Science.gov

Sample records for enzymatic activities consistent

  1. Clustered mutations in hominid genome evolution are consistent with APOBEC3G enzymatic activity.

    PubMed

    Pinto, Yishay; Gabay, Orshay; Arbiza, Leonardo; Sams, Aaron J; Keinan, Alon; Levanon, Erez Y

    2016-05-01

    The gradual accumulation of mutations by any of a number of mutational processes is a major driving force of divergence and evolution. Here, we investigate a potentially novel mutational process that is based on the activity of members of the AID/APOBEC family of deaminases. This gene family has been recently shown to introduce-in multiple types of cancer-enzyme-induced clusters of co-occurring somatic mutations caused by cytosine deamination. Going beyond somatic mutations, we hypothesized that APOBEC3-following its rapid expansion in primates-can introduce unique germline mutation clusters that can play a role in primate evolution. In this study, we tested this hypothesis by performing a comprehensive comparative genomic screen for APOBEC3-induced mutagenesis patterns across different hominids. We detected thousands of mutation clusters introduced along primate evolution which exhibit features that strongly fit the known patterns of APOBEC3G mutagenesis. These results suggest that APOBEC3G-induced mutations have contributed to the evolution of all genomes we studied. This is the first indication of site-directed, enzyme-induced genome evolution, which played a role in the evolution of both modern and archaic humans. This novel mutational mechanism exhibits several unique features, such as its higher tendency to mutate transcribed regions and regulatory elements and its ability to generate clusters of concurrent point mutations that all occur in a single generation. Our discovery demonstrates the exaptation of an anti-viral mechanism as a new source of genomic variation in hominids with a strong potential for functional consequences. PMID:27056836

  2. Clustered mutations in hominid genome evolution are consistent with APOBEC3G enzymatic activity

    PubMed Central

    Pinto, Yishay; Gabay, Orshay; Arbiza, Leonardo; Sams, Aaron J.; Keinan, Alon

    2016-01-01

    The gradual accumulation of mutations by any of a number of mutational processes is a major driving force of divergence and evolution. Here, we investigate a potentially novel mutational process that is based on the activity of members of the AID/APOBEC family of deaminases. This gene family has been recently shown to introduce—in multiple types of cancer—enzyme-induced clusters of co-occurring somatic mutations caused by cytosine deamination. Going beyond somatic mutations, we hypothesized that APOBEC3—following its rapid expansion in primates—can introduce unique germline mutation clusters that can play a role in primate evolution. In this study, we tested this hypothesis by performing a comprehensive comparative genomic screen for APOBEC3-induced mutagenesis patterns across different hominids. We detected thousands of mutation clusters introduced along primate evolution which exhibit features that strongly fit the known patterns of APOBEC3G mutagenesis. These results suggest that APOBEC3G-induced mutations have contributed to the evolution of all genomes we studied. This is the first indication of site-directed, enzyme-induced genome evolution, which played a role in the evolution of both modern and archaic humans. This novel mutational mechanism exhibits several unique features, such as its higher tendency to mutate transcribed regions and regulatory elements and its ability to generate clusters of concurrent point mutations that all occur in a single generation. Our discovery demonstrates the exaptation of an anti-viral mechanism as a new source of genomic variation in hominids with a strong potential for functional consequences. PMID:27056836

  3. Enzymatically active ultrathin pepsin membranes.

    PubMed

    Raaijmakers, Michiel J T; Schmidt, Thomas; Barth, Monika; Tutus, Murat; Benes, Nieck E; Wessling, Matthias

    2015-05-11

    Enzymatically active proteins enable efficient and specific cleavage reactions of peptide bonds. Covalent coupling of the enzymes permits immobilization, which in turn reduces autolysis-induced deactivation. Ultrathin pepsin membranes were prepared by facile interfacial polycondensation of pepsin and trimesoyl chloride. The pepsin membrane allows for simultaneous enzymatic conversion and selective removal of digestion products. The large water fluxes through the membrane expedite the transport of large molecules through the pepsin layers. The presented method enables the large-scale production of ultrathin, cross-linked, enzymatically active membranes. PMID:25779668

  4. Abrogation of fibroblast activation protein enzymatic activity attenuates tumor growth.

    PubMed

    Cheng, Jonathan D; Valianou, Matthildi; Canutescu, Adrian A; Jaffe, Eileen K; Lee, Hyung-Ok; Wang, Hao; Lai, Jack H; Bachovchin, William W; Weiner, Louis M

    2005-03-01

    Tumor-associated fibroblasts are functionally and phenotypically distinct from normal fibroblasts that are not in the tumor microenvironment. Fibroblast activation protein is a 95 kDa cell surface glycoprotein expressed by tumor stromal fibroblasts, and has been shown to have dipeptidyl peptidase and collagenase activity. Site-directed mutagenesis at the catalytic site of fibroblast activation protein, Ser624 --> Ala624, resulted in an approximately 100,000-fold loss of fibroblast activation protein dipeptidyl peptidase (DPP) activity. HEK293 cells transfected with wild-type fibroblast activation protein, enzymatic mutant (S624A) fibroblast activation protein, or vector alone, were inoculated subcutaneously into immunodeficient mouse to assess the contribution of fibroblast activation protein enzymatic activity to tumor growth. Overexpression of wild-type fibroblast activation protein showed growth potentiation and enhanced tumorigenicity compared with both fibroblast activation protein S624A and vector-transfected HEK293 xenografts. HEK293 cells transfected with fibroblast activation protein S624A showed tumor growth rates and tumorigenicity potential similar only to vector-transfected HEK293. In vivo assessment of fibroblast activation protein DPP activity of these tumors showed enhanced enzymatic activity of wild-type fibroblast activation protein, with only baseline levels of fibroblast activation protein DPP activity in either fibroblast activation protein S624A or vector-only xenografts. These results indicate that the enzymatic activity of fibroblast activation protein is necessary for fibroblast activation protein-driven tumor growth in the HEK293 xenograft model system. This establishes the proof-of-principle that the enzymatic activity of fibroblast activation protein plays an important role in the promotion of tumor growth, and provides an attractive target for therapeutics designed to alter fibroblast activation protein-induced tumor growth by targeting

  5. High consistency enzymatic saccharification of sweet sorghum bagasse pretreated with liquid hot water.

    PubMed

    Wang, Wen; Zhuang, Xinshu; Yuan, Zhenhong; Yu, Qiang; Qi, Wei; Wang, Qiong; Tan, Xuesong

    2012-03-01

    A laboratory set-up was designed to carry out high consistency enzymatic saccharification of sweet sorghum bagasse (SSB) which was pretreated by liquid hot water (LHW). The effects of two impellers on enzymatic hydrolysis of SSB were investigated. Compared with the double-curved-blade impeller (DCBI), the plate-and-frame impeller (PFI) could improve glucose production by 10%. Tween80 and fed-batch hydrolysis method adopted in this study produced total sugar of 17.06 g/L more than batch hydrolysis and raised the substrate consistency to 30%. At the final substrate loading of 30%, the concentrations of cellobiose, glucose and xylose reached to 15.01 g/L, 88.95 g/L and 9.80 g/L, respectively, and the ethanol concentration reached to 43.36 g/L in the case of cellobiose and xylose were not fermented by Saccharomyces cerevisiae Y2034. This study is an attempt at improvement of enzyme hydrolyzing LHW-pretreated material at high consistency. PMID:22281144

  6. Enzymatic Activity of Xyloglucan Xylosyltransferase 51[OPEN

    PubMed Central

    Culbertson, Alan T.; Chou, Yi-Hsiang; Smith, Adrienne L.; Young, Zachary T.; Tietze, Alesia A.; Cottaz, Sylvain

    2016-01-01

    Xyloglucan, the most abundant hemicellulosic component of the primary cell wall of flowering plants, is composed of a β-(1,4)-glucan backbone decorated with d-xylosyl residues. Three xyloglucan xylosyltransferases (XXTs) participate in xyloglucan biosynthesis in Arabidopsis (Arabidopsis thaliana). Two of these, XXT1 and XXT2, have been shown to be active in vitro, whereas the catalytic activity of XXT5 has yet to be demonstrated. By optimizing XXT2 expression in a prokaryotic system and in vitro activity assay conditions, we demonstrate that nonglycosylated XXT2 lacking its cytosolic amino-terminal and transmembrane domain displays high catalytic activity. Using this optimized procedure for the expression of XXT5, we report, to our knowledge for the first time, that recombinant XXT5 shows enzymatic activity in vitro, although at a significantly slower rate than XXT1 and XXT2. Kinetic analysis showed that XXT5 has a 7-fold higher Km and 9-fold lower kcat compared with XXT1 and XXT2. Activity assays using XXT5 in combination with XXT1 or XXT2 indicate that XXT5 is not specific for their products. In addition, mutagenesis experiments showed that the in vivo function and in vitro catalytic activity of XXT5 require the aspartate-serine-aspartate motif. These results demonstrate that XXT5 is a catalytically active xylosyltransferase involved in xylosylation of the xyloglucan backbone. PMID:27208276

  7. Enzymatic Activity of Xyloglucan Xylosyltransferase 5.

    PubMed

    Culbertson, Alan T; Chou, Yi-Hsiang; Smith, Adrienne L; Young, Zachary T; Tietze, Alesia A; Cottaz, Sylvain; Fauré, Régis; Zabotina, Olga A

    2016-07-01

    Xyloglucan, the most abundant hemicellulosic component of the primary cell wall of flowering plants, is composed of a β-(1,4)-glucan backbone decorated with d-xylosyl residues. Three xyloglucan xylosyltransferases (XXTs) participate in xyloglucan biosynthesis in Arabidopsis (Arabidopsis thaliana). Two of these, XXT1 and XXT2, have been shown to be active in vitro, whereas the catalytic activity of XXT5 has yet to be demonstrated. By optimizing XXT2 expression in a prokaryotic system and in vitro activity assay conditions, we demonstrate that nonglycosylated XXT2 lacking its cytosolic amino-terminal and transmembrane domain displays high catalytic activity. Using this optimized procedure for the expression of XXT5, we report, to our knowledge for the first time, that recombinant XXT5 shows enzymatic activity in vitro, although at a significantly slower rate than XXT1 and XXT2. Kinetic analysis showed that XXT5 has a 7-fold higher Km and 9-fold lower kcat compared with XXT1 and XXT2. Activity assays using XXT5 in combination with XXT1 or XXT2 indicate that XXT5 is not specific for their products. In addition, mutagenesis experiments showed that the in vivo function and in vitro catalytic activity of XXT5 require the aspartate-serine-aspartate motif. These results demonstrate that XXT5 is a catalytically active xylosyltransferase involved in xylosylation of the xyloglucan backbone. PMID:27208276

  8. Nanoparticle Mediated Remote Control of Enzymatic Activity

    PubMed Central

    Knecht, Leslie D.; Ali, Nur; Wei, Yinan; Hilt, J. Zach; Daunert, Sylvia

    2012-01-01

    Nanomaterials have found numerous applications as tunable, remotely controlled platforms for drug delivery, hyperthermia cancer treatment, and various other biomedical applications. The basis for the interest lies in their unique properties achieved at the nanoscale that can be accessed via remote stimuli. These properties could then be exploited to simultaneously activate secondary systems that are not remotely actuatable. In this work, iron oxide nanoparticles are encapsulated in a bisacrylamide-crosslinked polyacrylamide hydrogel network along with a model dehalogenase enzyme, L-2-HADST. This thermophilic enzyme is activated at elevated temperatures and has been shown to have optimal activity at 70 °C. By exposing the Fe3O4 nanoparticles to a remote stimulus, an alternating magnetic field (AMF), enhanced system heating can be achieved, thus remotely activating the enzyme. The internal heating of the nanocomposite hydrogel network in the AMF results in a 2-fold increase in enzymatic activity as compared to the same hydrogel heated externally in a water bath, suggesting that the internal heating of the nanoparticles is more efficient than the diffusion limited heating of the water bath. This system may prove useful for remote actuation of biomedical and environmentally relevant enzymes and find applications in a variety of fields. PMID:22989219

  9. Artificial cytoskeletal structures within enzymatically active bio-inorganic protocells.

    PubMed

    Kumar, Ravinash Krishna; Li, Mei; Olof, Sam N; Patil, Avinash J; Mann, Stephen

    2013-02-11

    The fabrication of enzymatically active, semi-permeable bio-inorganic protocells capable of self-assembling a cytoskeletal-like interior and undergoing small-molecule dephosphorylation reactions is described. Reversible disassembly of an amino acid-derived supramolecular hydrogel within the internalized reaction space is used to tune the enzymatic activity of the nanoparticle-bounded inorganic compartments. PMID:23027575

  10. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  11. A General Framework for Thermodynamically Consistent Parameterization and Efficient Sampling of Enzymatic Reactions

    PubMed Central

    Saa, Pedro; Nielsen, Lars K.

