Science.gov

Sample records for environmental chemical contaminants

  1. Priority Environmental Chemical Contaminants in Meat

    NASA Astrophysics Data System (ADS)

    Brambilla, Gianfranco; Iamiceli, Annalaura; di Domenico, Alessandro

    Generally, foods of animal origin play an important role in determining the exposure of human beings to contaminants of both biological and chemical origins (Ropkins & Beck, 2002; Lievaart et al., 2005). A potentially large number of chemicals could be considered, several of them deserving a particular attention due to their occurrence (contaminations levels and frequencies) and intake scenarios reflecting the differences existing in the economical, environmental, social and ecological contexts in which the “from-farm-to-fork” activities related to meat production are carried out (FAO - Food and Agriculture Organization, 2008).

  2. Potential effects of environmental chemical contamination in congenital heart disease.

    PubMed

    Gorini, Francesca; Chiappa, Enrico; Gargani, Luna; Picano, Eugenio

    2014-04-01

    There is compelling evidence that prenatal exposures to environmental xenobiotics adversely affect human development and childhood. Among all birth defects, congenital heart disease (CHD) is the most prevalent of all congenital malformations and remains the leading cause of death. It has been estimated that in most cases the causes of heart defects remain unknown, while a growing number of studies have indicated the potential role of environmental agents as risk factors in CHD occurrence. In particular, maternal exposure to chemicals during the first trimester of pregnancy represents the most critical window of exposure for CHD. Specific classes of xenobiotics (e.g. organochlorine pesticides, organic solvents, air pollutants) have been identified as potential risk factors for CHD. Nonetheless, the knowledge gained is currently still incomplete as a consequence of the frequent heterogeneity of the methods applied and the difficulty in estimating the net effect of environmental pollution on the pregnant mother. The presence of multiple sources of pollution, both indoor and outdoor, together with individual lifestyle factors, may represent a further confounding element for association with the disease. A future new approach for research should probably focus on individual measurements of professional, domestic, and urban exposure to physical and chemical pollutants in order to accurately retrace the environmental exposure of parents of affected offspring during the pre-conceptional and pregnancy periods. PMID:24452958

  3. Endocrine-Disrupting Chemicals and Oil and Natural Gas Operations: Potential Environmental Contamination and Recommendations to Assess Complex Environmental Mixtures

    PubMed Central

    Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.

    2015-01-01

    Background Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. Objectives We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. Methods We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. Discussion In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. Conclusions We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs. Citation Kassotis CD, Tillitt DE, Lin CH, McElroy JA, Nagel SC. 2016. Endocrine-disrupting chemicals and oil and natural gas operations: potential environmental contamination and recommendations to assess complex environmental mixtures. Environ Health Perspect 124:256–264; http://dx.doi.org/10.1289/ehp.1409535 PMID:26311476

  4. Biological and chemical tests of contaminated soils to determine bioavailability and environmentally acceptable endpoints (EAE)

    SciTech Connect

    Montgomery, C.R.; Menzie, C.A.; Pauwells, S.J.

    1995-12-31

    The understanding of the concept of bioavailability of soil contaminants to receptors and its use in supporting the development of EAE is growing but still incomplete. Nonetheless, there is increased awareness of the importance of such data to determine acceptable cleanup levels and achieve timely site closures. This presentation discusses a framework for biological and chemical testing of contaminated soils developed as part of a Gas Research Institute (GRI) project entitled ``Environmentally Acceptable Endpoints in Soil Using a Risk Based Approach to Contaminated Site Management Based on Bioavailability of Chemicals in Soil.`` The presentation reviews the GRI program, and summarizes the findings of the biological and chemical testing section published in the GRI report. The three primary components of the presentation are: (1) defining the concept of bioavailability within the existing risk assessment paradigm, (2) assessing the usefulness of the existing tests to measure bioavailability and test frameworks used to interpret these measurements, and (3) suggesting how a small selection of relevant tests could be incorporated into a flexible testing scheme for soils to address this issue.

  5. Endocrine-disrupting chemicals and oil and natural gas operations: Potential environmental contamination and recommendations to assess complex environmental mixtures

    USGS Publications Warehouse

    Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.

    2015-01-01

    Background: Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. While these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals used throughout the process, including many known or suspected endocrine-disrupting chemicals.Objectives: We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and anti-hormonal activities for chemicals used.Methods: We discuss the literature on 1) surface and ground water contamination by oil and gas extraction operations, and 2) potential human exposure, particularly in context of the total hormonal and anti-hormonal activities present in surface and ground water from natural and anthropogenic sources, with initial analytical results and critical knowledge gaps discussed.Discussion: In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures.Conclusions: We describe a need for an endocrine-centric component for overall health assessments and provide supporting information that using this may help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.

  6. Chemical analysis of human blood for assessment of environmental exposure to semivolatile organochlorine chemical contaminants.

    PubMed

    Bristol, D W; Crist, H L; Lewis, R G; MacLeod, K E; Sovocool, G W

    1982-01-01

    A chemical method for the quantitative analysis of organochlorine pesticide residues present in human blood was scaled-up to provide increased sensitivity and extended to include organochlorine industrial chemicals. Whole blood samples were extracted with hexane, concentrated, and analyzed without further cleanup by gas chromatography with electron capture detection. The methodology used was validated by conducting recovery studies at 1 and 10 ng/g (ppb) levels. Screening and confirmational analyses were performed by gas chromatography/mass spectrometry on samples collected from potentially exposed residents of the Love Canal area of Niagara Falls, New York and from volunteers in the Research Triangle Park area of North Carolina for 25 specific semivolatile organochlorine contaminants including chlorobenzene and chlorotoluene congeners, hexachloro-1,3-butadiene, pesticides, and polychlorinated biphenyls as Aroclor 1260. Dichlorobenzene, hexachlorobenzene, and beta-hexachlorocyclohexane residues fell in the range of 0.1 to 26 ppb in a high percentage of both the field and volunteer blood samples analyzed. Levels of other organochlorine compounds were either non-detectable or present in sub-ppb ranges. PMID:6819409

  7. Contaminated sediments: Lectures on environmental aspects of particle-associated chemicals in aquatic systems

    SciTech Connect

    Forstner, U.

    1989-01-01

    Sediments are increasingly recognized as both a carrier and a possible source of contaminants in aquatic systems. Since the early part of the century, limnological research on eutrophication problems and acidification indicated that particle-interactions can affect aquatic ecosystems. In contrast to the eutrophication and acidification problems, research on toxic chemicals has included sediment aspects from its beginning. In the lecture notes, following the description of priority pollutants related to sedimentary phases, four aspects were covered, which in an overlapping succession also reflect the development of knowledge in particle-associated pollutants during the past 25 years: the identification, surveillance, monitoring and control of sources and distribution of pollutants; the evaluation of solid/solution relations of contaminants in surface waters; the study of in-situ processes and mechanisms in pollutant transfer in various compartments of the aquatic ecosystems and, the assessment of the environmental impact of particle-bound contaminants. The last chapter focuses on dredged materials, including their disposal and the treatment of strongly contaminated sediments. Cases studies include the Niagara River/Lake Ontario pollution; solid speciation of metals in river sediments; the Rhine River; Puget Sound; Rotterdam Harbor; and the mobilization of cadmium from tidal river sediments.

  8. [Chemical food contaminants].

    PubMed

    Schrenk, D

    2004-09-01

    Chemical food contaminants are substances which are neither present naturally in the usual raw material used for food production nor are added during the regular production process. Examples are environmental pollutants or contaminants derived from agricultural production of crops or livestock or from inadequate manufacturing of the food product itself. More difficult is the classification of those compounds formed during regular manufacturing such as products of thermal processes including flavoring substances. In these cases, it is common practice to call those compounds contaminants which are known for their adverse effects such as acrylamide, whereas constituents which add to the food-specific flavor such as Maillard products formed during roasting, baking etc. are not termed contaminants. From a toxicological viewpoint this distinction is not always clear-cut. Important groups of chemical contaminants are metals such as mercury or lead, persistent organic pollutants such as polychlorinated biphenyls and related pollutants, which are regularly found in certain types of food originating from background levels of these compounds in our environment. Furthermore, natural toxins form microorganisms or plants, and compounds formed during thermal treatment of food are of major interest. In general, a scientific risk assessment has to be carried out for any known contaminant. This comprises an exposure analysis and a toxicological and epidemiological assessment. On these grounds, regulatory and/or technological measures can often improve the situation. Major conditions for a scientific risk assessment and a successful implementation of regulations are highly developed food quality control, food toxicology and nutritional epidemiology. PMID:15378171

  9. Utilizing high-throughput bioassays associated with US EPA ToxCast Program to assess biological activity of environmental contaminants: A case study of chemical mixtures

    EPA Science Inventory

    Effects-based monitoring and surveillance is increasingly being utilized in conjunction with chemical monitoring to determine potential biological activity associated with environmental contaminants. Supervised approaches targeting specific chemical activity or molecular pathways...

  10. Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants.

    PubMed

    Wigle, Donald T; Arbuckle, Tye E; Turner, Michelle C; Bérubé, Annie; Yang, Qiuying; Liu, Shiliang; Krewski, Daniel

    2008-05-01

    This review summarizes the level of epidemiologic evidence for relationships between prenatal and/or early life exposure to environmental chemical contaminants and fetal, child, and adult health. Discussion focuses on fetal loss, intrauterine growth restriction, preterm birth, birth defects, respiratory and other childhood diseases, neuropsychological deficits, premature or delayed sexual maturation, and certain adult cancers linked to fetal or childhood exposures. Environmental exposures considered here include chemical toxicants in air, water, soil/house dust and foods (including human breast milk), and consumer products. Reports reviewed here included original epidemiologic studies (with at least basic descriptions of methods and results), literature reviews, expert group reports, meta-analyses, and pooled analyses. Levels of evidence for causal relationships were categorized as sufficient, limited, or inadequate according to predefined criteria. There was sufficient epidemiological evidence for causal relationships between several adverse pregnancy or child health outcomes and prenatal or childhood exposure to environmental chemical contaminants. These included prenatal high-level methylmercury (CH(3)Hg) exposure (delayed developmental milestones and cognitive, motor, auditory, and visual deficits), high-level prenatal exposure to polychlorinated biphenyls (PCBs), polychlorinated dibenzofurans (PCDFs), and related toxicants (neonatal tooth abnormalities, cognitive and motor deficits), maternal active smoking (delayed conception, preterm birth, fetal growth deficit [FGD] and sudden infant death syndrome [SIDS]) and prenatal environmental tobacco smoke (ETS) exposure (preterm birth), low-level childhood lead exposure (cognitive deficits and renal tubular damage), high-level childhood CH(3)Hg exposure (visual deficits), high-level childhood exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (chloracne), childhood ETS exposure (SIDS, new-onset asthma, increased

  11. International Mussel Watch: A global assessment of environmental levels of chemical contaminants

    SciTech Connect

    Not Available

    1992-01-01

    The primary goal of the International Mussel Watch is to ascertain and assess the levels of chlorinated hydrocarbon pesticide (CHP) and polychlorinated biphenyls (PCB) in bivalves collected from coastal marine waters throughout the world. Increased use of these persistent toxic biocides may result in contamination of living coastal resources from whole ecosystems to specific food resources with consequent implication for human health and the integrity of marine communities. Another goal for the International Mussel Watch Project will be to help develop a sustainable activity for observation and monitoring chemical contamination in especially susceptible regions of the world's oceans.

  12. Biomonitoring of Environmental Status and Trends (BEST) Program: selected methods for monitoring chemical contaminants and their effects in aquatic ecosystems

    USGS Publications Warehouse

    Schmitt, Christopher J.; Dethloff, Gail M.

    2000-01-01

    This document describes the suite of biological methods of the U.S. Geological Survey- Biomonitoring of Environmental Status and Trends program for monitoring chemical contaminants and their effects on fish. The methods, which were selected by panels of experts, are being field-tested in rivers of the Mississippi River, Columbia River, and Rio Grande basins. General health biomarkers include a health assessment index based on gross observation; histopathological examination of selected organs and tissues; condition factor; and the heptosomatic and splenosomatic indices. Immune system indicators are plasma lysozyme activity and measures of splenic macrophage aggregates. Reproductive biomarkers include plasma concentrations of sex steroid hormones (17b-estradiol and 11-ketotestosterone) and vitellogenin, gonadal histopathology (including reproductive stage and, in females, gonadal atresia), and the gonadosomatic index. Indicators of exposure to polycyclic aromatic and polyhalogenated hydrocarbons are the H4IIE rat hepatoma cell bioassay (performed on solvent extracts of composite fish samples) and hepatic ethoxyresorufin-O-deethylase activity. Stable nitrogen isotope ratios are used to assess the trophic position of the fish and their exposure to sewage and other animal wastes. For each indicator we describe endpoint(s) and methods, and discuss the indicator?s value and limitations for contaminant monitoring and assessment.

  13. Chemical contaminants in human milk: an overview.

    PubMed Central

    Sonawane, B R

    1995-01-01

    This review contains a succinct overview of the nature and extent of the problem of contamination of human milk with environmental and occupational chemicals, excluding drugs. Factors influencing the levels of contaminants in breast milk are discussed. Also, data on major chemicals of concern with potential health risk(s) to the general population and risk-benefit considerations are dealt with briefly. Based on the available data on the subject, research needs have been identified and policy recommendations are suggested. PMID:8549474

  14. In vivo and in vitro absorption and binding to powdered stratum corneum as methods to evaluate skin absorption of environmental chemical contaminants from ground and surface water

    SciTech Connect

    Wester, R.C.; Mobayen, M.; Maibach, H.I.

    1987-01-01

    The objectives of this study were to compare methods to determine the binding and absorption of water contaminants to skin, to examine linearity of response, and to determine whether skin was an environmental route for water contaminants to enter the body. The three chemical examined were (/sup 14/C)-p-nitroaniline (10.1 mCi/mM), (/sup 14/C)benzene (56 mCi/mM, and /sup 14/C-labeled 54% PCB (32 mCi/mM). The chemical were added to distilled water and the concentration in water was determined by liquid scintillation counting.

  15. Karst hydrology and chemical contamination

    SciTech Connect

    Field, M.S.

    1993-01-01

    Ground-water flow in karst aquifers is very different from flow in granular or fractured aquifers. Chemical contamination may be fed directly to a karst aquifer via overland flow to a sinkhole with little or no attenuation and may contaminate downgradient wells, springs, and sinkholes within a few hours or a few days. Contaminants may also become temporarily stored in the epikarstic zone for eventual release to the aquifer. Flood pulses may flush the contaminants to cause transiently higher levels of contamination in the aquifer and discharge points. The convergent nature of flow in karst aquifers may result in contaminants becoming concentrated in conduits. Once contaminants have reached the subsurface conduits, they are likely to be rapidly transported to spring outlets. Traditional aquifer remediation techniques for contaminated aquifers are less applicable to karst aquifers.

  16. [Chemical contaminants in food].

    PubMed

    Coduro, E

    1986-12-01

    Due to a direct material linking between environment and man via breath, food and potable water, toxic substances have always been in the food of man, only modern analytical methods have made it possible to safely register concentrations in the ppb-range and below. This is why we discover more and more potential hazardous substances in food, becoming conscious of the full extent of contamination more and more. Such concentrations make a toxicological evaluation very difficult, most of all when a long-term effect is concerned. There are different reasons for the occurrence of toxic substances in our food. Substances occurring naturally in food like trypsin inhibitors, solanine and cumarin. Substances that are added to food purposely. To these belong artificial dyes and sweetening agents, sulphur dioxide and pesticides resp. herbicides. Substances that are formed during the production, preparation or storage of food like polycyclic aromatic hydrocarbons, peroxides of unsaturated fatty acids, mycotoxins and nitrosamines. Substances that are taken in due to environmental influences, considering primarily the toxic heavy metals lead, cadmium and mercury as well as polychlorinated biphenyls (PCBs). Legislative authorities have taken numerous steps to protect the consumer against food that is detrimental to his health, based mainly on the so-called "principle of prohibition" that stands for the general prohibition of additives as long as they are not formally permitted. The fundamental prohibition of the "Lebensmittel- und Bedarfsgegenständegesetz" (law for food and requirements) to produce or handle food in such a way that its consumption is qualified to harm the health of the consumer, has an extensive protective effect. This effect is supported by regulation for additives and special directives. An important group of possibly toxic substances in our food are pesticides and their residues. In 1985 1839 pesticides based on 302 active components were officially admitted

  17. Chemical contamination and the thyroid.

    PubMed

    Duntas, Leonidas H

    2015-02-01

    Industrial chemical contaminants have a variable impact on the hypothalamic-pituitary-thyroid axis, this depending both on their class and on confounding factors. Today, mounting evidence is pointing to the role of environmental factors, and specifically EDCs, in the current distressing upsurge in the incidence of thyroid disease. The unease is warranted. These substances, which are nowadays rife in our environments (including in foodstuffs), have been shown to interfere with thyroid hormone action, biosynthesis, and metabolism, resulting in disruption of tissue homeostasis and/or thyroid function. Importantly, based on the concept of the "nonmonotonic dose-response curve", the relationship between dose and effect has often been found to be nonlinear. Thus, small doses can induce unpredictable, adverse effects, one case being polychlorinated biphenyls (PCBs), of which congener(s) may centrally inhibit the hypothalamic-pituitary-thyroid axis, or dissociate thyroid receptor and selectively affect thyroid hormone signaling and action. This means that PCBs can act as agonists or antagonists at the receptor level, underlining the complexity of the interaction. This review highlights the multifold activity of chemicals demonstrated to cause thyroid disruption. It also represents a call to action among clinicians to undertake systematic monitoring of thyroid function and registering of the classes of EDs and additionally urges broader scientific collaborations to clarify these chemicals' molecular mechanisms of action, substances whose prevalence in our environments is disrupting not only the thyroid but all life on earth. PMID:25294013

  18. Chemical and biological methods for the analysis and remediation of environmental contaminants frequently identified at superfund sites

    SciTech Connect

    Melinda Christine Wiles

    2004-08-15

    Substantial environmental contamination has occurred from coal tar creosote and pentachlorophenol (C5P) in wood preserving solutions. The present studies focused on the characterization and remediation of these contaminants. The first objective was to delineate a sequence of biological changes caused by chlorinated phenol (CP) exposure. The second study was to develop multi-functional sorbents to remediate CPs and other components of wood preserving waste from groundwater. Following water remediation, the final aim of this work was to explore the safety of the parent clay minerals as potential enterosorbents for contaminants ingested in water and food. Based on evaluations of toxicity and neutron activation analysis of tissues, no significant differences were observed between animals receiving clay supplements and control animals, with the exception of slightly decreased brain Rb in animals ingesting clay. Overall, the results suggest that neither clay mineral, at relatively high dietary concentrations, influences mineral uptake or utilization in the pregnant rat. 420 refs., 28 figs, 15 tabs.

  19. The effect of misunderstanding the chemical properties of environmental contaminants on exposure beliefs: A case involving dioxins

    PubMed Central

    Zikmund-Fisher, Brian J.; Turkelson, Angela; Franzblau, Alfred; Diebol, Julia K.; Allerton, Lindsay A.; Parker, Edith A.

    2013-01-01

    Chemical properties of contaminants lead them to behave in particular ways in the environment and hence have specific pathways to human exposure. If residents of affected communities lack awareness of these properties, however, they could make incorrect assumptions about where and how exposure occurs. We conducted a mailed survey of 904 residents of Midland and Saginaw counties in Michigan, USA to assess to what degree residents of a community with known dioxin contamination appear to understand the hydrophobic nature of dioxins and the implications of that fact on different potential exposure pathways. Participants assessed whether various statements about dioxins were true, including multiple statements assessing beliefs about dioxins in different types of water. Participants also stated whether they believed different exposure pathways were currently significant sources of dioxin exposure in this community. A majority of residents believed that dioxins can be found in river water that has been filtered to completely remove all particulates, well water, and even city tap water, beliefs which are incongruous with the hydrophobic nature of dioxins. Mistrust of government and personal concern about dioxins predicted greater beliefs about dioxins in water. In turn, holding more beliefs about dioxins in water predicted beliefs that drinking and touching water are currently significant exposure pathways for dioxins. Ensuring that community residents’ mental models accurately reflect the chemical properties of different contaminants can be important to helping them to adjust their risk perceptions and potentially their risk mitigation behaviors accordingly. PMID:23391895

  20. [Environmental contaminants and endocrine disruptors].

    PubMed

    Fontenele, Eveline Gadelha Pereira; Martins, Manoel Ricardo Alves; Quidute, Ana Rosa Pinto; Montenegro, Renan Magalhães

    2010-02-01

    The toxicity of various pollutants has been routinely investigated according to their teratogenic and carcinogenic effects. In the last few decades, however, many of such pollutants have been shown to adversely affect the endocrine system of human beings and other species. Currently, more than eleven million chemical substances are known in the world, and approximately 3,000 are produced on a large scale. Numerous chemical composites of domestic, industrial and agricultural use have been shown to influence hormonal activity. Examples of such chemical products with estrogenic activity are substances used in cosmetics, anabolizing substances for animal feeding, phytoestrogens and persistent organic pollutants (POPs). These agents are seen in residential, industrial and urban sewerage system effluents and represent an important source of environmental contamination. The International Programme on Chemical Safety (IPCS) defines as endocrine disruptors substances or mixtures seen in the environment capable of interfering with endocrine system functions resulting in adverse effects in an intact organism or its offspring. In this article the authors present a current literature review about the role of these pollutants in endocrine and metabolic diseases, probable mechanisms of action, and suggest paths of investigation and possible strategies for prevention and reduction of its possible damages. PMID:20414542

  1. 2008 Meeting in Germany: Emerging Environmental Contaminants and Current Issues

    EPA Science Inventory

    This presentation will discuss emerging environmental contaminants that are currently of concern to the U.S. EPA and to other agencies. Emerging contaminants include drinking water disinfection by-products (DBPs), perfluorinated chemicals, pharmaceuticals, flame retardants, benzo...

  2. Environmental contamination in Antarctic ecosystems.

    PubMed

    Bargagli, R

    2008-08-01

    Although the remote continent of Antarctica is perceived as the symbol of the last great wilderness, the human presence in the Southern Ocean and the continent began in the early 1900s for hunting, fishing and exploration, and many invasive plant and animal species have been deliberately introduced in several sub-Antarctic islands. Over the last 50 years, the development of research and tourism have locally affected terrestrial and marine coastal ecosystems through fuel combustion (for transportation and energy production), accidental oil spills, waste incineration and sewage. Although natural "barriers" such as oceanic and atmospheric circulation protect Antarctica from lower latitude water and air masses, available data on concentrations of metals, pesticides and other persistent pollutants in air, snow, mosses, lichens and marine organisms show that most persistent contaminants in the Antarctic environment are transported from other continents in the Southern Hemisphere. At present, levels of most contaminants in Antarctic organisms are lower than those in related species from other remote regions, except for the natural accumulation of Cd and Hg in several marine organisms and especially in albatrosses and petrels. The concentrations of organic pollutants in the eggs of an opportunistic top predator such as the south polar skua are close to those that may cause adverse health effects. Population growth and industrial development in several countries of the Southern Hemisphere are changing the global pattern of persistent anthropogenic contaminants and new classes of chemicals have already been detected in the Antarctic environment. Although the Protocol on Environmental Protection to the Antarctic Treaty provides strict guidelines for the protection of the Antarctic environment and establishes obligations for all human activity in the continent and the Southern Ocean, global warming, population growth and industrial development in countries of the Southern

  3. Minimally invasive transcriptome profiling in salmon: detection of biological response in rainbow trout caudal fin following exposure to environmental chemical contaminants.

    PubMed

    Veldhoen, Nik; Stevenson, Mitchel R; Skirrow, Rachel C; Rieberger, Kevin J; van Aggelen, Graham; Meays, Cynthia L; Helbing, Caren C

    2013-10-15

    An increasing number of anthropogenic chemicals have demonstrated potential for disruption of biological processes critical to normal growth and development of wildlife species. Both anadromous and freshwater salmon species are at risk of exposure to environmental chemical contaminants that may affect migratory behavior, environmental fitness, and reproductive success. A sensitive metric in determination of the presence and impact of such environmental chemical contaminants is through detection of changes in the status of gene transcript levels using a targeted quantitative real-time polymerase chain reaction assay. Ideally, the wildlife assessment strategy would incorporate conservation-centered non-lethal practices. Herein, we describe the development of such an assay for rainbow trout, Oncorhynchus mykiss, following an acute 96 h exposure to increasing concentrations of either 17α-ethinyl estradiol or cadmium. The estrogenic screen included measurement of mRNA encoding estrogen receptor α and β isoforms, vitellogenin, vitelline envelope protein γ, cytochrome p450 family 19 subfamily A, aryl hydrocarbon receptor, and the stress indicator, catalase. The metal exposure screen included evaluation of the latter two mRNA transcripts along with those encoding the metallothionein A and B isoforms. Exposure-dependent transcript abundance profiles were detected in both liver and caudal fin supporting the use of the caudal fin as a non-lethally obtained tissue source. The potential for both transcriptome profiling and genotypic sex determination from fin biopsy was extended, in principle, to field-captured Chinook salmon (Oncorhynchus tshawytscha). PMID:24055988

  4. ENVIRONMENTAL CHEMISTRY: EMERGING CONTAMINANTS AND CURRENT ISSUES

    EPA Science Inventory

    Much has been achieved in the way of environmental protection over the last 30 years. However, as we learn more, new concerns arise. This presentation will discuss chemical and microbial contaminants that the U.S. EPA and other agencies are currently concerned about. In this gr...

  5. Data-Mining and Informatics Approaches for Environmental Contaminants

    EPA Science Inventory

    New and emerging environmental contaminants are chemicals that have not been previously detected or that are being detected at levels significantly different from those expected in both biological and ecological arenas (that is, human, wildlife, and environment). Many chemicals c...

  6. Environmental Contaminants in Wildlife: Interpreting Tissue Concentrations

    USGS Publications Warehouse

    1996-01-01

    Covers the complex issue of how to evaluate contaminants in wildlife. This comprehensive resource deals with the question: 'How much of a chemical in the tissues of an animal is harmful?' Features: Authoritative and sound advice is provided on many environmental contaminants, including what the contaminants are and how to interpret the data on them. Each chapter includes a review of the literature on a specific chemical, followed by a clear technical summary that provides research guidance. Direction is given on how to interpret data that are sometimes conflicting or insufficient. Data are presented in easy to use tables. Primary attention is given to toxic concentrations of contaminants such as organochlorine pesticides, PCBs, dioxins, PAHs, metals, and fluorides.

  7. Chemical and Environmental Technology.

    ERIC Educational Resources Information Center

    Sheather, Harry

    The two-year curriculum in chemical technology presented in the document is designed to prepare high school graduates for technical positions in the chemical industry. Course outlines are given for general chemistry, chemical calculations, quantitative analysis, environmental chemistry, organic chemistry 1 and 2, instrumental analysis, and…

  8. Small mammals as monitors of environmental contaminants.

    PubMed

    Talmage, S S; Walton, B T

    1991-01-01

    The merit of using small mammals as monitors of environmental contaminants was assessed using data from the published literature. Information was located on 35 species of small mammals from 7 families used to monitor heavy metals, radionuclides, and organic chemicals at mine sites, industrial areas, hazardous and radioactive waste disposal sites, and agricultural and forested land. To document foodchain transfer of chemicals, concentrations in soil, vegetation, and invertebrates, where available, were included. The most commonly trapped North American species were Peromyscus leucopus, Blarina brevicauda, and Microtus pennsylvanicus. In these species, exposure to chemicals was determined from tissue residue analyses, biochemical assays, and cytogenetic assays. Where enough information was available, suitable target tissues, or biological assays for specific chemicals were noted. In general, there was a relationship between concentrations of contaminants in the soil or food, and concentrations in target tissues of several species. This relationship was most obvious for the nonessential heavy metals, cadmium, lead, and mercury and for fluoride. Kidney was the single best tissue for residue analyses of inorganic contaminants. However, bone should be the tissue of choice for both lead and fluorine. Exposure to lead was also successfully documented using biochemical and histopathological endpoints. Bone was the tissue of choice for exposure to 90Sr, whereas muscle was an appropriate tissue for 137Cs. For organic contaminants, exposure endpoints depended on the chemical(s) of concern. Liver and whole-body residue analyses, as well as enzyme changes, organ histology, genotoxicity, and, in one case, population dynamics, were successfully used to document exposure to these contaminants. Based on information in these studies, each species' suitability as a monitor for a specific contaminant or type of contaminant was evaluated and subsequently ranked. A relationship between

  9. Small mammals as monitors of environmental contaminants

    SciTech Connect

    Talmage, S.S.; Walton, B.T. )

    1991-01-01

    The merit of using small mammals as monitors of environmental contaminants was assessed using data from the published literature. Information was located on 35 species of small mammals from 7 families used to monitor heavy metals, radionuclides, and organic chemicals at mine sites, industrial areas, hazardous and radioactive waste disposal sites, and agricultural and forested land. To document foodchain transfer of chemicals, concentrations in soil, vegetation, and invertebrates, where available, were included. The most commonly trapped North American species were Peromyscus leucopus, Blarina brevicauda, and Microtus pennsylvanicus. In these species, exposure to chemicals was determined from tissue residue analyses, biochemical assays, and cytogenetic assays. Where enough information was available, suitable target tissues, or biological assays for specific chemicals were noted. In general, there was a relationship between concentrations of contaminants in the soil or food, and concentrations in target tissues of several species. This relationship was most obvious for the nonessential heavy metals, cadmium, lead, and mercury and for fluoride. Kidney was the single best tissue for residue analyses of inorganic contaminants. However, bone should be the tissue of choice for both lead and fluorine. Exposure to lead was also successfully documented using biochemical and histopathological endpoints. Bone was the tissue of choice for exposure to 90Sr, whereas muscle was an appropriate tissue for 137Cs. For organic contaminants, exposure endpoints depended on the chemical(s) of concern. Liver and whole-body residue analyses, as well as enzyme changes, organ histology, genotoxicity, and, in one case, population dynamics, were successfully used to document exposure to these contaminants.

  10. Peering Into the Shadows of Chemical Space. Emerging Contaminants and Environmental Science: Is Either Being Served by the Other?

    EPA Science Inventory

    A decade has passed since the term “emerging” was first formally used to describe the existence of waterpollutants not previously recognized; a 1998 NRC workshop ("Identifying Future Drinking WaterContaminants") and several 1999 reports by USGS were among the first to feature the...

  11. Environmental contaminants and intestinal function

    PubMed Central

    Banwell, John G.

    1979-01-01

    The environmental contaminants which have their major effects on the small intestine may be classified into five major categories: (1) bacterial, viral, and parasitic agents, (2) food and plant substances, (3) environmental and industrial products, (4) pharmaceutical agents, and (5) toxic agents whose metabolic effects are dependent on interreaction with intestinal bacterial flora, other physical agents (detergents), human intestinal enzyme deficiency states, and the nutritional state of the host. Bacterial, viral, and parasitic agents are the most important of all such agents, being responsible for significant mortality and morbidity in association with diarrheal diseases of adults and children. Several plant substances ingested as foods have unique effects on the small bowel as well as from contaminants such as fungi on poorly preserved grains and cereals. Environmental and industrial products, in spite of their widespread prevalence in industrial societies as contaminants, are less important unless unexpectedly intense exposure occurs to the intestinal tract. Pharmaceutical agents of several types interreact with the small bowel mucosa causing impairment of transport processes for fluid and electrolytes, amino acid, lipid and sugars as well as vitamins. These interreactions may be dependent on bacterial metabolic activity, association with detergents, mucosal enzyme deficiency state (disaccharidases), and the state of nutrition of the subject. PMID:540611

  12. Chemical contamination of water supplies.

    PubMed Central

    Shy, C M

    1985-01-01

    Man-made organic chemicals have been found in drinking water for many years. Their numbers and varieties increase as our analytical capabilities improve. The identified chemicals comprise 10 to 20% of the total organic matter present. These are volatile or low molecular weight compounds which are easily identified. Many of them are carcinogenic or mutagenic. Chlorinated compounds have been found in untreated well water at levels up to 21,300 micrograms/L and are generally present at higher levels in chlorine-treated water than in untreated water. Aggregate risk studies for cancer are summarized. The most common sites are: bladder, stomach, colon, and rectum. Such studies cannot be linked to individual cases. However, they are useful for identifying exposed populations for epidemiologic studies. Five case-control studies were reviewed, and significant associations with water quality were found for: bladder cancer in two studies, colon cancer in three and rectal cancer in four. A large study by the National Cancer Institute found that there had been a change in the source of raw water for 50% of the persons in one area between the years 1955 and 1975. Such flaws in the data may preclude finding a causal relation between cancer and contaminants in drinking water. Large case-control and cohort studies are needed because of the low frequency of the marker diseases, bladder and rectal cancer. Cohort studies may be precluded by variations in the kinds of water contaminants. Definitive questions about these issues are posed for cooperative effort and resolution by water chemists, engineers, and epidemiologists. PMID:4085442

  13. Environmental Geochemistry of Radioactive Contamination

    NASA Astrophysics Data System (ADS)

    Siegel, M. D.; Bryan, C. R.

