Sample records for environmental photothermal effects

  1. Polydopamine-Coated Magnetic Composite Particles with an Enhanced Photothermal Effect.

    PubMed

    Zheng, Rui; Wang, Sheng; Tian, Ye; Jiang, Xinguo; Fu, Deliang; Shen, Shun; Yang, Wuli

    2015-07-29

    Recently, photothermal therapy (PTT) that utilizes photothermal conversion (PTC) agents to ablate cancer under near-infrared (NIR) irradiation has attracted a growing amount of attention because of its excellent therapeutic efficacy and improved target selectivity. Therefore, exploring novel PTC agents with an outstanding photothermal effect is a current research focus. Herein, we reported a polydopamine-coated magnetic composite particle with an enhanced PTC effect, which was synthesized simply through coating polydopamine (PDA) on the surface of magnetic Fe3O4 particles. Compared with magnetic Fe3O4 particles and PDA nanospheres, the core-shell nanomaterials exhibited an increased NIR absorption, and thus, an enhanced photothermal effect was obtained. We demonstrated the in vitro and in vivo effects of the photothermal therapy using our composite particles and their ability as a contrast agent in the T2-weighted magnetic resonance imaging. These results indicated that the multifunctional composite particles with enhanced photothermal effect are superior to magnetic Fe3O4 particles and PDA nanospheres alone.

  2. Cross-correlation photothermal optical coherence tomography with high effective resolution.

    PubMed

    Tang, Peijun; Liu, Shaojie; Chen, Junbo; Yuan, Zhiling; Xie, Bingkai; Zhou, Jianhua; Tang, Zhilie

    2017-12-01

    We developed a cross-correlation photothermal optical coherence tomography (CC-PTOCT) system for photothermal imaging with high lateral and axial resolution. The CC-PTOCT system consists of a phase-sensitive OCT system, a modulated pumping laser, and a digital cross-correlator. The pumping laser was used to induce the photothermal effect in the sample, causing a slight phase modulation of the OCT signals. A spatial phase differentiation method was employed to reduce phase accumulation. The noise brought by the phase differentiation method and the strong background noise were suppressed efficiently by the cross-correlator, which was utilized to extract the photothermal signals from the modulated signals. Combining the cross-correlation technique with spatial phase differentiation can improve both lateral and axial resolution of the PTOCT imaging system. Clear photothermal images of blood capillaries of a mouse ear in vivo were successfully obtained with high lateral and axial resolution. The experimental results demonstrated that this system can enhance the effective transverse resolution, effective depth resolution, and contrast of the PTOCT image effectively, aiding the ongoing development of the accurate 3D functional imaging.

  3. Exploration of Nanoparticle-Mediated Photothermal Effect of TMB-H2O2 Colorimetric System and Its Application in a Visual Quantitative Photothermal Immunoassay.

    PubMed

    Fu, Guanglei; Sanjay, Sharma T; Zhou, Wan; Brekken, Rolf A; Kirken, Robert A; Li, XiuJun

    2018-05-01

    The exploration of new physical and chemical properties of materials and their innovative application in different fields are of great importance to advance analytical chemistry, material science, and other important fields. Herein, we, for the first time, discovered the photothermal effect of an iron oxide nanoparticles (NPs)-mediated TMB (3,3',5,5'-tetramethylbenzidine)-H 2 O 2 colorimetric system, and applied it toward the development of a new NP-mediated photothermal immunoassay platform for visual quantitative biomolecule detection using a thermometer as the signal reader. Using a sandwich-type proof-of-concept immunoassay, we found that the charge transfer complex of the iron oxide NPs-mediated one-electron oxidation product of TMB (oxidized TMB) exhibited not only color changes, but also a strong near-infrared (NIR) laser-driven photothermal effect. Hence, oxidized TMB was explored as a new sensitive photothermal probe to convert the immunoassay signal into heat through the near-infrared laser-driven photothermal effect, enabling simple photothermal immunoassay using a thermometer. Based on the new iron oxide NPs-mediated TMB-H 2 O 2 photothermal immunoassay platform, prostate-specific antigen (PSA) as a model biomarker can be detected at a concentration as low as 1.0 ng·mL -1 in normal human serum. The discovered photothermal effect of the colorimetric system and the developed new photothermal immunoassay platform open up a new horizon for affordable detection of disease biomarkers and have great potential for other important material and biomedical applications of interest.

  4. Photothermal and photochemical effects of laser light absorption by indocyanine green (ICG)

    NASA Astrophysics Data System (ADS)

    Yaseen, Mohammad A.; Diagaradjane, Parmeswaran; Pikkula, Brian M.; Yu, Jie; Wong, Michael S.; Anvari, Bahman

    2005-04-01

    Indocyanine Green (ICG) is clinically used as a fluorescent dye for imaging purposes. Its rapid circulation kinetics and minimal toxicity has prompted investigation into ICG's utility as a photosentitizer for therapeutic applications. Traditionally, optically mediated tumor therapy has focused on photodynamic therapy, which employs a photochemical mechanism resulting from the absorption of low intensity CW laser light by localized photosensitizers such as Photofrin II, Benzoporphyrin Derivative (BPD), ICG. Treatment of cutaneous vascular malformations such as port-wine stains, on the other hand, is based on a photothermal mechanism resulting from the absorption of high intensity pulsed laser light by hemoglobin. In this study, we compared the effectiveness of combining photochemical and photothermal mechanisms during application of ICG in conjunction with laser irradiation with the intention that the combined approach may lead to a reduction in the threshold dose of pulsed laser light required to treat hypervascular malformations. The blood vessels in rabbit ears were used as an in vivo model for targeted vasculature. Irradiation of the ears with IR light (λ=785 nm, Δτ = 3 min, Io = 120 mW) was used to elicit photochemical damage, while photothermal damage was brought about using pulses from a ruby laser (λ=694 nm, τ = 3 ms) with different fluences. For the combined modality, photochemical damage was induced first and followed by photothermal irradiation. This modality was compared with photothermal irradiation alone. The effectiveness of each irradiation scheme was assessed using histopathological analysis. We present preliminary data that suggests that pretreatment with photodynamic therapy before photothermal coagulation results in more severe vascular damage with lower photothermal fluence levels. The results of this study provide the foundation work for further exploration of the therapeutic potentials of photochemical and photothermal effects during

  5. Highly Efficient Photothermal Semiconductor Nanocomposites for Photothermal Imaging of Latent Fingerprints.

    PubMed

    Cui, Jiabin; Xu, Suying; Guo, Chang; Jiang, Rui; James, Tony D; Wang, Leyu

    2015-11-17

    Optical imaging of latent fingerprints (LFPs) has been widely used in forensic science and for antiterrorist applications, but it suffers from interference from autofluorescence and the substrates background color. Cu7S4 nanoparticles (NPs), with excellent photothermal properties, were synthesized using a new strategy and then fabricated into amphiphilic nanocomposites (NCs) via polymerization of allyl mercaptan coated on Cu7S4 NPs to offer good affinities toward LFPs. Here, we develop a facile and versatile photothermal LFP imaging method based on the high photothermal conversion efficiency (52.92%, 808 nm) of Cu7S4 NCs, indicating its effectiveness for imaging LFPs left on different substrates (with various background colors), which will be extremely useful for crime scene investigations. Furthermore, by fabricating Cu7S4-CdSe@ZnS NCs, a fluorescent-photothermal dual-mode imaging strategy was used to detect trinitrotoluene (TNT) in LFPs while still maintaining a complete photothermal image of LFP.

  6. Enhanced photothermal effect in reduced graphene oxide in solid-state

    NASA Astrophysics Data System (ADS)

    Sahadev, Nishaina; Anappara, Aji A.

    2017-11-01

    We report on a giant photothermal effect in few-layer Reduced Graphene Oxide (RGO) in powder form. Graphite oxide synthesized following modified Hummer's method was thermally exfoliated and reduced to obtain RGO consisting of ˜8-10 layers. Upon irradiation with an incoherent, broad-band light source (wavelengths ranging from 250 to 450 nm), an enormous photothermal effect was observed. The heat generated by RGO determined from the isothermal differential photocalorimetric technique is as high as ˜319 W/g resulting from the dominant non-radiative de-excitation of photoexcited electrons due to the absence of a radiative pathway. A practical applicability was demonstrated using a commercial thermoelectric generator wherein upon illumination from a solar-simulator, an open voltage in the mV range was developed, giving a direct proof of the exothermic effect in powder RGO upon light illumination. Herewith, we have demonstrated a proof-of-concept of photothermal effects in solid-state RGO.

  7. Magnetic field enhanced photothermal effect of Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Pan, Pengfei; Lin, Yawen; Gan, Zhixing; Luo, Xiaobin; Zhou, Weiping; Zhang, Ning

    2018-03-01

    Photothermal and magnetothermal effects are promising in hyperthermia for cancer therapy. However, the development of safe treatments with limited side-effects requires a relatively-high thermal efficiency triggered by mild near-infrared (NIR) light and alternating magnetic field (HAC), which remains a formidable challenge. In this work, a magnetic field enhanced photothermal effect (MFEP) of Fe3O4 nanoparticles is proposed and investigated systematically. The results suggest remarkable temperature increments of 9.59 to 36.90 °C under irradiation of NIR with different light power densities (808 nm, 0-6.98 W/cm2) combined with a certain magnetic field (HAC = 1.5 kA/m at 90 kHz). The rise of temperature induced by MFEP is substantially larger than the sum of isolated photothermal and magnetothermal effects, which is attributed to the hot-phonon bottleneck effect. The MFEP of Fe3O4 nanoparticles could serve as an effective treatment for cancer therapy in the future.

  8. Magnetic resonance thermometry for monitoring photothermal effects of interstitial laser irradiation

    NASA Astrophysics Data System (ADS)

    Goddard, Jessica; Jose, Jessnie; Figueroa, Daniel; Le, Kelvin; Liu, Hong; Nordquist, Robert E.; Hode, Tomas; Chen, Wei R.

    2012-03-01

    Selective photothermal interaction using dye-assisted non-invasive laser irradiation has limitations when treating deeper tumors or when the overlying skin is heavily pigmented. We developed an interstitial laser irradiation method to induce the desired photothermal effects. An 805-nm near-infrared laser with a cylindrical diffuser was used to treat rat mammary tumors by placing the active tip of the fiber inside the target tumors. Three different power settings (1.0 to 1.5 watts) were applied to treat animal tumors with an irradiation duration of 10 minutes. The temperature distributions of the treated tumors were measured by a 7.1-Tesla magnetic resonance imager using proton resonance frequency (PRF) method. Three-dimensional temperature profiles were reconstructed and assessed using PRF. This is the first time a 7.1-Tesla magnetic resonance imager has been used to monitor interstitial laser irradiation via PRF. This study provides a basic understanding of the photothermal interaction needed to control the thermal damage inside tumor using interstitial laser irradiation. It also shows that PRF can be used effectively in monitoring photothermal interaction. Our long-term goal is to develop a PRF-guided laser therapy for cancer treatment.

  9. Photothermal and biodegradable polyaniline/porous silicon hybrid nanocomposites as drug carriers for combined chemo-photothermal therapy of cancer.

    PubMed

    Xia, Bing; Wang, Bin; Shi, Jisen; Zhang, Yu; Zhang, Qi; Chen, Zhenyu; Li, Jiachen

    2017-03-15

    To develop photothermal and biodegradable nanocarriers for combined chemo-photothermal therapy of cancer, polyaniline/porous silicon hybrid nanocomposites had been successfully fabricated via surface initiated polymerization of aniline onto porous silicon nanoparticles in our experiments. As-prepared polyaniline/porous silicon nanocomposites could be well dispersed in aqueous solution without any extra hydrophilic surface coatings, and showed a robust photothermal effect under near-infrared (NIR) laser irradiation. Especially, after an intravenous injection into mice, these biodegradable porous silicon-based nanocomposites as non-toxic agents could be completely cleared in body. Moreover, these polyaniline/porous silicon nanocomposites as drug carriers also exhibited an efficient loading and dual pH/NIR light-triggered release of doxorubicin hydrochloride (DOX, a model anticancer drug). Most importantly, assisted with NIR laser irradiation, polyaniline/PSiNPs nanocomposites with loading DOX showed a remarkable synergistic anticancer effect combining chemotherapy with photothermal therapy, whether in vitro or in vivo. Therefore, based on biodegradable PSiNPs-based nanocomposites, this combination approach of chemo-photothermal therapy would have enormous potential on clinical cancer treatments in the future. Considering the non-biodegradable nature and potential long-term toxicity concerns of photothermal nanoagents, it is of great interest and importance to develop biodegradable and photothermal nanoparticles with an excellent biocompatibility for their future clinical applications. In our experiments, we fabricated porous silicon-based hybrid nanocomposites via surface initiated polymerization of aniline, which showed an excellent photothermal effect, aqueous dispersibility, biodegradability and biocompatibility. Furthermore, after an efficient loading of DOX molecules, polyaniline/porous silicon nanocomposites exhibited the remarkable synergistic anticancer

  10. Near-infrared mediated tumor destruction by photothermal effect of PANI-Np in vivo

    NASA Astrophysics Data System (ADS)

    Ibarra, L. E.; Yslas, E. I.; Molina, M. A.; Rivarola, C. R.; Romanini, S.; Barbero, C. A.; Rivarola, V. A.; Bertuzzi, M. L.

    2013-06-01

    Photothermal therapy is a therapy in which photon energy is converted into heat to kill cancer. The purpose of this study is to evaluate the in vivo efficacy of photothermal therapy, toxicity and hepatic and renal function of polyaniline nanoparticles (PANI-Np) in a tumor-bearing mice model. The in vivo efficacy of nanoparticles, following NIR light exposure, was assessed by examining tumor growth over time compared to the untreated control. Signs of drug toxicity and the histopathology and morphology of tumor and tissues, after intratumoral injection treatment, were examined or monitored. Excellent photothermal therapy efficacy is achieved upon intratumoral injection of PANI-Np followed by near-infrared light exposure. These results suggest that PANI-Np could be considered as an effective photothermal agent and pave the way to future cancer therapeutics.

  11. Prussian blue nanoparticle-based photothermal therapy combined with checkpoint inhibition for photothermal immunotherapy of neuroblastoma.

    PubMed

    Cano-Mejia, Juliana; Burga, Rachel A; Sweeney, Elizabeth E; Fisher, John P; Bollard, Catherine M; Sandler, Anthony D; Cruz, Conrad Russell Y; Fernandes, Rohan

    2017-02-01

    We describe "photothermal immunotherapy," which combines Prussian blue nanoparticle (PBNP)-based photothermal therapy (PTT) with anti-CTLA-4 checkpoint inhibition for treating neuroblastoma, a common, hard-to-treat pediatric cancer. PBNPs exhibit pH-dependent stability, which makes them suitable for intratumorally-administered PTT. PBNP-based PTT is able to lower tumor burden and prime an immune response, specifically an increased infiltration of lymphocytes and T cells to the tumor area, which is complemented by the antitumor effects of anti-CTLA-4 immunotherapy, providing a more durable treatment against neuroblastoma in an animal model. We observe 55.5% survival in photothermal immunotherapy-treated mice at 100days compared to 12.5%, 0%, 0%, and 0% survival in mice receiving: anti-CTLA-4 alone, PBNPs alone, PTT alone, and no treatment, respectively. Additionally, long-term surviving, photothermal immunotherapy-treated mice exhibit protection against neuroblastoma rechallenge, suggesting the development of immunity against these tumors. Our findings suggest the potential of photothermal immunotherapy in improving treatments for neuroblastoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Quantitative photothermal phase imaging of red blood cells using digital holographic photothermal microscope.

    PubMed

    Vasudevan, Srivathsan; Chen, George C K; Lin, Zhiping; Ng, Beng Koon

    2015-05-10

    Photothermal microscopy (PTM), a noninvasive pump-probe high-resolution microscopy, has been applied as a bioimaging tool in many biomedical studies. PTM utilizes a conventional phase contrast microscope to obtain highly resolved photothermal images. However, phase information cannot be extracted from these photothermal images, as they are not quantitative. Moreover, the problem of halos inherent in conventional phase contrast microscopy needs to be tackled. Hence, a digital holographic photothermal microscopy technique is proposed as a solution to obtain quantitative phase images. The proposed technique is demonstrated by extracting phase values of red blood cells from their photothermal images. These phase values can potentially be used to determine the temperature distribution of the photothermal images, which is an important study in live cell monitoring applications.

  13. Polycatechol nanosheet: a superior nanocarrier for highly effective chemo-photothermal synergistic therapy in vivo

    NASA Astrophysics Data System (ADS)

    Bai, J.; Jia, X. D.; Ma, Z. F.; Jiang, X. E.; Sun, X. P.

    2016-02-01

    The integration of phototherapy and chemotherapy in a single system holds great promise to improve the therapeutic efficacy of tumor treatment, but it remains a key challenge. In this study, we describe our recent finding that polycatechol nanosheet (PCCNS) can be facilely prepared on a large scale via chemical polymerization at 4 °C, as an effective nanocarrier for loading high-density CuS nanocrystals as a photothermal agent. The resulting CuS/PCCNS nanocomposites exhibit good biocompatibility, strong stability, and a high photothermal conversion efficiency of ~45.7%. The subsequent loading of anticancer drug doxorubicin (Dox) creates a superior theranostic agent with pH- and heat-responsive drug release, leading to almost complete destruction of mouse cervical tumor under NIR laser irradiation. This development offers an attractive theranostic agent for in vivo chemo-photothermal synergistic therapy toward biomedical applications.The integration of phototherapy and chemotherapy in a single system holds great promise to improve the therapeutic efficacy of tumor treatment, but it remains a key challenge. In this study, we describe our recent finding that polycatechol nanosheet (PCCNS) can be facilely prepared on a large scale via chemical polymerization at 4 °C, as an effective nanocarrier for loading high-density CuS nanocrystals as a photothermal agent. The resulting CuS/PCCNS nanocomposites exhibit good biocompatibility, strong stability, and a high photothermal conversion efficiency of ~45.7%. The subsequent loading of anticancer drug doxorubicin (Dox) creates a superior theranostic agent with pH- and heat-responsive drug release, leading to almost complete destruction of mouse cervical tumor under NIR laser irradiation. This development offers an attractive theranostic agent for in vivo chemo-photothermal synergistic therapy toward biomedical applications. Electronic supplementary information (ESI) available: The calculation of the photothermal conversion

  14. Photothermal imaging of melanin

    NASA Astrophysics Data System (ADS)

    Kerimo, Josef; DiMarzio, Charles A.

    2013-02-01

    We present photothermal images of melanin using modulation with two laser beams. Strong melanin absorption followed by efficient nonradiative relaxation caused heating and an increase in temperature. This temperature effect was used as an imaging contrast to detect melanin. Melanin from several samples including Sepia officinalis, black human hair, and live zebra fish, were imaged with a high signal-to-noise ratio. For the imaging, we focused two near infrared laser beams (pump and probe) collinearly with different wavelengths and the pump was modulated in amplitude. The thermally induced variations in the refractive index, at the modulation frequency, were detected by the scattering of the probe beam. The Photothermal method brings several imaging benefits including the lack of background interference and the possibility of imaging for an extended period of time without photodamage to the melanin. The dependence of the photothermal signal on the laser power, modulation frequency, and spatial offset of the probe is discussed. The new photothermal imaging method is promising and provides background-free and label-free imaging of melanin and can be implemented with low-cost CW lasers.

  15. Organic molecule-based photothermal agents: an expanding photothermal therapy universe.

    PubMed

    Jung, Hyo Sung; Verwilst, Peter; Sharma, Amit; Shin, Jinwoo; Sessler, Jonathan L; Kim, Jong Seung

    2018-04-03

    Over the last decade, organic photothermal therapy (PTT) agents have attracted increasing attention as a potential complement for, or alternative to, classical drugs and sensitizers involving inorganic nanomaterials. In this tutorial review, we provide a structured description of the main classes of organic photothermal agents and their characteristics. Representative agents that have been studied in the context of photothermal therapy since 2000 are summarized and recent advances in using PTT agents to address various cancers indications are highlighted.

  16. Nonlinear photothermal mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Totachawattana, Atcha; Erramilli, Shyamsunder; Sander, Michelle Y.

    2016-10-01

    Mid-infrared photothermal spectroscopy is a pump-probe technique for label-free and non-destructive sample characterization by targeting intrinsic vibrational modes. In this method, the mid-infrared pump beam excites a temperature-induced change in the refractive index of the sample. This laser-induced change in the refractive index is measured by a near-infrared probe laser using lock-in detection. At increased pump powers, emerging nonlinear phenomena not previously demonstrated in other mid-infrared techniques are observed. Nonlinear study of a 6 μm-thick 4-Octyl-4'-Cyanobiphenyl (8CB) liquid crystal sample is conducted by targeting the C=C stretching band at 1606 cm-1. At high pump powers, nonlinear signal enhancement and multiple pitchfork bifurcations of the spectral features are observed. An explanation of the nonlinear peak splitting is provided by the formation of bubbles in the sample at high pump powers. The discontinuous refractive index across the bubble interface results in a decrease in the forward scatter of the probe beam. This effect can be recorded as a bifurcation of the absorption peak in the photothermal spectrum. These nonlinear effects are not present in direct measurements of the mid-infrared beam. Evolution of the nonlinear photothermal spectrum of 8CB liquid crystal with increasing pump power shows enhancement of the absorption peak at 1606 cm-1. Multiple pitchfork bifurcations and spectral narrowing of the photothermal spectrum are demonstrated. This novel nonlinear regime presents potential for improved spectral resolution as well as a new regime for sample characterization in mid-infrared photothermal spectroscopy.

  17. The Most Effective Gold Nanorod Size for Plasmonic Photothermal Therapy: Theory and In Vitro Experiments

    PubMed Central

    2015-01-01

    The development of new and improved photothermal contrast agents for the successful treatment of cancer (or other diseases) via plasmonic photothermal therapy (PPTT) is a crucial part of the application of nanotechnology in medicine. Gold nanorods (AuNRs) have been found to be the most effective photothermal contrast agents, both in vitro and in vivo. Therefore, determining the optimum AuNR size needed for applications in PPTT is of great interest. In the present work, we utilized theoretical calculations as well as experimental techniques in vitro to determine this optimum AuNR size by comparing plasmonic properties and the efficacy as photothermal contrast agents of three different sizes of AuNRs. Our theoretical calculations showed that the contribution of absorbance to the total extinction, the electric field, and the distance at which this field extends away from the nanoparticle surface all govern the effectiveness of the amount of heat these particles generate upon NIR laser irradiation. Comparing between three different AuNRs (38 × 11, 28 × 8, and 17 × 5 nm), we determined that the 28 × 8 nm AuNR is the most effective in plasmonic photothermal heat generation. These results encouraged us to carry out in vitro experiments to compare the PPTT efficacy of the different sized AuNRs. The 28 × 8 nm AuNR was found to be the most effective photothermal contrast agent for PPTT of human oral squamous cell carcinoma. This size AuNR has the best compromise between the total amount of light absorbed and the fraction of which is converted to heat. In addition, the distance at which the electric field extends from the particle surface is most ideal for this size AuNR, as it is sufficient to allow for coupling between the fields of adjacent particles in solution (i.e., particle aggregates), resulting in effective heating in solution. PMID:24433049

  18. NIR laser pointer for in vivo photothermal therapy of murine LM3 tumor using intratumoral China ink as a photothermal agent.

    PubMed

    Blázquez-Castro, Alfonso; Colombo, Lucas L; Vanzulli, Silvia I; Stockert, Juan C

    2018-03-16

    The photothermal effect is one of the most promising photonic procedures currently under development to successfully treat several clinical disorders, none the least some kinds of cancer. At present, this field is undergoing a renewed interest due to advances in both photothermal materials and better-suited light sources. However, scientific studies in this area are sometimes hampered by the relative unavailability of state-of-art materials or the complexity of setting up a dedicated optical facility. Here, we present a simple and affordable approach to do research in the photothermal field that relies on a commercial NIR laser pointer and a readily available everyday pigment: China ink. A proof-of-concept study is presented in which mice bearing intradermal LM3 mammary adenocarcinoma tumors were successfully treated in vivo employing China ink and the laser pointer. TUNEL and Ki-67 post-treatment tissue assessment clearly indicates the deleterious action of the photothermal treatment on the tumor. Therefore, the feasibility of this simple approach has been demonstrated, which may inspire other groups to implement simple procedures to further explore the photothermal effect.

  19. Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer therapy

    PubMed Central

    Feng, Wei; Chen, Liang; Qin, Ming; Zhou, Xiaojun; Zhang, Qianqian; Miao, Yingke; Qiu, Kexin; Zhang, Yanzhong; He, Chuanglong

    2015-01-01

    Photothermal cancer therapy has attracted considerable interest for cancer treatment in recent years, but the effective photothermal agents remain to be explored before this strategy can be applied clinically. In this study, we therefore develop flower-like molybdenum disulfide (MoS2) nanoflakes and investigate their potential for photothermal ablation of cancer cells. MoS2 nanoflakes are synthesized via a facile hydrothermal method and then modified with lipoic acid-terminated polyethylene glycol (LA-PEG), endowing the obtained nanoflakes with high colloidal stability and very low cytotoxicity. Upon irradiation with near infrared (NIR) laser at 808 nm, the nanoflakes showed powerful ability of inducing higher temperature, good photothermal stability and high photothermal conversion efficiency. The in vitro photothermal effects of MoS2-PEG nanoflakes with different concentrations were also evaluated under various power densities of NIR 808-nm laser irradiation, and the results indicated that an effective photothermal killing of cancer cells could be achieved by a low concentration of nanoflakes under a low power NIR 808-nm laser irradiation. Furthermore, cancer cell in vivo could be efficiently destroyed via the photothermal effect of MoS2-PEG nanoflakes under the irradiation. These results thus suggest that the MoS2-PEG nanoflakes would be as promising photothermal agents for future photothermal cancer therapy. PMID:26632249

  20. Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer therapy

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Chen, Liang; Qin, Ming; Zhou, Xiaojun; Zhang, Qianqian; Miao, Yingke; Qiu, Kexin; Zhang, Yanzhong; He, Chuanglong

    2015-12-01

    Photothermal cancer therapy has attracted considerable interest for cancer treatment in recent years, but the effective photothermal agents remain to be explored before this strategy can be applied clinically. In this study, we therefore develop flower-like molybdenum disulfide (MoS2) nanoflakes and investigate their potential for photothermal ablation of cancer cells. MoS2 nanoflakes are synthesized via a facile hydrothermal method and then modified with lipoic acid-terminated polyethylene glycol (LA-PEG), endowing the obtained nanoflakes with high colloidal stability and very low cytotoxicity. Upon irradiation with near infrared (NIR) laser at 808 nm, the nanoflakes showed powerful ability of inducing higher temperature, good photothermal stability and high photothermal conversion efficiency. The in vitro photothermal effects of MoS2-PEG nanoflakes with different concentrations were also evaluated under various power densities of NIR 808-nm laser irradiation, and the results indicated that an effective photothermal killing of cancer cells could be achieved by a low concentration of nanoflakes under a low power NIR 808-nm laser irradiation. Furthermore, cancer cell in vivo could be efficiently destroyed via the photothermal effect of MoS2-PEG nanoflakes under the irradiation. These results thus suggest that the MoS2-PEG nanoflakes would be as promising photothermal agents for future photothermal cancer therapy.

  1. Photothermal fabrication of microscale patterned DNA hydrogels

    NASA Astrophysics Data System (ADS)

    Shimomura, Suguru; Nishimura, Takahiro; Ogura, Yusuke; Tanida, Jun

    2018-02-01

    This paper introduces a method for fabricating microscale DNA hydrogels using irradiation with patterned light. Optical fabrication allows for the flexible and tunable formation of DNA hydrogels without changing the environmental conditions. Our scheme is based on local heat generation via the photothermal effect, which is induced by light irradiation on a quenching species. We demonstrate experimentally that, depending on the power and irradiation time, light irradiation enables the creation of local microscale DNA hydrogels, while the shapes of the DNA hydrogels are controlled by the irradiation patterns.

  2. Cancer cell death processes in combining photothermal and photodynamic effects through surface plasmon resonance of gold nanoring (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    He, Yulu; Yu, Jian-He; Hsiao, Jen-Hung; Tu, Yi-Chou; Low, Meng Chun; Hua, Wei-Hsiang; Hsieh, Cheng-Che; Kiang, Yean-Woei; Yang, Chih-Chung; Zhang, Zhenxi

    2017-02-01

    In combining the photothermal and photodynamic effects for killing cancer cells through the localized surface plasmon resonance (LSP) of photosensitizer-linked Au nanorings (NRIs), which are up-taken by the cells, the cells can be killed via different processes, including necrosis and apoptosis. In particular, the dominating effect, either photothermal or photodynamic effect, for cancer cell killing leading to either necrosis or apoptosis process is an important issue to be understood for improving the therapy efficiency. In this paper, we demonstrate the study results in differentiating the necrosis and apoptosis processes of cell death under different laser illumination conditions. With the LSP resonance wavelength of the Au NRIs around 1064 nm, the illumination of a 1064-nm cw laser can mainly produce the photothermal effect. The illumination of a 1064-nm fs laser can lead to LSP resonance-assisted two-photon absorption of the photosensitizer (AlPcS) for generating singlet oxygen and hence the photodynamic effect, besides the photothermal effect. Also, the illumination of a 660-nm cw laser can result in single-photon absorption of the photosensitizer for generating singlet oxygen and the photodynamic effect. By comparing the necrosis and apoptosis distributions in dead cells between the cases of different laser illumination conditions, we can differentiate the cancer cell killing processes between the photothermal effect, photodynamic effect, and the mixed effect.

  3. Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite.

    PubMed

    Neelgund, Gururaj M; Oki, Aderemi R

    2016-12-15

    Herein we present a successful strategy for enhancement of photothermal efficiency of hydroxyapatite (HAP) by its conjugation with carbon nanotubes (CNTs) and graphene nanosheets (GR). Owing to excellent biocompatibility with human body and its non-toxicity, implementation of HAP based nanomaterials in photothermal therapy (PTT) provides non-replaceable benefits over PTE agents. Therefore, in this report, it has been experimentally exploited that the photothermal effect (PTE) of HAP has significantly improved by its assembly with CNTs and GR. It is found that the type of carbon nanomaterial used to conjugate with HAP has influence on its PTE in such a way that the photothermal efficiency of GR-HAP was higher than CNTs-COOH-HAP under exposure to 980nm near-infrared (NIR) laser. The temperature attained by aqueous dispersions of both CNTs-COOH-HAP and GR-HAP after illuminating to NIR radiations for 7min was found to be above 50°C, which is beyond the temperature tolerance of cancer cells. So that the rise in temperature shown by both CNTs-COOH-HAP and GR-HAP is enough to induce the death of tumoral or cancerous cells. Overall, this approach in modality of HAP with CNTs and GR provide a great potential for development of future nontoxic PTE agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications

    PubMed Central

    Lapotko, Dmitri

    2009-01-01

    This article is focused on the optical generation and detection of photothermal vapor bubbles around plasmonic nanoparticles. We report physical properties of such plasmonic nanobubbles and their biomedical applications as cellular probes. Our experimental studies of gold nanoparticle-generated photothermal bubbles demonstrated the selectivity of photothermal bubble generation, amplification of optical scattering and thermal insulation effect, all realized at the nanoscale. The generation and imaging of photothermal bubbles in living cells (leukemia and carcinoma culture and primary cancerous cells), and tissues (atherosclerotic plaque and solid tumor in animal) demonstrated a noninvasive highly sensitive imaging of target cells by small photothermal bubbles and a selective mechanical, nonthermal damage to the individual target cells by bigger photothermal bubbles due to a rapid disruption of cellular membranes. The analysis of the plasmonic nanobubbles suggests them as theranostic probes, which can be tuned and optically guided at cell level from diagnosis to delivery and therapy during one fast process. PMID:19839816

  5. Integration of Photothermal Effect and Heat Insulation to Efficiently Reduce Reaction Temperature of CO2 Hydrogenation.

    PubMed

    Zhang, Wenbo; Wang, Liangbing; Wang, Kaiwen; Khan, Munir Ullah; Wang, Menglin; Li, Hongliang; Zeng, Jie

    2017-02-01

    The photothermal effect is applied in CO 2 hydrogenation to reduce the reaction temperature under illumination by encapsulating Pt nanocubes and Au nanocages into a zeolitic imidazolate framework (ZIF-8). Under illumination, the heat generated by the photothermal effect of Au nanocages is mainly insulated in the ZIF-8 to form a localized high-temperature region, thereby improving the catalytic activity of Pt nanocubes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Photothermal imaging scanning microscopy

    DOEpatents

    Chinn, Diane [Pleasanton, CA; Stolz, Christopher J [Lathrop, CA; Wu, Zhouling [Pleasanton, CA; Huber, Robert [Discovery Bay, CA; Weinzapfel, Carolyn [Tracy, CA

    2006-07-11

    Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

  7. An effective approach to reduce inflammation and stenosis in carotid artery: polypyrrole nanoparticle-based photothermal therapy

    NASA Astrophysics Data System (ADS)

    Peng, Zhiyou; Qin, Jinbao; Li, Bo; Ye, Kaichuang; Zhang, Yuxin; Yang, Xinrui; Yuan, Fukang; Huang, Lijia; Hu, Junqing; Lu, Xinwu

    2015-04-01

    Photothermal therapy (PTT), as a promising treatment for tumours, has rarely been reported for application in artery restenosis, which is a common complication of endovascular management due to enduring chronic inflammation and abnormal cell proliferation. In our study, biodegradable polypyrrole nanoparticles (PPy-NPs) were synthesized and characterized, including their size distribution, UV-vis-NIR absorbance, molar extinction coefficients, and photothermal properties. We then verified that PPy-NP incubation followed by 915 nm near-infrared (NIR) laser irradiation could effectively ablate inflammatory macrophages in vitro, leading to significant cell apoptosis and cell death. Further, it was found that a combination of local PPy-NP injection with 915 nm NIR laser irradiation could significantly alleviate arterial inflammation by eliminating infiltrating macrophages and further ameliorating artery stenosis in an ApoE-/- mouse model, without showing any obvious toxic side effects. Thus, we propose that PTT based on PPy-NPs as photothermal agents and a 915 nm NIR laser as a power source can serve as a new effective treatment for reducing inflammation and stenosis formation in inflamed arteries after endovascular management.Photothermal therapy (PTT), as a promising treatment for tumours, has rarely been reported for application in artery restenosis, which is a common complication of endovascular management due to enduring chronic inflammation and abnormal cell proliferation. In our study, biodegradable polypyrrole nanoparticles (PPy-NPs) were synthesized and characterized, including their size distribution, UV-vis-NIR absorbance, molar extinction coefficients, and photothermal properties. We then verified that PPy-NP incubation followed by 915 nm near-infrared (NIR) laser irradiation could effectively ablate inflammatory macrophages in vitro, leading to significant cell apoptosis and cell death. Further, it was found that a combination of local PPy-NP injection with

  8. Cleaning procedure for improved photothermal background of toroidal optical microresonators

    NASA Astrophysics Data System (ADS)

    Horak, Erik H.; Knapper, Kassandra A.; Heylman, Kevin D.; Goldsmith, Randall H.

    2016-09-01

    High Q-factors and small mode volumes have made toroidal optical microresonators exquisite sensors to small shifts in the effective refractive index of the WGM modes. Eliminating contaminants and improving quality factors is key for many different sensing techniques, and is particularly important for photothermal imaging as contaminants add photothermal background obscuring objects of interest. Several different cleaning procedures including wet- and dry-chemical procedures are tested for their effect on Q-factors and photothermal background. RCA cleaning was shown to be successful in contrast to previously described acid cleaning procedures, most likely due to the different surface reactivity of the acid reagents used. UV-ozone cleaning was shown to be vastly superior to O2 plasma cleaning procedures, significantly reducing the photothermal background of the resonator.

  9. Comparing the photothermal effects of gold nanorods and single-walled carbon nanotubes in cancer models

    NASA Astrophysics Data System (ADS)

    West, Connor L.; Hasanjee, Aamr M.; Young, Blake; Wolf, Roman; Silk, Kegan; Ingalls, Rianna; Zhou, Feifan; Chen, Wei R.

    2017-02-01

    Laser Immunotherapy (LIT) is an innovative cancer treatment modality that is specifically targeted towards treating late-stage, metastatic cancer. This treatment modality utilizes laser irradiation in combination with active immune system stimulation to induce a systemic anti-tumor immune response against metastatic cancer. Nanoparticles have recently been utilized to support and increase the photothermal effect of the laser irradiation by absorbing the light energy produced from the laser and converting that energy into thermal energy. In the past, single-walled carbon nanotubes (SWNTs) have been the main choice in nanotechnology, however, recent studies have shown that gold nanorods (AuNRs) are a prospective alternative that may produce photothermal effects similar to SWNTs. Due to the precedence of gold biomaterials currently having approval for use in various treatments for humans, AuNRs are regarded to be a safer option than SWNTs. The goal of this study is to precisely compare any differences in photothermal effects between AuNRs and SWNTs. Both types of nanoparticles were irradiated with the same wavelength of near-infrared light to ascertain the photothermal effects in gel phantom tumor models, aqueous solutions, and metastatic cancer cell cultures. We discerned from the results that the AuNRs could be equally or more effective than SWNTs in absorbing the light energy from the laser and converting it into thermal energy. In both solution and gel studies, AuNRs were shown to be more efficient than SWNTs in creating thermal energy, while in cell studies, no definitive differences between AuNRs and SWNTs were observed. The cytotoxicity of both nanoparticles needs further assessment in future studies. Given these results, AuNRs are comparable to SWNTs, even superior in certain aspects. This advances the opportunity to use AuNRs as replacements for SWNTs in LIT treatments. The results from this study will contribute to any subsequent studies in the development

  10. Thermohydrogel Containing Melanin for Photothermal Cancer Therapy.

    PubMed

    Kim, Miri; Kim, Hyun Soo; Kim, Min Ah; Ryu, Hyanghwa; Jeong, Hwan-Jeong; Lee, Chang-Moon

    2017-05-01

    Melanin is an effective absorber of light and can extend to near infrared (NIR) regions. In this study, a natural melanin is presented as a photothermal therapeutic agent (PTA) because it provides a good photothermal conversion efficiency, shows biodegradability, and does not induce long-term toxicity during retention in vivo. Poloxamer solution containing melanin (Pol-Mel) does not show any precipitation and shows sol-gel transition at body temperature. After irradiation from 808 nm NIR laser at 1.5 W cm -2 for 3 min, the photothermal conversion efficiency of Pol-Mel is enough to kill cancer cells in vitro and in vivo. The tumor growth of mice bearing CT26 tumors treated with Pol-Mel injection and laser irradiation is suppressed completely without recurrence postirradiation. All these results indicate that Pol-Mel can become an attractive PTA for photothermal cancer therapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. [Development of photothermal microactuator based on spectral analysis of photothermal expansion material].

    PubMed

    Liu, Chao; Zhang, Dong-Xian; Zhang, Hai-Jun

    2009-11-01

    The spectral characteristic of materials is the key factor of the photothermal microactuator's performance. The present article introduces the operating principle, and analyzes the relationship between the material spectral characteristic and its expansion. As the photothermal microactuator is an innovative microactuator based on photothermal expansion that absorbs the laser energy and converts it into internal energy to realize the microdrive, the optimal photothermal expansion material with proper absorption spectrum characteristic matching the spectrum of light driving source needs to be found. The reflection and absorption spectra of four types of polymeric material, including PVC, HDPE, LDPE and PET, were obtained by using the single integrating sphere method. The results indicate that the reflection spectrum of the dyed high-density polyethylene (HDPE) is of double-peak structure in visible band, and there is strong absorption within the range of 600-690 nm, which means it would match the light driving source quite well in the broad spectral range. Therefore, HDPE was chosen as the photothermal expansion material. In order to check out the feasibility and performance of the photothermal microactuactor based on HDPE, a prototyping microactuator 1 500 mm in length and 30 mm in thickness was manufactured by using an excimer laser micromachining system. With a laser diode (10 mW/650 nm) as the external power source to activate the microactuator, performance measurement experiments were carried out by using a self-produced video movement measurement system with a CCD-coupled microscope. The experiment results demonstrate that the deflection of the microactuator reaches 18.7 mm at 10 mW of laser power, showing that the characteristics of spectral absorption and light-heat transition are quite well at 650 nm. This novel photothermal microactuator has simple structure, adjustable displacement output, and more mobility, and can be controlled remotely, so it will be

  12. Improved Anticancer Photothermal Therapy Using the Bystander Effect Enhanced by Antiarrhythmic Peptide Conjugated Dopamine-Modified Reduced Graphene Oxide Nanocomposite.

    PubMed

    Yu, Jiantao; Lin, Yu-Hsin; Yang, Lingyan; Huang, Chih-Ching; Chen, Liliang; Wang, Wen-Cheng; Chen, Guan-Wen; Yan, Junyan; Sawettanun, Saranta; Lin, Chia-Hua

    2017-01-01

    Despite tremendous efforts toward developing novel near-infrared (NIR)-absorbing nanomaterials, improvement in therapeutic efficiency remains a formidable challenge in photothermal cancer therapy. This study aims to synthesize a specific peptide conjugated polydopamine-modified reduced graphene oxide (pDA/rGO) nanocomposite that promotes the bystander effect to facilitate cancer treatment using NIR-activated photothermal therapy. To prepare a nanoplatform capable of promoting the bystander effect in cancer cells, we immobilized antiarrhythmic peptide 10 (AAP10) on the surface of dopamine-modified rGO (AAP10-pDA/rGO). Our AAP10-pDA/rGO could promote the bystander effect by increasing the expression of connexin 43 protein in MCF-7 breast-cancer cells. Because of its tremendous ability to absorb NIR absorption, AAP10-pDA/rGO offers a high photothermal effect under NIR irradiation. This leads to a massive death of MCF-7 cells via the bystander effect. Using tumor-bearing mice as the model, it is found that NIR radiation effectively ablates breast tumor in the presence of AAP10-pDA/rGO and inhibits tumor growth by ≈100%. Therefore, this research integrates the bystander and photothermal effects into a single nanoplatform in order to facilitate an efficient photothermal therapy. Furthermore, our AAP10-pDA/rGO, which exhibits both hyperthermia and the bystander effect, can prevent breast-cancer recurrence and, therefore, has great potential for future clinical and research applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Photothermal characterization of encapsulant materials for photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Liang, R. H.; Gupta, A.; Distefano, S.

    1982-01-01

    A photothermal test matrix and a low cost testing apparatus for encapsulant materials of photovoltaic modules were defined. Photothermal studies were conducted to screen and rank existing as well as future encapsulant candidate materials and/or material formulations in terms of their long term physiochemical stability under accelerated photothermal aging conditions. Photothermal characterization of six candidate pottant materials and six candidate outer cover materials were carried out. Principal products of photothermal degradation are identified. Certain critical properties are also monitored as a function of photothermal aging.

  14. Investigation of the influence of the photodynamic effect on micro-organisms using the laser photothermal cytometry method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapotko, D O; Kuchinskii, G S; Zharov, V P

    1999-12-31

    An investigation of the influence of the photodynamic effect on S.aureus and E.coli bacteria in the presence of blood cells was made by the laser photothermal cytometry method. Elements of the theory of the photothermal method are considered for the case of pulsed lasers used in microscopy. Chlorin in doses of 0.02 mg litre{sup -1} was used as a photosensitiser. The results of the investigation made it possible to propose the possibility of an immunomodulation effect caused by introducing photoactivated chlorin into the cell - microbe system. It was found that the photothermal parameters of the cells interacting with microbesmore » in the presence of photoactivated chlorin differed from the parameters of intact cells much less than in the absence of chlorin. However, a more pronounced bactericidal effect was observed in the samples treated with chlorin. (lasers in medicine)« less

  15. Combined concurrent nanoshell loaded macrophage-mediated photothermal and photodynamic therapies

    NASA Astrophysics Data System (ADS)

    Hirschberg, Henry; Trinidad, Anthony; Christie, Catherine E.; Peng, Qian; Kwon, Young J.; Madsen, Steen

    2015-02-01

    Macrophages loaded with gold nanoshells (AuNS), that convert near infrared light to heat, can be used as transport vectors for photothermal hyperthermia of tumors. The purpose of this study was to investigate the effects of combined macrophage mediated photothermal therapy (PTT) and PDT on head and neck squamous cell carcinoma (HNSCC). The results provide proof of concept for the use of macrophages as a delivery vector of AuNS for photothermal enhancement of the effects of PDT on squamous cell carcinoma. A significant synergy was demonstrated with combined PDT and PTT compared to each modality applied separately.

  16. Photothermal Effect Enhanced Cascade-Targeting Strategy for Improved Pancreatic Cancer Therapy by Gold Nanoshell@Mesoporous Silica Nanorod.

    PubMed

    Zhao, Ruifang; Han, Xuexiang; Li, Yiye; Wang, Hai; Ji, Tianjiao; Zhao, Yuliang; Nie, Guangjun

    2017-08-22

    Pancreatic cancer, one of the leading causes of cancer-related mortality, is characterized by desmoplasia and hypovascular cancerous tissue, with a 5 year survival rate of <8%. To overcome the severe resistance of pancreatic cancer to conventional therapies, we synthesized gold nanoshell-coated rod-like mesoporous silica (GNRS) nanoparticles which integrated cascade tumor targeting (mediated by photothermal effect and molecular receptor binding) and photothermal treatment-enhanced gemcitabine chemotherapy, under mild near-infrared laser irradiation condition. GNRS significantly improved gemcitabine penetration and accumulation in tumor tissues, thus destroying the dense stroma barrier of pancreatic cancer and reinforcing chemosensitivity in mice. Our current findings strongly support the notion that further development of this integrated plasmonic photothermal strategy may represent a promising translational nanoformulation for effective treatment of pancreatic cancer with integral cascade tumor targeting strategy and enhanced drug delivery efficacy.

  17. Photothermal lesions in soft tissue induced by optical fiber microheaters.

    PubMed

    Pimentel-Domínguez, Reinher; Moreno-Álvarez, Paola; Hautefeuille, Mathieu; Chavarría, Anahí; Hernández-Cordero, Juan

    2016-04-01

    Photothermal therapy has shown to be a promising technique for local treatment of tumors. However, the main challenge for this technique is the availability of localized heat sources to minimize thermal damage in the surrounding healthy tissue. In this work, we demonstrate the use of optical fiber microheaters for inducing thermal lesions in soft tissue. The proposed devices incorporate carbon nanotubes or gold nanolayers on the tips of optical fibers for enhanced photothermal effects and heating of ex vivo biological tissues. We report preliminary results of small size photothermal lesions induced on mice liver tissues. The morphology of the resulting lesions shows that optical fiber microheaters may render useful for delivering highly localized heat for photothermal therapy.

  18. PEDOT nanocomposites mediated dual-modal photodynamic and photothermal targeted sterilization in both NIR I and II window.

    PubMed

    Li, Luoyuan; Liu, Yuxin; Hao, Panlong; Wang, Zhangguo; Fu, Limin; Ma, Zhanfang; Zhou, Jing

    2015-02-01

    PEDOT nanoparticles with a suitable nanosize of 17.2 nm, broad adsorption from 700 to 1250 nm, and photothermal conversion efficiency (η) of 71.1%, were synthesized using an environmentally friendly hydrothermal method. Due to the electrostatic attraction between indocyanine green (ICG) and PEDOT, the stability of ICG in aqueous solution was effectively improved. The PEDOT nanoparticles modified with glutaraldehyde (GTA) targeted bacteria directly, and MTT experiments demonstrated the low toxicity of PEDOT:ICG@PEG-GTA in different bacteria and cells. Pathogenic bacteria were effectively killed by photodynamic therapy (PDT) and photothermal therapy (PTT) with PEDOT:ICG@PEG-GTA in the presence of near-infrared (NIR) irradiation (808 nm for PDT, and 1064 nm for PTT). The combination of the two different bacteriostatic methods was significantly more effective than PTT or PDT alone. The obtained PEDOT:ICG@PEG-GTA may be used as a novel synergistic agent in combination photodynamic and photothermal therapy to inactivate pathogenic bacteria in both the NIR I and II window. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Xu, Ligeng; Liang, Chao; Wang, Chao; Peng, Rui; Liu, Zhuang

    2016-10-01

    A therapeutic strategy that can eliminate primary tumours, inhibit metastases, and prevent tumour relapses is developed herein by combining adjuvant nanoparticle-based photothermal therapy with checkpoint-blockade immunotherapy. Indocyanine green (ICG), a photothermal agent, and imiquimod (R837), a Toll-like-receptor-7 agonist, are co-encapsulated by poly(lactic-co-glycolic) acid (PLGA). The formed PLGA-ICG-R837 nanoparticles composed purely by three clinically approved components can be used for near-infrared laser-triggered photothermal ablation of primary tumours, generating tumour-associated antigens, which in the presence of R837-containing nanoparticles as the adjuvant can show vaccine-like functions. In combination with the checkpoint-blockade using anti-cytotoxic T-lymphocyte antigen-4 (CTLA4), the generated immunological responses will be able to attack remaining tumour cells in mice, useful in metastasis inhibition, and may potentially be applicable for various types of tumour models. Furthermore, such strategy offers a strong immunological memory effect, which can provide protection against tumour rechallenging post elimination of their initial tumours.

  20. In vivo photoacoustic monitoring of anti-obesity photothermal lipolysis

    NASA Astrophysics Data System (ADS)

    Lee, Donghyun; Lee, Jung Ho; Hahn, Sei Kwang; Kim, Chulhong

    2018-02-01

    Obesity with a body mass index is greater than 30 kg/m2 is one of the rapidly growing diseases in advanced societies and can lead to stroke, type 2 diabetes, and heart failure. Common methods of removing subcutaneous adipose tissues are liposuction and laser treatment. In this study, we used photoacoustic imaging to monitor the anti-obesity photothermal degradation process. To improve the photothermal lipid degradation efficiency without any invasive methods, we synthesized hyaluronic acid hollow hold nanosphere adipocyte targeting sequence peptide (HA-HAuNS-ATS) conjugates. The conjugate enhanced the skin penetration ability and biodegradability of the nanoparticles using hyaluronate and enhanced the targeting effect on adipose tissue with adipocyte targeting sequence peptide. Thus, the conjugate can be delivered to the adipose tissue by simply spreading the conjugate on the skin without any invasive method. Then, the photothermal lipolysis and delivery of the conjugate were photoacoustically monitored in vivo. These results demonstrate the potential for photoacoustic method to be applied for photothermal lipolysis monitoring.

  1. Artesunate-modified nano-graphene oxide for chemo-photothermal cancer therapy

    PubMed Central

    Pang, Yilin; Mai, Zihao; Wang, Bin; Wang, Lu; Wu, Liping; Wang, Xiaoping; Chen, Tongsheng

    2017-01-01

    Poor water-solubility of artesunate (ARS) hampers its clinical application. We here covalently linked ARS to PEGylated nanographene oxide (nGO-PEG) to obtain ARS-modified nGO-PEG (nGO-PEG-ARS) with excellent photothermal effect and dispersibility in physiological environment. nGO-PEG-ARS induced reactive oxygen species (ROS) and peroxynitrite (ONOO─) generations. Although nGO-PEG with near-infrared (NIR) irradiation did not induce cytotoxicity, the photothermal effect of nGO-PEG under NIR irradiation enhanced not only cell uptake but also ONOO─ generation of nGO-PEG-ARS, resulting in the synergistic chemo-photothermal effect of nGO-PEG-ARS in killing HepG2 cells. Pretreatment with Fe(III) 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato chloride (FeTTPS, a ONOO─ scavenger) instead of antioxidant N-Acetyle-Cysteine (NAC, an ROS scavenger) significantly blocked the cytotoxicity of nGO-PEG-ARS with or without NIR irradiation, demonstrating that ONOO─ instead of ROS dominated the synergistic chemo-photothermal anti-cancer action of nGO-PEG-ARS. nGO-PEG-ARS with NIR irradiation resulted in a complete tumor cure within 15 days earlier than other treatment groups, and did not induce apparent histological lesion for the mice treated with nGO-PEG-ARS with or without NIR irradiation for 30 days, further proving the synergistic chemo-photothermal anti-cancer effect of nGO-PEG-ARS. Collectively, nGO-PEG-ARS is a versatile nano-platform for multi-modal synergistic cancer therapy. PMID:29212190

  2. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature

    PubMed Central

    Zhu, Xingjun; Feng, Wei; Chang, Jian; Tan, Yan-Wen; Li, Jiachang; Chen, Min; Sun, Yun; Li, Fuyou

    2016-01-01

    Photothermal therapy (PTT) at present, following the temperature definition for conventional thermal therapy, usually keeps the temperature of lesions at 42–45 °C or even higher. Such high temperature kills cancer cells but also increases the damage of normal tissues near lesions through heat conduction and thus brings about more side effects and inhibits therapeutic accuracy. Here we use temperature-feedback upconversion nanoparticle combined with photothermal material for real-time monitoring of microscopic temperature in PTT. We observe that microscopic temperature of photothermal material upon illumination is high enough to kill cancer cells when the temperature of lesions is still low enough to prevent damage to normal tissue. On the basis of the above phenomenon, we further realize high spatial resolution photothermal ablation of labelled tumour with minimal damage to normal tissues in vivo. Our work points to a method for investigating photothermal properties at nanoscale, and for the development of new generation of PTT strategy. PMID:26842674

  3. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature.

    PubMed

    Zhu, Xingjun; Feng, Wei; Chang, Jian; Tan, Yan-Wen; Li, Jiachang; Chen, Min; Sun, Yun; Li, Fuyou

    2016-02-04

    Photothermal therapy (PTT) at present, following the temperature definition for conventional thermal therapy, usually keeps the temperature of lesions at 42-45 °C or even higher. Such high temperature kills cancer cells but also increases the damage of normal tissues near lesions through heat conduction and thus brings about more side effects and inhibits therapeutic accuracy. Here we use temperature-feedback upconversion nanoparticle combined with photothermal material for real-time monitoring of microscopic temperature in PTT. We observe that microscopic temperature of photothermal material upon illumination is high enough to kill cancer cells when the temperature of lesions is still low enough to prevent damage to normal tissue. On the basis of the above phenomenon, we further realize high spatial resolution photothermal ablation of labelled tumour with minimal damage to normal tissues in vivo. Our work points to a method for investigating photothermal properties at nanoscale, and for the development of new generation of PTT strategy.

  4. LASERS IN MEDICINE: Investigation of the influence of the photodynamic effect on micro-organisms using the laser photothermal cytometry method

    NASA Astrophysics Data System (ADS)

    Lapotko, D. O.; Zharov, V. P.; Romanovskaya, T. R.; Kuchinskii, G. S.

    1999-12-01

    An investigation of the influence of the photodynamic effect on S.aureus and E.coli bacteria in the presence of blood cells was made by the laser photothermal cytometry method. Elements of the theory of the photothermal method are considered for the case of pulsed lasers used in microscopy. Chlorin in doses of 0.02 mg litre-1 was used as a photosensitiser. The results of the investigation made it possible to propose the possibility of an immunomodulation effect caused by introducing photoactivated chlorin into the cell — microbe system. It was found that the photothermal parameters of the cells interacting with microbes in the presence of photoactivated chlorin differed from the parameters of intact cells much less than in the absence of chlorin. However, a more pronounced bactericidal effect was observed in the samples treated with chlorin.

  5. Photothermal Deflection Spectroscopy of materials for energy applications

    NASA Astrophysics Data System (ADS)

    Johnson, Stephen; Day, James; Couch, Brandon; Heller, Brandon; Hart, Blake; Transylvania University Team

    A new photothermal deflection spectroscopy (PDS) setup has been constructed at Transylvania University. This poster will focus on the photothermal behavior of nanomaterials such as quantum dots as well as organic photovoltaic materials. With respect to organic photovoltaic materials, this work aims to understand differences in photothermal behavior between the solution and solid-film phases, where changes in photothermal spectra give insight into changes in electronic structure. A general overview of the PDS capabilities at Transylvania will also be given.

  6. Determination of doping effects on Si and GaAs bulk samples properties by photothermal investigations

    NASA Astrophysics Data System (ADS)

    Abroug, Sameh; Saadallah, Faycel; Yacoubi, Noureddine

    2007-11-01

    The knowledge of doping effects on optical and thermal properties of semiconductors is crucial for the development of opto-electronic compounds. The purpose of this work is to investigate these effects by mirage effect technique and spectroscopic ellipsometry SE. The near gap optical spectra are obtained from photothermal signal for differently doped Si and GaAs bulk samples. However, the above bandgap absorption is determined from SE. These spectra show that absorption in the near IR increases with dopant density and also the bandgap shifts toward low energies. This behavior is due to free carrier absorption which could be obtained by subtracting phonon-assisted absorption from the measured spectrum. This carrier absorption is related to the dopant density through a semi-empirical model. We have also used the photothermal signal phase to measure the influence of doping on thermal diffusivity.

  7. Photothermal inactivation of bacteria on plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Santos, Greggy M.; Ibañez de Santi Ferrara, Felipe; Zhao, Fusheng; Rodrigues, Debora F.; Shih, Wei-Chuan

    2016-03-01

    Hospital-acquired bacterial infections are frequently associated with the pathogenic biofilms on surfaces of devices and instruments used in medical procedures. The utilization of thermal plasmonic agents is an innovative approach for sterilizing hospital equipment and for in vivo therapeutic treatment of bacterial infection. A photothermal inactivation technique via array of nanoporous gold disks (NPGDs) has been developed by irradiating near infrared (NIR) light onto deposited bacterial cells (Escherichia coli, Bacillus subtilis, Exiguobacterium AT1B) on the surface of metal nanostructure. The physical and photothermal properties of the NPGD substrate were investigated using topographical scanning electron microscopy (SEM) and thermographic infrared imaging. Bacterial viability studies on NPGD substrates irradiated with and without NIR light were evaluated using a fluorescence-based two-component stain assay. The results show that the heat generated from the NPGD substrate promotes high cell death counts (~100%) at short exposure durations (<25 s) even for thermally-resistant bacterial strains. The photothermal effects on NPGD substrate can lead to point-of-care applications.

  8. In Vitro and In Vivo Photothermal Cancer Therapeutic Effects of Gold Nanorods Modified with Mushroom β-Glucan.

    PubMed

    Li, Xiaojie; Zhou, Jiajing; Dong, Xiaonan; Cheng, Wai-Yin; Duan, Hongwei; Cheung, Peter C K

    2018-04-25

    The photothermal cancer therapeutic effect of the AuNR-Glu nanohybrids produced by coating native gold nanorods (AuNRs) with a natural mushroom biopolymer from the Pleurotus tuber-regium sclerotia (Glu) were studied in the second near-infrared window (NIR-II). The AuNR-Glu exhibited low cytotoxicity and high biocompatibility due to the surface modification of Glu when compared with the native AuNRs. AuNR-Glu nanohybrids had a high photothermal transduction efficiency (η) of 43.12%, causing effective in vitro cell ablation in both HT-29 (94.2 ± 0.8% cell death) and SW480 (94.8 ± 1.1% cell death) colon cancer cells under 1064 nm NIR-II laser irradiation at 1.0 W/cm 2 . Intravenous injection of AuNR-Glu nanohybrids followed by irradiation from a NIR-II laser at a safe dose (1.0 W/cm 2 for 5 min) in nude mice implanted with HT-29 tumors was effective in significantly reducing the tumor growth, with no obvious harmful side effects, as evidenced by histological analysis of major organs. The present results have shown that AuNRs modified by natural biopolymers from mushroom β-glucans are novel nanomaterials with low cytotoxicity and effective photothermal anticancer agents with potential biomedical applications.

  9. Mapping photothermally induced gene expression in living cells and tissues by nanorod-locked nucleic acid complexes.

    PubMed

    Riahi, Reza; Wang, Shue; Long, Min; Li, Na; Chiou, Pei-Yu; Zhang, Donna D; Wong, Pak Kin

    2014-04-22

    The photothermal effect of plasmonic nanostructures has numerous applications, such as cancer therapy, photonic gene circuit, large cargo delivery, and nanostructure-enhanced laser tweezers. The photothermal operation can also induce unwanted physical and biochemical effects, which potentially alter the cell behaviors. However, there is a lack of techniques for characterizing the dynamic cell responses near the site of photothermal operation with high spatiotemporal resolution. In this work, we show that the incorporation of locked nucleic acid probes with gold nanorods allows photothermal manipulation and real-time monitoring of gene expression near the area of irradiation in living cells and animal tissues. The multimodal gold nanorod serves as an endocytic delivery reagent to transport the probes into the cells, a fluorescence quencher and a binding competitor to detect intracellular mRNA, and a plasmonic photothermal transducer to induce cell ablation. We demonstrate the ability of the gold nanorod-locked nucleic acid complex for detecting the spatiotemporal gene expression in viable cells and tissues and inducing photothermal ablation of single cells. Using the gold nanorod-locked nucleic acid complex, we systematically characterize the dynamic cellular heat shock responses near the site of photothermal operation. The gold nanorod-locked nucleic acid complex enables mapping of intracellular gene expressions and analyzes the photothermal effects of nanostructures toward various biomedical applications.

  10. Biodegradable and Multifunctional Polymer Micro-Tubes for Targeting Photothermal Therapy

    PubMed Central

    Wang, Xin; Yu, Guoping; Han, Xiyu; Zhang, Hua; Ren, Jing; Wu, Xia; Qu, Yanfeng

    2014-01-01

    We describe an innovative form of polymer micro-tubes with diverse functions including biodegradation, magnetic manipulation, and photothermal effect that employs and activates photothermal therapy to target cancer cells. The micro-tube comprised soybean protein isolate, poly-l-glutamic acid, magnetite nanoparticles, plus gold nanoparticles. Through electrostatic force, these components, with opposite charges, formed pairs of layers in the pores of the template, various bilayers of soybean protein isolate and poly-l-glutamic acid served as the biodegradable building wall to each micro-tube. The layers of magnetite nanoparticle functionalized micro-tubes enabled the micro-tube manipulate to target the cancer cells by using an external magnetic field. The photo-thermal effect of the layer of gold nanoparticles on the outer surface of the micro-tubes, when under irradiation and when brought about by the near infrared radiation, elevated each sample’s temperature. In addition, and when under the exposure of the near infrared radiation, the elevated temperature of the suspension of the micro-tubes, likewise with a concentration of 0.2 mg/mL, and similarly with a power of 2 W and as well maintained for 10 min, elevated the temperature of the suspension beyond 42 °C. Such temperatures induced apoptosis of target cancer cells through the effect of photothermal therapy. The findings assert that structured micro-tubes have a promising application as a photothermal agent. From this assertion, the implications are that this multifunctional agent will significantly improve the methodology for cancer diagnosis and therapy. PMID:24992593

  11. Solvent Effects on the Photothermal Regeneration of CO 2 in Monoethanolamine Nanofluids

    DOE PAGES

    Nguyen, Du; Stolaroff, Joshuah; Esser-Kahn, Aaron

    2015-11-02

    We present that a potential approach to reduce energy costs associated with carbon capture is to use external and renewable energy sources. The photothermal release of CO 2 from monoethanolamine mediated by nanoparticles is a unique solution to this problem. When combined with light-absorbing nanoparticles, vapor bubbles form inside the capture solution and release the CO 2 without heating the bulk solvent. The mechanism by which CO 2 is released remained unclear, and understanding this process would improve the efficiency of photothermal CO 2 release. Here we report the use of different cosolvents to improve or reduce the photothermal regenerationmore » of CO 2 captured by monoethanolamine. We found that properties that reduce the residence time of the gas bubbles (viscosity, boiling point, and convection direction) can enhance the regeneration efficiencies. The reduction of bubble residence times minimizes the reabsorption of CO 2 back into the capture solvent where bulk temperatures remain lower than the localized area surrounding the nanoparticle. These properties shed light on the mechanism of release and indicated methods for improving the efficiency of the process. We used this knowledge to develop an improved photothermal CO 2 regeneration system in a continuously flowing setup. Finally, using techniques to reduce residence time in the continuously flowing setup, such as alternative cosolvents and smaller fluid volumes, resulted in regeneration efficiency enhancements of over 200%.« less

  12. Solvent Effects on the Photothermal Regeneration of CO 2 in Monoethanolamine Nanofluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Du; Stolaroff, Joshuah; Esser-Kahn, Aaron

    We present that a potential approach to reduce energy costs associated with carbon capture is to use external and renewable energy sources. The photothermal release of CO 2 from monoethanolamine mediated by nanoparticles is a unique solution to this problem. When combined with light-absorbing nanoparticles, vapor bubbles form inside the capture solution and release the CO 2 without heating the bulk solvent. The mechanism by which CO 2 is released remained unclear, and understanding this process would improve the efficiency of photothermal CO 2 release. Here we report the use of different cosolvents to improve or reduce the photothermal regenerationmore » of CO 2 captured by monoethanolamine. We found that properties that reduce the residence time of the gas bubbles (viscosity, boiling point, and convection direction) can enhance the regeneration efficiencies. The reduction of bubble residence times minimizes the reabsorption of CO 2 back into the capture solvent where bulk temperatures remain lower than the localized area surrounding the nanoparticle. These properties shed light on the mechanism of release and indicated methods for improving the efficiency of the process. We used this knowledge to develop an improved photothermal CO 2 regeneration system in a continuously flowing setup. Finally, using techniques to reduce residence time in the continuously flowing setup, such as alternative cosolvents and smaller fluid volumes, resulted in regeneration efficiency enhancements of over 200%.« less

  13. Copper Selenide Nanocrystals for Photothermal Therapy

    PubMed Central

    Hessel, Colin M.; Pattani, Varun; Rasch, Michael; Panthani, Matthew G.; Koo, Bonil; Tunnell, James W.; Korgel, Brian A.

    2011-01-01

    Ligand-stabilized copper selenide (Cu2−xSe) nanocrystals, approximately 16 nm in diameter, were synthesized by a colloidal hot injection method and coated with amphiphilic polymer. The nanocrystals readily disperse in water and exhibit strong near infrared (NIR) optical absorption with a high molar extinction coefficient of 7.7 × 107 cm−1 M−1 at 980 nm. When excited with 800 nm light, the Cu2−xSe nanocrystals produce significant photothermal heating with a photothermal transduction efficiency of 22%, comparable to nanorods and nanoshells of gold (Au). In vitro photothermal heating of Cu2−xSe nanocrystals in the presence of human colorectal cancer cell (HCT-116) led to cell destruction after 5 minutes of laser irradiation at 33 W/cm2, demonstrating the viabilitiy of Cu2−xSe nanocrystals for photothermal therapy applications. PMID:21553924

  14. Laser speckle imaging based on photothermally driven convection.

    PubMed

    Regan, Caitlin; Choi, Bernard

    2016-02-01

    Laser speckle imaging (LSI) is an interferometric technique that provides information about the relative speed of moving scatterers in a sample. Photothermal LSI overcomes limitations in depth resolution faced by conventional LSI by incorporating an excitation pulse to target absorption by hemoglobin within the vascular network. Here we present results from experiments designed to determine the mechanism by which photothermal LSI decreases speckle contrast. We measured the impact of mechanical properties on speckle contrast, as well as the spatiotemporal temperature dynamics and bulk convective motion occurring during photothermal LSI. Our collective data strongly support the hypothesis that photothermal LSI achieves a transient reduction in speckle contrast due to bulk motion associated with thermally driven convection. The ability of photothermal LSI to image structures below a scattering medium may have important preclinical and clinical applications.

  15. Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics

    PubMed Central

    Shao, Jingwei; Griffin, Robert J.; Galanzha, Ekaterina I.; Kim, Jin-Woo; Koonce, Nathan; Webber, Jessica; Mustafa, Thikra; Biris, Alexandru S.; Nedosekin, Dmitry A.; Zharov, Vladimir P.

    2013-01-01

    Nanotechnology has been extensively explored for drug delivery. Here, we introduce the concept of a nanodrug based on synergy of photothermally-activated physical and biological effects in nanoparticle-drug conjugates. To prove this concept, we utilized tumor necrosis factor-alpha coated gold nanospheres (Au-TNF) heated by laser pulses. To enhance photothermal efficiency in near-infrared window of tissue transparency we explored slightly ellipsoidal nanoparticles, its clustering, and laser-induced nonlinear dynamic phenomena leading to amplification and spectral sharpening of photothermal and photoacoustic resonances red-shifted relatively to linear plasmonic resonances. Using a murine carcinoma model, we demonstrated higher therapy efficacy of Au-TNF conjugates compared to laser and Au-TNF alone or laser with TNF-free gold nanospheres. The photothermal activation of low toxicity Au-TNF conjugates, which are in phase II trials in humans, with a laser approved for medical applications opens new avenues in the development of clinically relevant nanodrugs with synergistic antitumor theranostic action. PMID:23443065

  16. Low-Power Photothermal Self-Oscillation of Bimetallic Nanowires.

    PubMed

    De Alba, Roberto; Abhilash, T S; Rand, Richard H; Craighead, Harold G; Parpia, Jeevak M

    2017-07-12

    We investigate the nonlinear mechanics of a bimetallic, optically absorbing SiN-Nb nanowire in the presence of incident laser light and a reflecting Si mirror. Situated in a standing wave of optical intensity and subject to photothermal forces, the nanowire undergoes self-induced oscillations at low incident light thresholds of <1 μW due to engineered strong temperature-position (T-z) coupling. Along with inducing self-oscillation, laser light causes large changes to the mechanical resonant frequency ω 0 and equilibrium position z 0 that cannot be neglected. We present experimental results and a theoretical model for the motion under laser illumination. In the model, we solve the governing nonlinear differential equations by perturbative means to show that self-oscillation amplitude is set by the competing effects of direct T-z coupling and 2ω 0 parametric excitation due to T-ω 0 coupling. We then study the linearized equations of motion to show that the optimal thermal time constant τ for photothermal feedback is τ → ∞ rather than the previously reported ω 0 τ = 1. Lastly, we demonstrate photothermal quality factor (Q) enhancement of driven motion as a means to counteract air damping. Understanding photothermal effects on nano- and micromechanical devices, as well as nonlinear aspects of optics-based motion detection, can enable new device applications as oscillators or other electronic elements with smaller device footprints and less stringent ambient vacuum requirements.

  17. Photothermal effect of gold nanostars inkjet-printed on coated paper substrate under near-infrared irradiation

    NASA Astrophysics Data System (ADS)

    Borzenkov, Mykola; Chirico, Giuseppe; Collini, Maddalena; Määttänen, Anni; Ihalainen, Petri; Cabrini, Elisa; Dacarro, Giacomo; Pallavicini, Piersandro

    2016-04-01

    The research and development of personalized medical treatments is increasing steadily fostered by its large societal impact. The ability of non-spherical gold nanoparticles to locally and efficiently release heat when irradiated in Near Infrared (NIR) wavelength region is a promising tool for photothermal medical therapies. In the present work, stable inks containing PEGylated gold nanostars (GNS) were obtained and inkjet-printed on a pigment coated paper substrate. Significant photothermal effect of the printed patterns was observed under Near Infrared (NIR) excitation of the Localized Surface Plasmon Resonance (LSPR) of the GNS. These preliminary results support, in perspective, the application of printed GNS patterns for thermal medical treatments either by direct localized heating, or by temperature triggered drug release.

  18. Laser speckle imaging based on photothermally driven convection

    PubMed Central

    Regan, Caitlin; Choi, Bernard

    2016-01-01

    Abstract. Laser speckle imaging (LSI) is an interferometric technique that provides information about the relative speed of moving scatterers in a sample. Photothermal LSI overcomes limitations in depth resolution faced by conventional LSI by incorporating an excitation pulse to target absorption by hemoglobin within the vascular network. Here we present results from experiments designed to determine the mechanism by which photothermal LSI decreases speckle contrast. We measured the impact of mechanical properties on speckle contrast, as well as the spatiotemporal temperature dynamics and bulk convective motion occurring during photothermal LSI. Our collective data strongly support the hypothesis that photothermal LSI achieves a transient reduction in speckle contrast due to bulk motion associated with thermally driven convection. The ability of photothermal LSI to image structures below a scattering medium may have important preclinical and clinical applications. PMID:26927221

  19. Red blood cell membrane-camouflaged melanin nanoparticles for enhanced photothermal therapy.

    PubMed

    Jiang, Qin; Luo, Zimiao; Men, Yongzhi; Yang, Peng; Peng, Haibao; Guo, Ranran; Tian, Ye; Pang, Zhiqing; Yang, Wuli

    2017-10-01

    Photothermal therapy (PTT) has represented a promising noninvasive approach for cancer treatment in recent years. However, there still remain challenges in developing non-toxic and biodegradable biomaterials with high photothermal efficiency in vivo. Herein, we explored natural melanin nanoparticles extracted from living cuttlefish as effective photothermal agents and developed red blood cell (RBC) membrane-camouflaged melanin (Melanin@RBC) nanoparticles as a platform for in vivo antitumor PTT. The as-obtained natural melanin nanoparticles demonstrated strong absorption at NIR region, higher photothermal conversion efficiency (∼40%) than synthesized melanin-like polydopamine nanoparticles (∼29%), as well as favorable biocompatibility and biodegradability. It was shown that RBC membrane coating on melanin nanoparticles retained their excellent photothermal property, enhanced their blood retention and effectively improved their accumulation at tumor sites. With the guidance of their inherited photoacoustic imaging capability, optimal accumulation of Melanin@RBC at tumors was achieved around 4 h post intravenous injection. Upon irradiation by an 808-nm laser, the developed Melanin@RBC nanoparticles exhibited significantly higher PTT efficacy than that of bare melanin nanoparticles in A549 tumor-bearing mice. Given that both melanin nanoparticles and RBC membrane are native biomaterials, the developed Melanin@RBC platform could have great potential in clinics for anticancer PTT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Lipopolysaccharide-coated CuS nanoparticles promoted anti-cancer and anti-metastatic effect by immuno-photothermal therapy

    PubMed Central

    Moorthy, Madhappan S.; Zhang, Wei; Zeng, Ling; Kang, Mingyeong; Kwak, Minseok; Oh, Junghwan; Jin, Jun-O

    2017-01-01

    To meet the ultimate goal of cancer therapy, which is treating not only the primary tumor but also preventing metastatic cancer, the concept of combining immunotherapy with photothermal therapy (PTT) is gaining great interest. Here, we studied the new material, lipopolysaccharide (LPS) coated copper sulfide nanoparticles (LPS-CuS), for the immuno-photothermal therapy. We evaluated the effect of LPS-CuS for induction of apoptosis of CT26 cells and activation of dendritic cells. Moreover, the LPS-CuS and laser irradiation was examined anti-metastasis effect by liver metastasis model mouse in vivo. Through PTT, LPS-CuS induced elimination of CT26 tumor in BALB/c mice, which produced cancer antigens. In addition, released LPS and cancer antigen by PTT promoted dendritic cell activation in tumor draining lymph node (drLN), and consequently, enhanced the tumor antigen-specific immune responses. Finally, the primary tumor cured mice by LPS-CuS-mediated PTT completely resisted secondary tumor injection in the spleen and also prevented liver metastasis. Our results demonstrated the potential usage of LPS-CuS for the immuno-photothermal therapy against various types of cancer by showing the clear elimination of primary colon carcinoma with complete prevention of spleen and liver metastasis. PMID:29285274

  1. New approaches to photothermal spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amer, N.M.

    1984-02-01

    In recent years, the small rise in temperature associated with the absorption of light has provided the basis for a new class of spectrotroscopy which can be loosely called photothermal spectroscopy. Until recently, the more familiar member of this family has been photoacoustic spectroscopy where the optical heating is converted into sound and is detected with a suitable transducer. Although this approach has proven to be useful, the ultimate sensitivity of photoacoustics can be limited by the scattering of light on the transducer. Furthermore, in the case of experiments requiring a wide range of temperatures and pressures, or involving hostilemore » environment, both microphone and piezoelectric photoacoustic detections cannot be employed. To overcome these limitations the optical heating has to be exploited in different ways. The principles of photothermal deflection spectroscopy and photothermal displacement spectroscopy are described.« less

  2. A Plasmonic Gold Nanostar Theranostic Probe for In Vivo Tumor Imaging and Photothermal Therapy

    PubMed Central

    Liu, Yang; Ashton, Jeffrey R.; Moding, Everett J.; Yuan, Hsiangkuo; Register, Janna K.; Fales, Andrew M.; Choi, Jaeyeon; Whitley, Melodi J.; Zhao, Xiaoguang; Qi, Yi; Ma, Yan; Vaidyanathan, Ganesan; Zalutsky, Michael R.; Kirsch, David G.; Badea, Cristian T.; Vo-Dinh, Tuan

    2015-01-01

    Nanomedicine has attracted increasing attention in recent years, because it offers great promise to provide personalized diagnostics and therapy with improved treatment efficacy and specificity. In this study, we developed a gold nanostar (GNS) probe for multi-modality theranostics including surface-enhanced Raman scattering (SERS) detection, x-ray computed tomography (CT), two-photon luminescence (TPL) imaging, and photothermal therapy (PTT). We performed radiolabeling, as well as CT and optical imaging, to investigate the GNS probe's biodistribution and intratumoral uptake at both macroscopic and microscopic scales. We also characterized the performance of the GNS nanoprobe for in vitro photothermal heating and in vivo photothermal ablation of primary sarcomas in mice. The results showed that 30-nm GNS have higher tumor uptake, as well as deeper penetration into tumor interstitial space compared to 60-nm GNS. In addition, we found that a higher injection dose of GNS can increase the percentage of tumor uptake. We also demonstrated the GNS probe's superior photothermal conversion efficiency with a highly concentrated heating effect due to a tip-enhanced plasmonic effect. In vivo photothermal therapy with a near-infrared (NIR) laser under the maximum permissible exposure (MPE) led to ablation of aggressive tumors containing GNS, but had no effect in the absence of GNS. This multifunctional GNS probe has the potential to be used for in vivo biosensing, preoperative CT imaging, intraoperative detection with optical methods (SERS and TPL), as well as image-guided photothermal therapy. PMID:26155311

  3. Effects of large vessel on temperature distribution based on photothermal coupling interaction model

    NASA Astrophysics Data System (ADS)

    Li, Zhifang; Zhang, Xiyang; Li, Zuoran; Li, Hui

    2016-10-01

    This paper is based on the finite element analysis method for studying effects of large blood vessel on temperature based on photothermal coupling interaction model, and it couples the physical field of optical transmission with the physical field of heat transfer in biological tissue by using COMSOL Multiphysics 4.4 software. The results demonstrate the cooling effect of large blood vessel, which can be potential application for the treatment of liver tumors.

  4. Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure.

    PubMed

    Park, Teahoon; Na, Jongbeom; Kim, Byeonggwan; Kim, Younghoon; Shin, Haijin; Kim, Eunkyoung

    2015-12-22

    Photothermal effects in poly(3,4-ethylenedioxythiophene)s (PEDOTs) were explored for pyroelectric conversion. A poled ferroelectric film was coated on both sides with PEDOT via solution casting polymerization of EDOT, to give highly conductive and effective photothermal thin films of PEDOT. The PEDOT films not only provided heat source upon light exposure but worked as electrodes for the output energy from the pyroelectric layer in an energy harvester hybridized with a thermoelectric layer. Compared to a bare thermoelectric system under NIR irradiation, the photothermal-pyro-thermoelectric device showed more than 6 times higher thermoelectric output with the additional pyroelectric output. The photothermally driven pyroelectric harvesting film provided a very fast electric output with a high voltage output (Vout) of 15 V. The pyroelectric effect was significant due to the transparent and high photothermal PEDOT film, which could also work as an electrode. A hybrid energy harvester was assembled to enhance photoconversion efficiency (PCE) of a solar cell with a thermoelectric device operated by the photothermally generated heat. The PCE was increased more than 20% under sunlight irradiation (AM 1.5G) utilizing the transmitted light through the photovoltaic cell as a heat source that was converted into pyroelectric and thermoelectric output simultaneously from the high photothermal PEDOT electrodes. Overall, this work provides a dynamic and static hybrid energy cell to harvest solar energy in full spectral range and thermal energy, to allow solar powered switching of an electrochromic display.

  5. Advances in photo-thermal infrared imaging microspectroscopy

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Kendziora, Chris; Papantonakis, Michael; Nguyen, Viet; McGill, Andrew

    2013-05-01

    There is a growing need for chemical imaging techniques in many fields of science and technology: forensics, materials science, pharmaceutical and chemical industries, just to name a few. While FTIR micro-spectroscopy is commonly used, its practical resolution limit of about 20 microns or more is often insufficient. Raman micro-spectroscopy provides better spatial resolution (~1 micron), but is not always practical because of samples exhibiting fluorescence or low Raman scattering efficiency. We are developing a non-contact and non-destructive technique we call photo-thermal infrared imaging spectroscopy (PT-IRIS). It involves photo-thermal heating of the sample with a tunable quantum cascade laser and measuring the resulting increase in thermal emission with an infrared detector. Photo-thermal emission spectra resemble FTIR absorbance spectra and can be acquired in both stand-off and microscopy configurations. Furthermore, PT-IRIS allows the acquisition of absorbance-like photo-thermal spectra in a reflected geometry, suitable for field applications and for in-situ study of samples on optically IR-opaque substrates (metals, fabrics, paint, glass etc.). Conventional FTIR microscopes in reflection mode measure the reflectance spectra which are different from absorbance spectra and are usually not catalogued in FTIR spectral libraries. In this paper, we continue developing this new technique. We perform a series of numerical simulations of the laser heating of samples during photo-thermal microscopy. We develop parameterized formulas to help the user pick the appropriate laser illumination power. We also examine the influence of sample geometry on spectral signatures. Finally, we measure and compare photo-thermal and reflectance spectra for two test samples.

  6. Hollow mesoporous carbon as a near-infrared absorbing carrier compared with mesoporous carbon nanoparticles for chemo-photothermal therapy.

    PubMed

    Li, Xian; Yan, Yue; Lin, Yuanzhe; Jiao, Jian; Wang, Da; Di, Donghua; Zhang, Ying; Jiang, Tongying; Zhao, Qinfu; Wang, Siling

    2017-05-15

    In this study, hollow mesoporous carbon nanoparticles (HMCN) and mesoporous carbon nanoparticles (MCN) were used as near-infrared region (NIR) nanomaterials and drug nanocarriers were prepared using different methods. A comparison between HMCN and MCN was performed with regard to the NIR-induced photothermal effect and drug loading efficiency. The results of NIR-induced photothermal effect test demonstrated that HMCN-COOH had a better photothermal conversion efficacy than MCN-COOH. Given the prominent photothermal effect of HMCN-COOH in vitro, the chemotherapeutic drug DOX was chosen as a model drug to further evaluate the drug loading efficiencies and NIR-triggered drug release behaviors of the nanocarriers. The drug loading efficiency of DOX/HMCN-COOH was found to be up to 76.9%, which was higher than that of DOX/MCN-COOH. In addition, the use of an 808nm NIR laser markedly increased the release of DOX from both carbon carriers in pH 5.0 PBS and pH 7.4 PBS. Cellular photothermal tests involving A549 cells demonstrated that HMCN-COOH had a much higher photothermal efficacy than MCN-COOH. Cell viability experiments and flow cytometry were performed to evaluate the therapeutic effect of DOX/HMCN-COOH and the results obtained demonstrated that DOX/HMCN-COOH had a synergistic therapeutic effect in cancer treatment involving a combination of chemotherapy and photothermal therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Size-Tunable Photothermal Germanium Nanocrystals.

    PubMed

    Sun, Wei; Zhong, Grace; Kübel, Christian; Jelle, Abdinoor A; Qian, Chenxi; Wang, Lu; Ebrahimi, Manuchehr; Reyes, Laura M; Helmy, Amr S; Ozin, Geoffrey A

    2017-05-22

    Germanium nanocrystals (ncGe) have not received as much attention as silicon nanocrystals (ncSi). However, Ge has demonstrated superiority over Si nanomaterials in some applications. Examples include, high charge-discharge rate lithium-ion batteries, small band-gap opto-electronic devices, and photo-therapeutics. When stabilized in an oxide matrix (ncGe/GeO x ), its high charge-retention has enabled non-volatile memories. It has also found utility as a high-capacity anode material for Li-ion batteries with impressive stability. Herein, we report an organic-free synthesis of size-controlled ncGe in a GeO x matrix as well as freestanding ncGe, via the thermal disproportionation of GeO prepared from thermally induced dehydration of Ge(OH) 2 . The photothermal effect of ncGe, quantified by Raman spectroscopy, is found to be size dependent and superior to ncSi. This advance suggests applications of ncGe in photothermal therapy, desalination, and catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy.