    2015-01-01

    Kinetic models provide the means to understand and predict the dynamic behaviour of enzymes upon different perturbations. Despite their obvious advantages, classical parameterizations require large amounts of data to fit their parameters. Particularly, enzymes displaying complex reaction and regulatory (allosteric) mechanisms require a great number of parameters and are therefore often represented by approximate formulae, thereby facilitating the fitting but ignoring many real kinetic behaviours. Here, we show that full exploration of the plausible kinetic space for any enzyme can be achieved using sampling strategies provided a thermodynamically feasible parameterization is used. To this end, we developed a General Reaction Assembly and Sampling Platform (GRASP) capable of consistently parameterizing and sampling accurate kinetic models using minimal reference data. The former integrates the generalized MWC model and the elementary reaction formalism. By formulating the appropriate thermodynamic constraints, our framework enables parameterization of any oligomeric enzyme kinetics without sacrificing complexity or using simplifying assumptions. This thermodynamically safe parameterization relies on the definition of a reference state upon which feasible parameter sets can be efficiently sampled. Uniform sampling of the kinetics space enabled dissecting enzyme catalysis and revealing the impact of thermodynamics on reaction kinetics. Our analysis distinguished three reaction elasticity regions for common biochemical reactions: a steep linear region (0> ΔGr >-2 kJ/mol), a transition region (-2> ΔGr >-20 kJ/mol) and a constant elasticity region (ΔGr <-20 kJ/mol). We also applied this framework to model more complex kinetic behaviours such as the monomeric cooperativity of the mammalian glucokinase and the ultrasensitive response of the phosphoenolpyruvate carboxylase of Escherichia coli. In both cases, our approach described appropriately not only the kinetic

  12. Pesticide influence on soil enzymatic activities.

    PubMed

    Sannino, F; Gianfreda, L

    2001-11-01

    The influence of four pesticides, e.g. glyphosate, paraquat, atrazine, and carbaryl, on the activities of invertase, urease and phosphatase of twenty-two soils, numbered as 1-22, was investigated. Soils displayed a general variability of enzyme activities with invertase being more abundant than urease and phosphatase in the order listed. The addition of glyphosate and paraquat activated invertase and urease activities in several soils. Increments of invertase activity ranged from a very low increase (+4%) up to +204% in soils 11 and 14, respectively. Smaller increases were measured for urease. A general inhibitory effect (from 5% to 98%) was observed for phosphatase in the presence of glyphosate. The effects of atrazine and carbaryl on the three soil enzymes were evaluated against that exhibited by methanol, the solvent used for their solubilization. In almost all soils, atrazine further inhibited invertase activity with respect to the inhibitory effect shown by methanol. By contrast, consistent activation effects (from 61% to 10217%) were measured for urease with methanol alone and/or methanol-pesticide mixtures. Contradictory results were observed with phosphatase. Similarities found between the results obtained with enzymes in soils and those measured with synthetic enzyme complexes (e.g. free enzymes and/or clay-, organo-, and organo-clay-enzyme complexes) exposed to the same pesticides allowed some relationships between responses of soil enzymes to pesticides and soil properties to be hypothesized. PMID:11680737

  13. Enzymatic Dissolution of Biocomposite Solids Consisting of Phosphopeptides to Form Supramolecular Hydrogels.

    PubMed

    Shi, Junfeng; Yuan, Dan; Haburcak, Richard; Zhang, Qiang; Zhao, Chao; Zhang, Xixiang; Xu, Bing

    2015-12-01

    Enzyme-catalyzed dephosphorylation is essential for biomineralization and bone metabolism. Here we report the exploration of using enzymatic reaction to transform biocomposites of phosphopeptides and calcium (or strontium) ions to supramolecular hydrogels as a mimic of enzymatic dissolution of biominerals. (31) P NMR shows that strong affinity between the phosphopeptides and alkaline metal ions (e.g., Ca(2+) or Sr(2+) ) induces the formation of biocomposites as precipitates. Electron microscopy reveals that the enzymatic reaction regulates the morphological transition from particles to nanofibers. Rheology confirms the formation of a rigid hydrogel. As the first example of enzyme-instructed dissolution of a solid to form supramolecular nanofibers/hydrogels, this work provides an approach to generate soft materials with desired properties, expands the application of supramolecular hydrogelators, and offers insights to control the demineralization of calcified soft tissues. PMID:26462722

  14. Effects of organic carbon sequestration strategies on soil enzymatic activities

    NASA Astrophysics Data System (ADS)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  15. Study on beta-galactosidase enzymatic activity of herbal yogurt.

    PubMed

    Chowdhury, Banani Ray; Chakraborty, Runu; Raychaudhuri, Utpal

    2008-03-01

    Different types of herbal yogurts were developed by mixing standardized milk with pretreated herbs, namely tulsi leaf (Ocimum sanctum), pudina leaf (Mentha arvensis) and coriander leaf (Coriandrum sativum), with leaves separately and a 1:1 (v/v) mixture of the strains of lactic starter cultures---Lactobacillus acidophilus (NCIM 2903) and Lactobacillus plantarum (NCIM 2083)-followed by incubation at 40 degrees C for 6 h. The beta-galactosidase enzymatic activity of the abovementioned herbal yogurts was determined and interestingly noted to exhibit higher enzymatic activity compared with the control yogurt (without any herbs). Among all herbal yogurts, tulsi yogurt had the maximum beta-galactosidase activity. PMID:17852503

  16. Enzymatic activity of rodents acclimated to cold and long scotophase

    NASA Astrophysics Data System (ADS)

    Fourie, F. Le R.; Haim, A.

    1980-09-01

    Rodents representative of a diurnal species ( Rhabdomys pumilio) as well as a nocturnal species ( Praomys natalensis) were acclimated to cold (Ta = 8°C) at a photoperiod of LD 12:12 and a long scotophase (LD 8; 16) at a temperature of 25° C(Ta). Control groups were kept for both species at Ta = 25° C and LD 12:12 and winter acclimated individuals were obtained during July and August to serve as further reference. Blood samples obtained from the tail were analysed for enzymes representative of three major biochemical pathways. The enzymatic activity of LDH (glycolytic pathway), MDH (Krebs cycle) and G6PDH (hexose monophosphate shunt, as an indicator of gonadal activity) were monitored to represent metabolic activity of the respective cycles. Cold acclimated as well as winter acclimatized mice revealed similar enzymatic patterns for both species and significant increases in LDH and MDH were recorded with a concurrent decrease in G6PDH activity. Specimens exposed to long scotophase exhibited similar enzymatic patterns for both species studied, but enzymatic activity was higher than those of cold acclimated individuals. From these results it is concluded that cold as well as long scotophase induce metabolic adaptations through biochemical activity in the experimental animals. The effect of long scotophase is assumed to be an important factor in the induction of winter acclimatization.

  17. Macrophage Migration Inhibitory Factor (MIF) Enzymatic Activity and Lung Cancer

    PubMed Central

    Mawhinney, Leona; Armstrong, Michelle E; O’ Reilly, Ciaran; Bucala, Richard; Leng, Lin; Fingerle-Rowson, Gunter; Fayne, Darren; Keane, Michael P; Tynan, Aisling; Maher, Lewena; Cooke, Gordon; Lloyd, David; Conroy, Helen; Donnelly, Seamas C

    2014-01-01

    The cytokine macrophage migration inhibitory factor (MIF) possesses unique tautomerase enzymatic activity, which contributes to the biological functional activity of MIF. In this study, we investigated the effects of blocking the hydrophobic active site of the tautomerase activity of MIF in the pathogenesis of lung cancer. To address this, we initially established a Lewis lung carcinoma (LLC) murine model in Mif-KO and wild-type (WT) mice and compared tumor growth in a knock-in mouse model expressing a mutant MIF lacking enzymatic activity (Mif P1G). Primary tumor growth was significantly attenuated in both Mif-KO and Mif P1G mice compared with WT mice. We subsequently undertook a structure-based, virtual screen to identify putative small molecular weight inhibitors specific for the tautomerase enzymatic active site of MIF. From primary and secondary screens, the inhibitor SCD-19 was identified, which significantly attenuated the tautomerase enzymatic activity of MIF in vitro and in biological functional screens. In the LLC murine model, SCD-19, given intraperitoneally at the time of tumor inoculation, was found to significantly reduce primary tumor volume by 90% (p < 0.001) compared with the control treatment. To better replicate the human disease scenario, SCD-19 was given when the tumor was palpable (at d 7 after tumor inoculation) and, again, treatment was found to significantly reduce tumor volume by 81% (p < 0.001) compared with the control treatment. In this report, we identify a novel inhibitor that blocks the hydrophobic pocket of MIF, which houses its specific tautomerase enzymatic activity, and demonstrate that targeting this unique active site significantly attenuates lung cancer growth in in vitro and in vivo systems. PMID:25826675

  18. Trisomy 21 consistently activates the interferon response

    PubMed Central

    Sullivan, Kelly D; Lewis, Hannah C; Hill, Amanda A; Pandey, Ahwan; Jackson, Leisa P; Cabral, Joseph M; Smith, Keith P; Liggett, L Alexander; Gomez, Eliana B; Galbraith, Matthew D; DeGregori, James; Espinosa, Joaquín M

    2016-01-01

    Although it is clear that trisomy 21 causes Down syndrome, the molecular events acting downstream of the trisomy remain ill defined. Using complementary genomics analyses, we identified the interferon pathway as the major signaling cascade consistently activated by trisomy 21 in human cells. Transcriptome analysis revealed that trisomy 21 activates the interferon transcriptional response in fibroblast and lymphoblastoid cell lines, as well as circulating monocytes and T cells. Trisomy 21 cells show increased induction of interferon-stimulated genes and decreased expression of ribosomal proteins and translation factors. An shRNA screen determined that the interferon-activated kinases JAK1 and TYK2 suppress proliferation of trisomy 21 fibroblasts, and this defect is rescued by pharmacological JAK inhibition. Therefore, we propose that interferon activation, likely via increased gene dosage of the four interferon receptors encoded on chromosome 21, contributes to many of the clinical impacts of trisomy 21, and that interferon antagonists could have therapeutic benefits. DOI: http://dx.doi.org/10.7554/eLife.16220.001 PMID:27472900

  19. Enzymatic activation of a matrix metalloproteinase inhibitor†

    PubMed Central

    Major Jourden, Jody L.; Cohen, Seth M.

    2010-01-01

    Matrix metalloproteinase inhibitors (MMPi) possessing a glucose protecting group on the zinc-binding group (ZBG) show a dramatic increase in inhibitory activity upon cleavage by β-glucosidase. PMID:20449263

  20. Bioorthogonal Enzymatic Activation of Caged Compounds.

    PubMed

    Ritter, Cornelia; Nett, Nathalie; Acevedo-Rocha, Carlos G; Lonsdale, Richard; Kräling, Katja; Dempwolff, Felix; Hoebenreich, Sabrina; Graumann, Peter L; Reetz, Manfred T; Meggers, Eric

    2015-11-01

    Engineered cytochrome P450 monooxygenase variants are reported as highly active and selective catalysts for the bioorthogonal uncaging of propargylic and benzylic ether protected substrates, including uncaging in living E. coli. observed selectivity is supported by induced-fit docking and molecular dynamics simulations. This proof-of-principle study points towards the utility of bioorthogonal enzyme/protecting group pairs for applications in the life sciences. PMID:26356324

  1. Members of the Chloride Intracellular Ion Channel Protein Family Demonstrate Glutaredoxin-Like Enzymatic Activity

    PubMed Central

    Al Khamici, Heba; Brown, Louise J.; Hossain, Khondker R.; Hudson, Amanda L.; Sinclair-Burton, Alxcia A.; Ng, Jane Phui Mun; Daniel, Elizabeth L.; Hare, Joanna E.; Cornell, Bruce A.; Curmi, Paul M. G.; Davey, Mary W.; Valenzuela, Stella M.