    2003-12-01

    Psychometric studies of public perception of risk have shown that dangers associated with radioactive contamination are considered the most dreaded and among the least understood hazards (Slovic, 1987). Fear of the risks associated with nuclear power and associated contamination has had important effects on policy and commercial decisions in the last few decades. In the US, no new nuclear power plants were ordered between 1978 and 2002, even though it has been suggested that the use of nuclear power has led to significantly reduced CO2 emissions and may provide some relief from the potential climatic changes associated with fossil fuel use. The costs of the remediation of sites contaminated by radioactive materials and the projected costs of waste disposal of radioactive waste in the US dwarf many other environmental programs. The cost of disposal of spent nuclear fuel at the proposed repository at Yucca Mountain will likely exceed 10 billion. The estimated total life cycle cost for remediation of US Department of Energy (DOE) weapons production sites ranged from 203-247 billion dollars in constant 1999 dollars, making the cleanup the largest environmental project on the planet (US DOE, 2001). Estimates for the cleanup of the Hanford site alone exceeded $85 billion through 2046 in some of the remediation plans.Policy decisions concerning radioactive contamination should be based on an understanding of the potential migration of radionuclides through the geosphere. In many cases, this potential may have been overestimated, leading to decisions to clean up contaminated sites unnecessarily and exposing workers to unnecessary risk. It is important for both the general public and the scientific community to be familiar with information that is well established, to identify the areas of uncertainty and to understand the significance of that uncertainty to the assessment of risk.

  14. Field and laboratory studies of chemical contamination and environmentally related diseases in fish and molluscs of New England

    SciTech Connect

    Gardner, G.R.

    1993-01-01

    The concentration of PCBs, PAHs, insecticides and metals in some aquatic ecosystems have reached high levels placing identified populations at risk to chemical, physical, and biological agents in estuarine and open coastal areas of the United States. In the last three decades scientific studies bolstered evidence for a causal relationship between spontaneous and chemically induced pathological effects on marine organisms and exposure to industrial and agricultural pollutants discharged into aquatic ecosystems. In subsequent years research, both in the laboratory and at polluted estuarine or marine sites, has elucidated causal relationships between processes of pathogenesis of lesions (including carcinogenesis) and exposure to specific toxic agents. Today, research investigating mechanisms of chemical- and pollutant-induced lesions is demonstrating that chemicals can exert toxic, mutagenic, carcinogenic, and immunogenic effects on marine organisms.

  15. Environmental contaminants in California condors

    USGS Publications Warehouse

    Wiemeyer, Stanley N.; Scott, J.M.; Anderson, M.P.; Bloom, P.H.; Stafford, C.J.

    1988-01-01

    Five wild Califorinia condors (Gymnogyps californianus) that died in 1980-86 were necropsied and tissues were analyzed for environmental contaminants. Three died of lead (Pb) poisoning, 1 presumably of cyanide (CN) poisoning, and 1 nestling of handling shock. Organochlorine concentrations were low in 4 condors that were analyzed for these contaminants. Blood samples from 14 wild and 14 captive condors were analyzed primarily for Pb. Five of 14 wild condors sampled had elevated (> 0.70 ppm) concentrations of Pb in blood whereas Pb concentrations in all captive condors were low. Lead levels in individual birds often fluctuated over time. Lead exposure, especially poisoning, was a major factor affecting the wild California condor population during 1982-86. The probable source of Pb was bullet fragments in carrion on which condors were feeding.

  16. FIELD AND LABORATORY STUDIES OF CHEMICAL CONTAMINATION AND ENVIRONMENTALLY RELATED DISEASES IN FISH AND MOLLUSCS OF NEW ENGLAND

    EPA Science Inventory

    The concentration of PCBS, PAHS, insecticides and metals in some aquatic ecosystems have reached high levels placing identified populations at risk to chemical, physical and biological agents in estuarine and open coastal areas of the United States. n the last three decades scien...

  17. Environmental contaminants in Canadian shorebirds.

    PubMed

    Braune, Birgit M; Noble, David G

    2009-01-01

    Canadian shorebirds are exposed to environmental contaminants throughout their annual cycle. Contaminant exposure among species varies with diet, foraging behaviour and migration patterns. We sampled twelve species of shorebirds from four locations across Canada to assess their exposure to PCBs, organochlorine pesticides, as well as four trace elements (Hg, Se, Cd, As). SigmaPCB and SigmaDDT followed by SigmaCHL were most frequently found above trace level in the shorebird carcasses. In general, the plover species (American golden, semipalmated, black-bellied) appear to be the most contaminated with organochlorines, whereas Hudsonian and marbled godwits appear to be the least contaminated. Among adult birds, the greater and lesser yellowlegs had the highest hepatic Hg concentrations (2.4-2.7 microg g(-1) dw), whereas American golden plovers as well as Hudsonian and marbled godwits contained relatively low levels of Hg (<1 microg g(-1) dw). Renal Se concentrations varied from 3.2 to 16.7 microg g(-1) dw and exhibited little interspecific or seasonal variation. Renal Cd levels in adult birds were highest in Hudsonian godwits from Quill Lakes (43 microg g(-1) dw) and Cape Churchill (12 microg g(-1) dw), and lowest (0.8-1.5 microg g(-1) dw) in greater and lesser yellowlegs from Cape Churchill and Bay of Fundy. Renal As concentrations varied from 0.06 microg g(-1) dw in golden plovers from Cape Churchill to 4.6 and 5.1 microg g(-1) dw in dunlin samples from the Pacific coast. There is no evidence that contaminants were adversely affecting the shorebirds sampled from the Canadian locations in this study. PMID:18340543

  18. Residue reviews: Reviews of environmental contamination and toxicology. Vol. 92

    SciTech Connect

    Gunther, F.A.; Gunther, J.D.

    1984-01-01

    Volume 92 of this series consists of four chapters reviewing environmental contamination by chemicals. The most timely article summarizes the toxicological effects of the herbicides 2,4-D and 2,4,5-T which were determined by direct experimentation. The latter is inevitably contaminated with dioxin. Bibliographies with full citations are provided.

  19. Chemical-gene interaction networks and causal reasoning for biological effects prediction and prioritization of contaminants for environmental monitoring and surveillance

    EPA Science Inventory

    Evaluating the potential human health and ecological risks associated with exposures to complex chemical mixtures in the environment is one of the main challenges of chemical safety assessment and environmental protection. There is a need for approaches that can help to integrat...

  20. DEVELOPMENTS IN CHEMICAL TREATMENT OF CONTAMINATED SOIL

    EPA Science Inventory

    The U.S. Environmental Protection Agency's Office of Research and Development (ORD) is examining processes for remedial action at Superfund sites, and corrective action at operating disposal sites. ecent legislation emphasizes destruction and detoxification of contaminants, rathe...

  1. CHILDREN'S DIETARY EXPOSURES TO CHEMICAL CONTAMINANTS

    EPA Science Inventory

    The Food Quality Protection Act of 1996 requires EPA to more accurately assess children's aggregate exposures to environmental contaminants. Children have unstructured eating behaviors which cause excess exposures as a result of their activities. Determining total dietary intak...

  2. A new multimedia contaminant fate model for China: how important are environmental parameters in influencing chemical persistence and long-range transport potential?

    PubMed

    Zhu, Ying; Price, Oliver R; Tao, Shu; Jones, Kevin C; Sweetman, Andy J

    2014-08-01

    We present a new multimedia chemical fate model (SESAMe) which was developed to assess chemical fate and behaviour across China. We apply the model to quantify the influence of environmental parameters on chemical overall persistence (POV) and long-range transport potential (LRTP) in China, which has extreme diversity in environmental conditions. Sobol sensitivity analysis was used to identify the relative importance of input parameters. Physicochemical properties were identified as more influential than environmental parameters on model output. Interactive effects of environmental parameters on POV and LRTP occur mainly in combination with chemical properties. Hypothetical chemicals and emission data were used to model POV and LRTP for neutral and acidic chemicals with different KOW/DOW, vapour pressure and pKa under different precipitation, wind speed, temperature and soil organic carbon contents (fOC). Generally for POV, precipitation was more influential than the other environmental parameters, whilst temperature and wind speed did not contribute significantly to POV variation; for LRTP, wind speed was more influential than the other environmental parameters, whilst the effects of other environmental parameters relied on specific chemical properties. fOC had a slight effect on POV and LRTP, and higher fOC always increased POV and decreased LRTP. Example case studies were performed on real test chemicals using SESAMe to explore the spatial variability of model output and how environmental properties affect POV and LRTP. Dibenzofuran released to multiple media had higher POV in northwest of Xinjiang, part of Gansu, northeast of Inner Mongolia, Heilongjiang and Jilin. Benzo[a]pyrene released to the air had higher LRTP in south Xinjiang and west Inner Mongolia, whilst acenaphthene had higher LRTP in Tibet and west Inner Mongolia. TCS released into water had higher LRTP in Yellow River and Yangtze River catchments. The initial case studies demonstrated that SESAMe

  3. USEPA/WSWRD'S TREATABILITY DATABASE & COST MODELING FOR CHEMICAL CONTAMINANTS

    EPA Science Inventory

    The 1996 amendments to the Safe Drinking Water Act (SWDA) require the US Environmental Protection Agency (USEPA) to establish a list of unregulated microbiological and chemical contaminants to aid in priority-setting for the Agency's drinking water program. This list, known as t...

  4. 40 CFR 141.11 - Maximum contaminant levels for inorganic chemicals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Maximum contaminant levels for inorganic chemicals. 141.11 Section 141.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 141.11 Maximum contaminant levels for inorganic chemicals. (a) The maximum contaminant level...

  5. 40 CFR 141.11 - Maximum contaminant levels for inorganic chemicals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Maximum contaminant levels for inorganic chemicals. 141.11 Section 141.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 141.11 Maximum contaminant levels for inorganic chemicals. (a) The maximum contaminant level...

  6. Chemical Contamination of California Drinking Water

    PubMed Central

    Russell, Hanafi H.; Jackson, Richard J.; Spath, David P.; Book, Steven A.

    1987-01-01

    Drinking water contamination by toxic chemicals has become widely recognized as a public health concern since the discovery of 1,2-dibromo-3-chloropropane in California's Central Valley in 1979. Increased monitoring since then has shown that other pesticides and industrial chemicals are present in drinking water. Contaminants of drinking water also include naturally occurring substances such as asbestos and even the by-products of water chlorination. Public water systems, commercially bottled and vended water and mineral water are regulated, and California is also taking measures to prevent water pollution by chemicals through various new laws and programs. PMID:3321714

  7. Chemical contaminants, pharmacokinetics, and the lactating mother.

    PubMed Central

    Rogan, W J; Ragan, N B

    1994-01-01

    We review the commonly occurring persistent pesticides and industrial chemicals in breast milk. These chemicals are dichlorodiphenyl trichloroethane as dichlorodiphenyl dichloroethene dieldrin, chlordane as oxychlordane, heptachlor, polychlorinated biphenyls, polychlorinated dibenzofurans, and polychlorinated dibenzodioxins. We present a worked example of the kinds of pharmacokinetic assumptions and calculations necessary for setting regulatory limits of contaminants in the food supply, calculating dose of chemical contaminants to the nursed infant, converting risks from lifetime exposure in laboratory animals to risks for short-term exposure in humans, and estimating the excess cancer risk to the nursed infant. PMID:7737048

  8. Environmental Chemicals in Breast Milk

    EPA Science Inventory

    Most of the information available on environmental chemicals in breast milk is focused on persistent, lipophilic chemicals; the database on levels of these chemicals has expanded substantially since the 1950s. Currently, various types of chemicals are measured in breast milk and ...

  9. Environmental contamination due to shale gas development.

    PubMed

    Annevelink, M P J A; Meesters, J A J; Hendriks, A J

    2016-04-15

    Shale gas development potentially contaminates both air and water compartments. To assist in governmental decision-making on future explorations, we reviewed scattered information on activities, emissions and concentrations related to shale gas development. We compared concentrations from monitoring programmes to quality standards as a first indication of environmental risks. Emissions could not be estimated accurately because of incomparable and insufficient data. Air and water concentrations range widely. Poor wastewater treatment posed the highest risk with concentrations exceeding both Natural Background Values (NBVs) by a factor 1000-10,000 and Lowest Quality Standards (LQSs) by a factor 10-100. Concentrations of salts, metals, volatile organic compounds (VOCs) and hydrocarbons exceeded aquatic ecotoxicological water standards. Future research must focus on measuring aerial and aquatic emissions of toxic chemicals, generalisation of experimental setups and measurement technics and further human and ecological risk assessment. PMID:26845179

  10. Environmental forensic research for emerging contaminants in complex environmental matrices

    EPA Science Inventory

    The United States Environmental Protection Agency has established criteria to address many of the significant traditional pollutants demonstrated to have adverse affects on environmental quality. However, new chemicals are being created almost daily, and these new chemicals, as ...

  11. ENVIRONMENTAL MASS SPECTROMETRY: EMERGING CONTAMINANTS AND CURRENT ISSUES

    EPA Science Inventory

    Much has been achieved in the way of environmental protection over the last 30 years. However, as we learn more, new concerns arise. This presentation will discuss chemical and microbial contaminants that the U.S. EPA and other agencies are currently concerned about. In this gr...

  12. EMERGING ENVIRONMENTAL CONTAMINANTS AND CURRENT ISSUES, MEETING IN SEATTLE, WA

    EPA Science Inventory

    Much has been achieved in the way of environmental protection over the last 30 years. However, as we learn more, new concerns arise. This presentation will discuss chemical and microbial contaminants that the U.S. EPA and other agencies are currently concerned about. In this gr...

  13. BIOASSAY-DIRECTED CHEMICAL ANALYSIS IN ENVIRONMENTAL RESEARCH

    EPA Science Inventory

    The use of short-term bioassay tests in conjunction with analytical measurements, constitute a powerful tool for identifying important environmental contaminants. The authors have coined the terminology 'bioassay directed chemical analysis' to best describe this marriage of analy...

  14. EMERGING ENVIRONMENTAL CONTAMINANTS AND CURRENT ISSUES

    EPA Science Inventory

    Much has been achieved in the way of environmental protection over the last 30 years. However, as we learn more, new concerns arise. This presentation will discuss emerging environmental contaminants that the U.S. EPA and other agencies are currently concerned about. Emerging c...

  15. The Toxicity Data Landscape for Environmental Chemicals

    PubMed Central

    Judson, Richard; Richard, Ann; Dix, David J.; Houck, Keith; Martin, Matthew; Kavlock, Robert; Dellarco, Vicki; Henry, Tala; Holderman, Todd; Sayre, Philip; Tan, Shirlee; Carpenter, Thomas; Smith, Edwin

    2009-01-01

    Objective Thousands of chemicals are in common use, but only a portion of them have undergone significant toxicologic evaluation, leading to the need to prioritize the remainder for targeted testing. To address this issue, the U.S. Environmental Protection Agency (EPA) and other organizations are developing chemical screening and prioritization programs. As part of these efforts, it is important to catalog, from widely dispersed sources, the toxicology information that is available. The main objective of this analysis is to define a list of environmental chemicals that are candidates for the U.S. EPA screening and prioritization process, and to catalog the available toxicology information. Data sources We are developing ACToR (Aggregated Computational Toxicology Resource), which combines information for hundreds of thousands of chemicals from > 200 public sources, including the U.S. EPA, National Institutes of Health, Food and Drug Administration, corresponding agencies in Canada, Europe, and Japan, and academic sources. Data extraction ACToR contains chemical structure information; physical–chemical properties; in vitro assay data; tabular in vivo data; summary toxicology calls (e.g., a statement that a chemical is considered to be a human carcinogen); and links to online toxicology summaries. Here, we use data from ACToR to assess the toxicity data landscape for environmental chemicals. Data synthesis We show results for a set of 9,912 environmental chemicals being considered for analysis as part of the U.S. EPA ToxCast screening and prioritization program. These include high-and medium-production-volume chemicals, pesticide active and inert ingredients, and drinking water contaminants. Conclusions Approximately two-thirds of these chemicals have at least limited toxicity summaries available. About one-quarter have been assessed in at least one highly curated toxicology evaluation database such as the U.S. EPA Toxicology Reference Database, U.S. EPA Integrated

  16. Intentional and inadvertent chemical contamination of food, water, and medication.

    PubMed

    MCKay, Charles; Scharman, Elizabeth J

    2015-02-01

    Numerous examples of chemical contamination of food, water, or medication have led to steps by regulatory agencies to maintain the safety of this critical social infrastructure and supply chain. Identification of contaminant site is important. Environmental testing and biomonitoring can define the nature and extent of the event and are useful for providing objective information, but may be unavailable in time for clinical care. Clinical diagnosis should be based on toxidrome recognition and assessment of public health implications. There are several resources available to assist and these can be accessed through regional poison control centers or local/state public health departments. PMID:25455667

  17. Environmental contamination by canine geohelminths

    PubMed Central

    2014-01-01

    Intestinal nematodes affecting dogs, i.e. roundworms, hookworms and whipworms, have a relevant health-risk impact for animals and, for most of them, for human beings. Both dogs and humans are typically infected by ingesting infective stages, (i.e. larvated eggs or larvae) present in the environment. The existence of a high rate of soil and grass contamination with infective parasitic elements has been demonstrated worldwide in leisure, recreational, public and urban areas, i.e. parks, green areas, bicycle paths, city squares, playgrounds, sandpits, beaches. This review discusses the epidemiological and sanitary importance of faecal pollution with canine intestinal parasites in urban environments and the integrated approaches useful to minimize the risk of infection in different settings. PMID:24524656

  18. Environmental contamination by canine geohelminths.

    PubMed

    Traversa, Donato; Frangipane di Regalbono, Antonio; Di Cesare, Angela; La Torre, Francesco; Drake, Jason; Pietrobelli, Mario

    2014-01-01

    Intestinal nematodes affecting dogs, i.e. roundworms, hookworms and whipworms, have a relevant health-risk impact for animals and, for most of them, for human beings. Both dogs and humans are typically infected by ingesting infective stages, (i.e. larvated eggs or larvae) present in the environment. The existence of a high rate of soil and grass contamination with infective parasitic elements has been demonstrated worldwide in leisure, recreational, public and urban areas, i.e. parks, green areas, bicycle paths, city squares, playgrounds, sandpits, beaches. This review discusses the epidemiological and sanitary importance of faecal pollution with canine intestinal parasites in urban environments and the integrated approaches useful to minimize the risk of infection in different settings. PMID:24524656

  19. Owls as biomonitors of environmental contamination

    SciTech Connect

    Sheffield, S.R.

    1995-12-31

    Exposure and effects of environmental contaminants on owls has been largely understudied. Research primarily has focused on two species, the eastern screech owl (Otus asio) and barn owl (Tyto alba). Most of this work has been conducted with captive populations at the Patuxent Wildlife Research Center in Laurel, MD. In the wild, work has been, or is currently being, conducted with great-horned owls (Bubo virginianus) at a Superfund site in Colorado and in agricultural croplands in Iowa, and barn owls at a Superfund site in Texas and in metal-contaminated regions of the Netherlands. As higher order consumers, owls bioconcentrate many different environmental contaminants through their prey. Owls have proven to be sensitive to a wide variety of toxic compounds, including PCB`s, metals, and fluoride. Endpoints examined include reproductive effects, eggshell thickness, residue analyses, cholinesterase inhibition, and induction of liver MFO`s. Much more work remains to be done using owls as biomonitors of environmental contamination, particularly with captive populations, salvaged individuals, raptor rehabilitation center birds, and with wild populations in areas around hazardous waste sites, smelters, landfills, agricultural croplands, and other major sources of environmental contamination.

  20. Bio-assays for microchemical environmental contaminants

    PubMed Central

    Warner, Richard E.

    1967-01-01

    A solution of the problem of environmental contamination must be based on accurate measurement of the extent of the contamination and of the resulting hazards. This paper reviews the methods for the estimation of microchemical contaminants in water with the aid of living organisms. The methods are grouped according to the nature of the response of the organism to the contaminant—namely, acute response (usually death), behavioural change, physiological change, biochemical and histochemical change, ecological change, embryological and regenerational change, growth change, histological change and perception by man or aquatic organisms. Finally, the following problems are discussed: selection of appropriate tests and standardization, the dangers of sequential concentration and the need for multi-parametric assays (assays involving several responses of a single organism, or responses of several organisms) for complete characterization of the effects of a contaminant on the environment. ImagesFIG. 2FIG. 3FIG. 4FIG. 5FIG. 6 PMID:5299747

  1. DERMAL AND GASTROINTESTINAL ABSORPTION OF ENVIRONMENTAL CONTAMINANTS

    EPA Science Inventory

    Hazards from environmental contaminants have become a necessary part of life in industrial countries. In the past few decades, a number of 'new' problems have arisen (termiticide-treated premises, reentry into pesticide-treated fields, acid rain, aldicarb in ground water, dioxins...

  2. MEASUREMENT OF CONTAMINATION IN ENVIRONMENTAL SAMPLES

    EPA Science Inventory

    Contamination of environmental samples and measurement system can be monitored through the systematic use of appropriate quality control (QC) blanks. uring the last decade, a proliferation of terms for these QC samples has taken place, making the specification of appropriate blan...

  3. Chemical contaminants in feedlot wastes: concentrations, effects and attenuation.

    PubMed

    Khan, S J; Roser, D J; Davies, C M; Peters, G M; Stuetz, R M; Tucker, R; Ashbolt, N J

    2008-08-01

    Commercial feedlots for beef cattle finishing are potential sources of a range of trace chemicals which have human health or environmental significance. To ensure adequate protection of human and environmental health from exposure to these chemicals, the application of effective manure and effluent management practices is warranted. The Australian meat and livestock industry has adopted a proactive approach to the identification of best management practices. Accordingly, this review was undertaken to identify key chemical species that may require consideration in the development of guidelines for feedlot manure and effluent management practices in Australia. Important classes of trace chemicals identified include steroidal hormones, antibiotics, ectoparasiticides, mycotoxins, heavy metals and dioxins. These are described in terms of their likely sources, expected concentrations and public health or environmental significance based on international data and research. Androgenic hormones such as testosterone and trenbolone are significantly active in feedlot wastes, but they are poorly understood in terms of fate and environmental implications. The careful management of residues of antibiotics including virginiamycin, tylosin and oxytetracycline appears prudent in terms of minimising the risk of potential public health impacts from resistant strains of bacteria. Good management of ectoparasiticides including synthetic pyrethroids, macrocyclic lactones, fluazuron, and amitraz is important for the prevention of potential ecological implications, particularly towards dung beetles. Very few of these individual chemical contaminants have been thoroughly investigated in terms of concentrations, effects and attenuation in Australian feedlot wastes. PMID:18055014

  4. Environmental contaminant exposures and preterm birth: a comprehensive review.

    PubMed

    Ferguson, Kelly K; O'Neill, Marie S; Meeker, John D

    2013-01-01

    Preterm birth is a significant public health concern, as it is associated with high risk of infant mortality, various morbidities in both the neonatal period and later in life, and a significant societal economic burden. As many cases are of unknown etiology, identification of the contribution of environmental contaminant exposures is a priority in the study of preterm birth. This is a comprehensive review of all known studies published from 1992 through August 2012 linking maternal exposure to environmental chemicals during pregnancy with preterm birth. Using PubMed searches, studies were identified that examined associations between preterm birth and exposure to five categories of environmental toxicants, including persistent organic pollutants, drinking-water contaminants, atmospheric pollutants, metals and metalloids, and other environmental contaminants. Individual studies were summarized and specific suggestions were made for future work in regard to exposure and outcome assessment methods as well as study design, with the recommendation of focusing on potential mediating toxicological mechanisms. In conclusion, no consistent evidence was found for positive associations between individual chemical exposures and preterm birth. By identifying limitations and addressing the gaps that may have impeded the ability to identify true associations thus far, this review can guide future epidemiologic studies of environmental exposures and preterm birth. PMID:23682677

  5. Environmental contaminant exposures and preterm birth: A comprehensive review

    PubMed Central

    Ferguson, Kelly K.; O’Neill, Marie S.; Meeker, John D.

    2013-01-01

    Preterm birth is a significant public health concern, as it is associated with high risk of infant mortality, various morbidities in both the neonatal period and later in life, and a significant societal economic burden. As many cases are of unknown etiology, identification of the contribution of environmental contaminant exposures is a priority in the study of preterm birth. This is a comprehensive review of all known studies published from 1992 through August 2012 linking maternal exposure to environmental chemicals during pregnancy with preterm birth. Using PubMed searches studies were identified that examined associations between preterm birth and exposure to 5 categories of environmental toxicants, including persistent organic pollutants, drinking water contaminants, atmospheric pollutants, metals and metalloids, and other environmental contaminants. Individual studies were summarized and specific suggestions made for future work in regard to exposure and outcome assessment methods as well as study design, with the recommendation of focusing on potential mediating toxicological mechanisms. In conclusion, no consistent evidence was found for positive associations between individual chemical exposures and preterm birth. By identifying limitations and addressing the gaps that may have impeded the ability to identify true associations thus far, this review can guide future epidemiologic studies of environmental exposures and preterm birth. PMID:23682677

  6. Reconnaissance survey of chemical contamination and biological effects in southern Puget Sound

    SciTech Connect

    Not Available

    1991-04-01

    The report describes the results of a field survey south of the Tacoma Narrows bridge in southern Puget Sound. Environmental conditions were evaluated in two urban embayments, eight nonurban embayments and three areas of the main channel in the southern Sound. Stations were located in depositional areas where chemical contaminants would be expected to accumulate in the sediments. All stations were located away from known contaminant sources in order to provide integrative assessments of contamination over relatively large areas. Chemical contamination of the south Sound was evaluated by measuring chemical concentrations in subtidal bottom sediments. Bioaccumulation of chemical contaminants was evaluated by measuring chemical concentrations in flatfish muscle tissues and littleneck clam meats. Chemical-related biological effects were evaluated by conducting amphipod sediment bioassays and histopathological analyses on livers of English sole.

  7. Trace chemical contaminant generation rates for spacecraft contamination control system design

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    1995-01-01

    A spacecraft presents a unique design challenge with respect to providing a comfortable environment in which people can live and work. All aspects of the spacecraft environmental design including the size of the habitable volume, its temperature, relative humidity, and composition must be considered to ensure the comfort and health of the occupants. The crew members and the materials selected for outfitting the spacecraft play an integral part in designing a habitable spacecraft because material offgassing and human metabolism are the primary sources for continuous trace chemical contaminant generation onboard a spacecraft. Since these contamination sources cannot be completely eliminated, active control processes must be designed and deployed onboard the spacecraft to ensure an acceptably clean cabin atmosphere. Knowledge of the expected rates at which contaminants are generated is very important to the design of these processes. Data from past spacecraft missions and human contaminant production studies have been analyzed to provide this knowledge. The resulting compilation of contaminants and generation rates serve as a firm basis for past, present, and future contamination control system designs for space and aeronautics applications.

  8. CELLULAR BIOAVAILABILITY OF NATURAL HORMONES AND ENVIRONMENTAL CONTAMINANTS AS A FUNCTION OF SERUM AND CYTOSOLIC BINDING FACTORS

    EPA Science Inventory

    Environmental contaminants have been reported to function as hormone mimics in various wildlife species. To investigate a potential mechanism for the interaction of contaminants with the endocrine system, we evaluated the cellular bioavailability of numerous chemicals. Hormone bi...

  9. TXRF analysis of soils and sediments to assess environmental contamination.

    PubMed

    Bilo, Fabjola; Borgese, Laura; Cazzago, Davide; Zacco, Annalisa; Bontempi, Elza; Guarneri, Rita; Bernardello, Marco; Attuati, Silvia; Lazo, Pranvera; Depero, Laura E

    2014-12-01

    Total reflection x-ray fluorescence spectroscopy (TXRF) is proposed for the elemental chemical analysis of crustal environmental samples, such as sediments and soils. A comparative study of TXRF with respect to flame atomic absorption spectroscopy and inductively coupled plasma optical emission spectroscopy was performed. Microwave acid digestion and suspension preparation methods are evaluated. A good agreement was found among the results obtained with different spectroscopic techniques and sample preparation methods for Cr, Mn, Fe, Ni, Cu, and Zn. We demonstrated that TXRF is suitable for the assessment of environmental contamination phenomena, even if the errors for Pb, As, V, and Ba are ingent. PMID:24122164

  10. Environmental benefits of chemical propulsion

    NASA Technical Reports Server (NTRS)

    Hayes, Joyce A.; Goldberg, Benjamin E.; Anderson, David M.

    1995-01-01

    This paper identifies the necessity of chemical propulsion to satellite usage and some of the benefits accrued through monitoring global resources and patterns, including the Global Climate Change Model (GCM). The paper also summarized how the satellite observations are used to affect national and international policies. Chemical propulsion, like all environmentally conscious industries, does provide limited, controlled pollutant sources through its manufacture and usage. However, chemical propulsion is the sole source which enables mankind to launch spacecraft and monitor the Earth. The information provided by remote sensing directly affects national and international policies designed to protect the environment and enhance the overall quality of life on Earth. The resultant of chemical propulsion is the capability to reduce overall pollutant emissions to the benefit of mankind.

