two distinct phase relationships between the alpha waves over the scalp dependent on subjects: 1) an antiphase relationship in approximately half the subjects in which the phases of the alpha waves are in the state of antiphase between the occipital and frontal lobes and 2) an in-phase relationship for the remaining subjects in which the phases of the alpha waves over the entire scalp are almost identical with only small phase differences. In the in-phase relationship, there occurs a phase difference approximately 90 deg between the occipital alpha wave and the alternating red/blue flicker stimuli, whereas the phase difference becomes almost zero in the antiphase relationship. The former anomalous phase response at the occipital lobe triggers the in-phase relationship over the entire scalp.

  4. Tropical deep convection, entrainment, and dilution during the dynamo field campaign

    NASA Astrophysics Data System (ADS)

    Hannah, Walter

    a more robust MJO representation than CAM5, as expected. SP-CAM has an interesting systematic drift away from the initial conditions that projects well on the Real-time Multivariate MJO index (RMM), which negatively impacts the RMM skill scores. Analysis of the column MSE budget shows that SP-CAM has more realistic cloud-radiative feedbacks when compared to CAM5. SP-CAM also has a bias towards stronger import by vertical MSE advection that is similar CAM5 and inconsistent with re-analysis data. VGMS in SP-CAM is also found to be negative, which is similar to CAM5 and inconsistent with re-analysis data. The results from the first part of this study highlight a paradox surrounding entrainment. Although, previous studies have shown that entrainment rates should be larger than typical values used in parameterizations, increasing the entrainment rate does not make global model simulations more realistic. This prompted a detailed investigation into entrainment processes in high-resolution CRM simulations. A series of simulations are conducted where deep convection is initiated with a warm humid bubble. The bubble simulations are compared to a more realistic field of deep convection driven by forcing derived from the DYNAMO northern sounding array data. Entrainment and detrainment are found to be associated with toroidal circulations, consistent with recent studies. Analysis of the directly measured fractional entrainment rates does support an inverse relationship between entrainment and cloud radius, as is often assumed in simple models of deep convection. A method for quantifying the dilution by entrainment is developed and tested. Dilution and entrainment are generally not synonymous, but dilution is found to have a weak inverse relationship to cloud core radius. Sensitivity experiments show that entrainment and total water dilution are enhanced with environmental humidity is increased, contrary to the assumptions of some parameterizations. More vigorous convection in a

  5. Percentage entrainment of constituent loads in urban runoff, south Florida

    USGS Publications Warehouse

    Miller, R.A.

    1985-01-01

    Runoff quantity and quality data from four urban basins in south Florida were analyzed to determine the entrainment of total nitrogen, total phosphorus, total carbon, chemical oxygen demand, suspended solids, and total lead within the stormwater runoff. Land use of the homogeneously developed basins are residential (single family), highway, commercial, and apartment (multifamily). A computational procedure was used to calculate, for all storms that had water-quality data, the percentage of constituent load entrainment in specified depths of runoff. The plot of percentage of constituent load entrained as a function of runoff is termed the percentage-entrainment curve. Percentage-entrainment curves were developed for three different source areas of basin runoff: (1) the hydraulically effective impervious area, (2) the contributing area, and (3) the drainage area. With basin runoff expressed in inches over the contributing area, the depth of runoff required to remove 90 percent of the constituent load ranged from about 0.4 inch to about 1.4 inches; and to remove 80 percent, from about 0.3 to 0.9 inch. Analysis of variance, using depth of runoff from the contributing area as the response variable, showed that the factor 'basin' is statistically significant, but that the factor 'constituent' is not statistically significant in the forming of the percentage-entrainment curve. Evidently the sewerage design, whether elongated or concise in plan dictates the shape of the percentage-entrainment curve. The percentage-entrainment curves for all constituents were averaged for each basin and plotted against basin runoff for three source areas of runoff-the hydraulically effective impervious area, the contributing area, and the drainage area. The relative positions of the three curves are directly related to the relative sizes of the three source areas considered. One general percentage-entrainment curve based on runoff from the contributing area was formed by averaging across

  6. Investigations of cumulus entrainment rates through remotely-sensed observations

    NASA Astrophysics Data System (ADS)

    Wagner, T. J.; Turner, D. D.; Berg, L. K.

    2010-12-01

    The entrainment of environmental air into cumulus impacts the radiative, microphysical, and thermodynamic characteristics of the cloud, and by extension, the environment. A need for a robust method to observe entrainment rate without the use of in situ observations has lead to the development of an algorithm to retrieve entrainment rate remotely. Thermodynamic profiles are obtained from the suite of ground-based instruments located at the Southern Great Plains (SGP) site of the United States Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility. These profiles are used as inputs into the Entrainment Mixing Parcel Model (EMPM), which treats entrainment as a series of discrete mixing events. Output from EMPM is used to calculate quantities that can be observed from the surface, including effective radius and liquid water path. The entrainment rate is adjusted iteratively using Gauss-Newton optimal estimation until convergence with observations is reached. This algorithm currently retrieves the entrainment rate of individual cumulus clouds and shows good agreement with aircraft-based observations.

  7. Laboratory Experiments on Convective Entrainment Using a Saline Water Tank

    NASA Astrophysics Data System (ADS)

    Jonker, Harmen J. J.; Jiménez, Maria A.

    2014-06-01

    Entrainment fluxes in a shear-free convective boundary layer have been measured with a saline water tank set-up. The experiments were targeted towards measuring the entrainment behaviour for medium to high Richardson numbers and use a two-layer design, i.e. two stacked non-stratified (neutral) layers with different densities. With laser induced fluorescence (LIF), the entrainment flux of a fluorescent dye is measured for bulk Richardson numbers in the range 30-260. It is proposed that a carefully chosen combination of top-down and bottom-up processes improves the accuracy of LIF-based entrainment observations. The observed entrainment fluxes are about an order of magnitude lower than reported for thermal water tanks: the derived buoyancy entrainment ratio, , is found to be , which is to be compared with for a thermal convection tank (Deardorff et al., J Fluid Mech 100:41-64, 1980). An extensive discussion is devoted to the influence of the Reynolds and Prandtl numbers in laboratory experiments on entrainment.

  8. Numerical Investigation of Entrainment of Turbulent Dense Currents

    NASA Astrophysics Data System (ADS)

    Bhaganaagar, Kiran; Nayamatulla, Manjure

    2016-04-01

    Entrainment in dense overflows has fundamental importance for understanding the transport of densest water in the ocean. Estimation of entrainment is extremely challenging and to-date we do not have a fundamental framework that parameterizes entrainment. A highly accurate direct numerical simulation and large eddy simulation solvers have been developed to simulate dense currents over range of smooth- and rough-surfaces. Simulations have been performed for both lock-exchange currents and constant flux currents. A mathematical framework has been developed to estimate entrainment of 2-D and 3-D dense currents. Entrainment has been calculated from first-principles as the relative change in the volume of the dense current in time with respect to the buoyancy forcing that drives the dense current. A combination of threshold method, wherein the height of current is evaluated as height corresponding to the specified threshold value and sorting method, wherein, the mixed fluid is sorted into bins ranging from dense fluid at the bottom to ambient fluid at the top has been used to evaluate the interface between the dense and ambient fluid. Entrainment is sensitive to the method of evaluation of the interface height. Finally, we obtained the dependency of entrainment parameter on non-dimensional parameters. Analysis has demonstrated lock-exchange currents have less mixing and entrainment for same Reynolds number and Froude's number than constant flux currents. The differences exist due to differences in nature of Kelvin-Helmholtz instabilities and lobe-cleft currents. Rough-bottom surfaces introduces additional dynamics of the dense currents. The spacing between the roughness elements has demonstrated to be important metric in entrainment parameters for lock-exchange currents. Densely spaced (D-type) currents travel slower as roughness causes hindrance on density current propagation due to enhanced drag and produces additional eddies and instabilities compared to sparsely

  9. Dry Air Entrainment into Hurricane Earl

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.; Jedlovec, Gary J.; Atkinson, Robert J.; Hood, Robbie E.; LaFontaine, Frank J.

    2000-01-01

    Hurricane Earl formed in the Gulf of Mexico in September 1998. It quickly was upgraded from a tropical disturbance to tropical storm status and then to a hurricane. Earl possessed hybrid (tropical and extratropical) characteristics throughout its lifetime. The system maintained and erratic track, which led to wide variability in the operational track forecasts. It eventually made landfall on the Florida panhandle on 2 September and raced northeastward. During August and September 1998, NASA conducted the third Convection and Moisture Experiment (CAMEX-3). The experiment was focused on studying hurricanes with an emphasis toward developing a better understanding of their intensification and motion. Earl provides a unique opportunity to utilize high spatial and temporal resolution data collected from the DC-8 and high altitude ER-2 NASA platforms, which flew over Earl as it made landfall. These data can also be put into broader view provided by other instruments from the Geosychronous Operational Environmental Satellites (GOES) and the Tropical Rainfall Measuring Mission (TRMM) satellites. Hurricane Earl was affected by entrainment of dry air from the northwest. Hurricane Isis was intensifying and approaching the Mexican Pacific coast with its associated outflow potentially affecting the inflow into Earl as the storm neared Florida. In addition, a longwave synoptic trough circulation was present over the eastern U.S. Either or both of these could be responsible for the dry air into the system. This paper will focus on identifying the source of the dry by using upper-level wind and moisture fields derived from the GOES 6.7 um water vapor imagery. We will attempt to relate the large-scale observations to those from the NASA aircraft. An infrared instrument onboard the ER-2 also has a similar wavelength and may be able to confirm some of the GOES findings. In addition, a microwave radiometer with 4 channels focused on measuring precipitation and its associated ice

  10. On the maximum grain size entrained by photoevaporative winds

    NASA Astrophysics Data System (ADS)

    Hutchison, Mark A.; Laibe, Guillaume; Maddison, Sarah T.

    2016-09-01

    We model the behaviour of dust grains entrained by photoevaporation-driven winds from protoplanetary discs assuming a non-rotating, plane-parallel disc. We obtain an analytic expression for the maximum entrainable grain size in extreme-UV radiation-driven winds, which we demonstrate to be proportional to the mass loss rate of the disc. When compared with our hydrodynamic simulations, the model reproduces almost all of the wind properties for the gas and dust. In typical turbulent discs, the entrained grain sizes in the wind are smaller than the theoretical maximum everywhere but the inner disc due to dust settling.

  11. The role of entrainment by falling raindrops in microbursts

    NASA Technical Reports Server (NTRS)

    Krueger, Steven K.

    1988-01-01

    The numerical model of Krueger et al. (1986) for dry microburst simulations is used to study the role of entrainment by falling raindrops. Two series of numerical simulations were conducted: a control series, and a series with the raindrop fall speed set to zero so that the rain moved with the air instead of falling through it. The results show that entrainment due to falling raindrops helps microbursts with large raindrop mixing ratios to form in stable stratifications. It is found that entrainment appears to contribute to the small spatial and temporal scales that characterize microburst outflows.

  12. Inherent Anticipation in the Pharmaceutical and Biotechnology Industries.

    PubMed

    Goldman, Michael; Evans, Georgia; Zappia, Andrew

    2015-08-01

    Pharmaceutical and biotech research often involves discovering new properties of, or new methods to use, existing compositions. The doctrine of inherent anticipation, however, prevents the issuance and/or validity of a patent for discoveries deemed to have been implicitly disclosed in the prior art. This can be a barrier to patent rights in these technologies. Inherent anticipation therefore creates uncertainty for patent protection in the pharmaceutical and biotech sciences. Despite this uncertainty, Federal Circuit jurisprudence provides guidance on the boundaries of the inherent anticipation doctrine. In view of the case law, certain strategies may be employed to protect inventions that may potentially be viewed as inherent in the prior art. PMID:25877394

  13. Exploring Stratocumulus Cloud-Top Entrainment Processes and Parameterizations Using Doppler Cloud Radar Observations

    NASA Astrophysics Data System (ADS)

    Albrecht, B. A.; Fang, M.

    2012-12-01

    define vertical velocity variance for one-hour periods. These quantities are then used to examine the terms in the TKE budget in this layer. It is found for the 14 hours of observations used in this study that the variance term is strongly correlated to the dissipation rates in the entrainment zone. However, the ratio of the variance term to the dissipation rate term is 0.12 during the day and 0.06 at night. This difference indicates that the length scales involved in the turbulence and entrainment processes may depend on whether the turbulence is forced by the surface fluxes or cloud-top cooling. To further explore this possibility, the relationships among the convective velocity scales, the vertical velocity variances, and the dissipation rates are examined and compared with entrainment rates from parameterizations based on the convective velocity scale and the strength of the inversion.