    PubMed

    Jiang, Yuyan; Cui, Dong; Fang, Yuan; Zhen, Xu; Upputuri, Paul Kumar; Pramanik, Manojit; Ding, Dan; Pu, Kanyi

    2017-11-01

    Chemo-photothermal nanotheranostics has the advantage of synergistic therapeutic effect, providing opportunities for optimized cancer therapy. However, current chemo-photothermal nanotheranostic systems generally comprise more than three components, encountering the potential issues of unstable nanostructures and unexpected conflicts in optical and biophysical properties among different components. We herein synthesize an amphiphilic semiconducting polymer (PEG-PCB) and utilize it as a multifunctional nanocarrier to simplify chemo-photothermal nanotheranostics. PEG-PCB has a semiconducting backbone that not only serves as the diagnostic component for near-infrared (NIR) fluorescence and photoacoustic (PA) imaging, but also acts as the therapeutic agent for photothermal therapy. In addition, the hydrophobic backbone of PEG-PCB provides strong hydrophobic and π-π interactions with the aromatic anticancer drug such as doxorubicin for drug encapsulation and delivery. Such a trifunctionality of PEG-PCB eventually results in a greatly simplified nanotheranostic system with only two components but multimodal imaging and therapeutic capacities, permitting effective NIR fluorescence/PA imaging guided chemo-photothermal therapy of cancer in living mice. Our study thus provides a molecular engineering approach to integrate essential properties into one polymer for multimodal nanotheranostics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Theoretical model for plasmonic photothermal response of gold nanostructures solutions

    NASA Astrophysics Data System (ADS)

    Phan, Anh D.; Nga, Do T.; Viet, Nguyen A.

    2018-03-01

    Photothermal effects of gold core-shell nanoparticles and nanorods dispersed in water are theoretically investigated using the transient bioheat equation and the extended Mie theory. Properly calculating the absorption cross section is an extremely crucial milestone to determine the elevation of solution temperature. The nanostructures are assumed to be randomly and uniformly distributed in the solution. Compared to previous experiments, our theoretical temperature increase during laser light illumination provides, in various systems, both reasonable qualitative and quantitative agreement. This approach can be a highly reliable tool to predict photothermal effects in experimentally unexplored structures. We also validate our approach and discuss itslimitations.

  10. NIR stimulus-responsive core-shell type nanoparticles based on photothermal conversion for enhanced antitumor efficacy through chemo-photothermal therapy.

    PubMed

    Sun, Kai; You, Chaoqun; Wang, Senlin; Gao, Zhiguo; Wu, Hongshuai; Tao, W Andy; Zhu, Xiaoli; Sun, Baiwang

    2018-07-13

    A novel core-shell type nanoparticle (CSNP) was designed here to target co-delivery of doxorubicin (DOX) and photosensitizer indocyanine green (ICG) to tumor sites by the aid of NIR induced photothermal conversion effect for the purpose of synergistic chemo-photothermal cancer therapy. The electrostatically self-assembled CSNPs were prepared by amino-functionalized mesoporous silica nanoparticles (MSN-NH 2 ) as the positive inner core and DSPE-PEG 2000 -COOH and DSPE-PEG 2000 -FA modified lecithin as the negative outer shell. The obtained CSNPs were nanospheres with a uniform size of 47 nm, which were kept stable at 4 °C in PBS (pH = 7). Research on the release of NIR stimulus (808 nm, 1.54 W cm -2 , 6 min) manifested that the release property of the CSNPs was controllable under low pH conditions. In addition, specific concentration (40 μg ml -1 ) ICG-loaded CSNPs, achieving an appropriate temperature up to 45 °C, indicated a desired photothermal conversion efficiency. For targeting the folate receptor, the folate modified CSNPs enabled us to reach a higher cellular uptake by the mean fluorescence intensity. In vitro cell assay, the prepared CSNPs showed outstanding inhibitory efficiency (2.07% cell viability and 91.8% cell apoptosis) on MCF-7 cells for 24 h when irradiated by an 808 nm laser with a power of 1.54 W cm -2 for 6 min. Our research highlights that the prepared nanoparticles hold potential promise for cancer treatment based on photothermal conversion performance and FA-targeted delivery.

  11. NIR stimulus-responsive core–shell type nanoparticles based on photothermal conversion for enhanced antitumor efficacy through chemo-photothermal therapy

    NASA Astrophysics Data System (ADS)

    Sun, Kai; You, Chaoqun; Wang, Senlin; Gao, Zhiguo; Wu, Hongshuai; Tao, W. Andy; Zhu, Xiaoli; Sun, Baiwang

    2018-07-01

    A novel core–shell type nanoparticle (CSNP) was designed here to target co-delivery of doxorubicin (DOX) and photosensitizer indocyanine green (ICG) to tumor sites by the aid of NIR induced photothermal conversion effect for the purpose of synergistic chemo-photothermal cancer therapy. The electrostatically self-assembled CSNPs were prepared by amino-functionalized mesoporous silica nanoparticles (MSN-NH2) as the positive inner core and DSPE-PEG2000-COOH and DSPE-PEG2000-FA modified lecithin as the negative outer shell. The obtained CSNPs were nanospheres with a uniform size of 47 nm, which were kept stable at 4 °C in PBS (pH = 7). Research on the release of NIR stimulus (808 nm, 1.54 W cm‑2, 6 min) manifested that the release property of the CSNPs was controllable under low pH conditions. In addition, specific concentration (40 μg ml‑1) ICG-loaded CSNPs, achieving an appropriate temperature up to 45 °C, indicated a desired photothermal conversion efficiency. For targeting the folate receptor, the folate modified CSNPs enabled us to reach a higher cellular uptake by the mean fluorescence intensity. In vitro cell assay, the prepared CSNPs showed outstanding inhibitory efficiency (2.07% cell viability and 91.8% cell apoptosis) on MCF-7 cells for 24 h when irradiated by an 808 nm laser with a power of 1.54 W cm‑2 for 6 min. Our research highlights that the prepared nanoparticles hold potential promise for cancer treatment based on photothermal conversion performance and FA-targeted delivery.

  12. Fabrication of Photothermal Stable Gold Nanosphere/Mesoporous Silica Hybrid Nanoparticle Responsive to Near-Infrared Light.

    PubMed

    Cheng, Bei; Xu, Peisheng

    2017-01-01

    Various gold nanoparticles have been explored in biomedical systems and proven to be promising in photothermal therapy and drug delivery. Among them, nanoshells were regarded as traditionally strong near infrared absorbers that have been widely used to generate photothermal effect for cancer therapy. However, the nanoshell is not photo-thermal stable and thus is not suitable for repeated irradiation. Here, we describe a novel discrete gold nanostructure by mimicking the continuous gold nanoshell-gold/mesoporous silica hybrid nanoparticle (GoMe). It possesses the best characteristics of both conventional gold nanoparticles and mesoporous silica nanoparticles, such as excellent photothermal converting ability as well as high drug loading capacity and triggerable drug release.

  13. Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages

    NASA Astrophysics Data System (ADS)

    Qin, Jinbao; Peng, Zhiyou; Li, Bo; Ye, Kaichuang; Zhang, Yuxin; Yuan, Fukang; Yang, Xinrui; Huang, Lijia; Hu, Junqing; Lu, Xinwu

    2015-08-01

    Inflammatory macrophages play pivotal roles in the development of atherosclerosis. Theranostics, a promising approach for local imaging and photothermal therapy of inflammatory macrophages, has drawn increasing attention in biomedical research. In this study, gold nanorods (Au NRs) were synthesized, and their in vitro photothermal effects on the macrophage cell line (Ana-1 cells) under 808 nm near infrared reflection (NIR) were investigated by the CCK8 assay, calcein AM/PI staining, flow cytometry, transmission electron microscopy (TEM), silver staining and in vitro micro-computed tomography (CT) imaging. These Au NRs were then applied to an apolipoprotein E knockout (Apo E) mouse model to evaluate their effects on in vivo CT imaging and their effectiveness as for the subsequent photothermal therapy of macrophages in femoral artery restenosis under 808 nm laser irradiation. In vitro photothermal ablation treatment using Au NRs exhibited a significant cell-killing efficacy of macrophages, even at relatively low concentrations of Au NRs and low NIR powers. In addition, the in vivo results demonstrated that the Au NRs are effective for in vivo imaging and photothermal therapy of inflammatory macrophages in femoral artery restenosis. This study shows that Au nanorods are a promising theranostic platform for the diagnosis and photothermal therapy of inflammation-associated diseases.Inflammatory macrophages play pivotal roles in the development of atherosclerosis. Theranostics, a promising approach for local imaging and photothermal therapy of inflammatory macrophages, has drawn increasing attention in biomedical research. In this study, gold nanorods (Au NRs) were synthesized, and their in vitro photothermal effects on the macrophage cell line (Ana-1 cells) under 808 nm near infrared reflection (NIR) were investigated by the CCK8 assay, calcein AM/PI staining, flow cytometry, transmission electron microscopy (TEM), silver staining and in vitro micro-computed tomography

  14. Enhancement of photothermal heat generation by metallodielectric nanoplasmonic clusters.

    PubMed

    Ahmadivand, Arash; Pala, Nezih; Güney, Durdu Ö

    2015-06-01

    A four-member homogenous quadrumer composed of silver core-shell nanostructures is tailored to enhance photothermal heat generation efficiency in sub-nanosecond time scale. Calculating the plasmonic and photothermal responses of metallic cluster, we show that it is possible to achieve thermal heat flux generation of 64.7 μW.cm-2 and temperature changes in the range of ΔT = 150 K, using Fano resonant effect. Photothermal heat generation efficiency is even further enhanced by adding carbon nanospheres to the offset gap between particles and obtained thermal heat flux generation of 93.3 μW.cm-2 and temperature increase of ΔT = 172 K. It is also shown that placement of dielectric spheres gives rise to arise collective magnetic dark plasmon modes that improves the quality of the observed Fano resonances. The presented data attests the superior performance of the proposed metallodielectric structures to utilize in practical tumor and cancer therapies and drug delivery applications.

  15. Fucoidan-coated CuS nanoparticles for chemo-and photothermal therapy against cancer

    PubMed Central

    Jang, Bian; Moorthy, Madhappan Santha; Manivasagan, Panchanathan; Xu, Li; Song, Kyeongeun; Lee, Kang Dae; Kwak, Minseok; Oh, Junghwan; Jin, Jun-O

    2018-01-01

    In advanced cancer therapy, the combinational therapeutic effect of photothermal therapy (PTT) using near-infrared (NIR) light-responsive nanoparticles (NPs) and anti-cancer drug delivery-mediated chemotherapy has been widely applied. In the present study, using a facile, low-cost, and solution-based method, we developed and synthesized fucoidan, a natural polymer isolated from seaweed that has demonstrated anti-cancer effect, and coated NPs with it as an ideal candidate in chemo-photothermal therapy against cancer cells. Fucoidan-coated copper sulfide nanoparticles (F-CuS) act not only as a nanocarrier to enhance the intracellular delivery of fucoidan but also as a photothermal agent to effectively ablate different cancer cells (e.g., HeLa, A549, and K562), both in vitro and in vivo, with the induction of apoptosis under 808 nm diode laser irradiation. These results point to the potential usage of F-CuS in treating human cancer. PMID:29560098

  16. Combined photothermal therapy and magneto-motive ultrasound imaging using multifunctional nanoparticles

    NASA Astrophysics Data System (ADS)

    Mehrmohammadi, Mohammad; Ma, Li L.; Chen, Yun-Sheng; Qu, Min; Joshi, Pratixa; Chen, Raeanna M.; Johnston, Keith P.; Emelianov, Stanislav

    2010-02-01

    Photothermal therapy is a laser-based non-invasive technique for cancer treatment. Photothermal therapy can be enhanced by employing metal nanoparticles that absorb the radiant energy from the laser leading to localized thermal damages. Targeting of nanoparticles leads to more efficient uptake and localization of photoabsorbers thus increasing the effectiveness of the treatment. Moreover, efficient targeting can reduce the required dosage of photoabsorbers; thereby reducing the side effects associated with general systematic administration of nanoparticles. Magnetic nanoparticles, due to their small size and response to an external magnetic field gradient have been proposed for targeted drug delivery. In this study, we investigate the applicability of multifunctional nanoparticles (e.g., magneto-plasmonic nanoparticles) and magneto-motive ultrasound imaging for image-guided photothermal therapy. Magneto-motive ultrasound imaging is an ultrasound based imaging technique capable of detecting magnetic nanoparticles indirectly by utilizing a high strength magnetic field to induce motion within the magnetically labeled tissue. The ultrasound imaging is used to detect the internal tissue motion. Due to presence of the magnetic component, the proposed multifunctional nanoparticles along with magneto-motive ultrasound imaging can be used to detect the presence of the photo absorbers. Clearly the higher concentration of magnetic carriers leads to a monotonic increase in magneto-motive ultrasound signal. Thus, magnetomotive ultrasound can determine the presence of the hybrid agents and provide information about their location and concentration. Furthermore, the magneto-motive ultrasound signal can indicate the change in tissue elasticity - a parameter that is expected to change significantly during the photothermal therapy. Therefore, a comprehensive guidance and assessment of the photothermal therapy may be feasible through magneto-motive ultrasound imaging and

  17. Experimental Study on GFRP Surface Cracks Detection Using Truncated-Correlation Photothermal Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Liu, Junyan; Mohummad, Oliullah; Wang, Yang

    2018-04-01

    In this paper, truncated-correlation photothermal coherence tomography (TC-PCT) was used as a nondestructive inspection technique to evaluate glass-fiber reinforced polymer (GFRP) composite surface cracks. Chirped-pulsed signal that combines linear frequency modulation and pulse excitation was proposed as an excitation signal to detect GFRP composite surface cracks. The basic principle of TC-PCT and extraction algorithm of the thermal wave signal feature was described. The comparison experiments between lock-in thermography, thermal wave radar imaging and chirped-pulsed photothermal radar for detecting GFRP artificial surface cracks were carried out. Experimental results illustrated that chirped-pulsed photothermal radar has the merits of high signal-to-noise ratio in detecting GFRP composite surface cracks. TC-PCT as a depth-resolved photothermal imaging modality was employed to enable three-dimensional visualization of GFRP composite surface cracks. The results showed that TC-PCT can effectively evaluate the cracks depth of GFRP composite.

  18. Aptamer-conjugated gold nanorod for photothermal ablation of epidermal growth factor receptor-overexpressed epithelial cancer

    NASA Astrophysics Data System (ADS)

    Choi, Jihye; Park, Yeonji; Choi, Eun Bi; Kim, Hyun-Ouk; Kim, Dong Joo; Hong, Yoochan; Ryu, Sung-Ho; Lee, Jung Hwan; Suh, Jin-Suck; Yang, Jaemoon; Huh, Yong-Min; Haam, Seungjoo

    2014-05-01

    Biomarker-specific photothermal nanoparticles that can efficiently sense markers that are overexpressed in distinguished adenocarcinomas have attracted much interest in an aspect of efficacy increase of cancer treatment. We demonstrated a promising prospect of a smart photothermal therapy agent employing anti-epidermal growth factor receptor aptamer (AptEGFR)-conjugated polyethylene glycol (PEG) layted gold nanorods (AptEGFR-PGNRs). The cetyltrimethylammonium bromide bilayer on GNRs was replaced with heterobifunctional PEG (COOH-PEG-SH) not only to serve as a biocompatible stabilizer and but also to conjugate Apt. Subsequently, to direct photothermal therapy agent toward epithelial cancer cells, the carboxylated PEGylated GNRs (PGNRs) were further functionalized with Apt using carbodiimide chemistry. Then, to assess the potential as biomarker-specific photothermal therapy agent of synthesized Apt-PGNRs, the optical properties, biocompatibility, colloidal stability, binding affinity, and epicellial cancer cell killing efficacy in vitro/in vivo under near-infrared laser irradiation were investigated. As a result, Apt-PGNRs exhibit excellent tumor targeting ability and feasibility of effective photothermal ablation cancer therapy.

  19. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion

    NASA Astrophysics Data System (ADS)

    Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan

    2016-07-01

    Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ~1 kW m-2. The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent

  20. Theranostic nanoplatform based on polypyrrole nanoparticles for photoacoustic imaging and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Li, Wenchao; Cao, Yang; Guo, Yuan; Kang, Yuejun

    2018-03-01

    Development of effective theranostic nanoplatforms against malignant tumor is still a challenge. With desirable near-infrared (NIR) light-responsive properties, polypyrrole nanoparticles (PPy NPs) are one of the promising theranostic candidates for cancer photoacoustic imaging and photothermal therapy. Here, PPy NPs with distinct sizes were prepared using a facile aqueous dispersion polymerization method. The formed PPy NPs are uniform in size with narrow size distribution. Characterization data show that PPy NPs with a diameter around 50 nm (P50) display stronger absorption in the NIR range compared to 40 and 60 nm PPy NPs, which further influences their photo-responsive properties. Due to their higher NIR absorption, P50 NPs have better photoacoustic imaging property and photothermal conversion ability than the other two kinds of PPy NPs. The photothermal stability of P50 NPs was proved to be excellent. The CCK-8 assays show that PPy NPs have obvious acute cytotoxicity within 6 h and desirable cytocompatibility for longer incubation time (12 and 24 h). After 6-h incubation, P50 NPs could be internalized by HeLa cells. Their photothermal tumor ablation effect was demonstrated under 808-nm laser irradiation. These findings may provide in-depth understanding of the PPy-based multifunctional nanomaterials for the development of theranostic systems against cancer.

  1. Transient photothermal spectra of plasmonic nanobubbles.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Sassaroli, Elisabetta; Jones, Alicia; Lapotko, Dmitri O

    2012-03-13

    The photothermal efficacy of near-infrared gold nanoparticles (NP), nanoshells, and nanorods was studied under pulsed high-energy optical excitation in plasmonic nanobubble (PNB) mode as a function of the wavelength and duration of the excitation laser pulse. PNBs, transient vapor nanobubbles, were generated around individual and clustered overheated NPs in water and living cells. Transient PNBs showed two photothermal features not previously observed for NPs: the narrowing of the spectral peaks to 1 nm and the strong dependence of the photothermal efficacy upon the duration of the laser pulse. Narrow red-shifted (relative to those of NPs) near-infrared spectral peaks were observed for 70 ps excitation laser pulses, while longer sub- and nanosecond pulses completely suppressed near-infrared peaks and blue shifted the PNB generation to the visual range. Thus, PNBs can provide superior spectral selectivity over gold NPs under specific optical excitation conditions.

  2. Femtogram-scale photothermal spectroscopy of explosive molecules on nanostrings.

    PubMed

    Biswas, T S; Miriyala, N; Doolin, C; Liu, X; Thundat, T; Davis, J P

    2014-11-18

    We demonstrate detection of femtogram-scale quantities of the explosive molecule 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) via combined nanomechanical photothermal spectroscopy and mass desorption. Photothermal spectroscopy provides a spectroscopic fingerprint of the molecule, which is unavailable using mass adsorption/desorption alone. Our measurement, based on thermomechanical measurement of silicon nitride nanostrings, represents the highest mass resolution ever demonstrated via nanomechanical photothermal spectroscopy. This detection scheme is quick, label-free, and is compatible with parallelized molecular analysis of multicomponent targets.

  3. Polydopamine-functionalized nanographene oxide: a versatile nanocarrier for chemotherapy and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyuan; Nan, Xu; Shi, Wei; Sun, Yanan; Su, Huiling; He, Yuan; Liu, Xin; Zhang, Zhong; Ge, Dongtao

    2017-07-01

    For releasing both drug and heat to selected sites, a combination of chemotherapy and photothermal therapy in one system is a more effective way to destroy cancer cells than monotherapy. Graphene oxide (GO) with high drug-loading efficiency and near-infrared (NIR) absorbance has great potential in drug delivery and photothermal therapy, but it is difficult to load drugs with high solubility. Herein, we develop a versatile drug delivery nanoplatform based on GO for integrated chemotherapy and photothermal therapy by a facile method of simultaneous reduction and surface functionalization of GO with poly(dopamine) (PDA). Due to the excellent adhesion of PDA, both low and high solubility drugs can be encapsulated in the PDA-functionalized GO nanocomposite (rGO-PDA). The fabricated nanocomposite exhibits good biocompatibility, excellent photothermal performance, high drug loading capacity, an outstanding sustained release property, and efficient endocytosis. Moreover, NIR laser irradiation facilitates the release of loaded drugs from rGO-PDA. These features make the rGO-PDA nanocomposite achieve excellent in vivo synergistic antitumor therapeutic efficacy.

  4. Multibuilding Block Janus Synthesized by Seed-Mediated Self-Assembly for Enhanced Photothermal Effects and Colored Brownian Motion in an Optical Trap.

    PubMed

    Sansanaphongpricha, Kanokwan; DeSantis, Michael C; Chen, Hongwei; Cheng, Wei; Sun, Kai; Wen, Bo; Sun, Duxin

    2017-02-01

    The asymmetrical features and unique properties of multibuilding block Janus nanostructures (JNSs) provide superior functions for biomedical applications. However, their production process is very challenging. This problem has hampered the progress of JNS research and the exploration of their applications. In this study, an asymmetrical multibuilding block gold/iron oxide JNS has been generated to enhance photothermal effects and display colored Brownian motion in an optical trap. JNS is formed by seed-mediated self-assembly of nanoparticle-loaded thermocleavable micelles, where the hydrophobic backbones of the polymer are disrupted at high temperatures, resulting in secondary self-assembly and structural rearrangement. The JNS significantly enhances photothermal effects compared to their homogeneous counterpart after near-infrared (NIR) light irradiation. The asymmetrical distribution of gold and iron oxide within JNS also generates uneven thermophoretic force to display active colored Brownian rotational motion in a single-beam gradient optical trap. These properties indicate that the asymmetrical JNS could be employed as a strong photothermal therapy mediator and a fuel-free nanoscale Janus motor under NIR light. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Preparation of gold nanoparticle aggregates and their photothermal heating property.

    PubMed

    Kim, Jun-Hyun; Lavin, Brian W

    2011-01-01

    This report describes simple synthetic strategies to prepare partially aggregated gold nanoparticles (GNPs) and their ability to produce photothermally-induced heating of an aqueous medium upon exposure to broadband light. The formation of various GNPs and their aggregates were accomplished in the absence of surfactants at room temperature. The morphologies, structures, and absorption properties of these GNPs were carefully characterized. Given that the resulting GNPs possessing strong and wide absorption bands fall in the most intense solar radiation spectrum, the photothermally-induced heating of water was examined in the presence of the GNPs via irradiation with a solar simulator (i.e., 100 mW/cm2; 1-sun condition). Our GNPs exhibited a slightly greater increase in the water temperature (3-4 degrees C) than that of conventional citrate-stabilized GNPs. This superior photothermal heating property of our GNPs directly indicated that the intense and broad absorption band effectively improved the conversion of highly absorbed photon energy into heat.

  6. Preparation and near-infrared photothermal conversion property of cesium tungsten oxide nanoparticles

    PubMed Central

    2013-01-01

    Cs0.33WO3 nanoparticles have been prepared successfully by a stirred bead milling process. By grinding micro-sized coarse powder with grinding beads of 50 μm in diameter, the mean hydrodynamic diameter of Cs0.33WO3 powder could be reduced to about 50 nm in 3 h, and a stable aqueous dispersion could be obtained at pH 8 via electrostatic repulsion mechanism. After grinding, the resulting Cs0.33WO3 nanoparticles retained the hexagonal structure and had no significant contaminants from grinding beads. Furthermore, they exhibited a strong characteristic absorption and an excellent photothermal conversion property in the near-infrared (NIR) region, owing to the free electrons or polarons. Also, the NIR absorption and photothermal conversion property became more significant with decreasing particle size or increasing particle concentration. When the concentration of Cs0.33WO3 nanoparticles was 0.08 wt.%, the solution temperature had a significant increase of above 30°C in 10 min under NIR irradiation (808 nm, 2.47 W/cm2). In addition, they had a photothermal conversion efficiency of about 73% and possessed excellent photothermal stability. Such an effective NIR absorption and photothermal conversion nanomaterial not only was useful in the NIR shielding, but also might find great potential in biomedical application. PMID:23379652

  7. Aqueous phase preparation of ultrasmall MoSe2 nanodots for efficient photothermal therapy of cancer cells

    NASA Astrophysics Data System (ADS)

    Yuwen, Lihui; Zhou, Jiajia; Zhang, Yuqian; Zhang, Qi; Shan, Jingyang; Luo, Zhimin; Weng, Lixing; Teng, Zhaogang; Wang, Lianhui

    2016-01-01

    Photothermal therapy (PTT) is a promising cancer treatment with both high effectiveness and fewer side effects. However, an ideal PTT agent not only needs strong absorption of near-infrared (NIR) light and high photothermal conversion efficiency, but also needs good biocompatibility, stability, and small size, which makes the design and preparation of a novel PTT agent a great challenge. In this work, we developed an ultrasonication-assisted liquid exfoliation method for the direct preparation of ultrasmall (2-3 nm) MoSe2 nanodots (NDs) in aqueous solution and demonstrated their superior properties as a PTT agent. The as-prepared MoSe2 NDs have strong absorption of NIR light and high photothermal conversion efficiency of about 46.5%. In vitro cellular experiments demonstrate that MoSe2 NDs have negligible cytotoxicity and can efficiently kill HeLa cells (human cervical cell line) under NIR laser (785 nm) irradiation.Photothermal therapy (PTT) is a promising cancer treatment with both high effectiveness and fewer side effects. However, an ideal PTT agent not only needs strong absorption of near-infrared (NIR) light and high photothermal conversion efficiency, but also needs good biocompatibility, stability, and small size, which makes the design and preparation of a novel PTT agent a great challenge. In this work, we developed an ultrasonication-assisted liquid exfoliation method for the direct preparation of ultrasmall (2-3 nm) MoSe2 nanodots (NDs) in aqueous solution and demonstrated their superior properties as a PTT agent. The as-prepared MoSe2 NDs have strong absorption of NIR light and high photothermal conversion efficiency of about 46.5%. In vitro cellular experiments demonstrate that MoSe2 NDs have negligible cytotoxicity and can efficiently kill HeLa cells (human cervical cell line) under NIR laser (785 nm) irradiation. Electronic supplementary information (ESI) available: Characterization, size distribution and EDS spectrum of MoSe2 NDs, calculation of

  8. Dynamic measurements of flowing cells labeled by gold nanoparticles using full-field photothermal interferometric imaging

    NASA Astrophysics Data System (ADS)

    Turko, Nir A.; Roitshtain, Darina; Blum, Omry; Kemper, Björn; Shaked, Natan T.

    2017-06-01

    We present highly dynamic photothermal interferometric phase microscopy for quantitative, selective contrast imaging of live cells during flow. Gold nanoparticles can be biofunctionalized to bind to specific cells, and stimulated for local temperature increase due to plasmon resonance, causing a rapid change of the optical phase. These phase changes can be recorded by interferometric phase microscopy and analyzed to form an image of the binding sites of the nanoparticles in the cells, gaining molecular specificity. Since the nanoparticle excitation frequency might overlap with the sample dynamics frequencies, photothermal phase imaging was performed on stationary or slowly dynamic samples. Furthermore, the computational analysis of the photothermal signals is time consuming. This makes photothermal imaging unsuitable for applications requiring dynamic imaging or real-time analysis, such as analyzing and sorting cells during fast flow. To overcome these drawbacks, we utilized an external interferometric module and developed new algorithms, based on discrete Fourier transform variants, enabling fast analysis of photothermal signals in highly dynamic live cells. Due to the self-interference module, the cells are imaged with and without excitation in video-rate, effectively increasing signal-to-noise ratio. Our approach holds potential for using photothermal cell imaging and depletion in flow cytometry.

  9. Heavy Metals Effect on Cyanobacteria Synechocystis aquatilis Study Using Absorption, Fluorescence, Flow Cytometry, and Photothermal Measurements

    NASA Astrophysics Data System (ADS)

    Dudkowiak, A.; Olejarz, B.; Łukasiewicz, J.; Banaszek, J.; Sikora, J.; Wiktorowicz, K.

    2011-04-01

    The toxic effect of six heavy metals on cyanobacteria Synechocystis aquatilis was studied by absorption, fluorescence, flow cytometry, and photothermal measurements. This study indicates that at the concentration used, the cyanobacteria are more sensitive to silver, copper, and mercury than to cadmium, lead, and zinc metals. Disregarding the decrease in the yields of the related radiative processes caused by photochemical processes and/or damage to phycobilisomes, no changes were detected in the efficiency of thermal deactivation processes within a few microseconds, which can indicate the lack of disturbances in the photosynthetic light reaction and the lack of damage to the photosystem caused by the heavy metal ions in the concentrations used. The results demonstrate that the relative values of fluorescence yield as well as promptly generated heat calculated for the metal-affected and unaffected (reference) bacteria are sensitive indicators of environmental pollution with heavy metal ions, whereas the complementary methods proposed could be used as a noninvasive and fast procedure for in vivo assessment of their toxicity.

  10. BaTiO3-core Au-shell nanoparticles for photothermal therapy and bimodal imaging.

    PubMed

    Wang, Yanfei; Barhoumi, Aoune; Tong, Rong; Wang, Weiping; Ji, Tianjiao; Deng, Xiaoran; Li, Lele; Lyon, Sophie A; Reznor, Gally; Zurakowski, David; Kohane, Daniel S

    2018-05-01

    We report sub-100 nm metal-shell (Au) dielectric-core (BaTiO 3 ) nanoparticles with bimodal imaging abilities and enhanced photothermal effects. The nanoparticles efficiently absorb light in the near infrared range of the spectrum and convert it to heat to ablate tumors. Their BaTiO 3 core, a highly ordered non-centrosymmetric material, can be imaged by second harmonic generation, and their Au shell generates two-photon luminescence. The intrinsic dual imaging capability allows investigating the distribution of the nanoparticles in relation to the tumor vasculature morphology during photothermal ablation. Our design enabled in vivo real-time tracking of the BT-Au-NPs and observation of their thermally-induced effect on tumor vessels. Photothermal therapy induced by plasmonic nanoparticles has emerged as a promising approach to treating cancer. However, the study of the role of intratumoral nanoparticle distribution in mediating tumoricidal activity has been hampered by the lack of suitable imaging techniques. This work describes metal-shell (Au) dielectric-core (BaTiO 3 ) nanoparticles (abbreviated as BT-Au-NP) for photothermal therapy and bimodal imaging. We demonstrated that sub-100 nm BT-Au-NP can efficiently absorb near infrared light and convert it to heat to ablate tumors. The intrinsic dual imaging capability allowed us to investigate the distribution of the nanoparticles in relation to the tumor vasculature morphology during photothermal ablation, enabling in vivo real-time tracking of the BT-Au-NPs and observation of their thermally-induced effect on tumor vessels. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Viability estimation of pepper seeds using time-resolved photothermal signal characterization

    NASA Astrophysics Data System (ADS)

    Kim, Ghiseok; Kim, Geon-Hee; Lohumi, Santosh; Kang, Jum-Soon; Cho, Byoung-Kwan

    2014-11-01

    We used infrared thermal signal measurement system and photothermal signal and image reconstruction techniques for viability estimation of pepper seeds. Photothermal signals from healthy and aged seeds were measured for seven periods (24, 48, 72, 96, 120, 144, and 168 h) using an infrared camera and analyzed by a regression method. The photothermal signals were regressed using a two-term exponential decay curve with two amplitudes and two time variables (lifetime) as regression coefficients. The regression coefficients of the fitted curve showed significant differences for each seed groups, depending on the aging times. In addition, the viability of a single seed was estimated by imaging of its regression coefficient, which was reconstructed from the measured photothermal signals. The time-resolved photothermal characteristics, along with the regression coefficient images, can be used to discriminate the aged or dead pepper seeds from the healthy seeds.

  12. Gadolinium-Conjugated Gold Nanoshells for Multimodal Diagnostic Imaging and Photothermal Cancer Therapy

    PubMed Central

    Coughlin, Andrew J.; Ananta, Jeyarama S.; Deng, Nanfu; Larina, Irina V.; Decuzzi, Paolo

    2014-01-01

    Multimodal imaging offers the potential to improve diagnosis and enhance the specificity of photothermal cancer therapy. Toward this goal, we have engineered gadolinium-conjugated gold nanoshells and demonstrated that they enhance contrast for magnetic resonance imaging, X-Ray, optical coherence tomography, reflectance confocal microscopy, and two-photon luminescence. Additionally, these particles effectively convert near-infrared light to heat, which can be used to ablate cancer cells. Ultimately, these studies demonstrate the potential of gadolinium-nanoshells for image-guided photothermal ablation. PMID:24115690

  13. Spatiotemporal modeling of laser tissue soldering using photothermal nanocomposites.

    PubMed

    Mushaben, Madaline; Urie, Russell; Flake, Tanner; Jaffe, Michael; Rege, Kaushal; Heys, Jeffrey

    2018-02-01

    Laser tissue soldering using photothermal solders is a technology that facilitates rapid sealing using heat-induced changes in the tissue and the solder material. The solder material is made of gold nanorods embedded in a protein matrix patch that can be placed over the tissue rupture site and heated with a laser. Although laser tissue soldering is an attractive approach for surgical repair, potential photothermal damage can limit the success of this approach. Development of predictive mathematical models of photothermal effects including cell death, can lead to more efficient approaches in laser-based tissue repair. We describe an experimental and modeling investigation into photothermal solder patches for sealing porcine and mouse cadaver intestine sections using near-infrared laser irradiation. Spatiotemporal changes in temperature were determined at the surface as well as various depths below the patch. A mathematical model, based on the finite element method, predicts the spatiotemporal temperature distribution in the patch and surrounding tissue, as well as concomitant cell death in the tissue is described. For both the porcine and mouse intestine systems, the model predicts temperatures that are quantitatively similar to the experimental measurements with the model predictions of temperature increase often being within a just a few degrees of experimental measurements. This mathematical model can be employed to identify optimal conditions for minimizing healthy cell death while still achieving a strong seal of the ruptured tissue using laser soldering. Lasers Surg. Med. 50:143-152, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Enhanced photothermal therapy of biomimetic polypyrrole nanoparticles through improving blood flow perfusion.

    PubMed

    Wang, Xuejun; Li, Haichun; Liu, Xianping; Tian, Ye; Guo, Huishu; Jiang, Ting; Luo, Zimiao; Jin, Kai; Kuai, Xinping; Liu, Yao; Pang, Zhiqing; Yang, Wuli; Shen, Shun

    2017-10-01

    In this study, we reported a strategy to improve delivery efficiency of a long-circulation biomimetic photothermal nanoagent for enhanced photothermal therapy through selectively dilating tumor vasculature. By using a simply nanocoating technology, a biomimetic layer of natural red blood cell (RBC) membranes was camouflaged on the surface of photothermal polypyrrole nanoparticles (PPy@RBC NPs). The erythrocyte-mimicking PPy NPs inherited the immune evasion ability from natural RBC resulting in superior prolonged blood retention time. Additionally, excellent photothermal and photoacoustic imaging functionalities were all retained attributing to PPy NPs cores. To further improve the photothermal outcome, the endothelin A (ET A ) receptor antagonist BQ123 was jointly employed to regulate tumor microenvironment. The BQ123 could induce tumor vascular relaxation and increase blood flow perfusion through modulating an ET-1/ET A transduction pathway and blocking the ET A receptor, whereas the vessel perfusion of normal tissues was not altered. Through our well-designed tactic, the concentration of biomimetic PPy NPs in tumor site was significantly improved when administered systematically. The study documented that the antitumor efficiency of biomimetic PPy NPs combined with specific antagonist BQ123 was particularly prominent and was superior to biomimetic PPy NPs (P < 0.05) and PEGylated PPy NPs with BQ123 (P < 0.01), showing that the greatly enhanced photothermal treatment could be achieved with low-dose administration of photothermal agents. Our findings would provide a promising procedure for other similar enhanced photothermal treatment by blocking ET A receptor to dramatically increase the delivery of biomimetic photothermal nanomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Towards Effective Photothermal/Photodynamic Treatment Using Plasmonic Gold Nanoparticles

    PubMed Central

    Bucharskaya, Alla; Maslyakova, Galina; Terentyuk, Georgy; Yakunin, Alexander; Avetisyan, Yuri; Bibikova, Olga; Tuchina, Elena; Khlebtsov, Boris; Khlebtsov, Nikolai; Tuchin, Valery

    2016-01-01

    Gold nanoparticles (AuNPs) of different size and shape are widely used as photosensitizers for cancer diagnostics and plasmonic photothermal (PPT)/photodynamic (PDT) therapy, as nanocarriers for drug delivery and laser-mediated pathogen killing, even the underlying mechanisms of treatment effects remain poorly understood. There is a need in analyzing and improving the ways to increase accumulation of AuNP in tumors and other crucial steps in interaction of AuNPs with laser light and tissues. In this review, we summarize our recent theoretical, experimental, and pre-clinical results on light activated interaction of AuNPs with tissues and cells. Specifically, we discuss a combined PPT/PDT treatment of tumors and killing of pathogen bacteria with gold-based nanocomposites and atomic clusters, cell optoporation, and theoretical simulations of nanoparticle-mediated laser heating of tissues and cells. PMID:27517913

  16. In Vitro and In Vivo Tumor Targeted Photothermal Cancer Therapy Using Functionalized Graphene Nanoparticles.

    PubMed

    Kim, Sung Han; Lee, Jung Eun; Sharker, Shazid Md; Jeong, Ji Hoon; In, Insik; Park, Sung Young

    2015-11-09

    Despite the tremendous progress that photothermal therapy (PTT) has recently achieved, it still has a long way to go to gain the effective targeted photothermal ablation of tumor cells. Driven by this need, we describe a new class of targeted photothermal therapeutic agents for cancer cells with pH responsive bioimaging using near-infrared dye (NIR) IR825, conjugated poly(ethylene glycol)-g-poly(dimethylaminoethyl methacrylate) (PEG-g-PDMA, PgP), and hyaluronic acid (HA) anchored reduced graphene oxide (rGO) hybrid nanoparticles. The obtained rGO nanoparticles (PgP/HA-rGO) showed pH-dependent fluorescence emission and excellent near-infrared (NIR) irradiation of cancer cells targeted in vitro to provide cytotoxicity. Using intravenously administered PTT agents, the time-dependent in vivo tumor target accumulation was exactly defined, presenting eminent photothermal conversion at 4 and 8 h post-injection, which was demonstrated from the ex vivo biodistribution of tumors. These tumor environment responsive hybrid nanoparticles generated photothermal heat, which caused dominant suppression of tumor growth. The histopathological studies obtained by H&E staining demonstrated complete healing from malignant tumor. In an area of limited successes in cancer therapy, our translation will pave the road to design stimulus environment responsive targeted PTT agents for the safe eradication of devastating cancer.

  17. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion.

    PubMed

    Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan

    2016-08-14

    Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ∼1 kW m(-2). The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.

  18. Folate-receptor-targeted NIR-sensitive polydopamine nanoparticles for chemo-photothermal cancer therapy

    NASA Astrophysics Data System (ADS)

    Li, Hao; Jin, Zhen; Cho, Sunghoon; Jeon, Mi Jeong; Du Nguyen, Van; Park, Jong-Oh; Park, Sukho

    2017-10-01

    We propose the use of folate-receptor-targeted, near-infrared-sensitive polydopamine nanoparticles (NPs) for chemo-photothermal cancer therapy as an enhanced type of drug-delivery system which can be synthesized by in situ polymerization and conjugation with folic acid. The NPs consist of a Fe3O4/Au core, coated polydopamine, conjugated folic acid, and loaded anti-cancer drug (doxorubicin). The proposed multifunctional NPs show many advantages for therapeutic applications such as good biocompatibility and easy bioconjugation. The polydopamine coating of the NPs show a higher photothermal effect and thus more effective cancer killing compared to Fe3O4/Au nanoparticles at the same intensity as near-infrared laser irradiation. In addition, the conjugation of folic acid was shown to enhance cancer cellular uptake efficiency via the folate receptor and thus improve chemotherapeutic efficiency. Through in vitro cancer cell treatment testing, the proposed multifunctional NPs showed advanced photothermal and chemotherapeutic performance. Based on these enhanced anti-cancer properties, we expect that the proposed multifunctional NPs can be used as a drug-delivery system in cancer therapy.

  19. Hexaphyrin as a Potential Theranostic Dye for Photothermal Therapy and 19 F Magnetic Resonance Imaging.

    PubMed

    Higashino, Tomohiro; Nakatsuji, Hirotaka; Fukuda, Ryosuke; Okamoto, Haruki; Imai, Hirohiko; Matsuda, Tetsuya; Tochio, Hidehito; Shirakawa, Masahiro; Tkachenko, Nikolai V; Hashida, Mitsuru; Murakami, Tatsuya; Imahori, Hiroshi

    2017-05-18

    Two features of meso-Aryl-substituted expanded porphyrins suggest suitability as theranostic agents. They have excellent absorption in near infrared (NIR) region, and they offer the possibility of introduction of multiple fluorine atoms at structurally equivalent positions. Here, hexaphyrin (hexa) was synthesized from 2,6-bis(trifluoromethyl)-4-formyl benzoate and pyrrole and evaluated as a novel expanded porphyrin with the above features. Under NIR illumination hexa showed intense photothermal and weak photodynamic effects, which were most likely due to its low excited states, close to singlet oxygen. The sustained photothermal effect caused ablation of cancer cells more effectively than the photodynamic effect of indocyanine green (a clinical dye). In addition, hexa showed potential for use in the visualization of tumors by 19 F magnetic resonance imaging (MRI), because of the multiple fluorine atoms. Our results strongly support the utility of expanded porphyrins as theranostic agents in both photothermal therapy and 19 F MRI. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Gold Nanorods as Nanodevices for Bioimaging, Photothermal Therapeutics, and Drug Delivery.

    PubMed

    Haine, Aung Thu; Niidome, Takuro

    2017-01-01

    Gold nanorods are promising metals in several biomedical applications such as bioimaging, thermal therapy, and drug delivery. Gold nanorods have strong absorption bands in near-infrared (NIR) light region and show photothermal effects. Since NIR light can penetrate deeply into tissues, their unique optical, chemical, and biological properties have attracted considerable clinical interest. Gold nanorods are expected to act not only as on-demand thermal converters for photothermal therapy but also as mediators of a controlled drug-release system responding to light irradiation. In this review, we discuss current progress using gold nanorods as bioimaging platform, phototherapeutic agents, and drug delivery vehicles.

  1. Protein-based photothermal theranostics for imaging-guided cancer therapy

    NASA Astrophysics Data System (ADS)

    Rong, Pengfei; Huang, Peng; Liu, Zhiguo; Lin, Jing; Jin, Albert; Ma, Ying; Niu, Gang; Yu, Lun; Zeng, Wenbin; Wang, Wei; Chen, Xiaoyuan

    2015-10-01

    The development of imageable photothermal theranostics has attracted considerable attention for imaging guided photothermal therapy (PTT) with high tumor ablation accuracy. In this study, we strategically constructed a near-infrared (NIR) cyanine dye by introducing a rigid cyclohexenyl ring to the heptamethine chain to obtain a heptamethine dye CySCOOH with high fluorescence intensity and good stability. By covalent conjugation of CySCOOH onto human serum albumin (HSA), the as-prepared HSA@CySCOOH nanoplatform is highly efficient for NIR fluorescence/photoacoustic/thermal multimodality imaging and photothermal tumor ablation. The theranostic capability of HSA@CySCOOH was systematically evaluated both in vitro and in vivo. Most intriguingly, complete tumor elimination was achieved by intravenous injection of HSA@CySCOOH (CySCOOH, 1 mg kg-1 808 nm, 1.0 W cm-2 for 5 min) into 4T1 tumor-bearing mice, with no weight loss, noticeable toxicity, or tumor recurrence being observed. This as-prepared protein-based nanotheranostics exhibits high water dispersibility, no off target cytotoxicity, and good biodegradability and biocompatibility, thus facilitating its clinical translation to cancer photothermal theranostics.The development of imageable photothermal theranostics has attracted considerable attention for imaging guided photothermal therapy (PTT) with high tumor ablation accuracy. In this study, we strategically constructed a near-infrared (NIR) cyanine dye by introducing a rigid cyclohexenyl ring to the heptamethine chain to obtain a heptamethine dye CySCOOH with high fluorescence intensity and good stability. By covalent conjugation of CySCOOH onto human serum albumin (HSA), the as-prepared HSA@CySCOOH nanoplatform is highly efficient for NIR fluorescence/photoacoustic/thermal multimodality imaging and photothermal tumor ablation. The theranostic capability of HSA@CySCOOH was systematically evaluated both in vitro and in vivo. Most intriguingly, complete tumor

  2. Magnetic Carbon nanoparticles enabled efficient photothermal alteration of mammalian cells

    NASA Astrophysics Data System (ADS)

    Cardenas, Nelson; Thomas, Patrick; Yu, Lingfeng; Mohanty, Samarendra

    2011-03-01

    While cw near-infrared (NIR) laser beams have been finding widespread application in photothermal therapy of cancer and pulsed NIR laser microbeams are recently being used for optoporation of exogeneous impermeable materials into cells. Since, carbon nanomaterials are very good in photothermal conversion, we utilized carbon nanoparticles (CNP) doped with Fe, so that they can be localized in a defined area by two fold selectivity, (i) external magnetic field for retention of the CNP in targeted area and (ii) surface functionalization for binding the targeted cells. Here, we report efficient photothermal therapy as well as poration of cells using magnetic CNPs with very low power continuous wave laser beam. Localization of CNPs on cell membrane under application of magnetic field was confirmed by scanning electron microscopy. At different power levels, cells could be damaged or microinjected with fluorescence protein-encoding plasmids or impermeable dyes. Monte Carlo simulation showed that the dose of NIR laser beam is sufficient to elicit response for magnetic CNP based photothermal treatment at significant depth. The results of our study suggest that magnetic CNP based photothermal alteration is a viable approach to remotely guide treatments offering high efficiency with significantly reduced cytotoxicity.

  3. Photo-thermal and cytotoxic properties of inkjet-printed copper sulfide films on biocompatible latex coated substrates

    NASA Astrophysics Data System (ADS)

    Sarfraz, Jawad; Borzenkov, Mykola; Niemelä, Erik; Weinberger, Christian; Törngren, Björn; Rosqvist, Emil; Collini, Maddalena; Pallavicini, Piersandro; Eriksson, John; Peltonen, Jouko; Ihalainen, Petri; Chirico, Giuseppe

    2018-03-01

    Inkjet-printing of metal nanoparticles is a particularly promising technique for the fabrication and modification of surfaces with a multifunctional nature. Recently copper sulfide nanoparticles (CuS NPs) have attracted wide interest due to a range of valuable properties including long term stability, photo-thermal activity, ease of synthesis and low cost. In the present study, printed CuS patterns were successfully fabricated on latex coated paper substrates and characterized by means of atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), UV-Vis-NIR spectroscopy, and grazing incidence X-ray diffraction (GID). The resulted patterns displayed pronounced photo-thermal effect under Near Infrared Irradiation (NIR) even with relatively low laser power. Finally, by utilizing an automated real-time imaging platform it was possible to verify that the CuS printed film was not cytotoxic to human dermal fibroblast cells (HDF). The pronounced photo-thermal properties and nontoxic nature of these printed low-cost flexible CuS films make them promising candidates for fabrication of devices with localized photo-thermal effect suitable for biomedical applications.

  4. Doxorubicin and Indocyanine Green Loaded Hybrid Bicelles for Fluorescence Imaging Guided Synergetic Chemo/Photothermal Therapy.

    PubMed

    Lin, Li; Liang, Xiaolong; Xu, Yunxue; Yang, Yongbo; Li, Xiaoda; Dai, Zhifei

    2017-09-20

    Hybrid bicelles have been demonstrated to have great potential for hydrophobic drug delivery. Herein, we report a near-infrared light-driven, temperature-sensitive hybrid bicelles co-encapsulating hydrophobic doxorubicin (DOX) and indocyanine green (ICG) (DOX/ICG@HBs). Encapsulation of ICG into the lipid bilayer membrane of DOX/ICG@HBs results in higher photostability than free ICG. DOX/ICG@HBs exhibited temperature-regulated drug release behavior and significant photothermal cytotoxicity. After tail vein injection, such discotic nanoparticles of DOX/ICG@HBs were found to accumulate selectively at the tumor site and act as an efficient probe to enhance fluorescence imaging greatly. The in vivo experiments showed that the DOX/ICG@HBs-mediated chemo- and photothermal combination therapy was more cytotoxic to tumor cells than the photothermal treatment or the chemotherapy alone due to the synergistic effect, reducing the occurrence of tumor metastasis. Therefore, DOX/ICG@HBs can act as a powerful nanotheranostic agent for chemo/photothermal therapy of cancer under the guidance of near-infrared fluorescence imaging.

  5. Enhancing photothermal cancer therapy by clustering gold nanoparticles into spherical polymeric nanoconstructs

    NASA Astrophysics Data System (ADS)

    Iodice, Carmen; Cervadoro, Antonio; Palange, AnnaLisa; Key, Jaehong; Aryal, Santosh; Ramirez, Maricela R.; Mattu, Clara; Ciardelli, Gianluca; O'Neill, Brian E.; Decuzzi, Paolo

    2016-01-01

    Gold nanoparticles (AuNPs) have been proposed as agents for enhancing photothermal therapy in cancer and cardiovascular diseases. Different geometrical configurations have been used, ranging from spheres to rods and more complex star shapes, to modulate optical and ablating properties. In this work, multiple, ultra-small 6 nm AuNPs are encapsulated into larger spherical polymeric nanoconstructs (SPNs), made out of a poly(lactic acid-co-glycol acid) (PLGA) core stabilized by a superficial lipid-PEG monolayer. The optical and photothermal properties of the resulting nanoconstructs (Au-SPNs) are modulated by varying the initial loading input of AuNPs, ranging between 25 and 150 μgAu. Au-SPNs exhibit a hydrodynamic diameter varying from ~100 to 180 nm, growing with the gold content, and manifest up to 2-fold increase in thermal energy production per unit mass of gold for an initial input of 100 μgAu. Au-SPNs are stable under physiological conditions up to 7 days and have direct cytotoxic effect on tumor cells. The superior photothermal performance of Au-SPNs is assessed in vitro on monolayers of breast cancer cells (SUM-159) and tumor spheroids of glioblastoma multiforme cells (U87-MG). The encapsulation of small AuNPs into larger spherical nanoconstructs enhances photothermal ablation and could favor tumor accumulation.

  6. Hydrophobic binding peptide-conjugated hybrid lipid-mesoporous silica nanoparticles for effective chemo-photothermal therapy of pancreatic cancer.

    PubMed

    Thapa, Raj Kumar; Nguyen, Hanh Thuy; Gautam, Milan; Shrestha, Aarajana; Lee, Eung Seok; Ku, Sae Kwang; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2017-11-01

    Nanoparticle-based drug delivery systems are designed to reach tumor sites based on their enhanced permeation and retention effects. However, a lack of interaction of these nanoparticles with cancer cells might lead to reduced uptake in the tumors, which might compromise the therapeutic efficacy of the system. Therefore, we developed bortezomib and IR-820-loaded hybrid-lipid mesoporous silica nanoparticles conjugated with the hydrophobic-binding peptide, cyclosporine A (CsA), and referred to them as CLMSN/BIR. Upon reaching the tumor site, CsA interacts hydrophobically with the cancer cell membranes to allow effective uptake of the nanoparticles. Nanoparticles ∼160 nm in size were prepared and the stability of IR-820 significantly improved. High cellular uptake of the nanoparticles was evident with pronounced apoptotic effects in PANC-1 and MIA PaCa-2 cells that were mediated by the chemotherapeutic effect of bortezomib and the photothermal and reactive oxygen species generation effects of IR-820. An in vivo biodistribution study indicated there was high accumulation in the tumor with an enhanced photothermal effect in PANC-1 xenograft mouse tumors. Furthermore, enhanced antitumor effects in PANC-1 xenograft tumors were observed with minimal toxicity induction in the organs of mice. Cumulatively, these results indicated the promising effects of CLMSN/BIR for effective chemo-phototherapy of pancreatic cancers.

  7. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range

    PubMed Central

    Jin, Wei; Cao, Yingchun; Yang, Fan; Ho, Hoi Lut

    2015-01-01

    Photothermal interferometry is an ultra-sensitive spectroscopic means for trace chemical detection in gas- and liquid-phase materials. Previous photothermal interferometry systems used free-space optics and have limitations in efficiency of light–matter interaction, size and optical alignment, and integration into photonic circuits. Here we exploit photothermal-induced phase change in a gas-filled hollow-core photonic bandgap fibre, and demonstrate an all-fibre acetylene gas sensor with a noise equivalent concentration of 2 p.p.b. (2.3 × 10−9 cm−1 in absorption coefficient) and an unprecedented dynamic range of nearly six orders of magnitude. The realization of photothermal interferometry with low-cost near infrared semiconductor lasers and fibre-based technology allows a class of optical sensors with compact size, ultra sensitivity and selectivity, applicability to harsh environment, and capability for remote and multiplexed multi-point detection and distributed sensing. PMID:25866015

  8. Improved Treatment of Photothermal Cancer by Coating TiO2 on Porous Silicon.

    PubMed

    Na, Kil Ju; Park, Gye-Choon

    2016-02-01

    In present society, the technology in various field has been sharply developed and advanced. In medical technology, especially, photothermal therapy and photodynamic therapy have had limelight for curing cancers and diseases. The study investigates the photothermal therapy that reduces side effects of existing cancer treatment, is applied to only cancer cells, and dose not harm any other normal cells. The photothermal properties of porous silicon for therapy are analyzed in order to destroy cancer cells that are more weak at heat than normal ones. For improving performance of porous silicon, it also analyzes the properties when irradiating the near infrared by heterologously junction TiO2 and TiO2NW, photocatalysts that are very stable and harmless to the environment and the human body, to porous silicon. Each sample of Si, PSi, TiO2/Psi, and TiO2NW/PSi was irradiated with 808 nm near-IR of 300, 500, and 700 mW/cm2 light intensity, where the maximum heating temperature was 43.8, 61.6, 67.9, and 61.9 degrees C at 300 mW/cm2; 54.1, 64.3, 78.8, and 68.9 degrees C at 500 mW/cm2; and 97.3, 102.8, 102.5, and 95 0C at 700 mW/cm2. The time required to reach the maximum temperature was less than 10 min for every case. The results indicate that TiO2/PSi thin film irradiated with a single near-infrared wavelength of 808 nm, which is known to have the best human permeability, offers the potential of being the most successful photothermal cancer therapy agent. It maximizes the photo-thermal characteristics within the shortest time, and minimizes the adverse effects on the human body.

  9. In-vivo ultrasound and photoacoustic image- guided photothermal cancer therapy using silica-coated gold nanorods.

    PubMed

    Kim, Seungsoo; Chen, Yun-Sheng; Luke, Geoffrey P; Emelianov, Stanislav Y

    2014-05-01

    In nanoparticle-augmented photothermal therapy, evaluating the delivery and spatial distribution of nanoparticles, followed by remote temperature mapping and monitoring, is essential to ensure the optimal therapeutic outcome. The utility of ultrasound and photoacoustic imaging to assist photothermal therapy has been previously demonstrated. Here, using a mouse xenograft tumor model, it is demonstrated in vivo that ultrasound-guided photoacoustic imaging can be used to plan the treatment and to guide the therapy. To evaluate nanoparticle delivery and spatial distribution, three-dimensional ultrasound and spectroscopic photoacoustic imaging of a mouse with a tumor was performed before and after intravenous injection of silica-coated gold nanorods. After injection and sufficient circulation of nanoparticles, photothermal therapy was performed for 5 min using an 808-nm continuous-wave laser. During the photothermal therapy, photoacoustic images were acquired continuously and used to measure the temperature changes within tissue. A heterogeneous distribution of temperature, which was spatially correlated with the measured distribution of nanoparticles, indicated that peak temperatures of 53°C were achieved in the tumor. An Arrhenius thermal damage model determined that this thermal deposition would result in significant cell death. The results of this study suggest that ultrasound and photoacoustic imaging can effectively guide photothermal therapy to achieve the desired thermal treatment.

  10. During air cool process aerosol absorption detection with photothermal interferometry

    NASA Astrophysics Data System (ADS)

    Li, Baosheng; Xu, Limei; Huang, Junling; Ma, Fei; Wang, Yicheng; Li, Zhengqiang

    2014-11-01

    This paper studies the basic principle of laser photothermal interferometry method of aerosol particles absorption coefficient. The photothermal interferometry method with higher accuracy and lower uncertainty can directly measure the absorption coefficient of atmospheric aerosols and not be affected by scattered light. With Jones matrix expression, the math expression of a special polarization interferometer is described. This paper using folded Jamin interferometer, which overcomes the influence of vibration on measuring system. Interference come from light polarization beam with two orthogonal and then combine to one beam, finally aerosol absorption induced refractive index changes can be gotten with four beam of phase orthogonal light. These kinds of styles really improve the stability of system and resolution of the system. Four-channel detections interact with interference fringes, to reduce the light intensity `zero drift' effect on the system. In the laboratory, this device typical aerosol absorption index, it shows that the result completely agrees with actual value. After heated by laser, cool process of air also show the process of aerosol absorption. This kind of instrument will be used to monitor ambient aerosol absorption and suspended particulate matter chemical component. Keywords: Aerosol absorption coefficient; Photothermal interferometry; Suspended particulate matter.

  11. A Multimodal System with Synergistic Effects of Magneto-Mechanical, Photothermal, Photodynamic and Chemo Therapies of Cancer in Graphene-Quantum Dot-Coated Hollow Magnetic Nanospheres

    PubMed Central

    Wo, Fangjie; Xu, Rujiao; Shao, Yuxiang; Zhang, Zheyu; Chu, Maoquan; Shi, Donglu; Liu, Shupeng

    2016-01-01

    In this study, a multimodal therapeutic system was shown to be much more lethal in cancer cell killing compared to a single means of nano therapy, be it photothermal or photodynamic. Hollow magnetic nanospheres (HMNSs) were designed and synthesized for the synergistic effects of both magneto-mechanical and photothermal cancer therapy. By these combined stimuli, the cancer cells were structurally and physically destroyed with the morphological characteristics distinctively different from those by other therapeutics. HMNSs were also coated with the silica shells and conjugated with carboxylated graphene quantum dots (GQDs) as a core-shell composite: HMNS/SiO2/GQDs. The composite was further loaded with an anticancer drug doxorubicin (DOX) and stabilized with liposomes. The multimodal system was able to kill cancer cells with four different therapeutic mechanisms in a synergetic and multilateral fashion, namely, the magnetic field-mediated mechanical stimulation, photothermal damage, photodynamic toxicity, and chemotherapy. The unique nanocomposites with combined mechanical, chemo, and physical effects will provide an alternative strategy for highly improved cancer therapy efficiency. PMID:26941842

  12. A Multimodal System with Synergistic Effects of Magneto-Mechanical, Photothermal, Photodynamic and Chemo Therapies of Cancer in Graphene-Quantum Dot-Coated Hollow Magnetic Nanospheres.

    PubMed

    Wo, Fangjie; Xu, Rujiao; Shao, Yuxiang; Zhang, Zheyu; Chu, Maoquan; Shi, Donglu; Liu, Shupeng

    2016-01-01

    In this study, a multimodal therapeutic system was shown to be much more lethal in cancer cell killing compared to a single means of nano therapy, be it photothermal or photodynamic. Hollow magnetic nanospheres (HMNSs) were designed and synthesized for the synergistic effects of both magneto-mechanical and photothermal cancer therapy. By these combined stimuli, the cancer cells were structurally and physically destroyed with the morphological characteristics distinctively different from those by other therapeutics. HMNSs were also coated with the silica shells and conjugated with carboxylated graphene quantum dots (GQDs) as a core-shell composite: HMNS/SiO2/GQDs. The composite was further loaded with an anticancer drug doxorubicin (DOX) and stabilized with liposomes. The multimodal system was able to kill cancer cells with four different therapeutic mechanisms in a synergetic and multilateral fashion, namely, the magnetic field-mediated mechanical stimulation, photothermal damage, photodynamic toxicity, and chemotherapy. The unique nanocomposites with combined mechanical, chemo, and physical effects will provide an alternative strategy for highly improved cancer therapy efficiency.

  13. Polypyrrole-based nanotheranostics for activatable fluorescence imaging and chemo/photothermal dual therapy of triple-negative breast cancer

    NASA Astrophysics Data System (ADS)

    Park, Dongjin; Ahn, Kyung-Ohk; Jeong, Kyung-Chae; Choi, Yongdoo

    2016-05-01

    Here, we fabricated polypyrrole nanoparticles (PPys) (termed HA10-PPy, HA20-PPy, and HA40-PPy) doped with different average molecular weight hyaluronic acids (HAs) (10, 20, and 40 kDa, respectively), and evaluated the effect of molecular weight of doped HA on photothermal induction, fluorescence quenching, and drug loading efficiencies. Doxorubicin-loaded HA-doped PPys (DOX@HA-PPys) could be used for imaging and therapy of triple-negative breast cancer (TNBC). Fluorescence turn-on, stimuli-responsive drug release, and photo-induced heating of DOX@HA-PPys enabled not only activatable fluorescence imaging but also subsequent chemo/photothermal dual therapy for TNBC. In particular, we illustrated the potential usefulness of the photothermal effect of the nanoparticles for overcoming chemoresistance in TNBC.

  14. Skin-safe photothermal therapy enabled by responsive release of acid-activated membrane-disruptive polymer from polydopamine nanoparticle upon very low laser irradiation.

    PubMed

    Zhu, Rui; Gao, Feng; Piao, Ji-Gang; Yang, Lihua

    2017-07-25

    How to ablate tumor without damaging skin is a challenge for photothermal therapy. We, herein, report skin-safe photothermal cancer therapy provided by the responsive release of acid-activated hemolytic polymer (aHLP) from the photothermal polydopamine (PDA) nanoparticle upon irradiation at very low dosage. Upon skin-permissible irradiation (via an 850 nm laser irradiation at the power density of 0.4 W cm -2 ), the nanoparticle aHLP-PDA generates sufficient localized-heat to bring about mild hyperthermia treatment and consequently, responsively sheds off the aHLP polymer from its PDA nanocore; this leads to selective cytotoxicity to cancer cells under the acidic conditions of the extracellular microenvironment of tumor. As a result, our aHLP-PDA nanoparticle upon irradiation at a low dosage effectively inhibits tumor growth without damaging skin, as demonstrated using animal models. Effective in mitigating the otherwise inevitable skin damage in tumor photothermal therapy, the nanosystem reported herein offers an efficient pathway towards skin-safe photothermal therapy.

  15. Dual-wavelength photothermal optical coherence tomography for blood oxygen saturation measurement

    NASA Astrophysics Data System (ADS)

    Yin, Biwei; Kuranov, Roman V.; McElroy, Austin B.; Milner, Thomas E.

    2013-03-01

    We report design and demonstration of a dual wavelength photothermal (DWP) optical coherence tomography (OCT) system for imaging of a phantom microvessel and measurement of hemoglobin oxygen saturation (SO2) level. The DWP-OCT system contains a swept-source (SS) two-beam phase-sensitive (PhS) OCT system (1060 nm) and two intensity modulated photothermal excitation lasers (770 nm and 800 nm). The PhS-OCT probe beam (1060 nm) and photothermal excitation beams are combined into one single-mode optical fiber. A galvanometer based two-dimensional achromatic scanning system is designed to provide 14 μm lateral resolution for the PhS-OCT probe beam (1060 nm) and 13 μm lateral resolution for photothermal excitation beams. DWP-OCT system's sensitivity is 102 dB, axial resolution is 13 μm in tissue and uses a real-time digital dispersion compensation algorithm. Noise floor for optical pathlength measurements is 300 pm in the signal frequency range (380-400 Hz) of photothermal modulation frequencies. Blood SO2 level is calculated from measured optical pathlength (op) signal in a 300 μm diameter microvessel phantom introduced by the two photothermal excitation beams. En-face and B-scan images of a phantom microvessel are recorded, and six blood samples' SO2 levels are measured using DWP-OCT and compared with values provided by a commercial blood oximeter. A mathematical model indicates thermal diffusion introduces a systematic artifact that over-estimates SO2 values and is consistent with measured data.

  16. Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy.

    PubMed

    Parida, Sheetal; Maiti, Chiranjit; Rajesh, Y; Dey, Kaushik K; Pal, Ipsita; Parekh, Aditya; Patra, Rusha; Dhara, Dibakar; Dutta, Pranab Kumar; Mandal, Mahitosh

    2017-01-01

    Gold nanorods, by virtue of surface plasmon resonance, convert incident light energy (NIR) into heat energy which induces hyperthermia. We designed unique, multifunctional, gold nanorod embedded block copolymer micelle loaded with GW627368X for targeted drug delivery and photothermal therapy. Glutathione responsive diblock co-polymer was synthesized by RAFT process forming self-assembled micelle on gold nanorods prepared by seed mediated method and GW627368X was loaded on to the reduction responsive gold nanorod embedded micelle. Photothermal therapy was administered using cwNIR laser (808nm; 4W/cm 2 ). Efficacy of nanoformulated GW627368X, photothermal therapy and combination of both were evaluated in vitro and in vivo. In response to photothermal treatment, cells undergo regulated, patterned cell death by necroptosis. Combining GW627368X with photothermal treatment using single nanoparticle enhanced therapeutic outcome. In addition, these nanoparticles are effective X-ray CT contrast agents, thus, can help in monitoring treatment. Reduction responsive nanorod embedded micelle containing folic acid and lipoic acid when treated on cervical cancer cells or tumour bearing mice, aggregate in and around cancer cells. Due to high glutathione concentration, micelles degrade releasing drug which binds surface receptors inducing apoptosis. When incident with 808nm cwNIR lasers, gold nanorods bring about photothermal effect leading to hyperthermic cell death by necroptosis. Combination of the two modalities enhances therapeutic efficacy by inducing both forms of cell death. Our proposed treatment strategy achieves photothermal therapy and targeted drug delivery simultaneously. It can prove useful in overcoming general toxicities associated with chemotherapeutics and intrinsic/acquired resistance to chemo and radiotherapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Transient enhancement and spectral narrowing of the photothermal effect of plasmonic nanoparticles under pulsed excitation.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Volkov, Alexey N; Wu, Xiangwei; Lapotko, Dmitri O

    2013-02-06

    The transient 100-fold enhancement and spectral narrowing to 2 nm of the photothermal conversion by solid gold nanospheres under near-infrared excitation with a short laser pulse is reported. This non-stationary effect was observed for a wide range of optical fluences starting from 10 mJ cm(-2) for single nanospheres, their ensembles and aggregated clusters in water, in vitro and in vivo. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A smart drug: a pH-responsive photothermal ablation agent for Golgi apparatus activated cancer therapy.

    PubMed

    Xue, Fengfeng; Wen, Ying; Wei, Peng; Gao, Yilin; Zhou, Zhiguo; Xiao, Shuzhang; Yi, Tao

    2017-06-13

    We report a pH-responsive photothermal ablation agent (pH-PTT) based on cyanine dyes for photothermal therapy (PTT). The nanoparticles formed by BSA and pH-PTT preferentially accumulated in the Golgi apparatus of cancer cells compared to normal cells, and thus can be specifically activated by the acidic Golgi apparatus in cancer cells for effective PTT both ex vivo and in vivo.

  19. Au Nanomatryoshkas as Efficient Near-Infrared Photothermal Transducers for Cancer Treatment: Benchmarking against Nanoshells

    PubMed Central

    2015-01-01

    Au nanoparticles with plasmon resonances in the near-infrared (NIR) region of the spectrum efficiently convert light into heat, a property useful for the photothermal ablation of cancerous tumors subsequent to nanoparticle uptake at the tumor site. A critical aspect of this process is nanoparticle size, which influences both tumor uptake and photothermal efficiency. Here, we report a direct comparative study of ∼90 nm diameter Au nanomatryoshkas (Au/SiO2/Au) and ∼150 nm diameter Au nanoshells for photothermal therapeutic efficacy in highly aggressive triple negative breast cancer (TNBC) tumors in mice. Au nanomatryoshkas are strong light absorbers with 77% absorption efficiency, while the nanoshells are weaker absorbers with only 15% absorption efficiency. After an intravenous injection of Au nanomatryoshkas followed by a single NIR laser dose of 2 W/cm2 for 5 min, 83% of the TNBC tumor-bearing mice appeared healthy and tumor free >60 days later, while only 33% of mice treated with nanoshells survived the same period. The smaller size and larger absorption cross section of Au nanomatryoshkas combine to make this nanoparticle more effective than Au nanoshells for photothermal cancer therapy. PMID:24889266

  20. Mesoporous Bamboo Charcoal Nanoparticles as a New Near-Infrared Responsive Drug Carrier for Imaging-Guided Chemotherapy/Photothermal Synergistic Therapy of Tumor.

    PubMed

    Dong, Xinghua; Yin, Wenyan; Yu, Jie; Dou, Ruixia; Bao, Tao; Zhang, Xiao; Yan, Liang; Yong, Yuan; Su, Chunjian; Wang, Qing; Gu, Zhanjun; Zhao, Yuliang

    2016-07-01

    Near-infrared-(NIR)-light-triggered photothermal nanocarriers have attracted much attention for the construction of more smart and effective therapeutic platforms in nanomedicine. Here, a multifunctional drug carrier based on a low cost, natural, and biocompatible material, bamboo charcoal nanoparticles (BCNPs), which are prepared by the pyrolysis of bamboo followed by physical grinding and ultrasonication is reported. The as-prepared BCNPs with porous structure possess not only large surface areas for drug loading but also an efficient photothermal effect, making them become both a suitable drug carrier and photothermal agent for cancer therapy. After loading doxorubicin (DOX) into the BCNPs, the resulting DOX-BCNPs enhance drug potency and more importantly can overcome the drug resistance of DOX in a MCF-7 cancer cell model by significantly increasing cellular uptake while remarkably decreasing drug efflux. The in vivo synergistic effect of combining chemotherapy and photothermal therapy in this drug delivery system is also demonstrated. In addition, the BCNPs enhance optoacoustic imaging contrast due to their high NIR absorbance. Collectively, it is demonstrated that the BCNP drug delivery system constitutes a promising and effective nanocarrier for simultaneous bioimaging and chemo-photothermal synergistic therapy of cancer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Plasmonic giant quantum dots: Hybrid nanostructures for truly simultaneous optical imaging, photothermal effect and thermometry

    DOE PAGES

    Karan, Niladri S.; Keller, Aaron M.; Sampat, Siddharth; ...

    2015-02-09

    Hybrid semiconductor–metal nanoscale constructs are of both fundamental and practical interest. Semiconductor nanocrystals are active emitters of photons when stimulated optically, while the interaction of light with nanosized metal objects results in scattering and ohmic damping due to absorption. In a combined structure, the properties of both components can be realized together. At the same time, metal–semiconductor coupling may intervene to modify absorption and/or emission processes taking place in the semiconductor, resulting in a range of effects from photoluminescence quenching to enhancement. We show here that photostable ‘giant’ quantum dots when placed at the center of an ultrathin gold shellmore » retain their key optical property of bright and blinking-free photoluminescence, while the metal shell imparts efficient photothermal transduction. The latter is despite the highly compact total particle size (40–60 nm “inorganic” diameter and <100 nm hydrodynamic diameter) and the very thin nature of the optically transparent Au shell. Furthermore, the sensitivity of the quantum dot emission to local temperature provides a novel internal thermometer for recording temperature during infrared irradiation-induced photothermal heating.« less

  2. Photothermal conversion of CO₂ into CH₄ with H₂ over Group VIII nanocatalysts: an alternative approach for solar fuel production.

    PubMed

    Meng, Xianguang; Wang, Tao; Liu, Lequan; Ouyang, Shuxin; Li, Peng; Hu, Huilin; Kako, Tetsuya; Iwai, Hideo; Tanaka, Akihiro; Ye, Jinhua

    2014-10-20

    The photothermal conversion of CO2 provides a straightforward and effective method for the highly efficient production of solar fuels with high solar-light utilization efficiency. This is due to several crucial features of the Group VIII nanocatalysts, including effective energy utilization over the whole range of the solar spectrum, excellent photothermal performance, and unique activation abilities. Photothermal CO2 reaction rates (mol h(-1) g(-1)) that are several orders of magnitude larger than those obtained with photocatalytic methods (μmol h(-1) g(-1)) were thus achieved. It is proposed that the overall water-based CO2 conversion process can be achieved by combining light-driven H2 production from water and photothermal CO2 conversion with H2. More generally, this work suggests that traditional catalysts that are characterized by intense photoabsorption will find new applications in photo-induced green-chemistry processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effective Photothermal Chemotherapy Using Doxorubicin-Loaded Gold Nanospheres That Target EphB4 Receptors in Tumors

    PubMed Central

    You, Jian; Zhang, Rui; Xiong, Chiyi; Zhong, Meng; Melancon, Maritess; Gupta, Sanjay; Nick, Alpa M.; Sood, Anil K.; Li, Chun

    2012-01-01

    Photothermal ablation (PTA) is an emerging technique that uses near-infrared laser light-generated heat to destroy tumor cells. However, complete tumor eradication by PTA therapy alone is difficult because heterogeneous heat distribution can lead to sub-lethal thermal dose in some areas of the tumor. Successful PTA therapy requires selective delivery of photothermal conducting nanoparticles to mediate effective PTA of tumor cells, and the ability to combine PTA with other therapy modalities. Here, we synthesized multifunctional doxorubicin (DOX)-loaded hollow gold nanospheres (DOX@HAuNS) that target EphB4, a member of the Eph family of receptor tyrosine kinases overexpressed on the cell membrane of multiple tumors and angiogenic blood vessels. Increased uptake of targeted nanoparticles T-DOX@HAuNS was observed in three EphB4-positive tumors both in vitro and in vivo. In vivo release of DOX from DOX@HAuNS, triggered by near-infrared laser, was confirmed by dual radiotracer technique. Treatment with T-DOX@HAuNS followed by near-infrared laser irradiation resulted in significantly decreased tumor growth when compared to treatments with non-targeted DOX@HAuNS plus laser or HAuNS plus laser. The tumors in six of the eight mice treated with T-DOX@HAuNS plus laser regressed completely with only residual scar tissue by 22 days following injection, and none of the treatment groups experienced a loss in body weight. Together, our findings demonstrate that concerted chemo-photothermal therapy with a single nanodevice capable of mediating simultaneous PTA and local drug release may have promise as a new anticancer therapy. PMID:22865457

  4. Nanoscale steady-state temperature gradients within polymer nanocomposites undergoing continuous-wave photothermal heating from gold nanorods.

    PubMed

    Maity, Somsubhra; Wu, Wei-Chen; Tracy, Joseph B; Clarke, Laura I; Bochinski, Jason R

    2017-08-17

    Anisotropically-shaped metal nanoparticles act as nanoscale heaters via excitation of a localized surface plasmon resonance, utilizing a photothermal effect which converts the optical energy into local heat. Steady-state temperatures within a polymer matrix embedded with gold nanorods undergoing photothermal heating using continuous-wave excitation are measured in the immediate spatial vicinity of the nanoparticle (referred to as the local temperature) from observing the rate of physical rotation of the asymmetric nanoparticles within the locally created polymer melt. Average temperatures across the entire (mostly solid) sample (referred to as the global temperature) are simultaneously observed using a fluorescence method from randomly dispersed molecular emitters. Comparing these two independent measurements in films having varying concentrations of nanorods reveals the interplay between the local and global temperatures, clearly demonstrating the capability of these material samples to sustain large steady-state spatial temperature gradients when experiencing continuous-wave excitation photothermal heating. These results are discussed quantitatively. Illustrative imaging studies of nanofibers under photothermal heating also support the presence of a large temperature gradient. Photothermal heating in this manner has potential utility in creating unique thermal processing conditions for outcomes such as driving chemical reactions, inducing crystallinity changes, or enhancing degradation processes in a manner unachievable by conventional heating methods.

  5. Microfluidic Synthesis and Biological Evaluation of Photothermal Biodegradable Copper Sulfide Nanoparticles.

    PubMed

    Ortiz de Solorzano, Isabel; Prieto, Martín; Mendoza, Gracia; Alejo, Teresa; Irusta, Silvia; Sebastian, Victor; Arruebo, Manuel

    2016-08-24

    The continuous synthesis of biodegradable photothermal copper sulfide nanoparticles has been carried out with the aid of a microfluidic platform. A comparative physicochemical characterization of the resulting products from the microreactor and from a conventional batch reactor has been performed. The microreactor is able to operate in a continuous manner and with a 4-fold reduction in the synthesis times compared to that of the conventional batch reactor producing nanoparticles with the same physicochemical requirements. Biodegradation subproducts obtained under simulated physiological conditions have been identified, and a complete cytotoxicological analysis on different cell lines was performed. The photothermal effect of those nanomaterials has been demonstrated in vitro as well as their ability to generate reactive oxygen species.

  6. Palladium nanoparticle-decorated 2-D graphene oxide for effective photodynamic and photothermal therapy of prostate solid tumors.

    PubMed

    Thapa, Raj Kumar; Soe, Zar Chi; Ou, Wenquan; Poudel, Kishwor; Jeong, Jee-Heon; Jin, Sung Giu; Ku, Sae Kwang; Choi, Han-Gon; Lee, You Mie; Yong, Chul Soon; Kim, Jong Oh

    2018-05-23

    Intratumoral injection of nanoparticles is a viable alternative for treating solid tumors. In this study, we used intratumorally-injected palladium nanoparticle (Pd NP)-decorated graphene oxide (GO) (GO-Pd NPs) for the treatment of solid prostate tumors. GO was synthesized using the modified Hummer's method and GO-Pd NPs were prepared using the one pot synthesis method. Studies on physicochemical characterization and in vitro/in vivo anticancer properties were performed using GO-Pd NPs. Successful preparation of GO-Pd NPs was confirmed by transmission electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. Compared to GO or Pd NPs alone, GO-Pd NPs showed higher cytotoxic effects in prostate cancer 3 (PC3) cells. Irradiation of treated cells with near infrared (NIR) laser considerably enhanced apoptosis induced by synergistic photothermal effect and reactive oxygen species (ROS) generation. Intratumorally-injected GO-Pd NPs showed promising in vivo localized distribution, photothermal ablation, and anti-tumor effects in the PC3 xenograft mouse model. Furthermore, the minimal organ toxicity of GO-Pd NPs was an added advantage. Hence, GO-Pd NPs could be a potential formulation for localized treatment of prostate solid tumors. Copyright © 2018. Published by Elsevier B.V.

  7. Photothermal effects during nanodiamond synthesis from a carbon aerogel in a laser-heated diamond anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, Matthew J.; Smith, Bennett E.; Meisenheimer, Peter B.

    Nanodiamonds have emerged as promising materials for quantum computing, biolabeling, and sensing due to their ability to host color centers with remarkable photostability and long spin-coherence times at room temperature. Recently, a bottom-up, high-pressure, high-temperature (HPHT) approach was demonstrated for growing nanodiamonds with color centers from amorphous carbon precursors in a laser-heated diamond anvil cell (LH-DAC) that was supported by a near-hydrostatic noble gas pressure medium. However, a detailed understanding of the photothermal heating and its effect on diamond growth, including the phase conversion conditions and the temperature-dependence of color center formation, has not been reported. In this work, wemore » measure blackbody radiation during LH-DAC synthesis of nanodiamond from carbon aerogel to examine these temperature-dependent effects. Blackbody temperature measurements suggest that nanodiamond growth can occur at 16.3 GPa and 1800 K. We use Mie theory and analytical heat transport to develop a predictive photothermal heating model. This model demonstrates that melting the noble gas pressure medium during laser heating decreases the local thermal conductivity to drive a high spatial resolution of phase conversion to diamond. In conclusion, we observe a temperature-dependent formation of nitrogen vacancy centers and interpret this phenomenon in the context of HPHT carbon vacancy diffusion.« less

  8. Photothermal effects during nanodiamond synthesis from a carbon aerogel in a laser-heated diamond anvil cell

    DOE PAGES

    Crane, Matthew J.; Smith, Bennett E.; Meisenheimer, Peter B.; ...

    2018-05-17

    Nanodiamonds have emerged as promising materials for quantum computing, biolabeling, and sensing due to their ability to host color centers with remarkable photostability and long spin-coherence times at room temperature. Recently, a bottom-up, high-pressure, high-temperature (HPHT) approach was demonstrated for growing nanodiamonds with color centers from amorphous carbon precursors in a laser-heated diamond anvil cell (LH-DAC) that was supported by a near-hydrostatic noble gas pressure medium. However, a detailed understanding of the photothermal heating and its effect on diamond growth, including the phase conversion conditions and the temperature-dependence of color center formation, has not been reported. In this work, wemore » measure blackbody radiation during LH-DAC synthesis of nanodiamond from carbon aerogel to examine these temperature-dependent effects. Blackbody temperature measurements suggest that nanodiamond growth can occur at 16.3 GPa and 1800 K. We use Mie theory and analytical heat transport to develop a predictive photothermal heating model. This model demonstrates that melting the noble gas pressure medium during laser heating decreases the local thermal conductivity to drive a high spatial resolution of phase conversion to diamond. In conclusion, we observe a temperature-dependent formation of nitrogen vacancy centers and interpret this phenomenon in the context of HPHT carbon vacancy diffusion.« less

  9. Photothermal stress triggered by near infrared-irradiated carbon nanotubes promotes bone deposition in rat calvarial defects.

    PubMed

    Yanagi, Tsukasa; Kajiya, Hiroshi; Kawaguchi, Minoru; Kido, Hirofumi; Fukushima, Tadao

    2015-03-01

    The bone regenerative healing process is often prolonged, with a high risk of infection particularly in elderly and diseased patients. A reduction in healing process time usually requires mechanical stress devices, chemical cues, or laser/thermal therapies. Although these approaches have been used extensively for the reduction of bone healing time, the exact mechanisms involved in thermal stress-induced bone regeneration remain unclear. In this study, we investigated the effect of optimal hyperthermia on rat calvarial defects in vivo and on osteogenesis in vitro. Photothermal stress stimulation was carried out using a new photothermal device, composed of an alginate gel including in carbon nanotubes and their irradiator with near-infrared light. Photothermal stress (15 min at 42℃, every day), trigged by near-infrared-induced carbon nanotube, promoted bone deposition in critical-sized calvarial defects compared with nonthermal stress controls. We recently reported that our novel DNA/protamine complex scaffold induces bone regeneration in calvarial defects. In this study, photothermal stress upregulated bone deposition in DNA/protamine-engrafted calvarial defects. Furthermore, photothermal stress significantly induced expression of osteogenic related genes in a time-dependent manner, including alkaline phosphatase, osterix, and osteocalcin. This was observed in DNA/protamine cells, which were expanded from regenerated tissue engrafted into the DNA/protamine scaffold, as well as in human MG63 preosteoblasts. In summary, this novel carbon nanotube-based photothermal stress approach upregulated expression of osteogenic-related genes in preosteoblasts, resulting in promotion of mineral deposition for enhanced bone repair. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. Nanoscale Metal-Organic Frameworks Decorated with Graphene Oxide for Magnetic Resonance Imaging Guided Photothermal Therapy.

    PubMed

    Meng, Jing; Chen, Xiujin; Tian, Yang; Li, Zhongfeng; Zheng, Qingfeng

    2017-12-11

    Imaging-guided photothermal therapy (PTT) provides an attractive way to treat cancer. A composite material of a nanoscale metal-organic framework (NMOF) and graphene oxide (GO) has been prepared for potential use in tumor-guided PTT with magnetic resonance imaging (MRI). The NMOFs containing Fe 3+ were prefabricated with an octahedral morphology through a solvothermal reaction to offer a strong T 2 -weighted contrast in MRI. Then the NMOFs were decorated with GO nanosheets, which had good photothermal properties. After decoration, zeta-potential characterization shows that the aqueous stability of the composite material is enhanced, UV/Vis and near-infrared (NIR) spectra confirm that NIR absorption is also increased, and photothermal experiments reveal that the composite materials express higher photothermal conversion effects and conversion stability. The fabricated NMOF/GO shows low cytotoxicity, effective T 2 -weighted contrast of MRI, and positive PTT behavior for a tumor model in vitro. The performance of the composite NMOF/GO for MRI and PTT was also tested upon injection into A549 tumor-bearing mice. The studies in vivo revealed that the fabricated NMOF/GO was efficient in T 2 -weighted imaging and ablation of the A549 tumor with low cytotoxicity, which implied that the prepared composite contrast agent was a potential multifunctional nanotheranostic agent. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Photo-thermal quartz tuning fork excitation for dynamic mode atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bontempi, Alexia; Teyssieux, Damien; Thiery, Laurent

    2014-10-13

    A photo-thermal excitation of a Quartz Tuning Fork (QTF) for topographic studies is introduced. The non-invasive photo-thermal excitation presents practical advantages compared to QTF mechanical and electrical excitations, including the absence of the anti-resonance and its associated phase rotation. Comparison between our theoretical model and experiments validate that the optical transduction mechanism is a photo-thermal rather than photo-thermoacoustic phenomenon. Topographic maps in the context of near-field microscopy distance control have been achieved to demonstrate the performance of the system.