  11. Malignant mammary tumor in female dogs: environmental contaminants

    PubMed Central

    2010-01-01

    Mammary tumors of female dogs have greatly increased in recent years, thus demanding rapid diagnosis and effective treatment in order to determine the animal survival. There is considerable scientific interest in the possible role of environmental contaminants in the etiology of mammary tumors, specifically in relation to synthetic chemical substances released into the environment to which living beings are either directly or indirectly exposed. In this study, the presence of pyrethroid insecticide was observed in adjacent adipose tissue of canine mammary tumor. High Precision Liquid Chromatography - HPLC was adapted to detect and identify environmental contaminants in adipose tissue adjacent to malignant mammary tumor in nine female dogs, without predilection for breed or age. After surgery, masses were carefully examined for malignant neoplastic lesions. Five grams of adipose tissue adjacent to the tumor were collected to detect of environmental contaminants. The identified pyrethroids were allethrin, cyhalothrin, cypermethrin, deltamethrin and tetramethrin, with a contamination level of 33.3%. Histopathology demonstrated six female dogs (66.7%) as having complex carcinoma and three (33.3%) with simple carcinoma. From these tumors, seven (77.8%) presented aggressiveness degree III and two (22.2%) degree I. Five tumors were positive for estrogen receptors in immunohistochemical analysis. The contamination level was observed in more aggressive tumors. This was the first report in which the level of environmental contaminants could be detected in adipose tissue of female dogs with malignant mammary tumor, by HPLC. Results suggest the possible involvement of pyrethroid in the canine mammary tumor carcinogenesis. Hence, the dog may be used as a sentinel animal for human breast cancer, since human beings share the same environment and basically have the same eating habits. PMID:20587072

  12. Environmental contaminants as etiologic factors for diabetes.

    PubMed Central

    Longnecker, M P; Daniels, J L

    2001-01-01

    For both type 1 and type 2 diabetes mellitus, the rates have been increasing in the United States and elsewhere; rates vary widely by country, and genetic factors account for less than half of new cases. These observations suggest environmental factors cause both type 1 and type 2 diabetes. Occupational exposures have been associated with increased risk of diabetes. In addition, recent data suggest that toxic substances in the environment, other than infectious agents or exposures that stimulate an immune response, are associated with the occurrence of these diseases. We reviewed the epidemiologic data that addressed whether environmental contaminants might cause type 1 or type 2 diabetes. For type 1 diabetes, higher intake of nitrates, nitrites, and N-nitroso compounds, as well as higher serum levels of polychlorinated biphenyls have been associated with increased risk. Overall, however, the data were limited or inconsistent. With respect to type 2 diabetes, data on arsenic and 2,3,7,8-tetrachlorodibenzo-p-dioxin relative to risk were suggestive of a direct association but were inconclusive. The occupational data suggested that more data on exposure to N-nitroso compounds, arsenic, dioxins, talc, and straight oil machining fluids in relation to diabetes would be useful. Although environmental factors other than contaminants may account for the majority of type 1 and type 2 diabetes, the etiologic role of several contaminants and occupational exposures deserves further study. PMID:11744505

  13. Chemical contaminants in breast milk: time trends and regional variability.

    PubMed Central

    Solomon, Gina M; Weiss, Pilar M

    2002-01-01

    Research on environmentally related chemical contaminants in breast milk spans several decades and dozens of countries. The ability to use this research as an environmental indicator is limited because of a lack of consistent protocols. Data on xenobiotics in breast milk are influenced by choices in sample selection, sample pooling, analysis, and reporting. In addition, most studies have focused only on a small panel of persistent organic pollutants, despite indications that a wide range of additional chemical contaminants may also enter breast milk. Despite these limitations, however, it is possible to draw some generalizations. In this paper we review available data on levels of organochlorine pesticides, polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins (PCDDs), polybrominated diphenyl ethers (PBDEs), metals, and solvents in breast milk. Examples drawn from around the world illustrate the available data and the patterns that have appeared in various areas over time. Over the past few decades, levels of the organochlorine pesticides, PCBs, and dioxins have declined in breast milk in countries where these chemicals have been banned or otherwise regulated. In contrast, the levels of PBDEs are rising. Regional differences in levels of xenobiotics in breast milk are related to historical and current local use patterns. Diet is a major factor that influences breast milk levels of persistent organic pollutants, with patterns in fish consumption playing a particularly significant role. Improved global breast milk monitoring programs would allow for more consistent data on trends over time, detection of new xenobiotics in breast milk, and identification of disproportionately exposed populations. PMID:12055065

  14. SUITABILITY OF CUNNER (TAUTOGOLABRUS ADSPERSUS) FOR INVESTIGATING REPRODUCTIVE EFFECTS OF ENVIRONMENTAL CONTAMINANTS

    EPA Science Inventory

    Cunner (Tautogolabrus adspersus) are being studied at our laboratory as a model species to determine the effects of environmental contaminants, such as endocrine disrupting chemicals (EDCs), on estuarine fish populations. Cunner are easily obtainable and are amenable to laborator...

  15. THE EPIDEMIOLOGY OF CHEMICAL CONTAMINANTS OF DRINKING WATER

    EPA Science Inventory



    A number of chemical contaminants have been identified in drinking water. These contaminants reach drinking water supplies from various sources, including municipal and industrial discharges, urban and rural run-off, natural geological formations, drinking water distrib...

  16. Environmental chemistry of chemical warfare agents

    SciTech Connect

    MacNaughton, M.G.; Brewer, J.H.; Ledbetter-Ferrill, J.

    1995-06-01

    This paper summarizes the approach used in the preparation of a Handbook for the Corps of Engineers, Huntsville Division, on the environmental chemistry of chemical warfare agents. The agents GB and HD will be used to illustrate the type of information in the report. Those readers interested in the full report should contact Mr. Arkie Fanning, Huntsville Corps of Engineers at (505) 955-5256. The U.S. Army Corps of Engineers (ACE) has identified approximately 7,200 formerly used defense sites (FUDS) in the United States, some of which are suspected to be contaminated with chemical warfare agents (CWA). The ACE has responsibility for environmental clean-up of FUDS, including site characterization, evaluation and remediation of the site. Thirty-four FUDS and 48 active DOD installations that may contain CWA were identified in an Interim Survey and Analysis Report by the USACMDA Program Manager for Non-Stockpile Chemical Material (NSCM). The chemical agents listed include sulfur mustard (H), lewisite (L), tabun (GA), sarin (GB), VX, hydrogen cyanide (AC), cyanogen chloride (CK), phosgene (CG), BZ, and CS.

  17. Environmental remediation monitoring using chemical sensors

    SciTech Connect

    Dong X. Li

    1996-12-31

    Monitoring is one of the most critical steps in environmental site remediation. However, the conventional technique of monitoring {open_quotes}inlet{close_quotes} and {open_quotes}outlet{close_quotes} of a process stream is no longer applicable in many in-situ remedial processes such as bioventing, biosparging, and intrinsic bioremediation. Traditional soil sampling and analysis is also unsuitable for monitoring biodegradation process because of chemical and biological inhomogeneity in soil. Soil gas measurement, on the other hand, is one of the few techniques available which is ideally suited for monitoring in-situ processes, since bioremediation processes involve gaseous components such as oxygen and carbon dioxide. In addition to oxygen and carbon dioxide, contaminant vapors and other trace gaseous components found in the pores of unsaturated soils also provide information on the spatial distribution and the extent of biodegradation. These gaseous components are very mobile, which are ideal analytes for chemical sensors. In this study, oxygen, carbon dioxide, and hydrocarbon subsurface chemical sensors were employed for monitoring in-situ bioremediation of petroleum hydrocarbon contaminated soils.

  18. Chemical fingerprinting of hydrocarbon-contamination in soil.

    PubMed

    Boll, Esther S; Nejrup, Jens; Jensen, Julie K; Christensen, Jan H

    2015-03-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U.S. Environmental Protection Agency (EPAPAH16) and total petroleum hydrocarbon (TPH). The chemical fingerprinting strategy proposed in this study included four tiers: (i) qualitative analysis of GC-FID chromatograms, (ii) comparison of the chemical composition of both un-substituted and alkyl-substituted polycyclic aromatic compounds (PACs), (iii) diagnostic ratios of selected PACs, and (iv) multivariate data analysis of sum-normalized PAC concentrations. The assessment criteria included quantitative analysis of 19 PACs and C1-C4 alkyl-substituted homologues of naphthalene, fluorene, dibenzothiophene, phenanthrene, pyrene, and chrysene; and 13 oxygenated polycyclic aromatic compounds (O-PACs). The chemical composition of un-substituted and alkyl-substituted PACs and visual interpretation of GC-FID chromatograms were in combination successful in differentiating pyrogenic and petrogenic hydrocarbon sources and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends. Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl-substituted PACs are dominant in petrogenic sources, the evaluation of the total load of PACs based on EPAPAH16 was not representative. Likewise, the O-PACs are not

  19. Chemical hydrogeology in natural and contaminated environments

    USGS Publications Warehouse

    Back, W.; Baedecker, M.J.

    1989-01-01

    Chemical hydrogeology, including organic and inorganic aspects, has contributed to an increased understanding of groundwater flow systems, geologic processes, and stressed environments. Most of the basic principles of inorganic-chemical hydrogeology were first established by investigations of organic-free, regional-scale systems for which simplifying assumptions could be made. The problems of groundwater contamination are causing a shift of emphasis to microscale systems that are dominated by organic-chemical reactions and that are providing an impetus for the study of naturally occurring and manmade organic material. Along with the decrease in scale, physical and chemical heterogeneity become major controls. Current investigations and those selected from the literature demonstrate that heterogeneity increases in importance as the study site decreases from regional-scale to macroscale to microscale. Increased understanding of regional-scale flow systems is demonstrated by selection of investigations of carbonate and volcanic aquifers to show how applications of present-day concepts and techniques can identify controlling chemical reactions and determine their rates; identify groundwater flow paths and determine flow velocity; and determine aquifer characteristics. The role of chemical hydrogeology in understanding geologic processes of macroscale systems is exemplified by selection of investigations in coastal aquifers. Phenomena associated with the mixing zone generated by encroaching sea water include an increase in heterogeneity of permeability, diagenesis of minerals, and formation of geomorphic features, such as caves, lagoons, and bays. Ore deposits of manganese and uranium, along with a simulation model of ore-forming fluids, demonstrate the influence of heterogeneity and of organic compounds on geochemical reactions associated with genesis of mineral deposits. In microscale environments, importance of heterogeneity and consequences of organic reactions in

  20. Reviews of environmental contamination and toxicology

    SciTech Connect

    Ware, G.

    2007-07-01

    Review of Environmental Contamination and Toxicology attempts to provide concise, critical reviews of timely advances, philosophy and significant areas of accomplished or needed endeavour in the total field of xenobiotics, in any segment of the environment, as well as toxicological implications. This edition contains a paper 'Health effects of arsenic, fluorine and selenium from indoor burning of Chinese coal, by Liu Guijian, Zheng Liugen, Nurdan S. Duzgoren-Aydin, Gao Lianfen, Liu Junhua, and Peng Zicheng. Other papers are: Chemistry and fate of simazine; Ethanol production: energy, economic, and environmental losses; Arsenic behaviour from groundwater and soil to crops: impacts on agriculture and food safety; Mercury content of hair in different populations relative to fish consumption; and Toxicology of 1,3-butadiene, chloroprene, and isoprene. 15 ills.

  1. Reviews of environmental contamination and toxicology

    SciTech Connect

    Ware, G.W.

    1987-01-01

    These are the first and second volumes under the new Editor of the series that is a continuation of Residue Reviews. The nine reviews in them are as follows: Attenuation of polychlorinated biphenyls in soils; Maleic hydrazide residues in tobacco and their toxicological implications; Fate and persistence of aquatic herbicides; Organophosphorus pesticide residues in fruits and vegetables; Biological half-lives of chemicals in fishes; Propylene chlorohydrins; toxicology, metabolism and environmental fate; The pyrolysis of cannabinoids; Pesticide fate from vine to wine; Transport and transformation of organic chemicals in the soil-air-water ecosystem.

  2. Raman-spectroscopy-based chemical contaminant detection in milk powder

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Addition of edible and inedible chemical contaminants in food powders for purposes of economic benefit has become a recurring trend. In recent years, severe health issues have been reported due to consumption of food powders contaminated with chemical substances. This study examines the effect of sp...

  3. Methods To Characterize Contaminant Residuals After Environmental Dredging

    EPA Science Inventory

    Environmental dredging is a common remedial action for managing contaminated sediments. However, post dredging contaminant concentrations in surface sediment are difficult to predict prior to initiating dredging actions. In some cases, post surface concentrations have been high...

  4. Mapping Environmental Contaminants at Ray Mine, AZ

    NASA Technical Reports Server (NTRS)

    McCubbin, Ian; Lang, Harold

    2000-01-01

    Airborne Visible and InfraRed Imaging Spectrometer (AVIRIS) data was collected over Ray Mine as part of a demonstration project for the Environmental Protection Agency (EPA) through the Advanced Measurement Initiative (AMI). The overall goal of AMI is to accelerate adoption and application of advanced measurement technologies for cost effective environmental monitoring. The site was selected to demonstrate the benefit to EPA in using advanced remote sensing technologies for the detection of environmental contaminants due to the mineral extraction industry. The role of the Jet Propulsion Laboratory in this pilot study is to provide data as well as performing calibration, data analysis, and validation of the AVIRIS results. EPA is also interested in developing protocols that use commercial software to perform such work on other high priority EPA sites. Reflectance retrieval was performed using outputs generated by the MODTRAN radiative transfer model and field spectra collected for the purpose of calibration. We are presenting advanced applications of the ENVI software package using n-Dimensional Partial Unmixing to identify image-derived endmembers that best match target materials reference spectra from multiple spectral libraries. Upon identification of the image endmembers the Mixture Tuned Match Filter algorithm was applied to map the endmembers within each scene. Using this technique it was possible to map four different mineral classes that are associated with mine generated acid waste.

  5. Occurrence and methods of control of chemical contaminants in foods.

    PubMed Central

    Jelinek, C

    1981-01-01

    Contamination of food by chemicals can result from their use on agricultural commodities; accidents or misuse during food handling and processing; nucler weapon testing and operation of nuclear power plants; and disposal of industrial chemicals or by-products with subsequent dispersal into the environment. The Food and Drug Administration (FDA), as the Federal agency mainly responsible for evaluating the hazards of chemical contaminants and enforcing any established tolerance levels for them in foods, has been monitoring pesticides, industrial chemicals, metals, and radionuclides in foods in its nationwide programs for many years. In addition, FDA searches for potential contaminants among the approximately 50,000 industrial chemicals manufactured in the United States and coordinates its efforts with those of other Federal and state agencies in these investigations. The overall results of the FDA surveillance and compliance programs for chemical contaminants in foods, as well as specific examples illustrating the wide range of incidents and types of occurrences, are presented. PMID:6786871

  6. Trace organic chemicals contamination in ground water recharge.

    PubMed

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed. PMID:18378277

  7. Uppsala Consensus Statement on Environmental Contaminants and the Global Obesity Epidemic

    PubMed Central

    Lind, Lars; Lind, P. Monica; Lejonklou, Margareta H.; Dunder, Linda; Bergman, Åke; Guerrero-Bosagna, Carlos; Lampa, Erik; Lee, Hong Kyu; Legler, Juliette; Nadal, Angel; Pak, Youngmi Kim; Phipps, Richard P.; Vandenberg, Laura N.; Zalko, Daniel; Ågerstrand, Marlene; Öberg, Mattias; Blumberg, Bruce; Heindel, Jerrold J.; Birnbaum, Linda S.

    2016-01-01

    Summary: From the lectures presented at the 2nd International Workshop on Obesity and Environmental Contaminants, which was held in Uppsala, Sweden, on 8–9 October 2015, it became evident that the findings from numerous animal and epidemiological studies are consistent with the hypothesis that environmental contaminants could contribute to the global obesity epidemic. To increase awareness of this important issue among scientists, regulatory agencies, politicians, chemical industry management, and the general public, the authors summarize compelling scientific evidence that supports the hypothesis and discuss actions that could restrict the possible harmful effects of environmental contaminants on obesity. PMID:27135406

  8. Dermal exposure to environmental contaminants in the Great Lakes.

    PubMed

    Moody, R P; Chu, I

    1995-12-01

    This paper reviews the literature to determine the importance of the dermal route of exposure for swimmers and bathers using Great Lakes waters and summarizes the chemical water contaminants of concern in the Great Lakes along with relevant dermal absorption data. We detail in vivo and in vitro methods of quantifying the degree of dermal absorption and discuss a preference for infinite dose data as opposed to finite dose data. The basic mechanisms of the dermal absorption process, routes of chemical entry, and the environmental and physiological factors affecting this process are also reviewed, and we discuss the concepts of surface slick exposure to lipophilic compounds and the adsorption of contaminants to water sediment. After presenting mathematical constructs for calculating the degree of exposure, we present in vitro data concerning skin absorption of polyaromatic hydrocarbons adsorbed to Great Lakes water sediment to show that in a worst-case scenario exposure via the dermal route can be equally important to the oral route. We have concluded that prolonged exposure of the skin, especially under conditions that may enhance dermal absorption (e.g., sunburn) may result in toxicologically significant amounts of certain water contaminants being absorbed. It is recommended that swimming should be confined to public beaches, people should refrain from swimming if they are sunburned, and skin should be washed with soap as soon as possible following exposure. Future studies should be conducted to investigate the importance of the dermal exposure route to swimmers and bathers. PMID:8635434

  9. Dermal exposure to environmental contaminants in the Great Lakes.

    PubMed Central

    Moody, R P; Chu, I

    1995-01-01

    This paper reviews the literature to determine the importance of the dermal route of exposure for swimmers and bathers using Great Lakes waters and summarizes the chemical water contaminants of concern in the Great Lakes along with relevant dermal absorption data. We detail in vivo and in vitro methods of quantifying the degree of dermal absorption and discuss a preference for infinite dose data as opposed to finite dose data. The basic mechanisms of the dermal absorption process, routes of chemical entry, and the environmental and physiological factors affecting this process are also reviewed, and we discuss the concepts of surface slick exposure to lipophilic compounds and the adsorption of contaminants to water sediment. After presenting mathematical constructs for calculating the degree of exposure, we present in vitro data concerning skin absorption of polyaromatic hydrocarbons adsorbed to Great Lakes water sediment to show that in a worst-case scenario exposure via the dermal route can be equally important to the oral route. We have concluded that prolonged exposure of the skin, especially under conditions that may enhance dermal absorption (e.g., sunburn) may result in toxicologically significant amounts of certain water contaminants being absorbed. It is recommended that swimming should be confined to public beaches, people should refrain from swimming if they are sunburned, and skin should be washed with soap as soon as possible following exposure. Future studies should be conducted to investigate the importance of the dermal exposure route to swimmers and bathers. PMID:8635434

  10. Developmental thyroid hormone disruption: prevalence, environmental contaminants and neurodevelopmental consequences.

    PubMed

    Gilbert, Mary E; Rovet, Joanne; Chen, Zupei; Koibuchi, Noriyuki

    2012-08-01

    the thyroid axis were reviewed. Noriyuki Koibuchi described molecular targets of TH-mediated signalling accompanying exposure to persistent organic pollutants. Both polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are prevalent environmental contaminants that disrupt TH signalling at the receptor level. This action by these chemical classes could contribute to the negative impact of these chemicals on brain function. In summary, epidemiological, preclinical and animal research has clearly identified the critical role of TH in brain development. Additional work is required to understand the impact of low level perturbations of the thyroid axis to evaluate the risk associated with environmental contaminants with thyroid action. PMID:22138353

  11. Environmental impacts on soil and groundwater at airports: origin, contaminants of concern and environmental risks.

    PubMed

    Nunes, L M; Zhu, Y-G; Stigter, T Y; Monteiro, J P; Teixeira, M R

    2011-11-01

    Environmental impacts of airports are similar to those of many industries, though their operations expand over a very large area. Most international impact assessment studies and environmental management programmes have been giving less focus on the impacts to soil and groundwater than desirable. This may be the result of the large attention given to air and noise pollution, relegating other environmental descriptors to a second role, even when the first are comparatively less relevant. One reason that contributes to such "biased" evaluation is the lack of systematic information about impacts to soil and groundwater from airport activities, something the present study intends to help correct. Results presented here include the review of over seven hundred documents and online databases, with the objective of obtaining the following information to support environmental studies: (i) which operations are responsible for chemical releases?; (ii) where are these releases located?; (iii) which contaminants of concern are released?; (iv) what are the associated environmental risks? Results showed that the main impacts occur as a result of fuel storage, stormwater runoff and drainage systems, fuel hydrant systems, fuel transport and refuelling, atmospheric deposition, rescue and fire fighting training areas, winter operations, electrical substations, storage of chemical products by airport owners or tenants, and maintenance of green areas. A new method for ranking environmental risks of organic substances, based on chemical properties, is proposed and applied. Results show that the contaminants with the highest risks are the perfluorochemicals, benzene, trichloroethylene and CCl(4). The obtained information provides a basis for establishing the planning and checking phases of environmental management systems, and may also help in the best design of pollution prevention measures in order to avoid or reduce significant environmental impacts from airports. PMID:22002748

  12. On the reversibility of environmental contamination with persistent organic pollutants.

    PubMed

    Choi, Sung-Deuk; Wania, Frank

    2011-10-15

    An understanding of the factors that control the time trends of persistent organic pollutants (POPs) in the environment is required to evaluate the effectiveness of emission reductions and to predict future exposure. Using a regional contaminant fate model, CoZMo-POP 2, and a generic bell-shaped emission profile, we simulated time trends of hypothetical chemicals with a range of POP-like partitioning and degradation properties in different compartments of a generic warm temperate environment, with the objective of identifying the processes that may prevent the reversibility of environmental contamination with POPs after the end of primary emissions. Evaporation from soil and water can prevent complete reversibility of POP contamination of the atmosphere after the end of emissions. However, under the selected conditions, only for organic chemicals within a narrow range of volatility, that is, a logarithm of the octanol air equilibrium partition coefficient between 7 and 8, and with atmospheric degradation half-lives in excess of a few month can evaporation from environmental reservoirs sustain atmospheric levels that are within an order of magnitude of those resulting from primary emissions. HCB and α-HCH fulfill these criteria, which may explain, why their atmospheric concentrations have remained relatively high decades after their main primary emissions have been largely eliminated. Soil-to-water transfer is found responsible for the lack of reversibility of POP contamination of the aqueous environment after the end of emissions, whereas reversal of water-sediment exchange, although possible, is unlikely to contribute significantly. Differences in the reversibility of contamination in air and water suggests the possibility of changes in the relative importance of various exposure pathways after the end of primary emissions, namely an increase in the importance of the aquatic food chain relative to the agricultural one, especially if the former has a benthic

  13. The mixture toxicity of environmental contaminants containing sulfonamides and other antibiotics in Escherichia coli: Differences in both the special target proteins of individual chemicals and their effective combined concentration.

    PubMed

    Long, Xi; Wang, Dali; Lin, Zhifen; Qin, Mengnan; Song, Chunlei; Liu, Ying

    2016-09-01

    Organisms in the environment are exposed to mixtures of multiple contaminants, leading to serious environmental harm. These mixtures pose an ecological risk and have attracted an increasing amount of attention; however there has been little in-depth research the toxicity of mixtures, such as antibiotics. To determine how different mixtures of antibiotics affect organisms, the individual and mixture toxicity of sulfonamides and several antibiotics were determined using Escherichia coli as a target organism in our study. The results show that additive effects occur between sulfonamides and quinolones or with a portion of β-lactams, synergistic effects appear between sulfonamides and their potentiators or cefotaxime sodium, and antagonistic effects arise between sulfonamides and tetracyclines or penicillin V potassium salt. In addition, the toxicity mechanism of binary mixtures is further discussed and the results reveal that the joint effect differences depend not only the target proteins of individual chemicals but also on their effective combined concentration based on the approach of Quantitative Structure Activity Relationships (QSARs) and molecular docking. This study introduces the concept of the "effective concentration" to provide insight into understanding the mechanism of binary mixtures, which will be beneficial for evaluating the ecological risk of antibiotics. PMID:27269994

  14. Environmental Mass Spectrometry: Emerging Contaminants and Current Issues (2010 Review)

    EPA Science Inventory

    This biennial review covers developments in environmental mass spectrometry for emerging environmental contaminants over the period of 2008-2009. A few significant references that appeared between January and February 2010 are also included. Analytical Chemistry’s current polic...

  15. Effects of chemically contaminated sewage sludge on an aphid population

    SciTech Connect

    Culliney, T.W.; Pimentel, D.

    1986-12-01

    Survival and fecundity of green peach aphids, Myzus persicae, were markedly reduced when they were fed on collard plants grown in pots of soil treated with chemically contaminated sewage sludge, as compared to populations on potted plants grown in uncontaminated sludge or on fertilized soil (control). Calculated demographic parameters differed significantly between the contaminated sludge and uncontaminated sludge populations and between the contaminated sludge and control populations. No significant differences were detected between the uncontaminated sludge and control populations. The ecological effects on the aphids suggest that plant uptake and translocation of chemicals from the contaminated sludge affected aphid fitness through direct toxicity and/or reduced nutritional value of the plant. These results indicate that phytophagous insects may be affected by chemical contaminants in sewage sludge used in agriculture.

  16. ENVIRONMENTAL ENGINEERING AND ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Endocrine disruptors are a class of chemicals of growing interest to the environmental community. USEPA's Risk Assessment Forum defined an endocrine disrupting chemical (EDC) as "an exogenous agent that interferes with the synthesis, secretion, transport, binding, action, or elim...

  17. A framework for net environmental benefit analysis for remediation or restoration of contaminated sites.

    PubMed

    Efroymson, Rebecca A; Nicolette, Joseph P; Suter, Glenn W

    2004-09-01

    Net environmental benefits are gains in value of environmental services or other ecological properties attained by remediation or ecological restoration minus the value of adverse environmental effects caused by those actions. Net environmental benefit analysis (NEBA) is a methodology for comparing and ranking net environmental benefits associated with multiple management alternatives. A NEBA for chemically contaminated sites typically involves comparison of several management alternatives: (1) leaving contamination in place; (2) physically, chemically, or biologically remediating the site through traditional means; (3) improving ecological value through onsite and offsite restoration alternatives that do not directly focus on removal of chemical contamination; or (4) a combination of those alternatives. NEBA involves activities that are common to remedial alternatives analysis for state regulations and the Comprehensive Environmental Response, Compensation, and Liability Act, post-closure and corrective action permits under the Resource Conservation and Recovery Act, evaluation of generic types of response actions pertinent to the Oil Pollution Act, and land management actions that are negotiated with regulatory agencies in flexible regulatory environments (i.e., valuing environmental services or other ecological properties, assessing adverse impacts, and evaluating remediation or restoration options). This article presents a high-level framework for NEBA at contaminated sites with subframeworks for natural attenuation (the contaminated reference state), remediation, and ecological restoration alternatives. Primary information gaps related to NEBA include nonmonetary valuation methods, exposure-response models for all stressors, the temporal dynamics of ecological recovery, and optimal strategies for ecological restoration. PMID:15520889

  18. Chemical Agents: Personal Cleaning and Disposal of Contaminated Clothing

    MedlinePlus

    ... Facts About Sheltering Facts About Personal Cleaning Public Health Emergency Response Guide Reaching At-Risk Populations MedCon Chemical Agents: Facts About Personal Cleaning and Disposal of Contaminated ...

  19. CHEMICAL CONTAMINANTS IN NONOCCUPATIONALLY EXPOSED U.S. RESIDENTS

    EPA Science Inventory

    The report reviews the manner in which chemical contaminants found in nonoccupationally exposed U.S. residents enter the environment and subsequently human tissue. Approximately 100 contaminants are treated. Sources of literature used in the survey covered a 30-year period, the b...

  20. Robotic automation of the environmental chemical laboratory

    SciTech Connect

    Hollen, R.M.; Erkkila, T.H.

    1994-04-01

    To date, automation of the environmental chemical laboratory has been a slow and tedious affair. In many, of our domestic analytical laboratories, automation consists of no more than analytical instrumentation coupled to an autosampling device. When we look into the future environmental needs of our nation, and indeed the world, it is apparent that we will not be able to keep up with the drastically increasing sample load without automated analyses. Stricter regulatory requirements on the horizon will potentially mandate staggering changes in sampling and characterization requirements. The Contaminant Analysis Automation (CAA) Program was initiated in 1990 by the US government`s Department of Energy (DOE) to address these issues. By application of a new robotics paradigm, based on an integrated production chemistry foundation applied to analytical chemistry, the CAA will use standardized modular instruments called Standard Laboratory Modules (SLM) to provide flexible and standardized automation systems. By promoting the commercialization of this technology, CAA will provide the integrated robotics systems necessary to meet the coming remediation demands. This multilaboratory program is within the Robotics Technology Development Program (RTDP) of the Office of Technology Development (OTD).

  1. Characterization of chemical waste site contamination and its extent using bioassays

    SciTech Connect

    Thomas, J.M.; Callahan, C.A.; Cline, J.F.; Greene, J.C.; McShane, M.C.; Miller, W.E.; Peterson, S.A.; Simpson, J.C.; Skalski, J.R.

    1984-12-01

    Bioassays were used in a three-phase research project to assess the comparative sensitivity of test organisms to known chemicals, determine if the chemical components in field soil and water samples containing unknown contaminants could be inferred from our laboratory studies using known chemicals, and to investigate kriging (a relatively new statistical mapping technique) and bioassays as methods to define the areal extent of chemical contamination. The algal assay generally was most sensitive to samples of pure chemicals, soil elutriates and water from eight sites with known chemical contamination. Bioassays of nine samples of unknown chemical composition from the Rocky Mountain Arsenal (RMA) site showed that a lettuce seed soil contact phytoassay was most sensitive. In general, our bioassays can be used to broadly identify toxic components of contaminated soil. Nearly pure compounds of insecticides and herbicides were less toxic in the sensitive bioassays than were the counterpart commercial formulations. This finding indicates that chemical analysis alone may fail to correctly rate the severity of environmental toxicity. Finally, we used the lettuce seed phytoassay and kriging techniques in a field study at RMA to demonstrate the feasibility of mapping contamination to aid in cleanup decisions. 25 references, 9 figures, 9 tables.

  2. Toxicology profiles of chemical and radiological contaminants at Hanford

    SciTech Connect

    Harper, B.L.; Strenge, D.L.; Stenner, R.D.; Maughan, A.D.; Jarvis, M.K.

    1995-07-01

    This document summarizes toxicology information required under Section 3.3 (Toxicity Assessment) of HSRAM, and can also be used to develop the short toxicology profiles required in site assessments (described in HSRAM, Section 3.3.5). Toxicology information is used in the dose-response step of the risk assessment process. The dose-response assessment describes the quantitative relationship between the amount of exposure to a substance and the extent of toxic injury or disease. Data are derived from animal studies or, less frequently, from studies in exposed human populations. The risks of a substance cannot be ascertained with any degree of confidence unless dose-response relations are quantified. This document summarizes dose-response information available from the US Environmental Protection Agency (EPA). The contaminants selected for inclusion in this document represent most of the contaminants found at Hanford (both radiological and chemical), based on sampling and analysis performed during site investigations, and historical information on waste disposal practices at the Hanford Site.

  3. Arsenic and dichlorvos: Possible interaction between two environmental contaminants.

    PubMed

    Flora, Swaran J S

    2016-05-01

    Metals are ubiquitously present in the environment and pesticides are widely used throughout the world. Environmental and occupational exposure to metal along with pesticide is an area of great concern to both the public and regulatory authorities. Our major concern is that combination of these toxicant present in environment may elicit toxicity either due to additive or synergistic interactions or 'joint toxic actions' among these toxicants. It poses a rising threat to human health. Water contamination particularly ground water contamination with arsenic is a serious problem in today's scenario since arsenic is associated with several kinds of health problems, such arsenic associated health anomalies are commonly called as 'Arsenism'. Uncontrolled use and spillage of pesticides into the environment has resulted in alarming situation. Moreover serious concerns are being addressed due to their persistence in the environmental matrices such as air, soil and surface water runoff resulting in continuous exposure of these harmful chemicals to human beings and animals. Bio-availability of these environmental toxicants has been enhanced much due to anthropological activities. Dreadfully very few studies are available on combined exposures to these toxicants on the animal or human system. Studies on the acute and chronic exposure to arsenic and DDVP are well reported and well defined. Arsenic is a common global ground water contaminant while dichlorvos is one of the most commonly and widely employed organophosphate based insecticide used in agriculture, horticulture etc. There is thus a real situation where a human may get exposed to these toxicants while working in a field. This review highlights the individual and combined exposure to arsenic and dichlorvos on health. PMID:27049126

  4. Contamination Effects Due to Space Environmental Interactions

    NASA Technical Reports Server (NTRS)

    Chen, Philip T.; Paquin, Krista C. (Technical Monitor)

    2001-01-01

    Molecular and particulate contaminants are commonly generated from the orbital spacecraft operations that are under the influence of the space environment. Once generated, these contaminants may attach to the surfaces of the spacecraft or may remain in the vicinity of the spacecraft. In the event these contaminants come to rest on the surfaces of the spacecraft or situated in the line-of-sight of the observation path, they will create various degrees of contamination effect which may cause undesirable effects for normal spacecraft operations, There will be circumstances in which the spacecraft may be subjected to special space environment due to operational conditions. Interactions between contaminants and special space environment may alter or greatly increase the contamination effect due to the synergistic effect. This paper will address the various types of contamination generation on orbit, the general effects of the contamination on spacecraft systems, and the typical impacts on the spacecraft operations due to the contamination effect. In addition, this paper will explain the contamination effect induced by the space environment and will discuss the intensified contamination effect resulting from the synergistic effect with the special space environment.