  14. Speech entrainment compensates for Broca's area damage.

    PubMed

    Fridriksson, Julius; Basilakos, Alexandra; Hickok, Gregory; Bonilha, Leonardo; Rorden, Chris

    2015-08-01

    Speech entrainment (SE), the online mimicking of an audiovisual speech model, has been shown to increase speech fluency in patients with Broca's aphasia. However, not all individuals with aphasia benefit from SE. The purpose of this study was to identify patterns of cortical damage that predict a positive response SE's fluency-inducing effects. Forty-four chronic patients with left hemisphere stroke (15 female) were included in this study. Participants completed two tasks: 1) spontaneous speech production, and 2) audiovisual SE. Number of different words per minute was calculated as a speech output measure for each task, with the difference between SE and spontaneous speech conditions yielding a measure of fluency improvement. Voxel-wise lesion-symptom mapping (VLSM) was used to relate the number of different words per minute for spontaneous speech, SE, and SE-related improvement to patterns of brain damage in order to predict lesion locations associated with the fluency-inducing response to SE. Individuals with Broca's aphasia demonstrated a significant increase in different words per minute during SE versus spontaneous speech. A similar pattern of improvement was not seen in patients with other types of aphasia. VLSM analysis revealed damage to the inferior frontal gyrus predicted this response. Results suggest that SE exerts its fluency-inducing effects by providing a surrogate target for speech production via internal monitoring processes. Clinically, these results add further support for the use of SE to improve speech production and may help select patients for SE treatment. PMID:25989443

  15. Music and emotions: from enchantment to entrainment.

    PubMed

    Vuilleumier, Patrik; Trost, Wiebke

    2015-03-01

    Producing and perceiving music engage a wide range of sensorimotor, cognitive, and emotional processes. Emotions are a central feature of the enjoyment of music, with a large variety of affective states consistently reported by people while listening to music. However, besides joy or sadness, music often elicits feelings of wonder, nostalgia, or tenderness, which do not correspond to emotion categories typically studied in neuroscience and whose neural substrates remain largely unknown. Here we review the similarities and differences in the neural substrates underlying these "complex" music-evoked emotions relative to other more "basic" emotional experiences. We suggest that these emotions emerge through a combination of activation in emotional and motivational brain systems (e.g., including reward pathways) that confer its valence to music, with activation in several other areas outside emotional systems, including motor, attention, or memory-related regions. We then discuss the neural substrates underlying the entrainment of cognitive and motor processes by music and their relation to affective experience. These effects have important implications for the potential therapeutic use of music in neurological or psychiatric diseases, particularly those associated with motor, attention, or affective disturbances. PMID:25773637

  16. Organic Entrainment and Preservation in Volcanic Glasses

    NASA Technical Reports Server (NTRS)

    Wilhelm, Mary Beth; Ojha, Lujendra; Brunner, Anna E.; Dufek, Josef D.; Wray, James Joseph

    2014-01-01

    Unaltered pyroclastic deposits have previously been deemed to have "low" potential for the formation, concentration and preservation of organic material on the Martian surface. Yet volcanic glasses that have solidified very quickly after an eruption may be good candidates for containment and preservation of refractory organic material that existed in a biologic system pre-eruption due to their impermeability and ability to attenuate UV radiation. Analysis using NanoSIMS of volcanic glass could then be performed to both deduce carbon isotope ratios that indicate biologic origin and confirm entrainment during eruption. Terrestrial contamination is one of the biggest barriers to definitive Martian organic identification in soil and rock samples. While there is a greater potential to concentrate organics in sedimentary strata, volcanic glasses may better encapsulate and preserve organics over long time scales, and are widespread on Mars. If volcanic glass from many sites on Earth could be shown to contain biologically derived organics from the original environment, there could be significant implications for the search for biomarkers in ancient Martian environments.

  17. The Huygens entrainment phenomenon and thermoacoustic engines

    PubMed

    Spoor; Swift

    2000-08-01

    The earliest known reference to the mode-locking, or entrainment, of two maintained oscillators is Christiaan Huygens' description of two pendulum clocks "falling into synchrony" when hung on the same wall. We describe an analogous phenomenon in acoustics-the mode-locking of two thermoacoustic engines which have their cases rigidly welded together, but which are otherwise uncoupled. This "mass-coupling" might compete with acoustic coupling when the latter is used to enforce antiphase mode-locking in such engines, for vibration cancellation. A simple theory relating the phase difference between the engines in the locked state to the corresponding ratio of their pressure amplitudes is in excellent agreement with theory and numerical simulations. The theory's prediction relating the phase difference to the engines' natural frequency difference is qualitatively confirmed by experiment, despite larger experimental uncertainties. The mass coupling is relatively weak compared to the aforementioned acoustic coupling, and in general occurs in antiphase, so we conclude that mass coupling will not interfere with vibration cancellation by acoustic coupling in most circumstances. PMID:10955624

  18. Granular motions near the threshold of entrainment

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Alexakis, athanasios-Theodosios

    2016-04-01

    Our society is continuously impacted by significant weather events many times resulting in catastrophes that interrupt our normal way of life. In the context of climate change and increasing urbanisation these "extreme" hydrologic events are intensified both in magnitude and frequency, inducing costs of the order of billions of pounds. The vast majority of such costs and impacts (even more to developed societies) are due to water related catastrophes such as the geomorphic action of flowing water (including scouring of critical infrastructure, bed and bank destabilisation) and flooding. New tools and radically novel concepts are in need, to enable our society becoming more resilient. This presentation, emphasises the utility of inertial sensors in gaining new insights on the interaction of flow hydrodynamics with the granular surface at the particle scale and for near threshold flow conditions. In particular, new designs of the "smart-sphere" device are discussed with focus on the purpose specific sets of flume experiments, designed to identify the exact response of the particle resting at the bed surface for various below, near and above threshold flow conditions. New sets of measurements are presented for particle entrainment from a Lagrangian viewpoint. Further to finding direct application in addressing real world challenges in the water sector, it is shown that such novel sensor systems can also help the research community (both experimentalists and computational modellers) gain a better insight on the underlying processes governing granular dynamics.

  19. A comparative efficacy study of photic driving brainwave entrainment technology with a novel form of more direct entrainment

    NASA Astrophysics Data System (ADS)

    Knowles, Richard Thomas

    This exploratory study compared the efficacy of a novel brainwave electromagnetic (EM) entrainment technology against a more conventional technology utilizing the photic-driving technique. Both experimental conditions were also compared with a 7-minute control session that took place immediately before each stimulation session. The Schumann Resonance (SR) frequency was selected as the delivery signal and was chosen because of previous findings suggesting that entrainment to this frequency can often produce transpersonal if not paranormal, experiences in the entrainee, which sometimes resemble remote viewing or out-of-body experiences. A pilot study determined which of two novel entrainment modalities (a copper coil or a 16-solenoid headset) worked most effectively for use with the rest of the study. In the main study, an artificial SR signal at 7.8Hz was delivered during the photic-driving sessions, but a recording of the real-time SR was used to deliver the entrainment signal during sessions devoted to the electromagnetic entrainment modality. Sixteen participants were recruited from the local area, and EEG recordings were acquired via a 32-channel Deymed electroencephalography system. Comparative analyses were performed between the control and experimental portions of each session to assess for efficacy of the novel entrainment modality used, and, in the main study, between the electromagnetic and photic-driving sessions, to assess for differential entrainment efficacy between these groups. A follow-up study was additionally performed primarily to determine whether responders could replicate their entrainment effect from the main study. Results showed that EM entrainment appeared to be possible but is not nearly as robust or reliable as photic driving. Additionally, no profound transpersonal or paranormal experiences were elicited during the course of the study, and, when asked, participants were not able to determine with any degree of success, when the

  20. Investigations of entrainment mortality among larval and juvenile fishes using a Power Plant Simulator

    SciTech Connect

    Cada, G F; Suffern, J S; Kumar, K D; Solomon, J A

    1980-01-01

    A Power Plant Simulator (PPS) was constructed at the Oak Ridge National Laboratory to examine the component sources of entrainment mortality. This experimental apparatus circulates temperature-controlled water through a closed loop consisting of a pump, a condenser bundle, and vertically adjustable piping. Larval bluegill, channel catfish, carp, largemouth bass, and smallmouth bass and juvenile bluegill and mosquitofish were exposed to different combinations of pump speed and water temperatures in the PPS. Wide differences among species in their sensitivity to pipe and condenser passage were observed. For most of the species tested, short-term conditional mortalities resulting from the physical stresses of pipe and condenser passage increased with ..delta..T and/or pumping rate. Pump passage was not a major source of physical damage, and no clear relationship was found between pump efficiency and mortality. Susceptibility to physical stresses associated with entrainment was inversely related to the size of the entrained organisms. Delayed mortality frequently occurred among fishes exposed to stresses in the PPS. However, delayed mortality estimates in these experimental groups were significantly greater than corresponding values in handling control groups in only 15 of 64 comparisons. Like short-term mortalities, relatively higher delayed mortalities were often observed for the smaller species tested.

  1. Perceived time and temporal structure: Neural entrainment to isochronous stimulation increases duration estimates.

    PubMed

    Horr, Ninja K; Wimber, Maria; Di Luca, Massimiliano

    2016-05-15

    Distortions of perceived duration can give crucial insights into the mechanisms that underlie the processing and representation of stimulus timing. One factor that affects duration estimates is the temporal structure of stimuli that fill an interval. For example, regular filling (isochronous interval) leads to an overestimation of perceived duration as compared to irregular filling (anisochronous interval). In the present article, we use electroencephalography (EEG) to investigate the neural basis of this subjective lengthening of perceived duration with isochrony. In a two-interval forced choice task, participants judged which of two intervals lasts longer - one always being isochronous, the other one anisochronous. Response proportions confirm the subjective overestimation of isochronous intervals. At the neural level, isochronous sequences are associated with enhanced pairwise phase consistency (PPC) at the stimulation frequency, reflecting the brain's entrainment to the regular stimulation. The PPC over the entrainment channels is further enhanced for isochronous intervals that are reported to be longer, and the magnitude of this PCC effect correlates with the amount of perceptual bias. Neural entrainment has been proposed as a mechanism of attentional selection, enabling increased neural responsiveness toward stimuli that arrive at an expected point in time. The present results support the proposed relationship between neural response magnitudes and temporal estimates: An increase in neural responsiveness leads to a more pronounced representation of the individual stimuli filling the interval and in turn to a subjective increase in duration. PMID:26883062

  2. Cortical stimulation consolidates and reactivates visual experience: neural plasticity from magnetic entrainment of visual activity.

    PubMed

    Liao, Hsin-I; Wu, Daw-An; Halelamien, Neil; Shimojo, Shinsuke

    2013-01-01

    Delivering transcranial magnetic stimulation (TMS) shortly after the end of a visual stimulus can cause a TMS-induced 'replay' or 'visual echo' of the visual percept. In the current study, we find an entrainment effect that after repeated elicitations of TMS-induced replay with the same visual stimulus, the replay can be induced by TMS alone, without the need for the physical visual stimulus. In Experiment 1, we used a subjective rating task to examine the phenomenal aspects of TMS-entrained replays. In Experiment 2, we used an objective masking paradigm to quantitatively validate the phenomenon and to examine the involvement of low-level mechanisms. Results showed that the TMS-entrained replay was not only phenomenally experienced (Exp.1), but also able to hamper letter identification (Exp.2). The findings have implications in several directions: (1) the visual cortical representation and iconic memory, (2) experience-based plasticity in the visual cortex, and (3) their relationship to visual awareness. PMID:23863977

  3. How coupling determines the entrainment of circadian clocks

    NASA Astrophysics Data System (ADS)

    Bordyugov, G.; Granada, A. E.; Herzel, H.

    2011-08-01

    Autonomous circadian clocks drive daily rhythms in physiology and behaviour. A network of coupled neurons, the suprachiasmatic nucleus (SCN), serves as a robust self-sustained circadian pacemaker. Synchronization of this timer to the environmental light-dark cycle is crucial for an organism's fitness. In a recent theoretical and experimental study it was shown that coupling governs the entrainment range of circadian clocks. We apply the theory of coupled oscillators to analyse how diffusive and mean-field coupling affects the entrainment range of interacting cells. Mean-field coupling leads to amplitude expansion of weak oscillators and, as a result, reduces the entrainment range. We also show that coupling determines the rigidity of the synchronized SCN network, i.e. the relaxation rates upon perturbation. Our simulations and analytical calculations using generic oscillator models help to elucidate how coupling determines the entrainment of the SCN. Our theoretical framework helps to interpret experimental data.

  4. Aerosol entrainment from a sparged non-Newtonian slurry

    SciTech Connect

    Fritz, Brad G.

    2006-08-01

    Aerosol measurements were conducted above a half-scale air sparged mixing tank filled with simulated waste slurry. Three aerosol size fractions were measured at three sampling heights at three different sparging rates using a filter based ambient air sampling technique. Aerosol concentrations in the head space above the closed tank demonstrated a wide range, varying between 97 ?g m-3 for PM2.5 and 5650 ?g m-3 for TSP. The variation in concentrations was a function of sampling heights, size fraction and sparging rate. Measured aerosol entrainment coefficients showed good agreement with existing entrainment models. The models evaluated generally over predicted the entrainment, but were within a factor of two of the measured entrainment. This indicates that the range of applicability of the models may be extendable to include sparged slurries with Bingham plastic rheological properties.

  5. Estimating rates of debris flow entrainment from ground vibrations

    NASA Astrophysics Data System (ADS)

    Kean, J. W.; Coe, J. A.; Coviello, V.; Smith, J. B.; McCoy, S. W.; Arattano, M.

    2015-08-01

    Debris flows generate seismic waves as they travel downslope and can become more dangerous as they entrain sediment along their path. We present field observations that show a systematic relation between the magnitude of seismic waves and the amount of erodible sediment beneath the flow. Specifically, we observe that a debris flow traveling along a channel filled initially with sediment 0.34 m thick generates about 2 orders of magnitude less spectral power than a similar-sized flow over the same channel without sediment fill. We adapt a model from fluvial seismology to explain this observation and then invert it to estimate the level of bed sediment (and rate of entrainment) beneath a passing series of surges. Our estimates compare favorably with previous direct measurements of entrainment rates at the site, suggesting the approach may be a new indirect way to obtain rare field constraints needed to test models of debris flow entrainment.