    2015-01-01

    The Chloride Intracellular Ion Channel (CLIC) family consists of six evolutionarily conserved proteins in humans. Members of this family are unusual, existing as both monomeric soluble proteins and as integral membrane proteins where they function as chloride selective ion channels, however no function has previously been assigned to their soluble form. Structural studies have shown that in the soluble form, CLIC proteins adopt a glutathione S-transferase (GST) fold, however, they have an active site with a conserved glutaredoxin monothiol motif, similar to the omega class GSTs. We demonstrate that CLIC proteins have glutaredoxin-like glutathione-dependent oxidoreductase enzymatic activity. CLICs 1, 2 and 4 demonstrate typical glutaredoxin-like activity using 2-hydroxyethyl disulfide as a substrate. Mutagenesis experiments identify cysteine 24 as the catalytic cysteine residue in CLIC1, which is consistent with its structure. CLIC1 was shown to reduce sodium selenite and dehydroascorbate in a glutathione-dependent manner. Previous electrophysiological studies have shown that the drugs IAA-94 and A9C specifically block CLIC channel activity. These same compounds inhibit CLIC1 oxidoreductase activity. This work for the first time assigns a functional activity to the soluble form of the CLIC proteins. Our results demonstrate that the soluble form of the CLIC proteins has an enzymatic activity that is distinct from the channel activity of their integral membrane form. This CLIC enzymatic activity may be important for protecting the intracellular environment against oxidation. It is also likely that this enzymatic activity regulates the CLIC ion channel function. PMID:25581026

  2. PARP1 Val762Ala polymorphism reduces enzymatic activity

    SciTech Connect

    Wang Xiaogan; Wang Zhaoqi; Tong Weimin . E-mail: tong@iarc.fr; Shen Yan

    2007-03-02

    Poly(ADP-ribose) polymerase 1 (PARP1) modifies a variety of nuclear proteins by poly(ADP-ribosyl)ation, and plays diverse roles in molecular and cellular processes. A common PARP1 single nucleotide polymorphism (SNP) at codon 762, resulting in the substitution of alanine (Ala) for valine (Val) in the catalytic domain has been implicated in susceptibility to cancer. To characterize the functional effect of this polymorphism on PARP1, we performed in vitro enzymatic analysis on PARP1-Ala762 and PARP1-Val762. We found that PARP1-Ala762 displayed 57.2% of the activity of PARP1-Val762 for auto-poly(ADP-ribosyl)ation and 61.9% of the activity of PARP1-Val762 for trans-poly(ADP-ribosyl)ation of histone H1. The kinetic characterization revealed that the K {sub m} of PARP1-Ala762 was increased to a 1.2-fold of the K {sub m} of PARP1-Val762 for trans-poly(ADP-ribosyl)ation. Thus, the PARP1 Val762Ala polymorphism reduces the enzymatic activity of PARP1 by increasing K {sub m}. This finding suggests that different levels of poly(ADP-ribosyl)ation by PARP1 might aid in understanding Cancer risk of carriers of the PARP1 Val762Ala polymorphism.

  3. Enzymatic activity preservation through entrapment within degradable hydrogel networks

    NASA Astrophysics Data System (ADS)

    Mariani, Angela Marie

    This dissertation aimed to design and develop a "biogel;" a reproducible, abiotic, and biocompatible polymer hydrogel matrix, that prolongs enzymatic stability allowing for rapid production of biomolecules. The researched entrapment method preserves enzyme activity within an amicable environment while resisting activity reduction in the presence of increased pH environmental challenges. These biogels can be used in a number of applications including repeated production of small molecules and in biosensors. Five main objectives were accomplished: 1) Biogels capable of maintaining enzymatic functionality post-entrapment procedures were fabricated; 2) Biogel activity dependence on crosslinker type and crosslink density was determined; 3) Biogel composition effects on sustained activity after storage were compared; 4) Biogel activity dependence on charged monomer moieties was evaluated, and 5) Combined optimization knowledge gained from the first four objectives was utilized to determine the protection of enzymes within hydrogels when challenged with an increased pH above 8. Biogels were fabricated by entrapping β-galactosidase (lactase) enzyme within acrylamide (ACR) gels crosslinked with poly(ethylene glycol) diacrylate (PEGDA, degradable through hydrolysis) or N,N'-methylenebisacrylamide (BIS, non-degradable). Initial hydrogel entrapment reduced activity to 40% in ACR/PEGDA gels, compared to a 75% reduction in initial activity of ACR/BIS biogels. Once entrapped, these enzymes resist activity reduction in the presence of environmental challenges, such as altering the pH from 7 to above 8. When biogels were challenged at a pH of 8, activity retention positively correlated to PEGDA crosslinker density; increasing from 48% to 91% retention in 30 to 40 mole % PEGDA biogels as compared to solution based control which retained only 23%. Retention of activity when perturbed from pH 7 is advantageous for biogel applications including the repeated production of desired small

  4. Controlling the enzymatic activity of a restriction enzyme by light

    PubMed Central

    Schierling, Benno; Noël, Ann-Josée; Wende, Wolfgang; Hien, Le Thi; Volkov, Eugeny; Kubareva, Elena; Oretskaya, Tatiana; Kokkinidis, Michael; Römpp, Andreas; Spengler, Bernhard; Pingoud, Alfred

    2010-01-01

    For many applications it would be desirable to be able to control the activity of proteins by using an external signal. In the present study, we have explored the possibility of modulating the activity of a restriction enzyme with light. By cross-linking two suitably located cysteine residues with a bifunctional azobenzene derivative, which can adopt a cis- or trans-configuration when illuminated by UV or blue light, respectively, enzymatic activity can be controlled in a reversible manner. To determine which residues when cross-linked show the largest “photoswitch effect,” i.e., difference in activity when illuminated with UV vs. blue light, > 30 variants of a single-chain version of the restriction endonuclease PvuII were produced, modified with azobenzene, and tested for DNA cleavage activity. In general, introducing single cross-links in the enzyme leads to only small effects, whereas with multiple cross-links and additional mutations larger effects are observed. Some of the modified variants, which carry the cross-links close to the catalytic center, can be modulated in their DNA cleavage activity by a factor of up to 16 by illumination with UV (azobenzene in cis) and blue light (azobenzene in trans), respectively. The change in activity is achieved in seconds, is fully reversible, and, in the case analyzed, is due to a change in V max rather than K m. PMID:20080559

  5. Physisorption of enzymatically active chymotrypsin on titania colloidal particles.

    PubMed

    Derr, Ludmilla; Dringen, Ralf; Treccani, Laura; Hildebrand, Nils; Ciacchi, Lucio Colombi; Rezwan, Kurosch

    2015-10-01

    In this study we use a straightforward experimental method to probe the presence and activity of the proteolytic enzyme α-chymotrypsin adsorbed on titania colloidal particles. We show that the adsorption of α-chymotrypsin on the particles is irreversible and pH-dependent. At pH 8 the amount of adsorbed chymotrypsin is threefold higher compared to the adsorption at pH 5. However, we observe that the adsorption is accompanied by a substantial loss of enzymatic activity, and only around 6-9% of the initial enzyme activity is retained. A Michaelis-Menten kinetics analysis of both unbound and TiO2-bound chymotrypsin shows that the K(M) value is increased from ∼10 μM for free chymotrypsin to ∼40 μM for the particle bound enzyme. Such activity decrease could be related by the hindered accessibility of substrate to the active site of adsorbed chymotrypsin, or by adsorption-induced structural changes. Our simple experimental method does not require any complex technical equipment, can be applied to a broad range of hydrolytic enzymes and to various types of colloidal materials. Our approach allows an easy, fast and reliable determination of particle surface-bound enzyme activity and has high potential for development of future enzyme-based biotechnological and industrial processes. PMID:26072448

  6. Activation of enzymatic chitin degradation by a lytic polysaccharide monooxygenase.

    PubMed

    Hamre, Anne Grethe; Eide, Kristine B; Wold, Hanne H; Sørlie, Morten

    2015-04-30

    For decades, the enzymatic conversion of recalcitrant polysaccharides such as cellulose and chitin was thought to solely rely on the synergistic action of hydrolytic enzymes, but recent work has shown that lytic polysaccharide monooxygenases (LPMOs) are important contributors to this process. Here, we have examined the initial rate enhancement an LPMO (CBP21) has on the hydrolytic enzymes (ChiA, ChiB, and ChiC) of the chitinolytic machinery of Serratia marcescens through determinations of apparent k(cat) (k(cat)(app)) values on a β-chitin substrate. k(cat)(app) values were determined to be 1.7±0.1 s(-1) and 1.7±0.1 s(-1) for the exo-active ChiA and ChiB, respectively and 1.2±0.1 s(-1) for the endo-active ChiC. The addition of CBP21 boosted the k(cat)(app) values of ChiA and ChiB giving values of 11.1±1.5 s(-1) and 13.9±1.4 s(-1), while there was no effect on ChiC (0.9±0.1 s(-1)). PMID:25812992

  7. Cue Consistency Associated with Physical Activity Automaticity and Behavior.

    PubMed

    Pimm, Rosemary; Vandelanotte, Corneel; Rhodes, Ryan E; Short, Camille; Duncan, Mitch J; Rebar, Amanda L

    2016-01-01

    Physical activity is partly regulated by automatic processes such as habits (ie, well-learned responses to cues), but it remains unclear what cues trigger these processes. This study examined the relations of physical activity automaticity and behavior with the consistency of people, activity, routine, location, time, and mood cues present upon initiation of physical activity behavior. Australian adults (N = 1,244, 627 female, M age = 55 years) reported their physical activity automaticity, behavior, and the degree of consistency of these cues each time they start a physical activity behavior. Multiple regression models, which accounted for gender and age, revealed that more consistent routine and mood cues were linked to more physical activity automaticity; whereas more consistent time and people cues were linked to more physical activity behavior. Interventions may more effectively translate into long-lasting physical activity habits if they draw people's attention to the salient cues of time, people, routine, and mood. PMID:25864705

  8. Comparison of lab, pilot, and industrial scale low consistency mechanical refining for improvements in enzymatic digestibility of pretreated hardwood.

    PubMed

    Jones, Brandon W; Venditti, Richard; Park, Sunkyu; Jameel, Hasan

    2014-09-01

    Mechanical refining has been shown to improve biomass enzymatic digestibility. In this study industrial high-yield sodium carbonate hardwood pulp was subjected to lab, pilot and industrial refining to determine if the mechanical refining improves the enzymatic hydrolysis sugar conversion efficiency differently at different refining scales. Lab, pilot and industrial refining increased the biomass digestibility for lignocellulosic biomass relative to the unrefined material. The sugar conversion was increased from 36% to 65% at 5 FPU/g of biomass with industrial refining at 67.0 kWh/t, which was more energy efficient than lab and pilot scale refining. There is a maximum in the sugar conversion with respect to the amount of refining energy. Water retention value is a good predictor of improvements in sugar conversion for a given fiber source and composition. Improvements in biomass digestibility with refining due to lab, pilot plant and industrial refining were similar with respect to water retention value. PMID:25016156

  9. Chemical interaction of disulfiram with nitrosodimethylamine after in vitro enzymatic activation

    SciTech Connect

    Tacchi, A.M.; Bertram, B.; Wiessler, M.

