Science.gov

Sample records for environmental growth conditions

  1. Extent of fungal growth on fiberglass duct liners with and without biocides under challenging environmental conditions.

    PubMed

    Samimi, Behzad S; Ross, Kristen

    2003-03-01

    Eight brands of fiberglass duct liners, including three that contained biocides, were exposed to challenging environmental conditions that would promote fungal growth. Twenty-four rectangular sheet metal ducts in three groups of eight ducts per group were lined with the eight selected liners. Each group of ducts was exposed to one of the three test conditions within an environmental chamber for a period of 15 days. These conditions were a) 75 percent RH, b) 75 percent RH plus water spray, c) 75 percent RH plus dry nutrient, and d) 75 percent RH plus water plus nutrient. Viable spores of Aspergillus niger were aerosolized into each duct as seed. On the 16th day, air and surface samples for fungal spores were collected from inside ducts. The results of air sampling using N6 sampler and visual inspection indicated that two out of three biocide-containing liners, Permacote and Toughgard, inhibited fungal growth but only under condition A. The third biocide-containing liner, Aeroflex Plus, was effective even when it was wet (conditions A and B). All three biocide-containing liners failed to inhibit fungal growth under conditions C and D. Among the five other types of liners that did not contain biocides, ATCO Flex with a smooth Mylar coating was more preferable, exhibiting lower fungal activity during conditions A, B, and C. All liners failed under condition D when nutrient and water were added together. Surface sampling using adhesive tape failed to produce representative results, apparently due to rough/porous surface of duct liners. It was concluded that duct liners with biocide treatment could be less promoting to microbial growth under high humidity as long as their surfaces remain clean and water-free. A liner with an impermeable and smooth surface seems to be less subject to microbial growth under most conditions than biocide-containing liners having porous and/or rough surfaces. PMID:12573965

  2. Environmental conditions impacting juvenile Chinook salmon growth off central California: An ecosystem model analysis

    NASA Astrophysics Data System (ADS)

    Fiechter, J.; Huff, D. D.; Martin, B. T.; Jackson, D. W.; Edwards, C. A.; Rose, K. A.; Curchitser, E. N.; Hedstrom, K. S.; Lindley, S. T.; Wells, B. K.

    2015-04-01

    A fully coupled ecosystem model is used to identify the effects of environmental conditions and upwelling variability on growth of juvenile Chinook salmon in central California coastal waters. The ecosystem model framework consists of an ocean circulation submodel, a biogeochemical submodel, and an individual-based submodel for salmon. Simulation results indicate that years favorable for juvenile salmon growth off central California are characterized by particularly intense early season upwelling (i.e., March through May), leading to enhanced krill concentrations during summer near the location of ocean entry (i.e., Gulf of the Farallones). Seasonally averaged growth rates in the model are generally consistent with observed values and suggest that juvenile salmon emigrating later in the season (i.e., late May and June) achieve higher weight gains during their first 90 days of ocean residency.

  3. A review on the effects of environmental conditions on growth and toxin production of Ostreopsis ovata.

    PubMed

    Pistocchi, R; Pezzolesi, L; Guerrini, F; Vanucci, S; Dell'aversano, C; Fattorusso, E

    2011-03-01

    Since the end of the 1990s the occurrence of blooms of the benthic dinoflagellates Ostreopsis spp. is spreading in many tropical and temperate regions worldwide, sometimes causing benthonic biocenosis suffering and occasional human distress. Ostreopsis ovata has been found to produce palytoxin-like compounds, a class of highly potent toxins. As general, the highest abundances of Ostreopsis spp. are recorded during warmer periods characterized by high temperature, salinity, and water column stability. Moreover, as these cells are easily resuspended in the water column, the role of hydrodynamism in the blooms development and decline has been highlighted. The environmental conditions appear, therefore, to be one of the main factors determining the proliferation of these species as testified by several field surveys. Laboratory studies on the effect of environmental parameters on growth and toxicity of O. ovata are rather scarce. With regard to the effects of temperature, culture results indicate that different strains blooming along Italian coasts displayed different optima, in accordance to blooming periods, and that higher toxin levels correlated with best growth conditions. Additionally, in relation to an Adriatic strain, cell growth positively correlated with the increase in salinity, while toxicity was lowest at the highest salinity value (i.e. 40). For the same strain, both nitrogen and phosphorus limitation determined a decrease in cell toxicity showing different behaviour with respect to many other toxic dinoflagellates. PMID:20920514

  4. Is ragweed pollen allergenicity governed by environmental conditions during plant growth and flowering?

    NASA Astrophysics Data System (ADS)

    Ghiani, Alessandra; Ciappetta, Silvia; Gentili, Rodolfo; Asero, Riccardo; Citterio, Sandra

    2016-07-01

    Pollen allergenicity is one of the main factors influencing the prevalence and/or severity of allergic diseases. However, how genotype and environment contribute to ragweed pollen allergenicity has still to be established. To throw some light on the factors governing allergenicity, in this work 180 ragweed plants from three Regions (Canada, France, Italy) were grown in both controlled (constant) and standard environmental conditions (seasonal changes in temperature, relative humidity and light). Pollen from single plants was characterized for its allergenic potency and for the underlying regulation mechanisms by studying the qualitative and quantitative variations of the main isoforms of the major ragweed allergen Amb a 1. Results showed a statistically higher variability in allergenicity of pollen from standard conditions than from controlled conditions growing plants. This variability was due to differences among single plants, regardless of their origin, and was not ascribed to differences in the expression and IgE reactivity of individual Amb a 1 isoforms but rather to quantitative differences involving all the studied isoforms. It suggests that the allergenic potency of ragweed pollen and thus the severity of ragweed pollinosis mainly depends on environmental conditions during plant growth and flowering, which regulate the total Amb a 1 content.

  5. Is ragweed pollen allergenicity governed by environmental conditions during plant growth and flowering?

    PubMed Central

    Ghiani, Alessandra; Ciappetta, Silvia; Gentili, Rodolfo; Asero, Riccardo; Citterio, Sandra

    2016-01-01

    Pollen allergenicity is one of the main factors influencing the prevalence and/or severity of allergic diseases. However, how genotype and environment contribute to ragweed pollen allergenicity has still to be established. To throw some light on the factors governing allergenicity, in this work 180 ragweed plants from three Regions (Canada, France, Italy) were grown in both controlled (constant) and standard environmental conditions (seasonal changes in temperature, relative humidity and light). Pollen from single plants was characterized for its allergenic potency and for the underlying regulation mechanisms by studying the qualitative and quantitative variations of the main isoforms of the major ragweed allergen Amb a 1. Results showed a statistically higher variability in allergenicity of pollen from standard conditions than from controlled conditions growing plants. This variability was due to differences among single plants, regardless of their origin, and was not ascribed to differences in the expression and IgE reactivity of individual Amb a 1 isoforms but rather to quantitative differences involving all the studied isoforms. It suggests that the allergenic potency of ragweed pollen and thus the severity of ragweed pollinosis mainly depends on environmental conditions during plant growth and flowering, which regulate the total Amb a 1 content. PMID:27457754

  6. Fatigue Crack Growth Analysis Under Spectrum Loading in Various Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Mikheevskiy, S.; Glinka, G.; Lee, E.

    2013-03-01

    model. The method can be also used to predict fatigue crack growth under constant amplitude and spectrum loading in various environmental conditions such as vacuum, air, and corrosive environment providing that appropriate limited constant amplitude fatigue crack growth data obtained in the same environment are available. The proposed methodology is equally suitable for fatigue analysis of smooth, notched, and cracked components.

  7. Biocontrol agents promote growth of potato pathogens, depending on environmental conditions.

    PubMed

    Cray, Jonathan A; Connor, Mairéad C; Stevenson, Andrew; Houghton, Jonathan D R; Rangel, Drauzio E N; Cooke, Louise R; Hallsworth, John E

    2016-05-01

    There is a pressing need to understand and optimize biological control so as to avoid over-reliance on the synthetic chemical pesticides that can damage environmental and human health. This study focused on interactions between a novel biocontrol-strain, Bacillus sp. JC12GB43, and potato-pathogenic Phytophthora and Fusarium species. In assays carried out in vitro and on the potato tuber, the bacterium was capable of near-complete inhibition of pathogens. This Bacillus was sufficiently xerotolerant (water activity limit for growth = 0.928) to out-perform Phytophthora infestans (~0.960) and challenge Fusarium coeruleum (~0.847) and Fusarium sambucinum (~0.860) towards the lower limits of their growth windows. Under some conditions, however, strain JC12GB43 stimulated proliferation of the pathogens: for instance, Fusarium coeruleum growth-rate was increased under chaotropic conditions in vitro (132 mM urea) by >100% and on tubers (2-M glycerol) by up to 570%. Culture-based assays involving macromolecule-stabilizing (kosmotropic) compatible solutes provided proof-of-principle that the Bacillus may provide kosmotropic metabolites to the plant pathogen under conditions that destabilize macromolecular systems of the fungal cell. Whilst unprecedented, this finding is consistent with earlier reports that fungi can utilize metabolites derived from bacterial cells. Unless the antimicrobial activities of candidate biocontrol strains are assayed over a full range of field-relevant parameters, biocontrol agents may promote plant pathogen infections and thereby reduce crop yields. These findings indicate that biocontrol activity, therefore, ought to be regarded as a mode-of-behaviour (dependent on prevailing conditions) rather than an inherent property of a bacterial strain. PMID:26880001

  8. Growth conditions and environmental factors impact aerosolization but not virulence of Francisella tularensis infection in mice

    PubMed Central

    Faith, Seth A.; Smith, Le'Kneitah P.; Swatland, Angela S.; Reed, Douglas S.

    2012-01-01

    In refining methodology to develop a mouse model for inhalation of Francisella tularensis, it was noted that both relative humidity and growth media impacted the aerosol concentration of the live vaccine strain (LVS) of F. tularensis. A relative humidity of less than 55% had a negative impact on the spray factor, the ratio between the concentration of LVS in the aerosol and the nebulizer. The spray factor was significantly higher for LVS grown in brain heart infusion (BHI) broth than LVS grown in Mueller–Hinton broth (MHb) or Chamberlain's chemically defined medium (CCDM). The variability between aerosol exposures was also considerably less with BHI. LVS grown in BHI survived desiccation far longer than MHb-grown or CCDM-grown LVS (~70% at 20 min for BHI compared to <50% for MHb and CCDM). Removal of the capsule by hypertonic treatment impacted the spray factor for CCDM-grown LVS or MHb-grown LVS but not BHI-grown LVS, suggesting the choice of culture media altered the adherence of the capsule to the cell membrane. The choice of growth media did not impact the LD50 of LVS but the LD99 of BHI-grown LVS was 1 log lower than that for MHb-grown LVS or CCDM-grown LVS. Splenomegaly was prominent in mice that succumbed to MHb- and BHI-grown LVS but not CCDM-grown LVS. Environmental factors and growth conditions should be evaluated when developing new animal models for aerosol infection, particularly for vegetative bacterial pathogens. PMID:23087911

  9. Cold-water coral growth under extreme environmental conditions, the Cape Lookout area, NW Atlantic

    NASA Astrophysics Data System (ADS)

    Mienis, F.; Duineveld, G. C. A.; Davies, A. J.; Lavaleye, M. M. S.; Ross, S. W.; Seim, H.; Bane, J.; van Haren, H.; Bergman, M. J. N.; de Haas, H.; Brooke, S.; van Weering, T. C. E.

    2014-05-01

    The Cape Lookout cold-water coral area off the coast of North Carolina forms the shallowest and northernmost cold-water coral mound area on the Blake Plateau in the NW Atlantic. Cold-water coral habitats near Cape Lookout are occasionally bathed in the Gulf Stream, which is characterised by oligotrophic warm water and strong surface currents. Here, we present the first insights into the mound distribution and morphology, sedimentary environment and coral cover and near-bed environmental conditions as recorded by bottom landers from this coral area. The mounds occur between 320 and 550 m water depth and are characterised by high acoustic backscatter indicating the presence of hard structure. Three distinct mound morphologies were observed: (1) a mound with a flattened top at 320 m, (2) multi-summited mounds with a teardrop shape in the middle part of the area and (3) a single mound at 540 m water depth. Echosounder profiles show the presence of a strong reflector underneath all mound structures that forms the base of the mounds. This reflector cropped out at the downstream side of the single mound and consists of carbonate slabs. Video analysis revealed that all mounds are covered by Lophelia pertusa and that living colonies only occur close to the summits of the SSW side of the mounds, which is the side that faces the strongest currents. Off-mound areas were characterised by low backscatter and sediment ripples, indicating the presence of relatively strong bottom currents. Two bottom landers were deployed amidst the coral mounds between December 2009 and May 2010. Both landers recorded prominent events, characterised by large fluctuations in environmental conditions near the seabed as well as in the overlying water column. The period between December and April was characterised by several events of increasing temperature and salinity, coinciding with increased flow and near-bed acoustic backscatter. During these events temperature fluctuated by up to 9 °C within a

  10. ASSESSMENT OF FUNGAL GROWTH ON CEILING TILES UNDER ENVIRONMENTALLY CHARACTERIZED CONDITIONS

    EPA Science Inventory

    The paper discusses investigation of the impact of the building environment on the ability of building materials to support microbial growth, using static chambers with defined relative humidity, temperature, and light conditions. he ability of fungi to grow on materials is well ...

  11. Cold-water coral growth under extreme environmental conditions, the Cape Lookout area, NW Atlantic

    NASA Astrophysics Data System (ADS)

    Mienis, F.; Duineveld, G.; Davies, A. J.; Lavaleye, M. J. N.; Ross, S. W.; Seim, H.; Bane, J.; van Haren, H.; Bergman, M.; de Haas, H.; Brooke, S.; van Weering, T.

    2013-12-01

    The Cape Lookout cold-water coral area off the coast of North Carolina forms the shallowest and northernmost cold-water coral mound area on the Blake Plateau in the NW Atlantic. Cold-water coral habitats near Cape Lookout are occasionally bathed in the Gulf Stream, which is characterised by oligotrophic warm water and strong surface currents. Here, we present the first insights into the mound distribution and morphology, sedimentary environment and coral cover and near-bed environmental conditions as recorded by bottom landers from this coral area. The mounds occur between 320-550 m water depth and are characterised by high acoustic backscatter indicating the presence of hard structure. Three distinct mound morphologies were observed, (1) a mound with a flattened top at 320 m, (2) multi-summited mounds with a tear drop shape in the middle part of the area and (3) a single mound at 540 m water depth. Echosounder profiles show the presence of a strong reflector underneath all mound structures that forms the base of the mounds. This reflector cropped out at the downstream side of the single mound and consists of carbonate slabs. Video analysis revealed that all mounds are covered by Lophelia pertusa and that living colonies only occur close to the summits of the SSW side of the mounds, which is the side that faces the strongest currents. Off mound areas were characterised by low backscatter and sediment ripples, indicating the presence of relatively strong bottom currents. Two bottom landers were deployed amidst the coral mounds between December 2009 and May 2010. Both landers recorded prominent features near the seabed as well as in the overlying water column. The period between December and April was characterised by several events of increasing temperature and salinity, coinciding with increased flow and near-bed acoustic backscatter. During these events temperature fluctuated by up to 9 °C within a day, which is the largest temperature variability as measured so

  12. Germination and Growth of a Vegetable Exposed to Very Severe Environmental Conditions Experimentally Induced by High Voltage

    NASA Astrophysics Data System (ADS)

    Aoki, Takashi; Ikezawa, Shunjiro

    1982-09-01

    Ultra-high-voltage (UHV) transmission power lines are required in order to reduce transmission energy losses, and to transfer more power across long distances. However, the ecological and biological influence of UHV lines has not been documented well. Possible influences of UHV lines are: electro-magnetic field, ozone, NOx, and ion shower. The purpose of this study was to obtain information on the germination and growth of Raphanus sativus L.cv. Kaiware-daikon exposed to an experimental environment in which all the above influences at very severe intensity levels were working simultaneously. Several environmental conditions severer than those predicted for future UHV lines were set up, using a high voltage at 60 Hz. The germination and growth of this plant were suppressed under the experimental conditions used, the suppression being greater the severer the conditions. When the electric field is strong, corona discharge occurs at the tip of the plant.

  13. Listeria monocytogenes Scott A: Cell Surface Charge, Hydrophobicity, and Electron Donor and Acceptor Characteristics under Different Environmental Growth Conditions

    PubMed Central

    Briandet, Romain; Meylheuc, Thierry; Maher, Catherine; Bellon-Fontaine, Marie Noëlle

    1999-01-01

    We determined the variations in the surface physicochemical properties of Listeria monocytogenes Scott A cells that occurred under various environmental conditions. The surface charges, the hydrophobicities, and the electron donor and acceptor characteristics of L. monocytogenes Scott A cells were compared after the organism was grown in different growth media and at different temperatures; to do this, we used microelectrophoresis and the microbial adhesion to solvents method. Supplementing the growth media with glucose or lactic acid affected the electrical, hydrophobic, and electron donor and acceptor properties of the cells, whereas the growth temperature (37, 20, 15, or 8°C) primarily affected the electrical and electron donor and acceptor properties. The nonlinear effects of the growth temperature on the physicochemical properties of the cells were similar for cells cultivated in two different growth media, but bacteria cultivated in Trypticase soy broth supplemented with 6 g of yeast extract per liter (TSYE) were slightly more hydrophobic than cells cultivated in brain heart infusion medium (P < 0.05). Adhesion experiments conducted with L. monocytogenes Scott A cells cultivated in TSYE at 37, 20, 15, and 8°C and then suspended in a sodium chloride solution (1.5 × 10−1 or 1.5 × 10−3 M NaCl) confirmed that the cell surface charge and the electron donor and acceptor properties of the cells had an influence on their attachment to stainless steel. PMID:10583984

  14. Bacterial Epimerization as a Route for Deoxynivalenol Detoxification: the Influence of Growth and Environmental Conditions.

    PubMed

    He, Jian Wei; Hassan, Yousef I; Perilla, Norma; Li, Xiu-Zhen; Boland, Greg J; Zhou, Ting

    2016-01-01

    Deoxynivalenol (DON) is a toxic secondary metabolite produced by several Fusarium species that infest wheat and corn. Food and feed contaminated with DON pose a health risk to both humans and livestock and form a major barrier for international trade. Microbial detoxification represents an alternative approach to the physical and chemical detoxification methods of DON-contaminated grains. The present study details the characterization of a novel bacterium, Devosia mutans 17-2-E-8, that is capable of transforming DON to a non-toxic stereoisomer, 3-epi-deoxynivalenol under aerobic conditions, mild temperature (25-30°C), and neutral pH. The biotransformation takes place in the presence of rich sources of organic nitrogen and carbon without the need of DON to be the sole carbon source. The process is enzymatic in nature and endures a high detoxification capacity (3 μg DON/h/10(8) cells). The above conditions collectively suggest the possibility of utilizing the isolated bacterium as a feed treatment to address DON contamination under empirical field conditions. PMID:27148248

  15. Bacterial Epimerization as a Route for Deoxynivalenol Detoxification: the Influence of Growth and Environmental Conditions

    PubMed Central

    He, Jian Wei; Hassan, Yousef I.; Perilla, Norma; Li, Xiu-Zhen; Boland, Greg J.; Zhou, Ting

    2016-01-01

    Deoxynivalenol (DON) is a toxic secondary metabolite produced by several Fusarium species that infest wheat and corn. Food and feed contaminated with DON pose a health risk to both humans and livestock and form a major barrier for international trade. Microbial detoxification represents an alternative approach to the physical and chemical detoxification methods of DON-contaminated grains. The present study details the characterization of a novel bacterium, Devosia mutans 17-2-E-8, that is capable of transforming DON to a non-toxic stereoisomer, 3-epi-deoxynivalenol under aerobic conditions, mild temperature (25–30°C), and neutral pH. The biotransformation takes place in the presence of rich sources of organic nitrogen and carbon without the need of DON to be the sole carbon source. The process is enzymatic in nature and endures a high detoxification capacity (3 μg DON/h/108 cells). The above conditions collectively suggest the possibility of utilizing the isolated bacterium as a feed treatment to address DON contamination under empirical field conditions. PMID:27148248

  16. Linking Metabolism, Elemental Cycles, and Environmental Conditions in the Deep Biosphere: Growth of a Model Extremophile, Archaeoglobus fulgidus, Under High-Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Oliver, G. C. M.; Cario, A.; Rogers, K. L.

    2015-12-01

    A majority of Earth's biosphere is hosted in subsurface environments where global-scale biogeochemical and energy cycles are driven by diverse microbial communities that operate on and are influenced by micro-scale environmental variables. While the subsurface hosts a variety of geochemical and geothermal conditions, elevated pressures are common to all subsurface ecosystems. Understanding how microbes adapt to and thrive in high-pressure environments is essential to linking microbial subsurface processes with global-scale cycles. Here we are using a model extremophile, Archaeoglobus fulgidus, to determine how elevated pressures affect the growth, metabolism, and physiology of subsurface microorganisms. A. fulgidus cycles carbon and sulfur via heterotrophic and autotrophic sulfate reduction in various high temperature and high-pressure niches including shallow marine vents, deep-sea hydrothermal vents, and deep oil reservoirs. Here we report the results of A. fulgidus growth experiments at optimum temperature, 83°C, and pressures up to 600 bars. Exponential growth was observed over the entire pressure range, though growth rates were diminished at 500 and 600 bars compared to ambient pressure experimental controls. At pressures up to 400 bars, cell density yields and growth rates were at least as high as ambient pressure controls. Elevated pressures and extended incubation times stimulated cell flocculation, a common stress response in this strain, and cellular morphology was affected at pressures exceeding 400 bars. These results suggest that A. fulgidus continues carbon, sulfur and energy cycling unaffected by elevated pressures up to 400 bars, representing a variety of subsurface environments. The ability of subsurface organisms to drive biogeochemical cycles at elevated pressures is a critical link between the surface and subsurface biospheres and understanding how species-scale processes operate under these conditions is a vital part of global

  17. Azerbaijan: environmental conditions and outlook.

    PubMed

    Shelton, Napier

    2003-06-01

    The author describes present environmental conditions in Azerbaijan in relation to the Soviet legacy and measures taken since independence. Environmental projects have been financed largely by international organizations and foreign companies. The most serious problems are contaminants in the Caspian Sea; air, water, and soil pollution in Sumgait; illegal fishing; poor quality of drinking water; cutting of forests for fuel and pasture; overgrazing; and soil erosion and salinization. Progress in developing an environmental conscience, necessary for sustained protection of the environment, will depend most importantly on environmental education, growth of democratic institutions and attitudes that encourage both governmental and citizen responsibility for the environment, and economic development that produces a substantial middle class. Positive advances include a Constitution and laws that require protection of the environment, and individuals who speak out for environmental care. Negative factors include poverty and the present government's low priority for environmental protection. PMID:12956597

  18. Environmental Growth Conditions Influence the Ability of Escherichia coli K1 To Invade Brain Microvascular Endothelial Cells and Confer Serum Resistance

    PubMed Central

    Badger, Julie L.; Kim, Kwang Sik

    1998-01-01

    A major limitation to advances in prevention and therapy of neonatal meningitis is our incomplete understanding of the pathogenesis of this disease. In an effort to understand the pathogenesis of meningitis due to Escherichia coli K1, we examined whether environmental growth conditions similar to those that the bacteria might be exposed to in the blood could influence the ability of E. coli K1 to invade brain microvascular endothelial cells (BMEC) in vitro and to cross the blood-brain barrier in vivo. We found that the following bacterial growth conditions enhanced E. coli K1 invasion of BMEC 3- to 10-fold: microaerophilic growth, media buffered at pH 6.5, and media supplemented with 50% newborn bovine serum (NBS), magnesium, or iron. Growth conditions that significantly repressed invasion (i.e., 2- to 250-fold) included iron chelation, a pH of 8.5, and high osmolarity. More importantly, E. coli K1 traversal of the blood-brain barrier was significantly greater for the growth condition enhancing BMEC invasion (50% NBS) than for the condition repressing invasion (osmolarity) in newborn rats with experimental hematogenous meningitis. Of interest, bacterial growth conditions that enhanced or repressed invasion also elicited similar serum resistance phenotype patterns. This is the first demonstration that bacterial ability to enter the central nervous system can be affected by environmental growth conditions. PMID:9826343

  19. Uniformity of environmental conditions and plant growth in a hydroponic culture system for use in a growth room with aerial CO2 control

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; York, E. K.; Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    A portable system of hydroponic culture was developed that maintained temperature, pH, and nutrient concentrations of circulating nutrient solutions. The hydroponic system is used within a controlled-environment room (CER) for control of aerial environment. The CER was equipped with an auto-calibrating system for atmospheric CO2 control. The control systems for the hydroponic chambers were able to maintain acidity within +/- 0.2 pH units and the temperature with +/- 0.5 degree C. Mixing time for the 200-liter volume of solution within a hydroponic chamber was less than 12 min. The CO2 control system was able to maintain aerial concentrations within +/- 10 ppm CO2 during the light period. The only gradient found to occur within the hydroponic chambers or CER was a slight gradient in aerial temperature along the length of hydroponic chambers. Growth of soybeans [Glycine max (L.) Merr.] was characterized during a 3-week period of vegetative development by leaf number and area, plant dry weight, total N content of plants, and N depletion from the nutrient solution. The growth characteristics among populations for three hydroponic chambers within the CER were not significantly different, and the percent standard errors of means of the measurements within populations from each chamber were nearly all less than 10%. Thus, the uniformity of plant growth reflected the uniformity of environmental conditions.

  20. Marked deleterious changes in the condition, growth and maturity schedules of Acanthopagrus butcheri (Sparidae) in an estuary reflect environmental degradation

    NASA Astrophysics Data System (ADS)

    Cottingham, Alan; Hesp, S. Alex; Hall, Norman G.; Hipsey, Matthew R.; Potter, Ian C.

    2014-08-01

    As Acanthopagrus butcheri typically completes its life within its natal estuary and possesses plastic biological characteristics, it provides an excellent model for exploring the ways and extent to which a fish species can respond to environmental changes over time. The environment of the Swan River Estuary in south-western Australia has deteriorated markedly during the last two decades, reflecting the effects of increasing eutrophication and hypoxia in the upper regions, where A. butcheri spends most of the year and spawns. In this study, the biological characteristics of A. butcheri in 2007-11 were determined and compared with those in 1993-95. Between these two periods, the condition factor for females and males of A. butcheri across their length ranges declined by 6 and 5%, respectively, and the parameters k and L∞ in the von Bertalanffy growth curves of both sexes underwent marked reductions. The predicted lengths of females and males at all ages ≥1 year were less in 2007-11 than in 1993-95 and by over 30% less at ages 3 and 6. The ogives relating maturity to length and age typically differed between 1993-94 and 2007-10. The L50s of 156 mm for females and 155 mm for males in 2007-10 were less than the corresponding values of 174 and 172 mm in 1993-94, whereas the A50s of 2.5 years for both females and males in 2007-10 were greater than the corresponding values of 1.9 and 2.0 years in 1993-94. The above trends in condition, growth and maturity parameters between periods are consistent with hypotheses regarding the effects of increasing hypoxia on A. butcheri in offshore, deeper waters. However, as the density of A. butcheri declined in offshore, deeper waters and increased markedly in nearshore, shallow waters, density-dependent effects in the latter waters, although better oxygenated, also probably contributed to the overall reductions in growth and thus to the changes in the lengths and ages at maturity.

  1. Near-bed environmental conditions influencing cold-water coral growth on Viosca Knoll, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Mienis, F.; Duineveld, G.; Davies, A. J.; Weering, T. V.; Ross, S.; Roberts, M.; Seim, H.

    2010-12-01

    transported to the area. Sediment trap samples show a similar pattern and high mass fluxes are found, varying between 1.1-4.5 gm-2day-1. High mass fluxes and turbidity values can be related to an increased input of material coming from the Mississippi River. The environmental conditions on Viosca Knoll resemble those recorded in CWC areas on the European margin. Even though oxygen values are low and high mass fluxes were recorded, the CWC ecosystem thrives at present. The proximity of the area to the Mississippi River may benefit the corals by increasing the food supply. Migration of zooplankton and episodes of fresh particle supply from surface water form the mechanisms of food delivery, influencing CWC growth. Subsequently baffling of particles between the coral framework likely increases lateral extension and reef growth.

  2. Effect of saline irrigation on growth characteristics and mineral composition of two local halophytes under Saudi environmental conditions.

    PubMed

    Alshammary, Saad F

    2008-09-01

    A field experiment was carried out to determine the growth characteristics and mineral composition of two local halophytes (Atriplex halimus and Salvadora persica) under saline irrigation at Kind Abdulaziz City for Science and Technology (KACST), Research Station Al-Muzahmyia, Riyadh. The experiment treatments were one soil (sandy), four irrigation waters of different salinities (2000, 8000, 12000 and 16000 mg L(-1) TDS), two halophytes (Salvadora persica and Atriplex halimus) and one irrigation level (irrigation at 50% depletion of moisture at field capacity). Mean fresh biomass yield and fresh plant root weight of A. halimus increased while that of S. persica decreased significantly with increasing irrigation water salinity in all the treatments. Soil salinity increased significantly with increasing water salinity. A positive correlation (r = 0.987) existed between the irrigation water salinity and the soil salinity resulting from saline irrigation. The plant tissue protein contents increased in A. halimus, but decreased in S. persica with increasing irrigation water salinity. The Na ion uptake by plant roots was significantly less than K in A. halimus compared to S. persica which indicated adjustment of plants to high soil salinity and high Na ion concentration for better growth. The order of increasing salt tolerance was A. halimus > S. persica under the existing plant growing conditions. Among the two halophytes, A. halimus showed great potential for establishing gene banks of local species, because it has more forage value due to high protein contents than S. persica for range animals. PMID:19266925

  3. Growth characteristics of the reef-building coral Porites astreoides under different environmental conditions in the Western Atlantic

    NASA Astrophysics Data System (ADS)

    Elizalde-Rendón, E. M.; Horta-Puga, G.; González-Diaz, P.; Carricart-Ganivet, J. P.

    2010-09-01

    Skeletal extension (3.67 ± 0.65 mm year-1), density (1.49 ± 0.16 g cm-3), and calcification rate (0.55 ± 0.12 g cm-2 year-1) were determined using annual growth bands of Porites astreoides skeletons collected in three different reef systems in the Western Atlantic. The corals showed a low-density annual growth band at their apex, and seasonal timing of low and high-density band formation in P. astreoides appears to be similar at the three study sites in the Western Atlantic. The range of values presented here, for the three growth variables, spans the known range of skeletal-growth variability in P. astreoides for the Western Atlantic. The relationships between the growth parameters were similar to those previously described by other authors for massive Porites species from the Indo-Pacific, suggesting that P. astreoides has the same growth strategy, primarily investing calcification resources in extension rate. It is noteworthy that the P. astreoides population growing off the northwest coast of Cuba had similar growth characteristics as populations from the Caribbean region which were different from populations in the Gulf of Mexico, which seem to be isolated and adapted for growth at higher average sea-surface temperatures.

  4. Environmental factors influencing growth and pubertal development.

    PubMed Central

    Delemarre-van de Waal, H A

    1993-01-01

    Postnatal growth is based on hereditary signals and environmental factors in a complex regulatory network. Each factor must be in an optimal state for normal growth of the child. Fetal conditions may also have consequences on postnatal height. Intrauterine growth retardation can be recovered postnatally, although postnatal growth remains depressed in about one-third of cases. After birth, the environment may exert either a positive or negative effect on growth. In underdeveloped countries, malnutrition plays a major role in inhibiting the growth process. Children from families of higher socioeconomic classes are taller than their coevals in the lower socioeconomic groups. Urbanization also has a positive effect on growth. Better child care is supported by sufficient food supply, appropriate health and sanitation services, and a higher level of education. Over the last century, these factors have induced a taller stature and a more rapid maturity in Europe, North America, and Australia; a phenomenon which has been referred to as "the secular trend" in growth. Recently, a secular trend has also been reported in some developing countries. Although urbanization in general appears to be associated with better conditions of living, this is not the case in the slums of South America or in Africa where rural children are better off than children living in the poor cities. This paper describes in more detail the different hereditary and environmental factors that act during the fetal period and postnatally, and which play a role in human growth and pubertal development. PMID:8243404

  5. Conditioning biomass for microbial growth

    SciTech Connect

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  6. Illinois Environmental Protection Agency annual environmental conditions report, 1998

    SciTech Connect

    1999-06-01

    This report focuses on the following: Public Review; Environmental Progress Agenda; Environmental Quality Conditions; Air Quality Management; Airshed Conditions; Program Performance; Water Quality Management; Watershed Conditions; Program Performance; Land Quality Management; Site Conditions; Multimedia Management; and Program Performance.

  7. Environmental impact of population growth

    NASA Astrophysics Data System (ADS)

    Naylor, Rosamond; Matson, Pamela

    Earth's population currently numbers 5.4 billion; even given optimistic assumptions for reduction in growth rates, the number will double by the middle of the next century with most of the increase in the developing countries. Rapid population growth in the developing world raises the fundamental dilemma of how to alleviate chronic hunger and poverty in the short run while preserving the atmosphere and ecosystem services required for long-term human and biospheric sustenance. This dilemma, and the compromises required to solve it, were discussed by twenty-five researchers from five countries at the Aspen Global Change Institute 1992 Summer Science Session III, Food, Conservation, and Global Environmental Change: Is Compromise Possible?, held from August 16 to 28, in Aspen, Colo.

  8. Metabolic and proteomic adaptation of Lactobacillus rhamnosus strains during growth under cheese-like environmental conditions compared to de Man, Rogosa, and Sharpe medium.

    PubMed

    Bove, Claudio Giorgio; De Angelis, Maria; Gatti, Monica; Calasso, Maria; Neviani, Erasmo; Gobbetti, Marco

    2012-11-01

    The aim of this study was to demonstrate the metabolic and proteomic adaptation of Lactobacillus rhamnosus strains, which were isolated at different stages of Parmigiano Reggiano cheese ripening. Compared to de Man, Rogosa, and Sharpe (MRS) broth, cultivation under cheese-like conditions (cheese broth, CB) increased the number of free amino acids used as carbon sources. Compared with growth on MRS or pasteurized and microfiltrated milk, all strains cultivated in CB showed a low synthesis of d,l-lactic acid and elevated levels of acetic acid. The proteomic maps of the five representative strains, showing different metabolic traits, were comparatively determined after growth on MRS and CB media. The amount of intracellular and cell-associated proteins was affected by culture conditions and diversity between strains, depending on their time of isolation. Protein spots showing decreased (62 spots) or increased (59 spot) amounts during growth on CB were identified using MALDI-TOF-MS/MS or LC-nano-ESI-MS/MS. Compared with cultivation on MRS broth, the L. rhamnosus strains cultivated under cheese-like conditions had modified amounts of some proteins responsible for protein biosynthesis, nucleotide, and carbohydrate metabolisms, the glycolysis pathway, proteolytic activity, cell wall, and exopolysaccharide biosynthesis, cell regulation, amino acid, and citrate metabolism, oxidation/reduction processes, and stress responses. PMID:22965658

  9. Effect of environmental and cultural conditions on medium pH and explant growth performance of Douglas-fir ( Pseudotsuga menziesii) shoot cultures.