  5. BIOAVAILABILITY OF CHEMICAL CONTAMINANTS IN AQUATIC SYSTEMS

    EPA Science Inventory

    Before a chemical can elicit toxicity, the animal must accumulate a dose at a target tissue of sufficient magnitude to produce a response. Bioavailability refers to the degree to which this accumulation occurs relative to the amount of chemical present in the environment, and is ...

  6. Environmental effects of soil contamination by shale fuel oils.

    PubMed

    Kanarbik, Liina; Blinova, Irina; Sihtmäe, Mariliis; Künnis-Beres, Kai; Kahru, Anne

    2014-10-01

    Estonia is currently one of the leading producers of shale oils in the world. Increased production, transportation and use of shale oils entail risks of environmental contamination. This paper studies the behaviour of two shale fuel oils (SFOs)--'VKG D' and 'VKG sweet'--in different soil matrices under natural climatic conditions. Dynamics of SFOs' hydrocarbons (C10-C40), 16 PAHs, and a number of soil heterotrophic bacteria in oil-spiked soils was investigated during the long-term (1 year) outdoor experiment. In parallel, toxicity of aqueous leachates of oil-spiked soils to aquatic organisms (crustaceans Daphnia magna and Thamnocephalus platyurus and marine bacteria Vibrio fischeri) and terrestrial plants (Sinapis alba and Hordeum vulgare) was evaluated. Our data showed that in temperate climate conditions, the degradation of SFOs in the oil-contaminated soils was very slow: after 1 year of treatment, the decrease of total hydrocarbons' content in the soil did not exceed 25 %. In spite of the comparable chemical composition of the two studied SFOs, the VKG sweet posed higher hazard to the environment than the heavier fraction (VKG D) due to its higher mobility in the soil as well as higher toxicity to aquatic and terrestrial species. Our study demonstrated that the correlation between chemical parameters (such as total hydrocarbons or total PAHs) widely used for the evaluation of the soil pollution levels and corresponding toxicity to aquatic and terrestrial organisms was weak. PMID:24865504

  7. WORKSHOP ON ENVIRONMENTALLY CONSCIOUS CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    To encourage the consideration of environmental issues during chemical process design, the USEPA has developed techniques and software tools to evaluate the relative environmental impact of a chemical process. These techniques and tools aid in the risk management process by focus...

  8. Chemical contaminants in the Wadden Sea: Sources, transport, fate and effects

    NASA Astrophysics Data System (ADS)

    Laane, R. W. P. M.; Vethaak, A. D.; Gandrass, J.; Vorkamp, K.; Köhler, A.; Larsen, M. M.; Strand, J.

    2013-09-01

    The Wadden Sea receives contaminants from various sources and via various transport routes. The contaminants described in this overview are various metals (Cd, Cu, Hg, Pb and Zn) and various organic contaminants (polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and lindane (hexachlorocyclohexane, γ-HCH)). In addition, information is presented about other and emerging contaminants such as antifouling biocides (e.g. TBT and Irgarol), brominated flame retardants (BFRs), poly- and perfluorinated compounds (PFCs) and pharmaceutical and personal care products (PPCPs). Special attention is given to biogeochemical processes that contribute to the mobilization of contaminants in the surface sediments of the Wadden Sea. Finally, the effects on organisms of contaminants are reviewed and discussed. The main source of contaminants in the Wadden Sea are the rivers Rhine (via de Dutch coastal zone), Elbe and Weser. The Wadden Sea is not a sink for contaminants and adsorbed contaminants are transported from east to west. The surface sediments of the Wadden Sea are an important source for contaminants to the water above. The input and concentration of most contaminants have significantly decreased in water, sediments, organisms (e.g., mussel, flounder and bird eggs) in various parts of the Wadden Sea in the last three decades. Remarkably, the Cd concentration in mussels is increasing the last decades. In recent decades, the effects of contaminants on organisms (e.g., flounder, seal) have fallen markedly. Most of the affected populations have recovered, except for TBT induced effects in snails. Little is known about the concentration and effects of most emerging contaminants and the complex environmental mixtures of contaminants. It is recommended to install an international coordinated monitoring programme for contaminants and their effects in the whole Wadden Sea and to identify the chemical contaminants that really cause the effect.

  9. LEVELS OF CHEMICAL CONTAMINANTS IN NONOCCUPATIONALLY EXPOSED U.S. RESIDENTS

    EPA Science Inventory

    This report is a compilation of information on chemical contaminants resulting from environmental pollution and found in nonoccupationally exposed U.S. residents. Listed in tabular form for each of approximately 100 elements or compounds are: the tissue the compound was found in;...

  10. PILOT-SCALE INCINERATION OF CONTAMINATED SOIL FROM THE CHEMICAL INSECTICIDE CORPORATION SUPERFUND SITE

    EPA Science Inventory

    An incineration test program was conducted at the U.S. Environmental protection Agency's Incinerator Research Facility to evaluate the potential of incineration as an option to treat contaminated soils at the Chemical insecticide Corporation Site. The test data show that: he orga...

  11. Environmental contamination by mercury in Iraq

    PubMed Central

    Jernelöv, A.

    1976-01-01

    Following the outbreak of organomercury poisoning in Iraq, an investigation was carried out during the spring and summer of 1972 to evaluate environmental contamination by organomercury. Analyses were performed on fish of several species (not typical predators) and on a few specimens of aquatic birds (not fish-eating). Most fish samples contained concentrations in muscle ranging from 0.01 to 0.15 mg/kg. These concentrations are within the range found in tropical rivers. Higher figures, 0.3-0.5 mg/kg, were found downstream from a caustic soda plant south of Baghdad. A few cases of very high mercury concentrations (25-30 mg/kg) were reported from an area where fish kills had occurred. Aquatic birds (ducks and waders) contained low concentrations of mercury (900-2750 ng/g). Tail feathers of seed-eating birds were found to contain 13 500-21 000 ng/g of mercury, which is about 10 times higher than values reported from Ethiopia and within the range found in Sweden and Canada. Insect-eating birds contained 1850-5200 ng/g, which is thought to be slightly elevated. Extremely high concentrations of mercury were found in muscle tissue of dead seed-eating birds (15 000-40 000 ng/g), while feathers contained similar concentrations (9000-52 000 ng/g). These extremely high concentrations were found only in the vicinity of storehouses where treated seed was kept. No birds of prey could be caught and analysed. PMID:1086159

  12. Microbial contamination and chemical toxicity of the Rio Grande

    PubMed Central

    Mendoza, Jose; Botsford, James; Hernandez, Jose; Montoya, Anna; Saenz, Roswitha; Valles, Adrian; Vazquez, Alejandro; Alvarez, Maria

    2004-01-01

    Background The Rio Grande River is the natural boundary between U.S. and Mexico from El Paso, TX to Brownsville, TX. and is one of the major water resources of the area. Agriculture, farming, maquiladora industry, domestic activities, as well as differences in disposal regulations and enforcement increase the contamination potential of water supplies along the border region. Therefore, continuous and accurate assessment of the quality of water supplies is of paramount importance. The objectives of this study were to monitor water quality of the Rio Grande and to determine if any correlations exist between fecal coliforms, E. coli, chemical toxicity as determined by Botsford's assay, H. pylori presence, and environmental parameters. Seven sites along a 112-Km segment of the Rio Grande from Sunland Park, NM to Fort Hancock, TX were sampled on a monthly basis between January 2000 and December 2002. Results The results showed great variability in the number of fecal coliforms, and E. coli on a month-to-month basis. Fecal coliforms ranged between 0–106 CFU/100 ml while E. coli ranged between 6 to > 2419 MPN. H. pylori showed positive detection for all the sites at different times. Toxicity ranged between 0 to 94% of inhibition capacity (IC). Since values above 50% are considered to be toxic, most of the sites displayed significant chemical toxicity at different times of the year. No significant correlations were observed between microbial indicators and chemical toxicity. Conclusion The results of the present study indicate that the 112-Km segment of the Rio Grande river from Sunland Park, NM to Fort Hancock, TX exceeds the standards for contact recreation water on a continuous basis. In addition, the presence of chemical toxicity in most sites along the 112-Km segment indicates that water quality is an area of concern for the bi-national region. The presence of H. pylori adds to the potential health hazards of the Rio Grande. Since no significant correlation was

  13. Chemical contaminants in swimming pools: Occurrence, implications and control.

    PubMed

    Teo, Tiffany L L; Coleman, Heather M; Khan, Stuart J

    2015-03-01

    A range of trace chemical contaminants have been reported to occur in swimming pools. Current disinfection practices and monitoring of swimming pool water quality are aimed at preventing the spread of microbial infections and diseases. However, disinfection by-products (DBPs) are formed when the disinfectants used react with organic and inorganic matter in the pool. Additional chemicals may be present in swimming pools originating from anthropogenic sources (bodily excretions, lotions, cosmetics, etc.) or from the source water used where trace chemicals may already be present. DBPs have been the most widely investigated trace chemical contaminants, including trihalomethanes (THMs), haloacetic acids (HAAs), halobenzoquinones (HBQs), haloacetonitriles (HANs), halonitromethanes (HNMs), N-nitrosamines, nitrite, nitrates and chloramines. The presence and concentrations of these chemical contaminants are dependent upon several factors including the types of pools, types of disinfectants used, disinfectant dosages, bather loads, temperature and pH of swimming pool waters. Chemical constituents of personal care products (PCPs) such as parabens and ultraviolet (UV) filters from sunscreens have also been reported. By-products from reactions of these chemicals with disinfectants and UV irradiation have been reported and some may be more toxic than their parent compounds. There is evidence to suggest that exposure to some of these chemicals may lead to health risks. This paper provides a detailed review of various chemical contaminants reported in swimming pools. The concentrations of chemicals present in swimming pools may also provide an alternative indicator to swimming pool water quality, providing insights to contamination sources. Alternative treatment methods such as activated carbon filtration and advanced oxidation processes may be beneficial in improving swimming pool water quality. PMID:25497109

  14. THYROID DISRUPTING CHEMICALS: CHALLENGES IN ASSESSING NEUROTOXIC RISK FROM ENVIRONMENTAL MIXTURES.

    EPA Science Inventory

    Environmental contaminants are known to act as thyroid disrupting chemicals (TDCs). Broadly defined, TDCs are xenobiotics that alter the structure or function of the thyroid gland, alter regulatory enzymes associated with thyroid hormone (TH) homeostasis, or change circulating o...

  15. Toxicokinetic Triage for Environmental Chemicals

    PubMed Central

    Wambaugh, John F.; Wetmore, Barbara A.; Pearce, Robert; Strope, Cory; Goldsmith, Rocky; Sluka, James P.; Sedykh, Alexander; Tropsha, Alex; Bosgra, Sieto; Shah, Imran; Judson, Richard; Thomas, Russell S.; Woodrow Setzer, R.

    2015-01-01

    Toxicokinetic (TK) models link administered doses to plasma, blood, and tissue concentrations. High-throughput TK (HTTK) performs in vitro to in vivo extrapolation to predict TK from rapid in vitro measurements and chemical structure-based properties. A significant toxicological application of HTTK has been “reverse dosimetry,” in which bioactive concentrations from in vitro screening studies are converted into in vivo doses (mg/kg BW/day). These doses are predicted to produce steady-state plasma concentrations that are equivalent to in vitro bioactive concentrations. In this study, we evaluate the impact of the approximations and assumptions necessary for reverse dosimetry and develop methods to determine whether HTTK tools are appropriate or may lead to false conclusions for a particular chemical. Based on literature in vivo data for 87 chemicals, we identified specific properties (eg, in vitro HTTK data, physico-chemical descriptors, and predicted transporter affinities) that correlate with poor HTTK predictive ability. For 271 chemicals we developed a generic HT physiologically based TK (HTPBTK) model that predicts non-steady-state chemical concentration time-courses for a variety of exposure scenarios. We used this HTPBTK model to find that assumptions previously used for reverse dosimetry are usually appropriate, except most notably for highly bioaccumulative compounds. For the thousands of man-made chemicals in the environment that currently have no TK data, we propose a 4-element framework for chemical TK triage that can group chemicals into 7 different categories associated with varying levels of confidence in HTTK predictions. For 349 chemicals with literature HTTK data, we differentiated those chemicals for which HTTK approaches are likely to be sufficient, from those that may require additional data. PMID:26085347

  16. Optimal Exposure Biomarkers for Nonpersistent Chemicals in Environmental Epidemiology

    PubMed Central

    Calafat, Antonia M.; Longnecker, Matthew P.; Koch, Holger M.; Swan, Shanna H.; Hauser, Russ; Goldman, Lynn R.; Lanphear, Bruce P.; Rudel, Ruthann A.; Engel, Stephanie M.; Teitelbaum, Susan L.; Whyatt, Robin M.

    2015-01-01

    Summary We discuss considerations that are essential when evaluating exposure to nonpersistent, semivolatile environmental chemicals such as phthalates and phenols (e.g., bisphenol A). A biomarker should be chosen to best represent usual personal exposures and not recent, adventitious, or extraneous exposures. Biomarkers should be selected to minimize contamination arising from collection, sampling, or analysis procedures. Pharmacokinetics should be considered; for example, nonpersistent, semivolatile chemicals are metabolized quickly, and urine is the compartment with the highest concentrations of metabolites. Because these chemicals are nonpersistent, knowledge of intraindividual reliability over the biologic window of interest is also required. In recent years researchers have increasingly used blood as a matrix for characterizing exposure to nonpersistent chemicals. However, the biologic and technical factors noted above strongly support urine as the optimal matrix for measuring nonpersistent, semivolatile, hydrophilic environmental agents. PMID:26132373

  17. Optimal Exposure Biomarkers for Nonpersistent Chemicals in Environmental Epidemiology.

    PubMed

    Calafat, Antonia M; Longnecker, Matthew P; Koch, Holger M; Swan, Shanna H; Hauser, Russ; Goldman, Lynn R; Lanphear, Bruce P; Rudel, Ruthann A; Engel, Stephanie M; Teitelbaum, Susan L; Whyatt, Robin M; Wolff, Mary S

    2015-07-01

    We discuss considerations that are essential when evaluating exposure to nonpersistent, semivolatile environmental chemicals such as phthalates and phenols (e.g., bisphenol A). A biomarker should be chosen to best represent usual personal exposures and not recent, adventitious, or extraneous exposures. Biomarkers should be selected to minimize contamination arising from collection, sampling, or analysis procedures. Pharmacokinetics should be considered; for example, nonpersistent, semivolatile chemicals are metabolized quickly, and urine is the compartment with the highest concentrations of metabolites. Because these chemicals are nonpersistent, knowledge of intraindividual reliability over the biologic window of interest is also required. In recent years researchers have increasingly used blood as a matrix for characterizing exposure to nonpersistent chemicals. However, the biologic and technical factors noted above strongly support urine as the optimal matrix for measuring nonpersistent, semivolatile, hydrophilic environmental agents. PMID:26132373

  18. Lethal Dietary Toxicities of Environmental Contaminants and Pesticides to Coturnix

    USGS Publications Warehouse

    Hill, E.F.; Camardese, M.B.

    1986-01-01

    Five-day subacute dietary toxicity tests of 193 potential environmental contaminants, pesticides, organic solvents, and various adjuvants are presented for young coturnix (Japanese quail, Coturnix japonica Temminck and Schlegel). The report provides the most comprehensive data base available for avian subacute dietary toxicity tests and is primarily intended for use in ranking toxicities by a standard method that has a reasonable degree of environmental relevance. Findings are presented in two parts: Part I is a critique of selected drugs that includes discussion of subacute toxicity in relation to chemical class and structure, pesticide formulation, and age of animals; Part II is a summary of toxicologic findings for each test substance and provides a statistically basis for comparing toxicities. Data presented include the median lethal concentration (LC50), slope of the probit regression curve (dose-response curve), response chronology, and food consumption. We observed that: 1) fewer than 15% of the compounds were classed 'very' or 'highly' toxic (i.e, LC50 < 200 ppm) and all of these were either chlorinated hydrocarbons, organophosphates, or organometallics; 2) subacute toxicity may vary widely among structurally similar chemicals and between different formulations of the same chemical; therefore, conclusions about lethal hazard must be made cautiously until the actual formulation of inset has been tested: 3) inclusion of a general standard in each battery of tests is useful for detection of atypical trials and monitoring population changes but should not be used indiscriminantly for adjusting LC50's for intertest differences unless the chemicals of concern and the standard elicit their toxicities through the same action; 4) although other species have been tested effectively under the subacute protocol, coturnix were ideal for the stated purpose of this research because they are inexpensive, well-adapted to the laboratory environment, and yield good intertest

  19. Assimilation efficiencies of chemical contaminants in aquatic invertebrates: A synthesis

    SciTech Connect

    Wang, W.X.; Fisher, N.S.

    1999-09-01

    Assimilation efficiencies of contaminants from ingested food are critical for understanding chemical accumulation and trophic transfer in aquatic invertebrates. Assimilation efficiency is a first-order physiological parameter that can be used to systematically compare the bioavailability of different contaminants from different foods. The various techniques used to measure contaminant assimilation efficiencies are reviewed. Pulse-chase feeding techniques and the application of gamma-emitting radiotracers have been invaluable in measuring metal assimilation efficiencies in aquatic animals. Uniform radiolabeling of food is required to measure assimilation, but this can be difficult when sediments are the food source. Biological factors that influence contaminant assimilation include food quantity and quality, partitioning of contaminants in the food particles, and digestive physiology of the animals. Other factors influencing assimilation include the behavior of the chemical within the animal's gut and its associations with different geochemical fractions of food particles. Assimilation efficiency is a critical parameter to determine (and to make predictions of) bioaccumulation of chemicals from dietary exposure. Robust estimates of assimilation efficiency coupled with estimates of aqueous uptake can be used to determine the relative importance of aqueous and dietary exposures. For bioaccumulation of metals from sediments, additional studies are required to test whether metals bound to the acid-volatile sulfide fraction of sediments can be available to benthic deposit-feeding inverterbrates. Most assimilation efficiency studies have focused on chemical transfer in organisms at the bottom of the food chain; additional studies are required to examine chemical transfer at higher trophic levels.

  20. The stingless bee species, Scaptotrigona aff. depilis, as a potential indicator of environmental pesticide contamination.

    PubMed

    de Souza Rosa, Annelise; I'Anson Price, Robbie; Ferreira Caliman, Maria Juliana; Pereira Queiroz, Elisa; Blochtein, Betina; Sílvia Soares Pires, Carmen; Imperatriz-Fonseca, Vera Lucia

    2015-08-01

    Neonicotinoids have the potential to enter the diet of pollinators that collect resources from contaminated plants. The species Scaptotrigona aff. depilis (Moure, 1942) can be a useful indicator of the prevalence of these chemicals in the environment. Using high-performance liquid chromatography-mass spectrometry, the authors devised a protocol for neonicotinoid residue extraction and detected the presence of neonicotinoids in the bee bodies. Thus, the authors consider this species to be a potential indicator of environmental contamination. PMID:26190578

  1. High Throughput Screening For Hazard and Risk of Environmental Contaminants

    EPA Science Inventory

    High throughput toxicity testing provides detailed mechanistic information on the concentration response of environmental contaminants in numerous potential toxicity pathways. High throughput screening (HTS) has several key advantages: (1) expense orders of magnitude less than an...

  2. Environmental simulation testing of solar cell contamination by hydrazine

    NASA Technical Reports Server (NTRS)

    Moore, W. W., Jr.

    1972-01-01

    Test results for thermal vacuum and radiation environment simulation of hydrazine contamination are discussed. Solar cell performance degradation, measured by short circuit current, is presented in correlation with the variations used in environmental parameters.

  3. Project Overview: PERCHLORATE ENVIRONMENTAL CONTAMINATION - TOXICOLOGICAL REVIEW AND RISK CHARACTERIZATION

    EPA Science Inventory

    The human health and ecological assessment issues related to environmental contamination by perchlorate are complex and continue to emerge. Perchlorate, ClO4-, is an anion that originates as a contaminant from the solid salts of ammonium, potassium or sodium perchlorate. These ...

  4. Bacteria and Emerging Chemical Contaminants in the St. Clair River/Lake St. Clair Basin, Michigan

    USGS Publications Warehouse

    Fogarty, Lisa R.

    2007-01-01

    Introduction Since the enactment of the Clean Water Act in 1972, awareness of the quality of the Nation's water has continued to improve. Despite improvements to wastewater-treatment systems and increased regulation on waste discharge, bacterial and chemical contamination is still a problem for many rivers and lakes throughout the United States. Pathogenic microorganism and newly recognized chemical contaminants have been found in waters that are used for drinking water and recreation (Rose and Grimes, 2001; Kolpin and others, 2002). This summary of bacteria and emerging-chemical-contaminant monitoring in the St. Clair River/Lake St. Clair Basin (fig. 1) was initiated by the Lake St. Clair Regional Monitoring Project (LSCRMP) in 2003, in cooperation with the Michigan Department of Environmental Quality (MDEQ), the Counties of Macomb, Oakland, St. Clair, and Wayne, and the U.S. Geological Survey (USGS).

  5. Establishing the environmental risk of metal contaminated river bank sediments

    NASA Astrophysics Data System (ADS)

    Lynch, Sarah; Batty, Lesley; Byrne, Patrick

    2016-04-01

    Climate change predictions indicate an increase in the frequency and duration of flood events along with longer dry antecedent conditions, which could alter patterns of trace metal release from contaminated river bank sediments. This study took a laboratory mesocosm approach. Chemical analysis of water and sediment samples allowed the patterns of Pb and Zn release and key mechanisms controlling Pb and Zn mobility to be determined. Trace metal contaminants Pb and Zn were released throughout flooded periods. The highest concentrations of dissolved Pb were observed at the end of the longest flood period and high concentrations of dissolved Zn were released at the start of a flood. These concentrations were found to exceed environmental quality standards. Key mechanisms controlling mobility were (i) evaporation, precipitation and dissolution of Zn sulphate salts, (ii) anglesite solubility control of dissolved Pb, (iii) oxidation of galena and sphalerite, (iv) reductive dissolution of Mn/Fe hydroxides and co-precipitation/adsorption with Zn. In light of climate change predictions these results indicate future scenarios may include larger or more frequent transient 'pulses' of dissolved Pb and Zn released to river systems. These short lived pollution episodes could act as a significant barrier to achieving the EU Water Framework Directive objectives.

  6. Chemical tailoring of steam to remediate underground mixed waste contaminents

    DOEpatents

    Aines, Roger D.; Udell, Kent S.; Bruton, Carol J.; Carrigan, Charles R.

    1999-01-01

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  7. Emerging Environmental Contaminants: What’s New

    EPA Science Inventory

    Much has been achieved in the way of environmental protection over the last 30 years. However, as we learn more, new concerns arise (including potential adverse health effects, bioaccumulation, and widespread distribution). This presentation will discuss emerging environmental c...

  8. Tactical approach to maneuvering within the chemical contamination labyrinth

    SciTech Connect

    Joseph, T.W.

    1990-12-31

    The Department of Energy (DOE) recognized the need and accepts the responsibility for understanding the reality and mitigating the consequence of the complex chemical contamination legacy it inherited as well as controlling, reducing, and eliminating extant emissions and effluents. The key to maneuvering through this complicated and multifaceted labyrinth of concerns, from which a meaningful, high quality, and cost-effective restoration/mitigation machine is then set in motions, is the ability to perform accurate, factual, and explicit health and environmental/ecological risk assessments. Likewise, the common denominator for carrying out this essential task is to have access to comprehensive and reliable data of known quality with which to perform those analyses. DOE is committed to identifying the data universe; to technically scrutinize and ensure the quality of that data; to develop efficient and cost-effective means to maximize the handling, utilization, and sharing of that universe; and to undertake those assessments. DOE views this as an effort that can only be accomplished through a merging of the technical excellence that exists within federal and state agencies, academia, and industry. The task at hand is so large that only by integrating that intelligence base can we hope to accomplish the goals of establishing meaningful standards, developing functional and effective solutions, and providing quality guidance at a national scale.

  9. DESIGNING ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES

    EPA Science Inventory

    The design of a chemical process involves many aspects: from profitability, flexibility and reliability to safety to the environment. While each of these is important, in this work, the focus will be on profitability and the environment. Key to the study of these aspects is the ...

  10. Toxicokinetic Triage for Environmental Chemicals

    EPA Science Inventory

    Toxicokinetic (TK) models are essential for linking administered doses to blood and tissue concentrations. In vitro-to-in vivo extrapolation (IVIVE) methods have been developed to determine TK from limited in vitro measurements and chemical structure-based property predictions, p...

  11. HUMAN HEALTH IMPACT OF ENVIRONMENTAL ESTROGENIC CHEMICALS

    EPA Science Inventory

    HUMAN HEALTH IMPACT OF ENVIRONMENTAL ESTROGENIC CHEMICALS.

    Robert J. Kavlock, Reproductive Toxicology Division, NHEERL, ORD, US Environmental Protection Agency, Research Triangle Park, NC USA.

    Over the past several decades a hypothesis has been put forth that a numb...

  12. Chemical oxidation of hexachlorocyclohexanes (HCHs) in contaminated soils.

    PubMed

    Usman, M; Tascone, O; Faure, P; Hanna, K

    2014-04-01

    Chemical oxidation of hexachlorocyclohexanes (HCHs) was evaluated in (i) artificially spiked sand with HCH isomers (α, β, γ and δ) and (ii) contaminated soil sampled from a former gravel pit backfilled with wastes of lindane (γ-HCH). Following oxidation treatments were employed: hydrogen peroxide alone (HP), hydrogen peroxide with soluble Fe(II) (Fenton-F), sodium persulfate alone (PS), Fe(II) activated persulfate (AP) and permanganate (PM). GC-MS results revealed a significant degradation of all isomers in spiked soil in the order: F>PS>AP>HP>PM. Soluble Fe(II) enhanced the efficiency of H2O2 but decreased the reactivity of persulfate. Similar trend was observed in contaminated soil, but with less degradation probably caused by scavenging effect of organic matter and soil minerals and/or pollutant unavailability. No significant increase in oxidation efficiency was observed after using availability-enhancement agents in contaminated soil. Other limitation factors (oxidant dose, pH, catalyst type etc.) were also addressed. Among all the isomers tested, β-HCH was the most recalcitrant one which could be explained by higher metabolic and chemical stability. No by-products were observed by GC-MS regardless of the oxidant used. For being the premier study reporting chemical oxidation of HCH isomers in contaminated soils, it will serve as a base for in-situ treatments of sites contaminated by HCH isomers and other persistent organic pollutants. PMID:24486498

  13. Environmental chemical exposures and human epigenetics

    PubMed Central

    Hou, Lifang; Zhang, Xiao; Wang, Dong; Baccarelli, Andrea

    2012-01-01

    Every year more than 13 million deaths worldwide are due to environmental pollutants, and approximately 24% of diseases are caused by environmental exposures that might be averted through preventive measures. Rapidly growing evidence has linked environmental pollutants with epigenetic variations, including changes in DNA methylation, histone modifications and microRNAs. Environ mental chemicals and epigenetic changes All of these mechanisms are likely to play important roles in disease aetiology, and their modifications due to environmental pollutants might provide further understanding of disease aetiology, as well as biomarkers reflecting exposures to environmental pollutants and/or predicting the risk of future disease. We summarize the findings on epigenetic alterations related to environmental chemical exposures, and propose mechanisms of action by means of which the exposures may cause such epigenetic changes. We discuss opportunities, challenges and future directions for future epidemiology research in environmental epigenomics. Future investigations are needed to solve methodological and practical challenges, including uncertainties about stability over time of epigenomic changes induced by the environment, tissue specificity of epigenetic alterations, validation of laboratory methods, and adaptation of bioinformatic and biostatistical methods to high-throughput epigenomics. In addition, there are numerous reports of epigenetic modifications arising following exposure to environmental toxicants, but most have not been directly linked to disease endpoints. To complete our discussion, we also briefly summarize the diseases that have been linked to environmental chemicals-related epigenetic changes. PMID:22253299

  14. Contamination and galvanic corrosion in metal chemical-mechanical planarization

    NASA Astrophysics Data System (ADS)

    Zhang, Liming

    Chemical mechanical planarization (CMP) of metals is a critical process in the manufacturing of ultra-large scale integrated (ULSI) circuit devices. The overall success of a CMP process requires minimal particulate and metallic contamination of the structures subjected to CMP. The objective of this study was to investigate alumina particle contamination during tungsten CMP, copper contamination in copper CMP, and galvanic corrosion between metal films and adhesion layers during the final stages of tungsten and copper CMP. Particular attention was paid to the use of short chain organic carboxylic acids in reducing the contamination. Both electrokinetic and uptake measurements showed that citric acid and malonic acid interact with alumina particles by electrostatic as well as specific adsorption forces. Systematic immersion contamination and polishing experiments were carried out to demonstrate the effectiveness of the acids in controlling alumina particulate contamination on wafer surfaces. The difference in the surface cleanliness was interpreted using the electrokinetic data and the calculated interaction energy between alumina particles and the wafer surface. Electrochemical tests showed no severe attack on tungsten films by the acids. Copper ions were found to adsorb onto the silicon dioxide surface, leading to copper contamination levels of upto 1013 atoms/cm 2. The extent of copper contamination was found to depend on the solution pH and the presence of additives such as hydrogen peroxide. Both electrokinetic measurements and immersion contamination experiments showed that citric acid can reduce the copper contamination on the silicon dioxide surface. TiN is more noble than tungsten in the solutions containing oxidants used in tungsten CMP slurries. The most significant corrosion of tungsten was found in the presence of hydrogen peroxide. Copper was found to be more noble than tantalum in acidic solutions. However, in alkaline ammonium hydroxide solutions, the

  15. E-SMART system for in-situ detection of environmental contaminants. Quarterly progress report

    SciTech Connect

    1996-01-01

    Environmental Systems Management, Analysis and Reporting neTwork (E-SMART) is a comprehensive, fully-integrated approach to in-situ, real-time detection and monitoring of environmental contaminants. E-SMART will provide new class of smart, highly sensitive, chemically-specific, in-situ, multichannel microsensors utilizing integrated optical interferometry technology, large, commercially viable set of E-SMART-compatible sensors, samplers, and network management components, and user-friendly graphical user interface for data evaluation and visualization.

  16. EMERGING ENVIRONMENTAL CONTAMINANTS: ACHIEVEMENTS AND CHALLENGES WITH MASS SPECTROMETRY

    EPA Science Inventory

    Much has been achieved in the way of environmental protection over the last 30 years. However, as we learn more, new concerns arise. This presentation will discuss emerging contaminants that the U.S. Environmental Protection Agency (EPA) and other agencies are currently concerned...

  17. USE OF APATITE FOR CHEMICAL STABILIZATION OF SUBSURFACE CONTAMINANTS

    SciTech Connect

    Dr. William D. Bostick

    2003-05-01

    Groundwater at many Federal and civilian industrial sites is often contaminated with toxic metals at levels that present a potential concern to regulatory agencies. The U.S. Department of Energy (DOE) has some unique problems associated with radionuclides (primarily uranium), but metal contaminants most likely drive risk-based cleanup decisions, from the perspective of human health, in groundwater at DOE and U.S. Environmental Protection Agency (EPA) Superfund Sites include lead (Pb), arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), zinc (Zn), selenium (Se), antimony (Sb), copper (Cu) and nickel (Ni). Thus, the regulatory ''drivers'' for toxic metals in contaminated soils/groundwaters are very comparable for Federal and civilian industrial sites, and most sites have more than one metal above regulatory action limits. Thus improving the performance of remedial technologies for metal-contaminated groundwater will have ''dual use'' (Federal and civilian) benefit.

  18. Predicting biological effects of environmental mixtures using exposure:activity ratios (EAR) derived from US EPA’s ToxCast data: Retrospective application to chemical monitoring data

    EPA Science Inventory

    Chemical monitoring has been widely used in environmental surveillance to assess exposure to environmental contaminants which could represent potential hazards to exposed organisms. However, the ability to detect chemicals in the environment has rapidly outpaced assessment of pot...