  12. Highly Selective Photothermal Therapy by a Phenoxylated-Dextran-Functionalized Smart Carbon Nanotube Platform.

    PubMed

    Han, Seungmin; Kwon, Taeyun; Um, Jo-Eun; Haam, Seungjoo; Kim, Woo-Jae

    2016-05-01

    Near-infrared (NIR) photothermal therapy using biocompatible single-walled carbon nanotubes (SWNTs) is advantageous because as-produced SWNTs, without additional size control, both efficiently absorb NIR light and demonstrate high photothermal conversion efficiency. In addition, covalent attachment of receptor molecules to SWNTs can be used to specifically target infected cells. However, this technique interrupts SWNT optical properties and inevitably lowers photothermal conversion efficiency and thus remains major hurdle for SWNT applications. This paper presents a smart-targeting photothermal therapy platform for inflammatory disease using newly developed phenoxylated-dextran-functionalized SWNTs. Phenoxylated dextran is biocompatible and efficiently suspends SWNTs by noncovalent π-π stacking, thereby minimizing SWNT bundle formations and maintaining original SWNT optical properties. Furthermore, it selectively targets inflammatory macrophages by scavenger-receptor binding without any additional receptor molecules; therefore, its preparation is a simple one-step process. Herein, it is experimentally demonstrated that phenoxylated dextran-SWNTs (pD-SWNTs) are also biocompatible, selectively penetrate inflammatory macrophages over normal cells, and exhibit high photothermal conversion efficiency. Consequently, NIR laser-triggered macrophage treatment can be achieved with high accuracy by pD-SWNT without damaging receptor-free cells. These smart targeting materials can be a novel photothermal agent candidate for inflammatory disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. EMERGING TECHNOLOGY BULLETIN: DEVELOPMENT OF A PHOTOTHERMAL DETOXIFICATION UNIT - ENVIRONMENTAL SCIENCE AND ENGINEERING GROUP - UNIVERSITY OF DAYTON RESEARCH INSTITUTE

    EPA Science Inventory

    The University of Dayton Research Institute has developed a novel photochemical process embodied in a device called a Photothermal Detoxification Unit (PDU) which offers an efficient means of destroying hazardous organic wastes. The PDU, which overcomes the problems of slow react...

  14. Abnormal photothermal effect of laser radiation on highly defect oxide bronze nanoparticles under the sub-threshold excitation of absorption

    NASA Astrophysics Data System (ADS)

    Gulyaev, P.; Kotvanova, M.; Omelchenko, A.

    2017-05-01

    The mechanism of abnormal photo-thermal effect of laser radiation on nanoparticles of oxide bronzes has been proposed in this paper. The basic features of the observed effect are: a) sub-threshold absorption of laser radiation by the excitation of donor-like levels formed in the energy gap due to superficial defects of the oxide bronze nano-crystals; b) an interband radiationless transition of energy of excitation on deep triplet levels and c) consequent recombination occurring at the plasmon absorption. K or Na atoms thermally intercalated to the octahedral crystal structure of TiO2 in the wave SHS combustion generate acceptor levels in the gap. The prepared oxide bronzes of the non-stoichiometric composition NaxTiO2 and KxTiO2 were examined by high resolution TEM, and then grinded in a planetary mill with powerful dispersion energy density up to 4000 J/g. This made it possible to obtain nanoparticles about 50 nm with high surface defect density (1017-1019 cm-2 at a depth of 10 nm). High photo-thermal effect of laser radiation on the defect nanocrystals observed after its impregnation into cartilaginous tissue exceeds 7 times in comparison with the intact ones.

  15. Nonlinear photothermal Mid-Infrared Microspectroscopy with Superresolution

    NASA Astrophysics Data System (ADS)

    Erramilli, Shyamsunder; Mertiri, Alket; Liu, Hui; Totachawattana, Atcha; Hong, Mi; Sander, Michelle

    2015-03-01

    We describe a nonlinear method for breaking the diffraction limit in mid-infrared microscopy using nonlinear photothermal microspectroscopy. A Quantum Cascade Laser (QCL) tuned to an infrared active vibrational molecular normal mode is used as the pump laser. A low-phase noise Erbium-doped fiber (EDFL) laser is used as the probe. When the incident intensity of the mid-infrared pump laser is increased past a critical threshold, a nanobubble is nucleated, strongly modulating the scatter of the probe beam, in agreement with prior work. Remarkably, we have also found that the photothermal spectral signature of the mid-infrared absorption bifurcates and is strongly narrowed, consistent with an effective ``mean-field'' theory of the observed pitchfork bifurcation. This ultrasharp narrowing can be exploited to obtain mid-infrared images with a resolution that breaks the diffraction limit, without the need of mechanical scanning near-field probes. The method provides a powerful new tool for hyperspectral label-free mid-infrared imaging and characterization of biological tissues and materials science and engineering. We thank our collaborators H. Altug, L. D. Ziegler, J. Mertz, for their advice and generous loan of equipment.

  16. Band Excitation Kelvin probe force microscopy utilizing photothermal excitation

    DOE PAGES

    Collins, Liam; Jesse, Stephen; Balke, Nina; ...

    2015-03-13

    A multifrequency open loop Kelvin probe force microscopy (KPFM) approach utilizing photothermal as opposed to electrical excitation is developed. Photothermal band excitation (PthBE)-KPFM is implemented here in a grid mode on a model test sample comprising a metal-insulator junction with local charge-patterned regions. Unlike the previously described open loop BE-KPFM, which relies on capacitive actuation of the cantilever, photothermal actuation is shown to be highly sensitive to the electrostatic force gradient even at biases close to the contact potential difference (CPD). PthBE-KPFM is further shown to provide a more localized measurement of true CPD in comparison to the gold standardmore » ambient KPFM approach, amplitude modulated KPFM. In conclusion, PthBE-KPFM data contain information relating to local dielectric properties and electronic dissipation between tip and sample unattainable using conventional single frequency KPFM approaches.« less

  17. Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy-driven water evaporation.

    PubMed

    Yao, Jiandong; Zheng, Zhaoqiang; Yang, Guowei

    2018-02-08

    Solar energy-driven water evaporation lays a solid foundation for important photothermal applications such as sterilization, seawater desalination, and electricity generation. Due to the strong light-matter coupling, broad absorption wavelength range, and prominent quantum confinement effect, layered tin monoselenide (SnSe) holds a great potential to effectively harness solar irradiation and convert it to heat energy. In this study, SnSe is successfully deposited on a centimeter-scale nickel foam using a facile one-step pulsed-laser deposition approach. Importantly, the maximum evaporation rate of SnSe-coated nickel foam (SnSe@NF) reaches 0.85 kg m -2 h -1 , which is even 21% larger than that obtained with the commercial super blue coating (0.7 kg m -2 h -1 ) under the same condition. A systematic analysis reveals that its good photothermal conversion capability is attributed to the synergetic effect of multi-scattering-induced light trapping and the optimal trade-off between light absorption and phonon emission. Finally, the SnSe@NF device is further used for seawater evaporation, demonstrating a comparable evaporation rate (0.8 kg m -2 h -1 ) to that of fresh water and good stability over many cycles of usage. In summary, the current contribution depicts a facile one-step scenario for the economical and efficient solar-enabled SnSe@NF evaporation devices. More importantly, an in-depth analysis of the photothermal conversion mechanism underneath the layered materials depicts a fundamental paradigm for the design and application of photothermal devices based on them in the future.

  18. Alignment of gold nanorods by angular photothermal depletion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Adam B.; Chow, Timothy T. Y.; Chon, James W. M., E-mail: jchon@swin.edu.au

    2014-02-24

    In this paper, we demonstrate that a high degree of alignment can be imposed upon randomly oriented gold nanorod films by angular photothermal depletion with linearly polarized laser irradiation. The photothermal reshaping of gold nanorods is observed to follow quadratic melting model rather than the threshold melting model, which distorts the angular and spectral hole created on 2D distribution map of nanorods to be an open crater shape. We have accounted these observations to the alignment procedures and demonstrated good agreement between experiment and simulations. The use of multiple laser depletion wavelengths allowed alignment criteria over a large range ofmore » aspect ratios, achieving 80% of the rods in the target angular range. We extend the technique to demonstrate post-alignment in a multilayer of randomly oriented gold nanorod films, with arbitrary control of alignment shown across the layers. Photothermal angular depletion alignment of gold nanorods is a simple, promising post-alignment method for creating future 3D or multilayer plasmonic nanorod based devices and structures.« less

  19. Enhanced antibacterial activity of silver-decorated sandwich-like mesoporous silica/reduced graphene oxide nanosheets through photothermal effect

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Wang, Xuandong; Ye, Jun; Xue, Ximei; Zhang, Fangrong; Zhang, Huicong; Hou, Xuemei; Liu, Xiaolong; Zhang, Yun

    2018-03-01

    Drug resistance of bacteria has become a global health problem, as it makes conventional antibiotics less efficient. It is urgently needed to explore novel antibacterial materials and develop effective treatment strategies to overcome the drug resistance of antibiotics. Herein, we successfully synthesized silver decorated sandwich-like mesoporous silica/reduced graphene oxide nanosheets (rGO/MSN/Ag) as a novel antibacterial material through facile method. The rGO and Ag nanoparticles can be reduced in the reaction system without adding any other reductants. In addition, the rGO/MSN/Ag showed higher photothermal conversion capacity due to the modification of silver nanoparticles and exhibited excellent antibacterial activities against Pseudomonas putida, Escherichia coli and Rhodococcus at relatively low dosages, which was confirmed by the minimum inhibitory concentration (MIC) test. Meanwhile, the E. coli with a high concentration was selected for exposure using an 808 nm laser, and the antibacterial effect was obviously enhanced by the near-infrared irradiation induced photothermal effect. Moreover, the hepatocyte LO2 were used for the cytotoxicity evaluation, and the rGO/MSN/Ag showed low toxicity and were without detectable cytotoxicity at the antimicrobial dose. As the prepared rGO/MSN/Ag nanosheets have the advantages of low-cost and high antibacterial activity, they might be of promising and useful antibacterial agents for different applications.

  20. Graphene oxide wrapped SERS tags: multifunctional platforms toward optical labeling, photothermal ablation of bacteria, and the monitoring of killing effect.

    PubMed

    Lin, Donghai; Qin, Tianqi; Wang, Yunqing; Sun, Xiuyan; Chen, Lingxin

    2014-01-22

    As novel optical nanoprobes, surface-enhanced Raman scattering (SERS) tags have drawn growing interests in the application of biomedical imaging and phototherapies. Herein, we demonstrated a novel in situ synthesis strategy for GO wrapped gold nanocluster SERS tags by using a tris(2,2'-bipyridyl)ruthenium(II) chloride (Rubpy)/GO nanohybrid as a complex Raman reporter, inspired by the role of GO as an artificial receptor for various dyes. The introduction of GO in the synthesis procedure provided systematic solutions for controlling several key parameters of SERS tags, including reproducibility, sensitivity, and colloidal and signal stability. An additional interesting thermal-sensitive SERS property (SERS intensity decreased upon increasing the temperature) was also achieved due to the heat-induced release/redistribution of reporter molecules adsorbed on GO. Combining the synergic effect of these features, we further fabricated multifunctional, aldehyde group conjugated Au@Rubpy/GO SERS tags for optical labeling and photothermal ablation of bacteria. Sensitive Raman imaging of gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria could be realized, and satisfactory photothermal killing efficacy for both bacteria was achieved. Our results also demonstrated the correlation among the SERS intensity decrease ratio, bacteria survival rate, and the terminal temperature of the tag-bacteria suspension, showing the possibility to use SERS assay to measure antibacterial response during the photothermal process using this tag.

  1. Graphene oxide/manganese ferrite nanohybrids for magnetic resonance imaging, photothermal therapy and drug delivery.

    PubMed

    Yang, Yan; Shi, Haili; Wang, Yapei; Shi, Benzhao; Guo, Linlin; Wu, Dongmei; Yang, Shiping; Wu, Huixia

    2016-01-01

    Superparamagnetic manganese ferrite (MnFe2O4) nanoparticles have been deposited on graphene oxide (GO) by the thermal decomposition of manganese (II) acetylacetonate and iron (III) acetylacetonate precursors in triethylene glycol. The resulting GO/MnFe2O4 nanohybrids show very low cytotoxicity, negligible hemolytic activity, and imperceptible in vivo toxicity. In vitro and in vivo magnetic resonance imaging experiments demonstrate that GO/MnFe2O4 nanohybrids could be used as an effective T2 contrast agent. The strong optical absorbance in the near-infrared (NIR) region and good photothermal stability of GO/MnFe2O4 nanohybrids result in the highly efficient photothermal ablation of cancer cells. GO/MnFe2O4 nanohybrids can be further loaded with doxorubicin (DOX) by π-π conjugate effect for chemotherapy. DOX release from GO/MnFe2O4 is significantly influenced by pH and can be triggered by NIR laser. The enhanced cancer cell killing by GO/MnFe2O4/DOX composites has been achieved when irradiated with near-infrared light, suggesting that the nanohybrids could deliver both DOX chemotherapy and photothermal therapy with a synergistic effect. © The Author(s) 2015.

  2. Eco-friendly plasmonic sensors: using the photothermal effect to prepare metal nanoparticle-containing test papers for highly sensitive colorimetric detection.

    PubMed

    Tseng, Shao-Chin; Yu, Chen-Chieh; Wan, Dehui; Chen, Hsuen-Li; Wang, Lon Alex; Wu, Ming-Chung; Su, Wei-Fang; Han, Hsieh-Cheng; Chen, Li-Chyong

    2012-06-05

    Convenient, rapid, and accurate detection of chemical and biomolecules would be a great benefit to medical, pharmaceutical, and environmental sciences. Many chemical and biosensors based on metal nanoparticles (NPs) have been developed. However, as a result of the inconvenience and complexity of most of the current preparation techniques, surface plasmon-based test papers are not as common as, for example, litmus paper, which finds daily use. In this paper, we propose a convenient and practical technique, based on the photothermal effect, to fabricate the plasmonic test paper. This technique is superior to other reported methods for its rapid fabrication time (a few seconds), large-area throughput, selectivity in the positioning of the NPs, and the capability of preparing NP arrays in high density on various paper substrates. In addition to their low cost, portability, flexibility, and biodegradability, plasmonic test paper can be burned after detecting contagious biomolecules, making them safe and eco-friendly.

  3. Conjugated polymer and drug co-encapsulated nanoparticles for Chemo- and Photo-thermal Combination Therapy with two-photon regulated fast drug release

    NASA Astrophysics Data System (ADS)

    Yuan, Youyong; Wang, Zuyong; Cai, Pingqiang; Liu, Jie; Liao, Lun-De; Hong, Minghui; Chen, Xiaodong; Thakor, Nitish; Liu, Bin

    2015-02-01

    The spatial-temporal synchronization of photothermal therapy and chemotherapy is highly desirable for an efficient cancer treatment with synergistic effect. Herein, we developed a chemotherapeutic drug doxorubicin (DOX) and photothermal conjugated polymer (CP) co-loaded nanoplatform using a near-infrared (NIR) laser responsive amphiphilic brush copolymer as the encapsulation matrix. The obtained nanoparticles (NPs) exhibit good monodispersity and excellent stability, which can efficiently convert laser energy into thermal energy for photothermal therapy. Moreover, the hydrophobic polymer matrix bearing a number of 2-diazo-1,2-naphthoquinones (DNQ) moieties could be transformed to a hydrophilic one upon NIR two-photon laser irradiation, which leads to fast drug release. Furthermore, the surface modification of the NPs with cyclic arginine-glycine-aspartic acid (cRGD) tripeptide significantly enhances the accumulation of the NPs within integrin αvβ3 overexpressed cancer cells. The half-maximal inhibitory concentration (IC50) of the combination therapy is 13.7 μg mL-1, while the IC50 for chemotherapy and photothermal therapy alone is 147.8 μg mL-1 and 36.2 μg mL-1, respectively. The combination index (C.I.) is 0.48 (<1), which indicates the synergistic effect for chemotherapy and PTT. These findings provide an excellent NIR laser regulated nanoplatform for combined cancer treatment with synergistic effect due to the synchronous chemo- and photo-thermal therapy.

  4. Laser generated gold nanocorals with broadband plasmon absorption for photothermal applications

    NASA Astrophysics Data System (ADS)

    Poletti, Annamaria; Fracasso, Giulio; Conti, Giamaica; Pilot, Roberto; Amendola, Vincenzo

    2015-08-01

    Gold nanoparticles with efficient plasmon absorption in the visible and near infrared (NIR) regions, biocompatibility and easy surface functionalization are of interest for photothermal applications. Herein we describe the synthesis and photothermal properties of gold ``nanocorals'' (AuNC) obtained by laser irradiation of Au nanospheres (AuNS) dispersed in liquid solution. AuNC are formed in two stages: by photofragmentation of AuNS, followed by spontaneous unidirectional assembly of gold nanocrystals. The whole procedure is performed without chemicals or templating compounds, hence the AuNC can be coated with thiolated molecules in one step. We show that AuNC coated with thiolated polymers are easily dispersed in an aqueous environment or in organic solvents and can be included in polymeric matrixes to yield a plasmonic nanocomposite. AuNC dispersions exhibit flat broadband plasmon absorption ranging from the visible to the NIR and unitary light-to-heat conversion. Besides, in vitro biocompatibility experiments assessed the absence of cytotoxic effects even at a dose as high as 100 μg mL-1. These safe-by-designed AuNC are promising for use in various applications such as photothermal cancer therapy, light-triggered drug release, antimicrobial substrates, optical tomography, obscurant materials and optical coatings.

  5. Photothermal-enhanced catalysis in core-shell plasmonic hierarchical Cu7S4 microsphere@zeolitic imidazole framework-8.

    PubMed

    Wang, Feifan; Huang, Yanjie; Chai, Zhigang; Zeng, Min; Li, Qi; Wang, Yuan; Xu, Dongsheng

    2016-12-01

    Conventional semiconductor photocatalysis based on band-edge absorption remains inefficient due to the limited harvesting of solar irradiation and the complicated surface/interface chemistry. Herein, novel photothermal-enhanced catalysis was achieved in a core-shell hierarchical Cu 7 S 4 nano-heater@ZIF-8 heterostructures via near-infrared localized surface plasmon resonance. Our results demonstrated that both the high surface temperature of the photothermal Cu 7 S 4 core and the close-adjacency of catalytic ZIF-8 shell contributed to the extremely enhanced catalytic activity. Under laser irradiation (1450 nm, 500 mW), the cyclocondensation reaction rate increased 4.5-5.4 fold compared to that of the process at room temperature, in which the 1.6-1.8 fold enhancement was due to the localized heating effect. The simulated sunlight experiments showed a photothermal activation efficiency (PTAE) of 0.07%, further indicating the validity of photothermal catalysis based on the plasmonic semiconductor nanomaterials. More generally, this approach provides a platform to improve reaction activity with efficient utilization of solar energy, which can be readily extended to other green-chemistry processes.

  6. Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy.

    PubMed

    Sheng, Zonghai; Song, Liang; Zheng, Jiaxiang; Hu, Dehong; He, Meng; Zheng, Mingbin; Gao, Guanhui; Gong, Ping; Zhang, Pengfei; Ma, Yifan; Cai, Lintao

    2013-07-01

    Theranostic agents are attracting a great deal of attention in personalized medicine. Here, we developed a protein-based, facile method for fabrication of nanosized, reduced graphene oxide (nano-rGO) with high stability and low cytotoxicity. We constructed highly integrated photoacoustic/ultrasonic dual-modality imaging and photothermal therapy platforms, and further demonstrated that the prepared nano-rGO can be used as ready-to-use theranostic agents for both photoacoustic imaging and photothermal therapy without further surface modification. Intravenous administration of nano-rGO in tumor-bearing mice showed rapid and significant photoacoustic signal enhancement in the tumor region, indicating its excellence for passive targeting and photoacoustic imaging. Meanwhile, using a continuous-wave near-infrared laser, cancer cells in vivo were efficiently ablated, due to the photothermal effect of nano-rGO. The results suggest that the nano-rGO with protein-assisted fabrication was well suited for photoacoustic imaging and photothermal therapy of tumor, which is promising for theranostic nanomedicine. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  7. Polypeptide-Based Gold Nanoshells for Photothermal Therapy.

    PubMed

    Mayle, Kristine M; Dern, Kathryn R; Wong, Vincent K; Sung, Shijun; Ding, Ke; Rodriguez, April R; Taylor, Zachary; Zhou, Z Hong; Grundfest, Warren S; Deming, Timothy J; Kamei, Daniel T

    2017-02-01

    Targeted killing of cancer cells by engineered nanoparticles holds great promise for noninvasive photothermal therapy applications. We present the design and generation of a novel class of gold nanoshells with cores composed of self-assembled block copolypeptide vesicles with photothermal properties. Specifically, poly(L-lysine) 60 - block-poly(L-leucine) 20 (K 60 L 20 ) block copolypeptide vesicles coated with a thin layer of gold demonstrate enhanced absorption of light due to surface plasmon resonance (SPR) in the near-infrared range. We show that the polypeptide-based K 60 L 20 gold nanoshells have low toxicity in the absence of laser exposure, significant heat generation upon exposure to near-infrared light, and, as a result, localized cytotoxicity within the region of laser irradiation in vitro. To gain a better understanding of our gold nanoshells in the context of photothermal therapy, we developed a comprehensive mathematical model for heat transfer and experimentally validated this model by predicting the temperature as a function of time and position in our experimental setup. This model can be used to predict which parameters of our gold nanoshells can be manipulated to improve heat generation for tumor destruction. To our knowledge, our results represent the first ever use of block copolypeptide vesicles as the core material of gold nanoshells.

  8. Graphene Quantum Dots-Capped Magnetic Mesoporous Silica Nanoparticles as a Multifunctional Platform for Controlled Drug Delivery, Magnetic Hyperthermia, and Photothermal Therapy.

    PubMed

    Yao, Xianxian; Niu, Xingxing; Ma, Kexin; Huang, Ping; Grothe, Julia; Kaskel, Stefan; Zhu, Yufang

    2017-01-01

    A multifunctional platform is reported for synergistic therapy with controlled drug release, magnetic hyperthermia, and photothermal therapy, which is composed of graphene quantum dots (GQDs) as caps and local photothermal generators and magnetic mesoporous silica nanoparticles (MMSN) as drug carriers and magnetic thermoseeds. The structure, drug release behavior, magnetic hyperthermia capacity, photothermal effect, and synergistic therapeutic efficiency of the MMSN/GQDs nanoparticles are investigated. The results show that monodisperse MMSN/GQDs nanoparticles with the particle size of 100 nm can load doxorubicin (DOX) and trigger DOX release by low pH environment. Furthermore, the MMSN/GQDs nanoparticles can efficiently generate heat to the hyperthermia temperature under an alternating magnetic field or by near infrared irradiation. More importantly, breast cancer 4T1 cells as a model cellular system, the results indicate that compared with chemotherapy, magnetic hyperthermia or photothermal therapy alone, the combined chemo-magnetic hyperthermia therapy or chemo-photothermal therapy with the DOX-loaded MMSN/GQDs nanosystem exhibits a significant synergistic effect, resulting in a higher efficacy to kill cancer cells. Therefore, the MMSN/GQDs multifunctional platform has great potential in cancer therapy for enhancing the therapeutic efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Confinement of carbon dots localizing to the ultrathin layered double hydroxides toward simultaneous triple-mode bioimaging and photothermal therapy.

    PubMed

    Weng, Yangziwan; Guan, Shanyue; Lu, Heng; Meng, Xiangmin; Kaassis, Abdessamad Y; Ren, Xiaoxue; Qu, Xiaozhong; Sun, Chenghua; Xie, Zheng; Zhou, Shuyun

    2018-07-01

    It is a great challenge to develop multifunctional nanocarriers for cancer diagnosis and therapy. Herein, versatile CDs/ICG-uLDHs nanovehicles for triple-modal fluorescence/photoacoustic/two-photon bioimaging and effective photothermal therapy were prepared via a facile self-assembly of red emission carbon dots (CDs), indocyanine green (ICG) with the ultrathin layered double hydroxides (uLDHs). Due to the J-aggregates of ICG constructed in the self-assembly process, CDs/ICG-uLDHs was able to stabilize the photothermal agent ICG and enhanced its photothermal efficiency. Furthermore, the unique confinement effect of uLDHs has extended the fluorescence lifetime of CDs in favor of bioimaging. Considering the excellent in vitro and in vivo phototherapeutics and multimodal imaging effects, this work provides a promising platform for the construction of multifunctional theranostic nanocarrier system for the cancer treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Gold Nanoconstructs for Multimodal Diagnostic Imaging and Photothermal Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Coughlin, Andrew James

    Cancer accounts for nearly 1 out of every 4 deaths in the United States, and because conventional treatments are limited by morbidity and off-target toxicities, improvements in cancer management are needed. This thesis further develops nanoparticle-assisted photothermal therapy (NAPT) as a viable treatment option for cancer patients. NAPT enables localized ablation of disease because heat generation only occurs where tissue permissive near-infrared (NIR) light and absorbing nanoparticles are combined, leaving surrounding normal tissue unharmed. Two principle approaches were investigated to improve the specificity of this technique: multimodal imaging and molecular targeting. Multimodal imaging affords the ability to guide NIR laser application for site-specific NAPT and more holistic characterization of disease by combining the advantages of several diagnostic technologies. Towards the goal of image-guided NAPT, gadolinium-conjugated gold-silica nanoshells were engineered and demonstrated to enhance imaging contrast across a range of diagnostic modes, including T1-weighted magnetic resonance imaging, X-Ray, optical coherence tomography, reflective confocal microscopy, and two-photon luminescence in vitro as well as within an animal tumor model. Additionally, the nanoparticle conjugates were shown to effectively convert NIR light to heat for applications in photothermal therapy. Therefore, the broad utility of gadolinium-nanoshells for anatomic localization of tissue lesions, molecular characterization of malignancy, and mediators of ablation was established. Molecular targeting strategies may also improve NAPT by promoting nanoparticle uptake and retention within tumors and enhancing specificity when malignant and normal tissue interdigitate. Here, ephrinA1 protein ligands were conjugated to nanoshell surfaces for particle homing to overexpressed EphA2 receptors on prostate cancer cells. In vitro, successful targeting and subsequent photothermal ablation of

  11. Photothermal heating as a methodology for post processing of polymeric nanofibers

    NASA Astrophysics Data System (ADS)

    Gorga, Russell; Clarke, Laura; Bochinski, Jason; Viswanath, Vidya; Maity, Somsubhra; Dong, Ju; Firestone, Gabriel

    2015-03-01

    Metal nanoparticles embedded within polymeric systems can be made to act as localized heat sources thereby aiding in-situ polymer processing. This is made possible by the surface plasmon resonance (SPR) mediated photothermal effect of metal (in this case gold) nanoparticles, wherein incident light absorbed by the nanoparticle generates a non-equilibrium electron distribution which subsequently transfers this energy into the surrounding medium, resulting in a temperature increase in the immediate region around the particle. Here we demonstrate this effect in polymer nanocomposite systems, specifically electrospun polyethylene oxide nanofibrous mats, which have been annealed at temperatures above the glass transition. A non-contact temperature measurement technique utilizing embedded fluorophores (perylene) has been used to monitor the average temperature within samples. The effect of annealing methods (conventional and photothermal) and annealing conditions (temperature and time) on the fiber morphology, overall crystallinity, and mechanical properties is discussed. This methodology is further utilized in core-sheath nanofibers to crosslink the core material, which is a pre-cured epoxy thermoset. NSF Grant CMMI-1069108.

  12. Vapor-Enabled Propulsion for Plasmonic Photothermal Motor at the Liquid/Air Interface.

    PubMed

    Meng, Fanchen; Hao, Wei; Yu, Shengtao; Feng, Rui; Liu, Yanming; Yu, Fan; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2017-09-13

    This paper explores a new propulsion mechanism that is based on the ejection of hot vapor jet to propel the motor at the liquid/air interface. For conventional photothermal motors, which mostly are driven by Marangoni effect, it is challenging to propel those motors at the surfaces of liquids with low surface tension due to the reduced Marangoni effect. With this new vapor-enabled propulsion mechanism, the motors can move rapidly at the liquid/air interface of liquids with a broad range of surface tensions. A design that can accumulate the hot vapor is further demonstrated to enhance both the propulsion force as well as the applicable range of liquids for such motors. This new propulsion mechanism will help open up new opportunities for the photothermal motors with desired motion controls at a wide range of liquid/air interfaces where hot vapor can be generated.

  13. Simulation of temperature distribution in tumor Photothermal treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Xiyang; Qiu, Shaoping; Wu, Shulian; Li, Zhifang; Li, Hui

    2018-02-01

    The light transmission in biological tissue and the optical properties of biological tissue are important research contents of biomedical photonics. It is of great theoretical and practical significance in medical diagnosis and light therapy of disease. In this paper, the temperature feedback-controller was presented for monitoring photothermal treatment in realtime. Two-dimensional Monte Carlo (MC) and diffuse approximation were compared and analyzed. The results demonstrated that diffuse approximation using extrapolated boundary conditions by finite element method is a good approximation to MC simulation. Then in order to minimize thermal damage, real-time temperature monitoring was appraised by proportional-integral-differential (PID) controller in the process of photothermal treatment.

  14. Doxorubicin-loaded magnetic nanoparticle clusters for chemo-photothermal treatment of the prostate cancer cell line PC3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Weibing; Zheng, Xinmin; Shen, Shun

    2015-10-16

    In addition to the conventional cancer treatment such as radiotherapy, chemotherapy and surgical management, nanomedicine-based approaches have attracted widespread attention in recent years. In this paper, a promising nanocarrier, magnetic nanoparticle clusters (MNCs) as porous materials which provided enough room on the surface, was developed for loading chemotherapeutic agent of doxorubicin (DOX). Moreover, MNCs are a good near-infrared (NIR) photothermal mediator. Thus, MNCs have great potential both in photothermal therapy (PTT) and drug delivery for chemo-photothermal therapy of cancer. We firstly explored the destruction of prostate cancer in vitro by the combination of PTT and chemotherapy using DOX@MNCs. Upon NIR irradiationmore » at 808 nm, more cancer cells were killed when PC3 cells incubated with DOX@MNCs, owing to both MNCs-mediated photothermal ablation and cytotoxicity of light-triggered DOX release. Compared with PTT or chemotherapy alone, the chemo-photothermal therapy by DOX@MNCs showed a synergistically higher therapeutic efficacy. - Highlights: • MNCs have great potential both in photothermal therapy and drug delivery. • DOX@MNCs were used for chemo-photothermal therapy of prostate cancer cells. • DOX@MNCs showed a synergistically higher therapeutic efficacy.« less

  15. A histological evaluation and in vivo assessment of intratumoral near infrared photothermal nanotherapy-induced tumor regression.

    PubMed

    Green, Hadiyah N; Crockett, Stephanie D; Martyshkin, Dmitry V; Singh, Karan P; Grizzle, William E; Rosenthal, Eben L; Mirov, Sergey B

    2014-01-01

    Nanoparticle (NP)-enabled near infrared (NIR) photothermal therapy has realized limited success in in vivo studies as a potential localized cancer therapy. This is primarily due to a lack of successful methods that can prevent NP uptake by the reticuloendothelial system, especially the liver and kidney, and deliver sufficient quantities of intravenously injected NPs to the tumor site. Histological evaluation of photothermal therapy-induced tumor regression is also neglected in the current literature. This report demonstrates and histologically evaluates the in vivo potential of NIR photothermal therapy by circumventing the challenges of intravenous NP delivery and tumor targeting found in other photothermal therapy studies. Subcutaneous Cal 27 squamous cell carcinoma xenografts received photothermal nanotherapy treatments, radial injections of polyethylene glycol (PEG)-ylated gold nanorods and one NIR 785 nm laser irradiation for 10 minutes at 9.5 W/cm(2). Tumor response was measured for 10-15 days, gross changes in tumor size were evaluated, and the remaining tumors or scar tissues were excised and histologically analyzed. The single treatment of intratumoral nanorod injections followed by a 10 minute NIR laser treatment also known as photothermal nanotherapy, resulted in ~100% tumor regression in ~90% of treated tumors, which was statistically significant in a comparison to the average of all three control groups over time (P<0.01). Photothermal nanotherapy, or intratumoral nanorod injections followed by NIR laser irradiation of tumors and tumor margins, demonstrate the potential of NIR photothermal therapy as a viable localized treatment approach for primary and early stage tumors, and prevents NP uptake by the reticuloendothelial system.

  16. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells.

    PubMed

    Chen, Jingyi; Wang, Danling; Xi, Jiefeng; Au, Leslie; Siekkinen, Andy; Warsen, Addie; Li, Zhi-Yuan; Zhang, Hui; Xia, Younan; Li, Xingde

    2007-05-01

    Gold nanocages with a relatively small size (e.g., approximately 45 nm in edge length) have been developed, and the structure of these nanocages was tailored to achieve strong absorption in the near-infrared (NIR) region for photothermal cancer treatment. Numerical calculations show that the nanocage has a large absorption cross section of 3.48 x 10(-14) m(2), facilitating conversion of NIR irradiation into heat. The gold nanocages were conjugated with monoclonal antibodies (anti-HER2) to target epidermal growth factor receptors (EGFR) that are overexpressed on the surface of breast cancer cells (SK-BR-3). Our preliminary photothermal results show that the nanocages strongly absorb light in the NIR region with an intensity threshold of 1.5 W/cm(2) to induce thermal destruction to the cancer cells. In the intensity range of 1.5-4.7 W/cm(2), the circular area of damaged cells increased linearly with the irradiation power density. These results suggest that this new class of bioconjugated gold nanostructures, immuno gold nanocages, can potentially serve as an effective photothermal therapeutic agent for cancer treatment.

  17. A method for monitoring mass concentration of black carbon particulate matter using photothermal interferometry.

    PubMed

    Li, Baosheng; Wang, Yicheng; Li, Zhengqiang

    2016-03-01

    A method for measurements of mass concentration of black carbon particulate matter (PM) is proposed based on photothermal interferometry (PTI). A folded Jamin photothermal interferometer was used with a laser irradiation of particles deposited on a filter paper. The black carbon PM deposited on the filter paper was regarded as a film while the quartz filter paper was regarded as a substrate to establish a mathematical model for measuring the mass concentration of PM using a photothermal method. The photothermal interferometry system was calibrated and used to measure the atmospheric PM concentration corresponding to different dust-treated filter paper. The measurements were compared to those obtained using β ray method and were found consistent. This method can be particularly relevant to polluted atmospheres where PM is dominated by black carbon.

  18. Refreshing Rubbers as Customized Photothermal Conversion Materials through Post-Darkening Modeling Production.

    PubMed

    Li, Ruiting; Wang, Zhen; Han, Peng; He, Yonglin; Zhang, Xiaohong; Wang, Yapei

    2017-12-19

    Organic conjugated polymers with low energy bandgaps are emerging as a particular class of near-infrared (NIR) photothermal conversion materials. However, these polymers routinely possess high phase transition temperatures due to the rigid skeleton and strong intermolecular interactions. Conjugated polymers can rarely be thermally processed at low temperature, especially below 100 °C. This work formulates a concept of post-darkening modeling production (p-DMP) by which the thermoplastic non-conjugated trans-polyisoprene (TPI) is refreshed into a photothermal conversion material with high light use efficiency. Two steps, including the customizable shaping at low temperature and iodine vapor-tailored "darkening", ensure the ease of preparing photothermal conversion devices with desirable topologies. A few characterizations, with the combination of density functional theory (DFT) calculations, provide reasonable explanations for understanding the "darkening" process of TPI in iodine atmosphere. In particular, the p-DMP is successfully extended to three-dimension (3D) printing, opening an avenue to fabricate personalized photothermal products, for example, a sunlight-directed physiotherapy device for healthcare of articular tissues. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. In Planta Response of Arabidopsis to Photothermal Impact Mediated by Gold Nanoparticles.

    PubMed

    Koo, Yeonjong; Lukianova-Hleb, Ekaterina Y; Pan, Joann; Thompson, Sean M; Lapotko, Dmitri O; Braam, Janet

    2016-02-03

    Biological responses to photothermal effects of gold nanoparticles (GNPs) have been demonstrated and employed for various applications in diverse systems except for one important class - plants. Here, the uptake of GNPs through Arabidopsis thaliana roots and translocation to leaves are reported. Successful plasmonic nanobubble generation and acoustic signal detection in planta is demonstrated. Furthermore, Arabidopsis leaves harboring GNPs and exposed to continuous laser or noncoherent light show elevated temperatures across the leaf surface and induced expression of heat-shock regulated genes. Overall, these results demonstrate that Arabidopsis can readily take up GNPs through the roots and translocate the particles to leaf tissues. Once within leaves, GNPs can act as photothermal agents for on-demand remote activation of localized biological processes in plants. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Atomic oxygen damage characterization by photothermal scanning

    NASA Technical Reports Server (NTRS)

    Williams, A. W.; Wood, N. J.; Zakaria, A. B.

    1993-01-01

    In this paper we use a photothermal imaging technique to characterize the damage caused to an imperfectly coated gold-coated Kapton sample exposed to successively increased fluences of atomic oxygen in a laboratory atomic source.

  1. PREFACE: 15th International Conference on Photoacoustic and Photothermal Phenomena (ICPPP15)

    NASA Astrophysics Data System (ADS)

    Glorieux, Christ; Thoen, Jan

    2010-01-01

    Conference banner Although the roots of this scientific field go back to the end of the nineteenth century when A G Bell discovered the photoacoustic effect generated by the absorption of modulated light in a sample, major and rapid progress only occurred since the mid-1970's when the photoacoustic effect in condensed matter was put on a firm theoretical basis by A Rosencwaig and A Gersho. Since that time the fields of photoacoustics and the related fields of photothermal phenomena and laser ultrasonics have grown enormously. A multitude of ways of generating the effects has emerged using all kinds of radiation. Likewise, the diversity in methods for the detection of the generated thermal and acoustic waves has increased dramatically. One of the reasons for the popularity of the photoacoustic and photothermal field is the wide applicability of these techniques for fundamental and applied research. At this moment, the field has become really multidisciplinary and it is safe to say that it has reached a mature state with an established position in measurement technology and materials characterization. This conference as well as the ones before reflected this large diversity in the program topics and the research disciplines of the participants. This 15th International Conference on Photoacoustic and Photothermal Phenomena was held on a campus of the Catholic University of Leuven in Belgium in the week of 19-23 July 2009. During the conference 15 tutorial lectures, 8 plenary lectures, 36 invited talks, 120 oral and 172 poster communications were presented. The conference was attended by 252 participants from 38 countries from all over the world. During a special session award lectures were presented by winners of the prizes of the International Photoacoustic and Photothermal Association (IPPA). Winners of the senior prize were A Mandelis, D Fournier and A C Boccara. The winner of the junior prize was T W Murray. The editors of the proceedings of this conference

  2. Dynamic quantitative photothermal monitoring of cell death of individual human red blood cells upon glucose depletion

    NASA Astrophysics Data System (ADS)

    Vasudevan, Srivathsan; Chen, George Chung Kit; Andika, Marta; Agarwal, Shuchi; Chen, Peng; Olivo, Malini

    2010-09-01

    Red blood cells (RBCs) have been found to undergo ``programmed cell death,'' or eryptosis, and understanding this process can provide more information about apoptosis of nucleated cells. Photothermal (PT) response, a label-free photothermal noninvasive technique, is proposed as a tool to monitor the cell death process of living human RBCs upon glucose depletion. Since the physiological status of the dying cells is highly sensitive to photothermal parameters (e.g., thermal diffusivity, absorption, etc.), we applied linear PT response to continuously monitor the death mechanism of RBC when depleted of glucose. The kinetics of the assay where the cell's PT response transforms from linear to nonlinear regime is reported. In addition, quantitative monitoring was performed by extracting the relevant photothermal parameters from the PT response. Twofold increases in thermal diffusivity and size reduction were found in the linear PT response during cell death. Our results reveal that photothermal parameters change earlier than phosphatidylserine externalization (used for fluorescent studies), allowing us to detect the initial stage of eryptosis in a quantitative manner. Hence, the proposed tool, in addition to detection of eryptosis earlier than fluorescence, could also reveal physiological status of the cells through quantitative photothermal parameter extraction.

  3. Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer.

    PubMed

    Fazal, Sajid; Jayasree, Aswathy; Sasidharan, Sisini; Koyakutty, Manzoor; Nair, Shantikumar V; Menon, Deepthy

    2014-06-11

    Nanoparticles of varying composition, size, shape, and architecture have been explored for use as photothermal agents in the field of cancer nanomedicine. Among them, gold nanoparticles provide a simple platform for thermal ablation owing to its biocompatibility in vivo. However, the synthesis of such gold nanoparticles exhibiting suitable properties for photothermal activity involves cumbersome routes using toxic chemicals as capping agents, which can cause concerns in vivo. Herein, gold nanoparticles, synthesized using green chemistry routes possessing near-infrared (NIR) absorbance facilitating photothermal therapy, would be a viable alternative. In this study, anisotropic gold nanoparticles were synthesized using an aqueous route with cocoa extract which served both as a reducing and stabilizing agent. The as-prepared gold nanoparticles were subjected to density gradient centrifugation to maximize its NIR absorption in the wavelength range of 800-1000 nm. The particles also showed good biocompatibility when tested in vitro using A431, MDA-MB231, L929, and NIH-3T3 cell lines up to concentrations of 200 μg/mL. Cell death induced in epidermoid carcinoma A431 cells upon irradiation with a femtosecond laser at 800 nm at a low power density of 6 W/cm(2) proved the suitability of green synthesized NIR absorbing anisotropic gold nanoparticles for photothermal ablation of cancer cells. These gold nanoparticles also showed good X-ray contrast when tested using computed tomography (CT), proving their feasibility for use as a contrast agent as well. This is the first report on green synthesized anisotropic and cytocompatible gold nanoparticles without any capping agents and their suitability for photothermal therapy.

  4. Photo-thermal modulation of surface plasmon polariton propagation at telecommunication wavelengths.

    PubMed

    Kaya, S; Weeber, J-C; Zacharatos, F; Hassan, K; Bernardin, T; Cluzel, B; Fatome, J; Finot, C

    2013-09-23

    We report on photo-thermal modulation of thin film surface plasmon polaritons (SPP) excited at telecom wavelengths and traveling at a gold/air interface. By operating a modulated continuous-wave or a Q-switched nanosecond pump laser, we investigate the photo-thermally induced modulation of SPP propagation mediated by the temperature-dependent ohmic losses in the gold film. We use a fiber-to-fiber characterization set-up to measure accurately the modulation depth of the SPP signal under photo-thermal excitation. On the basis of these measurements, we extract the thermo-plasmonic coefficient of the SPP mode defined as the temperature derivative of the SPP damping constant. Next, we introduce a figure of merit which is relevant to characterize the impact of temperature onto the properties of bounded or weakly leaky SPP modes supported by a given metal at a given wavelength. By combining our measurements with tabulated values of the temperature-dependent imaginary part of gold dielectric function, we compute the thermo-optical coefficients (TOC) of gold at telecom wavelengths. Finally, we investigate a pulsed photo-thermal excitation of the SPP in the nanosecond regime. The experimental SPP depth of modulation obtained in this situation are found to be in fair agreement with the modulation depths computed by using our values of gold TOC.

  5. Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells.

    PubMed

    Manikandan, M; Hasan, Nazim; Wu, Hui-Fen

    2013-07-01

    This study demonstrates the effective synthesis of five different sized/shaped Pt NPs, within a narrow size regime of 1-21 nm using a modified methodology and the toxicity/biocompatibility of Pt NPs on Neuro 2A cancer cells was investigated elaborately by using light microscopic observations, tryphan blue exclusion assay, MTT assay and ICP-MS. The Pt NPs-C with sizes 5-6 nm showed superior non-cytotoxic property compared to the other four Pt NPs. These non-cytotoxic Pt NPs were employed for successful photothermal treatment of Neuro 2A cell lines using near-IR 1064 nm of laser irradiation. The Pt NPs-C could generate a 9 °C increase in temperature leading to effective photothermal killing of cancer cells. The MALDI-MS was used to prove the possibility of apoptosis related triggering of cell death in the presence of the Pt NPs. The results confirm that the current approach is an effective platform for in vivo treatment of neuro cancer cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Analysis of Photothermal Characterization of Layered Materials: Design of Optimal Experiments

    NASA Technical Reports Server (NTRS)

    Cole, Kevin D.

    2003-01-01

    In this paper numerical calculations are presented for the steady-periodic temperature in layered materials and functionally-graded materials to simulate photothermal methods for the measurement of thermal properties. No laboratory experiments were performed. The temperature is found from a new Green s function formulation which is particularly well-suited to machine calculation. The simulation method is verified by comparison with literature data for a layered material. The method is applied to a class of two-component functionally-graded materials and results for temperature and sensitivity coefficients are presented. An optimality criterion, based on the sensitivity coefficients, is used for choosing what experimental conditions will be needed for photothermal measurements to determine the spatial distribution of thermal properties. This method for optimal experiment design is completely general and may be applied to any photothermal technique and to any functionally-graded material.

  7. Na0.3WO3 nanorods: a multifunctional agent for in vivo dual-model imaging and photothermal therapy of cancer cells.

    PubMed

    Zhang, Yuxin; Li, Bo; Cao, Yunjiu; Qin, Jinbao; Peng, Zhiyou; Xiao, Zhiyin; Huang, Xiaojuan; Zou, Rujia; Hu, Junqing

    2015-02-14

    The combination of imaging diagnosis and photothermal ablation (PTA) therapy has become a potential treatment for cancer. In particular, tungsten bronzes have a number of unique properties such as broad near-infrared (NIR) absorption and a large X-ray attenuation coefficient. However, these materials have seldom been reported as an X-ray computed tomography (CT) contrast agent and a photothermal agent. Herein, we synthesized PEGylated Na(0.3)WO(3) nanorods (mean size ∼39 nm × 5 nm) by a simple one-pot solvothermal route. As we expected, the prepared PEGylated Na(0.3)WO(3) nanorods exhibit intense NIR absorption, derived from the outer d-electron of W(5+). These PEGylated Na(0.3)WO(3) nanorods also show an excellent CT imaging effect and a high HU value of 29.95 HU g L(-1) (much higher than the figure of iopamidol (19.35 HU g L(-1))), due to the intrinsic property of tungsten of large atomic number and X-ray attenuation coefficient. Furthermore, the temperature elevation and the in vivo photothermal experiment reveal that as-synthesized Na(0.3)WO(3) nanorods could be an effective photothermal agent, as they have low toxicity, high effectiveness and good photostability.

  8. Noble metal based plasmonic nanomaterials and their application for bio-imaging and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Zhu, Dewei

    (Cu 2-xS) NCs as a template for preparing gold sulfide (Au2S) NCs and intermediate Cu2-xS-Au2S heterostructures by cation exchange. In chapter two, we demonstrate the use of Au-Cu2-xSe nano-dimers for high contrast multimodal imaging in vitro and in vivo. Their broad LSPR absorbance and scattering enables both dark-field optical imaging and photoacoustic (PA) imaging with different light sources. The clinical relevance of these new PA contrast agents was demonstrated through deep tissue visualization of a sentinel lymph node (SLN) in a rat. Imaging through layers of chicken breast tissue at total imaging depths needed for human SLN imaging was achieved. Further, the kinetics of these NCs in the rat circulatory system were monitored in vivo. A widely available and relatively low cost Nd:YAG laser source(1064 nm) was used for all PA imaging experiments, which is an additional benefit for easy commercialization and clinical translation. Thus, these unique Au-Cu2-xSe heterodimer NPs provide a promising optical contrast agent for deep tissue imaging by PAT, as well as a new material system for fundamental studies of plasmonic interactions. In chapter three, we study the potential of both Au-Cu 2-xSe NCs and multi-branched Au NCs for use in photothermal therapy (PTT). Upon illumination with a 980 nm laser beam, the Au-Cu2-xSe nanocrystals produce significant photothermal heating, exhibiting a photothermal transduction efficiency of 32%, which is comparable to that of Au nanorods and nanoparticles (10nm). The multi-branched Au NCs exhibited a photothermal transduction efficiency of 60%, significantly higher than other materials tested in this study. In vitro photothermal heating of either Au-Cu2-xSe nanocrystals or multi-branched Au nanocrystals in the presence of human cervical cancer cells caused effective cell ablation after 10 min laser irradiation at 1.34 W/cm2. Cell viability assays demonstrate that the two classes of nanocrystals are biocompatible at doses needed for

  9. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy.

    PubMed

    Huang, Peng; Lin, Jing; Li, Wanwan; Rong, Pengfei; Wang, Zhe; Wang, Shouju; Wang, Xiaoping; Sun, Xiaolian; Aronova, Maria; Niu, Gang; Leapman, Richard D; Nie, Zhihong; Chen, Xiaoyuan

    2013-12-23

    The hierarchical assembly of gold nanoparticles (GNPs) allows the localized surface plasmon resonance peaks to be engineered to the near-infrared (NIR) region for enhanced photothermal therapy (PTT). Herein we report a novel theranostic platform based on biodegradable plasmonic gold nanovesicles for photoacoustic (PA) imaging and PTT. The disulfide bond at the terminus of a PEG-b-PCL block-copolymer graft enables dense packing of GNPs during the assembly process and induces ultrastrong plasmonic coupling between adjacent GNPs. The strong NIR absorption induced by plasmon coupling and very high photothermal conversion efficiency (η=37%) enable simultaneous thermal/PA imaging and enhanced PTT efficacy with improved clearance of the dissociated particles after the completion of PTT. The assembly of various nanocrystals with tailored optical, magnetic, and electronic properties into vesicle architectures opens new possibilities for the construction of multifunctional biodegradable platforms for biomedical applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Photothermal gold nanoparticle mediated stimulation of cardiomyocyte beating (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kalies, Stefan; Gentemann, Lara; Coffee, Michelle; Zweigerdt, Robert; Heinemann, Dag; Heisterkamp, Alexander

    2017-03-01

    Photothermal manipulation of cells via heating of gold nanoparticles has proven to be an efficient tool for molecular delivery into cells via cell perforation with short laser pulses. We investigated a potential extension of this technique for cell stimulation of cardiomyocytes using a 532 nm and 850 ps laser system and a surface concentration of 0.5 μg/cm2 of 200 nm gold nanoparticles. The gold nanoparticles were unspecifically attached to the cardiomyocytes after an incubation period of three hours. The laser irradiation leads to a temperature rise directly at the particles of several hundred degrees K which evokes bubble formation and membrane perforation. We examined the effect of laser based photothermal manipulation at different laser powers, with different calcium concentrations, and for a cardiomyocyte-like cell line (HL1 cells), neonatal rat cardiomyocytes and human embryonic stem cell (hESC)-derived cardiomyocytes. Fast calcium oscillations in HL1 cells were observed in the presence and absence of extracellular calcium and most pronounced in the area next to the laser spot after irradiation. Within the laser spot, in particular high laser powers led to a single rise in calcium over a time period of several seconds. These results were confirmed in stem cell-derived cardiomyocytes. In the presence of normal and high calcium concentrations, the spontaneous contraction frequency increased after laser irradiation in neonatal rat cardiomyocytes. Consequently, gold nanoparticle mediated photothermal cell manipulation via pulsed lasers may serve as a potential pacemaker-technique in regenerative approaches, next to optogenetics.

  11. Photothermal damage is correlated to the delivery rate of time-integrated temperature

    NASA Astrophysics Data System (ADS)

    Denton, Michael L.; Noojin, Gary D.; Gamboa, B. Giovanna; Ahmed, Elharith M.; Rockwell, Benjamin A.

    2016-03-01

    Photothermal damage rate processes in biological tissues are usually characterized by a kinetics approach. This stems from experimental data that show how the transformation of a specified biological property of cells or biomolecule (plating efficiency for viability, change in birefringence, tensile strength, etc.) is dependent upon both time and temperature. However, kinetic methods require determination of kinetic rate constants and knowledge of substrate or product concentrations during the reaction. To better understand photothermal damage processes we have identified temperature histories of cultured retinal cells receiving minimum lethal thermal doses for a variety of laser and culture parameters. These "threshold" temperature histories are of interest because they inherently contain information regarding the fundamental thermal dose requirements for damage in individual cells. We introduce the notion of time-integrated temperature (Tint) as an accumulated thermal dose (ATD) with units of °C s. Damaging photothermal exposure raises the rate of ATD accumulation from that of the ambient (e.g. 37 °C) to one that correlates with cell death (e.g. 52 °C). The degree of rapid increase in ATD (ΔATD) during photothermal exposure depends strongly on the laser exposure duration and the ambient temperature.

  12. Broadband absorption and enhanced photothermal conversion property of octopod-like Ag@Ag2S core@shell structures with gradually varying shell thickness.

    PubMed

    Jiang, Qian; Zeng, Wenxia; Zhang, Canying; Meng, Zhaoguo; Wu, Jiawei; Zhu, Qunzhi; Wu, Daxiong; Zhu, Haitao

    2017-12-19

    Photothermal conversion materials have promising applications in many fields and therefore they have attracted tremendous attention. However, the multi-functionalization of a single nanostructure to meet the requirements of multiple photothermal applications is still a challenge. The difficulty is that most nanostructures have specific absoprtion band and are not flexible to different demands. In the current work, we reported the synthesis and multi-band photothermal conversion of Ag@Ag 2 S core@shell structures with gradually varying shell thickness. We synthesized the core@shell structures through the sulfidation of Ag nanocubes by taking the advantage of their spatially different reactivity. The resulting core@shell structures show an octopod-like mopgorlogy with a Ag 2 S bulge sitting at each corner of the Ag nanocubes. The thickness of the Ag 2 S shell gradually increases from the central surface towards the corners of the structure. The synthesized core@shell structures show a broad band absorption spectrum from 300 to 1100 nm. Enhanced photothermal conversion effect is observed under the illuminations of 635, 808, and 1064 nm lasers. The results indicate that the octopod-like Ag@Ag 2 S core@shell structures have characteristics of multi-band photothermal conversion. The current work might provide a guidance for the design and synthesis of multifunctional photothermal conversion materials.

  13. Photothermal-triggered control of sub-cellular drug accumulation using doxorubicin-loaded single-walled carbon nanotubes for the effective killing of human breast cancer cells

    NASA Astrophysics Data System (ADS)

    Oh, Yunok; Jin, Jun-O.; Oh, Junghwan

    2017-03-01

    Single-walled carbon nanotubes (SWNTs) are often the subject of investigation as effective photothermal therapy (PTT) agents owing to their unique strong optical absorption. Doxorubicin (DOX)-loaded SWNTs (SWNTs-DOX) can be used as an efficient therapeutic agent for combined near infrared (NIR) cancer photothermal and chemotherapy. However, SWNTs-DOX-mediated induction of cancer cell death has not been fully investigated, particularly the reaction of DOX inside cancer cells by PTT. In this study, we examined how the SWNTs-DOX promoted effective MDA-MB-231 cell death compared to DOX and PTT alone. We successfully synthesized the SWNTs-DOX. The SWNTs-DOX exhibited a slow DOX release, which was accelerated by NIR irradiation. Furthermore, DOX released from the SWNTs-DOX accumulated inside the cells at high concentration and effectively localized into the MDA-MB-231 cell nucleus. A combination of SWNTs-DOX and PTT promoted an effective MDA-MB-231 cell death by mitochondrial disruption and ROS generation. Thus, SWNTs-DOX can be utilized as an excellent anticancer agent for early breast cancer treatment.

  14. Improving drug accumulation and photothermal efficacy in tumor depending on size of ICG loaded lipid-polymer nanoparticles.

    PubMed

    Zhao, Pengfei; Zheng, Mingbin; Yue, Caixia; Luo, Zhenyu; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Cai, Lintao

    2014-07-01

    A key challenge to strengthen anti-tumor efficacy is to improve drug accumulation in tumors through size control. To explore the biodistribution and tumor accumulation of nanoparticles, we developed indocyanine green (ICG) loaded poly (lactic-co-glycolic acid) (PLGA) -lecithin-polyethylene glycol (PEG) core-shell nanoparticles (INPs) with 39 nm, 68 nm and 116 nm via single-step nanoprecipitation. These INPs exhibited good monodispersity, excellent fluorescence and size stability, and enhanced temperature response after laser irradiation. Through cell uptake and photothermal efficiency in vitro, we demonstrated that 39 nm INPs were more easily be absorbed by pancreatic carcinoma tumor cells (BxPC-3) and showed better photothermal damage than that of 68 nm and 116 nm size of INPs. Simultaneously, the fluorescence of INPs offered a real-time imaging monitor for subcellular locating and in vivo metabolic distribution. Near-infrared imaging in vivo and photothermal therapy illustrated that 68 nm INPs showed the strongest efficiency to suppress tumor growth due to abundant accumulation in BxPC-3 xenograft tumor model. The findings revealed that a nontoxic, size-dependent, theranostic INPs model was built for in vivo cancer imaging and photothermal therapy without adverse effect. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Photothermal nanoparticles as molecular specificity agents in interferometric phase microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shaked, Natan T.

    2017-02-01

    I review our latest advances in wide-field interferometric imaging of biological cells with molecular specificity, obtained by time-modulated photothermal excitation of gold nanoparticles. Heat emitted from the nanoparticles affects the measured phase signal via both the nanoparticle surrounding refractive-index and thickness changes. These nanoparticles can be bio-functionalized to bind certain biological cell components; thus, they can be used for biomedical imaging with molecular specificity, as new nanoscopy labels, and for photothermal therapy. Predicting the ideal nanoparticle parameters requires a model that computes the thermal and phase distributions around the particle, enabling more efficient phase imaging of plasmonic nanoparticles, and sparing trial and error experiments of using unsuitable nanoparticles. We thus developed a new model for predicting phase signatures from photothermal nanoparticles with arbitrary parameters. We also present a dual-modality technique based on wide-field photothermal interferometric phase imaging and simultaneous ablation to selectively deplete specific cell populations labelled by plasmonic nanoparticles. We experimentally demonstrated our ability to detect and specifically ablate in vitro cancer cells over-expressing epidermal growth factor receptors (EGFRs), labelled with plasmonic nanoparticles, in the presence of either EGFR under-expressing cancer cells or white blood cells. This demonstration established an initial model for depletion of circulating tumour cells in blood. The proposed system is able to image in wide field the label-free quantitative phase profile together with the photothermal phase profile of the sample, and provides the ability of both detection and ablation of chosen cells after their selective imaging.

  16. Facile Preparation of Doxorubicin-Loaded and Folic Acid-Conjugated Carbon Nanotubes@Poly(N-vinyl pyrrole) for Targeted Synergistic Chemo-Photothermal Cancer Treatment.

    PubMed

    Wang, Daquan; Ren, Yibo; Shao, Yongping; Yu, Demei; Meng, Lingjie

    2017-11-15

    We developed a bifunctional nanoplatform for targeted synergistic chemo-photothermal cancer treatment. The nanoplatform was constructed through a facile method in which poly(N-vinyl pyrrole) (PVPy) was coated on cut multiwalled carbon nanotubes (c-MWNTs); FA-PEG-SH was then linked by thiol-ene click reaction to improve the active targeting ability, water dispersibility, and biocompatibility and to extend the circulation time in blood. The PVPy shell not only enhanced the photothermal effect of c-MWNTs significantly but also provided a surface that could tailor targeting molecules and drugs. The resulting MWNT@PVPy-S-PEG-FA possessed high drug-loading ratio as well as pH-sensitive unloading capacity for a broad-spectrum anticancer agent, doxorubicin. Owing to its outstanding efficiency in photothermal conversion and ability in targeted drug delivery, the material could potentially be used as an efficient chemo-photothermal therapeutic nanoagent to treat cancer.

  17. Microbubble-assisted optofluidic control using a photothermal waveguide

    NASA Astrophysics Data System (ADS)

    Cheng, YuPeng; Yang, JianXin; Li, ZongBao; Zhu, DeBin; Cai, Xiang; Hu, Xiaowen; Huang, Wen; Xing, XiaoBo

    2017-10-01

    A convenient and easily controllable microfluidic system was proposed based on a photothermal device. Here, graphene oxide was assembled on an optical waveguide, which could serve as a miniature heat source to generate a microbubble and to control dynamic behaviors of flow by adjusting optical power at the micrometer scale. Micro/nanoparticles were used to demonstrate the trace of fluid flow around the microbubble, which displayed the ability of the flow to capture, transmit, and rotate particles in thermal convection. Correspondingly, three-dimensional theoretical simulation combining thermodynamics with hydrodynamics analyzed the distribution of the velocity field induced by the microbubble for collection and driving of particles. Furthermore, the photothermal waveguide would be developed into a microbubble-based device in the manipulation or transmission of micro/nanoparticles.

  18. Enhanced Radiotherapy using Bismuth Sulfide Nanoagents Combined with Photo-thermal Treatment.

    PubMed

    Cheng, Xiaju; Yong, Yuan; Dai, Yiheng; Song, Xin; Yang, Gang; Pan, Yue; Ge, Cuicui

    2017-01-01

    Nanotechniques that can improve the effectiveness of radiotherapy (RT) by integrating it with multimodal imaging are highly desirable. Results In this study, we fabricated Bi 2 S 3 nanorods that have attractive features such as their ability to function as contrast agents for X-ray computed tomography (CT) and photoacoustic (PA) imaging as well as good biocompatibility. Both in vitro and in vivo studies confirmed that the Bi 2 S 3 nanoagents could potentiate the lethal effects of radiation via amplifying the local radiation dose and enhancing the anti-tumor efficacy of RT by augmenting the photo-thermal effect. Furthermore, the nanoagent-mediated hyperthermia could effectively increase the oxygen concentration in hypoxic regions thereby inhibiting the expression of hypoxia-inducible factor ( HIF -1α). This, in turn, interfered with DNA repair via decreasing the expression of DNA repair-related proteins to overcome radio-resistance. Also, RT combined with nanoagent-mediated hyperthermia could substantially suppress tumor metastasis via down-regulating angiogenic factors. Conclusion In summary, we constructed a single-component powerful nanoagent for CT/PA imaging-guided tumor radiotherapy and, most importantly, explored the potential mechanisms of nanoagent-mediated photo-thermal treatment for enhancing the efficacy of RT in a synergistic manner.

  19. White light photothermal lens spectrophotometer for the determination of absorption in scattering samples.

    PubMed

    Marcano, Aristides; Alvarado, Salvador; Meng, Junwei; Caballero, Daniel; Moares, Ernesto Marín; Edziah, Raymond

    2014-01-01

    We developed a pump-probe photothermal lens spectrophotometer that uses a broadband arc-lamp and a set of interference filters to provide tunable, nearly monochromatic radiation between 370 and 730 nm as the pump light source. This light is focused onto an absorbing sample, generating a photothermal lens of millimeter dimensions. A highly collimated monochromatic probe light from a low-power He-Ne laser interrogates the generated lens, yielding a photothermal signal proportional to the absorption of light. We measure the absorption spectra of scattering dye solutions using the device. We show that the spectra are not affected by the presence of scattering, confirming that the method only measures the absorption of light that results in generation of heat. By comparing the photothermal spectra with the usual absorption spectra determined using commercial transmission spectrophotometers, we estimate the quantum yield of scattering of the sample. We discuss applications of the device for spectroscopic characterization of samples such as blood and gold nanoparticles that exhibit a complex behavior upon interaction with light.

  20. Thermo-elastic wave model of the photothermal and photoacoustic signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meja, P.; Steiger, B.; Delsanto, P.P.

    1996-12-31

    By means of the thermo-elastic wave equation the dynamical propagation of mechanical stress and temperature can be described and applied to model the photothermal and photoacoustic signal. Analytical solutions exist only in particular cases. Using massively parallel computers it is possible to simulate the photothermal and photoacoustic signal in a most sufficient way. In this paper the method of local interaction simulation approach (LISA) is presented and selected examples of its application are given. The advantages of this method, which is particularly suitable for parallel processing, consist in reduced computation time and simple description of the photoacoustic signal in opticalmore » materials. The present contribution introduces the authors model, the formalism and some results in the 1 D case for homogeneous nonattenuative materials. The photoacoustic wave can be understood as a wave with locally limited displacement. This displacement corresponds to a temperature variation. Both variables are usually measured in photoacoustics and photothermal measurements. Therefore the temperature and displacement dependence on optical, elastic and thermal constants is analysed.« less

  1. Photothermal measurements of high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Fanton, J. T.; Mitzi, D. B.; Kapitulnik, A.; Khuri-Yakub, B. T.; Kino, G. S.; Gazit, D.; Feigelson, R. S.

    1989-08-01

    We demonstrate a photothermal method for making point measurements of the thermal conductivities of high Tc superconductors. Images made at room temperature on polycrystalline materials show the thermal inhomogeneities. Measurements on single-crystal Bi2Sr2CaCu2Ox compounds reveal a very large anisotropy of about 7:1 in the thermal conductivity.

  2. Molecularly-Targeted Gold-Based Nanoparticles for Cancer Imaging and Near-Infrared Photothermal Therapy

    NASA Astrophysics Data System (ADS)

    Day, Emily Shannon

    2011-12-01

    better mimic the clinical setting. These tumors are highly vascularized, so nanoparticles were addressed toward receptors abundantly expressed on tumor vessels using growth factors as a novel targeting strategy. Photothermal therapy with these vascular-targeted nanoparticles disrupted tumor vessels, leading to a 2.2-fold prolongation of median survival versus control mice. This work confirms that nanoparticle surface coating can affect biodistribution and therapeutic efficacy. With continued optimization of molecular targeting strategies, imaging and photothermal therapy mediated by nanoshells and gold-gold sulfide nanoparticles may offer an effective alternative to conventional cancer management.

  3. Photothermal heating and cooling of nanostructures.

    PubMed

    Crane, Matthew Joseph; Zhou, Xuezhe; Davis, E James; Pauzauskie, Peter

    2018-06-11

    A vast range of insulating, semiconducting, and metallic nanomaterials have been studied over the past several decades with the aim of understanding how continuous-wave or pulsed laser radiation can influence their chemical functionality and local environment. Many fascinating observations have been made during laser irradiation including, but not limited to, the superheating of solvents, mass-transport-mediated morphology evolution, photodynamic therapy, morphology dependent resonances, and a range of phase transformations. In addition to laser heating, recent experiments have demonstrated the laser cooling of nanoscale materials through the emission of upconverted, anti-Stokes photons by trivalent rare-earth ions. This focus review outlines the analytical modeling of photothermal heat transport with an emphasis on the experimental validation of anti-Stokes laser cooling. This general methodology can be applied to a wide range of photothermal applications, including nanomedicine, photocatalysis, and the synthesis of new materials. The review concludes with an overview of recent advances and future directions for anti-Stokes cooling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nonlinear Midinfrared Photothermal Spectroscopy Using Zharov Splitting and Quantum Cascade Lasers.

    PubMed

    Mertiri, Alket; Altug, Hatice; Hong, Mi K; Mehta, Pankaj; Mertz, Jerome; Ziegler, Lawrence D; Erramilli, Shyamsunder

    2014-08-20

    We report on the mid-infrared nonlinear photothermal spectrum of the neat liquid crystal 4-octyl-4'-cyanobiphenyl (8CB) using a tunable Quantum Cascade Laser (QCL). The nonequilibrium steady state characterized by the nonlinear photothermal infrared response undergoes a supercritical bifurcation. The bifurcation, observed in heterodyne two-color pump-probe detection, leads to ultrasharp nonlinear infrared spectra similar to those reported in the visible region. A systematic study of the peak splitting as a function of absorbed infrared power shows the bifurcation has a critical exponent of 0.5. The observation of an apparently universal critical exponent in a nonequilibrium state is explained using an analytical model analogous of mean field theory. Apart from the intrinsic interest for nonequilibrium studies, nonlinear photothermal methods lead to a dramatic narrowing of spectral lines, giving rise to a potential new contrast mechanism for the rapidly emerging new field of mid-infrared microspectroscopy using QCLs.

  5. Nonlinear Midinfrared Photothermal Spectroscopy Using Zharov Splitting and Quantum Cascade Lasers

    PubMed Central

    2015-01-01

    We report on the mid-infrared nonlinear photothermal spectrum of the neat liquid crystal 4-octyl-4′-cyanobiphenyl (8CB) using a tunable Quantum Cascade Laser (QCL). The nonequilibrium steady state characterized by the nonlinear photothermal infrared response undergoes a supercritical bifurcation. The bifurcation, observed in heterodyne two-color pump–probe detection, leads to ultrasharp nonlinear infrared spectra similar to those reported in the visible region. A systematic study of the peak splitting as a function of absorbed infrared power shows the bifurcation has a critical exponent of 0.5. The observation of an apparently universal critical exponent in a nonequilibrium state is explained using an analytical model analogous of mean field theory. Apart from the intrinsic interest for nonequilibrium studies, nonlinear photothermal methods lead to a dramatic narrowing of spectral lines, giving rise to a potential new contrast mechanism for the rapidly emerging new field of mid-infrared microspectroscopy using QCLs. PMID:25541620

  6. Photothermal therapy combined with dinitrophenyl hapten for the treatment of late stage malignant melanoma

    NASA Astrophysics Data System (ADS)

    Li, Xiaosong; Du, Nan; Li, Haijun; Long, Shan; Chen, Dianjun; Zhou, Feifan; Xu, Yuanyuan; Wang, Fuli; Chen, Wei R.

    2017-02-01

    To evaluate the efficacy and safety of photothermal with dinitrophenyl hapten (DNP) for patients with malignant melanoma (MM), Patients with pathology confirmed stage III or IV MM were enrolled. Seventy-two patients were randomized into two groups, DNP alone group (n=36) and DNP plus photothermal therapy group (n=36). The results showed that the patients in the combination treatment group had longer median progression-free survival time (19.0m vs. 12.0m, p=0.007). No severe adverse events were observed in both groups. Thus, the combination of photothermal therapy and DNP maybe a new therapeutic strategy for patients with advanced MM.

  7. Strategies to Improve Cancer Photothermal Therapy Mediated by Nanomaterials.

    PubMed

    de Melo-Diogo, Duarte; Pais-Silva, Cleide; Dias, Diana R; Moreira, André F; Correia, Ilídio J

    2017-05-01

    The deployment of hyperthermia-based treatments for cancer therapy has captured the attention of different researchers worldwide. In particular, the application of light-responsive nanomaterials to mediate hyperthermia has revealed promising results in several pre-clinical assays. Unlike conventional therapies, these nanostructures can display a preferential tumor accumulation and thus mediate, upon irradiation with near-infrared light, a selective hyperthermic effect with temporal resolution. Different types of nanomaterials such as those based on gold, carbon, copper, molybdenum, tungsten, iron, palladium and conjugated polymers have been used for this photothermal modality. This progress report summarizes the different strategies that have been applied so far for increasing the efficacy of the photothermal therapeutic effect mediated by nanomaterials, namely those that improve the accumulation of nanomaterials in tumors (e.g. by changing the corona composition or through the functionalization with targeting ligands), increase nanomaterials' intrinsic capacity to generate photoinduced heat (e.g. by synthesizing new nanomaterials or assembling nanostructures) or by optimizing the parameters related to the laser light used in the irradiation process (e.g. by modulating the radiation wavelength). Overall, the development of new strategies or the optimization and combination of the existing ones will surely give a major contribution for the application of nanomaterials in cancer PTT. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents

    PubMed Central

    Kim, Jin-Woo; Galanzha, Ekaterina I.; Shashkov, Evgeny V.; Moon, Hyung-Mo; Zharov, Vladimir P.

    2012-01-01

    Carbon nanotubes have shown promise as contrast agents for photoacoustic and photothermal imaging of tumours and infections because they offer high resolution and allow deep tissue imaging. However, in vivo applications have been limited by the relatively low absorption displayed by nanotubes at near-infrared wavelengths and concerns over toxicity. Here, we show that gold-plated carbon nanotubes—termed golden carbon nanotubes—can be used as photoacoustic and photothermal contrast agents with enhanced near-infrared contrast (~102-fold) for targeting lymphatic vessels in mice using extremely low laser fluence levels of a few mJ cm−2. Antibody-conjugated golden carbon nanotubes were used to map the lymphatic endothelial receptor, and preliminary in vitro viability tests show golden carbon nanotubes have minimal toxicity. This new nanomaterial could be an effective alternative to existing nanoparticles and fluorescent labels for non-invasive targeted imaging of molecular structures in vivo. PMID:19809462

  9. Vibrational mid-infrared photothermal spectroscopy using a fiber laser probe: asymptotic limit in signal-to-baseline contrast.

    PubMed

    Totachawattana, Atcha; Liu, Hui; Mertiri, Alket; Hong, Mi K; Erramilli, Shyamsunder; Sander, Michelle Y

    2016-01-01

    We report on a mid-infrared photothermal spectroscopy system with a near-infrared fiber probe laser and a tunable quantum cascade pump laser. Photothermal spectra of a 6 μm-thick 4-octyl-4'-cyanobiphenyl liquid crystal sample are measured with a signal-to-baseline contrast above 103. As both the peak photothermal signal and the corresponding baseline increase linearly with probe power, the signal-to-baseline contrast converges to an asymptotic limit for a given pump power. This limit is independent of the probe power and characterizes the best contrast achievable for the system. This enables sensitive quantitative spectral characterization of linear infrared absorption features directly from photothermal spectroscopy measurements.

  10. Dual-enhanced photothermal conversion properties of reduced graphene oxide-coated gold superparticles for light-triggered acoustic and thermal theranostics

    NASA Astrophysics Data System (ADS)

    Lin, Li-Sen; Yang, Xiangyu; Niu, Gang; Song, Jibin; Yang, Huang-Hao; Chen, Xiaoyuan

    2016-01-01

    A rational design of highly efficient photothermal agents that possess excellent light-to-heat conversion properties is a fascinating topic in nanotheranostics. Herein, we present a facile route to fabricate size-tunable reduced graphene oxide (rGO)-coated gold superparticles (rGO-GSPs) and demonstrate their dual-enhanced photothermal conversion properties for photoacoustic imaging and photothermal therapy. For the first time, graphene oxide (GO) was directly used as an emulsifying agent for the preparation of gold superparticles (GSPs) with near-infrared absorption by the emulsion method. Moreover, GO spontaneously deposited on the surface of GSPs could also act as the precursor of the rGO shell. Importantly, both the plasmonic coupling of the self-assembled gold nanoparticles and the interaction between GSPs and rGO endow rGO-GSPs with enhanced photothermal conversion properties, allowing rGO-GSPs to be used for sensitive photoacoustic detection and efficient photothermal ablation of tumours in vivo. This study provides a facile approach to prepare colloidal superparticles-graphene hybrid nanostructures and will pave the way toward the design and optimization of photothermal nanomaterials with improved properties for theranostic applications.A rational design of highly efficient photothermal agents that possess excellent light-to-heat conversion properties is a fascinating topic in nanotheranostics. Herein, we present a facile route to fabricate size-tunable reduced graphene oxide (rGO)-coated gold superparticles (rGO-GSPs) and demonstrate their dual-enhanced photothermal conversion properties for photoacoustic imaging and photothermal therapy. For the first time, graphene oxide (GO) was directly used as an emulsifying agent for the preparation of gold superparticles (GSPs) with near-infrared absorption by the emulsion method. Moreover, GO spontaneously deposited on the surface of GSPs could also act as the precursor of the rGO shell. Importantly, both the

  11. Multifunctional gold coated thermo-sensitive liposomes for multimodal imaging and photo-thermal therapy of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Rengan, Aravind Kumar; Jagtap, Madhura; de, Abhijit; Banerjee, Rinti; Srivastava, Rohit

    2013-12-01

    Plasmon resonant gold nanoparticles of various sizes and shapes have been extensively researched for their applications in imaging, drug delivery and photothermal therapy (PTT). However, their ability to degrade after performing the required function is essential for their application in healthcare. When combined with biodegradable liposomes, they appear to have better degradation capabilities. They degrade into smaller particles of around 5 nm that are eligible candidates for renal clearance. Distearoyl phosphatidyl choline : cholesterol (DSPC : CHOL, 8 : 2 wt%) liposomes have been synthesized and coated with gold by in situ reduction of chloro-auric acid. These particles of size 150-200 nm are analyzed for their stability, degradation capacity, model drug-release profile, biocompatibility and photothermal effects on cancer cells. It is observed that when these particles are subjected to low power continuous wave near infra-red (NIR) laser for more than 10 min, they degrade into small gold nanoparticles of size 5 nm. Also, the gold coated liposomes appear to have excellent biocompatibility and high efficiency to kill cancer cells through photothermal transduction. These novel materials are also useful in imaging using specific NIR dyes, thus exhibiting multifunctional properties for theranostics of cancer.Plasmon resonant gold nanoparticles of various sizes and shapes have been extensively researched for their applications in imaging, drug delivery and photothermal therapy (PTT). However, their ability to degrade after performing the required function is essential for their application in healthcare. When combined with biodegradable liposomes, they appear to have better degradation capabilities. They degrade into smaller particles of around 5 nm that are eligible candidates for renal clearance. Distearoyl phosphatidyl choline : cholesterol (DSPC : CHOL, 8 : 2 wt%) liposomes have been synthesized and coated with gold by in situ reduction of chloro-auric acid. These

  12. Tumor site-specific silencing of NF-κB p65 by targeted hollow gold nanospheres-mediated photothermal transfection

    PubMed Central

    Lu, Wei; Zhang, Guodong; Zhang, Rui; Flores, Leo G; Huang, Qian; Gelovani, Juri G; Li, Chun

    2010-01-01

    Nuclear factor-κB (NF-κB) transcription factor is a critical regulator of the expression of genes involved in tumor formation and progression. Successful RNA interference (RNAi) therapeutics targeting NF-κB is challenged by siRNA delivery systems, which can render targeted in vivo delivery, efficient endo-lysosomal escape and dynamic control over activation of RNAi. Here, we report near-infrared light-inducible NF-κB down-regulation through folate receptor-targeted hollow gold nanospheres carrying siRNA recognizing NF-κB p65 subunit. Using micro-positron emission tomography/computed tomography imaging, the targeted nanoconstructs exhibited significantly higher tumor uptake in nude mice-bearing HeLa cervical cancer xenografts than non-targeted nanoparticles following intravenous administration. Mediated by hollow gold nanospheres, controllable cytoplasmic delivery of siRNA was obtained upon near-infrared light irradiation through photothermal effect. Efficient down-regulation of NF-κB p65 was achieved only in tumors irradiated with near-infrared light, but not in non-irradiated tumors grown in the same mice. Liver, spleen, kidney, and lung were not affected by the treatments, in spite of significant uptake of the siRNA nanoparticles in these organs. We term this mode of action “photothermal transfection”. Combined treatments with p65 siRNA photothermal transfection and irinotecan caused substantially enhanced tumor apoptosis and significant tumor growth delay compared with other treatment regimens. Therefore, photothermal transfection of NF-κB p65 siRNA could effectively sensitize the tumor to chemotherapeutic agents. Because NIR light can penetrate skin and be delivered with high spatiotemporal control, therapeutic RNAi may benefit from this novel transfection strategy while avoiding unwanted side effect. PMID:20388791

  13. Multistage Targeting Strategy Using Magnetic Composite Nanoparticles for Synergism of Photothermal Therapy and Chemotherapy.

    PubMed

    Wang, Yi; Wei, Guoqing; Zhang, Xiaobin; Huang, Xuehui; Zhao, Jingya; Guo, Xing; Zhou, Shaobing

    2018-03-01

    Mitochondrial-targeting therapy is an emerging strategy for enhanced cancer treatment. In the present study, a multistage targeting strategy using doxorubicin-loaded magnetic composite nanoparticles is developed for enhanced efficacy of photothermal and chemical therapy. The nanoparticles with a core-shell-SS-shell architecture are composed of a core of Fe 3 O 4 colloidal nanocrystal clusters, an inner shell of polydopamine (PDA) functionalized with triphenylphosphonium (TPP), and an outer shell of methoxy poly(ethylene glycol) linked to the PDA by disulfide bonds. The magnetic core can increase the accumulation of nanoparticles at the tumor site for the first stage of tumor tissue targeting. After the nanoparticles enter the tumor cells, the second stage of mitochondrial targeting is realized as the mPEG shell is detached from the nanoparticles by redox responsiveness to expose the TPP. Using near-infrared light irradiation at the tumor site, a photothermal effect is generated from the PDA photosensitizer, leading to a dramatic decrease in mitochondrial membrane potential. Simultaneously, the loaded doxorubicin can rapidly enter the mitochondria and subsequently damage the mitochondrial DNA, resulting in cell apoptosis. Thus, the synergism of photothermal therapy and chemotherapy targeting the mitochondria significantly enhances the cancer treatment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Plasmonic photothermal accumulation of particles by a microfiber decorated with gold nanostructures

    NASA Astrophysics Data System (ADS)

    Li, Ying; Hu, Yanjun; Wu, Xingda

    2017-08-01

    This paper introduces an efficient method for accumulation of particles via thermophoresis and thermal convection sustained by localized surface plasmon energy. Gold nanorods were deposited on the designated surface of a microfiber, when a 808 nm laser at an optical power of 12 mV launched into the microfiber, particles dispersed in the water were massively trapped and aggregated on the substrate. This work is envisioned to have application in photothermal cancer therapy, photothermal imaging, and targeted drug delivery.

  15. Porphyrin-based Nanostructure-Dependent Photodynamic and Photothermal Therapies

    NASA Astrophysics Data System (ADS)

    Jin, Cheng S.

    This thesis presents the investigation of nanostructure-dependent phototherapy. We reviewed the liposomal structures for delivery of photosensitizers, and introduced a novel class of phototransducing liposomes called "porphysomes". Porphysomes are self-assembled from high packing density of pyropheophorbide alpha-conjugated phospholipids, resulting in extreme self-quenching of porphyrin fluorescence and comparable optical absorption to gold nanoparticles for high photothermal efficiency. We demonstrated this self-assembly of porphyrin-lipid conjugates converts a singlet oxygen generating mechanism (photodynamic therapy PDT activity) of porphyrin to photothermal mechanism (photothermal therapy PTT activity). The efficacy of porphysome-enhanced PTT was then evaluated on two pre-clinical animal models. We validated porphysome-enabled focal PTT to treat orthotopic prostate cancer using MRI-guided focal laser placement to closely mimic the current clinic procedure. Furthermore, porphysome-enabled fluorescence-guided transbronchial PTT of lung cancer was demonstrated in rabbit orthotopic lung cancer models, which led to the development of an ultra-minimally invasive therapy for early-stage peripheral lung cancer. On the other hand, the nanostructure-mediated conversion of PDT to PTT can be switched back by nanoparticle dissociation. By incorporating folate-conjugated phospholipids into the formulation, porphysomes were internalized into cells rapidly via folate receptor-mediated endocytosis and resulted in efficient disruption of nanostructures, which turned back on the photodynamic activity of densely packed porphyrins, making a closed loop of conversion between PDT and PTT. The multimodal imaging and therapeutic features of porphysome make it ideal for future personalized cancer treatments.

  16. Highly Efficient Near Infrared Photothermal Conversion Properties of Reduced Tungsten Oxide/Polyurethane Nanocomposites

    PubMed Central

    Chala, Tolesa Fita; Wu, Chang-Mou; Chou, Min-Hui; Gebeyehu, Molla Bahiru; Cheng, Kuo-Bing

    2017-01-01

    In this work, novel WO3-x/polyurethane (PU) nanocomposites were prepared by ball milling followed by stirring using a planetary mixer/de-aerator. The effects of phase transformation (WO3 → WO2.8 → WO2.72) and different weight fractions of tungsten oxide on the optical performance, photothermal conversion, and thermal properties of the prepared nanocomposites were examined. It was found that the nanocomposites exhibited strong photoabsorption in the entire near-infrared (NIR) region of 780–2500 nm and excellent photothermal conversion properties. This is because the particle size of WO3-x was greatly reduced by ball milling and they were well-dispersed in the polyurethane matrix. The higher concentration of oxygen vacancies in WO3-x contribute to the efficient absorption of NIR light and its conversion into thermal energy. In particular, WO2.72/PU nanocomposites showed strong NIR light absorption of ca. 92%, high photothermal conversion, and better thermal conductivity and absorptivity than other WO3/PU nanocomposites. Furthermore, when the nanocomposite with 7 wt % concentration of WO2.72 nanoparticles was irradiated with infrared light, the temperature of the nanocomposite increased rapidly and stabilized at 120 °C after 5 min. This temperature is 52 °C higher than that achieved by pure PU. These nanocomposites are suitable functional materials for solar collectors, smart coatings, and energy-saving applications. PMID:28737689

  17. Character of skin on photo-thermal response and its regeneration process using second-harmonic generation microscopy.