    PubMed

    Chen, Chien-Chih; Bates, Rick; Carlson, John

    2014-01-01

    The medium pH level of plant tissue cultures has been shown to be essential to many aspects of explant development and growth. Sensitivity or tolerance of medium pH change in vitro varies according to specific requirements of individual species. The objectives of this study are to 1) determine medium pH change over time in storage conditions and with presence of explants, 2) evaluate the effects of medium pH change on explant growth performance and 3) assess the effects of adding a pH stabilizer, 2-(N-morpholino)ethanesulfonic acid (MES) that is commonly used in Douglas-fir micropropagation medium. Vegetative buds were collected in the spring before breaking dormancy from juvenile and mature donor trees for conducting these evaluations. Medium, with or without MES, was pre-adjusted to five pH levels before adding MES, agar and autoclaving. Medium pH changes and explant growth parameters were measured at eight different incubation times. Overall, MES provided a more stable medium pH, relative to starting pH values, under both light and dark storage conditions as well as with presence of explants. A general trend of decreasing medium pH over time was found comparing explants from juvenile and mature donor genotypes. Explant height and weight growth increased over time, but differ among explants from juvenile and mature donor genotypes. Our findings suggest that a 21-day subculture practice may best sustain medium freshness, medium pH level and desirable explant growth. PMID:26535110

  10. Effect of environmental and cultural conditions on medium pH and explant growth performance of Douglas-fir ( Pseudotsuga menziesii) shoot cultures

    PubMed Central

    Chen, Chien-Chih; Bates, Rick; Carlson, John

    2015-01-01

    The medium pH level of plant tissue cultures has been shown to be essential to many aspects of explant development and growth. Sensitivity or tolerance of medium pH change in vitro varies according to specific requirements of individual species. The objectives of this study are to 1) determine medium pH change over time in storage conditions and with presence of explants, 2) evaluate the effects of medium pH change on explant growth performance and 3) assess the effects of adding a pH stabilizer, 2-(N-morpholino)ethanesulfonic acid (MES) that is commonly used in Douglas-fir micropropagation medium. Vegetative buds were collected in the spring before breaking dormancy from juvenile and mature donor trees for conducting these evaluations. Medium, with or without MES, was pre-adjusted to five pH levels before adding MES, agar and autoclaving. Medium pH changes and explant growth parameters were measured at eight different incubation times. Overall, MES provided a more stable medium pH, relative to starting pH values, under both light and dark storage conditions as well as with presence of explants. A general trend of decreasing medium pH over time was found comparing explants from juvenile and mature donor genotypes. Explant height and weight growth increased over time, but differ among explants from juvenile and mature donor genotypes. Our findings suggest that a 21-day subculture practice may best sustain medium freshness, medium pH level and desirable explant growth. PMID:26535110

  11. Population growth and environmental degradation in Malawi.

    PubMed

    Kalipeni, E

    1992-01-01

    Malawi has been ranked by the World Bank as one of the poorest countries in Africa. Malawi's only resources are its people and fertile soil, which comprises about 55% of land area. Environmental degradation and population growth conditions in Malawi were used to illustrate the model of environmental degradation linked to population pressure on land resources and government development strategies that favored large-scale agricultural farms. The result has been deforestation, overgrazing, overuse of land for subsistence, and increased population density. The argument was that population growth in some developing countries has been so rapid that environmental collapse is the result. The theoretical framework linking population growth, environment, and resources emphasized processes: 1) the precursor stage of underlying causes; 2) the problem phase with potential ecological and economic decline; and 3) consequences (environmental decline, reduction in food production systems, and reduction in standard of living). The precursors were identified as an agrarian society, lack of a population policy, and emphasis on large families. The problems were rapid population growth and immigration from Mozambique, which led to increased demand for trees for fuel and consequent deforestation, increased demand for arable land and consequent landlessness, increased investment in livestock and consequent overgrazing, and continued population momentum which was a financial burden to government and resulted in increased labor competition. The ecological consequences were soil erosion, degradation of vegetation, and water supply contamination and decline. Eventually, famines will occur and lead to disease, migration, deserted villages, urbanization, unemployment, ethnic conflicts, and political unrest. Population was estimated at 8.75 million in 1990, with exponential growth expected. Completed family size was 6.6 children per woman. Even replacement fertility would mean growth for 50 more

  12. Growth Conditions and Rifampin Susceptibility

    PubMed Central

    Koch, Arthur L.; Gross, Gayle H.

    1979-01-01

    The susceptibility of Escherichia coli to rifampin was measured during unlimited growth in rich and poor media and during chemostat growth limited by the carbon source. During batch growth at low turbidities, the susceptibility of the bacteria increased as the growth rate decreased, consistent with the longer time available for drug penetration in the poorer media. During chemostat culture, the bacteria remained highly susceptible or became genetically resistant, dependent on the manner in which the bacteria were exposed to the antibiotic. If the concentration of rifampin was abruptly raised, susceptible cells were replaced by genetically resistant cells. However, if the concentration of antibiotic was raised slowly, the genetically susceptible cells continued to grow. This difference in response of chemostat cultures according to mode of drug administration was attributed to an inducible detoxification of the drug by the bacteria, because the susceptible genotype is maintained only when the concentration of rifampin is increased gradually and when a high population of cells is maintained. Direct evidence for the inactivation of the rifampin from the bioassay of culture supernatants is presented. PMID:371543

  13. Conflict Between Economic Growth and Environmental Protection

    SciTech Connect

    Czech, Bryan

    2012-01-09

    The conflict between economic growth and environmental protection may not be reconciled via technological progress. The fundamentality of the conflict ultimately boils down to laws of thermodynamics. Physicists and other scholars from the physical sciences are urgently needed for helping the public and policy makers grasp the conflict between growth and environmental protection.

  14. Environmental variability and child growth in Nepal.

    PubMed

    Shively, Gerald; Sununtnasuk, Celeste; Brown, Molly

    2015-09-01

    Data from the 2011 Nepal Demographic Health Survey are combined with satellite remotely sensed Normalized Difference Vegetation Index (NDVI) data to evaluate whether interannual variability in weather is associated with child health. For stunting, we focus on children older than 24 months of age. NDVI anomaly averages during cropping months are evaluated during the year before birth, the year of birth, and the second year after birth. For wasting, we assess children under 59 months of age and relate growth to NDVI averages for the current and most recent growing periods. Correlations between short-run indicators of child growth and intensity of green vegetation are generally positive. Regressions that control for a range of child-, mother- and household-specific characteristics produce mixed evidence regarding the role of NDVI anomalies during critical periods in a child's early life and the subsequent probability of stunting and wasting. Overall findings suggest that the relationship between environmental conditions and child growth are heterogeneous across the landscape in Nepal and, in many cases, highly non-linear and sensitive to departures from normality. PMID:26183566

  15. Rural population growth and living conditions.

    PubMed

    Li, N; Zhu, C

    1991-01-01

    The problem of the effect of population growth on subsistence conditions is addressed by developing generalized premises, principles, and methods for quantifying standards or conditions for growth. This method is applied to 1989 data for Nanzheng Country, China. Background information is provided on an experiment made public in 1985 and implemented in 1986 by the Family Planning (FP) Department of Nanzheng County of Shaanxi Province in Hongmiao District in which the following conditions were placed on bearing a second child: 1) income must be 20% higher than the average village income level, and breeders must have an average income of not 400 yuan/year, crop planters not 300 yuan/year, textile weavers not 200 yuan/year, and industrial and subsidiary production workers not 400 yuan/year (generally 4 pigs or 100 chickens or ducks) or 2) 100 income-producing trees must be planted around he residential area/family plot or stony fields must be transformed into arable land under the contract responsibility system, or groves, orchards, or tea plantations must be planted. These conditions must be met one year prior to proposing to have a second child. The approval rate in 1986-88 was 88.7%, and the second parity rate was 78.4%. Deteriorated conditions had not yet occurred in this country when this proposal was made. The premises considered important in preparing assistance conditions were determined. 1) Conditions for population growth should be resolved within the area. 2) Subsistence conditions should be taken care of by the family. 3) There should be a centralized standard, not a family standard, such that living conditions/capita should not decrease because of population growth. Quantification is made expressing the relationship between subsistence and growth. The application of these conditions for households in Hongmiao District is that the average subsistence conditions need to be higher than other households by 12.3% for new population growth. The assumption is

  16. Optimal Culture Conditions for Mycelial Growth of Lignosus rhinocerus

    PubMed Central

    Siti Murni, M.J.; Fauzi, D.; Abas Mazni, O.; Saleh, N.M.

    2011-01-01

    Lignosus rhinocerus is a macrofungus that belongs to Polyporaceae and is native to tropical regions. This highly priced mushroom has been used as folk medicine to treat diseases by indigenous people. As a preliminary study to develop a culture method for edible mushrooms, the cultural characteristics of L. rhinocerus were investigated in a range of culture media under different environmental conditions. Mycelial growth of this mushroom was compared on culture media composed of various carbon and nitrogen sources in addition to C/N ratios. The optimal conditions for mycelial growth were 30℃ at pH 6 and 7. Rapid mycelial growth of L. rhinocerus was observed on glucose-peptone and yeast extract peptone dextrose media. Carbon and nitrogen sources promoting mycelial growth of L. rhinocerus were glucose and potassium nitrate, respectively. The optimum C/N ratio was approximately 10 : 1 using 2% glucose supplemented as a carbon source in the basal media. PMID:22783083

  17. Crops Models for Varying Environmental Conditions

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Cavazzoni, James; Keas, Paul

    2001-01-01

    New variable environment Modified Energy Cascade (MEC) crop models were developed for all the Advanced Life Support (ALS) candidate crops and implemented in SIMULINK. The MEC models are based on the Volk, Bugbee, and Wheeler Energy Cascade (EC) model and are derived from more recent Top-Level Energy Cascade (TLEC) models. The MEC models simulate crop plant responses to day-to-day changes in photosynthetic photon flux, photoperiod, carbon dioxide level, temperature, and relative humidity. The original EC model allows changes in light energy but uses a less accurate linear approximation. The simulation outputs of the new MEC models for constant nominal environmental conditions are very similar to those of earlier EC models that use parameters produced by the TLEC models. There are a few differences. The new MEC models allow setting the time for seed emergence, have realistic exponential canopy growth, and have corrected harvest dates for potato and tomato. The new MEC models indicate that the maximum edible biomass per meter squared per day is produced at the maximum allowed carbon dioxide level, the nominal temperatures, and the maximum light input. Reducing the carbon dioxide level from the maximum to the minimum allowed in the model reduces crop production significantly. Increasing temperature decreases production more than it decreases the time to harvest, so productivity in edible biomass per meter squared per day is greater at nominal than maximum temperatures, The productivity in edible biomass per meter squared per day is greatest at the maximum light energy input allowed in the model, but the edible biomass produced per light energy input unit is lower than at nominal light levels. Reducing light levels increases light and power use efficiency. The MEC models suggest we can adjust the light energy day-to- day to accommodate power shortages or Lise excess power while monitoring and controlling edible biomass production.

  18. Environmental Conditions in Kentucky's Penal Institutions

    ERIC Educational Resources Information Center

    Bell, Irving

    1974-01-01

    A state task force was organized to identify health or environmental deficiencies existing in Kentucky penal institutions. Based on information gained through direct observation and inmate questionnaires, the task force concluded that many hazardous and unsanitary conditions existed, and recommended that immediate action be given to these…

  19. Changes in alpine plant growth under future climate conditions

    NASA Astrophysics Data System (ADS)

    Rammig, A.; Jonas, T.; Zimmermann, N. E.; Rixen, C.

    2010-06-01

    Alpine shrub- and grasslands are shaped by extreme climatic conditions such as a long-lasting snow cover and a short vegetation period. Such ecosystems are expected to be highly sensitive to global environmental change. Prolonged growing seasons and shifts in temperature and precipitation are likely to affect plant phenology and growth. In a unique experiment, climatology and plant growth was monitored for almost a decade at 17 snow meteorological stations in different alpine regions along the Swiss Alps. Regression analyses revealed highly significant correlations between mean air temperature in May/June and snow melt out, onset of plant growth, and plant height. These correlations were used to project plant growth phenology for future climate conditions based on the gridded output of a set of regional climate models runs. Melt out and onset of growth were projected to occur on average 17 days earlier by the end of the century than in the control period from 1971-2000 under the future climate conditions of the low resolution climate model ensemble. Plant height and biomass production were expected to increase by 77% and 45%, respectively. The earlier melt out and onset of growth will probably cause a considerable shift towards higher growing plants and thus increased biomass. Our results represent the first quantitative and spatially explicit estimates of climate change impacts on future growing season length and the respective productivity of alpine plant communities in the Swiss Alps.

  20. Changes in alpine plant growth under future climate conditions

    NASA Astrophysics Data System (ADS)

    Rammig, A.; Jonas, T.; Zimmermann, N. E.; Rixen, C.

    2009-11-01

    Alpine shrub- and grasslands are shaped by extreme climatic conditions such as a long-lasting snow cover and a short vegetation period. Such ecosystems are expected to be highly sensitive to global environmental change. Prolonged growing seasons and shifts in temperature and precipitation are likely to affect plant phenology and growth. In a unique experiment, climatology and plant growth was monitored for almost a decade at 17 snow meteorological stations in different alpine regions along the Swiss Alps. Regression analyses revealed highly significant correlations between mean air temperature in May/June and snow melt-out, onset of plant growth, and plant height. These correlations were used to project plant growth phenology for future climate conditions based on the gridded output of a set of regional climate models runs. Melt-out and onset of growth were projected to occur on average 17 days earlier by the end of the century than in the control period from 1971-2000 under the future climate conditions of the low resolution climate model ensemble. Plant height and biomass production were expected to increase by 77% and 45%, respectively. The earlier melt-out and onset of growth will probably cause a considerable shift towards higher growing plants and thus increased biomass. Our results represent the first quantitative and spatially explicit estimates of climate change impacts on future growing season length and the respective productivity of alpine plant communities in the Swiss Alps.

  1. Minimal conditions for protocell stationary growth.

    PubMed

    Bigan, Erwan; Steyaert, Jean-Marc; Douady, Stéphane

    2015-01-01

    We show that self-replication of a chemical system encapsulated within a membrane growing from within is possible without any explicit feature such as autocatalysis or metabolic closure, and without the need for their emergence through complexity. We use a protocell model relying upon random conservative chemical reaction networks with arbitrary stoichiometry, and we investigate the protocell's capability for self-replication, for various numbers of reactions in the network. We elucidate the underlying mechanisms in terms of simple minimal conditions pertaining only to the topology of the embedded chemical reaction network. A necessary condition is that each moiety must be fed, and a sufficient condition is that each siphon is fed. Although these minimal conditions are purely topological, by further endowing conservative chemical reaction networks with thermodynamically consistent kinetics, we show that the growth rate tends to increase on increasing the Gibbs energy per unit molecular weight of the nutrient and on decreasing that of the membrane precursor. PMID:25951201

  2. Evidence for environmentally enhanced forest growth.

    PubMed

    Fang, Jingyun; Kato, Tomomichi; Guo, Zhaodi; Yang, Yuanhe; Hu, Huifeng; Shen, Haihua; Zhao, Xia; Kishimoto-Mo, Ayaka W; Tang, Yanhong; Houghton, Richard A

    2014-07-01

    Forests in the middle and high latitudes of the northern hemisphere function as a significant sink for atmospheric carbon dioxide (CO2). This carbon (C) sink has been attributed to two processes: age-related growth after land use change and growth enhancement due to environmental changes, such as elevated CO2, nitrogen deposition, and climate change. However, attribution between these two processes is largely controversial. Here, using a unique time series of an age-class dataset from six national forest inventories in Japan and a new approach developed in this study (i.e., examining changes in biomass density at each age class over the inventory periods), we quantify the growth enhancement due to environmental changes and its contribution to biomass C sink in Japan's forests. We show that the growth enhancement for four major plantations was 4.0∼7.7 Mg C⋅ha(-1) from 1980 to 2005, being 8.4-21.6% of biomass C sequestration per hectare and 4.1-35.5% of the country's total net biomass increase of each forest type. The growth enhancement differs among forest types, age classes, and regions. Our results provide, to our knowledge, the first ground-based evidence that global environmental changes can increase C sequestration in forests on a broad geographic scale and imply that both the traits and age of trees regulate the responses of forest growth to environmental changes. These findings should be incorporated into the prediction of forest C cycling under a changing climate. PMID:24979781

  3. Evidence for environmentally enhanced forest growth

    PubMed Central

    Fang, Jingyun; Kato, Tomomichi; Guo, Zhaodi; Yang, Yuanhe; Hu, Huifeng; Shen, Haihua; Zhao, Xia; Kishimoto-Mo, Ayaka W.; Tang, Yanhong; Houghton, Richard A.

    2014-01-01

    Forests in the middle and high latitudes of the northern hemisphere function as a significant sink for atmospheric carbon dioxide (CO2). This carbon (C) sink has been attributed to two processes: age-related growth after land use change and growth enhancement due to environmental changes, such as elevated CO2, nitrogen deposition, and climate change. However, attribution between these two processes is largely controversial. Here, using a unique time series of an age-class dataset from six national forest inventories in Japan and a new approach developed in this study (i.e., examining changes in biomass density at each age class over the inventory periods), we quantify the growth enhancement due to environmental changes and its contribution to biomass C sink in Japan’s forests. We show that the growth enhancement for four major plantations was 4.0∼7.7 Mg C⋅ha−1 from 1980 to 2005, being 8.4–21.6% of biomass C sequestration per hectare and 4.1–35.5% of the country's total net biomass increase of each forest type. The growth enhancement differs among forest types, age classes, and regions. Our results provide, to our knowledge, the first ground-based evidence that global environmental changes can increase C sequestration in forests on a broad geographic scale and imply that both the traits and age of trees regulate the responses of forest growth to environmental changes. These findings should be incorporated into the prediction of forest C cycling under a changing climate. PMID:24979781

  4. NOVELTY DETECTION UNDER CHANGING ENVIRONMENTAL CONDITIONS

    SciTech Connect

    H. SOHN; K. WORDER; C. R. FARRAR

    2001-04-01

    The primary objective of novelty detection is to examine a system's dynamic response to determine if the system significantly deviates from an initial baseline condition. In reality, the system is often subject to changing environmental and operation conditions that affect its dynamic characteristics. Such variations include changes in loading, boundary conditions, temperature, and moisture. Most damage diagnosis techniques, however, generally neglect the effects of these changing ambient conditions. Here, a novelty detection technique is developed explicitly taking into account these natural variations of the system in order to minimize false positive indications of true system changes. Auto-associative neural networks are employed to discriminate system changes of interest such as structural deterioration and damage from the natural variations of the system.

  5. Cross-taxon congruence and environmental conditions

    PubMed Central

    2010-01-01

    Background Diversity patterns of different taxa typically covary in space, a phenomenon called cross-taxon congruence. This pattern has been explained by the effect of one taxon diversity on taxon diversity, shared biogeographic histories of different taxa, and/or common responses to environmental conditions. A meta-analysis of the association between environment and diversity patterns found that in 83 out of 85 studies, more than 60% of the spatial variability in species richness was related to variables representing energy, water or their interaction. The role of the environment determining taxa diversity patterns leads us to hypothesize that this would explain the observed cross-taxon congruence. However, recent analyses reported the persistence of cross-taxon congruence when environmental effect was statistically removed. Here we evaluate this hypothesis, analyzing the cross-taxon congruence between birds and mammals in the Brazilian Cerrado, and assess the environmental role on the spatial covariation in diversity patterns. Results We found a positive association between avian and mammal richness and a positive latitudinal trend for both groups in the Brazilian Cerrado. Regression analyses indicated an effect of latitude, PET, and mean temperature over both biological groups. In addition, we show that NDVI was only associated with avian diversity; while the annual relative humidity, was only correlated with mammal diversity. We determined the environmental effects on diversity in a path analysis that accounted for 73% and 76% of the spatial variation in avian and mammal richness. However, an association between avian and mammal diversity remains significant. Indeed, the importance of this link between bird and mammal diversity was also supported by a significant association between birds and mammal spatial autoregressive model residuals. Conclusion Our study corroborates the main role of environmental conditions on diversity patterns, but suggests that other

  6. Modeling Hematite Bioreduction under Growth Conditions

    NASA Astrophysics Data System (ADS)

    Yu, J.; Chen, C.; Yeh, G.; Burgos, W. D.; Mynyard, M. L.

    2004-12-01

    The focus of this work is on simulating and analyzing bioreduction kinetics of natural hematite-coated sand by dissimilatory metal-reducing bacterium (DMRB), Shewanella putrefaciens CN32, under growth conditions with lactate as the electron donor. A reaction-based biogeochemical model was used. A series of batch experiments with different initial conditions were performed to determine the rate formulations/parameters for hematite bioreduction and related reactions. Three different kinetic reaction rate formations were used to model hematite bioreduction. The consistency of mass conservation equations was assessed. Assumptions regarding equilibrium reactions were also assessed. Column experiments focused on transient reactive transport were conducted under otherwise identical conditions, except that the flow rate was systematically varied. The determined rate formulations/parameters were systematically tested with these column experiments using a reactive biogeochemical transport model that coupled hydrologic transport and reactive biogeochemistry. The model simulated the hematite bioreduction of hematite-coated sand in column experiments reasonably well using rate formulation/parameters determined from batch experiments. This study supports the hypothesis that mechanistic-based reaction rates of batch experiments can be scaled up and ported to column experiments.

  7. Environmental Effects on Fatigue Crack Growth in 7075 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Bonakdar, A.; Wang, F.; Williams, J. J.; Chawla, N.

    2012-08-01

    The fatigue behavior of aluminum alloys is greatly influenced by the environmental conditions. In this article, fatigue crack growth rates were measured for 7075-T651 Al alloy under ultrahigh vacuum (UHV, ~10-10 Torr), dry air, and water vapor. Standard compact tension (CT) specimens were tested along the L-T orientation under various load ratios of 0.1, 0.5, and 0.8. Fracture surfaces and crack morphologies were studied using scanning electron microscopy and crack deflection analysis. The crack growth behavior under vacuum was affected by friction and possible rewelding of crack surfaces, causing an asymmetry in the crack growth behavior, from load shedding to constant load. The enhancement of crack growth at higher moisture levels was observed and is discussed in terms of moisture decreasing friction between the crack faces. The effect of crack deflection as a function of R ratio and environment is also presented.

  8. Ecological Conditions Favoring Budding in Colonial Organisms under Environmental Disturbance

    PubMed Central

    Nakamaru, Mayuko; Takada, Takenori; Ohtsuki, Akiko; Suzuki, Sayaki U.; Miura, Kanan; Tsuji, Kazuki

    2014-01-01

    Dispersal is a topic of great interest in ecology. Many organisms adopt one of two distinct dispersal tactics at reproduction: the production of small offspring that can disperse over long distances (such as seeds and spawned eggs), or budding. The latter is observed in some colonial organisms, such as clonal plants, corals and ants, in which (super)organisms split their body into components of relatively large size that disperse to a short distance. Contrary to the common dispersal viewpoint, short-dispersal colonial organisms often flourish even in environments with frequent disturbances. In this paper, we investigate the conditions that favor budding over long-distance dispersal of small offspring, focusing on the life history of the colony growth and the colony division ratio. These conditions are the relatively high mortality of very small colonies, logistic growth, the ability of dispersers to peacefully seek and settle unoccupied spaces, and small spatial scale of environmental disturbance. If these conditions hold, budding is advantageous even when environmental disturbance is frequent. These results suggest that the demography or life history of the colony underlies the behaviors of the colonial organisms. PMID:24621824

  9. 10 CFR 50.36b - Environmental conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Environmental conditions. 50.36b Section 50.36b Energy... § 50.36b Environmental conditions. (a) Each construction permit under this part, each early site permit... conditions will be derived from information contained in the environmental report submitted pursuant to §...

  10. 10 CFR 50.36b - Environmental conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Environmental conditions. 50.36b Section 50.36b Energy... § 50.36b Environmental conditions. (a) Each construction permit under this part, each early site permit... conditions will be derived from information contained in the environmental report submitted pursuant to §...

  11. 10 CFR 50.36b - Environmental conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Environmental conditions. 50.36b Section 50.36b Energy... § 50.36b Environmental conditions. (a) Each construction permit under this part, each early site permit... conditions will be derived from information contained in the environmental report submitted pursuant to §...

  12. 10 CFR 50.36b - Environmental conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Environmental conditions. 50.36b Section 50.36b Energy... § 50.36b Environmental conditions. (a) Each construction permit under this part, each early site permit... conditions will be derived from information contained in the environmental report submitted pursuant to §...

  13. Plant growth conditions alter phytolith carbon

    PubMed Central

    Gallagher, Kimberley L.; Alfonso-Garcia, Alba; Sanchez, Jessica; Potma, Eric O.; Santos, Guaciara M.

    2015-01-01

    Many plants, including grasses and some important human food sources, accumulate, and precipitate silica in their cells to form opaline phytoliths. These phytoliths contain small amounts of organic matter (OM) that are trapped during the process of silicification. Previous work has suggested that plant silica is associated with compounds such as proteins, lipids, lignin, and carbohydrate complexes. It is not known whether these compounds are cellular components passively encapsulated as the cell silicifies, polymers actively involved in the precipitation process or random compounds assimilated by the plant and discarded into a “glass wastebasket.” Here, we used Raman spectroscopy to map the distribution of OM in phytoliths, and to analyze individual phytoliths isolated from Sorghum bicolor plants grown under different laboratory treatments. Using mapping, we showed that OM in phytoliths is distributed throughout the silica and is not related to dark spots visible in light microscopy, previously assumed to be the repository for phytolith OM. The Raman spectra exhibited common bands indicative of C-H stretching modes of general OM, and further more diagnostic bands consistent with carbohydrates, lignins, and other OM. These Raman spectra exhibited variability of spectral signatures and of relative intensities between sample treatments indicating that differing growth conditions altered the phytolith carbon. This may have strong implications for understanding the mechanism of phytolith formation, and for use of phytolith carbon isotope values in dating or paleoclimate reconstruction. PMID:26442066

  14. Plant growth conditions alter phytolith carbon.

    PubMed

    Gallagher, Kimberley L; Alfonso-Garcia, Alba; Sanchez, Jessica; Potma, Eric O; Santos, Guaciara M

    2015-01-01

    Many plants, including grasses and some important human food sources, accumulate, and precipitate silica in their cells to form opaline phytoliths. These phytoliths contain small amounts of organic matter (OM) that are trapped during the process of silicification. Previous work has suggested that plant silica is associated with compounds such as proteins, lipids, lignin, and carbohydrate complexes. It is not known whether these compounds are cellular components passively encapsulated as the cell silicifies, polymers actively involved in the precipitation process or random compounds assimilated by the plant and discarded into a "glass wastebasket." Here, we used Raman spectroscopy to map the distribution of OM in phytoliths, and to analyze individual phytoliths isolated from Sorghum bicolor plants grown under different laboratory treatments. Using mapping, we showed that OM in phytoliths is distributed throughout the silica and is not related to dark spots visible in light microscopy, previously assumed to be the repository for phytolith OM. The Raman spectra exhibited common bands indicative of C-H stretching modes of general OM, and further more diagnostic bands consistent with carbohydrates, lignins, and other OM. These Raman spectra exhibited variability of spectral signatures and of relative intensities between sample treatments indicating that differing growth conditions altered the phytolith carbon. This may have strong implications for understanding the mechanism of phytolith formation, and for use of phytolith carbon isotope values in dating or paleoclimate reconstruction. PMID:26442066

  15. Protection of chemolithoautotrophic bacteria exposed to simulated Mars environmental conditions

    NASA Astrophysics Data System (ADS)

    Gómez, Felipe; Mateo-Martí, Eva; Prieto-Ballesteros, Olga; Martín-Gago, Jose; Amils, Ricardo

    2010-10-01

    Current surface conditions (strong oxidative atmosphere, UV radiation, low temperatures and xeric conditions) on Mars are considered extremely challenging for life. The question is whether there are any features on Mars that could exert a protective effect against the sterilizing conditions detected on its surface. Potential habitability in the subsurface would increase if the overlaying material played a protective role. With the aim of evaluating this possibility we studied the viability of two microorganisms under different conditions in a Mars simulation chamber. An acidophilic chemolithotroph isolated from Río Tinto belonging to the Acidithiobacillus genus and Deinococcus radiodurans, a radiation resistant microorganism, were exposed to simulated Mars conditions under the protection of a layer of ferric oxides and hydroxides, a Mars regolith analogue. Samples of these microorganisms were exposed to UV radiation in Mars atmospheric conditions at different time intervals under the protection of 2 and 5 mm layers of oxidized iron minerals. Viability was evaluated by inoculation on fresh media and characterization of their growth cultures. Here we report the survival capability of both bacteria to simulated Mars environmental conditions.

  16. Environmental conditions and reproductive health outcomes

    EPA Science Inventory

    Environmental exposures range across multiple domains to affect human health. In an effort to learn how environmental factors combine to contribute to health outcomes we constructed a multiple environmental domain index (MEDI) for use in health research. We used principal compone...

  17. Adversarial Growth in Telephone Counsellors: Psychological and Environmental Influences

    ERIC Educational Resources Information Center

    O'Sullivan, Julian; Whelan, Thomas A.

    2011-01-01

    The aims of this study were to investigate the level of adversarial growth among telephone counsellors, and to examine the influence of psychological and environmental factors on growth. In particular, the effect of compassion fatigue, empathy, environmental support and calls per shift on posttraumatic growth was assessed. Sixty-four telephone…

  18. Solidification under microgravity conditions - Dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Hahn, R. C.; Lograsso, T. A.; Rubinstein, E. R.; Winsa, E.

    1987-01-01

    The experimental approach and apparatus of a zero-gravity active crystal growth experiment to test dendritic growth theory at low supercoolings are discussed. The experiment consists of 20 experimental cycles. Estimates have been made as to how low gravitational accelerations would have to be reduced to observe convection-free dendritic growth at supercoolings from 0.01-1.0 K. The experiment requires temperature control of + or - 2 mK and photographic resolution of a few microns with a depth of field of + or - 6 mm. The thermostatic bath and temperature control system, photographic system, growth chamber, and dendrite detection system are described in detail.

  19. Analysis of environmental stress factors using an artificial growth system and plant fitness optimization.

    PubMed

    Lee, Meonghun; Yoe, Hyun

    2015-01-01

    The environment promotes evolution. Evolutionary processes represent environmental adaptations over long time scales; evolution of crop genomes is not inducible within the relatively short time span of a human generation. Extreme environmental conditions can accelerate evolution, but such conditions are often stress inducing and disruptive. Artificial growth systems can be used to induce and select genomic variation by changing external environmental conditions, thus, accelerating evolution. By using cloud computing and big-data analysis, we analyzed environmental stress factors for Pleurotus ostreatus by assessing, evaluating, and predicting information of the growth environment. Through the indexing of environmental stress, the growth environment can be precisely controlled and developed into a technology for improving crop quality and production. PMID:25874206

  20. Analysis of Environmental Stress Factors Using an Artificial Growth System and Plant Fitness Optimization

    PubMed Central

    Lee, Meonghun; Yoe, Hyun

    2015-01-01

    The environment promotes evolution. Evolutionary processes represent environmental adaptations over long time scales; evolution of crop genomes is not inducible within the relatively short time span of a human generation. Extreme environmental conditions can accelerate evolution, but such conditions are often stress inducing and disruptive. Artificial growth systems can be used to induce and select genomic variation by changing external environmental conditions, thus, accelerating evolution. By using cloud computing and big-data analysis, we analyzed environmental stress factors for Pleurotus ostreatus by assessing, evaluating, and predicting information of the growth environment. Through the indexing of environmental stress, the growth environment can be precisely controlled and developed into a technology for improving crop quality and production. PMID:25874206

  1. Growth management of vetiver (Vetiveria zizanioides) under Mediterranean conditions.

    PubMed

    Dudai, N; Putievsky, E; Chaimovitch, D; Ben-Hur, M

    2006-10-01

    In spite of the advantages of Vetiver grass in light of environmental aspects, this plant is not used in the Mediterranean region. The objectives of the present study were: (i) to elucidate growth parameters and establishment of Vetiver under Mediterranean conditions suitable for its various environmental applications; and (ii) to develop management practices for growing vetiver under Mediterranean conditions. In greenhouse experiments conducted under controlled conditions it was found that, in general, increasing the minimum/maximum temperatures to 21-29 degrees C significantly increased plant height. In the Mediterranean region, this range of air temperatures is obtained mainly during the summer, from June to September. For air temperatures up to 15-23 degrees C the effect of day length on plant height was insignificant, whereas in air temperature >15-23 degrees C, the plant heights under long day conditions were significantly higher than under short day. The number of sprouts per plant increased exponentially with increasing air temperature, and was not significantly affected by the day length at any air temperature range. In open fields, the heights of irrigated vetiver plants were significantly higher than those of rain-fed plants. It was concluded that, once they were established, vetiver plants could survive the dry summer of the Mediterranean region under rain-fed conditions, but they would be shorter than under irrigation. Cutting or burning of the plant foliage during the spring did not improve the survival of vetiver during the dry summer. In order to obtain fast growth of vetiver and to increase the possibility of its using the rainwater, the plants should be planted in the winter, during February and March. However, under this regime, the vetiver plant cannot be used as a soil stabilizer during the first winter, because the plant is still small. In contrast, under irrigation it is advantageous to plant vetiver at the beginning of the summer; the plant

  2. Mineral losses during extreme environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Minerals are nutrients that are conserved by the body. During exposure to environmental stimuli, such as heat and/or exercise, the excretion of minerals, macro (Na, K, Ca, Mg) and micro (Cu, Fe, Zn), occurs through the body surface in the form of cellular desquamation and sweat, as well as in the u...

  3. Brachiopods recording environmental conditions and biomineralisation processes

    NASA Astrophysics Data System (ADS)

    Cusack, Maggie; MacDonald, John M.; Fitzer, Susan C.; John, Cedric M.

    2016-04-01

    For around 550 million years, organisms have been exerting biological control on biomineral formation, generating elegant functional biomineral structures from basic components such as calcium phosphate in the case of vertebrate skeletons; silica or calcium carbonate in invertebrate shells and corals. In the marine realm, environmental information on the world's oceans is entrapped within the composition of calcium carbonate biomineral structures such as the shells of molluscs or brachiopods. Here, conventional stable and clumped isotopes of calcium carbonate of brachiopod shells are explored in the context of biological control. The aim is to ensure the correct interpretation of environmental data and to consider the possibility of extracting information on the mechanisms of biomineralisation processes from the data stored in the fossil record.

  4. Oceanographic conditions govern shell growth of Arctica islandica (Bivalvia) in surface waters off Northeast Iceland

    NASA Astrophysics Data System (ADS)

    Marali, Soraya; Schöne, Bernd R.

    2015-04-01

    Shells of the long-lived bivalve Arctica islandica provide absolutely dated, highly resolved archives of environmental variability in the extratropical realm. Shell growth rates of contemporaneous A. islandica specimens are synchronized by one or several environmental factor(s), such as seawater temperature, food supply etc. Based on the growth synchrony, increment width records can be combined to composite chronologies. However, according to existing studies, A. islandica specimens from shallow waters do not show synchronous changes in shell growth and may thus not provide information about environmental conditions such as sea surface temperature. Here, we present the first statistically robust composite chronology of A. islandica from unpolluted surface waters (8-23 m) off Northeast Iceland. The complete record spans the time interval of 1835 to 2012. Times of enhanced shell growth coincide with periods of higher temperature and elevated food supply. Instrumental sea surface temperature (SST) during the growing season explains up to 43% of the variation in relative shell growth. However, the correlation strength varies over time. When the environmental conditions at the sampling site were stable over many consecutive years, i.e. one of the two major surface currents (the warm, nutrient-rich Irminger Current or the cold, nutrient-deficient East Icelandic Current) predominated the area over longer time intervals, the growth synchrony among coeval A. islandica weakened and the correlation between shell growth and SSTs was markedly reduced. Conversely, if the habitat was under the alternating influence of both ocean currents, shell growth was stronger correlated to each other and to SST. Thus, environmental variability is required to synchronize shell growth rates within an A. islandica population. This study further enlightens the relationship between bivalve shell growth and environmental variables.

  5. Eutectic growth under acoustic levitation conditions

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Cao, C. D.; Lü, Y. J.; Wei, B.

    2002-12-01

    Samples of Pb-Sn eutectic alloy with a high density of 8.5×103 kg/m3 are levitated with a single-axis acoustic levitator, and containerlessly melted and then solidified in argon atmosphere. High undercoolings up to 38 K are obtained, which results in a microstructural transition of ``lamellas-broken lamellas-dendrites.'' This transition is further investigated in the light of the coupled zone for eutectic growth and the effects of ultrasound. The breaking of regular eutectic lamellas and suppression of gravity-induced macrosegregation of (Pb) and (Sn) dendrites are explained by the complicated internal flow inside the levitated drop, which is jointly induced by the shape oscillation, bulk vibration and rotation of the levitated drop. The ultrasonic field is also found to drive forced surface vibration, which subsequently excites capillary ripples and catalyzes nucleation on the sample surface.

  6. Eutectic growth under acoustic levitation conditions.

    PubMed

    Xie, W J; Cao, C D; Lü, Y J; Wei, B

    2002-12-01

    Samples of Pb-Sn eutectic alloy with a high density of 8.5 x 10(3) kg/m(3) are levitated with a single-axis acoustic levitator, and containerlessly melted and then solidified in argon atmosphere. High undercoolings up to 38 K are obtained, which results in a microstructural transition of "lamellas-broken lamellas-dendrites." This transition is further investigated in the light of the coupled zone for eutectic growth and the effects of ultrasound. The breaking of regular eutectic lamellas and suppression of gravity-induced macrosegregation of (Pb) and (Sn) dendrites are explained by the complicated internal flow inside the levitated drop, which is jointly induced by the shape oscillation, bulk vibration and rotation of the levitated drop. The ultrasonic field is also found to drive forced surface vibration, which subsequently excites capillary ripples and catalyzes nucleation on the sample surface. PMID:12513291

  7. [Extracellular factors of bacterial adaptation to unfavorable environmental conditions].