    1984-02-01

    The in vitro reaction between disulfiram (DSF) and N-nitroso(/sup 14/C)dimethylamine ((/sup 14/C)NDMA) was studied. Incubations of DSF with (/sup 14/C)NDMA were carried out in the presence of rat liver microsomes, control 9000 g (S9) supernatant fraction and phenobarbital-induced S9 fraction. HPLC analysis and liquid scintillation measurement provided evidence for the formation of methyldiethyldithiocarbamate (MeDDTC) as a product of the reaction between diethyldithiocarbamate (DDTC), the main active metabolite of DSF and the 'methyl-cation' released by NDMA after enzymatic activation. The amount of MeDDTC found here was consistent with the rate of oxidation of NDMA to formaldehyde. Scintillation counting confirmed that other radioactive peaks, not due to MeDDTC, were unrelated to the methylation of L-cysteine by (/sup 14/C)NDMA.

  10. Enzymatic activity inside and outside of water-stable aggregates in soils under different land use

    NASA Astrophysics Data System (ADS)

    Garbuz, S. A.; Yaroslavtseva, N. V.; Kholodov, V. A.

    2016-03-01

    A method is presented for assessing the distribution of enzymatic activity inside and outside of water-stable aggregates. Two samples of water-stable aggregates >1 mm have been isolated from dry aggregates of 1-2 mm. To determine the enzymatic activity, a substrate has been added to one of the samples without disaggregation; the other sample has been preliminarily disaggregated. Enzymatic activity within waterstable aggregates has been assessed from the difference between the obtained results under the supposition that the penetration of substrate within the water-saturated aggregates is hampered, and enzymatic reactions occur only at the periphery. The levels and distributions of enzymatic (peroxidase, polyphenol oxidase, and catalase) activities in water-stable aggregates of soddy-podzolic soils under forest and plowland and typical chernozems of long-term field experiments have been studied. The peroxidase, polyphenol oxidase, and catalase activities of water-stable aggregates vary from 6 to 23, from 7 to 30, and from 5 to 7 mmol/(g h), respectively. The ratio between the enzymatic activities inside and outside of soil aggregates showed a higher dependence on soil type and land use, as well as on the input of organic matter and the structural state, than the general activity level in water-stable aggregates.

  11. Adsorption-Induced Changes in Ribonuclease A Structure and Enzymatic Activity on Solid Surfaces

    PubMed Central

    2015-01-01

    Ribonuclease A (RNase A) is a small globular enzyme that lyses RNA. The remarkable solution stability of its structure and enzymatic activity has led to its investigation to develop a new class of drugs for cancer chemotherapeutics. However, the successful clinical application of RNase A has been reported to be limited by insufficient stability and loss of enzymatic activity when it was coupled with a biomaterial carrier for drug delivery. The objective of this study was to characterize the structural stability and enzymatic activity of RNase A when it was adsorbed on different surface chemistries (represented by fused silica glass, high-density polyethylene, and poly(methyl-methacrylate)). Changes in protein structure were measured by circular dichroism, amino acid labeling with mass spectrometry, and in vitro assays of its enzymatic activity. Our results indicated that the process of adsorption caused RNase A to undergo a substantial degree of unfolding with significant differences in its adsorbed structure on each material surface. Adsorption caused RNase A to lose about 60% of its native-state enzymatic activity independent of the material on which it was adsorbed. These results indicate that the native-state structure of RNase A is greatly altered when it is adsorbed on a wide range of surface chemistries, especially at the catalytic site. Therefore, drug delivery systems must focus on retaining the native structure of RNase A in order to maintain a high level of enzymatic activity for applications such as antitumor chemotherapy. PMID:25420087

  12. Mimicking enzymatic active sites on surfaces for energy conversion chemistry.

    PubMed

    Gutzler, Rico; Stepanow, Sebastian; Grumelli, Doris; Lingenfelder, Magalí; Kern, Klaus

    2015-07-21

    Metal-organic supramolecular chemistry on surfaces has matured to a point where its underlying growth mechanisms are well understood and structures of defined coordination environments of metal atoms can be synthesized in a controlled and reproducible procedure. With surface-confined molecular self-assembly, scientists have a tool box at hand which can be used to prepare structures with desired properties, as for example a defined oxidation number and spin state of the transition metal atoms within the organic matrix. From a structural point of view, these coordination sites in the supramolecular structure resemble the catalytically active sites of metallo-enzymes, both characterized by metal centers coordinated to organic ligands. Several chemical reactions take place at these embedded metal ions in enzymes and the question arises whether these reactions also take place using metal-organic networks as catalysts. Mimicking the active site of metal atoms and organic ligands of enzymes in artificial systems is the key to understanding the selectivity and efficiency of enzymatic reactions. Their catalytic activity depends on various parameters including the charge and spin configuration in the metal ion, but also on the organic environment, which can stabilize intermediate reaction products, inhibits catalytic deactivation, and serves mostly as a transport channel for the reactants and products and therefore ensures the selectivity of the enzyme. Charge and spin on the transition metal in enzymes depend on the one hand on the specific metal element, and on the other hand on its organic coordination environment. These two parameters can carefully be adjusted in surface confined metal-organic networks, which can be synthesized by virtue of combinatorial mixing of building synthons. Different organic ligands with varying functional groups can be combined with several transition metals and spontaneously assemble into ordered networks. The catalytically active metal

  13. Critical Roles of Clostridium difficile Toxin B Enzymatic Activities in Pathogenesis

    PubMed Central

    Li, Shan; Shi, Lianfa; Yang, Zhiyong; Zhang, Yongrong; Perez-Cordon, Gregorio; Huang, Tuxiong; Ramsey, Jeremy; Oezguen, Numan; Savidge, Tor C.

    2014-01-01

    TcdB is one of the key virulence factors of Clostridium difficile that is responsible for causing serious and potentially fatal colitis. The toxin contains at least two enzymatic domains: an effector glucosyltransferase domain for inactivating host Rho GTPases and a cysteine protease domain for the delivery of the effector domain into host cytosol. Here, we describe a novel intrabody approach to examine the role of these enzymes of TcdB in cellular intoxication. By screening a single-domain heavy chain (VHH) library raised against TcdB, we identified two VHH antibodies, 7F and E3, that specifically inhibit TcdB cysteine protease and glucosyltransferase activities, respectively. Cytoplasmic expression of 7F intrabody in Vero cells inhibited TcdB autoprocessing and delayed cellular intoxication, whereas E3 intrabody completely blocked the cytopathic effects of TcdB holotoxin. These data also demonstrate for the first time that toxin autoprocessing occurs after cysteine protease and glucosyltransferase domains translocate into the cytosol of target cells. We further determined the role of the enzymatic activities of TcdB in in vivo toxicity using a sensitive systemic challenge model in mice. Consistent with these in vitro results, a cysteine protease noncleavable mutant, TcdB-L543A, delayed toxicity in mice, whereas glycosyltransferase-deficient TcdB demonstrated no toxicity up to 500-fold of the 50% lethal dose (LD50) when it was injected systemically. Thus, glucosyltransferase but not cysteine protease activity is critical for TcdB-mediated cytopathic effects and TcdB systemic toxicity, highlighting the importance of targeting toxin glucosyltransferase activity for future therapy. PMID:25404023

  14. GTP cyclohydrolase I expression and enzymatic activity are present in caveolae of endothelial cells

    PubMed Central

    Peterson, Timothy E.; d’Uscio, Livius V.; Cao, Sheng; Wang, Xiao-Li; Katusic, Zvonimir S.

    2009-01-01

    Tetrahydrobiopterin is an essential cofactor required for the synthesis of nitric oxide. GTP cyclohydrolase I (GTPCH I) is the rate limiting enzyme for tetrahydrobiopterin production in endothelial cells, yet little is known about the subcellular localization of this enzyme. In this study, we demonstrate that GTPCH I is localized to caveolar membrane microdomains along with caveolin-1 and endothelial nitric oxide synthase. GTPCH I activity was detected in isolated caveolar membranes from cultured endothelial cells. Confocal and electron microscopy analyses confirmed GTPCH I colocalization with caveolin-1. Consistent with in vitro studies, GTPCH I activity was evident in isolated caveolar microdomains from lung homogenates of wild-type mice. Importantly, a two-fold increase in GTPCH I activity was detected in the aortas of caveolin-1 deficient mice suggesting that caveolin-1 may be involved in the control of GTPCH I enzymatic activity. Indeed, overexpression of caveolin-1 inhibits GTPCH I activity, and tetrahydrobiopterin biosynthesis is activated by disruption of caveolae structure. These studies demonstrate that GTPCH I is targeted to caveolae microdomains in vascular endothelial cells and tetrahydrobiopterin production occurs in close proximity to endothelial nitric oxide synthase. Additionally, our findings provide new insights into the regulation of GTPCH I activity by the caveolar coat protein, caveolin-1. PMID:19104007

  15. Controlling enzymatic activity and kinetics in swollen mesophases by physical nano-confinement

    NASA Astrophysics Data System (ADS)

    Sun, Wenjie; Vallooran, Jijo J.; Zabara, Alexandru; Mezzenga, Raffaele

    2014-05-01

    Bicontinuous lipid cubic mesophases are widely investigated as hosting matrices for functional enzymes to build biosensors and bio-devices due to their unique structural characteristics. However, the enzymatic activity within standard mesophases (in-meso) is severely hindered by the relatively small diameter of the mesophase aqueous channels, which provide only limited space for enzymes, and restrict them into a highly confined environment. We show that the enzymatic activity of a model enzyme, horseradish peroxidase (HRP), can be accurately controlled by relaxing its confinement within the cubic phases' water channels, when the aqueous channel diameters are systematically swollen with varying amount of hydration-enhancing sugar ester. The in-meso activity and kinetics of HRP are then systematically investigated by UV-vis spectroscopy, as a function of the size of the aqueous mesophase channels. The enzymatic activity of HRP increases with the swelling of the water channels. In swollen mesophases with water channel diameter larger than the HRP size, the enzymatic activity is more than double that measured in standard mesophases, approaching again the enzymatic activity of free HRP in bulk water. We also show that the physically-entrapped enzymes in the mesophases exhibit a restricted-diffusion-induced initial lag period and report the first observation of in-meso enzymatic kinetics significantly deviating from the normal Michaelis-Menten behaviour observed in free solutions, with deviations vanishing when enzyme confinement is released by swelling the mesophase.Bicontinuous lipid cubic mesophases are widely investigated as hosting matrices for functional enzymes to build biosensors and bio-devices due to their unique structural characteristics. However, the enzymatic activity within standard mesophases (in-meso) is severely hindered by the relatively small diameter of the mesophase aqueous channels, which provide only limited space for enzymes, and restrict them

  16. A Redundant Role of Human Thyroid Peroxidase Propeptide for Cellular, Enzymatic, and Immunological Activity

    PubMed Central

    Góra, Monika; Buckle, Ashley M.; Porebski, Benjamin T.; Kemp, E. Helen; Sutton, Brian J.; Czarnocka, Barbara; Banga, J. Paul

    2014-01-01

    simulations were consistent with these observations. Conclusions: Our results point to a redundant role for the propeptide sequence in TPO. The successful expression of TPOΔpro in a membrane-anchored, enzymatically active form that is insensitive to intramolecular proteolysis, and importantly is recognized by patients' autoantibodies, is a key advance for purification of substantial quantities of homogeneous preparation of TPO for crystallization, structural, and immunological studies. PMID:23668778

  17. Enzymatic assay for calmodulins based on plant NAD kinase activity

    SciTech Connect

    Harmon, A.C.; Jarrett, H.W.; Cormier, M.J.