  6. Entrainment of a Synthetic Oscillator through Queueing Coupling

    NASA Astrophysics Data System (ADS)

    Hochendoner, Philip; Mather, William; Butzin, Nicholas; Ogle, Curtis

    2014-03-01

    Many biological systems naturally exhibit (often noisy) oscillatory patterns that are capable of being entrained by external stimuli, though the mechanism of entrainment is typically obscured by the complexity of native networks. A synthetic biology approach, where genetic programs are wired ``by hand,'' has proven useful in this regard. In the present study, we use a synthetic oscillator in Escherichia coli to demonstrate a novel and potentially widespread mechanism for biological entrainment: competition of proteins for degradation by common pathway, i.e. a entrainment by a bottleneck. To faithfully represent the discrete and stochastic nature of this bottleneck, we leverage results from a recent biological queueing theory, where in particular, the queueing theoretic concept of workload is discovered to simplify the analysis. NSF Award 1330180.

  7. BOUNDED MINIMUM INHERENT AVAILABILITY REQUIREMENTS FOR THE SYSTEM DESCRIPTION DOCUMENTS

    SciTech Connect

    L. Booth

    1998-03-13

    The purpose of this analysis is to establish bounded minimum inherent availability requirements for the Mined Geologic Disposal System (MGDS) System Description Documents (SDDs). The purpose of the bounded minimum inherent availability is to provide a lower bound on availability which will allow design to meet throughput requirements while not affecting the ability of the items to perform their intended safety function.

  8. Entrainment Ranges for Chains of Forced Neural and Phase Oscillators.

    PubMed

    Massarelli, Nicole; Clapp, Geoffrey; Hoffman, Kathleen; Kiemel, Tim

    2016-12-01

    Sensory input to the lamprey central pattern generator (CPG) for locomotion is known to have a significant role in modulating lamprey swimming. Lamprey CPGs are known to have the ability to entrain to a bending stimulus, that is, in the presence of a rhythmic signal, the CPG will change its frequency to match the stimulus frequency. Bending experiments in which the lamprey spinal cord has been removed and mechanically bent back and forth at a single point have been used to determine the range of frequencies that can entrain the CPG rhythm. First, we model the lamprey locomotor CPG as a chain of neural oscillators with three classes of neurons and sinusoidal forcing representing edge cell input. We derive a phase model using the connections described in the neural model. This results in a simpler model yet maintains some properties of the neural model. For both the neural model and the derived phase model, entrainment ranges are computed for forcing at different points along the chain while varying both intersegmental coupling strength and the coupling strength between the forcer and chain. Entrainment ranges for chains with nonuniform intersegmental coupling asymmetry are larger when forcing is applied to the middle of the chain than when it is applied to either end, a result that is qualitatively similar to the experimental results. In the limit of weak coupling in the chain, the entrainment results of the neural model approach the entrainment results for the derived phase model. Both biological experiments and the robustness of non-monotonic entrainment ranges as a function of the forcing position across different classes of CPG models with nonuniform asymmetric coupling suggest that a specific property of the intersegmental coupling of the CPG is key to entrainment. PMID:27091694

  9. A parameterization of the depth of the entrainment zone

    NASA Technical Reports Server (NTRS)

    Boers, Reinout

    1989-01-01

    A theory of the parameterization of the entrainment zone depth has been developed based on conservation of energy. This theory suggests that the normalized entrainment zone depth is proportional to the inverse square root of the Richardson number. A comparison of this theory with atmospheric observations indicates excellent agreement. It does not adequately predict the laboratory data, although it improves on parcel theory, which is based on a momentum balance.

  10. Differential Entrainment of Neuroelectric Delta Oscillations in Developmental Dyslexia

    PubMed Central

    Soltész, Fruzsina; Szűcs, Denes; Leong, Victoria; White, Sonia; Goswami, Usha

    2013-01-01

    Oscillatory entrainment to the speech signal is important for language processing, but has not yet been studied in developmental disorders of language. Developmental dyslexia, a difficulty in acquiring efficient reading skills linked to difficulties with phonology (the sound structure of language), has been associated with behavioural entrainment deficits. It has been proposed that the phonological ‘deficit’ that characterises dyslexia across languages is related to impaired auditory entrainment to speech at lower frequencies via neuroelectric oscillations (<10 Hz, ‘temporal sampling theory’). Impaired entrainment to temporal modulations at lower frequencies would affect the recovery of the prosodic and syllabic structure of speech. Here we investigated event-related oscillatory EEG activity and contingent negative variation (CNV) to auditory rhythmic tone streams delivered at frequencies within the delta band (2 Hz, 1.5 Hz), relevant to sampling stressed syllables in speech. Given prior behavioural entrainment findings at these rates, we predicted functionally atypical entrainment of delta oscillations in dyslexia. Participants performed a rhythmic expectancy task, detecting occasional white noise targets interspersed with tones occurring regularly at rates of 2 Hz or 1.5 Hz. Both groups showed significant entrainment of delta oscillations to the rhythmic stimulus stream, however the strength of inter-trial delta phase coherence (ITC, ‘phase locking’) and the CNV were both significantly weaker in dyslexics, suggestive of weaker entrainment and less preparatory brain activity. Both ITC strength and CNV amplitude were significantly related to individual differences in language processing and reading. Additionally, the instantaneous phase of prestimulus delta oscillation predicted behavioural responding (response time) for control participants only. PMID:24204644

  11. Pulse and entrainment to non-isochronous auditory stimuli: the case of north Indian alap.

    PubMed

    Will, Udo; Clayton, Martin; Wertheim, Ira; Leante, Laura; Berg, Eric

    2015-01-01

    Pulse is often understood as a feature of a (quasi-) isochronous event sequence that is picked up by an entrained subject. However, entrainment does not only occur between quasi-periodic rhythms. This paper demonstrates the expression of pulse by subjects listening to non-periodic musical stimuli and investigates the processes behind this behaviour. The stimuli are extracts from the introductory sections of North Indian (Hindustani) classical music performances (alap, jor and jhala). The first of three experiments demonstrates regular motor responses to both irregular alap and more regular jor sections: responses to alap appear related to individual spontaneous tempi, while for jor they relate to the stimulus event rate. A second experiment investigated whether subjects respond to average periodicities of the alap section, and whether their responses show phase alignment to the musical events. In the third experiment we investigated responses to a broader sample of performances, testing their relationship to spontaneous tempo, and the effect of prior experience with this music. Our results suggest an entrainment model in which pulse is understood as the experience of one's internal periodicity: it is not necessarily linked to temporally regular, structured sensory input streams; it can arise spontaneously through the performance of repetitive motor actions, or on exposure to event sequences with rather irregular temporal structures. Greater regularity in the external event sequence leads to entrainment between motor responses and stimulus sequence, modifying subjects' internal periodicities in such a way that they are either identical or harmonically related to each other. This can be considered as the basis for shared (rhythmic) experience and may be an important process supporting 'social' effects of temporally regular music. PMID:25849357

  12. Pulse and Entrainment to Non-Isochronous Auditory Stimuli: The Case of North Indian Alap

    PubMed Central

    Will, Udo; Clayton, Martin; Wertheim, Ira; Leante, Laura; Berg, Eric

    2015-01-01

    Pulse is often understood as a feature of a (quasi-) isochronous event sequence that is picked up by an entrained subject. However, entrainment does not only occur between quasi-periodic rhythms. This paper demonstrates the expression of pulse by subjects listening to non-periodic musical stimuli and investigates the processes behind this behaviour. The stimuli are extracts from the introductory sections of North Indian (Hindustani) classical music performances (alap, jor and jhala). The first of three experiments demonstrates regular motor responses to both irregular alap and more regular jor sections: responses to alap appear related to individual spontaneous tempi, while for jor they relate to the stimulus event rate. A second experiment investigated whether subjects respond to average periodicities of the alap section, and whether their responses show phase alignment to the musical events. In the third experiment we investigated responses to a broader sample of performances, testing their relationship to spontaneous tempo, and the effect of prior experience with this music. Our results suggest an entrainment model in which pulse is understood as the experience of one’s internal periodicity: it is not necessarily linked to temporally regular, structured sensory input streams; it can arise spontaneously through the performance of repetitive motor actions, or on exposure to event sequences with rather irregular temporal structures. Greater regularity in the external event sequence leads to entrainment between motor responses and stimulus sequence, modifying subjects’ internal periodicities in such a way that they are either identical or harmonically related to each other. This can be considered as the basis for shared (rhythmic) experience and may be an important process supporting ‘social’ effects of temporally regular music. PMID:25849357

  13. Activating and relaxing music entrains the speed of beat synchronized walking.

    PubMed

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is 'activating' in the sense that it increases the speed, and some music is 'relaxing' in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation. PMID:23874469

  14. Activating and Relaxing Music Entrains the Speed of Beat Synchronized Walking

    PubMed Central

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is ‘activating’ in the sense that it increases the speed, and some music is ‘relaxing’ in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation. PMID:23874469

  15. Implementation of inherence calculus in the PowerLoom environment

    NASA Astrophysics Data System (ADS)

    Wachulski, Marcin F.; Mulawka, Jan J.; Nieznański, Edward

    The article describes an attempt to implement abstract and concrete inherence calculi in the PowerLoom technology. Issues in the field of artificial intelligence, ontology and philosophy have been addressed. The inherence calculus is a type of a formal logic system. The PowerLoom technology consists of a knowledge representation language and an inference engine. Six inherence calculi have been implemented and an appropriate testing environment has been developed. The inherence calculus has been also extended by categorical properties and a theoretical discussion of ontological Boolean algebra has been conducted. Carried out experiments showed properties of the inherence calculi and also verified capabilities of PowerLoom to construct such logic systems. It occurred that expert system operational mode of PowerLoom outperforms its abilities to work as a mathematical theorem prover.

  16. The inherence heuristic as a source of essentialist thought.

    PubMed

    Salomon, Erika; Cimpian, Andrei

    2014-10-01

    Humans are essentialists: They believe hidden "essences" underlie membership in natural and social kinds. Although essentialism has well-established implications for important societal issues (e.g., discrimination), little is known about its origins. According to a recent proposal, essentialism emerges from a broader inherence heuristic-an intuitive tendency to explain patterns in terms of the inherent properties of their constituents (e.g., we have orange juice for breakfast [pattern] because citrus aromas [inherent feature] wake us up). We tested two predictions of this proposal-that reliance on the inherence heuristic predicts endorsement of essentialist beliefs, even when adjusting for potentially confounding variables (Studies 1 and 2), and that reducing reliance on the inherence heuristic produces a downstream reduction in essentialist thought (Studies 3 and 4). The results were consistent with these predictions and thus provided evidence for a new theoretical perspective on the cognitive underpinnings of psychological essentialism. PMID:25037751

  17. Investigating the Sensitivity of Model Intraseasonal Variability to Minimum Entrainment

    NASA Astrophysics Data System (ADS)

    Hannah, W. M.; Maloney, E. D.

    2008-12-01

    Previous studies have shown that using a Relaxed Arakawa-Schubert (RAS) convective parameterization with appropriate convective triggers and assumptions about rain re-evaporation produces realistic intraseasonal variability. RAS represents convection with an ensemble of clouds detraining at different heights, each with different entrainment rate, the highest clouds having the lowest entrainment rates. If tropospheric temperature gradients are weak and boundary layer moist static energy is relatively constant, then by limiting the minimum entrainment rate deep convection is suppressed in the presence of dry tropospheric air. This allows moist static energy to accumulate and be discharged during strong intraseasonal convective events, which is consistent with the discharge/recharge paradigm. This study will examine the sensitivity of intra-seasonal variability to changes in minimum entrainment rate in the NCAR-CAM3 with the RAS scheme. Simulations using several minimum entrainment rate thresholds will be investigated. A frequency-wavenumber analysis will show the improvement of the MJO signal as minimum entrainment rate is increased. The spatial and vertical structure of MJO-like disturbances will be examined, including an analysis of the time evolution of vertical humidity distribution for each simulation. Simulated results will be compared to observed MJO events in NCEP-1 reanalysis and CMAP precipitation.

  18. Mechanistic modeling and correlations for pool-entrainment phenomenon

    SciTech Connect

    Kataoka, I.; Ishii, M.

    1983-04-01

    Entrainment from a liquid pool with boiling or bubbling is of considerable practical importance in safety evaluation of nuclear reactor under off-normal transients or accidents such as loss-of-coolant and loss-of-flow accidents. Droplets which are suspended from a free surface are partly carried away by streaming gas and partly returned back to free surface by the gravity. A correlation is developed for the pool entrainment amount based on simple mechanistic modeling and a number of data. This analysis reveals that there exist three regions of entrainment in the axial direction from a pool surface. In the first region (near surface region), entrainment is independent of height and gas velocity. In the second region (momentum controlled region), the amount of entrainment decreases with increasing height from the free surface and increases with increasing gas velocity. In the third region (deposition controlled region), the entrainment increases with increasing height due to deposition of droplets. The present correlation agrees well with a large number of experimental data over a wide range of pressure for air-water and steam-water systems.

  19. Entrainment of Air into Vertical Jets in a Crosswind

    NASA Astrophysics Data System (ADS)

    Roberts, K. K.; Solovitz, S.; Freedland, G.; Camp, E.; Cal, R. B.; Mastin, L. G.