    PubMed

    Nikolaev, Iu A

    2004-01-01

    Data on extracellular compounds of bacteria involved in their adaptation to unfavorable environmental conditions are reviewed, including high or low temperatures, growth-inhibiting or bactericidal concentrations of toxic substances (oxidants, phenols, and heavy metals) and antibiotics, deviation of pH values from optimum levels, and salinity of the medium. Chemically, the compounds identified belong to diverse types (proteins, hydrocarbons, organic acids, nucleotides, amino acids, lipopeptides, volatile substances, etc.). Most of them remain unidentified, and their properties are studied using biological testing. It is proposed to view extracellular adaptation factors (EAFs) as a new group of biologically active substances. EAFs may be divided into several subgroups by the mechanism of action. These subgroups include protectors (stabilizers), signaling molecules inducing defense responses, regulators (e.g., adhesion regulators) not acting as inducers, and antidotes (neutralizers). The fields of EAF study include screening (search for new compounds, using biological tests), identification, and research into mechanisms of action. EAFs may find utility in biotechnology, medicine, agriculture, and environmental protection. PMID:15455710

  8. Lunar Polar Environmental Testing: Regolith Simulant Conditioning

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie Elise

    2014-01-01

    As ISRU system development approaches flight fidelity, there is a need to test hardware in relevant environments. Extensive laboratory and field testing have involved relevant soil (lunar regolith simulants), but the current design iterations necessitate relevant pressure and temperature conditions. Including significant quantities of lunar regolith simulant in a thermal vacuum chamber poses unique challenges. These include facility operational challenges (dust tolerant hardware) and difficulty maintaining a pre-prepared soil state during pump down (consolidation state, moisture retention).For ISRU purposes, the regolith at the lunar poles will be of most interest due to the elevated water content. To test at polar conditions, the regolith simulant must be doped with water to an appropriate percentage and then chilled to cryogenic temperatures while exposed to vacuum conditions. A 1m tall, 28cm diameter bin of simulant was developed for testing these simulant preparation and drilling operations. The bin itself was wrapped with liquid nitrogen cooling loops (100K) so that the simulant bed reached an average temperature of 140K at vacuum. Post-test sampling was used to determine desiccation of the bed due to vacuum exposure. Depth dependent moisture data is presented from frozen and thawed soil samples.Following simulant only evacuation tests, drill hardware was incorporated into the vacuum chamber to test auguring techniques in the frozen soil at thermal vacuum conditions. The focus of this testing was to produce cuttings piles for a newly developed spectrometer to evaluate. This instrument, which is part of the RESOLVE program science hardware, detects water signatures from surface regolith. The drill performance, behavior of simulant during drilling, and characteristics of the cuttings piles will be offered.

  9. Mathematical modeling of growth of Salmonella in raw ground beef under isothermal conditions from 10 to 45 Degree C

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to develop primary and secondary models to describe the growth of Salmonella in raw ground beef. Primary and secondary models can be integrated into a dynamic model that can predict the microbial growth under varying environmental conditions. Growth data of Salmonel...

  10. Management of Cattle Exposed to Adverse Environmental Conditions.

    PubMed

    Mader, Terry L; Griffin, Dee

    2015-07-01

    During periods of adverse weather, optimum conditions for animal comfort and performance are compromised. Use of alternative supplementation programs need to be considered for livestock challenged by adverse environmental conditions. Use of additional water for consumption and cooling, shade, and/or alternative management strategies need to be considered to help livestock cope with heat stress. For animals reared outside during winter, strategies that increase animal space and environmental buffers need to be used to minimize effects of mud, wet conditions, and windchill. There are ample opportunities for livestock producers to enhance animal welfare and minimize the impact of environmental stress. PMID:26139190

  11. Effect of boundary conditions on thermal plume growth

    NASA Astrophysics Data System (ADS)

    Kondrashov, A.; Sboev, I.; Rybkin, K.

    2016-07-01

    We have investigated the influence of boundary conditions on the growth rate of convective plumes. Temperature and rate fields were studied in a rectangular convective cell heated by a spot heater. The results of the full-scale test were compared with the numerical data calculated using the ANSYS CFX software package. The relationship between the heat plume growth rate and heat boundary conditions, the width and height of the cell, size of heater for different kinds of liquid was established.

  12. Dietary Lysine Responses of Male Broilers From 14 to 28 Days of Age Subjected to Different Environmental Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary amino acid requirements are influenced by environmental conditions. Two experiments examined growth responses of Ross × Ross TP 16 male broilers fed diets varying in digestible (dig) Lys concentrations from 14 to 28 days of age under different environmental conditions. Experiment 1 was condu...

  13. Digestible Lysine Requirements of Male Broilers From 14 to 28 Days of Age Subjected to Different Environmental Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary amino acid requirements are influenced by environmental conditions. Two experiments examined growth responses of Ross × Ross TP 16 male broilers fed diets varying in digestible (dig) Lys concentrations from 14 to 28 d of age under different environmental conditions. Experiment 1 was conduc...

  14. Environmental embrittlement of iron aluminides under cyclic loading conditions

    SciTech Connect

    Castagna, A.; Alven, D.A.; Stoloff, N.S.

    1995-08-01

    The tensile and fatigue crack growth behavior in air in hydrogen and in oxygen of an Fe-Al-Cr-Zr alloy is described. The results are compared to data for FA-129. A detailed analysis of frequency effects on fatigue crack growth rates of FA-129, tested in the B2 condition, shows that dislocation transport of hydrogen from the surface is the rate limiting step in fatigue crack growth.

  15. ENVIRONMENTALLY FRIENDLIER ORGANIC TRANSFORMATIONS ON MINERAL SUPPORTS UNDER NONTRADITIONAL CONDITIONS

    EPA Science Inventory

    Synthetic organic reactions performed under non-traditional conditions are gaining popularity primarily to circumvent the growing environmental concerns. A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) either in presence of a catalyst o...

  16. Population growth, agrarian peasant economy and environmental degradation in Tanzania.

    PubMed

    Madulu, N F

    1995-03-01

    Population strategies to relieve the density pressures on land and resources in Tanzania have not considered the basic causes of population growth. Resettlement results in the same environmental degradation as in the original settlement. There should be a reduction in the population growth and planning of proper land use and resource exploitation before resettlement. Rural development must include a decline in the dependency on subsistence agriculture. Population in Tanzania increased by 213% during 1948-88. An absolute increase in population size during 1978-88 is recorded despite a slight decline in the rate of growth. Death rates declined, but birth rates were relatively stable at around 50 per 1000 population. Regions with the highest growth rates were Dar es Salaam (4.8%), Rukwa (4.3%), Arusha (3.8%), Mbeya (3.1%), and Ruvuma (3.2%). The regions with the lowest rates were Tanga and Kilimanjaro (2.1%), Coast (2.1%), Lindi (2%), and Mtwara (1.4%). Low growth rates are attributed to low fertility and high infertility. Other factors affecting high growth rates are culture, rates of natural increase, intensity of internal and international migration, climatic conditions, and availability of resources. In 1988 46% of the population was under 15 years old. Per capita land availability declined from 11.8 hectares in 1948 to 3.8 hectares in 1988. The number of landless peasants increased. Productivity declined, and distances to farms increased. The total fertility rate was 6.5 children per woman in 1988 and 6.1 during 1991-92. Slight declines were apparent in the crude birth rate also. High fertility was a response to universal marriage, low contraceptive use (7% using modern methods during 1991-92), declining lactation periods, high mortality rates, and old traditions favoring large families. Children were used extensively in time-consuming and labor-intensive activities, such as fetching water. The mean number of children ever born was higher among women with 1

  17. Support for Economic Growth and Environmental Protection 1973-1975.

    ERIC Educational Resources Information Center

    Marsh, C. Paul; Christenson, James A.

    This study investigates preferences of public support for allocation of expenditures toward environmental controls or toward economic growth from 1973-1975. The author considered four previously noted correlates of environmental support--education, family income, place of residence, and political orientation. Two state-wide surveys were conducted…

  18. Nanowire growth kinetics in aberration corrected environmental transmission electron microscopy.

    PubMed

    Chou, Yi-Chia; Panciera, Federico; Reuter, Mark C; Stach, Eric A; Ross, Frances M

    2016-04-14

    We visualize atomic level dynamics during Si nanowire growth using aberration corrected environmental transmission electron microscopy, and compare with lower pressure results from ultra-high vacuum microscopy. We discuss the importance of higher pressure observations for understanding growth mechanisms and describe protocols to minimize effects of the higher pressure background gas. PMID:27041654

  19. Overview of environmental and hydrogeologic conditions at King Salmon, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.

    1994-01-01

    The Federal Aviation Administration is conducting preliminary environmental assessments at most of its present or former facilities in Alaska. Information about environmental conditions at King Salmon, Alaska are presented in this report. This report gives an overview of the geology, hydro- logy, and climate of the King Salmon area and describes general geohydrologic conditions. A thick alluvial aquifer underlies King Salmon and both ground water and surface water are plentiful in the area.

  20. Flexible DCP interface. [environmental sensor and signal conditioning interface

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.; Schimmelpfenning, H.

    1974-01-01

    The author has identified the following significant results. A user of an ERTS data collection system (DCS) must supply the sensors and signal-conditioning interface. The electronic interface must be compatible with the NASA-furnished data collection platform. A universal signal-conditioning system for use with a wide range of environmental sensors is described. The interface is environmentally and electronically compatible with the DCP and has operated satisfactorily for a complete winter wheat growing season in Kansas.

  1. Environmental influences on speleothem growth in southwestern Oregon during the last 380, 000 years

    USGS Publications Warehouse

    Ersek, Vasile; Hostetler, Steven W.; Cheng, Hai; Clark, Peter U.; Anslow, Faron S.; Mix, Alan C.; Edwards, R. Lawrence

    2009-01-01

    The growth of carbonate formations in caves (speleothems) is sensitive to changes in environmental conditions at the surface (temperature, precipitation and vegetation) and can provide useful paleoclimatic and paleoenvironmental information. We use 73 230Th dates from speleothems collected from a cave in southwestern Oregon (USA) to constrain speleothem growth for the past 380 000 years. Most speleothem growth occurred during interglacial periods, whereas little growth occurred during glacial intervals. To evaluate potential environmental controls on speleothem growth we use two new modeling approaches: i) a one-dimensional thermal advection–diffusion model to estimate cave temperatures during the last glacial cycle, and ii) a regional climate model simulation for the Last Glacial Maximum (21 000 years before present) that assesses a range of potential controls on speleothem growth under peak glacial conditions. The two models are mutually consistent in indicating that permafrost formation did not influence speleothem growth during glacial periods. Instead, the regional climate model simulation combined with proxy data suggest that the influence of the Laurentide and Cordilleran ice sheets on atmospheric circulation induced substantial changes in water balance in the Pacific Northwest and affected speleothem growth at our location. The overall drier conditions during glacial intervals and associated periods of frozen topsoil at times of maximum surface runoff likely induced drastic changes in cave recharge and limited speleothem growth. This mechanism could have affected speleothem growth in other mid-latitude caves without requiring the presence of permafrost.

  2. Growth of Environmental Science at the NSLS

    SciTech Connect

    Northrup,P.; Lanzirotti, A.; Celestian, A.

    2007-01-01

    In the 25 years since the National Synchrotron Light Source (NSLS) began operations, synchrotron 'user facilities' have had a growing impact on research in molecular environmental science (MES). For example, synchrotron-based analytical techniques have allowed researchers to determine the molecular-level speciation of environmentally relevant elements and evaluate their spatial distribution and phase association at very low concentration levels (low parts per million) with micrometer or nanometer resolution [1]. For the environmental scientist, one of the primary advantages of these synchrotron-based techniques is that samples need not be disturbed or destroyed for study; characterization can often be done in-situ in dilute and heterogeneous natural samples with no need for species separation, pre-concentration, or pre-treatment [2]. Liquids, hydrated solids, and biological samples can also often be directly analyzed, which is of fundamental importance in environmental science for understanding the molecular-scale processes that occur at mineral-water interfaces and in understanding how abiotic and biotic processes are involved in the distribution, mobility and ultimate fate of molecular species in the environment.

  3. Ice Crystal Growth Rates Under Upper Troposphere Conditions

    NASA Technical Reports Server (NTRS)

    Peterson, Harold S.; Bailey, Matthew; Hallett, John

    2010-01-01

    Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 m, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.

  4. Ice Particle Growth Under Conditions of the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Peterson, Harold S.; Bailey, Matthew; Hallett, John

    2010-01-01

    Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 microns, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.

  5. Ice Particle Growth Rates Under Upper Troposphere Conditions

    NASA Technical Reports Server (NTRS)

    Peterson, Harold; Bailey, Matthew; Hallett, John

    2010-01-01

    Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 m, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.

  6. Parasitism in early life: environmental conditions shape within-brood variation in responses to infection

    PubMed Central

    Granroth-Wilding, Hanna M V; Burthe, Sarah J; Lewis, Sue; Reed, Thomas E; Herborn, Katherine A; Newell, Mark A; Takahashi, Emi A; Daunt, Francis; Cunningham, Emma J A

    2014-01-01

    Parasites play key ecological and evolutionary roles through the costs they impose on their host. In wild populations, the effect of parasitism is likely to vary considerably with environmental conditions, which may affect the availability of resources to hosts for defense. However, the interaction between parasitism and prevailing conditions is rarely quantified. In addition to environmental variation acting on hosts, individuals are likely to vary in their response to parasitism, and the combined effect of both may increase heterogeneity in host responses. Offspring hierarchies, established by parents in response to uncertain rearing conditions, may be an important source of variation between individuals. Here, we use experimental antiparasite treatment across 5 years of variable conditions to test how annual population productivity (a proxy for environmental conditions) and parasitism interact to affect growth and survival of different brood members in juvenile European shags (Phalacrocorax aristotelis). In control broods, last-hatched chicks had more plastic growth rates, growing faster in more productive years. Older siblings grew at a similar rate in all years. Treatment removed the effect of environment on last-hatched chicks, such that all siblings in treated broods grew at a similar rate across environmental conditions. There were no differences in nematode burden between years or siblings, suggesting that variation in responses arose from intrinsic differences between chicks. Whole-brood growth rate was not affected by treatment, indicating that within-brood differences were driven by a change in resource allocation between siblings rather than a change in overall parental provisioning. We show that gastrointestinal parasites can be a key component of offspring's developmental environment. Our results also demonstrate the value of considering prevailing conditions for our understanding of parasite effects on host life-history traits. Establishing how

  7. A water use and growth model for Eucalyptus plantation in water-limited conditions

    SciTech Connect

    Calder, I.R.

    1992-12-31

    To investigate the environmental impact of plantation forestry using fast-growing tree species in southern India, a program of field studies was initiated in 1987 specifically to measure the water use, nutrient uptake and growth rates of the plantations. A water use and growth (WAG) model is proposed for calculating transpiration and growth of Eucalyptus plantation in water-limited conditions. The model is based on the measured relationships between transpiration rate and basal cross-sectional area and soil moisture availability. The volume growth rate (in water-limited conditions) is assumed to be proportional to the volume of water transpired. The model is calibrated using (deuterium tracing) measurements of transpiration and measurements of growth recorded at the Puradal experimental plantation, Karnataka, southern India.

  8. Affluence and objective environmental conditions: Evidence of differences in environmental concern in metropolitan Brazil

    PubMed Central

    Nawrotzki, Raphael J.; Guedes, Gilvan; do Carmo, Roberto Luiz

    2016-01-01

    In an age of climate change, researchers need to form a deepened understanding of the determinants of environmental concern, particularly in countries of emerging economies. This paper provides a region-specific investigation of the impact of socio-economic status (SES) and objective environmental conditions on environmental concern in urban Brazil. We make use of data that were collected from personal interviews of individuals living in the metropolitan areas of Baixada Santista and Campinas, in the larger São Paulo area. Results from multilevel regression models indicate that wealthier households are more environmentally concerned, as suggested by affluence and post-materialist hypotheses. However, we also observe that increasing environmental concern correlates with a decline in objective environmental conditions. Interactions between objective environmental conditions and SES reveal some intriguing relationships: Among poorer individuals, a decline in environmental conditions increases environmental concern as suggested by the objective problems hypothesis, while for the wealthy, a decline in environmental conditions is associated with lower levels of environmental concern. PMID:27594931

  9. Compensatory growth strategies are affected by the strength of environmental time constraints in anuran larvae.

    PubMed

    Orizaola, Germán; Dahl, Emma; Laurila, Anssi

    2014-01-01

    Organisms normally grow at a sub-maximal rate. After experiencing a period of arrested growth, individuals often show compensatory growth responses by modifying their life-history, behaviour and physiology. However, the strength of compensatory responses may vary across broad geographic scales as populations differ in their exposition to varying time constraints. We examined differences in compensatory growth strategies in common frog (Rana temporaria) populations from southern and northern Sweden. Tadpoles from four populations were reared in the laboratory and exposed to low temperature to evaluate the patterns and mechanisms of compensatory growth responses. We determined tadpoles' growth rate, food intake and growth efficiency during the compensation period. In the absence of arrested growth conditions, tadpoles from all the populations showed similar (size-corrected) growth rates, food intake and growth efficiency. After being exposed to low temperature for 1 week, only larvae from the northern populations increased growth rates by increasing both food intake and growth efficiency. These geographic differences in compensatory growth mechanisms suggest that the strategies for recovering after a period of growth deprivation may depend on the strength of time constraints faced by the populations. Due to the costs of fast growth, only populations exposed to the strong time constraints are prone to develop fast recovering strategies in order to metamorphose before conditions deteriorate. Understanding how organisms balance the cost and benefits of growth strategies may help in forecasting the impact of fluctuating environmental conditions on life-history strategies of populations likely to be exposed to increasing environmental variation in the future. PMID:23996230

  10. Indium antimonide crystal growth experiment M562. [Skylab weightless conditions

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Witt, A. F.

    1974-01-01

    It was established that ideal diffusion controlled steady state conditions, never accomplished on earth, were achieved during the growth of Te-doped InSb crystals in Skylab. Surface tension effects led to nonwetting conditions under which free surface solidification took place in confined geometry. It was further found that, under forced contact conditions, surface tension effects led to the formation of surface ridges (not previously observed on earth) which isolated the growth system from its container. In addition, it was possible, for the first time, to identify unambiguously: the origin of segregation discontinuities associated with facet growth, the mode of nucleation and propagation of rotational twin boundaries, and the specific effect of mechanical-shock perturbations on segregation. The results obtained prove the advantageous conditions provided by outer space. Thus, fundamental data on solidification thought to be unattainable because of gravity-induced interference on earth are now within reach.

  11. Environmental change drives long-term recruitment and growth variation in an estuarine fish.

    PubMed

    Morrongiello, John R; Walsh, Chris T; Gray, Charles A; Stocks, Jerom R; Crook, David A

    2014-06-01

    How individuals respond to environmental change determines the strength and direction of biological processes like recruitment and growth that underpin population productivity. Ascertaining the relative importance of environmental factors can, however, be difficult given the numerous mechanisms through which they affect individuals. This is especially true in dynamic and complex estuarine environments. Here, we develop long-term otolith-based indices of recruitment and growth for estuary perch Percalates colonorum (Bemm River, Australia), to explore the importance of intrinsic (individual, demographic) and extrinsic (hydrologic, climatic, density-dependent) factors in driving estuarine fish productivity. Analyses involved a novel zero-inflated specification of catch curve regression and mixed effects modelling. The 39 years of recruitment and 46 years of growth data, spanning a period of environmental change including severe drought, displayed considerable inter-annual variation. Recruitment success was strongly related to high freshwater inflows during the spawning season, suggesting that these conditions act as spawning cues for adults and potentially provide favourable conditions for larvae. Individuals displayed age-dependent growth, with highest rates observed at younger ages in years characterized by warm temperatures, and to a lesser degree, greater magnitude base inflow conditions. We detected systematic among-year-class growth differences, but these were not attributable to year class strength, suggesting that environmental conditions experienced by individuals as juveniles can have long-lasting effects of greater importance to population productivity than density-dependent growth responses. The primacy of temperature in driving growth variation highlights that under-appreciated climatic variation can affect estuarine fish productivity through direct physiological and indirect food web mechanisms. We predict that climatic warming will promote individual

  12. Pan-Svalbard growth rate variability and environmental regulation in the Arctic bivalve Serripes groenlandicus

    NASA Astrophysics Data System (ADS)

    Carroll, Michael L.; Ambrose, William G.; Levin, Benjamin S.; Locke V, William L.; Henkes, Gregory A.; Hop, Haakon; Renaud, Paul E.

    2011-11-01

    Growth histories contained in the shells of bivalves provide continuous records of environmental and biological information over lifetimes spanning decades to centuries, thereby linking ecosystem responses to both natural and anthropogenic climatic variations over a range of scales. We examined growth rates and temporal growth patterns of 260 individuals of the circumpolar Greenland Smooth Cockle ( Serripes groenlandicus) collected between 1997 and 2009 from 11 sites around the Svalbard Archipelago. These sites encompass a range of oceanographic and environmental conditions, from strongly Atlantic-influenced conditions on the west coast to high-Arctic conditions in northeast Svalbard. Absolute growth was up to three times greater at the most strongly Atlantic-influenced locations compared to the most Arctic-influenced areas, and growth performance was highest at sites closest to the West Spitsbergen Current. We also developed growth chronologies up to 34 years in length extending back to 1974. Standardized growth indices (SGI) exhibited substantial inter-site variability, but there were also common temporal features including steadily increasing growth from the late 1980's to the mid-1990's followed by a marked shift from relatively greater to poorer growth in the mid-1990's and from 2004 to 2008. This pattern was consistent with phase-shifts in large-scale climatic drivers. Interannual variability in SGI was also related to local manifestations of the large-scale drivers, including sea temperature and sea ice extent. The temporal growth pattern at Rijpfjorden, on northeast Svalbard, was broadly representative (R = 0.81) of the entire dataset. While there were site-related differences in the specific relationships between growth and environmental parameters, the aggregated dataset indicated an overriding regional driver of bivalve growth: the Arctic Climate Regime Index (ACRI). These results demonstrate that sclerochronological proxies can be useful retrospective

  13. Environmental noise and human prenatal growth

    SciTech Connect

    Schell, L.M.

    1981-09-01

    To determine whether chronic exposure to relatively loud noise has demonstrable biological effects in humans, a study was conducted on the effect of mother's exposure to airport noise while pregnant, and of social and biological characteristics of the family upon birthweight and gestation length. The sample of births was drawn from a community located adjacent to an international airport in the U.S., where noise levels had been measured previously. Mother's noise exposure was based upon noise levels near her residence in the community while she was pregnant. Data from 115 births were used, these being from mothers whose noise exposure history was most complete throughout the pregnancy. Using multivariate analysis to correct for family characteristics, the partial correlation coefficient for noise exposure and gestation length was negative, large, and significant in girls (r . -0.49, p less than 0.001). In boys the partial correlation coefficient was also negative but was smaller and did not quite reach statistical significance. Partial correlations with birthweight were smaller in both boys and girls and not significant. These results agree best with previous studies that suggest that noise may reduce prenatal growth. The size of the observed effects may be related to a conservative research design biased towards underestimation, as well as to the real effects of noise upon human prenatal growth.

  14. Crystal growth of a binary compound semiconductor under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Hiraoka, Y.; Ikegami, K.; Maekawa, T.; Matsumoto, S.; Yoda, S.; Kinoshita, K.

    We investigate the possibilities of growing a uniform binary compound crystal in space numerically, proposing a new crystal growth method. We develop a numerical calculation method of the growth of binary crystals. The calculation method is applied to the crystal growth analysis of an InAs-GaAs binary semiconductor and the effect of buoyancy convection induced under microgravity conditions on the crystal growth process is investigated. We find that the concentration field is disturbed and, as a result, the solution—crystal interface is deformed by buoyancy convection even when the gravitational acceleration is as low as 10 -6 g, which is supposed to be the gravity level in the International Space Station. We also find that the direction of residual gravity has a strong effect on the concentration field in the solution and the crystal growth process.

  15. Evaluation of Cronobacter Growth and Phenotypic Variation Under Modified Culture Conditions.

    PubMed

    Segars, Katharine; Simpson, Steven; Kerdahi, Khalil; Sulaiman, Irshad M

    2016-02-01

    Cronobacter sakazakii is an opportunistic pathogen known to cause acute meningitis and necrotizing enterocolitis in neonates and immunocompromised individuals. It has been isolated from a wide range of food and environmental samples, and has been linked to outbreaks associated with powdered infant formula. This study was carried out to assess variations in growth conditions (temperature, pH, and sugar supplement) and to establish how these changes impact phenotypic characteristics for successful recovery and identification of Cronobacter, particularly for routine surveillance purposes. A total of six Cronobacter isolates were tested to evaluate the above growth conditions, including three ATCC Cronobacter reference and three environmental isolates obtained from regulatory sample screening. Although only slight changes in colony-forming units were observed across the pH range and the sugars tested, the morphology was significantly impacted by changes in these growth factors. Incubation between 30 and 50 °C resulted in growth after 24 h, and the growth was slower at ambient temperature and colony formation was most robust at 30 °C. Results of this study suggest that 30 °C may be suitable for recovery of some Cronobacter strains, and minor variations in growth conditions can alter colony morphology and appearance. Expression of unique biological characteristics based on phenotypic observations may be beneficial for differentiating various Cronobacter strains. PMID:26567034

  16. Ceramic production during changing environmental/climatic conditions

    NASA Astrophysics Data System (ADS)

    Oestreich, Daniela B.; Glasmacher, Ulrich A.

    2015-04-01

    Ceramics, with regard to their status as largely everlasting everyday object as well as on the basis of their chronological sensitivity, reflect despite their simplicity the technological level of a culture and therefore also, directly or indirectly, the adaptability of a culture with respect to environmental and/or climatic changes. For that reason the question arises, if it is possible to identify changes in production techniques and raw material sources for ceramic production, as a response to environmental change, e.g. climate change. This paper will present results of a research about Paracas Culture (800 - 200 BC), southern Peru. Through several investigations (e.g. Schittek et al., 2014; Eitel and Mächtle, 2009) it is well known that during Paracas period changes in climate and environmental conditions take place. As a consequence, settlement patterns shifted several times through the various stages of Paracas time. Ceramics from three different sites (Jauranga, Cutamalla, Collanco) and temporal phases of the Paracas period are detailed archaeometric, geochemical and mineralogical characterized, e.g. Raman spectroscopy, XRD, and ICP-MS analyses. The aim of this research is to resolve potential differences in the chemical composition of the Paracas ceramics in space and time and to compare the data with the data sets of pre-Columbian environmental conditions. Thus influences of changing environmental conditions on human societies and their cultural conditions will be discussed. References Eitel, B. and Mächtle, B. 2009. Man and Environment in the eastern Atacama Desert (Southern Peru): Holocene climate changes and their impact on pre-Columbian cultures. In: Reindel, M. & Wagner, G. A. (eds.) New Technologies for Archaeology. Berlin Heidelberg: Springer-Verlag. Schittek, K., Mächtle, B., Schäbitz, F., Forbriger, M., Wennrich, V., Reindel, M., and Eitel, B.. Holocene environmental changes in the highlands of the southern Peruvian Andes (14° S) and their

  17. Matching biological traits to environmental conditions in marine benthic ecosystems

    NASA Astrophysics Data System (ADS)

    Bremner, J.; Rogers, S. I.; Frid, C. L. J.

    2006-05-01

    The effects of variability in environmental conditions on species composition in benthic ecosystems are well established, but relatively little is known about how environmental variability relates to ecosystem functioning. Benthic invertebrate assemblages are heavily involved in the maintenance of ecological processes and investigation of the biological characteristics (traits) expressed in these assemblages can provide information about some aspects of functioning. The aim of this study was to establish and explore relationships between environmental variability and biological traits expressed in megafauna assemblages in two UK regions. Patterns of trait composition were matched to environmental conditions and subsets of variables best describing these patterns determined. The nature of the relationships were subsequently examined at two separate scales, both between and within the regions studied. Over the whole area, some traits related to size, longevity, reproduction, mobility, flexibility, feeding method, sociability and living habit were negatively correlated with salinity, sea surface temperature, annual temperature range and the level of fishing effort, and positively associated with fish taxon richness and shell content of the substratum. Between the two regions, reductions in temperature range and shell content were associated with infrequent relative occurrences of short-lived, moderately mobile, flexible, solitary, opportunistic, permanent-burrow dwelling fauna and those exhibiting reproductive strategies based on benthic development. Relationships between some traits and environmental conditions diverged within the two regions, with increases in fishing effort and shell content of the substratum being associated with low frequencies of occurrence of moderately mobile and moderately to highly flexible fauna within one region, but high frequencies in the other. These changes in trait composition have implications for ecosystem processes, with, for

  18. Conditions for super-adiabatic droplet growth after entrainment mixing

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Shaw, Raymond; Xue, Huiwen

    2016-07-01

    Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixed parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the "super-adiabatic" growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision-coalescence in warm clouds.

  19. Conditions for super-adiabatic droplet growth after entrainment mixing

    DOE PAGESBeta

    Yang, Fan; Shaw, Raymond; Xue, Huiwen

    2016-07-29

    Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixedmore » parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the “super-adiabatic” growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision–coalescence in warm clouds.« less

  20. Degenerate nonlinear programming with a quadratic growth condition.

    SciTech Connect

    Anitescu, M.; Mathematics and Computer Science

    2000-01-01

    We show that the quadratic growth condition and the Mangasarian-Fromovitz constraint qualification (MFCQ) imply that local minima of nonlinear programs are isolated stationary points. As a result, when started sufficiently close to such points, an L1 exact penalty sequential quadratic programming algorithm will induce at least R-linear convergence of the iterates to such a local minimum. We construct an example of a degenerate nonlinear program with a unique local minimum satisfying the quadratic growth and the MFCQ but for which no positive semidefinite augmented Lagrangian exists. We present numerical results obtained using several nonlinear programming packages on this example and discuss its implications for some algorithms.

  1. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids.

    PubMed

    Galloway, Aaron W E; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  2. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids

    PubMed Central

    Galloway, Aaron W. E.; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  3. Environmental Conditions for Space Flight Hardware: A Survey

    NASA Technical Reports Server (NTRS)

    Plante, Jeannette; Lee, Brandon

    2005-01-01

    Interest in generalization of the physical environment experienced by NASA hardware from the natural Earth environment (on the launch pad), man-made environment on Earth (storage acceptance an d qualification testing), the launch environment, and the space environment, is ed to find commonality among our hardware in an effort to reduce cost and complexity. NASA is entering a period of increase in its number of planetary missions and it is important to understand how our qualification requirements will evolve with and track these new environments. Environmental conditions are described for NASA projects in several ways for the different periods of the mission life cycle. At the beginning, the mission manager defines survivability requirements based on the mission length, orbit, launch date, launch vehicle, and other factors . such as the use of reactor engines. Margins are then applied to these values (temperature extremes, vibration extremes, radiation tolerances, etc,) and a new set of conditions is generalized for design requirements. Mission assurance documents will then assign an additional margin for reliability, and a third set of values is provided for during testing. A fourth set of environmental condition values may evolve intermittently from heritage hardware that has been tested to a level beyond the actual mission requirement. These various sets of environment figures can make it quite confusing and difficult to capture common hardware environmental requirements. Environmental requirement information can be found in a wide variety of places. The most obvious is with the individual projects. We can easily get answers to questions about temperature extremes being used and radiation tolerance goals, but it is more difficult to map the answers to the process that created these requirements: for design, for qualification, and for actual environment with no margin applied. Not everyone assigned to a NASA project may have that kind of insight, as many have

  4. Biological responses to environmental heterogeneity under future ocean conditions.

    PubMed

    Boyd, Philip W; Cornwall, Christopher E; Davison, Andrew; Doney, Scott C; Fourquez, Marion; Hurd, Catriona L; Lima, Ivan D; McMinn, Andrew

    2016-08-01

    Organisms are projected to face unprecedented rates of change in future ocean conditions due to anthropogenic climate-change. At present, marine life encounters a wide range of environmental heterogeneity from natural fluctuations to mean climate change. Manipulation studies suggest that biota from more variable marine environments have more phenotypic plasticity to tolerate environmental heterogeneity. Here, we consider current strategies employed by a range of representative organisms across various habitats - from short-lived phytoplankton to long-lived corals - in response to environmental heterogeneity. We then discuss how, if and when organismal responses (acclimate/migrate/adapt) may be altered by shifts in the magnitude of the mean climate-change signal relative to that for natural fluctuations projected for coming decades. The findings from both novel climate-change modelling simulations and prior biological manipulation studies, in which natural fluctuations are superimposed on those of mean change, provide valuable insights into organismal responses to environmental heterogeneity. Manipulations reveal that different experimental outcomes are evident between climate-change treatments which include natural fluctuations vs. those which do not. Modelling simulations project that the magnitude of climate variability, along with mean climate change, will increase in coming decades, and hence environmental heterogeneity will increase, illustrating the need for more realistic biological manipulation experiments that include natural fluctuations. However, simulations also strongly suggest that the timescales over which the mean climate-change signature will become dominant, relative to natural fluctuations, will vary for individual properties, being most rapid for CO2 (~10 years from present day) to 4 decades for nutrients. We conclude that the strategies used by biota to respond to shifts in environmental heterogeneity may be complex, as they will have to

  5. Antimicrobial Treatment Improves Mycobacterial Survival in Nonpermissive Growth Conditions

    PubMed Central

    Turapov, Obolbek; Waddell, Simon J.; Burke, Bernard; Glenn, Sarah; Sarybaeva, Asel A.; Tudo, Griselda; Labesse, Gilles; Young, Danielle I.; Young, Michael; Andrew, Peter W.; Butcher, Philip D.; Cohen-Gonsaud, Martin

    2014-01-01

    Antimicrobials targeting cell wall biosynthesis are generally considered inactive against nonreplicating bacteria. Paradoxically, we found that under nonpermissive growth conditions, exposure of Mycobacterium bovis BCG bacilli to such antimicrobials enhanced their survival. We identified a transcriptional regulator, RaaS (for regulator of antimicrobial-assisted survival), encoded by bcg1279 (rv1219c) as being responsible for the observed phenomenon. Induction of this transcriptional regulator resulted in reduced expression of specific ATP-dependent efflux pumps and promoted long-term survival of mycobacteria, while its deletion accelerated bacterial death under nonpermissive growth conditions in vitro and during macrophage or mouse infection. These findings have implications for the design of antimicrobial drug combination therapies for persistent infectious diseases, such as tuberculosis. PMID:24590482

  6. Crystal growth under microgravity conditions with using of magnetic fields

    NASA Astrophysics Data System (ADS)

    Feonychev, A.; Bondareva, N.

    The peculiarities of melt flows and crystal growth by the Bridgman and floating zone methods aboard spacecrafts under the action of steady axial or rotating magnetic field are considered. Steady magnetic field can minimize adverse effect of residual accelerations and vibrations on dopant segregation in crystals growing by the Bridgman method but it requires using strong magnetic fields, which induces specific oscillations. Under strong convection in terrestrial conditions steady magnetic field gives positive effect. Under growth of small-sized crystals by the floating zone method in microgravity conditions an use of steady magnetic field brings into dramatic increase of radial segregation due to convective vortex to free fluid surface. The flows being created by rotating magnetic field and resultant under combination of Marangoni convection with rotating magnetic field were studied for wide range of parameters including the regimes of oscillatory (turbulent) convection. Mathematical model and computer program was tested by published results of two experiments. The dependence of transition from laminar to oscillatory flow was obtained for different boundary conditions, geometric parameters of fluid and intensity of magnetic field. Specific oscillations with very low frequency and oscillations of the beating type had been discovered under the action rotating magnetic field on Marangoni convection. The mutual influence of rotating magnetic field and thermocapillary convection on flow stability was noted. Use of rotating magnetic field under crystal growth by floating zone method leads to reduction of azimuth velocity which is responsible for origin of oscillatory convection and striation of crystals. It was shown on concrete examples that there is a possibility to reduce radial segregation under optimization of rotating velocity and intensity of magnetic field. For the Bridgman method (in general for ampoule methods of crystal growth), the use of rotating magnetic

  7. Experiment 8: Environmental Conditions in the ASTROCULTURE(trademark) Plant Chamber During the USML-2 Mission

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Zhou, Weijia; Yetka, R. A.; Draeger, N. A.

    1998-01-01

    Conducting plant research to assess the impact of microgravity on plant growth and development requires a plant chamber that has the capability to control other environmental parameters involved in plant growth and development. The environmental control in a space-based plant chamber must be equivalent to that available in such facilities used for terrestrial plant research. Additionally, plants are very sensitive to a number of atmospheric gaseous materials. Thus, the atmosphere of a plant chamber must be isolated from the space vehicle atmosphere, and the plant growth unit should have the capability to remove any such deleterious materials that may impact plant growth and development. The Wisconsin Center for Space Automation and Robotics (WCSAR), University of Wisconsin-Madison, has developed a totally enclosed controlled environment plant growth unit. The flight unit was used to support the ASTROCULTURE(TM) experiment conducted during the USML-2 mission. The experiment had two major objectives: 1) Provide further validation of the flight unit to control the experiment-defined environmental parameters in the plant chamber, and 2) support a plant experiment to assess the capability of potato plant material to produce tubers in microgravity. This paper describes the temperature, humidity, and carbon dioxide conditions of the plant chamber during the mission, from launch to landing. Another paper will present the plant response data.