  19. Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality.

    PubMed

    Udeigwe, Theophilus K; Eze, Peter N; Teboh, Jasper M; Stietiya, Mohammed H

    2011-01-01

    Contaminants such as nitrogen (N), phosphorus (P), dissolved organic carbon (DOC), arsenic (As), heavy metals, and infectious pathogens are often associated with agricultural systems. Various soil and water remediation techniques including the use of chemical amendments have been employed to reduce the risks associated with these contaminants. This paper reviews the use of chemical amendments for immobilizing principal agricultural contaminants, the chemistry of contaminant immobilization, and the environmental consequences associated with the use of these chemical products. The commonly used chemical amendments were grouped into aluminum-, calcium-, and iron-containing products. Other products of interest include phosphorus-containing compounds and silicate clays. Mechanisms of contaminant immobilization could include one or a combination of the following: surface precipitation, adsorption to mineral surfaces (ion exchange and formation of stable complexes), precipitation as salts, and co-precipitation. The reaction pH, redox potential, clay minerals, and organic matter are potential factors that could control contaminant-immobilization processes. Reviews of potential environmental implications revealed that undesirable substances such as trace elements, fluoride, sulfate, total dissolved solids, as well as radioactive materials associated with some industrial wastes used as amendment could be leached to ground water or lost through runoff to receiving water bodies. The acidity or alkalinity associated with some of the industrial-waste amendments could also constitute a substantial environmental hazard. Chemical amendments could introduce elements capable of inducing or affecting the activities of certain lithotrophic microbes that could influence vital geochemical processes such as mineral dissolution and formation, weathering, and organic matter mineralization. PMID:20832118

  20. Absorption, biotransformation, and excretion of environmental chemicals.

    PubMed

    Oehme, F W

    1980-08-01

    Foreign chemicals are continually present in the environment of man and animals. Mammalian systems are in a constant state of balance-the intake compensated for by the outflow. The intake is largely determined by the route of exposure and the chemical characteristics of the environmental compound. Under normal conditions of exposure to small or moderate amounts of environmental chemicals, the system is capable of biotransforming and detoxifying such materials into compounds more easily handled by the mammalian system. These are largely converted to more water-soluble materials and excreted in the urine, bile, and less commonly through other excretory routes. In situations of massive exposure to foreign materials, or when repeated exposure to moderate amounts of chemicals results in accumulation in body systems, toxicoses may result. These are essentially an overwhelming of the biological mechanisms for detoxifying and excreting such materials. The hazard associated with environmental chemicals is greatly increased if a preexisting disease modifies the normal biological detoxification processes. Therapy to assist intoxicated individuals is largely aimed at increasing excretory processes and maintaining or restoring the physiological balance between the amount of environmental chemical absorbed and the level capable of being excreted. PMID:7408430

  1. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research

    SciTech Connect

    Riley, R.G.; Zachara, J.M. )

    1992-04-01

    This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE's Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

  2. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research

    SciTech Connect

    Riley, R.G.; Zachara, J.M.

    1992-04-01

    This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE`s Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

  3. Long Island Sound: Distributions, trends, and effects of chemical contamination

    SciTech Connect

    Turgeon, D.D.; O'Connor, T.P. )

    1991-09-01

    Trace metals and organic contaminants concentrations are monitored annually in surface sediments, blue mussel tissue, and winter flounder livers at multiple sites in Long Island Sound by National Oceanic and Atmospheric Administration's National Status and Trends (NS and T) program for Marine Environmental Quality. The NS and T program is also conducting various studies on the bioeffects of contaminants in the sound. Three years of monitoring results indicate organic and elemental contaminants concentrations in sediments and biota at sites in the western portion of the sound are high on a national scale. Possible decreasing trends in cadmium and chlordane in the second are suggested by the 1986-1988 data for their concentrations in mussels. A comparison between NS and T Mussel Watch results and those of the Environmental Protection Agency's Mussel Watch, conducted from 1976 through 1978, indicated a decadal increase in copper concentrations and a decrease in lead in the sound. Bioeffects studies in the sound have revealed responses in contamination only in localized zones where contaminant levels are very high.

  4. Environmental contaminants in bald eagle eggs

    USGS Publications Warehouse

    Wiemeyer, Stanley N.; Bunck, C.M.; Stafford, C.J.

    1991-01-01

    Bald Eagle eggs (1968-84) were analyzed for organochlorine pesticides, PCBs and mercury. DDE declined in WI, ME and the Chesapeake Bay. DDE was most closely related to shell thickness and reproduction at sampled breeding areas. Sixteen ppm DDE (wet weight) was associated with 15% shell thinning. Reproduction was normal when eggs at sampled breeding areas contained <3.6 ppm DDE; success was nearly halved between 3.6 and 6.3 ppm and halved again when concentrations exceeded 6.3 ppm. Other contaminants were associated with poor reproduction and eggshell thinning; however, their impact appeared secondary to that of DDE.

  5. [Carbon monoxide contamination: an environmental health problem].

    PubMed

    Téllez, Jairo; Rodríguez, Alba; Fajardo, Alvaro

    2006-01-01

    Carbon monoxide is considered to be a major factor contaminating earth's atmosphere. The main sources producing this contamination are cars using gasoline or diesel fuel and industrial processes using carbon compounds; these two are responsible for 80% of carbon monoxide being emitted to the atmosphere. This substance has a well-known toxic effect on human beings and its acute poisonous effects (including death) have been widely studied; however, its long-term chronic effects are still not known. During the last few years, experimental research on animals and studies of human epidemiology have established the relationship between chronic exposure to low and middle levels of carbon monoxide in breathable air and adverse effects on human health, especially on organs consuming large amounts of oxygen such as the heart and brain. Harmful cardiovascular and neuropsychological effects have been documented in carbon monoxide concentration in air of less than 25 ppm and in carboxyhaemoglobin levels in blood of less than 10%. The main cardiac damage described to date has been high blood pressure, cardiac arrhythm and electrocardiograph signs of ischemia. Lack of memory, attention, concentration and Parkinson-type altered movement are the neuropsychological changes most frequently associated with chronic exposure to low levels of carbon monoxide and carboxyhaemoglobin. PMID:16703967

  6. HISTORY OF MERCURY USE AND ENVIRONMENTAL CONTAMINATION

    SciTech Connect

    Brooks, Scott C; Southworth, George R

    2011-01-01

    Between 1950 and 1963 approximately 11 million kilograms of mercury (Hg) were used at the Oak Ridge Y-12 National Security Complex (Y-12 NSC) for lithium isotope separation processes. About 3% of the Hg was lost to the air, soil and rock under facilities, and East Fork Poplar Creek (EFPC) which originates in the plant site. Smaller amounts of Hg were used at other Oak Ridge facilities with similar results. Although the primary Hg discharges from Y-12 NSC stopped in 1963, small amounts of Hg continue to be released into the creek from point sources and diffuse contaminated soil and groundwater sources within Y-12 NSC. Mercury concentration in EFPC has decreased 85% from not, vert, similar2000 ng/L in the 1980s. In general, methylmercury concentrations in water and in fish have not declined in response to improvements in water quality and exhibit trends of increasing concentration in some cases.Mercury discharges from an industrial plant have created a legacy contamination problem exhibiting complex and at times counter-intuitive patterns in Hg cycling.

  7. Environmental Research Translation: enhancing interactions with communities at contaminated sites.

    PubMed

    Ramirez-Andreotta, Monica D; Brusseau, Mark L; Artiola, Janick F; Maier, Raina M; Gandolfi, A Jay

    2014-11-01

    The characterization and remediation of contaminated sites are complex endeavors fraught with numerous challenges. One particular challenge that is receiving increased attention is the development and encouragement of full participation by communities and community members affected by a given site in all facets of decision-making. Many disciplines have been grappling with the challenges associated with environmental and risk communication, public participation in environmental data generation, and decision-making and increasing community capacity. The concepts and methods developed by these disciplines are reviewed, with a focus on their relevance to the specific dynamics associated with environmental contamination sites. The contributions of these disciplines are then synthesized and integrated to help develop Environmental Research Translation (ERT), a proposed framework for environmental scientists to promote interaction and communication among involved parties at contaminated sites. This holistic approach is rooted in public participation approaches to science, which includes: a transdisciplinary team, effective collaboration, information transfer, public participation in environmental projects, and a cultural model of risk communication. Although there are challenges associated with the implementation of ERT, it is anticipated that application of this proposed translational science method could promote more robust community participation at contaminated sites. PMID:25173762

  8. Environmental Research Translation: Enhancing Interactions with Communities at Contaminated Sites

    PubMed Central

    Ramirez-Andreotta, Monica D.; Brusseau, Mark L.; Artiola, Janick F.; Maier, Raina M.; Gandolfi, A. Jay

    2014-01-01

    The characterization and remediation of contaminated sites are complex endeavors fraught with numerous challenges. One particular challenge that is receiving increased attention is the development and encouragement of full participation by communities and community members affected by a given site in all facets of decision-making. Many disciplines have been grappling with the challenges associated with environmental and risk communication, public participation in environmental data generation, and decision-making and increasing community capacity. The concepts and methods developed by these disciplines are reviewed, with a focus on their relevance to the specific dynamics associated with environmental contamination sites. The contributions of these disciplines are then synthesized and integrated to help develop Environmental Research Translation (ERT), a proposed framework for environmental scientists to promote interaction and communication among involved parties at contaminated sites. This holistic approach is rooted in public participation approaches to science, which includes: a transdisciplinary team, effective collaboration, information transfer, public participation in environmental projects, and a cultural model of risk communication. Although there are challenges associated with the implementation of ERT, it is anticipated that application of this proposed translational science method could promote more robust community participation at contaminated sites. PMID:25173762

  9. The toll of toxics: investigating environmental contaminants

    USGS Publications Warehouse

    Sparling, Donald W.; Rattner, Barnett A.; Barclay, John S.

    2010-01-01

    On Earth Day of this year, the British Petroleum-operated Deepwater Horizon oil drilling rig exploded in the Gulf of Mexico, 41 miles off the Louisiana coast. The blast killed 11 workers, injured 17, launched a massive oil spill, and triggered an environmental catastrophe—the full impact of which may not be realized for years.

  10. Assessment of environmental contaminant-induced lymphocyte dysfunction.

    PubMed Central

    Silkworth, J B; Loose, L D

    1981-01-01

    Although it has been established that environmental contaminants can alter immune function, the mechanisms of action have yet to be determined. This paper reviews the effects of hydrocarbon environmental contaminants on lymphocyte function and presents an approach which may serve to delineate the mechanisms of action. The approach is based on the use of the developmental phases of an immune response and assays which can be used for their functional assessment. Possible interactions between environmental contaminants and lymphocyte function and factors which must be considered in the evaluation of immune status are discussed. In addition, a study on the influence of the chronic exposure to two polyhalogenated hydrocarbons, PCB and HCB, on several parameters of lymphocyte function in mice is presented. PMID:7016518

  11. Environmental and food contamination with PCB's in Japan.

    PubMed

    Fujiwara, K

    1975-09-01

    In Japan "yusho", i.e., poisoning caused by ingestion of rice oil contaminated with PCB's, broke out in October 1968, and produced more than 1200 officially certified cases. Nevertheless, it was only regarded as a kind of food poisoning and its connection with environmental and biological contamination was only imperfectly taken into consideration. Finally, in the autumn of 1970, two study groups, from the Ehime University and the Kyoto City Hygienic Institute, reported on the PCB contamination of salt water and fresh water fishes in Japan. Subsequently many reports about PCB's as an environmental contaminant have been published by several study groups throughout Japan, and nowadays the PCB polluted state of Japan has become rather clearly recognized. This report will present information on environmental, food and human contamination with PCB's in Japan especially also in some typically contaminated local areas, in addition to summarizing some overall aspects of the PCB problem in Japan (e.g., the production, shipment and use of PCB's). PMID:808853

  12. Challenges and trends in the determination of selected chemical contaminants and allergens in food.

    PubMed

    Krska, Rudolf; Becalski, Adam; Braekevelt, Eric; Koerner, Terry; Cao, Xu-Liang; Dabeka, Robert; Godefroy, Samuel; Lau, Ben; Moisey, John; Rawn, Dorothea F K; Scott, Peter M; Wang, Zhongwen; Forsyth, Don

    2012-01-01

    This article covers challenges and trends in the determination of some major food chemical contaminants and allergens, which-among others-are being monitored by Health Canada's Food Directorate and for which background levels in food and human exposure are being analyzed and calculated. Eleven different contaminants/contaminant groups and allergens have been selected for detailed discussion in this paper. They occur in foods as a result of: use as a food additive or ingredient; processing-induced reactions; food packaging migration; deliberate adulteration; and/or presence as a chemical contaminant or natural toxin in the environment. Examples include acrylamide as a food-processing-induced contaminant, bisphenol A as a food packaging-derived chemical, melamine and related compounds as food adulterants and persistent organic pollutants, and perchlorate as an environmental contaminant. Ochratoxin A, fumonisins, and paralytic shellfish poisoning toxins are examples of naturally occurring toxins whereas sulfites, peanuts, and milk exemplify common allergenic food additives/ingredients. To deal with the increasing number of sample matrices and analytes of interest, two analytical approaches have become increasingly prevalent. The first has been the development of rapid screening methods for a variety of analytes based on immunochemical techniques, utilizing ELISA or surface plasmon resonance technology. The second is the development of highly sophisticated multi-analyte methods based on liquid chromatography coupled with multiple-stage mass spectrometry for identification and simultaneous quantification of a wide range of contaminants, often with much less requirement for tedious cleanup procedures. Whereas rapid screening methods enable testing of large numbers of samples, the multi analyte mass spectrometric methods enable full quantification with confirmation of the analytes of interest. Both approaches are useful when gathering surveillance data to determine

  13. Bioassay-directed chemical analysis in environmental research

    SciTech Connect

    Schuetzle, D.; Lewtas, J.

    1986-01-01

    The use of short-term bioassay tests in conjunction with analytical measurements, constitute a powerful tool for identifying important environmental contaminants. The authors have coined the terminology bioassay directed chemical analysis to best describe this marriage of analytical chemistry and biology. The objective of this methodology is to identify key compounds in various types of air-pollutant samples. Once that task is completed, studies on metabolism, sources, environmental exposure and atmospheric chemistry can be undertaken. The principles and methodologies for bioassay directed chemical analysis are presented and illustrated in this paper. Most of this work has been directed toward the characterization of ambient air and diesel particulates, which are used as examples in this report to illustrate the analytical logic used for identifying the bio-active components of complex mixtures.

  14. Metamorphosis alters contaminants and chemical tracers in insects: implications for food webs

    USGS Publications Warehouse

    Kraus, Johanna M.; Walters, David M.; Wesner, Jeff S.; Stricker, Craig A.; Schmidt, Travis S.; Zuellig, Robert E.

    2014-01-01

    Insects are integral to most freshwater and terrestrial food webs, but due to their accumulation of environmental pollutants they are also contaminant vectors that threaten reproduction, development, and survival of consumers. Metamorphosis from larvae to adult can cause large chemical changes in insects, altering contaminant concentrations and fractionation of chemical tracers used to establish contaminant biomagnification in food webs, but no framework exists for predicting and managing these effects. We analyzed data from 39 studies of 68 analytes (stable isotopes and contaminants), and found that metamorphosis effects varied greatly. δ15N, widely used to estimate relative trophic position in biomagnification studies, was enriched by 1‰ during metamorphosis, while δ13C used to estimate diet, was similar in larvae and adults. Metals and polycyclic aromatic hydrocarbons (PAHs) were predominantly lost during metamorphosis leading to 2 to 125-fold higher larval concentrations and higher exposure risks for predators of larvae compared to predators of adults. In contrast, manufactured organic contaminants (such as polychlorinated biphenyls) were retained and concentrated in adults, causing up to 3-fold higher adult concentrations and higher exposure risks to predators of adult insects. Both food web studies and contaminant management and mitigation strategies need to consider how metamorphosis affects the movement of materials between habitats and ecosystems, with special regard for aquatic-terrestrial linkages.

  15. Relative cancer risks of chemical contaminants in the great lakes

    NASA Astrophysics Data System (ADS)

    Bro, Kenneth M.; Sonzogni, William C.; Hanson, Mark E.

    1987-08-01

    Anyone who drinks water or eats fish from the Great Lakes consumes potentially carcinogenic chemicals. In choosing how to respond to such pollution, it is important to put the risks these contaminants pose in perspective. Based on recent measurements of carcinogens in Great Lakes fish and water, calculations of lifetime risks of cancer indicate that consumers of sport fish face cancer risks from Great Lakes contaminants that are several orders of magnitude higher than the risks posed by drinking Great Lakes water. But drinking urban groundwater and breathing urban air may be as hazardous as frequent consumption of sport fish from the Great Lakes. Making such comparisons is difficult because of variation in types and quality of information available and in the methods for estimating risk. Much uncertainty pervades the risk assessment process in such areas as estimating carcinogenic potency and human exposure to contaminants. If risk assessment is to be made more useful, it is important to quantify this uncertainty.

  16. enviPath--The environmental contaminant biotransformation pathway resource.

    PubMed

    Wicker, Jörg; Lorsbach, Tim; Gütlein, Martin; Schmid, Emanuel; Latino, Diogo; Kramer, Stefan; Fenner, Kathrin

    2016-01-01

    The University of Minnesota Biocatalysis/Biodegradation Database and Pathway Prediction System (UM-BBD/PPS) has been a unique resource covering microbial biotransformation pathways of primarily xenobiotic chemicals for over 15 years. This paper introduces the successor system, enviPath (The Environmental Contaminant Biotransformation Pathway Resource), which is a complete redesign and reimplementation of UM-BBD/PPS. enviPath uses the database from the UM-BBD/PPS as a basis, extends the use of this database, and allows users to include their own data to support multiple use cases. Relative reasoning is supported for the refinement of predictions and to allow its extensions in terms of previously published, but not implemented machine learning models. User access is simplified by providing a REST API that simplifies the inclusion of enviPath into existing workflows. An RDF database is used to enable simple integration with other databases. enviPath is publicly available at https://envipath.org with free and open access to its core data. PMID:26582924

  17. enviPath – The environmental contaminant biotransformation pathway resource

    PubMed Central

    Wicker, Jörg; Lorsbach, Tim; Gütlein, Martin; Schmid, Emanuel; Latino, Diogo; Kramer, Stefan; Fenner, Kathrin

    2016-01-01

    The University of Minnesota Biocatalysis/Biodegradation Database and Pathway Prediction System (UM-BBD/PPS) has been a unique resource covering microbial biotransformation pathways of primarily xenobiotic chemicals for over 15 years. This paper introduces the successor system, enviPath (The Environmental Contaminant Biotransformation Pathway Resource), which is a complete redesign and reimplementation of UM-BBD/PPS. enviPath uses the database from the UM-BBD/PPS as a basis, extends the use of this database, and allows users to include their own data to support multiple use cases. Relative reasoning is supported for the refinement of predictions and to allow its extensions in terms of previously published, but not implemented machine learning models. User access is simplified by providing a REST API that simplifies the inclusion of enviPath into existing workflows. An RDF database is used to enable simple integration with other databases. enviPath is publicly available at https://envipath.org with free and open access to its core data. PMID:26582924

  18. Which coastal and marine environmental contaminants are truly emerging?

    PubMed

    Maruya, Keith A; Dodder, Nathan G; Tang, Chi-Li; Lao, Wenjian; Tsukada, David

    2015-02-01

    To better understand the past and present impact of contaminants of emerging concern (CECs) in coastal and marine ecosystems, archived samples were analyzed for a broad suite of analytes, including pharmaceuticals and personal care products (PPCPs), flame retardants (including PBDEs), perfluorinated compounds (PFCs), and current-use pesticides. Surface sediment, mussels (Mytilus spp.) and sediment core samples collected from the California (USA) coast were obtained from environmental specimen banks. Selected CECs were detected in recent surface sediments, with nonylphenol (4-NP), its mono- and di-ethoxylates (NP1EO and NP2EO), triclocarban, and pyrethroid insecticides in the greatest abundance. Alkylphenols, triclocarban, and triclosan were present in sediment core segments from the 1970s, as well as in Mytilus tissue collected during the 1990s. Increasing concentrations of some CECs (e.g., miconazole, triclosan) were observed in the surface layers (ca. 2007) of a sediment core, in contrast to peak concentrations of 4-NP and triclocarban corresponding to input during the 1970s, and an apparent peak input for PBDEs during the 1990s. These results suggest that chemicals sometimes referred to as "emerging" (e.g., alkylphenols, triclocarban) have been present in the aquatic environment for several decades and are decreasing in concentration, whereas others (e.g., miconazole, triclosan) are increasing. PMID:24743956

  19. Chemical methods and phytoremediation of soil contaminated with heavy metals.

    PubMed

    Chen, H M; Zheng, C R; Tu, C; Shen, Z G

    2000-07-01

    The effects of chemical amendments (calcium carbonate (CC), steel sludge (SS) and furnace slag (FS)) on the growth and uptake of cadmium (Cd) by wetland rice, Chinese cabbage and wheat grown in a red soil contaminated with Cd were investigated using a pot experiment. The phytoremediation of heavy metal contaminated soil with vetiver grass was also studied in a field plot experiment. Results showed that treatments with CC, SS and FS decreased Cd uptake by wetland rice, Chinese cabbage and wheat by 23-95% compared with the unamended control. Among the three amendments, FS was the most efficient at suppressing Cd uptake by the plants, probably due to its higher content of available silicon (Si). The concentrations of zinc (Zn), lead (Pb) and Cd in the shoots of vetiver grass were 42-67%, 500-1200% and 120-260% higher in contaminated plots than in control, respectively. Cadmium accumulation by vetiver shoots was 218 g Cd/ha at a soil Cd concentration of 0.33 mg Cd/kg. It is suggested that heavy metal-contaminated soil could be remediated with a combination of chemical treatments and plants. PMID:10819205

  20. Environmental Research Translation: Enhancing Interactions with Communities at Contaminated Sites

    NASA Astrophysics Data System (ADS)

    Ramirez-Andreotta, M.; Brusseau, M. L. L.; Artiola, J. F.; Maier, R. M.; Gandolfi, A. J.

    2015-12-01

    The characterization and remediation of contaminated sites are complex endeavors fraught with numerous challenges. One particular challenge that is receiving increased attention is the development and encouragement of full participation by communities and community members affected by a given site in all facets of decision-making. Many disciplines have been grappling with the challenges associated with environmental and risk communication, public participation in environmental data generation and decision-making, and increasing community capacity. The concepts and methods developed by these disciplines are reviewed, with a focus on their relevance to the specific dynamics associated with contaminated sites. The contributions of these disciplines are then synthesized and integrated to help develop Environmental Research Translation (ERT), a proposed framework for environmental scientists to promote interaction and communication among involved parties at contaminated sites. This holistic approach is rooted in public participation approaches to science, which includes: a transdisciplinary team, effective collaboration, information transfer, public participation in environmental projects, and a cultural model of risk communication. Although there are challenges associated with the implementation of ERT, it is anticipated that application of this proposed translational science method could promote more robust community participation at contaminated sites.

  1. Birds and environmental contaminants in San Francisco and Chesapeake Bays

    USGS Publications Warehouse

    Ohlendorf, H.M.; Fleming, W.J.

    1988-01-01

    The direct and indirect effects of human activities, including environmental contamination, upon bird populations in San Francisco Bay and Chesapeake Bay are imperfectly understood, and few data are available. that allow a comparison of the contamination levels in birds from these two areas. Certain trace elements and organochlorine compounds have been found at sufficiently high concentrations in bird tissues or their foods to expect adverse effects in these birds, based upon results of field and laboratory studies conducted with other avian species. The decline and recovery of populations of many avian species have been recorded, including some associated with organochlorine contamination. The present paper summarizes available information on the occurrence and potential effects of contaminants upon birds in these two regions.

  2. Multimedia environmental chemical partitioning from molecular information.

    PubMed

    Martínez, Izacar; Grifoll, Jordi; Giralt, Francesc; Rallo, Robert

    2010-12-15

    The prospect of assessing the environmental distribution of chemicals directly from their molecular information was analyzed. Multimedia chemical partitioning of 455 chemicals, expressed in dimensionless compartmental mass ratios, was predicted by SimpleBox 3, a Level III Fugacity model, together with the propagation of reported uncertainty for key physicochemical and transport properties, and degradation rates. Chemicals, some registered in priority lists, were selected according to the availability of experimental property data to minimize the influence of predicted information in model development. Chemicals were emitted in air or water in a fixed geographical scenario representing the Netherlands and characterized by five compartments (air, water, sediments, soil and vegetation). Quantitative structure-fate relationship (QSFR) models to predict mass ratios in different compartments were developed with support vector regression algorithms. A set of molecular descriptors, including the molecular weight and 38 counts of molecular constituents were adopted to characterize the chemical space. Out of the 455 chemicals, 375 were used for training and testing the QSFR models, while 80 were excluded from model development and were used as an external validation set. Training and test chemicals were selected and the domain of applicability (DOA) of the QSFRs established by means of self-organizing maps according to structural similarity. Best results were obtained with QSFR models developed for chemicals belonging to either the class [C] and [C; O], or the class with at least one heteroatom different than oxygen in the structure. These two class-specific models, with respectively 146 and 229 chemicals, showed a predictive squared coefficient of q(2) ≥ 0.90 both for air and water, which respectively dropped to q(2)≈ 0.70 and 0.40 for outlying chemicals. Prediction errors were of the same order of magnitude as the deviations associated to the uncertainty of the

  3. Chemical Aging of Environmentally Friendly Cleaners

    NASA Technical Reports Server (NTRS)

    Biegert, L. L.; Evans, K. B.; Olsen, B. D.; Weber, B. L.

    2001-01-01

    Use of cleaners in the manufacturing area demands bottles that will hold a sufficient amount of material and allow for easy and controlled dispensing by the operator without contamination or material leaching from the bottle. The manufacturing storage conditions are also a factor that may affect cleaner chemical integrity and its potential to leave a residue on the part. A variety of squeeze bottles stored in mild (72 F, 10% R.H., dark) and harsh (105 F, 50% R.H., fluorescent lighting) conditions were evaluated to determine the effect of environment and bottle exposure on ozone depleting chemicals (ODC) cleaners chemical composition. Low Density Polyethylene (LDPE) bottles were found to be quite permeable to all the cleaners evaluated in this study indicating this bottle type should not be used in the manufacturing area. Fluorinated Polyethylene (FLPE) bottles showed little cleaner loss and change in cleaner chemical composition over time suggesting these bottles would be acceptable for use. Chemical analysis indicates limonene containing cleaners show increased non-volatile residue (NVR) content with storage under harsh conditions. Some cleaners use BHT (butylated hydroxytoluene) as stabilizer and to protect against limonene oxidation. Under harsh conditions, BHT was quickly depleted resulting in higher NVR levels.

  4. Chemical and toxicological testing of composted explosives-contaminating soil

    SciTech Connect

    Griest, W.H.; Steward, A.J.; Tyndall, R.L.; Caton, J.E.; Ho, C.H.; Ironside, K.S.; Caldwell, W.M.; Tan, E. )

    1993-06-01

    Static-pile and mechanically stirred composts of explosives-contaminated soil at the Umatilla Army Depot Activity (UMDA, Umatilla, OR) in a field composting optimization study were characterized chemically and toxicologically. The concentrations of extractable explosives (e.g., 2,4,6-trinitrotoluene) in the composts and their aqueous leachates, the mutagenicity of organic solvent extracts from the composts, and the toxicity of compost aqueous leachates to Ceriodaphnia dubia all decreased considerably with 20 d of composting. After 44 d or 90 d of composting, the toxicity, mutagenicity, and concentrations of extractable explosives decreased more than 90% in some cases. The composting efficiency was generally inversely proportional to the percentage (v/v) of contaminated soil. Composting in static piles was efficient up to about 20% (v/v) of contaminated soil; composting in the mechanically stirred composters was efficient up to about 25% soil. Mechanical composting was more efficient than composting in static piles. The main conclusion of this study is that composting can effectively remediate explosives contaminated soil and sediment. However, low levels of explosives and metabolites, bacterial mutagenicity, and leachable toxicity to Ceriodaphnia may remain after composting. The sources of residual toxicity and mutagenicity and the ultimate fate of the explosives are unknown.

  5. Pharmaceuticals as Environmental Contaminants: An Overview of the Science

    EPA Science Inventory

    Over the last decade, a new dimension to environmental pollution has become evident C one involving the actions, behaviors, and activities of the individual consumer as a source of chemical pollutants. A major focus on consumer-use chemicals has been directed at the numerous type...

  6. FINGERPRINT ANALYSIS OF CONTAMINANT DATA: A FORENSIC TOOL FOR EVALUATING ENVIRONMENTAL CONTAMINATION

    EPA Science Inventory

    Several studies have been conducted on behalf of the U .S. Environmental Protection Agency (EPA) to identify detection monitoring parameters for specific industries.1,2,3,4,5 One outcome of these studies was the evolution of an empirical multi-variant contaminant fingerprinting p...

  7. Chemical contamination of free-range eggs from Belgium.

    PubMed

    Van Overmeire, I; Pussemier, L; Hanot, V; De Temmerman, L; Hoenig, M; Goeyens, L

    2006-11-01

    The elements manganese, cobalt, nickel, copper, zinc, arsenic, selenium, molybdenum, cadmium, antimony, thallium, lead and mercury, and selected persistent organochlorine compounds (dioxins, marker and dioxin-like polychlorinated biphenyls, dichlorodiphenyltricholroethane (DDT) and metabolites as well as other chlorinated pesticides) were analysed in Belgian free-range eggs obtained from hens of private owners and of commercial farms. It was found that eggs from private owners were more contaminated than eggs from commercial farms. The ratios of levels in eggs from private owners to the levels in eggs from commercial farms ranged from 2 to 8 for the toxic contaminants lead, mercury, thallium, dioxins, polychlorinated biphenyls and the group of DDT. DDT contamination was marked by the substantial presence of p,p'-DDT in eggs from private owners in addition to dichlorodiphenyldichloroethylene (p,p-DDE) and dichlorodiphenyl-dichloroethane (p,p'-DDD). It is postulated that environmental pollution is at the origin of the higher contamination of eggs from private owners. Extensive consumption of eggs from private owners is likely to result in toxic equivalent quantity intake levels exceeding the tolerable weekly intake. PMID:17071513

  8. Environmental projects. Volume 14: Removal of contaminated soil and debris

    NASA Technical Reports Server (NTRS)

    Kushner, Len

    1992-01-01

    Numerous diverse activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of six parabolic dish antennas. Some of these activities can result in possible spills or leakages of hazardous materials and wastes stored both above ground in steel drums and below ground in underground storage tanks (UST's). These possible leaks or spills, along with the past practice of burial of solid debris and waste in trenches and pits, could cause local subsurface contamination of the soil. In 1987, the Jet Propulsion Laboratory (JPL), retained Engineering-Science, Inc. (E-S), Pasadena, California, to identify the specific local areas within the GDSCC with subsurface soil contamination. The E-S study determined that some of the soils at the Apollo Site and the Mars Site were contaminated with hydrocarbons, while soil at a nonhazardous waste dumpsite at the Mojave Base site was contaminated with copper. This volume is a JPL-expanded version of the PE209 E-S report, and it also reports that all subsurface contaminated soils at the GDSCC were excavated, removed, and disposed of in an environmentally acceptable way, and the excavations were backfilled and covered in accordance with accepted Federal, State, and local environmental rules and regulations.

  9. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-01

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22cm diameter and 30cm length, purifies an airflow rate of 5000lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  10. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    SciTech Connect

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-18

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies an airflow rate of 5000 lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  11. A survey of environmental contamination with ascarid ova, Wallingford, Connecticut.