    2015-12-01

    During volcanic eruptions, ash concentration must be determined for aviation safety, but the limiting threshold is difficult to distinguish visually. Computational models are typically used to predict ash concentrations, using inputs such as plume height, eruptive duration, and wind speeds. The models also depend on empirical parameters, such as the entrainment of atmospheric air as a ratio of the air inflow speed and the jet speed. Entrainment of atmospheric air plays a critical role in the behavior of volcanic plumes in the atmosphere, impacting the mass flow rate, buoyancy, and particle concentration of the plume. This process is more complex in a crosswind, leading to greater uncertainty in the model results. To address these issues, a laboratory-scale study has been conducted to improve the entrainment models. Observations of a vertical, unconfined jet are performed using Particle Image Velocimetry, while varying jet density using different compressed gases and Reynolds number. To test the effects of a crosswind on plume entrainment rates, these are then compared with similar jet experiments in a wind tunnel. A series of jet geometries, jet speeds and tunnel speeds are considered. The measured velocities are used to determine the entrainment response, which can be used to determine ash concentration over time as atmospheric air is entrained into the plume. We also quantify the mean and the fluctuations in flow velocity.

  20. Entrainment and detrainment in a simple cumulus cloud model

    NASA Technical Reports Server (NTRS)

    Randall, D. A.; Huffman, G. J.

    1982-01-01

    A cumulus cloud model, analogous to the mixed-layer models of the planetary boundary layer and the upper ocean, is developed using a single, unitary entrainment process in which the motion of the cloud boundary relative to the mean flow is permitted, produced, and controlled by turbulent processes. An alternate theory to the mixing-length theory of Asai and Kasahara (1967) is proposed which completely removes the strong scale-dependence of the Asai-Kasahara model. The model reintroduces scale-dependence by introducing including the pe5turbation pressure term of the equation of vertical motion. It is shown that the model predicts deeper clouds than the Asai-Kasahara model for a given sounding, due to the entrainment assumption and the effects of the perturbation pressure. Lateral entrainment dominates cloud-top entrainment, although finite-difference errors increase the cloud-top entrainment rate from zero to a positive value in actual situations. The fractional entrainment rate for updrafts is determined to vary only slightly with height and to decrease only slowly as the cloud radius increases, while the fractional detrainment rate for updrafts increases with height.

  1. Laboratory experiments on stability and entrainment of oceanic stratocumulus. Part 2: Entrainment experiment

    NASA Technical Reports Server (NTRS)

    Shy, Shenqyang S.

    1990-01-01

    A stratified interface is stable to the buoyancy reversal instability for surprisingly large values of D (buoyancy reversal parameter). A new instability mechanism is proposed, which considers the mixing process at the interface. For the type of density curves studied here, under strong perturbations, the mixed parcel must have a buoyancy reversal comparable to the initial stratification before the interface is unstable. This is in accord with a simple model of the interface mixing process, as well as aircraft observations of long-live marine stratocumulus clouds. These clouds' remarkable longevity in the face of finite D indicates that they can be stable (Hanson, 1984; Albrecht et al., 1985; Siems et al., 1989). It is suggested that buoyancy reversal as well as the disturbance must be large for Cloudtop Entrainment Stability. The effect of buoyancy reversal (evaporative cooling) does not always enhance the entrainment rate over that in the inert case, but it may be negligible if Ri (Richardson number) is large (Ri is larger than 50) and D is small (D is smaller than 0.5). This work may shed some light on the fundamental mechanism of the breakup process of the subtropical stratocumulus clouds into tradewind cumulus. These results may also be related to the instability in the Weddell Sea off of Antarctica.

  2. Sequential behavior and its inherent tolerance to memory faults.

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1972-01-01

    Representation of a memory fault of a sequential machine M by a function mu on the states of M and the result of the fault by an appropriately determined machine M(mu). Given some sequential behavior B, its inherent tolerance to memory faults can then be measured in terms of the minimum memory redundancy required to realize B with a state-assigned machine having fault tolerance type tau and fault tolerance level t. A behavior having maximum inherent tolerance is exhibited, and it is shown that behaviors of the same size can have different inherent tolerance.

  3. No inherent glassiness in a Penrose tiling quasicrystal

    SciTech Connect

    Strandburg, K.J.; Dressel, P.R.

    1988-11-01

    Consideration of the structure of the Penrose pattern has led to speculation that a system with a Penrose tiling ground state might be subject to inherent glassy behavior. Monte Carol simulations show, using a simple model of the energetics, that there is no inherent glassiness in the Penrose tiling. Thermodynamic quantities measured are completely reversible, displaying no observable hysterisis, and the system may be easily cooled from a highly disordered configuration into its lowest energy state. 11 refs., 7 figs.

  4. Simulating entrainment and particle fluxes in stratified estuaries

    SciTech Connect

    Jensen, A.; Jirka, G.; Lion, L.W.; Brunk, B.

    1999-04-01

    Settling and entrainment are the dominant processes governing noncohesive particle concentration throughout the water column of salt-wedge estuaries. Determination of the relative contribution of these transport processes is complicated by vertical gradients in turbulence and fluid density. A differential-turbulence column (DTC) was designed to simulate a vertical section of a natural water column. With satisfactory characterization of turbulence dissipation and saltwater entrainment, the DTC facilitates controlled studies of suspended particles under estuarine conditions. The vertical decay of turbulence in the DTC was found to obey standard scaling law relations when the characteristic length scale for turbulence in the apparatus was incorporated. The entrainment rate of a density interface also followed established grid-stirred turbulence scaling laws. These relations were used to model the change in concentration of noncohesive particles above a density interface. Model simulations and experimental data from the DTC were consistent over the range of conditions encountered in natural salt-wedge estuaries. Results suggest that when the ratio of entrainment rate to particle settling velocity is small, sedimentation is the dominant transport process, while entrainment becomes significant as the ratio increases.

  5. On the entrainment dynamics of inergodic, non-stationary flows

    NASA Astrophysics Data System (ADS)

    Rosi, Giuseppe; Rival, David

    2014-11-01

    Entrainment is typically studied through the conditional averaging along the turbulent non-turbulent interface (TNTI) of ergodic flows. However, this method is unsuitable for inergodic, non-stationary flows, as the TNTI is non-similar at different points in space and time. To understand how a TNTI's mean time dependence effects entrainment, the current study investigates the transport of irrotational fluid into a vortex forming behind an accelerating plate. The plate accelerates to a final velocity within a full-, half- and quarter-chord tow. Phase-averaged, planar, particle tracking velocimetry data is acquired and the forward finite-time Lyapunov exponent and vorticity fields are used to identify the TNTI. The TNTI is then represented by a contour, which is used to approximate the entrainment rate and investigate the transport mechanisms across the TNTI. Early results show that increasing acceleration suppresses vortex growth and entrainment. We hypothesize that shear-layer structure is integral to entrainment by altering the feeding rate of rotational fluid and the TNTI's convexity. The hypothesis is tested by altering plate-edge geometry and by varying the final chord-based Reynolds number from 5000 to 20 000. Natural Sciences and Engineering Council of Canada.

  6. Potent social synchronization can override photic entrainment of circadian rhythms.

    PubMed

    Fuchikawa, Taro; Eban-Rothschild, Ada; Nagari, Moshe; Shemesh, Yair; Bloch, Guy

    2016-01-01

    Circadian rhythms in behaviour and physiology are important for animal health and survival. Studies with individually isolated animals in the laboratory have consistently emphasized the dominant role of light for the entrainment of circadian rhythms to relevant environmental cycles. Although in nature interactions with conspecifics are functionally significant, social signals are typically not considered important time-givers for the animal circadian clock. Our results challenge this view. By studying honeybees in an ecologically relevant context and using a massive data set, we demonstrate that social entrainment can be potent, may act without direct contact with other individuals and does not rely on gating the exposure to light. We show for the first time that social time cues stably entrain the clock, even in animals experiencing conflicting photic and social environmental cycles. These findings add to the growing appreciation for the importance of studying circadian rhythms in ecologically relevant contexts. PMID:27210069

  7. Potent social synchronization can override photic entrainment of circadian rhythms

    PubMed Central

    Fuchikawa, Taro; Eban-Rothschild, Ada; Nagari, Moshe; Shemesh, Yair; Bloch, Guy

    2016-01-01

    Circadian rhythms in behaviour and physiology are important for animal health and survival. Studies with individually isolated animals in the laboratory have consistently emphasized the dominant role of light for the entrainment of circadian rhythms to relevant environmental cycles. Although in nature interactions with conspecifics are functionally significant, social signals are typically not considered important time-givers for the animal circadian clock. Our results challenge this view. By studying honeybees in an ecologically relevant context and using a massive data set, we demonstrate that social entrainment can be potent, may act without direct contact with other individuals and does not rely on gating the exposure to light. We show for the first time that social time cues stably entrain the clock, even in animals experiencing conflicting photic and social environmental cycles. These findings add to the growing appreciation for the importance of studying circadian rhythms in ecologically relevant contexts. PMID:27210069

  8. Laminar Plunging Jets - Interfacial Rupture and Inception of Entrainment

    NASA Astrophysics Data System (ADS)

    Kishore, Aravind

    Interfacial rupture and entrainment are commonly observed, e.g., air bubbles within a container being filled with water from a faucet. The example involves a liquid jet (density, rho, and viscosity, η) plunging into a receiving pool of liquid. Below a critical liquid-jet velocity, the interface develops a cusp-like shape within the receiving pool. The cusp becomes sharper with increasing liquid-jet velocity, and at a critical velocity ( Vc), the interface between the liquid and the surrounding fluid (density, rho0, and viscosity, η0) ruptures. Interfacial tension (sigma) can no longer preserve the integrity of the interface between the two immiscible fluids, and the plunging jet drags/entrains surrounding fluid into the receiving pool. Subsequently, the entrained fluid breaks up into bubbles within the receiving pool. The focus of this dissertation is the numerical prediction of the critical entrainment inception velocities for laminar plunging jets using the Volume-Of-Fluid (VOF) method, a Computational Fluid Dynamics (CFD) method to simulate multi-fluid flows. Canonical to bottle-filling operations in the industry is the plunging-jet configuration -- the liquid jet issues from a nozzle and plunges into a container filled with liquid. Simulations of this configuration require capturing flow phenomena over a large range of length scales (4 orders of magnitude). Results show severe under-prediction of critical entrainment velocities when the maximum resolution is insufficient to capture the sharpening, and eventual rupture, of the interfacial cusp. Higher resolutions resulted in computational meshes with prohibitively large number of cells, and a drastic reduction in time-step values. Experimental results in the literature suggest at least a 100-fold increase in the smallest length scale when the entrained fluid is a liquid instead of air. This narrows the range of length scales in the problem. We exploit the experimental correlation between critical capillary

  9. On robustness of phase resetting to cell division under entrainment.

    PubMed

    Ahmed, Hafiz; Ushirobira, Rosane; Efimov, Denis

    2015-12-21

    The problem of phase synchronization for a population of genetic oscillators (circadian clocks, synthetic oscillators, etc.) is considered in this paper, taking into account a cell division process and a common entrainment input in the population. The proposed analysis approach is based on the Phase Response Curve (PRC) model of an oscillator (the first order reduced model obtained for the linearized system and inputs with infinitesimal amplitude). The occurrence of cell division introduces state resetting in the model, placing it in the class of hybrid systems. It is shown that without common entraining input in all oscillators, the cell division acts as a disturbance causing phase drift, while the presence of entrainment guarantees boundedness of synchronization phase errors in the population. The performance of the obtained solutions is demonstrated via computer experiments for two different models of circadian/genetic oscillators (Neurospora׳s circadian oscillation model and the repressilator). PMID:26463679

  10. Saturation point representation of cloud-top entrainment instability

    NASA Technical Reports Server (NTRS)

    Boers, Reinout

    1991-01-01

    Cloud-top entrainment instability was investigated using a mixing line analysis. Mixing time scales are closely related to the actual size of the parcel, so that local instabilities are largely dependent on the scales of mixing near the cloud top. Given a fixed transport velocity, variation over a small range of parcel length scales (parcel mixing velocities) turns an energy-producing mixing process into an energy-consuming mixing process. It is suggested that a single criterion for cloud-top entrainment instability will not be found due to the role of at least three factors operating more or less independently; the stability of the mixing line, the entrainment speed, and the strength of the internal boundary-layer circulation.

  11. An observational study of stratocumulus entrainment and thermodynamics

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Pearson, R., Jr.

    1989-01-01

    The stratocumulus (SC) entrainment and thermodynamics are studied using data from the Dynamics and Chemistry of Marine Stratocumulus (DYCOMS) experiment. The rate of entrainment of air from the free troposphere into the cloud-topped PBL is estimated using a technique based on the measurement of ozone flux and mean distribution. The average measured value of entrainment rate was found to be 3.0 mm/s with a range of 1.0 to 5.0 mm/s for cloudy cases. Thermodynamic budgets are constructed for eight DYCOMS cases. It was found that the divergence of the solar radiative flux is an important component of the boundary-layer energetics during midday, the factor which must be accounted for in mixed-layer models. The net longwave radiative flux profiles show good agreement with theoretical models, but an unambiguous partitioning of the flux divergence between inversion and mixed layers could not be established.

  12. Entrainment into a stratocumulus layer with distributed radiative cooling

    NASA Technical Reports Server (NTRS)

    Randall, D. A.

    1980-01-01

    It is shown that the radiative cooling of a cloud layer strongly influences the turbulent flux profiles and the entrainment rate, and that the radiative cooling should be modeled as acting inside the turbulent layer. Numerical experiments demonstrate that a cloud-topped mixed-layer model, similar to that of Lilly (1968), is quite sensitive to delta (p) sub R, the depth of the radiatively cooled layer near cloud top. As delta (p) sub R increases, the model's sensitivity to the entrainment assumption is markedly heightened; for large delta (p) sub R the cloud top and cloud base rise as the entrainment parameter k is increased, while for small delta (p) sub R an increase in k has almost no effect. The model is most sensitive to delta (p) sub R for the cold-water, strong-divergence regime of greatest interest.