  8. Comparing Environmental Conditions Using Indicators of Pollution Hazard

    PubMed

    Turner; Ruffio; Roberts

    1997-07-01

    / Land use/land cover classifications for 1973 and 1991, derived from the interpretation of satellite imagery, are quantified on the basis of biophysical land units in a study area in southeastern Australia. Nutrient export potentials are estimated for each land unit based on their composition of land use/land cover classes. Spatial and temporal comparisons are made of the land units based on the calculated pollution hazard indicators to provide an insight into changes in the state of the environment and the regional significance of land use changes. For example, one ecosystem, unique to the study, showed a large increase in pollution hazard over the study period as a manifestation of an 11-fold rise in cleared area and an expansion of cropping activities. The benefits to environmental management in general are discussed.KEY WORDS: Land cover change; Nutrient export; Environmental condition; Pollution hazard; Agricultural pollution; Nonpoint source pollution; Diffuse pollution; Environmental degradation PMID:9175549

  9. Environmental conditions influence tissue regeneration rates in scleractinian corals.

    PubMed

    Sabine, Alexis M; Smith, Tyler B; Williams, Dana E; Brandt, Marilyn E

    2015-06-15

    Natural and anthropogenic factors may influence corals' ability to recover from partial mortality. To examine how environmental conditions affect lesion healing, we assessed several water quality parameters and tissue regeneration rates in corals at six reefs around St. Thomas, US Virgin Islands. We hypothesized that sites closer to developed areas would have poor water quality due to proximity to anthropogenic stresses, which would impede tissue regeneration. We found that water flow and turbidity most strongly influenced lesion recovery rates. The most impacted site, with high turbidity and low flow, recovered almost three times slower than the least impacted site, with low turbidity, high flow, and low levels of anthropogenic disturbance. Our results illustrate that in addition to lesion-specific factors known to affect tissue regeneration, environmental conditions can also control corals' healing rates. Resource managers can use this information to protect low-flow, turbid nearshore reefs by minimizing sources of anthropogenic stress. PMID:25982415

  10. Application of Whole Genome Expression Analysis to Assess Bacterial Responses to Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Vukanti, R. V.; Mintz, E. M.; Leff, L. G.

    2005-05-01

    Bacterial responses to environmental signals are multifactorial and are coupled to changes in gene expression. An understanding of bacterial responses to environmental conditions is possible using microarray expression analysis. In this study, the utility of microarrays for examining changes in gene expression in Escherichia coli under different environmental conditions was assessed. RNA was isolated, hybridized to Affymetrix E. coli Genome 2.0 chips and analyzed using Affymetrix GCOS and Genespring software. Major limiting factors were obtaining enough quality RNA (107-108 cells to get 10μg RNA)and accounting for differences in growth rates under different conditions. Stabilization of RNA prior to isolation and taking extreme precautions while handling RNA were crucial. In addition, use of this method in ecological studies is limited by availability and cost of commercial arrays; choice of primers for cDNA synthesis, reproducibility, complexity of results generated and need to validate findings. This method may be more widely applicable with the development of better approaches for RNA recovery from environmental samples and increased number of available strain-specific arrays. Diligent experimental design and verification of results with real-time PCR or northern blots is needed. Overall, there is a great potential for use of this technology to discover mechanisms underlying organisms' responses to environmental conditions.

  11. Effect of lighting conditions on zebrafish growth and development.

    PubMed

    Villamizar, Natalia; Vera, Luisa María; Foulkes, Nicholas Simon; Sánchez-Vázquez, Francisco Javier

    2014-04-01

    In the underwater environment, the properties of light (intensity and spectrum) change rapidly with depth and water quality. In this article, we have described how and to what extent lighting conditions can influence the development, growth, and survival of zebrafish. Fertilized eggs and the corresponding larvae were exposed to different visible light wavelengths (violet, blue, green, yellow, red, and white) in a 12-h light-12-h dark (LD) cycle until 30 days posthatching (dph), when the expression of morphometric parameters and growth (igf1a, igf2a)- and stress-related (crh and pomca) genes were examined. Another group of larvae was raised under constant darkness (DD) until 5 or 10 dph, after which they were transferred to a LD of white light. A third group remained under DD to investigate the effects of light deprivation upon zebrafish development. The results revealed that the hatching rate was highest under blue and violet light, while total length at 30 dph was greatest under blue, white, and violet light. Red light led to reduced feeding activity and poor survival (100% mortality). Larvae raised under constant white light (LL) showed a higher proportion of malformations, as did larvae raised under LD violet light. The expression of growth and stress factors was upregulated in the violet (igf1a, igf2a, pomca, and chr) and blue (igf2a) groups, which is consistent with the higher growth recorded and the higher proportion of malformations detected under the violet light. All larvae kept under DD died before 18 dph, but the survival rates improved in larvae transferred to LD at 5 dph and at 10 dph. In summary, these findings revealed that lighting conditions are crucial factors influencing zebrafish larval development and growth. PMID:24367902

  12. Can environmental conditions experienced in early life influence future generations?

    PubMed Central

    Burton, Tim; Metcalfe, Neil B.

    2014-01-01

    The consequences of early developmental conditions for performance in later life are now subjected to convergent interest from many different biological sub-disciplines. However, striking data, largely from the biomedical literature, show that environmental effects experienced even before conception can be transmissible to subsequent generations. Here, we review the growing evidence from natural systems for these cross-generational effects of early life conditions, showing that they can be generated by diverse environmental stressors, affect offspring in many ways and can be transmitted directly or indirectly by both parental lines for several generations. In doing so, we emphasize why early life might be so sensitive to the transmission of environmentally induced effects across generations. We also summarize recent theoretical advancements within the field of developmental plasticity, and discuss how parents might assemble different ‘internal’ and ‘external’ cues, even from the earliest stages of life, to instruct their investment decisions in offspring. In doing so, we provide a preliminary framework within the context of adaptive plasticity for understanding inter-generational phenomena that arise from early life conditions. PMID:24807254

  13. Media and growth conditions for induction of secondary metabolite production.

    PubMed

    Frisvad, Jens C

    2012-01-01

    Growth media and incubation conditions have a very strong influence of secondary metabolite production. There is no consensus on which media are the optimal for metabolite production, but a series of useful and effective media and incubation conditions have been listed here. Chemically well-defined media are suited for biochemical studies, but in order to get chemical diversity expressed in filamentous fungi, sources rich in amino acids, vitamins, and trace metals have to be added, such as yeast extract and oatmeal. A battery of solid agar media is recommended for exploration of chemical diversity as agar plug samples are easily analyzed to get an optimal representation of the qualitative secondary metabolome. Standard incubation for a week at 25°C in darkness is recommended, but optimal conditions have to be modified depending on the ecology and physiology of different filamentous fungi. PMID:23065607

  14. Environmental conditions and transcriptional regulation in Escherichia coli: a physiological integrative approach.

    PubMed

    Martínez-Antonio, Agustino; Salgado, Heladia; Gama-Castro, Socorro; Gutiérrez-Ríos, Rosa María; Jiménez-Jacinto, Verónica; Collado-Vides, Julio

    2003-12-30

    Bacteria develop a number of devices for sensing, responding, and adapting to different environmental conditions. Understanding within a genomic perspective how the transcriptional machinery of bacteria is modulated, as a response for changing conditions, is a major challenge for biologists. Knowledge of which genes are turned on or turned off under specific conditions is essential for our understanding of cell behavior. In this study we describe how the information pertaining to gene expression and associated growth conditions (even with very little knowledge of the associated regulatory mechanisms) is gathered from the literature and incorporated into RegulonDB, a database on transcriptional regulation and operon organization in E. coli. The link between growth conditions, signal transduction, and transcriptional regulation is modeled in the database in a simple format that highlights biological relevant information. As far as we know, there is no other database that explicitly clarifies the effect of environmental conditions on gene transcription. We discuss how this knowledge constitutes a benchmark that will impact future research aimed at integration of regulatory responses in the cell; for instance, analysis of microarrays, predicting culture behavior in biotechnological processes, and comprehension of dynamics of regulatory networks. This integrated knowledge will contribute to the future goal of modeling the behavior of E. coli as an entire cell. The RegulonDB database can be accessed on the web at the URL: http://www.cifn.unam.mx/Computational_Biology/regulondb/. PMID:14708114

  15. Optimal conditions of mycelia growth of Laetiporus sulphureus sensu lato

    PubMed Central

    Luangharn, Thatsanee; Karunarathna, Samantha C.; Hyde, Kevin D.; Chukeatirote, Ekachai

    2014-01-01

    Laetiporus sulphureus is an edible wood-rotting basidiomycete, growing on decaying logs, stumps, and trunks of many deciduous and coniferous tree species. This fungus produces relatively large striking yellowish or orange-coloured bracket-like fruitbodies. L. sulphureus is widely consumed as a nutritional food because of its fragrance and texture. In this study, two L. sulphureus strains, MFLUCC 12-0546 and MFLUCC 12-0547, isolated from Chiang Rai, Thailand, were investigated for optimal conditions of mycelia growth. Potato dextrose agar and malt extract agar were observed as the favourable medium for mycelia growth. The optimum pH and temperature for the mushroom mycelia were 6–8 and 25–30°C, respectively. PMID:25544934

  16. Economic growth and energy regulation in the environmental Kuznets curve.

    PubMed

    Lorente, Daniel Balsalobre; Álvarez-Herranz, Agustín

    2016-08-01

    This study establishes the existence of a pattern of behavior, between economic growth and environmental degradation, consistent with the environmental Kuznets curve (EKC) hypothesis for 17 Organization for Economic Cooperation and Development (OECD) countries between 1990 and 2012. Based on this EKC pattern, it shows that energy regulation measures help reduce per capita greenhouse gas (GHG) emissions. To validate this hypothesis, we also add the explanatory variables: renewable energy promotion, energy innovation processes, and the suppression effect of income level on the contribution of renewable energy sources to total energy consumption. It aims to be a tool for decision-making regarding energy policy. This paper provides a two-stage econometric analysis of instrumental variables with the aim of correcting the existence of endogeneity in the variable GDP per capita, verifying that the instrumental variables used in this research are appropriate for our aim. To this end, it first makes a methodological contribution before incorporating additional variables associated with environmental air pollution into the EKC hypothesis and showing how they positively affect the explanation of the correction in the GHG emission levels. This study concludes that air pollution will not disappear on its own as economic growth increases. Therefore, it is necessary to promote energy regulation measures to reduce environmental pollution. PMID:27164892

  17. The effect and role of environmental conditions on magnetosome synthesis.

    PubMed

    Moisescu, Cristina; Ardelean, Ioan I; Benning, Liane G

    2014-01-01

    Magnetotactic bacteria (MTB) are considered the model species for the controlled biomineralization of magnetic Fe oxide (magnetite, Fe3O4) or Fe sulfide (greigite, Fe3S4) nanocrystals in living organisms. In MTB, magnetic minerals form as membrane-bound, single-magnetic domain crystals known as magnetosomes and the synthesis of magnetosomes by MTB is a highly controlled process at the genetic level. Magnetosome crystals reveal highest purity and highest quality magnetic properties and are therefore increasingly sought after as novel nanoparticulate biomaterials for industrial and medical applications. In addition, "magnetofossils," have been used as both past terrestrial and potential Martian life biosignature. However, until recently, the general belief was that the morphology of mature magnetite crystals formed by MTB was largely unaffected by environmental conditions. Here we review a series of studies that showed how changes in environmental factors such as temperature, pH, external Fe concentration, external magnetic fields, static or dynamic fluid conditions, and nutrient availability or concentrations can all affect the biomineralization of magnetite magnetosomes in MTB. The resulting variations in magnetic nanocrystals characteristics can have consequence both for their commercial value but also for their use as indicators for ancient life. In this paper we will review the recent findings regarding the influence of variable chemical and physical environmental control factors on the synthesis of magnetosome by MTB, and address the role of MTB in the global biogeochemical cycling of iron. PMID:24575087

  18. The effect and role of environmental conditions on magnetosome synthesis

    PubMed Central

    Moisescu, Cristina; Ardelean, Ioan I.; Benning, Liane G.

    2014-01-01

    Magnetotactic bacteria (MTB) are considered the model species for the controlled biomineralization of magnetic Fe oxide (magnetite, Fe3O4) or Fe sulfide (greigite, Fe3S4) nanocrystals in living organisms. In MTB, magnetic minerals form as membrane-bound, single-magnetic domain crystals known as magnetosomes and the synthesis of magnetosomes by MTB is a highly controlled process at the genetic level. Magnetosome crystals reveal highest purity and highest quality magnetic properties and are therefore increasingly sought after as novel nanoparticulate biomaterials for industrial and medical applications. In addition, “magnetofossils,” have been used as both past terrestrial and potential Martian life biosignature. However, until recently, the general belief was that the morphology of mature magnetite crystals formed by MTB was largely unaffected by environmental conditions. Here we review a series of studies that showed how changes in environmental factors such as temperature, pH, external Fe concentration, external magnetic fields, static or dynamic fluid conditions, and nutrient availability or concentrations can all affect the biomineralization of magnetite magnetosomes in MTB. The resulting variations in magnetic nanocrystals characteristics can have consequence both for their commercial value but also for their use as indicators for ancient life. In this paper we will review the recent findings regarding the influence of variable chemical and physical environmental control factors on the synthesis of magnetosome by MTB, and address the role of MTB in the global biogeochemical cycling of iron. PMID:24575087

  19. Using a Novel Wireless-Networked Decentralized Control Scheme under Unpredictable Environmental Conditions.

    PubMed

    Chang, Chung-Liang; Huang, Yi-Ming; Hong, Guo-Fong

    2015-01-01

    The direction of sunshine or the installation sites of environmental control facilities in the greenhouse result in different temperature and humidity levels in the various zones of the greenhouse, and thus, the production quality of crop is inconsistent. This study proposed a wireless-networked decentralized fuzzy control scheme to regulate the environmental parameters of various culture zones within a greenhouse. The proposed scheme can create different environmental conditions for cultivating different crops in various zones and achieve diversification or standardization of crop production. A star-type wireless sensor network is utilized to communicate with each sensing node, actuator node, and control node in various zones within the greenhouse. The fuzzy rule-based inference system is used to regulate the environmental parameters for temperature and humidity based on real-time data of plant growth response provided by a growth stage selector. The growth stage selector defines the control ranges of temperature and humidity of the various culture zones according to the leaf area of the plant, the number of leaves, and the cumulative amount of light. The experimental results show that the proposed scheme is stable and robust and provides basis for future greenhouse applications. PMID:26569264

  20. Using a Novel Wireless-Networked Decentralized Control Scheme under Unpredictable Environmental Conditions

    PubMed Central

    Chang, Chung-Liang; Huang, Yi-Ming; Hong, Guo-Fong

    2015-01-01

    The direction of sunshine or the installation sites of environmental control facilities in the greenhouse result in different temperature and humidity levels in the various zones of the greenhouse, and thus, the production quality of crop is inconsistent. This study proposed a wireless-networked decentralized fuzzy control scheme to regulate the environmental parameters of various culture zones within a greenhouse. The proposed scheme can create different environmental conditions for cultivating different crops in various zones and achieve diversification or standardization of crop production. A star-type wireless sensor network is utilized to communicate with each sensing node, actuator node, and control node in various zones within the greenhouse. The fuzzy rule-based inference system is used to regulate the environmental parameters for temperature and humidity based on real-time data of plant growth response provided by a growth stage selector. The growth stage selector defines the control ranges of temperature and humidity of the various culture zones according to the leaf area of the plant, the number of leaves, and the cumulative amount of light. The experimental results show that the proposed scheme is stable and robust and provides basis for future greenhouse applications. PMID:26569264

  1. Tree growth and forest ecosystem functioning in Eurasia under extreme climate conditions

    NASA Astrophysics Data System (ADS)

    Saurer, Matthias; Kirdyanov, Alexander; Prokushkin, Anatoly; Bryukhanova, Marina; Knorre, Anastasia; Nasyrov, Muhtor; Frank, David; Treydte, Kerstin; Sidorova, Olga; Siegwolf, Rolf

    2013-04-01

    The main goal of this study is to improve our understanding of the influence of a changing climate on trees in extreme conditions by a detailed analysis of the factors controlling tree-ring growth. We investigated forest ecosystems in regions that are very sensitive to climatic changes and where rapid and dramatic environmental and climatic changes are on-going, namely, the high latitude permafrost region in Central Siberia (Russia), the semi-arid dry areas in Central Asia (Uzbekistan) and high-altitude sites in the Alps (Switzerland). Tree-ring parameters studied were ring-width, density, cell number and structure and the ratio of carbon and oxygen isotopes. An important aspect of the work was the characterization of seasonal growth and water supply of trees. Intra-seasonal dynamics of tree-ring formation was correlated with monitored environmental factors, such as air and soil temperature and moisture, permafrost depth and the isotope composition of soil water, of precipitation, and of stream water. Intra-annual and long-term variability of the main tree-ring parameters were compared for the different regions. The results obtained help us to understand better tree-physiological processes valid under contrasting environmental conditions. For instance, the relationship between the onset of cell division in the cambium and the thermo-hydrological soil regime was used to determine the period of the year with the highest influence on the start of tree-ring formation. Seasonally resolved oxygen isotope depth profiles of soil water and concurrent xylem and leaf water measurements show the importance of time-lags between precipitation, leaf processes and growth. The data obtained are important for improving tree-ring growth models and estimating future tree growth under climate change. Funding: SNF SCOPES IZ73Z0_128035

  2. Influence of Environmental Variables on Gambierdiscus spp. (Dinophyceae) Growth and Distribution

    PubMed Central

    Xu, Yixiao; Richlen, Mindy L.; Liefer, Justin D.; Robertson, Alison; Kulis, David; Smith, Tyler B.; Parsons, Michael L.; Anderson, Donald M.

    2016-01-01

    Benthic dinoflagellates in the genus Gambierdiscus produce the ciguatoxin precursors responsible for the occurrence of ciguatera toxicity. The prevalence of ciguatera toxins in fish has been linked to the presence and distribution of toxin-producing species in coral reef ecosystems, which is largely determined by the presence of suitable benthic habitat and environmental conditions favorable for growth. Here using single factor experiments, we examined the effects of salinity, irradiance, and temperature on growth of 17 strains of Gambierdiscus representing eight species/phylotypes (G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, G. pacificus, G. silvae, Gambierdiscus sp. type 4–5), most of which were established from either Marakei Island, Republic of Kiribati, or St. Thomas, United States Virgin Island (USVI). Comparable to prior studies, growth rates fell within the range of 0–0.48 divisions day-1. In the salinity and temperature studies, Gambierdiscus responded in a near Gaussian, non-linear manner typical for such studies, with optimal and suboptimal growth occurring in the range of salinities of 25 and 45 and 21.0 and 32.5°C. In the irradiance experiment, no mortality was observed; however, growth rates at 55μmol photons · m-2 · s-1 were lower than those at 110–400μmol photons · m-2 · s-1. At the extremes of the environmental conditions tested, growth rates were highly variable, evidenced by large coefficients of variability. However, significant differences in intraspecific growth rates were typically found only at optimal or near-optimal growth conditions. Polynomial regression analyses showed that maximum growth occurred at salinity and temperature levels of 30.1–38.5 and 23.8–29.2°C, respectively. Gambierdiscus growth patterns varied among species, and within individual species: G. belizeanus, G. caribaeus, G. carpenteri, and G. pacificus generally exhibited a wider range of tolerance to environmental conditions, which may

  3. Influence of Environmental Variables on Gambierdiscus spp. (Dinophyceae) Growth and Distribution.

    PubMed

    Xu, Yixiao; Richlen, Mindy L; Liefer, Justin D; Robertson, Alison; Kulis, David; Smith, Tyler B; Parsons, Michael L; Anderson, Donald M

    2016-01-01

    Benthic dinoflagellates in the genus Gambierdiscus produce the ciguatoxin precursors responsible for the occurrence of ciguatera toxicity. The prevalence of ciguatera toxins in fish has been linked to the presence and distribution of toxin-producing species in coral reef ecosystems, which is largely determined by the presence of suitable benthic habitat and environmental conditions favorable for growth. Here using single factor experiments, we examined the effects of salinity, irradiance, and temperature on growth of 17 strains of Gambierdiscus representing eight species/phylotypes (G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, G. pacificus, G. silvae, Gambierdiscus sp. type 4-5), most of which were established from either Marakei Island, Republic of Kiribati, or St. Thomas, United States Virgin Island (USVI). Comparable to prior studies, growth rates fell within the range of 0-0.48 divisions day-1. In the salinity and temperature studies, Gambierdiscus responded in a near Gaussian, non-linear manner typical for such studies, with optimal and suboptimal growth occurring in the range of salinities of 25 and 45 and 21.0 and 32.5°C. In the irradiance experiment, no mortality was observed; however, growth rates at 55μmol photons · m-2 · s-1 were lower than those at 110-400μmol photons · m-2 · s-1. At the extremes of the environmental conditions tested, growth rates were highly variable, evidenced by large coefficients of variability. However, significant differences in intraspecific growth rates were typically found only at optimal or near-optimal growth conditions. Polynomial regression analyses showed that maximum growth occurred at salinity and temperature levels of 30.1-38.5 and 23.8-29.2°C, respectively. Gambierdiscus growth patterns varied among species, and within individual species: G. belizeanus, G. caribaeus, G. carpenteri, and G. pacificus generally exhibited a wider range of tolerance to environmental conditions, which may explain

  4. Assessing environmental conditions of Antarctic footpaths to support management decisions.

    PubMed

    Tejedo, Pablo; Benayas, Javier; Cajiao, Daniela; Albertos, Belén; Lara, Francisco; Pertierra, Luis R; Andrés-Abellán, Manuela; Wic, Consuelo; Luciáñez, Maria José; Enríquez, Natalia; Justel, Ana; Reck, Günther K

    2016-07-15

    Thousands of tourists visit certain Antarctic sites each year, generating a wide variety of environmental impacts. Scientific knowledge of human activities and their impacts can help in the effective design of management measures and impact mitigation. We present a case study from Barrientos Island in which a management measure was originally put in place with the goal of minimizing environmental impacts but resulted in new undesired impacts. Two alternative footpaths used by tourist groups were compared. Both affected extensive moss carpets that cover the middle part of the island and that are very vulnerable to trampling. The first path has been used by tourists and scientists since over a decade and is a marked route that is clearly visible. The second one was created more recently. Several physical and biological indicators were measured in order to assess the environmental conditions for both paths. Some physical variables related to human impact were lower for the first path (e.g. soil penetration resistance and secondary treads), while other biochemical and microbiological variables were higher for the second path (e.g. β-glucosidase and phosphatase activities, soil respiration). Moss communities located along the new path were also more diverse and sensitive to trampling. Soil biota (Collembola) was also more abundant and richer. These data indicate that the decision to adopt the second path did not lead to the reduction of environmental impacts as this path runs over a more vulnerable area with more outstanding biological features (e.g. microbiota activity, flora and soil fauna diversity). In addition, the adoption of a new route effectively doubles the human footprint on the island. We propose using only the original path that is less vulnerable to the impacts of trampling. Finally from this process, we identify several key issues that may be taken into account when carrying out impact assessment and environmental management decision-making in the

  5. Evaluation of natural colonisation of cementitious materials: effect of bioreceptivity and environmental conditions.

    PubMed

    Manso, Sandra; Calvo-Torras, María Ángeles; De Belie, Nele; Segura, Ignacio; Aguado, Antonio

    2015-04-15

    Incorporation of living organisms, such as photosynthetic organisms, on the structure envelope has become a priority in the area of architecture and construction due to aesthetical, economic and ecological advantages. Important research efforts are made to achieve further improvements, such as for the development of cementitious materials with an enhanced bioreceptivity to stimulate biological growth. Previously, the study of the bioreceptivity of cementitious materials has been carried out mainly under laboratory conditions although field-scale experiments may present different results. This work aims at analysing the colonisation of cementitious materials with different levels of bioreceptivity by placing them in three different environmental conditions. Specimens did not present visual colonisation, which indicates that environmental conditions have a greater impact than intrinsic properties of the material at this stage. Therefore, it appears that in addition to an optimized bioreceptivity of the concrete (i.e., composition, porosity and roughness), extra measures are indispensable for a rapid development of biological growth on concrete surfaces. An analysis of the colonisation in terms of genus and quantity of the most representative microorganisms found on the specimens for each location was carried out and related to weather conditions, such as monthly average temperature and total precipitation, and air quality in terms of NOx, SO2, CO and O3. OPC-based specimens presented a higher colonisation regarding both biodiversity and quantity. However, results obtained in a previous experimental programme under laboratory conditions suggested a higher suitability of Magnesium Phosphate Cement-based (MPC-based) specimens for algal growth. Consequently, carefully considering the environment and the relationships between the different organisms present in an environment is vital for successfully using a cementitious material as a substrate for biological growth. PMID

  6. Environmental effects on spatial and temporal patterns of leaf and root growth.

    PubMed

    Walter, Achim; Silk, Wendy K; Schurr, Ulrich

    2009-01-01

    Leaves and roots live in dramatically different habitats, but are parts of the same organism. Automated image processing of time-lapse records of these organs has led to understanding of spatial and temporal patterns of growth on time scales from minutes to weeks. Growth zones in roots and leaves show distinct patterns during a diel cycle (24 h period). In dicot leaves under nonstressful conditions these patterns are characterized by endogenous rhythms, sometimes superimposed upon morphogenesis driven by environmental variation. In roots and monocot leaves the growth patterns depend more strongly on environmental fluctuations. Because the impact of spatial variations and temporal fluctuations of above- and belowground environmental parameters must be processed by the plant body as an entire system whose individual modules interact on different levels, growth reactions of individual modules are often highly nonlinear. A mechanistic understanding of plant resource use efficiency and performance in a dynamically fluctuating environment therefore requires an accurate analysis of leaf and root growth patterns in conjunction with knowledge of major intraplant communication systems and metabolic pathways. PMID:19575584

  7. Environmental conditions and Puumala virus transmission in Belgium

    PubMed Central

    Linard, Catherine; Tersago, Katrien; Leirs, Herwig; Lambin, Eric F

    2007-01-01

    Background Non-vector-borne zoonoses such as Puumala hantavirus (PUUV) can be transmitted directly, by physical contact between infected and susceptible hosts, or indirectly, with the environment as an intermediate. The objective of this study is to better understand the causal link between environmental features and PUUV prevalence in bank vole population in Belgium, and hence with transmission risk to humans. Our hypothesis was that environmental conditions controlling the direct and indirect transmission paths differ, such that the risk of transmission to humans is not only determined by host abundance. We explored the relationship between, on one hand, environmental variables and, on the other hand, host abundance, PUUV prevalence in the host, and human cases of nephropathia epidemica (NE). Statistical analyses were carried out on 17 field sites situated in Belgian broadleaf forests. Results Linear regressions showed that landscape attributes, particularly landscape configuration, influence the abundance of hosts in broadleaf forests. Based on logistic regressions, we show that PUUV prevalence among bank voles is more linked to variables favouring the survival of the virus in the environment, and thus the indirect transmission: low winter temperatures are strongly linked to prevalence among bank voles, and high soil moisture is linked to the number of NE cases among humans. The transmission risk to humans therefore depends on the efficiency of the indirect transmission path. Human risk behaviours, such as the propensity for people to go in forest areas that best support the virus, also influence the number of human cases. Conclusion The transmission risk to humans of non-vector-borne zoonoses such as PUUV depends on a combination of various environmental factors. To understand the complex causal pathways between the environment and disease risk, one should distinguish between environmental factors related to the abundance of hosts such as land

  8. Effects of varying environmental conditions on vegetation response to ozone exposure

    SciTech Connect

    Zaleski, R.T.; Triemer, L.R.

    1995-12-31

    Developing an exposure-effects model for plant response to ozone exposure is a complex process. It is known that ozone must enter the plant through the stomata for an effect to occur. Therefore, ozone uptake is related not only to ambient ozone concentrations, but also to environmental factors which control stomatal movement. In addition, cellular factors within the plant can mitigate ozone impact and ultimately control plant response. This paper presents a review of the scientific literature on plant responses (e.g. visible foliar injury, reductions in growth or yield) to ozone exposures under varying environmental conditions known to affect stomatal aperture. The results of this effort show the importance of considering key environmental factors when developing exposure-effects models.

  9. Management and sperm production of boars under differing environmental conditions.

    PubMed

    Kunavongkrit, Annop; Suriyasomboon, Annop; Lundeheim, Nils; Heard, Terry W; Einarsson, Stig

    2005-01-15

    The management of boars to ensure good sperm production under differing environmental conditions is a major concern for pig keepers in both tropical countries and countries where there are extreme environmental changes. Such changes create stress in animals and influence the production of spermatozoa. High temperatures during hot summer months may result in lower feed consumption and create stresses that result in the inhibition of spermatogenesis. Although tropical countries do not have a problem with major variations in day length, this can cause problems such as decreased litter size and infertility in other regions of the world. Evaporative cooling systems built into boar accommodation are often used to reduce fluctuations in both temperature and humidity during the hot and humid months seen in tropical countries. The system has become popular in AI boar studs, where it is reported to reduce stress and improve feed consumption. Other management factors, such as housing comfort, social contact, mating conditions and the frequency of mating, are also very important boar management aids that assist good quality semen production; these will be covered briefly in this review. This review will consider primarily those management factors, for example, the management of temperature and humidity using evaporative cooling systems and other techniques that enable AI boar studs to maximize sperm fertility through adjustments to the environment. PMID:15626423

  10. Biphasic kinetics of growth and bacteriocin production with Lactobacillus amylovorus DCE 471 occur under stress conditions.

    PubMed

    Neysens, Patricia; Messens, Winy; Gevers, Dirk; Swings, Jean; De Vuyst, Luc

    2003-04-01

    Micro-organisms used during the production of fermented foods are subjected to several abiotic stresses. Microbial survival during these processes strongly depends on the ability of the cells to adapt and become more tolerant to the environmental conditions. Cultivation of Lactobacillus amylovorus DCE 471, a potential strain for use during type II sourdough fermentations, at low temperatures, unfavourable pH and high salt concentrations resulted in biphasic growth patterns. In addition, two separate bacteriocin peaks, as well as a dramatic change in cellular morphology, were observed. In general, an increase of the specific bacteriocin production occurred during the second growth phase. Finally, the observed sugar consumption profiles were affected by the applied fermentation temperature. Moreover, the highest bacteriocin activity occurred during maltose consumption at a low constant temperature of 28 degrees C and a constant pH of 5.4. Plate counts from both growth phases revealed the existence of two colony types. Irregular colonies were found to outnumber smoother colonies during the first growth phase, while the second growth phase was characterized by a greater number of smooth colonies. Electron microscopy was used to investigate the observed morphological switch at the single-cell level. Single, rod-shaped cells changed into elongated cells that grew in chains. Colony and cell morphology changes coincided with the biphasic growth pattern. PMID:12686649

  11. A Time-Dependent Numerical Model for Spherically Symmetric Hailstone Growth Thermodynamics under Constant Ambient Conditions.

    NASA Astrophysics Data System (ADS)

    Lozowski, E. P.; D'Amours, R.

    1980-08-01

    A model of spherical hailstone growth thermodynamics is presented, and used to examine the validity of the continuous growth and heat balance assumptions frequently employed in the `classical' hail growth models. The model is similar to the spherically symmetric model formulated by Macklin and Payne (1969), but solutions to the model equations are obtained by means of finite-difference numerical methods. In the model, we do not try to simulate the discrete accretion process of individual drops. Instead, we attempt to identify the implications of the discrete, time-dependent nature of the icing process, by examining the accretion of a thin uniform layer of supercooled water over the entire surface of the sphere. The heat transfer equations both with the air and within the hailstone axe then solved assuming radial symmetry. By the addition of several such layers, the finite growth of a spherical hailstone can be simulated. In the present paper, only growth in constant ambient conditions is considered. It is shown that there are large internal heat fluxes during the interval between the accretion of successive layers (typically 1 s), which cause the temperatures near the surface to oscillate several degrees above and below their time-mean value. Nevertheless, the time-averaged temperature over an accretion cycle is almost uniform throughout the hailstone and, when the environmental conditions are constant, is approximately equal to the equilibrium surface temperature predicted by the `classical' models. As the hailstone grows under constant environmental conditions, it continually adapts to the classical equilibrium temperature, warming up almost uniformly throughout. The time scale for this adjustment to a quasi-equilibrium state is found to be of the order of the internal diffusive time scale R2/k. It is speculated therefore that if the environmental conditions change slowly (over time scales large compared with R2/k) the hailstone thermodynamics will be adequately

  12. Thermomechanical characterization of environmentally conditioned shape memory polymer using nanoindentation

    NASA Astrophysics Data System (ADS)

    Fulcher, J. T.; Lu, Y. C.; Tandon, G. P.; Foster, D. C.

    2010-04-01

    Shape memory polymers (SMPs) are an emerging class of active polymers that have dual-shape capability, and are therefore candidate materials for multifunctional reconfigurable structures (i.e., morphing structures). However, the SMPs have not been fully tested to work in relevant environments (variable activation temperature, fuel and water swell, UV radiation, etc.) required for Air Force missions. In this study, epoxy-based SMPs were conditioned separately in simulated service environments designed to be reflective of anticipated performance requirements, namely, (1) exposure to UV radiation for 125 cycles, (2) immersion in jet-oil at ambient temperature, (3) immersion in jet-oil at 49°C, and (4) immersion in water at 49°C. The novel high-temperature indentation method was used to evaluate the mechanical properties and shape recovery ability of the conditioned SMPs. Results show that environmentally conditioned SMPs exhibit higher moduli in comparison to an unconditioned one. During free recovery, the indentation impressions of all SMPs disappeared as temperature reached above Tg, indicating that the material's ability to regain shape remains relatively unchanged with conditioning.

  13. Lifetime growth in wild meerkats: incorporating life history and environmental factors into a standard growth model.

    PubMed

    English, Sinéad; Bateman, Andrew W; Clutton-Brock, Tim H

    2012-05-01

    Lifetime records of changes in individual size or mass in wild animals are scarce and, as such, few studies have attempted to model variation in these traits across the lifespan or to assess the factors that affect them. However, quantifying lifetime growth is essential for understanding trade-offs between growth and other life history parameters, such as reproductive performance or survival. Here, we used model selection based on information theory to measure changes in body mass over the lifespan of wild meerkats, and compared the relative fits of several standard growth models (monomolecular, von Bertalanffy, Gompertz, logistic and Richards). We found that meerkats exhibit monomolecular growth, with the best model incorporating separate growth rates before and after nutritional independence, as well as effects of season and total rainfall in the previous nine months. Our study demonstrates how simple growth curves may be improved by considering life history and environmental factors, which may be particularly relevant when quantifying growth patterns in wild populations. PMID:22108854

  14. Unravelling environmental conditions during the Holocene in the Dead Sea region using multiple archives

    NASA Astrophysics Data System (ADS)

    Rambeau, Claire; van Leeuwen, Jacqueline; van der Knaap, Pim; Gobet, Erika

    2016-04-01

    For the most arid parts of the Southern Levant (roughly corresponding to modern Jordan, Israel and Palestine), environmental reconstructions are impeded by the limited number of archives, and the frequent contradictions between individual palaeoenvironmental records. The Southern Levant is characterised by steep climate gradients; local conditions presently range from arid to dry Mediterranean, with limits that may have fluctuated during the Holocene. This further complicates the determination of site-specific past environmental conditions. Understanding past climate and environmental evolution through time, at a local level, is however crucial to compare these with societal evolution during the Holocene, which features major cultural developments such as cereal cultivation, animal domestication, water management, as well as times of preferential settlement growth or site abandonment. This contribution proposes to examine the different archives available for the Dead Sea region, paying special attention to the most recent pollen data obtained from the area. It will particularly critically compare local to regional-scale information, and try to decipher the main evolutions of environmental conditions during the Holocene in arid and semi-arid Southern Levant.