    PubMed

    Chorazy, Margaret L; Richardson, Dennis J

    2005-01-01

    Few studies have been conducted in the United States to quantify the potential risk associated with encountering zoonotic ascarid ova in the environment. In an effort to raise awareness and to better understand the risk of acquiring visceral larva migrans in south central Connecticut, this environmental survey was conducted to determine the prevalence of ascarid ova (Toxocara canis, Toxocara cati, Baylisascaris columnaris, and Baylisascaris procyonis) in public areas of Wallingford, Connecticut, to compare prevalence levels among these public areas, and to determine what host species are primarily responsible for environmental contamination. A preliminary study was conducted to determine if ascarid ova of different species could be identified by size and appearance utilizing light microscopy alone; results did not support the differentiation of species via these methods. To determine the prevalence of environmental contamination with ascarid ova, samples of approximately 250 g of soil were collected from park green areas, playgrounds, public housing areas, parkways, and a school. Ova were detected in 46 (14.4%) of 319 samples collected. Ova were collected from three of the 60 (5.0%) park green area samples, 11 of the 40 (27.5%) playground samples, six of the 98 (6.1%) public housing samples, and 26 of the 96 (27.1%) parkway samples. Public areas of Wallingford, Connecticut are frequently contaminated by potentially infectious ascarid ova. Of particular concern is the high degree of contamination of playgrounds and the potential risk these areas pose to children's health. PMID:15815147

  12. NATIONAL REPORT ON HUMAN EXPOSURE TO ENVIRONMENTAL CHEMICALS

    EPA Science Inventory

    The National Report on Human Exposure to Environmental Chemicals is a new publication that will provide an ongoing assessment of the U.S. population's exposure to environmental chemicals using biomonitoring. For this Report, an environmental chemical means a chemical compound or ...

  13. Direct evaluation of airborne contamination in chemically amplified resist films

    NASA Astrophysics Data System (ADS)

    Yamashita, Yoshio; Taguchi, Takao; Watanabe, Takeo

    1995-06-01

    Airborne contamination in chemically amplified resist films was evaluated by monitoring deprotection reaction using an IR spectrometer. T-BOC protected (20, 50 and 100 mol%) m- and p-cresol novolak resins and triphenyltriflate were used as a matrix polymer and a photoacid generator (PAG), respectively. Three levels of clean environments whose base contaminant (NH4+) concentrations were 50 - 80, 5 - 10 and less than 1 ppb, were prepared for the experiments. In order to determine the delay effects precisely, other processes including baking, exposure, and storage during process intervals were conducted in a base-free environment. The PEB delay effect as well as radiation sensitivity without delay depended on the t-BOC content, and the best results were obtained at 50% and 25 - 50% t- BOC contents in m-cresol novolak and p-cresol novolak systems, respectively.

  14. Analysis of Food Contaminants, Residues, and Chemical Constituents of Concern

    NASA Astrophysics Data System (ADS)

    Ismail, Baraem; Reuhs, Bradley L.; Nielsen, S. Suzanne

    The food chain that starts with farmers and ends with consumers can be complex, involving multiple stages of production and distribution (planting, harvesting, breeding, transporting, storing, importing, processing, packaging, distributing to retail markets, and shelf storing) (Fig. 18.1). Various practices can be employed at each stage in the food chain, which may include pesticide treatment, agricultural bioengineering, veterinary drug administration, environmental and storage conditions, processing applications, economic gain practices, use of food additives, choice of packaging material, etc. Each of these practices can play a major role in food quality and safety, due to the possibility of contamination with or introduction (intentionally and nonintentionally) of hazardous substances or constituents. Legislation and regulation to ensure food quality and safety are in place and continue to develop to protect the stakeholders, namely farmers, consumers, and industry. [Refer to reference (1) for information on regulations of food contaminants and residues.

  15. Environmental mimics of chemical warfare agents.

    PubMed

    Claborn, David M

    2004-12-01

    There are several natural and artificial factors that mimic the effects of chemical warfare agents, thereby causing unwarranted alarm and confusion on the battlefield. Symptoms associated with chemical warfare include paralysis, muscle tremors, heavy salivation, severe burns, blistering, and corrosive skin injuries among others. Similar symptoms can be produced from a variety of environmental sources, artificial and natural. This article reviews several published and unpublished examples of environmental factors that produce syndromes similar to those caused by these agents. Examples of such mimics include pesticides, blistering exudates from insects and plants, various types of bites, and naturally occurring diseases. The potential for confusion caused by these factors is discussed and means of discriminating between warfare agents and naturally occurring events are identified. Recommendations for the use of this information and for needed research are also discussed. PMID:15646185

  16. Environmental technology demonstrations involving explosives contamination at the Volunteer Site

    SciTech Connect

    Walker, A.J.; Broder, M.F.; Jayne, E.A.

    1997-08-01

    Managed by the US Army Environmental Center, the Army`s test site at Volunteer Army Ammunition Plant encompasses a 300-acre area formerly used for batch production of TNT. Soil and groundwater contamination in the test area is well characterized. A network of monitoring wells and detailed information regarding the volume, location, and concentration of soil contamination is available to potential demonstrators. On-site field and laboratory support is provided by ICI Americas Incorporated, the facility`s operator. Four demonstrations have been conducted at the test site and several are scheduled for 1997. Preliminary findings from the four demonstrations discussed will be available sometime in 1997.

  17. Chemical Aging of Environmentally Friendly Cleaners

    NASA Technical Reports Server (NTRS)

    Evans, K.; Biegert, L.; Olsen, B.; Weber, B.; McCool, Alex (Technical Monitor)

    2001-01-01

    Use of cleaners in the manufacturing area demands bottles that will hold a sufficient amount of material and allow for easy and controlled dispensing by the operator without contamination or material leaching from the bottle. The manufacturing storage conditions are also a factor that may affect cleaner chemical integrity and its potential to leave a residue on the part. A variety of squeeze bottles stored in mild (72 F, 10 % R.H., dark) and harsh (105 F, 50 % R.H., fluorescent lighting) conditions were evaluated to determine the effect of environment and bottle exposure on the chemical composition of TCA (1,1,1 trichloroethane) replacement solvents. Low Density Polyethylene (LDPE) bottles were found to be quite permeable to all the cleaners evaluated in this study indicating this bottle type should not be used in the manufacturing area. Fluorinated Polyethylene (FLPE) bottles showed little cleaner loss and change in cleaner chemical composition over time suggesting these bottles would be acceptable for use. Chemical analysis indicates limonene-containing cleaners show increased non-volatile residue (NVR) content with storage under harsh conditions. Some cleaners use BHT (butylated hydroxytoluene) as stabilizer and to protect against limonene oxidation. Under harsh conditions, BHT was quickly depleted resulting in higher NVR levels.

  18. Detection of Contaminants of High Environmental Impact by Means of Fluorogenic Probes.

    PubMed

    García-Calvo, José; Calvo-Gredilla, Patricia; Ibáñez-Llorente, Marcos; Rodríguez, Teresa; Torroba, Tomás

    2016-04-01

    This personal account describes our contribution to the design of selective fluorogenic probes for contaminants of high environmental impact. For this purpose, we have developed a new family of highly versatile fluorogenic reagents that were able to show large differences in their fluorescence in the presence of selected analytes. They were used in the preparation of fluorogenic probes for the detection of contaminants of high environmental impact which currently have no good solutions: phosphorylating agents, such as chemical weapons; methyl mercury(II); the cyanide anion; amino-acid metabolites, such as doping substances; and biogenic amine mimics, such as drugs of abuse and recreational drugs. The development of new materials for specific sensing was achieved by anchoring selected probes to silica nanomaterials, suitable for the selective detection of organic analytes in water for immediate application to toxicological or environmental purposes. PMID:26924257

  19. Allergic contact sensitizing chemicals as environmental carcinogens.

    PubMed Central

    Albert, R E

    1997-01-01

    Chemicals that were bioassayed by the National Toxicology Program (NTP) and that also produce allergic dermatitis (ACD) in humans were evaluated for their tumorigenic characteristics. The impetus for the study was that most contact sensitizers, i.e., those that produce ACD, and genotoxic carcinogens are chemically similar in that they are electrophilic, thereby producing adducts on macromolecules including protein and DNA. This similarity in chemical behavior suggests that many contact sensitizers might be environmental carcinogens. All of the published NTP bioassays by early 1996 that had both genotoxicity and carcinogenicity studies were included in this analysis. The NTP chemicals had been chosen for bioassay without regard to their ability to produce ACD. Of the 209 chemicals that were bioassayed, there were 36 (17%) that were known to be human contact sensitizers; about half of these were positive on tumor bioassays. The contact sensitizers differed from the NTP sample as a whole by having a proportionately larger number of nongenotoxic chemicals by the Ames Salmonella assay, presumably because more of them were selected on the basis of widespread usage rather than structural resemblance to known carcinogens. Compared to the nongenotoxic chemicals, the genotoxics were stronger carcinogens in that they had a higher incidence of positive tumor bioassays, with twice the number of organs in which tumors were induced. The nongenotoxic chemicals had a preference for tumor induction in parenchymal tissues in contrast to epithelial tissues. The contact sensitizers showed essentially the same characteristics as the whole NTP sample when stratified according to genotoxicity. Judging by the chemicals that were chosen primarily for their widespread use rather than for their structural resemblance to carcinogens, the addition of a test for contact sensitization to the Ames test as a screening tool would increase the tumorigenic detection efficiency by about 40% because of

  20. Osprey: worldwide sentinel species for assessing and monitoring environmental contamination in rivers, lakes, reservoirs, and estuaries.

    PubMed

    Grove, Robert A; Henny, Charles J; Kaiser, James L

    2009-01-01

    In the United States, many fish and wildlife species have been used nationwide to monitor environmental contaminant exposure and effects, including carcasses of the bald eagle (Haliaeetus leucocephalus), the only top avian predator regularly used in the past. Unfortunately, bald eagles are sensitive to investigator intrusion at the nest. Thus, the osprey (Pandion haliaetus) is evaluated as a potential sentinel species for aquatic ecosystems. Several characteristics support the choice of the osprey as a sentinel species, including: (1) fish-eating diet atop the aquatic food web, (2) long-lived with strong nest fidelity, (3) adapts to human landscapes (potentially the most contaminated), (4) tolerates short-term nest disturbance, (5) nests spatially distributed at regular intervals, (6) highly visible nests easily located for study, (7) ability to accumulate most, if not all, lipophilic contaminants, (8) known sensitivity to many contaminants, and (9) nearly a worldwide distribution. These osprey traits have been instrumental in successfully using the species to understand population distribution, abundance, and changes over time; the effects of various contaminants on reproductive success; how contaminants in prey (fish on biomass basis) contribute to egg concentrations (i.e., biomagnification factors); and spatial residue patterns. Data summarized include nesting population surveys, detailed nesting studies, and chemical analyses of osprey egg, organ, blood, and feather samples for contaminants that bioaccumulate and/or biomagnify in aquatic food webs; and biochemical evaluations of blood and various organs. Studies in the United States, Canada, Mexico, Europe, and elsewhere have shown the osprey to be a useful sentinel species for monitoring selected environmental contaminants, including some emerging contaminants in lakes, reservoirs, rivers, and estuaries. PMID:19117208

  1. Myelodysplasia, chemical exposure, and other environmental factors

    SciTech Connect

    Farrow, A.; Jacobs, A.; West, R.R.

    1989-01-01

    This paper describes a case-control study of the occupational and environmental exposures of patients with myelodysplasia. The methodology, first described in Canada for solid tumors, estimates lifetime exposures to a number of potential toxic hazards or carcinogens. This pilot study confirms that the methodology, with the use of questionnaires and interviews, can estimate exposures to specific chemicals and shows some significant associations with myelodysplasia, including exposure to petrol or diesel compounds.

  2. Microarray Technology for Major Chemical Contaminants Analysis in Food: Current Status and Prospects

    PubMed Central

    Zhang, Zhaowei; Li, Peiwu; Hu, Xiaofeng; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen

    2012-01-01

    Chemical contaminants in food have caused serious health issues in both humans and animals. Microarray technology is an advanced technique suitable for the analysis of chemical contaminates. In particular, immuno-microarray approach is one of the most promising methods for chemical contaminants analysis. The use of microarrays for the analysis of chemical contaminants is the subject of this review. Fabrication strategies and detection methods for chemical contaminants are discussed in detail. Application to the analysis of mycotoxins, biotoxins, pesticide residues, and pharmaceutical residues is also described. Finally, future challenges and opportunities are discussed. PMID:23012541

  3. Role of Environmental Contaminants in the Etiology of Alzheimer's Disease: A Review

    PubMed Central

    Manivannan, Yegambaram; Manivannan, Bhagyashree; Beach, Thomas G.; Halden, Rolf U.

    2015-01-01

    Alzheimer's dis ease (AD) is a leading cause of mortality in the developed world with 70% risk attributable to genetics. The remaining 30% of AD risk is hypothesized to include environmental factors and human lifestyle patterns. Environmental factors possibly include inorganic and organic hazards, exposure to toxic metals (aluminium, copper), pesticides (organochlorine and organophosphate insecticides), industrial chemicals (flame retardants) and air pollutants (particulate matter). Long term exposures to these environmental contaminants together with bioaccumulation over an individual's life-time are speculated to induce neuroinflammation and neuropathology paving the way for developing AD. Epidemiologic associations between environmental contaminant exposures and AD are still limited. However, many in vitro and animal studies have identified toxic effects of environmental contaminants at the cellular level, revealing alterations of pathways and metabolisms associated with AD that warrant further investigations. This review provides an overview of in vitro, animal and epidemiological studies on the etiology of AD, highlighting available data supportive of the long hypothesized link between toxic environmental exposures and development of AD pathology. PMID:25654508

  4. Alterations in macrophage functions by environmental chemicals.

    PubMed Central

    Gardner, D E

    1984-01-01

    The establishment of infectious diseases is rarely entirely attributed to a single entity, but instead is the result of a primary stress and one or more secondary factors that interfere with homeostasis and the ability of the host to cope with the primary etiologic assault. Any environmental chemical that can suppress the normal functioning of the host's body defenses would be expected to increase the risk of the host to such diseases. Within the lung, the alveolar macrophages are the crucial elements responsible for defending the body against such airborne viable agents. The effects of inhaled gases and particulates on these defense cells are a major concern of the environmental health scientist since such chemicals have the capability of adversely affecting the integrity and functioning of these pulmonary defense cells. The objective of this report is to provide an overview that will improve our understanding of how a variety of environmental chemicals can alter the biochemical, physiological and immunological functioning of these cells. PMID:6376106

  5. Raman-spectroscopy-based chemical contaminant detection in milk powder

    NASA Astrophysics Data System (ADS)

    Dhakal, Sagar; Chao, Kuanglin; Qin, Jianwei; Kim, Moon S.

    2015-05-01

    Addition of edible and inedible chemical contaminants in food powders for purposes of economic benefit has become a recurring trend. In recent years, severe health issues have been reported due to consumption of food powders contaminated with chemical substances. This study examines the effect of spatial resolution used during spectral collection to select the optimal spatial resolution for detecting melamine in milk powder. Sample depth of 2mm, laser intensity of 200mw, and exposure time of 0.1s were previously determined as optimal experimental parameters for Raman imaging. Spatial resolution of 0.25mm was determined as the optimal resolution for acquiring spectral signal of melamine particles from a milk-melamine mixture sample. Using the optimal resolution of 0.25mm, sample depth of 2mm and laser intensity of 200mw obtained from previous study, spectral signal from 5 different concentration of milk-melamine mixture (1%, 0.5%, 0.1%, 0.05%, and 0.025%) were acquired to study the relationship between number of detected melamine pixels and corresponding sample concentration. The result shows that melamine concentration has a linear relation with detected number of melamine pixels with correlation coefficient of 0.99. It can be concluded that the quantitative analysis of powder mixture is dependent on many factors including physical characteristics of mixture, experimental parameters, and sample depth. The results obtained in this study are promising. We plan to apply the result obtained from this study to develop quantitative detection model for rapid screening of melamine in milk powder. This methodology can also be used for detection of other chemical contaminants in milk powders.

  6. Considerations involved with the use of semipermeable membrane devices for monitoring environmental contaminants

    USGS Publications Warehouse

    Petty, J.D.; Orazio, C.E.; Huckins, J.N.; Gale, R.W.; Lebo, J.A.; Meadows, J.C.; Echols, K.R.; Cranor, W.L.

    2000-01-01

    Semipermeable membrane devices (SPMDs) are used with increasing frequency, and throughout the world as samplers of organic contaminants. The devices can be used to detect a variety of lipophilic chemicals in water, sediment/soil, and air. SPMDs are designed to sample nonpolar, hydrophobic chemicals. The maximum concentration factor achievable for a particular chemical is proportional to its octanol-water partition coefficient. Techniques used for cleanup of SPMD extracts for targeted analytes and for general screening by full-scan mass spectrometry do not differ greatly from techniques used for extracts of other matrices. However, SPMD extracts contain potential interferences that are specific to the membrane-lipid matrix. Procedures have been developed or modified to alleviate these potential interferences. The SPMD approach has been demonstrated to be applicable to sequestering and analyzing a wide array of environmental contaminants including organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polychlorinated dioxins and dibenzofurans, selected organophosphate pesticides and pyrethroid insecticides, and other nonpolar organic chemicals. We present herein an overview of effective procedural steps for analyzing exposed SPMDs for trace to ultra-trace levels of contaminants sequestered from environmental matrices. Copyright (C) 2000.

  7. REMOVAL OF ORGANIC CCL CONTAMINANTS FROM DRINKING WATERS BY ENHANCED COAGULATION, POWDERED ACTIVATED CARBON, CHEMICAL SOFTENING, AND OXIDATION

    EPA Science Inventory

    The 1996 amendments to the Safe Drinking Water Act (SWDA) require the US Environmental Protection Agency (USEPA) to establish a list of unregulated microbiological and chemical contaminants to aid in priority-setting for the Agency's drinking water program. This list, known as t...

  8. Chronic toxicity of environmental contaminants: sentinels and biomarkers.

    PubMed Central

    LeBlanc, G A; Bain, L J

    1997-01-01

    Due to the use of a limited number of species and subchronic exposures, current ecological hazard assessment processes can underestimate the chronic toxicity of environmental contaminants resulting in adverse responses of sentinel species. Several incidences where sentinel species have responded to the effects of chronic exposure to ambient levels of environmental contaminants are discussed, including the development of neoplasia in fish, immunosuppression in marine mammals, pseudohermaphrodism in invertebrates, teratogenicity in amphibians, and aberrations in the sexual development of fish and reptiles. Biomarkers of chronic toxicity, including DNA mutations, alterations in specific protein and mRNA levels, and perturbations in metabolism, are presented. The incorporation of appropriate surrogate species and biomarkers of chronic toxicity into standard toxicity characterizations is proposed as a means of significantly refining the ecological hazard assessment process. PMID:9114278

  9. Changes in chemical contaminant body burden and biological effects in mussels adjacent to a marine remediation site

    SciTech Connect

    Kagley, A.N.; Snider, R.G.; Inouye, L.S.; Casillas, E.

    1995-12-31

    Eagle Harbor is a creosote-polluted marine site currently undergoing initial environmental remediation. Highly contaminated sediments were capped with a layer of sediment from a minimally contaminated area. Mussels (Mytilus edulis complex) in the vicinity of the creosote plant were collected before, during, and after the initial remediation process, for monitoring body burdens of PAHs as well as cellular effects indicative of biological damage. Mussels from this area have previously been shown to exhibit an elevated body burden of high molecular weight PAHs, as well as substantial changes in subcellular structures and functions, characteristic of mussels from chemically contaminated environments. Following capping, the body burden of high molecular weight PAHs was substantially reduced early in the restoration process yet mussel contaminant body burdens were approaching pre-cap levels one year after the end of the remediation project. Changes in mussel health were assessed by measuring selected aspects of lysosomal function as well as levels of enzymes and anti-oxidants involved in detoxifying organic chemical contaminants. Substantial improvement throughout capping occurred in lysosomal stability and cytochrome P450 reductase activity in digestive gland, and anti-oxidant status in gill tissue when compared to initial findings. In contrast, increased levels of neutral lipid and lipofuscin in digestive glands indicated that mussels were still suffering biological impairment as a result of chemical contaminant exposure. Overall, indigenous mussels near the marine remediation project showed temporary improvement in tissue body burden of chemical contaminants and some decrease in biological effects.

  10. Plant sentinels and molecular probes that monitor environmental munitions contaminants

    SciTech Connect

    Jackson, P.J.; DeWitt, J.G.; Hill, K.K.; Kuske, C.R.; Kim, D.Y.

    1994-08-01

    Plants accumulate TNT and similar compounds from soil. Their sessile nature requires that plants adapt to environmental changes by biochemical and molecular means. In principle, it is possible to develop a monitoring capability based on expression of any gene that is activated by specific environmental conditions. The authors have identified plant genes activated upon exposure to TNT. Partial gene sequences allow design of DNA probes that measure TNT-induced gene activity. These will be used to develop sensitive assays that monitor gene expression in plants growing in environments possibly contaminated with explosives.

  11. Potential for portal detection of human chemical and biological contamination

    NASA Astrophysics Data System (ADS)

    Settles, Gary S.; McGann, William J.

    2001-08-01

    The walk-through metal-detection portal is a paradigm of non-intrusive passenger screening in aviation security. Modern explosive detection portals based on this paradigm will soon appear in airports. This paper suggests that the airborne trace detection technology developed for that purpose can also be adapted to human chemical and biological contamination. The waste heat of the human body produces a rising warm-air sheath of 50-80 liters/sec known as the human thermal plume. Contained within this plume are hundreds of bioeffluents from perspiration and breath, and millions of skin flakes. Since early medicine, the airborne human scent was used in the diagnosis of disease. Recent examples also include toxicity and substance abuse, but this approach has never been quantified. The appearance of new bioeffluents or subtle changes in the steady-state may signal the onset of a chemical/biological attack. Portal sampling of the human thermal plume is suggested, followed by a pre-concentration step and the detection of the attacking agent or the early human response. The ability to detect nanogram levels of explosive trace contamination this way was already demonstrated. Key advantages of the portal approach are its rapidity and non-intrusiveness, and the advantage that it does not require the traditional bodily fluid or tissue sampling.

  12. Microlith Based Sorber for Removal of Environmental Contaminants

    NASA Technical Reports Server (NTRS)

    Roychoudhury, S.; Perry, J.

    2004-01-01

    The development of energy efficient, lightweight sorption systems for removal of environmental contaminants in space flight applications is an area of continuing interest to NASA. The current CO2 removal system on the International Space Station employs two pellet bed canisters of 5A molecular sieve that alternate between regeneration and sorption. A separate disposable charcoal bed removes trace contaminants. An alternative technology has been demonstrated using a sorption bed consisting of metal meshes coated with a sorbent, trademarked and patented as Microlith by Precision Combustion, Inc. (PCI); thesemeshes have the potential for direct electrical heating for this application. This allows the bed to be regenerable via resistive heating and offers the potential for shorter regeneration times, reduced power requirement, and net energy savings vs. conventional systems. The capability of removing both CO2 and trace contaminants within the same bed has also been demonstrated. Thus, the need for a separate trace contaminant unit is eliminated resulting in an opportunity for significant weight savings. Unlike the charcoal bed, zeolites for trace contaminant removal are amenable to periodic regeneration. This paper describes the design and performance of a prototype sorber device for simultaneous CO2 and trace contarninant removal and its attendant weight and energy savings.

  13. Ruditapes philippinarum and Ruditapes decussatus under Hg environmental contamination.

    PubMed

    Velez, Cátia; Galvão, Petrus; Longo, Renan; Malm, Olaf; Soares, Amadeu M V M; Figueira, Etelvina; Freitas, Rosa

    2015-08-01

    The native species Ruditapes decussatus and the invasive species Ruditapes philippinarum have an important ecological role and socio-economic value, from the Atlantic and Mediterranean to the Indo-Pacific region. In the aquatic environment, they are subjected to the presence of different contaminants, such as mercury (Hg) and its methylated form, methylmercury (MeHg). However, few studies have assessed the impacts of Hg on bivalves under environmental conditions, and little is known on bivalve oxidative stress patterns due to Hg contamination. Therefore, this study aims to assess the Hg contamination in sediments as well as the concentration of Hg and MeHg in R. decussatus and R. philippinarum, and to identify the detoxification strategies of both species living in sympatry, in an aquatic system with historical Hg contamination. The risk to human health due to the consumption of clams was also evaluated. The results obtained demonstrated that total Hg concentration found in sediments from the most contaminated area was higher than the maximum levels established by Sediment Quality Guidelines. This study further revealed that the total Hg and MeHg accumulation in both species was strongly correlated with the total Hg contamination of the sediments. Nonetheless, the THg concentration in both species was lower than maximum permissible limits (MPLs) of THg defined by international organizations. R. decussatus and R. philippinarum showed an increase in lipid peroxidation levels along with the increase of THg accumulation by clams. Nevertheless, for both species, no clear trend was obtained regarding the activity of antioxidant (superoxide dismutase, catalase) and biotransformation (glutathione S-transferase) enzymes and metallothioneins with the increase of THg in clams. Overall, the present work demonstrated that both species can be used as sentinel species of contamination and that the consumption of these clams does not constitute a risk for human health. PMID

  14. Approaches to detecting immunotoxic effects of environmental contaminants in humans.

    PubMed Central

    Tryphonas, H

    2001-01-01

    Experimental animal studies indicate that environmental contaminants can have adverse effects on several organs and tissues of the immune system. Such effects are known to lead to increased host susceptibility to microbial infections and to compromised immunosurveillance mechanisms normally instrumental in the elimination of neoplastic cells and the prevention of autoimmune diseases. Evaluation of the potential risk environmental contaminants pose to the human immune system is currently accomplished via extrapolation of experimentally derived animal data to humans. Presently, this process requires that uncertainty factors such as interspecies differences and genetic variability be considered. Naturally, the process of risk assessment would be greatly facilitated if it were based on clinically relevant data derived from studying humans known to be exposed to environmental contaminants. However, the existing human data are scarce and often described as very limited in scope. To generate the much-needed human data we need to identify a set of clinically relevant immunologic end points that, when adequately standardized, can be incorporated easily into the design of prospective epidemiologic studies. PMID:11744506

  15. Influences of Environmental Chemicals on Atopic Dermatitis

    PubMed Central

    2015-01-01

    Atopic dermatitis is a chronic inflammatory skin condition including severe pruritus, xerosis, visible eczematous skin lesions that mainly begin early in life. Atopic dermatitis exerts a profound impact on the quality of life of patients and their families. The estimated lifetime prevalence of atopic dermatitis has increased 2~3 fold during over the past 30 years, especially in urban areas in industrialized countries, emphasizing the importance of life-style and environment in the pathogenesis of atopic diseases. While the interplay of individual genetic predisposition and environmental factors contribute to the development of atopic dermatitis, the recent increase in the prevalence of atopic dermatitis might be attributed to increased exposure to various environmental factors rather than alterations in human genome. In recent decades, there has been an increasing exposure to chemicals from a variety of sources. In this study, the effects of various environmental chemicals we face in everyday life - air pollutants, contact allergens and skin irritants, ingredients in cosmetics and personal care products, and food additives - on the prevalence and severity of atopic dermatitis are reviewed. PMID:26191377

  16. Environmental contaminant concentrations in biota from the lower Savannah River, Georgia and South Carolina

    USGS Publications Warehouse

    Winger, P.V.; Schultz, D.P.; Johnson, W.W.

    1990-01-01

    Planned harbor expansion and industrial developments may adversely affect the economically important aquatic resources of the lower Savannah River, including those at the Savannah National Wildlife Refuge. To establish the present level of chemical contamination in this system, we collected a total of 102 samples of nine species of fish and fiddler crabs (Uca pugilator) from eleven sites in the lower Savannah River and on the Savannah National Wildlife Refuge, and analyzed them for concentrations of organochlorine chemicals, aliphatic and aromatic petroleum hydrocarbons, and 13 elemental contaminants: aluminum, arsenic, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, selenium, and zinc. Residues of DDT (mainly as DDE),trans-nonachlor, dieldrin, Aroclor? 1260, mirex, and petroleum hydrocarbons were common in fish from the lower Savannah River, but concentrations were below those warranting environmental concern. In general, the concentrations of elemental contaminants also were low; however, arsenic, cadmium, and chromium concentrations were elevated in fish from river stations near the city of Savannah, and lead was elevated in samples from the National Wildlife Refuge. Contamination of the lower Savannah River by organic and elemental contaminants, as indicated by concentrations in fishes and fiddler crabs, did not appear to pose a hazard.

  17. A Novel Open Tubular Capillary Electrochromatographic Method for Differentiating the DNA Interaction Affinity of Environmental Contaminants.

    PubMed

    D'Ulivo, Lucia; Feng, Yong-Lai

    2016-01-01

    The interaction of chemicals with DNA may lead to genotoxicity, mutation or carcinogenicity. A simple open tubular capillary electrochromatographic method is proposed to rapidly assess the interaction affinity of three environmental contaminants (1,4-phenylenediamine, pyridine and 2,4-diaminotoluene) to DNA by measuring their retention in the capillaries coated with DNA probes. DNA oligonucleotide probes were immobilized on the inner wall of a fused silica capillary that was first derivatized with 3-(aminopropyl)-triethoxysilane (APTES). The difference in retention times and factors was considered as the difference in interaction affinity of the contaminants to the DNA probes. The interaction of the contaminants with both double-stranded (dsDNA) and single-stranded DNA (ssDNA) coatings was compared. Retention factors of 1,4-phenylenediamine, pyridine and 2,4-diaminotoluene in the capillary coated with ssDNA probe were 0.29, 0.42, and 0.44, respectively. A similar trend was observed in the capillary coated with dsDNA, indicating that 2,4-diaminotoluene has the highest affinity among the three contaminants. The relative standard deviation (RSD) for the retention factors was in the range of 0.05-0.69% (n = 3). The results demonstrated that the developed technique could be applied for preliminary screening purpose to provide DNA interaction affinity information of various environmental contaminants. PMID:27055261

  18. A Novel Open Tubular Capillary Electrochromatographic Method for Differentiating the DNA Interaction Affinity of Environmental Contaminants

    PubMed Central

    D’Ulivo, Lucia; Feng, Yong-Lai

    2016-01-01

    The interaction of chemicals with DNA may lead to genotoxicity, mutation or carcinogenicity. A simple open tubular capillary electrochromatographic method is proposed to rapidly assess the interaction affinity of three environmental contaminants (1,4-phenylenediamine, pyridine and 2,4-diaminotoluene) to DNA by measuring their retention in the capillaries coated with DNA probes. DNA oligonucleotide probes were immobilized on the inner wall of a fused silica capillary that was first derivatized with 3-(aminopropyl)-triethoxysilane (APTES). The difference in retention times and factors was considered as the difference in interaction affinity of the contaminants to the DNA probes. The interaction of the contaminants with both double-stranded (dsDNA) and single-stranded DNA (ssDNA) coatings was compared. Retention factors of 1,4-phenylenediamine, pyridine and 2,4-diaminotoluene in the capillary coated with ssDNA probe were 0.29, 0.42, and 0.44, respectively. A similar trend was observed in the capillary coated with dsDNA, indicating that 2,4-diaminotoluene has the highest affinity among the three contaminants. The relative standard deviation (RSD) for the retention factors was in the range of 0.05–0.69% (n = 3). The results demonstrated that the developed technique could be applied for preliminary screening purpose to provide DNA interaction affinity information of various environmental contaminants. PMID:27055261

  19. A tiered, integrated biological and chemical monitoring framework for contaminants of emerging concern in aquatic ecosystems.