    1984-01-01

    NAD kinase with increased sensitivity to calmodulin was purified from pea seedlings (Pisum sativum L., Willet Wonder). Assays for calmodulin based on the activities of NAD kinase, bovine brain cyclic nucleotide phosphodiesterase, and human erythrocyte Ca/sup 2 -/-ATPase were compared for their sensitivities to calmodulin and for their abilities to discriminate between calmodulins from different sources. The activities of the three enzymes were determined in the presence of various concentrations of calmodulins from human erythrocyte, bovine brain, sea pansy (Renilla reniformis), mung bean seed (Vigna radiata L. Wilczek), mushroom (Agaricus bisporus), and Tetrahymena pyriformis. The concentrations of calmodulin required for 50% activation of the NAD kinase (K/sub 0.5/) ranged from 0.520 ng/ml for Tetrahymena to 2.20 ng/ml for bovine brain. The A/sub 0.5/ s ranged from 19.6 ng/ml for bovine brain calmodulin to 73.5 ng/ml for mushroom calmodulin for phosphodiesterase activation. The K/sub 0.5/'s for the activation of Ca/sup 2 +/-ATPase ranged from 36.3 ng/mol for erythrocyte calmodulin to 61.7 ng/ml for mushroom calmodulin. NAD kinase was not stimulated by phosphatidylcholine, phosphatidylserine, cardiolipin, or palmitoleic acid in the absence or presence of Ca/sup 2 +/. Palmitic acid had a slightly stimulatory effect in the presence of Ca/sup 2 +/ (10% of maximum), but no effect in the absence of Ca/sup 2 +/. Palmitoleic acid inhibited the calmodulin-stimulated activity by 50%. Both the NAD kinase assay and radioimmunoassay were able to detect calmodulin in extracts containing low concentrations of calmodulin. Estimates of calmodulin contents of crude homogenates determined by the NAD kinase assay were consistent with amounts obtained by various purification procedures. 30 references, 1 figure, 4 tables.

  18. Research of enzymatic activities of fresh juice and water infusions from dry herbs.

    PubMed

    Chudnicka, Alina; Matysik, Grazyna

    2005-06-01

    Research was done on the presence of enzymes in juice obtained from fresh plant material from Chamomilla recutita L. (Rauschel)-anthodium, Lamium album L.-flos, Calendula officinalis L.-flos, Plantaginis lanceolata L.-folium and Euphrasiae rostkoviana Hayne-herba, and in the prepared water infusion of these materials; the objective was to determine the activity of enzymes which beside biologically active substances may have an influence of the final therapeutic effect of the applied plant preparations. The research was conducted by means of the API ZYM system (bioMerieux). Higher enzymatic activities were found in fresh juices of the examined plant material than in prepared water infusions from dried plants. In both cases naphthol-AS-BI-phosphohydrolase should have highest activity. The second one in terms of activity out of 17 studied enzymes was acidic phosphatase. The highest enzymatic activity of fresh juice was found in Lamii albi flos and Calendulae officinalis flos. Water infusions showed the highest enzymatic activity in Lamii albi flos, Chamomille recutita anthodium and Plantaginis lanceolata folium. Drying the plant material resulted in decreased enzymatic activities but not in the case of naphthol-AS-BI-phosphohydrolase and acidic phosphatase which showed very low activities. The complex composition of plant materials in terms of content of biologically active substances may imply that the therapeutic effect might be directly related to the quantity and activity of plant enzymes present in preparations applied in therapeutics. PMID:15894139

  19. Biologically Active Oxylipins from Enzymatic and Nonenzymatic Routes in Macroalgae

    PubMed Central

    Barbosa, Mariana; Valentão, Patrícia; Andrade, Paula B.

    2016-01-01

    Marine algae are rich and heterogeneous sources of great chemical diversity, among which oxylipins are a well-recognized class of natural products. Algal oxylipins comprise an assortment of oxygenated, halogenated, and unsaturated functional groups and also several carbocycles, varying in ring size and position in lipid chain. Besides the discovery of structurally diverse oxylipins in macroalgae, research has recently deciphered the role of some of these metabolites in the defense and innate immunity of photosynthetic marine organisms. This review is an attempt to comprehensively cover the available literature on the chemistry, biosynthesis, ecology, and potential bioactivity of oxylipins from marine macroalgae. For a better understanding, enzymatic and nonenzymatic routes were separated; however, both processes often occur concomitantly and may influence each other, even producing structurally related molecules. PMID:26805855

  20. Different Quaternary Structures of Human RECQ1 Are Associated with Its Dual Enzymatic Activity

    PubMed Central

    Muzzolini, Laura; Beuron, Fabienne; Patwardhan, Ardan; Popuri, Venkateswarlu; Cui, Sheng; Niccolini, Benedetta; Rappas, Mathieu; Freemont, Paul S; Vindigni, Alessandro

    2007-01-01

    RecQ helicases are essential for the maintenance of chromosome stability. In addition to DNA unwinding, some RecQ enzymes have an intrinsic DNA strand annealing activity. The function of this dual enzymatic activity and the mechanism that regulates it is, however, unknown. Here, we describe two quaternary forms of the human RECQ1 helicase, higher-order oligomers consistent with pentamers or hexamers, and smaller oligomers consistent with monomers or dimers. Size exclusion chromatography and transmission electron microscopy show that the equilibrium between the two assembly states is affected by single-stranded DNA (ssDNA) and ATP binding, where ATP or ATPγS favors the smaller oligomeric form. Our three-dimensional electron microscopy reconstructions of human RECQ1 reveal a complex cage-like structure of approximately 120 Å × 130 Å with a central pore. This oligomeric structure is stabilized under conditions in which RECQ1 is proficient in strand annealing. In contrast, competition experiments with the ATPase-deficient K119R and E220Q mutants indicate that RECQ1 monomers, or tight binding dimers, are required for DNA unwinding. Collectively, our findings suggest that higher-order oligomers are associated with DNA strand annealing, and lower-order oligomers with DNA unwinding. PMID:17227144

  1. Enzymatic vitreolysis with recombinant tissue plasminogen activator for vitreomacular traction

    PubMed Central

    Raczyńska, Dorota; Lipowski, Paweł; Zorena, Katarzyna; Skorek, Andrzej; Glasner, Paulina

    2015-01-01

    Aims The aim of our research was to gain data about the efficacy of intravitreal injections of a recombinant tissue plasminogen activator (rTPA) in dissolving vitreoretinal tractions (VRTs). Materials and methods The study group consisted of patients of our Ophthalmology Clinic who had received an injection of rTPA (TPA Group) for an existent vitreomacular traction confirmed by optical coherence tomography and stereoscopic examinations. The control group consisted of patients who had declined treatment despite the existence of a vitreomacular traction confirmed by the same diagnostic methods. Each group consisted of 30 people (30 eyes). The observation period was 6 months. Conclusion In both groups some of the VRTs had dissolved. In the TPA group the traction dissolved in 10 patients (33.33%) and in the control group only in 5 (16.67%). It is also important to point out that the mean baseline membrane thickness was higher in the TPA group than in the control group. Observing patients in both groups we noticed that the dissolution of vitreoretinal membrane occurred most frequently in those cases where the membrane was thin. In the TPA group, the mean membrane thickness after 6 months decreased considerably. At the same time, no significant change in the membrane thickness could be observed in the control group. Observation of the retinal thickness allows us to draw the following conclusion: in the TPA group, the retinal thickness in the macular area (edema) had decreased over the study period, whereas in the control group it had increased. In those cases where the traction had dissolved, the edema of the retina decreased by the end of the 6-month period in both groups. In the TPA group, the dissolution of the membrane occurred most often within 3 months from the primary injection. Based on statistics, we can confirm that in the control group there was a decrease in visual acuity during the 6 months of the study period. At the same time, visual acuity in the TPA

  2. Immobilization of Enzymes to Silver Island Films for Enhanced Enzymatic Activity

    PubMed Central

    Abel, Biebele; Aslan, Kadir

    2013-01-01

    Hypothesis The performance of the enzyme-based biosensors depends on the enzymatic activity and the use of an appropriate technique for immobilization of enzymes. The incorporation of silver island films (SIFs) into the enzyme-based biosensors is expected to enhance the enzymatic activity and to increase the detectability of analytes of interest. Experiments Two enzymes, β-galactosidase (β-Gal) and alkaline phosphatase (AP) were immobilized onto SIFs using the interactions of avidin-modified enzymes with (i) a monolayer of biotinylated bovine serum albumin (b-BSA) and/or (ii) a monolayer of biotinylated poly(ethylene-glycol)-amine (BEA molecular weight: 550 to 10000 Da). To confirm the effect of SIFs on enzymatic activity, two control surfaces (no silver) were also employed. Findings No enhancement in enzymatic activity for β-Gal on all SIFs was observed, which was attributed to the inhibition of β-Gal activity due to direct interactions of β-Gal with SIFs. The AP activity on SIFs with BEA was significantly larger than that observed on SIFs with b-BSA, where a 300% increase in AP activity was observed as compared to control surfaces. These observations suggest that SIFs can significantly enhance AP activity, which could help improve the detection limits of ELISAs and immunoassays that employ AP. PMID:24267340

  3. A Survey of Enzymatic Activity in Commercially Available Pool and Spa Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many pool water treatment products currently available commercially claim that they work effectively by possessing enzyme activity (specifically lipase) that degrades common oil (lipid) contaminants found in pool water. Currently, there is no standard in measuring the enzymatic activity of these enz...

  4. A Survey of Enzymatic Activity in Commercially Available Pool and Spa Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many pool water treatment products currently available commercially claim that they work effectively by possessing enzyme activity (specifically lipase) that degrades common oil (lipid) contaminants found in pool water. Currently, there is no standard in measuring the enzymatic activity of these en...

  5. Thrombolytic efficacy and enzymatic activity of rt-PA-loaded echogenic liposomes.

    PubMed

    Bader, Kenneth B; Bouchoux, Guillaume; Peng, Tao; Klegerman, Melvin E; McPherson, David D; Holland, Christy K

    2015-08-01

    Echogenic liposomes (ELIP), that can encapsulate both recombinant tissue-type plasminogen activator (rt-PA) and microbubbles, are under development to improve the treatment of thrombo-occlusive disease. However, the enzymatic activity, thrombolytic efficacy, and stable cavitation activity generated by this agent has yet to be evaluated and compared to another established ultrasound-enhanced thrombolytic scheme. A spectrophotometric method was used to compare the enzymatic activity of the rt-PA incorporated into ELIP (t-ELIP) to that of rt-PA. An in vitro flow model was employed to measure the thrombolytic efficacy and dose of ultraharmonic emissions from stable cavitation for 120-kHz ultrasound exposure of three treatment schemes: rt-PA, rt-PA and the perfluorocarbon-filled microbubble Definity(®), and t-ELIP. The enzymatic activity of rt-PA incorporated into t-ELIP was 28 % that of rt-PA. Thrombolytic efficacy of t-ELIP or rt-PA and Definity(®) was equivalent when the dose of t-ELIP was adjusted to produce comparable enzymatic activity. Sustained bubble activity was nucleated from Definity but not from t-ELIP exposed to 120-kHz ultrasound. These results emphasize the advantages of encapsulating a thrombolytic and the importance of incorporating an insoluble gas required to promote sustained, stable cavitation activity. PMID:25829338

  6. Positive regulation of the enzymatic activity of gastric H(+),K(+)-ATPase by sialylation of its β-subunit.

    PubMed

    Fujii, Takuto; Watanabe, Midori; Shimizu, Takahiro; Takeshima, Hiroshi; Kushiro, Keiichiro; Takai, Madoka; Sakai, Hideki

    2016-06-01

    The gastric proton pump (H(+),K(+)-ATPase) consists of a catalytic α-subunit (αHK) and a glycosylated β-subunit (βHK). βHK glycosylation is essential for the apical trafficking and stability of αHK in gastric parietal cells. Here, we report the properties of sialic acids at the termini of the oligosaccharide chains of βHK. Sialylation of βHK was found in LLC-PK1 cells stably expressing αHK and βHK by staining of the cells with lectin-tagged fluorescent polymeric nanoparticles. This sialylation was also confirmed by biochemical studies using sialic acid-binding lectin beads and an anti-βHK antibody. The sialic acids of βHK are cleaved enzymatically by neuraminidase (sialidase) and nonenzymatically by an acidic solution (pH5). Interestingly, the enzymatic activity of H(+),K(+)-ATPase was significantly decreased by cleavage of the sialic acids of βHK. In contrast, βHK was not sialylated in the gastric tubulovesicles prepared from the stomach of fed hogs. The H(+),K(+)-ATPase activity in these tubulovesicles was not significantly altered by neuraminidase. Importantly, the sialylation of βHK was observed in the gastric samples prepared from the stomach of famotidine (a histamine H2 receptor antagonist)-treated rats, but not histamine (an acid secretagogue)-treated rats. The enzymatic activity of H(+),K(+)-ATPase in the samples of the famotidine-treated rats was significantly higher than in the histamine-treated rats. The effects of famotidine were weakened by neuraminidase. These results indicate that βHK is sialylated at neutral or weakly acidic pH, but not at acidic pH, suggesting that the sialic acids of βHK positively regulate the enzymatic activity of αHK. PMID:26922883

  7. Plant oligoadenylates: enzymatic synthesis, isolation, and biological activities

    SciTech Connect

    Devash, Y.; Reichman, M.; Sela, I.; Reichenbach, N.L.; Suhadolnik, R.J.