  15. Maternal, social and abiotic environmental effects on growth vary across life stages in a cooperative mammal.

    PubMed

    English, Sinead; Bateman, Andrew W; Mares, Rafael; Ozgul, Arpat; Clutton-Brock, Tim H

    2014-03-01

    Resource availability plays a key role in driving variation in somatic growth and body condition, and the factors determining access to resources vary considerably across life stages. Parents and carers may exert important influences in early life, when individuals are nutritionally dependent, with abiotic environmental effects having stronger influences later in development as individuals forage independently. Most studies have measured specific factors influencing growth across development or have compared relative influences of different factors within specific life stages. Such studies may not capture whether early-life factors continue to have delayed effects at later stages, or whether social factors change when individuals become nutritionally independent and adults become competitors for, rather than providers of, food. Here, we examined variation in the influence of the abiotic, social and maternal environment on growth across life stages in a wild population of cooperatively breeding meerkats. Cooperatively breeding vertebrates are ideal for investigating environmental influences on growth. In addition to experiencing highly variable abiotic conditions, cooperative breeders are typified by heterogeneity both among breeders, with mothers varying in age and social status, and in the number of carers present. Recent rainfall had a consistently marked effect on growth across life stages, yet other seasonal terms only influenced growth during stages when individuals were growing fastest. Group size and maternal dominance status had positive effects on growth during the period of nutritional dependence on carers, but did not influence mass at emergence (at 1 month) or growth at independent stages (>4 months). Pups born to older mothers were lighter at 1 month of age and subsequently grew faster as subadults. Males grew faster than females during the juvenile and subadult stage only. Our findings demonstrate the complex ways in which the external environment

  16. Seed storage conditions change the germination pattern of clonal growth plants in Mediterranean salt marshes.

    PubMed

    Espinar, José L; García, Luis V; Clemente, Luis

    2005-07-01

    The effect of salinity level and extended exposure to different salinity and flooding conditions on germination patterns of three salt-marsh clonal growth plants (Juncus subulatus, Scirpus litoralis, and S. maritimus) was studied. Seed exposure to extended flooding and saline conditions significantly affected the outcome of the germination process in a different, though predictable, way for each species, after favorable conditions for germination were restored. Tolerance of the germination process was related to the average salinity level measured during the growth/germination season at sites where established individuals of each species dominated the species cover. No relationship was found between salinity tolerance of the germination process and seed response to extended exposure to flooding and salinity conditions. The salinity response was significantly related to the conditions prevailing in the habitats of the respective species during the unfavorable (nongrowth/nongermination) season. Our results indicate that changes in salinity and hydrology while seeds are dormant affect the outcome of the seed-bank response, even when conditions at germination are identical. Because these environmental-history-dependent responses differentially affect seed germination, seedling density, and probably sexual recruitment in the studied and related species, these influences should be considered for wetland restoration and management. PMID:21646131

  17. Seed storage conditions change the germination pattern of clonal growth plants in Mediterranean salt marshes

    USGS Publications Warehouse

    Espinar, J.L.; Garcia, L.V.; Clemente, L.

    2005-01-01

    The effect of salinity level and extended exposure to different salinity and flooding conditions on germination patterns of three saltmarsh clonal growth plants (Juncus subulatus, Scirpus litoralis, and S. maritimus) was studied. Seed exposure to extended flooding and saline conditions significantly affected the outcome of the germination process in a different, though predictable, way for each species, after favorable conditions for germination were restored. Tolerance of the germination process was related to the average salinity level measured during the growth/germination season at sites where established individuals of each species dominated the species cover. No relationship was found between salinity tolerance of the germination process and seed response to extended exposure to flooding and salinity conditions. The salinity response was significantly related to the conditions prevailing in the habitats of the respective species during the unfavorable (nongrowth/nongermination) season. Our results indicate that changes in salinity and hydrology while seeds are dormant affect the outcome of the seed-bank response, even when conditions at germination are identical. Because these environmental-history-dependent responses differentially affect seed germination, seedling density, and probably sexual recruitment in the studied and related species, these influences should be considered for wetland restoration and management.

  18. Multimodal cues improve prey localization under complex environmental conditions.

    PubMed

    Rhebergen, F; Taylor, R C; Ryan, M J; Page, R A; Halfwerk, W

    2015-09-01

    Predators often eavesdrop on sexual displays of their prey. These displays can provide multimodal cues that aid predators, but the benefits in attending to them should depend on the environmental sensory conditions under which they forage. We assessed whether bats hunting for frogs use multimodal cues to locate their prey and whether their use varies with ambient conditions. We used a robotic set-up mimicking the sexual display of a male túngara frog (Physalaemus pustulosus) to test prey assessment by fringe-lipped bats (Trachops cirrhosus). These predatory bats primarily use sound of the frog's call to find their prey, but the bats also use echolocation cues returning from the frog's dynamically moving vocal sac. In the first experiment, we show that multimodal cues affect attack behaviour: bats made narrower flank attack angles on multimodal trials compared with unimodal trials during which they could only rely on the sound of the frog. In the second experiment, we explored the bat's use of prey cues in an acoustically more complex environment. Túngara frogs often form mixed-species choruses with other frogs, including the hourglass frog (Dendropsophus ebraccatus). Using a multi-speaker set-up, we tested bat approaches and attacks on the robofrog under three different levels of acoustic complexity: no calling D. ebraccatus males, two calling D. ebraccatus males and five D. ebraccatus males. We found that bats are more directional in their approach to the robofrog when more D. ebraccatus males were calling. Thus, bats seemed to benefit more from multimodal cues when confronted with increased levels of acoustic complexity in their foraging environments. Our data have important consequences for our understanding of the evolution of multimodal sexual displays as they reveal how environmental conditions can alter the natural selection pressures acting on them. PMID:26336176

  19. Multimodal cues improve prey localization under complex environmental conditions

    PubMed Central

    Rhebergen, F.; Taylor, R. C.; Ryan, M. J.; Page, R. A.; Halfwerk, W.

    2015-01-01

    Predators often eavesdrop on sexual displays of their prey. These displays can provide multimodal cues that aid predators, but the benefits in attending to them should depend on the environmental sensory conditions under which they forage. We assessed whether bats hunting for frogs use multimodal cues to locate their prey and whether their use varies with ambient conditions. We used a robotic set-up mimicking the sexual display of a male túngara frog (Physalaemus pustulosus) to test prey assessment by fringe-lipped bats (Trachops cirrhosus). These predatory bats primarily use sound of the frog's call to find their prey, but the bats also use echolocation cues returning from the frog's dynamically moving vocal sac. In the first experiment, we show that multimodal cues affect attack behaviour: bats made narrower flank attack angles on multimodal trials compared with unimodal trials during which they could only rely on the sound of the frog. In the second experiment, we explored the bat's use of prey cues in an acoustically more complex environment. Túngara frogs often form mixed-species choruses with other frogs, including the hourglass frog (Dendropsophus ebraccatus). Using a multi-speaker set-up, we tested bat approaches and attacks on the robofrog under three different levels of acoustic complexity: no calling D. ebraccatus males, two calling D. ebraccatus males and five D. ebraccatus males. We found that bats are more directional in their approach to the robofrog when more D. ebraccatus males were calling. Thus, bats seemed to benefit more from multimodal cues when confronted with increased levels of acoustic complexity in their foraging environments. Our data have important consequences for our understanding of the evolution of multimodal sexual displays as they reveal how environmental conditions can alter the natural selection pressures acting on them. PMID:26336176

  20. EVALUATION OF FUNGAL GROWTH ON FIBERGLASS DUCT MATERIALS FOR VARIOUS MOISTURE, SOIL, USE, AND TEMPERATURE CONDITIONS (JOURNAL)

    EPA Science Inventory

    The paper gives results of a series of experiments, each lasing 6 weeks, conducted in static environmental chambers to assess some of the conditions that may impact the ability of a variety of fiberglass materials to support the growth of a fungus, Penicillium chrysogenum. (NOTE:...

  1. Growth of immature Chironomus calligraphus in laboratory conditions.

    PubMed

    Canteiro, Rita de Cássia S A; Albertoni, Edélti F

    2011-12-01

    Chironomidae larvae are important macroinvertebrates in limnic environments, but little knowledge exists about their biometrics development characteristics. This study aims to describe the immature Chironomus calligraphus Goeldi, 1905 under laboratory conditions by the accomplishment of thirteen egg masses from eggs eclosion to adults emergency, at controlled room temperature (25ºC) and photoperiod (12-12h). Larvae were feed ad libitum with "Alcon Basic - MEP 200 Complex" fish food and commercial dehydrated Spirulina. The postures had a mean length of 9 ± 1 mm (n = 13) and 348 ± 66 eggs. The brownish colored eggs with elliptical shape had length of 160.3 ± 17.7 µm (n = 130), being arranged as an organized string in a pseudo spiral form. The time duration from the first to the four instars were three, four, four and eight days, and the average length of a cephalic capsule to each one of the instars (66.3 ± 12.3 µm, 102.9 ± 22.1 µm, 159 ± 24.6 µm, 249.2 ± 29.7 µm, n = 456) were significantly different (ANOVA, p < 0.001). The Dyar’s Rule showed a constant growth rate, r = 1.5. Our results demonstrated that C. calligraphus is a species with short life cycle, low mortality rate, food adaptability, fast larval growth and easily maintained at laboratory, factors that allowed the use of this native species as a tool for ecotoxicological tests. PMID:21971596

  2. Effect of environmental conditions on the fatty acid fingerprint of microbial communities

    NASA Astrophysics Data System (ADS)

    Biryukov, Mikhail; Dippold, Michaela; Kuzyakov, Yakov

    2014-05-01

    Lipid biomarkers, especially phospholipids, are routinely used to characterize microbial community structure in environmental samples. Interpretations of these fingerprints mainly depend on rare results of pure cultures which were cultivated under standardized batch conditions. However, membrane lipids (e.g. phopholipid biomarker) build up the interface between microorganisms and their environment and consequently are prone to be adapted according to the environmental conditions. We cultivated several bacteria, isolated from soil (gram-positive and gram-negative) under various conditions e.g. C supply and temperature regimes. Effect of growth conditions on phospholipids fatty acid (PLFA) as well as neutral lipid fatty acids (NLFA) and glycolipid fatty acids (GLFA) was investigated by conventional method of extraction and derivatization, followed by assessments with gas chromatography mass spectrometry (GC-MS). In addition, phospholipids were measured as intact molecules by ultra high performance liquid chromatography - quadrupole - time of flight mass spectrometer (UHPLC-Q-ToF) to further assess the composition of headgroups with fatty acids residues and their response on changing environmental conditions. PLFA fingerprints revealed a strong effect of growth stage, C supply and temperature e.g. decrease of temperature increased the amount of branched and/or unsaturated fatty acids to maintain the membrane fluidity. This strongly changes the ratio of specific to unspecific fatty acids depending on environmental conditions. Therefore, amounts of specific fatty acids cannot be used to assess biomass of a functional microbial group in soil. Intracellular neutral lipids depended less on environmental conditions reflecting a more stable biomarker group but also showed less specific fatty acids then PLFA. Therefore, combination of several lipid classes is suggested as more powerful tool to assess amounts and functionality of environmental microbial communities. Further

  3. Environmental factors affecting indole metabolism under anaerobic conditions

    SciTech Connect

    Madsen, E.L.; Francis, A.J.; Bollag, J.M.

    1988-01-01

    The influence of physiological and environmental factors on the accumulation of oxindole during anaerobic indole metabolism was investigated by high-performance liquid chromatography. Under methanogenic conditions, indole was temporarily converted to oxindole in stoichiometric amounts in media inoculated with three freshwater sediments and an organic soil. In media inoculated with methanogenic sewage sludge, the modest amounts of oxindole detected at 35/sup 0/C reached higher concentrations and persisted longer when the incubation temperature was decreased from 35 to 15/sup 0/C. Also, decreasing the concentration of sewage sludge used as an inoculum from 50 to 1% caused an increase in the accumulation of oxindole from 10 to 75% of the indole added. Under denitrifying conditions, regardless of the concentration or source of the inoculum, oxindole appeared in trace amounts but did not accumulate during indole metabolism. In addition, denitrifying consortia which previously metabolized indole degraded oxindole with no lag period. Our data suggest that oxindole accumulation under methanogenic, but not under denitrifying conditions is caused by differences between relative rates of oxindole production and destruction.

  4. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions

    PubMed Central

    Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki

    2015-01-01

    Summary Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. PMID:26626177

  5. Asynchrony in the growth and motility responses to environmental changes by individual bacterial cells

    SciTech Connect

    Umehara, Senkei; Hattori, Akihiro; Inoue, Ippei; Yasuda, Kenji . E-mail: yasuda.bmi@tmd.ac.jp

    2007-05-04

    Knowing how individual cells respond to environmental changes helps one understand phenotypic diversity in a bacterial cell population, so we simultaneously monitored the growth and motility of isolated motile Escherichia coli cells over several generations by using a method called on-chip single-cell cultivation. Starved cells quickly stopped growing but remained motile for several hours before gradually becoming immotile. When nutrients were restored the cells soon resumed their growth and proliferation but remained immotile for up to six generations. A flagella visualization assay suggested that deflagellation underlies the observed loss of motility. This set of results demonstrates that single-cell transgenerational study under well-characterized environmental conditions can provide information that will help us understand distinct functions within individual cells.

  6. Growth patterns for etiolated soybeans germinated under spaceflight conditions

    NASA Astrophysics Data System (ADS)

    Levine, Howard G.; Piastuch, William C.

    In the GENEX (GENe EXpression) spaceflight experiment (flown on STS-87), six surface sterilized soybean seeds ( Glycine max cv McCall) were inserted into each of 32 autoclaved plastic seed growth pouches containing an inner germination paper sleeve (for a total of 192 seeds). The pouches were stowed within a mid-deck locker until Mission Flight Day 10, at which time an astronaut added water to initiate the process of seed germination on-orbit and subsequently transferred them to four light-tight aluminum canisters called BRIC-60s (Biological Research In Canisters). We report here on the morphological characteristics of: (1) the recovered flight plants ( N = 177), (2) the corresponding ground control population ( N = 183), plus (3) additional controls grown on the ground under clinostat conditions ( N = 93). No significant morphological differences were found between the flight, ground control and clinorotated treatments for either the cotyledons or hypocotyls. There were, however, significantly longer primary roots produced in the flight population relative to the ground control population, which in turn had significantly longer primary roots than the clinorotated population. This same pattern was observed relative to the production of lateral roots (flight > control > clinorotated). Taken together with previous literature reports, we believe that there is now sufficient evidence to conclude that plants grown under conditions of microgravity will generally exhibit enhanced root production relative to their ground control counterparts. Some causes underlying this phenomenon are speculated on.

  7. Environmental conditioning for textile yarn-spinning mill

    SciTech Connect

    Gengler, M.

    1996-06-01

    In mid-1993, Parkdale Mills, Inc., entered into a contract with Pneumafil Corporation to design and construct a total environmental conditioning system for their Plant No. 5 Open-End Spinning Room modernization program. This system was put into use in July 1994. Parkdale Mills in Gastonia, N.C. is one of the true innovators in the textile yarn-spinning business. The company presented a challenge to press technology to a new level to meet a number of well-defined goals. These goals were as follows: (1) Room temperature and humidity control -- Very accurate control to enable consistent production of the highest possible quality of yarn; (2) Energy efficiency -- The best achievable to assure the lowest possible production cost to the mill; (3) Dust levels -- The lowest possible within the mill for compliance with OSHA dust standards and for the least impact on yarn quality; and (4) Installed cost -- Not to exceed that of a conventionally designed system.

  8. Leaching of metals from cement under simulated environmental conditions.

    PubMed

    Lu, Huixia; Wei, Fang; Tang, Jingchun; Giesy, John P

    2016-03-15

    Leaching of metals from cement under various environmental conditions was measured to evaluate their environmental safety. A cement product containing clinker, which was produced from cement kiln co-processing of hazardous wastes, was solidified and leaching of metals was characterized using the 8-period test. Concentrations and speciation of metals in cements were determined. Effects of ambient environment and particle size on leachability of metals and mineralogical phases of cement mortars were evaluated by use of XRD and SEM. Results indicated that metals in cements were leachable in various media in descending order of: sea water, groundwater and acid rain. Cr, Ni, As, Co and V were leached by simulated sea water, while Cu, Cd, Pb, Zn, Mn, Sb and Tl were not leached in simulated sea water, groundwater or acid rain. When exposed to simulated acid rain or groundwater, amounts of Cr, Ni, As and V leached was inversely proportional to particle size of cement mortar. According to the one-dimensional diffusion equation, Cr was most leachable and the cumulative leached mass was predicted to be 9.6 mg kg(-1) after 20 years. Results of this study are useful in predicting releases of metals from cement products containing ash and clinkers cement kiln co-processing of hazardous wastes, so that they can be safely applied in the environment. PMID:26802528

  9. The community conditioning hypothesis and its application to environmental toxicology

    SciTech Connect

    Matthews, R.A.; Landis, W.G.; Matthews, G.B.

    1996-04-01

    In this paper the authors present the community conditions hypothesis, ecological communities retain information bout events in their history. This hypothesis, which was derived from the concept of nonequilibrium community ecology, was developed as a framework for understanding the persistence of dose-related responses in multispecies toxicity tests. The authors present data from three standardized aquatic microcosm (SAM) toxicity tests using the water-soluble fractions from turbine fuels (Jet-A, JP-4, and JP-8). In all three tests, the toxicants depressed the Daphnia populations for several weeks, which resulted in algal blooms in the dosed microcosms due to lower predation rates. These effects were short-lived, and by the second and third months of the experiments, the Daphnia populations appeared to have recovered. However, multivariate analysis of the data released dose/response differences that reappeared during the later part of the tests, often due to differences in other consumers (rotifers, ostracods, ciliates), or algae that are not normally consumed (filamentous green algae and bluegreen algae). The findings are consistent with ecological theories that describe communities as the unique production of their etiologies. The implications of this to environmental toxicology are that almost all environmental events leave lasting effects, whether or not they have observed them.

  10. Spectral Characterization of Phobos Analogues Under Simulated Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Donaldson Hanna, K. L.; Bowles, N. E.; Edwards, C. S.; Glotch, T. D.; Greenhagen, B. T.; Pieters, C. M.; Thomas, I.

    2014-12-01

    The surface of Phobos holds many keys for understanding its formation and evolution as well as the history and dynamics of the Mars-Phobos system. Visible to near infrared (VNIR) observations suggests that Phobos' surface is compositionally heterogeneous with 'redder' and 'bluer' units that both appear to be anhydrous in nature. Lunar highland spectra have been identified as spectral analogues for the 'redder' and 'bluer' units while thermally metamorphosed CI/CM chondrites, lab-heated carbonaceous chondrites and highly space weathered mafic mineral assemblages have been identified as the best analogues for the 'bluer' surface units. Additionally, thermal infrared emissivity spectra indicate that if Phobos' surface is optically mature it may be rich in feldspar, which is consistent with VNIR observations of Phobos' surface being spectrally similar to lunar highland spectra. While remote observations provide key insights into the composition and evolution of planetary surfaces, a fundamentally important component to any remote compositional analysis of planetary surfaces is laboratory measurements of well-characterized samples measured under the appropriate environmental conditions. The vacuum environment of airless bodies creates a steep thermal gradient in the upper hundreds of microns of regolith. Lab studies of particulate rocks and minerals as well as selected lunar soils under vacuum and lunar-like conditions have identified significant effects of this thermal gradient on thermal infrared (TIR) spectral measurements. However recent lab measurements of carbonaceous chondrites demonstrated that simulated asteroid conditions do not affect the resulting emissivity spectra to the degree observed in lunar soils and is highly dependent on composition. Such lab studies demonstrate the high sensitivity of TIR emissivity spectra to environmental conditions under which they are measured and indicate that the near surface environment of all airless bodies do not

  11. Environmental and Sanitary Conditions of Guanabara Bay, Rio de Janeiro

    PubMed Central

    Fistarol, Giovana O.; Coutinho, Felipe H.; Moreira, Ana Paula B.; Venas, Tainá; Cánovas, Alba; de Paula, Sérgio E. M.; Coutinho, Ricardo; de Moura, Rodrigo L.; Valentin, Jean Louis; Tenenbaum, Denise R.; Paranhos, Rodolfo; do Valle, Rogério de A. B.; Vicente, Ana Carolina P.; Amado Filho, Gilberto M.; Pereira, Renato Crespo; Kruger, Ricardo; Rezende, Carlos E.; Thompson, Cristiane C.; Salomon, Paulo S.; Thompson, Fabiano L.

    2015-01-01

    Guanabara Bay is the second largest bay in the coast of Brazil, with an area of 384 km2. In its surroundings live circa 16 million inhabitants, out of which 6 million live in Rio de Janeiro city, one of the largest cities of the country, and the host of the 2016 Olympic Games. Anthropogenic interference in Guanabara Bay area started early in the XVI century, but environmental impacts escalated from 1930, when this region underwent an industrialization process. Herein we present an overview of the current environmental and sanitary conditions of Guanabara Bay, a consequence of all these decades of impacts. We will focus on microbial communities, how they may affect higher trophic levels of the aquatic community and also human health. The anthropogenic impacts in the bay are flagged by heavy eutrophication and by the emergence of pathogenic microorganisms that are either carried by domestic and/or hospital waste (e.g., virus, KPC-producing bacteria, and fecal coliforms), or that proliferate in such conditions (e.g., vibrios). Antibiotic resistance genes are commonly found in metagenomes of Guanabara Bay planktonic microorganisms. Furthermore, eutrophication results in recurrent algal blooms, with signs of a shift toward flagellated, mixotrophic groups, including several potentially harmful species. A recent large-scale fish kill episode, and a long trend decrease in fish stocks also reflects the bay’s degraded water quality. Although pollution of Guanabara Bay is not a recent problem, the hosting of the 2016 Olympic Games propelled the government to launch a series of plans to restore the bay’s water quality. If all plans are fully implemented, the restoration of Guanabara Bay and its shores may be one of the best legacies of the Olympic Games in Rio de Janeiro. PMID:26635734

  12. Evaluating microbial indicators of environmental condition in Oregon rivers.

    PubMed

    Pennington, A T; Harding, A K; Hendricks, C W; Campbell, H M

    2001-12-01

    Traditional bacterial indicators used in public health to assess water quality and the Biolog system were evaluated to compare their response to biological, chemical, and physical habitat indicators of stream condition both within the state of Oregon and among ecoregion aggregates (Coast Range, Willamette Valley, Cascades, and eastern Oregon). Forty-three randomly selected Oregon river sites were sampled during the summer in 1997 and 1998. The public health indicators included heterotrophic plate counts (HPC), total coliforms (TC), fecal coliforms (FC) and Escherichia coli (EC). Statewide, HPC correlated strongly with physical habitat (elevation, riparian complexity, % canopy presence, and indices of agriculture, pavement, road, pasture, and total disturbance) and chemistry (pH, dissolved O2, specific conductance, acid-neutralizing capacity, dissolved organic carbon, total N, total P, SiO2, and SO4). FC and EC were significantly correlated generally with the river chemistry indicators. TC bacteria significantly correlated with riparian complexity, road disturbance, dissolved O2, and SiO2 and FC. Analyzing the sites by ecoregion, eastern Oregon was characterized by high HPC, FC, EC, nutrient loads, and indices of human disturbance, whereas the Cascades ecoregion had correspondingly low counts of these indicators. The Coast Range and Willamette Valley presented inconsistent indicator patterns that are more difficult to characterize. Attempts to distinguish between ecoregions with the Biolog system were not successful, nor did a statistical pattern emerge between the first five principle components and the other environmental indicators. Our research suggests that some traditional public health microbial indicators may be useful in measuring the environmental condition of lotic systems. PMID:11915970

  13. Evaluating Microbial Indicators of Environmental Condition in Oregon Rivers

    NASA Astrophysics Data System (ADS)

    Pennington, Alan T.; Harding, Anna K.; Hendricks, Charles W.; Campbell, Heidi M. K.

    2001-12-01

    Traditional bacterial indicators used in public health to assess water quality and the Biolog® system were evaluated to compare their response to biological, chemical, and physical habitat indicators of stream condition both within the state of Oregon and among ecoregion aggregates (Coast Range, Willamette Valley, Cascades, and eastern Oregon). Forty-three randomly selected Oregon river sites were sampled during the summer in 1997 and 1998. The public health indicators included heterotrophic plate counts (HPC), total coliforms (TC), fecal coliforms (FC) and Escherichia coli (EC). Statewide, HPC correlated strongly with physical habitat (elevation, riparian complexity, % canopy presence, and indices of agriculture, pavement, road, pasture, and total disturbance) and chemistry (pH, dissolved O2, specific conductance, acid-neutralizing capacity, dissolved organic carbon, total N, total P, SiO2, and SO4). FC and EC were significantly correlated generally with the river chemistry indicators. TC bacteria significantly correlated with riparian complexity, road disturbance, dissolved O2, and SiO2 and FC. Analyzing the sites by ecoregion, eastern Oregon was characterized by high HPC, FC, EC, nutrient loads, and indices of human disturbance, whereas the Cascades ecoregion had correspondingly low counts of these indicators. The Coast Range and Willamette Valley presented inconsistent indicator patterns that are more difficult to characterize. Attempts to distinguish between ecoregions with the Biolog system were not successful, nor did a statistical pattern emerge between the first five principle components and the other environmental indicators. Our research suggests that some traditional public health microbial indicators may be useful in measuring the environmental condition of lotic systems.

  14. Pervaporative irrigation: a flow rate driven by environmental conditions

    NASA Astrophysics Data System (ADS)

    Todman, L. C.; Mougros, C.; Ireson, A. M.; Butler, A. P.; Templeton, M. R.

    2012-04-01

    Pervaporative irrigation allows in-situ treatment of low quality water (e.g. saline water) whilst simultaneously distributing water throughout the soil. The system is also low energy, requiring only that a positive head of water is maintained in a supply tank. To irrigate using this method a pervaporative polymer membrane is formed into a pipe, buried in the soil and filled with water. Water is transported across the membrane by the process of pervaporation whilst the transport of contaminants is retarded, thus reducing the risk of soil degradation due to the use of low water quality. Uniquely these systems also inherently provide a feedback mechanism by which crops can affect the irrigation rate. Such a system has significant possibilities to provide an irrigation pipe from which water is only applied when required, hence reducing the volume of water used. However such systems are currently not fully understood and, to be implemented effectively, the behaviour of the membrane in different environmental conditions must be quantified. From experimental results this work has identified the significance of vapour flows in predicting the flux from the irrigation system in dry soils. In a 15cm layer of sand, the presence of a desiccant above the soil doubled the flux from the pipe, but more than 70% of this mass was adsorbed by the desiccant. Experiments also show that the flux into typical top soil was greater than into sand because of the greater capacity of the top soil for water adsorption. This adsorption maintained a lower humidity in the soil, hence providing a larger gradient across the irrigation membrane and inducing a higher flux. Although there is some evidence that seeds can absorb water from vapour flows the possibility that plants also do this has not yet been explored. This technology provides future opportunities to explore the interaction of plants both with vapour flows, and with a system where the irrigation rate is influenced by the crop uptake and

  15. Environmental and Sanitary Conditions of Guanabara Bay, Rio de Janeiro.

    PubMed

    Fistarol, Giovana O; Coutinho, Felipe H; Moreira, Ana Paula B; Venas, Tainá; Cánovas, Alba; de Paula, Sérgio E M; Coutinho, Ricardo; de Moura, Rodrigo L; Valentin, Jean Louis; Tenenbaum, Denise R; Paranhos, Rodolfo; do Valle, Rogério de A B; Vicente, Ana Carolina P; Amado Filho, Gilberto M; Pereira, Renato Crespo; Kruger, Ricardo; Rezende, Carlos E; Thompson, Cristiane C; Salomon, Paulo S; Thompson, Fabiano L

    2015-01-01

    Guanabara Bay is the second largest bay in the coast of Brazil, with an area of 384 km(2). In its surroundings live circa 16 million inhabitants, out of which 6 million live in Rio de Janeiro city, one of the largest cities of the country, and the host of the 2016 Olympic Games. Anthropogenic interference in Guanabara Bay area started early in the XVI century, but environmental impacts escalated from 1930, when this region underwent an industrialization process. Herein we present an overview of the current environmental and sanitary conditions of Guanabara Bay, a consequence of all these decades of impacts. We will focus on microbial communities, how they may affect higher trophic levels of the aquatic community and also human health. The anthropogenic impacts in the bay are flagged by heavy eutrophication and by the emergence of pathogenic microorganisms that are either carried by domestic and/or hospital waste (e.g., virus, KPC-producing bacteria, and fecal coliforms), or that proliferate in such conditions (e.g., vibrios). Antibiotic resistance genes are commonly found in metagenomes of Guanabara Bay planktonic microorganisms. Furthermore, eutrophication results in recurrent algal blooms, with signs of a shift toward flagellated, mixotrophic groups, including several potentially harmful species. A recent large-scale fish kill episode, and a long trend decrease in fish stocks also reflects the bay's degraded water quality. Although pollution of Guanabara Bay is not a recent problem, the hosting of the 2016 Olympic Games propelled the government to launch a series of plans to restore the bay's water quality. If all plans are fully implemented, the restoration of Guanabara Bay and its shores may be one of the best legacies of the Olympic Games in Rio de Janeiro. PMID:26635734

  16. 76 FR 59481 - Fifty Eighth Meeting: RTCA Special Committee 135, Environmental Conditions and Test Procedures...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... public of a meeting of RTCA Special Committee 135: Environmental Conditions and Test Procedures for...), notice is hereby given for a RTCA Special Committee 135: Environmental Conditions and Test Procedures for... and Test Procedures for Airborne......

  17. Rapid population growth and environmental degradation: ultimate versus proximate factors.

    PubMed

    Shaw, R P

    1989-01-01

    This philosophical review of 2 arguments about responsibility for and solutions to environmental degradation concludes that both sides are correct: the ultimate and the proximal causes. Ultimate causes of pollution are defined as the technology responsible for a given type of pollution, such as burning fossil fuel; proximate causes are defined as situation-specific factors confounding the problem, such as population density or rate of growth. Commoner and others argue that developed countries with low or negative population growth rates are responsible for 80% of world pollution, primarily in polluting technologies such as automobiles, power generation, plastics, pesticides, toxic wastes, garbage, warfaring, and nuclear weapons wastes. Distortionary policies also contribute; examples are agricultural trade protection, land mismanagement, urban bias in expenditures, and institutional rigidity., Poor nations are responsible for very little pollution because poverty allows little waste or expenditures for polluting, synthetic technologies. The proximal causes of pollution include numbers and rate of growth of populations responsible for the pollution. Since change in the ultimate cause of pollution remains out of reach, altering the numbers of polluters can make a difference. Predictions are made for proportions of the world's total waste production, assuming current 1.6 tons/capita for developed countries and 0.17 tons/capita for developing countries. If developing countries grow at current rates and become more wealthy, they will be emitting half the world's waste by 2025. ON the other hand, unsustainable population growth goes along with inadequate investment in human capital: education, health, employment, infrastructure. The solution is to improve farming technologies in the 117 non-self-sufficient countries, fund development in the most unsustainable enclaves of growing countries, break institutionalized socio-political rigidity in these enclaves, and focus on

  18. Analysis of short-term metabolic alterations in Arabidopsis following changes in the prevailing environmental conditions.

    PubMed

    Florian, Alexandra; Nikoloski, Zoran; Sulpice, Ronan; Timm, Stefan; Araújo, Wagner L; Tohge, Takayuki; Bauwe, Hermann; Fernie, Alisdair R

    2014-05-01

    Although a considerable increase in our knowledge concerning the importance of metabolic adjustments to unfavorable growth conditions has been recently provided, relatively little is known about the adjustments which occur in response to fluctuation in environmental factors. Evaluating the metabolic adjustments occurring under changing environmental conditions thus offers a good opportunity to increase our current understanding of the crosstalk between the major pathways which are affected by such conditions. To this end, plants growing under normal conditions were transferred to different light and temperature conditions which were anticipated to affect (amongst other processes) the rates of photosynthesis and photorespiration and characterized at the physiological, molecular, and metabolic levels following this transition. Our results revealed similar behavior in response to both treatments and imply a tight connectivity of photorespiration with the major pathways of plant metabolism. They further highlight that the majority of the regulation of these pathways is not mediated at the level of transcription but that leaf metabolism is rather pre-poised to adapt to changes in these input parameters. PMID:24503159

  19. Environmental conditions for alternative tree cover states in high latitudes

    NASA Astrophysics Data System (ADS)

    Abis, Beniamino; Brovkin, Victor

    2016-04-01

    Previous analysis of the vegetation cover from remote sensing revealed the existence of three alternative modes in the frequency distribution of boreal tree cover: a sparsely vegetated treeless state, a savanna-like state, and a forest state. Identifying which are the regions subject to multimodality, and assessing which are the main factors underlying their existence, is important to project future change of natural vegetation cover and its effect on climate. We study the impact on the forest cover fraction distribution of seven globally-observed environmental factors: mean annual rainfall, mean minimum temperature, growing degree days above 0, permafrost distribution, soil moisture, wildfire occurrence frequency, and thawing depth. Through the use of generalised additive models, regression trees, and conditional histograms, we find that the main factors determining the forest distribution in high latitudes are: permafrost distribution, mean annual rainfall, mean minimum temperature, soil moisture, and wildfire frequency. Additionally, we find differences between regions within the boreal area, such as Eurasia, Eastern North America, and Western North America. Furthermore, using a classification based on these factors, we show the existence and location of alternative tree cover states under the same climate conditions in the boreal region. These are areas of potential interest for a more detailed analysis of land-atmosphere interactions.

  20. Environmental Conditions Determine the Course and Outcome of Phytoplankton Chytridiomycosis.

    PubMed

    Rohrlack, Thomas; Haande, Sigrid; Molversmyr, Åge; Kyle, Marcia

    2015-01-01

    Chytrid fungi are highly potent parasites of phytoplankton. They are thought to force phytoplankton organisms into an evolutionary arms race with high population diversity as the outcome. The underlying selection regime is known as Red Queen dynamics. However, our study suggests a more complex picture for chytrid parasitism in the cyanobacterium Planktothrix. Laboratory experiments identified a "cold thermal refuge", inside which Planktothrix can grow without chytrid infection. A field study in two Norwegian lakes underlined the ecological significance of this finding. The study utilized sediment DNA as a biological archive in combination with existing monitoring data. In one lake, temperature and light conditions forced Planktothrix outside the thermal refuge for most of the growing season. This probably resulted in Red Queen dynamics as suggested by a high parasitic pressure exerted by chytrids, an increase in Planktothrix genotype diversity over time, and a correlation between Planktothrix genotype diversity and duration of bloom events. In the second lake, a colder climate allowed Planktothrix to largely stay inside the thermal refuge. The parasitic pressure exerted by chytrids and Planktothrix genotype diversity remained low, indicating that Planktothrix successfully evaded the Red Queen dynamics. Episodic Planktothrix blooms were observed during spring and autumn circulation, in the metalimnion or under the ice. Interestingly, both lakes were dominated by the same or related Planktothrix genotypes. Taken together, our data suggest that, depending on environmental conditions, chytrid parasitism can impose distinct selection regimes on conspecific phytoplankton populations with similar genotype composition, causing these populations to behave and perhaps to evolve differently. PMID:26714010

  1. [Individual adaptation strategy under extreme environmental conditions in humans].

    PubMed

    Soroko, S I; Aldasheva, A A

    2012-01-01

    Starting from the researches of I.M. Sechenov, I.P. Pavlov, A.A. Uchtomskii, the Russian psychophysiological school considers adaptation in connection with the biological and social origin of a man as the integrated, coordinated and self-controlled human organism's reaction to maintain the vital functions in the constantly changing environmental conditions. On the base of well-known systemic-dynamic methodology and scrutinizing the issue of man and environment interaction V.I. Medvedev added to the theory of man's adaptation the activity paradigm that enable to uncover the distinctive features of professional activities in various environment conditions. The theoretical and practical investigations based on the activity methodology gave the opportunity to find out the new principles of interaction between man and environment and on the strategy of adaptive behavior. From this investigations one could see that the main characteristic of interaction "man-environment" is that man represents proactive side, man simulate different adaptation strategies using both genetically-fixed and acquired mechanisms of adaptive behavior. PMID:23393785

  2. Impact of growth conditions on transport behavior of E. coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this investigation is to determine the effect that growth solution has on cell surface properties and transport behavior of eleven E. coli isolates through saturated porous media. The two growth solutions used were a standard laboratory growth medium (LB) and a dairy manure extract soluti...