    PubMed

    Wu, Shu-lian; Li, Hui; Zhang, Xiao-man; Chen, Wei R; Wang, Yun-Xia

    2014-01-01

    Quantitative characterization of skin collagen on photo-thermal response and its regeneration process is an important but difficult task. In this study, morphology and spectrum characteristics of collagen during photo-thermal response and its light-induced remodeling process were obtained by second-harmonic generation microscope in vivo. The texture feature of collagen orientation index and fractal dimension was extracted by image processing. The aim of this study is to detect the information hidden in skin texture during the process of photo-thermal response and its regeneration. The quantitative relations between injured collagen and texture feature were established for further analysis of the injured characteristics. Our results show that it is feasible to determine the main impacts of phototherapy on the skin. It is important to understand the process of collagen remodeling after photo-thermal injuries from texture feature.

  18. Synthesis of photothermal nanocomposites and their application to antibacterial assays

    NASA Astrophysics Data System (ADS)

    Yang, Ning; Wang, Chun; Wang, Xiaoyu; Li, Lidong

    2018-04-01

    In this work, we report a novel gold nanorod (AuNR)-based nanocomposite that shows strong binding to bacterium and high antibacterial efficiency. The AuNRs were used as a photothermal material to transform near-infrared radiation (NIR) into heat. We selected poly (acrylic acid) to modify the surface of the AuNRs based on a simple self-assembly method. After conjugation of the bacterium-binding molecule vancomycin, the nanocomposites were capable of efficiently gathering on the cell walls of bacteria. The nanocomposites exhibited a high bacterial inhibition capability owing to NIR-induced heat generation in situ. Therefore, the prepared photothermal nanocomposites show great potential for use in antibacterial assays.

  19. Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor.

    PubMed

    Wang, Shige; Li, Kai; Chen, Yu; Chen, Hangrong; Ma, Ming; Feng, Jingwei; Zhao, Qinghua; Shi, Jianlin

    2015-01-01

    Two-dimensional transition metal dichalcogenides, particularly MoS2 nanosheets, have been deemed as a novel category of NIR photothermal transducing agent. Herein, an efficient and versatile one-pot solvothermal synthesis based on "bottom-up" strategy has been, for the first time, proposed for the controlled synthesis of PEGylated MoS2 nanosheets by using a novel "integrated" precursor containing both Mo and S elements. This facile but unique PEG-mediated solvothermal procedure endowed MoS2 nanosheets with controlled size, increased crystallinity and excellent colloidal stability. The photothermal performance of nanosheets was optimized via modulating the particulate size and surface PEGylation. PEGylated MoS2 nanosheets with desired photothermal conversion performance and excellent colloidal and photothermal stability were further utilized for highly efficient photothermal therapy of cancer in a tumor-bearing mouse xenograft. Without showing observable in vitro and in vivo hemolysis, coagulation and toxicity, the optimized MoS2-PEG nanosheets showed promising in vitro and in vivo anti-cancer efficacy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Estimation of optimal hologram recording modes on photothermal materials

    NASA Astrophysics Data System (ADS)

    Dzhamankyzov, Nasipbek Kurmanalievich; Ismanov, Yusupzhan Khakimzhanovich; Zhumaliev, Kubanychbek Myrzabekovich; Alymkulov, Samsaly Amanovich

    2018-01-01

    A theoretical analysis of the hologram recording process on photothermal media to estimate the required laser radiation power for the information recording as the function of the spatial frequency and radiation exposure duration is considered. Results of the analysis showed that materials with a low thermal diffusivity are necessary to increase the recording density in these media and the recording should be performed with short pulses to minimize the thermal diffusion length. A solution for the heat conduction equation for photothermal materials heated by an interference laser field was found. The solution obtained allows one to determine the required value of the recording temperature for given spatial frequencies, depending on the thermal physical parameters of the medium and on the power and duration of the heating radiation.

  1. Photothermal Activation of Metal-Organic Frameworks Using a UV-Vis Light Source.

    PubMed

    Espín, Jordi; Garzón-Tovar, Luis; Carné-Sánchez, Arnau; Imaz, Inhar; Maspoch, Daniel

    2018-03-21

    Metal-organic frameworks (MOFs) usually require meticulous removal of the solvent molecules to unlock their potential porosity. Herein, we report a novel one-step method for activating MOFs based on the photothermal effect induced by directly irradiating them with a UV-vis lamp. The localized light-to-heat conversion produced in the MOF crystals upon irradiation enables a very fast solvent removal, thereby significantly reducing the activation time to as low as 30 min and suppressing the need for time-consuming solvent-exchange procedures and vacuum conditions. This approach is successful for a broad range of MOFs, including HKUST-1, UiO-66-NH 2 , ZIF-67, CPO-27-M (M = Zn, Ni, and Mg), Fe-MIL-101-NH 2 , and IRMOF-3, all of which exhibit absorption bands in the light emission range. In addition, we anticipate that this photothermal activation can also be used to activate covalent organic frameworks (COFs).

  2. HSA/PSS coated gold nanorods as thermo-triggered drug delivery vehicles for combined cancer photothermal therapy and chemotherapy

    NASA Astrophysics Data System (ADS)

    Tu, Ting-Yu; Yang, Shu-Jyuan; Wang, Chung-Hao; Lee, Shin-Yu; Shieh, Ming-Jium

    2018-02-01

    Drug delivery systems combined multimodal therapy strategies are very promising in cancer theranostic applications. In this work, a new drug-delivery vehicles based on human serum albumin (HSA)-coated gold nanorods (GNR/PSS/HSA NPs) was developed. The success of coating was verified by transmission electron microscopy (TEM), zeta potential and fourier transform infrared spectroscopy (FTIR). Furthermore, it is demonstrated that doxorubicin (DOX) is successfully loaded among multilayered gold nanorods by the electrostatic and hydrophobic force, and DOX@GNR/PSS/HSA NPs were highly biocompatible and stable in various physiological solutions. The NPs possess strong absorbance in nearinfrared (NIR) region, and high photothermal conversion efficiency for outstanding photothermal therapy applications. A bimodal drug release triggered by proteinase or NIR irradiation has been revealed, resulting in a significant chemotherapeutic effect in tumor sites because of the preferential drug accumulation and triggered release. Importantly, the in vitro and in vivo experiments demonstrated that DOX@GNR/PSS/HSA NPs, which combined photothermal and chemotherapy for cancer therapy, revealing a remarkably superior synergistic anticancer effect over either monotherapy. All these results suggested a considerable potential of DOX@GNR/PSS/HSA NPs nano-platform for antitumor therapy.

  3. Broadband near-field infrared spectromicroscopy using photothermal probes and synchrotron radiation.

    PubMed

    Donaldson, Paul M; Kelley, Chris S; Frogley, Mark D; Filik, Jacob; Wehbe, Katia; Cinque, Gianfelice

    2016-02-08

    In this paper, we experimentally demonstrate the use of infrared synchrotron radiation (IR-SR) as a broadband source for photothermal near-field infrared spectroscopy. We assess two methods of signal transduction; cantilever resonant thermal expansion and scanning thermal microscopy. By means of rapid mechanical chopping (50-150 kHz), we modulate the IR-SR at rates matching the contact resonance frequencies of atomic force microscope (AFM) cantilevers, allowing us to record interferograms yielding Fourier transform infrared (FT-IR) photothermal absorption spectra of polystyrene and cyanoacrylate films. Complementary offline measurements using a mechanically chopped CW IR laser confirmed that the resonant thermal expansion IR-SR measurements were below the diffraction limit, with a spatial resolution better than 500 nm achieved at a wavelength of 6 μm, i.e. λ/12 for the samples studied. Despite achieving the highest signal to noise so far for a scanning thermal microscopy measurement under conditions approaching near-field (dictated by thermal diffusion), the IR-SR resonant photothermal expansion FT-IR spectra measured were significantly higher in signal to noise in comparison with the scanning thermal data.

  4. Photothermal technique in cell microscopy studies

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitry; Chebot'ko, Igor; Kutchinsky, Georgy; Cherenkevitch, Sergey

    1995-01-01

    Photothermal (PT) method is applied for a cell imaging and quantitative studies. The techniques for cell monitoring, imaging and cell viability test are developed. The method and experimental set up for optical and PT-image acquisition and analysis is described. Dual- pulsed laser set up combined with phase contrast illumination of a sample provides visualization of temperature field or absorption structure of a sample with spatial resolution 0.5 micrometers . The experimental optics, hardware and software are designed using the modular principle, so the whole set up can be adjusted for various experiments: PT-response monitoring or photothermal spectroscopy studies. Sensitivity of PT-method provides the imaging of the structural elements of live (non-stained) white blood cells. The results of experiments with normal and subnormal blood cells (red blood cells, lymphocytes, neutrophyles and lymphoblasts) are reported. Obtained PT-images are different from optical analogs and deliver additional information about cell structure. The quantitative analysis of images was used for cell population comparative diagnostic. The viability test for red blood cell differentiation is described. During the study of neutrophyles in norma and sarcoidosis disease the differences in PT-images of cells were found.

  5. Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source.

    PubMed

    Bagley, Alexander F; Hill, Samuel; Rogers, Gary S; Bhatia, Sangeeta N

    2013-09-24

    Plasmonic nanomaterials including gold nanorods are effective agents for inducing heating in tumors. Because near-infrared (NIR) light has traditionally been delivered using extracorporeal sources, most applications of plasmonic photothermal therapy have focused on isolated subcutaneous tumors. For more complex models of disease such as advanced ovarian cancer, one of the primary barriers to gold nanorod-based strategies is the adequate delivery of NIR light to tumors located at varying depths within the body. To address this limitation, a series of implanted NIR illumination sources are described for the specific heating of gold nanorod-containing tissues. Through computational modeling and ex vivo studies, a candidate device is identified and validated in a model of orthotopic ovarian cancer. As the therapeutic, imaging, and diagnostic applications of plasmonic nanomaterials progress, effective methods for NIR light delivery to challenging anatomical regions will complement ongoing efforts to advance plasmonic photothermal therapy toward clinical use.

  6. Redox-Activated Near-Infrared-Responsive Polyoxometalates Used for Photothermal Treatment of Alzheimer's Disease.

    PubMed

    Ma, Mengmeng; Gao, Nan; Sun, Yuhuan; Du, Xiubo; Ren, Jinsong; Qu, Xiaogang

    2018-06-19

    Adjustable structure, excellent physiochemical properties, and good biocompatibility render polyoxometalates (POMs) as a suitable drug agent for the treatment of Alzheimer's disease (AD). However, previous works using POMs against AD just focus on the inhibition of amyloid-β (Aβ) monomer aggregation. In consideration that both Aβ fibrils and reactive oxygen species (ROS) are closely associated with clinical development of AD symptoms, it would be more effective if POMs can disaggregate Aβ fibrils and eliminate ROS as well. Herein, a redox-activated near-infrared (NIR) responsive POMs-based nanoplaform (rPOMs@MSNs@copolymer) is developed with high photothermal effect and antioxidant activity. The rPOMs@MSNs@copolymer can generate local hyperthermia to disaggregate Aβ fibrils under NIR laser irradiation because of POMs (rPOMs) with strong NIR absorption. Furthermore, Aβ-induced ROS can be scavenged by the antioxidant activity of rPOMs. To the authors' knowledge, there is no report of using rPOMs for NIR photothermal treatment of AD. This work may promote the development of multifunctional inorganic agents for biomedical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Spatially Probed Plasmonic Photothermic Nanoheater Enhanced Hybrid Polymeric-Metallic PVDF-Ag Nanogenerator.

    PubMed

    Liow, Chi Hao; Lu, Xin; Tan, Chuan Fu; Chan, Kwok Hoe; Zeng, Kaiyang; Li, Shuzhou; Ho, Ghim Wei

    2018-02-01

    Surface plasmon-based photonics offers exciting opportunities to enable fine control of the site, span, and extent of mechanical harvesting. However, the interaction between plasmonic photothermic and piezoresponse still remains underexplored. Here, spatially localized and controllable piezoresponse of a hybrid self-polarized polymeric-metallic system that correlates to plasmonic light-to-heat modulation of the local strain is demonstrated. The piezoresponse is associated to the localized plasmons that serve as efficient nanoheaters leading to self-regulated strain via thermal expansion of the electroactive polymer. Moreover, the finite-difference time-domain simulation and linear thermal model also deduce the local strain to the surface plasmon heat absorption. The distinct plasmonic photothermic-piezoelectric phenomenon mediates not only localized external stimulus light response but also enhances dynamic piezoelectric energy harvesting. The present work highlights a promising surface plasmon coordinated piezoelectric response which underpins energy localization and transfer for diversified design of unique photothermic-piezotronic technology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Near-infrared fiber delivery systems for interstitial photothermal therapy

    NASA Astrophysics Data System (ADS)

    Slatkine, Michael; Mead, Douglass S.; Konwitz, Eli; Rosenberg, Zvi

    1995-05-01

    Interstitial photothermal coagulation has long been recognized as a potential important, minimally invasive modality for treating a variety of pathologic conditions. We present two different technologies for interstitial photothermal coagulation of tissue with infrared lasers: An optical fiber with a radially symmetric diffusing tip for deep coagulation, and a flat bare fiber for the coagulation of thin and long lesions by longitudinally moving the fiber while lasing in concert. Urology and Gynecology Fibers: The fibers are 600 microns diameter with 20 - 40 mm frosted distal tips protected by a smooth transparent cover. When used with a Neodymium:YAG (Nd:YAG) laser, the active fiber surface diffuses optical radiation in a radial pattern, delivering up to 40 W power, and thus providing consistent and uniform interstitial photothermal therapy. Coagulation depth ranges from 4 to 15 mm. Animal studies in the United States and clinical studies in Europe have demonstrated the feasibility of using these fibers to treat benign prostatic hyperplasia and endometrial coagulation. Rhinology Fiber: The fiber is an 800 micron diameter flat fiber operated at 8 W power level while being interstitially pushed and pulled along its axis. A long and thin coagulated zone is produced. The fiber is routinely used for the shrinking of hypertrophic turbinates without surrounding and bone mucusal damage in ambulatory environments.

  9. Visible and near-infrared photothermal catalyzed hydrogenation of gaseous CO 2 over nanostructured Pd@Nb 2O 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Jia; O'Brien, Paul G.; He, Le

    2016-07-05

    The reverse water gas shift (RWGS) reaction driven by Nb 2O 5 nanorod-supported Pd nanocrystals without external heating using visible and near infrared (NIR) light is demonstrated. By measuring the dependence of the RWGS reaction rates on the intensity and spectral power distribution of filtered light incident onto the nanostructured Pd@Nb 2O 5 catalyst, it is determined that the RWGS reaction is activated photothermally. That is the RWGS reaction is initiated by heat generated from thermalization of charge carriers in the Pd nanocrystals that are excited by interband and intraband absorption of visible and NIR light. Taking advantage of thismore » photothermal effect, a visible and NIR responsive Pd@Nb 2O 5 hybrid catalyst that efficiently hydrogenates CO 2 to CO at an impressive rate as high as 1.8 mmol gcat –1 h –1 is developed. The mechanism of this photothermal reaction involves H 2 dissociation on Pd nanocrystals and subsequent spillover of H to the Nb 2O 5 nanorods whereupon adsorbed CO 2 is hydrogenated to CO. Here, this work represents a significant enhancement in our understanding of the underlying mechanism of photothermally driven CO 2 reduction and will help guide the way toward the development of highly efficient catalysts that exploit the full solar spectrum to convert gas-phase CO 2 to valuable chemicals and fuels.« less

  10. Visible and Near-Infrared Photothermal Catalyzed Hydrogenation of Gaseous CO2 over Nanostructured Pd@Nb2O5.

    PubMed

    Jia, Jia; O'Brien, Paul G; He, Le; Qiao, Qiao; Fei, Teng; Reyes, Laura M; Burrow, Timothy E; Dong, Yuchan; Liao, Kristine; Varela, Maria; Pennycook, Stephen J; Hmadeh, Mohamad; Helmy, Amr S; Kherani, Nazir P; Perovic, Doug D; Ozin, Geoffrey A

    2016-10-01

    The reverse water gas shift (RWGS) reaction driven by Nb 2 O 5 nanorod-supported Pd nanocrystals without external heating using visible and near infrared (NIR) light is demonstrated. By measuring the dependence of the RWGS reaction rates on the intensity and spectral power distribution of filtered light incident onto the nanostructured Pd@Nb 2 O 5 catalyst, it is determined that the RWGS reaction is activated photothermally. That is the RWGS reaction is initiated by heat generated from thermalization of charge carriers in the Pd nanocrystals that are excited by interband and intraband absorption of visible and NIR light. Taking advantage of this photothermal effect, a visible and NIR responsive Pd@Nb 2 O 5 hybrid catalyst that efficiently hydrogenates CO 2 to CO at an impressive rate as high as 1.8 mmol gcat -1 h -1 is developed. The mechanism of this photothermal reaction involves H 2 dissociation on Pd nanocrystals and subsequent spillover of H to the Nb 2 O 5 nanorods whereupon adsorbed CO 2 is hydrogenated to CO. This work represents a significant enhancement in our understanding of the underlying mechanism of photothermally driven CO 2 reduction and will help guide the way toward the development of highly efficient catalysts that exploit the full solar spectrum to convert gas-phase CO 2 to valuable chemicals and fuels.

  11. Dual-enhanced photothermal conversion properties of reduced graphene oxide-coated gold superparticles for light-triggered acoustic and thermal theranostics†

    PubMed Central

    Lin, Li-Sen; Yang, Xiangyu; Niu, Gang

    2017-01-01

    A rational design of highly efficient photothermal agents that possess excellent light-to-heat conversion properties is a fascinating topic in nanotheranostics. Herein, we present a facile route to fabricate size-tunable reduced graphene oxide (rGO)-coated gold superparticles (rGO-GSPs) and demonstrate their dual-enhanced photothermal conversion properties for photoacoustic imaging and photothermal therapy. For the first time, graphene oxide (GO) was directly used as an emulsifying agent for the preparation of gold superparticles (GSPs) with near-infrared absorption by the emulsion method. Moreover, GO spontaneously deposited on the surface of GSPs could also act as the precursor of the rGO shell. Importantly, both the plasmonic coupling of the self-assembled gold nanoparticles and the interaction between GSPs and rGO endow rGO-GSPs with enhanced photothermal conversion properties, allowing rGO-GSPs to be used for sensitive photoacoustic detection and efficient photothermal ablation of tumours in vivo. This study provides a facile approach to prepare colloidal superparticles–graphene hybrid nanostructures and will pave the way toward the design and optimization of photothermal nanomaterials with improved properties for theranostic applications. PMID:26726809

  12. EGF Functionalized Polymer-Coated Gold Nanoparticles Promote EGF Photostability and EGFR Internalization for Photothermal Therapy

    PubMed Central

    Silva, Catarina Oliveira; Petersen, Steffen B.; Reis, Catarina Pinto; Rijo, Patrícia; Molpeceres, Jesús; Fernandes, Ana Sofia; Gonçalves, Odete; Gomes, Andreia C.; Correia, Isabel; Vorum, Henrik; Neves-Petersen, Maria Teresa

    2016-01-01

    The application of functionalized nanocarriers on photothermal therapy for cancer ablation has wide interest. The success of this application depends on the therapeutic efficiency and biocompatibility of the system, but also on the stability and biorecognition of the conjugated protein. This study aims at investigating the hypothesis that EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization, making these conjugated particles suitable for photothermal therapy. The conjugated gold nanoparticles (100–200 nm) showed a plasmon absorption band located within the near-infrared range (650–900 nm), optimal for photothermal therapy applications. The effects of temperature, of polymer-coated gold nanoparticles and of UVB light (295nm) on the fluorescence properties of EGF have been investigated with steady-state and time-resolved fluorescence spectroscopy. The fluorescence properties of EGF, including the formation of Trp and Tyr photoproducts, is modulated by temperature and by the intensity of the excitation light. The presence of polymeric-coated gold nanoparticles reduced or even avoided the formation of Trp and Tyr photoproducts when EGF is exposed to UVB light, protecting this way the structure and function of EGF. Cytotoxicity studies of conjugated nanoparticles carried out in normal-like human keratinocytes showed small, concentration dependent decreases in cell viability (0–25%). Moreover, conjugated nanoparticles could activate and induce the internalization of overexpressed Epidermal Growth Factor Receptor in human lung carcinoma cells. In conclusion, the gold nanoparticles conjugated with Epidermal Growth Factor and coated with biopolymers developed in this work, show a potential application for near infrared photothermal therapy, which may efficiently destroy solid tumours, reducing the damage of the healthy tissue. PMID:27788212

  13. [Study of blood sedimentation by photo-thermal radiometry with random excitation].

    PubMed

    Antoniow, J S; Marx, J; Egee, M; Droulle, C; Potron, G

    1994-01-01

    The erythrocyte sedimentation rate is a complex phenomena involving a large number of parameters. The rate of sedimentation is highly dependent on the haematocrit, the internal viscosity of the red cells and the viscosity of the suspending medium and its composition. The experimental conditions also have a non-negligible effect (geometry and nature of the test tube, temperature, foreign substances in the medium...). In order to respond to the need for more precise and more rapid methods of analyzing the erythrocyte sedimentation rate, we developed new physical methods allowing a real time evaluation of the phenomena involved. Several of these new photothermal methods have already been applied for non-destructive evaluation of thin or layered material (such as composite material or glued structures) both in laboratory situations and in the industry. When a material is placed in a modulated laser beam, the incident rays absorbed heat the sample. The heat then diffuses throughout the material and the surface temperature of the sample increases locally with a periodicity. The surface thus emits a modulated flow of infrared radiation. The amplitude and phase shift of the photothermal signal generated is characteristically dependent of the optic and thermal properties of the material for a given modulation frequency. The early photothermal modelling based on a two-layer model and a physico-mathematical theory of red cell sedimentation proposed by S. Oka made it possible to simulate the phenomena as they occur over time. We hypothesize that the temperature gradients created within the sample are too small to create a convection current and that the all heat transfer occurs by conduction.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Photothermal Superheating of Water with Ion-Implanted Silicon Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roder, Paden B.; Manandhar, Sandeep; Smith, Bennett E.

    2015-07-21

    Nanoparticle-mediated photothermal (PT) cancer therapy has been a major focus in nanomedicine due to its potential as an effective, non-invasive, and targeted alternative to traditional cancer therapy based on small-molecule pharmaceuticals[1,2]. Gold nanocrystals have been a primary focus of PT research[3], which can be attributed to their size tunability[4], well understood conjugation chemistry[5], and efficient absorption of NIR radiation in the tissue transparency window (800 nm – 1 μm) due to their size-dependent localized surface plasmon resonances[6].

  15. Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Liu, Teng; Wang, Chao; Cui, Wei; Gong, Hua; Liang, Chao; Shi, Xiaoze; Li, Zhiwei; Sun, Baoquan; Liu, Zhuang

    2014-09-01

    Single- or few-layered transitional metal dichalcogenides, as a new genus of two-dimensional nanomaterials, have attracted tremendous attention in recent years, owing to their various intriguing properties. In this study, chemically exfoliated MoS2 nanosheets are modified with lipoic acid-terminated polyethylene glycol (LA-PEG), obtaining PEGylated MoS2 (MoS2-PEG) with high stability in physiological solutions and no obvious toxicity. Taking advantage of its ultra-high surface area, the obtained MoS2-PEG is able to load a photodynamic agent, chlorin e6 (Ce6), by physical adsorption. In vitro experiments reveal that Ce6 after being loaded on MoS2-PEG shows remarkably increased cellular uptake and thus significantly enhanced photodynamic therapeutic efficiency. Utilizing the strong, near-infrared (NIR) absorbance of the MoS2 nanosheets, we further demonstrate photothermally enhanced photodynamic therapy using Ce6-loaded MoS2-PEG for synergistic cancer killing, in both in vitro cellular and in vivo animal experiments. Our study presents a new type of multifunctional nanocarrier for the delivery of photodynamic therapy, which, if combined with photothermal therapy, appears to be an effective therapeutic approach for cancer treatment.Single- or few-layered transitional metal dichalcogenides, as a new genus of two-dimensional nanomaterials, have attracted tremendous attention in recent years, owing to their various intriguing properties. In this study, chemically exfoliated MoS2 nanosheets are modified with lipoic acid-terminated polyethylene glycol (LA-PEG), obtaining PEGylated MoS2 (MoS2-PEG) with high stability in physiological solutions and no obvious toxicity. Taking advantage of its ultra-high surface area, the obtained MoS2-PEG is able to load a photodynamic agent, chlorin e6 (Ce6), by physical adsorption. In vitro experiments reveal that Ce6 after being loaded on MoS2-PEG shows remarkably increased cellular uptake and thus significantly enhanced photodynamic

  16. A multifunctional targeting probe with dual-mode imaging and photothermal therapy used in vivo.

    PubMed

    Zhang, Xiao-Shuai; Xuan, Yang; Yang, Xiao-Quan; Cheng, Kai; Zhang, Ruo-Yun; Li, Cheng; Tan, Fang; Cao, Yuan-Cheng; Song, Xian-Lin; An, Jie; Hou, Xiao-Lin; Zhao, Yuan-Di

    2018-04-19

    Ag 2 S has the characteristics of conventional quantum dot such as broad excitation spectrum, narrow emission spectrum, long fluorescence lifetime, strong anti-bleaching ability, and other optical properties. Moreover, since its fluorescence emission is located in the NIR-II region, has stronger penetrating ability for tissue. Ag 2 S quantum dot has strong absorption during the visible and NIR regions, it has good photothermal and photoacoustic response under certain wavelength excitation. 200 nm aqueous probe Ag 2 S@DSPE-PEG 2000 -FA (Ag 2 S@DP-FA) with good dispersibility and stability was prepared by coating hydrophobic Ag 2 S with the mixture of folic acid (FA) modified DSPE-PEG 2000 (DP) and other polymers, it was found the probe had good fluorescent, photoacoustic and photothermal responses, and a low cell cytotoxicity at 50 μg/mL Ag concentration. Blood biochemical analysis, liver enzyme and tissue histopathological test showed that no significant influence was observed on blood and organs within 15 days after injection of the probe. In vivo and in vitro fluorescence and photoacoustic imaging of the probe further demonstrated that the Ag 2 S@DP-FA probe had good active targeting ability for tumor. In vivo and in vitro photothermal therapy experiments confirmed that the probe also had good ability of killing tumor by photothermal. Ag 2 S@DP-FA was a safe, integrated diagnosis and treatment probe with multi-mode imaging, photothermal therapy and active targeting ability, which had a great application prospect in the early diagnosis and treatment of tumor.

  17. More efficient NIR photothermal therapeutic effect from intracellular heating modality than extracellular heating modality: an in vitro study

    NASA Astrophysics Data System (ADS)

    Zhou, Wenbo; Liu, Xiangshen; Ji, Jian

    2012-09-01

    In this study, efforts were placed in giving some in vitro key clues to the question on which is more efficient for the cancer hyperthermia between intracellular and extracellular modalities. Near infrared (NIR) photothermal responsive gold nanorods (GNRs) were adopted to cause cellular thermolysis either from inside or outside of cells. GNRs were synthesized with the size of 30.4 nm (in length) × 8.4 nm (in width). Demonstrated by ICP-MS (inductively coupled plasmon mass spectroscopy), UV-Vis spectroscopy and transmission electron microscopy analyses, various cell uptake doses of nanoparticles were differentiated due to different molecular designs on GNRs surfaces and different types of cells chosen (three cancer cell lines and three normal ones). Under our continuous wavelengths (CW) NIR irradiation, it resulted that the cells which internalized GNRs died faster than the cells surrounded by GNRs. Furthermore, fluorescent images and flow cytometry data also showed that the NIR photothermal therapeutic effect was greater when the amount of internalized GNRs per cell was larger. Generally speaking, the GNRs assisted intracellular hyperthermia exhibited more precise and efficient control on the selective cancer ablation. To a larger degree, such a relationship between GNRs distribution and hyperthermia efficiency might be applied to wider spectra of cell types and heat-producing nanoparticles, which provided a promise for future cancer thermal therapeutic designs.

  18. Aptamer-Targeted Plasmonic Photothermal Therapy of Cancer.

    PubMed

    Kolovskaya, Olga S; Zamay, Tatiana N; Belyanina, Irina V; Karlova, Elena; Garanzha, Irina; Aleksandrovsky, Aleksandr S; Kirichenko, Andrey; Dubynina, Anna V; Sokolov, Alexey E; Zamay, Galina S; Glazyrin, Yury E; Zamay, Sergey; Ivanchenko, Tatiana; Chanchikova, Natalia; Tokarev, Nikolay; Shepelevich, Nikolay; Ozerskaya, Anastasia; Badrin, Evgeniy; Belugin, Kirill; Belkin, Simon; Zabluda, Vladimir; Gargaun, Ana; Berezovski, Maxim V; Kichkailo, Anna S

    2017-12-15

    Novel nanoscale bioconjugates combining unique plasmonic photothermal properties of gold nanoparticles (AuNPs) with targeted delivery using cell-specific DNA aptamers have a tremendous potential for medical diagnostics and therapy of many cell-based diseases. In this study, we demonstrate the high anti-cancer activity of aptamer-conjugated, 37-nm spherical gold nanoparticles toward Ehrlich carcinoma in tumor-bearing mice after photothermal treatment. The synthetic anti-tumor aptamers bring the nanoparticles precisely to the desired cells and selectively eliminate cancer cells after the subsequent laser treatment. To prove tumor eradication, we used positron emission tomography (PET) utilizing radioactive glucose and computer tomography, followed by histological analysis of cancer tissue. Three injections of aptamer-conjugated AuNPs and 5 min of laser irradiations are enough to make the tumor undetectable by PET. Histological analysis proves PET results and shows lower damage of healthy tissue in addition to a higher treatment efficiency and selectivity of the gold nanoparticles functionalized with aptamers in comparison to control experiments using free unconjugated nanoparticles. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Rational Design of Multifunctional Fe@γ-Fe2 O3 @H-TiO2 Nanocomposites with Enhanced Magnetic and Photoconversion Effects for Wide Applications: From Photocatalysis to Imaging-Guided Photothermal Cancer Therapy.

    PubMed

    Wang, Meifang; Deng, Kerong; Lü, Wei; Deng, Xiaoran; Li, Kai; Shi, Yanshu; Ding, Binbin; Cheng, Ziyong; Xing, Bengang; Han, Gang; Hou, Zhiyao; Lin, Jun

    2018-03-01

    Titanium dioxide (TiO 2 ) has been widely investigated and used in many areas due to its high refractive index and ultraviolet light absorption, but the lack of absorption in the visible-near infrared (Vis-NIR) region limits its application. Herein, multifunctional Fe@γ-Fe 2 O 3 @H-TiO 2 nanocomposites (NCs) with multilayer-structure are synthesized by one-step hydrogen reduction, which show remarkably improved magnetic and photoconversion effects as a promising generalists for photocatalysis, bioimaging, and photothermal therapy (PTT). Hydrogenation is used to turn white TiO 2 in to hydrogenated TiO 2 (H-TiO 2 ), thus improving the absorption in the Vis-NIR region. Based on the excellent solar-driven photocatalytic activities of the H-TiO 2 shell, the Fe@γ-Fe 2 O 3 magnetic core is introduced to make it convenient for separating and recovering the catalytic agents. More importantly, Fe@γ-Fe 2 O 3 @H-TiO 2 NCs show enhanced photothermal conversion efficiency due to more circuit loops for electron transitions between H-TiO 2 and γ-Fe 2 O 3 , and the electronic structures of Fe@γ-Fe 2 O 3 @H-TiO 2 NCs are calculated using the Vienna ab initio simulation package based on the density functional theory to account for the results. The reported core-shell NCs can serve as an NIR-responsive photothermal agent for magnetic-targeted photothermal therapy and as a multimodal imaging probe for cancer including infrared photothermal imaging, magnetic resonance imaging, and photoacoustic imaging. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Dual Chemodrug-Loaded Single-Walled Carbon Nanohorns for Multimodal Imaging-Guided Chemo-Photothermal Therapy of Tumors and Lung Metastases

    PubMed Central

    Yang, Jingxing; Su, Huilan; Sun, Wenshe; Cai, Jiali; Liu, Shiyuan; Chai, Yimin; Zhang, Chunfu

    2018-01-01

    Tumor combination therapy using nano formulations with multimodal synergistic therapeutic effects shows great potential for complete ablation of tumors. However, targeting tumor metastases with nano structures is a major obstacle for therapy. Therefore, developing a combination therapy system able to target both primary tumors and their metastases at distant sites with synergistic therapy is desirable for the complete eradication of tumors. To this end, a dual chemodrug-loaded theranostic system based on single walled carbon nanohorns (SWNHs) is developed for targeting both primary breast tumors and their lung metastases. Methods: SWNHs were first modified simultaneously with poly (maleic anhydride-alt-1-octadecene) (C18PMH) and methoxypolyethyleneglycol-b-poly-D, L-lactide (mPEG-PLA) via hydrophobic-hydrophobic interactions and π-π stacking. Then cisplatin and doxorubicin (DOX) (2.9:1 molar ratio) were sequentially loaded onto the modified nanohorns in a noninterfering way. After careful examinations of the release profiles of the loaded drugs and the photothermal performance of the dual chemodrug-loaded SWNHs, termed SWNHs/C18PMH/mPEG-PLA-DOX-Pt, the dual drug chemotherapeutic and chemo-photothermal synergetic therapeutic effects on tumor cells were evaluated. Subsequently, the in vivo behavior and tumor accumulation of the drug-loaded SWNHs were studied by photoacoustic imaging (PAI). For chemo-photothermal therapy of tumors, 4T1 tumor bearing mice were intravenously injected with SWNHs/C18PMH/mPEG-PLA-DOX-Pt at a dose of 10 mg/kg b.w. (in SWNHs) and tumors were illuminated by an 808 nm laser (1W/cm2 for 5 min) 24 h post-injection. Results: DOX and cisplatin were loaded onto the modified SWNHs with high efficiency (44 wt% and 66 wt%, respectively) and released in a pH-sensitive, tandem and sustainable manner. The SWNHs/C18PMH/mPEG-PLA-DOX-Pt had a hydrodynamic diameter of 182 ± 3.2 nm, were highly stable in physiological environment, and had both dual drug

  1. Doxorubicin Loaded Chitosan-W18 O49 Hybrid Nanoparticles for Combined Photothermal-Chemotherapy.

    PubMed

    Yuan, Shanmei; Hua, Jisong; Zhou, Yinyin; Ding, Yin; Hu, Yong

    2017-08-01

    Combined treatment is more effective than single treatment against most forms of cancer. In this work, doxorubicin loaded chitosan-W 18 O 49 nanoparticles combined with the photothermal therapy and chemotherapy are fabricated through the electrostatic interaction between positively charged chitosan and negatively charged W 18 O 49 nanoparticles. The in vitro and in vivo behaviors of these nanoparticles are examined by dynamic light scattering, transmission electron microscopy, cytotoxicity, near-infrared fluorescence imaging, and tumor growth inhibition experiment. These nanoparticles have a mean size around 110 nm and show a pH sensitive drug release behavior. After irradiation by the 980 nm laser, these nanoparticles show more pronounced cytotoxicity against HeLa cells than that of free doxorubicin or photothermal therapy alone. The in vivo experiments confirm that their antitumor ability is significantly improved, resulting in superior efficiency in impeding tumor growth and extension of the lifetime of mice. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Environmental impacts on the gonadotropic system in female Atlantic salmon (Salmo salar) during vitellogenesis: Photothermal effects on pituitary gonadotropins, ovarian gonadotropin receptor expression, plasma sex steroids and oocyte growth.

    PubMed

    Taranger, Geir Lasse; Muncaster, Simon; Norberg, Birgitta; Thorsen, Anders; Andersson, Eva

    2015-09-15

    The gonadotropic system and ovarian growth and development were studied during vitellogenesis in female Atlantic salmon subjected to either simulated natural photoperiod and ambient water temperature (NL-amb), or an accelerating photoperiod (short day of LD8:16 from May 10) combined with either warmed (ca 2°C above ambient; 8L-warm) or cooled water (ca 2°C below ambient; 8L-cold) from May to September. Monthly samples were collected from 10 females/group for determination of transcript levels of pituitary gonadotropin subunits (fshb and lhb) and ovarian gonadotropin receptors (fshr and lhr), plasma sex steroids (testosterone: T and estradiol-17β: E2), gonadosomatic index (GSI) and oocyte size. Short day in combination with either warmed or cooled water induced an earlier increase in pituitary fshb and lhb levels compared with NL-amb controls, and advanced ovarian growth and the seasonal profiles of T, E2. By contrast only minor effects were seen of the photothermal treatments on ovarian fshr and lhr. The 8L-cold had earlier increase in fshb, lhb and E2, but similar oocyte and gonadal growth as 8L-warm, suggesting that the 8L-cold group tried to compensate for the lower water temperature during the period of rapid gonadal growth by increasing fshb and E2 production. Both the 8L-warm and 8L-cold groups showed incomplete ovulation in a proportion of the females, possibly due to the photoperiod advancement resulting in earlier readiness of spawning occurring at a higher ambient temperature, or due to some reproductive dysfunction caused by photothermal interference with normal neuroendocrine regulation of oocyte development and maturation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Localized surface plasmon enhanced photothermal conversion in Bi2Se3 topological insulator nanoflowers

    PubMed Central

    Guozhi, Jia; Peng, Wang; Yanbang, Zhang; Kai, Chang

    2016-01-01

    Localized surface plasmons (LSP), the confined collective excitations of electrons in noble metal and doped semiconductor nanostructures, enhance greatly local electric field near the surface of the nanostructures and result in strong optical response. LSPs of ordinary massive electrons have been investigated for a long time and were used as basic ingredient of plasmonics and metamaterials. LSPs of massless Dirac electrons, which could result in novel tunable plasmonic metamaterials in the terahertz and infrared frequency regime, are relatively unexplored. Here we report for first time the observation of LSPs in Bi2Se3 topological insulator hierarchical nanoflowers, which are consisted of a large number of Bi2Se3 nanocrystals. The existence of LSPs can be demonstrated by surface enhanced Raman scattering and absorbance spectra ranging from ultraviolet to near-infrared. LSPs produce an enhanced photothermal effect stimulated by near-infrared laser. The excellent photothermal conversion effect can be ascribed to the existence of topological surface states, and provides us a new way for practical application of topological insulators in nanoscale heat source and cancer therapy. PMID:27172827

  4. Localized surface plasmon enhanced photothermal conversion in Bi2Se3 topological insulator nanoflowers.

    PubMed

    Guozhi, Jia; Peng, Wang; Yanbang, Zhang; Kai, Chang

    2016-05-12

    Localized surface plasmons (LSP), the confined collective excitations of electrons in noble metal and doped semiconductor nanostructures, enhance greatly local electric field near the surface of the nanostructures and result in strong optical response. LSPs of ordinary massive electrons have been investigated for a long time and were used as basic ingredient of plasmonics and metamaterials. LSPs of massless Dirac electrons, which could result in novel tunable plasmonic metamaterials in the terahertz and infrared frequency regime, are relatively unexplored. Here we report for first time the observation of LSPs in Bi2Se3 topological insulator hierarchical nanoflowers, which are consisted of a large number of Bi2Se3 nanocrystals. The existence of LSPs can be demonstrated by surface enhanced Raman scattering and absorbance spectra ranging from ultraviolet to near-infrared. LSPs produce an enhanced photothermal effect stimulated by near-infrared laser. The excellent photothermal conversion effect can be ascribed to the existence of topological surface states, and provides us a new way for practical application of topological insulators in nanoscale heat source and cancer therapy.

  5. Wavelength-modulated differential photothermal radiometry: Theory and experimental applications to glucose detection in water

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas; Guo, Xinxin

    2011-10-01

    A differential photothermal radiometry method, wavelength-modulated differential photothermal radiometry (WM-DPTR), has been developed theoretically and experimentally for noninvasive, noncontact biological analyte detection, such as blood glucose monitoring. WM-DPTR features analyte specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the base line of a prominent and isolated mid-IR analyte absorption band (here the carbon-oxygen-carbon bond in the pyran ring of the glucose molecule). A theoretical photothermal model of WM-DPTR signal generation and detection has been developed. Simulation results on water-glucose phantoms with the human blood range (0-300 mg/dl) glucose concentration demonstrated high sensitivity and resolution to meet wide clinical detection requirements. The model has also been validated by experimental data of the glucose-water system obtained using WM-DPTR.

  6. DNA aptamer functionalized gold nanostructures for molecular recognition and photothermal inactivation of methicillin-Resistant Staphylococcus aureus.

    PubMed

    Ocsoy, Ismail; Yusufbeyoglu, Sadi; Yılmaz, Vedat; McLamore, Eric S; Ildız, Nilay; Ülgen, Ahmet

    2017-11-01

    In this work, we report the development of DNA aptamer-functionalized gold nanoparticles (Apt@Au NPs) and gold nanorods (Apt@Au NRs) for inactivation of Methicillin-resistant Staphylococcus aureus (MRSA) with targeted photothermal therapy (PTT). Although both Apt@Au NPs and Apt@Au NRs specifically bind to MRSA cells, Apt@Au NPs and Apt@Au NRs inactivated ∼5% and over 95% of the cells,respectively through PTT. This difference in inactivation was based on the relatively high longitudinal absorption of near-infrared (NIR) radiation and strong photothermal conversion capability for the Apt@Au NRs compared to the Apt@Au NPs. The Au NRs served as a nanoplatform for the loading of thiolated aptamer and also provided multivalent effects for increasing binding strength and affinity to MRSA. Our results indicate that the type of aptamer and the degree of multivalent effect(s) are important factors for MRSA inactivation efficiency in PTT. We show that the Apt@Au NRs are a very effective and promising nanosystem for specific cell recognition and in vitro PTT. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Development of ex vivo model for determining temperature distribution in tumor tissue during photothermal therapy

    NASA Astrophysics Data System (ADS)

    Liu, Shaojie; Doughty, Austin; Mesiya, Sana; Pettitt, Alex; Zhou, Feifan; Chen, Wei R.

    2017-02-01

    Temperature distribution in tissue is a crucial factor in determining the outcome of photothermal therapy in cancer treatment. In order to investigate the temperature distribution in tumor tissue during laser irradiation, we developed a novel ex vivo device to simulate the photothermal therapy on tumors. A 35°C, a thermostatic incubator was used to provide a simulation environment for body temperature of live animals. Different biological tissues (chicken breast and bovine liver) were buried inside a tissue-simulating gel and considered as tumor tissues. An 805-nm laser was used to irradiate the target tissue. A fiber with an interstitial cylindrical diffuser (10 mm) was directly inserted in the center of the tissue, and the needle probes of a thermocouple were inserted into the tissue paralleling the laser fiber at different distances to measure the temperature distribution. All of the procedures were performed in the incubator. Based on the results of this study, the temperature distribution in bovine liver is similar to that of tumor tissue under photothermal therapy with the same doses. Therefore, the developed model using bovine liver for determining temperature distribution can be used during interstitial photothermal therapy.

  8. PEGylated (NH4)xWO3 nanorods as efficient and stable multifunctional nanoagents for simultaneous CT imaging and photothermal therapy of tumor.

    PubMed

    Macharia, Daniel K; Tian, Qiyun; Chen, Liang; Sun, Yingqi; Yu, Nuo; He, Chuanglong; Wang, Han; Chen, Zhigang

    2017-09-01

    The simultaneous imaging and photothermal therapy of tumors have attracted much attention, and a prerequisite is to obtain multifunctional nanomaterials. Ideally, one kind of nanoparticles with single component can be used as both imaging agent and photothermal agent. Herein, we have developed the PEGylated (NH 4 ) x WO 3 (denoted as (NH 4 ) x WO 3 -PEG) nanorods as multifunctional nanoparticles with single semiconductor component. (NH 4 ) x WO 3 -PEG nanorods with about 30nm diameter and length of several hundred nanometers have been obtained through a solvothermal synthesis-PEGylation two-step route. Under the irradiation of 980-nm laser with intensity of 0.72Wcm -2 , aqueous dispersion of (NH 4 ) x WO 3 -PEG nanorods (0.67-5.44mmol/L) displays high elevation (17.6-34.5°C) of temperature in 400s, accompanied by an excellent long-term photothermal stability. Furthermore, (NH 4 ) x WO 3 -PEG nanorods exhibit as high as 6 times X-ray attenuation ability compared to that of the clinically used iodine-based X-ray computed tomography (CT) contrast agent (Iopromide). More importantly, after PBS solution of (NH 4 ) x WO 3 -PEG nanorods is injected into the tumor of mice, the tumor can be effectively detected by CT imaging. Moreover, cancer cells in vivo can be further destroyed by the photothermal effects of (NH 4 ) x WO 3 -PEG nanorods, under the irradiation of 980-nm laser with the safe intensity of 0.72Wcm -2 for 10min. Therefore, (NH 4 ) x WO 3 -PEG nanorods can be used as a new kind of stable and efficient multifunctional nanoagent with single component for simultaneous CT imaging and photothermal therapy of tumor. Copyright © 2017. Published by Elsevier B.V.

  9. Thin transparent film characterization by photothermal reflectance (abstract)

    NASA Astrophysics Data System (ADS)

    Li Voti, R.; Wright, O. B.; Matsuda, O.; Larciprete, M. C.; Sibilia, C.; Bertolotti, M.

    2003-01-01

    Photothermal reflectance methods have been intensively applied to the nondestructive testing of opaque thin films [D. P. Almond and P. M. Patel, Photothermal Science and Techniques (Chapman and Hall, London, 1996); C. Bento and D. P. Almond, Meas. Sci. Technol. 6, 1022 (1995); J. Opsal, A. Rosencwaig, and D. Willenborg, Appl. Opt. 22, 3169 (1983)]. The basic principle is based on thermal wave interferometry: the opaque specimen is illuminated by a laser beam, periodically chopped at the frequency f, so as to generate a plane thermal wave in the surface region. This wave propagates in the film, approaches the rear interface (film-bulk), is partially reflected back, reaches the front surface, is again partially reflected back and so on, giving rise to thermal wave interference. A consequence of this interference is that the surface temperature may be enhanced (constructive interference) or reduced (destructive interference) by simply scanning the frequency f (that is, the thermal diffusion length μ=√D/πf ), so as to observe damped oscillations as a function of f; in practice only the first oscillation may be clearly resolved and used to measure either the film thickness d or the film thermal diffusivity D, and this situation occurs when μ≈d. In general, photothermal reflectance does not measure directly the surface temperature variation, but rather a directly related signal determined by the thermo-optic coefficients and the sample geometry; for detection it is common to monitor the optical reflectivity variation of a probe beam normally incident on the sample. If the thin film is partially transparent to the probe, the theory becomes more difficult [O. Matsuda and O. B. Wright, J. Opt. Soc. Am. B (in press)] and one should consider the probe beam multiple reflections in the thin film. The probe modulation is optically inhomogeneous due to the temperature-induced changes in refractive index. Although in the past the complexity of the analysis has impeded

  10. Examining Neosho madtom reproductive biology using ultrasound and artificial photothermal cycles

    USGS Publications Warehouse

    Bryan, J.L.; Wildhaber, M.L.; Noltie, Douglas B.

    2005-01-01

    We examined whether extended laboratory simulation of natural photothermal conditions could stimulate reproduction in the Neosho madtom Noturus placidus, a federally threatened species. For 3 years, a captive population of Neosho madtoms was maintained under simulated natural conditions and monitored routinely with ultrasound for reproductive condition. Female Neosho madtoms cycled in and out of spawning condition, producing and absorbing oocytes annually. Internal measurements made by means of ultrasound indicated the summer mean oocyte size remained consistent over the years, although estimated fecundity increased with increasing fish length. In the summer of 2001, after 3 years in the simulated natural environment, 13 out of 41 fish participated in 10 spawnings. Simulation of the natural photothermal environment, coupled with within-day temperature fluctuations during the spring rise, seemed important for the spawning of captive Neosho madtoms. The use of ultrasound to assess the reproductive status in Neosho madtoms was effective and resulted in negligible stress or injury to the fish. These procedures may facilitate future culture of this species and other madtoms Noturus spp., especially when species are rare, threatened, or endangered. ?? Copyright by the American Fisheries Society 2005.

  11. Photothermally induced delayed tissue death.

    PubMed

    Gordon, Jeffrey M; Shaco-Levy, Ruthy; Feuermann, Daniel; Huleihil, Mahmoud; Mizrahi, Solly

    2006-01-01

    We report pronounced delayed tissue death in photothermal surgery performed on the livers of live healthy rats with highly concentrated sunlight (ultrabright noncoherent light). Exposure times and power levels were selected to produce immediate necroses of the order of hundreds of cubic millimeters. Pathology reveals that lesion volumes increase by up to a factor of 5 within approximately 24 h after surgery, and then stabilize. Islands of viable cells can persist within damaged tissue, in the immediate vicinity of blood vessels, but also necrose within about 48 h.

  12. Temperature distribution in target tumor tissue and photothermal tissue destruction during laser immunotherapy

    NASA Astrophysics Data System (ADS)

    Doughty, Austin; Hasanjee, Aamr; Pettitt, Alex; Silk, Kegan; Liu, Hong; Chen, Wei R.; Zhou, Feifan

    2016-03-01

    Laser Immunotherapy is a novel cancer treatment modality that has seen much success in treating many different types of cancer, both in animal studies and in clinical trials. The treatment consists of the synergistic interaction between photothermal laser irradiation and the local injection of an immunoadjuvant. As a result of the therapy, the host immune system launches a systemic antitumor response. The photothermal effect induced by the laser irradiation has multiple effects at different temperature elevations which are all required for optimal response. Therefore, determining the temperature distribution in the target tumor during the laser irradiation in laser immunotherapy is crucial to facilitate the treatment of cancers. To investigate the temperature distribution in the target tumor, female Wistar Furth rats were injected with metastatic mammary tumor cells and, upon sufficient tumor growth, underwent laser irradiation and were monitored using thermocouples connected to locally-inserted needle probes and infrared thermography. From the study, we determined that the maximum central tumor temperature was higher for tumors of less volume. Additionally, we determined that the temperature near the edge of the tumor as measured with a thermocouple had a strong correlation with the maximum temperature value in the infrared camera measurement.

  13. Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser

    PubMed Central

    Liu, Yang; Xu, Ming; Chen, Qing; Guan, Guannan; Hu, Wen; Zhao, Xiuli; Qiao, Mingxi; Hu, Haiyang; Liang, Ying; Zhu, Heyun; Chen, Dawei

    2015-01-01

    Photothermal therapy (PTT) is widely regarded as a promising technology for cancer treatment. Gold nanorods (GNRs), as excellent PTT agent candidates, have shown high-performance photothermal conversion ability under laser irradiation, yet two major obstacles to their clinical application are the lack of selective accumulation in the target site following systemic administration and the greatly reduced photothermal conversion efficiency caused by self-aggregating in aqueous environment. Herein, we demonstrate that tLyp-1 peptide-functionalized, indocyanine green (ICG)-containing mesoporous silica-coated GNRs (I-TMSG) possessed dual-function as tumor cells-targeting near-infrared (NIR) fluorescent probe and PTT agents. The construction of the nanostructure began with synthesis of GNRs by seed-mediated growth method, followed by the coating of mesoporous silica, the chemical conjugation of PEG and tLyp-1 peptide, and the enclosure of ICG as an NIR imaging agent in the mesoporous. The as-prepared nanoparticles could shield the GNRs against their self-aggregation, improve the stability of ICG, and exhibit negligible dark cytotoxicity. More importantly, such a theranostic nanocomposite could realize the combination of GNRs-based photothermal ablation under NIR illumination, ICG-mediated fluorescent imaging, and tLyp-1-enabled more easy endocytosis into breast cancer cells. All in all, I-TMSG nanoparticles, in our opinion, possessed the strong potential to realize the effective diagnosis and PTT treatment of human mammary cancer. PMID:26251596

  14. Facile fabrication of a near-infrared responsive nanocarrier for spatiotemporally controlled chemo-photothermal synergistic cancer therapy

    NASA Astrophysics Data System (ADS)

    Wan, Hao; Zhang, Yi; Liu, Zheyi; Xu, Guiju; Huang, Guang; Ji, Yongsheng; Xiong, Zhichao; Zhang, Quanqing; Dong, Jing; Zhang, Weibing; Zou, Hanfa

    2014-07-01

    Remote-controlled nanocarriers for drug delivery are of great promise to provide timely, sensitive and spatiotemporally selective treatments for cancer therapy. Due to convenient and precise manipulation, deep penetration through tissues and excellent biocompatibility, near-infrared (NIR) irradiation is a preferred external stimulus for triggering the release of loaded drugs. In this work, for spatiotemporally controlled chemo-photothermal synergistic cancer therapy, a NIR responsive nanocarrier was fabricated using reduced graphene oxide nanosheets (rNGO) decorated with mesoporous silica shell and the subsequent functionalization of the thermoresponsive polymer brushes (pNIPAM-co-pAAm) at the outlet of the silica pore channels. rNGO, which combined with the mesoporous silica shell provide a high loading capacity for anticancer drugs (doxorubicin, DOX), was assigned to sense NIR irradiation for the manipulation of pNIPAM-co-pAAm valve to control the diffusion of loaded DOX. Under NIR irradiation, rNGO would generate heat, which could not only elevate the surrounding temperature over the low critical solution temperature (LCST) of pNIPAM-co-pAAm to open the thermoresponsive polymer valve and promote the diffusion of DOX, but also kill the cancer cells through the hypothermia effect. By manipulating NIR irradiation, the nanocarrier exhibited efficiently controlled release of loaded DOX both in the buffer and in living HeLa cells (the model cancer cells), providing powerful and site-targeted treatments, which can be attributed to synergistic effects of chemo-photothermal therapy. To sum up, this novel nanocarrier is an excellent drug delivery platform in remote-controlled chemo-photothermal synergistic cancer therapy via NIR irradiation.Remote-controlled nanocarriers for drug delivery are of great promise to provide timely, sensitive and spatiotemporally selective treatments for cancer therapy. Due to convenient and precise manipulation, deep penetration through

  15. Glucose-functionalized Au nanoprisms for optoacoustic imaging and near-infrared photothermal therapy

    NASA Astrophysics Data System (ADS)

    Han, Jishu; Zhang, Jingjing; Yang, Meng; Cui, Daxiang; de La Fuente, Jesus M.

    2015-12-01

    Targeted imaging and tumor therapy using nanomaterials has stimulated research interest recently, but the high cytotoxicity and low cellular uptake of nanomaterials limit their bioapplication. In this paper, glucose (Glc) was chosen to functionalize Au nanoprisms (NPrs) for improving the cytotoxicity and cellular uptake of Au@PEG-Glc NPrs into cancer cells. Glucose is a primary source of energy at the cellular level and at cellular membranes for cell recognition. A coating of glucose facilitates the accumulation of Au@PEG-Glc NPrs in a tumor region much more than Au@PEG NPrs. Due to the high accumulation and excellent photoabsorbing property of Au@PEG-Glc NPrs, enhanced optoacoustic imaging of a tumor in vivo was achieved, and visualization of the tumor further guided cancer treatment. Based on the optical-thermal conversion performance of Au@PEG-Glc NPrs, the tumor in vivo was effectively cured through photothermal therapy. The current work demonstrates the great potential of Au@PEG-Glc NPrs in optoacoustic imaging and photothermal cancer therapy in future.Targeted imaging and tumor therapy using nanomaterials has stimulated research interest recently, but the high cytotoxicity and low cellular uptake of nanomaterials limit their bioapplication. In this paper, glucose (Glc) was chosen to functionalize Au nanoprisms (NPrs) for improving the cytotoxicity and cellular uptake of Au@PEG-Glc NPrs into cancer cells. Glucose is a primary source of energy at the cellular level and at cellular membranes for cell recognition. A coating of glucose facilitates the accumulation of Au@PEG-Glc NPrs in a tumor region much more than Au@PEG NPrs. Due to the high accumulation and excellent photoabsorbing property of Au@PEG-Glc NPrs, enhanced optoacoustic imaging of a tumor in vivo was achieved, and visualization of the tumor further guided cancer treatment. Based on the optical-thermal conversion performance of Au@PEG-Glc NPrs, the tumor in vivo was effectively cured through

  16. Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy.

    PubMed

    Pfeifer, Marcel; Ruf, Alexander; Fischer, Peer

    2013-11-04

    We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated.

  17. MUC1-Targeted Cancer Cell Photothermal Ablation Using Bioinspired Gold Nanorods.

    PubMed

    Zelasko-Leon, Daria C; Fuentes, Christina M; Messersmith, Phillip B

    2015-01-01

    Recent studies have highlighted the overexpression of mucin 1 (MUC1) in various epithelial carcinomas and its role in tumorigenesis. These mucins present a novel targeting opportunity for nanoparticle-mediated photothermal cancer treatments due to their unique antenna-like extracellular extension. In this study, MUC1 antibodies and albumin were immobilized onto the surface of gold nanorods using a "primer" of polydopamine (PD), a molecular mimic of catechol- and amine-rich mussel adhesive proteins. PD forms an adhesive platform for the deposition of albumin and MUC1 antibodies, achieving a surface that is stable, bioinert and biofunctional. Two-photon luminescence confocal and darkfield scattering imaging revealed targeting of MUC1-BSA-PD-NRs to MUC1+ MCF-7 breast cancer and SCC-15 squamous cell carcinoma cells lines. Treated cells were exposed to a laser encompassing the near-infrared AuNR longitudinal surface plasmon and assessed for photothermal ablation. MUC1-BSA-PD-NRs substantially decreased cell viability in photoirradiated MCF-7 cell lines vs. MUC1- MDA-MB-231 breast cancer cells (p < 0.005). Agents exhibited no cytotoxicity in the absence of photothermal treatment. The facile nature of the coating method, combined with targeting and photoablation efficacy, are attractive features of these candidate cancer nanotherapeutics.

  18. Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells.

    PubMed

    Beqa, Lule; Fan, Zhen; Singh, Anant Kumar; Senapati, Dulal; Ray, Paresh Chandra

    2011-09-01

    Breast cancer presents greatest challenge in health care in today's world. The key to ultimately successful treatment of breast cancer disease is an early and accurate diagnosis. Current breast cancer treatments are often associated with severe side effects. Driven by the need, we report the design of novel hybrid nanomaterial using gold nano popcorn-attached single wall carbon nanotube for targeted diagnosis and selective photothermal treatment. Targeted SK-BR-3 human breast cancer cell sensing have been performed in 10 cancer cells/mL level, using surface enhanced Raman scattering of single walls carbon nanotube's D and G bands. Our data show that S6 aptamer attached hybrid nanomaterial based SERS assay is highly sensitive to targeted human breast cancer SK-BR-3 cell line and it will be able to distinguish it from other non targeted MDA-MB breast cancer cell line and HaCaT normal skin cell line. Our results also show that 10 min of photothermal therapy treatment by 1.5 W/cm(2) power, 785 nm laser is enough to kill cancer cells very effectively using S6 aptamer attached hybrid nanomaterials. Possible mechanisms for targeted sensing and operating principle for highly efficient photothermal therapy have been discussed. Our experimental results reported here open up a new possibility for using aptamers modified hybrid nanomaterial for reliable diagnosis and targeted therapy of cancer cell lines quickly.

  19. Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging.

    PubMed

    Moon, Hyungwon; Kumar, Dinesh; Kim, Haemin; Sim, Changbeom; Chang, Jin-Ho; Kim, Jung-Mu; Kim, Hyuncheol; Lim, Dong-Kwon

    2015-03-24

    We report a strongly amplified photoacoustic (PA) performance of the new functional hybrid material composed of reduced graphene oxide and gold nanorods. Due to the excellent NIR light absorption properties of the reduced graphene oxide coated gold nanorods (r-GO-AuNRs) and highly efficient heat transfer process through the reduced graphene oxide layer, r-GO-AuNRs exhibit excellent photothermal stability and significantly higher photoacoustic amplitudes than those of bare-AuNRs, nonreduced graphene oxide coated AuNRs (GO-AuNRs), or silica-coated AuNR, as demonstrated in both in vitro and in vivo systems. The linear response of PA amplitude from reduced state controlled GO on AuNR indicates the critical role of GO for a strong photothermal effect of r-GO-AuNRs. Theoretical studies with finite-element-method lab-based simulation reveal that a 4 times higher magnitude of the enhanced electromagnetic field around r-GO-AuNRs can be generated compared with bare AuNRs or GO-AuNRs. Furthermore, the r-GO-AuNRs are expected to be a promising deep-tissue imaging probe because of extraordinarily high PA amplitudes in the 4-11 MHz operating frequency of an ultrasound transducer. Therefore, the r-GO-AuNRs can be a useful imaging probe for highly sensitive photoacoustic images and NIR sensitive therapeutics based on a strong photothermal effect.

  20. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power.

    PubMed

    Yang, Kai; Wan, Jianmei; Zhang, Shuai; Tian, Bo; Zhang, Youjiu; Liu, Zhuang

    2012-03-01

    Photothermal therapy as a physical treatment approach to destruct cancer has emerged as an alternative of currently used cancer therapies. Previously we have shown that polyethylene glycol (PEG) functionalized nano-graphene oxide (nGO-PEG) with strong optical absorption in the near-infrared (NIR) region was a powerful photothermal agent for in vivo cancer treatment. In this work, by using ultra-small reduced graphene oxide (nRGO) with non-covalent PEG coating, we study how sizes and surface chemistry affect the in vivo behaviors of graphene, and remarkably improve the performance of graphene-based in vivo photothermal cancer treatment. Owing to the enhanced NIR absorbance and highly efficient tumor passive targeting of nRGO-PEG, excellent in vivo treatment efficacy with 100% of tumor elimination is observed after intravenous injection of nRGO-PEG and the followed 808 nm laser irradiation, the power density (0.15 W/cm(2), 5 min) of which is an order of magnitude lower than that usually applied for in vivo tumor ablation using many other nanomaterials. All mice after treatment survive over a period of 100 days without a single death or any obvious sign of side effect. Our results highlight that both surface chemistry and sizes are critical to the in vivo performance of graphene, and show the promise of using optimized nano-graphene for ultra-effective photothermal treatment, which may potentially be combined with other therapeutic approaches to assist our fight against cancer. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Photothermal effect of infrared lasers on ex vivo lamb brain tissues

    NASA Astrophysics Data System (ADS)

    Özgürün, Baturay; Gülsoy, Murat

    2018-02-01

    Here, the most suitable infrared laser for a neurosurgery operation is suggested, among 1940-nm thulium fiber, 1470-nm diode, 1070-nm ytterbium fiber and 980-nm diode lasers. Cortical and subcortical ex-vivo lamb brain tissues are exposed to the laser light with the combinations of some laser parameters such as output power, energy density, operation mode (continuous and pulsed-modulated) and operation time. In this way, the greatest ablation efficiency associated with the best neurosurgical laser type can be defined. The research can be divided into two parts; pre-dosimetry and dosimetry studies. The former is used to determine safe operation zones for the dosimetry study by defining coagulation and carbonization onset times for each of the brain tissues. The latter is the main part of this research, and both tissues are exposed to laser irradiation with various energy density levels associated with the output power and operation time. In addition, photo-thermal effects are compared for two laser operation modes, and then coagulation and ablation diameters to calculate the ablation efficiency are measured under a light microscope. Consequently, results are compared graphically and statistically, and it is found that thulium and 1470-nm diode lasers can be utilized as subcortical and cortical tissue ablator devices, respectively.

  2. Combined photothermal-chemotherapy of breast cancer by near infrared light responsive hyaluronic acid-decorated nanostructured lipid carriers

    NASA Astrophysics Data System (ADS)

    Zheng, Shaohui; Du Nguyen, Van; Song, Seung Yoon; Han, Jiwon; Park, Jong-Oh

    2017-10-01

    In this study, a novel type of hyaluronic acid (HA)-decorated nanostructured lipid carrier (NLC) was prepared and investigated as a light-triggered drug release and combined photothermal-chemotherapy for cancer treatment. Polyhedral gold nanoparticles (Au NPs) with an average size of 10 nm were synthesized and co-encapsulated with doxorubicin (DOX) in the matrix of NLCs with a high drug loading efficiency (above 80%). HA decoration was achieved by the electrostatic interaction between HA and CTAB on the NLC surface. A remarkable temperature increase was observed by exposing the Au NP-loaded NLCs to an NIR laser, which heated the samples sufficiently (above 40 °C) to kill tumor cells. The entrapped DOX exhibited a sustained, stepwise NIR laser-triggered drug release pattern. The biocompatibility of the NLCs was investigated by MTT assay and the cell viability was maintained above 85%, even at high concentrations. The intracellular uptake of free DOX and entrapped DOX, observed by confocal microscopy, revealed two distinct uptake mechanisms, i.e. passive diffusion and endocytosis, respectively. In particular, internalization of the HA-Au-DOX-NLCs was more extensively enhanced than the Au-DOX-NLCs, which was attributed to HA-CD44 receptor-mediated endocytosis. Meanwhile, the internalized NLCs successfully escaped from the lysosomes, increasing the intracellular DOX. The HA-Au-DOX-NLCs IC50 value decreased from 2.3 to 0.6 μg ml-1 with NIR irradiation at 72 h, indicating the excellent synergistic antitumor effect of photothermal-chemotherapy. The photothermal ablation was further confirmed by a live/dead cell staining assay. Thus, a combined photothermal-chemotherapy approach has been proposed as a promising strategy for cancer treatment.

  3. Near-infrared-absorbing gold nanopopcorns with iron oxide cluster core for magnetically amplified photothermal and photodynamic cancer therapy.

    PubMed

    Bhana, Saheel; Lin, Gan; Wang, Lijia; Starring, Hunter; Mishra, Sanjay R; Liu, Gang; Huang, Xiaohua

    2015-06-03

    We present the synthesis and application of a new type of dual magnetic and plasmonic nanostructures for magnetic-field-guided drug delivery and combined photothermal and photodynamic cancer therapy. Near-infrared-absorbing gold nanopopcorns containing a self-assembled iron oxide cluster core were prepared via a seed-mediated growth method. The hybrid nanostructures are superparamagnetic and show great photothermal conversion efficiency (η=61%) under near-infrared irradiation. Compact and stable nanocomplexes for photothermal-photodynamic therapy were formed by coating the nanoparticles with near-infrared-absorbing photosensitizer silicon 2,3-naphthalocyannie dihydroxide and stabilization with poly(ethylene glycol) linked with 11-mercaptoundecanoic acid. The nanocomplex showed enhanced release and cellular uptake of the photosensitizer with the use of a gradient magnetic field. In vitro studies using two different cell lines showed that the dual mode photothermal and photodynamic therapy with the assistance of magnetic-field-guided drug delivery dramatically improved the therapeutic efficacy of cancer cells as compared to the combination treatment without using a magnetic field and the two treatments alone. The "three-in-one" nanocomplex has the potential to carry therapeutic agents deep into a tumor through magnetic manipulation and to completely eradicate tumors by subsequent photothermal and photodynamic therapies without systemic toxicity.

  4. A carbon nanotube-gemcitabine-lentinan three-component composite for chemo-photothermal synergistic therapy of cancer.

    PubMed

    Zhang, Ping; Yi, Wenhui; Hou, Jin; Yoo, Sweejiang; Jin, Weiqiu; Yang, Qisheng

    2018-01-01

    Gemcitabine's clinical application is limited due to its short plasma half-life and poor uptake by cells. To address this problem, a drug delivery three-component composite, multiwalled carbon nanotubes (MWNTs)/gemcitabine (Ge)/lentinan (Le; MWNTs-Ge-Le), was fabricated in our study. Moreover, the combination of chemotherapy and photothermal therapy was employed to enhance antitumor efficacy. In this study, we conjugated gemcitabine and lentinan with MWNTs via a covalent and noncovalent way to functionalize with MWNTs, and the chemical structure of MWNTs-Ge-Le was characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis and transmission electron microscopy. Using the composite and an 808 nm laser, we treated tumors, both in vitro and in vivo, and investigated the photothermal responses and the anticancer efficacy. The MWNTs-Ge-Le composite could efficiently cross cell membrane, having a higher antitumor activity than MWNTs, gemcitabine and MWNTs-Ge in vitro and in vivo. Our study on the MWNTs-Ge-Le composite with an 808 nm laser radiation showed the combination of drug therapy and near-infrared photothermal therapy possesses great synergistic antitumor efficacy. The MWNTs-Ge-Le three-component anticancer composite can serve as a promising candidate for cancer therapy in the combination of chemotherapy and photothermal therapy.

  5. On the use of photothermal techniques for the characterization of solar-selective coatings

    NASA Astrophysics Data System (ADS)

    Ramírez-Rincón, J. A.; Ares-Muzio, O.; Macias, J. D.; Estrella-Gutiérrez, M. A.; Lizama-Tzec, F. I.; Oskam, G.; Alvarado-Gil, J. J.

    2018-03-01

    The efficiency of the conversion of solar energy into thermal energy is determined by the optical and thermal properties of the selective coating, in particular, the solar absorptance and thermal emittance at the desired temperature of the specific application. Photothermal techniques are the most appropriate methods to explore these properties, however, a quantitative determination using photothermal radiometry, which is based on the measurement of emitted radiation caused by the heating generated by a modulated light source, has proven to be elusive. In this work, we present experimental results for selective coatings based on electrodeposited black nickel-nickel on both stainless steel and copper substrates, as well as for commercial TiNOX coatings on aluminum, illustrating that the radiation emitted by the surface depends on the optical absorption, thermal emissivity and on the light-into-heat energy conversion efficiency (quantum efficiency). We show that a combination of photothermal radiometry and photoacoustic spectroscopy can successfully account for these parameters, and provide values for the emissivity in agreement with values obtained by Fourier-transform infrared spectroscopy.

  6. Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells

    PubMed Central

    Rau, Lih-Rou; Huang, Wan-Yu; Liaw, Jiunn-Woei; Tsai, Shiao-Wen

    2016-01-01

    The specific properties of gold nanoparticles (AuNPs) make them a novel class of photothermal agents that can induce cancer cell damage and even death through the conversion of optical energy to thermal energy. Most relevant studies have focused on increasing the precision of cell targeting, improving the efficacy of energy transfer, and exploring additional functions. Nevertheless, most cells can uptake nanosized particles through nonspecific endocytosis; therefore, before hyperthermia via AuNPs can be applied for clinical use, it is important to understand the adverse optical–thermal effects of AuNPs on nontargeted cells. However, few studies have investigated the thermal effects induced by pulsed laser-activated AuNPs on nearby healthy cells due to nonspecific treatment. The aim of this study is to evaluate the photothermal effects induced by AuNPs plus a pulsed laser on MG63, an osteoblast-like cell line, specifically examining the effects on cell morphology, viability, death program, and differentiation. The cells were treated with media containing 50 nm AuNPs at a concentration of 5 ppm for 1 hour. Cultured cells were then exposed to irradiation at 60 mW/cm2 and 80 mW/cm2 by a Nd:YAG laser (532 nm wavelength). We observed that the cytoskeletons of MG63 cells treated with bare AuNPs followed by pulsed laser irradiation were damaged, and these cells had few bubbles on the cell membrane compared with those that were not treated (control) or were treated with AuNPs or the laser alone. There were no significant differences between the AuNPs plus laser treatment group and the other groups in terms of cell viability, death program analysis results, or alkaline phosphatase and calcium accumulation during culture for up to 21 days. However, the calcium deposit areas in the cells treated with AuNPs plus laser were larger than those in other groups during the early culture period. PMID:27555768

  7. Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells.

    PubMed

    Rau, Lih-Rou; Huang, Wan-Yu; Liaw, Jiunn-Woei; Tsai, Shiao-Wen

    2016-01-01

    The specific properties of gold nanoparticles (AuNPs) make them a novel class of photothermal agents that can induce cancer cell damage and even death through the conversion of optical energy to thermal energy. Most relevant studies have focused on increasing the precision of cell targeting, improving the efficacy of energy transfer, and exploring additional functions. Nevertheless, most cells can uptake nanosized particles through nonspecific endocytosis; therefore, before hyperthermia via AuNPs can be applied for clinical use, it is important to understand the adverse optical-thermal effects of AuNPs on nontargeted cells. However, few studies have investigated the thermal effects induced by pulsed laser-activated AuNPs on nearby healthy cells due to nonspecific treatment. The aim of this study is to evaluate the photothermal effects induced by AuNPs plus a pulsed laser on MG63, an osteoblast-like cell line, specifically examining the effects on cell morphology, viability, death program, and differentiation. The cells were treated with media containing 50 nm AuNPs at a concentration of 5 ppm for 1 hour. Cultured cells were then exposed to irradiation at 60 mW/cm(2) and 80 mW/cm(2) by a Nd:YAG laser (532 nm wavelength). We observed that the cytoskeletons of MG63 cells treated with bare AuNPs followed by pulsed laser irradiation were damaged, and these cells had few bubbles on the cell membrane compared with those that were not treated (control) or were treated with AuNPs or the laser alone. There were no significant differences between the AuNPs plus laser treatment group and the other groups in terms of cell viability, death program analysis results, or alkaline phosphatase and calcium accumulation during culture for up to 21 days. However, the calcium deposit areas in the cells treated with AuNPs plus laser were larger than those in other groups during the early culture period.

  8. Tailored coating of gold nanostars: rational approach to prototype of theranostic device based on SERS and photothermal effects at ultralow irradiance.

    PubMed

    Bassi, B; Dacarro, G; Galinetto, P; Giulotto, E; Marchesi, N; Pallavicini, P; Pascale, A; Perversi, S; Taglietti, A

    2018-06-08

    The last decade has come across an increasing demand for theranostic biocompatible nanodevices possessing the double ability of diagnosis and therapy. In this work, we report the design, synthesis and step-by-step characterization of rationally coated gold nanostars (GNSs) for the SERS imaging and photothermal therapy of HeLa cancer cells. The nanodevices were realized by synthesizing GNSs with a seed growth approach, coating them with a controlled mixture of thiols composed of a Raman reporter and a polyethylene glycol with a terminal amino group, and then reacting these amino groups with folic acid (FA), in order to impart selectivity towards cancer cells which overexpress folate receptors on their membranes. After a complete characterization, we demonstrate that these FA-functionalized GNSs (FA-GNSs) are able to bind selectively to the membranes of HeLa cells, acting as SERS tags and allowing SERS imaging. Moreover, we demonstrate that once bound to HeLa cell membranes, FA-GNSs exhibit photothermal effect which can be exploited to kill the same cells in vitro using laser irradiation in the NIR at a very low and safe irradiance. We thus demonstrate that the FA-GNSs designed following the described approach are an efficient prototype of theranostic nanodevices.

  9. Tailored coating of gold nanostars: rational approach to prototype of theranostic device based on SERS and photothermal effects at ultralow irradiance

    NASA Astrophysics Data System (ADS)

    Bassi, B.; Dacarro, G.; Galinetto, P.; Giulotto, E.; Marchesi, N.; Pallavicini, P.; Pascale, A.; Perversi, S.; Taglietti, A.

    2018-06-01

    The last decade has come across an increasing demand for theranostic biocompatible nanodevices possessing the double ability of diagnosis and therapy. In this work, we report the design, synthesis and step-by-step characterization of rationally coated gold nanostars (GNSs) for the SERS imaging and photothermal therapy of HeLa cancer cells. The nanodevices were realized by synthesizing GNSs with a seed growth approach, coating them with a controlled mixture of thiols composed of a Raman reporter and a polyethylene glycol with a terminal amino group, and then reacting these amino groups with folic acid (FA), in order to impart selectivity towards cancer cells which overexpress folate receptors on their membranes. After a complete characterization, we demonstrate that these FA-functionalized GNSs (FA-GNSs) are able to bind selectively to the membranes of HeLa cells, acting as SERS tags and allowing SERS imaging. Moreover, we demonstrate that once bound to HeLa cell membranes, FA-GNSs exhibit photothermal effect which can be exploited to kill the same cells in vitro using laser irradiation in the NIR at a very low and safe irradiance. We thus demonstrate that the FA-GNSs designed following the described approach are an efficient prototype of theranostic nanodevices.

  10. Thermo/pH dual-stimuli-responsive drug delivery for chemo-/photothermal therapy monitored by cell imaging.

    PubMed

    Shu, Yang; Song, Rusheng; Zheng, Anqi; Huang, Jingli; Chen, Mingli; Wang, Jianhua

    2018-05-01

    A thermo/pH dual-stimuli-responsive drug delivery system (DDS) based on polymer coated mesoporous silica nanostructures (MSNs) is developed for facilitating chemotherapy and photothermal therapy. Thermo/pH-responsive polymer, poly((N-isopropylacrylamide, NIPAM)-co-methacrylic acid, MA), is grafted onto MSNs by in situ polymerization, followed by loading a chemotherapeutic drug (doxorubicin hydrochloride, DOX) and a near-infrared-absorbing phototherapeutic agent (indocyanine green, ICG) to construct the intelligent drug delivery system, shortly as DOX-ICG-MSN@p(NIPAM-co-MA). At NIR irradiation, the photothermal conversion capability of ICG raises the temperature of the DDS and opens the gatekeeper by shrinkage of the copolymer p(NIPAM-co-MA), which triggers controlled release of DOX at an elevated temperature. On the other hand, drug release is also realized at pH 5.3, a characteristic pH value in cancer cell microenvironment, at which it not only causes the shrinkage of the pH-sensitive polymeric moiety of methacrylic acid in MSN@p(NIPAM-co-MA) but also deteriorates electrostatic interaction of DOX molecules in the mesoporous channel by protonation of silanols. In addition, ICG further ensures photothermal therapy (PTT) and photodynamic therapy (PDT). The cytotoxicity assay of HeLa cells shows obvious synergistic effect by demonstrating that the combined use of DOX and ICG is more effective in killing HeLa cells than free DOX and ICG. The endocytosis of the drug is monitored by cell imaging. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Photothermal and infrared thermography characterizations of thermal diffusion in hydroxyapatite materials

    NASA Astrophysics Data System (ADS)

    Bante-Guerra, J.; Conde-Contreras, M.; Trujillo, S.; Martinez-Torres, P.; Cruz-Jimenez, B.; Quintana, P.; Alvarado-Gil, J. J.

    2009-02-01

    Non destructive analysis of hydroxyapatite materials is an active research area mainly in the study of dental pieces and bones due to the importance these pieces have in medicine, archeology, dentistry, forensics and anthropology. Infrared thermography and photothermal techniques constitute highly valuable tools in those cases. In this work the quantitative analysis of thermal diffusion in bones is presented. The results obtained using thermographic images are compared with the ones obtained from the photothermal radiometry. Special emphasis is done in the analysis of samples with previous thermal damage. Our results show that the treatments induce changes in the physical properties of the samples. These results could be useful in the identification of the agents that induced modifications of unknown origin in hydroxyapatite structures.

  12. Tunable SPR-based remote actuation of bimetallic core-shell nanoparticles-coated stimuli responsive polymer for switchable chemo-photothermal synergistic cancer therapy.

    PubMed

    Amoli-Diva, Mitra; Sadighi-Bonabi, Rasoul; Pourghazi, Kamyar

    2018-06-14

    New dual light/temperature-responsive nanocarriers were synthesized using bimetallic plasmonic Au-Ag and Ag-Au nanoparticles (NPs) as cores of vehicles which subsequently functionalized with a UCST-based poly acrylamide-co-acrylonitrile using reversible addition-fragmentation chain transfer for spatiotemporally controlled chemo-photothermal synergistic cancer therapy. The bimetallic cores were assigned to sense wavelengths close to the localized SPR of monometallic NP shell to produce heat which not only can increase the surrounding temperature over the UCST of polymer to open the its valves and promote drug diffusion, but also can kill cancerous cells through photothermal effects with increasing in environment temperature nearly 18 °C after about 5 min radiation. The bimetallic NPs were shown good reusability even after five heating/cooling cycles and the efficiency of both photothermal/chemotherapic procedures can be modulated by manipulating carrier's concentration and radiation time. In addition, the cytotoxicity of drug-free nanocarriers on normal L929 fibroblast and letrozole-loaded nanocarriers on MDAMB 231 breast-cancer cell lines were investigated in the absence/presence of laser radiation. Finally, the prepared nanocomposites were exhibited switchable on/off drug release in two buffered solutions (pH 5.5 and 7.4) with light actuation. The results revealed that the prepared nanocarriers can be served as efficient delivery platforms for remote-control chemo-photothermal synergistic cancer therapy. Copyright © 2018. Published by Elsevier Inc.

  13. Aspartame-stabilized gold-silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial activity, and long-term stability.

    PubMed

    Fasciani, Chiara; Silvero, M Jazmin; Anghel, Maria Alexandra; Argüello, Gerardo A; Becerra, Maria Cecilia; Scaiano, Juan C

    2014-12-17

    Gold-silver core-shell nanoparticles stabilized with a common sweetener, aspartame (AuNP@Ag@Asm), combine the antimicrobial properties of silver with the photoinduced plasmon-mediated photothermal effects of gold. The particles were tested with several bacterial strains, while biocompatibility was verified with human dermal fibroblasts.

  14. Tantalum Sulfide Nanosheets as a Theranostic Nanoplatform for Computed Tomography Imaging-Guided Combinatorial Chemo-Photothermal Therapy.

    PubMed

    Liu, Yanlan; Ji, Xiaoyuan; Liu, Jianhua; Tong, Winnie W L; Askhatova, Diana; Shi, Jinjun

    2017-10-19

    Near-infrared (NIR)-absorbing metal-based nanomaterials have shown tremendous potential for cancer therapy, given their facile and controllable synthesis, efficient photothermal conversion, capability of spatiotemporal-controlled drug delivery, and intrinsic imaging function. Tantalum (Ta) is among the most biocompatible metals and arouses negligible adverse biological responses in either oxidized or reduced forms, and thus Ta-derived nanomaterials represent promising candidates for biomedical applications. However, Ta-based nanomaterials by themselves have not been explored for NIR-mediated photothermal ablation therapy. In this work, we report an innovative Ta-based multifunctional nanoplatform composed of biocompatible tantalum sulfide (TaS 2 ) nanosheets (NSs) for simultaneous NIR hyperthermia, drug delivery, and computed tomography (CT) imaging. The TaS 2 NSs exhibit multiple unique features including (i) efficient NIR light-to-heat conversion with a high photothermal conversion efficiency of 39%. (ii) high drug loading (177% by weight), (iii) controlled drug release triggered by NIR light and moderate acidic pH, (iv) high tumor accumulation via heat-enhanced tumor vascular permeability, (v) complete tumor ablation and negligible side effects, and (vi) comparable CT imaging contrast efficiency to the widely clinically used agent iobitridol. We expect that this multifunctional NS platform can serve as a promising candidate for imaging-guided cancer therapy and selection of cancer patients with high tumor accumulation.

  15. Photothermal monitoring of interaction of carcinoma cells with cytostatic drugs in vitro

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Hanna, Ehab; Cannon, Martin

    2003-06-01

    Background/problem. Monitoring of tumor response to cancer chemotherapy and dose optimization for specific patients are the key factors for successful application of anti-tumor drugs. Using patient's tumor cells for preliminary in vitro drug screening may allow optimal selection of drug type and dose. Method. Single cell state was studied with photothermal microscope. Carcinoma cells were irradiated at 427 nm with 8 ns laser pulse with energy 30 - 40 μJ. Cell photothermal (PT) response amplitude and shape from each cell were analyzed and amount of cells that produced specific PT response was used as PT parameter. Parallel experiment included cell viability control. Results were obtained for two cytotoxic chemotherapy agents -- Platinol-aq and Adrucil. Incubation of cell suspensions for 90 min at 20 and 37°C caused changes in cell PT parameters. Reaction of carcinoma cells to the drug was very similar to reaction of hepatocytes to respiratory chain inhibition and reaction of RBC to osmotic pressure decrease. PT effect was found to be dose-dependent. PT method allows detecting drug-induced changes before cell death or morphological changes and therefore can be fast and sensitive modality for control of chemotherapy.