  13. Heavy Impurity Entrainment in the Parallel Flows of CSDX

    NASA Astrophysics Data System (ADS)

    Gosselin, Jordan; Thakur, Saikat; Tynan, George

    2014-10-01

    The lifetime of the plasma facing components (PFCs) in a tokamak, governed primarily by material erosion and redeposition, has been identified as a crucial research topic. While some work has been done that shows evidence of the entrainment of impurities in linear machines and in tokamaks, detailed controlled studies of entrainment in plasma flows are harder to come by. Recently, experiments in CSDX have shown increasing parallel ion velocity positively correlated with increasing magnetic field. In an effort to study the effects of the background flow on impurity transport, a laser blow off apparatus was installed on the Controlled Shear Decorelation eXperiment (a 3m long linear helicon source operated plasma machine). Results are shown for parallel entrainment of Bismuth impurities in a relatively light background Ar plasma (5.2 mass ratio).

  14. Maximal Air Bubble Entrainment at Liquid-Drop Impact

    NASA Astrophysics Data System (ADS)

    Bouwhuis, Wilco; van der Veen, Roeland C. A.; Tran, Tuan; Keij, Diederik L.; Winkels, Koen G.; Peters, Ivo R.; van der Meer, Devaraj; Sun, Chao; Snoeijer, Jacco H.; Lohse, Detlef

    2012-12-01

    At impact of a liquid drop on a solid surface, an air bubble can be entrapped. Here, we show that two competing effects minimize the (relative) size of this entrained air bubble: for large drop impact velocity and large droplets, the inertia of the liquid flattens the entrained bubble, whereas for small impact velocity and small droplets, capillary forces minimize the entrained bubble. However, we demonstrate experimentally, theoretically, and numerically that in between there is an optimum, leading to maximal air bubble entrapment. For a 1.8 mm diameter ethanol droplet, this optimum is achieved at an impact velocity of 0.25m/s. Our results have a strong bearing on various applications in printing technology, microelectronics, immersion lithography, diagnostics, or agriculture.

  15. Dispersal and air entrainment in unconfined dilute pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Andrews, Benjamin J.

    2014-09-01

    Unconfined scaled laboratory experiments show that 3D structures control the behavior of dilute pyroclastic density currents (PDCs) during and after liftoff. Experiments comprise heated and ambient temperature 20 μm talc powder turbulently suspended in air to form density currents within an unobstructed 8.5 × 6 × 2.6-m chamber. Comparisons of Richardson, thermal Richardson, Froude, Stokes, and settling numbers and buoyant thermal to kinetic energy densities show good agreement between experimental currents and dilute PDCs. The experimental Reynolds numbers are lower than those of PDCs, but the experiments are fully turbulent; thus, the large-scale dynamics are similar between the two systems. High-frequency, simultaneous observation in three orthogonal planes shows that the currents behave very differently than previous 2D (i.e., confined) currents. Specifically, whereas ambient temperature currents show radial dispersal patterns, buoyancy reversal, and liftoff of heated currents focuses dispersal along narrow axes beneath the rising plumes. The aspect ratios, defined as the current length divided by a characteristic width, are typically 2.5-3.5 in heated currents and 1.5-2.5 in ambient temperature currents, reflecting differences in dispersal between the two types of currents. Mechanisms of air entrainment differ greatly between the two currents: entrainment occurs primarily behind the heads and through the upper margins of ambient temperature currents, but heated currents entrain air through their lateral margins. That lateral entrainment is much more efficient than the vertical entrainment, >0.5 compared to ˜0.1, where entrainment is defined as the ratio of cross-stream to streamwise velocity. These experiments suggest that generation of coignimbrite plumes should focus PDCs along narrow transport axes, resulting in elongate rather than radial deposits.

  16. Fluctuations of a receding contact line near the entrainment transition

    NASA Astrophysics Data System (ADS)

    Bico, Jose; Delon, Giles; Fermigier, Marc

    2004-11-01

    We study experimentally the fluctuations of a contact line receding on a plane solid substrate. The contact line is perturbed by localized defects and we follow the relaxation of perturbations induced by these defects, as a function of the mean contact line speed and wavelengths characteristic of the perturbations. We compare our results with theoretical predictions by Golestanian and Raphael showing a divergence of the relaxation time at the entrainment transition (when the receding velocity exceeds a critical value, the liquid is entrained by the solid).

  17. Evidence for Little Shallow Entrainment in Starting Mantle Plumes

    NASA Astrophysics Data System (ADS)

    Lohmann, F. C.; Phipps Morgan, J.; Hort, M.

    2005-12-01

    Basalts from intraplate or hotspot ocean islands show distinct geochemical signatures. Their diversity in composition is generally believed to result from the upwelling plume entraining shallow mantle material during ascent, while potentially also entraining other deep regions of the mantle. Here we present results from analogue laboratory experiments and numerical modelling that there is evidence for little shallow entrainment into ascending mantle plumes, i.e. most of the plume signature is inherited from the source. We conducted laboratory experiments using glucose syrup contaminated with glass beads to visualize fluid flow and origin. The plume is initiated by heating from below or by injecting hot, uncontaminated syrup. Particle movement is captured by a CCD camera. In our numerical experiments we solve the Stokes equations for a viscous fluid at infinite Prandtl number with passive tracer particles being used to track fluid flow and entrainment rates, simulating laboratory as well as mantle conditions. In both analogue experiments and numerical models we observe the classical plume structure being embedded in a `sheath' of material from the plume source region that retains little of the original temperature anomaly of the plume source. Yet, this sheath ascends in the `slipstream' of the plume at speeds close to the ascent speed of the plume head, and effectively prevents the entrainment of surrounding material into the plume head or plume tail. We find that the source region is most effectively sampled by an ascending plume and that compositional variations in the source region are preserved during plume ascent. The plume center and plume sheath combined are composed of up to 85% source material. However, there is also evidence of significant entrainment of up to 30% of surrounding material into the outer layers of the plume sheath. Entrainment rates are found to be influenced by mantle composition and structure, with the radial viscosity profile of the

  18. Aeolian Induced Erosion and Particle Entrainment

    NASA Technical Reports Server (NTRS)

    Saint, Brandon

    2007-01-01

    The Granular Physics Department at The Kennedy Space Center is addressing the problem of erosion on the lunar surface. The early stages of research required an instrument that would produce erosion at a specific rate with a specific sample variation. This paper focuses on the development and experimental procedures to measure and record erosion rates. This was done with the construction of an open air wind tunnel, and examining the relationship between airflow and particle motion.

  19. Assessing the inherent uncertainty of one-dimensional diffusions

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Cohen, Morrel H.

    2013-01-01

    In this paper we assess the inherent uncertainty of one-dimensional diffusion processes via a stochasticity classification which provides an à la Mandelbrot categorization into five states of uncertainty: infra-mild, mild, borderline, wild, and ultra-wild. Two settings are considered. (i) Stopped diffusions: the diffusion initiates from a high level and is stopped once it first reaches a low level; in this setting we analyze the inherent uncertainty of the diffusion's maximal exceedance above its initial high level. (ii) Stationary diffusions: the diffusion is in dynamical statistical equilibrium; in this setting we analyze the inherent uncertainty of the diffusion's equilibrium level. In both settings general closed-form analytic results are established, and their application is exemplified by stock prices in the stopped-diffusions setting, and by interest rates in the stationary-diffusions setting. These results provide a highly implementable decision-making tool for the classification of uncertainty in the context of one-dimensional diffusions.

  20. Inherent limits on optimization and discovery in physical systems

    SciTech Connect

    Mlinar, Vladan

    2014-12-15

    Topological mapping of a large physical system on a graph, and its decomposition using universal measures are proposed. We find inherent limits to the potential for optimization of a given system and its approximate representations by motifs, and the ability to reconstruct the full system given approximate representations. The approximate representation of the system most suited for optimization may be different from that which most accurately describes the full system. - Highlights: • Graph-based approach to analyze full and partial representations of physical systems. • Direct link between a change in the physical system and complexity of the graph. • Inherent limits to the potential for optimization of a general system. • Inherent limits to the reconstruction of full system from partial representations.

  1. Integration of inherent and induced chirality into subphthalocyanine analogue

    NASA Astrophysics Data System (ADS)

    Zhao, Luyang; Qi, Dongdong; Wang, Kang; Wang, Tianyu; Han, Bing; Tang, Zhiyong; Jiang, Jianzhuang

    2016-06-01

    Conventional conjugated systems are characteristic of only either inherent or induced chirality because of synthetic challenge in combination of chiral segment into the main chromophore. In this work, chiral binaphthyl segment is directly fused into the central chromophore of a subphthalocyanine skeleton, resulting in a novel type of chiral subphthalocyanine analogue (R/S)-1 of integrated inherent and induced chirality. Impressively, an obviously enhanced optical activity is discerned for (R/S)-1 molecules, and corresponding enhancement mechanism is elucidated in detail. The synthesis strategy based on rational molecular design will open the door towards fabrication of chiral materials with giant optical activity, which will have great potential in chiroptical devices.

  2. Inherently safe reactors and a second nuclear era.

    PubMed

    Weinberg, A M; Spiewak, I

    1984-06-29

    The Swedish PIUS reactor and the German-American small modular high-temperature gas-cooled reactor are inherently safe-that is, their safety relies not upon intervention of humans or of electromechanical devices but on immutable principles of physics and chemistry. A second nuclear era may require commercialization and deployment of such inherently safe reactors, even though existing light-water reactors appear to be as safe as other well-accepted sources of central electricity, particularly hydroelectric dams. PMID:17793362

  3. Queueing-Based Synchronization and Entrainment for Synthetic Gene Oscillators

    NASA Astrophysics Data System (ADS)

    Mather, William; Butzin, Nicholas; Hochendoner, Philip; Ogle, Curtis

    Synthetic gene oscillators have been a major focus of synthetic biology research since the beginning of the field 15 years ago. They have proven to be useful both for biotechnological applications as well as a testing ground to significantly develop our understanding of the design principles behind synthetic and native gene oscillators. In particular, the principles governing synchronization and entrainment of biological oscillators have been explored using a synthetic biology approach. Our work combines experimental and theoretical approaches to specifically investigate how a bottleneck for protein degradation, which is present in most if not all existing synthetic oscillators, can be leveraged to robustly synchronize and entrain biological oscillators. We use both the terminology and mathematical tools of queueing theory to intuitively explain the role of this bottleneck in both synchronization and entrainment, which extends prior work demonstrating the usefulness of queueing theory in synthetic and native gene circuits. We conclude with an investigation of how synchronization and entrainment may be sensitive to the presence of multiple proteolytic pathways in a cell that couple weakly through crosstalk. This work was supported by NSF Grant #1330180.

  4. Scale dependence of entrainment-mixing mechanisms in cumulus clouds

    DOE PAGESBeta

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie; Endo, Satoshi

    2014-12-17

    This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasingmore » scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.« less

  5. Scale dependence of entrainment-mixing mechanisms in cumulus clouds

    SciTech Connect

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie; Endo, Satoshi

    2014-12-17

    This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasing scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.

  6. EFFECTS OF CONTINUOUS CHLORINATION ON ENTRAINED ESTUARINE PLANKTON

    EPA Science Inventory

    The effects of continuous chlorination on entrained plankton are investigated in tests using running sea water and adenosine triphosphate (ATP) as an indicator of biomass. Effects were measured by bioluminescence with the use of luciferin-luciferase reagents from firefly lanterns...

  7. Vasoactive intestinal polypeptide entrains circadian rhythms in astrocytes.

    PubMed

    Marpegan, Luciano; Krall, Thomas J; Herzog, Erik D

    2009-04-01

    Many mammalian cell types show daily rhythms in gene expression driven by a circadian pacemaker. For example, cultured astrocytes display circadian rhythms in Period1 and Period2 expression. It is not known, however, how or which intercellular factors synchronize and sustain rhythmicity in astrocytes. Because astrocytes are highly sensitive to vasoactive intestinal polypeptide (VIP), a neuropeptide released by neurons and important for the coordination of daily cycling, the authors hypothesized that VIP entrains circadian rhythms in astrocytes. They used astrocyte cultures derived from knock-in mice containing a bioluminescent reporter of PERIOD2 (PER2) protein, to assess the effects of VIP on the rhythmic properties of astrocytes. VIP induced a dose-dependent increase in the peak-to-trough amplitude of the ensemble rhythms of PER2 expression with maximal effects near 100 nM VIP and threshold values between 0.1 and 1 nM. VIP also induced dose- and phase-dependent shifts in PER2 rhythms and daily VIP administration entrained bioluminescence rhythms of astrocytes to a predicted phase angle. This is the first demonstration that a neuropeptide can entrain glial cells to a phase predicted by a phase-response curve. The authors conclude that VIP potently entrains astrocytes in vitro and is a candidate for coordinating daily rhythms among glia in the brain. PMID:19346450

  8. Vasoactive intestinal polypeptide entrains circadian rhythms in astrocytes

    PubMed Central

    Marpegan, Luciano; Krall, Thomas J.; Herzog, Erik D.