  3. Variations in Environmental Signals in Tree-Ring Indices in Trees with Different Growth Potential.

    PubMed

    Hafner, Polona; Gričar, Jožica; Skudnik, Mitja; Levanič, Tom

    2015-01-01

    We analysed two groups of Quercus robur trees, growing at nearby plots with different micro-location condition (W-wet and D-dry) in the floodplain Krakovo forest, Slovenia. In the study we compared the growth response of two different tree groups to environmental variables, the potential signal stored in earlywood (EW) structure and the potential difference of the information stored in carbon isotope discrimination of EW and latewood (LW). For that purpose EW and LW widths and carbon isotope discrimination for the period 1970-2008 AD were measured. EW and LW widths were measured on stained microscopic slides and chronologies were standardised using the ARSTAN program. α-cellulose was extracted from pooled EW and LW samples and homogenized samples were further analysed using an elemental analyser and IRMS. We discovered that W oaks grew significantly better over the whole analysed period. The difference between D and W oaks was significant in all analysed variables with the exception of stable carbon isotope discrimination in latewood. In W oaks, latewood widths correlated with summer (June to August) climatic variables, while carbon isotope discrimination was more connected to River Krka flow during the summer. EW discrimination correlated with summer and autumn River Krka flow of the previous year, while latewood discrimination correlated with flow during the current year. In the case of D oaks, the environmental signal appears to be vague, probably due to less favourable growth conditions resulting in markedly reduced increments. Our study revealed important differences in responses to environmental factors between the two oak groups of different physiological conditions that are preconditioned by environmental stress. Environmental information stored in tree-ring features may vary, even within the same forest stand, and largely depends on the micro-environment. Our analysis confirmed our assumptions that separate EW and LW analysis of widths and carbon isotope

  4. Variations in Environmental Signals in Tree-Ring Indices in Trees with Different Growth Potential

    PubMed Central

    Hafner, Polona; Gričar, Jožica; Skudnik, Mitja; Levanič, Tom

    2015-01-01

    We analysed two groups of Quercus robur trees, growing at nearby plots with different micro-location condition (W-wet and D-dry) in the floodplain Krakovo forest, Slovenia. In the study we compared the growth response of two different tree groups to environmental variables, the potential signal stored in earlywood (EW) structure and the potential difference of the information stored in carbon isotope discrimination of EW and latewood (LW). For that purpose EW and LW widths and carbon isotope discrimination for the period 1970–2008 AD were measured. EW and LW widths were measured on stained microscopic slides and chronologies were standardised using the ARSTAN program. α-cellulose was extracted from pooled EW and LW samples and homogenized samples were further analysed using an elemental analyser and IRMS. We discovered that W oaks grew significantly better over the whole analysed period. The difference between D and W oaks was significant in all analysed variables with the exception of stable carbon isotope discrimination in latewood. In W oaks, latewood widths correlated with summer (June to August) climatic variables, while carbon isotope discrimination was more connected to River Krka flow during the summer. EW discrimination correlated with summer and autumn River Krka flow of the previous year, while latewood discrimination correlated with flow during the current year. In the case of D oaks, the environmental signal appears to be vague, probably due to less favourable growth conditions resulting in markedly reduced increments. Our study revealed important differences in responses to environmental factors between the two oak groups of different physiological conditions that are preconditioned by environmental stress. Environmental information stored in tree-ring features may vary, even within the same forest stand, and largely depends on the micro-environment. Our analysis confirmed our assumptions that separate EW and LW analysis of widths and carbon

  5. Microbial Forensics: Predicting Phenotypic Characteristics and Environmental Conditions from Large-Scale Gene Expression Profiles

    PubMed Central

    Kim, Minseung; Zorraquino, Violeta; Tagkopoulos, Ilias

    2015-01-01

    A tantalizing question in cellular physiology is whether the cellular state and environmental conditions can be inferred by the expression signature of an organism. To investigate this relationship, we created an extensive normalized gene expression compendium for the bacterium Escherichia coli that was further enriched with meta-information through an iterative learning procedure. We then constructed an ensemble method to predict environmental and cellular state, including strain, growth phase, medium, oxygen level, antibiotic and carbon source presence. Results show that gene expression is an excellent predictor of environmental structure, with multi-class ensemble models achieving balanced accuracy between 70.0% (±3.5%) to 98.3% (±2.3%) for the various characteristics. Interestingly, this performance can be significantly boosted when environmental and strain characteristics are simultaneously considered, as a composite classifier that captures the inter-dependencies of three characteristics (medium, phase and strain) achieved 10.6% (±1.0%) higher performance than any individual models. Contrary to expectations, only 59% of the top informative genes were also identified as differentially expressed under the respective conditions. Functional analysis of the respective genetic signatures implicates a wide spectrum of Gene Ontology terms and KEGG pathways with condition-specific information content, including iron transport, transferases, and enterobactin synthesis. Further experimental phenotypic-to-genotypic mapping that we conducted for knock-out mutants argues for the information content of top-ranked genes. This work demonstrates the degree at which genome-scale transcriptional information can be predictive of latent, heterogeneous and seemingly disparate phenotypic and environmental characteristics, with far-reaching applications. PMID:25774498

  6. Environmental and toxicological aspects of insect growth regulators.

    PubMed Central

    Wright, J E

    1976-01-01

    Insect growth regulators (IGRs) are a class of new chemicals that interfere with maturation and reproduction in insects. Proposed hypotheses on the biochemical mechanism of action are presented herein. The environmental aspects as metabolism in soils, plants, insects, and animals suggest strongly that these chemicals undergo rapid degradation and metabolism to innocuous metabolites. The toxicological properties determined for registration of the IGR methoprene, isopropyl (E,E)-11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate, reflected no significant effects against any of the species tested. Toxicological evaluations in swine, sheep, hamsters, rats, dogs, rabbits, guinea pigs, and cattle revealed no clinical signs of toxicosis. Additionally, teratological studies in swine, sheep, hamsters, rats, and rabbits also resulted in no observable effects in the animals at the levels administered. PMID:789059

  7. The first "space" vegetables have been grown in the "SVET" greenhouse using controlled environmental conditions

    NASA Astrophysics Data System (ADS)

    Ivanova, T. N.; Bercovich, Yu. A.; Mashinskiy, A. L.; Meleshko, G. I.

    The paper describes the "SVET" project—a new generation of space greenhouse with small dimensions. Through the use of a minicomputer, "SVET" is fully capable of automatically operating and controlling environmental systems for higher plant growth. A number of preliminary studies have shown the radish and cabbage to be potentially important crops for CELSS (Closed Environmental Life Support System). The "SVET" space greenhouse was mounted on the "CRYSTAL" technological module docked to the Mir orbital space station on 10 June 1990. Soviet cosmonauts Balandin and Solovyov started the first experiments with the greenhouse on 15 June 1990. Preliminary results of seed cultivation over an initial 54-day period in "SVET" are presented. Morphometrical characteristics of plants brought back to Earth are given. Alteration in plant characteristics, such as growth and developmental changes, or morphological contents were noted. A crop of radish plants was harvested under microgravity conditions. Characteristics of plant environmental control parameters and an estimation of functional properties of control and regulation systems of the "SVET" greenhouse in space flight as received via telemetry data is reported.

  8. A Comparison of Three Conditional Growth Percentile Methods: Student Growth Percentiles, Percentile Rank Residuals, and a Matching Method

    ERIC Educational Resources Information Center

    Wyse, Adam E.; Seo, Dong Gi

    2014-01-01

    This article provides a brief overview and comparison of three conditional growth percentile methods; student growth percentiles, percentile rank residuals, and a nonparametric matching method. These approaches seek to describe student growth in terms of the relative percentile ranking of a student in relationship to students that had the same…

  9. Evaluation of Diesel Exhaust Continuous Monitors in Controlled Environmental Conditions

    PubMed Central

    Yu, Chang Ho; Patton, Allison P.; Zhang, Andrew; Fanac, Zhi-Hua (Tina); Weisel, Clifford P.; Lioy, Paul J.

    2015-01-01

    Diesel exhaust (DE) contains a variety of toxic air pollutants, including diesel particulate matter (DPM) and gaseous contaminants (e.g., carbon monoxide (CO)). DPM is dominated by fine (PM2.5) and ultrafine particles (UFP), and can be representatively determined by its thermal-optical refractory as elemental carbon (EC) or light-absorbing characteristics as black carbon (BC). The currently accepted reference method for sampling and analysis of occupational exposure to DPM is the National Institute for Occupational Safety and Health (NIOSH) Method 5040. However, this method cannot provide in-situ short-term measurements of DPM. Thus, real-time monitors are gaining attention to better examine DE exposures in occupational settings. However, real-time monitors are subject to changing environmental conditions. Field measurements have reported interferences in optical sensors and subsequent real-time readings, under conditions of high humidity and abrupt temperature changes. To begin dealing with these issues, we completed a controlled study to evaluate five real-time monitors: Airtec real-time DPM/EC Monitor, TSI SidePak Personal Aerosol Monitor AM510 (PM2.5), TSI Condensation Particle Counter 3007, microAeth AE51 BC Aethalometer, and Langan T15n CO Measurer. Tests were conducted under different temperatures (55, 70, and 80 °F), relative humidity (10, 40, and 80%), and DPM concentrations (50 and 200 µg/m3) in a controlled exposure facility. The 2-hour averaged EC measurements from the Airtec instrument showed relatively good agreement with NIOSH Method 5040 (R2=0.84; slope=1.17±0.06; N=27) and reported ~17% higher EC concentrations than the NIOSH reference method. Temperature, relative humidity, and DPM levels did not significantly affect relative differences in 2-hour averaged EC concentrations obtained by the Airtec instrument versus the NIOSH method (p<0.05). Multiple linear regression analyses, based on 1-min averaged data, suggested combined effects of up to 5

  10. Biodegradation of a Light NAPL under Varying Soil Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Yadav, B. K.; Hassanizadeh, S. M.; Kleingeld, P. J.

    2009-12-01

    To see the impact of different soil environmental conditions on LNAPL biodegradation, a series of batch, microcosm, column and 2-D tank experiments under controlled conditions have been planned. Microcosms along with batch experiments have been designed for five different moisture contents ranging from residual to saturated, and under varying temperature condition. The batches are being used for two saturated soils containing toluene. For the unsaturated cases, fifteen microcosms are designed to mimic natural conditions more closely. The microcosms consist of a transparent outer column and an air permeable, but watertight, inner tube comprised of toluene phobic material. The space between the outer column and the inner porous tube is filled with a soil having a particular moisture content with a known amount of toluene. The inner porous tube is filled with air at atmospheric pressure, providing sufficient oxygen for the degradation of considered light NAPL. A special sampling mechanism has been fabricated to enable airtight soil sampling. Four columns have been designed for studying the impact of water table fluctuation on the LNAPL fate and transport in variably-saturated soil. Water table in two columns will be static and remaining two will be subjected to a fluctuation. Finally a 2-D tank setup, made of a steel box and a glass cover, has been refurbished for bioremediation process of LNAPL from start to finish. The main body is constructed of one piece of 1.5 mm thick stainless steel formed into a box with inner dimensions of 200cm-long x 94cm-high x 4cm-deep. The front cover is made of glass wall having 19-mm thickness. The soil is going to be packed between the two walls. The groundwater will be flowing horizontally from left to right and the water table level in the tank will be controlled by two end chambers. The chambers are separated from the soil by a fine meshed stainless steel sheet. The spatial and the temporal distributions of the LNAPL and its

  11. Environmental Conditions Determine the Course and Outcome of Phytoplankton Chytridiomycosis

    PubMed Central

    Haande, Sigrid; Molversmyr, Åge

    2015-01-01

    Chytrid fungi are highly potent parasites of phytoplankton. They are thought to force phytoplankton organisms into an evolutionary arms race with high population diversity as the outcome. The underlying selection regime is known as Red Queen dynamics. However, our study suggests a more complex picture for chytrid parasitism in the cyanobacterium Planktothrix. Laboratory experiments identified a “cold thermal refuge”, inside which Planktothrix can grow without chytrid infection. A field study in two Norwegian lakes underlined the ecological significance of this finding. The study utilized sediment DNA as a biological archive in combination with existing monitoring data. In one lake, temperature and light conditions forced Planktothrix outside the thermal refuge for most of the growing season. This probably resulted in Red Queen dynamics as suggested by a high parasitic pressure exerted by chytrids, an increase in Planktothrix genotype diversity over time, and a correlation between Planktothrix genotype diversity and duration of bloom events. In the second lake, a colder climate allowed Planktothrix to largely stay inside the thermal refuge. The parasitic pressure exerted by chytrids and Planktothrix genotype diversity remained low, indicating that Planktothrix successfully evaded the Red Queen dynamics. Episodic Planktothrix blooms were observed during spring and autumn circulation, in the metalimnion or under the ice. Interestingly, both lakes were dominated by the same or related Planktothrix genotypes. Taken together, our data suggest that, depending on environmental conditions, chytrid parasitism can impose distinct selection regimes on conspecific phytoplankton populations with similar genotype composition, causing these populations to behave and perhaps to evolve differently. PMID:26714010

  12. Growth of stable order in eukaryotes from environmental energy

    PubMed Central

    Gatenby, Robert A.; Frieden, B. Roy

    2013-01-01

    Living cells are spatially bounded, but open, low entropy systems that, although far from thermodynamic equilibrium, remain stable over time. Schrodinger, Prigogine and others explored the physical principles of living systems primarily in terms of the thermodynamics of order, energy and entropy. This provided valuable insights, but not a comprehensive model. We propose that the first principles of living systems must include: 1. Information dynamics, which permits the synthesis of specific and reproducible, structurally-ordered components within the system; and 2. Non-equilibrium thermodynamics, which provides a feedback mechanism that generate soptimizing Darwinian forces. The information in living system encodes structural order with high specificity that forms well-defined spatial boundaries and self replicates by efficiently converting environmental energy into order. This is a feed-forward loop that permits increasing order – a process observed in other order-forming system such as crystals or planets. . This is, however, subject to environmental perturbations that could increase entropy (decrease order), perhaps fatally. Critically, living systems are fundamentally unstable because they exist far from thermodynamic equilibrium, which allows three potential outcomes: (1) Stability as environmental perturbations that result in loss of order also generate information that flows to the nucleus and initiates a corresponding response to restore baseline state(2) Death due to a return to thermodynamic equilibrium in systems that cannot maintain order in the context of local conditions and perturbations. This rapidly eliminates failed systems. (3) Mitosis in response to attaining order that is too high to be sustainable by environmental energy. Each daughter cell has a much smaller energy requirement, thereby avoiding the instability and returning to a baseline state. These outcomes that result from non-equilibrium thermodynamics permit Darwinian forces which

  13. Transport Across Chloroplast Membranes: Optimizing Photosynthesis for Adverse Environmental Conditions.

    PubMed

    Pottosin, Igor; Shabala, Sergey

    2016-03-01

    Chloroplasts are central to solar light harvesting and photosynthesis. Optimal chloroplast functioning is vitally dependent on a very intensive traffic of metabolites and ions between the cytosol and stroma, and should be attuned for adverse environmental conditions. This is achieved by an orchestrated regulation of a variety of transport systems located at chloroplast membranes such as porines, solute channels, ion-specific cation and anion channels, and various primary and secondary active transport systems. In this review we describe the molecular nature and functional properties of the inner and outer envelope and thylakoid membrane channels and transporters. We then discuss how their orchestrated regulation affects thylakoid structure, electron transport and excitation energy transfer, proton-motive force partition, ion homeostasis, stromal pH regulation, and volume regulation. We link the activity of key cation and anion transport systems with stress-specific signaling processes in chloroplasts, and discuss how these signals interact with the signals generated in other organelles to optimize the cell performance, with a special emphasis on Ca(2+) and reactive oxygen species signaling. PMID:26597501

  14. Age at menarche: the influence of environmental conditions

    NASA Astrophysics Data System (ADS)

    Saar, E.; Shalev, C.; Dalal, I.; Sod-Moriah, U. A.

    1988-03-01

    Age at menarche was studied by the recollection method in two groups of Causasian Jewish high school girls, inhabitants of two towns in Israel, Safad and Elat. The two towns differ mainly in climatic conditions. The age at menarche was found to be significantly lower ( P<0.02) in the hot town of Elat than in the temperate town of Safad: 13.30±1.21 and 13.58±0.9 years, respectively (mean ±SD). A significant association was found between the age at menarche and the town in which the girls lived. Accordingly, in the hot town of Elat, the percentage of girls who had their first menstrual cycle by the age of 12 years and earlier, was more than double that of the girls in Safad (17.9% and 7.1%, respectively). It is concluded that the environmental temperature, with or without any possible interaction of humidity, is probably responsible for the tendency for an earlier onset of menarche in girls living in the hot town of Elat.

  15. Oligotrophic Bacteria Enhance Algal Growth under Iron-Deficient Conditions

    PubMed Central

    Keshtacher-Liebso..., E.; Hadar, Y.; Chen, Y.

    1995-01-01

    A Halomonas sp., a marine halophilic and oligotrophic bacterium, was grown on exudates of Dunaliella bardawil. The bacteria increased the solubility of Fe, thereby enhancing its availability to the algae. As a result, the algal growth rate increased. Because of these syntrophic relations, growth of the marine alga D. bardawil was facilitated at Fe levels that would otherwise induce Fe deficiency and inhibit algal growth. PMID:16535058

  16. Effect of environmental conditions on extracellular lipases production and fungal morphology from Aspergillus niger MYA 135.

    PubMed

    Colin, Veronica Leticia; Baigori, Mario Domingo; Pera, Licia Maria

    2010-02-01

    Under the current assay conditions, lipase production in mineral medium was only detected in the presence of vegetable oils, reaching the highest specific activity with olive oil. In this way, effect of different environmental conditions on fungal morphology and olive oil-induced extracellular lipases production from Aspergillus niger MYA 135 was studied. It was observed that addition of 1.0 g l(-1) FeCl(3)to the medium encouraged filamentous growth and increased the specific activity 6.6 fold after 4 days of incubation compared to the control. However, major novelty of this study was the satisfactory production of an acidic lipase at initial pH 3 of the culture medium (1.74 +/- 0.06 mU microg(-1)), since its potencial applications in food and pharmaceutical industry are highly promising. PMID:20082373

  17. Impact of Environmental Conditions on the Survival of Cryptosporidium and Giardia on Environmental Surfaces

    PubMed Central

    Alum, Absar; Absar, Isra M.; Asaad, Hamas; Rubino, Joseph R.; Ijaz, M. Khalid

    2014-01-01

    The objective of this study was to find out the impact of environmental conditions on the survival of intestinal parasites on environmental surfaces commonly implicated in the transmission of these parasites. The study was performed by incubating Cryptosporidium and Giardia (oo)cysts on environmentally relevant surfaces such as brushed stainless steel, formica, ceramic, fabric, and skin. Parallel experiments were conducted using clean and soiled coupons incubated under three temperatures. The die-off coefficient rates (K) were calculated using first-order exponential formula. For both parasites, the fastest die-off was recorded on fabric, followed by ceramic, formica, skin, and steel. Die-off rates were directly correlated to the incubation temperatures and surface porosity. The presence of organic matter enhanced the survivability of the resting stages of test parasites. The decay rates calculated in this study can be used in models for public health decision-making process and highlights the mitigation role of hand hygiene agents in their prevention and control. PMID:25045350

  18. Carbonic Anhydrase Is Essential for Streptococcus pneumoniae Growth in Environmental Ambient Air▿ †

    PubMed Central

    Burghout, Peter; Cron, Lorelei E.; Gradstedt, Henrik; Quintero, Beatriz; Simonetti, Elles; Bijlsma, Jetta J. E.; Bootsma, Hester J.; Hermans, Peter W. M.

    2010-01-01

    The respiratory tract pathogen Streptococcus pneumoniae needs to adapt to the different levels of carbon dioxide (CO2) it encounters during transmission, colonization, and infection. Since CO2 is important for various cellular processes, factors that allow optimal CO2 sequestering are likely to be important for pneumococcal growth and survival. In this study, we showed that the putative pneumococcal carbonic anhydrase (PCA) is essential for in vitro growth of S. pneumoniae under the CO2-poor conditions found in environmental ambient air. Enzymatic analysis showed that PCA catalyzes the reversible hydration of CO2 to bicarbonate (HCO3−), an essential step to prevent the cellular release of CO2. The addition of unsaturated fatty acids (UFAs) reversed the CO2-dependent in vitro growth inhibition of S. pneumoniae strains lacking the pca gene (Δpca), indicating that PCA-mediated CO2 fixation is at least associated with HCO3−-dependent de novo biosynthesis of UFAs. Besides being necessary for growth in environmental ambient conditions, PCA-mediated CO2 fixation pathways appear to be required for intracellular survival in host cells. This effect was especially pronounced during invasion of human brain microvascular endothelial cells (HBMEC) and uptake by murine J774 macrophage cells but not during interaction of S. pneumoniae with Detroit 562 pharyngeal epithelial cells. Finally, the highly conserved pca gene was found to be invariably present in both CO2-independent and naturally circulating CO2-dependent strains, suggesting a conserved essential role for PCA and PCA-mediated CO2 fixation pathways for pneumococcal growth and survival. PMID:20525828

  19. Growth conditions, elemental accumulation and induced physiological changes in Chinese cabbage.

    PubMed

    Moreno, Diego A; Víllora, Gemma; Ruiz, Juan M; Romero, Luis

    2003-08-01

    Soils contaminated with low levels of heavy metals and other trace elements are now frequently used for vegetable growing. In this situation, heavy metals and trace elements from these polluted soils may accumulate in the agricultural plants being grown in them and thereby enter the human food chain. The objectives of this study are to elucidate the effects of growth conditions, manipulated by the crop covers, on the phytoaccumulation of elements, and to investigate the conceivable influences of these conditions on the plant biochemistry. In three consecutive years of field experiments, open air (T(0)), and floating rowcover treatments (T(1): perforated polyethylene 50 micrometers; T(2): polypropylene 17 gm(-2)) were used to produce different environmental conditions for the growth of Chinese cabbage [Brassica rapa L. (Pekinensis group) cv. 'Nagaoka 50']. Five samplings (whole tops) were carried out from transplanting to harvest and measurements of B, Al, Ag, Si and Ca concentration as well as phenolics (orto-diphenols, total phenols and anthocyanins), pectic fractions, amino acids (histidine, phenylalanine and tyrosine) and polyphenol oxidase activity, were carried out in samples. The T(1) (perforated polyethylene sheet) gave greater B, Al, Ag and Si concentration and phytoextraction (in weight units) than the open-air control. These findings can help to develop new cost-effective techniques for phytoremediation as the application of plastic covers in the field. The build-up of heavy metals in those crops would make the product less suitable for human consumption. PMID:12781236

  20. Prediction of glass durability as a function of environmental conditions

    SciTech Connect

    Jantzen, C M

    1988-01-01

    A thermodynamic model of glass durability is applied to natural, ancient, and nuclear waste glasses. The durabilities of over 150 different natural and man-made glasses, including actual ancient Roman and Islamic glasses (Jalame ca. 350 AD, Nishapur 10-11th century AD and Gorgon 9-11th century AD), are compared. Glass durability is a function of the thermodynamic hydration free energy, ..delta..G/sub hyd/, which can be calculated from glass composition and solution pH. The durability of the most durable nuclear waste glasses examined was /approximately/10/sup 6/ years. The least durable waste glass formulations were comparable in durability to the most durable simulated medieval window glasses of /approximately/10/sup 3/ years. In this manner, the durability of nuclear waste glasses has been interpolated to be /approximately/10/sup 6/ years and no less than 10/sup 3/ years. Hydration thermodynamics have been shown to be applicable to the dissolution of glass in various natural environments. Groundwater-glass interactions relative to geologic disposal of nuclear waste, hydration rind dating of obsidians, andor other archeological studies can be modeled, e.g., the relative durabilities of six simulated medieval window glasses have been correctly predicted for both laboratory (one month) and burial (5 years) experiments. Effects of solution pH on glass dissolution has been determined experimentally for the 150 different glasses and can be predicted theoretically by hydration thermodynamics. The effects of solution redox on dissolution of glass matrix elements such as SI and B have shown to be minimal. The combined effects of solution pH and Eh have been described and unified by construction of thermodynamically calculated Pourbaix (pH-Eh) diagrams for glass dissolution. The Pourbaix diagrams have been quantified to describe glass dissolution as a function of environmental conditions by use of the data derived from hydration thermodynamics. 56 refs., 7 figs.

  1. Race, Social and Environmental Conditions, and Health Behaviors in Men.

    PubMed

    Thorpe, Roland J; Kennedy-Hendricks, Alene; Griffith, Derek M; Bruce, Marino A; Coa, Kisha; Bell, Caryn N; Young, Jessica; Bowie, Janice V; LaVeist, Thomas A

    2015-01-01

    Although understanding race differences in health behaviors among men is an important step in reducing disparities in leading causes of death in the United States, progress has been stifled when using national data because of the confounding of race, socioeconomic status, and residential segregation. The purpose of this study is to examine the nature of disparities in health behaviors among African American and white men in the Exploring Health Disparities in Integrated Communities Study-Southwest Baltimore, which was conducted in a racially integrated neighborhood of Baltimore to data from the 2003 National Health Interview Survey. After adjusting for age, marital status, insurance, income, educational attainment, poor or fair health, and obesity status, African American men in National Health Interview Survey had greater odds of being physically inactive (odds ratio [OR] = 1.48; 95% confidence interval [CI], 129-1.69), reduced odds of being a current smoker (OR = 0.77; 95% CI, 0.65-0.90), and reduced odds of being a current drinker (OR = 0.58; 95% CI, 0.50-0.67). In the Exploring Health Disparities in Integrated Communities Study-Southwest Baltimore sample, African American and white men had similar odds of being physically inactive (OR = 0.79; 95% CI, 0.50-1.24), being a current smoker (OR = 0.86; 95% CI, 0.60-1.23), or being a current drinker (OR = 1.34; 95% CI, 0.81-2.21). Because race disparities in these health behaviors were ameliorated in the sample where African American and white men were living under similar social, environmental, and socioeconomic status conditions, these findings suggest that social environment may be an important determinant of health behaviors among African American and white men. Public health interventions and health promotion strategies should consider the social environment when seeking to better understand men's health disparities. PMID:26291190

  2. ECO and RESOLVE: Galaxy Disk Growth in Environmental Context

    NASA Astrophysics Data System (ADS)

    Moffett, Amanda J.; Kannappan, Sheila J.; Berlind, Andreas A.; Eckert, Kathleen D.; Stark, David V.; Hendel, David; Norris, Mark A.; Grogin, Norman A.

    2015-10-01

    We study the relationships between galaxy environments and galaxy properties related to disk (re)growth, considering two highly complete samples that are approximately baryonic mass limited into the high-mass dwarf galaxy regime, the Environmental COntext catalog (data release herein) and the B-semester region of the REsolved Spectroscopy Of a Local VolumE survey. We quantify galaxy environments using both group identification and smoothed galaxy density field methods. We use by-eye and quantitative morphological classifications plus atomic gas content measurements and estimates. We find that blue early-type (E/S0) galaxies, gas-dominated galaxies, and UV-bright disk host galaxies all become distinctly more common below group halo mass ˜ {10}11.5 {M}⊙ , implying that this low group halo mass regime may be a preferred regime for significant disk growth activity. We also find that blue early-type and blue late-type galaxies inhabit environments of similar group halo mass at fixed baryonic mass, consistent with a scenario in which blue early-types can regrow late-type disks. In fact, we find that the only significant difference in the typical group halo mass inhabited by different galaxy classes is for satellite galaxies with different colors, where at fixed baryonic mass red early- and late-types have higher typical group halo masses than blue early- and late-types. More generally, we argue that the traditional morphology-environment relation (i.e., that denser environments tend to have more early-types) can be largely attributed to the morphology-galaxy mass relation for centrals and the color-environment relation for satellites.

  3. ECO and RESOLVE: Morphology and Disk Growth in Environmental Context

    NASA Astrophysics Data System (ADS)

    Moffett, Amanda J.; Kannappan, Sheila; Berlind, Andreas A.; Eckert, Kathleen D.; Stark, David; Hendel, David; Norris, Mark A.; Grogin, Norman A.; RESOLVE Team

    2016-01-01

    We present the first data release of the Environmental COntext (ECO) catalog, which was designed to surround and complement the RESOLVE survey with matched photometry, gas and stellar mass estimates, and environment metrics for ~13,000 galaxies in a >500,000 cubic Mpc volume. In the first results from ECO, we study the phenomenon of galaxy disk growth by considering by-eye and quantitative morphological classifications as well as galaxy environments quantified using group identifications and halo abundance matching (on integrated r-band luminosity) as well as smoothed galaxy density fields. Additionally, we derive HI gas masses and upper limits from ALFALFA data and HI mass estimates from the photometric gas fraction technique. We find that blue early-type (E/S0) galaxies, gas-dominated galaxies, and UV-bright disk host galaxies all become distinctly more common below group halo mass ˜10^11.5 Msun, implying that this low group halo mass regime may be a preferred regime for significant disk growth activity. We also find that blue early-type and blue late-type galaxies inhabit environments of similar group halo mass at fixed baryonic mass, consistent with a scenario in which blue early types can regrow late-type disks. More generally, we argue that the traditional morphology-environment relation (i.e., that denser environments have more early types) can be largely attributed to the morphology-galaxy mass relation for centrals and the color-environment relation for satellites. This work has been supported through NSF grant AST-0955368.

  4. Adaptations of the Secretome of Candida albicans in Response to Host-Related Environmental Conditions

    PubMed Central

    Brul, Stanley

    2015-01-01

    The wall proteome and the secretome of the fungal pathogen Candida albicans help it to thrive in multiple niches of the human body. Mass spectrometry has allowed researchers to study the dynamics of both subproteomes. Here, we discuss some major responses of the secretome to host-related environmental conditions. Three β-1,3-glucan-modifying enzymes, Mp65, Sun41, and Tos1, are consistently found in large amounts in culture supernatants, suggesting that they are needed for construction and expansion of the cell wall β-1,3-glucan layer and thus correlate with growth and might serve as diagnostic biomarkers. The genes ENG1, CHT3, and SCW11, which encode an endoglucanase, the major chitinase, and a β-1,3-glucan-modifying enzyme, respectively, are periodically expressed and peak in M/G1. The corresponding protein abundances in the medium correlate with the degree of cell separation during single-yeast-cell, pseudohyphal, and hyphal growth. We also discuss the observation that cells treated with fluconazole, or other agents causing cell surface stress, form pseudohyphal aggregates. Fluconazole-treated cells secrete abundant amounts of the transglucosylase Phr1, which is involved in the accumulation of β-1,3-glucan in biofilms, raising the question whether this is a general response to cell surface stress. Other abundant secretome proteins also contribute to biofilm formation, emphasizing the important role of secretome proteins in this mode of growth. Finally, we discuss the relevance of these observations to therapeutic intervention. Together, these data illustrate that C. albicans actively adapts its secretome to environmental conditions, thus promoting its survival in widely divergent niches of the human body. PMID:26453650

  5. Genomic sweep and potential genetic rescue during limiting environmental conditions in an isolated wolf population

    PubMed Central

    Adams, Jennifer R.; Vucetich, Leah M.; Hedrick, Philip W.; Peterson, Rolf O.; Vucetich, John A.

    2011-01-01

    Genetic rescue, in which the introduction of one or more unrelated individuals into an inbred population results in the reduction of detrimental genetic effects and an increase in one or more vital rates, is a potentially important management tool for mitigating adverse effects of inbreeding. We used molecular techniques to document the consequences of a male wolf (Canis lupus) that immigrated, on its own, across Lake Superior ice to the small, inbred wolf population in Isle Royale National Park. The immigrant's fitness so exceeded that of native wolves that within 2.5 generations, he was related to every individual in the population and his ancestry constituted 56 per cent of the population, resulting in a selective sweep of the total genome. In other words, all the male ancestry (50% of the total ancestry) descended from this immigrant, plus 6 per cent owing to the success of some of his inbred offspring. The immigration event occurred in an environment where space was limiting (i.e. packs occupied all available territories) and during a time when environmental conditions had deteriorated (i.e. wolves' prey declined). These conditions probably explain why the immigration event did not obviously improve the population's demography (e.g. increased population numbers or growth rate). Our results show that the beneficial effects of gene flow may be substantial and quickly manifest, short-lived under some circumstances, and how the demographic benefits of genetic rescue might be masked by environmental conditions. PMID:21450731

  6. Genomic sweep and potential genetic rescue during limiting environmental conditions in an isolated wolf population.

    PubMed

    Adams, Jennifer R; Vucetich, Leah M; Hedrick, Philip W; Peterson, Rolf O; Vucetich, John A

    2011-11-22

    Genetic rescue, in which the introduction of one or more unrelated individuals into an inbred population results in the reduction of detrimental genetic effects and an increase in one or more vital rates, is a potentially important management tool for mitigating adverse effects of inbreeding. We used molecular techniques to document the consequences of a male wolf (Canis lupus) that immigrated, on its own, across Lake Superior ice to the small, inbred wolf population in Isle Royale National Park. The immigrant's fitness so exceeded that of native wolves that within 2.5 generations, he was related to every individual in the population and his ancestry constituted 56 per cent of the population, resulting in a selective sweep of the total genome. In other words, all the male ancestry (50% of the total ancestry) descended from this immigrant, plus 6 per cent owing to the success of some of his inbred offspring. The immigration event occurred in an environment where space was limiting (i.e. packs occupied all available territories) and during a time when environmental conditions had deteriorated (i.e. wolves' prey declined). These conditions probably explain why the immigration event did not obviously improve the population's demography (e.g. increased population numbers or growth rate). Our results show that the beneficial effects of gene flow may be substantial and quickly manifest, short-lived under some circumstances, and how the demographic benefits of genetic rescue might be masked by environmental conditions. PMID:21450731

  7. EVALUATION OF GEOMEMBRANE SEAMS EXPOSED TO SELECTED ENVIRONMENTAL CONDITIONS

    EPA Science Inventory

    The integrity of a geomembrane installation is no better than its seaming system. In an attempt to learn more about the strength and durability of presently available seaming systems, the Municipal Environmental Research Laboratory of the United States Environmental Protection Ag...

  8. Biological and Environmental Initial Conditions Shape the Trajectories of Cognitive and Social-Emotional Development across the First Years of Life

    ERIC Educational Resources Information Center

    Feldman, Ruth; Eidelman, Arthur I.

    2009-01-01

    Human development is thought to evolve from the dynamic interchange of biological dispositions and environmental provisions; yet the effects of specific biological and environmental birth conditions on the trajectories of cognitive and social-emotional growth have rarely been studied. We observed 126 children at six time-points from birth to 5…

  9. Shell growth and environmental control of methanophyllic Thyasirid bivalves from Svalbard cold seeps

    NASA Astrophysics Data System (ADS)

    Carroll, Michael; Åström, Emmelie; Ambrose, William; Locke, William; Oliver, Graham; Hong, Wei-Li; Carroll, JoLynn

    2016-04-01

    The analysis of molluscan shell material (sclerochronology) can provide information about an organism's age, growth history, and environmental conditions during its lifetime. Bivalve molluscs are common members of hydrothermal vents and methane cold seeps communities where, supported by chemosynthetic symbionts, they can reach high density and biomass. But little is known about methane-associated bivalve populations inhabiting high-Arctic cold seeps, and sclerochronological analysis of methane-influenced bivalves is rare. We measured growth rates and elemental and isotopic shell signatures in a newly discovered species of bivalve (Thyasiridae) from cold seeps at 350-390m depth southwest of Svalbard. First discovered in 2014, recently described shells of Thyasira capitanea sp.nov. were found at 2 independent seep systems in Storfjordrenna. Mean shell carbon isotopic ratios from inorganic δ13C (mean = -4.8‰) and organic δ13C (mean = -26.9‰) fractions clearly indicate a methane influenced habitat and food source for these organisms. Shell mineral ratios (Li/Ca, Mg/Ca, Mn/Ca, Fe/Ca, Sr/Ca, Ba/Ca, Pb/Ca) sampled along the axis of growth with laser-ablated ICP-MS exhibit variability through time and between sites, suggesting that concentrations of these elements that may be affected by methane emissions. The mineralogical data also elucidates the internal pattern of shell deposition and growth checks, and combined with the isotopic and growth rate data, enables us to interpret the temporal history of methane release from these locations.

  10. 75 FR 47881 - Fifty-Sixth Meeting, RTCA Special Committee 135: Environmental Conditions and Test Procedures for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ... Federal Aviation Administration Fifty-Sixth Meeting, RTCA Special Committee 135: Environmental Conditions... of Transportation (DOT). ACTION: Notice of RTCA Special Committee 135: Environmental Conditions and... public of a meeting of RTCA Special Committee 135: Environmental Conditions and Test Procedures...

  11. OVERALL MASS TRANSFER COEFFICIENT FOR POLLUTANT EMISSIONS FROM SMALL WATER POOLS UNDER SIMULATED INDOOR ENVIRONMENTAL CONDITIONS

    EPA Science Inventory

    Small chamber tests were conducted to experimentally determine the overall mass transfer coefficient for pollutant emissions from still water under simulated indoor-residential or occupational-environmental conditions. Fourteen tests were conducted in small environmental chambers...

  12. Bathymodiolus growth dynamics in relation to environmental fluctuations in vent habitats

    NASA Astrophysics Data System (ADS)

    Nedoncelle, K.; Lartaud, F.; Contreira Pereira, L.; Yücel, M.; Thurnherr, A. M.; Mullineaux, L.; Le Bris, N.