  16. Response of a semiconducting infinite medium under two temperature theory with photothermal excitation due to laser pulses

    NASA Astrophysics Data System (ADS)

    Lotfy, Kh.; Gabr, M. E.

    2017-12-01

    A novel model of two-dimensional deformations for two-temperature theory at the free surface under the excitation of thermoelastic wave by pulsed laser for a semi-infinite semiconducting medium is studied. The effect of mechanical force during a photothermal process is investigated. The mathematical methods of the Lord-Shulman (LS includes one relaxation time) and Green-Lindsay (GL with two relaxation times) theories as well as the classical dynamical coupled theory (CD) are used. An exact expression for displacement components, force stresses, carrier density and distribution of temperature are obtained using the harmonic wave analysis. Combinations of two-temperature and photothermal theories are obtained analytically. Comparisons of the results are made between the three theories also. The effects of thermoelectric coupling parameter, two-temperature parameter on the displacement component, force stress, carrier density, and distribution of temperature for silicon (Si) medium have been illustrated graphically. The variations of the considered variables with the horizontal distance have been discussed.

  17. Dual-stimuli responsive and reversibly activatable theranostic nanoprobe for precision tumor-targeting and fluorescence-guided photothermal therapy

    NASA Astrophysics Data System (ADS)

    Zhao, Xu; Yang, Cheng-Xiong; Chen, Li-Gong; Yan, Xiu-Ping

    2017-05-01

    The integrated functions of diagnostics and therapeutics make theranostics great potential for personalized medicine. Stimulus-responsive therapy allows spatial control of therapeutic effect only in the site of interest, and offers promising opportunities for imaging-guided precision therapy. However, the imaging strategies in previous stimulus-responsive therapies are `always on' or irreversible `turn on' modality, resulting in poor signal-to-noise ratios or even `false positive' results. Here we show the design of dual-stimuli-responsive and reversibly activatable nanoprobe for precision tumour-targeting and fluorescence-guided photothermal therapy. We fabricate the nanoprobe from asymmetric cyanine and glycosyl-functionalized gold nanorods (AuNRs) with matrix metalloproteinases (MMPs)-specific peptide as a linker to achieve MMPs/pH synergistic and pH reversible activation. The unique activation and glycosyl targetibility makes the nanoprobe bright only in tumour sites with negligible background, while AuNRs and asymmetric cyanine give synergistic photothermal effect. This work paves the way to designing efficient nanoprobes for precision theranostics.

  18. Synergistic immuno photothermal nanotherapy (SYMPHONY) to treat unresectable and metastatic cancers and produce and cancer vaccine effect

    NASA Astrophysics Data System (ADS)

    Vo-Dinh, Tuan; Inman, Brant; Maccarini, Paolo; Palmer, Gregory; Liu, Yang

    2018-02-01

    Biocompatible gold nanostars (GNS) with tip-enhanced electromagnetic and optical properties have been developed and applied for multifunctional cancer diagnostics and therapy (theranostics). Their multiple sharp branches acting like "lightning rods" can convert safely and efficiently light into heat. As with other nanoparticles, GNS sizes can be controlled so that they passively accumulate in tumors due to the enhanced permeability and retention (EPR) effect of tumor vasculature. This feature improves tumor-targeting precision and permits the use of reduced laser energy required to destroy the targeted cancer cells. The ability to selectively heat tumor areas where GNS are located while keeping surrounding healthy tissues at significantly lower temperatures offers significant advantages over other thermal therapies. GNS-mediated photothermal therapy combined with checkpoint immunotherapy was shown to reverse tumor-mediated immunosuppression, leading to the treatment of not only primary tumors but also cancer metastasis as well as inducing effective long-lasting immunity, i.e. an anticancer `vaccine' effect.

  19. Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy

    NASA Astrophysics Data System (ADS)

    Zhu, Dao-Ming; Xie, Wei; Xiao, Yu-Sha; Suo, Meng; Zan, Ming-Hui; Liao, Qing-Quan; Hu, Xue-Jia; Chen, Li-Ben; Chen, Bei; Wu, Wen-Tao; Ji, Li-Wei; Huang, Hui-Ming; Guo, Shi-Shang; Zhao, Xing-Zhong; Liu, Quan-Yan; Liu, Wei

    2018-02-01

    Recently, red blood cell (RBC) membrane-coated nanoparticles have attracted much attention because of their excellent immune escapability; meanwhile, gold nanocages (AuNs) have been extensively used for cancer therapy due to their photothermal effect and drug delivery capability. The combination of the RBC membrane coating and AuNs may provide an effective approach for targeted cancer therapy. However, few reports have shown the utilization of combining these two technologies. Here, we design erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. First, anti-EpCam antibodies were used to modify the RBC membranes to target 4T1 cancer cells. Second, the antitumor drug paclitaxel (PTX) was encapsulated into AuNs. Then, the AuNs were coated with the modified RBC membranes. These new nanoparticles were termed EpCam-RPAuNs. We characterized the capability of the EpCam-RPAuNs for selective tumor targeting via exposure to near-infrared irradiation. The experimental results demonstrate that EpCam-RPAuNs can effectively generate hyperthermia and precisely deliver the antitumor drug PTX to targeted cells. We also validated the biocompatibility of the EpCam-RAuNs in vitro. By combining the molecularly modified targeting RBC membrane and AuNs, our approach provides a new way to design biomimetic nanoparticles to enhance the surface functionality of nanoparticles. We believe that EpCam-RPAuNs can be potentially applied for cancer diagnoses and therapies.

  20. Exploring the influence of Diels-Alder linker length on photothermal molecule release from gold nanorods.

    PubMed

    Vetterlein, Claudia; Vásquez, Rodrigo; Bolaños, Karen; Acosta, Gerardo A; Guzman, Fanny; Albericio, Fernando; Celis, Freddy; Campos, Marcelo; Kogan, Marcelo J; Araya, Eyleen

    2018-06-01

    We studied the photothermal release of carboxyfluorescein (CF) linked to the gold surface of gold nanorods (GNRs) by two Diels-Alder adducts of different lengths (n = 4 and n = 9). The functionalized GNRs were irradiated with infrared light to produce photothermal release of CF by a retro-Diels-Alder reaction. The adducts were chemisorbed on the GNRs and the functionalized nanoparticles were characterized by UV-vis, DLS, zeta potential and Raman and surface-enhanced Raman spectroscopy (SERS). On the basis of the degree of nanoparticle functionalization and the SERS results, we inferred the orientation of CF on the surface of the gold nanoparticle. Moreover, we determined the photothermal release profiles of CF from the gold surface by laser irradiation. The release was faster for the longer linker (n = 9). SERS revealed that, for the shorter linker (n = 4), molecules are oriented perpendicularly with respect to the gold surface, thereby maintaining the CF far from the surface. In contrast, the longer linker was observed to be tilted, thus maintaining CF close to the gold surface and therefore potentially favoring the photothermal transfer of energy. These results are relevant for the future development of the spatial and temporal controlled release of drugs by means of gold nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Gd³⁺ Tethered Gold Nanorods for Combined Magnetic Resonance Imaging and Photo-Thermal Therapy.

    PubMed

    Pitchaimani, Arunkumar; Duong, Tuyen; Nguyen, Thanh; Maurmann, Leila; Key, Jaehong; Bossmann, Stefan H; Aryal, Santosh

    2017-04-01

    Near infrared (NIR) mediated photothermal therapy and magnetic resonance imaging (MRI) are promising treatment and imaging modalities in the field of cancer theranostics. Gold nanorods are the first choice of materials for NIR-mediated photothermal therapy due to their strong localized surface plasmon resonance (LSPR) at NIR region. Similarly, gadolinium based MRI contrast agents have an ability to increase the ionic and molecular relaxivity, thereby enhancing the solvent proton relaxation rate resulting in contrast enhancement. Herein, the effort has been made to engineer a dual front theranostic agent with combined photothermal and magnetic resonance imaging capacity using gadolinium tethered gold nanorods (Gd3+-AuNR). NIR-responsive gold nanorods were surface fabricated by means of Au-thiol interaction using a thiolated macrocyclic chelator that chelates Gd3+ ions, and further stabilized by thiolated polyethylene glycol (PEG-SH). The magnetic properties of the Gd3+-AuNR displayed an enhanced r 1 relaxivity of 12.1 mM–1s–1, with higher biological stability, and contrast enhancement in both solution state and in cell pellets. In-vitro (cell-free) and ex-vivo (on pig skin) analysis of the Gd3+-AuNR shows enhanced photothermal properties as equivalent to that of the raw AuNR. Furthermore, Gd3+-AuNR showed competent cellular entry and intracellular distribution as revealed by hyperspectral microscopy. In addition, Gd3+-AuNR also exhibits significant thermal ablation of B16–F10 cells in the presence of NIR. Thus, Gd3+-AuNR features a significant theranostic potential with combined photothermal and imaging modality, suggesting a great potential in anticancer therapy.

  2. Gold Nano Popcorn Attached SWCNT Hybrid Nanomaterial for Targeted Diagnosis and Photothermal Therapy of Human Breast Cancer Cells

    PubMed Central

    Beqa, Lule; Fan, Zhen; Singh, Anant Kumar; Senapati, Dulal; Ray, Paresh Chandra

    2011-01-01

    Breast cancer presents greatest challenge in health care in today’s world. The key to ultimately successful treatment of breast cancer disease is an early and accurate diagnosis. Current breast cancer treatments are often associated with severe side effects. Driven by the need, we report the design of novel hybrid nanomaterial using gold nano popcorn-attached single wall carbon nanotube for targeted diagnosis and selective photothermal treatment. Targeted SK-BR-3 human breast cancer cell sensing have been performed in 10 cancer cells/mL level, using surface enhanced Raman scattering of single walls carbon nanotube’s D and G bands. Our data show that S6 aptamer attached hybrid nanomaterial based SERS assay is highly sensitive to targeted human breast cancer SK-BR-3 cell line and it will be able to distinguish it from other non targeted MDA-MB breast cancer cell line and HaCaT normal skin cell line. Our results also show that 10 minutes of photothermal therapy treatment by 1.5 W/cm2 power, 785 nm laser is enough to kill cancer cells very effectively using S6 aptamer attached hybrid nanomaterials. Possible mechanisms for targeted sensing and operating principle for highly efficient photothermal therapy have been discussed. Our experimental results reported here open up a new possibility for using aptamers modified hybrid nanomaterial for reliable diagnosis and targeted therapy of cancer cell lines quickly. PMID:21842867

  3. Electroactive Polymer Nanoparticles Exhibiting Photothermal Properties

    PubMed Central

    Cantu, Travis; Rodier, Bradley; Iszard, Zachary; Kilian, Alissa; Pattani, Varun; Walsh, Kyle; Weber, Katharina; Tunnell, James; Betancourt, Tania; Irvin, Jennifer

    2016-01-01

    A method for the synthesis of electroactive polymers is demonstrated, starting with the synthesis of extended conjugation monomers using a three-step process that finishes with Negishi coupling. Negishi coupling is a cross-coupling process in which a chemical precursor is first lithiated, followed by transmetallation with ZnCl2. The resultant organozinc compound can be coupled to a dibrominated aromatic precursor to give the conjugated monomer. Polymer films can be prepared via electropolymerization of the monomer and characterized using cyclic voltammetry and ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy. Nanoparticles (NPs) are prepared via emulsion polymerization of the monomer using a two-surfactant system to yield an aqueous dispersion of the polymer NPs. The NPs are characterized using dynamic light scattering, electron microscopy, and UV-Vis-NIR-spectroscopy. Cytocompatibility of NPs is investigated using the cell viability assay. Finally, the NP suspensions are irradiated with a NIR laser to determine their effectiveness as potential materials for photothermal therapy (PTT). PMID:26780244

  4. Exocytosis of gold nanoparticle and photosensitizer from cancer cells and their effects on photodynamic and photothermal processes.

    PubMed

    He, Yulu; Hua, Wei-Hsiang; Low, Meng-Chun; Tsai, Yu-Hsuan; Cai, Cheng-Jin; Chiang, Hsin-Chun; Yu, Jian-He; Hsiao, Jen-Hung; Tseng, Po-Hao; Kiang, Yean-Woei; Yang, C C; Zhang, Zhenxi

    2018-06-08

    We first illustrate the faster decrease of the photothermal (PT) effect with the delay time of laser treatment, in which the illumination of a 1064 nm laser effectively excites the localized surface plasmon (LSP) resonance of cell-up-taken gold nanoring (NRI) linked with a photosensitizer (PS), when compared with the photodynamic (PD) effect produced by the illumination of a 660 nm laser for effective PS excitation. The measurement results of the metal contents of Au NRI and PS based on inductively coupled plasma mass spectroscopy and the PS fluorescence intensity based on flow cytometry show that the linkage of NRI and PS is rapidly broken for releasing PS through the effect of glutathione in lysosome after cell uptake. Meanwhile, NRI escapes from a cell with a high rate such that the PT effect decays fast while the released PS can stay inside a cell longer for producing a prolonged PD effect. The effective delivery of PS through the linkage with Au NRI for cell uptake and the advantageous effect of LSP resonance at a PS absorption wavelength on the PD process are also demonstrated.

  5. Exocytosis of gold nanoparticle and photosensitizer from cancer cells and their effects on photodynamic and photothermal processes

    NASA Astrophysics Data System (ADS)

    He, Yulu; Hua, Wei-Hsiang; Low, Meng-Chun; Tsai, Yu-Hsuan; Cai, Cheng-Jin; Chiang, Hsin-Chun; Yu, Jian-He; Hsiao, Jen-Hung; Tseng, Po-Hao; Kiang, Yean-Woei; Yang, C. C.; Zhang, Zhenxi

    2018-06-01

    We first illustrate the faster decrease of the photothermal (PT) effect with the delay time of laser treatment, in which the illumination of a 1064 nm laser effectively excites the localized surface plasmon (LSP) resonance of cell-up-taken gold nanoring (NRI) linked with a photosensitizer (PS), when compared with the photodynamic (PD) effect produced by the illumination of a 660 nm laser for effective PS excitation. The measurement results of the metal contents of Au NRI and PS based on inductively coupled plasma mass spectroscopy and the PS fluorescence intensity based on flow cytometry show that the linkage of NRI and PS is rapidly broken for releasing PS through the effect of glutathione in lysosome after cell uptake. Meanwhile, NRI escapes from a cell with a high rate such that the PT effect decays fast while the released PS can stay inside a cell longer for producing a prolonged PD effect. The effective delivery of PS through the linkage with Au NRI for cell uptake and the advantageous effect of LSP resonance at a PS absorption wavelength on the PD process are also demonstrated.

  6. Synthesis and In Vitro Performance of Polypyrrole-Coated Iron-Platinum Nanoparticles for Photothermal Therapy and Photoacoustic Imaging

    NASA Astrophysics Data System (ADS)

    Phan, Thi Tuong Vy; Bui, Nhat Quang; Moorthy, Madhappan Santha; Lee, Kang Dae; Oh, Junghwan

    2017-10-01

    Multifunctional nano-platform for the combination of photo-based therapy and photoacoustic imaging (PAI) for cancer treatment has recently attracted much attention to nanotechnology development. In this study, we developed iron-platinum nanoparticles (FePt NPs) with the polypyrrole (PPy) coating as novel agents for combined photothermal therapy (PTT) and PAI. The obtained PPy-coated FePt NPs (FePt@PPy NPs) showed excellent biocompatibility, photothermal stability, and high near-infrared (NIR) absorbance for the combination of PTT and PAI. In vitro investigation experimentally demonstrated the effectiveness of FePt@PPy NPs in killing cancer cells with NIR laser irradiation. Moreover, the phantom test of PAI used in conjunction with FePt@PPy NPs showed a strong photoacoustic signal. Thus, the novel FePt@PPy NPs could be considered as promising multifunctional nanoparticles for further applications of photo-based diagnosis and treatment.

  7. Simple D-A-D Structural Bisbithiophenyl Diketopyrrolopyrrole (TDPP) as Efficient Bioimaging and Photothermal Agents.

    PubMed

    Zong, Shan; Wang, Xin; Lin, Wenhai; Liu, Shi; Zhang, Wei

    2018-06-20

    Design and synthesis of biocompatible and multi-functional photothermal agents is crucial for effective cancer phototherapy. In order to achieve this ambition, simple D-A-D structural bisbithiophenyl diketopyrrolopyrrole (TDPP) was fabricated. In this molecule, the donor, 2-thiophenylboric acid, was conjugated via Suzuki coupling reaction, which could expand the emission wavelength to the red region of the spectrum. TDPP could self-assemble into stable and uniform nanoparticles (TDPP NPs) in the assistant of amphiphilic Pluronic F-127 polymer. Exposing the TDPP NPs (100 µg/mL) aqueous dispersion to 638 nm (0.61 W/cm2) laser irradiation resulted in a temperature elevation of approximately 30 oC within 5 min, which is high enough for inducing the cytotoxicity and tumor inhibition. Because of the bathochromic shift absorption of TDPP NPs in water, TDPP NPs could also act as a contrast agent for near-infrared fluorescence imaging (NIRF) to visualize the drug distribution in vivo. Coupled with the infrared thermal imaging properties of the photothermal agent, TDPP NPs were proved to be a multifunctional theranostic agent for dual-modal imaging-guided phototherapy.

  8. Combined chemo- and photo-thermal therapy delivered by multifunctional theranostic gold nanorod-loaded microcapsules

    NASA Astrophysics Data System (ADS)

    Chen, Haiyan; di, Yingfeng; Chen, Dan; Madrid, Kyle; Zhang, Min; Tian, Caiping; Tang, Liping; Gu, Yueqing

    2015-05-01

    A polyelectrolyte microcapsule-based, cancer-targeting, and controlled drug delivery system has been developed as a multifunctional theranostic agent for synergistic cancer treatment. This new system, called FA-MC@GNR, is composed of folic acid (FA)-modified, multi-layered, hollow microcapsules loaded with gold nanorods (GNRs), and undergoes thermal degradation under near infrared (NIR) light. Either an NIR dye (MPA) or anti-cancer drug (doxorubicin, DOX) was loaded into the microcapsules via physical adsorption, yielding FA-MC@GNRs/MPA or FA-MC@GNRs/DOX, both of which exhibit no obvious toxicity, high stability, and remarkably improved tumor-targeting capabilities in vivo. Utilizing the strong NIR absorption of FA-MC@GNRs/DOX, we demonstrate the system's ability to simultaneously elicit photothermal therapy and controlled chemotherapy, achieving synergistic cancer treatment both in vitro cellular and in vivo animal experiments. Our study presents a new type of multifunctional micro-carrier for the delivery of chemotherapeutic drugs and photothermal agents, which has been shown to be an effective therapeutic approach for combined cancer treatment.

  9. Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy.

    PubMed

    Yu, Xinghua; Cai, Xingke; Cui, Haodong; Lee, Seung-Wuk; Yu, Xue-Feng; Liu, Bilu

    2017-11-23

    Titanium carbide MXene quantum dots (QDs) were synthesized using an effective fluorine-free method as a biocompatible and highly efficient nanoagent for photothermal therapy (PTT) applications. In contrast to the traditional, hazardous and time-consuming process of HF pretreatment, our fluorine-free method is safe and simple. More importantly, abundant Al oxoanions were found to be modified on the MXene QD surface by the fluorine-free method, which endowed the QDs with strong and broad absorption in the NIR region. As a result, the as-prepared MXene QDs exhibited an extinction coefficient as large as 52.8 Lg -1 cm -1 at 808 nm and a photothermal conversion efficiency as high as 52.2%. Both the values are among the best reported so far. The as-prepared MXene QDs achieved simultaneous photoacoustic (PA) imaging and the remarkable PTT effect of tumors. Moreover, MXene QDs showed great biocompatibility without causing noticeable toxicity in vitro and in vivo, indicating their high potential for clinical applications.

  10. Unexpected formation of gold nanoflowers by a green synthesis method as agents for a safe and effective photothermal therapy.

    PubMed

    Yang, Da-Peng; Liu, Xuan; Teng, Choon Peng; Owh, Cally; Win, Khin Yin; Lin, Ming; Loh, Xian Jun; Wu, Yun-Long; Li, Zibiao; Ye, Enyi

    2017-10-26

    Star fruit (Averrhoa carambola) juice rich in vitamin C and polyphenolic antioxidants was used to synthesize branched gold nanoflowers. These biocompatible and stable gold nanoflowers show strong near-infrared absorption. They are successfully demonstrated to be highly efficient for both in vitro and in vivo photothermal therapy by using an 808 nm laser.

  11. Surface Chemistry Manipulation of Gold Nanorods Displays High Cellular Uptake In Vitro While Preserving Optical Properties for Bio-Imaging and Photo-Thermal Applications

    DTIC Science & Technology

    2016-03-28

    PROPERTIES FOR BIO -IMAGING AND PHOTO-THERMAL APPLICATIONS ANTHONY B. POLITO III, Maj, USAF, BSC, PhD, MT(ASCP)SBB March 2016 Final Report for March...HIGH CELLULAR UPTAKE IN VITRO WHILE PRESERVING OPTICAL PROPERTIES FOR BIO -IMAGING AND PHOTO-THERMAL APPLICATIONS. 5a. CONTRACT NUMBER 5b...These findings identify MTAB-TA GNRs as prime candidates for use in nano-based bio -imaging and photo-thermal applications. 15. SUBJECT TERMS

  12. Facile preparation of uniform FeSe2 nanoparticles for PA/MR dual-modal imaging and photothermal cancer therapy

    NASA Astrophysics Data System (ADS)

    Fu, Tingting; Chen, Yuyan; Hao, Jiali; Wang, Xiaoyong; Liu, Gang; Li, Yonggang; Liu, Zhuang; Cheng, Liang

    2015-12-01

    Recently, magnetic photothermal nanomaterials have emerged as a new class of bio-nanomaterials for application in cancer diagnosis and therapy. Hence, we developed a new kind of magnetic nanomaterials, iron diselenide (FeSe2) nanoparticles, for multimodal imaging-guided photothermal therapy (PTT) to improve the efficacy of cancer treatment. By controlling the reaction time and temperature, FeSe2 nanoparticles were synthesized by a simple solution-phase method. After modification with polyethylene glycol (PEG), the obtained FeSe2-PEG nanoparticles showed high stability under various physiological conditions. FeSe2-PEG could serve as a T2-weighted magnetic resonance (MR) imaging contrast agent because of its strong superparamagnetic properties, with its r2 relaxivity determined to be 133.38 mM-1 S-1, a value higher than that of the clinically used Feridex. On the other hand, with high absorbance in the near-infrared (NIR) region, FeSe2-PEG also appeared to be a useful contrast agent for photoacoustic imaging (PA) as well as an effective photothermal agent for PTT cancer treatment, as demonstrated in our animal tumor model experiments. Moreover, long-term toxicity tests have proven that FeSe2-PEG nanoparticles after systematic administration rendered no appreciable toxicity to the treated animals, and could be gradually excreted from the major organs of mice. Our work indicates that FeSe2-PEG nanoparticles would be a new class of theranostic agents promising for application in bioimaging and cancer therapy.Recently, magnetic photothermal nanomaterials have emerged as a new class of bio-nanomaterials for application in cancer diagnosis and therapy. Hence, we developed a new kind of magnetic nanomaterials, iron diselenide (FeSe2) nanoparticles, for multimodal imaging-guided photothermal therapy (PTT) to improve the efficacy of cancer treatment. By controlling the reaction time and temperature, FeSe2 nanoparticles were synthesized by a simple solution-phase method. After

  13. Characterization of micron-sized, optical coating defects by photothermal deflection microscopy

    NASA Astrophysics Data System (ADS)

    Abate, J. A.; Schmid, A. W.; Guardalben, M. G.; Smith, D. J.; Jacobs, S. D.

    1984-04-01

    Information about the localized absorbing defects in optical thin films is required for a better understanding of laser induced damage. Photothermal deflection microscopy offers a nondestructive optical diagnostic which yields spatially resolved absorption data on simple and multiple layer AR and HR dielectric coatings. The computer controlled apparatus used to generate absorption maps of dielectric thin films and an experiment in which a partial correlation between localized absorption sites and damage caused by nanosecond laser irradiation at 351 nm is established are described. An absolute calibration of absorption for our measurement technique is presented here. Micron sized absorbtive defects of Cu were introduced into our coatings to provide a means of calibration. Also presented here are some preliminary data on the modification of the absorption signatures measured by photothermal deflection as a function of the location of the defect within the coating layers.

  14. Phase sensitive optical coherence microscopy for photothermal imaging of gold nanorods

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Podoleanu, Adrian G.; Dobre, George

    2018-03-01

    We describe a swept source based phase sensitive optical coherence microscopy (OCM) system for photothermal imaging of gold nanorods (GNR). The phase sensitive OCM system employed in the study has a displacement sensitivity of 0.17 nm to vibrations at single frequencies below 250 Hz. We demonstrate the generation of phase maps and confocal phase images. By displaying the difference between successive confocal phase images, we perform the confocal photothermal imaging of accumulated GNRs behind a glass coverslip and behind the scattering media separately. Compared with two-photon luminescence (TPL) detection techniques reported in literature, the technique in this study has the advantage of a simplified experimental setup and provides a more efficient method for imaging the aggregation of GNR. However, the repeatability performance of this technique suffers due to jitter noise from the swept laser source.

  15. Gold Nanoantenna-Mediated Photothermal Drug Delivery from Thermosensitive Liposomes in Breast Cancer.

    PubMed

    Ou, Yu-Chuan; Webb, Joseph A; Faley, Shannon; Shae, Daniel; Talbert, Eric M; Lin, Sharon; Cutright, Camden C; Wilson, John T; Bellan, Leon M; Bardhan, Rizia

    2016-08-31

    In this work, we demonstrate controlled drug delivery from low-temperature-sensitive liposomes (LTSLs) mediated by photothermal heating from multibranched gold nanoantennas (MGNs) in triple-negative breast cancer (TNBC) cells in vitro. The unique geometry of MGNs enables the generation of mild hyperthermia (∼42 °C) by converting near-infrared light to heat and effectively delivering doxorubicin (DOX) from the LTSLs in breast cancer cells. We confirmed the cellular uptake of MGNs by using both fluorescence confocal Z-stack imaging and transmission electron microscopy (TEM) imaging. We performed a cellular viability assay and live/dead cell fluorescence imaging of the combined therapeutic effects of MGNs with DOX-loaded LTSLs (DOX-LTSLs) and compared them with free DOX and DOX-loaded non-temperature-sensitive liposomes (DOX-NTSLs). Imaging of fluorescent live/dead cell indicators and MTT assay outcomes both demonstrated significant decreases in cellular viability when cells were treated with the combination therapy. Because of the high phase-transition temperature of NTSLs, no drug delivery was observed from the DOX-NTSLs. Notably, even at a low DOX concentration of 0.5 μg/mL, the combination treatment resulted in a higher (33%) cell death relative to free DOX (17% cell death). The results of our work demonstrate that the synergistic therapeutic effect of photothermal hyperthermia of MGNs with drug delivery from the LTSLs can successfully eradicate aggressive breast cancer cells with higher efficacy than free DOX by providing a controlled light-activated approach and minimizing off-target toxicity.

  16. Gold Nanoantenna-Mediated Photothermal Drug Delivery from Thermosensitive Liposomes in Breast Cancer

    PubMed Central

    2016-01-01

    In this work, we demonstrate controlled drug delivery from low-temperature-sensitive liposomes (LTSLs) mediated by photothermal heating from multibranched gold nanoantennas (MGNs) in triple-negative breast cancer (TNBC) cells in vitro. The unique geometry of MGNs enables the generation of mild hyperthermia (∼42 °C) by converting near-infrared light to heat and effectively delivering doxorubicin (DOX) from the LTSLs in breast cancer cells. We confirmed the cellular uptake of MGNs by using both fluorescence confocal Z-stack imaging and transmission electron microscopy (TEM) imaging. We performed a cellular viability assay and live/dead cell fluorescence imaging of the combined therapeutic effects of MGNs with DOX-loaded LTSLs (DOX-LTSLs) and compared them with free DOX and DOX-loaded non-temperature-sensitive liposomes (DOX-NTSLs). Imaging of fluorescent live/dead cell indicators and MTT assay outcomes both demonstrated significant decreases in cellular viability when cells were treated with the combination therapy. Because of the high phase-transition temperature of NTSLs, no drug delivery was observed from the DOX-NTSLs. Notably, even at a low DOX concentration of 0.5 μg/mL, the combination treatment resulted in a higher (33%) cell death relative to free DOX (17% cell death). The results of our work demonstrate that the synergistic therapeutic effect of photothermal hyperthermia of MGNs with drug delivery from the LTSLs can successfully eradicate aggressive breast cancer cells with higher efficacy than free DOX by providing a controlled light-activated approach and minimizing off-target toxicity. PMID:27656689

  17. Multifunctional manganese-doped Prussian blue nanoparticles for two-photon photothermal therapy and magnetic resonance imaging.

    PubMed

    Ali, Lamiaa M A; Mathlouthi, Emna; Kajdan, Marilyn; Daurat, Morgane; Long, Jérôme; Sidi-Boulenouar, Rahima; Cardoso, Maïda; Goze-Bac, Christophe; Amdouni, Nourredine; Guari, Yannick; Larionova, Joulia; Gary-Bobo, Magali

    2018-06-01

    Here we demonstrate for the first time that Mn 2+ -doped Prussian blue nanoparticles of c.a. 70 nm act as effective agents for photothermal therapy under two-photon excitation with an almost total eradication of malignant cells (97 and 98%) at a concentration of 100 μg mL -1 24 h after NIR excitation. This effect combined with interesting longitudinal NMR relaxivity values offer new perspectives for effective imaging and cancer treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Accelerated Testing Of Photothermal Degradation Of Polymers

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Liang, Ranty Hing; Tsay, Fun-Dow

    1989-01-01

    Electron-spin-resonance (ESR) spectroscopy and Arrhenius plots used to determine maximum safe temperature for accelerated testing of photothermal degradation of polymers. Aging accelerated by increasing illumination, temperature, or both. Results of aging tests at temperatures higher than those encountered in normal use valid as long as mechanism of degradation same throughout range of temperatures. Transition between different mechanisms at some temperature identified via transition between activation energies, manifesting itself as change in slope of Arrhenius plot at that temperature.

  19. Indocyanine Green-Loaded Polydopamine-Reduced Graphene Oxide Nanocomposites with Amplifying Photoacoustic and Photothermal Effects for Cancer Theranostics.

    PubMed

    Hu, Dehong; Zhang, Jingnan; Gao, Guanhui; Sheng, Zonghai; Cui, Haodong; Cai, Lintao

    2016-01-01

    Photoacoustic (PA) imaging and photothermal therapy (PTT) as light-induced theranostic platforms have been attracted much attention in recent years. However, the development of highly efficient and integrated phototheranostic nanoagents for amplifying PA imaging and PTT treatments poses great challenges. Here, we report a novel phototheranostic nanoagent using indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites (ICG-PDA-rGO) with amplifying PA and PTT effects for cancer theranostics. The results demonstrate that the PDA layer coating on the surface of rGO could effectively absorb a large number of ICG molecules, quench ICG's fluorescence, and enhance the PDA-rGO's optical absorption at 780 nm. The obtained ICG-PDA-rGO exhibits stronger PTT effect and higher PA contrast than that of pure GO and PDA-rGO. After PA imaging-guided PTT treatments, the tumors in 4T1 breast subcutaneous and orthotopic mice models are suppressed completely and no treatment-induced toxicity being observed. It illustrates that the ICG-PDA-rGO nanocomposites constitute a new class of theranostic nanomedicine for amplifying PA imaging and PTT treatments.

  20. Polydopamine-Functionalized CA-(PCL-ran-PLA) Nanoparticles for Target Delivery of Docetaxel and Chemo-photothermal Therapy of Breast Cancer

    PubMed Central

    Kong, Na; Deng, Mei; Sun, Xiu-Na; Chen, Yi-Ding; Sui, Xin-Bing

    2018-01-01

    Current limitations of cancer therapy include the lack of effective strategy for target delivery of chemotherapeutic drugs, and the difficulty of achieving significant efficacy by single treatment. Herein, we reported a synergistic chemo-photothermal strategy based on aptamer (Apt)-polydopamine (pD) functionalized CA-(PCL-ran-PLA) nanoparticles (NPs) for effective delivery of docetaxel (DTX) and enhanced therapeutic effect. The developed DTX-loaded Apt-pD-CA-(PCL-ran-PLA) NPs achieved promising advantages, such as (i) improved drug loading content (LC) and encapsulation efficiency (EE) initiated by star-shaped copolymer CA-(PCL-ran-PLA); (ii) effective target delivery of drugs to tumor sites by incorporating AS1411 aptamers; (iii) significant therapeutic efficacy caused by synergistic chemo-photothermal treatment. In addition, the pD coating strategy with simple procedures could address the contradiction between targeting modification and maintaining formerly excellent bio-properties. Therefore, with excellent bio-properties and simple preparation procedures, the DTX-loaded Apt-pD-CA-(PCL-ran-PLA) NPs effectively increased the local drug concentration in tumor sites, minimized side effects, and significantly eliminated tumors, indicating the promising application of these NPs for cancer therapy. PMID:29527167

  1. One-step preparation of a water-soluble carbon nanohorn/phthalocyanine hybrid for dual-modality photothermal and photodynamic therapy.

    PubMed

    Jiang, Bang-Ping; Hu, Lan-Fang; Shen, Xing-Can; Ji, Shi-Chen; Shi, Zujin; Liu, Chan-Juan; Zhang, Li; Liang, Hong

    2014-10-22

    The biomedical applications of carbon nanomaterials, especially integrating noninvasive photothermal therapy (PTT) and photodynamic therapy (PDT), into a single system have enormous potential in cancer therapy. Herein, we present a novel and facile one-step method for the preparation of water-soluble single-walled carbon nanohorns (SWNHs) and metal phthalocyanines (MPc) hybrid for PTT and PDT. The hydrophilic MPc, tetrasulfonic acid tetrasodium salt copper phthalocyanine (TSCuPc), is coated on the surface of SWNHs via noncovalent π-π interaction using the sonication method. In this PTT/PDT nanosystem, SWNHs acts as a photosensitizer carrier and PTT agent, while TSCuPc acts as a hydrophilic and PDT agent. The EPR results demonstrated that the generated reactive oxygen species (ROS) not only from the photoinduced electron transfer process from TSCuPc to SWNHs but also from SWNHs without exciting TSCuPc to its excited state. The test of photothermal conversion proved that not only do SWNHs contribute to the photothermal therapy (PTT) effect, TSCuPc probably also contributes to that when it coats on the surface of SWNHs upon exposure to a 650-nm laser. More importantly, the results of in vitro cell viability revealed a significantly enhanced anticancer efficacy of combined noninvasive PTT/PDT, indicating that the SWNHs-TSCuPc nanohybrid is a hopeful candidate material for developing an efficient and biocompatible nanoplatform for biomedical application.

  2. Engineering on-chip nanoporous gold material libraries via precision photothermal treatment

    NASA Astrophysics Data System (ADS)

    Chapman, Christopher A. R.; Wang, Ling; Biener, Juergen; Seker, Erkin; Biener, Monika M.; Matthews, Manyalibo J.

    2015-12-01

    Libraries of nanostructured materials on a single chip are a promising platform for high throughput and combinatorial studies of structure-property relationships in the fields of physics and biology. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a nanostructured material specifically suited for such studies because of its self-similar thermally induced coarsening behavior. However, traditional heat application techniques for the modification of np-Au are bulk processes that cannot be used to generate a library of different pore sizes on a single chip. Here, laser micro-processing offers an attractive solution to this problem by providing a means to apply energy with high spatial and temporal resolution. In the present study we use finite element multiphysics simulations to predict the effects of laser mode (continuous-wave vs. pulsed) and thermal conductivity of the supporting substrate on the local np-Au film temperatures during photothermal annealing. Based on these results we discuss the mechanisms by which the np-Au network is coarsened. Thermal transport simulations predict that continuous-wave mode laser irradiation of np-Au thin films on a silicon substrate supports the widest range of morphologies that can be created through photothermal annealing of np-Au. Using the guidance provided by simulations, we successfully fabricate an on-chip material library consisting of 81 np-Au samples of 9 different morphologies for use in the parallel study of structure-property relationships.Libraries of nanostructured materials on a single chip are a promising platform for high throughput and combinatorial studies of structure-property relationships in the fields of physics and biology. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a nanostructured material specifically suited for such studies because of its self-similar thermally induced coarsening behavior. However, traditional heat application techniques for the modification

  3. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution

    PubMed Central

    Zhang, Delong; Li, Chen; Zhang, Chi; Slipchenko, Mikhail N.; Eakins, Gregory; Cheng, Ji-Xin

    2016-01-01

    Chemical contrast has long been sought for label-free visualization of biomolecules and materials in complex living systems. Although infrared spectroscopic imaging has come a long way in this direction, it is thus far only applicable to dried tissues because of the strong infrared absorption by water. It also suffers from low spatial resolution due to long wavelengths and lacks optical sectioning capabilities. We overcome these limitations through sensing vibrational absorption–induced photothermal effect by a visible laser beam. Our mid-infrared photothermal (MIP) approach reached 10 μM detection sensitivity and submicrometer lateral spatial resolution. This performance has exceeded the diffraction limit of infrared microscopy and allowed label-free three-dimensional chemical imaging of live cells and organisms. Distributions of endogenous lipid and exogenous drug inside single cells were visualized. We further demonstrated in vivo MIP imaging of lipids and proteins in Caenorhabditis elegans. The reported MIP imaging technology promises broad applications from monitoring metabolic activities to high-resolution mapping of drug molecules in living systems, which are beyond the reach of current infrared microscopy. PMID:27704043

  4. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution.

    PubMed

    Zhang, Delong; Li, Chen; Zhang, Chi; Slipchenko, Mikhail N; Eakins, Gregory; Cheng, Ji-Xin

    2016-09-01

    Chemical contrast has long been sought for label-free visualization of biomolecules and materials in complex living systems. Although infrared spectroscopic imaging has come a long way in this direction, it is thus far only applicable to dried tissues because of the strong infrared absorption by water. It also suffers from low spatial resolution due to long wavelengths and lacks optical sectioning capabilities. We overcome these limitations through sensing vibrational absorption-induced photothermal effect by a visible laser beam. Our mid-infrared photothermal (MIP) approach reached 10 μM detection sensitivity and submicrometer lateral spatial resolution. This performance has exceeded the diffraction limit of infrared microscopy and allowed label-free three-dimensional chemical imaging of live cells and organisms. Distributions of endogenous lipid and exogenous drug inside single cells were visualized. We further demonstrated in vivo MIP imaging of lipids and proteins in Caenorhabditis elegans . The reported MIP imaging technology promises broad applications from monitoring metabolic activities to high-resolution mapping of drug molecules in living systems, which are beyond the reach of current infrared microscopy.

  5. Handbook of photothermal test data on encapsulant materials

    NASA Astrophysics Data System (ADS)

    Liang, R. H.; Oda, K. L.; Chung, S. Y.; Smith, M. V.; Gupta, A.

    1983-05-01

    Laboratory tests performed to characterize candidate encapsulation materials with respect to changes in their physical and chemical properties caused by photothermal aging are described. Several key material properties relating directly to material degradation and deterioration of performance were identified and were monitored as functions of aging conditions and time. A status report on accelerated testing activities is provided and experimental data are presented. It will be updated periodically as more data become available.

  6. Handbook of photothermal test data on encapsulant materials

    NASA Technical Reports Server (NTRS)

    Liang, R. H.; Oda, K. L.; Chung, S. Y.; Smith, M. V.; Gupta, A.

    1983-01-01

    Laboratory tests performed to characterize candidate encapsulation materials with respect to changes in their physical and chemical properties caused by photothermal aging are described. Several key material properties relating directly to material degradation and deterioration of performance were identified and were monitored as functions of aging conditions and time. A status report on accelerated testing activities is provided and experimental data are presented. It will be updated periodically as more data become available.

  7. Se@SiO2-FA-CuS nanocomposites for targeted delivery of DOX and nano selenium in synergistic combination of chemo-photothermal therapy.

    PubMed

    Wang, Yeying; Liu, Xijian; Deng, Guoying; Sun, Jian; Yuan, Haikuan; Li, Qi; Wang, Qiugeng; Lu, Jie

    2018-02-08

    In this study, a versatile tumor-targeted and multi-stimuli-responsive drug delivery vehicle (Se particle@porous silica-folic acid-copper sulfide/doxorubicin (Se@SiO 2 -FA-CuS/DOX)) was fabricated for combined photothermal therapy with chemotherapy in cancer treatment. Due to excellent targeting ability, the Se@SiO 2 -FA-CuS/DOX nanocomposites actively accumulated in tumor tissues and thus provided photothermal therapy under NIR irradiation and chemotherapy through the release of DOX and Se. Owing to the synergistic effect of chemotherapy (Se and DOX) and photothermal therapy, the Se@SiO 2 -FA-CuS/DOX nanocomposites could efficiently inhibit cancer cells both in vitro and in vivo and even completely eliminate tumors. Moreover, as the toxicity of DOX could be reduced by Se, the treatment using Se@SiO 2 -FA-CuS/DOX nanocomposites exhibited no appreciable adverse reactions. Thus, the Se@SiO 2 -FA-CuS/DOX nanocomposites have great potential as a multifunctional nanoplatform in future clinical applications.

  8. Enhanced photomechanical response of a Ni-Ti shape memory alloy coated with polymer-based photothermal composites

    NASA Astrophysics Data System (ADS)

    Perez-Zúñiga, M. G.; Sánchez-Arévalo, F. M.; Hernández-Cordero, J.

    2017-10-01

    A simple way to enhance the activation of shape memory effects with light in a Ni-Ti alloy is demonstrated. Using polydimethylsiloxane-carbon nanopowder (PDMS+CNP) composites as coatings, the one-way shape memory effect (OWSME) of the alloy can be triggered using low power IR light from a laser diode. The PDMS+CNP coatings serve as photothermal materials capable to absorb light, and subsequently generate and dissipate heat in a highly efficient manner, thereby reducing the optical powers required for triggering the OWSME in the Ni-Ti alloy. Experimental results with a cantilever flexural test using both, bare Ni-Ti and coated samples, show that the PDMS+CNP coatings perform as thermal boosters, and therefore the temperatures required for phase transformation in the alloy can be readily obtained with low laser powers. It is also shown that the two-way shape memory effect (TWSME) can be set in the Ni-Ti alloy through cycling the TWSME by simply modulating the laser diode signal. This provides a simple means for training the material, yielding a light driven actuator capable to provide forces in the mN range. Hence, the use of photothermal coatings on Ni-Ti shape memory alloys may offer new possibilities for developing light-controlled smart actuators.

  9. The synergistic effect of photodynamic therapy and photothermal therapy in the presence of gold-gold sulfide nanoshells conjugated Indocyanine green on HeLa cells.

    PubMed

    Ghorbani, Farzaneh; Attaran-Kakhki, Neda; Sazgarnia, Ameneh

    2017-03-01

    Photodynamic therapy (PDT) and photothermal therapy (PTT) are two known optical remedies of cancer. PTT can be combined with other therapies. One of the limitations of optical therapies is the penetration of light into biological tissues, which reduces its effectiveness due to usage of photosensitizers and PTT agents, which are absorbed in the NIR region that provides the maximum penetration. For instance, Indocyanine green (ICG) serves as a photosensitizer and Gold nanostructures as agents for PTT. GGS is a gold nanoshell with two absorption peaks in the NIR and visible regions. The aim of this study is to evaluate the synergistic effect of PDT and PTT in the presence of GGS conjugated with ICG. After synthesizing GGS, ICG was conjugated with GGS. The specifications and cytotoxicity of agents were identified. Cells were irradiated by an 808nm laser with or without the agents and three laser outputs were achieved, with each having four different exposure times. The viability of treated cells was determined via MTT assay. The irradiation of the laser did not produce any significant effect by itself or in the presence of GGS. The maximum cell death recorded for GGS, ICG and GGS-ICG were 15±7%, 50±3% and 31±3% respectively. ICG and GGS-ICG differs significantly for exposures higher than 2250J/cm 2 . The conjugate was provided through a simple process and a greater chemical stability compared to GGS was achieved. Moreover, it induced a stronger photodynamic and photothermal effect on the cells. This is a promising result which can help enhance the effectiveness of a minimally invasive treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Glutathione responsive micelles incorporated with semiconducting polymer dots and doxorubicin for cancer photothermal-chemotherapy

    NASA Astrophysics Data System (ADS)

    Cai, Zhixiong; Zhang, Da; Lin, Xinyi; Chen, Yunzhu; Wu, Ming; Wei, Zuwu; Zhang, Zhenxi; Liu, Xiaolong; Yao, Cuiping

    2017-10-01

    Nanoplatform integrated with photothermal therapy (PTT) and chemotherapy has been recognized a promising agent for enhancing cancer therapeutic outcomes, but still suffer from less controllability for optimizing their synergistic effects. We fabricated glutathione (GSH) responsive micelles incorporated with semiconducting polymer dots and doxorubicin (referred as SPDOX NPs) for combining PTT with chemotherapy to enhance cancer therapeutic efficiency. These micelles, with excellent water dispersibility, comprises of three distinct functional components: (1) the monomethoxy-poly(ethylene glycol)-S-S-hexadecyl (mPEG-S-S-C16), which forms the micelles, can render hydrophobic substances water-soluble and improve the colloidal stability; (2) disulfide linkages can be cleaved in a reductive environment for tumor specific drug release due to the high GSH concentrations of tumor micro-environment; (3) PCPDTBT dots and anti-cancer drug DOX that are loaded inside the hydrophobic core of the micelle can be applied to simultaneously perform PTT and chemotherapy to achieve significantly enhanced tumor killing efficiency both in vitro and in vivo. In summary, our studies demonstrated that our SPDOX NPs with simultaneous photothermal-chemotherapy functions could be a promising platform for a tumor specific responsive drug delivery system.

  11. Shape-Controlled Synthesis of Au Nanostructures Using EDTA Tetrasodium Salt and Their Photothermal Therapy Applications

    PubMed Central

    Jang, Youngjin; Lee, Nohyun; Kim, Jeong Hyun; Piao, Yuanzhe

    2018-01-01

    Tuning the optical properties of Au nanostructures is of paramount importance for scientific interest and has a wide variety of applications. Since the surface plasmon resonance properties of Au nanostructures can be readily adjusted by changing their shape, many approaches for preparing Au nanostructures with various shapes have been reported to date. However, complicated steps or the addition of several reagents would be required to achieve shape control of Au nanostructures. The present work describes a facile and effective shape-controlled synthesis of Au nanostructures and their photothermal therapy applications. The preparation procedure involved the reaction of HAuCl4 and ethylenediaminetetraacetic acid (EDTA) tetrasodium salt, which acted as a reducing agent and ligand, at room temperature without the need for any toxic reagent or additives. The morphology control from spheres to branched forms and nanowire networks was easily achieved by varying the EDTA concentration. Detailed investigations revealed that the four carboxylic groups of the EDTA tetrasodium salt are essential for effective growth and stabilization. The produced Au nanowire networks exhibited a broad absorption band in the near-infrared (NIR) region, thereby showing efficient cancer therapeutic performance by inducing the selective photothermal destruction of cancerous glioblastoma cells (U87MG) under NIR irradiation. PMID:29670020

  12. Gold nanoshelled liquid perfluorocarbon nanocapsules for combined dual modal ultrasound/CT imaging and photothermal therapy of cancer.

    PubMed

    Ke, Hengte; Yue, Xiuli; Wang, Jinrui; Xing, Sen; Zhang, Qian; Dai, Zhifei; Tian, Jie; Wang, Shumin; Jin, Yushen

    2014-03-26

    The integration of multimodal contrast-enhanced diagnostic imaging and therapeutic capabilities could utilize imaging guided therapy to plan the treatment strategy based on the diagnostic results and to guide/monitor the therapeutic procedures. Herein, gold nanoshelled perfluorooctylbromide (PFOB) nanocapsules with PEGylation (PGsP NCs) are constructed by oil-in-water emulsion method to form polymeric PFOB nanocapsules, followed by the formation of PEGylated gold nanoshell on the surface. PGsP NCs could not only provide excellent contrast enhancement for dual modal ultrasound and CT imaging in vitro and in vivo, but also serve as efficient photoabsorbers for photothermal ablation of tumors on xenografted nude mouse model. To our best knowledge, this is the first report of gold nanoshell serving as both CT contrast agents and photoabsorbers for photothermal therapy. The novel multifunctional nanomedicine would be of great value to offer more comprehensive diagnostic information to guide more accurate and effective cancer therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. On-Chip Photothermal Analyte Detection Using Integrated Luminescent Temperature Sensors.

    PubMed

    Pfeiffer, Simon A; Nagl, Stefan

    2017-09-05

    Optical absorbance detection based on attenuated light transmission is limited in sensitivity due to short path lengths in microfluidic and other miniaturized platforms. An alternative is detection using the photothermal effect. Herein we introduce a new kind of photothermal absorbance measurement using integrated luminescent temperature sensor spots inside microfluidic channels. The temperature sensors were photopolymerized inside the channels from NOA 81 UV-curable thiolene prepolymer doped with a tris(1,10-phenanthroline)ruthenium(II) temperature probe. The polymerized sensing structures were as small as 26 ± 3 μm in diameter and displayed a temperature resolution of better than 0.3 K between 20 and 50 °C. The absorbance from 532 nm laser excitation of the food dye Amaranth as a model analyte was quantified using these spots, and the influence of the flow rate, laser power, and concentration was investigated. Calibration yielded a linear relationship between analyte concentration and the temperature signal in the channels. The limit of detection for the azo-dye Amaranth (E123) in this setup was 13 μM. A minimal detectable absorbance of 3.2 × 10 -3 AU was obtained using an optical path length of 125 μm in this initial study. A microreactor with integrated temperature sensors was then employed for an absorbance-based miniaturized nitrite analysis, yielding a detection limit of 26 μM at a total assay time of only 75 s. This technique is very promising for sensitive, and potentially spatially resolved, optical absorbance detection on the micro- and nanoscale.

  14. Application of photothermal effect to manufacture ultrasonic actuators (abstract)

    NASA Astrophysics Data System (ADS)

    Zhang, Shu-yi; Cheng, Li-ping; Shui, Xiu-ji; Yu, Jiong; Dong, Shu-xiang

    2003-01-01

    Photothermal (PT) effect has been applied to manufacture disks [A. C. Tam, a lecture at the Institute of Acoustics, Nanjing University, People's Republic of China (1996)] and magnetic head sliders for disk drives [A. C. Tam, C. C. Poon, and L. Crawforth, Analyt. Sci. 17, s 419 (2001)]. Now we apply the PT effect to manufacture ultrasonic motors (actuators). Recently, the ultrasonic actuators with different ultrasonic modes, such as Rayleigh (surface acoustic) mode, Lamb (plate) mode, etc., have been developed. We have designed and fabricated two rotary motors driven by surface acoustic wave (SAW) with different frequencies, but lower than 30 MHz [L. P. Cheng, G. M. Zhang, S. Y. Zhang, J. Yu, and X. J. Shui, Ultrasonics 39, 591 (2002)]. On the SAW motors (actuators), two Rayleigh wave beams were generated and propagating along the surface of a 128° YK-LiNbO3 substrate in opposite directions with each other as a stator, and a plastic disk with balls distributed along the circle of the disk was as a rotor. For miniaturizing the rotary SAW motors, and increasing the rotation velocity, the SAW frequency must be increased. Then we improve the manufacturing technology of the mechanical structure by PT effect instead of the conventional mechanical processes of the stator and rotor of the motor. A new type of rotary SAW motor (actuator) has been fabricated, in which both SAW beams with opposite propagating directions are excited by two pairs of interdigital transducers with the frequency between 30-50 MHz. In the surface of the stator (128° YX-LiNbO3 substrate), a hole with the depth about 500 μm is impinged by a focused pulsed Nd:YAG laser beam (PT effect) between two SAW propagating ways on the 128° YX-LiNbO3 substrate for fixing the axis of the motor, with the frequency between 30-50 MHz. In the bottom of the rotor (plastic disk), a lot of crown (flange) blocks with the high of 20-30 μm and the diameter of also 20-30 μm can be made by the focused pulsed Nd

  15. Photothermal nanoblade for patterned cell membrane cutting

    PubMed Central

    Wu, Ting-Hsiang; Teslaa, Tara; Teitell, Michael A.; Chiou, Pei-Yu

    2010-01-01

    We report a photothermal nanoblade that utilizes a metallic nanostructure to harvest short laser pulse energy and convert it into a highly localized and specifically shaped explosive vapor bubble. Rapid bubble expansion and collapse punctures a lightly-contacting cell membrane via high-speed fluidic flows and induced transient shear stress. The membrane cutting pattern is controlled by the metallic nanostructure configuration, laser pulse polarization, and energy. Highly controllable, sub-micron sized circular hole pairs to half moon-like, or cat-door shaped, membrane cuts were realized in glutaraldehyde treated HeLa cells. PMID:21164656

  16. Optical and photoacoustic dual-modality imaging guided synergistic photodynamic/photothermal therapies

    NASA Astrophysics Data System (ADS)

    Yan, Xuefeng; Hu, Hao; Lin, Jing; Jin, Albert J.; Niu, Gang; Zhang, Shaoliang; Huang, Peng; Shen, Baozhong; Chen, Xiaoyuan

    2015-01-01

    Phototherapies such as photodynamic therapy (PDT) and photothermal therapy (PTT), due to their specific spatiotemporal selectivity and minimal invasiveness, have been widely investigated as alternative treatments of malignant diseases. Graphene and its derivatives not only have been used as carriers to deliver photosensitizers for PDT, but also as photothermal conversion agents (PTCAs) for PTT. Herein, we strategically designed and produced a novel photo-theranostic platform based on sinoporphyrin sodium (DVDMS) photosensitizer-loaded PEGylated graphene oxide (GO-PEG-DVDMS) for enhanced fluorescence/photoacoustic (PA) dual-modal imaging and combined PDT and PTT. The GO-PEG carrier drastically improves the fluorescence of loaded DVDMS via intramolecular charge transfer. Concurrently, DVDMS significantly enhances the near-infrared (NIR) absorption of GO for improved PA imaging and PTT. The cancer theranostic capability of the as-prepared GO-PEG-DVDMS was carefully investigated both in vitro and in vivo. This novel theranostics is well suited for fluorescence/PA dual-modal imaging and synergistic PDT/PTT.

  17. Photothermal strain imaging

    NASA Astrophysics Data System (ADS)

    Choi, Changhoon; Ahn, Joongho; Jeon, Seungwan; Kim, Chulhong

    2017-07-01

    Vulnerable plaques are the major cause of cardiovascular disease, but they are difficult to detect with conventional intravascular imaging techniques. Techniques are needed to identify plaque vulnerability based on the presence of lipids in plaque. Thermal strain imaging (TSI) is an imaging technique based on ultrasound (US) wave propagation speed, which varies with the medium temperature. In TSI, the strain that occurs during tissue temperature change can be used for lipid detection because it has a different tendency depending on the type of tissue. Here, we demonstrate photothermal strain imaging (pTSI) using an intravascular ultrasound catheter. pTSI is performed by slightly and selectively heating lipid using a relatively inexpensive continuous laser source. We applied a speckle-tracking algorithm to US B-mode images for strain calculations. As a result, the strain produced in porcine fat was different from the strain produced in water-bearing gelatin phantom, which made it possible to distinguish the two. This suggests that pTSI could potentially be a way of differentiating lipids in coronary artery.

  18. Controlled release of bupivacaine using hybrid thermoresponsive nanoparticles activated via photothermal heating.

    PubMed

    Alejo, Teresa; Andreu, Vanesa; Mendoza, Gracia; Sebastian, Victor; Arruebo, Manuel

    2018-08-01

    Near-infrared (NIR) responsive nanoparticles are of great interest in the biomedical field as antennas for photothermal therapy and also as triggers for on-demand drug delivery. The present work reports the preparation of hollow gold nanoparticles (HGNPs) with plasmonic absorption in the NIR region covalently bound to a thermoresponsive polymeric shell that can be used as an on-demand drug delivery system for the release of analgesic drugs. The photothermal heating induced by the nanoparticles is able to produce the collapse of the polymeric shell thus generating the release of the local anesthetic bupivacaine in a spatiotemporally controlled way. Those HGNPs contain a 10 wt.% of polymer and present excellent reversible heating under NIR light excitation. Bupivacaine released at physiological temperature (37 °C) showed a pseudo-zero order release that could be spatiotemporally modified on-demand after applying several pulses of light/temperature above and below the lower critical solution temperature (LCST) of the polymeric shell. Furthermore, the nanomaterials obtained did not displayed detrimental effects on four mammalian cell lines at doses up to 0.2 mg/mL. From the results obtained it can be concluded than this type of hybrid thermoresponsive nanoparticle can be used as an externally activated on-demand drug delivery system. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue.

    PubMed

    Telenkov, Sergey A; Dave, Digant P; Sethuraman, Shriram; Akkin, Taner; Milner, Thomas E

    2004-01-07

    We describe a differential phase low-coherence interferometric probe for non-invasive, quantitative imaging of photothermal phenomena in biological materials. Our detection method utilizes principles of optical coherence tomography with differential phase measurement of interference fringe signals. A dual-channel optical low-coherence probe is used to analyse laser-induced thermoelastic and thermorefractive effects in tissue with micrometre axial resolution and nanometre sensitivity. We demonstrate an application of the technique using tissue phantoms and ex-vivo tissue specimens of rodent dorsal skin.

  20. One-pot synthesis of gold nanostars using plant polyphenols for cancer photoacoustic imaging and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Long; Zheng, Cheng; Zhang, Yun; Yang, Huang-Hao; Liu, Xiaolong; Liu, Jingfeng

    2016-07-01

    Branched plasmonic nanostructures have been found to exhibit strong enhancement of the electromagnetic field surrounding their multi-branched petals. This feature endows them with improved performance in catalysis, surface-enhanced Raman scattering, photoacoustic imaging, and photothermal therapy. Albeit several synthesis techniques have been developed, the precisely controlled growth of highly branched nanostructures with a one-pot surfactant-free procedure is still challenging. Herein, we present a simple seedless route to synthesize gold nanostars (AuNSs) using a natural plant polyphenol, gallic acid (GA), as a reducing and stabilizing agent. The size and shape of AuNSs can be tuned by simply adjusting the amount of added GA. Under the optimum condition, the as-prepared AuNSs with diameters about 100 nm exhibit strong near-infrared absorption, good photothermal efficiency, and high biocompatibility. We demonstrate that AuNSs can be utilized for simultaneous photoacoustic imaging and photothermal therapy in living cancer cells. This study highlights facile synthesized AuNSs could serve as a promising platform for cancer diagnosis and therapy.

  1. Clean Photothermal Heating and Controlled Release from Near-Infrared Dye Doped Nanoparticles without Oxygen Photosensitization.

    PubMed

    Guha, Samit; Shaw, Scott K; Spence, Graeme T; Roland, Felicia M; Smith, Bradley D

    2015-07-21

    The photothermal heating and release properties of biocompatible organic nanoparticles, doped with a near-infrared croconaine (Croc) dye, were compared with analogous nanoparticles doped with the common near-infrared dyes ICG and IR780. Separate formulations of lipid-polymer hybrid nanoparticles and liposomes, each containing Croc dye, absorbed strongly at 808 nm and generated clean laser-induced heating (no production of (1)O2 and no photobleaching of the dye). In contrast, laser-induced heating of nanoparticles containing ICG or IR780 produced reactive (1)O2, leading to bleaching of the dye and also decomposition of coencapsulated payload such as the drug doxorubicin. Croc dye was especially useful as a photothermal agent for laser-controlled release of chemically sensitive payload from nanoparticles. Solution state experiments demonstrated repetitive fractional release of water-soluble fluorescent dye from the interior of thermosensitive liposomes. Additional experiments used a focused laser beam to control leakage from immobilized liposomes with very high spatial and temporal precision. The results indicate that fractional photothermal leakage from nanoparticles doped with Croc dye is a promising method for a range of controlled release applications.

  2. Clean Photothermal Heating and Controlled Release From Near Infrared Dye Doped Nanoparticles Without Oxygen Photosensitization

    PubMed Central

    Guha, Samit; Shaw, Scott K.; Spence, Graeme T.; Roland, Felicia M.; Smith, Bradley D.

    2015-01-01

    The photothermal heating and release properties of biocompatible organic nanoparticles, doped with a near-infrared croconaine (Croc) dye, were compared with analogous nanoparticles doped with the common near-infrared dyes ICG and IR780. Separate formulations of lipid-polymer-hybrid nanoparticles and liposomes, each containing Croc dye, absorbed strongly at 808 nm and generated clean laser-induced heating (no production of 1O2 and no photobleaching of the dye). In contrast, laser-induced heating of nanoparticles containing ICG or IR780 produced reactive 1O2 leading to bleaching of the dye and also decomposition of co-encapsulated payload such as the drug Doxorubicin. Croc dye was especially useful as a photothermal agent for laser controlled release of chemically sensitive payload from nanoparticles. Solution state experiments demonstrated repetitive fractional release of water soluble fluorescent dye from the interior of thermosensitive liposomes. Additional experiments used a focused laser beam to control leakage from immobilized liposomes with very high spatial and temporal precision. The results indicate that fractional photothermal leakage from nanoparticles doped with Croc dye is a promising method for a range of controlled release applications. PMID:26149326

  3. Enhanced photothermal lens using a photonic crystal surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yunfei; Liu, Longju; Zhao, Xiangwei

    2016-08-15

    A photonic crystal (PC)-enhanced photothermal lens (PTL) is demonstrated for the detection of optically thin light absorption materials. The PC-enhanced PTL system is based on a pump-probe scheme consisting of a PC surface, pump laser beam, and probe laser beam. Heated by the pump beam, light absorption materials on the PC surface generate the PTL and cause a substantial change to the guided-mode resonance supported by the PC structure. The change of the PC resonance is detected using the probe laser beam by measuring its reflectivity from the PC surface. When applied to analyze dye molecules deposited on the PCmore » substrate, the developed system is capable of enhancing the PTL signal by 10-fold and reducing the lowest distinguishable concentration by 8-fold, in comparison to measuring without utilizing the PC resonance. The PC-enhanced PTL was also used to detect gold nanoparticles on the PC surface and exhibited a 20-fold improvement of the lowest distinguishable concentration. The PC-enhanced PTL technology offers a potential tool to obtain the absorption signatures of thin films in a broad spectral range with high sensitivity and inexpensive instrumentation. As a result, this technology will enable a broad range of applications of photothermal spectroscopy in chemical analysis and biomolecule sensing.« less

  4. Active photo-thermal self-healing of shape memory polyurethanes

    NASA Astrophysics Data System (ADS)

    Kazemi-Lari, Mohammad A.; Malakooti, Mohammad H.; Sodano, Henry A.

    2017-05-01

    Structural health monitoring (SHM) has received significant interest over the past decade and has led to the development of a wide variety of sensors and signal processing techniques to determine the presence of changes or damage in a structural system. The topic has attracted significant attention due to the safety and performance enhancing benefits as well as the potential lifesaving capabilities offered by the technology. While the resulting systems are capable of sensing their surrounding structural and environmental conditions, few methods exist for using the information to autonomously react and repair or protect the system. One of the major challenges in the future implementation of SHM systems is their coupling with materials that can react to the damage to heal themselves and return to normal function. The coupling of self-healing materials with SHM has the potential to significantly prolong the lifetime of structural systems and extend the required inspection intervals. In the present study, an optical fiber based self-healing system composed of mendable polyurethanes based on the thermally reversible Diels-Alder (DA) reaction is developed. Inspired by health monitoring techniques, active photo-thermal sensing and actuation is achieved using infrared laser light passing through an optical fiber and a thermal power sensor to detect the presence of cracking in the structure. Healing is triggered as the crack propagates through the polymer and fractures the embedded optical fiber. Through a feedback loop, the detected power drop by the sensor is utilized as a signal to heat the cracked area and stimulate the shape memory effect of the polyurethane and the retro-DA reaction. The healing performance results indicate that this novel integrated system can be effectively employed to monitor the incidence of damage and actively heal a crack in the polymer.

  5. Chelator-Free 64Cu-Integrated Gold Nanomaterials for Positron Emission Tomography Imaging Guided Photothermal Cancer Therapy

    PubMed Central

    2015-01-01

    Using positron emission tomography (PET) imaging to monitor and quantitatively analyze the delivery and localization of Au nanomaterials (NMs), a widely used photothermal agent, is essential to optimize therapeutic protocols to achieve individualized medicine and avoid side effects. Coupling radiometals to Au NMs via a chelator faces the challenges of possible detachment of the radiometals as well as surface property changes of the NMs. In this study, we reported a simple and general chelator-free 64Cu radiolabeling method by chemically reducing 64Cu on the surface of polyethylene glycol (PEG)-stabilized Au NMs regardless of their shape and size. Our 64Cu-integrated NMs are proved to be radiochemically stable and can provide an accurate and sensitive localization of NMs through noninvasive PET imaging. We further integrated 64Cu onto arginine-glycine-aspartic acid (RGD) peptide modified Au nanorods (NRs) for tumor theranostic application. These NRs showed high tumor targeting ability in a U87MG glioblastoma xenograft model and were successfully used for PET image-guided photothermal therapy. PMID:25019252

  6. Microcapsules Containing pH-Responsive, Fluorescent Polymer-Integrated MoS2: An Effective Platform for in Situ pH Sensing and Photothermal Heating.

    PubMed

    Park, Chan Ho; Lee, Sangmin; Pornnoppadol, Ghasidit; Nam, Yoon Sung; Kim, Shin-Hyun; Kim, Bumjoon J

    2018-03-14

    We report the design of a novel microcapsule platform for in situ pH sensing and photothermal heating, which involves the encapsulation of pH-responsive polymer-coated molybdenum disulfide (MoS 2 ) nanosheets (NSs) in microcapsules with an aqueous core and a semipermeable polymeric shell. The MoS 2 NSs were functionalized with pH-responsive polymers having fluorescent groups at the distal end to provide pH-sensitive Förster resonance energy transfer (FRET) effect. The pH-responsive polymers were carefully designed to produce a dramatic change in the polymer conformation, which translated to a change in the FRET efficiency near pH 7.0 in response to subtle pH changes, enabling the detection of cancer cells. The pH-sensitive MoS 2 NSs were microfluidically encapsulated within semipermeable membranes to yield microcapsules with a uniform size and composition. The microcapsules retained the MoS 2 NSs without leakage while allowing the diffusion of small ions and water through the membrane. At the same time, the membranes excluded adhesive proteins and lipids in the surrounding media, protecting the encapsulated MoS 2 NSs from deactivation and enabling in situ pH monitoring. Moreover, the encapsulated MoS 2 NSs showed high-performance photothermal heating, rendering the dual-functional microcapsules highly suitable for cancer diagnosis and treatment.

  7. Memory-dependent derivatives for photothermal semiconducting medium in generalized thermoelasticity with two-temperature

    NASA Astrophysics Data System (ADS)

    Lotfy, K.; Sarkar, N.

    2017-11-01

    In this work, a novel generalized model of photothermal theory with two-temperature thermoelasticity theory based on memory-dependent derivative (MDD) theory is performed. A one-dimensional problem for an elastic semiconductor material with isotropic and homogeneous properties has been considered. The problem is solved with a new model (MDD) under the influence of a mechanical force with a photothermal excitation. The Laplace transform technique is used to remove the time-dependent terms in the governing equations. Moreover, the general solutions of some physical fields are obtained. The surface taken into consideration is free of traction and subjected to a time-dependent thermal shock. The numerical Laplace inversion is used to obtain the numerical results of the physical quantities of the problem. Finally, the obtained results are presented and discussed graphically.

  8. IR780 based nanomaterials for cancer imaging and photothermal, photodynamic and combinatorial therapies.

    PubMed

    Alves, Cátia G; Lima-Sousa, Rita; de Melo-Diogo, Duarte; Louro, Ricardo O; Correia, Ilídio J

    2018-05-05

    IR780, a molecule with a strong optical absorption and emission in the near infrared (NIR) region, is receiving an increasing attention from researchers working in the area of cancer treatment and imaging. Upon irradiation with NIR light, IR780 can produce reactive oxygen species as well as increase the body temperature, thus being a promising agent for application in cancer photodynamic and photothermal therapy. However, IR780's poor water solubility, fast clearance, acute toxicity and low tumor uptake may limit its use. To overcome such issues, several types of nanomaterials have been used to encapsulate and deliver IR780 to tumor cells. This mini-review is focused on the application of IR780 based nanostructures for cancer imaging, and photothermal, photodynamic and combinatorial therapies. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The advantage of hollow mesoporous carbon as a near-infrared absorbing drug carrier in chemo-photothermal therapy compared with IR-820.

    PubMed

    Zhao, Qinfu; Wang, Xiudan; Yan, Yue; Wang, Da; Zhang, Ying; Jiang, Tongying; Wang, Siling

    2017-03-01

    In this study, we synthesized a kind of hollow mesoporous carbon (HMC) as near-infrared (NIR) nanomaterial and made a comparison between HMC and IR-820 commercially available in terms of heat generation properties and thermal stability exposed under NIR laser irradiation. The NIR-induced photothermal tests indicated that HMC had excellent heat generating capacity and remained stable after exposed to NIR laser irradiation for several times. On the contrary, the IR-820 was thermal unstable and degraded completely after exposed to NIR laser irradiation for only one time. The anticancer drug DOX was chosen as a model drug to evaluate the loading capacity and release properties of carboxylated HMC (HMC-COOH). The drug loading efficiency of HMC-COOH could reach to 39.7%. In vitro release results indicated that the release rate of DOX was markedly increased under NIR laser irradiation both in pH5.0 and pH7.4 PBS. Cell viability experiments indicated that HMC-COOH/DOX has a synergistic therapeutic effect by combination of chemotherapy and photothermal therapy. This present research demonstrated that HMC could be employed as NIR-adsorbing agents as well as drug carriers to load lots of drug, realizing the synergistic treatment of chemotherapy and photothermal therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Characterization of laser damage performance of fused silica using photothermal absorption technique

    NASA Astrophysics Data System (ADS)

    Wan, Wen; Shi, Feng; Dai, Yifan; Peng, Xiaoqiang

    2017-06-01

    The subsurface damage and metal impurities have been the main laser damage precursors of fused silica while subjected to high power laser irradiation. Light field enhancement and thermal absorption were used to explain the appearance of damage pits while the laser energy is far smaller than the energy that can reach the intrinsic threshold of fused silica. For fused silica optics manufactured by magnetorheological finishing or advanced mitigation process, no scratch-related damage site occurs can be found on the surface. In this work, we implemented a photothermal absorption technique based on thermal lens method to characterize the subsurface defects of fused silica optics. The pump beam is CW 532 nm wavelength laser. The probe beam is a He-Ne laser. They are collinear and focused through the same objective. When pump beam pass through the sample, optical absorption induces the local temperature rise. The lowest absorptance that we can detect is about the order of magnitude of 0.01 ppm. When pump beam pass through the sample, optical absorption induces the local temperature rise. The photothermal absorption value of fused silica samples range from 0.5 to 10 ppm. The damage densities of the samples were plotted. The damage threshold of samples at 8J/cm2 were gived to show laser damage performance of fused silica.The results show that there is a strong correlation between the thermal absorption and laser damage density. The photothermal absorption technique can be used to predict and evaluate the laser damage performance of fused silica optics.

  11. Modelling and characterization of photothermal effects assisted with gold nanorods in ex vivo samples and in a murine model

    NASA Astrophysics Data System (ADS)

    Lamela Rivera, Horacio; Rodríguez Jara, Félix; Cunningham, Vincent

    2011-03-01

    We discuss in this article the implementation of a laser-tissue interaction and bioheat-transfer 2-D finite-element model for Photothermal Therapy assisted with Gold Nanorods. We have selected Gold Nanorods as absorbing nanostructures in order to improve the efficiency of using compact diode lasers because of their high opto-thermal conversion efficiency at 808 and 850 nm. The goal is to model the distribution of the optical energy among the tissue including the skin absorption effects and the tissue thermal response, with and without the presence of Gold Nanorods. The heat generation due to the optical energy absorption and the thermal propagation will be computationally modeled and optimized. The model has been evaluated and compared with experimental ex-vivo data in fresh chicken muscle samples and in-vivo BALB/c mice animal model.

  12. Fabrication of Graphene and AuNP Core Polyaniline Shell Nanocomposites as Multifunctional Theranostic Platforms for SERS Real-time Monitoring and Chemo-photothermal Therapy

    PubMed Central

    Chen, Haolin; Liu, Zhiming; Li, Songyang; Su, Chengkang; Qiu, Xuejun; Zhong, Huiqing; Guo, Zhouyi

    2016-01-01

    In this work, novel theranostic platforms based on graphene oxide and AuNP core polyaniline shell (GO-Au@PANI) nanocomposites are fabricated for simultaneous SERS imaging and chemo-photothermal therapy. PANI, a new NIR photothermal therapy agent with strong NIR absorption, outstanding stability and low cytotoxicity is decorated on AuNPs by one-pot oxidative polymerization, then the Au@PANI core-shell nanoparticles are attached to the graphene oxide (GO) sheet via π-π stacking and electrostatic interaction. The obtained GO-Au@PANI nanohybirds exhibit excellent NIR photothermal transduction efficiency and ultrahigh drug-loading capacity. The nanocomposites can also serve as novel NIR SERS probes utilizing the intense SERS signals of PANI. Rapid SERS imaging of cancer cells is achieved using this ultrasensitive nanoprobe. GO-Au@PANI also reveals good capability of drug delivery with the DOX-loading efficiency of 189.2% and sensitive NIR/pH-responsive DOX release. The intracellular real-time drug release dynamics from the nanocomposites is monitored by SERS-fluorescence dual mode imaging. Finally, chemo-photothermal ablation of cancer cells is carried out in vitro and in vivo using GO-Au@PANI as high-performance chemo-photothermal therapeutic nanoagent. The theranostic applications of GO-Au@PANI endow it with great potential for personalized and precise cancer medicine. PMID:27279904

  13. Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules

    PubMed Central

    Yu, Jie; Javier, David; Yaseen, Mohammad A.; Nitin, Nitin; Richards-Kortum, Rebecca; Anvari, Bahman; Wong, Michael S.

    2010-01-01

    New colloidal materials that can generate heat upon irradiation are being explored for photothermal therapy as a minimally invasive approach to cancer treatment. The near-infrared dye indocyanine green (ICG) could serve as a basis for such a material, but its encapsulation and subsequent use is very difficult to carry out. We report the three-step room-temperature synthesis of ~120-nm capsules loaded with ICG within salt-crosslinked polyallylamine aggregates, and coated with anti-epidermal growth factor receptor (anti-EGFR) antibodies for tumor cell targeting capability. We studied the synthesis conditions such as temperature and water dilution to control the capsule size and characterized the size distribution via dynamic light scattering and scanning electron microscopy. We further studied the specificity of tumor cell targeting using three carcinoma cell lines with different levels of EGFR expression, and investigated the photothermal effects of ICG containing nanocapsules on EGFR-rich tumor cells. Significant thermal toxicity was observed for encapsulated ICG as compared to free ICG at 808 nm laser irradiation with radiant exposure of 6 W/cm2. These results illustrate the ability to design a colloidal material with cell targeting and heat generating capabilities using non-covalent chemistry. PMID:20092330

  14. Anti-CD30-targeted gold nanoparticles for photothermal therapy of L-428 Hodgkin’s cell

    PubMed Central

    Qu, Xiaochao; Yao, Cuiping; Wang, Jing; Li, Zheng; Zhang, Zhenxi

    2012-01-01

    Purpose Due to the efficient bioconjugation and highly photothermal effect, gold nanoparticles can stain receptor-overexpressing cancer cells through specific targeting of ligands to receptors, strongly absorb specific light and efficiently convert it into heat based on the property of surface plasmon resonance, and then induce the localized protein denaturation and cell death. Methods Two gold nanoparticle–antibody conjugates, gold-BerH2 antibody (anti-CD30 receptor) and gold-ACT1 antibody (anti-CD25-receptor), were synthesized. Gold-BerH2 conjugates can specifically bind to the surface of L-428 Hodgkin’s cells, and gold-ACT1 conjugates were used for the control. The gold nanoparticle-induced L-428 cell-killing experiments were implemented with different experimental parameters. Results At a relatively low concentration of gold and short incubation time, the influence of cytotoxicity of gold on cell viability can be overlooked. Under laser irradiation at suitable power, the high killing efficiency of gold-targeted L-428 cells was achieved, but little damage was done to nontargeted cancer cells. Conclusion Gold nanoparticle-mediated photothermal therapy provides a relatively safe therapeutic technique for cancer treatment. PMID:23269868

  15. Hydrophilic MoSe2 Nanosheets as Effective Photothermal Therapy Agents and Their Application in Smart Devices.

    PubMed

    Lei, Zhouyue; Zhu, Wencheng; Xu, Shengjie; Ding, Jian; Wan, Jiaxun; Wu, Peiyi

    2016-08-17

    A facile poly(vinylpyrrolidone) (PVP)-assisted exfoliation method is utilized to simultaneously exfoliate and noncovalently modify MoSe2 nanosheets. The resultant hydrophilic nanosheets are shown to be promising candidates for biocompatible photothermal therapy (PTT) agents, and they could also be encapsulated into a hydrogel matrix for some intelligent devices. This work not only provides novel insights into exfoliation and modification of transition metal dichalcogenide (TMD) nanosheets but also might spark more research into engineering multifunctional TMD-related nanocomposites, which is in favor of further exploiting the attractive properties of these emerging layered two-dimensional (2D) nanomaterials.

  16. Engineering on-chip nanoporous gold material libraries via precision photothermal treatment [Precision Photothermal Annealing of Nanoporous Gold Thin Films for the Microfabrication of a Single-ship Material Libraries

    DOE PAGES

    Chapman, Christopher A. R.; Wang, Ling; Biener, Juergen; ...

    2016-01-01

    Single-chip material libraries of thin films of nanostructured materials are a promising approach for high throughput studies of structure-property relationship in the fields of physics and biology. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a nanostructured material of specific interest in both these fields. One attractive property of np-Au is its self-similar coarsening behavior by thermally induced surface diffusion. However, traditional heat application techniques for the modification of np-Au are bulk processes that cannot be used to generate a library of different pore sizes on a single chip. Laser micromachining offers an attractive solution to this problemmore » by providing a means to apply energy with high spatial and temporal resolution. In our present study we use finite element multiphysics simulations to predict the effects of laser mode (continuous-wave vs. pulsed) and supporting substrate thermal conductivity on the local np-Au film temperatures during photothermal annealing and subsequently investigate the mechanisms by which the np-Au network is coarsening. Our simulations predict that continuous-wave mode laser irradiation on a silicon supporting substrate supports the widest range of morphologies that can be created through the photothermal annealing of thin film np-Au. Using this result we successfully fabricate a single-chip material library consisting of 81 np-Au samples of 9 different morphologies for use in increased throughput material interaction studies.« less

  17. Engineering on-chip nanoporous gold material libraries via precision photothermal treatment [Precision Photothermal Annealing of Nanoporous Gold Thin Films for the Microfabrication of a Single-ship Material Libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Christopher A. R.; Wang, Ling; Biener, Juergen

    Single-chip material libraries of thin films of nanostructured materials are a promising approach for high throughput studies of structure-property relationship in the fields of physics and biology. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a nanostructured material of specific interest in both these fields. One attractive property of np-Au is its self-similar coarsening behavior by thermally induced surface diffusion. However, traditional heat application techniques for the modification of np-Au are bulk processes that cannot be used to generate a library of different pore sizes on a single chip. Laser micromachining offers an attractive solution to this problemmore » by providing a means to apply energy with high spatial and temporal resolution. In our present study we use finite element multiphysics simulations to predict the effects of laser mode (continuous-wave vs. pulsed) and supporting substrate thermal conductivity on the local np-Au film temperatures during photothermal annealing and subsequently investigate the mechanisms by which the np-Au network is coarsening. Our simulations predict that continuous-wave mode laser irradiation on a silicon supporting substrate supports the widest range of morphologies that can be created through the photothermal annealing of thin film np-Au. Using this result we successfully fabricate a single-chip material library consisting of 81 np-Au samples of 9 different morphologies for use in increased throughput material interaction studies.« less

  18. PEGylated Cu3BiS3 hollow nanospheres as a new photothermal agent for 980 nm-laser-driven photothermochemotherapy and a contrast agent for X-ray computed tomography imaging.

    PubMed

    Zhou, Shu-Mei; Ma, De-Kun; Zhang, Sheng-Hui; Wang, Wei; Chen, Wei; Huang, Shao-Ming; Yu, Kang

    2016-01-21

    Developing multifunctional near-infrared (NIR) light-driven photothermal agents is in high demand for efficient cancer therapy. Herein, PEGylated Cu3BiS3 hollow nanospheres (HNSs) with an average diameter of 80 nm were synthesized through a facile ethylene glycol-mediated solvothermal route. The obtained PEGylated Cu3BiS3 HNSs exhibited strong NIR optical absorption with a large molar extinction coefficient of 4.1 × 10(9) cm(-1) M(-1) at 980 nm. Under the irradiation of a 980 nm laser with a safe power density of 0.72 W cm(-2), Cu3BiS3 HNSs produced significant photothermal heating with a photothermal transduction efficiency of 27.5%. The Cu3BiS3 HNSs also showed a good antitumoral drug doxorubicin (DOX) loading capacity and pH- and NIR-responsive DOX release behaviors. At a low dosage of 10 μg mL(-1), HeLa cells could be efficiently killed through a synergistic effect of chemo- and photothermo-therapy respectively based on the DOX release and the photothermal effect of Cu3BiS3 HNSs. In addition, Cu3BiS3 HNSs displayed a good X-ray computed tomography (CT) imaging capability. Furthermore, Cu3BiS3 HNSs could be used for efficient in vivo photothermochemotherapy and X-ray CT imaging of mice bearing melanoma skin cancer. This multifunctional theranostic nanomaterial shows potential promise for cancer therapy.

  19. The inflammation markers in serum of tumor-bearing rats after plasmonic photothermal therapy

    NASA Astrophysics Data System (ADS)

    Bucharskaya, Alla B.; Maslyakova, Galina N.; Terentyuk, Georgy S.; Afanasyeva, Galina A.; Navolokin, Nikita A.; Zakharova, Natalia B.; Khlebtsov, Boris N.; Khlebtsov, Nikolai G.; Bashkatov, Alexey N.; Genina, Elina A.; Tuchin, Valery V.

    2018-02-01

    We report on plasmonic photothermal therapy of rats with inoculated cholangiocarcinoma through the intratumoral injection of PEG-coated gold nanorods followed by CW laser light irradiation. The length and diameter of gold nanorods were 41+/-8 nm and 10+/-2 nm, respectively; the particle mass-volume concentration was 400 μg/mL, which corresponds to the optical density of 20 at the wavelength 808 nm. The tumor-bearing rats were randomly divided into three groups: (1) without any treatment (control); (2) with only laser irradiation of tumor; (3) with intratumoral administration of gold nanorods and laser irradiation of tumors. An hour before laser irradiation, the animals were injected intratumorally with gold nanorod solutions in the amount of 30% of the tumor volume. The infrared 808-nm laser with power density of 2.3 W/cm2 was used for plasmonic photothermal therapy (PTT). The withdraw of animals from the experiment was performed 24 h after laser exposure. The content of lipid peroxidation products and molecular markers of inflammation (TNF-α, IGF-1, VEGF-C) was determined by ELISA test in serum of rats. The standard histological techniques with hematoxylin and eosin staining were used for morphological examination of tumor tissues. It was revealed that the significant necrotic changes were noted in tumor tissue after plasmonic photothermal therapy, which were accompanied by formation of inflammatory reaction with release of proinflammatory cytokines and lipid peroxidation products into the bloodstream

  20. Photothermal cancer therapy using intravenously injected near-infrared-absorbing nanoparticles

    NASA Astrophysics Data System (ADS)

    O'Neal, D. P.; Hirsch, Leon R.; Halas, Naomi J.; Payne, J. D.; West, Jennifer L.