    PubMed

    Maruya, Keith A; Dodder, Nathan G; Mehinto, Alvine C; Denslow, Nancy D; Schlenk, Daniel; Snyder, Shane A; Weisberg, Stephen B

    2016-07-01

    The chemical-specific risk-based paradigm that informs monitoring and assessment of environmental contaminants does not apply well to the many thousands of new chemicals that are being introduced into ambient receiving waters. We propose a tiered framework that incorporates bioanalytical screening tools and diagnostic nontargeted chemical analysis to more effectively monitor for contaminants of emerging concern (CECs). The framework is based on a comprehensive battery of in vitro bioassays to first screen for a broad spectrum of CECs and nontargeted analytical methods to identify bioactive contaminants missed by the currently favored targeted analyses. Water quality managers in California have embraced this strategy with plans to further develop and test this framework in regional and statewide pilot studies on waterbodies that receive discharge from municipal wastewater treatment plants and stormwater runoff. In addition to directly informing decisions, the data obtained using this framework can be used to construct and validate models that better predict CEC occurrence and toxicity. The adaptive interplay among screening results, diagnostic assessment and predictive modeling will allow managers to make decisions based on the most current and relevant information, instead of extrapolating from parameters with questionable linkage to CEC impacts. Integr Environ Assess Manag 2016;12:540-547. © 2015 SETAC. PMID:26426153

  20. Chemical multi-contamination drives benthic prokaryotic diversity in the anthropized Toulon Bay.

    PubMed

    Misson, Benjamin; Garnier, Cédric; Lauga, Béatrice; Dang, Duc Huy; Ghiglione, Jean-François; Mullot, Jean-Ulrich; Duran, Robert; Pringault, Olivier

    2016-06-15

    Investigating the impact of human activities on marine coastal ecosystems remains difficult because of the co-occurrence of numerous natural and human-induced gradients. Our aims were (i) to evaluate the links between the chemical environment as a whole and microbial diversity in the benthic compartment, and (ii) to compare the contributions of anthropogenic and natural chemical gradients to microbial diversity shifts. We studied surface sediments from 54 sampling sites in the semi-enclosed Toulon Bay (NW Mediterranean) exposed to high anthropogenic pressure. Previously published chemical data were completed by new measurements, resulting in an in depth geochemical characterization by 29 representative environmental variables. Bacterial and archaeal diversity was assessed by terminal restriction fragment length polymorphism profiling on a selection of samples distributed along chemical gradients. Multivariate statistical analyses explained from 45% to 80% of the spatial variation in microbial diversity, considering only the chemical variables. A selection of trace metals of anthropogenic origin appeared to be strong structural factors for both bacterial and archaeal communities. Bacterial terminal restriction fragment (T-RF) richness correlated strongly with both anthropogenic and natural chemical gradients, whereas archaeal T-RF richness demonstrated fewer links with chemical variables. No significant decrease in diversity was evidenced in relation to chemical contamination, suggesting a high adaptive potential of benthic microbial communities in Toulon Bay. PMID:27032072

  1. Environmental contaminants of emerging concern in seafood--European database on contaminant levels.

    PubMed

    Vandermeersch, Griet; Lourenço, Helena Maria; Alvarez-Muñoz, Diana; Cunha, Sara; Diogène, Jorge; Cano-Sancho, German; Sloth, Jens J; Kwadijk, Christiaan; Barcelo, Damia; Allegaert, Wim; Bekaert, Karen; Fernandes, José Oliveira; Marques, Antonio; Robbens, Johan

    2015-11-01

    Marine pollution gives rise to concern not only about the environment itself but also about the impact on food safety and consequently on public health. European authorities and consumers have therefore become increasingly worried about the transfer of contaminants from the marine environment to seafood. So-called "contaminants of emerging concern" are chemical substances for which no maximum levels have been laid down in EU legislation, or substances for which maximum levels have been provided but which require revision. Adequate information on their presence in seafood is often lacking and thus potential risks cannot be excluded. Assessment of food safety issues related to these contaminants has thus become urgent and imperative. A database (www.ecsafeseafooddbase.eu), containing available information on the levels of contaminants of emerging concern in seafood and providing the most recent data to scientists and regulatory authorities, was developed. The present paper reviews a selection of contaminants of emerging concern in seafood including toxic elements, endocrine disruptors, brominated flame retardants, pharmaceuticals and personal care products, polycyclic aromatic hydrocarbons and derivatives, microplastics and marine toxins. Current status on the knowledge of human exposure, toxicity and legislation are briefly presented and the outcome from scientific publications reporting on the levels of these compounds in seafood is presented and discussed. PMID:26123540

  2. Characterization of complex mineral assemblages: Implications for contaminant transport and environmental remediation

    PubMed Central

    Bertsch, Paul M.; Seaman, John C.

    1999-01-01

    Surface reactive phases of soils and aquifers, comprised of phyllosilicate and metal oxohydroxide minerals along with humic substances, play a critical role in the regulation of contaminant fate and transport. Much of our knowledge concerning contaminant-mineral interactions at the molecular level, however, is derived from extensive experimentation on model mineral systems. Although these investigations have provided a foundation for understanding reactive surface functional groups on individual mineral phases, the information cannot be readily extrapolated to complex mineral assemblages in natural systems. Recent studies have elucidated the role of less abundant mineral and organic substrates as important surface chemical modifiers and have demonstrated complex coupling of reactivity between permanent-charge phyllosilicates and variable-charge Fe-oxohydroxide phases. Surface chemical modifiers were observed to control colloid generation and transport processes in surface and subsurface environments as well as the transport of solutes and ionic tracers. The surface charging mechanisms operative in the complex mineral assemblages cannot be predicted based on bulk mineralogy or by considering surface reactivity of less abundant mineral phases based on results from model systems. The fragile nature of mineral assemblages isolated from natural systems requires novel techniques and experimental approaches for investigating their surface chemistry and reactivity free of artifacts. A complete understanding of the surface chemistry of complex mineral assemblages is prerequisite to accurately assessing environmental and human health risks of contaminants or in designing environmentally sound, cost-effective chemical and biological remediation strategies. PMID:10097043

  3. Impact of Environmental Chemicals on Lung Development

    PubMed Central

    Miller, Mark D.; Marty, Melanie A.

    2010-01-01

    Background Disruption of fundamental biologic processes and associated signaling events may result in clinically significant alterations in lung development. Objectives We reviewed evidence on the impact of environmental chemicals on lung development and key signaling events in lung morphogenesis, and the relevance of potential outcomes to public health and regulatory science. Data sources We evaluated the peer-reviewed literature on developmental lung biology and toxicology, mechanistic studies, and supporting epidemiology. Data synthesis Lung function in infancy predicts pulmonary function throughout life. In utero and early postnatal exposures influence both childhood and adult lung structure and function and may predispose individuals to chronic obstructive lung disease and other disorders. The nutritional and endogenous chemical environment affects development of the lung and can result in altered function in the adult. Studies now suggest that similar adverse impacts may occur in animals and humans after exposure to environmentally relevant doses of certain xenobiotics during critical windows in early life. Potential mechanisms include interference with highly conserved factors in developmental processes such as gene regulation, molecular signaling, and growth factors involved in branching morphogenesis and alveolarization. Conclusions Assessment of environmental chemical impacts on the lung requires studies that evaluate specific alterations in structure or function—end points not regularly assessed in standard toxicity tests. Identifying effects on important signaling events may inform protocols of developmental toxicology studies. Such knowledge may enable policies promoting true primary prevention of lung diseases. Evidence of relevant signaling disruption in the absence of adequate developmental toxicology data should influence the size of the uncertainty factors used in risk assessments. PMID:20444669

  4. Meta-analysis of environmental contamination by phthalates.

    PubMed

    Bergé, Alexandre; Cladière, Mathieu; Gasperi, Johnny; Coursimault, Annie; Tassin, Bruno; Moilleron, Régis

    2013-11-01

    Phthalate acid esters (PAE), commonly named phthalates, are toxics classified as endocrine-disrupting compounds; they are primarily used as additives to improve the flexibility in polyvinyl chloride. Many studies have reported the occurrence of phthalates in different environmental matrices; however, none of these studies has yet established a complete overview for those compounds in the water cycle within an urban environment. This review summarizes PAE concentrations for all environmental media throughout the water cycle, from atmosphere to receiving waters. Once the occurrences of compounds have been evaluated for each environmental compartment (urban wastewater, wastewater treatment plants, atmosphere, and the natural environment), we reviewed data in order to identify the fate of PAE in the environment and establish whether geographical and historical trends exist. Indeed, geographical and historical trends appear between Europe and other countries such as USA/Canada and China, however they remain location dependent. This study aimed at identifying both the correlations existing between environmental compartments and the processes influencing the fate and transport of these contaminants into the environment. In Europe, the concentrations measured in waterways today represent the background level of contamination, which provides evidence of a past diffuse pollution. In contrast, an increasing trend has actually been observed for developing countries, especially for China. PMID:23917738

  5. A signal processing framework for simultaneous detection of multiple environmental contaminants

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subhadeep; Manahan, Michael P.; Mench, Matthew M.

    2013-11-01

    The possibility of large-scale attacks using chemical warfare agents (CWAs) has exposed the critical need for fundamental research enabling the reliable, unambiguous and early detection of trace CWAs and toxic industrial chemicals. This paper presents a unique approach for the identification and classification of simultaneously present multiple environmental contaminants by perturbing an electrochemical (EC) sensor with an oscillating potential for the extraction of statistically rich information from the current response. The dynamic response, being a function of the degree and mechanism of contamination, is then processed with a symbolic dynamic filter for the extraction of representative patterns, which are then classified using a trained neural network. The approach presented in this paper promises to extend the sensing power and sensitivity of these EC sensors by augmenting and complementing sensor technology with state-of-the-art embedded real-time signal processing capabilities.

  6. Global warming and environmental contaminants in aquatic organisms: the need of the etho-toxicology approach.

    PubMed

    Manciocco, Arianna; Calamandrei, Gemma; Alleva, Enrico

    2014-04-01

    Environmental contaminants are associated with a wide spectrum of pathological effects. Temperature increase affects ambient distribution and toxicity of these chemicals in the water environment, representing a potentially emerging problem for aquatic species with short-, medium- and long-term repercussions on human health through the food chain. We assessed peer-reviewed literature, including primary studies, review articles and organizational reports available. We focused on studies concerning toxicity of environmental pollutants within a global warming scenario. Existing knowledge on the effects that the increase of water temperature in a contaminated situation has on physiological mechanisms of aquatic organisms is presented. Altogether we consider the potential consequences for the human beings due to fish and shellfish consumption. Finally, we propose an etho-toxicological approach to study the effects of toxicants in conditions of thermal increase, using aquatic organisms as experimental models under laboratory controlled conditions. PMID:24480426

  7. Toxic chemical contamination of ground water: EPA oversight. Hearings before a Subcommittee of the Committee on Government Operations, House of Representatives, Ninety-Sixth Congress, Second Session July 24, 25, and September 18, 1980

    SciTech Connect

    Not Available

    1981-01-01

    Consequences of chemical effluents from industrial sources as environmental contaminants are investigated. Industrial wastes considered include pesticides from agriculture, mining activities, leaking storage tanks, and sewers, toxic chemicals in septic tanks and road deicing salts. (PSB)

  8. Meta-analysis of environmental contamination by alkylphenols.

    PubMed

    Bergé, Alexandre; Cladière, Mathieu; Gasperi, Johnny; Coursimault, Annie; Tassin, Bruno; Moilleron, Régis

    2012-11-01

    Alkylphenols and alkylphenol ethoxylates (APE) are toxics classified as endocrine-disrupting compounds; they are used in detergents, paints, herbicides, pesticides, emulsifiers, wetting and dispersing agents, antistatic agents, demulsifiers, and solubilizers. Many studies have reported the occurrence of alkylphenols in different environmental matrices, though none of these studies have yet to establish a comprehensive overview of such compounds in the water cycle within an urban environment. This review summarizes APE concentrations for all environmental media throughout the water cycle, from the atmosphere to receiving waters. Once the occurrence of compounds has been assessed for each environmental compartment (urban wastewater, wastewater treatment plants [WWTP], atmosphere, and the natural environment), data are examined in order to understand the fate of APE in the environment and establish their geographical and historical trends. From this database, it is clear that the environment in Europe is much more contaminated by APE compared to North America and developing countries, although these APE levels have been decreasing in the last decade. APE concentrations in the WWTP effluent of developed countries have decreased by a factor of 100 over the past 30 years. This study is aimed at identifying both the correlations existing between environmental compartments and the processes that influence the fate and transport of these contaminants in the environment. In industrial countries, the concentrations observed in waterways now represent the background level of contamination, which provides evidence of a past diffuse pollution in these countries, whereas sediment analyses conducted in developing countries show an increase in APE content over the last several years. Finally, similar trends have been observed in samples drawn from Europe and North America. PMID:22864754

  9. Environmental surface cleanliness and the potential for contamination during handwashing.

    PubMed

    Griffith, Christopher J; Malik, Rifhat; Cooper, Rose A; Looker, Nick; Michaels, Barry

    2003-04-01

    Effective handwashing (including drying) is important in infection control. The ability of the various stages of handwashing to decrease skin-surface microbial counts has been documented. However, an important element, environmental surface cleanliness, and the potential for contamination of hands during the process has not been well studied or quantified. An examination of the adenosine triphosphate (a measure of residual organic soil), bacterial, and staphylococcal load on ward handwash station surfaces, which could be touched during handwashing, is reported. Hand contact surfaces tested consisted of approximately 620 each of: faucet handles, soap dispenser activator mechanisms, and folded paper-towel dispenser exits. Failure rates in excess of benchmark clean values were higher with adenosine triphosphate assays than microbial counts. This could indicate the presence of a higher level of general organic debris (eg, skin cells) as opposed to microbial contamination or could reflect greater assay sensitivity. Faucet handles were more likely to be contaminated and be in excess of benchmark values than paper-towel dispenser exits. However, the latter are likely to be the final surface touched during the handwashing process and overall nearly 20% were above microbiologic benchmark values. Many of the organisms isolated were staphylococci and the results are discussed within the context of microbial cross-contamination and potential pathogen spread. PMID:12665742

  10. Residual metallic contamination of transferred chemical vapor deposited graphene.

    PubMed

    Lupina, Grzegorz; Kitzmann, Julia; Costina, Ioan; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Vaziri, Sam; Östling, Mikael; Pasternak, Iwona; Krajewska, Aleksandra; Strupinski, Wlodek; Kataria, Satender; Gahoi, Amit; Lemme, Max C; Ruhl, Guenther; Zoth, Guenther; Luxenhofer, Oliver; Mehr, Wolfgang

    2015-05-26

    Integration of graphene with Si microelectronics is very appealing by offering a potentially broad range of new functionalities. New materials to be integrated with the Si platform must conform to stringent purity standards. Here, we investigate graphene layers grown on copper foils by chemical vapor deposition and transferred to silicon wafers by wet etching and electrochemical delamination methods with respect to residual submonolayer metallic contaminations. Regardless of the transfer method and associated cleaning scheme, time-of-flight secondary ion mass spectrometry and total reflection X-ray fluorescence measurements indicate that the graphene sheets are contaminated with residual metals (copper, iron) with a concentration exceeding 10(13) atoms/cm(2). These metal impurities appear to be partially mobile upon thermal treatment, as shown by depth profiling and reduction of the minority charge carrier diffusion length in the silicon substrate. As residual metallic impurities can significantly alter electronic and electrochemical properties of graphene and can severely impede the process of integration with silicon microelectronics, these results reveal that further progress in synthesis, handling, and cleaning of graphene is required to advance electronic and optoelectronic applications. PMID:25853630

  11. Chemical contamination and transformation of soils in hydrocarbon production regions

    NASA Astrophysics Data System (ADS)

    Zamotaev, I. V.; Ivanov, I. V.; Mikheev, P. V.; Nikonova, A. N.

    2015-12-01

    The current concepts of soil pollution and transformation in the regions of hydrocarbon production have been reviewed. The development of an oil field creates extreme conditions for pedogenesis. Tendencies in the radial migration, spatial distribution, metabolism, and accumulation of pollutants (oil, oil products, and attendant heavy metals) in soils of different bioclimatic zones have been analyzed. The radial and lateral mobility of pollution halos is a universal tendency in the technogenic transformation of soils and soil cover in the regions of hydrocarbon production. The biodegradation time of different hydrocarbon compounds strongly varies under different landscape conditions, from several months to several tens of years. The transformation of original (mineral and organic) soils to their technogenic modifications (mechanically disturbed, chemically contaminated, and chemo soils and chemozems) occurs in the impact zone of technogenic hydrocarbon fluxes under any physiographical conditions. The integrated use of the existing methods for the determination of the total content and qualitative composition of bituminous substances and polyaromatic hydrocarbons in combination with the chromatographic determination of normal alkanes and hydrocarbon gases, as well as innovative methods of studies, allows revealing new processes and genetic relationships in soils and studying the functioning of soils and soil cover. The study of the hydrocarbon contamination of soils is important for development of restoration measures and lays the groundwork for the ecological and hygienic regulation based on the zonation of soil and landscape resistance to different pollutants.

  12. Deriving uncertainty factors for threshold chemical contaminants in drinking water.

    PubMed

    Ritter, Leonard; Totman, Céline; Krishnan, Kannan; Carrier, Richard; Vézina, Anne; Morisset, Véronique

    2007-10-01

    Uncertainty factors are used in the development of drinking-water guidelines to account for uncertainties in the database, including extrapolations of toxicity from animal studies and variability within humans, which result in some uncertainty about risk. The application of uncertainty factors is entrenched in toxicological risk assessment worldwide, but is not applied consistently. This report, prepared in collaboration with Health Canada, provides an assessment of the derivation of the uncertainty factor assumptions used in developing drinking-water quality guidelines for chemical contaminants. Assumptions used by Health Canada in the development of guidelines were compared to several other major regulatory jurisdictions. This assessment has revealed that uncertainty factor assumptions have been substantially influenced by historical practice. While the application of specific uncertainty factors appears to be well entrenched in regulatory practice, a well-documented and disciplined basis for the selection of these factors was not apparent in any of the literature supporting the default assumptions of Canada, the United States, Australia, or the World Health Organization. While there is a basic scheme used in most cases in developing drinking-water quality guidelines for nonthreshold contaminants by the jurisdictions included in this report, additional factors are sometimes included to account for other areas of uncertainty. These factors may include extrapolating subchronic data to anticipated chronic exposure, or use of a LOAEL instead of a NOAEL. The default value attributed to each uncertainty factor is generally a factor of 3 or 10; however, again, no comprehensive guidance to develop and apply these additional uncertainty factors was evident from the literature reviewed. A decision tree has been developed to provide guidance for selection of appropriate uncertainty factors, to account for the range of uncertainty encountered in the risk assessment process

  13. Effects of environmental contaminants on reptiles: A review

    USGS Publications Warehouse

    Hall, R.J.

    1980-01-01

    The literature relating to the effects of environmental contaminants on reptiles is reviewed and certain generalizations based on studies of other kinds of vertebrates are presented. Reports of reptilian mortality from pesticide applications are numerous enough to establish the sensitivity of reptiles to these materials. Reports of residue analyses demonstrate the ability of reptiles to accumulate various contaminants. but the significance of the residues to reptilian populations is unknown. A few authors have reported the distribution of residues in reptilian tissues; others have investigated uptake or loss rates. Physiological studies have shown that organochlorines may inhibit enzymes involved in active transport and have correlated the activity of potential detoxifying enzymes with residue levels. There is some suggestion that pesticide residues may interfere with reproduction in oviparous snakes. Needs for future research are discussed.

  14. Chemical mixtures and environmental effects: a pilot study to assess ecological exposure and effects in streams

    USGS Publications Warehouse

    Buxton, Herbert T.; Reilly, Timothy J.; Kuivila, Kathryn M.; Kolpin, Dana W.; Bradley, Paul M.; Villeneuve, Daniel L.; Mills, Marc A.

    2015-01-01

    Assessment and management of the risks of exposure to complex chemical mixtures in streams are priorities for human and environmental health organizations around the world. The current lack of information on the composition and variability of environmental mixtures and a limited understanding of their combined effects are fundamental obstacles to timely identification and prevention of adverse human and ecological effects of exposure. This report describes the design of a field-based study of the composition and biological activity of chemical mixtures in U.S. stream waters affected by a wide range of human activities and contaminant sources. The study is a collaborative effort by the U.S. Geological Survey and the U.S. Environmental Protection Agency. Scientists sampled 38 streams spanning 24 States and Puerto Rico. Thirty-four of the sites were located in watersheds impacted by multiple contaminant sources, including industrial and municipal wastewater discharges, crop and animal agricultural runoff, urban runoff, and other point and nonpoint contaminant sources. The remaining four sites were minimally development reference watersheds. All samples underwent comprehensive chemical and biological characterization, including sensitive and specific direct analysis for over 700 dissolved organic and inorganic chemicals and field parameters, identification of unknown contaminants (environmental diagnostics), and a variety of bioassays to evaluate biological activity and toxicity.

  15. Investigation of the Use of "Cucumis Sativus" for Remediation of Chromium from Contaminated Environmental Matrices: An Interdisciplinary Instrumental Analysis Project

    ERIC Educational Resources Information Center

    Butler, Lynsey R.; Edwards, Michael R.; Farmer, Russell; Greenly, Kathryn J.; Hensler, Sherri; Jenkins, Scott E.; Joyce, J. Michael; Mann, Jason A.; Prentice, Boone M.; Puckette, Andrew E.; Shuford, Christopher M.; Porter, Sarah E. G.; Rhoten, Melissa C.

    2009-01-01

    An interdisciplinary, semester-long project is presented in which students grow Cucumis sativus (cucumber) plants from seeds and study the ability of the plants to remediate a heavy metal from contaminated soil or water or both. Phytoremediation strategies for environmental cleanup are presented as possible alternatives to chemical based clean-up…

  16. Noble metals: a toxicological appraisal of potential new environmental contaminants.

    PubMed Central

    Brubaker, P E; Moran, J P; Bridbord, K; Hueter, F G

    1975-01-01

    The public health benefits expected by reducing known hazardous emissions from mobile sources should not be compromised by increasing levels of other potentially hazardous unregulated emissions. Catalytic converters are going to be used to meet the statutory requirements on carbon monoxide and hydrocarbon emissions from light duty motor vehicles. Platinum and palladium metals are the catalytic materials to be used in these emission control devices. Preliminary experimental evidence and analysis of the impact of these control devices on the future use and demand for platinum indicates that this metal may appear at detectable levels in the environment by the end of this decade. At the present time, platinum and palladium are not present in the public environment and represent potentially new environmental contaminants as a consequence of use of this new abatement control technology. There is relatively little information available to adequately assess the potential health hazards that may be associated with exposure to these metals and their compounds. Analysis of the environmental problems and concerns associated with possible new environmental contaminants are discussed. Limited estimates are made on community exposure by use of a meteorological dispersion model. Biodegradation potential and attention is also given to the limited toxicological information available. PMID:50939

  17. Quantifying sources of environmental contamination with Toxocara spp. eggs.

    PubMed

    Morgan, E R; Azam, D; Pegler, K

    2013-04-15

    A rich body of work has reported levels of infection with Toxocara species in definitive hosts, and the frequency of eggs in the environment, in many different regions and situations. These have greatly increased our understanding of the relationship between egg excretion from companion and wild animals and the risk of human infection by inadvertent ingestion of eggs from soil and other environmental reservoirs. Nevertheless, it is difficult to compare studies directly because of vagaries in sampling and laboratory methods, a preponderance of prevalence rather than abundance data, and a lack of studies that systematically sample different sympatric definitive host populations. Such comparisons could be instructive, for example to determine the relative contributions of different definitive host populations and categories to environmental contamination in specified areas, and hence guide priorities for control. In this article we use estimates of host density and infection levels in the city of Bristol, UK, as a case study to evaluate the relative contribution of sympatric cats, dogs and foxes to overall environmental contamination with eggs. Results suggest that dogs, especially those less than 12 weeks of age, dominate total egg output, but that this is modified by degree of access to public areas and removal of faeces, such that foxes could take over as the primary source of eggs. Results and conclusions are likely to differ among specific locations. The general aim is to show how an improved quantitative framework for epidemiological studies of Toxocara spp. egg contamination can help to advance understanding and the effectiveness of control strategies in future. PMID:23333071

  18. Pollution-Induced Community Tolerance To Diagnose Hazardous Chemicals in Multiple Contaminated Aquatic Systems.

    PubMed

    Rotter, Stefanie; Gunold, Roman; Mothes, Sibylle; Paschke, Albrecht; Brack, Werner; Altenburger, Rolf; Schmitt-Jansen, Mechthild

    2015-08-18

    Aquatic ecosystems are often contaminated with large numbers of chemicals, which cannot be sufficiently addressed by chemical target analyses. Effect-directed analysis (EDA) enables the identification of toxicants in complex contaminated environmental samples. This study suggests pollution-induced community tolerance (PICT) as a confirmation tool for EDA to identify contaminants which actually impact on local communities. The effects of three phytotoxic compounds local periphyton communities, cultivated at a reference (R-site) and a polluted site (P-site), were assessed to confirm the findings of a former EDA study on sediments. The sensitivities of R- and P-communities to prometryn, tributyltin (TBT) and N-phenyl-2-naphthylamine (PNA) were quantified in short-term toxicity tests and exposure concentrations were determined. Prometryn and PNA concentrations were significantly higher at the P-site, whereas TBT concentrations were in the same range at both sites. Periphyton communities differed in biomass, but algal class composition and diatom diversity were similar. Community tolerance of P-communities was significantly enhanced for prometryn, but not for PNA and TBT, confirming site-specific effects on local periphyton for prometryn only. Thus, PICT enables in situ effect confirmation of phytotoxic compounds at the community level and seems to be suitable to support confirmation and enhance ecological realism of EDA. PMID:26196040

  19. Influences of solution chemical conditions on mobilization of TNT from contaminated soil

    SciTech Connect

    Dante, D.A.; Tiller, C.L.; Pennell, K.D.

    1996-12-31

    Residual explosives and their byproducts are common contaminants at several US military installations. One of the major explosive contaminants is 2,4,6-Trinitrotoluene (TNT) (a hydrophobic organic compound). Contamination from TNT has resulted from manufacturing and handling processes which occurred at military installations, especially Army Ammunition Plants (AAP), over many decades until environmental regulations were implemented. TNT causes adverse effects to the environment, including growth inhibition to plants, toxicity to aquatic life, and possible mutagenicity, and also is toxic to humans. As a result of the effects of TNT on the environment and current environmental regulations, substantial research effort has been focused on determining the fate of TNT in natural systems and the development of remediation processes. Many potential remediation processes, such as those involving plants or microorganisms, are in part limited by the transfer of TNT from solid phases (e.g., sorbed to soil or present as TNT granules) to the aqueous phase. The purpose of this research is to assess the release of TNT from a soil phase to a mobile aqueous phase under varying solution chemical conditions. In particular, influences of pH, aquatic natural organic matter, and surfactants are investigated.

  20. Human health hazards associated with chemical contamination of aquatic environment.

    PubMed Central

    Stara, J F; Kello, D; Durkin, P

    1980-01-01

    Given the finite supply of water available for human use, continued chemical contamination of the aquatic environment may pose a significant human health hazard. Consequently, an effort must be made to develop ambient water quality criteria to protect human health and preserve the integrity of the aquatic environment. In developing water quality criteria based on human health effects, information on sources of exposure, pharmacokinetics, and adverse effects must be carefully evaluated. Information on sources of exposure is needed to determine the contribution of exposure from water relative to all other sources. Pharmacokinetic data are used in inter- and intraspecies extrapolation and in characterizing the mode of toxic action. Information on toxic effects includes data on acute, subchronic, and chronic toxicity, mutagenicity, teratogenicity, and carcinogenicity. In analyzing such information, a distinction is made between threshold and nonthreshold effects. Currently, carcinogenicity and mutagenicity are considered to be nonthreshold effects. For carcinogens and mutagens, criteria are calculated by postulating an "acceptable" increased level of risk and using extrapolation models to estimate the dose which would result in this increased level of risk. For other chemicals, thresholds are assumed and criteria are calculated by deriving "acceptable daily intakes" for man which would presumably result in no observable adverse effects. Neither process is exact, and attempts must be made to improve and verify risk assessment methodologies. PMID:6993199

  1. Developing methods to assess and predict the population level effects of environmental contaminants.

    USGS Publications Warehouse

    Emlen, J.M.; Springman, K.R.

    2007-01-01

    The field of ecological toxicity seems largely to have drifted away from what its title implies--assessing and predicting the ecological consequences of environmental contaminants--moving instead toward an emphasis on individual effects and physiologic case studies. This paper elucidates how a relatively new ecological methodology, interaction assessment (INTASS), could be useful in addressing the field's initial goals. Specifically, INTASS is a model platform and methodology, applicable across a broad array of taxa and habitat types, that can be used to construct population dynamics models from field data. Information on environmental contaminants and multiple stressors can be incorporated into these models in a form that bypasses the problems inherent in assessing uptake, chemical interactions in the environment, and synergistic effects in the organism. INTASS can, therefore, be used to evaluate the effects of contaminants and other stressors at the population level and to predict how changes in stressor levels or composition of contaminant mixtures, as well as various mitigation measures, might affect population dynamics.

  2. Environmental signaling: from environmental estrogens to endocrine-disrupting chemicals and beyond.

    PubMed

    McLachlan, J A

    2016-07-01

    The landmark report (Herbst et al. 1971) linking prenatal treatment with a synthetic estrogen, diethylstilbestrol (DES), to cancer at puberty in women whose mothers took the drug while pregnant ushered in an era of research on delayed effects of such exposures on functional outcomes in offspring. An animal model developed in our laboratory at the National Institute of Environmental Health Sciences confirmed that DES was the carcinogen and exposure to DES caused, as well, functional alterations in the reproductive, endocrine, and immune systems of male and female mice treated in utero. DES was also being used in agriculture and we discovered, at the first meeting on Estrogens in the Environment in 1979 (Estrogens in the Environment, 1980), that many environmental contaminants were also estrogenic. Many laboratories sought to discern the basis for estrogenicity in environmental chemicals and to discover other hormonally active xenobiotics. Our laboratory elucidated how DES and other estrogenic compounds worked by altering differentiation through epigenetic gene imprinting, helping explain the transgenerational effects found in mice and humans. At the Wingspread Conference on the Human-Wildlife Connection in 1991 (Advances in Modern Environmental Toxicology, 1992), we learned that environmental disruption of the endocrine system occurred in many species and phyla, and the term endocrine disruption was introduced. Further findings of transgenerational effects of environmental agents that mimicked or blocked various reproductive hormones and the ubiquity of environmental signals, such as bisphenol A increased concern for human and ecological health. Scientists began to look at other endocrine system aspects, such as cardiovascular and immune function, and other nuclear receptors, with important observations regarding obesity and metabolism. Laboratories, such as ours, are now using stem cells to try to understand the mechanisms by which various environmental signals

  3. Carbon speciation in ash, residual waste and contaminated soil by thermal and chemical analyses.

    PubMed

    Kumpiene, Jurate; Robinson, Ryan; Brännvall, Evelina; Nordmark, Désirée; Bjurström, Henrik; Andreas, Lale; Lagerkvist, Anders; Ecke, Holger

    2011-01-01

    Carbon in waste can occur as inorganic (IC), organic (OC) and elemental carbon (EC) each having distinct chemical properties and possible environmental effects. In this study, carbon speciation was performed using thermogravimetric analysis (TGA), chemical degradation tests and the standard total organic carbon (TOC) measurement procedures in three types of waste materials (bottom ash, residual waste and contaminated soil). Over 50% of the total carbon (TC) in all studied materials (72% in ash and residual waste, and 59% in soil) was biologically non-reactive or EC as determined by thermogravimetric analyses. The speciation of TOC by chemical degradation also showed a presence of a non-degradable C fraction in all materials (60% of TOC in ash, 30% in residual waste and 13% in soil), though in smaller amounts than those determined by TGA. In principle, chemical degradation method can give an indication of the presence of potentially inert C in various waste materials, while TGA is a more precise technique for C speciation, given that waste-specific method adjustments are made. The standard TOC measurement yields exaggerated estimates of organic carbon and may therefore overestimate the potential environmental impacts (e.g. landfill gas generation) of waste materials in a landfill environment. PMID:20630737

  4. Shellfish and residual chemical contaminants: hazards, monitoring, and health risk assessment along French coasts.

    PubMed

    Guéguen, Marielle; Amiard, Jean-Claude; Arnich, Nathalie; Badot, Pierre-Marie; Claisse, Didier; Guérin, Thierry; Vernoux, Jean-Paul

    2011-01-01

    , lindane, triazines, PBDE, and chlorinated paraffins.In France, the results of contaminant monitoring have indicated that Cd, but not lead (< 0.26 mg kg-1) or mercury (< 0.003 mg kg-1), has had some non-compliances. Detections for PCBs and dioxins in shellfish were far below the regulatory thresholds in oysters (< 0.6 pg g-l), mussels (< 0.6 pg g-1), and king scallops (< 0.4 pg g-1). The benzo[a]pyrene concentration in marketed mussels and farmed shellfish does not exceed the regulatory threshold. Some monitoring data are available on shellfish flesh contamination for unregulated organic contaminants.Of about 100 existing organo stannic compounds, residues of the mono-, di-, and tributyltin (MBT, DBT, and TBT) and mono-, di-, and triphenyltin (MPT, DPT,and TPT) compounds are the most frequently detected in fishery products. Octyltins are not found in fishery products. Some bivalve mollusks show arsenic levels up to 15.8 mg kg-1. It seems that the levels of arsenic in the environment derive less from bioaccumulation, than from whether the arsenic is in an organic or an inorganic form. In regard to the other metals, levels of zinc and magnesium are higher in oysters than in mussels.To protect shellfish from chemical contamination, programs have been established to monitor water masses along coastal areas. The French monitoring network(ROCCH) focuses on environmental matrices that accumulate contaminants. These include both biota and sediment. Example contaminants were studied in a French coastal lagoon (Arcachon Bay) and in an estuary (Bay of Seine), and these were used to illustrate the usefulness of the monitoring programs. Twenty-one pesticidal and biocidal active substances were detected in the waters of Arcachon Bay during the summers from 1999 to 2003, at concentrations ranging from a few nanograms per liter to several hundred nanograms per liter. Most of the detected substances were herbicides, including some that are now banned. Organotin compounds have been detected

  5. SECOND NATIONAL REPORT ON HUMAN EXPOSURE TO ENVIRONMENTAL CHEMICALS

    EPA Science Inventory

    The National Report on Human Exposure to Environmental Chemicals is an ongoing assessment of the exposure of the U.S. population to environmental chemicals using biomonitoring. The first Report on 27 chemicals was issued in March 2001. This Second Report, released in January 20...