    2015-12-01

    The deep-sea mussel Bathymodiolus thermophilus is a dominant species in the East Pacific Rise (EPR) hydrothermal vent fields. On the EPR volcanically unstable area, this late colonizer reaches high biomass within 4-5 years on new habitats created by lava flows. The environmental conditions and growth rates characterizing the reestablishment of B. thermophilus populations are however largely unknown, leaving unconstrained the role of this foundation species in the ecosystem dynamics. A typical example from the vent field at 9°50'N that was affected by the last massive eruption was the Bio-9 hydrothermal vent site. Here, six years later, a large mussel population had reestablished. The von Bertalanffy growth model estimates the oldest B. thermophilus specimens to be 1.3 year-old in March 2012, consistent with the observation of scarce juveniles among tubeworms in 2010. Younger cohorts were also observed in 2012 but the low number of individuals, relatively to older cohorts, suggests limited survival or growth of new recruits at this site, that could reflect unsuitable habitat conditions. To further explore this asumption, we investigated the relationships between mussel growth dynamics and habitat properties. The approach combined sclerochronology analyses of daily shell growth with continuous habitat monitoring for two mussel assemblages; one from the Bio-9 new settlement and a second from the V-vent site unreached by the lava flow. At both vent sites, semi-diurnal fluctuations of abiotic conditions were recorded using sensors deployed in the mussel bed over 5 to 10 days. These data depict steep transitions from well oxygenated to oxygen-depleted conditions and from alkaline to acidic pH, combined with intermittent sulfide exposure. These semi-diurnal fluctuations exhibited marked changes in amplitude over time, exposing mussels to distinct regimes of abiotic constraints. The V-vent samples allowed growth patterns to be examined at the scale of individual life and

  13. INTEGRATED ASSESSMENTS OF THE ENVIRONMENTAL CONDITION OF THE CHESAPEAKE BAY

    EPA Science Inventory

    The Chesapeake Bay, the Nation's largest estuary, has experienced environmental degradation due to nutrient enrichment, contamination, loss of habitat, and over-harvesting of living resources. Resource managers need information on the extent of degradation to formulate restoratio...

  14. Plasticity of Streptomyces coelicolor Membrane Composition Under Different Growth Conditions and During Development

    PubMed Central

    Sandoval-Calderón, Mario; Nguyen, Don D.; Kapono, Clifford A.; Herron, Paul; Dorrestein, Pieter C.; Sohlenkamp, Christian

    2015-01-01

    Streptomyces coelicolor is a model actinomycete that is well known for the diversity of its secondary metabolism and its complex life cycle. As a soil inhabitant, it is exposed to heterogeneous and frequently changing environmental circumstances. In the present work, we studied the effect of diverse growth conditions and phosphate depletion on its lipid profile and the relationship between membrane lipid composition and development in S. coelicolor. The lipid profile from cultures grown on solid media, which is closer to the natural habitat of this microorganism, does not resemble the previously reported lipid composition from liquid grown cultures of S. coelicolor. Wide variations were also observed across different media, growth phases, and developmental stages indicating active membrane remodeling. Ornithine lipids (OL) are phosphorus-free polar lipids that were accumulated mainly during sporulation stages, but were also major components of the membrane under phosphorus limitation. In contrast, phosphatidylethanolamine, which had been reported as one of the major polar lipids in the genus Streptomyces, is almost absent under these conditions. We identified one of the genes responsible for the synthesis of OL (SCO0921) and found that its inactivation causes the absence of OL, precocious morphological development and actinorhodin production. Our observations indicate a remarkable plasticity of the membrane composition in this bacterial species, reveal a higher metabolic complexity than expected, and suggest a relationship between cytoplasmic membrane components and the differentiation programs in S. coelicolor. PMID:26733994

  15. Deformation and crack growth response under cyclic creep conditions

    SciTech Connect

    Brust, F.W. Jr.

    1995-12-31

    To increase energy efficiency, new plants must operate at higher and higher temperatures. Moreover, power generation equipment continues to age and is being used far beyond its intended original design life. Some recent failures which unfortunately occurred with serious consequences have clearly illustrated that current methods for insuring safety and reliability of high temperature equipment is inadequate. Because of these concerns, an understanding of the high-temperature crack growth process is very important and has led to the following studies of the high temperature failure process. This effort summarizes the results of some recent studies which investigate the phenomenon of high temperature creep fatigue crack growth. Experimental results which detail the process of creep fatigue, analytical studies which investigate why current methods are ineffective, and finally, a new approach which is based on the T{sup *}-integral and its ability to characterize the creep-fatigue crack growth process are discussed. The potential validity of this new predictive methodology is illustrated.

  16. Interactive effects of shelter and conspecific density shape mortality, growth, and condition in juvenile reef fish.

    PubMed

    Ford, John R; Shima, Jeffrey S; Swearer, Stephen E

    2016-06-01

    How landscape context influences density-dependent processes is important, as environmental heterogeneity can confound estimates of density dependence in demographic parameters. Here we evaluate 19 populations in a shoaling temperate reef fish (Trachinops caudimaculatus) metapopulation within a heterogeneous seascape (Port Phillip Bay, Australia) to show empirically that shelter availability and population density interact to influence juvenile mortality, growth and condition. Although heterogeneity in shelter availability obscured the underlying patterns of density dependence in different ways, the combination of habitat and its interaction with density were two to six times more important than density alone in explaining variation in demographic parameters for juveniles. These findings contradict many small-scale studies and highlight the need for landscape-scale observations of how density dependence interacts with resource availability and competition to better understand how demographic parameters influence the dynamics of metapopulations in heterogeneous environments. PMID:27459768

  17. Correlating electrical resistance to growth conditions for multiwalled carbon nanotubes

    SciTech Connect

    Lan, Chun; Amama, Placidus B.; Fisher, Timothy S.; Reifenberger, Ronald G.

    2007-08-27

    A correlation between growth temperature and electrical resistance of multiwalled carbon nanotubes (MWNTs) has been established by measuring the resistance of individual MWNTs grown by microwave plasma-enhanced chemical vapor deposition (PECVD) at 800, 900, and 950 deg. C. The lowest resistances were obtained mainly from MWNTs grown at 900 deg. C. The MWNT resistance is larger on average at lower (800 deg. C) and higher (950 deg. C) growth temperatures. The resistance of MWNTs correlated well with other MWNT quality indices obtained from Raman spectra. This study identifies a temperature window for growing higher-quality MWNTs with fewer defects and lower resistance by PECVD.

  18. Correlating electrical resistance to growth conditions for multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lan, Chun; Amama, Placidus B.; Fisher, Timothy S.; Reifenberger, Ronald G.

    2007-08-01

    A correlation between growth temperature and electrical resistance of multiwalled carbon nanotubes (MWNTs) has been established by measuring the resistance of individual MWNTs grown by microwave plasma-enhanced chemical vapor deposition (PECVD) at 800, 900, and 950°C. The lowest resistances were obtained mainly from MWNTs grown at 900°C. The MWNT resistance is larger on average at lower (800°C) and higher (950°C) growth temperatures. The resistance of MWNTs correlated well with other MWNT quality indices obtained from Raman spectra. This study identifies a temperature window for growing higher-quality MWNTs with fewer defects and lower resistance by PECVD.

  19. IGF-1 Release Kinetics from Chitosan Microparticles Fabricated Using Environmentally Benign Conditions

    PubMed Central

    Mantripragada, Venkata P.; Jayasuriya, Ambalangodage C.

    2014-01-01

    The main objective of this study is to maximize growth factor encapsulation efficiency into microparticles. The novelty of this study is to maximize the encapsulated growth factors into microparticles by minimizing the use of organic solvents and using relatively low temperatures. The microparticles were fabricated using chitosan biopolymer as a base polymer and cross-linked with tripolyphosphate (TPP). Insulin like-growth factor-1 (IGF-1) was encapsulated into microparticles to study release kinetics and bioactivity. In order to authenticate the harms of using organic solvents like hexane and acetone during microparticle preparation, IGF-1 encapsulated microparticles prepared by the emulsification and coacervation methods were compared. The microparticles fabricated by emulsification method have shown a significant decrease (p<0.05) in IGF-1 encapsulation efficiency, and cumulative release during the two-week period. The biocompatibility of chitosan microparticles and the bioactivity of the released IGF-1 were determined in vitro by live/dead viability assay. The mineralization data observed with Von Kossa assay, was supported by mRNA expression levels of osterix and runx2, which are transcription factors necessary for osteoblasts differentiation. Real time RT-PCR data showed an increased expression of runx 2 and a decreased expression of osterix over time, indicating differentiating osteoblasts. Chitosan microparticles prepared in optimum environmental conditions are a promising controlled delivery system for cells to attach, proliferate, differentiate and mineralize, thereby acting as a suitable bone repairing material. PMID:25063148

  20. Environmental conditions that influence toxin biosynthesis in cyanobacteria.

    PubMed

    Neilan, Brett A; Pearson, Leanne A; Muenchhoff, Julia; Moffitt, Michelle C; Dittmann, Elke

    2013-05-01

    Over the past 15 years, the genetic basis for production of many cyanobacterial bioactive compounds has been described. This knowledge has enabled investigations into the environmental factors that regulate the production of these toxins at the molecular level. Such molecular or systems level studies are also likely to reveal the physiological role of the toxin and contribute to effective water resource management. This review focuses on the environmental regulation of some of the most relevant cyanotoxins, namely the microcystins, nodularin, cylindrospermopsin, saxitoxins, anatoxins and jamaicamides. PMID:22429476

  1. Predicting Plant Performance Under Simultaneously Changing Environmental Conditions—The Interplay Between Temperature, Light, and Internode Growth

    PubMed Central

    Kahlen, Katrin; Chen, Tsu-Wei

    2015-01-01

    Plant performance is significantly influenced by prevailing light and temperature conditions during plant growth and development. For plants exposed to natural fluctuations in abiotic environmental conditions it is however laborious and cumbersome to experimentally assign any contribution of individual environmental factors to plant responses. This study aimed at analyzing the interplay between light, temperature and internode growth based on model approaches. We extended the light-sensitive virtual plant model L-Cucumber by implementing a common Arrhenius function for appearance rates, growth rates, and growth durations. For two greenhouse experiments, the temperature-sensitive model approach resulted in a precise prediction of cucumber mean internode lengths and number of internodes, as well as in accurately predicted patterns of individual internode lengths along the main stem. In addition, a system's analysis revealed that environmental data averaged over the experimental period were not necessarily related to internode performance. Finally, the need for a species-specific parameterization of the temperature response function and related aspects in modeling temperature effects on plant development and growth is discussed. PMID:26734036

  2. [Role of micro-organisms in adapting plants to environmental stress conditions].

    PubMed

    Hirt, Heribert

    2012-01-01

    Due to their sessile nature, plants have always been confronted to various abiotic and biotic stresses in their immediate environment. As a consequence, the survival of plants depended on their ability to adjust rapidly their physiology, development and growth to escape or mitigate the impacts of stress. All plants are known to perceive and respond to stress signals such as drought, heat, salinity, attacks by herbivores and pathogens. Some biochemical processes are common to all plant stress responses including the production of certain stress proteins and metabolites, as well as the modification of the reactive oxygen species (ROS) metabolism. Although there has been extensive research in the plant stress response field, it is not yet known which factors are responsible for conferring to some plant species the capacity to colonize extreme habitats. Although considerable progress has been made in our understanding of plant stress physiology, the contribution of the plant-associated microbial community in the soil, commonly called the rhizosphere, has only recently received enhanced attention. Recent studies showed that some plant species in natural habitats require microbial associations for stress tolerance and survival. Since plants have colonized land, they have evolved mechanisms to respond to changing environmental conditions and settle in extreme habitats. Although many plants lack the adaptive capability to adapt to stress conditions, the ability of a variety of plants to adapt to stress conditions appears to depend on the association with microbes, raising a number of questions: can all plants improve stress tolerance when associated with their appropriate microbial partners? Did we miss identifying the right partners for a given plant species or variety? What distinguishes the microbes and plants that are adapted to extreme environmental conditions from those living in temperate zones? Answers to these questions are likely to revolutionize plant biology

  3. Relationship between fumonisin production and FUM gene expression in Fusarium verticillioides under different environmental conditions.

    PubMed

    Fanelli, Francesca; Iversen, Anita; Logrieco, Antonio F; Mulè, Giuseppina

    2013-01-01

    Fusarium verticillioides is the main source of fumonisins, a group of mycotoxins that can contaminate maize-based food and feed and cause diseases in humans and animals. The study of the effect of different environmental conditions on toxin production should provide information that can be used to develop strategies to minimize the risk. This study analysed the effect of temperature (15°C-35°C), water activity (a(w): 0.999-0.93), salinity (0-125 g l(-1) NaCl) and pH (5-8) on the growth and production of fumonisins B(1) (FB1), B(2) (FB2) and B(3) (FB3) and the expression of FUM1 and FUM21 in F. verticillioides. The highest growth rate was measured at 25°C, a(w) of 0.998-0.99 and 0-25 g l(-1) of NaCl. Optimal conditions for fumonisin production were 30°C, a(w) of 0.99, 25 g l(-1) of NaCl and pH 5; nevertheless, the strain showed a good adaptability and was able to produce moderate levels of fumonisins under a wide range of conditions. Gene expression mirrored fumonisin production profile under all conditions with the exception of temperature: FUM1 and FUM21 expression was highest at 15°C, while maximum fumonisin production was at 30°C. These data indicate that a post-transcriptional regulation mechanism could account for the different optimal temperatures for FUM gene expression and fumonisin production. PMID:23167929

  4. Perceiving environmental properties from motion information: Minimal conditions

    NASA Technical Reports Server (NTRS)

    Proffitt, Dennis R.; Kaiser, Mary K.

    1989-01-01

    The status of motion as a minimal information source for perceiving the environmental properties of surface segregation, three-dimensional (3-D) form, displacement, and dynamics is discussed. The selection of these particular properties was motivated by a desire to present research on perceiving properties that span the range of dimensional complexity.

  5. 75 FR 55312 - Preparation of a Programmatic Environmental Impact Statement (PEIS) for the Growth, Realignment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    .... Additional vehicle traffic and growth in school population associated with an increase in Soldier populations... Department of the Army Preparation of a Programmatic Environmental Impact Statement (PEIS) for the Growth... Intent. SUMMARY: The Army announces its intent to prepare a PEIS for the proposed growth,...

  6. Sclerochronological records and daily microgrowth of the Peruvian scallop (Argopecten purpuratus, Lamarck, 1819) related to environmental conditions in Paracas Bay, Pisco, Peru

    NASA Astrophysics Data System (ADS)

    Aguirre Velarde, Arturo; Flye-Sainte-Marie, Jonathan; Mendo, Jaime; Jean, Fred

    2015-05-01

    We investigated the rhythm of micro-striae formation in the shell of Argopecten purpuratus and environmental influence on micro-growth increments by monitoring growth over a 98-day period between April and July 2007 under bottom and suspended culture (2 m above the bottom) rearing conditions. The transfer of individuals to the study site induced the formation of a notable growth mark that allowed us to count the number of micro-striae formed between transfer and sampling dates. Micro-striae counts showed a deposition rate of one stria per day independent of rearing condition. This result allowed us to analyse the relationships between growth increments and environmental conditions. We therefore examined the deviations between observed growth rates and growth rates predicted from a Von Bertalanffy growth function. Cross-correlation analysis revealed significant correlations, without time-lag, between these deviations and both particulate organic carbon and nitrogen concentrations in the bottom treatment. Additionally, we observed negative correlations with temperature and current speed at this depth with time-lags of 1 and 10 days respectively. In the suspended treatment, we observed a significant negative correlation with temperature, only with a 12-day lag-time. Our results show that growth response to environmental variability is not always instantaneous. This delay can be explained by the time delay over which metabolic processes need to be performed (e.g. digestion, use/movements of reserves, growth, reproduction). Further modeling studies could help to better understand these processes.

  7. Promoters maintain their relative activity levels under different growth conditions

    PubMed Central

    Keren, Leeat; Zackay, Ora; Lotan-Pompan, Maya; Barenholz, Uri; Dekel, Erez; Sasson, Vered; Aidelberg, Guy; Bren, Anat; Zeevi, Danny; Weinberger, Adina; Alon, Uri; Milo, Ron; Segal, Eran

    2013-01-01

    Most genes change expression levels across conditions, but it is unclear which of these changes represents specific regulation and what determines their quantitative degree. Here, we accurately measured activities of ∼900 S. cerevisiae and ∼1800 E. coli promoters using fluorescent reporters. We show that in both organisms 60–90% of promoters change their expression between conditions by a constant global scaling factor that depends only on the conditions and not on the promoter's identity. Quantifying such global effects allows precise characterization of specific regulation—promoters deviating from the global scale line. These are organized into few functionally related groups that also adhere to scale lines and preserve their relative activities across conditions. Thus, only several scaling factors suffice to accurately describe genome-wide expression profiles across conditions. We present a parameter-free passive resource allocation model that quantitatively accounts for the global scaling factors. It suggests that many changes in expression across conditions result from global effects and not specific regulation, and provides means for quantitative interpretation of expression profiles. PMID:24169404

  8. Promoters maintain their relative activity levels under different growth conditions.

    PubMed

    Keren, Leeat; Zackay, Ora; Lotan-Pompan, Maya; Barenholz, Uri; Dekel, Erez; Sasson, Vered; Aidelberg, Guy; Bren, Anat; Zeevi, Danny; Weinberger, Adina; Alon, Uri; Milo, Ron; Segal, Eran

    2013-01-01

    Most genes change expression levels across conditions, but it is unclear which of these changes represents specific regulation and what determines their quantitative degree. Here, we accurately measured activities of ~900 S. cerevisiae and ~1800 E. coli promoters using fluorescent reporters. We show that in both organisms 60-90% of promoters change their expression between conditions by a constant global scaling factor that depends only on the conditions and not on the promoter's identity. Quantifying such global effects allows precise characterization of specific regulation-promoters deviating from the global scale line. These are organized into few functionally related groups that also adhere to scale lines and preserve their relative activities across conditions. Thus, only several scaling factors suffice to accurately describe genome-wide expression profiles across conditions. We present a parameter-free passive resource allocation model that quantitatively accounts for the global scaling factors. It suggests that many changes in expression across conditions result from global effects and not specific regulation, and provides means for quantitative interpretation of expression profiles. PMID:24169404

  9. 77 FR 56253 - 60th Meeting: RTCA Special Committee 135, Environmental Conditions and Test Procedures for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... Conditions and Test Procedures for Airborne Equipment SUMMARY: The FAA is issuing this notice to advise the public of the sixtieth meeting of the RTCA Special Committee 135, Environmental Conditions and Test... Test Procedures for Airborne Equipment AGENCY: Federal Aviation......

  10. 76 FR 22161 - Fifty Seventh Meeting: RTCA Special Committee 135, Environmental Conditions and Test Procedures...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... Conditions and Test Procedures for Airborne Equipment AGENCY: Federal Aviation Administration (FAA... Conditions and Test Procedures for Airborne Equipment. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 135: Environmental......

  11. Studies on Scenedesmus actus growth. I. Effect of autotrophic and mixotrophic conditions on the growth of scenedesmus acutus

    SciTech Connect

    Shamala, T.R.; Drawert, F.; Leupold, G.

    1982-06-01

    Among sugars, glucose and mannose were found to be the most suitable substrates for mixotrophic growth, uptake of galactose and its influence on growth was negligible, and sucrose and fructose occupied intermediary positions. The optimum temperature for sugar uptake was 30 degrees C both under light and in darkness. Enhancement in the photosynthetic oxygen-evolution rate, based on the utilization of substrates, was foremost in the presence of glucose, followed by mannose, sucrose, and fructose. Industrial by-products such as sugarcane molasses also were utilized to increase the algal growth under mixotrophic conditions. A maximum yield in biomass was obtained subsequent to the combined supply of sugarcane molasses with carbon dioxide to indoor as well as outdoor mixotrophic cultures. Doubling the carbon dioxide supply alone above a certain level, under autotrophic and mixotrophic outdoor conditions, did not produce a pronounced increase in the algal growth rate. The results on autotrophic and mixotrophic growth variations are discussed in this article. (Refs. 36).

  12. Differential Carbohydrate Recognition by Campylobacter jejuni Strain 11168: Influences of Temperature and Growth Conditions

    PubMed Central

    Day, Christopher J.; Tiralongo, Joe; Hartnell, Regan D.; Logue, Carie-Anne; Wilson, Jennifer C.; von Itzstein, Mark; Korolik, Victoria

    2009-01-01

    The pathogenic clinical strain NCTC11168 was the first Campylobacter jejuni strain to be sequenced and has been a widely used laboratory model for studying C. jejuni pathogenesis. However, continuous passaging of C. jejuni NCTC11168 has been shown to dramatically affect its colonisation potential. Glycan array analysis was performed on C. jejuni NCTC11168 using the frequently passaged, non-colonising, genome sequenced (11168-GS) and the infrequently passaged, original, virulent (11168-O) isolates grown or maintained under various conditions. Glycan structures recognised and bound by C. jejuni included terminal mannose, N-acetylneuraminic acid, galactose and fucose. Significantly, it was found that only when challenged with normal oxygen at room temperature did 11168-O consistently bind to sialic acid or terminal mannose structures, while 11168-GS bound these structures regardless of growth/maintenance conditions. Further, binding of un-capped galactose and fucosylated structures was significantly reduced when C. jejuni was maintained at 25°C under atmospheric oxygen conditions. These binding differences identified through glycan array analysis were confirmed by the ability of specific lectins to competitively inhibit the adherence of C. jejuni to a Caco-2 intestinal cell line. Our data suggests that the binding of mannose and/or N-acetylneuraminic acid may provide the initial interactions important for colonisation following environmental exposure. PMID:19290056

  13. Modelling the growth/no growth boundary of Zygosaccharomyces bailii in acidic conditions: a contribution to the alternative method to preserve foods without using chemical preservatives.

    PubMed

    Dang, T D T; Mertens, L; Vermeulen, A; Geeraerd, A H; Van Impe, J F; Debevere, J; Devlieghere, F

    2010-01-31

    The aim of the study was to develop mathematical models describing growth/no growth (G/NG) boundaries of the highly resistant food spoilage yeast-Zygosaccharomyces bailii-in different environmental conditions, taking acidified sauces as the target product. By applying these models, the stability of products with characteristics within the investigated pH, a(w) and acetic acid ranges can be evaluated. Besides, the well-defined no growth regions can be used in the development of guidelines regarding formulation of new shelf-stable foods without using chemical preservatives, which would facilitate the innovation of additive-free products. Experiments were performed at different temperatures and periods (22 degrees C for 45 and 60days, 30 degrees C for 45days) in 150 modified Sabouraud media characterized by high amount of sugars (glucose and fructose, 15% (w/v)), acetic acid (0.0-2.5% (v/v), 6 levels), pH (3.0-5.0, 5 levels) and a(w) (0.93-0.97, 5 levels). These time and temperature combinations were chosen as they are commonly applied for shelf-stable foods. The media were inoculated with ca. 4.5 log CFU/ml and yeast growth was monitored daily using optical density measurements. Every condition was examined in 20 replicates in order to yield accurate growth probabilities. Three separate ordinary logistic regression models were developed for different tested temperatures and incubation time. The total acetic acid concentration was considered as variable for all models. In general, when one intrinsic inhibitory factor became more stringent, the G/NG boundary shifted to less stressful conditions of the other two factors, resulting in enlarged no growth zones. Abrupt changes of growth probability often occurred around the transition zones (between growth and no growth regions), which indicates that minor variations in environmental conditions near the G/NG boundaries can cause a significant impact on the growth probability. When comparing growth after 45days between the

  14. Plant Growth and Morphogenesis under Different Gravity Conditions: Relevance to Plant Life in Space.

    PubMed

    Hoson, Takayuki

    2014-01-01

    The growth and morphogenesis of plants are entirely dependent on the gravitational acceleration of earth. Under microgravity conditions in space, these processes are greatly modified. Recent space experiments, in combination with ground-based studies, have shown that elongation growth is stimulated and lateral expansion suppressed in various shoot organs and roots under microgravity conditions. Plant organs also show automorphogenesis in space, which consists of altered growth direction and spontaneous curvature in the dorsiventral (back and front) directions. Changes in cell wall properties are responsible for these modifications of growth and morphogenesis under microgravity conditions. Plants live in space with interesting new sizes and forms. PMID:25370193

  15. Rate constants and mechanisms for the crystallization of Al nano-goethite under environmentally relevant conditions

    NASA Astrophysics Data System (ADS)

    Bazilevskaya, Ekaterina; Archibald, Douglas D.; Martínez, Carmen Enid

    2012-07-01

    Mobile inorganic and organic nanocolloidal particles originate-from and interact-with bulk solid phases in soil and sediment environments, and as such, they contribute to the dynamic properties of environmental systems. In particular, ferrihydrite and (nano)goethite are the most abundant of nanocolloidal Fe oxy(hydr)oxides in these environments. We therefore investigated the ferrihydrite to goethite phase transformation using experimental reaction conditions that mimicked environmental conditions where the formation of nanocolloidal Fe oxy(hydr)oxides may occur: slow titration of dilute solutions to pH 5 at 25 °C with and without 2 mol% Al. Subsequently, the rate constants from 54-d nano-goethite aging/crystallization experiments at 50 °C were determined using aliquots pulled for vibrational spectroscopy (including multivariate curve resolution, MCR, analyses of infrared spectra) and synchrotron-based X-ray diffraction (XRD). We also present a mechanistic model that accounts for the nano-goethite crystallization observed by the aforementioned techniques, and particle structural characteristics observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In contrast to the common assumption that metastable ferrihydrite precipitates first, before it transforms to goethite, the presence of characteristic infrared bands in freshly synthesized nanoparticle suspensions indicate goethite can precipitate directly from solution under environmentally relevant conditions: low Fe concentration, ambient temperature, and pH maintained at 5. However, the presence of 2 mol% Al prevented direct goethite precipitation. Rate constants obtained by fitting the contributions from the MCR-derived goethite-like component to the OH-stretching region were (7.4 ± 1.1) × 10-7 s-1 for 0% Al and (4.2 ± 0.4) × 10-7 s-1 for 2 mol% Al suspensions. Rate constants derived from intensities of OH-bending infrared vibrations (795 and 895 cm-1) showed similar values

  16. Automated Diagnosis Of Conditions In A Plant-Growth Chamber

    NASA Technical Reports Server (NTRS)

    Clinger, Barry R.; Damiano, Alfred L.

    1995-01-01

    Biomass Production Chamber Operations Assistant software and hardware constitute expert system that diagnoses mechanical failures in controlled-environment hydroponic plant-growth chamber and recommends corrective actions to be taken by technicians. Subjects of continuing research directed toward development of highly automated closed life-support systems aboard spacecraft to process animal (including human) and plant wastes into food and oxygen. Uses Microsoft Windows interface to give technicians intuitive, efficient access to critical data. In diagnostic mode, system prompts technician for information. When expert system has enough information, it generates recovery plan.

  17. Changes in the Cytoplasmic Composition of Amino Acids and Proteins Observed in Staphylococcus aureus during Growth under Variable Growth Conditions Representative of the Human Wound Site

    PubMed Central

    Alreshidi, Mousa M.; Dunstan, R. Hugh; Gottfries, Johan; Macdonald, Margaret M.; Crompton, Marcus J.; Ang, Ching-Seng; Williamson, Nicholas A.; Roberts, Tim K.

    2016-01-01

    Staphylococcus aureus is an opportunistic pathogen responsible for a high proportion of nosocomial infections. This study was conducted to assess the bacterial responses in the cytoplasmic composition of amino acids and ribosomal proteins under various environmental conditions designed to mimic those on the human skin or within a wound site: pH6-8, temperature 35–37°C, and additional 0–5% NaCl. It was found that each set of environmental conditions elicited substantial adjustments in cytoplasmic levels of glutamic acid, aspartic acid, proline, alanine and glycine (P< 0.05). These alterations generated characteristic amino acid profiles assessed by principle component analysis (PCA). Substantial alterations in cytoplasmic amino acid and protein composition occurred during growth under conditions of higher salinity stress implemented via additional levels of NaCl in the growth medium. The cells responded to additional NaCl at pH 6 by reducing levels of ribosomal proteins, whereas at pH 8 there was an upregulation of ribosomal proteins compared with the reference control. The levels of two ribosomal proteins, L32 and S19, remained constant across all experimental conditions. The data supported the hypothesis that the bacterium was continually responding to the dynamic environment by modifying the proteome and optimising metabolic homeostasis. PMID:27442022

  18. Common lung conditions: environmental pollutants and lung disease.

    PubMed

    Delzell, John E

    2013-06-01

    Exposure to environmental pollutants can have short- and long-term effects on lung health. Sources of air pollution include gases (eg, carbon monoxide, ozone) and particulate matter (eg, soot, dust). In the United States, the Environmental Protection Agency regulates air pollution. Elevated ozone concentrations are associated with increases in lung-related hospitalizations and mortality. Elevated particulate matter pollution increases the risk of cardiopulmonary and lung cancer mortality. Occupations with high exposures to pollutants (eg, heavy construction work, truck driving, auto mechanics) pose higher risk of chronic obstructive lung disease. Some industrial settings (eg, agriculture, sawmills, meat packing plants) also are associated with higher risks from pollutants. The Environmental Protection Agency issues an air quality index for cities and regions in the United States. The upper levels on the index are associated with increases in asthma-related emergency department visits and hospitalizations. Damp and moldy housing might make asthma symptoms worse; individuals from lower socioeconomic groups who live in lower quality housing are particularly at risk. Other household exposures that can have negative effects on lung health include radon, nanoparticles, and biomass fuels. PMID:23767420

  19. 75 FR 9016 - Fifty-Fifth Meeting, RTCA Special Committee 135: Environmental Conditions and Test Procedures for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ...: Notice of RTCA Special Committee 135: Environmental Conditions and Test Procedures for Airborne Equipment... Committee 135: Environmental Conditions and Test Procedures for Airborne Equipment. DATES: The meeting will... for a Special Committee 135: Environmental......

  20. Assessing the Relationship between Socioeconomic Conditions and Urban Environmental Quality in Accra, Ghana

    PubMed Central

    Fobil, Julius; May, Juergen; Kraemer, Alexander

    2010-01-01

    The influence of socioeconomic status (SES) on health inequalities is widely known, but there is still poor understanding of the precise relationship between area-based socioeconomic conditions and neighborhood environmental quality. This study aimed to investigate the socioeconomic conditions which predict urban neighbourhood environmental quality. The results showed wide variation in levels of association between the socioeconomic variables and environmental conditions, with strong evidence of a real difference in environmental quality across the five socioeconomic classes with respect to total waste generation (p < 0.001), waste collection rate (p < 0.001), sewer disposal rate (p < 0.001), non-sewer disposal (p < 0.003), the proportion of households using public toilets (p = 0.005). Socioeconomic conditions are therefore important drivers of change in environmental quality and urban environmental interventions aimed at infectious disease prevention and control if they should be effective could benefit from simultaneous implementation with other social interventions. PMID:20195437

  1. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress.

    PubMed

    Zaugg, Kathrin; Yao, Yi; Reilly, Patrick T; Kannan, Karuppiah; Kiarash, Reza; Mason, Jacqueline; Huang, Ping; Sawyer, Suzanne K; Fuerth, Benjamin; Faubert, Brandon; Kalliomäki, Tuula; Elia, Andrew; Luo, Xunyi; Nadeem, Vincent; Bungard, David; Yalavarthi, Sireesha; Growney, Joseph D; Wakeham, Andrew; Moolani, Yasmin; Silvester, Jennifer; Ten, Annick You; Bakker, Walbert; Tsuchihara, Katsuya; Berger, Shelley L; Hill, Richard P; Jones, Russell G; Tsao, Ming; Robinson, Murray O; Thompson, Craig B; Pan, Guohua; Mak, Tak W

    2011-05-15

    Tumor cells gain a survival/growth advantage by adapting their metabolism to respond to environmental stress, a process known as metabolic transformation. The best-known aspect of metabolic transformation is the Warburg effect, whereby cancer cells up-regulate glycolysis under aerobic conditions. However, other mechanisms mediating metabolic transformation remain undefined. Here we report that carnitine palmitoyltransferase 1C (CPT1C), a brain-specific metabolic enzyme, may participate in metabolic transformation. CPT1C expression correlates inversely with mammalian target of rapamycin (mTOR) pathway activation, contributes to rapamycin resistance in murine primary tumors, and is frequently up-regulated in human lung tumors. Tumor cells constitutively expressing CPT1C show increased fatty acid (FA) oxidation, ATP production, and resistance to glucose deprivation or hypoxia. Conversely, cancer cells lacking CPT1C produce less ATP and are more sensitive to metabolic stress. CPT1C depletion via siRNA suppresses xenograft tumor growth and metformin responsiveness in vivo. CPT1C can be induced by hypoxia or glucose deprivation and is regulated by AMPKα. Cpt1c-deficient murine embryonic stem (ES) cells show sensitivity to hypoxia and glucose deprivation and altered FA homeostasis. Our results indicate that cells can use a novel mechanism involving CPT1C and FA metabolism to protect against metabolic stress. CPT1C may thus be a new therapeutic target for the treatment of hypoxic tumors. PMID:21576264

  2. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress

    PubMed Central

    Zaugg, Kathrin; Yao, Yi; Reilly, Patrick T.; Kannan, Karuppiah; Kiarash, Reza; Mason, Jacqueline; Huang, Ping; Sawyer, Suzanne K.; Fuerth, Benjamin; Faubert, Brandon; Kalliomäki, Tuula; Elia, Andrew; Luo, Xunyi; Nadeem, Vincent; Bungard, David; Yalavarthi, Sireesha; Growney, Joseph D.; Wakeham, Andrew; Moolani, Yasmin; Silvester, Jennifer; Ten, Annick You; Bakker, Walbert; Tsuchihara, Katsuya; Berger, Shelley L.; Hill, Richard P.; Jones, Russell G.; Tsao, Ming; Robinson, Murray O.; Thompson, Craig B.; Pan, Guohua; Mak, Tak W.

    2011-01-01

    Tumor cells gain a survival/growth advantage by adapting their metabolism to respond to environmental stress, a process known as metabolic transformation. The best-known aspect of metabolic transformation is the Warburg effect, whereby cancer cells up-regulate glycolysis under aerobic conditions. However, other mechanisms mediating metabolic transformation remain undefined. Here we report that carnitine palmitoyltransferase 1C (CPT1C), a brain-specific metabolic enzyme, may participate in metabolic transformation. CPT1C expression correlates inversely with mammalian target of rapamycin (mTOR) pathway activation, contributes to rapamycin resistance in murine primary tumors, and is frequently up-regulated in human lung tumors. Tumor cells constitutively expressing CPT1C show increased fatty acid (FA) oxidation, ATP production, and resistance to glucose deprivation or hypoxia. Conversely, cancer cells lacking CPT1C produce less ATP and are more sensitive to metabolic stress. CPT1C depletion via siRNA suppresses xenograft tumor growth and metformin responsiveness in vivo. CPT1C can be induced by hypoxia or glucose deprivation and is regulated by AMPKα. Cpt1c-deficient murine embryonic stem (ES) cells show sensitivity to hypoxia and glucose deprivation and altered FA homeostasis. Our results indicate that cells can use a novel mechanism involving CPT1C and FA metabolism to protect against metabolic stress. CPT1C may thus be a new therapeutic target for the treatment of hypoxic tumors. PMID:21576264

  3. Outer Membrane Proteome of Burkholderia pseudomallei and Burkholderia mallei From Diverse Growth Conditions

    PubMed Central

    Schell, Mark A.; Zhao, Peng; Wells, Lance

    2016-01-01

    Burkholderia mallei and Burkholderia pseudomallei are closely related, aerosol-infective human pathogens that cause life-threatening diseases. Biochemical analyses requiring large-scale growth and manipulation at biosafety level 3 under select agent regulations are cumbersome and hazardous. We developed a simple, safe, and rapid method to prepare highly purified outer membrane (OM) fragments from these pathogens. Shotgun proteomic analyses of OMs by trypsin shaving and mass spectrometry identified >155 proteins, the majority of which are clearly outer membrane proteins (OMPs). These included: 13 porins, 4 secretins for virulence factor export, 11 efflux pumps, multiple components of a Type VI secreton, metal transport receptors, polysaccharide exporters, and hypothetical OMPs of unknown function. We also identified 20 OMPs in each pathogen that are abundant under a wide variety of conditions, including in serum and with macrophages, suggesting these are fundamental for growth and survival and may represent prime drug or vaccine targets. Comparison of the OM proteomes of B. mallei and B. pseudomallei showed many similarities but also revealed a few differences, perhaps reflecting evolution of B. mallei away from environmental survival toward host-adaptation. PMID:21391724

  4. Optimization of culture conditions to obtain maximal growth of penicillin-resistant Streptococcus pneumoniae

    PubMed Central

    Restrepo, Andrea V; Salazar, Beatriz E; Agudelo, María; Rodriguez, Carlos A; Zuluaga, Andres F; Vesga, Omar

    2005-01-01

    Background Streptococcus pneumoniae, particularly penicillin-resistant strains (PRSP), constitute one of the most important causes of serious infections worldwide. It is a fastidious microorganism with exquisite nutritional and environmental requirements to grow, a characteristic that prevents the development of useful animal models to study the biology of the microorganism. This study was designed to determine optimal conditions for culture and growth of PRSP. Results We developed a simple and reproducible method for culture of diverse strains of PRSP representing several invasive serotypes of clinical and epidemiological importance in Colombia. Application of this 3-step culture protocol consistently produced more than 9 log10 CFU/ml of viable cells in the middle part of the logarithmic phase of their growth curve. Conclusion A controlled inoculum size grown in 3 successive steps in supplemented agar and broth under 5% CO2 atmosphere, with pH adjustment and specific incubation times, allowed production of great numbers of PRSP without untimely activation of autolysis mechanisms. PMID:15932633

  5. Environmental conditions experienced during the tadpole stage alter post-metamorphic glucocorticoid response to stress in an amphibian.