    2005-04-01

    This report focuses on the treatment parameters leading to successful nanoshell-assisted photo-thermal therapy (NAPT). NAPT takes advantage of the strong near infrared (NIR) absorption of gold-silica nanoshells, a new class of nanoparticles with tunable optical absorptivities that are capable of passive extravasation from the abnormal tumor vasculature due to their nanoscale size. Under controlled conditions nanoshells accumulate in tumors with superior efficiency compared to surrounding tissues. For this treatment: (1) tumors were inoculated in immune-competent mice by subcutaneous injection, (2) polyethylene glycol coated nanoshells (~150 nm diameter) with peak optical absorption in the NIR were intravenously injected and allowed to circulate for 6 - 48 hours, and (3) tumors were then extracorporeally illuminated with a collimated diode laser (808 nm, 2-6 W/cm2, 2-4 min). Nanoshell accumulations were quantitatively assessed in tumors and surrounding tissues using neutron activation analysis for gold. In order to assess temperature elevation, laser therapies were monitored in real-time using a mid-infrared thermal sensor. NAPT resulted in complete tumor regression in >90% of the subjects. This simple, non-invasive procedure shows great promise as a technique for selective photo-thermal tumor treatment.

  1. Targeting single-walled carbon nanotubes for the treatment of breast cancer using photothermal therapy

    NASA Astrophysics Data System (ADS)

    Neves, Luís F. F.; Krais, John J.; Van Rite, Brent D.; Ramesh, Rajagopal; Resasco, Daniel E.; Harrison, Roger G.

    2013-09-01

    This paper focuses on the targeting of single-walled carbon nanotubes (SWNTs) for the treatment of breast cancer with minimal side effects using photothermal therapy. The human protein annexin V (AV) binds specifically to anionic phospholipids expressed externally on the surface of tumour cells and endothelial cells that line the tumour vasculature. A 2 h incubation of the SWNT-AV conjugate with proliferating endothelial cells followed by washing and near-infrared (NIR) irradiation at a wavelength of 980 nm was enough to induce significant cell death; there was no significant cell death with irradiation or the conjugate alone. Administration of the same conjugate i.v. in BALB/c female mice with implanted 4T1 murine mammary at a dose of 0.8 mg SWNT kg-1 and followed one day later by NIR irradiation of the tumour at a wavelength of 980 nm led to complete disappearance of implanted 4T1 mouse mammary tumours for the majority of the animals by 11 days since the irradiation. The combination of the photothermal therapy with the immunoadjuvant cyclophosphamide resulted in increased survival. The in vivo results suggest the SWNT-AV/NIR treatment is a promising approach to treat breast cancer.

  2. Near-infrared light-triggered theranostics for tumor-specific enhanced multimodal imaging and photothermal therapy

    PubMed Central

    Wu, Bo; Wan, Bing; Lu, Shu-Ting; Deng, Kai; Li, Xiao-Qi; Wu, Bao-Lin; Li, Yu-Shuang; Liao, Ru-Fang; Huang, Shi-Wen; Xu, Hai-Bo

    2017-01-01

    The major challenge in current clinic contrast agents (CAs) and chemotherapy is the poor tumor selectivity and response. Based on the self-quench property of IR820 at high concentrations, and different contrast effect ability of Gd-DOTA between inner and outer of liposome, we developed “bomb-like” light-triggered CAs (LTCAs) for enhanced CT/MRI/FI multimodal imaging, which can improve the signal-to-noise ratio of tumor tissue specifically. IR820, Iohexol and Gd-chelates were firstly encapsulated into the thermal-sensitive nanocarrier with a high concentration. This will result in protection and fluorescence quenching. Then, the release of CAs was triggered by near-infrared (NIR) light laser irradiation, which will lead to fluorescence and MRI activation and enable imaging of inflammation. In vitro and in vivo experiments demonstrated that LTCAs with 808 nm laser irradiation have shorter T1 relaxation time in MRI and stronger intensity in FI compared to those without irradiation. Additionally, due to the high photothermal conversion efficiency of IR820, the injection of LTCAs was demonstrated to completely inhibit C6 tumor growth in nude mice up to 17 days after NIR laser irradiation. The results indicate that the LTCAs can serve as a promising platform for NIR-activated multimodal imaging and photothermal therapy. PMID:28670120

  3. Photothermal optical lock-in optical coherence tomography for in vivo imaging

    PubMed Central

    Tucker-Schwartz, Jason M.; Lapierre-Landry, Maryse; Patil, Chetan A.; Skala, Melissa C.

    2015-01-01

    Photothermal OCT (PTOCT) provides high sensitivity to molecular targets in tissue, and occupies a spatial imaging regime that is attractive for small animal imaging. However, current implementations of PTOCT require extensive temporal sampling, resulting in slow frame rates and a large data burden that limit its in vivo utility. To address these limitations, we have implemented optical lock-in techniques for photothermal optical lock-in OCT (poli-OCT), and demonstrated the in vivo imaging capabilities of this approach. The poli-OCT signal was assessed in tissue-mimicking phantoms containing indocyanine green (ICG), an FDA approved small molecule that has not been previously imaged in vivo with PTOCT. Then, the effects of in vivo blood flow and motion artifact were assessed and attenuated, and in vivo poli-OCT was demonstrated with both ICG and gold nanorods as contrast agents. Experiments revealed that poli-OCT signals agreed with optical lock-in theory and the bio-heat equation, and the system exhibited shot noise limited performance. In phantoms containing biologically relevant concentrations of ICG (1 µg/ml), the poli-OCT signal was significantly greater than control phantoms (p<0.05), demonstrating sensitivity to small molecules. Finally, in vivo poli-OCT of ICG identified the lymphatic vessels in a mouse ear, and also identified low concentrations (200 pM) of gold nanorods in subcutaneous injections at frame rates ten times faster than previously reported. This work illustrates that future in vivo molecular imaging studies could benefit from the improved acquisition and analysis times enabled by poli-OCT. PMID:26114045

  4. The study of frequency-scan photothermal reflectance technique for thermal diffusivity measurement

    DOE PAGES

    Hua, Zilong; Ban, Heng; Hurley, David H.

    2015-05-05

    A frequency scan photothermal reflectance technique to measure thermal diffusivity of bulk samples is studied in this manuscript. Similar to general photothermal reflectance methods, an intensity-modulated heating laser and a constant intensity probe laser are used to determine the surface temperature response under sinusoidal heating. The approach involves fixing the distance between the heating and probe laser spots, recording the phase lag of reflected probe laser intensity with respect to the heating laser frequency modulation, and extracting thermal diffusivity using the phase lag – (frequency) 1/2 relation. The experimental validation is performed on three samples (SiO 2, CaF 2 andmore » Ge), which have a wide range of thermal diffusivities. The measured thermal diffusivity values agree closely with literature values. Lastly, compared to the commonly used spatial scan method, the experimental setup and operation of the frequency scan method are simplified, and the uncertainty level is equal to or smaller than that of the spatial scan method.« less

  5. The study of frequency-scan photothermal reflectance technique for thermal diffusivity measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Zilong; Ban, Heng; Hurley, David H.

    A frequency scan photothermal reflectance technique to measure thermal diffusivity of bulk samples is studied in this manuscript. Similar to general photothermal reflectance methods, an intensity-modulated heating laser and a constant intensity probe laser are used to determine the surface temperature response under sinusoidal heating. The approach involves fixing the distance between the heating and probe laser spots, recording the phase lag of reflected probe laser intensity with respect to the heating laser frequency modulation, and extracting thermal diffusivity using the phase lag – (frequency) 1/2 relation. The experimental validation is performed on three samples (SiO 2, CaF 2 andmore » Ge), which have a wide range of thermal diffusivities. The measured thermal diffusivity values agree closely with literature values. Lastly, compared to the commonly used spatial scan method, the experimental setup and operation of the frequency scan method are simplified, and the uncertainty level is equal to or smaller than that of the spatial scan method.« less

  6. Sensitive photo-thermal response of graphene oxide for mid-infrared detection

    NASA Astrophysics Data System (ADS)

    Bae, Jung Jun; Yoon, Jung Hyun; Jeong, Sooyeon; Moon, Byoung Hee; Han, Joong Tark; Jeong, Hee Jin; Lee, Geon-Woong; Hwang, Ha Ryong; Lee, Young Hee; Jeong, Seung Yol; Lim, Seong Chu

    2015-09-01

    This study characterizes the effects of incident infrared (IR) radiation on the electrical conductivity of graphene oxide (GO) and examines its potential for mid-IR detection. Analysis of the mildly reduced GO (m-GO) transport mechanism near room temperature reveals variable range hopping (VRH) for the conduction of electrons. This VRH behavior causes the m-GO resistance to exhibit a strong temperature dependence, with a large negative temperature coefficient of resistance of approximately -2 to -4% K-1. In addition to this hopping transport, the presence of various oxygen-related functional groups within GO enhances the absorption of IR radiation significantly. These two GO material properties are synergically coupled and provoke a remarkable photothermal effect within this material; specifically, a large resistance drop is exhibited by m-GO in response to the increase in temperature caused by the IR absorption. The m-GO bolometer effect identified in this study is different from that exhibited in vanadium oxides, which require added gold-black films that function as IR absorbers owing to their limited IR absorption capability.This study characterizes the effects of incident infrared (IR) radiation on the electrical conductivity of graphene oxide (GO) and examines its potential for mid-IR detection. Analysis of the mildly reduced GO (m-GO) transport mechanism near room temperature reveals variable range hopping (VRH) for the conduction of electrons. This VRH behavior causes the m-GO resistance to exhibit a strong temperature dependence, with a large negative temperature coefficient of resistance of approximately -2 to -4% K-1. In addition to this hopping transport, the presence of various oxygen-related functional groups within GO enhances the absorption of IR radiation significantly. These two GO material properties are synergically coupled and provoke a remarkable photothermal effect within this material; specifically, a large resistance drop is exhibited by m

  7. pH/NIR Light-Controlled Multidrug Release via a Mussel-Inspired Nanocomposite Hydrogel for Chemo-Photothermal Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Ghavaminejad, Amin; Samarikhalaj, Melisa; Aguilar, Ludwig Erik; Park, Chan Hee; Kim, Cheol Sang

    2016-09-01

    This study reports on an intelligent composite hydrogel with both pH-dependent drug release in a cancer environment and heat generation based on NIR laser exposure, for the combined application of photothermal therapy (PTT) and multidrug chemotherapy. For the first time in the literature, Dopamine nanoparticle (DP) was incorporated as a highly effective photothermal agent as well as anticancer drug, bortezomib (BTZ) carrier inside a stimuli responsive pNIPAAm-co-pAAm hydrogel. When light is applied to the composite hydrogel, DP nanoparticle absorbs the light, which is dissipated locally as heat to impact cancer cells via hyperthermia. On the other hand, facile release of the anticancer drug BTZ from the surface of DP encapsulated hydrogel could be achieved due to the dissociation between catechol groups of DP and the boronic acid functionality of BTZ in typical acidic cancer environment. In order to increase the synergistic effect by dual drug delivery, Doxorubicin (DOXO) were also loaded to pNIPAAm-co-pAAm/DP-BTZ hydrogel and the effect of monotherapy as well as combined therapy were detailed by a complete characterization. Our results suggest that these mussel inspired nanocomposite with excellent heating property and controllable multidrug release can be considered as a potential material for cancer therapy.

  8. Boosted Hyperthermia Therapy by Combined AC Magnetic and Photothermal Exposures in Ag/Fe3O4 Nanoflowers.

    PubMed

    Das, R; Rinaldi-Montes, N; Alonso, J; Amghouz, Z; Garaio, E; García, J A; Gorria, P; Blanco, J A; Phan, M H; Srikanth, H

    2016-09-28

    Over the past two decades, magnetic hyperthermia and photothermal therapy are becoming very promising supplementary techniques to well-established cancer treatments such as radiotherapy and chemotherapy. These techniques have dramatically improved their ability to perform controlled treatments, relying on the procedure of delivering nanoscale objects into targeted tumor tissues, which can release therapeutic killing doses of heat either upon AC magnetic field exposure or laser irradiation. Although an intense research effort has been made in recent years to study, separately, magnetic hyperthermia using iron oxide nanoparticles and photothermal therapy based on gold or silver plasmonic nanostructures, the full potential of combining both techniques has not yet been systematically explored. Here we present a proof-of-principle experiment showing that designing multifunctional silver/magnetite (Ag/Fe3O4) nanoflowers acting as dual hyperthermia agents is an efficient route for enhancing their heating ability or specific absorption rate (SAR). Interestingly, the SAR of the nanoflowers is increased by at least 1 order of magnitude under the application of both an external magnetic field of 200 Oe and simultaneous laser irradiation. Furthermore, our results show that the synergistic exploitation of the magnetic and photothermal properties of the nanoflowers reduces the magnetic field and laser intensities that would be required in the case that both external stimuli were applied separately. This constitutes a key step toward optimizing the hyperthermia therapy through a combined multifunctional magnetic and photothermal treatment and improving our understanding of the therapeutic process to specific applications that will entail coordinated efforts in physics, engineering, biology, and medicine.

  9. Photo-thermal characteristics of water-based Fe3O4@SiO2 nanofluid for solar-thermal applications

    NASA Astrophysics Data System (ADS)

    Khashan, Saud; Dagher, Sawsan; Omari, Salahaddin Al; Tit, Nacir; Elnajjar, Emad; Mathew, Bobby; Hilal-Alnaqbi, Ali

    2017-05-01

    This work proposes and demonstrates the novel idea of using Fe3O4@SiO2 core/shell structure nanoparticles (NPs) to improve the solar thermal conversion efficiency. Magnetite (Fe3O4) NPs are synthesized by controlled co-precipitation method. Fe3O4@SiO2 NPs are prepared based on sol-gel approach, then characterized. Water-based Fe3O4@SiO2 nanofluid is prepared and usedto illustrate the photo-thermal conversion characteristics of a solar collector under solar simulator. The temperature rise characteristics of the nanofluids are investigated at different heights of the solar collector, for duration of 300 min, under a solar intensity of 1000 W m-2. The experimental results show that Fe3O4@SiO2 NPs have a core/shell structure with spherical morphology and size of about 400 nm. Fe3O4@SiO2/H2O nanofluid enhances the photo-thermal conversion efficiency compared with base fluid and Fe3O4/H2O nanofluid, since the silica coating improves both the thermodynamic stability of the nanofluid and the light absorption effectiveness of the NPs. At a concentration of 1 mg/1 ml of Fe3O4@SiO2/H2O, and with the utilization of kerosene into the solar collector, and exposure for radiation for 5 min, the photo-thermal conversion efficiency has shown an enhancement at the bottom of the collector of about 32.9% compared to the base fluid.

  10. Human CIK Cells Loaded with Au Nanorods as a Theranostic Platform for Targeted Photoacoustic Imaging and Enhanced Immunotherapy and Photothermal Therapy

    NASA Astrophysics Data System (ADS)

    Yang, Yao; Zhang, Jingjing; Xia, Fangfang; Zhang, Chunlei; Qian, Qirong; Zhi, Xiao; Yue, Caixia; Sun, Rongjin; Cheng, Shangli; Fang, Shan; Jin, Weilin; Yang, Yuming; Cui, Daxiang

    2016-06-01

    How to realize targeted photoacoustic imaging, enhanced immunotherapy, and photothermal therapy of gastric cancer has become a great challenge. Herein, we reported for the first time that human cytokine-induced killer cells (CIK) loaded with gold nanorods were used for targeted photoacoustic imaging, enhanced immunotherapy, and photothermal therapy of gastric cancer. Silica-modified gold nanorods were prepared; then incubated with human cytokine-induced killer cells (CIK), resultant human CIK cells loaded with Au nanorods were evaluated for their cytotoxicity, targeted ability of gastric cancer in vitro and in vivo, immunotherapy, and photothermal therapy efficacy. In vitro cell experiment shows that human CIK cells labeled with gold nanorods actively target gastric cancer MGC803 cells, inhibit growth of MGC803 cells by inducing cell apoptosis, and kill MGC803 cells under low power density near-infrared (NIR) laser treatment (808-nm continuous wave laser, 1.5 W/cm2, 3 min). In vivo experiment results showed that human CIK cells labeled with gold nanorods could target actively and image subcutaneous gastric cancer vessels via photoacoustic imaging at 4 h post-injection, could enhance immunotherapy efficacy by up-regulating cytokines such as IL-1, IL-12, IL-2, IL-4, IL-17, and IFN-γ, and kill gastric cancer tissues by photothermal therapy via direct injection into tumor site under near-infrared (NIR) laser irradiation. High-performance human CIK cells labeled with Au nanorods are a good novel theranostic platform to exhibit great potential in applications such as tumor-targeted photoacoustic imaging, enhanced immunotherapy, and photothermal therapy in the near future.

  11. All-fiber gas sensor with intracavity photothermal spectroscopy.

    PubMed

    Zhao, Yan; Jin, Wei; Lin, Yuechuan; Yang, Fan; Ho, Hoi Lut

    2018-04-01

    We present an all-fiber intracavity photothermal (IC-PT) spectroscopic gas sensor with a hollow-core photonic bandgap fiber (HC-PBF) gas cell. The gas cell is placed inside a fiber-ring laser cavity to achieve higher laser light intensity in the hollow core and hence higher PT modulation signal. An experiment with a 0.62-m-long HC-PBF gas cell demonstrated a noise equivalent concentration of 176 ppb acetylene. Theoretical modeling shows that the IC-PT sensor has the potential of achieving sub-ppb (parts-per-billion) acetylene detection sensitivity.

  12. Quantitative photothermal heating and cooling measurements of engineered nanoparticles in an optical trap

    NASA Astrophysics Data System (ADS)

    Roder, Paden Bernard

    Laser tweezers and optical trapping has provided scientists and engineers a unique way to study the wealth of phenomena that materials exhibit at the micro- and nanoscale, much of which remains mysterious. Of particular interest is the interplay between light absorption and subsequent heat generation of laser-irradiated materials, especially due to recent interest in developing nanoscale materials for use as agents for photothermal cancer treatments. An introduction to optical trapping physics and laser tweezers are given in Chapter 1 and 2 of this thesis, respectively. The remaining chapters, summarized below, describe the theoretical basis of laser heating of one-dimensional nanostructures and experiments in which optically-trapped nanostructures are studied using techniques developed for a laser tweezer. In Chapter 3, we delve into the fundamentals of laser heating of one-dimensional materials by developing an analytical model of pulsed laser heating of uniform and tapered supported nanowires and compare calculations with experimental data to comment on the effects that the material's physical, optical, and thermal parameters have on its heating and cooling rates. We then consider closed-form analytical solutions for the temperature rise within infinite circular cylinders with nanometer-scale diameters irradiated at right angles by TM-polarized continuous-wave laser sources, which allows for analysis of laser-heated nanowires in a solvated environment. The infinite nanowire analysis will then be extended to the optical heating of laser-irradiated finite nanowires in the framework of a laser tweezer, which enables predictive capabilities and direct comparison with laser trapping experiments. An effective method for determining optically-trapped particle temperatures as well as the temperature gradient in the surrounding medium will be discussed in Chapter 4. By combining laser tweezer calibration techniques, forward-scattered light power spectrum analysis, and

  13. Photothermal effects from Au-Cu2O core-shell nanocubes, octahedra, and nanobars with broad near-infrared absorption tunability

    NASA Astrophysics Data System (ADS)

    Wang, Hsiang-Ju; Yang, Kung-Hsun; Hsu, Shih-Chen; Huang, Michael H.

    2015-12-01

    Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal-Cu2O nanocrystals have become useful by illuminating Au-Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au-Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au-Cu2O nanobars with a tunable longitudinal Au SPR absorption band covering a broad NIR range from ~1050 to 1400 nm. Because the Au SPR bands can become fixed with relatively thin Cu2O shells of less than 15 nm, ultrasmall nanobars having a size of 61 nm directly red-shift the Au SPR band to 1047 nm. And 73 nm nanobars can give a Au SPR band at 1390 nm. Truncated nanobars exposing {100}, {110}, and {111} facets give a very blue-shifted Au SPR band. The nanobars also exhibit photothermal activity when illuminated by 1064 nm light. These small Au-Cu2O nanocrystals represent the simplest nanostructure design to absorb light covering the entire NIR wavelengths.Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal-Cu2O nanocrystals have become useful by illuminating Au-Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au-Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au-Cu2O nanobars

  14. A non-contact temperature measurement system for controlling photothermal medical laser treatments

    NASA Astrophysics Data System (ADS)

    Kaya, Ã.-zgür; Gülsoy, Murat

    2016-03-01

    Photothermal medical laser treatments are extremely dependent on the generated tissue temperature. It is necessary to reach a certain temperature threshold to achieve successful results, whereas preventing to exceed an upper temperature value is required to avoid thermal damage. One method to overcome this problem is to use previously conducted dosimetry studies as a reference. Nevertheless, these results are acquired in controlled environments using uniform subjects. In the clinical environment, the optical and thermal characteristics (tissue color, composition and hydration level) vary dramatically among different patients. Therefore, the most reliable solution is to use a closed-loop feedback system that monitors the target tissue temperature to control laser exposure. In this study, we present a compact, non-contact temperature measurement system for the control of photothermal medical laser applications that is cost-efficient and simple to use. The temperature measurement is achieved using a focused, commercially available MOEMS infrared thermocouple sensor embedded in an off-axis arrangement on the laser beam delivery hand probe. The spot size of the temperature sensor is ca. 2.5 mm, reasonably smaller than the laser spot sizes used in photothermal medical laser applications. The temperature readout and laser control is realized using a microcontroller for fast operation. The utilization of the developed system may enable the adaptation of several medical laser treatments that are currently conducted only in controlled laboratory environments into the clinic. Laser tissue welding and cartilage reshaping are two of the techniques that are limited to laboratory research at the moment. This system will also ensure the safety and success of laser treatments aiming hyperthermia, coagulation and ablation, as well as LLLT and PDT.

  15. Photothermal waves for two temperature with a semiconducting medium under using a dual-phase-lag model and hydrostatic initial stress

    NASA Astrophysics Data System (ADS)

    Lotfy, Kh.

    2017-07-01

    The dual-phase-lag (DPL) model with two different time translations and Lord-Shulman (LS) theory with one relaxation time are applied to study the effect of hydrostatic initial stress on medium under the influence of two temperature parameter(a new model will be introduced using two temperature theory) and photothermal theory. We solved the thermal loading at the free surface in the semi-infinite semiconducting medium-coupled plasma waves with the effect of mechanical force during a photothermal process. The exact expressions of the considered variables are obtained using normal mode analysis also the two temperature coefficient ratios were obtained analytically. Numerical results for the field quantities are given in the physical domain and illustrated graphically under the effects of several parameters. Comparisons are made between the results of the two different models with and without two temperature parameter, and for two different values of the hydrostatic initial stress. A comparison is carried out between the considered variables as calculated from the generalized thermoelasticity based on the DPL model and the LS theory in the absence and presence of the thermoelastic and thermoelectric coupling parameters.

  16. Multimodality Molecular Imaging-Guided Tumor Border Delineation and Photothermal Therapy Analysis Based on Graphene Oxide-Conjugated Gold Nanoparticles Chelated with Gd.

    PubMed

    Ma, Xibo; Jin, Yushen; Wang, Yi; Zhang, Shuai; Peng, Dong; Yang, Xin; Wei, Shoushui; Chai, Wei; Li, Xuejun; Tian, Jie

    2018-01-01

    Tumor cell complete extinction is a crucial measure to evaluate antitumor efficacy. The difficulties in defining tumor margins and finding satellite metastases are the reason for tumor recurrence. A synergistic method based on multimodality molecular imaging needs to be developed so as to achieve the complete extinction of the tumor cells. In this study, graphene oxide conjugated with gold nanostars and chelated with Gd through 1,4,7,10-tetraazacyclododecane-N,N',N,N'-tetraacetic acid (DOTA) (GO-AuNS-DOTA-Gd) were prepared to target HCC-LM3-fLuc cells and used for therapy. For subcutaneous tumor, multimodality molecular imaging including photoacoustic imaging (PAI) and magnetic resonance imaging (MRI) and the related processing techniques were used to monitor the pharmacokinetics process of GO-AuNS-DOTA-Gd in order to determine the optimal time for treatment. For orthotopic tumor, MRI was used to delineate the tumor location and margin in vivo before treatment. Then handheld photoacoustic imaging system was used to determine the tumor location during the surgery and guided the photothermal therapy. The experiment result based on orthotopic tumor demonstrated that this synergistic method could effectively reduce tumor residual and satellite metastases by 85.71% compared with the routine photothermal method without handheld PAI guidance. These results indicate that this multimodality molecular imaging-guided photothermal therapy method is promising with a good prospect in clinical application.

  17. 12P-conjugated PEG-modified gold nanorods combined with near-infrared laser for tumor targeting and photothermal therapy.

    PubMed

    Zhan, Tao; Li, Pengfei; Bi, Shan; Dong, Biao; Song, Hongwei; Ren, Hui; Wang, Liping

    2012-09-01

    Gold nanorods have been reported as potential tumor photothermal therapy in vivo and in vitro. However, development of the safe and efficient tumor-targeting gold nanorods for in vivo localized tumor therapy is still a challenge. In our present study, we synthesized the PEG modified gold nanorods and demonstrated its negligible cytotoxicity in vitro. These nanorods also have been demonstrated to efficiently ablate the different kinds of tumor cells in vitro after exposure to the near-infrared laser. When the PEG modified gold nanorods conjugated with the 12P (sequence: TACHQHVRMVRP), this conjugate showed great tumor-targeting and hyperthermia effects on the human liver cancer cell line HepG2 in vitro when coupled with the near-infrared laser treatment. To determine the potential hyperthermia effect of PEG modified gold nanorods or 12P conjugate on tumor cells in vivo, the mice hepatic cancer cells were used to induce the subcutaneous tumor-bearing model in ICR mice. The significant inhibition effects of near-infrared laser mediated PEG modified gold nanorods or 12P conjugate on the tumor growth were observed. These composite results suggest that the 12P-conjugated PEG modified gold nanorods exhibit great biocompatible, particular tumor-targeting and effective photothermal ablation of tumor cells, which warrant the potential therapeutic value of this conjugate for further application in in vivo localized tumor therapy.

  18. Photothermal Radiometry and Diffuse Reflectance Analysis of Thermally Treated Bones

    NASA Astrophysics Data System (ADS)

    Trujillo, S.; Martínez-Torres, P.; Quintana, P.; Alvarado-Gil, Juan Jose

    2010-05-01

    Different fields such as archaeology, biomedicine, forensic science, and pathology involve the analysis of burned bones. In this work, the effects of successive thermal treatments on pig long bones, measured by photothermal radiometry and diffuse reflectance are reported. Measurements were complemented by X-ray diffraction and infrared spectroscopy. Samples were thermally treated for 1 h within the range of 25 °C to 350 °C. The thermal diffusivity and reflectance increase in the low-temperature range, reaching a maximum around 125 °C and decaying at higher temperatures. These results are the consequence of complex modifications occurring in the inorganic and organic bone structure. For lower temperatures dehydration, dehydroxilation, and carbonate loss processes are dominant, followed by collagen denaturing and decompositions, which have an influence on the bone microstructure.

  19. Noninvasive, label-free, three-dimensional imaging of melanoma with confocal photothermal microscopy: Differentiate malignant melanoma from benign tumor tissue

    NASA Astrophysics Data System (ADS)

    He, Jinping; Wang, Nan; Tsurui, Hiromichi; Kato, Masashi; Iida, Machiko; Kobayashi, Takayoshi

    2016-07-01

    Skin cancer is one of the most common cancers. Melanoma accounts for less than 2% of skin cancer cases but causes a large majority of skin cancer deaths. Early detection of malignant melanoma remains the key factor in saving lives. However, the melanoma diagnosis is still clinically challenging. Here, we developed a confocal photothermal microscope for noninvasive, label-free, three-dimensional imaging of melanoma. The axial resolution of confocal photothermal microscope is ~3 times higher than that of commonly used photothermal microscope. Three-dimensional microscopic distribution of melanin in pigmented lesions of mouse skin is obtained directly with this setup. Classic morphometric and fractal analysis of sixteen 3D images (eight for benign melanoma and eight for malignant) showed a capability of pathology of melanoma: melanin density and size become larger during the melanoma growth, and the melanin distribution also becomes more chaotic and unregulated. The results suggested new options for monitoring the melanoma growth and also for the melanoma diagnosis.

  20. Platinum(iv) prodrug conjugated Pd@Au nanoplates for chemotherapy and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Shi, Saige; Chen, Xiaolan; Wei, Jingping; Huang, Yizhuan; Weng, Jian; Zheng, Nanfeng

    2016-03-01

    Owing to the excellent near infrared (NIR) light absorption and efficient passive targeting toward tumor tissue, two-dimensional (2D) core-shell PEGylated Pd@Au nanoplates have great potential in both photothermal therapy and drug delivery systems. In this work, we successfully conjugate Pd@Au nanoplates with a platinum(iv) prodrug c,c,t-[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] to obtain a nanocomposite (Pd@Au-PEG-Pt) for combined photothermal-chemotherapy. The prepared Pd@Au-PEG-Pt nanocomposite showed excellent stability in physiological solutions and efficient Pt(iv) prodrug loading. Once injected into biological tissue, the Pt(iv) prodrug was easily reduced by physiological reductants (e.g. ascorbic acid or glutathione) into its cytotoxic and hydrophilic Pt(ii) form and released from the original nanocomposite, and the NIR laser irradiation could accelerate the release of Pt(ii) species. More importantly, Pd@Au-PEG-Pt has high tumor accumulation (29%ID per g), which makes excellent therapeutic efficiency at relatively low power density possible. The in vivo results suggested that, compared with single therapy the combined thermo-chemotherapy treatment with Pd@Au-PEG-Pt resulted in complete destruction of the tumor tissue without recurrence, while chemotherapy using Pd@Au-PEG-Pt without irradiation or photothermal treatment using Pd@Au-PEG alone did not. Our work highlights the prospects of a feasible drug delivery strategy of the Pt prodrug by using 2D Pd@Au nanoplates as drug delivery carriers for multimode cancer treatment.Owing to the excellent near infrared (NIR) light absorption and efficient passive targeting toward tumor tissue, two-dimensional (2D) core-shell PEGylated Pd@Au nanoplates have great potential in both photothermal therapy and drug delivery systems. In this work, we successfully conjugate Pd@Au nanoplates with a platinum(iv) prodrug c,c,t-[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] to obtain a nanocomposite (Pd@Au-PEG-Pt) for combined photothermal-chemotherapy. The

  1. Photo-thermal characteristics of hybrid nanofluids based on Therminol-55 oil for concentrating solar collectors

    NASA Astrophysics Data System (ADS)

    Gulzar, Ovais; Qayoum, Adnan; Gupta, Rajat

    2018-03-01

    Hybrid nanofluids are the new generation efficient heat transfer fluids allowing greater control over the properties of base fluid as compared to mono-nanofluids. In this study, attempt has been made for increasing the efficiency for photo-thermal conversion by heat transfer fluid for high temperature solar collectors. Therminol-55, a high temperature heat transfer fluid is doped with Al2O3 and TiO2 nanoparticles with an aim to improve the thermal and optical properties. Effects of concentration and type of nanoparticle on photo-thermal conversion properties and absorbance in Therminol-55 have been studied. Spectrophotometric analysis has been carried for all nanofluids, namely, Al2O3-Therminol-55, TiO2-Therminol-55 and hybrid (Al2O3-TiO2)-Therminol-55 nanofluids with varying concentrations of 0.05, 0.075, 0.1, 0.25, 0.5 wt%. It was found that TiO2 nanofluids possess the maximum absorbance with minimal effect of nanoparticle concentration above 0.1 wt% followed by hybrid (Al2O3-TiO2) nanofluid (HNF) with strong dependence of concentration. Al2O3-Therminol-55 nanofluids exhibited least absorbance. The peak values of absorbance are 0.47, 2.15 and 2.144 in the visible region for Al2O3-Therminol-55, TiO2-Therminol-55 and hybrid (Al2O3-TiO2)-Therminol-55 nanofluids, respectively. It was observed that hybrid nanofluids show both bathochromic and hyperchromic shifts. Further, performance testing has been carried out using artificial source of light and it has been observed that hybrid nanofluids provide efficient photo-thermal conversion as compared to TiO2 and Al2O3-Therminol-55 nanofluids. Maximum temperatures of 152.9, 149.6, 158.6 °C were observed for 0.5 wt% Al2O3-Therminol-55, 0.1 wt% TiO2-Therminol-55, and 0.5 wt% hybrid (Al2O3-TiO2) nanofluid, respectively, against 125.8 °C of Therminol-55. Hybrid nanofluids based on Therminol-55 could be a potential candidate for high temperature concentrating collectors based on the superior properties over mono-nanofluids and

  2. Effective Targeted Photothermal Ablation of Multidrug Resistant Bacteria and Their Biofilms with NIR-Absorbing Gold Nanocrosses.

    PubMed

    Teng, Choon Peng; Zhou, Tielin; Ye, Enyi; Liu, Shuhua; Koh, Leng Duei; Low, Michelle; Loh, Xian Jun; Win, Khin Yin; Zhang, Lianhui; Han, Ming-Yong

    2016-08-01

    With the rapid evolution of antibiotic resistance in bacteria, antibiotic-resistant bacteria (in particular, multidrug-resistant bacteria) and their biofilms have been becoming more and more difficult to be effectively treated with conventional antibiotics. As such, there is a great demand to develop a nonantibiotic approach in efficiently eliminating such bacteria. Here, multibranched gold nanocrosses with strong near-infrared absorption falling in the biological window, which heat up quickly under near-infrared-light irradiation are presented. The gold nanocrosses are conjugated to secondary and primary antibodies for targeting PcrV, a type III secretion protein, which is uniquely expressed on the bacteria superbug, Pseudomonas aeruginosa. The conjugated gold nanocrosses are capable of completely destroying P. aeruginosa and its biofilms upon near-infrared-light irradiation for 5 min with an 800 nm laser at a low power density of ≈3.0 W cm(-2) . No bacterial activity is detected after 48 h postirradiation, which indicates that the heat generated from the irradiated plasmonic gold nanocrosses attached to bacteria is effective in eliminating and preventing the re-growth of the bacteria. Overall, the conjugated gold nanocrosses allow targeted and effective photothermal ablation of multidrug-resistant bacteria and their biofilms in the localized region with reduced nonspecific damage to normal tissue. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Facile synthesis of soybean phospholipid-encapsulated MoS2 nanosheets for efficient in vitro and in vivo photothermal regression of breast tumor

    PubMed Central

    Li, Xiang; Gong, Yun; Zhou, Xiaoqian; Jin, Hui; Yan, Huanhuan; Wang, Shige; Liu, Jun

    2016-01-01

    Two-dimensional MoS2 nanosheet has been extensively explored as a photothermal agent for tumor regression; however, its surface modification remains a great challenge. Herein, as an alternative to surface polyethylene glycol modification (PEGylation), a facile approach based on “thin-film” strategy has been proposed for the first time to produce soybean phospholipid-encapsulated MoS2 (SP-MoS2) nanosheets. By simply vacuum-treating MoS2 nanosheets/soybean phospholipid/chloroform dispersion in a rotary evaporator, SP-MoS2 nanosheet was successfully constructed. Owing to the steric hindrance of polymer chains, the surface-coated soybean phospholipid endowed MoS2 nanosheets with excellent colloidal stability. Without showing detectable in vitro and in vivo hemolysis, coagulation, and cyto-/histotoxicity, the constructed SP-MoS2 nanosheets showed good photothermal conversion performance and photothermal stability. SP-MoS2 nanosheet was shown to be a promising platform for in vitro and in vivo breast tumor photothermal therapy. The produced SP-MoS2 nanosheets featured low cost, simple fabrication, and good in vivo hemo-/histocompatibility and hold promising potential for future clinical tumor therapy. PMID:27199557

  4. Cancer cell death pathways caused by photothermal and photodynamic effects through gold nanoring induced surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    He, Yulu; Hsiao, Jen-Hung; Yu, Jian-He; Tseng, Po-Hao; Hua, Wei-Hsiang; Low, Meng-Chun; Tsai, Yu-Hsuan; Cai, Cheng-Jin; Hsieh, Cheng-Che; Kiang, Yean-Woei; Yang, C. C.; Zhang, Zhenxi

    2017-07-01

    The different death pathways of cancer cells under the conditions of the photothermal (PT), effect, photodynamic (PD) effect, and their combination are evaluated. By incubating cells with Au nanoring (NRI) either linked with the photosensitizer, AlPcS, or not, the illumination of a visible continuous laser for exciting the photosensitizer or an infrared femtosecond laser for exciting the localized surface plasmon resonance of Au NRI, leads to various PT and PD conditions for study. Three different staining dyes are used for identifying the cell areas of different damage conditions at different temporal points of observation. The cell death pathways and apoptotic evolution speeds under different cell treatment conditions are evaluated based on the calibration of the threshold laser fluences for causing early-apoptosis (EA) and necrosis (NE) or late-apoptosis (LA). It is found that with the PT effect only, strong cell NE is generated and the transition from EA into LA is faster than that caused by the PD effect when the EA stage is reached within 0.5 h after laser illumination. By combining the PT and PD effects, in the first few hours, the transition speed becomes lower, compared to the case of the PT effect only, when both Au NRIs internalized into cells and adsorbed on cell membrane exist. When the Au NRIs on cell membrane is removed, in the first few hours, the transition speed becomes higher, compared to the case of the PD effect only.

  5. Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas

    PubMed Central

    Maltzahn, Geoffrey von; Park, Ji-Ho; Agrawal, Amit; Bandaru, Nanda Kishor; Das, Sarit K.; Sailor, Michael J.; Bhatia, Sangeeta N.

    2009-01-01

    Plasmonic nanomaterials have the opportunity to considerably improve the specificity of cancer ablation by i.v. homing to tumors and acting as antennas for accepting externally applied energy. Here, we describe an integrated approach to improved plasmonic therapy composed of multimodal nanomaterial optimization and computational irradiation protocol development. We synthesized polyethylene glycol (PEG)-protected gold nanorods (NR) that exhibit superior spectral bandwidth, photothermal heat generation per gram of gold, and circulation half-life in vivo (t1/2, ~17 hours) compared with the prototypical tunable plasmonic particles, gold nanoshells, as well as ~2-fold higher X-ray absorption than a clinical iodine contrast agent. After intratumoral or i.v. administration, we fuse PEG-NR biodistribution data derived via noninvasive X-ray computed tomography or ex vivo spectrometry, respectively, with four-dimensional computational heat transport modeling to predict photothermal heating during irradiation. In computationally driven pilot therapeutic studies, we show that a single i.v. injection of PEG-NRs enabled destruction of all irradiated human xenograft tumors in mice. These studies highlight the potential of integrating computational therapy design with nanotherapeutic development for ultraselective tumor ablation. PMID:19366797

  6. Photothermal sensitization of amelanotic melanoma cells by Ni(II)-octabutoxy-naphthalocyanine.

    PubMed

    Busetti, A; Soncin, M; Reddi, E; Rodgers, M A; Kenney, M E; Jori, G

    1999-01-01

    Incubation of B78H1 amelanotic melanoma cells with a potential photothermal sensitizer, namely, liposome-incorporated Ni(II)-octabutoxy-naphthalocyanine (NiNc), induces an appreciable cellular accumulation of the naphthalocyanine, which is dependent on both the NiNc concentration and the incubation time. No detectable decrease in cell survival occurs upon red-light irradiation (corresponding to the longest-wavelength absorption bands of NiNc) in a continuous-wave (c.w.) regime of the naphthalocyanine-loaded cells. On the other hand, 850 nm irradiation with a Q-switched Ti:sapphire laser operating in a pulsed mode (30 ns pulses, 10 Hz, 200 mJ/pulse) induces an efficient cell death. Thus, ca. 98% decrease in cell survival is obtained upon 5 min irradiation of cells that have been incubated for 48 h with 5.1 microM NiNc. The efficiency of the photoprocess is strongly influenced by the NiNc cell incubation time prior to irradiation. Photothermal sensitization with NiNc appears to open new perspectives for therapeutic applications, as suggested by preliminary in vivo studies with C57/BL6 mice bearing a subcutaneously implanted amelanotic melanoma.

  7. One Minute, Sub-One-Watt Photothermal Tumor Ablation Using Porphysomes, Intrinsic Multifunctional Nanovesicles

    PubMed Central

    Jin, Cheng S.; Lovell, Jonathan F.; Zheng, Gang

    2013-01-01

    We recently developed porphysomes as intrinsically multifunctional nanovesicles. A photosensitizer, pyropheophorbide α, was conjugated to a phospholipid and then self-assembled to liposome-like spherical vesicles. Due to the extremely high density of porphyrin in the porphyrin-lipid bilayer, porphysomes generated large extinction coefficients, structure-dependent fluorescence self-quenching, and excellent photothermal efficacy. In our formulation, porphysomes were synthesized using high pressure extrusion, and displayed a mean particle size around 120 nm. Twenty-four hr post-intravenous injection of porphysomes, the local temperature of the tumor increased from 30 °C to 62 °C rapidly upon one minute exposure of 750 mW (1.18 W/cm2), 671 nm laser irradiation. Following the complete thermal ablation of the tumor, eschars formed and healed within 2 weeks, while in the control groups the tumors continued to grow and all reached the defined end point within 3 weeks. These data show how porphysomes can be used as potent photothermal therapy (PTT) agents. PMID:24084712

  8. Spatial Temperature Mapping within Polymer Nanocomposites Undergoing Ultrafast Photothermal Heating via Gold Nanorods

    PubMed Central

    Maity, Somsubhra; Wu, Wei-Chen; Xu, Chao; Tracy, Joseph B.; Gundogdu, Kenan; Bochinski, Jason R.; Clarke, Laura I.

    2015-01-01

    Heat emanates from gold nanorods (GNRs) under ultrafast optical excitation of the localized surface plasmon resonance. The steady state nanoscale temperature distribution formed within a polymer matrix embedded with GNRs undergoing pulsed femtosecond photothermal heating is determined experimentally using two independent ensemble optical techniques. Physical rotation of the nanorods reveals the average local temperature of the polymer melt in the immediate spatial volume surrounding them while fluorescence of homogeneously-distributed perylene molecules monitors temperature over sample regions at larger distances from the GNRs. Polarization-sensitive fluorescence measurements of the perylene probes provide an estimate of the average size of the quasi-molten region surrounding each nanorod (that is, the boundary between softened polymer and solid material as the temperature decreases radially away from each particle) and distinguishes the steady state temperature in the solid and melt regions. Combining these separate methods enables nanoscale spatial mapping of the average steady state temperature distribution caused by ultrafast excitation of the GNRs. These observations definitively demonstrate the presence of a steady-state temperature gradient and indicate that localized heating via the photothermal effect within materials enables nanoscale thermal manipulations without significantly altering the bulk sample temperature in these systems. These quantitative results are further verified by reorienting nanorods within a solid polymer nanofiber without inducing any morphological changes to the highly temperature-sensitive nanofiber surface. Temperature differences of 70 – 90 °C were observed over a distances of ~100 nm. PMID:25379775

  9. N-doped carbon nanodots for non-invasive photoacoustic imaging and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Lee, Donghyun; Lee, Changho; Kwon, Woosung; Beack, Songeun; Kim, Chulhong

    2017-03-01

    We synthesized nitrogen-doped carbon nanodots (N-CNDs) for photoacoustic (PA) imaging and photothermal therapy (PTT) by controlling the nitrogen source and carbonizing organic acids. The N-CNDs showed strong optical absorbance in the near-infrared region, with great photostability and biodegradability. Thanks to the strong optical absorbance of NCNDs, the PA signals from N-CNDs were high enough to detect inside living animals and enabled minimally invasive PTT using N-CND. To evaluate the biodegradability and potential application of N-CNDs as a PA imaging contrast agent, we performed time-resolved PA imaging of sentinel lymph nodes (SLNs) and assessed renal clearance after hypodermic injection. SLN and vascular networks were photoacoustically visualized by an acoustic-resolution reflection-mode PA imaging system at a 680-nm optical wavelength. Furthermore, we performed whole-body PA imaging after subcutaneous injection of N-CNDs to assess their body distribution and clearance. Finally, we further investigated the use of N-CNDs for in vivo photothermal therapy in Balb/c nude xenograft HepG2-tumor model mice.

  10. Photothermal Techniques Used to Evaluate Quality in Dairy Products.

    NASA Astrophysics Data System (ADS)

    López-Romero, E.; Balderas-López, J. A.

    2017-01-01

    Photothermal systems were used to quantify thermal and optical properties of commercial and natural dairy products. Thermal diffusivity and light absorption coefficient were analyzed. It was found that water content easily alters thermal properties in samples of milk. In addition, all samples showed strong light absorptions at 405 nm, 980 nm and 488 nm, evidencing presence of proteins, fat and vitamins (riboflavin), respectively. Therefore, it was shown that thermo-physical properties measured in this work could be used as complementary parameters for quality evaluation of dairy products.

  11. Laser-assisted photothermal imprinting of nanocomposite

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Shao, D. B.; Chen, S. C.

    2004-08-01

    We report on a laser-assisted photothermal imprinting method for directly patterning carbon nanofiber-reinforced polyethylene nanocomposite. A single laser pulse from a solid state Nd :YAG laser (10ns pluse, 532 and 355nm wavelengths) is used to melt/soften a thin skin layer of the polymer nanocomposite. Meanwhile, a fused quartz mold with micro sized surface relief structures is pressed against the surface of the composite. Successful pattern transfer is realized upon releasing the quartz mold. Although polyethylene is transparent to the laser beam, the carbon nanofibers in the high density polyethylene (HDPE) matrix absorb the laser energy and convert it into heat. Numerical heat conduction simulation shows the HDPE matrix is partially melted or softened, allowing for easier imprinting of the relief pattern of the quartz mold.

  12. An albumin-based theranostic nano-agent for dual-modal imaging guided photothermal therapy to inhibit lymphatic metastasis of cancer post surgery.

    PubMed

    Chen, Qian; Liang, Chao; Wang, Xin; He, Jingkang; Li, Yonggang; Liu, Zhuang

    2014-11-01

    A large variety of cancers are associated with a high incidence of lymph node metastasis, which leads to a high risk of cancer death. Herein, we demonstrate that multimodal imaging guided photothermal therapy can inhibit tumor metastasis after surgery by burning the sentinel lymph nodes (SLNs) with metastatic tumor cells. A near-infrared dye, IR825, is absorbed onto human serum albumin (HSA), which is covalently linked with diethylenetriamine pentaacetic acid (DTPA) molecules to chelate gadolinium. The formed HSA-Gd-IR825 nanocomplex exhibits strong fluorescence together with high near-infrared (NIR) absorbance, and in the mean time could serve as a T1 contrast agent in magnetic resonance (MR) imaging. In vivo bi-modal fluorescence and MR imaging uncovers that HSA-Gd-IR825 after being injected into the primary tumor would quickly migrate into tumor-associated SLNs through lymphatic circulation. Utilizing the strong NIR absorbance of HSA-Gd-IR825, SLNs with metastatic cancer cells can be effectively ablated under exposure to a NIR laser. Such treatment when combined with surgery to remove the primary tumor offers remarkable therapeutic outcomes in greatly inhibiting further metastatic spread of cancer cells and prolonging animal survival. Our work presents an albumin-based theranostic nano-probe with functions of multimodal imaging and photothermal therapy, together with a 'photothermal ablation assisted surgery' strategy, promising for future clinical cancer treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Drug "Pent-Up" in Hollow Magnetic Prussian Blue Nanoparticles for NIR-Induced Chemo-Photothermal Tumor Therapy with Trimodal Imaging.

    PubMed

    Li, Jinghua; Zhang, Fengshou; Hu, Zhigang; Song, Weidong; Li, Guangda; Liang, Gaofeng; Zhou, Jun; Li, Ke; Cao, Yang; Luo, Zhong; Cai, Kaiyong

    2017-07-01

    The study reports a biocompatible smart drug delivery system based on a doxorubicin (DOX) blending phase-change material of 1-pentadecanol loaded hollow magnetic Prussian blue nanoparticles, resulting in HMNP-PB@Pent@DOX. The system possesses concentration-dependent high thermogenesis (>50 °C) when applying a near-infrared (NIR) laser irradiation only for 5 min. Furthermore, the system realizes near "zero release" of drug and is efficiently triggered by NIR for drug delivery in an "on" and "off" manner, thus inducing cell apoptosis in vitro and in vivo. Moreover, the system clearly indicates tumor site with trimodal imaging of magnetic resonance imaging, photoacoustic tomography imaging, and infrared thermal imaging. Furthermore, the system achieves efficient chemo-photothermal combined tumor therapy in vivo with 808 nm laser irradiation for 5 min at 1.2 W cm -2 , revealing the good tumor inhibition effect comparing with those of chemotherapy or photothermal therapy alone. The system is also confirmed to be biocompatible in regard to the mortality rate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Photothermal and mechanical stimulation of cells via dualfunctional nanohybrids

    NASA Astrophysics Data System (ADS)

    Chechetka, Svetlana A.; Doi, Motomichi; Pichon, Benoit P.; Bégin-Colin, Sylvie; Miyako, Eijiro

    2016-11-01

    Stimulating cells by light is an attractive technology to investigate cellular function and deliver innovative cell-based therapy. However, current techniques generally use poorly biopermeable light, which prevents broad applicability. Here, we show that a new type of composite nanomaterial, synthesized from multi-walled carbon nanotubes, magnetic iron nanoparticles, and polyglycerol, enables photothermal and mechanical control of Ca2+ influx into cells overexpressing transient receptor potential vanilloid type-2. The nanohybrid is simply operated by application of highly biotransparent near-infrared light and a magnetic field. The technology may revolutionize remote control of cellular function.

  15. "Mixed-charge self-assembled monolayers" as a facile method to design pH-induced aggregation of large gold nanoparticles for near-infrared photothermal cancer therapy.

    PubMed

    Li, Huan; Liu, Xiangsheng; Huang, Nan; Ren, Kefeng; Jin, Qiao; Ji, Jian

    2014-01-01

    The acidic microenvironment of tumor tissues has proven to be one of the major differences from other normal tissues. The near-infrared (NIR) light irradiation of aggregated gold nanoparticles in a tumor acidic pH-induced manner could then provide an effect approach to treat solid tumors with the advantage of minimizing the undesired damage to normal tissues. Although it is well-known the aggregation of larger nanoparticles will result in a better NIR photothermal effect, the preparation of pH-sensitive gold nanoparticles in large sizes remains a big challenge because of their worse dispersive stability. In this paper, we introduce a facile way to endow large gold nanoparticles with tunable pH-aggregation behaviors by modifying the nanoparticle surface with mixed-charge self-assembly monolayers compromising positively and negatively charged thiol ligands. Four different size nanoparticles were used to study the general principle of tailoring the pH-induced aggregation behaviors of mixed-charge gold nanoparticles (MC-GNPs) by adjusting the surface ligand composition. With proper surface ligand composition, the MC-GNPs in four different sizes that all exhibited aggregation at tumor acidic pH were obtained. The biggest MC-GNPs showed the most encouraging aggregation-enhanced photothermal efficacy in vitro when they formed aggregates. The mixed-charge self-assembled monolayers were then proved as a facile method to design pH-induced aggregation of large gold nanoparticles for better NIR photothermal cancer therapy.

  16. Anti-EGFR Antibody Conjugation of Fucoidan-Coated Gold Nanorods as Novel Photothermal Ablation Agents for Cancer Therapy.

    PubMed

    Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Santha Moorthy, Madhappan; Oh, Yun-Ok; Song, Kyeongeun; Seo, Hansu; Oh, Junghwan

    2017-05-03

    The development of novel photothermal ablation agents as cancer nanotheranostics has received a great deal of attention in recent decades. Biocompatible fucoidan (Fu) is used as the coating material for gold nanorods (AuNRs) and subsequently conjugated with monoclonal antibodies against epidermal growth factor receptor (anti-EGFR) as novel photothermal ablation agents for cancer nanotheranostics because of their excellent biocompatibility, biodegradability, nontoxicity, water solubility, photostability, ease of surface modification, strongly enhanced absorption in near-infrared (NIR) regions, target specificity, minimal invasiveness, fast recovery, and prevention of damage to normal tissues. Anti-EGFR Fu-AuNRs have an average particle size of 96.37 ± 3.73 nm. Under 808 nm NIR laser at 2 W/cm 2 for 5 min, the temperature of the solution containing anti-EGFR Fu-AuNRs (30 μg/mL) increased by 52.1 °C. The anti-EGFR Fu-AuNRs exhibited high efficiency for the ablation of MDA-MB-231 cells in vitro. In vivo photothermal ablation exhibited that tumor tissues fully recovered without recurrence and finally were reconstructed with normal tissues by the 808 nm NIR laser irradiation after injection of anti-EGFR Fu-AuNRs. These results suggest that the anti-EGFR Fu-AuNRs would be novel photoablation agents for future cancer nanotheranostics.

  17. 18F-FDG PET/CT-based early treatment response evaluation of nanoparticle-assisted photothermal cancer therapy

    PubMed Central

    Simón, Marina; Melander, Fredrik; Kristensen, Lotte K.; Bendix, Pól M.; Andresen, Thomas L.; Oddershede, Lene B.; Kjaer, Andreas

    2017-01-01

    Within the field of nanoparticle-assisted photothermal cancer therapy, focus has mostly been on developing novel heat-generating nanoparticles with the right optical and dimensional properties. Comparison and evaluation of their performance in tumor-bearing animals are commonly assessed by changes in tumor volume; however, this is usually a late-occurring event. This study implements 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging to perform early evaluation of the treatment outcome of photothermal therapy. Silica-gold nanoshells (NS) are administered intravenously to nude mice bearing human neuroendocrine tumor xenografts and the tumors are irradiated by a near-infrared laser. The animals are positron emission tomography scanned with 2-deoxy-2-[F-18]fluoro-D-glucose one day before and one day after treatment. Using this setup, a significant decrease in tumor uptake of 2-deoxy-2-[F-18]fluoro-D-glucose is found already one day after therapy in the group receiving NS and laser treatment compared to control animals. At this time point no change in tumor volume can be detected. Moreover, the change in tumor uptake, is used to stratify the animals into responders and non-responders, where the responding group matched improved survival. Overall, these findings support the use of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for preclinical and clinical evaluation and optimization of photothermal therapy. PMID:28542311

  18. 18F-FDG PET/CT-based early treatment response evaluation of nanoparticle-assisted photothermal cancer therapy.

    PubMed

    Norregaard, Kamilla; Jørgensen, Jesper T; Simón, Marina; Melander, Fredrik; Kristensen, Lotte K; Bendix, Pól M; Andresen, Thomas L; Oddershede, Lene B; Kjaer, Andreas

    2017-01-01

    Within the field of nanoparticle-assisted photothermal cancer therapy, focus has mostly been on developing novel heat-generating nanoparticles with the right optical and dimensional properties. Comparison and evaluation of their performance in tumor-bearing animals are commonly assessed by changes in tumor volume; however, this is usually a late-occurring event. This study implements 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging to perform early evaluation of the treatment outcome of photothermal therapy. Silica-gold nanoshells (NS) are administered intravenously to nude mice bearing human neuroendocrine tumor xenografts and the tumors are irradiated by a near-infrared laser. The animals are positron emission tomography scanned with 2-deoxy-2-[F-18]fluoro-D-glucose one day before and one day after treatment. Using this setup, a significant decrease in tumor uptake of 2-deoxy-2-[F-18]fluoro-D-glucose is found already one day after therapy in the group receiving NS and laser treatment compared to control animals. At this time point no change in tumor volume can be detected. Moreover, the change in tumor uptake, is used to stratify the animals into responders and non-responders, where the responding group matched improved survival. Overall, these findings support the use of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for preclinical and clinical evaluation and optimization of photothermal therapy.

  19. In vitro and in vivo studies on laser-activated gold nanorods for applications in photothermal therapies

    NASA Astrophysics Data System (ADS)

    Pini, Roberto; Ratto, Fulvio; Matteini, Paolo; Centi, Sonia; Rossi, Francesca

    2010-04-01

    We review our experimental studies on near infrared laser-activated gold nanoparticles in the direct welding of connective tissues. In particular, we discuss the use of gold nanorods excited by diode laser radiation at 810 nm to mediate functional photothermal effects and weld eye's lens capsules and arteries. The preparation of biopolymeric matrices including gold nanorods is described as well, together with preliminary tests for their application in the closure of wounds in vessels and tendons. Finally we mention future perspectives on the use of these nanoparticles for applications in the therapy of cancer.

  20. A novel model of photothermal diffusion (PTD) for polymer nano-composite semiconducting of thin circular plate

    NASA Astrophysics Data System (ADS)

    Lotfy, Kh.

    2018-05-01

    In this article, theoretical discussions for a novel mathematical-physical Photothermal diffusion (PTD) model in the generalized thermoelasticity theory with photothermal processes and chemical action are introduced. The mean idea of this model depends on the interaction between quasi-particles (plasma waves) that depends on the kind of the used materials, the mechanical forces acting on the surface, the generalized thermo and mass diffusion (due to coupling of temperature fields with thermal waves and chemical potential) and the elastic waves. The one dimensional Laplace transforms is used to obtain the exact solution for some physical and chemical quantities for a thin circular plate of a semiconducting polymer nanocomposite such as silicon (Si). New variables are deduced and discussed. The obtained results of the physical quantities are presented analytically and illustrated graphically with some important applications.

  1. Bioinspired Gold Nanorod Functionalization Strategies for MUC1-Targeted Imaging and Photothermal Therapy

    NASA Astrophysics Data System (ADS)

    Zelasko-Leon, Daria Cecylia

    The majority of cancers diagnosed in 2016 are epithelial in origin, constituting 85% of all new cases and predicted to account for 78% of all cancer deaths this year. Given these statistics, improving patient outcomes by providing personalized, multimodal, and minimally invasive medical interventions is critically needed. Mucin 1 (MUC1), a transmembrane glycoprotein, extends over 100 nm from cell membranes and is a key marker promoting epithelial carcinogenesis. Due to its antenna-like manifestation, MUC1 is a unique yet underexplored candidate for targeted cancer therapy, with overexpression in >64% of epithelial cancers. To overcome the limitations of existing treatment strategies for epithelial cancer, this dissertation describes a novel platform for nanomedicine, highlighting bioinspired modifications of gold nanorod (AuNR) surfaces for diagnostic cancer imaging and photothermal therapy. An ongoing challenge in the field of nanomedicine is the need for simple and effective strategies for simple surface modification of nanoparticles to facilitate targeting and enhance efficacy. Here, biofunctionalization of AuNRs was achieved with polydopamine (PD) and tannic acid (TA), polyphenolic compounds found in the marine mussel and throughout the plant kingdom that exhibit promiscuous interfacial binding properties. AuNR stabilization was achieved via PD or TA coatings followed by secondary modification with the serum protein, bovine serum albumin (BSA), or glycoprotein-mimetic polymers. The resultant constructs demonstrated good biocompatibility, enabled diagnostic imaging, and facilitated MUC1-specific photothermal treatment of breast and oral cancer cells. The in vivo performance of BSA and PD modified AuNRs was evaluated in two orthotopic animal models of breast cancer. Clinically relevant hyperthermia and high response rates with MUC1-targeted formulations were found, with significant enhancement of progression-free survival and several complete tumor regressions

  2. Lattice parameter evolution in Pt nanoparticles during photo-thermally induced sintering and grain growth

    DOE PAGES

    Kelly, B.G.; Loether, A.; DiChiara, A. D.; ...

    2017-04-20

    An in-situ optical pump/x-ray probe technique has been used to study the size dependent lattice parameter of Pt nanoparticles subjected to picosecond duration optical laser pulses. The as-prepared Pt nanoparticles exhibited a contracted lattice parameter consistent with the response of an isolated elastic sphere to a compressive surface stress. During photo-thermally induced sintering and grain growth, however, the Pt lattice parameter did not evolve with the inverse particle size dependence predicted by simple surface stress models. Lastly, the observed behavior could be attributed to the combined effects of a compressive surface/interface stress and a tensile stress arising from intergranular material.

  3. Lattice parameter evolution in Pt nanoparticles during photo-thermally induced sintering and grain growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, B.G.; Loether, A.; DiChiara, A. D.

    An in-situ optical pump/x-ray probe technique has been used to study the size dependent lattice parameter of Pt nanoparticles subjected to picosecond duration optical laser pulses. The as-prepared Pt nanoparticles exhibited a contracted lattice parameter consistent with the response of an isolated elastic sphere to a compressive surface stress. During photo-thermally induced sintering and grain growth, however, the Pt lattice parameter did not evolve with the inverse particle size dependence predicted by simple surface stress models. Lastly, the observed behavior could be attributed to the combined effects of a compressive surface/interface stress and a tensile stress arising from intergranular material.

  4. Photo-thermal processing of semiconductor fibers and thin films

    NASA Astrophysics Data System (ADS)

    Gupta, Nishant

    Furnace processing and rapid thermal processing (RTP) have been an integral part of several processing steps in semiconductor manufacturing. The performance of RTP techniques can be improved many times by exploiting quantum photo-effects of UV and vacuum ultraviolet (VUV) photons in thermal processing and this technique is known as rapid photo-thermal processing (RPP). As compared to furnace processing and RTP, RPP provides higher diffusion coefficient, lower stress and lower microscopic defects. In this work, a custom designed automated photo assisted processing system was built from individual parts and an incoherent light source. This photo-assisted processing system is used to anneal silica clad silicon fibers and deposit thin-films. To the best of our knowledge, incoherent light source based rapid photo-thermal processing (RPP) was used for the first time to anneal glass-clad silicon core optical fibers. X-ray diffraction examination, Raman spectroscopy and electrical measurements showed a considerable enhancement of structural and crystalline properties of RPP treated silicon fibers. Photons in UV and vacuum ultraviolet (VUV) regions play a very important role in improving the bulk and carrier transport properties of RPP-treated silicon optical fibers, and the resultant annealing permits a path forward to in situ enhancement of the structure and properties of these new crystalline core optical fibers. To explore further applications of RPP, thin-films of Calcium Copper Titanate (CaCu3Ti4O12) or CCTO and Copper (I) Oxide (Cu2O) were also deposited using photo-assisted metal-organic chemical vapor deposition (MOCVD) on Si/SiO2 and n-Si substrate respectively. CCTO is one of the most researched giant dielectric constant materials in recent years. The given photo-assisted MOCVD approach provided polycrystalline CCTO growth on a SiO2 surface with grain sizes as large as 410 nm. Copper (I) oxide (Cu2O) is a direct band gap semiconductor with p-type conductivity and

  5. Selective nanoparticle-directed photothermal ablation of the canine prostate

    NASA Astrophysics Data System (ADS)

    Schwartz, Jon A.; Price, Roger E.; Gill-Sharp, Kelly L.; Sang, Krystina L.; Khorchani, Jennifer D.; Payne, J. Donald; Goodwin, Bradford S.

    2011-03-01

    This study adapted AuroLase® Therapy, previously reported for the treatment of brain tumors, to the treatment of prostate disease by 1) using normal canine prostate in vivo, directly injected with a solution of nanoparticles as a proxy for prostate tumor and, 2) developing an appropriate laser dosimetry for prostate which is which is subablative in native prostate while simultaneously producing photothermal coagulation in prostate tissue containing therapeutic nanoshells. Healthy, mixed-breed hound dogs were given surgical laparotomies during which nanoshells were injected directly into one or both prostate hemispheres. Laser energy was delivered percutaneously to the parenchyma of the prostate along 1-5 longitudinal tracts via a liquid-cooled optical fiber catheter terminated with a 1-cm isotropic diffuser after which the incision was closed and sutured using standard surgical techniques. The photothermal lesions were permitted to resolve for up to 8 days, after which each animal was euthanized, necropsied, and the prostate taken for histopathological analysis. We developed a laser dosimetry which is sub- to marginally ablative in native prostate and simultaneously ablative of prostate tissue containing nanoshells which would indicate a viable means of treating tumors of the prostate which are known from other studies to accumulate nanoshells. Secondly, we determined that multiple laser treatments of nanoshell-containing prostate tissue could be accomplished while sparing the urethra and prostate capsule thermal damage. Finally, we determined that the extent of damage zone radii correlate positively with nanoshell concentration, and negatively to the length of time between nanoshell injection and laser treatment.

  6. Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria.

    PubMed

    Fan, Zhen; Senapati, Dulal; Khan, Sadia Afrin; Singh, Anant Kumar; Hamme, Ashton; Yust, Brian; Sardar, Dhiraj; Ray, Paresh Chandra

    2013-02-18

    Over the last few years, one of the most important and complex problems facing our society is treating infectious diseases caused by multidrug-resistant bacteria (MDRB), by using current market-existing antibiotics. Driven by this need, we report for the first time the development of the multifunctional popcorn-shaped iron magnetic core-gold plasmonic shell nanotechnology-driven approach for targeted magnetic separation and enrichment, label-free surface-enhanced Raman spectroscopy (SERS) detection, and the selective photothermal destruction of MDR Salmonella DT104. Due to the presence of the "lightning-rod effect", the core-shell popcorn-shaped gold-nanoparticle tips provided a huge field of SERS enhancement. The experimental data show that the M3038 antibody-conjugated nanoparticles can be used for targeted separation and SERS imaging of MDR Salmonella DT104. A targeted photothermal-lysis experiment, by using 670 nm light at 1.5 W cm(-2) for 10 min, results in selective and irreparable cellular-damage to MDR Salmonella. We discuss the possible mechanism and operating principle for the targeted separation, label-free SERS imaging, and photothermal destruction of MDRB by using the popcorn-shaped magnetic/plasmonic nanotechnology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Multivariate image analysis of laser-induced photothermal imaging used for detection of caries tooth

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ashraf F.; Abdel Aziz, Wessam M.; El-Sharkawy, Yasser H.

    2010-08-01

    Time-resolved photothermal imaging has been investigated to characterize tooth for the purpose of discriminating between normal and caries areas of the hard tissue using thermal camera. Ultrasonic thermoelastic waves were generated in hard tissue by the absorption of fiber-coupled Q-switched Nd:YAG laser pulses operating at 1064 nm in conjunction with a laser-induced photothermal technique used to detect the thermal radiation waves for diagnosis of human tooth. The concepts behind the use of photo-thermal techniques for off-line detection of caries tooth features were presented by our group in earlier work. This paper illustrates the application of multivariate image analysis (MIA) techniques to detect the presence of caries tooth. MIA is used to rapidly detect the presence and quantity of common caries tooth features as they scanned by the high resolution color (RGB) thermal cameras. Multivariate principal component analysis is used to decompose the acquired three-channel tooth images into a two dimensional principal components (PC) space. Masking score point clusters in the score space and highlighting corresponding pixels in the image space of the two dominant PCs enables isolation of caries defect pixels based on contrast and color information. The technique provides a qualitative result that can be used for early stage caries tooth detection. The proposed technique can potentially be used on-line or real-time resolved to prescreen the existence of caries through vision based systems like real-time thermal camera. Experimental results on the large number of extracted teeth as well as one of the thermal image panoramas of the human teeth voltanteer are investigated and presented.

  8. Two-photon absorption and transient photothermal imaging of pigments in tissues

    NASA Astrophysics Data System (ADS)

    Ye, Tong; Fu, Dan; Matthews, Thomas E.; Hong, Lian; Simon, John D.; Warren, Warren S.

    2008-02-01

    As a main pigment in skin tissues, melanin plays an important role in photo-protecting skin from UV radiation. However, melanogenesis may be altered due to disease or environmental factors; for example, sun exposure may cause damage and mutation of melanocytes and induce melanoma. Imaging pigmentation changes may provide invaluable information to catch the malignant transformation in its early stage and in turn improve the prognosis of patients. We have demonstrated previously that transmission mode, two-photon, one- or two-color absorption microscopy could provide remarkable contrast in imaging melanin in skin. In this report we demonstrate significantly improved sensitivity, so that we are now able to image in epi-mode (or back reflection) in two-photon absorption. This improvement makes possible for us to characterize the different types of pigmentation on the skin in vivo at virtually any location. Another finding is that we can also image transient photothermal dynamics due to the light absorption of melanin. By carefully choosing excitation and probe wavelengths, we might be able to image melanin in different structures under different micro-environments in skin, which could provide useful photochemical and photophysical insights in understanding how pigments are involved in photoprotection and photodamage of cells.

  9. Photothermal tomography for the functional and structural evaluation, and early mineral loss monitoring in bones.

    PubMed

    Kaiplavil, Sreekumar; Mandelis, Andreas; Wang, Xueding; Feng, Ting

    2014-08-01

    Salient features of a new non-ionizing bone diagnostics technique, truncated-correlation photothermal coherence tomography (TC-PCT), exhibiting optical-grade contrast and capable of resolving the trabecular network in three dimensions through the cortical region with and without a soft-tissue overlayer are presented. The absolute nature and early demineralization-detection capability of a marker called thermal wave occupation index, estimated using the proposed modality, have been established. Selective imaging of regions of a specific mineral density range has been demonstrated in a mouse femur. The method is maximum-permissible-exposure compatible. In a matrix of bone and soft-tissue a depth range of ~3.8 mm has been achieved, which can be increased through instrumental and modulation waveform optimization. Furthermore, photoacoustic microscopy, a comparable modality with TC-PCT, has been used to resolve the trabecular structure and for comparison with the photothermal tomography.

  10. Photothermal tomography for the functional and structural evaluation, and early mineral loss monitoring in bones

    PubMed Central

    Kaiplavil, Sreekumar; Mandelis, Andreas; Wang, Xueding; Feng, Ting

    2014-01-01

    Salient features of a new non-ionizing bone diagnostics technique, truncated-correlation photothermal coherence tomography (TC-PCT), exhibiting optical-grade contrast and capable of resolving the trabecular network in three dimensions through the cortical region with and without a soft-tissue overlayer are presented. The absolute nature and early demineralization-detection capability of a marker called thermal wave occupation index, estimated using the proposed modality, have been established. Selective imaging of regions of a specific mineral density range has been demonstrated in a mouse femur. The method is maximum-permissible-exposure compatible. In a matrix of bone and soft-tissue a depth range of ~3.8 mm has been achieved, which can be increased through instrumental and modulation waveform optimization. Furthermore, photoacoustic microscopy, a comparable modality with TC-PCT, has been used to resolve the trabecular structure and for comparison with the photothermal tomography. PMID:25136480

  11. Sub-100 nm Gold Nanomatryoshkas Improve Photo-thermal Therapy Efficacy in Large and Highly Aggressive Triple Negative Breast Tumors

    PubMed Central

    Bishnoi, Sandra; Urban, Alexander; Charron, Heather; Mitchell, Tamika; Shea, Martin; Nanda, Sarmistha; Schiff, Rachel; Halas, Naomi; Joshi, Amit

    2014-01-01

    There is an unmet need for efficient near-infrared photothermal transducers for the treatment of highly aggressive cancers and large tumors where the penetration of light can be substantially reduced, and the intra-tumoral nanoparticle transport is restricted due to the presence of hypoxic or nectrotic regions. We report the performance advantages obtained by sub 100 nm gold nanomatryushkas, comprising of concentric gold-silica-gold layers compared to conventional ~150 nm silica core gold nanoshells for photothermal therapy of triple negative breast cancer. We demonstrate that a 33% reduction in silica-core-gold-shell nanoparticle size, while retaining near-infrared plasmon resonance, and keeping the nanoparticle surface charge constant, results in a four to five fold tumor accumulation of nanoparticles following equal dose of injected gold for both sizes. The survival time of mice bearing large (>1000 mm3) and highly aggressive triple negative breast tumors is doubled for the nanomatryushka treatment group under identical photo-thermal therapy conditions. The higher absorption cross-section of a nanomatryoshka results in a higher efficiency of photonic to thermal energy conversion and coupled with 4-5X accumulation within large tumors results in superior therapy efficacy. PMID:25051221

  12. Kapitza thermal resistance studied by high-frequency photothermal radiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horny, Nicolas; Chirtoc, Mihai; Hamaoui, Georges

    2016-07-18

    Kapitza thermal resistance is determined using high-frequency photothermal radiometry (PTR) extended for modulation up to 10 MHz. Interfaces between 50 nm thick titanium coatings and silicon or stainless steel substrates are studied. In the used configuration, the PTR signal is not sensitive to the thermal conductivity of the film nor to its optical absorption coefficient, thus the Kapitza resistance is directly determined from single thermal parameter fits. Results of thermal resistances show the significant influence of the nature of the substrate, as well as of the presence of free electrons at the interface.

  13. An "intelligent" approach based on side-by-side cascade-correlation neural networks for estimating thermophysical properties from photothermal responses

    NASA Astrophysics Data System (ADS)

    Grieu, Stéphane; Faugeroux, Olivier; Traoré, Adama; Claudet, Bernard; Bodnar, Jean-Luc

    2015-01-01

    In the present paper, an artificial-intelligence-based approach dealing with the estimation of thermophysical properties is designed and evaluated. This new and "intelligent" approach makes use of photothermal responses obtained when subjecting materials to a light flux. So, the main objective of the present work was to estimate simultaneously both the thermal diffusivity and conductivity of materials, from front-face or rear-face photothermal responses to pseudo random binary signals. To this end, we used side-by-side feedforward neural networks trained with the cascade-correlation algorithm. In addition, computation time was a key point to consider. That is why the developed algorithms are computationally tractable.

  14. NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites

    PubMed Central

    Seo, Sun-Hwa; Kim, Bo-Mi; Joe, Ara; Han, Hyo-Won; Chen, Xiaoyuan; Cheng, Zhen; Jang, Eue-Soon

    2015-01-01

    Methylene blue-loaded gold nanorod@SiO2 (MB-GNR@SiO2) core@shell nanoparticles are synthesized for use in cancer imaging and photothermal/photodynamic dual therapy. For the preparation of GNR@SiO2 nanoparticles, we found that the silica coating rate of hexadecylcetyltrimethylammonium bromide (CTAB)-capped GNRs is much slower than that of PEGylated GNRs due to the densely coated CTAB bilayer. Encapsulated MB molecules have both monomer and dimer forms that result in an increase in the photosensitizing effect through different photochemical pathways. As a consequence of the excellent plasmonic properties of GNRs at near-infrared (NIR) light, the embedded MB molecules showed NIR light-induced SERS performance with a Raman enhancement factor of 3.0 × 1010, which is enough for the detection of a single cancer cell. Moreover, the MB-GNR@SiO2 nanoparticles exhibit a synergistic effect of photodynamic and photothermal therapies of cancer under single-wavelength NIR laser irradiation. PMID:24424205

  15. Mussel-inspired immobilization of BN nanosheets onto poly(p-phenylene benzobisoxazole) fibers: Multifunctional interface for photothermal self-healing

    NASA Astrophysics Data System (ADS)

    Shao, Qing; Hu, Zhen; Xu, Xirong; Yu, Long; Zhang, Dayu; Huang, Yudong

    2018-05-01

    The composites with interfacial self-healing ability are smart and promising materials in the future. Although some approaches have been used to heal the micro-cracks in composite materials, it is still a great challenge to develop a versatile strategy to fabricate multifunctional interface for self-healing. Here, boron nitride nanosheets (BN) are immobilized onto PBO fibers by facile polydopamine (PDA) chemistry. Benefiting from the photothermal effect of BN-PDA, the obtained surface layer displays interfacial self-healing properties under Xenon light irradiation.

  16. Shape-based reconstruction for transrectal diffuse optical tomography monitoring of photothermal focal therapy of prostate cancer: simulation studies

    NASA Astrophysics Data System (ADS)

    Weersink, Robert A.; Chaudhary, Sahil; Mayo, Kenwrick; He, Jie; Wilson, Brian C.

    2017-04-01

    We develop and demonstrate a simple shape-based approach for diffuse optical tomographic reconstruction of coagulative lesions generated during interstitial photothermal therapy (PTT) of the prostate. The shape-based reconstruction assumes a simple ellipsoid shape, matching the general dimensions of a cylindrical diffusing fiber used for light delivery in current clinical studies of PTT in focal prostate cancer. The specific requirement is to accurately define the border between the photothermal lesion and native tissue as the photothermal lesion grows, with an accuracy of ≤1 mm, so treatment can be terminated before there is damage to the rectal wall. To demonstrate the feasibility of the shape-based diffuse optical tomography reconstruction, simulated data were generated based on forward calculations in known geometries that include the prostate, rectum, and lesions of varying dimensions. The only source of optical contrast between the lesion and prostate was increased scattering in the lesion, as is typically observed with coagulation. With noise added to these forward calculations, lesion dimensions were reconstructed using the shape-based method. This approach for reconstruction is shown to be feasible and sufficiently accurate for lesions that are within 4 mm from the rectal wall. The method was also robust for irregularly shaped lesions.

  17. A Flexible Caterpillar-Like Gold Nanoparticle Assemblies with Ultrasmall Nanogaps for Enhanced Dual-Modal Imaging and Photothermal Therapy.

    PubMed

    Xia, Yuanzhi; Ma, Xuehua; Gao, Junhua; Chen, Guoxin; Li, Zihou; Wu, Xiaoxia; Yu, Zhangsen; Xing, Jie; Sun, Li; Ruan, Huimin; Luo, Lijia; Xiang, Lingchao; Dong, Chen; Ren, Wenzhi; Shen, Zheyu; Wu, Aiguo

    2018-05-01

    Gold nanoparticle (AuNP) assemblies (GNAs) have attracted attention since enhanced coupling plasmonic resonance (CPR) emerged in the nanogap between coupling AuNPs. For one dimensional GNAs (1D-GNAs), most CPR from the nanogaps could be easily activated by electromagnetic waves and generate drastically enhanced CPR because the nanogaps between coupling AuNPs are linearly distributed in the 1D-GNAs. The reported studies focus on the synthesis of 1D-GNAs and fundamental exploration of CPR. There are still problems which impede further applications in nanomedicine, such as big size (>500 nm), poor water solubility, and/or poor stability. In this study, a kind of 1D flexible caterpillar-like GNAs (CL-GNAs) with ultrasmall nanogaps, good water solubility, and good stability is developed. The CL-GNAs have a flexible structure that can randomly move to change their morphology, which is rarely reported. Numerous ultrasmall nanogaps (<1 nm) are linearly distributed along the structure of CL-GNAs and generate enhanced CPR. The toxicity assessments in vitro and vivo respectively demonstrate that CL-GNAs have a low cytotoxicity and good biocompatibility. The CL-GNAs can be used as an efficient photothermal agent for photothermal therapy, a probe for Raman imaging and photothermal imaging. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A new NIR-triggered doxorubicin and photosensitizer indocyanine green co-delivery system for enhanced multidrug resistant cancer treatment through simultaneous chemo/photothermal/photodynamic therapy.

    PubMed

    Yu, Yanna; Zhang, Zhipeng; Wang, Yun; Zhu, Hao; Li, Fangzhou; Shen, Yuanyuan; Guo, Shengrong

    2017-09-01

    It is a great challenge to combat multidrug resistant (MDR) cancer effectively. To address this issue, we developed a new near-infrared (NIR) triggered chemotherapeutic agent doxorubicin (DOX) and photosensitizer indocyanine green (ICG) co-release system by aid of NIR induced photothermal effect of gold nanocages (AuNCs) and temperature sensitive phase-change property of 1-tetradecanol at its melting point of 39°C, which could simultaneously exerted chemo/photothermal/photodynamic treatment on MDR human breast cancer MCF-7/ADR cells. This nano-sized system was constructed by filling the interior of AuNCs with DOX, ICG and 1-tetradecanol, and modifying the surface with biotinylated poly (ethylene glycol) via Au-S bonds, termed as DOX/ICG@biotin-PEG-AuNC-PCM. The DOX and ICG co-release from DOX/ICG@biotin-PEG-AuNC-PCM was much faster in PBS at 40°C or under 808nm NIR irradiation at 2.5W/cm 2 than at 37°C (e.g. 67.27% or 80.31% vs. 5.57% of DOX, 76.08% vs. 3.83% of ICG for 20min). The flow cytometry and confocal laser scanning microscopy (CLSM) results showed, the AuNCs were taken up by MCF-7/ADR cells via endocytosis, thus enhancing DOX uptake; the biotin on AuNCs facilitated this endocytosis; NIR irradiation caused the heating of the AuNCs, triggering the DOX and ICG co-release and enhancing the distribution of DOX in nuclei, the released ICG generated ROS to take photodynamic therapy. Due to the above unique properties, DOX/ICG@biotin-PEG-AuNC-PCM exerted excellent anti-tumor effects under NIR irradiation, its IC 50 against MCF-7/ADR cells was very low, only 0.48µg/mL, much smaller than that of free DOX (74.51μg/mL). A new near-infrared (NIR) triggered chemotherapeutic agent doxorubicin (DOX) and photosensitizer indocyanine green (ICG) co-release system by aid of NIR induced photothermal effect of gold nanocages (AuNCs) and temperature sensitive phase-change property of 1-tetradecanol at its melting point of 39°C, was prepared, termed as DOX

  19. NIR-to-NIR Deep Penetrating Nanoplatforms Y2O3:Nd3+/Yb3+@SiO2@Cu2S toward Highly Efficient Photothermal Ablation.

    PubMed

    Zhang, Zhiyu; Suo, Hao; Zhao, Xiaoqi; Sun, Dan; Fan, Li; Guo, Chongfeng

    2018-05-02

    A difunctional nano-photothermal therapy (PTT) platform with near-infrared excitation to near-infrared emission (NIR-to-NIR) was constructed through core-shell structures Y 2 O 3 :Nd 3+ /Yb 3+ @SiO 2 @Cu 2 S (YRSC), in which the core Y 2 O 3 :Nd 3+ /Yb 3+ and shell Cu 2 S play the role of bioimaging and photothermal conversion function, respectively. The structure and composition of the present PTT agents (PTAs) were characterized by powder X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectra. The NIR emissions of samples in the biological window area were measured by photoluminescence spectra under the excitation of 808 nm laser; further, the penetration depth of NIR emission at different wavelengths in biological tissue was also demonstrated by comparing with visible (vis) emission from Y 2 O 3 :Yb 3+ /Er 3+ @SiO 2 @Cu 2 S and NIR emission from YRSC through different injection depths in pork muscle tissues. The photo-thermal conversion effects were achieved through the outer ultrasmall Cu 2 S nanoparticles simultaneously absorb NIR light emission from the core Y 2 O 3 :Nd 3+/ Yb 3+ and the 808 nm excitation source to generate heat. Further, the heating effect of YRSC nanoparticles was confirmed by thermal imaging and ablation of YRSC to Escherichia coli and human hepatoma (HepG-2) cells. Results indicate that the YRSC has potential applications in PTT and NIR imaging in biological tissue.

  20. Pd Nanocubes@ZIF-8: Integration of Plasmon-Driven Photothermal Conversion with a Metal-Organic Framework for Efficient and Selective Catalysis.

    PubMed

    Yang, Qihao; Xu, Qiang; Yu, Shu-Hong; Jiang, Hai-Long

    2016-03-07

    Composite nanomaterials usually possess synergetic properties resulting from the respective components and can be used for a wide range of applications. In this work, a Pd nanocubes@ZIF-8 composite material has been rationally fabricated by encapsulation of the Pd nanocubes in ZIF-8, a common metal-organic framework (MOF). This composite was used for the efficient and selective catalytic hydrogenation of olefins at room temperature under 1 atm H2 and light irradiation, and benefits from plasmonic photothermal effects of the Pd nanocube cores while the ZIF-8 shell plays multiple roles; it accelerates the reaction by H2 enrichment, acts as a "molecular sieve" for olefins with specific sizes, and stabilizes the Pd cores. Remarkably, the catalytic efficiency of a reaction under 60 mW cm(-2) full-spectrum or 100 mW cm(-2) visible-light irradiation at room temperature turned out to be comparable to that of a process driven by heating at 50 °C. Furthermore, the catalyst remained stable and could be easily recycled. To the best of our knowledge, this work represents the first combination of the photothermal effects of metal nanocrystals with the favorable properties of MOFs for efficient and selective catalysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova, Ekaterina; Shnip, Alexander; Zheltov, George; Potapnev, Michail; Savitsky, Valeriy; Klimovich, Olga; Oraevsky, Alexander

    2005-04-01

    We are developing new diagnostic and therapeutic technologies for leukemia based on selective targeting of leukemia cells with gold nanoparticles and thermomechanical destruction of the tumor cells with laser-induced microbubbles. Clusters of spherical gold nanoparticles that have strong optical absorption of laser pulses at 532 nm served as nucleation sites of vapor microbubbles. The nanoparticles were targeted selectively to leukemia cells using leukemia-specific surface receptors and a set of two monoclonal antibodies. Application of a primary myeloid-specific antibody to tumor cells followed by targeting the cells with 30-nm nanoparticles conjugated with a secondary antibody (IgG) resulted in formation of nanoparticulate clusters due to aggregation of IgGs. Formation of clusters resulted in substantial decrease of the damage threshold for target cells. The results encourage development of Laser Activated Nanothermolysis as a Cell Elimination Therapy (LANCET) for leukemia. The proposed technology can be applied separately or in combination with chemotherapy for killing leukemia cells without damage to other blood cells. Potential applications include initial reduction of concentration of leukemia cells in blood prior to chemotherapy and treatment of residual tumor cells after the chemotherapy. Laser-induced bubbles in individual cells and cell damage were monitored by analyzing profile of photothermal response signals over the entire cell after irradiation with a single 10-ns long laser pulse. Photothermal microscopy was utilized for imaging formation of microbubbles around nanoparticulate clusters.