    1985-01-29

    An enzyme that converts (/sup 3/H, /sup 32/P)ATP, with a /sup 3/H:/sup 32/P ratio of 1:1, to oligoadenylates with the same /sup 3/H:/sup 32/P ratio was increased in plants following treatment with human leukocyte interferon or plant antiviral factor or inoculation with tobacco mosaic virus. The enzyme was extracted from tobacco leaves, callus tissue cultures, or cell suspension cultures. The enzyme, a putative plant oligoadenylate synthetase, was immobilized on poly(rI) . poly(rC)-agarose columns and converted ATP into plant oligoadenylates. These oligoadenylates were displaced from DEAE-cellulose columns with 350 mM KCl buffer, dialyzed, and further purified by high-performance liquid chromatography (HPLC) and DEAE-cellulose gradient chromatography. In all steps of purification, the ratio of /sup 3/H:/sup 32/P in the oligoadenylates remained 1:1. The plant oligoadenylates isolated by displacement with 350 mM KCl had a molecular weight greater than 1000. The plant oligoadenylates had charges of 5- and 6-. HPLC resolved five peaks, three of which inhibited protein synthesis in reticulocyte and wheat germ systems. Partial structural elucidation of the plant oligoadenylates has been determined by enzymatic and chemical treatments. An adenylate with a 3',5'-phosphodiester and/or a pyrophosphoryl linkage with either 3'- or 5'-terminal phosphates is postulated on the basis of treatment of the oligoadenylates with T2 RNase, snake venom phosphodiesterase, and bacterial alkaline phosphatase and acid and alkaline hydrolyses. The plant oligoadenylates at 8 X 10(-7) M inhibit protein synthesis by 75% in lysates from rabbit reticulocytes and 45% in wheat germ cell-free systems.

  8. Enzymatic hydrolysis of rice protein with papain and antioxidation activity of hydrolysate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The enzymatic hydrolysis technology of rice protein and the antioxidant activity of the hydrolysate were studied. Substrate concentration,enzyme dose,pH value and temperature were selected as factors to optimize the hydrolysis parameters with single—factor and orthogonal tests. Results show the opti...

  9. Enzymatic hydrolysis of oleuropein from Olea europea (olive) leaf extract and antioxidant activities.

    PubMed

    Yuan, Jiao-Jiao; Wang, Cheng-Zhang; Ye, Jian-Zhong; Tao, Ran; Zhang, Yu-Si

    2015-01-01

    Oleuropein (OE), the main polyphenol in olive leaf extract, is likely to decompose into hydroxytyrosol (HT) and elenolic acid under the action of light, acid, base, high temperature. In the enzymatic process, the content of OE in olive leaf extract and enzyme are key factors that affect the yield of HT. A selective enzyme was screened from among 10 enzymes with a high OE degradation rate. A single factor (pH, temperature, time, enzyme quantity) optimization process and a Box-Behnken design were studied for the enzymatic hydrolysis of 81.04% OE olive leaf extract. Additionally, enzymatic hydrolysis results with different substrates (38.6% and 81.04% OE) were compared and the DPPH antioxidant properties were also evaluated. The result showed that the performance of hydrolysis treatments was best using hemicellulase as a bio-catalyst, and the high purity of OE in olive extract was beneficial to biotransform OE into HT. The optimal enzymatic conditions for achieving a maximal yield of HT content obtained by the regression were as follows: pH 5, temperature 55 °C and enzyme quantity 55 mg. The experimental result was 11.31% ± 0.15%, and the degradation rate of OE was 98.54%. From the present investigation of the antioxidant activity determined by the DPPH method, the phenol content and radical scavenging effect were both decreased after enzymatic hydrolysis by hemicellulase. However, a high antioxidant activity of the ethyl acetate extract enzymatic hydrolysate (IC50 = 41.82 μg/mL) was demonstated. The results presented in this work suggested that hemicellulase has promising and attractive properties for industrial production of HT, and indicated that HT might be a valuable biological component for use in pharmaceutical products and functional foods. PMID:25679050

  10. Quantitation of Na+, K+-atpase Enzymatic Activity in Tissues of the Mammalian Vestibular System

    NASA Technical Reports Server (NTRS)

    Kerr, T. P.

    1985-01-01

    In order to quantify vestibular Na(+), K(+)-ATPase, a microassay technique was developed which is sufficiently sensitive to measure the enzymatic activity in tissue from a single animal. The assay was used to characterize ATPase in he vestibular apparatus of the Mongolian gerbil. The quantitative procedure employs NPP (5 mM) as synthetic enzyme substrate. The assay relies upon spectrophotometric measurement (410 nm) of nitrophenol (NP) released by enzymatic hydrolysis of the substrate. Product formation in the absence of ouabain reflects both specific (Na(+), K(+)-ATPase) and non-specific (Mg(++)-ATPase) enzymatic activity. By measuring the accumulation of reaction product (NP) at three-minute intervals during the course of incubation, it is found that the overall enzymatic reaction proceeds linearly for at least 45 minutes. It is therefore possible to determine two separate reaction rates from a single set of tissues. Initial results indicate that total activity amounts to 53.3 + or - 11.2 (S.E.M.) nmol/hr/mg dry tissue, of which approximately 20% is ouabain-sensitive.

  11. Effect of restricted motion in high temperature on enzymatic activity of the pancreas

    NASA Technical Reports Server (NTRS)

    Abdusattarov, A.; Smirnova, G. I.

    1980-01-01

    Effects of 30 day hypodynamia coupled with high temperature (35-36 C) on enzymatic activity of the pancreas of male adult rats were studied. The test animals were divided into four groups. Group one served as controls (freedom of movement and a temperature of 25-26 C, considered optimal). The remaining animals were divided into three additional groups: Group two freedom of movement but high temperature (35-36 C); group three hypodynamia but an optimal temperature; group four hypodynamia and 35-36 C. Considerable change in the enzymatic activity in the pancreas of the four groups is observed in three experimental groups (two, three, and four) as compared to the control (group one). The results indicate that adaption of the organism to the thermal factor and restricted movement is accompanied by a change in the enzymatic spectrum of the pancreas. With the combined effect of these two stresses under conditions of the adaption of the organism especially sharp shifts occur in the enzymatic activity.

  12. Analysis of rat cytosolic 9-cis-retinol dehydrogenase activity and enzymatic characterization of rat ADHII.

    PubMed

    Popescu, G; Napoli, J L

    2000-01-01

    We report the characterization of two enzymes that catalyze NAD(+)-dependent 9-cis-retinol dehydrogenase activity in rat liver cystol. Alcohol dehydrogenase class I (ADHI) contributes > 80% of the NA D+-dependent 9-cis-retinol dehydrogenase activity recovered, whereas alcohol dehydrogenase class II (ADHII), not identified previously at the protein level, nor characterized enzymatically in rat, accounts for approximately 2% of the activity. Rat ADHII exhibits properties different from those described for human ADHII. Moreover, rat ADHII-catalyzed rates of ethanol dehydrogenation are markedly lower than octanol or retinoid dehydrogenation rates. Neither ethanol nor 4-methylpyrazole inhibits the 9-cis-retinol dehydrogenase activity of rat ADHII. We propose that ADHII represents the previously observed additional retinoid oxidation activity of rat liver cytosol which occurred in the presence of either ethanol or 4-methylpyrazole. We also show that human and rat ADHII differ considerably in enzymatic properties. PMID:10606766

  13. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance.

    PubMed

    Cui, Jiandong; Zhao, Yamin; Liu, Ronglin; Zhong, Cheng; Jia, Shiru

    2016-01-01

    Increasing numbers of materials have been extensively used as platforms for enzyme immobilization to improve catalytic performance. However, activity of the most of the enzymes was declined after immobilization. Here, we develop a surfactant-activated lipase-inorganic flowerlike hybrid nanomaterials with rational design based on interfacial activation and self-assembly. The resulting surfactant-activated lipase-inorganic hybird nanoflower (activated hNF-lipase) exhibited 460% and 200% higher activity than native lipase and conventional lipase-inorganic hybird nanoflower (hNF-lipase). Furthermore, the activated hNF-lipase displayed good reusability due to its monodispersity and mechanical properties, and had excellent long-time stability. The superior catalytic performances were attributed to both the conformational modulation of surfactants and hierarchical structure of nanoflowers, which not only anchored lipases in an active form, but also decreased the enzyme-support negative interaction and mass-transfer limitations. This new biocatalytic system is promising to find widespread use in applications related to biomedicine, biosensor, and biodiesel. PMID:27297609

  14. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance

    PubMed Central

    Cui, Jiandong; Zhao, Yamin; Liu, Ronglin; Zhong, Cheng; Jia, Shiru

    2016-01-01

    Increasing numbers of materials have been extensively used as platforms for enzyme immobilization to improve catalytic performance. However, activity of the most of the enzymes was declined after immobilization. Here, we develop a surfactant-activated lipase-inorganic flowerlike hybrid nanomaterials with rational design based on interfacial activation and self-assembly. The resulting surfactant-activated lipase-inorganic hybird nanoflower (activated hNF-lipase) exhibited 460% and 200% higher activity than native lipase and conventional lipase-inorganic hybird nanoflower (hNF-lipase). Furthermore, the activated hNF-lipase displayed good reusability due to its monodispersity and mechanical properties, and had excellent long-time stability. The superior catalytic performances were attributed to both the conformational modulation of surfactants and hierarchical structure of nanoflowers, which not only anchored lipases in an active form, but also decreased the enzyme-support negative interaction and mass-transfer limitations. This new biocatalytic system is promising to find widespread use in applications related to biomedicine, biosensor, and biodiesel. PMID:27297609

  15. Directed enzymatic activation of 1-D DNA tiles.

    PubMed

    Garg, Sudhanshu; Chandran, Harish; Gopalkrishnan, Nikhil; LaBean, Thomas H; Reif, John

    2015-02-24

    The tile assembly model is a Turing universal model of self-assembly where a set of square shaped tiles with programmable sticky sides undergo coordinated self-assembly to form arbitrary shapes, thereby computing arbitrary functions. Activatable tiles are a theoretical extension to the Tile assembly model that enhances its robustness by protecting the sticky sides of tiles until a tile is partially incorporated into a growing assembly. In this article, we experimentally demonstrate a simplified version of the Activatable tile assembly model. In particular, we demonstrate the simultaneous assembly of protected DNA tiles where a set of inert tiles are activated via a DNA polymerase to undergo linear assembly. We then demonstrate stepwise activated assembly where a set of inert tiles are activated sequentially one after another as a result of attachment to a growing 1-D assembly. We hope that these results will pave the way for more sophisticated demonstrations of activated assemblies. PMID:25625898

  16. Effect of tamoxifen on the enzymatic activity of human cytochrome CYP2B6.

    PubMed

    Sridar, Chitra; Kent, Ute M; Notley, Lisa M; Gillam, Elizabeth M J; Hollenberg, Paul F

    2002-06-01

    Tamoxifen is primarily used in the treatment of breast cancer. It has been approved as a chemopreventive agent for individuals at high risk for this disease. Tamoxifen is metabolized to a number of different products by cytochrome P450 enzymes. The effect of tamoxifen on the enzymatic activity of bacterially expressed human cytochrome CYP2B6 in a reconstituted system has been investigated. The 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation activity of purified CYP2B6 was inactivated by tamoxifen in a time- and concentration-dependent manner. Enzymatic activity was lost only in samples that were incubated with both tamoxifen and NADPH. The inactivation was characterized by a K(I) of 0.9 microM, a k(inact) of 0.02 min(-1), and a t(1/2) of 34 min. The loss in the 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation activity did not result in a similar percentage loss in the reduced carbon monoxide spectrum, suggesting that the heme moiety was not the major site of modification. The activity of CYP2B6 was not recovered after removal of free tamoxifen using spin column gel filtration. The loss in activity seemed to be due to a modification of the CYP2B6 and not reductase because adding fresh reductase back to the inactivated samples did not restore enzymatic activity. A reconstituted system containing purified CYP2B6, NADPH-reductase, and NADPH-generating system was found to catalyze tamoxifen metabolism to 4-OH-tamoxifen, 4'-OH-tamoxifen, and N-desmethyl-tamoxifen as analyzed by high-performance liquid chromatography analysis. Preliminary studies showed that tamoxifen had no effect on the activities of CYP1B1 and CYP3A4, whereas CYP2D6 and CYP2C9 exhibited a 25% loss in enzymatic activity. PMID:12023523

  17. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees.