    PubMed

    Crespi, Erica J; Warne, Robin W

    2013-12-01

    Exposure to adverse environmental conditions during early development can shape life-history traits and have lasting effects on physiological function in later life. Although findings within the biomedical literature have shown that environmentally induced elevations in glucocorticoids (GCs) during critical developmental windows can cause persistent carry-over effects (i.e., developmental programming), little is known about whether such effects of GCs can be generalized to wildlife species. Using wood frogs as a study species, we conducted an experiment with a split-plot design to assess the short-term and the long-term physiological consequences of availability of food, hydroperiod length (i.e., pond drying), and the interaction between these two environmental conditions. In outdoor experimental ponds, we reared tadpoles in chronically high or low-food conditions, and tadpoles from each pond experienced either high water until metamorphosis or a reduction in water volume during late developmental stages (after Gosner stage 38). After metamorphosis, animals were housed individually and fed ad libitum for 10 weeks, and growth rate, fat content, and resting and acute stress-induced GC levels were measured. We found that tadpoles experiencing low availability of food and reduced water volume had elevated GC levels, reduced mass, and body condition as they approached metamorphosis. At 10 weeks after metamorphosis, we found that these two conditions also had persistent interactive effects on post-metamorphic allocation of resources to growth, energy storage, and responsiveness of GCs to a novel stressor. Of individuals that experienced reduced water volume, only those that experienced high food as tadpoles were able to catch up to individuals that did not experience reduced water volume in terms of body mass, femur length, and body condition, and they allocated more resources to fat storage. By contrast, 10-week old frogs with low-food and that experienced low water

  6. 78 FR 7850 - Sixty First Meeting: RTCA Special Committee 135, Environmental Conditions and Test Procedures for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Sixty First Meeting: RTCA Special Committee 135, Environmental Conditions... public of the Sixty-First meeting of the RTCA Special Committee 135, Environmental Conditions and...

  7. Elemental Markers in Elasmobranchs: Effects of Environmental History and Growth on Vertebral Chemistry

    PubMed Central

    Smith, Wade D.; Miller, Jessica A.; Heppell, Selina S.

    2013-01-01

    Differences in the chemical composition of calcified skeletal structures (e.g. shells, otoliths) have proven useful for reconstructing the environmental history of many marine species. However, the extent to which ambient environmental conditions can be inferred from the elemental signatures within the vertebrae of elasmobranchs (sharks, skates, rays) has not been evaluated. To assess the relationship between water and vertebral elemental composition, we conducted two laboratory studies using round stingrays, Urobatis halleri, as a model species. First, we examined the effects of temperature (16°, 18°, 24°C) on vertebral elemental incorporation (Li/Ca, Mg/Ca, Mn/Ca, Zn/Ca, Sr/Ca, Ba/Ca). Second, we tested the relationship between water and subsequent vertebral elemental composition by manipulating dissolved barium concentrations (1x, 3x, 6x). We also evaluated the influence of natural variation in growth rate on elemental incorporation for both experiments. Finally, we examined the accuracy of classifying individuals to known environmental histories (temperature and barium treatments) using vertebral elemental composition. Temperature had strong, negative effects on the uptake of magnesium (DMg) and barium (DBa) and positively influenced manganese (DMn) incorporation. Temperature-dependent responses were not observed for lithium and strontium. Vertebral Ba/Ca was positively correlated with ambient Ba/Ca. Partition coefficients (DBa) revealed increased discrimination of barium in response to increased dissolved barium concentrations. There were no significant relationships between elemental incorporation and somatic growth or vertebral precipitation rates for any elements except Zn. Relationships between somatic growth rate and DZn were, however, inconsistent and inconclusive. Variation in the vertebral elemental signatures of U. halleri reliably distinguished individual rays from each treatment based on temperature (85%) and Ba exposure (96%) history. These

  8. Effects of Simulated Mars Conditions on the Survival and Growth of Escherichia coli and Serratia liquefaciens▿

    PubMed Central

    Berry, Bonnie J.; Jenkins, David G.; Schuerger, Andrew C.

    2010-01-01

    Escherichia coli and Serratia liquefaciens, two bacterial spacecraft contaminants known to replicate under low atmospheric pressures of 2.5 kPa, were tested for growth and survival under simulated Mars conditions. Environmental stresses of high salinity, low temperature, and low pressure were screened alone and in combination for effects on bacterial survival and replication, and then cells were tested in Mars analog soils under simulated Mars conditions. Survival and replication of E. coli and S. liquefaciens cells in liquid medium were evaluated for 7 days under low temperatures (5, 10, 20, or 30°C) with increasing concentrations (0, 5, 10, or 20%) of three salts (MgCl2, MgSO4, NaCl) reported to be present on the surface of Mars. Moderate to high growth rates were observed for E. coli and S. liquefaciens at 30 or 20°C and in solutions with 0 or 5% salts. In contrast, cell densities of both species generally did not increase above initial inoculum levels under the highest salt concentrations (10 and 20%) and the four temperatures tested, with the exception that moderately higher cell densities were observed for both species at 10% MgSO4 maintained at 20 or 30°C. Growth rates of E. coli and S. liquefaciens in low salt concentrations were robust under all pressures (2.5, 10, or 101.3 kPa), exhibiting a general increase of up to 2.5 orders of magnitude above the initial inoculum levels of the assays. Vegetative E. coli cells were maintained in a Mars analog soil for 7 days under simulated Mars conditions that included temperatures between 20 and −50°C for a day/night diurnal period, UVC irradiation (200 to 280 nm) at 3.6 W m−2 for daytime operations (8 h), pressures held at a constant 0.71 kPa, and a gas composition that included the top five gases found in the martian atmosphere. Cell densities of E. coli failed to increase under simulated Mars conditions, and survival was reduced 1 to 2 orders of magnitude by the interactive effects of desiccation, UV

  9. Can environmental conditions trigger cyanobacterial surfaces and following carbonate formation: implication for biomineralization and biotechnology

    NASA Astrophysics Data System (ADS)

    Paulo, C.; Dittrich, M.; Zhu, T.

    2015-12-01

    In this presentation we will give an overview what kind of the factors may trigger carbonate formations at the cell surfaces under a variety of environmental conditions. As examples, we will present the results from our recent studies on formation of calcium carbonates, dolomites and bio-cements. The extracellular polymeric substances (EPS) in the Synechococcuscell envelope are recognized key players in the nucleation of carbonates in marine and freshwater environments. Yet, little is known about a nutrient contents control over the molecular composition of Synechococcus cell envelope, and consequently, biomineralization. In the first study, we investigated how a variation of the phosphorus (P) in the growth media can lead to changes in the surface reactivity of the cells and impact their ability to form carbonates. The objective of the second study is to gain insights into the spatial distribution of cyanobacterial EPS and dolomite from different sediment layers of Khor Al-Adaid sabkha (Qatar). Here, we characterized microbial mats on molecular level in respect of organic and inorganic components using in-situ 2D Raman spectroscopy and Atomic Force Microscopy (AFM) were used. Additionally, 2D chemical maps of sediment layers documented spectral characterizations of minerals and organic matter of microbial origins at high spatial resolution. Finally, we will show the results from the experiments with auto-phototrophic cyanobacteria Gloeocapsa PCC73106, which habitat on the monument surfaces, towards its application for bio-concrete, a product of microbial carbonate precipitation. We studied the biomineralization in biofilm forming Gloeocapsa PCC73106 on the concrete surface as a pre-requirement for microbial carbonate precipitation. Biomineralization on the concrete surface by live cells and killed cells were compared with that under the abiotic condition. Our experiments allow us to conclude that environmental conditions play a significant role in the control of

  10. Graphene growth on SiC(000-1): optimization of surface preparation and growth conditions

    NASA Astrophysics Data System (ADS)

    Robinson, Zachary R.; Jernigan, Glenn G.; Bussmann, Konrad M.; Nyakiti, Luke O.; Garces, Nelson Y.; Nath, Anindya; Wheeler, Virginia D.; Myers-Ward, Rachael L.; Gaskill, D. K.; Eddy, Charles R.

    2015-09-01

    Graphene growth of high crystal quality and single-layer thickness can be achieved by low pressure sublimation (LPS) on SiC(0001). On SiC(0001), which is the C-terminated polar surface, there has been much less success growing uniform, single-layer films. In this work, a systematic study of surface preparation by hydrogen etching followed by LPS in an argon ambient was performed. Hydrogen etching is an important first step in the graphene growth process because it removes damage caused by polishing the substrate surface. However, for SiC(0001), etching at too high of a temperature or for too long has been found to result in pit formation due to the preferential etching of screw dislocations that intersect the surface. It was found that temperatures above 1450°C in 200mbar of hydrogen result in pitting of the surface, whereas etch temperatures at and below 1450°C can result in atomically at terraces of ~ 1 µm width. Following the hydrogen etch optimization, argon-mediated graphene growth was carried out at several different temperatures. For the growth experiments, pressure and growth time were both fixed. Regardless of growth temperature, all of the films were found to have non-uniform thickness. Further, x-ray photoelectron spectroscopy and low energy electron diffraction measurements reveal that trace amounts of oxygen, which may be present during growth, significantly affects the graphene growth process on this polar surface.

  11. Effectiveness of Dry Eye Therapy Under Conditions of Environmental Stress

    PubMed Central

    Madden, Louise C.; Simmons, Peter A.

    2013-01-01

    Purpose: Dry eye is often characterized by increased tear evaporation due to poor tear film quality, especially of the lipid component of the tear film. Using an environmental chamber to induce environmental stress, this study compared the effect of three lubricant eye drops on various aspects of tear physiology in a crossover design (evaporation was the principal outcome measure). Methods: Three eye drop formulas were tested: 0.5% carmellose sodium (Drop C), 0.5% carmellose sodium with added lipid (Drop C-L) and 1.0% glycerine with added lipid (Drop G-L). Nineteen control and 18 dry eye subjects used each product for 2 weeks, three times per day, in a random order, with a minimum 1-week washout between treatment periods. Tear evaporation, break up time, osmolarity, tear structure (by interferometry) and patient symptoms were assessed with the subjects adapted for 10 min in an environmental chamber controlled at 20% relative humidity and 22 °C. The treatment effects were analyzed using general linear model repeated measures analyses of variance. Results: In dry eye subjects, evaporation, break up time, osmolarity and symptoms improved for all formulas (p < 0.05). Normal subjects showed some improvements: evaporation with C-L, osmolarity with C and symptoms with C-L and G-L. Change in evaporation was greater for both C-L and G-L versus C (p < 0.05), and there was a trend for C-L to reduce evaporation more than G-L (p < 0.11). There were no significant treatment effects on tear film structure. Conclusion: Overall, the eye drop formula containing both carmellose sodium and lipid (C-L) produced a greater treatment effect on tear evaporation than the other formulations containing only one of these ingredients. This study also demonstrates the utility of a controlled environmental chamber in showing the difference in performance between dry eye treatments. PMID:23294168

  12. Performing Comparative Peptidomics Analyses of Salmonella from Different Growth Conditions

    SciTech Connect

    Adkins, Joshua N.; Mottaz, Heather; Metz, Thomas O.; Ansong, Charles K.; Manes, Nathan P.; Smith, Richard D.; Heffron, Fred

    2010-01-08

    Host–pathogen interactions are complex competitions during which both the host and the pathogen adapt rapidly to each other in order for one or the other to survive. Salmonella enterica serovar Typhimurium is a pathogen with a broad host range that causes a typhoid fever-like disease in mice and severe food poisoning in humans. The murine typhoid fever is a systemic infection in which S.typhimurium evades part of the immune system by replicating inside macrophages and other cells. The transition from a foodborne contaminant to an intracellular pathogen must occur rapidly in multiple,ordered steps in order for S. typhimurium to thrive within its host environment. Using S. typhimurium isolated from rich culture conditions and from conditions that mimic the hostile intracellular environment of the host cell, a native low molecular weight protein fraction, or peptidome, was enriched from cell lysates by precipitation with organic solvents. The enriched peptidome was analyzed by both LC–MS/MS and LC–MS-based methods, although several other methods are possible. Pre-fractionation of peptides allowed identification of small proteins and protein degradation products that would normally be overlooked. Comparison of peptides present in lysates prepared from Salmonella grown under different conditions provided a unique insight into cellular degradation processes as well as identification of novel peptides encoded in the genome but not annotated. The overall approach is detailed here as applied to Salmonella and is adaptable to a broad range of biological systems.

  13. Bacterial assisted degradation of chlorpyrifos: The key role of environmental conditions, trace metals and organic solvents.

    PubMed

    Khalid, Saira; Hashmi, Imran; Khan, Sher Jamal

    2016-03-01

    Wastewater from pesticide industries, agricultural or surface runoff containing pesticides and their residues has adverse environmental impacts. Present study demonstrates effect of petrochemicals and trace metals on chlorpyrifos (CP) biotransformation often released in wastewater of agrochemical industry. Biodegradation was investigated using bacterial strain Pseudomonas kilonensis SRK1 isolated from wastewater spiked with CP. Optimal environmental conditions for CP removal were CFU (306 × 10(6)), pH (8); initial CP concentration (150 mg/L) and glucose as additional carbon source. Among various organic solvents (petrochemicals) used in this study toluene has stimulatory effect on CP degradation process using SRK1, contrary to this benzene and phenol negatively inhibited degradation process. Application of metal ions (Cu (II), Fe (II) Zn (II) at low concentration (1 mg/L) took part in biochemical reaction and positively stimulated CP degradation process. Metal ions at high concentrations have inhibitory effect on degradation process. A first order growth model was shown to fit the data. It could be concluded that both type and concentration of metal ions and petrochemicals can affect CP degradation process. PMID:26692411

  14. Environmental changes and growth history of a cold-water carbonate mound (Propeller Mound, Porcupine Seabight)

    NASA Astrophysics Data System (ADS)

    Rüggeberg, Andres; Dullo, Christian; Dorschel, Boris; Hebbeln, Dierk

    2007-02-01

    On- and off-mound sediment cores from Propeller Mound (Hovland Mound province, Porcupine Seabight) were analysed to understand better the evolution of a carbonate mound. The evaluation of benthic foraminiferal assemblages from the off-mound position helps to determine the changes of the environmental controls on Propeller Mound in glacial and interglacial times. Two different assemblages describe the Holocene and Marine Isotope Stage (MIS) 2 and late MIS 3 (˜31 kyr BP). The different assemblages are related to changes in oceanographic conditions, surface productivity and the waxing and waning of the British Irish Ice Sheet (BIIS) during the last glacial stages. The interglacial assemblage is related to a higher supply of organic material and stronger current intensities in water depth of recent coral growth. During the last glaciation the benthic faunas showed high abundances of cassidulinid species, implying cold bottom waters and a reduced availability of organic matter. High sedimentation rates and the domination of Elphidium excavatum point to shelf erosion related to sea-level lowering (˜50 m) and the progradation of the BIIS onto the shelf. A different assemblage described for the on-mound core is dominated by Discanomalina coronata, Gavelinopsis translucens, Planulina ariminensis, Cibicides lobatulus and to a lower degree by Hyrrokkin sarcophaga. These species are only found or show significantly higher relative abundances in on-mound samples and their maximum contribution in the lower part of the record indicates a higher coral growth density on Propeller Mound in an earlier period. They are less abundant during the Holocene, however. This dataset portrays the boundary conditions of the habitable range for the cold-water coral Lophelia pertusa, which dominates the deep-water reefal ecosystem on the upper flanks of Propeller Mound. The growth of this ecosystem occurs during interglacial and interstadial periods, whereas a retreat of corals is documented in

  15. Environmental influences on kelp performance across the reproductive period: an ecological trade-off between gametophyte survival and growth?

    PubMed

    Mohring, Margaret B; Kendrick, Gary A; Wernberg, Thomas; Rule, Michael J; Vanderklift, Mathew A

    2013-01-01

    Most kelps (order Laminariales) exhibit distinct temporal patterns in zoospore production, gametogenesis and gametophyte reproduction. Natural fluctuations in ambient environmental conditions influence the intrinsic characteristics of gametes, which define their ability to tolerate varied conditions. The aim of this work was to document seasonal patterns in reproduction and gametophyte growth and survival of Ecklonia radiata (C. Agardh) J. Agardh in south-western Australia. These results were related to patterns in local environmental conditions in an attempt to ascertain which factors explain variation throughout the season. E. radiata was fertile (produced zoospores) for three and a half months over summer and autumn. Every two weeks during this time, gametophytes were grown in a range of temperatures (16-22 °C) in the laboratory. Zoospore densities were highly variable among sample periods; however, zoospores released early in the season produced gametophytes which had greater rates of growth and survival, and these rates declined towards the end of the reproductive season. Growth rates of gametophytes were positively related to day length, with the fastest growing recruits released when the days were longest. Gametophytes consistently survived best in the lowest temperature (16 °C), yet exhibited optimum growth in higher culture temperatures (20-22 °C). These results suggest that E. radiata releases gametes when conditions are favourable for growth, and E. radiata gametophytes are tolerant of the range of temperatures observed at this location. E. radiata releases the healthiest gametophytes when day length and temperature conditions are optimal for better germination, growth, and sporophyte production, perhaps as a mechanism to help compete against other species for space and other resources. PMID:23755217

  16. EFFECTS OF ENVIRONMENTAL CONDITIONS ON ISOPRENE EMISSION FROM LIVE OAK

    EPA Science Inventory

    Live-oak plants (Quercus virginia) were subjected to various levels of CO2, water stress or photosynthetic photon flux density to test the hypothesis that isoprene biosynthesis occurred only under conditions of restricted CO2 availability. Isoprene emission increases as the ambie...

  17. New insights from coral growth band studies in an era of rapid environmental change

    NASA Astrophysics Data System (ADS)

    Lough, Janice M.; Cooper, Timothy F.

    2011-10-01

    The rapid formation of calcium carbonate coral skeletons (calcification) fuelled by the coral-algal symbiosis is the backbone of tropical coral reef ecosystems. However, the efficacy of calcification is measurably influenced by the sea's physico-chemical environment, which is changing rapidly. Warming oceans have already led to increased frequency and severity of coral bleaching, and ocean acidification has a demonstrable potential to cause reduced rates of calcification. There is now general agreement that ocean warming and acidification are attributable to human activities increasing greenhouse gas concentrations in the atmosphere, and the large part of the extra carbon dioxide (the main greenhouse gas) that is absorbed by oceans. Certain massive corals provide historical perspectives on calcification through the presence of dateable annual density banding patterns. Each band is a page in an environmental archive that reveals past responses of growth (linear extension, skeletal density and calcification rate) and provides a basis for prediction of future of coral growth. A second major line of research focuses on the measurement of various geochemical tracers incorporated into the growth bands, allowing the reconstruction of past marine climate conditions (i.e. palaeoclimatology). Here, we focus on the structural properties of the annual density bands themselves (viz. density; linear extension), exploring their utility in providing both perspectives on the past and pointers to the future of calcification on coral reefs. We conclude that these types of coral growth records, though relatively neglected in recent years compared to the geochemical studies, remain immensely valuable aids to unravelling the consequences of anthropogenic climate change on coral reefs. Moreover, an understanding of coral growth processes is an essential pre-requisite for proper interpretation of studies of geochemical tracers in corals.

  18. Evaluation of condition indices for estimation of growth of largemouth bass and white crappie

    USGS Publications Warehouse

    Gutreuter, Steve; Childress, W. Michael

    1990-01-01

    We evaluated the ability of three condition indices-condition factor (K), relative condition (Kn), and relative weight (Wr)-to estimate annual growth rates of largemouth bass Micropterus salmoides and white crappies Pomoxis annularis collected during standardized autumn electrofishing and trap-net surveys of Texas reservoirs. Multiple-regression models for estimation of length increments from initial length (at the start of the growing season) and condition indices had R2 values of 0.63-0.76 for largemouth bass and 0.46-0.83 for white crappie. However, these models are not useful for indirect estimation ofgrowth rates because growth must be known (initial length equals length at capture minus estimated annual growth). Models based on length at capture and condition indices had R2 values of 0.22-0.68 for largemouth bass and less than 0.45 for white crappie. The low precision of models based on length at capture indicates that condition provides a weak basis for indirect estimation of growth rates from Texas reservoirs sampled during autumn and, therefore, is unreliable for detection of size-related growth phenomena such as "stockpiling" (size specific, density-dependent growth depression). Direct estimates of growth rates based on back-calculations or tagging data seem necessary for reliable detection of size-related growth patterns for largemouth bass and white crappies from Texas reservoirs.

  19. Growth of samarskite crystal under microgravity conditions (M-20)

    NASA Technical Reports Server (NTRS)

    Takekawa, S.

    1993-01-01

    The purpose of the experiment was to grow single crystals of samarskite under microgravity conditions by the traveling solvent float zone (TSFZ) method, and to study the phase relations in the samarskite-related systems involving liquid phases by the slow cooling float zone (SCFZ) method. Samarskite is one of the minerals in a metamict state and is composed of Ca, Fe, Y, U, Th, Nb, Ta, O, etc. Alpha-particles radiating from uranium and/or thorium in the samarskite itself has destroyed its original structure without damaging its chemical composition and its external form. Consequently its structure was converted into a vitreous structure.

  20. Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression

    PubMed Central

    Nahta, Rita; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Andrade-Vieira, Rafaela; Bay, Sarah; G. Brown, Dustin; Calaf, Gloria M.; Castellino, Robert C.; Cohen-Solal, Karine A.; Colacci, Annamaria; Cruickshanks, Nichola; Dent, Paul; Di Fiore, Riccardo; Forte, Stefano; Goldberg, Gary S.; Hamid, Roslida A.; Krishnan, Harini; Laird, Dale W.; Lasfar, Ahmed; Marignani, Paola A.; Memeo, Lorenzo; Mondello, Chiara; Naus, Christian C.; Ponce-Cusi, Richard; Raju, Jayadev; Roy, Debasish; Roy, Rabindra; P. Ryan, Elizabeth; Salem, Hosni K.; Scovassi, A. Ivana; Singh, Neetu; Vaccari, Monica; Vento, Renza; Vondráček, Jan; Wade, Mark; Woodrick, Jordan; Bisson, William H.

    2015-01-01

    As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks. PMID:26106139

  1. Carbon Nanotubes Growth by CVD in Various Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, S.; Su, C. H.; Cochrane, J. C.; Lehoczky, S. L.; Gorti, S.; Muntele, I.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Since the superior properties of multi-wall carbon nanotubes (MWCNT could be used in numerous devices such as electronics and sensors, many efforts have been engaged in synthesizing particular structural or dimensional MWCNT. This presentation will illustrate MWCNT synthesized on silicon substrates by thermal CVD. On the substrate, an array of catalysts is coated using sputtering deposition. A thin Ti buffer layer is also coated on some Si substrates prior to depositing catalyst particles. Nickel, cobalt or iron transition metals are used as catalysts for the MWCNT growth. Since the diameter of MWCNT depends on the size of catalyst particles, the catalyst particle size is investigated after annealed at various temperatures. MWCNT are grown on the substrate in the temperature range of 700 to 1000 C and the pressure range of 100 torr to one atmosphere. Methane and hydrogen gases with methane content of 10% to 100% are used for the MWCNT synthesis. Morphology, length and diameter of these MWCNT are determined by scanning electron microscopy and Raman spectroscopy. The detailed results of syntheses and characterizations will be discussed in the presentation.

  2. FIS-dependent trans activation of stable RNA operons of Escherichia coli under various growth conditions.

    PubMed

    Nilsson, L; Verbeek, H; Vijgenboom, E; van Drunen, C; Vanet, A; Bosch, L

    1992-02-01

    In Escherichia coli transcription of the tRNA operon thrU (tufB) and the rRNA operon rrnB is trans-activated by the protein FIS. This protein, which stimulates the inversion of various viral DNA segments, binds specifically to a cis-acting sequence (designated UAS) upstream of the promoter of thrU (tufB) and the P1 promoter of the rrnB operon. There are indications that this type of regulation is representative for the regulation of more stable RNA operons. In the present investigation we have studied UAS-dependent transcription activation of the thrU (tufB) operon in the presence and absence of FIS during a normal bacterial growth cycle and after a nutritional shift-up. In early log phase the expression of the operon rises steeply in wild-type cells, whereafter it declines. Concomitantly, a peak of the cellular FIS concentration is observed. Cells in the stationary phase are depleted of FIS. The rather abrupt increase of transcription activation depends on the nutritional quality of the medium. It is not seen in minimal medium. After a shift from minimal to rich medium, a peak of transcription activation and of FIS concentration is measured. This peak gets higher as the medium gets more strongly enriched. We conclude that a correlation between changes of the UAS-dependent activation of the thrU (tufB) operon and changes of the cellular FIS concentration under a variety of experimental conditions exists. This correlation strongly suggests that the production of FIS responds to environmental signals, thereby trans-activating the operon. Cells unable to produce FIS (fis cells) also show an increase of operon transcription in the early log phase and after a nutritional shift-up, albeit less pronounced than that wild-type cells. Presumably it is controlled by the ribosome feedback regulatory system. cis activation of the operon by the upstream activator sequence is apparent in the absence of FIS. This activation is constant throughout the entire growth cycle and is

  3. FIS-dependent trans activation of stable RNA operons of Escherichia coli under various growth conditions.

    PubMed Central

    Nilsson, L; Verbeek, H; Vijgenboom, E; van Drunen, C; Vanet, A; Bosch, L

    1992-01-01

    In Escherichia coli transcription of the tRNA operon thrU (tufB) and the rRNA operon rrnB is trans-activated by the protein FIS. This protein, which stimulates the inversion of various viral DNA segments, binds specifically to a cis-acting sequence (designated UAS) upstream of the promoter of thrU (tufB) and the P1 promoter of the rrnB operon. There are indications that this type of regulation is representative for the regulation of more stable RNA operons. In the present investigation we have studied UAS-dependent transcription activation of the thrU (tufB) operon in the presence and absence of FIS during a normal bacterial growth cycle and after a nutritional shift-up. In early log phase the expression of the operon rises steeply in wild-type cells, whereafter it declines. Concomitantly, a peak of the cellular FIS concentration is observed. Cells in the stationary phase are depleted of FIS. The rather abrupt increase of transcription activation depends on the nutritional quality of the medium. It is not seen in minimal medium. After a shift from minimal to rich medium, a peak of transcription activation and of FIS concentration is measured. This peak gets higher as the medium gets more strongly enriched. We conclude that a correlation between changes of the UAS-dependent activation of the thrU (tufB) operon and changes of the cellular FIS concentration under a variety of experimental conditions exists. This correlation strongly suggests that the production of FIS responds to environmental signals, thereby trans-activating the operon. Cells unable to produce FIS (fis cells) also show an increase of operon transcription in the early log phase and after a nutritional shift-up, albeit less pronounced than that wild-type cells. Presumably it is controlled by the ribosome feedback regulatory system. cis activation of the operon by the upstream activator sequence is apparent in the absence of FIS. This activation is constant throughout the entire growth cycle and is

  4. Overview of environmental and hydrogeologic conditions at Moses Point, Alaska

    USGS Publications Warehouse

    Dorava, J.M.; Ayres, R.P.; Sisco, W.C.

    1994-01-01

    The Federal Aviation Administration facility at Moses Point is located at the mouth of the Kwiniuk River on the Seward Peninsula in northwestern Alaska. This area has long cold winters and short summers which affect the hydrology of the area. The Federal Aviation Administration owns or operates airport support facilities at the Moses Point site and wishes to consider the subsistence lifestyles of area residents and the quality of the current environment when evaluating options for remediation of environmental contamination at their facilities. Currently no operating wells are in the area, but the vulnerability of the aquifer and other alternative water supplies are being evaluated because the Federal Aviation Administration has a potential liability for the storage and use of hazardous materials in the area.

  5. Overview of environmental and hydrogeologic conditions at Galena, Alaska

    USGS Publications Warehouse

    Nakanishi, Allan S.; Dorava, Joseph M.

    1994-01-01

    The remote Native village of Galena along the Yukon River in west-central Alaska has long cold winters and short summers that affects the hydrology of the area. The Federal Aviation Administration owns or operates airport support facilities in Galena and wishes to consider the subsistence lifestyle of the residents and the quality of the current environment when evaluating options for remediation of environmental contamination at these facilities. Galena is located on the flood plain of the Yukon River and obtains its drinking water from a shallow aquifer located in the thick alluvium underlying the village. Surface spills and disposal of hazardous materials combined with annual flooding of the Yukon River may affect the quality of the ground water. Alternative drinking-water sources are available but at significantly greater cost than existing supplies.

  6. Ion uptake of marigold under saline growth conditions.

    PubMed

    Koksal, Nezihe; Alkan-Torun, Ayfer; Kulahlioglu, Ilknur; Ertargin, Ebru; Karalar, Eylul

    2016-01-01

    Salinity is one of most significant environmental stresses. Marigold is moderately tolerant to salinity stress. Therefore, in this study, the fresh weights of roots and shoots, rootFW/shootFW ratio, moisture content of shoots, micronutrient and macronutrient concentrations and ratios of K(+)/Na(+) and Ca(2+)/Na(+) in the roots and shoots of marigold were determined under salinity stress. Five salinity treatments (0, 50, 100, 150, and 200 mM NaCl) were maintained. In the current study, salinity affected the biomass of marigold. An increase of more than 100 mM in salt concentrations significantly reduced the shoot fresh weight. Increasing salinity stress increased the ratios of rootFW/shootFW, which were more significant under high salt levels (150 and 200 mM NaCl). Wet basis moisture contents of the shoots were reduced when salinity stress increased above 100 mM. In this study, salinity stress affected micronutrient and macronutrient uptake. Increases in the salt concentration and decreases in the concentration of Cu(2+) and Zn(2+) in the roots and Mn(2+) and Fe(2+) in the shoots were significant. Based on an increase in salinity stress, while the Ca(2+), Mg(2+), and Na(+) concentrations increased, the K(+) concentration decreased in the roots and shoots. Moreover, the K(+)/Na(+) and Ca(2+)/Na(+) ratios of the roots and shoots were significantly lower than those of the control in all of the salinity treatments. As a result, under increasing salinity stress, the Ca(2+), Mg(2+), K(+), and Na(+) uptakes in marigold were significant, revealing the effects of stress. PMID:26933637

  7. Sputtered magnesium diboride thin films: Growth conditions and surface morphology

    NASA Astrophysics Data System (ADS)

    O'Brien, April; Villegas, Brendon; Gu, J. Y.

    2009-01-01

    Magnesium diboride (MgB 2) thin films were deposited on C-plane sapphire substrates by sputtering pure B and Mg targets at different substrate temperatures, and were followed by in situ annealing. A systematic study about the effects of the various growth and annealing parameters on the physical properties of MgB 2 thin films showed that the substrate temperature is the most critical factor that determines the superconducting transition temperature ( Tc), while annealing plays a minor role. There was no superconducting transition in the thin films grown at room temperature without post-annealing. The highest Tc of the samples grown at room temperature after the optimized annealing was 22 K. As the temperature of the substrate ( Ts) increased, Tc rose. However, the maximum Ts was limited due to the low magnesium sticking coefficient and thus the Tc value was limited as well. The highest Tc, 29 K, was obtained for the sample deposited at 180 °C, annealed at 620 °C, and was subsequently annealed a second time at 800 °C. Three-dimensional (3D) AFM images clearly demonstrated that the thin films with no transition, or very low Tc, did not have the well-developed MgB 2 grains while the films with higher Tc displayed the well-developed grains and smooth surface. Although the Tc of sputtered MgB 2 films in the current work is lower than that for the bulk and ex situ annealed thin films, this work presents an important step towards the fabrication of MgB 2 heterostructures using rather simple physical vapor deposition method such as sputtering.

  8. Estimating geographic variation on allometric growth and body condition of Blue Suckers with quantile regression

    USGS Publications Warehouse

    Cade, B.S.; Terrell, J.W.; Neely, B.C.

    2011-01-01

    Increasing our understanding of how environmental factors affect fish body condition and improving its utility as a metric of aquatic system health require reliable estimates of spatial variation in condition (weight at length). We used three statistical approaches that varied in how they accounted for heterogeneity in allometric growth to estimate differences in body condition of blue suckers Cycleptus elongatus across 19 large-river locations in the central USA. Quantile regression of an expanded allometric growth model provided the most comprehensive estimates, including variation in exponents within and among locations (range = 2.88–4.24). Blue suckers from more-southerly locations had the largest exponents. Mixed-effects mean regression of a similar expanded allometric growth model allowed exponents to vary among locations (range = 3.03–3.60). Mean relative weights compared across selected intervals of total length (TL = 510–594 and 594–692 mm) in a multiplicative model involved the implicit assumption that allometric exponents within and among locations were similar to the exponent (3.46) for the standard weight equation. Proportionate differences in the quantiles of weight at length for adult blue suckers (TL = 510, 594, 644, and 692 mm) compared with their average across locations ranged from 1.08 to 1.30 for southern locations (Texas, Mississippi) and from 0.84 to 1.00 for northern locations (Montana, North Dakota); proportionate differences for mean weight ranged from 1.13 to 1.17 and from 0.87 to 0.95, respectively, and those for mean relative weight ranged from 1.10 to 1.18 and from 0.86 to 0.98, respectively. Weights for fish at longer lengths varied by 600–700 g within a location and by as much as 2,000 g among southern and northern locations. Estimates for the Wabash River, Indiana (0.96–1.07 times the average; greatest increases for lower weights at shorter TLs), and for the Missouri River from Blair, Nebraska, to Sioux City, Iowa (0.90

  9. Chitinase-like protein CTL1 plays a role in altering root system architecture in response to multiple environmental conditions.

    PubMed

    Hermans, Christian; Porco, Silvana; Verbruggen, Nathalie; Bush, Daniel R

    2010-02-01

    Plant root architecture is highly responsive to changes in nutrient availability. However, the molecular mechanisms governing the adaptability of root systems to changing environmental conditions is poorly understood. A screen for abnormal root architecture responses to high nitrate in the growth medium was carried out for a population of ethyl methanesulfonate-mutagenized Arabidopsis (Arabidopsis thaliana). The growth and root architecture of the arm (for anion altered root morphology) mutant described here was similar to wild-type plants when grown on low to moderate nitrate concentrations, but on high nitrate, arm exhibited reduced primary root elongation, radial swelling, increased numbers of lateral roots, and increased root hair density when compared to the wild-type control. High concentrations of chloride and sucrose induced the same phenotype. In contrast, hypocotyl elongation in the dark was decreased independently of nitrate availability. Positional cloning identified a point mutation in the AtCTL1 gene that encodes a chitinase-related protein, although molecular and biochemical analysis showed that this protein does not possess chitinase enzymatic activity. CTL1 appears to play two roles in plant growth and development based on the constitutive effect of the arm mutation on primary root growth and its conditional impact on root architecture. We hypothesize that CTL1 plays a role in determining cell wall rigidity and that the activity is differentially regulated by pathways that are triggered by environmental conditions. Moreover, we show that mutants of some subunits of the cellulose synthase complex phenocopy the conditional effect on root architecture under nonpermissive conditions, suggesting they are also differentially regulated in response to a changing environment. PMID:20007445

  10. Differential effects of genetic vs. environmental quality in Drosophila melanogaster suggest multiple forms of condition dependence.

    PubMed

    Bonduriansky, Russell; Mallet, Martin A; Arbuthnott, Devin; Pawlowsky-Glahn, Vera; Egozcue, Juan José; Rundle, Howard D

    2015-04-01

    Condition is a central concept in evolutionary ecology, but the roles of genetic and environmental quality in condition-dependent trait expression remain poorly understood. Theory suggests that condition integrates genetic, epigenetic and somatic factors, and therefore predicts alignment between the phenotypic effects of genetic and environmental quality. To test this key prediction, we manipulated both genetic (mutational) and environmental (dietary) quality in Drosophila melanogaster and examined responses in morphological and chemical (cuticular hydrocarbon, CHC) traits in both sexes. While the phenotypic effects of diet were consistent among genotypes, effects of mutation load varied in magnitude and direction. Average effects of diet and mutation were aligned for most morphological traits, but non-aligned for the male sexcombs and CHCs in both sexes. Our results suggest the existence of distinct forms of condition dependence, one integrating both genetic and environmental effects and the other purely environmental. We propose a model to account for these observations. PMID:25649176