    2009-01-01

    Many mammalian cell types show daily rhythms in gene expression driven by a circadian pacemaker. For example, cultured astrocytes display circadian rhythms in Period1 and Period2 expression. It is not known, however, how or which intercellular factors synchronize and sustain rhythmicity in astrocytes. Because astrocytes are highly sensitive to vasoactive intestinal polypeptide (VIP), a neuropeptide released by neurons and important for the coordination of daily cycling, we hypothesized that VIP entrains circadian rhythms in astrocytes. We used astrocyte cultures derived from knock-in mice containing a bioluminescent reporter of PERIOD2 (PER2) protein, to assess the effects of VIP on the rhythmic properties of astrocytes. VIP induced a dose-dependent increase in the peak-to-trough amplitude of the ensemble rhythms of PER2 expression with maximal effects near 100nM VIP and threshold values between 0.1 and 1 nM. VIP also induced dose- and phase-dependent shifts in PER2 rhythms and daily VIP administration entrained bioluminescence rhythms of astrocytes to a predicted phase angle. This is the first demonstration that a neuropeptide can entrain glial cells to a phase predicted by a phase response curve. We conclude that VIP potently entrains astrocytes in vitro and is a candidate for coordinating daily rhythms among glia in the brain. PMID:19346450

  9. Investigation of the Entrainment Phenomenon Using a Scaling Approach

    NASA Astrophysics Data System (ADS)

    Kishore, Aravind; Ghia, Urmila

    2014-11-01

    Air entrainment is a commonly observed phenomenon; we see it when filling a glass with water from a faucet, in the frothing of the ocean surface, in white water rapids, etc. The focus of our work is the numerical simulation of the entrainment phenomenon associated with laminar plunging jets. With increasing jet velocity, the interfacial cusp formed between the jet and the liquid pool becomes sharper. At a critical jet velocity, entrainment inception occurs, i.e., the interfacial cusp breaks, the interface ruptures, and air is pulled into the liquid pool. We conduct two-fluid simulations using the Volume-Of-Fluid (VOF) methodology. The large range of length scales in the flow presents a major computational challenge. We postulate an approach based on scaling of the underlying physics and this helps alleviate the constraints that the physics poses on the numerical method. The approach is validated using a simple flow configuration - a cylinder rotating at an interface between two fluids. Our simulations capture the sharpening of the interfacial cusp, and the sudden rupture of the interface. The predicted critical entrainment velocities are within 1% of experimental data, thereby providing confidence in the approach. This work was supported by the UC Simulation Center at the University of Cincinnati.

  10. A viscous-inviscid interaction model of jet entrainment

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.; Dash, S. M.

    1981-01-01

    A viscous-inviscid interaction model for predicting jet entrainment effects on axisymmetric, nozzle afterbodies at subsonic speeds is presented. The model is based on a displacement thickness correction to the inviscid jet boundary that accounts for mixing-induced streamline deflections in the inviscid region. The displacement correction is shown to be related to the local mass entrainment rate and, for thin mixing layers, the model is shown to be analogous to displacement models used in conventional boundary-layer interaction theory. A method is presented for computing the entrainment rate by an overlaid mixing layer model that accounts for the nonsimilar behavior and pressure gradients occurring in the near field region. An iterative scheme for coupling the model to analyses for the external inviscid flow, the external boundary layer, and the inviscid jet exhaust is also given. Results are presented that illustrate the qualitative behavior of the entrainment interaction under various flow conditions and that demonstrate the validity of the model by comparisons with experiment.

  11. Lexical Entrainment and Lexical Differentiation in Reference Phrase Choice

    ERIC Educational Resources Information Center

    Van Der Wege, Mija M.

    2009-01-01

    Speakers reuse prior references to objects when choosing reference phrases, a phenomenon known as lexical entrainment. One explanation is that speakers want to maintain a set of previously established referential precedents. Speakers may also contrast any new referents against this previously established set, thereby avoiding applying the same…

  12. Cumulus clouds - Early aircraft observations and entrainment hypotheses

    NASA Technical Reports Server (NTRS)

    Simpson, J.

    1983-01-01

    The history of cumulus research in the decade following World War II is reviewed in the perspective of the new ideas and advances made during the subsequent generation. Emphasis is placed upon pioneering aircraft measurements, evidence for entrainment, the early model attempts and their attendant controversies.

  13. A vortex entrainment model applied to slender delta wings

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.

    1974-01-01

    A mathematical model of the vortex flow over a slender sharp-edged delta wing is proposed, and is shown to provide good agreement with the experiment. Although the technique requires experimental data in the form of the vortex core locations, it does account for the previously ignored mass entrainment of the vortex core.

  14. Suppression of competing speech through entrainment of cortical oscillations.

    PubMed

    Horton, Cort; D'Zmura, Michael; Srinivasan, Ramesh

    2013-06-01

    People are highly skilled at attending to one speaker in the presence of competitors, but the neural mechanisms supporting this remain unclear. Recent studies have argued that the auditory system enhances the gain of a speech stream relative to competitors by entraining (or "phase-locking") to the rhythmic structure in its acoustic envelope, thus ensuring that syllables arrive during periods of high neuronal excitability. We hypothesized that such a mechanism could also suppress a competing speech stream by ensuring that syllables arrive during periods of low neuronal excitability. To test this, we analyzed high-density EEG recorded from human adults while they attended to one of two competing, naturalistic speech streams. By calculating the cross-correlation between the EEG channels and the speech envelopes, we found evidence of entrainment to the attended speech's acoustic envelope as well as weaker yet significant entrainment to the unattended speech's envelope. An independent component analysis (ICA) decomposition of the data revealed sources in the posterior temporal cortices that displayed robust correlations to both the attended and unattended envelopes. Critically, in these components the signs of the correlations when attended were opposite those when unattended, consistent with the hypothesized entrainment-based suppressive mechanism. PMID:23515789

  15. The neurochemical basis of photic entrainment of the circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Rea, Michael A.; Buckley, Becky; Lutton, Lewis M.

    1992-01-01

    Circadian rhythmicity in mammals is controlled by the action of a light-entrainable hypothalamus, in association with two cell clusters known as the supra chiasmatic nuclei (SCN). In the absence of temporal environmental clues, this pacemaker continues to measure time by an endogenous mechanism (clock), driving biochemical, physiological, and behavioral rhythms that reflect the natural period of the pacemaker oscillation. This endogenous period usually differs slightly from 24 hours (i.e., circadian). When mammals are maintained under a 24 hour light-dark (LD) cycle, the pacemaker becomes entrained such that the period of the pacemaker oscillation matches that of the LD cycle. Potentially entraining photic information is conveyed to the SCN via a direct retinal projection, the retinohypothalamic tract (RHT). RHT neurotransmission is thought to be mediated by the release of excitatory amino acids (EAA) in the SCN. In support of this hypothesis, recent experiments using nocturnal rodents have shown that EAA antagonists block the effects of light on pacemaker-driven behavioral rhythms, and attenuate light induced gene expression in SCN cells. An understanding of the neurochemical basis of the photic entrainment process would facilitate the development of pharmacological strategies for maintaining synchrony among shift workers in environments, such as the Space Station, which provide unreliable or conflicting temporal photic clues.

  16. The effect of simulated evaporative cooling on thermal entrainment

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Cotel, Aline

    1998-11-01

    The effect of simulated evaporative cooling on the entrainment of a thermal impinging on a stratified interface is investigated experimentally. Evaporative cooling in atmospheric clouds results in buoyancy reversal, where the mixed fluid is denser than either parent parcel. This is realized in the laboratory by using a mixture of ethyl alcohol and ethylene glycohol in aqueous solution. A thermal is formed by releasing a small volume of buoyant fluid from the bottom of a lucite tank. It rises first through a relatively dense lower layer and then impinges on a thin stratified interface, above which is a relatively light layer. The entrainment of upper layer across the interface is measured optically. The entrainment rate is found to obey a Ri-3/2 power law for values of the buoyancy reversal parameter, D*, between 0 and 0.5. The entrainment rate is independent of D* for a certain range of Ri. This is consistent with the behavior of the buoyancy-reversing thermal in an unstratified environment observed by Johari.

  17. Human motor cortical activity is selectively phase-entrained on underlying rhythms.

    PubMed

    Miller, Kai J; Hermes, Dora; Honey, Christopher J; Hebb, Adam O; Ramsey, Nick F; Knight, Robert T; Ojemann, Jeffrey G; Fetz, Eberhard E

    2012-01-01

    The functional significance of electrical rhythms in the mammalian brain remains uncertain. In the motor cortex, the 12-20 Hz beta rhythm is known to transiently decrease in amplitude during movement, and to be altered in many motor diseases. Here we show that the activity of neuronal populations is phase-coupled with the beta rhythm on rapid timescales, and describe how the strength of this relation changes with movement. To investigate the relationship of the beta rhythm to neuronal dynamics, we measured local cortical activity using arrays of subdural electrocorticographic (ECoG) electrodes in human patients performing simple movement tasks. In addition to rhythmic brain processes, ECoG potentials also reveal a spectrally broadband motif that reflects the aggregate neural population activity beneath each electrode. During movement, the amplitude of this broadband motif follows the dynamics of individual fingers, with somatotopically specific responses for different fingers at different sites on the pre-central gyrus. The 12-20 Hz beta rhythm, in contrast, is widespread as well as spatially coherent within sulcal boundaries and decreases in amplitude across the pre- and post-central gyri in a diffuse manner that is not finger-specific. We find that the amplitude of this broadband motif is entrained on the phase of the beta rhythm, as well as rhythms at other frequencies, in peri-central cortex during fixation. During finger movement, the beta phase-entrainment is diminished or eliminated. We suggest that the beta rhythm may be more than a resting rhythm, and that this entrainment may reflect a suppressive mechanism for actively gating motor function. PMID:22969416

  18. Entrainment of radio frequency chaff by wind as a function of surface aerodynamic roughness.

    PubMed

    Gillies, John A; Nickling, William G

    2003-02-01

    Radio frequency (RF) chaff (approximately 2-cm x 25-microm diameter aluminum-coated glass silicate cylinders) released by military aircraft during testing and training activities has the potential to become entrained by wind upon settling to the Earth's surface. Once entrained from the surface there is the potential for RF chaff to be abraded and produce PM10 and PM2.5, which are regulated pollutants and pose health concerns. A series of portable wind tunnel tests were carried out to examine the propensity of RF chaff to become entrained by wind by defining the relationship between the threshold friction velocity of RF chaff (u(*t RF chaff)) and aerodynamic roughness (z(o)) of surfaces onto which it may deposit. The test surfaces were of varying roughness including types near the Naval Air Station (NAS), Fallon, NV, where RF chaff is released. The u(*t) of this fibrous material ranged from 0.14 m/sec for a smooth playa to 0.82 m/sec for a rough crusted playa surface with larger cobble-sized (approximately 6-26-cm diameter) rocks rising above the surface. The u(*t RF chaff) is dependent on the z(o) of the surface onto which it falls as well as the physical characteristics of the roughness. The wind regime of Fallon would allow for chaff suspension events to occur should it settle on typical surfaces in the area. However, the wind climatology of this area makes the probability of such events relatively low. PMID:12617294

  19. Human Motor Cortical Activity Is Selectively Phase-Entrained on Underlying Rhythms

    PubMed Central

    Miller, Kai J.; Hermes, Dora; Honey, Christopher J.; Hebb, Adam O.; Ramsey, Nick F.; Knight, Robert T.; Ojemann, Jeffrey G.; Fetz, Eberhard E.

    2012-01-01

    The functional significance of electrical rhythms in the mammalian brain remains uncertain. In the motor cortex, the 12–20 Hz beta rhythm is known to transiently decrease in amplitude during movement, and to be altered in many motor diseases. Here we show that the activity of neuronal populations is phase-coupled with the beta rhythm on rapid timescales, and describe how the strength of this relation changes with movement. To investigate the relationship of the beta rhythm to neuronal dynamics, we measured local cortical activity using arrays of subdural electrocorticographic (ECoG) electrodes in human patients performing simple movement tasks. In addition to rhythmic brain processes, ECoG potentials also reveal a spectrally broadband motif that reflects the aggregate neural population activity beneath each electrode. During movement, the amplitude of this broadband motif follows the dynamics of individual fingers, with somatotopically specific responses for different fingers at different sites on the pre-central gyrus. The 12–20 Hz beta rhythm, in contrast, is widespread as well as spatially coherent within sulcal boundaries and decreases in amplitude across the pre- and post-central gyri in a diffuse manner that is not finger-specific. We find that the amplitude of this broadband motif is entrained on the phase of the beta rhythm, as well as rhythms at other frequencies, in peri-central cortex during fixation. During finger movement, the beta phase-entrainment is diminished or eliminated. We suggest that the beta rhythm may be more than a resting rhythm, and that this entrainment may reflect a suppressive mechanism for actively gating motor function. PMID:22969416

  20. Effect of Coal Properties and Operation Conditions on Flow Behavior of Coal Slag in Entrained Flow Gasifiers: A Brief Review

    SciTech Connect

    Wang,Ping; Massoudi, Mehrdad

    2011-01-01

    Integrated gasification combined cycle (IGCC) is a potentially promising clean technology with an inherent advantage of low emissions, since the process removes contaminants before combustion instead of from flue gas after combustion, as in a conventional coal steam plant. In addition, IGCC has potential for cost-effective carbon dioxide capture. Availability and high capital costs are the main challenges to making IGCC technology more competitive and fully commercial. Experiences from demonstrated IGCC plants show that, in the gasification system, low availability is largely due to slag buildup in the gasifier and fouling in the syngas cooler downstream of the gasification system. In the entrained flow gasifiers used in IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter (as fly ash) is entrained with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. Therefore, it is preferable to minimize the quantity of fly ash and maximize slag. In addition, the hot raw syngas is cooled to convert any entrained molten fly slag to hardened solid fly ash prior to entering the syngas cooler. To improve gasification availability through better design and operation of the gasification process, better understanding of slag behavior and characteristics of the slagging process are needed. Slagging behavior is affected by char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio). The viscosity of the slag is used to characterize the behavior of the slag flow and is the dominating factor to determine the probability that ash particles will stick. Slag viscosity strongly depends on the temperature and chemical composition of the slag. Because coal has varying ash content and

  1. Contracting for Independent Evaluation: Approaches to an Inherent Tension

    ERIC Educational Resources Information Center

    Klerman, Jacob Alex

    2010-01-01

    There has recently been discussion of whether independent contract evaluation is possible. This article acknowledges the inherent tension in contract evaluation and in response suggests a range of constructive approaches to improving the independence of contract evaluation. In particular, a clear separation between the official evaluation report…

  2. Research Challenges Inherent in Determining Improvement in University Teaching

    ERIC Educational Resources Information Center

    Devlin, Marcia

    2008-01-01

    Using a recent study that examined the effectiveness of a particular approach to improving individual university teaching as a case study, this paper examines some of the challenges inherent in educational research, particularly research examining the effects of interventions to improve teaching. Aspects of the research design and methodology and…

  3. 16 CFR 1211.7 - Inherent entrapment protection requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ACT REGULATIONS SAFETY STANDARD FOR AUTOMATIC RESIDENTIAL GARAGE DOOR OPERATORS The Standard § 1211.7 Inherent entrapment protection requirements. (a)(1) Other than for the first 1 foot (305mm) of door travel... functional, the operator of a downward moving residential garage door shall initiate reversal of the...