  6. Chemical Contamination of the Lower Rio Grande near Laredo, TX

    NASA Astrophysics Data System (ADS)

    Flores, B.; Ren, J.; Krishnamurthy, S.; Belzer, W.

    2006-12-01

    The Rio Grande River stretches over 2000 miles from the southern Rocky Mountains in Colorado to the tip of Texas where the Rio Grande meets the Gulf of Mexico. It is the natural boundary between U.S. and Mexico from El Paso, TX, to Brownsville, TX. The communities along the border heavily rely upon the Rio Grande as a primary source of water for consumption, agricultural uses, supporting wildlife and recreation. For many years the Rio Grande has been polluted with municipal, industrial, agricultural and farming contaminants from both sides of the border. This pollution has led to the extinction or reduction of certain wildlife species as well as affecting the health of the residences along the border. Even though great strides have been made in monitoring the Rio Grande, there has been a lack of intense monitoring data collection for pollutants such as pesticides. Three sampling sites including Manadas Creek, the Rio Grande River at International Bridge I, and USGS monitoring site 08459200 off of Highway 83 were chosen. The water quality parameters focused include temperature, pH, conductivity, dissolve oxygen (DO), salinity, total dissolved solids, nutrients, metals and pesticides. Preliminary results have shown elevated concentration of total phosphorus and ortho-phosphorus in the Manadas Creek site. Organochlorinated pesticides such as heptachlor and 4, 4 DDE were detected at various concentrations at all sites and endrin aldehyde was found at Manadas Creek site. This research has provided more information on the current chemical contamination level of the Rio Grande in the Laredo area.

  7. Evaluation of Microbiological and Chemical Contaminants in Poultry Farms.

    PubMed

    Skóra, Justyna; Matusiak, Katarzyna; Wojewódzki, Piotr; Nowak, Adriana; Sulyok, Michael; Ligocka, Anna; Okrasa, Małgorzata; Hermann, Janusz; Gutarowska, Beata

    2016-02-01

    The aim of the study was to evaluate the microbiological and chemical contamination in settled dust at poultry farms. The scope of research included evaluating the contributions of the various granulometric fractions in settled dust samples, assessing microbial contamination using culture methods, concentrations of secondary metabolites in dust and their cytotoxicity against hepatocyte chicken cells by means of MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) tests. In addition, we also evaluated the concentration of selected volatile odorous compounds (VOCs) using gas chromatographic and spectrophotometric methods and airborne dust concentration in the air with DustTrak™ DRX Aerosol Monitor. Studies were carried out on chicken broilers and laying hens at 13 poultry farms, with numbers of birds ranging from 8000 to 42,000. The airborne total dust concentration at poultry farms averaged 1.44 mg/m³ with a high percentage of the PM10 fraction (particulate matter with a diameter less than 10 μm). Microorganism concentrations in the settled dust were: 3.2 × 10⁸ cfu/g for bacteria and 1.2 × 10⁶ cfu/g for fungi. Potential pathogens (Enterococcus spp., Escherichia coli, Salmonella spp., Aspergillus fumigatus, Paecilomyces variotii) were also found. Secondary metabolites included aurofusarin, deoxynivalenol, 15-hydroxyculmorin zearalenone, zearalenone-sulfate, infectopyron, and neochinulin A. However, the dust samples showed weak cytotoxicity towards chicken hepatocyte cells, which ranged between 9.2% and 29.7%. Among volatile odorous compounds ammonia, acrolein, methyloamine, acetic acid, acetoaldehyde and formaldehyde were detected in the air. In conclusion, settled dust can be a carrier of microorganisms, odours and secondary metabolites in poultry farms, which can be harmful to workers' health. PMID:26861361

  8. Evaluation of Microbiological and Chemical Contaminants in Poultry Farms

    PubMed Central

    Skóra, Justyna; Matusiak, Katarzyna; Wojewódzki, Piotr; Nowak, Adriana; Sulyok, Michael; Ligocka, Anna; Okrasa, Małgorzata; Hermann, Janusz; Gutarowska, Beata

    2016-01-01

    The aim of the study was to evaluate the microbiological and chemical contamination in settled dust at poultry farms. The scope of research included evaluating the contributions of the various granulometric fractions in settled dust samples, assessing microbial contamination using culture methods, concentrations of secondary metabolites in dust and their cytotoxicity against hepatocyte chicken cells by means of MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) tests. In addition, we also evaluated the concentration of selected volatile odorous compounds (VOCs) using gas chromatographic and spectrophotometric methods and airborne dust concentration in the air with DustTrak™ DRX Aerosol Monitor. Studies were carried out on chicken broilers and laying hens at 13 poultry farms, with numbers of birds ranging from 8000 to 42,000. The airborne total dust concentration at poultry farms averaged 1.44 mg/m3 with a high percentage of the PM10 fraction (particulate matter with a diameter less than 10 μm). Microorganism concentrations in the settled dust were: 3.2 × 109 cfu/g for bacteria and 1.2 × 106 cfu/g for fungi. Potential pathogens (Enterococcus spp., Escherichia coli, Salmonella spp., Aspergillus fumigatus, Paecilomyces variotii) were also found. Secondary metabolites included aurofusarin, deoxynivalenol, 15-hydroxyculmorin zearalenone, zearalenone-sulfate, infectopyron, and neochinulin A. However, the dust samples showed weak cytotoxicity towards chicken hepatocyte cells, which ranged between 9.2% and 29.7%. Among volatile odorous compounds ammonia, acrolein, methyloamine, acetic acid, acetoaldehyde and formaldehyde were detected in the air. In conclusion, settled dust can be a carrier of microorganisms, odours and secondary metabolites in poultry farms, which can be harmful to workers’ health. PMID:26861361

  9. Environmental toxicity testing of contaminated soil based on microcalorimetry.

    PubMed

    Gruiz, K; Feigl, V; Hajdu, Cs; Tolner, M

    2010-10-01

    Contaminated site assessment and monitoring requires efficient risk-management tools including innovative environmental toxicity tests. The first application of microcalorimetry for toxicity testing draw the attention to a possible new tool to increase sensitivity, to eliminate matrix effect and to study effect-mechanism. A Thermal Activity Monitor (TAM) microcalorimeter was used for measuring the heat production of various test organisms when getting in contact with sterile toxic soils. Well known bacterial (Azomonas agilis), animal (Folsomia candida) and plant test organisms (Sinapis alba) were tested for heat production. The heat response of selected testorganisms was measured in case of metal (Cu and Zn) and organic pollutant (Diesel oil, DBNPA and PCP) contaminated soils. In addition to the quantitative determination of the heat production, the mechanism of the toxic effect can be characterized from the shape of the power-time curve (slope of the curve, height and time of the maximum). In certain concentration ranges the higher the pollutant concentration of the soil the lower the maximum of the time-heat curve. At low pollutant concentrations an increased heat production was measured in case of A. agile and 20 and 200 mg Zn kg(-1) soil. The microcalorimetric testing was more sensitive in all cases than the traditional test methods. Our results showed that the microcalorimetric test method offers a new and sensitive option in environmental toxicology, both for research and routine testing. PMID:20549622

  10. A holistic passive integrative sampling approach for assessing the presence and potential impacts of waterborne environmental contaminants

    USGS Publications Warehouse

    Petty, J.D.; Huckins, J.N.; Alvarez, D.A.; Brumbaugh, W.G.; Cranor, W.L.; Gale, R.W.; Rastall, A.C.; Jones-Lepp, T. L.; Leiker, T.J.; Rostad, C.E.; Furlong, E.T.

    2004-01-01

    As an integral part of our continuing research in environmental quality assessment approaches, we have developed a variety of passive integrative sampling devices widely applicable for use in defining the presence and potential impacts of a broad array of contaminants. The semipermeable membrane device has gained widespread use for sampling hydrophobic chemicals from water and air, the polar organic chemical integrative sampler is applicable for sequestering waterborne hydrophilic organic chemicals, the stabilized liquid membrane device is used to integratively sample waterborne ionic metals, and the passive integrative mercury sampler is applicable for sampling vapor phase or dissolved neutral mercury species. This suite of integrative samplers forms the basis for a new passive sampling approach for assessing the presence and potential toxicological significance of a broad spectrum of environmental contaminants. In a proof-of-concept study, three of our four passive integrative samplers were used to assess the presence of a wide variety of contaminants in the waters of a constructed wetland, and to determine the effectiveness of the constructed wetland in removing contaminants. The wetland is used for final polishing of secondary-treatment municipal wastewater and the effluent is used as a source of water for a state wildlife area. Numerous contaminants, including organochlorine pesticides, polycyclic aromatic hydrocarbons, organophosphate pesticides, and pharmaceutical chemicals (e.g., ibuprofen, oxindole, etc.) were detected in the wastewater. Herein we summarize the results of the analysis of the field-deployed samplers and demonstrate the utility of this holistic approach.

  11. Analytic considerations for measuring environmental chemicals in breast milk.

    PubMed Central

    Needham, Larry L; Wang, Richard Y

    2002-01-01

    The presence of environmental chemicals in human breast milk is of general concern because of the potential health consequence of these chemicals to the breast-fed infant and the mother. In addition to the mother's exposure, several features determine the presence of environmental chemicals in breast milk and their ability to be determined analytically. These include maternal factors and properties of the environmental chemical--both physical and chemical--such as its lipid solubility, degree of ionization, and molecular weight. Environmental chemicals with high lipid solubility are likely to be found in breast milk; they include polyhalogenated compounds such as polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, organochlorine insecticides, and polybrominated diphenylethers. These fat-soluble chemicals are incorporated into the milk as it is synthesized, and they must be measured in accordance with the fat content of the milk to allow for meaningful comparisons within an individual and among populations. Although the analytic approach selected to measure the environmental chemical is predominantly determined by the characteristics of the chemical, the concentration of the chemical in the milk sample and the existence of structurally similar chemicals (e.g., congeners) must be considered as well. In general, the analytic approach for measuring environmental chemicals in breast milk is similar to the approach for measuring the same chemicals in other matrices, except special considerations must be given for the relatively high fat content of milk. The continued efforts of environmental scientists to measure environmental chemicals in breast milk is important for defining the true contribution of these chemicals to public health, especially to the health of the newborn. Work is needed for identifying and quantifying additional environmental chemicals in breast milk from the general population and for developing analytic

  12. PROSPECTS FOR IN SITU CHEMICAL TREATMENT FOR CONTAMINATED SOIL

    EPA Science Inventory

    Treating large volumes of contaminated soil at Superfund sites is costly. he Superfund Amendments and Reauthorization Act (SARA), and the Resource Conservation and Recovery Act (RCRA) have provisions, which regulate the removal treatment, and ultimate disposal of contaminated soi...

  13. Carcinogenicity of consumption of red and processed meat: What about environmental contaminants?

    PubMed

    Domingo, José L; Nadal, Martí

    2016-02-01

    In October 26, 2015, the International Agency for Research on Cancer (IARC) issued a press release informing of the recent evaluation of the carcinogenicity of red and processed meat consumption. The consumption of red meat and processed meat was classified as "probably carcinogenic to humans", and as "carcinogenic to humans", respectively. The substances responsible of this potential carcinogenicity would be generated during meat processing, such as curing and smoking, or when meat is heated at high temperatures (N-nitroso-compounds, polycyclic aromatic hydrocarbons and heterocyclic aromatic amines). However, in its assessments, the IARC did not make any reference to the role that may pose some carcinogenic environmental pollutants, which are already present in raw or unprocessed meat. The potential role of a number of environmental chemical contaminants (toxic trace elements, polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, polybrominated diphenyl ethers, polychlorinated diphenyl ethers, polychlorinated naphthalenes and perfluoroalkyl substances) on the carcinogenicity of consumption of meat and meat products is discussed in this paper. A case-study, Catalonia (Spain), is specifically assessed, while the influence of cooking on the concentrations of environmental pollutants is also reviewed. It is concluded that although certain cooking processes could modify the levels of chemical contaminants in food, the influence of cooking on the pollutant concentrations depends not only on the particular cooking process, but even more on their original contents in each specific food item. As most of these environmental pollutants are organic, cooking procedures that release or remove fat from the meat should tend to reduce the total concentrations of these contaminants in the cooked meat. PMID:26656511

  14. Contaminant exposures in various environmental media: How can toxicity comparisons be made?

    SciTech Connect

    Lanno, R.P.; McCarty, L.S.

    1995-12-31

    Environmental protection is usually based upon guidelines or standards expressed as chemical values in environmental media such as air, sediment, soil, and water. The basis for such guidelines is laboratory toxicity test data, often time-dependent LC50 values (e.g., 96-h LC50s), where toxicity is expressed in terms of the concentration of chemical contaminant in the exposure medium. This preoccupation with exposure-based estimates of toxic dose has led to many difficulties when attempting to compare the relative toxicity of compounds between species and under various modifying conditions in the same medium. Furthermore, viable comparisons of toxic potencies between organisms inhabiting different environmental media has been all but impossible. This paper exploits the relationship between body residues and adverse biological effects to compare the effects of certain modifying factors (e.g., temperature) on expressed toxicity and toxic potency both within and between different species in one medium. As well, this approach is used to make comparisons of toxic potency between different species in different environmental media. Such comparisons are made by standardizing toxic responses to time-independent toxicity thresholds and using the critical body residue at the chosen biological response endpoint as the dose surrogate rather than the concentration of chemical in the exposure medium. Comparisons of exposure-based and organism residue-based toxicity between fish, and invertebrates in soil (earthworms) and sediment (amphipods) are presented. Recommendations to facilitate such comparisons are reviewed.

  15. Assessment of Environmental Contamination and Environmental Decontamination Practices within an Ebola Holding Unit, Freetown, Sierra Leone

    PubMed Central

    Youkee, Daniel; Brown, Colin S.; Lilburn, Paul; Shetty, Nandini; Brooks, Tim; Simpson, Andrew; Bentley, Neil; Lado, Marta; Kamara, Thaim B.; Walker, Naomi F.; Johnson, Oliver

    2015-01-01

    Evidence to inform decontamination practices at Ebola holding units (EHUs) and treatment centres is lacking. We conducted an audit of decontamination procedures inside Connaught Hospital EHU in Freetown, Sierra Leone, by assessing environmental swab specimens for evidence of contamination with Ebola virus by RT-PCR. Swabs were collected following discharge of Ebola Virus Disease (EVD) patients before and after routine decontamination. Prior to decontamination, Ebola virus RNA was detected within a limited area at all bedside sites tested, but not at any sites distant to the bedside. Following decontamination, few areas contained detectable Ebola virus RNA. In areas beneath the bed there was evidence of transfer of Ebola virus material during cleaning. Retraining of cleaning staff reduced evidence of environmental contamination after decontamination. Current decontamination procedures appear to be effective in eradicating persistence of viral RNA. This study supports the use of viral swabs to assess Ebola viral contamination within the clinical setting. We recommend that regular refresher training of cleaning staff and audit of environmental contamination become standard practice at all Ebola care facilities during EVD outbreaks. PMID:26692018

  16. DEVELOPMENT OF A QUANTITATIVE ASSAY FOR VITELLOGENIN TO MONITOR ESTROGEN-LIKE ENVIRONMENTAL CONTAMINANTS

    EPA Science Inventory

    Many environmental contaminants have the potential to disrupt endocrine systems of wildlife and humans resulting in impairment of reproductive and other systems. A subset of these contaminants may initiate these effects by binding to the estrogen receptor. In oviparous vertebrate...

  17. Cumulative Index to Chemicals and to Common and Scientific Names of Species Listed in Contaminant Hazard Reviews 1 through 34

    USGS Publications Warehouse

    Eisler, R.

    1999-01-01

    The Patuxent Wildlife Research Center Contaminant Hazard Reviews (CHR) series synthesizes ecotoxicological data of selected environmental contaminants, with emphasis on hazards to native species of flora and fauna. From 1985 through 1998 a total of 34 reviews were published in various Reports series of the U.S. Department of the Interior on agricultural pesticides (carbofuran, chlordane, chlorpyrifos, diazinon, diflubenzuron, fenvalerate, mirex, paraquat, toxaphene), herbicides (acrolein, atrazine), metals and metalloids (arsenic, boron, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, selenium, silver, tin, zinc), predacides (sodium monofluoroacetate), organic industrial wastes (dioxins, pentachlorophenol), veterinary chemicals (famphur), polycyclic aromatic hydrocarbons, polychlorinated biphenyls, mining wastes (cyanide), and ionizing radiations. This report is a cumulative index to the common and scientific names of all biological species listed in the first 34 reports in the CHR series, with individual species cross-referenced by contaminant and corresponding page numbers. A similar index is shown for chemicals.

  18. Chemically enhanced phytoextraction of lead-contaminated soils.

    PubMed

    Perry, V Ryan; Krogstad, Eirik J; El-Mayas, Hanan; Greipsson, Sigurdur

    2012-08-01

    The effects of the combined application of soil fungicide (benomyl) and ethylenediaminetetraacetic acid (EDTA) on lead (Pb) phytoextraction by ryegrass (Lolium perenne) were examined. Twenty-five pots of Pb-contaminated soil (200 mg Pb kg(-1)) were seeded with ryegrass and randomly arranged into the following treatments: (1) Control, (2) benomyl, (3) EDTA, (4) benomyl and EDTA (B+E), and (5) benomyl followed by an application of EDTA 14 days later (B .. . E). Chemicals were applied when plants had reached maximum growth. Plants were analyzed for foliage Pb concentration using inductively coupled argon plasma (ICAP) spectrometry. The synergistic effects of the combined benomyl and EDTA application (treatments 4 and 5) were made evident by the significantly (p < 0.05) highest foliage Pb concentrations. However, the foliage dry biomass was significantly lowest for plants in treatments 4 and 5. The bioaccumulation factor (BF) and phytoextraction ratio (PR) were highest for plants in treatment 5 followed by plants in treatment 4. PMID:22908638

  19. Guidelines for active spreading during in situ chemical oxidation to remediate contaminated groundwater

    EPA Science Inventory

    The effectiveness of in situ chemical oxidation to remediate contaminated aquifers depends on the extent and duration of contact between the injected treatment chemical and the groundwater contaminant (the reactants). Techniques that inject and extract in the aquifer to ‘ac...

  20. DESIGNING ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES WITH FUGITIVE AND OPEN EMISSIONS

    EPA Science Inventory

    Designing a chemical process normally includes aspects of economic and environmental disciplines. In this work we describe methods to quickly and easily evaluate the economics and potential environmental impacts of a process, with the hydrodealkylation of toluene as an example. ...

  1. Integrated Proteomic Approaches for Understanding Toxicity of Environmental Chemicals

    EPA Science Inventory

    To apply quantitative proteomic analysis to the evaluation of toxicity of environmental chemicals, we have developed an integrated proteomic technology platform. This platform has been applied to the analysis of the toxic effects and pathways of many important environmental chemi...

  2. Environmental stability of chemically amplified resists: proposing an industry standard methodology for testing

    NASA Astrophysics Data System (ADS)

    Dean, Kim R.; Kishkovich, Oleg P.

    2000-06-01

    The authors propose the establishment of a new industry standard methodology for testing the environmental stability of chemically amplified chemical resists. Preparatory to making this proposal, they developed a pertinent test apparatus and test procedure that might be used uniformly as an industry-wide best practice. To demonstrate and validate their proposed methodology, the authors subjected two different 193 nm chemically amplified photoresists to test conditions in the 'torture chamber,' simulating actual lithographic environmental scenarios. Depending on the variables of each test run (e.g., different resists, different resist thicknesses, different pollutants, different concentrations, and different humidity levels), a variety of defects were noted and described quantitatively. Of the three contaminants tested, ammonia had the strongest effect. The thin resists were more strongly affected by the contamination.

  3. [Proposal to establish an environmental contaminants surveillance system in Colombia].

    PubMed

    Huertas, Jancy Andrea

    2015-08-01

    Environmental pollution is a growing problem that negatively impacts health with social and economic high costs. In this sense, coordinated surveillance of conditions, risks, exposures and health effects related to pollution is a useful tool to guide decision-making processes. The objective of this essay was to describe a surveillance system for environmental contaminants in Colombia and its design background. Using the technical guidelines proposed by the Pan American Health Organization, a literature review was conducted to identify the key elements to be included in such surveillance system and to establish which of these elements were already present in the Colombian context. Moreover, these findings were compared with successful experiences in Latin America. The surveillance system includes five components: Epidemiological, environmental and biological surveillance, clinical monitoring and recommendations to guide policies or interventions. The key factors for a successful surveillance system are: interdisciplinary and inter-sector work, clear definition of functions, activities, data sources and information flow. The implementation of the system will be efficient if the structures and tools existing in each country are taken into account. The most important stakeholders are inter-sector public health and environmental commissions and government institutions working in research and surveillance issues related to health, sanitation, environment, drugs and food regulation and control. In conclusion, Colombia has the technical resources and a normative framework to design and implement the surveillance system. However, stakeholders´ coordination is essential to ensure the efficacy of the system so it may guide the implementation of cost-effective actions in environmental health. PMID:26535737

  4. A Framework for the Environmental Professional in the Chemical Industry.

    ERIC Educational Resources Information Center

    Priesing, Charles P.

    1982-01-01

    Addresses four areas of environmental concern in the chemical industry: (1) needs and responsibilities of environmental protection; (2) organization and distribution of environmental affairs within the corporate structure; (3) functions and operations associated with industrial environmental management; and (4) origins and tasks of the…

  5. Remediation of soils contaminated with particulate depleted uranium by multi stage chemical extraction.

    PubMed

    Crean, Daniel E; Livens, Francis R; Sajih, Mustafa; Stennett, Martin C; Grolimund, Daniel; Borca, Camelia N; Hyatt, Neil C

    2013-12-15

    Contamination of soils with depleted uranium (DU) from munitions firing occurs in conflict zones and at test firing sites. This study reports the development of a chemical extraction methodology for remediation of soils contaminated with particulate DU. Uranium phases in soils from two sites at a UK firing range, MOD Eskmeals, were characterised by electron microscopy and sequential extraction. Uranium rich particles with characteristic spherical morphologies were observed in soils, consistent with other instances of DU munitions contamination. Batch extraction efficiencies for aqueous ammonium bicarbonate (42-50% total DU extracted), citric acid (30-42% total DU) and sulphuric acid (13-19% total DU) were evaluated. Characterisation of residues from bicarbonate-treated soils by synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy revealed partially leached U(IV)-oxide particles and some secondary uranyl-carbonate phases. Based on these data, a multi-stage extraction scheme was developed utilising leaching in ammonium bicarbonate followed by citric acid to dissolve secondary carbonate species. Site specific U extraction was improved to 68-87% total U by the application of this methodology, potentially providing a route to efficient DU decontamination using low cost, environmentally compatible reagents. PMID:23998894

  6. Raptor ecotoxicology in Spain: a review on persistent environmental contaminants.

    PubMed

    García-Fernández, Antonio J; Calvo, José F; Martínez-López, Emma; María-Mojica, Pedro; Martínez, José E

    2008-09-01

    Initial studies on the pressure from environmental contaminants on raptor populations in Spain date back to the 1980s, and they have been carried out from a range of viewpoints using a range of sentinel raptor species. However, there is no national monitoring scheme, and therefore the research carried out has been sporadic both spatially and temporally. The exposure to metals has not varied over time, except in the case of lead, whose concentration in eggs and tissues has diminished. In general, the concentrations of metals detected in raptor samples from Spain are generally low and not sufficient to produce toxic effects. Excepting DDT and DDE, most organochlorine-based pesticides in raptors from Spain have diminished over the last 2 decades. The concentrations of DDE found in the eggs of various species could in part explain problems in the reproductive success of raptors in Spain. PMID:18833796

  7. A comprehensive approach to actual polychlorinated biphenyls environmental contamination.

    PubMed

    Risso, F; Magherini, A; Ottonelli, M; Magi, E; Lottici, S; Maggiolo, S; Garbarino, M; Narizzano, R

    2016-05-01

    Worldwide polychlorinated biphenyls (PCBs) pollution is due to complex mixtures with high number of congeners, making the determination of total PCBs in the environment an open challenge. Because the bulk of PCBs production was made of Aroclor mixtures, this analysis is usually faced by the empirical mixture identification via visual inspection of the chromatogram. However, the identification reliability is questionable, as patterns in real samples are strongly affected by the frequent occurrence of more than one mixture. Our approach is based on the determination of a limited number of congeners chosen to enable objective criteria for Aroclor identification, summing up the advantages of congener-specific analysis with the ones of total PCBs determination. A quantitative relationship is established between congeners and any single mixture, or mixtures combination, leading to the identification of the actual contamination composition. The approach, due to its generality, allows the use of different sets of congeners and any technical mixture, including the non-Aroclor ones. The results confirm that PCB environmental pollution in northern Italy is based on Aroclor. Our methodology represents an important tool to understand the source and fate of the PCBs contamination. PMID:26805927

  8. A Model for Measurements of Lognormally Distributed Environmental Contaminants

    SciTech Connect

    Charles B. Davis, Danny Field, Thomas E. Gran

    2009-05-21

    This paper proposes a more nearly reasonable model for the actual measurement distribution, called here the “Davis Mixed Model” (DMM). The DMM is derived by multiplying the probability density function of unobservable actual concentrations (assumed LN) by the conditional density of measurements given the concentrations (assumed heteroscedastic normal), and then integrating to obtain the marginal distribution of the observable measurements. The DMM is complicated and analytically intractable; its probability density function (PDF) is itself an integral, for example, and closed-form expressions for percentiles, let alone estimators, do not exist. The DMM can be fit to data via Maximum Likelihood Estimation (MLE), however, and a fitted model can be used to generate data for evaluating the actual performance of candidate UTL or other estimation procedures. The Industrial Hygiene application motivating this work involves surface sampling surveys for removable beryllium (Be) contamination, with data from Inductively Coupled Plasma – Atomic Emission Spectroscopy (ICP-AES) analyses. Similar issues will arise quite generally with censored environmental data for other contaminants and analytical methods. The conclusions presented in this paper focus on the regions of the DMM parameter space arising in surveying numerous Department of Energy (DOE) facilities associated with the Nevada Test Site (NTS).

  9. In situ chemical fixation of arsenic-contaminated soils: Anexperimental study

    SciTech Connect

    Yang, Li; Donahoe, Rona J.; Redwine, James C.

    2007-03-27

    This paper reports the results of an experimentalstudytesting a low-cost in situ chemical fixation method designed to reclaimarsenic-contaminated subsurface soils. Subsurface soils from severalindustrial sites in southeastern U.S. were contaminated with arsenicthrough heavy application of herbicide containing arsenic trioxide. Themean concentrations of environmentally available arsenic in soilscollected from the two study sites, FW and BH, are 325 mg/kg and 900mg/kg, respectively. The soils are sandy loams with varying mineralogicaland organic contents. The previous study [Yang L, Donahoe RJ. The form,distribution and mobility of arsenic in soils contaminated by arsenictrioxide, at sites in Southeast USA. Appl Geochem 2007;22:320 341]indicated that a large portion of the arsenic in both soils is associatedwith amorphous aluminum and iron oxyhydroxides and shows very slowrelease against leaching by synthetic precipitation. The soil's amorphousaluminum and iron oxyhydroxides content was found to have the mostsignificant effect on its ability to retain arsenic.Based on thisobservation, contaminated soils were reacted with different treatmentsolutions in an effort to promote the formation of insolublearsenic-bearing phases and thereby decrease the leachability of arsenic.Ferrous sulfate, potassium permanganate and calcium carbonate were usedas the reagents for the chemical fixation solutions evaluated in threesets of batch experiments: (1) FeSO4; (2) FeSO4 and KMnO4; (3) FeSO4,KMnO4 and CaCO3. The optimum treatment solutions for each soil wereidentified based on the mobility of arsenic during sequential leaching oftreated and untreated soils using the fluids described in EPA Method 1311[USEPA. Method 1311: toxicity characteristic leaching procedure. Testmethods for evaluating solid waste, physical/chemical methods. 3rd ed.Washington, DC: U.S. Environmental Protection Agency, Office of SolidWaste. U.S. Government Printing Office; 1992]toxic characteristicsleaching

  10. Analysis of environmental contamination resulting from catastrophic incidents: part 1. Building and sustaining capacity in laboratory networks.

    PubMed

    Magnuson, Matthew; Ernst, Hiba; Griggs, John; Fitz-James, Schatzi; Mapp, Latisha; Mullins, Marissa; Nichols, Tonya; Shah, Sanjiv; Smith, Terry; Hedrick, Elizabeth

    2014-11-01

    Catastrophic incidents, such as natural disasters, terrorist attacks, and industrial accidents, can occur suddenly and have high impact. However, they often occur at such a low frequency and in unpredictable locations that planning for the management of the consequences of a catastrophe can be difficult. For those catastrophes that result in the release of contaminants, the ability to analyze environmental samples is critical and contributes to the resilience of affected communities. Analyses of environmental samples are needed to make appropriate decisions about the course of action to restore the area affected by the contamination. Environmental samples range from soil, water, and air to vegetation, building materials, and debris. In addition, processes used to decontaminate any of these matrices may also generate wastewater and other materials that require analyses to determine the best course for proper disposal. This paper summarizes activities and programs the United States Environmental Protection Agency (USEPA) has implemented to ensure capability and capacity for the analysis of contaminated environmental samples following catastrophic incidents. USEPA's focus has been on building capability for a wide variety of contaminant classes and on ensuring national laboratory capacity for potential surges in the numbers of samples that could quickly exhaust the resources of local communities. USEPA's efforts have been designed to ensure a strong and resilient laboratory infrastructure in the United States to support communities as they respond to contamination incidents of any magnitude. The efforts include not only addressing technical issues related to the best-available methods for chemical, biological, and radiological contaminants, but also include addressing the challenges of coordination and administration of an efficient and effective response. Laboratory networks designed for responding to large scale contamination incidents can be sustained by applying