    PubMed

    Molnárová, Jana; Vadkertiová, Renáta; Stratilová, Eva

    2014-07-01

    Yeasts form a significant and diverse part of the phyllosphere microbiota. Some yeasts that inhabit plants have been found to exhibit extracellular enzymatic activities. The aim of the present study was to investigate the ability of yeasts isolated from leaves, fruits, and blossoms of fruit trees cultivated in Southwest Slovakia to produce extracellular enzymes, and to discover whether the yeasts originating from these plant organs differ from each other in their physiological properties. In total, 92 strains belonging to 29 different species were tested for: extracellular protease, β-glucosidase, lipase, and polygalacturonase activities; fermentation abilities; the assimilation of xylose, saccharose and alcohols (methanol, ethanol, glycerol); and for growth in a medium with 33% glucose. The black yeast Aureobasidium pullulans showed the largest spectrum of activities of all the species tested. Almost 70% of the strains tested demonstrated some enzymatic activity, and more than 90% utilized one of the carbon compounds tested. Intraspecies variations were found for the species of the genera Cryptococcus and Pseudozyma. Interspecies differences of strains exhibiting some enzymatic activities and utilizing alcohols were also noted. The largest proportion of the yeasts exhibited β-glucosidase activity and assimilated alcohols independently of their origin. The highest number of strains positive for all activities tested was found among the yeasts associated with leaves. Yeasts isolated from blossoms assimilated saccharose and D-xylose the most frequently of all the yeasts tested. The majority of the fruit-inhabiting yeasts grew in the medium with higher osmotic pressure. PMID:23744750

  18. Influence of nitrogen sources on the enzymatic activity and grown by Lentinula edodes in biomass Eucalyptus benthamii.

    PubMed

    Pedri, Z C; Lozano, L M S; Hermann, K L; Helm, C V; Peralta, R M; Tavares, L B B

    2015-11-01

    Lignocellulose is the most abundant environmental component and a renewable organic resource in soil. There are some filamentous fungi which developed the ability to break down and use cellulose, hemicellulose and lignin as an energy source. The objective of this research was to analyze the effect of three nitrogen resources (ammonium sulfate, saltpetre, soybean) in the holocellulolitic activity of Lentinula edodes EF 50 using as substrate sawdust E. benthamii. An experimental design mixture was applied with repetition in the central point consisting of seven treatments (T) of equal concentrations of nitrogen in ammonium sulfate, potassium nitrate and soybean. The enzymatic activity of avicelase, carboxymetilcellulase, β-glucosidase, xylanases and manganese peroxidase was determined. The humidity, pH, water activity (aw) and qualitative analysis of mycelial growth in 8 times of cultivation were evaluated. The results showed negative effect on enzyme production in treatments with maximum concentration of ammonium sulfate and potassium nitrate. The treatments with cooked soybean flour expressed higher enzymatic activities in times of 3, 6 and 9 days of culture, except in the activity of manganese peroxidase. The highest production was observed in the treatment with ammonium sulfate, and soybean (83.86 UI.L-1) at 20 days of cultivation. PMID:26675911

  19. ENZYMATIC ACTIVITIES RELATED TO THE DECOMPOSITION OF CONIFEROUS LEAF LITTER

    EPA Science Inventory

    The rate of CO2 evolution at 23C and 75% moisture content for a diverse group of coniferous leaf litter samples from Oregon was measured. Significant correlations (1% level) were observed between the rate of CO2 evolution and the activity of amylase, cellulase, and xylanase (r=0....

  20. The Influence of Encroaching Woodland on Grassland Enzymatic Activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grass-dominated ecosystems around the world are experiencing woody plant invasion due to human land uses. Vast regions in southern Texas have been transformed from open grasslands to subtropical thorn woodlands during the past 150 yrs. The assumption is that the soil microbial activity in the remain...

  1. Soil disturbance increases soil microbial enzymatic activity in arid ecoregion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Functional diversity of the soil microbial community is commonly used in the assessment of soil health as it relates to the activity of soil microflora involved in carbon cycling. Soil microbes in different microenvironments will have varying responses to different substrates, thus catabolic fingerp...

  2. Measuring In Vitro ATPase Activity for Enzymatic Characterization.

    PubMed

    Rule, Chelsea S; Patrick, Marcella; Sandkvist, Maria

    2016-01-01

    Adenosine triphosphate-hydrolyzing enzymes, or ATPases, play a critical role in a diverse array of cellular functions. These dynamic proteins can generate energy for mechanical work, such as protein trafficking and degradation, solute transport, and cellular movements. The protocol described here is a basic assay for measuring the in vitro activity of purified ATPases for functional characterization. Proteins hydrolyze ATP in a reaction that results in inorganic phosphate release, and the amount of phosphate liberated is then quantitated using a colorimetric assay. This highly adaptable protocol can be adjusted to measure ATPase activity in kinetic or endpoint assays. A representative protocol is provided here based on the activity and requirements of EpsE, the AAA+ ATPase involved in Type II Secretion in the bacterium Vibrio cholerae. The amount of purified protein needed to measure activity, length of the assay and the timing and number of sampling intervals, buffer and salt composition, temperature, co-factors, stimulants (if any), etc. may vary from those described here, and thus some optimization may be necessary. This protocol provides a basic framework for characterizing ATPases and can be performed quickly and easily adjusted as necessary. PMID:27584824

  3. Evolution of robusta green coffee redox enzymatic activities with maturation.

    PubMed

    Montavon, Philippe; Bortlik, Karlheinz

    2004-06-01

    Oxidation reactions in coffee involve redox-sensitive polyphenols and appear to control the fragmentation of coffee storage proteins both in solution and during roasting. Coffee-specific nitrogenous flavor precursors may derive from this process. Accordingly, data converge to suggest that the redox status of the green bean before roasting might control the development of subsequent redox reactions during roasting. Consequently, we decided to identify biological events that may trigger or prevent oxidation during maturation of the coffee cherry and set the final redox status of the green bean. In a previous study, we observed that the sensitivity of green coffee to oxidative processes decreased along maturation. By using the very same samples originating from open-pollinated Robusta clones, we followed the activity of three essential redox enzymes: catalase (CAT), peroxidase (POD) and polyphenoloxidase (PPO). While CAT and POD activities increased with maturation, PPO activities decreased. Thanks to the identification of an atypical immature subclass, it appeared that CAT might be an essential factor in setting the final redox status of the green bean before the roasting event. PMID:15161235

  4. Modelling the Effects of Ageing Time of Starch on the Enzymatic Activity of Three Amylolytic Enzymes

    PubMed Central

    Guerra, Nelson P.; Pastrana Castro, Lorenzo

    2012-01-01

    The effect of increasing ageing time (t) of starch on the activity of three amylolytic enzymes (Termamyl, San Super, and BAN) was investigated. Although all the enzymatic reactions follow michaelian kinetics, vmax decreased significantly (P < 0.05) and KM increased (although not always significantly) with the increase in t. The conformational changes produced in the starch chains as a consequence of the ageing seemed to affect negatively the diffusivity of the starch to the active site of the enzymes and the release of the reaction products to the medium. A similar effect was observed when the enzymatic reactions were carried out with unaged starches supplemented with different concentrations of gelatine [G]. The inhibition in the amylolytic activities was best mathematically described by using three modified forms of the Michaelis-Menten model, which included a term to consider, respectively, the linear, exponential, and hyperbolic inhibitory effects of t and [G]. PMID:22666116

  5. Activation of polymeric materials towards enzymatic postgrafting and cross-linking.

    PubMed

    Fatarella, E; Ciabatti, I; Cortez, J

    2012-10-10

    A methodology to activate inert polymeric materials to enzymatic functionalisation is described herein. Plasma irradiation can be used to graft compounds containing a moiety that is reactive towards an enzyme of interest. Subsequently, such enzyme can be used to either postgraft functional compounds or cross-link the polymeric materials. Argon plasma was utilised to graft 2-aminoethyl methacrylate onto cotton and wool fibres, introducing surface alkylamine groups to impart reactivity towards transglutaminase and tyrosinase. The efficiency of plasma grafting was verified by ATR-FTIR. Enzyme postgrafting of fluorescent peptides coupled with confocal microscopy was used to demonstrate transglutaminase activity towards cotton, a material typically inert to this enzyme. The grafting of alkylamines onto wool resulted in additional cross-linking by both enzymes, leading to significantly increased yarn breaking load and elongation at break. This technology permits the activation of inert materials towards enzymatic postgrafting, with applications in fields as diverse as textiles and biomaterials. PMID:22975121

  6. Immobilization of inorganic pyrophosphatase on nanodiamond particles retaining its high enzymatic activity.

    PubMed

    Rodina, Elena V; Valueva, Anastasiya V; Yakovlev, Ruslan Yu; Vorobyeva, Nataliya N; Kulakova, Inna I; Lisichkin, Georgy V; Leonidov, Nikolay B

    2015-01-01

    Nanodiamond (ND) particles are popular platforms for the immobilization of molecular species. In the present research, enzyme Escherichia coli inorganic pyrophosphatase (PPase) was immobilized on detonation ND through covalent or noncovalent bonding and its enzymatic activity was characterized. Factors affecting adsorption of PPase such as ND size and surface chemistry were studied. The obtained material is a submicron size association of ND particles and protein molecules in approximately equal amounts. Both covalently and noncovalently immobilized PPase retains a significant enzymatic activity (up to 95% of its soluble form) as well as thermostability. The obtained hybrid material has a very high enzyme loading capacity (∼1 mg mg(-1)) and may be considered as a promising delivery system of biologically active proteinaceous substances, particularly in the treatment of diseases such as calcium pyrophosphate crystal deposition disease and related pathologies. They can also be used as recoverable heterogeneous catalysts in the traditional uses of PPase. PMID:26489420

  7. Enzymatic activity in the presence of surfactants commonly used in dissolution media, Part 1: Pepsin.

    PubMed

    Guzman, Maria L; Marques, Margareth R; Olivera Me, Maria E; Stippler, Erika S

    2016-01-01

    The United States Pharmacopeia (USP) General Chapters Dissolution 〈711〉 and Disintegration and Dissolution of Dietary Supplements 〈2040〉 allows the use of enzymes in dissolution media when gelatin capsules do not conform to dissolution specifications due to cross linking. Possible interactions between enzymes and surfactants when used together in dissolution media could result in loss of the enzymatic activity. Pepsin is an enzyme commonly used in dissolution media, and in this work, the activity of pepsin was determined in the presence of different surfactants as usually found in case of dissolution tests of certain gelatin capsule formulations. Pepsin enzymatic activity was determined according to the Ninth Edition of the Food Chemicals Codex (FCC) 9 method, in dissolution conditions: simulated gastric fluid, 37 °C and 50 rpm. Sodium dodecyl sulfate (SDS), cetyltrimethyl ammonium bromide (CTAB), polysorbate 80 (Tween 80) and octoxynol 9 (Triton X100) in concentrations above and below their critical micellar concentrations were selected. Results showed a significant reduction in the activity of pepsin at all the concentrations of SDS assayed. On the contrary, CTAB, Tween 80, and Triton X100 did not alter the enzymatic activity at of pepsin any of the concentration assayed. This data demonstrates a rational selection of the surfactant to be used when pepsin is required in dissolution test. PMID:27047734