  4. 16 CFR 1211.7 - Inherent entrapment protection requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ACT REGULATIONS SAFETY STANDARD FOR AUTOMATIC RESIDENTIAL GARAGE DOOR OPERATORS The Standard § 1211.7 Inherent entrapment protection requirements. (a)(1) Other than for the first 1 foot (305mm) of door travel... functional, the operator of a downward moving residential garage door shall initiate reversal of the...

  5. 16 CFR 1211.7 - Inherent entrapment protection requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ACT REGULATIONS SAFETY STANDARD FOR AUTOMATIC RESIDENTIAL GARAGE DOOR OPERATORS The Standard § 1211.7 Inherent entrapment protection requirements. (a)(1) Other than for the first 1 foot (305mm) of door travel... functional, the operator of a downward moving residential garage door shall initiate reversal of the...

  6. Estimated Entrainment of Dungeness Crab During Dredging For The Columbia River Channel Improvement Project

    SciTech Connect

    Pearson, Walter H.; Williams, Greg D.; Skalski, John R.

    2002-12-01

    The studies reported here focus on issues regarding the entrainment of Dungeness crab related to the proposed Columbia River Channel Improvement Project and provided direct measurements of crab entrainment rates at three locations (Desdomona Shoals, Upper Sands, and Miller Sands) from RM4 to RM24 during summer 2002. Entrainment rates for all age classes of crabs ranged from zero at Miller Sands to 0.224 crabs per cy at Desdemona Shoals in June 2002. The overall entrainment rate at Desdomona Shoals in September was 0.120 crabs per cy. A modified Dredge Impact Model (DIM) used the summer 2002 entrainment rates to project crab entrainment and adult equivalent loss and loss to the fishery for the Channel Improvement Project. To improve the projections, entrainment data from Flavel Bar is needed. The literature, analyses of salinity intrusion scenarios, and the summer 2002 site-specific data on entrainment and salinity all indicate that bottom salinity influences crab distribution and entrainment, especially at lower salinities. It is now clear from field measurements of entrainment rates and salinity during a period of low river flow (90-150 Kcfs) and high salinity intrusion that entrainment rates are zero where bottom salinity is less than 16 o/oo most of the time. Further, entrainment rates of 2+ and older crab fall with decreasing salinity in a clear and consistent manner. More elaboration of the crab distribution- salinity model, especially concerning salinity and the movements of 1+ crab, is needed.

  7. Watershed wash-off of atmospherically deposited radionuclides: a review of normalized entrainment coefficients.

    PubMed

    Garcia-Sanchez, L; Konoplev, A V

    2009-09-01

    Radionuclide wash-off is the transport of activity by flowing water over the soil surface (runoff). To complete existing reviews on long-term removal rates, this paper focuses on short-term wash-off fluxes, quantified in the literature by soil-runoff transfer factors called normalized liquid and solid entrainment coefficients (noted K(l)(*), K(s)(*)). Compiled data concerned essentially (137)Cs and (90)Sr wash-off measured under simulated rainfalls on small experimental plots after Chernobyl fallout in the exclusion zone. K(l)(*) and K(s)(*) values span approximately one order of magnitude. Their validity is limited to a season, and their representativeness is limited by restricted studied situations, notably dominant unsoluble forms in fallout, light soils and intense rainfalls. Formulas based on a simplified representation of the soil-runoff system were proposed to generalize the existing values for other conditions. However, their implementation requires a more systematic compilation of the available information, including decisive influence factors such as the fraction of exchangeable form, distribution coefficient, suspended matter enrichment ratio. Entrainment coefficients K(l)(*) and K(s)(*) were mathematically related to the transfer function approach. The proposed relationships proved their complementarity in terms of time support and captured fluctuations. Both approaches should be used in assessments to estimate average fluxes and their variability. PMID:18950908

  8. Remote-Sensing Reflectance and Inherent Optical Properties for Optically Deep Waters: A Revisit

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.; Du, Ke-Ping

    2001-01-01

    Remote-sensing reflectance (r(rs)) is defined as the ratio of upwelling radiance to downwelling irradiance. Relationships between remote-sensing reflectance and inherent optical properties serve as the basis for ocean-color modeling, as well as for spectral deduction of oceanic constituents through analytical/semi-analytical models of ocean color. A decade ago, a simple and concise formula based on Monte Carlo simulations was developed by relating rrs to a property u, the ratio of backscattering (b(b)) to the sum of absorption (a) and backscattering (u = b(b)/(a+b(b))). This relationship generally ignored the shape differences in phase functions between molecular scattering and particle scattering. In this study, the relationship is updated with separate parameters for molecular and particle scattering, based on the Radiative Transfer Equation through use of Hydrolight numerical solutions. The new approach fits r(rs) better than an earlier traditional formula, for both clear and turbid waters.

  9. Gradient layer entrainment in a thermohaline system with mixed layer circulation

    SciTech Connect

    Incropera, F.P.; Lents, C.E.; Viskanta, R.

    1986-11-01

    Entrainment of salt-stratified fluid into a bottom mixed layer is investigated under conditions for which mixing is driven by bottom heating and/or an imposed horizontal flow. Entrainment rate measurements and mixed layer flow visualization suggest that entrainment is strongly influenced by a shear mechanism involving both horizontal and vertical fluid velocity components. Under certain conditions, imposition of the horizontal flow inhibits the buoyancy flow and entrainment rates for combined mixing are less than those for pure buoyant mixing. Attempts to correlate entrainment rates in terms of conventional dimensionless parameters were unsuccessful.

  10. Speeding up local correlation methods: System-inherent domains.

    PubMed

    Kats, Daniel

    2016-07-01

    A new approach to determine local virtual space in correlated calculations is presented. It restricts the virtual space in a pair-specific manner on the basis of a preceding approximate calculation adapting automatically to the locality of the studied problem. The resulting pair system-inherent domains are considerably smaller than the starting domains, without significant loss in the accuracy. Utilization of such domains speeds up integral transformations and evaluations of the residual and reduces memory requirements. The system-inherent domains are especially suitable in cases which require high accuracy, e.g., in generation of pair-natural orbitals, or for which standard domains are problematic, e.g., excited-state calculations. PMID:27394095

  11. Inherent safety key performance indicators for hydrogen storage systems.

    PubMed

    Landucci, Gabriele; Tugnoli, Alessandro; Cozzani, Valerio

    2008-11-30

    The expected inherent safety performance of hydrogen storage technologies was investigated. Reference schemes were defined for alternative processes proposed for hydrogen storage, and several storage potentialities were considered. The expected safety performance of alternative process technologies was explored estimating key performance indicators based on consequence assessment and credit factors of possible loss of containment events. The results indicated that the potential hazard is always lower for the innovative technologies proposed for hydrogen storage, as metal or complex hydrides. This derived mainly from the application of the inherent safety principles of "substitution" and "moderation", since in these processes hydrogen is stored as a less hazardous hydride. However, the results also evidenced that in the perspective of an industrial implementation of these technologies, the reliability of the auxiliary equipment will be a critical issue to be addressed. PMID:18395975

  12. Integration of inherent and induced chirality into subphthalocyanine analogue

    PubMed Central

    Zhao, Luyang; Qi, Dongdong; Wang, Kang; Wang, Tianyu; Han, Bing; Tang, Zhiyong; Jiang, Jianzhuang

    2016-01-01

    Conventional conjugated systems are characteristic of only either inherent or induced chirality because of synthetic challenge in combination of chiral segment into the main chromophore. In this work, chiral binaphthyl segment is directly fused into the central chromophore of a subphthalocyanine skeleton, resulting in a novel type of chiral subphthalocyanine analogue (R/S)-1 of integrated inherent and induced chirality. Impressively, an obviously enhanced optical activity is discerned for (R/S)-1 molecules, and corresponding enhancement mechanism is elucidated in detail. The synthesis strategy based on rational molecular design will open the door towards fabrication of chiral materials with giant optical activity, which will have great potential in chiroptical devices. PMID:27294871

  13. Speeding up local correlation methods: System-inherent domains

    NASA Astrophysics Data System (ADS)

    Kats, Daniel

    2016-07-01

    A new approach to determine local virtual space in correlated calculations is presented. It restricts the virtual space in a pair-specific manner on the basis of a preceding approximate calculation adapting automatically to the locality of the studied problem. The resulting pair system-inherent domains are considerably smaller than the starting domains, without significant loss in the accuracy. Utilization of such domains speeds up integral transformations and evaluations of the residual and reduces memory requirements. The system-inherent domains are especially suitable in cases which require high accuracy, e.g., in generation of pair-natural orbitals, or for which standard domains are problematic, e.g., excited-state calculations.

  14. The inherent mutational tolerance and antigenic evolvability of influenza hemagglutinin.

    PubMed

    Thyagarajan, Bargavi; Bloom, Jesse D

    2014-01-01

    Influenza is notable for its evolutionary capacity to escape immunity targeting the viral hemagglutinin. We used deep mutational scanning to examine the extent to which a high inherent mutational tolerance contributes to this antigenic evolvability. We created mutant viruses that incorporate most of the ≈10(4) amino-acid mutations to hemagglutinin from A/WSN/1933 (H1N1) influenza. After passaging these viruses in tissue culture to select for functional variants, we used deep sequencing to quantify mutation frequencies before and after selection. These data enable us to infer the preference for each amino acid at each site in hemagglutinin. These inferences are consistent with existing knowledge about the protein's structure and function, and can be used to create a model that describes hemagglutinin's evolution far better than existing phylogenetic models. We show that hemagglutinin has a high inherent tolerance for mutations at antigenic sites, suggesting that this is one factor contributing to influenza's antigenic evolution. PMID:25006036

  15. Integration of inherent and induced chirality into subphthalocyanine analogue.

    PubMed

    Zhao, Luyang; Qi, Dongdong; Wang, Kang; Wang, Tianyu; Han, Bing; Tang, Zhiyong; Jiang, Jianzhuang

    2016-01-01

    Conventional conjugated systems are characteristic of only either inherent or induced chirality because of synthetic challenge in combination of chiral segment into the main chromophore. In this work, chiral binaphthyl segment is directly fused into the central chromophore of a subphthalocyanine skeleton, resulting in a novel type of chiral subphthalocyanine analogue (R/S)-1 of integrated inherent and induced chirality. Impressively, an obviously enhanced optical activity is discerned for (R/S)-1 molecules, and corresponding enhancement mechanism is elucidated in detail. The synthesis strategy based on rational molecular design will open the door towards fabrication of chiral materials with giant optical activity, which will have great potential in chiroptical devices. PMID:27294871

  16. Determination of Inherent Stresses by Measuring Deformations of Drilled Holes

    NASA Technical Reports Server (NTRS)

    Mathar, Josef

    1933-01-01

    Various methods have been proposed for determining the inherent stresses in structural components by disturbing their stress equilibrium through a mechanical device and measuring the resulting deformations. The methods used have disadvantages because they can be used only with specially shaped pieces (those with round or rectangular cross sections), that every form of test piece requires another kind of injury and hence of calculation, and the tested parts are rendered useless. The new test method, which seeks to eliminate these disadvantages, is likewise based on a disturbance of the equilibrium of forces, and indeed by drilling a hole which, however, is so small that the part can be used again. This method serves, among other things, for determining the inherent stresses in castings, welded parts, rolled structural shapes and finished structures.

  17. Preliminary analysis of relevant parameters for debris-flow entrainment using field data and two different numerical codes in the Eastern Pyrenees.

    NASA Astrophysics Data System (ADS)

    Udia Abancó, Clá; Hürlimann, Marcel

    2010-05-01

    . 2005) that entrainment is a very complex process depending on multiple parameters. The scatter of the data makes it impossible to establish well defined empirical relationships. However, crude trends can be seen in relation to the effect of channel bed slope and peak discharge. They point out an increase of entrainment in steeper slopes, specially if an considerable colluvium layer is available. It can also be seen that in flows of greater peak discharge the entrainment ratios are higher. Results obtained by the numerical simulations of the four events using different entrainment approaches indicate that DAN can be perfectly applied for back-analyses, when post-event data of the erosion rate are available. Forward prediction, however, is more difficult since entrainment is a pre-defined variable and must be estimated by field observations. In contrast, the entrainment rate in GITS-1D strongly depends on the friction angle of the bed material and the erosion volume is very sensitive even for small changes of this parameter. References: Hungr, O., McDougall, S., Bovis, M., 2005. Entrainment of material by debris flow. In: Jakob, M., Hungr, O. (Eds.), Debris-flow Hazards and Related Phenomena. Springer, Berlin, pp. 135-158.