  2. Magnetically targeted delivery of DOX loaded Cu9S5@mSiO2@Fe3O4-PEG nanocomposites for combined MR imaging and chemo/photothermal synergistic therapy

    NASA Astrophysics Data System (ADS)

    Liu, Bei; Zhang, Xinyang; Li, Chunxia; He, Fei; Chen, Yinyin; Huang, Shanshan; Jin, Dayong; Yang, Piaoping; Cheng, Ziyong; Lin, Jun

    2016-06-01

    The combination of multi-theranostic modes in a controlled fashion has received tremendous attention for the construction of cooperative therapeutic systems in nanomedicine. Herein, we have synthesized a smart magnetically targeted nanocarrier system, Cu9S5@mSiO2@Fe3O4-PEG (labelled as CMF), which integrates NIR triggered photothermal therapy, pH/NIR-responsive chemotherapy and MR imaging into one nanoplatform to enhance the therapeutic efficacy. This new multifunctional paradigm has a uniform and monodisperse sesame ball-like structure by decorating tiny Fe3O4 nanoparticles on the surface of Cu9S5@mSiO2 before a further PEG modification to improve its hydrophilicity and biocompatibility. With doxorubicin (DOX) payload, the as-obtained CMF-DOX composites can simultaneously provide an intense heating effect and enhanced DOX release upon 980 nm NIR light exposure, achieving a combined chemo/photothermal therapy. Under the influence of an external magnetic field, the magnetically targeted synergistic therapeutic effect of CMF-DOX can lead to highly superior inhibition of animal H22 tumor in vivo when compared to any of the single approaches alone. The results revealed that this Cu9S5 based magnetically targeted chemo/photothermal synergistic nanocarrier system has great promise in future MR imaging assisted tumor targeted therapy of cancer.

  3. Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect.

    PubMed

    Abdelrasoul, Gaser N; Farkas, Balazs; Romano, Ilaria; Diaspro, Alberto; Beke, Szabolcs

    2015-11-01

    Nanoparticle incorporation into scaffold materials is a valuable route to deliver various therapeutic agents, such as drug molecules or large biomolecules, proteins (e.g. DNA or RNA) into their targets. In particular, gold nanoparticles (Au NPs) with their low inherent toxicity, tunable stability and high surface area provide unique attributes facilitating new delivery strategies. A biodegradable, photocurable polymer resin, polypropylene fumarate (PPF) along with Au NPs were utilized to synthesize a hybrid nanocomposite resin, directly exploitable in stereolithography (SL) processes. To increase the particles' colloidal stability, the Au NP nanofillers were coated with polyvinyl pyrrolidone (PVP). The resulting resin was used to fabricate a new type of composite scaffold via mask projection excimer laser stereolithography. The thermal properties of the nanocomposite scaffolds were found to be sensitive to the concentration of NPs. The mechanical properties were augmented by the NPs up to 0.16μM, though further increase in the concentration led to a gradual decrease. Au NP incorporation rendered the biopolymer scaffolds photosensitive, i.e. the presence of Au NPs enhanced the optical absorption of the scaffolds as well, leading to possible localized temperature rise when irradiated with 532nm laser, known as the photothermal effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A novel flurophore-cyano-carboxylic-Ag microhybrid: Enhanced two photon absorption for two-photon photothermal therapy of HeLa cancer cells by targeting mitochondria.

    PubMed

    Kong, Lin; Yang, Li; Xin, Chen-Qi; Zhu, Shu-Juan; Zhang, Hui-Hui; Zhang, Ming-Zhu; Yang, Jia-Xiang; Li, Lin; Zhou, Hong-Ping; Tian, Yu-Peng

    2018-06-15

    In this study, a novel two-photon photothermal therapy (TP-PTT) agent based on an organic-metal microhybrid with surface Plasmon resonance (SPR) enhanced two-photon absorption (TPA) characteristic was designed and synthesized using a fluorescent cyano-carboxylic derivative 2-cyano-3-(9-ethyl-9H-carbazol-3-yl) -acrylic acid (abbreviated as CECZA) and silver nanoparticles through self-assembly process induced by the interfacial coordination interactions between the O/N atom of CECZA and Ag + ion at the surface of Ag nanoparticles. The coordination interactions caused electron transfer from the Ag nanoparticles to CECZA molecules at the excited state, resulting in a decreased fluorescence quantum yield. The interfacial coordination interactions also enhanced the nonlinear optical properties, including 13 times increase in the TPA cross-section (δ). The decreased fluorescence quantum yield and increased two photon absorption caused by the SPR effect led excellent two-photon photothermal conversion, which was beneficial for the TP-PTT effect on HeLa cancer cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Reversibly extracellular pH controlled cellular uptake and photothermal therapy by PEGylated mixed-charge gold nanostars.

    PubMed

    Wang, Shouju; Teng, Zhaogang; Huang, Peng; Liu, Dingbin; Liu, Ying; Tian, Ying; Sun, Jing; Li, Yanjun; Ju, Huangxian; Chen, Xiaoyuan; Lu, Guangming

    2015-04-17

    Shielding nanoparticles from nonspecific interactions with normal cells/tissues before they reach and after they leave tumors is crucial for the selective delivery of NPs into tumor cells. By utilizing the reversible protonation of weak electrolytic groups to pH changes, long-chain amine/carboxyl-terminated polyethylene glycol (PEG) decorated gold nanostars (GNSs) are designed, exhibiting reversible, significant, and sensitive response in cell affinity and therapeutic efficacy to the extracellular pH (pHe) gradient between normal tissues and tumors. This smart nanosystem shows good dispersity and unimpaired photothermal efficacy in complex bioenvironment at pH 6.4 and 7.4 even when their surface charge is neutral. One PEGylated mixed-charge GNSs with certain surface composition, GNS-N/C 4, exhibits high cell affinity and therapeutic efficacy at pH 6.4, and low affinity and almost "zero" damage to cells at pH 7.4. Remarkably, this significant and sensitive response in cell affinity and therapeutic efficacy is reversible as local pH alternated. In vivo, GNS-N/C 4 shows higher accumulation in tumors and improved photothermal therapeutic efficacy than pH-insensitive GNSs. This newly developed smart nanosystem, whose cell affinity reversibly transforms in response to pHe gradient with unimpaired biostability, provides a novel effective means of tumor-selective therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Gold nanoflowers with mesoporous silica as "nanocarriers" for drug release and photothermal therapy in the treatment of oral cancer using near-infrared (NIR) laser light

    NASA Astrophysics Data System (ADS)

    Song, Wenzhi; Gong, Junxia; Wang, Yuqian; Zhang, Yan; Zhang, Hongmei; Zhang, Weihang; Zhang, Hu; Liu, Xin; Zhang, Tianfu; Yin, Wanzhong; Yang, Wensheng

    2016-04-01

    In this experiment, we successfully developed nanocarriers in the form of gold nanoflowers coated with two layers of silica for the purposes of drug loading and NIR (near-infrared) photothermal therapy for the treatment of oral cancer. The gold nanoflowers converted NIR laser energy into heat energy. The cores were coated with a thin silica layer (AuNFs@SiO2) to protect the gold nanoflowers from intraparticle ripening. The second layer was mesoporous silica (AuNFs@SiO2@mSiO2), which acted as a nanocarrier for anticancer drug (DOX) loads. The mean effective diameter of the nanoparticles was approximately 150-200 nm, whereas the peak absorption of the AuNFs was 684 nm. After the AuNFs were encapsulated by the silica shells, the plasmonic absorption peak of AuNFs@SiO2 and AuNFs@SiO2@mSiO2 exhibited a red shift to 718 nm. When exposed to an 808 nm NIR laser, these crystals showed an obvious photothermal conversion in the NIR region and a highly efficient release of DOX. Biocompatibility was assessed in vitro using Cell Counting Kit-8 assays, and the results showed that the nanocarriers induced no obvious cytotoxicity. This nanomaterial could be considered a new type of material that shows promising potential for photothermal-chemotherapy against malignant tumours, including those of oral cancers.

  7. Thermal and photo-thermal PROX reaction over Ag/SiO2 catalysts

    NASA Astrophysics Data System (ADS)

    Sabinas-Hernández, S. A.; Romero-Núñez, A.; Díaz, G.

    2018-02-01

    The effect of plasmonic excitation of Ag/SiO2 catalysts was studied in the preferential CO oxidation in presence of H2 (PROX) at low temperature. Catalysts with 5 wt% silver loading were prepared by wet impregnation in aqueous and basic media. TEM analysis indicates the presence of Ag nanoparticles with a broad particle size distribution which can achieve both, good PROX activity at low temperature and plasmonic interaction with visible light. Photo-assisted reaction at 35 °C enhance CO and O2 conversions; however, the greater improvement was found for O2 conversion. The selectivity towards CO2 decrease when reaction took place under photo-thermal conditions. Occurrence of different silver species and particle size changed after reaction as evidenced by DRS-UV-vis and TEM.

  8. Bifunctional Carbon-Dot-WS2 Nanorods for Photothermal Therapy and Cell Imaging.

    PubMed

    Nandi, Sukhendu; Bhunia, Susanta Kumar; Zeiri, Leila; Pour, Maayan; Nachman, Iftach; Raichman, Daniel; Lellouche, Jean-Paul Moshe; Jelinek, Raz

    2017-01-18

    Multifunctional nanoparticles have attracted significant interest as biomedical vehicles, combining diagnostic, imaging, and therapeutic properties. We describe herein the construction of new nanoparticle conjugates comprising WS 2 nanorods (NRs) coupled to fluorescent carbon dots (C-dots). We show that the WS 2 -C-dot hybrids integrate the unique physical properties of the two species, specifically the photothermal activity of the WS 2 NRs upon irradiation with near-infrared (NIR) light and the excitation-dependent luminescence emission of the C-dots. The WS 2 -C-dot NRs have been shown to be non-cytotoxic and have been successfully employed for multicolour cell imaging and targeted cell killing under NIR irradiation, pointing to their potential utilization as effective therapeutic vehicles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Magnetic/NIR-responsive drug carrier, multicolor cell imaging, and enhanced photothermal therapy of gold capped magnetite-fluorescent carbon hybrid nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hui; Cao, Guixin; Gai, Zheng

    In our paper reports a type of multifunctional hybrid nanoparticle (NP) composed of gold nanocrystals coated on and/or embedded in a magnetite-fluorescent porous carbon core-shell NP template (Fe 3O 4@PC-CDs-Au) for biomedical applications, including magnetic/NIR-responsive drug release, multicolor cell imaging, and enhanced photothermal therapy. The synthesis of the Fe 3O 4@PC-CDs-Au NPs firstly involves the preparation of core-shell template NPs with magnetite nanocrystals clustered in the cores and fluorescent carbon dots (CDs) embedded in a porous carbon shell, followed by an in situ reduction of silver ions (Ag +) loaded in the porous carbon shell and a subsequent replacement ofmore » Ag NPs with Au NPs through a galvanic replacement reaction using HAuCl 4 as a precursor. Moreover, the Fe 3O 4@PC-CDsAu NPs can enter the intracellular region and light up mouse melanoma B16F10 cells in multicolor mode. The porous carbon shell, anchored with hydrophilic hydroxyl/carboxyl groups, endows the Fe 3O 4@PC-CDs-Au NPs with excellent stability in the aqueous phase and a high loading capacity (719 mg g -1) for the anti-cancer drug doxorubicin (DOX). The superparamagnetic Fe 3O 4@PC-CDs-Au NPs with a saturation magnetization of 23.26 emu g -1 produce localized heat under an alternating magnetic field, which triggers the release of the loaded drug. The combined photothermal effects of the Au nanocrystals and the CDs on/in the carbon shell can not only regulate the release rate of the loaded drug, but also efficiently kill tumor cells under NIR irradiation. Finally, in benefitting from their excellent optical properties, their magnetic field and NIR light-responsive drug release capabilities and their enhanced photothermal effect, such nanostructured Fe 3O 4@PC-CDs-Au hybrid NPs are very promising for simultaneous imaging diagnostics and high efficacy therapy.« less

  10. Magnetic/NIR-responsive drug carrier, multicolor cell imaging, and enhanced photothermal therapy of gold capped magnetite-fluorescent carbon hybrid nanoparticles

    DOE PAGES

    Wang, Hui; Cao, Guixin; Gai, Zheng; ...

    2015-03-25

    In our paper reports a type of multifunctional hybrid nanoparticle (NP) composed of gold nanocrystals coated on and/or embedded in a magnetite-fluorescent porous carbon core-shell NP template (Fe 3O 4@PC-CDs-Au) for biomedical applications, including magnetic/NIR-responsive drug release, multicolor cell imaging, and enhanced photothermal therapy. The synthesis of the Fe 3O 4@PC-CDs-Au NPs firstly involves the preparation of core-shell template NPs with magnetite nanocrystals clustered in the cores and fluorescent carbon dots (CDs) embedded in a porous carbon shell, followed by an in situ reduction of silver ions (Ag +) loaded in the porous carbon shell and a subsequent replacement ofmore » Ag NPs with Au NPs through a galvanic replacement reaction using HAuCl 4 as a precursor. Moreover, the Fe 3O 4@PC-CDsAu NPs can enter the intracellular region and light up mouse melanoma B16F10 cells in multicolor mode. The porous carbon shell, anchored with hydrophilic hydroxyl/carboxyl groups, endows the Fe 3O 4@PC-CDs-Au NPs with excellent stability in the aqueous phase and a high loading capacity (719 mg g -1) for the anti-cancer drug doxorubicin (DOX). The superparamagnetic Fe 3O 4@PC-CDs-Au NPs with a saturation magnetization of 23.26 emu g -1 produce localized heat under an alternating magnetic field, which triggers the release of the loaded drug. The combined photothermal effects of the Au nanocrystals and the CDs on/in the carbon shell can not only regulate the release rate of the loaded drug, but also efficiently kill tumor cells under NIR irradiation. Finally, in benefitting from their excellent optical properties, their magnetic field and NIR light-responsive drug release capabilities and their enhanced photothermal effect, such nanostructured Fe 3O 4@PC-CDs-Au hybrid NPs are very promising for simultaneous imaging diagnostics and high efficacy therapy.« less

  11. Photoacoustically-guided photothermal killing of mosquitoes targeted by nanoparticles.

    PubMed

    Foster, Stephen R; Galanzha, Ekaterina I; Totten, Daniel C; Beneš, Helen; Shmookler Reis, Robert J; Zharov, Vladimir P

    2014-07-01

    In biomedical applications, nanoparticles have demonstrated the potential to eradicate abnormal cells in small localized pathological zones associated with cancer or infections. Here, we introduce a method for nanotechnology-based photothermal (PT) killing of whole organisms considered harmful to humans or the environment. We demonstrate that laser-induced thermal, and accompanying nano- and microbubble phenomena, can injure or kill C. elegans and mosquitoes fed carbon nanotubes, gold nanospheres, gold nanoshells, or magnetic nanoparticles at laser energies that are safe for humans. In addition, a photoacoustic (PA) effect was used to control nanoparticle delivery. Through the integration of this technique with molecular targeting, nanoparticle clustering, magnetic capturing and spectral sharpening of PA and PT plasmonic resonances, our laser-based PA-PT nano-theranostic platform can be applied to detection and the physical destruction of small organisms and carriers of pathogens, such as malaria vectors, spiders, bed bugs, fleas, ants, locusts, grasshoppers, phytophagous mites, or other arthropod pests, irrespective of their resistance to conventional treatments. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Estimation of biomedical optical properties by simultaneous use of diffuse reflectometry and photothermal radiometry: investigation of light propagation models

    NASA Astrophysics Data System (ADS)

    Fonseca, E. S. R.; de Jesus, M. E. P.

    2007-07-01

    The estimation of optical properties of highly turbid and opaque biological tissue is a difficult task since conventional purely optical methods rapidly loose sensitivity as the mean photon path length decreases. Photothermal methods, such as pulsed or frequency domain photothermal radiometry (FD-PTR), on the other hand, show remarkable sensitivity in experimental conditions that produce very feeble optical signals. Photothermal Radiometry is primarily sensitive to absorption coefficient yielding considerably higher estimation errors on scattering coefficients. Conversely, purely optical methods such as Local Diffuse Reflectance (LDR) depend mainly on the scattering coefficient and yield much better estimates of this parameter. Therefore, at moderate transport albedos, the combination of photothermal and reflectance methods can improve considerably the sensitivity of detection of tissue optical properties. The authors have recently proposed a novel method that combines FD-PTR with LDR, aimed at improving sensitivity on the determination of both optical properties. Signal analysis was performed by global fitting the experimental data to forward models based on Monte-Carlo simulations. Although this approach is accurate, the associated computational burden often limits its use as a forward model. Therefore, the application of analytical models based on the diffusion approximation offers a faster alternative. In this work, we propose the calculation of the diffuse reflectance and the fluence rate profiles under the δ-P I approximation. This approach is known to approximate fluence rate expressions better close to collimated sources and boundaries than the standard diffusion approximation (SDA). We extend this study to the calculation of the diffuse reflectance profiles. The ability of the δ-P I based model to provide good estimates of the absorption, scattering and anisotropy coefficients is tested against Monte-Carlo simulations over a wide range of scattering to

  13. Capillary-scale direct measurement of hemoglobin concentration of erythrocytes using photothermal angular light scattering.

    PubMed

    Kim, Uihan; Song, Jaewoo; Lee, Donghak; Ryu, Suho; Kim, Soocheol; Hwang, Jaehyun; Joo, Chulmin

    2015-12-15

    We present a direct, rapid and chemical-free detection method for hemoglobin concentration ([Hb]), based on photothermal angular light scattering. The iron oxides contained in hemoglobin molecules exhibit high absorption of 532-nm light and generate heat under the illumination of 532-nm light, which subsequently alters the refractive index of blood. We measured this photothermal change in refractive index by employing angular light scattering spectroscopy with the goal of quantifying [Hb] in blood samples. Highly sensitive [Hb] measurement of blood samples was performed by monitoring the shifts in angularly dispersed scattering patterns from the blood-loaded microcapillary tubes. Our system measured [Hb] over the range of 0.35-17.9 g/dL with a detection limit of ~0.12 g/dL. Our sensor was characterized by excellent correlation with a reference hematology analyzer (r>0.96), and yielded a precision of 0.63 g/dL for a blood sample of 9.0 g/dL. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Ultra-Deep Bone Diagnostics with Fat-Skin Overlayers Using New Pulsed Photothermal Radar

    NASA Astrophysics Data System (ADS)

    Sreekumar, K.; Mandelis, A.

    2013-09-01

    The constraints imposed by the laser safety (maximum permissible exposure) ceiling on pump laser energy and the strong attenuation of thermal-wave signals in tissues significantly limit the photothermally active depth in most biological specimens to a level which is normally insufficient for practical applications (a few mm below the skin surface). A theoretical approach for improvement of the signal-to-noise ratio (SNR), minimizing the static (dc) component of the photothermal (PT) signal and making use of the PT radiometric nonlinearity has been introduced. At low frequencies fixed-pulse-width chirps of large peak power were found to be superior to all other equal energy modalities, with an SNR improvement by up to two orders of magnitude. Compared to radar peak delay and amplitude, the long-delayed radar output amplitude is found to be more sensitive to subsurface conditions. Two-dimensional spatial plots of this parameter depicting the back-surface conditions of bones with and without fat tissue overlayers are presented. Pulsed-chirp radar thermography has been demonstrated to monitor the degree of demineralization in goat rib bone with a substantial SNR and spatial resolution that is not practicable with harmonic radars of the same energy density.

  15. Photodetector based on Vernier-Enhanced Fabry-Perot Interferometers with a Photo-Thermal Coating

    PubMed Central

    Chen, George Y.; Wu, Xuan; Liu, Xiaokong; Lancaster, David G.; Monro, Tanya M.; Xu, Haolan

    2017-01-01

    We present a new type of fiber-coupled photodetector with a thermal-based optical sensor head, which enables it to operate even in the presence of strong electro-magnetic interference and in electrically sensitive environments. The optical sensor head consists of three cascaded Fabry-Perot interferometers. The end-face surface is coated with copper-oxide micro-particles embedded in hydrogel, which is a new photo-thermal coating that can be readily coated on many different surfaces. Under irradiation, photons are absorbed by the photo-thermal coating, and are converted into heat, changing the optical path length of the probing light and induces a resonant wavelength shift. For white-light irradiation, the photodetector exhibits a power sensitivity of 760 pm/mW, a power detection limit of 16.4 μW (i.e. specific detectivity of 2.2 × 105 cm.√Hz/W), and an optical damage threshold of ~100 mW or ~800 mW/cm2. The response and recovery times are 3.0 s (~90% of change within 100 ms) and 16.0 s respectively. PMID:28139745

  16. Tumor-triggered drug release from calcium carbonate-encapsulated gold nanostars for near-infrared photodynamic/photothermal combination antitumor therapy.

    PubMed

    Liu, Yanlei; Zhi, Xiao; Yang, Meng; Zhang, Jingpu; Lin, Lingnan; Zhao, Xin; Hou, Wenxiu; Zhang, Chunlei; Zhang, Qian; Pan, Fei; Alfranca, Gabriel; Yang, Yuming; de la Fuente, Jesús M; Ni, Jian; Cui, Daxiang

    2017-01-01

    Different stimulus including pH, light and temperature have been used for controlled drug release to prevent drug inactivation and minimize side-effects. Herein a novel nano-platform (GNS@CaCO 3 /ICG) consisting of calcium carbonate-encapsulated gold nanostars loaded with ICG was established to couple the photothermal properties of gold nanostars (GNSs) and the photodynamic properties of indocyanine green (ICG) in the photodynamic/photothermal combination therapy (PDT/PTT). In this study, the calcium carbonate worked not only a drug keeper to entrap ICG on the surface of GNSs in the form of a stable aggregate which was protected from blood clearance, but also as the a pH-responder to achieve highly effective tumor-triggered drug release locally. The application of GNS@CaCO 3 /ICG for in vitro and in vivo therapy achieved the combined antitumor effects upon the NIR irradiation, which was superior to the single PDT or PTT. Meanwhile, the distinct pH-triggered drug release performance of GNS@CaCO 3 /ICG implemented the tumor-targeted NIR fluorescence imaging. In addition, we monitored the bio-distribution and excretion pathway of GNS@CaCO 3 /ICG based on the NIR fluorescence from ICG and two-photon fluorescence and photoacoustic signal from GNSs, and the results proved that GNS@CaCO 3 /ICG had a great ability for tumor-specific and tumor-triggered drug release. We therefore conclude that the GNS@CaCO 3 /ICG holds great promise for clinical applications in anti-tumor therapy with tumor imaging or drug tracing.

  17. Porphysome nanoparticles for enhanced photothermal therapy in a patient-derived orthotopic pancreas xenograft cancer model: a pilot study

    NASA Astrophysics Data System (ADS)

    MacLaughlin, Christina M.; Ding, Lili; Jin, Cheng; Cao, Pingjiang; Siddiqui, Iram; Hwang, David M.; Chen, Juan; Wilson, Brian C.; Zheng, Gang; Hedley, David W.

    2016-08-01

    Local disease control is a major challenge in pancreatic cancer treatment, because surgical resection of the primary tumor is only possible in a minority of patients and radiotherapy cannot be delivered in curative doses. Despite the promise of photothermal therapy (PTT) for focal ablation of pancreatic tumors, this approach remains underinvestigated. Using photothermal sensitizers in combination with laser light irradiation for PTT can result in more efficient conversion of light energy to heat and improved spatial confinement of thermal destruction to the tumor. Porphysomes are self-assembled nanoparticles composed mainly of pyropheophorbide-conjugated phospholipids, enabling the packing of ˜80,000 porphyrin photosensitizers per particle. The high-density porphyrin loading imparts enhanced photonic properties and enables high-payload tumor delivery. A patient-derived orthotopic pancreas xenograft model was used to evaluate the feasibility of porphysome-enhanced PTT for pancreatic cancer. Biodistribution and tumor accumulation were evaluated using fluorescence intensity measurements from homogenized tissues and imaging of excised organs. Tumor surface temperature was recorded using IR optical imaging during light irradiation to monitor treatment progress. Histological analyses were conducted to determine the extent of PTT thermal damage. These studies may provide insight into the influence of heat-sink effect on thermal therapy dosimetry for well-perfused pancreatic tumors.

  18. Development of a Photothermal Absorbance Detector for Use with Microfluidic Devices

    PubMed Central

    Dennis, Patty J.; Ferguson Welch, Erin R.; Alarie, Jean Pierre; Ramsey, J. Michael; Jorgenson, James W.

    2010-01-01

    The development of a photothermal absorbance detector for use with microfluidic devices is described. Unlike thermooptical techniques that rely on measuring refractive index changes, the solution viscosity is probed by continuously monitoring solution conductivity. Platinum electrodes microfabricated on a quartz substrate and bonded to a substrate containing the microchannels enable contact conductivity measurements. The effects of excitation frequency and voltage, electrode spacing, laser power, and laser modulation (chopping) frequency were evaluated experimentally. In the current configuration a limit of detection of 5 nM for DABSYL-tagged glucosamine was obtained using long injections (to give flat-topped peaks). This corresponds to an absorbance of 4.4 × 10−7 AU. Separation and detection of DABSYL-tagged glycine, proline, and tryptophan is also shown to demonstrate the feasibility of the method. In addition, simulations were used to investigate the applicability of the technique to small volume platforms. PMID:20411923

  19. Fe3O4@mSiO2-FA-CuS-PEG nanocomposites for magnetic resonance imaging and targeted chemo-photothermal synergistic therapy of cancer cells.

    PubMed

    Gao, Zhifang; Liu, Xijian; Deng, Guoying; Zhou, Feng; Zhang, Lijuan; Wang, Qian; Lu, Jie

    2016-09-14

    In this work, a new multifunctional nanoplatform (Fe3O4@mSiO2-FA-CuS-PEG nanocomposite) for magnetic resonance imaging (MRI) and targeted chemo-photothermal therapy, was firstly fabricated on the basis of magnetic mesoporous silica nanoparticles (Fe3O4@mSiO2), on which folic acid (FA) was grafted as the targeting reagent, CuS nanocrystals were attached as the photothermal agent, and polyethylene glycol (PEG) was coupled to improve biocompatibility. The characterization results demonstrated that the fabricated Fe3O4@mSiO2-FA-CuS-PEG nanocomposites not only showed strong magnetism and excellent MRI performance, but also had a high doxorubicin (DOX, an anticancer drug) loading capacity (22.1%). The loaded DOX can be sustainably released, which was apt to be controlled by pH adjustment and near infrared (NIR) laser irradiation. More importantly, targeted delivery of the DOX-loaded Fe3O4@mSiO2-FA-CuS-PEG nanocomposites could be accomplished in HeLa cells via the receptor-mediated endocytosis pathway, and this exhibited synergistic effect of chemotherapy and photothermal therapy against HeLa cells under irradiation with a 915 nm laser. Therefore, the fabricated multifunctional Fe3O4@mSiO2-FA-CuS-PEG nanocomposite has a great potential in image-guided therapy of cancers.

  20. Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres

    NASA Astrophysics Data System (ADS)

    Skala, Melissa C.; Crow, Matthew J.; Wax, Adam; Izatt, Joseph A.

    2009-02-01

    Molecular imaging is a powerful tool for investigating disease processes and potential therapies in both in vivo and in vitro systems. However, high resolution molecular imaging has been limited to relatively shallow penetration depths that can be accessed with microscopy. Optical coherence tomography (OCT) is an optical analogue to ultrasound with relatively good penetration depth (1-2 mm) and resolution (~1-10 μm). We have developed and characterized photothermal OCT as a molecular contrast mechanism that allows for high resolution molecular imaging at deeper penetration depths than microscopy. Our photothermal system consists of an amplitude-modulated heating beam that spatially overlaps with the focused spot of the sample arm of a spectral-domain OCT microscope. Validation experiments in tissue-like phantoms containing gold nanospheres that absorb at 532 nm revealed a sensitivity of 14 parts per million nanospheres (weight/weight) in a tissue-like environment. The nanospheres were then conjugated to anti-EGFR, and molecular targeting was confirmed in cells that over-express EGFR (MDA-MB-468) and cells that express low levels of EGFR (MDA-MB-435). Molecular imaging in three-dimensional tissue constructs was confirmed with a significantly lower photothermal signal (p<0.0001) from the constructs composed of cells that express low levels of EGFR compared to the over-expressing cell constructs (300% signal increase). This technique could potentially augment confocal and multiphoton microscopy as a method for deep-tissue, depth-resolved molecular imaging with relatively high resolution and target sensitivity, without photobleaching or cytotoxicity.

  1. Carbon-Coated Gold Nanorods: A Facile Route to Biocompatible Materials for Photothermal Applications.

    PubMed

    Kaneti, Yusuf Valentino; Chen, Chuyang; Liu, Minsu; Wang, Xiaochun; Yang, Jia Lin; Taylor, Robert Allen; Jiang, Xuchuan; Yu, Aibing

    2015-11-25

    Gold nanorods and their core-shell nanocomposites have been widely studied because of their well-defined anisotropy and unique optical properties and applications. This study demonstrates a facile hydrothermal synthesis strategy for generating carbon coating on gold nanorods (AuNRs@C) under mild conditions (<200 °C), where the carbon shell is composed of polymerized sugar molecules (glucose). The structure and composition of the produced core-shell nanocomposites were characterized using advanced microscopic and spectroscopic techniques. The functional properties, particularly the photothermal and biocompatibility properties of the produced AuNRs@C, were quantified to assess their potential in photothermal hyperthermia. These AuNRs@C were tested in vitro (under representative treatment conditions) using near-infrared (NIR) light irradiation. It was found that the AuNRs produced here exhibit exemplary heat generation capability. Temperature changes of 10.5, 9, and 8 °C for AuNRs@C were observed with carbon shell thicknesses of 10, 17, and 25 nm, respectively, at a concentration of 50 μM, after 600 s of irradiation with a laser power of 0.17 W/cm(2). In addition, the synthesized AuNRs@C also exhibit good biocompatibility toward two soft tissue sarcoma cell lines (HT1080, a fibrosarcoma; and GCT, a fibrous histiocytoma). The cell viability study shows that AuNRs@C (at a concentration of <0.1 mg/mL) core-shell particles induce significantly lower cytotoxicity on both HT1080 and GCT cell lines, as compared with cetyltrimethylammonium bromide (CTAB)-capped AuNRs. Furthermore, similar to PEG-modified AuNRs, they are also safe to both HT1080 and GCT cell lines. This biocompatibility results from a surface full of -OH or -COH groups, which are suitable for linking and are nontoxic Therefore, the AuNRs@C represent a viable alternative to PEG-coated AuNRs for facile synthesis and improved photothermal conversion. Overall, these findings open up a new class of carbon

  2. Synergistic Photothermal and Antibiotic Killing of Biofilm-Associated Staphylococcus aureus Using Targeted Antibiotic-Loaded Gold Nanoconstructs.

    PubMed

    Meeker, Daniel G; Jenkins, Samir V; Miller, Emily K; Beenken, Karen E; Loughran, Allister J; Powless, Amy; Muldoon, Timothy J; Galanzha, Ekaterina I; Zharov, Vladimir P; Smeltzer, Mark S; Chen, Jingyi

    2016-04-08

    Resistance to conventional antibiotics is a growing public health concern that is quickly outpacing the development of new antibiotics. This has led the Infectious Diseases Society of America (IDSA) to designate Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumannii , Pseudomonas aeruginosa , and Enterobacter species as "ESKAPE pathogens" on the basis of the rapidly decreasing availability of useful antibiotics. This emphasizes the urgent need for alternative therapeutic strategies to combat infections caused by these and other bacterial pathogens. In this study, we used Staphylococcus aureus ( S. aureus ) as a proof-of-principle ESKAPE pathogen to demonstrate that an appropriate antibiotic (daptomycin) can be incorporated into polydopamine-coated gold nanocages (AuNC@PDA) and that daptomycin-loaded AuNC@PDA can be conjugated to antibodies targeting a species-specific surface protein (staphylococcal protein A; Spa) as a means of achieving selective delivery of the nanoconstructs directly to the bacterial cell surface. Targeting specificity was confirmed by demonstrating a lack of binding to mammalian cells, reduced photothermal and antibiotic killing of the Spa-negative species Staphylococcus epidermidis , and reduced killing of S. aureus in the presence of unconjugated anti-Spa antibodies. We demonstrate that laser irradiation at levels within the current safety standard for use in humans can be used to achieve both a lethal photothermal effect and controlled release of the antibiotic, thus resulting in a degree of therapeutic synergy capable of eradicating viable S. aureus cells. The system was validated using planktonic bacterial cultures of both methicillin-sensitive and methicillin-resistant S. aureus strains and subsequently shown to be effective in the context of an established biofilm, thus indicating that this approach could be used to facilitate the effective treatment of intrinsically resistant biofilm infections.

  3. Photothermal depth profiling: Comparison between genetic algorithms and thermal wave backscattering (abstract)

    NASA Astrophysics Data System (ADS)

    Li Voti, R.; Sibilia, C.; Bertolotti, M.

    2003-01-01

    Photothermal depth profiling has been the subject of many papers in the last years. Inverse problems on different kinds of materials have been identified, classified, and solved. A first classification has been done according to the type of depth profile: the physical quantity to be reconstructed is the optical absorption in the problems of type I, the thermal effusivity for type II, and both of them for type III. Another classification may be done depending on the time scale of the pump beam heating (frequency scan, time scan), or on its geometrical symmetry (one- or three-dimensional). In this work we want to discuss two different approaches, the genetic algorithms (GA) [R. Li Voti, C. Melchiorri, C. Sibilia, and M. Bertolotti, Anal. Sci. 17, 410 (2001); R. Li Voti, Proceedings, IV Int. Workshop on Advances in Signal Processing for Non-Destructive Evaluation of Materials, Quebec, August 2001] and the thermal wave backscattering (TWBS) [R. Li Voti, G. L. Liakhou, S. Paoloni, C. Sibilia, and M. Bertolotti, Anal. Sci. 17, 414 (2001); J. C. Krapez and R. Li Voti, Anal. Sci. 17, 417 (2001)], showing their performances and limits of validity for several kinds of photothermal depth profiling problems: The two approaches are based on different mechanisms and exhibit obviously different features. GA may be implemented on the exact heat diffusion equation as follows: one chromosome is associated to each profile. The genetic evolution of the chromosome allows one to find better and better profiles, eventually converging towards the solution of the inverse problem. The main advantage is that GA may be applied to any arbitrary profile, but several disadvantages exist; for example, the complexity of the algorithm, the slow convergence, and consequently the computer time consumed. On the contrary, TWBS uses a simplified theoretical model of heat diffusion in inhomogeneous materials. According to such a model, the photothermal signal depends linearly on the thermal effusivity

  4. Multifunctional gold nanorods for selective plasmonic photothermal therapy in pancreatic cancer cells using ultra-short pulse near-infrared laser irradiation.

    PubMed

    Patino, Tania; Mahajan, Ujjwal; Palankar, Raghavendra; Medvedev, Nikolay; Walowski, Jakob; Münzenberg, Markus; Mayerle, Julia; Delcea, Mihaela

    2015-03-12

    Gold nanorods (AuNRs) have attracted considerable attention in plasmonic photothermal therapy for cancer treatment by exploiting their selective and localized heating effect due to their unique photophysical properties. Here we describe a strategy to design a novel multifunctional platform based on AuNRs to: (i) specifically target the adenocarcinoma MUC-1 marker through the use of the EPPT-1 peptide, (ii) enhance cellular uptake through a myristoylated polyarginine peptide (MPAP) and (iii) selectively induce cell death by ultra-short near infrared laser pulses. We used a biotin-avidin based approach to conjugate EPPT-1 and MPAP to AuNRs. Dual-peptide (EPPT-1+MPAP) labelled AuNRs showed a significantly higher uptake by pancreatic ductal adenocarcinoma cells when compared to their single peptide or avidin conjugated counterparts. In addition, we selectively induced cell death by ultra-short near infrared laser pulses in small target volumes (∼1 μm3), through the creation of plasmonic nanobubbles that lead to the destruction of a local cell environment. Our approach opens new avenues for conjugation of multiple ligands on AuNRs targeting cancer cells and tumors and it is relevant for plasmonic photothermal therapy.

  5. The assesment of effectiveness of plasmonic resonance photothermal therapy in tumor-bearing rats after multiple intravenous administration of gold nanorods

    NASA Astrophysics Data System (ADS)

    Bucharskaya, Alla B.; Maslyakova, Galina N.; Navolokin, Nikita A.; Terentyuk, Georgy S.; Khlebtsov, Boris N.; Khlebtsov, Nikolai G.; Bashkatov, Alexey N.; Genina, Elina A.; Tuchin, V. V.

    2017-03-01

    To assess the effectiveness of plasmonic photothermal therapy (PPT) multiple intravenous strategy of gold nanorods (GNRs) administration was used before laser exposure. The model of alveolar liver cancer PC-1 was used in male outbred albino rats, which were intravenously administrated by single and multiple injections of GNRs and then were treated by PPT. The gold dosage was 400 μg (single injection group), 800 μg (double injection group), 1200 μg (triple injection group), and absorption maximum of gold nanorods suspension was at the wavelength of 808 nm. 24 hours after last injection the tumors were irradiated by the 808-nm diode laser during 15 min at power density 2.3 W/cm2. Temperature control of the tumor heating was provided by IR imager. 24 hours after the PPT the half of animals from each group was withdrawn from the experiments and the sampling tumor tissue for morphological study was performed. In survived animals the growth of tumors was evaluated during 21 days after the PPT. The antitumor effects of PPT after triple intravenous injection were comparable with those obtained at direct intratumoral administration of similar total dose of GNRs. The effectiveness of PPT depended on gold accumulation in tumor, probably, due to sufficient vascularization of tumor tissue.

  6. Photothermal enhancement of chemotherapy mediated by gold-silica nanoshell-loaded macrophages: in vitro squamous cell carcinoma study

    NASA Astrophysics Data System (ADS)

    Madsen, Steen J.; Shih, En-Chung; Peng, Qian; Christie, Catherine; Krasieva, Tatiana; Hirschberg, Henry

    2016-01-01

    Moderate hyperthermia (MHT) has been shown to enhance the effects of chemotherapeutic agents in a wide variety of cancers. The purpose of this study was to investigate the combined effects of commonly used chemotherapeutic agents with MHT induced by near-infrared (NIR) activation of gold nanoshell (AuNS)-loaded macrophages (Ma). AuNS-loaded murine Ma combined with human FaDu squamous cells, in hybrid monolayers, were subjected to three cytotoxic drugs (doxorubicin, bleomycin, cisplatin) with or without NIR laser irradiation. For all three drugs, efficacy was increased by NIR activation of AuNS-loaded Ma. The results of this in vitro study provide proof-of-concept for the use of AuNS-loaded Ma for photothermal enhancement of the effects of chemotherapy on squamous cell carcinoma.

  7. Biocompatible 5-Aminolevulinic Acid/Au Nanoparticle-Loaded Ethosomal Vesicles for In Vitro Transdermal Synergistic Photodynamic/Photothermal Therapy of Hypertrophic Scars

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Chen, Yunsheng; Ding, Jiayue; Zhang, Chunlei; Zhang, Amin; He, Dannong; Zhang, Yixin

    2017-12-01

    Biocompatible 5-aminolevulinic acid/Au nanoparticle-loaded ethosomal vesicle (A/A-ES) is prepared via ultrasonication for synergistic transdermal photodynamic/photothermal therapy (PDT/PTT) of hypertrophic scar (HS). Utilizing ultrasonication, Au nanoparticles (AuNPs) are synthesized and simultaneously loaded in ethosomal vesicles (ES) without any toxic agents, and 5-aminolevulinic acid (ALA) is also loaded in ES with 20% of the entrapment efficiency (EE). The prepared A/A-ES displays strong absorbance in 600-650 nm due to the plasmonic coupling effect between neighboring AuNPs in the same A/A-ES, which can simultaneously stimulate A/A-ES to produce heat and enhance quantum yields of reactive oxygen species (ROS) by using 632 nm laser. In vitro transdermal penetrability study demonstrates that A/A-ES acts as a highly efficient drug carrier to enhance both ALA and AuNPs penetration into HS tissue . Taking human hypertrophic scar fibroblasts (HSF) as therapeutic targets, synergistic PDT/PTT of HS indicates that A/A-ES could enhance quantum yields of ROS by photothermal effect and localized surface plasmon resonance (LSPR) of AuNPs, resulting in a high level of apoptosis or necrosis. In a word, the prepared A/A-ES shows a better synergistic PDT/PTT efficiency for HSF than the individual PDT and PTT, encouraging perspective for treatment of HS.

  8. NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites.

    PubMed

    Seo, Sun-Hwa; Kim, Bo-Mi; Joe, Ara; Han, Hyo-Won; Chen, Xiaoyuan; Cheng, Zhen; Jang, Eue-Soon

    2014-03-01

    Methylene blue-loaded gold nanorod@SiO2 (MB-GNR@SiO2) core@shell nanoparticles are synthesized for use in cancer imaging and photothermal/photodynamic dual therapy. For the preparation of GNR@SiO2 nanoparticles, we found that the silica coating rate of hexadecylcetyltrimethylammonium bromide (CTAB)-capped GNRs is much slower than that of PEGylated GNRs due to the densely coated CTAB bilayer. Encapsulated MB molecules have both monomer and dimer forms that result in an increase in the photosensitizing effect through different photochemical pathways. As a consequence of the excellent plasmonic properties of GNRs at near-infrared (NIR) light, the embedded MB molecules showed NIR light-induced SERS performance with a Raman enhancement factor of 3.0 × 10(10), which is enough for the detection of a single cancer cell. Moreover, the MB-GNR@SiO2 nanoparticles exhibit a synergistic effect of photodynamic and photothermal therapies of cancer under single-wavelength NIR laser irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation.

    PubMed

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil; Proksch, Roger

    2015-08-01

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the "forest of peaks" frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM in air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.

  10. Photothermal Stability of an E-Beam Pre-Crosslinked EVA Encapsulant and Its Performance Degradation on a-Si Submodules: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F. J.; Watson, G. L.; Glick, S. H.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Study of photothermal stability of special EVA encapsulant by accelerated exposure testing and analysis of causes of performance degradation on a-Si modules.

  11. In Situ Visualization of the Local Photothermal Effect Produced on α-Cyclodextrin Inclusion Compound Associated with Gold Nanoparticles.

    PubMed

    Silva, Nataly; Muñoz, Camila; Diaz-Marcos, Jordi; Samitier, Josep; Yutronic, Nicolás; Kogan, Marcelo J; Jara, Paul

    2016-12-01

    Evidence of guest migration in α-cyclodextrin-octylamine (α-CD-OA) inclusion compound (IC) generated via plasmonic heating of gold nanoparticles (AuNPs) has been studied. In this report, we demonstrate local effects generated by laser-mediated irradiation of a sample of AuNPs covered with inclusion compounds on surface-derivatized glass under liquid conditions by atomic force microscopy (AFM). Functionalized AuNPs on the glass and covered by the ICs were monitored by recording images by AFM during 5 h of irradiation, and images showed that after irradiation, a drastic decrease in the height of the AuNPs occurred. The absorption spectrum of the irradiated sample showed a hypsochromic shift from 542 to 536 nm, evidence suggesting that much of the population of nanoparticles lost all of the parts of the overlay of ICs due to the plasmonic heat generated by the irradiation. Mass spectrometry matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) performed on a sample containing a collection of drops obtained from the surface of the functionalized glass provided evidence that the irradiation lead to disintegration of the ICs and therefore exit of the octylamine molecule (the guest) from the cyclodextrin cavity (the matrix). Graphical Abstract Atomic Force Microscopy observation of the disintegration of a cyclodextrin inclusion compound by gold nanoparticles photothermal effect.

  12. Multifunctional gold nanorods for selective plasmonic photothermal therapy in pancreatic cancer cells using ultra-short pulse near-infrared laser irradiation

    NASA Astrophysics Data System (ADS)

    Patino, Tania; Mahajan, Ujjwal; Palankar, Raghavendra; Medvedev, Nikolay; Walowski, Jakob; Münzenberg, Markus; Mayerle, Julia; Delcea, Mihaela

    2015-03-01

    Gold nanorods (AuNRs) have attracted considerable attention in plasmonic photothermal therapy for cancer treatment by exploiting their selective and localized heating effect due to their unique photophysical properties. Here we describe a strategy to design a novel multifunctional platform based on AuNRs to: (i) specifically target the adenocarcinoma MUC-1 marker through the use of the EPPT-1 peptide, (ii) enhance cellular uptake through a myristoylated polyarginine peptide (MPAP) and (iii) selectively induce cell death by ultra-short near infrared laser pulses. We used a biotin-avidin based approach to conjugate EPPT-1 and MPAP to AuNRs. Dual-peptide (EPPT-1 + MPAP) labelled AuNRs showed a significantly higher uptake by pancreatic ductal adenocarcinoma cells when compared to their single peptide or avidin conjugated counterparts. In addition, we selectively induced cell death by ultra-short near infrared laser pulses in small target volumes (~1 μm3), through the creation of plasmonic nanobubbles that lead to the destruction of a local cell environment. Our approach opens new avenues for conjugation of multiple ligands on AuNRs targeting cancer cells and tumors and it is relevant for plasmonic photothermal therapy.Gold nanorods (AuNRs) have attracted considerable attention in plasmonic photothermal therapy for cancer treatment by exploiting their selective and localized heating effect due to their unique photophysical properties. Here we describe a strategy to design a novel multifunctional platform based on AuNRs to: (i) specifically target the adenocarcinoma MUC-1 marker through the use of the EPPT-1 peptide, (ii) enhance cellular uptake through a myristoylated polyarginine peptide (MPAP) and (iii) selectively induce cell death by ultra-short near infrared laser pulses. We used a biotin-avidin based approach to conjugate EPPT-1 and MPAP to AuNRs. Dual-peptide (EPPT-1 + MPAP) labelled AuNRs showed a significantly higher uptake by pancreatic ductal adenocarcinoma

  13. Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy

    NASA Astrophysics Data System (ADS)

    Meng, Qian-Fang; Rao, Lang; Zan, Minghui; Chen, Ming; Yu, Guang-Tao; Wei, Xiaoyun; Wu, Zhuhao; Sun, Yue; Guo, Shi-Shang; Zhao, Xing-Zhong; Wang, Fu-Bing; Liu, Wei

    2018-04-01

    Nanotechnology possesses the potential to revolutionize the diagnosis and treatment of tumors. The ideal nanoparticles used for in vivo cancer therapy should have long blood circulation times and active cancer targeting. Additionally, they should be harmless and invisible to the immune system. Here, we developed a biomimetic nanoplatform with the above properties for cancer therapy. Macrophage membranes were reconstructed into vesicles and then coated onto magnetic iron oxide nanoparticles (Fe3O4 NPs). Inherited from the Fe3O4 core and the macrophage membrane shell, the resulting Fe3O4@MM NPs exhibited good biocompatibility, immune evasion, cancer targeting and light-to-heat conversion capabilities. Due to the favorable in vitro and in vivo properties, biomimetic Fe3O4@MM NPs were further used for highly effective photothermal therapy of breast cancer in nude mice. Surface modification of synthetic nanomaterials with biomimetic cell membranes exemplifies a novel strategy for designing an ideal nanoplatform for translational medicine.

  14. PEGylated PAMAM dendrimer-doxorubicin conjugate-hybridized gold nanorod for combined photothermal-chemotherapy.

    PubMed

    Li, Xiaojie; Takashima, Munenobu; Yuba, Eiji; Harada, Atsushi; Kono, Kenji

    2014-08-01

    We prepared pH-sensitive drug-dendrimer conjugate-hybridized gold nanorod as a promising platform for combined cancer photothermal-chemotherapy under in vitro and in vivo conditions. Poly(ethylene glycol)-attached PAMAM G4 dendrimers (PEG-PAMAM) were first covalently linked on the surface of mercaptohexadecanoic acid-functionalized gold nanorod (MHA-AuNR), with subsequent conjugation of anti-cancer drug doxorubicin (DOX) to dendrimer layer using an acid-labile-hydrazone linkage to afford PEG-DOX-PAMAM-AuNR particles. The particles with a high PEG-PAMAM dendrimer coverage density (0.28 per nm(2) AuNR) showed uniform sizes and excellent colloidal stability. In vitro drug release studies demonstrated that DOX released from PEG-DOX-PAMAM-AuNR was negligible under normal physiological pH, but it was enhanced significantly at a weak acidic pH value. The efficient intracellular acid-triggered DOX release inside of lysosomes was confirmed using confocal laser scanning microscopy analysis. Furthermore, the combined photothermal-chemo treatment of cancer cells using PEG-DOX-PAMAM-AuNR for synergistic hyperthermia ablation and chemotherapy was demonstrated both in vitro and in vivo to exhibit higher therapeutic efficacy than either single treatment alone, underscoring the great potential of PEG-DOX-PAMAM-AuNR particles for cancer therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Photothermal Nanotherapeutics and Nanodiagnostics for Selective Killing of Bacteria Targeted with Gold Nanoparticles

    PubMed Central

    Zharov, Vladimir P.; Mercer, Kelly E.; Galitovskaya, Elena N.; Smeltzer, Mark S.

    2006-01-01

    We describe a new method for selective laser killing of bacteria targeted with light-absorbing gold nanoparticles conjugated with specific antibodies. The multifunctional photothermal (PT) microscope/spectrometer provides a real-time assessment of this new therapeutic intervention. In this integrated system, strong laser-induced overheating effects accompanied by the bubble-formation phenomena around clustered gold nanoparticles are the main cause of bacterial damage. PT imaging and time-resolved monitoring of the integrated PT responses assessed these effects. Specifically, we used this technology for selective killing of the Gram-positive bacterium Staphylococcus aureus by targeting the bacterial surface using 10-, 20-, and 40-nm gold particles conjugated with anti-protein A antibodies. Labeled bacteria were irradiated with focused laser pulses (420–570 nm, 12 ns, 0.1–5 J/cm2, 100 pulses), and laser-induced bacterial damage observed at different laser fluences and nanoparticle sizes was verified by optical transmission, electron microscopy, and conventional viability testing. PMID:16239330

  16. Review of the progress toward achieving heat confinement-the holy grail of photothermal therapy

    NASA Astrophysics Data System (ADS)

    Sheng, Wangzhong; He, Sha; Seare, William J.; Almutairi, Adah

    2017-08-01

    Photothermal therapy (PTT) involves the application of normally benign light wavelengths in combination with efficient photothermal (PT) agents that convert the absorbed light to heat to ablate selected cancers. The major challenge in PTT is the ability to confine heating and thus direct cellular death to precisely where PT agents are located. The dominant strategy in the field has been to create large libraries of PT agents with increased absorption capabilities and to enhance their delivery and accumulation to achieve sufficiently high concentrations in the tissue targets of interest. While the challenge of material confinement is important for achieving "heat and lethality confinement," this review article suggests another key prospective strategy to make this goal a reality. In this approach, equal emphasis is placed on selecting parameters of light exposure, including wavelength, duration, power density, and total power supplied, based on the intrinsic properties and geometry of tissue targets that influence heat dissipation, to truly achieve heat confinement. This review highlights significant milestones researchers have achieved, as well as examples that suggest future research directions, in this promising technique, as it becomes more relevant in clinical cancer therapy and other noncancer applications.

  17. Image processing with the radial Hilbert transform of photo-thermal imaging for carious detection

    NASA Astrophysics Data System (ADS)

    El-Sharkawy, Yasser H.

    2014-03-01

    Knowledge of heat transfer in biological bodies has many diagnostic and therapeutic applications involving either raising or lowering of temperature, and often requires precise monitoring of the spatial distribution of thermal histories that are produced during a treatment protocol. The present paper therefore aims to design and implementation of laser therapeutic and imaging system used for carious tracking and drilling by develop a mathematical algorithm using Hilbert transform for edge detection of photo-thermal imaging. photothermal imaging has the ability to penetrate and yield information about an opaque medium well beyond the range of conventional optical imaging. Owing to this ability, Q- switching Nd:YAG laser at wavelength 1064 nm has been extensively used in human teeth to study the sub-surface deposition of laser radiation. The high absorption coefficient of the carious rather than normal region rise its temperature generating IR thermal radiation captured by high resolution thermal camera. Changing the pulse repetition frequency of the laser pulses affects the penetration depth of the laser, which can provide three-dimensional (3D) images in arbitrary planes and allow imaging deep within a solid tissue.

  18. Photothermally controlled Marangoni flow around a micro bubble

    NASA Astrophysics Data System (ADS)

    Namura, Kyoko; Nakajima, Kaoru; Kimura, Kenji; Suzuki, Motofumi

    2015-01-01

    We have experimentally investigated the control of Marangoni flow around a micro bubble using photothermal conversion. Using a focused laser spot acting as a highly localized heat source on Au nanoparticles/dielectric/Ag mirror thin film enables us to create a micro bubble and to control the temperature gradient around the bubble at a micrometer scale. When we irradiate the laser next to the bubble, a strong main flow towards the bubble and two symmetric rotation flows on either side of it develop. The shape of this rotation flow shows a significant transformation depending on the relative position of the bubble and the laser spot. Using this controllable rotation flow, we have demonstrated sorting of the polystyrene spheres with diameters of 2 μm and 0.75 μm according to their size.

  19. Thermal Characterization of Carbon Nanotubes by Photothermal Techniques

    NASA Astrophysics Data System (ADS)

    Leahu, G.; Li Voti, R.; Larciprete, M. C.; Sibilia, C.; Bertolotti, M.; Nefedov, I.; Anoshkin, I. V.

    2015-06-01

    Carbon nanotubes (CNTs) are multifunctional materials commonly used in a large number of applications in electronics, sensors, nanocomposites, thermal management, actuators, energy storage and conversion, and drug delivery. Despite recent important advances in the development of CNT purity assessment tools and atomic resolution imaging of individual nanotubes by scanning tunnelling microscopy and high-resolution transmission electron microscopy, the macroscale assessment of the overall surface qualities of commercial CNT materials remains a great challenge. The lack of quantitative measurement technology to characterize and compare the surface qualities of bulk manufactured and engineered CNT materials has negative impacts on the reliable and consistent nanomanufacturing of CNT products. In this paper it is shown how photoacoustic spectroscopy and photothermal radiometry represent useful non-destructive tools to study the optothermal properties of carbon nanotube thin films.

  20. Distributed gas sensing with optical fibre photothermal interferometry.

    PubMed

    Lin, Yuechuan; Liu, Fei; He, Xiangge; Jin, Wei; Zhang, Min; Yang, Fan; Ho, Hoi Lut; Tan, Yanzhen; Gu, Lijuan

    2017-12-11

    We report the first distributed optical fibre trace-gas detection system based on photothermal interferometry (PTI) in a hollow-core photonic bandgap fibre (HC-PBF). Absorption of a modulated pump propagating in the gas-filled HC-PBF generates distributed phase modulation along the fibre, which is detected by a dual-pulse heterodyne phase-sensitive optical time-domain reflectometry (OTDR) system. Quasi-distributed sensing experiment with two 28-meter-long HC-PBF sensing sections connected by single-mode transmission fibres demonstrated a limit of detection (LOD) of ∼10 ppb acetylene with a pump power level of 55 mW and an effective noise bandwidth (ENBW) of 0.01 Hz, corresponding to a normalized detection limit of 5.5ppb⋅W/Hz. Distributed sensing experiment over a 200-meter-long sensing cable made of serially connected HC-PBFs demonstrated a LOD of ∼ 5 ppm with 62.5 mW peak pump power and 11.8 Hz ENBW, or a normalized detection limit of 312ppb⋅W/Hz. The spatial resolution of the current distributed detection system is limited to ∼ 30 m, but it is possible to reduce down to 1 meter or smaller by optimizing the phase detection system.

  1. Synthesis and Applications of Multimodal Hybrid Albumin Nanoparticles for Chemotherapeutic Drug Delivery and Photothermal Therapy Platforms

    NASA Astrophysics Data System (ADS)

    Peralta, Donna V.

    Progress has been made in using human serum albumin nanoparticles (HSAPs) as carrier systems for targeted treatment of cancer. Human serum albumin (HSA), the most abundant human blood protein, can form HSAPs via a desolvation and crosslinking method, with the size of the HSAPs having crucial importance for drug loading and in vivo performance. Gold nanoparticles have also gained medicinal attention due to their ability to absorb near-infrared (NIR) light. These relatively non-toxic particles offer combinational therapy via imaging and photothermal therapy (PPTT) capabilities. A desolvation and crosslinking approach was employed to encapsulate gold nanoparticles (AuNPs), hollow gold nanoshells (AuNSs), and gold nanorods (AuNRs), into efficiently sized HSAPs for future tumor heat ablation via PPTT. The AuNR-HSAPs, AuNP-HSAPs and AuNS-HSAPs had average particle diameters of 222 +/- 5, 195 +/- 9 and 156 +/- 15, respectively. We simultaneously encapsulated AuNRs and the anticancer drug paclitaxel (PAC), forming PAC-AuNR-HSAPs with overall average particle size of 299 +/- 6 nm. Loading of paclitaxel into PAC-AuNR-HSAPs reached 3microg PAC/mg HSA. PAC-AuNR-HSAPs experienced photothermal heating of 46 °C after 15 minutes of NIR laser exposure; the temperature necessary to cause severe cellular hyperthermia. There was a burst release of paclitaxel up to 188 ng caused by the irradiation session, followed by a temporal drug release. AuNR-HSAPs were tested for ablation of renal cell carcinoma using NIR irradiation in vitro. Particles created with the same amount of AuNRs, but varying HSA (1, 5 or 20 mg) showed overall particle size diameters 409 +/- 224, 294 +/- 83 and 167 +/- 4 nm, respectively. Increasing HSAPs causes more toxicity under non-irradiated treatment conditions: AuNR-HSAPs with 20 mg versus 5 mg HSA caused cell viability of 64.5% versus 87%, respectively. All AuNR-HSAPs batches experienced photothermal heating above 42 °C. Coumarin-6, was used to visualize the

  2. Photothermal imaging of skeletal muscle mitochondria.

    PubMed

    Tomimatsu, Toru; Miyazaki, Jun; Kano, Yutaka; Kobayashi, Takayoshi

    2017-06-01

    The morphology and topology of mitochondria provide useful information about the physiological function of skeletal muscle. Previous studies of skeletal muscle mitochondria are based on observation with transmission, scanning electron microscopy or fluorescence microscopy. In contrast, photothermal (PT) microscopy has advantages over the above commonly used microscopic techniques because of no requirement for complex sample preparation by fixation or fluorescent-dye staining. Here, we employed the PT technique using a simple diode laser to visualize skeletal muscle mitochondria in unstained and stained tissues. The fine mitochondrial network structures in muscle fibers could be imaged with the PT imaging system, even in unstained tissues. PT imaging of tissues stained with toluidine blue revealed the structures of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria and the swelling behavior of mitochondria in damaged muscle fibers with sufficient image quality. PT image analyses based on fast Fourier transform (FFT) and Grey-level co-occurrence matrix (GLCM) were performed to derive the characteristic size of mitochondria and to discriminate the image patterns of normal and damaged fibers.

  3. Black hollow silicon oxide nanoparticles as highly efficient photothermal agents in the second near-infrared window for in vivo cancer therapy.

    PubMed

    Yu, Xujiang; Yang, Kai; Chen, Xiaoyuan; Li, Wanwan

    2017-10-01

    Semiconductor nanoparticles with localized surface plasmon resonance (LSPR) have gained increasing interest due to their potential for use in nanomedicine, particularly in the area of cancer photothermal therapy. In this study, we have synthesized non-stoichiometric hollow silicon oxide nanoparticles (H-SiO x NPs) using a magnesiothermic reduction process. The black NPs generated a desired LSPR in the second near-infrared (NIR-II) window, as was demonstrated by a photothermal conversion efficiency of up to 48.6% at 1064 nm. Such an efficiency is the highest reported among the noble metal and semiconductor-based NPs as NIR-II PTT photothermal agents. In addition, H-SiO x NPs exhibited excellent in vivo photoacoustic (PA) imaging properties, and thus can be used for highly efficient in vivo cancer treatment via irradiation with a 1064 nm laser, even at 0.6 W cm -2 . The findings described are the first to demonstrate the existence of LSPR in non-stoichiometric silicon-based nanoparticles with a low-toxicity degradation pathway for in vivo application, and provide new insights towards understanding the role of new semiconductor nanoparticles in nanomedicine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Calibrating the photo-thermal response of magneto-fluorescent gold nanoshells.

    PubMed

    Biswal, Nrusingh C; Ayala-Orzoco, Ciceron; Halas, Naomi J; Joshi, Amit

    2011-01-01

    We report the photothermal response and Near Infrared (NIR) imaging sensitivities of magneto-fluorescent silica core gold nanocomplexes designed for molecular image guided thermal therapy of cancer. Approximately 160 nm Silica core gold nanoshells were designed to provide NIR fluorescent and Magnetic Resonance (MR) contrast by incorporating FDA approved dye indocyanine green (ICG) and iron-oxide within an outer silica epilayer. The imaging and therapeutic sensitivity, and the stability of fluorescence contrast for 12 microliters of suspension (containing approximately 7.9 × 10(8) or 1.3 femtoMole nanoshells) buried at depths of 2-8 mm in tissue mimicking scattering media is reported.

  5. Application of a biodegradable macromolecular contrast agent in dynamic contrast enhanced MRI for assessing the efficacy of indocyanine green enhanced photothermal cancer therapy

    PubMed Central

    Feng, Yi; Emerson, Lyska; Jeong, Eun-Kee; Parker, Dennis L.; Lu, Zheng-Rong

    2009-01-01

    Purpose To investigate the effectiveness of a polydisulfide-based biodegradable macromolecular contrast agent, (Gd-DTPA)-cystamine copolymers (GDCC), in assessing the efficacy of indocyanine green enhanced photothermal cancer therapy using dynamic contrast enhanced MRI (DCE-MRI). Materials and Methods Breast cancer xenografts in mice were injected with indocyanine green and irradiated with laser. The efficacy was assessed using DCE-MRI with GDCC of 40 KDa (GDCC-40) at 4 hours and 7 days after the treatment. The uptake of GDCC-40 by the tumors was fit to a two-compartment model to obtain tumor vascular parameters, including fractional plasma volume (fPV), endothelium transfer coefficient (KPS), and permeability surface area product (PS). Results GDCC-40 resulted in similar tumor vascular parameters at three doses with larger standard deviations at lower doses. The values of fPV, KPS and PS of the treated tumors were smaller (p < 0.05) than those of untreated tumors at 4 hours after the treatment and recovered to pretreatment values (p > 0.05) at 7 days after the treatment. Conclusion DCE-MRI with GDCC-40 is effective for assessing tumor early response to dye-enhanced photothermal therapy and detecting tumor relapse after the treatment. GDCC-40 has a potential to non-invasively monitor anticancer therapies with DCE-MRI. PMID:19629979

  6. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil

    2015-08-15

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the “forest of peaks” frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM inmore » air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.« less

  7. Precision Photothermal Annealing of Nanoporous Gold Thin Films for the Microfabrication of a Single-chip Material Libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, C. D.; Shen, N.; Rubenchik, A.

    2015-06-30

    Single-chip material libraries of thin films of nanostructured materials are a promising approach for high throughput studies of structure-property relationship in the fields of physics and biology. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a nanostructured material of specific interest in both these fields. One attractive property of np-Au is its self-similar coarsening behavior by thermally induced surface diffusion. However, traditional heat application techniques for the modification of np-Au are bulk processes that cannot be used to generate a library of different pore sizes on a single chip. Laser micromachining offers an attractive solution to this problemmore » by providing a means to apply energy with high spatial and temporal resolution. In the present study we use finite element multiphysics simulations to predict the effects of laser mode (continuous-wave vs. pulsed) and supporting substrate thermal conductivity on the local np-Au film temperatures during photothermal annealing and subsequently investigate the mechanisms by which the np-Au network is coarsening. Our simulations predict that continuous-wave mode laser irradiation on a silicon supporting substrate supports the widest range of morphologies that can be created through the photothermal annealing of thin film np-Au. Using this result we successfully fabricate a single-chip material library consisting of 81 np-Au samples of 9 different morphologies for use in increased throughput material interaction studies.« less

  8. Graphene/elastomer composite-based photo-thermal nanopositioners

    PubMed Central

    Loomis, James; Fan, Xiaoming; Khosravi, Farhad; Xu, Peng; Fletcher, Micah; Cohn, Robert W.; Panchapakesan, Balaji

    2013-01-01

    The addition of nanomaterials to polymers can result not only in significant material property improvements, but also assist in creating entirely new composite functionalities. By dispersing graphene nanoplatelets (GNPs) within a polydimethylsiloxane matrix, we show that efficient light absorption by GNPs and subsequent energy transduction to the polymeric chains can be used to controllably produce significant amounts of motion through entropic elasticity of the pre-strained composite. Using dual actuators, a two-axis sub-micron resolution stage was developed, and allowed for two-axis photo-thermal positioning (~100 μm per axis) with 120 nm resolution (feedback sensor limitation), and ~5 μm/s actuation speeds. A PID control loop automatically stabilizes the stage against thermal drift, as well as random thermal-induced position fluctuations (up to the bandwidth of the feedback and position sensor). Maximum actuator efficiency values of ~0.03% were measured, approximately 1000 times greater than recently reported for light-driven polymer systems. PMID:23712601

  9. Dual-wavelength, continuous-wave Yb:YAG laser for high-resolution photothermal common-path interferometry.

    PubMed

    Zhuang, Fengjiang; Jungbluth, Bernd; Gronloh, Bastian; Hoffmann, Hans-Dieter; Zhang, Ge

    2013-07-20

    We present a continuous-wave (CW) intracavity frequency-doubled Yb:YAG laser providing 1030 and 515 nm output simultaneously. This laser system was designed for photothermal common-path interferometry to measure spatially resolved profiles of the linear absorption in dielectric media and coatings for visible or infrared light as well as of the nonlinear absorption for the combination of both. A Z-shape laser cavity was designed, providing a beam waist in which an LBO crystal was located for effective second-harmonic generation (SHG). Suitable frequency conversion parameters and cavity configurations were discussed to achieve the optimal performance of a diode-pumped CW SHG laser. A 12.4 W 1030 nm laser and 5.4 W 515 nm laser were developed simultaneously in our experiment.

  10. The polyvinylpyrrolidone functionalized rGO/Bi2S3 nanocomposite as a near-infrared light-responsive nanovehicle for chemo-photothermal therapy of cancer

    NASA Astrophysics Data System (ADS)

    Dou, Ruixia; Du, Zhen; Bao, Tao; Dong, Xinghua; Zheng, Xiaopeng; Yu, Miao; Yin, Wenyan; Dong, Binbin; Yan, Liang; Gu, Zhanjun

    2016-06-01

    Recently, a combination of chemotherapy with photothermal therapy (PTT) has received great attention for the construction of a near infrared (NIR)-controlled drug-delivery system for synergistic treatment of cancer, ultimately resulting in the enhancement of the therapeutic efficacy of anticancer drugs. Here, we developed a novel system for synergistic cancer therapy based on bismuth sulfide (Bi2S3) nanoparticle-decorated graphene functionalized with polyvinylpyrrolidone (PVP) (named PVP-rGO/Bi2S3). The as-prepared PVP-rGO/Bi2S3 nanocomposite has a high storage capacity for anticancer drugs (~500% for doxorubicin (DOX)) and simultaneously has perfect photothermal conversion efficiency in the NIR region. The results of the in vitro accumulative drug release test manifests that the PVP-rGO/Bi2S3 nanocomposite could be applied as a dual pH- and NIR-responsive nanotherapeutic carrier for the controlled release of DOX from DOX-loaded PVP-rGO/Bi2S3 (PVP-rGO/Bi2S3@DOX). Moreover, the treatment of both cancer cells (including Hela, MCF-7, HepG2 and BEL-7402 cells) and BEL-7402 tumor-bearing mice with the PVP-rGO/Bi2S3@DOX complex followed by NIR laser irradiation produces significantly greater inhibition of cancer cell growth than the treatment with NIR irradiation alone or DOX alone, exhibiting a synergistic antitumor effect. Furthermore, due to the obvious NIR and X-ray absorption ability, the PVP-rGO/Bi2S3 nanocomposite could be employed as a dual-modal contrast agent for both photoacoustic tomography and X-ray computed tomography imaging. In addition to the good biocompatibility, the PVP-rGO/Bi2S3 nanocomposite paves a potential way for the fabrication of theranostic agents for dual-modal imaging-guided chemo-photothermal combined cancer therapy.Recently, a combination of chemotherapy with photothermal therapy (PTT) has received great attention for the construction of a near infrared (NIR)-controlled drug-delivery system for synergistic treatment of cancer, ultimately

  11. Photothermal Therapy Generates a Thermal Window of Immunogenic Cell Death in Neuroblastoma.

    PubMed

    Sweeney, Elizabeth E; Cano-Mejia, Juliana; Fernandes, Rohan

    2018-04-17

    A thermal "window" of immunogenic cell death (ICD) elicited by nanoparticle-based photothermal therapy (PTT) in an animal model of neuroblastoma is described. In studies using Prussian blue nanoparticles to administer photothermal therapy (PBNP-PTT) to established localized tumors in the neuroblastoma model, it is observed that PBNP-PTT conforms to the "more is better" paradigm, wherein higher doses of PBNP-PTT generates higher cell/local heating and thereby more cell death, and consequently improved animal survival. However, in vitro analysis of the biochemical correlates of ICD (ATP, high-motility group box 1, and calreticulin) elicited by PBNP-PTT demonstrates that PBNP-PTT triggers a thermal window of ICD. ICD markers are highly expressed within an optimal temperature (thermal dose) window of PBNP-PTT (63.3-66.4 °C) as compared with higher (83.0-83.5 °C) and lower PBNP-PTT (50.7-52.7 °C) temperatures, which both yield lower expression. Subsequent vaccination studies in the neuroblastoma model confirm the in vitro findings, wherein PBNP-PTT administered within the optimal temperature window results in long-term survival (33.3% at 100 d) compared with PBNP-PTT administered within the higher (0%) and lower (20%) temperature ranges, and controls (0%). The findings demonstrate a tunable immune response to heat generated by PBNP-PTT, which should be critically engaged in the administration of PTT for maximizing its therapeutic benefits. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bio-mimetic Nanostructure Self-assembled from Au@Ag Heterogeneous Nanorods and Phage Fusion Proteins for Targeted Tumor Optical Detection and Photothermal Therapy

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Liu, Pei; Sun, Lin; Li, Cuncheng; Petrenko, Valery A.; Liu, Aihua

    2014-10-01

    Nanomaterials with near-infrared (NIR) absorption have been widely studied in cancer detection and photothermal therapy (PTT), while it remains a great challenge in targeting tumor efficiently with minimal side effects. Herein we report a novel multifunctional phage-mimetic nanostructure, which was prepared by layer-by-layer self-assembly of Au@Ag heterogenous nanorods (NRs) with rhodamine 6G, and specific pVIII fusion proteins. Au@Ag NRs, first being applied for PTT, exhibited excellent stability, cost-effectivity, biocompatibility and tunable NIR absorption. The fusion proteins were isolated from phage DDAGNRQP specifically selected from f8/8 landscape phage library against colorectal cancer cells in a high-throughput way. Considering the definite charge distribution and low molecular weight, phage fusion proteins were assembled on the negatively charged NR core by electrostatic interactions, exposing the N-terminus fused with DDAGNRQP peptide on the surface. The fluorescent images showed that assembled phage fusion proteins can direct the nanostructure into cancer cells. The nanostructure was more efficient than gold nanorods and silver nanotriangle-based photothermal agents and was capable of specifically ablating SW620 cells after 10 min illumination with an 808 nm laser in the light intensity of 4 W/cm2. The prepared nanostructure would become an ideal reagent for simutaneously targeted optical imaging and PTT of tumor.

  13. Investigation of Thermal Properties of High-Density Polyethylene/Aluminum Nanocomposites by Photothermal Infrared Radiometry

    NASA Astrophysics Data System (ADS)

    Koca, H. D.; Evgin, T.; Horny, N.; Chirtoc, M.; Turgut, A.; Tavman, I. H.

    2017-12-01

    In this study, thermal properties of high-density polyethylene (HDPE) filled with nanosized Al particles (80 nm) were investigated. Samples were prepared using melt mixing method up to filler volume fraction of 29 %, followed by compression molding. By using modulated photothermal radiometry (PTR) technique, thermal diffusivity and thermal effusivity were obtained. The effective thermal conductivity of nanocomposites was calculated directly from PTR measurements and from the measurements of density, specific heat capacity (by differential scanning calorimetry) and thermal diffusivity (obtained from PTR signal amplitude and phase). It is concluded that the thermal conductivity of HDPE composites increases with increasing Al fraction and the highest effective thermal conductivity enhancement of 205 % is achieved at a filler volume fraction of 29 %. The obtained results were compared with the theoretical models and experimental data given in the literature. The results demonstrate that Agari and Uno, and Cheng and Vachon models can predict well the thermal conductivity of HDPE/Al nanocomposites in the whole range of Al fractions.

  14. A Chelator-Free Multifunctional [64Cu]-CuS Nanoparticle Platform for Simultaneous Micro-PET/CT Imaging and Photothermal Ablation Therapy

    PubMed Central

    Zhou, Min; Zhang, Rui; Huang, Miao; Lu, Wei; Song, Shaoli; Melancon, Marites P.; Tian, Mei; Liang, Dong; Li, Chun

    2010-01-01

    We synthesized and evaluated a novel class of chelator-free [64Cu]-CuS nanoparticles (NPs) suitable for both PET imaging and as photothermal coupling agents for photothermal ablation. [64Cu]-CuS NPs were simple to make, possessed excellent stability, and allowed robust noninvasive micro-PET imaging. Furthermore, CuS NPs displayed strong absorption in the near-infrared (NIR) region (peak 930 nm), passive targeting prefers the tumor site, and mediated ablation of U87 tumor cells upon exposure to NIR light both in vitro and in vivo after either intratumoral or intravenous injection. The combination of small diameter (~11 nm diameter), strong NIR absorption, and integration of 64Cu as a structural component makes [64Cu]-CuS NPs ideally suited for multifunctional molecular imaging and therapy. PMID:20942456

  15. Maximizing the performance of photothermal actuators by combining smart materials with supplementary advantages

    PubMed Central

    Wang, Tongyu; Torres, David; Fernández, Félix E.; Wang, Chuan; Sepúlveda, Nelson

    2017-01-01

    The search for higher-performance photothermal microactuators has typically involved unavoidable trade-offs that hinder the demonstration of ubiquitous devices with high energy density, speed, flexibility, efficiency, sensitivity, and multifunctionality. Improving some of these parameters often implies deterioration of others. Photothermal actuators are driven by the conversion of absorbed optical energy into thermal energy, which, by different mechanisms, can produce mechanical displacement of a structure. We present a device that has been strategically designed to show high performance in every metric and respond to optical radiation of selected wavelength bands. The device combines the large energy densities and sensitivity of vanadium dioxide (VO2)–based actuators with the wavelength-selective absorption properties of single-walled carbon nanotube (SWNT) films of different chiralities. SWNT coatings increased the speed of VO2 actuators by a factor of 2 while decreasing the power consumption by approximately 50%. Devices coated with metallic SWNT were found to be 1.57 times more responsive to red light than to near-infrared, whereas semiconducting SWNT coatings resulted in 1.42 times higher responsivities to near-infrared light than to red light. The added functionality establishes a link between optical and mechanical domains of high-performance photoactuators and enables the future development of mechanical logic gates and electronic devices that are triggered by optical radiation from different frequency bands. PMID:28439553

  16. Berberine and zinc oxide-based nanoparticles for the chemo-photothermal therapy of lung adenocarcinoma.

    PubMed

    Kim, Sungyun; Lee, Song Yi; Cho, Hyun-Jong

    2018-05-16

    Organic/inorganic hydrid nanoparticles (NPs) composed of berberine (BER) and zinc oxide (ZnO) were developed for the therapy of lung cancers. Without the use of pharmaceutical excipients, NPs were fabricated with only dual anticancer agents (BER and ZnO) by facile blending method. The mean weight ratio between BER and ZnO in BER-ZnO NPs was 39:61 in this study. BER-ZnO NPs dispersed in water exhibited 200-300 nm hydrodynamic size under 5 mg/mL concentration. The exposure of both BER and ZnO in the outer layers of BER-ZnO NPs was identified by X-ray photoelectron spectroscopy analysis. The amorphization of BER and the maintenance of ZnO structure were observed in the results of X-ray powder diffractometer analysis. Improved antiproliferation efficacy, based on the chemo-photothermal therapeutic efficacy, of BER-ZnO NPs in A549 (human lung adenocarcinoma) cells was presented. According to the blood tests in rats after intravenous administration, BER-ZnO NPs did not induce severe hepatotoxicity, renal toxicity, and hemotoxicity. Developed BER-ZnO NPs can be used efficiently and safely for the chemo-photothermal therapy of lung cancers. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Depth-resolved analytical model and correction algorithm for photothermal optical coherence tomography

    PubMed Central

    Lapierre-Landry, Maryse; Tucker-Schwartz, Jason M.; Skala, Melissa C.

    2016-01-01

    Photothermal OCT (PT-OCT) is an emerging molecular imaging technique that occupies a spatial imaging regime between microscopy and whole body imaging. PT-OCT would benefit from a theoretical model to optimize imaging parameters and test image processing algorithms. We propose the first analytical PT-OCT model to replicate an experimental A-scan in homogeneous and layered samples. We also propose the PT-CLEAN algorithm to reduce phase-accumulation and shadowing, two artifacts found in PT-OCT images, and demonstrate it on phantoms and in vivo mouse tumors. PMID:27446693

  18. Coupling Resonances of Surface Plasmon in Gold Nanorod/Copper Chalcogenide Core-Shell Nanostructures and Their Enhanced Photothermal Effect.

    PubMed

    Li, Yingying; Pan, Guiming; Liu, Qiyu; Ma, Liang; Xie, Ying; Zhou, Li; Hao, Zhonghua; Wang, Ququan

    2018-06-04

    Dual plasmonic Au@Cu 2-x S core-shell nanorods (NRs) have been fabricated by using a hydrothermal method and plasmon-coupled effect between the Au core and Cu 2-x S shell in the near-infrared (NIR) region. The extinction spectrum of Au@Cu 2-x S NRs is dominated by the surface plasmon resonance (SPR) of the Cu 2-x S shell, the transverse surface plasmon resonance (TSPR), and the longitudinal surface plasmon resonance (LSPR) of the Au NRs. With the Cu 2-x S shell increasing (fixed Au NRs), the TSPR peak slightly redshifts and the LSPR and SPR peaks blueshift, owing to competition between the redshift of the refractive index effect and blueshift from the plasmon coupled effect. Although, for Au@Cu 2 S NRs, only TSPR and LSPR peaks can be seen and a redshift arises with the increasing Cu 2 S shell thickness, implying that no plasmonic coupling between Au NRs and Cu 2 S shell occurred. The extinction spectrum of the Au@Cu 2-x S NRs with three coupled resonance peaks is simulated by using the FDTD method, taking into account the electron-transfer effect. The dispersion properties of the coupling of Au@Cu 2-x S NRs with the LSPR of the initial Au core are studied experimentally by changing the length of the Au NRs, which are explained theoretically by the coupled harmonic oscillator model. The calculated coupled coefficients between SPR of the Cu 2-x S shell and LSPR of the Au NRs is 180 meV, which is much stronger than that of TSPR of Au NRs of 55 meV. Finally, the enhanced photothermal effect of Au@Cu 2-x S NRs has been demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Dual-responsive carbon dot for pH/redox triggered fluorescence imaging with controllable photothermal ablation therapy of cancer.

    PubMed

    Choi, Cheong A; Lee, Jung Eun; Mazrad, Zihnil Adha Islamy; Kim, Young Kwang; In, Insik; Jeong, Ji Hoon; Park, Sung Young

    2018-05-18

    We described fluorescence resonance energy transfer for pH/redox-activatable fluorescent carbon dot (FNP) to realize "off-on" switched imaging-guided controllable photothermal therapy (PTT). The FNP is a carbonized self-crosslinked polymer that allows IR825 loading (FNP[IR825]) via hydrophobic interactions in cancer therapy. The capability for fluorescence bioimaging was achieved via the internalization of FNP(IR825) into tumor cells, wherein glutathione (GSH) disulfide bonds were reduced and benzoic imine were cleaved under acidic conditions. The release of IR825 from FNP core in this system can may be used to efficiently control PTT-mediated cancer therapy via its photothermal conversion after near-infrared (NIR) irradiation. The in vitro and in vivo cellular uptake studies revealed the efficient uptake of FNP(IR825) by tumor cells to treat the disease site. Therefore, we demonstrated in mice that our smart nanocarrier could effectively kill tumor cells under exposure to a NIR laser and the particles were biocompatible with various organs. This platform responds sensitively to the exogenous environment inside the cancer cells and may selectively induce the release of PTT-mediated cytotoxicity. Furthermore, this platform may be useful for monitoring the elimination of cancer cells through the fluorescence on/off switch, which can be used for various applications in the field of cancer cell therapy and diagnosis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Theranostic self-assembly structure of gold nanoparticles for NIR photothermal therapy and X-Ray computed tomography imaging.

    PubMed

    Deng, Heng; Zhong, Yanqi; Du, Meihong; Liu, Qinjun; Fan, Zhanming; Dai, Fengying; Zhang, Xin

    2014-01-01

    The controllable self-assembly of amphiphilic mixed polymers grafted gold nanoparitcles (AuNPs) leads to strong interparticle plasmonic coupling, which can be tuned to the near-infrared (NIR) region for enhanced photothermal therapy (PTT). In this study, an improved thiolation method was adopted for ATRP and ROP polymer to obtain amphiphilic brushes of PMEO2MA-SH and PCL-SH. By anchoring PCL-SH and PMEO2MA-SH onto the 14 nm AuNPs, a smart hybrid building block for self-assembly was obtained. Increasing the PCL/PMEO2MA chain ratio from 0.8:1, 2:1 and 3:1 to 7:1, the structure of gold assemblies (GAs) was observed to transfer from vesicle to large compound micelle (LCM). Contributed to the special dense packed structure of gold nanoparticles in LCM, the absorption spectrometry of gold nanoparticles drastically red-shifted from 520 nm to 830 nm, which endowed the GAs remarkable NIR photothermal conversion ability. In addition, gold has high X-ray absorption coefficient which qualifies gold nanomaterial a potential CT contrast agent Herein, we obtain a novel gold assembly structure which can be utilized as potential photothermal therapeutic and CT contrast agents. In vitro and In vivo studies testified the excellent treatment efficacy of optimum GAs as a PTT and CT contrast agent. In vitro degradation test, MTT assay and histology study indicated that GAs was a safe, low toxic reagent with good biodegradability. Therefore, the optimum GAs with strong NIR absorption and high X-ray absorption coefficient could be used as a theranostic agent and the formation of novel gold large compound micelle might offers a new theory foundation for engineering design and synthesis of polymer grafted AuNPs for biomedical applications.

  1. Facile and green reduction of covalently PEGylated nanographene oxide via a `water-only' route for high-efficiency photothermal therapy

    NASA Astrophysics Data System (ADS)

    Chen, Jingqin; Wang, Xiaoping; Chen, Tongsheng

    2014-02-01

    A facile and green strategy is reported for the fabrication of nanosized and reduced covalently PEGylated graphene oxide (nrGO-PEG) with great biocompatibility and high near-infrared (NIR) absorbance. Covalently PEGylated nGO (nGO-PEG) was synthesized by the reaction of nGO-COOH and methoxypolyethylene glycol amine (mPEG-NH2). The neutral and purified nGO-PEG solution was then directly bathed in water at 90°C for 24 h without any additive to obtain nrGO-PEG. Covalent PEGylation not only prevented the aggregation of nGO but also dramatically promoted the reduction extent of nGO during this reduction process. The resulting single-layered nrGO-PEG sheets were approximately 50 nm in average lateral dimension and exhibited great biocompatibility and approximately 7.6-fold increment in NIR absorption. Moreover, this facile reduction process repaired the aromatic structure of GO. CCK-8 and flow cytometry (FCM) assays showed that exposure of A549 cells to 100 μg/mL of nrGO-PEG for 2 h, exhibiting 71.5% of uptake ratio, did not induce significant cytotoxicity. However, after irradiation with 808 nm laser (0.6 W/cm2) for 5 min, the cells incubated with 6 μg/mL of nrGO-PEG solution showed approximately 90% decrease of cell viability, demonstrating the high-efficiency photothermal therapy of nrGO-PEG to tumor cells in vitro. This work established nrGO-PEG as a promising photothermal agent due to its small size, great biocompatibility, high photothermal efficiency, and low cost.