  18. Updrafts, Downdrafts, Entrainment, and Detrainment in the Giga-LES

    NASA Astrophysics Data System (ADS)

    Krueger, S. K.; Glenn, I.

    2012-12-01

    We are investigating the properties of evolving three-dimensional updraft and downdraft "cores" in a model dataset from the Giga-LES, a large-domain LES (large-eddy simulation) of tropical oceanic deep convection (Khairoutdinov et al. 2009). We have also applied the analysis method developed by Kuang and Bretherton (2006) to investigate various aspects of the ensemble characteristics of cumulus convection in the Giga-LES. Our results agree with those of Kuang and Bretherton for the cumulus updraft properties. We have examined the relative merits of different entrainment and cloud-top-height assumptions in spectral plume models of cumulus updrafts, the characteristics of downdrafts, and the nature of a rapid transition from shallow to deep convection.isualization of cumulus clouds from the Giga-LES. The realistic structure is associated with entrainment.

  19. Magnetized neutron stars with superconducting cores: effect of entrainment

    NASA Astrophysics Data System (ADS)

    Palapanidis, K.; Stergioulas, N.; Lander, S. K.

    2015-09-01

    We construct equilibrium configurations of magnetized, two-fluid neutron stars using an iterative numerical method. Working in Newtonian framework we assume that the neutron star has two regions: the core, which is modelled as a two-component fluid consisting of type-II superconducting protons and superfluid neutrons, and the crust, a region composed of normal matter. Taking a new step towards more complete equilibrium models, we include the effect of entrainment, which implies that a magnetic force acts on neutrons, too. We consider purely poloidal field cases and present improvements to an earlier numerical scheme for solving equilibrium equations, by introducing new convergence criteria. We find that entrainment results in qualitative differences in the structure of field lines along the magnetic axis.

  20. Fast biomass pyrolysis with an entrained-flow reactor

    NASA Astrophysics Data System (ADS)

    Bohn, M. S.; Benham, C.

    1982-02-01

    A tubular entrained flow reactor has been used to study the effect of process control variables on fast biomass pyrolysis. In this type of reactor, finely ground biomass particles are entrained by carrier gas and transported through a reactor tube which is heated to about 900 C. Biomass particles pyrolyze as a result of heat transfer from the reactor wall yielding a gas composed primarily of carbon monoxide, carbon dioxide, hydrogen, methane, and unsaturated hydrocarbons. In this experimental program three dependent variables, percent conversion to gas, gas composition, and process heat, have been measured as a function of several process control variables. These process variables include reactor temperature, carrier gas to biomass flow ratio, reactor residence time, biomass particle size, and reactor Reynolds number. The data allow one to design and predict the performance of large scale reactors and also elucidates heat transfer mechanisms in fast biomass pyrolysis.

  1. Numerical Modeling of Deep Mantle Flow: Thermochemical Convection and Entrainment

    NASA Astrophysics Data System (ADS)

    Mulyukova, Elvira; Steinberger, Bernhard; Dabrowski, Marcin; Sobolev, Stephan

    2013-04-01

    One of the most robust results from tomographic studies is the existence of two antipodally located Large Low Shear Velocity Provinces (LLSVPs) at the base of the mantle, which appear to be chemically denser than the ambient mantle. Results from reconstruction studies (Torsvik et al., 2006) infer that the LLSVPs are stable, long-lived, and are sampled by deep mantle plumes that rise predominantly from their margins. The origin of the dense material is debated, but generally falls within three categories: (i) a primitive layer that formed during magma ocean crystallization, (ii) accumulation of a dense eclogitic component from the recycled oceanic crust, and (iii) outer core material leaking into the lower mantle. A dense layer underlying a less dense ambient mantle is gravitationally stable. However, the flow due to thermal density variations, i.e. hot rising plumes and cold downwelling slabs, may deform the layer into piles with higher topography. Further deformation may lead to entrainment of the dense layer, its mixing with the ambient material, and even complete homogenisation with the rest of the mantle. The amount of the anomalous LLSVP-material that gets entrained into the rising plumes poses a constraint on the survival time of the LLSVPs, as well as on the plume buoyancy, on the lithospheric uplift associated with plume interaction and geochemical signature of the erupted lavas observed at the Earth's surface. Recent estimates for the plume responsible for the formation of the Siberian Flood Basalts give about 15% of entrained dense recycled oceanic crust, which made the hot mantle plume almost neutrally buoyant (Sobolev et al., 2011). In this numerical study we investigate the mechanics of entrainment of a dense basal layer by convective mantle flow. We observe that the types of flow that promote entrainment of the dense layer are (i) upwelling of the dense layer when it gets heated enough to overcome its stabilizing chemical density anomaly, (ii

  2. Entrainment parameters in a cold superfluid neutron star core

    SciTech Connect

    Chamel, Nicolas; Haensel, Pawel

    2006-04-15

    Hydrodynamic simulations of neutron star cores that are based on a two-fluid description in terms of a neutron-proton superfluid mixture require the knowledge of the Andreev-Bashkin entrainment matrix which relates the momentum of one constituent to the currents of both constituents. This matrix is derived for arbitrary nuclear asymmetry at zero temperature and in the limits of small relative currents in the framework of the energy density functional theory. The Skyrme energy density functional is considered as a particular case. General analytic formulas for the entrainment parameters and various corresponding effective masses are obtained. These formulas are applied to the liquid core of a neutron star composed of homogeneous plasma of nucleons, electrons, and possibly muons in {beta} equilibrium.

  3. Entrainment and thrust augmentation in pulsatile ejector flows

    NASA Technical Reports Server (NTRS)

    Sarohia, V.; Bernal, L.; Bui, T.

    1981-01-01

    This study comprised direct thrust measurements, flow visualization by use of a spark shadowgraph technique, and mean and fluctuating velocity measurements with a pitot tube and linearized constant temperature hot-wire anemometry respectively. A gain in thrust of as much as 10 to 15% was observed for the pulsatile ejector flow as compared to the steady flow configuration. From the velocity profile measurements, it is concluded that this enhanced augmentation for pulsatile flow as compared to a nonpulsatile one was accomplished by a corresponding increased entrainment by the primary jet flow. It is also concluded that the augmentation and total entrainment by a constant area ejector critically depends upon the inlet geometry of the ejector. Experiments were performed to evaluate the influence of primary jet to ejector area ratio, ejector length, and presence of a diffuser on pulsatile ejector performance.

  4. Synchrony and entrainment properties of robust circadian oscillators

    PubMed Central

    Bagheri, Neda; Taylor, Stephanie R.; Meeker, Kirsten; Petzold, Linda R.; Doyle, Francis J.

    2008-01-01

    Systems theoretic tools (i.e. mathematical modelling, control, and feedback design) advance the understanding of robust performance in complex biological networks. We highlight phase entrainment as a key performance measure used to investigate dynamics of a single deterministic circadian oscillator for the purpose of generating insight into the behaviour of a population of (synchronized) oscillators. More specifically, the analysis of phase characteristics may facilitate the identification of appropriate coupling mechanisms for the ensemble of noisy (stochastic) circadian clocks. Phase also serves as a critical control objective to correct mismatch between the biological clock and its environment. Thus, we introduce methods of investigating synchrony and entrainment in both stochastic and deterministic frameworks, and as a property of a single oscillator or population of coupled oscillators. PMID:18426774

  5. Rhythmic TMS Causes Local Entrainment of Natural Oscillatory Signatures

    PubMed Central

    Thut, Gregor; Veniero, Domenica; Romei, Vincenzo; Miniussi, Carlo; Schyns, Philippe; Gross, Joachim

    2011-01-01

    Summary Background Neuronal elements underlying perception, cognition, and action exhibit distinct oscillatory phenomena, measured in humans by electro- or magnetoencephalography (EEG/MEG). So far, the correlative or causal nature of the link between brain oscillations and functions has remained elusive. A compelling demonstration of causality would primarily generate oscillatory signatures that are known to correlate with particular cognitive functions and then assess the behavioral consequences. Here, we provide the first direct evidence for causal entrainment of brain oscillations by transcranial magnetic stimulation (TMS) using concurrent EEG. Results We used rhythmic TMS bursts to directly interact with an MEG-identified parietal α-oscillator, activated by attention and linked to perception. With TMS bursts tuned to its preferred α-frequency (α-TMS), we confirmed the three main predictions of entrainment of a natural oscillator: (1) that α-oscillations are induced during α-TMS (reproducing an oscillatory signature of the stimulated parietal cortex), (2) that there is progressive enhancement of this α-activity (synchronizing the targeted, α-generator to the α-TMS train), and (3) that this depends on the pre-TMS phase of the background α-rhythm (entrainment of natural, ongoing α-oscillations). Control conditions testing different TMS burst profiles and TMS-EEG in a phantom head confirmed specificity of α-boosting to the case of synchronization between TMS train and neural oscillator. Conclusions The periodic electromagnetic force that is generated during rhythmic TMS can cause local entrainment of natural brain oscillations, emulating oscillatory signatures activated by cognitive tasks. This reveals a new mechanism of online TMS action on brain activity and can account for frequency-specific behavioral TMS effects at the level of biologically relevant rhythms. PMID:21723129

  6. Velocity response curves demonstrate the complexity of modeling entrainable clocks.

    PubMed

    Taylor, Stephanie R; Cheever, Allyson; Harmon, Sarah M

    2014-12-21

    Circadian clocks are biological oscillators that regulate daily behaviors in organisms across the kingdoms of life. Their rhythms are generated by complex systems, generally involving interlocked regulatory feedback loops. These rhythms are entrained by the daily light/dark cycle, ensuring that the internal clock time is coordinated with the environment. Mathematical models play an important role in understanding how the components work together to function as a clock which can be entrained by light. For a clock to entrain, it must be possible for it to be sped up or slowed down at appropriate times. To understand how biophysical processes affect the speed of the clock, one can compute velocity response curves (VRCs). Here, in a case study involving the fruit fly clock, we demonstrate that VRC analysis provides insight into a clock׳s response to light. We also show that biochemical mechanisms and parameters together determine a model׳s ability to respond realistically to light. The implication is that, if one is developing a model and its current form has an unrealistic response to light, then one must reexamine one׳s model structure, because searching for better parameter values is unlikely to lead to a realistic response to light. PMID:25193284

  7. Rhythm as a Coordinating Device: Entrainment With Disordered Speech

    PubMed Central

    Borrie, Stephanie A.; Liss, Julie M.

    2014-01-01

    Purpose The rhythmic entrainment (coordination) of behavior during human interaction is a powerful phenomenon, considered essential for successful communication, supporting social and emotional connection, and facilitating sense-making and information exchange. Disruption in entrainment likely occurs in conversations involving those with speech and language impairment, but its contribution to communication disorders has not been defined. As a first step to exploring this phenomenon in clinical populations, the present investigation examined the influence of disordered speech on the speech production properties of healthy interactants. Method Twenty-nine neurologically healthy interactants participated in a quasi-conversational paradigm, in which they read sentences (response) in response to hearing prerecorded sentences (exposure) from speakers with dysarthria (n = 4) and healthy controls (n = 4). Recordings of read sentences prior to the task were also collected (habitual). Results Findings revealed that interactants modified their speaking rate and pitch variation to align more closely with the disordered speech. Production shifts in these rhythmic properties, however, remained significantly different from corresponding properties in dysarthric speech. Conclusion Entrainment offers a new avenue for exploring speech and language impairment, addressing a communication process not currently explained by existing frameworks. This article offers direction for advancing this line of inquiry. PMID:24686410

  8. Freeze-Thaw Durability of Air-Entrained Concrete

    PubMed Central

    Shang, Huai-Shuai; Yi, Ting-Hua

    2013-01-01

    One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles). The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss) and internal crack growth (characterized by the loss of dynamic modulus of elasticity). The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to “the test method of long-term and durability on ordinary concrete” GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results. PMID:23576906

  9. Neural entrainment to the rhythmic structure of music.

    PubMed

    Tierney, Adam; Kraus, Nina

    2015-02-01

    The neural resonance theory of musical meter explains musical beat tracking as the result of entrainment of neural oscillations to the beat frequency and its higher harmonics. This theory has gained empirical support from experiments using simple, abstract stimuli. However, to date there has been no empirical evidence for a role of neural entrainment in the perception of the beat of ecologically valid music. Here we presented participants with a single pop song with a superimposed bassoon sound. This stimulus was either lined up with the beat of the music or shifted away from the beat by 25% of the average interbeat interval. Both conditions elicited a neural response at the beat frequency. However, although the on-the-beat condition elicited a clear response at the first harmonic of the beat, this frequency was absent in the neural response to the off-the-beat condition. These results support a role for neural entrainment in tracking the metrical structure of real music and show that neural meter tracking can be disrupted by the presentation of contradictory rhythmic cues. PMID:25170794

  10. Freeze-thaw durability of air-entrained concrete.

    PubMed

    Shang, Huai-Shuai; Yi, Ting-Hua

    2013-01-01

    One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles). The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss) and internal crack growth (characterized by the loss of dynamic modulus of elasticity). The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to "the test method of long-term and durability on ordinary concrete" GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results. PMID:23576906