  2. Encapsulation of indocyanine green into cell membrane capsules for photothermal cancer therapy.

    PubMed

    Sheng, Guoping; Chen, Ying; Han, Lijie; Huang, Yong; Liu, Xiaoli; Li, Lanjuan; Mao, Zhengwei

    2016-10-01

    Although indocyanine green (ICG) has promising applications in photothermal therapy (PPT) because of its low toxicity and high efficiency in inducing heat and singlet oxygen formation in response to near-infrared light with a wavelength of approximately 800nm, its clinical application has been restricted because of its rapid body clearance and poor water stability. Therefore, cell membrane capsules (CMCs) derived from mammalian cells were used to encapsulate negatively charged ICG by temporarily permeating the plasma membrane and resealing using positively charged doxorubicin hydrochloride (DOX). The resulting CMCs@DOX/ICG exhibited a spherical shape, with a diameter of approximately 800nm. The DOX and ICG encapsulation was confirmed by the UV-vis spectrum; a very small amount of DOX (0.8μg) and a very high amount of ICG (∼110μg) were encapsulated in 200μg CMCs. Encapsulation in the CMCs leads to sustained release of ICG, especially in the presence of positively charged DOX. The temperature enhancement and generation of ROS by ICG encapsulated in CMCs were confirmed upon laser irradiation in vitro, leading to cell death. CMCs@DOX/ICG also can significantly enhance the retention of ICG in a tumor after intratumoral injection in vivo. As a result, combination treatment with CMCs@DOX/ICG and laser irradiation demonstrated much better anticancer efficacy than that of free DOX/ICG and CMCs@ICG. The encapsulation of ICG into CMCs, especially with the assistance of DOX, significantly slows down the body clearance of ICG, with a retained PPT effect against tumors, an important step forward in the practical application of ICG in cancer therapy. In this study, cell membrane capsules (CMCs) derived from mammalian cells were used to encapsulate negatively charged indocyanine green (ICG) by temporarily permeating the plasma membrane and resealing, in the presence of positively charged doxorubicin hydrochloride (DOX). The resulting CMCs@DOX/ICG exhibited a spherical shape

  3. Indocyanine Green-Encapsulated Hybrid Polymeric Nanomicelles for Photothermal Cancer Therapy.

    PubMed

    Jian, Wei-Hong; Yu, Ting-Wei; Chen, Chien-Ju; Huang, Wen-Chia; Chiu, Hsin-Cheng; Chiang, Wen-Hsuan

    2015-06-09

    Indocyanine green (ICG), an FDA approved medical near-infrared (NIR) imaging agent, has been extensively used in cancer theranosis. However, the limited aqueous photostability, rapid body clearance, and poor cellular uptake severely restrict its practical applications. For these problems to be overcome, ICG-encapsulated hybrid polymeric nanomicelles (PNMs) were developed in this work through coassociation of the amphiphilic diblock copolymer poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) and hydrophobic electrostatic complexes composed of ICG molecules and branched poly(ethylenimine) (PEI). The ICG-encapsulated hybrid PNMs featured a hydrophobic PLGA/ICG/PEI core stabilized by hydrophilic PEG shells. The encapsulation of electrostatic ICG/PEI complexes into the compact PLGA-rich core not only facilitated the ICG loading but also promoted its aqueous optical stability. The effects of the chain length of PEI in combination with ICG on the physiochemical properties of PNMs and their drug leakage were also investigated. PEI(10k) (10 kDa) could form highly robust and dense complexes with ICG, and thus prominently reduced ICG outflow from the PNMs. The results of in vitro cellular uptake and cytotoxicity studies revealed that the ICG/PEI(10k)-loaded PNMs significantly promoted cellular uptake of ICG by HeLa cells due to their near-neutral surface, and thereby augmented the NIR-triggered hyperthermia effect in destroying cancer cells. These findings strongly indicate that the ICG/PEI10k-loaded PNMs have significant potential for attaining effective cancer imaging and photothermal therapy.

  4. Photothermal laser lithotripsy of uric acid calculi: clinical assessment of the effects of cyanide production

    NASA Astrophysics Data System (ADS)

    Teichman, Joel M. H.; Champion, Paolo C.; Glickman, Randolph D.; Wollin, Timothy A.; Denstedt, John D.

    1999-06-01

    The mechanism of holmium:YAG lithotripsy is photothermal. Holmium:YAG lithotripsy of uric acid calculi produces cyanide, which is a known, thermal decomposition produce of uric acid. we review our experience with holmium:YAG lithotripsy of uric acid to determine if there is any clinical evidence of cyanide toxicity. A retrospective analysis of all of our cases of holmium:YAG lithotripsy of uric acid calculi was done. Anesthetic and postoperative data were reviewed. A total of 18 patients with uric acid calculi were tread with holmium:YAG lithotripsy by urethroscopy (5), retrograde nephroscopy (2), percutaneous nephrolithotomy (5) or cystolithotripsy (6). Total holmium:YAG irradiation ranged from 1.2 to 331 kJ. No patient had evidence of increased end-tidal carbon dioxide, change sin electrocardiogram or significant decrease in postoperative serum bicarbonate. An 84 year old woman had decreased diastolic pressure of 30 mm Hg while under general anesthesia. No cyanide related neurologic, cardiac or respiratory complications were noted. These data suggest no significant cyanide toxicity from holmium:YAG lithotripsy or uric acid calculi in typical clinical settings. More specific studies in animals are warranted to characterize the risk.

  5. Porphyrin lipid nanoparticles for enhanced photothermal therapy in a patient-derived orthotopic pancreas xenograft cancer model

    NASA Astrophysics Data System (ADS)

    MacLaughlin, Christina M.; Ding, Lili; Jin, Cheng; Cao, Pingjiang; Siddiqui, Iram; Hwang, David M.; Chen, Juan; Wilson, Brian C.; Zheng, Gang; Hedley, David W.

    2016-03-01

    Local disease control is a major problem in the treatment of pancreatic cancer, because curative-intent surgery is only possible in a minority of patients, and radiotherapy cannot be delivered in curative doses. Despite the promise of photothermal therapy (PTT) for ablation of pancreatic tumors, this approach remains under investigated. Using photothermal sensitizers in combination with laser light for PTT can result in more efficient conversion of light energy to heat, and confinement of thermal destruction to the tumor, thus sparing adjacent organs and vasculature. Porphyrins have been previously employed as photosensitizers for PDT and PTT, however their incorporation in to "porphysomes", lipid-based nanoparticles each containing ~80,000 porphyrins through conjugation of pyropheophorbide to phospholipids, carries two distinct advantages: 1) high-density porphyrin packing imparts the nanoparticles with enhanced photonic properties for imaging and phototherapy; 2) the enhanced permeability and retention effect may be exploited for optimal delivery of porphysomes to the tumor region thus high payload porphyrin delivery. The feasibility of porphysome-enhanced PTT for pancreatic cancer treatment was investigated using a patient-derived orthotopic pancreas xenograft tumor model. Uptake of porphysomes at the orthotopic tumor site was validated using ex vivo fluorescence imaging of intact organs of interest. The accumulation of porphysomes in orthotopic tumor microstructure was also confirmed by fluorescence imaging of excised tissue slices. PTT progress was monitored as changes in tumor surface temperature using IR optical imaging. Histological analyses were conducted to examine microstructure changes in tissue morphology, and the viability of remaining tumor tissues following exposure to heat. These studies may also provide insight as to the contribution of heat sink in application of thermal therapies to highly vascularized pancreatic tumors.

  6. Photochemical and Photothermal Reduction of Carbon Dioxide for Solar Fuels Production

    NASA Astrophysics Data System (ADS)

    Jelle, Abdinoor Abdullahi

    Catalytic conversion of greenhouse gas carbon dioxide to value-added chemicals and fuels powered by solar energy is envisioned to be a promising strategy to realize both energy security and environmental protection. This work demonstrates that earth abundant, low cost nanomaterials based on silicon and iron can be used to harvest both light and heat energy from the sun to reduce CO2 and generate solar fuels. Herein, we have demonstrated that ruthenium supported ultra-black silicon nanowires can drive the Sabatier reaction both photochemically and photothermally where both incident photons absorbed by and heat generated in the black silicon nanowires accelerate the photomethanation reaction. This allows the reaction to be activated at ambient temperatures removing the need for external heating that could cause sintering, mechanical degradation and eventual catalyst deactivation and therefore improves the overall energy efficiency of the process. Additionally, we have shown that the rate of photomethanation is greatly enhanced when highly dispersed nanocrystalline RuO2 is chemically deposited onto the black silicon nanowires support. Furthermore, we have demonstrated that other silicon structures such as three-dimensional silicon photonic crystals can be used as an efficient support for CO2 hydrogenation. Unlike other insulating supports, these silicon nanostructured supports are particularly attractive for solar-powered catalysis because, with a band-gap of 1.1 eV, they can potentially absorb 80% of the solar irradiance. Moreover, they exhibit excellent absorption strengths and low reflective losses across the entire solar spectral wavelength range of the ultraviolet, visible and near-infrared portion of the solar spectrum. Finally, we demonstrated a comprehensive comparative study of the physical, electronic, and photocatalytic properties of ironoxyhydroxide (FeOOH) polymorphs by studying the extent of methylene blue photodegradation. This work led to the

  7. Probing local bias-induced transitions using photothermal excitation contact resonance atomic force microscopy and voltage spectroscopy

    DOE PAGES

    Li, Qian; Jesse, Stephen; Tselev, Alexander; ...

    2015-01-05

    In this paper, nanomechanical properties are closely related to the states of matter, including chemical composition, crystal structure, mesoscopic domain configuration, etc. Investigation of these properties at the nanoscale requires not only static imaging methods, e.g., contact resonance atomic force microscopy (CR-AFM), but also spectroscopic methods capable of revealing their dependence on various external stimuli. Here we demonstrate the voltage spectroscopy of CR-AFM, which was realized by combining photothermal excitation (as opposed to the conventional piezoacoustic excitation method) with the band excitation technique. We applied this spectroscopy to explore local bias-induced phenomena ranging from purely physical to surface electromechanical andmore » electrochemical processes. Our measurements show that the changes in the surface properties associated with these bias-induced transitions can be accurately assessed in a fast and dynamic manner, using resonance frequency as a signature. Finally, with many of the advantages offered by photothermal excitation, contact resonance voltage spectroscopy not only is expected to find applications in a broader field of nanoscience but also will provide a basis for future development of other nanoscale elastic spectroscopies.« less

  8. A study of photothermal laser ablation of various polymers on microsecond time scales.

    PubMed

    Kappes, Ralf S; Schönfeld, Friedhelm; Li, Chen; Golriz, Ali A; Nagel, Matthias; Lippert, Thomas; Butt, Hans-Jürgen; Gutmann, Jochen S

    2014-01-01

    To analyze the photothermal ablation of polymers, we designed a temperature measurement setup based on spectral pyrometry. The setup allows to acquire 2D temperature distributions with 1 μm size and 1 μs time resolution and therefore the determination of the center temperature of a laser heating process. Finite element simulations were used to verify and understand the heat conversion and heat flow in the process. With this setup, the photothermal ablation of polystyrene, poly(α-methylstyrene), a polyimide and a triazene polymer was investigated. The thermal stability, the glass transition temperature Tg and the viscosity above Tg were governing the ablation process. Thermal decomposition for the applied laser pulse of about 10 μs started at temperatures similar to the start of decomposition in thermogravimetry. Furthermore, for polystyrene and poly(α-methylstyrene), both with a Tg in the range between room and decomposition temperature, ablation already occurred at temperatures well below the decomposition temperature, only at 30-40 K above Tg. The mechanism was photomechanical, i.e. a stress due to the thermal expansion of the polymer was responsible for ablation. Low molecular weight polymers showed differences in photomechanical ablation, corresponding to their lower Tg and lower viscosity above the glass transition. However, the difference in ablated volume was only significant at higher temperatures in the temperature regime for thermal decomposition at quasi-equilibrium time scales.

  9. Photothermal generation of microbubbles on plasmonic nanostructures inside microfluidic channels

    NASA Astrophysics Data System (ADS)

    Li, Jingting; Li, Ming; Santos, Greggy M.; Zhao, Fusheng; Shih, Wei-Chuan

    2016-03-01

    Microbubbles have been utilized as micro-pumps, micro-mixers, micro-valves, micro-robots and surface cleaners. Various generation techniques can be found in the literature, including resistive heating, hydrodynamic methods, illuminating patterned metal films and noble metal nanoparticles of Au or Ag. We present photothermal microbubble generation by irradiating nanoporous gold disk covered microfluidic channels. The size of the microbubble can be controlled by adjusting the laser power. The dynamics of both bubble growth and shrinkage are studied. The advantages of this technique are flexible bubble generation locations, long bubble lifetimes, no need for light-adsorbing dyes, high controllability over bubble size, low power consumption, etc. This technique has the potential to provide new flow control functions in microfluidic devices.

  10. Modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture.

    PubMed

    Suzuki, Ikurou; Sugio, Yoshihiro; Moriguchi, Hiroyuki; Jimbo, Yasuhiko; Yasuda, Kenji

    2004-07-01

    Control over spatial distribution of individual neurons and the pattern of neural network provides an important tool for studying information processing pathways during neural network formation. Moreover, the knowledge of the direction of synaptic connections between cells in each neural network can provide detailed information on the relationship between the forward and feedback signaling. We have developed a method for topographical control of the direction of synaptic connections within a living neuronal network using a new type of individual-cell-based on-chip cell-cultivation system with an agarose microchamber array (AMCA). The advantages of this system include the possibility to control positions and number of cultured cells as well as flexible control of the direction of elongation of axons through stepwise melting of narrow grooves. Such micrometer-order microchannels are obtained by photo-thermal etching of agarose where a portion of the gel is melted with a 1064-nm infrared laser beam. Using this system, we created neural network from individual Rat hippocampal cells. We were able to control elongation of individual axons during cultivation (from cells contained within the AMCA) by non-destructive stepwise photo-thermal etching. We have demonstrated the potential of our on-chip AMCA cell cultivation system for the controlled development of individual cell-based neural networks.

  11. Detection of pH-induced aggregation of "smart" gold nanoparticles with photothermal optical coherence tomography.

    PubMed

    Xiao, Peng; Li, Qingyun; Joo, Yongjoon; Nam, Jutaek; Hwang, Sekyu; Song, Jaejung; Kim, Sungjee; Joo, Chulmin; Kim, Ki Hean

    2013-11-01

    We report the feasibility of a novel contrast agent, namely "smart" gold nanoparticles (AuNPs), in the detection of cancer cells with photothermal optical coherence tomography (PT-OCT). "Smart" AuNPs form aggregation in low pH condition, which is typical for cancer cells, and this aggregation results in a shift of their absorption spectrum. A PT-OCT system was developed to detect this pH-induced aggregation by combining an OCT light source and a laser with 660 nm in wavelength for photothermal excitation. Optical detection of pH-induced aggregation was tested with solution samples at two different pH conditions. An increase in optical path length (OPL) variation was measured at mild acidic condition, while there was not much change at neutral condition. Detection of cancer cells was tested with cultured cell samples. HeLa and fibroblast cells, as cancer and normal cells respectively, were incubated with "smart" gold nanoparticles and measured with PT-OCT. An elevated OPL variation signal was detected with the HeLa cells while not much of a signal was detected with the fibroblast cells. With the novel optical property of "smart" AuNPs and high sensitivity of PT-OCT, this technique is promising for cancer cell detection.

  12. Tungsten Oxide Nanorods: An Efficient Nanoplatform for Tumor CT Imaging and Photothermal Therapy

    PubMed Central

    Zhou, Zhiguo; Kong, Bin; Yu, Chao; Shi, Xiangyang; Wang, Mingwei; Liu, Wei; Sun, Yanan; Zhang, Yingjian; Yang, Hong; Yang, Shiping

    2014-01-01

    We report here a facile thermal decomposition approach to creating tungsten oxide nanorods (WO2.9 NRs) with a length of 13.1 ± 3.6 nm and a diameter of 4.4 ± 1.5 nm for tumor theranostic applications. The formed WO2.9 NRs were modified with methoxypoly(ethylene glycol) (PEG) carboxyl acid via ligand exchange to have good water dispersability and biocompatibility. With the high photothermal conversion efficiency irradiated by a 980 nm laser and the better X-ray attenuation property than clinically used computed tomography (CT) contrast agent Iohexol, the formed PEGylated WO2.9 NRs are able to inhibit the growth of the model cancer cells in vitro and the corresponding tumor model in vivo, and enable effective CT imaging of the tumor model in vivo. Our “killing two birds with one stone” strategy could be extended for fabricating other nanoplatforms for efficient tumor theranostic applications. PMID:24413483

  13. Anti-EGFR Peptide-Conjugated Triangular Gold Nanoplates for Computed Tomography/Photoacoustic Imaging-Guided Photothermal Therapy of Non-Small Cell Lung Cancer.

    PubMed

    Zhao, Ying; Liu, Wenfei; Tian, Ying; Yang, Zhenlu; Wang, Xiaofen; Zhang, Yunlei; Tang, Yuxia; Zhao, Shuang; Wang, Chunyan; Liu, Ying; Sun, Jing; Teng, Zhaogang; Wang, Shouju; Lu, Guangming

    2018-05-23

    Non-small cell lung cancer (NSCLC) is difficult to cure because of the high recurrence rate and the side effects of current treatments. It is urgent to develop a new treatment that is safer and more effective than current treatments against NSCLC. Herein, we constructed anti-epidermal growth factor receptor (EGFR) peptide-conjugated PEGylated triangular gold nanoplates (TGN-PEG-P75) as a targeting photothermal therapy (PTT) agent to treat NSCLC under the guidance of computed tomography (CT) and photoacoustic (PA) imaging. The surface of TGNs is successfully conjugated with a novel peptide P75 that has the specific affinity to epidermal growth factor receptor (EGFR). It is found that the EGFR is overexpressed in NSCLC cells. The TGN-PEG-P75 has uniform edge length (77.9 ± 7.0 nm) and neutrally charged surface. The cell uptake experiments demonstrate remarkable affinity of the TGN-PEG-P75 to high EGFR expression cells than low EGFR expression cells (5.1-fold). Thanks to the strong near-infrared absorbance, high photothermal conversion efficiency, and the increased accumulation in tumor cells via the interaction of P75 and EGFR, TGN-PEG-P75 exhibits 3.8-fold superior therapeutic efficacy on HCC827 cells than TGN-PEG. The in vivo CT/PA dual-modal imaging of the TGN-PEG-P75 is helpful in selecting the optimal treatment time and providing real-time visual guidance of PTT. Furthermore, treatments on HCC827 tumor-bearing mouse model demonstrate that the growth of NSCLC cells can be effectively inhibited by the TGN-PEG-P75 through PTT, indicating the great promise of the nanoplatform for treating NSCLC in vivo.

  14. Application of complex geometrical optics to determination of thermal, transport, and optical parameters of thin films by the photothermal beam deflection technique.

    PubMed

    Korte, Dorota; Franko, Mladen

    2015-01-01

    In this work, complex geometrical optics is, for what we believe is the first time, applied instead of geometrical or wave optics to describe the probe beam interaction with the field of the thermal wave in photothermal beam deflection (photothermal deflection spectroscopy) experiments on thin films. On the basis of this approach the thermal (thermal diffusivity and conductivity), optical (energy band gap), and transport (carrier lifetime) parameters of the semiconductor thin films (pure TiO2, N- and C-doped TiO2, or TiO2/SiO2 composites deposited on a glass or aluminum support) were determined with better accuracy and simultaneously during one measurement. The results are in good agreement with results obtained by the use of other methods and reported in the literature.

  15. Laser-induced photo-thermal strain imaging

    NASA Astrophysics Data System (ADS)

    Choi, Changhoon; Ahn, Joongho; Jeon, Seungwan; Kim, Chulhong

    2018-02-01

    Vulnerable plaque is the one of the leading causes of cardiovascular disease occurrence. However, conventional intravascular imaging techniques suffer from difficulty in finding vulnerable plaque due to limitation such as lack of physiological information, imaging depth, and depth sensitivity. Therefore, new techniques are needed to help determine the vulnerability of plaque, Thermal strain imaging (TSI) is an imaging technique based on ultrasound (US) wave propagation speed that varies with temperature of medium. During temperature increase, strain occurs in the medium and its variation tendency is depending on the type of tissue, which makes it possible to use for tissue differentiation. Here, we demonstrate laser-induced photo-thermal strain imaging (pTSI) to differentiate tissue using an intravascular ultrasound (IVUS) catheter and a 1210-nm continuous-wave laser for heating lipids intensively. During heating, consecutive US images were obtained from a custom-made phantom made of porcine fat and gelatin. A cross correlation-based speckle-tracking algorithm was then applied to calculate the strain of US images. In the strain images, the positive strain produced in lipids (porcine fat) was clearly differentiated from water-bearing tissue (gelatin). This result shows that laser-induced pTSI could be a new method to distinguish lipids in the plaque and can help to differentiate vulnerability of plaque.

  16. Self-Templated Stepwise Synthesis of Monodispersed Nanoscale Metalated Covalent Organic Polymers for In Vivo Bioimaging and Photothermal Therapy.

    PubMed

    Shi, Yanshu; Deng, Xiaoran; Bao, Shouxin; Liu, Bei; Liu, Bin; Ma, Ping'an; Cheng, Ziyong; Pang, Maolin; Lin, Jun

    2017-09-05

    Size- and shape-controlled growth of nanoscale microporous organic polymers (MOPs) is a big challenge scientists are confronted with; meanwhile, rendering these materials for in vivo biomedical applications is still scarce. In this study, a monodispersed nanometalated covalent organic polymer (MCOP, M=Fe, Gd) with sizes around 120 nm was prepared by a self-templated two-step solution-phase synthesis method. The metal ions (Fe 3+ , Gd 3+ ) played important roles in generating a small particle size and in the functionalization of the products during the reaction with p-phenylenediamine (Pa). The resultant Fe-Pa complex was used as a template for the subsequent formation of MCOP following the Schiff base reaction with 1,3,5-triformylphloroglucinol (Tp). A high tumor suppression efficiency for this Pa-based COP is reported for the first time. This study demonstrates the potential use of MCOP as a photothermal agent for photothermal therapy (PTT) and also provides an alternative route to fabricate nano-sized MCOPs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Solar Photothermal Disinfection using Broadband-Light Absorbing Gold Nanoparticles and Carbon Black.

    PubMed

    Loeb, Stephanie; Li, Chuanhao; Kim, Jae-Hong

    2018-01-02

    A simple heat treatment, perhaps the most globally recognized point-of-use water sterilization method, is seemingly effective against all major pathogens of concern, but bulk water boiling is not energy efficient or sustainable. Herein, we present the first application of solar-to-thermal converting nanomaterials for the direct inactivation of bacteria and viruses in drinking water through the application of Au nanorods, carbon black, and Au nanorod-carbon black composite materials as light absorbers. With broad absorption bands spanning the visible and near-infrared wavelengths, at sufficient concentrations, these nanoparticles induce multiple scattering events, increasing photon absorption probability and concentrating the light within a small spatial domain, leading to localized, intense heating that inactivates microorganisms in close proximity. Moving toward practical device design, we have developed a facile silane immobilization approach to fabricate films with densely packed layers of photothermal nanomaterials. Our results suggest that upon irraditaion with simulated solar light, these films can thermally inactivate bacteria and viruses, as demonstrated through the inactivation of surrogate organisms Escherichia coli K-12, and bacteriophages MS2 and PR772.

  18. Molecular Dynamics Study on the Photothermal Actuation of a Glassy Photoresponsive Polymer Reinforced with Gold Nanoparticles with Size Effect.

    PubMed

    Choi, Joonmyung; Chung, Hayoung; Yun, Jung-Hoon; Cho, Maenghyo

    2016-09-14

    We investigated the optical and thermal actuation behavior of densely cross-linked photoresponsive polymer (PRP) and polymer nanocomposites containing gold nanoparticles (PRP/Au) using all-atom molecular dynamics (MD) simulations. The modeled molecular structures contain a large number of photoreactive mesogens with linear orientation. Flexible side chains are interconnected through covalent bonds under periodic boundary conditions. A switchable dihedral potential was applied on a diazene moiety to describe the photochemical trans-to-cis isomerization. To quantify the photoinduced molecular reorientation and its effect on the macroscopic actuation of the neat PRP and PRP/Au materials, we characterized the photostrain and other material properties including elastic stiffness and thermal stability according to the photoisomerization ratio of the reactive groups. We particularly examined the effect of nanoparticle size on the photothermal actuation by varying the diameter of the nanofiller (10-20 Å) under the same volume fraction of 1.62%. The results indicated that the insertion of the gold nanoparticles enlarges the photostrain of the material while enhancing its mechanical stiffness and thermal stability. When the diameter of the nanoparticle reaches a size similar to or smaller than the length of the mesogen, the interfacial energy between the nanofiller and the surrounding polymer matrix does not significantly affect the alignment of the mesogens, but rather the adsorption energy at the interface generates a stable interphase layer. Hence, these improvements were more effective as the size of the gold nanoparticle decreased. The present findings suggest a wider analysis of the nanofiller-reinforced PRP composites and could be a guide for the mechanical design of the PRP actuator system.

  19. Photothermal measurement of absorption and scattering losses in thin films excited by surface plasmons.

    PubMed

    Domené, Esteban A; Balzarotti, Francisco; Bragas, Andrea V; Martínez, Oscar E

    2009-12-15

    We present a novel noncontact, photothermal technique, based on the focus error signal of a commercial CD pickup head that allows direct determination of absorption in thin films. Combined with extinction methods, this technique yields the scattering contribution to the losses. Surface plasmon polaritons are excited using the Kretschmann configuration in thin Au films of varying thickness. By measuring the extinction and absorption simultaneously, it is shown that dielectric constants and thickness retrieval leads to inconsistencies if the model does not account for scattering.

  20. Fabrication of controllably variable sub-100  nm gaps in silver nanowires by photothermal-induced stress.

    PubMed

    Ghosh, Pintu; Lu, Jinsheng; Luo, Hao; Xu, Ziquan; Yan, Xiaoyuan; Wang, Yewu; Lu, Jun; Qiu, Min; Li, Qiang

    2018-05-15

    A technique to fabricate nanogaps with controllably variable gap width in silver (Ag) nanowires (NWs) by photothermal-induced stress utilizing a focused continuous-wave laser (532 nm) is presented. For the case of an Ag NW on gold thin film, a gap width starting from ∼20  nm is achieved with a critical minimum power (CMP) of about 160 mW, whereas in the case of an Ag NW placed on top of a zinc oxide NW, the attained gap width is as small as a few nm (<10  nm) with a CMP of only ∼100  mW. In both cases, the CMP is much lower as compared to the required CMP (∼280  mW) for an Ag NW placed on a bare silica substrate. The photothermal-induced stress combined with Rayleigh instability, melting, and sublimation of Ag aids in breaking the Ag NW. In particular, the former one plays a key role in attaining an extremely narrow gap. This technique to fabricate sub-100 nm nanogaps in metal NWs can be extensively implemented in fabrication and maintenance of nanomechanical, nanoplasmonic, and nanoelectronic devices.

  1. Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy.

    PubMed

    Jeyamohan, Prashanti; Hasumura, Takashi; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi

    2013-01-01

    The photothermal effect of single-walled carbon nanotubes (SWCNTs) in combination with the anticancer drug doxorubicin (DOX) for targeting and accelerated destruction of breast cancer cells is demonstrated in this paper. A targeted drug-delivery system was developed for selective killing of breast cancer cells with polyethylene glycol biofunctionalized and DOX-loaded SWCNTs conjugated with folic acid. In our work, in vitro drug-release studies showed that the drug (DOX) binds at physiological pH (pH 7.4) and is released only at a lower pH, ie, lysosomal pH (pH 4.0), which is the characteristic pH of the tumor environment. A sustained release of DOX from the SWCNTs was observed for a period of 3 days. SWCNTs have strong optical absorbance in the near-infrared (NIR) region. In this special spectral window, biological systems are highly transparent. Our study reports that under laser irradiation at 800 nm, SWCNTs exhibited strong light-heat transfer characteristics. These optical properties of SWCNTs open the way for selective photothermal ablation in cancer therapy. It was also observed that internalization and uptake of folate-conjugated NTs into cancer cells was achieved by a receptor-mediated endocytosis mechanism. Results of the in vitro experiments show that laser was effective in destroying the cancer cells, while sparing the normal cells. When the above laser effect was combined with DOX-conjugated SWCNTs, we found enhanced and accelerated killing of breast cancer cells. Thus, this nanodrug-delivery system, consisting of laser, drug, and SWCNTs, looks to be a promising selective modality with high treatment efficacy and low side effects for cancer therapy.

  2. High-Precision Photothermal Ablation Using Biocompatible Palladium Nanoparticles and Laser Scanning Microscopy

    PubMed Central

    2018-01-01

    Herein, we report a straightforward method for the scalable preparation of Pd nanoparticles (Pd-NPs) with reduced inherent cytotoxicity and high photothermal conversion capacity. These Pd-NPs are rapidly taken up by cells and able to kill labeled cancer cells upon short exposure to near-infrared (NIR) light. Following cell treatment with Pd-NPs, ablated areas were patterned with high precision by laser scanning microscopy, allowing one to perform cell migration assays with unprecedented accuracy. Using coherent Raman microscopy, cells containing Pd-NPs were simultaneously ablated and imaged. This novel methodology was combined with intravital imaging to mediate microablation of cancerous tissue in tumor xenografts in mice. PMID:29320154

  3. Protein-Based Multifunctional Nanocarriers for Imaging, Photothermal Therapy, and Anticancer Drug Delivery.

    PubMed

    Pan, Uday Narayan; Khandelia, Rumi; Sanpui, Pallab; Das, Subhojit; Paul, Anumita; Chattopadhyay, Arun

    2017-06-14

    We report a simple approach for fabricating plasmonic and magneto-luminescent multifunctional nanocarriers (MFNCs) by assembling gold nanorods, iron oxide nanoparticles, and gold nanoclusters within BSA nanoparticles. The MFNCs showed self-tracking capability through single- and two-photon imaging, and the potential for magnetic targeting in vitro. Appreciable T 2 -relaxivity exhibited by the MFNCs indicated favorable conditions for magnetic resonance imaging. In addition to successful plasmonic-photothermal therapy of cancer cells (HeLa) in vitro, the MFNCs demonstrated efficient loading and delivery of doxorubicin to HeLa cells leading to significant cell death. The present MFNCs with their multimodal imaging and therapeutic capabilities could be eminent candidates for cancer theranostics.

  4. Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring

    NASA Astrophysics Data System (ADS)

    Chu, Chih-Ken; Tu, Yi-Chou; Hsiao, Jen-Hung; Yu, Jian-He; Yu, Chih-Kang; Chen, Shih-Yang; Tseng, Po-Hao; Chen, Shuai; Kiang, Yean-Woei; Yang, C. C.

    2016-03-01

    We demonstrate effective inactivation of oral cancer cells SAS through a combination of photothermal therapy (PTT) and photodynamic therapy (PDT) effects based on localized surface plasmon resonance (LSPR) around 1064 nm in wavelength of a Au nanoring (NRI) under femtosecond (fs) laser illumination. The PTT effect is caused by the LSPR-enhanced absorption of the Au NRI. The PDT effect is generated by linking the Au NRI with the photosensitizer of sulfonated aluminum phthalocyanines (AlPcS) for producing singlet oxygen through the LSPR-enhanced two-photon absorption (TPA) excitation of AlPcS. The laser threshold intensity for cancer cell inactivation with the applied Au NRI linked with AlPcS is significantly lower when compared to that with the Au NRI not linked with AlPcS. The comparison of inactivation threshold intensity between the cases of fs and continuous laser illuminations at the same wavelength and with the same average power confirms the crucial factor of TPA under fs laser illumination for producing the PDT effect.

  5. Anti-TROP2 conjugated hollow gold nanospheres as a novel nanostructure for targeted photothermal destruction of cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Tian, Jiguang; Chen, Zhaolong; Liang, Ying; Liu, Jiao; Liu, Si; Li, Huihui; Zhan, Jinhua; Yang, Xingsheng

    2014-08-01

    Photothermal ablation (PTA) is a promising avenue in the area of cancer therapeutics that destroys tumor cells through conversion of near-infrared (NIR) laser light to heat. Hollow gold nanospheres (HGNs) are one of the few materials that are capable of converting light to heat and have been previously used for photothermal ablation studies. Selective delivery of functional nanoparticles to the tumor site is considered as an effective therapeutic approach. In this paper, we demonstrated the anti-cancer potential of HGNs. HGNs were conjugated with monoclonal antibody (anti-TROP2) in order to target cervical cancer cells (HeLa) that contain abundant trophoblast cell surface antigen 2 (TROP2) on the cell surface. The efficient uptake and intracellular location of these functionalized HGNs were studied through application of inductively coupled plasma atomic emission spectroscopy (ICP-AES) and transmission electron microscopy (TEM). Cytotoxicity induced by PTA was measured using CCK-8 assay. HeLa cells incubated with naked HGNs (0.3-3 nmol L-1) within 48 h did not show obvious cytotoxicity. Under laser irradiation at suitable power, anti-TROP2 conjugated HGNs achieved significant tumor cell growth inhibition in comparison to the effects of non-specific PEGylated HGNs (P < 0.05). γH2AX assay results revealed higher occurrences of DNA-DSBs with anti-TROP2 conjugated HGNs plus laser radiation as compared to treatment with laser alone. Flow cytometry analysis showed that the amount of cell apoptosis was increased after laser irradiation with anti-TROP2 conjugated HGNs (P < 0.05). Anti-TROP2 conjugated HGNs resulted in down-regulation of Bcl-2 expression and up-regulation of Bax expression. Our study results confirmed that anti-TROP2 conjugated HGNs can selectively destroy cervical cancer cells through inducing its apoptosis and DNA damages. We propose that HGNs have the potentials to mediate targeted cancer treatment.

  6. Phase lag deduced information in photo-thermal actuation for nano-mechanical systems characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bijster, R. J. F., E-mail: roy.bijster@tno.nl; Vreugd, J. de; Sadeghian, H.

    2014-08-18

    In photo-thermal actuation, heat is added locally to a micro-cantilever by means of a laser. A fraction of the irradiation is absorbed, yielding thermal stresses and deformations in the structure. Harmonic modulation of the laser power causes the cantilever to oscillate. Moreover, a phase lag is introduced which is very sensitive to the spot location and the cantilever properties. This phase lag is theoretically predicted and experimentally verified. Combined with thermo-mechanical properties of the cantilever and its geometry, the location of the laser spot, the thermal diffusivity, and the layer thicknesses of the cantilever can be extracted.

  7. Fundamental Studies of Photothermal Properties of a Nanosystem and the Surrounding Medium Using Er3+ Photoluminescence Nanothermometry

    NASA Astrophysics Data System (ADS)

    Baral, Susil

    Unique properties exhibited by metal nanoparticles at nanoscale have attracted a large amount of research attention and application in various aspects of nanoscience and nanotechnology. In addition to several unique optical, electrical and physical properties; metal nanoparticles also exhibit "photothermal property" a special feature that makes them capable of absorbing an electromagnetic radiation and converting light energy into heat energy. As this heat generated by metal nanoparticles can be utilized to drive processes in numerous applications, understanding the heat generation and heat dissipation properties of a nanosystem and/or its surrounding is vital for its efficiency and performance. The research work presented in this dissertation explores the fundamental photothermal properties of optically excited gold nanostructures and the surrounding medium using trivalent erbium ion (Er3+) emission nanothermometry approach. Nanostructures are either fabricated or spin-coated on top of a thermal sensor film with Er3+, optically excited with 532 nm Continuous Wave (CW) laser and the relative photoluminescence intensities of Er3+ emission peaks are utilized for nanoscale temperature measurement and thermal imaging. The first project of this dissertation explores the fundamental aspects of application of photothermal property of plasmonic nanostructures for phase transformation of the surrounding water and hence steam generation. Two totally contrasting nucleation behavior of surrounding water is observed for the optical excitation of single gold nanostructures versus the colloidal solution of gold nanoparticles. The second project examines the effect of ions and ionic strength on surface plasmon extinction properties of single gold nanostructures. Performing nanoscale temperature measurement and single particle absorption and scattering measurements, we demonstrate how non-binding ions, even at the concentrations where they are not expected to bring about changes on

  8. In vitro and in vivo photothermal cancer therapy using excited gold nanorod surface plasmons

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Lung; Liu, Bruce; Ou, Min-Nan; Chang, Fu-Hsiung; Lin, Win-Li; Chia, Chih-Ta; Chen, Yang-Yuan

    2013-03-01

    The application of heat to eliminate or restrain specific cancer cells is proposed as an encouraging approach in optimizing cancer therapy. This talk presents the in vitro and in vivo photothermal cancer therapy using photo-excited gold nanorods (Au NRs), and studies the impact of thermal heat on the necrosis of tumor tissue. The therapeutic efficacy in vivo was evaluated by analyzing tumor size change, vascular development, and histological images. The safety standard for the therapy process and administration of Au NRs were conducted to exclude side effects arising from the irradiation and materials. It is found that the smaller size of Au NRs exhibits better therapeutic efficacy due to their optical absorption efficiency and space distribution uniformity in the cell. The generation of local heating from excited Au NR surface plasmons is high enough to make the tumor tissue gradually develop to an eschar; resulting in a dramatic size decreases in these treated tumors.

  9. Rational design of a comprehensive cancer therapy platform using temperature-sensitive polymer grafted hollow gold nanospheres: simultaneous chemo/photothermal/photodynamic therapy triggered by a 650 nm laser with enhanced anti-tumor efficacy

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoran; Chen, Yinyin; Cheng, Ziyong; Deng, Kerong; Ma, Ping'an; Hou, Zhiyao; Liu, Bei; Huang, Shanshan; Jin, Dayong; Lin, Jun

    2016-03-01

    Combining multi-model treatments within one single system has attracted great interest for the purpose of synergistic therapy. In this paper, hollow gold nanospheres (HAuNs) coated with a temperature-sensitive polymer, poly(oligo(ethylene oxide) methacrylate-co-2-(2-methoxyethoxy)ethyl methacrylate) (p(OEGMA-co-MEMA)), co-loaded with DOX and a photosensitizer Chlorin e6 (Ce6) were successfully synthesized. As high as 58% DOX and 6% Ce6 by weight could be loaded onto the HAuNs-p(OEGMA-co-MEMA) nanocomposites. The grafting polymer brushes outside the HAuNs play the role of ``gate molecules'' for controlled drug release by 650 nm laser radiation owing to the temperature-sensitive property of the polymer and the photothermal effect of HAuNs. The HAuNs-p(OEGMA-co-MEMA)-Ce6-DOX nanocomposites with 650 nm laser radiation show effective inhibition of cancer cells in vitro and enhanced anti-tumor efficacy in vivo. In contrast, control groups without laser radiation show little cytotoxicity. The nanocomposite demonstrates a way of ``killing three birds with one stone'', that is, chemotherapy, photothermal and photodynamic therapy are triggered simultaneously by the 650 nm laser stimulation. Therefore, the nanocomposites show the great advantages of multi-modal synergistic effects for cancer therapy by a remote-controlled laser stimulus.Combining multi-model treatments within one single system has attracted great interest for the purpose of synergistic therapy. In this paper, hollow gold nanospheres (HAuNs) coated with a temperature-sensitive polymer, poly(oligo(ethylene oxide) methacrylate-co-2-(2-methoxyethoxy)ethyl methacrylate) (p(OEGMA-co-MEMA)), co-loaded with DOX and a photosensitizer Chlorin e6 (Ce6) were successfully synthesized. As high as 58% DOX and 6% Ce6 by weight could be loaded onto the HAuNs-p(OEGMA-co-MEMA) nanocomposites. The grafting polymer brushes outside the HAuNs play the role of ``gate molecules'' for controlled drug release by 650 nm laser radiation

  10. Photothermal stress triggered by near-infrared-irradiated carbon nanotubes up-regulates osteogenesis and mineral deposition in tooth-extracted sockets.

    PubMed

    Kajiya, Hiroshi; Katsumata, Yuri; Sasaki, Mina; Tsutsumi, Takashi; Kawaguchi, Minoru; Fukushima, Tadao

    2015-01-01

    The bone regenerative healing process is often prolonged, with a high risk of infection particularly in elderly and diseased patients. A reduction in healing process time usually requires mechanical stress devices, chemical cues, or laser/thermal therapies. Although these approaches have been used extensively for the reduction of bone healing time, the exact mechanisms involved in thermal stress-induced bone regeneration remain unclear. Photothermal stress (PTS) stimulation was carried out using a novel photothermal device, composed of an alginate gel (AG) including carbon nanotubes (CNT-AGs) and their irradiator with near-infrared (NIR) light. We investigated the effects of optimal hyperthermia on osteogenesis, its signalling pathway in vitro and mineral deposition in tooth-extracted sockets in vivo. The PTS (10 min at 42 °C, every day), triggered by NIR-induced CNT, increased the activity of alkaline phosphatase (ALP) in mouse osteoblast MC3T3-E1 cells in a time-dependent manner compared with the non-thermal stress control. PTS significantly induced the expression of osteogenic-related molecules such as ALP, RUNX2 and Osterix in a time-dependent manner with phosphorylated mitogen-activated protein kinases (MAPK). PTS increased the expression of heat shock factor (HSF) 2, but not HSF1, resulting in activation of heat shock protein 27. PTS significantly up-regulated mineral deposition in tooth-extracted sockets in normal and ovariectomised osteoporotic model mice in vivo. Our novel CNT-based PTS up-regulated osteogenesis via activation of heat shock-related molecules, resulting in promotion of mineral deposition in enhanced tooth-extracted sockets.

  11. Near-infrared light-mediated photodynamic/photothermal therapy nanoplatform by the assembly of Fe3O4 carbon dots with graphitic black phosphorus quantum dots

    PubMed Central

    Zhang, Ming; Wang, Wentao; Cui, Yingjun; Zhou, Ninglin; Shen, Jian

    2018-01-01

    Background Recently, combined photodynamic therapy (PDT) and photothermal therapy (PTT) has become a desired treatment for cancer. However, the development of economic, high-efficiency, and safe photosensitizers/photothermal agents remains a significant challenge. Methods A novel nanocomposite has been developed via the assembly of iron oxide carbon dot (Fe3O4-CDs) nanoparticles and black phosphorus quantum dots (genipin [GP]-polyglutamic acid [PGA]-Fe3O4-CDs@BPQDs), and this nanocomposite shows a broad light-absorption band and a photodegradable character. Results In vitro and in vivo assays indicated that GP-PGA-Fe3O4-CDs@BPQDs were highly biocompatible and exhibited excellent tumor-inhibition efficacy, due to the synergistic PTT and PDT via a near-infrared laser. Importantly, in vivo tumor magnetic resonance imaging (MRI) results illustrated that GP-PGA-Fe3O4-CDs@BPQDs can be specifically applied for enhanced T2 MRI of tumors. This work presents the first combined application of a PDT and PTT effect deriving from BPQDs and MRI from Fe3O4-CDs, which may promote utilization of black BPQDs in biomedicine. Conclusion As expected, GP-PGA-Fe3O4-CDs@BPQDs displayed a dramatically enhanced ability to destroy tumor cells, due to the synergistic combination of PTT and PDT. PMID:29785107

  12. Preparation of core-shell Ag@CeO2 nanocomposite by LSPR photothermal induced interface reaction

    NASA Astrophysics Data System (ADS)

    Zhong, H. X.; Wei, Y.; Yue, Y. Z.; Zhang, L. H.; Liu, Y.

    2016-04-01

    The core-shell structure of Ag@CeO2 was prepared by a novel and facile method, which was based on the photothermal effect of localized surface plasmon resonance (LSPR). Nanoparticles (NPs) of Ag were dispersed in a solution containing citric acid, ethylene glycol and cerium nitrate, then under irradiation, Ag NPs generated heat from LSPR and the heat-induced polymerization reaction in the interface between Ag and the sol resulted in cerium gel formation only on the surface of the Ag NPs. After calcination, Ag@CeO2 was successfully obtained, then Ag@CeO2/SiO2 was prepared by loading Ag@CeO2 on SiO2. The resultant catalyst exhibited favorable activity and stability for CO oxidation. The preparation method proposed here should be extendable to other composites with metallic cores and oxide shells in which the metallic nanoparticle possesses LSPR properties.

  13. Advantages of using gold hollow nanoshells in cancer photothermal therapy

    NASA Astrophysics Data System (ADS)

    Abbasi, Sattar; Servatkhah, Mojtaba; Keshtkar, Mohammad Mehdi

    2016-08-01

    Lots of studies have been conducted on the optical properties of gold nanoparticles in the first region of near infrared (650 nm-950 nm), however new findings show that the second region of near-infrared (1000 nm-1350 nm) penetrates to the deeper tissues of the human body. Therefore, using the above-mentioned region in photo-thermal therapy (PTT) of cancer will be more appropriate. In this paper, absorption efficiency is calculated for gold spherical and rod-shaped nanoshells by the finite element method (FEM). The results show that the surface plasmon frequency of these nanostructures is highly dependent on the dimension and thickness of shell and it can be adjusted to the second region of near-infrared. Thus, due to their optical tunability and their high absorption efficiency the hollow nanoshells are the most appropriate options for eradicating cancer tissues.

  14. Millisecond ordering of block-copolymer films via photo-thermal gradients

    DOE PAGES

    Majewski, Pawel W.; Yager, Kevin G.

    2015-03-12

    For the promise of self-assembly to be realized, processing techniques must be developed that simultaneously enable control of the nanoscale morphology, rapid assembly, and, ideally, the ability to pattern the nanostructure. Here, we demonstrate how photo-thermal gradients can be used to control the ordering of block-copolymer thin films. Highly localized laser heating leads to intense thermal gradients, which induce a thermophoretic force on morphological defects. This increases the ordering kinetics by at least 3 orders-of-magnitude, compared to conventional oven annealing. By simultaneously exploiting the thermal gradients to induce shear fields, we demonstrate uniaxial alignment of a block-copolymer film in lessmore » than a second. Finally, we provide examples of how control of the incident light-field can be used to generate prescribed configurations of block-copolymer nanoscale patterns.« less

  15. Photothermal heating in metal-embedded microtools for material transport

    NASA Astrophysics Data System (ADS)

    Villangca, Mark; Palima, Darwin; Bañas, Andrew; Glückstad, Jesper

    2016-03-01

    Material transport is an important mechanism in microfluidics and drug delivery. The methods and solutions found in literature involve passively diffusing structures, microneedles and chemically fueled structures. In this work, we make use of optically actuated microtools with embedded metal layer as heating element for controlled loading and release. The new microtools take advantage of the photothermal-induced convection current to load and unload cargo. We also discuss some challenges encountered in realizing a self-contained polymerized microtool. Microfluidic mixing, fluid flow control and convection currents have been demonstrated both experimentally and numerically for static metal thin films or passively floating nanoparticles. Here we show an integration of aforementioned functionalities in an optically fabricated and actuated microtool. As proof of concept, we demonstrate loading and unloading of beads. This can be extended to controlled transport and release of genetic material, bio-molecules, fluorescent dyes. We envisioned these microtools to be an important addition to the portfolio of structure-mediated contemporary biophotonics.

  16. Novel Cs-Based Upconversion Nanoparticles as Dual-Modal CT and UCL Imaging Agents for Chemo-Photothermal Synergistic Therapy.

    PubMed

    Liu, Yuxin; Li, Luoyuan; Guo, Quanwei; Wang, Lu; Liu, Dongdong; Wei, Ziwei; Zhou, Jing

    2016-01-01

    Lanthanide-based contrast agents have attracted increasing attention for their unique properties and potential applications in cancer theranostics. To date, many of these agents have been studied extensively in cells and small animal models. However, performance of these theranostic nanoparticles requires further improvement. In this study, a novel CsLu2F7:Yb,Er,Tm-based visual therapeutic platform was developed for imaging-guided synergistic cancer therapy. Due to the presence of the heavy alkali metal Cesium (Cs) in host lattice, the nanoplatform can provide a higher resolution X-ray CT imaging than many other reported lanthanide-based CT contrast agents. Furthermore, by using the targeted RGD motif, chemotherapy drug alpha-tocopheryl succinate (α-TOS), and photothermal coupling agent ICG, this nanoplatform simultaneously provides multifunctional imaging and targeted synergistic therapy. To demonstrate the theranostic performance of this novel nanoplatform in vivo, visual diagnosis in the small animal model was realized by UCL/CT imaging which was further integrated with targeted chemo-photothermal synergistic therapy. These results provided evidence for the successful construction of a novel lanthanide-based nanoplatform coupled with multimodal imaging diagnosis and potential application in synergistic cancer theranostics.

  17. Long-term photothermal/humidity testing of photovoltaic module polymer insulations and cover films

    NASA Technical Reports Server (NTRS)

    Mon, G.; Gonzales, C.; Willis, P.; Jetter, E.; Sugimura, R.

    1990-01-01

    The life expectancies of Tedlar and other polymer films considered for use as cover materials in terrestrial photovoltaic (PV) modules were investigated by exposing them for more than 13,000 h on an outdoor test stand and for up to 10,000 h in several accelerated multistress environments. Visual observations and diagnostic analyses of weight and mechanical strength losses were periodically conducted to assess the nature and rate of degradation of mechanical properties and to assess the effects of film thickness and UV stabilizer content. Spectroscopic analyses of pristine and degraded materials linked weight and mechanical property losses to the underlying photothermal/photooxidation chemistry. It is shown that heavy doses of UV stabilizers prolong, while elevated temperatures shorten, the useful life of these materials; humidity plays only a minor role. The most heavily UV-stabilized films are expected to operate usefully in a PV module front-cover application for only five to ten years. The performance of none of the tested films appears consistent with the 20-30 year life goals of the PV industry.

  18. A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy.

    PubMed

    Xiao, Qingfeng; Zheng, Xiangpeng; Bu, Wenbo; Ge, Weiqiang; Zhang, Shengjian; Chen, Feng; Xing, Huaiyong; Ren, Qingguo; Fan, Wenpei; Zhao, Kuaile; Hua, Yanqing; Shi, Jianlin

    2013-09-04

    To integrate photothermal ablation (PTA) with radiotherapy (RT) for improved cancer therapy, we constructed a novel multifunctional core/satellite nanotheranostic (CSNT) by decorating ultrasmall CuS nanoparticles onto the surface of a silica-coated rare earth upconversion nanoparticle. These CSNTs could not only convert near-infrared light into heat for effective thermal ablation but also induce a highly localized radiation dose boost to trigger substantially enhanced radiation damage both in vitro and in vivo. With the synergistic interaction between PTA and the enhanced RT, the tumor could be eradicated without visible recurrence in 120 days. Notably, hematological analysis and histological examination unambiguously revealed their negligible toxicity to the mice within a month. Moreover, the novel CSNTs facilitate excellent upconversion luminescence/magnetic resonance/computer tomography trimodal imagings. This multifunctional nanocomposite is believed to be capable of playing a vital role in future oncotherapy by the synergistic effects between enhanced RT and PTA under the potential trimodal imaging guidance.

  19. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptors for photothermal ablation therapy

    PubMed Central

    Melancon, Marites P.; Lu, Wei; Yang, Zhi; Zhang, Rui; Cheng, Zhi; Elliot, Andrew M.; Stafford, Jason; Olson, Tammy; Zhang, Jin Z.; Li, Chun

    2009-01-01

    Laser-induced phototherapy is a new therapeutic use of electromagnetic radiation for cancer treatment. The use of targeted plasmonic gold nanoparticles can reduce the laser energy necessary for selective tumor cell destruction. However, the ability for targeted delivery of the currently used gold nanoparticles to tumor cells is limited. Here, we describe a new class of molecular specific photothermal coupling agents based on hollow gold nanoshells (HAuNS, average diameter ~30 nm) covalently attached to monoclonal antibody directed at epidermal growth factor receptor (EGFR). The resulting anti-EGFR-HAuNS exhibited excellent colloidal stability and efficient photothermal effect in the near-infrared region. EGFR-mediated, selective uptake of anti-EGFR-HAuNS in EGFR-positive A431 tumor cells but not IgG-HAuNS control was demonstrated in vitro by imaging scattered light from the nanoshells. Irradiation of A431 cells treated with anti-EGFR-HAuNS with near-infrared laser resulted in selective destruction of these cells. In contrast, cells treated with anti-EGFR-HAuNS alone, laser alone, or IgG-HAuNS plus laser did not show observable effect on cell viability. Using 111In-labeled HAuNS, we showed that anti-EGFR-HAuNS could be delivered to EGFR-positive tumors at 6.8% of injected dose per gram of tissue, and the microscopic image of excised tumor with scattering signal from nanoshells confirmed preferential delivery to A431 tumor of anti-EGFR-HAuNS compared with IgG-HAuNS. The absence of silica core, the relatively small particle size and high tumor uptake, and the absence of cytotoxic surfactant required to stabilize other gold nanoparticles suggest that immuno-hollow gold nanoshells have the potential to extend to in vivo molecular therapy. PMID:18566244

  20. Photothermal optical coherence tomography for depth-resolved imaging of mesenchymal stem cells via single wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; Connolly, Emma; Murphy, Mary; Barron, Valerie; Leahy, Martin

    2014-03-01

    The progress in stem cell research over the past decade holds promise and potential to address many unmet clinical therapeutic needs. Tracking stem cell with modern imaging modalities are critically needed for optimizing stem cell therapy, which offers insight into various underlying biological processes such as cell migration, engraftment, homing, differentiation, and functions etc. In this study we report the feasibility of photothermal optical coherence tomography (PT-OCT) to image human mesenchymal stem cells (hMSCs) labeled with single-walled carbon nanotubes (SWNTs) for in vitro cell tracking in three dimensional scaffolds. PT-OCT is a functional extension of conventional OCT with extended capability of localized detection of absorbing targets from scattering background to provide depth-resolved molecular contrast imaging. A 91 kHz line rate, spectral domain PT-OCT system at 1310nm was developed to detect the photothermal signal generated by 800nm excitation laser. In general, MSCs do not have obvious optical absorption properties and cannot be directly visualized using PT-OCT imaging. However, the optical absorption properties of hMSCs can me modified by labeling with SWNTs. Using this approach, MSC were labeled with SWNT and the cell distribution imaged in a 3D polymer scaffold using PT-OCT.

  1. pH triggered in vivo photothermal therapy and fluorescence nanoplatform of cancer based on responsive polymer-indocyanine green integrated reduced graphene oxide.

    PubMed

    Sharker, Shazid Md; Lee, Jung Eun; Kim, Sung Han; Jeong, Ji Hoon; In, Insik; Lee, Haeshin; Park, Sung Young

    2015-08-01

    We have synthesized a pH-dependent, NIR-sensitive, reduced graphene oxide (rGO) hybrid nano-composite via electrostatic interaction with indocyanine green (ICG) which is designed not only to destroy localized cancer cells but also be minimally invasive to surrounding normal cells. The near-infrared (NIR) irradiated hybrid nano-composites showed pH dependent photo-thermal heat generation capability from pH 5.0 to 7.4 due to the pH response relief and quenching effects of poly(2-dimethyl amino ethyl methacrylate) [poly(PDMAEMA)] with ICG on a single rGO sheet. This pH-triggered relief and quenching mechanism regulated in vitro photo-thermolysis as the pH changed from 5.0 to 7.4. The in vitro cellular uptake and confocal laser scan microscopic (CLSM) images at different pH values show promise for environment sensitive bio-imaging. The NIR-absorbing hybrid nanomaterials showed a remarkably improved in vitro cancer cell targeted photothermal destruction compared to free ICG. Upon local NIR irradiation, these hybrid nano-composites-treated tumors showed necrotic, shrunken, ablation of malignant cells and totally healed after 18 days treatment. Our finding regarding the acidic pH stimulus of cancer cellular environment has proven to be a wining platform for the fight against cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy.

    PubMed

    Lu, Wentong; Singh, Anant Kumar; Khan, Sadia Afrin; Senapati, Dulal; Yu, Hongtao; Ray, Paresh Chandra

    2010-12-29

    Prostate cancer is the second leading cause of cancer-related death among the American male population, and the cost of treating prostate cancer patients is about $10 billion/year in the United States. Current treatments are mostly ineffective against advanced-stage prostate cancer and are often associated with severe side effects. Driven by these factors, we report a multifunctional, nanotechnology-driven, gold nano-popcorn-based surface-enhanced Raman scattering (SERS) assay for targeted sensing, nanotherapy treatment, and in situ monitoring of photothermal nanotherapy response during the therapy process. Our experimental data show that, in the presence of LNCaP human prostate cancer cells, multifunctional popcorn-shaped gold nanoparticles form several hot spots and provide a significant enhancement of the Raman signal intensity by several orders of magnitude (2.5 × 10(9)). As a result, it can recognize human prostate cancer cells at the 50-cells level. Our results indicate that the localized heating that occurs during near-infrared irradiation can cause irreparable cellular damage to the prostate cancer cells. Our in situ time-dependent results demonstrate for the first time that, by monitoring SERS intensity changes, one can monitor photothermal nanotherapy response during the therapy process. Possible mechanisms and operating principles of our SERS assay are discussed. Ultimately, this nanotechnology-driven assay could have enormous potential applications in rapid, on-site targeted sensing, nanotherapy treatment, and monitoring of the nanotherapy process, which are critical to providing effective treatment of cancer.

  3. Rational design of a comprehensive cancer therapy platform using temperature-sensitive polymer grafted hollow gold nanospheres: simultaneous chemo/photothermal/photodynamic therapy triggered by a 650 nm laser with enhanced anti-tumor efficacy.

    PubMed

    Deng, Xiaoran; Chen, Yinyin; Cheng, Ziyong; Deng, Kerong; Ma, Ping'an; Hou, Zhiyao; Liu, Bei; Huang, Shanshan; Jin, Dayong; Lin, Jun

    2016-03-28

    Combining multi-model treatments within one single system has attracted great interest for the purpose of synergistic therapy. In this paper, hollow gold nanospheres (HAuNs) coated with a temperature-sensitive polymer, poly(oligo(ethylene oxide) methacrylate-co-2-(2-methoxyethoxy)ethyl methacrylate) (p(OEGMA-co-MEMA)), co-loaded with DOX and a photosensitizer Chlorin e6 (Ce6) were successfully synthesized. As high as 58% DOX and 6% Ce6 by weight could be loaded onto the HAuNs-p(OEGMA-co-MEMA) nanocomposites. The grafting polymer brushes outside the HAuNs play the role of "gate molecules" for controlled drug release by 650 nm laser radiation owing to the temperature-sensitive property of the polymer and the photothermal effect of HAuNs. The HAuNs-p(OEGMA-co-MEMA)-Ce6-DOX nanocomposites with 650 nm laser radiation show effective inhibition of cancer cells in vitro and enhanced anti-tumor efficacy in vivo. In contrast, control groups without laser radiation show little cytotoxicity. The nanocomposite demonstrates a way of "killing three birds with one stone", that is, chemotherapy, photothermal and photodynamic therapy are triggered simultaneously by the 650 nm laser stimulation. Therefore, the nanocomposites show the great advantages of multi-modal synergistic effects for cancer therapy by a remote-controlled laser stimulus.

  4. Rapid synthesis and decoration of reduced graphene oxide with gold nanoparticles by thermostable peptides for memory device and photothermal applications.

    PubMed

    Otari, Sachin V; Kumar, Manoj; Anwar, Muhammad Zahid; Thorat, Nanasaheb D; Patel, Sanjay K S; Lee, Dongjin; Lee, Jai Hyo; Lee, Jung-Kul; Kang, Yun Chan; Zhang, Liaoyuan

    2017-09-08

    This article presents novel, rapid, and environmentally benign synthesis method for one-step reduction and decoration of graphene oxide with gold nanoparticles (NAuNPs) by using thermostable antimicrobial nisin peptides to form a gold-nanoparticles-reduced graphene oxide (NAu-rGO) nanocomposite. The formed composite material was characterized by UV/Vis spectroscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy (HR-TEM). HR-TEM analysis revealed the formation of spherical AuNPs of 5-30 nm in size on reduced graphene oxide (rGO) nanosheets. A non-volatile-memory device was prepared based on a solution-processed ZnO thin-film transistor fabricated by inserting the NAu-rGO nanocomposite in the gate dielectric stack as a charge trapping medium. The transfer characteristic of the ZnO thin-film transistor memory device showed large clockwise hysteresis behaviour because of charge carrier trapping in the NAu-rGO nanocomposite. Under positive and negative bias conditions, clear positive and negative threshold voltage shifts occurred, which were attributed to charge carrier trapping and de-trapping in the ZnO/NAu-rGO/SiO 2 structure. Also, the photothermal effect of the NAu-rGO nanocomposites on MCF7 breast cancer cells caused inhibition of ~80% cells after irradiation with infrared light (0.5 W cm -2 ) for 5 min.

  5. Development of ex vivo model for determining temperature distribution in tumor tissue during photothermal therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Doughty, Austin; Liu, Shaojie; Zhou, Feifan; Liu, Hong; Chen, Wei R.

    2017-02-01

    We have recently developed Laser Immunotherapy (LIT), a targeted cancer treatment modality using synergistic application of near-infrared laser irradiation and in situ immunological stimulation. This study further investigates the principles underlying the immune response to LIT treatment by studying immunological impact of the laser photothermal effect in vivo, in vitro, and ex vivo. Tumor cells were stressed in vitro, and samples were collected to analyze protein expression with a Western Blot. Additionally, a tumor model was designed using bovine liver tissue suspended in agarose gel which was treated using laser interstitially and monitored with both proton-resonance frequency shift MR thermometry and thermocouples. From the bovine liver tumor model, we were able to develop the correlation between tissue temperature elevation and laser power and distance from the fiber tip. Similar data was collected by monitoring the temperature of a metastatic mammary tumor in a rat during laser irradiation. Ultimately, these results show that the laser irradiation of LIT leads to clear immunological effects for an effective combination therapy to treat metastatic cancers.

  6. Magnetic Resonance Imaging-Guided Multi-Drug Chemotherapy and Photothermal Synergistic Therapy with pH and NIR-Stimulation Release.

    PubMed

    Yang, Ji-Chun; Chen, Yang; Li, Yu-Hao; Yin, Xue-Bo

    2017-07-12

    The combination of multidrug chemotherapy and photothermal therapy (PTT) enhances cancer therapeutic efficacy. Herein, we develop a simple and smart pH/NIR dual-stimulus-responsive degradable mesoporous CoFe 2 O 4 @PDA@ZIF-8 sandwich nanocomposite. The mesoporous CoFe 2 O 4 core acts as T 2 -weighted magnetic resonance (MR) imaging probe, PTT agent, and loading platform of hydrophilic doxorubicin (DOX). A polydopamine (PDA) layer is used to avoid the premature leakage of DOX before arriving at tumor site, enhance PTT efficiency, and facilitate the integration of ZIF-8 (a kind of metal-organic framework). The ZIF-8 shell serves to encapsulate hydrophobic camptothecin (CPT) and as the switch for the pH and NIR stimulation-responsive release of the two drugs. Therefore, T 2 -weighted MR imaging-guided multidrug chemotherapy and PTT synergistic treatment is achieved. Two kinds of anticancer drugs, hydrophilic DOX and hydrophobic CPT, are successfully loaded in CoFe 2 O 4 and ZIF-8, respectively, so no mutual interference between the two drugs exists. A unique two-stage stepwise release process is exhibited for CPT and DOX with an interval of 12 h to improve the anticancer efficacy under the acidic microenvironment of tumor tissue. NIR irradiation achieves the burst drug-release and PTT after laser stimulation, simultaneously. With this smart design, high drug concentration is achieved at the tumor site by quick release, especially for the therapeutic drugs that show nonlinear pharmacokinetics, and PTT is integrated efficiently. Furthermore, negligible biotoxicity and a remarkable synergic antitumor effect of the hybrid nanocomposites are validated by HepG2 cells and tumor-bearing mice as models. Our multidrug delivery-releasing composite improves tumor therapeutic efficiency significantly compared with a single-drug chemotherapy system. The simple multifunctional composite system can be applied as an effective platform for personal nanomedicine with diagnosis, smart

  7. Quantitative remineralization evolution kinetics of artificially demineralized human enamel using photothermal radiometry and modulated luminescence.

    PubMed

    Hellen, Adam; Mandelis, Andreas; Finer, Yoav; Amaechi, Bennett T

    2011-11-01

    Human molars were subjected to demineralization in acid gel followed by incubation in remineralization solutions without or with fluoride (1 or 1000 ppm). Photothermal radiometry (PTR) and modulated luminescence (LUM) frequency scans were performed prior to and during de/remineralization treatments. Transverse Micro-Radiography (TMR) analysis followed at treatment conclusion to determine mineral loss and lesion depth. The remineralization process illustrated a complex interplay between surface and subsurface mineral deposition, confining the thermal-wave centroid toward the dominating layer. Experimental amplitudes and phases were fitted to a coupled diffuse-photon-density-wave and thermal-wave theoretical model used to quantitatively evaluate evolving changes in thermal and optical properties of de/remineralized enamel lesions. Additional information obtained from the LUM data corroborated the remineralization kinetics affecting the PTR signals. The results pointed to enhanced effectiveness of subsurface lesion remineralization in the presence of fluoride. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation, and photothermal effects†

    PubMed Central

    Tong, Ling; Wei, Qingshan; Wei, Alexander; Cheng, Ji-Xin

    2009-01-01

    Gold nanorods (NRs) have plasmon-resonant absorption and scattering in the near-infrared (NIR) region, making them attractive probes for in vitro and in vivo imaging. In the cellular environment, NRs can provide scattering contrast for darkfield microscopy, or emit a strong two-photon luminescence (TPL) due to plasmon-enhanced two-photon absorption. NRs have also been employed in biomedical imaging modalities such as optical coherence tomography (OCT) or photoacoustic tomography (PAT). Careful control over surface chemistry enhances the capacity of NRs as biological imaging agents by enabling cell-specific targeting, and by increasing their dispersion stability and circulation lifetimes. NRs can also efficiently convert optical energy into heat, and inflict localized damage to tumor cells. Laser-induced heating of NRs can disrupt cell membrane integrity and homeostasis, resulting in Ca2+ influx and the depolymerization of the intracellular actin network. The combination of plasmon-resonant optical properties, intense local photothermal effects, and robust surface chemistry render gold NRs as promising theragnostic agents. PMID:19161395

  9. Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infra-red absorption

    NASA Astrophysics Data System (ADS)

    Guo, Chongshen; Yin, Shu; Yu, Haijun; Liu, Shaoqin; Dong, Qiang; Goto, Takehiro; Zhang, Zhiwen; Li, Yaping; Sato, Tsugio

    2013-06-01

    Recently, photothermal ablation therapy (PTA) employing near-infrared radiation (NIR) has been extensively investigated as an emerging modality for cancer management. However, the clinical translation of this promising approach is limited by the lack of PTA agents with broad NIR absorption, low cost and high photothermal conversion efficiency. Herein, we have developed PEGylated homogeneous CsxWO3 nanorods (a mean size ~69.3 nm × 12.8 nm) with broad photo-absorption (780-2500 nm) as a novel NIR absorbent for PTA treatment of human cancer. The prepared CsxWO3 nanocrystals displayed strong near-infrared optical absorption with a high molar extinction coefficient (e.g. 4.8 × 1010 M-1 cm-1 at 980 nm), thus generated significant amounts of heat upon excitation with near-infrared light. The PTA study in two human carcinoma cell lines (i.e. A549 lung cancer cells and HeLa ovarian cancer cells) demonstrated that CsxWO3 nanorods can efficiently cause cell death via hyperthermia induced lysosome destruction, cytoskeleton protein degradation, DNA damage and thereafter cellular necrosis or apoptosis. Our study also confirmed the migration of healthy cells migrated from unirradiated areas to dead cell cycle, which is essential for tissue reconstruction and wound healing after photodestruction of tumor tissue. The prompted results reported in the current study imply the promising potential of CsxWO3 nanorods for application in PTA cancer therapy.Recently, photothermal ablation therapy (PTA) employing near-infrared radiation (NIR) has been extensively investigated as an emerging modality for cancer management. However, the clinical translation of this promising approach is limited by the lack of PTA agents with broad NIR absorption, low cost and high photothermal conversion efficiency. Herein, we have developed PEGylated homogeneous CsxWO3 nanorods (a mean size ~69.3 nm × 12.8 nm) with broad photo-absorption (780-2500 nm) as a novel NIR absorbent for PTA treatment of human

  10. Plasmonic giant quantum dots: hybrid nanostructures for truly simultaneous optical imaging, photothermal effect and thermometry† †Electronic supplementary information (ESI) available: Further information on Au shelling chemistry and imaging of the Au shell by electron microscopy. Figures and Movie. See DOI: 10.1039/c5sc00020c

    PubMed Central

    Karan, Niladri S.; Keller, Aaron M.; Sampat, Siddharth; Roslyak, Oleksiy; Arefin, Ayesha; Hanson, Christina J.; Casson, Joanna L.; Desireddy, Anil; Ghosh, Yagnaseni; Piryatinski, Andrei; Iyer, Rashi; Htoon, Han; Malko, Anton V.

    2015-01-01

    Hybrid semiconductor–metal nanoscale constructs are of both fundamental and practical interest. Semiconductor nanocrystals are active emitters of photons when stimulated optically, while the interaction of light with nanosized metal objects results in scattering and ohmic damping due to absorption. In a combined structure, the properties of both components can be realized together. At the same time, metal–semiconductor coupling may intervene to modify absorption and/or emission processes taking place in the semiconductor, resulting in a range of effects from photoluminescence quenching to enhancement. We show here that photostable ‘giant’ quantum dots when placed at the center of an ultrathin gold shell retain their key optical property of bright and blinking-free photoluminescence, while the metal shell imparts efficient photothermal transduction. The latter is despite the highly compact total particle size (40–60 nm “inorganic” diameter and <100 nm hydrodynamic diameter) and the very thin nature of the optically transparent Au shell. Importantly, the sensitivity of the quantum dot emission to local temperature provides a novel internal thermometer for recording temperature during infrared irradiation-induced photothermal heating. PMID:29163879

  11. Non-invasive Glucose Measurements Using Wavelength Modulated Differential Photothermal Radiometry (WM-DPTR)

    NASA Astrophysics Data System (ADS)

    Guo, X.; Mandelis, A.; Zinman, B.

    2012-11-01

    Wavelength-modulated differential laser photothermal radiometry (WM-DPTR) is introduced for potential development of clinically viable non-invasive glucose biosensors. WM-DPTR features unprecedented glucose-specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the baseline of a prominent and isolated mid-IR glucose absorption band. Measurements on water-glucose phantoms (0 to 300 mg/dl glucose concentration) demonstrate high sensitivity to meet wide clinical detection requirements ranging from hypoglycemia to hyperglycemia. The measurement results have been validated by simulations based on fully developed WM-DPTR theory. For sensitive and accurate glucose measurements, the key is the selection and tight control of the intensity ratio and the phase shift of the two laser beams.

  12. Combination of active targeting, enzyme-triggered release and fluorescent dye into gold nanoclusters for endomicroscopy-guided photothermal/photodynamic therapy to pancreatic ductal adenocarcinoma.

    PubMed

    Li, Hui; Wang, Ping; Deng, Yunxiang; Zeng, Meiying; Tang, Yan; Zhu, Wei-Hong; Cheng, Yingsheng

    2017-09-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most devastating malignancies in patients, and there is an urgent need for an effective treatment method. Herein, we report a novel gold nanocluster-based platform for confocal laser endomicroscopy-guided photothermal therapy (PTT)/photodynamic therapy (PDT) for PDAC, which consists of four components: the PTT-carrier gold nanocluster, an active targeting ligand U11 peptide, a Cathepsin E (CTSE)-sensitive PDT therapy prodrug, and a CTSE-sensitive imaging agent (cyanine dye Cy5.5). Due to the strong coupling among cross-linked gold nanoparticles (AuNPs), the surface plasmon resonance peak of nanoclusters shifts to the near-infrared (NIR) region, thus making the nanoclusters useful in the effective PTT therapy. In the system, the labeling of nanoclusters with U11 peptide can distinctly increase their affinity and accelerate their uptake by pancreatic cancer cells. Cell apoptosis staining demonstrates that, upon incorporation of the uPAR-targeted unit, the antitumor efficacy of CTSE-sensitive nanocluster AuS-U11 is significantly enhanced with respect to that of the non-targeted nanocluster AuS-PEG and the insensitive nanocluster AuC-PEG. In vivo and ex vivo optical imaging confirms the high accumulation of AuS-U11 in the in situ pancreatic tumor model. Therapeutic studies further show that the combination of active targeting for tumor tissue, enzyme-triggered drug release of 5-ALA and fluorescent dye Cy5.5 in nanoclusters AuS-U11 could achieve optimal therapeutic efficacy with endomicroscopy-guided photothermal/photodynamic therapy with minimal side effects. As a consequence, the delicate gold nanocluster concept provides a promising strategy to enhance the therapy efficiency in the most challenging PDAC treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Iodine-131-labeled, transferrin-capped polypyrrole nanoparticles for tumor-targeted synergistic photothermal-radioisotope therapy.

    PubMed

    Song, Xuejiao; Liang, Chao; Feng, Liangzhu; Yang, Kai; Liu, Zhuang

    2017-08-22

    Combining different therapeutic functions within single tumor-targeted nanoscale delivery systems is promising to overcome the limitations of conventional cancer therapies. Herein, transferrin that recognizes transferrin receptors up-regulated on tumor cells is pre-labeled with iodine-131 ( 131 I) and then utilized as the stabilizer in the fabrication of polypyrrole (PPy) nanoparticles. The obtained transferrin-capped PPy@Tf- 131 I nanoparticles could be used for tumor-targeted radioisotope therapy (RIT) and photothermal therapy (PTT), by employing beta-emission from 131 I and the intrinsic high near-infrared (NIR) absorbance of PPy, respectively. Owing to the transferrin-mediated tumor targeting, PPy@Tf- 131 I nanoparticles exhibit obviously enhanced in vitro cancer cell binding and in vivo tumor uptake compared to its non-targeting counterpart. The combined RIT and PTT based on PPy@Tf- 131 I nanoparticles is then conducted, achieving a remarkable synergistic therapeutic effect. This work thus demonstrates a rather simple one-step approach to fabricate tumor-targeting nanoparticles based on protein-capped conjugated polymers, promising for combination cancer therapy with great efficacy and high safety.

  14. Three-dimensional dynamics of temperature fields in phantoms and biotissue under IR laser photothermal therapy using gold nanoparticles and ICG dye

    NASA Astrophysics Data System (ADS)

    Akchurin, Georgy G.; Garif, Akchurin G.; Maksimova, Irina L.; Skaptsov, Alexander A.; Terentyuk, Georgy S.; Khlebtsov, Boris N.; Khlebtsov, Nikolai G.; Tuchin, Valery V.

    2010-02-01

    We describe applications of silica (core)/gold (shell) nanoparticles and ICG dye to photothermal treatment of phantoms, biotissue and spontaneous tumor of cats and dogs. The laser irradiation parameters were optimized by preliminary experiments with laboratory rats. Three dimensional dynamics of temperature fields in tissue and solution samples was measured with a thermal imaging system. It is shown that the temperature in the volume region of nanoparticles localization can substantially exceed the surface temperature recorded by the thermal imaging system. We have demonstrated effective optical destruction of cancer cells by local injection of plasmon-resonant gold nanoshells and ICG dye followed by continuous wave (CW) diode laser irradiation at wavelength 808 nm.

  15. Melanin nanoparticles derived from a homology of medicine and food for sentinel lymph node mapping and photothermal in vivo cancer therapy.

    PubMed

    Chu, Maoquan; Hai, Wangxi; Zhang, Zheyu; Wo, Fangjie; Wu, Qiang; Zhang, Zefei; Shao, Yuxiang; Zhang, Ding; Jin, Lu; Shi, Donglu

    2016-06-01

    The use of non-toxic or low toxicity materials exhibiting dual functionality for use in sentinel lymph node (SLN) mapping and cancer therapy has attracted considerable attention during the past two decades. Herein, we report that the natural black sesame melanin (BSM) extracted from black sesame seeds (Sesamum indicum L.) shows exciting potential for SLN mapping and cancer photothermal therapy. Aqueous solutions of BSM under neutral and alkaline conditions can assemble into sheet-like nanoparticles ranging from 20 to 200 nm in size. The BSM nanoparticles were encapsulated by liposomes to improve their water solubility and the encapsulated and bare BSM nanoparticles were both non-toxic to cells. Furthermore, the liposome-encapsulated BSM nanoparticles (liposome-BSM) did not exhibit any long-term toxicity in mice. The liposome-BSM nanoparticles were subsequently used to passively target healthy and tumor-bearing mice SLNs, which were identified by the black color of the nanoparticles. BSM also strongly absorbed light in the near-infrared (NIR) range, which was rapidly converted to heat energy. Human esophagus carcinoma cells (Eca-109) were killed efficiently by liposome-BSM nanocomposites upon NIR laser irradiation. Furthermore, mouse tumor tissues grown from Eca-109 cells were seriously damaged by the photothermal effects of the liposome-BSM nanocomposites, with significant tumor growth suppression compared with controls. Given that BSM is a safe and nutritious biomaterial that can be easily obtained from black sesame seed, the results presented herein represent an important development in the use of natural biomaterials for clinical SLN mapping and cancer therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Self-monitored photothermal nanoparticles based on core-shell engineering

    NASA Astrophysics Data System (ADS)

    Ximendes, Erving C.; Rocha, Uéslen; Jacinto, Carlos; Kumar, Kagola Upendra; Bravo, David; López, Fernando J.; Rodríguez, Emma Martín; García-Solé, José; Jaque, Daniel

    2016-01-01

    The continuous development of nanotechnology has resulted in the actual possibility of the design and synthesis of nanostructured materials with pre-tailored functionabilities. Nanostructures capable of simultaneous heating and local thermal sensing are in strong demand as they would constitute a revolutionary solution to several challenging problems in bio-medicine, including the achievement of real time control during photothermal therapies. Several approaches have been demonstrated to achieve simultaneous heating and thermal sensing at the nanoscale. Some of them lack of sufficient thermal sensitivity and others require complicated synthesis procedures for heterostructure fabrication. In this study, we demonstrate how single core/shell dielectric nanoparticles with a highly Nd3+ ion doped shell and an Yb3+,Er3+ codoped core are capable of simultaneous thermal sensing and heating under an 808 nm single beam excitation. The spatial separation between the heating shell and sensing core provides remarkable values of the heating efficiency and thermal sensitivity, enabling their application in single beam-controlled heating experiments in both aqueous and tissue environments.

  17. Photothermal camera port accessory for microscopic thermal diffusivity imaging

    NASA Astrophysics Data System (ADS)

    Escola, Facundo Zaldívar; Kunik, Darío; Mingolo, Nelly; Martínez, Oscar Eduardo

    2016-06-01

    The design of a scanning photothermal accessory is presented, which can be attached to the camera port of commercial microscopes to measure thermal diffusivity maps with micrometer resolution. The device is based on the thermal expansion recovery technique, which measures the defocusing of a probe beam due to the curvature induced by the local heat delivered by a focused pump beam. The beam delivery and collecting optics are built using optical fiber technology, resulting in a robust optical system that provides collinear pump and probe beams without any alignment adjustment necessary. The quasiconfocal configuration for the signal collection using the same optical fiber sets very restrictive conditions on the positioning and alignment of the optical components of the scanning unit, and a detailed discussion of the design equations is presented. The alignment procedure is carefully described, resulting in a system so robust and stable that no further alignment is necessary for the day-to-day use, becoming a tool that can be used for routine quality control, operated by a trained technician.

  18. Enhanced truncated-correlation photothermal coherence tomography with application to deep subsurface defect imaging and 3-dimensional reconstructions

    NASA Astrophysics Data System (ADS)

    Tavakolian, Pantea; Sivagurunathan, Koneswaran; Mandelis, Andreas

    2017-07-01

    Photothermal diffusion-wave imaging is a promising technique for non-destructive evaluation and medical applications. Several diffusion-wave techniques have been developed to produce depth-resolved planar images of solids and to overcome imaging depth and image blurring limitations imposed by the physics of parabolic diffusion waves. Truncated-Correlation Photothermal Coherence Tomography (TC-PCT) is the most successful class of these methodologies to-date providing 3-D subsurface visualization with maximum depth penetration and high axial and lateral resolution. To extend the depth range and axial and lateral resolution, an in-depth analysis of TC-PCT, a novel imaging system with improved instrumentation, and an optimized reconstruction algorithm over the original TC-PCT technique is developed. Thermal waves produced by a laser chirped pulsed heat source in a finite thickness solid and the image reconstruction algorithm are investigated from the theoretical point of view. 3-D visualization of subsurface defects utilizing the new TC-PCT system is reported. The results demonstrate that this method is able to detect subsurface defects at the depth range of ˜4 mm in a steel sample, which exhibits dynamic range improvement by a factor of 2.6 compared to the original TC-PCT. This depth does not represent the upper limit of the enhanced TC-PCT. Lateral resolution in the steel sample was measured to be ˜31 μm.

  19. Highly stable molybdenum dioxide nanoparticles with strong plasmon resonance are promising in photothermal cancer therapy.

    PubMed

    Liu, Wei; Li, Xinshi; Li, Wentao; Zhang, Qiqi; Bai, Hua; Li, Junfang; Xi, Guangcheng

    2018-05-01

    Photothermal therapy (PTT) is one of promising cancer therapy with high efficiency and minimal invasiveness. Exploiting of perfect PTT agent is vital to improve the therapy. In this study, a new type of bow tie-like molybdenum dioxide (MoO 2 ) nanoparticles was successfully synthesized. These nanobow-ties had strong localized surface plasmon resonance (SPR) effect from visible to near infrared regions, and exhibited ultrahigh chemical stability. They could not only withstand high temperature heating without oxidation, but also resist the corrosion of strong acid and alkali. Meanwhile, the MoO 2 nanoparticles were highly stable in protein-containing biological medium, though they partly degraded in PBS solution. Both in vivo and in vitro experiments indicated that they exhibited inappreciable toxicity. Under illumination of near infrared laser, they showed excellent PTT effect, as revealed by significant inhibition of cancer cell viability in vitro and efficient destruction in tumor tissue growth in vivo. These MoO 2 nanoparticles possessed highly chemical stability and low toxicity with high PTT efficiency, thus promising them high potential as nanoagent in cancer treatment. Copyright © 2018. Published by Elsevier Ltd.

  20. Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes.

    PubMed

    Sobhani, Zahra; Behnam, Mohammad Ali; Emami, Farzin; Dehghanian, Amirreza; Jamhiri, Iman

    2017-01-01

    Photothermal therapy (PTT) is a therapeutic method in which photon energy is transformed into heat rapidly via different operations to extirpate cancer. Nanoparticles, such as carbon nanotubes (CNTs) have exceptional optical absorbance in visible and near infrared spectra. Therefore, they could be a good converter to induce hyperthermia in PTT technique. In our study, for improving the dispersibility of multiwalled CNTs in water, the CNTs were oxidized (O-CNTs) and then polyethylene glycol (PEG) was used for wrapping the surface of nanotubes. The formation of a thin layer of PEG around the nanotubes was confirmed through Fourier transform infrared, thermogravimetric analysis, and field emission scanning electron microscopy techniques. Results of thermogravimetric analysis showed that the amount of PEG component in the O-CNT-PEG was approximately 80% (w/w). Cell cytotoxicity study showed that O-CNT was less cytotoxic than pristine multiwalled nanotubes, and O-CNT-PEG had the lowest toxicity against HeLa and HepG2 cell lines. The effect of O-CNT-PEG in reduction of melanoma tumor size after PTT was evaluated. Cancerous mice were exposed to a continuous-wave near infrared laser diode (λ=808 nm, P =2 W and I =8 W/cm 2 ) for 10 minutes once in the period of the treatment. The average size of tumor in mice receiving O-CNT-PEG decreased sharply in comparison with those that received laser therapy alone. Results of animal studies indicate that O-CNT-PEG is a powerful candidate for eradicating solid tumors in PTT technique.