  8. Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry

    PubMed Central

    2015-01-01

    Amyloid fibrils represent a generic class of protein structure associated with both pathological states and with naturally occurring functional materials. This class of protein nanostructure has recently also emerged as an excellent foundation for sophisticated functional biocompatible materials including scaffolds and carriers for biologically active molecules. Protein-based materials offer the potential advantage that additional functions can be directly incorporated via gene fusion producing a single chimeric polypeptide that will both self-assemble and display the desired activity. To succeed, a chimeric protein system must self-assemble without the need for harsh triggering conditions which would damage the appended functional protein molecule. However, the micrometer to nanoscale patterning and morphological control of protein-based nanomaterials has remained challenging. This study demonstrates a general approach for overcoming these limitations through the microfluidic generation of enzymatically active microgels that are stabilized by amyloid nanofibrils. The use of scaffolds formed from biomaterials that self-assemble under mild conditions enables the formation of catalytic microgels while maintaining the integrity of the encapsulated enzyme. The enzymatically active microgel particles show robust material properties and their porous architecture allows diffusion in and out of reactants and products. In combination with microfluidic droplet trapping approaches, enzymatically active microgels illustrate the potential of self-assembling materials for enzyme immobilization and recycling, and for biological flow-chemistry. These design principles can be adopted to create countless other bioactive amyloid-based materials with diverse functions. PMID:26030507

  9. Enzymatic activity in the presence of surfactants commonly used in dissolution media, Part 1: Pepsin

    PubMed Central

    Guzman, Maria L; Marques, Margareth R; Olivera ME, Maria E; Stippler, Erika S

    2016-01-01

    The United States Pharmacopeia (USP) General Chapters Dissolution 〈711〉 and Disintegration and Dissolution of Dietary Supplements 〈2040〉 allows the use of enzymes in dissolution media when gelatin capsules do not conform to dissolution specifications due to cross linking. Possible interactions between enzymes and surfactants when used together in dissolution media could result in loss of the enzymatic activity. Pepsin is an enzyme commonly used in dissolution media, and in this work, the activity of pepsin was determined in the presence of different surfactants as usually found in case of dissolution tests of certain gelatin capsule formulations. Pepsin enzymatic activity was determined according to the Ninth Edition of the Food Chemicals Codex (FCC) 9 method, in dissolution conditions: simulated gastric fluid, 37 °C and 50 rpm. Sodium dodecyl sulfate (SDS), cetyltrimethyl ammonium bromide (CTAB), polysorbate 80 (Tween 80) and octoxynol 9 (Triton X100) in concentrations above and below their critical micellar concentrations were selected. Results showed a significant reduction in the activity of pepsin at all the concentrations of SDS assayed. On the contrary, CTAB, Tween 80, and Triton X100 did not alter the enzymatic activity at of pepsin any of the concentration assayed. This data demonstrates a rational selection of the surfactant to be used when pepsin is required in dissolution test. PMID:27047734

  10. Fungal cellulase is an elicitor but its enzymatic activity is not required for its elicitor activity.

    PubMed

    Ma, Yanan; Han, Chao; Chen, Jinyin; Li, Haiyun; He, Kun; Liu, Aixin; Li, Duochuan

    2015-01-01

    Plant-pathogenic fungi produce cellulases. However, little information is available on cellulase as an elicitor in plant-pathogen interactions. Here, an endocellulase (EG1) was isolated from Rhizoctonia solani. It contains a putative protein of 227 amino acids with a signal peptide and a family-45 glycosyl hydrolase domain. Its aspartic acid (Asp) residue at position 32 was changed to alanine (Ala), resulting in full loss of its catalytic activity. Wild-type and mutated forms of the endoglucanase were expressed in yeast and purified to homogeneity. The purified wild-type and mutant forms induced cell death in maize, tobacco and Arabidopsis leaves, and the transcription of three defence marker genes in maize and tobacco and 10 genes related to defence responses in maize. Moreover, they also induced the accumulation of reactive oxygen species (ROS), medium alkalinization, Ca(2+) accumulation and ethylene biosynthesis of suspension-cultured tobacco cells. Similarly, production of the EG1 wild-type and mutated forms in tobacco induced cell death using the Potato virus X (PVX) expression system. In vivo, expression of EG1 was also related to cell death during infection of maize by R. solani. These results provide direct evidence that the endoglucanase is an elicitor, but its enzymatic activity is not required for its elicitor activity. PMID:24844544

  11. Digestive enzymatic activity during ontogenetic development in zebrafish (Danio rerio).

    PubMed

    Guerrera, Maria Cristina; De Pasquale, Francesca; Muglia, Ugo; Caruso, Gabriella

    2015-12-01

    Despite the growing importance of zebrafish (Danio rerio) as an experimental model in biomedical research, some aspect of physiological and related morphological age dependent changes in digestive system during larval development are still unknown. In this paper, a biochemical and morphological study of the digestive tract of zebrafish was undertaken to record the functional changes occurring in this species during its ontogenetic development, particularly from 24 hr to 47 days post fertilization (dpf). Endo- and exo-proteases, as well as α-amylase enzymes, were quantified in zebrafish larvae before first feeding (7 dpf). The most morphologically significant events during the ontogenesis of the gut occurred between 3 dpf (mouth opening) and 7 dpf (end of exocrine pancreas differentiation). The presence of a wide range of digestive enzymes, already active at earlier zebrafish larval stages, closely related with the omnivorous diet of this species. Increasing enzyme activities were found with increasing age, probably in relation with intestinal mucosa folding and consequent absorption surface increase. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 699-706, 2015. © 2015 Wiley Periodicals, Inc. PMID:26477613

  12. Local modulation of steroid action: rapid control of enzymatic activity

    PubMed Central

    Charlier, Thierry D.; Cornil, Charlotte A.; Patte-Mensah, Christine; Meyer, Laurence; Mensah-Nyagan, A. Guy; Balthazart, Jacques

    2015-01-01

    Estrogens can induce rapid, short-lived physiological and behavioral responses, in addition to their slow, but long-term, effects at the transcriptional level. To be functionally relevant, these effects should be associated with rapid modulations of estrogens concentrations. 17β-estradiol is synthesized by the enzyme aromatase, using testosterone as a substrate, but can also be degraded into catechol-estrogens via hydroxylation by the same enzyme, leading to an increase or decrease in estrogens concentration, respectively. The first evidence that aromatase activity (AA) can be rapidly modulated came from experiments performed in Japanese quail hypothalamus homogenates. This rapid modulation is triggered by calcium-dependent phosphorylations and was confirmed in other tissues and species. The mechanisms controlling the phosphorylation status, the targeted amino acid residues and the reversibility seem to vary depending of the tissues and is discussed in this review. We currently do not know whether the phosphorylation of the same amino acid affects both aromatase and/or hydroxylase activities or whether these residues are different. These processes provide a new general mechanism by which local estrogen concentration can be rapidly altered in the brain and other tissues. PMID:25852459

  13. Enzymatically active biomimetic micropropellers for the penetration of mucin gels

    PubMed Central

    Walker, Debora; Käsdorf, Benjamin T.; Jeong, Hyeon-Ho; Lieleg, Oliver; Fischer, Peer

    2015-01-01

    In the body, mucus provides an important defense mechanism by limiting the penetration of pathogens. It is therefore also a major obstacle for the efficient delivery of particle-based drug carriers. The acidic stomach lining in particular is difficult to overcome because mucin glycoproteins form viscoelastic gels under acidic conditions. The bacterium Helicobacter pylori has developed a strategy to overcome the mucus barrier by producing the enzyme urease, which locally raises the pH and consequently liquefies the mucus. This allows the bacteria to swim through mucus and to reach the epithelial surface. We present an artificial system of reactive magnetic micropropellers that mimic this strategy to move through gastric mucin gels by making use of surface-immobilized urease. The results demonstrate the validity of this biomimetic approach to penetrate biological gels, and show that externally propelled microstructures can actively and reversibly manipulate the physical state of their surroundings, suggesting that such particles could potentially penetrate native mucus. PMID:26824056

  14. Protein Conformational Gating of Enzymatic Activity in Xanthine Oxidoreductase

    SciTech Connect

    Ishikita, Hiroshi; Eger, Bryan T.; Okamoto, Ken; Nishino, Takeshi; Pai, Emil F.

    2012-05-24

    In mammals, xanthine oxidoreductase can exist as xanthine dehydrogenase (XDH) and xanthine oxidase (XO). The two enzymes possess common redox active cofactors, which form an electron transfer (ET) pathway terminated by a flavin cofactor. In spite of identical protein primary structures, the redox potential difference between XDH and XO for the flavin semiquinone/hydroquinone pair (E{sub sq/hq}) is {approx}170 mV, a striking difference. The former greatly prefers NAD{sup +} as ultimate substrate for ET from the iron-sulfur cluster FeS-II via flavin while the latter only accepts dioxygen. In XDH (without NAD{sup +}), however, the redox potential of the electron donor FeS-II is 180 mV higher than that for the acceptor flavin, yielding an energetically uphill ET. On the basis of new 1.65, 2.3, 1.9, and 2.2 {angstrom} resolution crystal structures for XDH, XO, the NAD{sup +}- and NADH-complexed XDH, E{sub sq/hq} were calculated to better understand how the enzyme activates an ET from FeS-II to flavin. The majority of the E{sub sq/hq} difference between XDH and XO originates from a conformational change in the loop at positions 423-433 near the flavin binding site, causing the differences in stability of the semiquinone state. There was no large conformational change observed in response to NAD{sup +} binding at XDH. Instead, the positive charge of the NAD{sup +} ring, deprotonation of Asp429, and capping of the bulk surface of the flavin by the NAD{sup +} molecule all contribute to altering E{sub sq/hq} upon NAD{sup +} binding to XDH.

  15. Microbial and enzymatic activity of soil contaminated with azoxystrobin.

    PubMed

    Baćmaga, Małgorzata; Kucharski, Jan; Wyszkowska, Jadwiga

    2015-10-01

    The use of fungicides in crop protection still effectively eliminates fungal pathogens of plants. However, fungicides may dissipate to various elements of the environment and cause irreversible changes. Considering this problem, the aim of the presented study was to evaluate changes in soil biological activity in response to contamination with azoxystrobin. The study was carried out in the laboratory on samples of sandy loam with a pH of 7.0 in 1 Mol KCl dm(-3). Soil samples were treated with azoxystrobin in one of four doses: 0.075 (dose recommended by the manufacturer), 2.250, 11.25 and 22.50 mg kg(-1) soil DM (dry matter of soil). The control soil sample did not contain fungicide. Bacteria were identified based on 16S rRNA gene sequencing, and fungi were identified by internal transcribed spacer (ITS) region sequencing. The study revealed that increased doses of azoxystrobin inhibited the growth of organotrophic bacteria, actinomycetes and fungi. The fungicide also caused changes in microbial biodiversity. The lowest values of the colony development (CD) index were recorded for fungi and the ecophysiological (EP) index for organotrophic bacteria. Azoxystrobin had an inhibitory effect on the activity of dehydrogenases, catalase, urease, acid phosphatase and alkaline phosphatase. Dehydrogenases were found to be most resistant to the effects of the fungicide, while alkaline phosphatase in the soil recovered the balance in the shortest time. Four species of bacteria from the genus Bacillus and two species of fungi from the genus Aphanoascus were isolated from the soil contaminated with the highest dose of azoxystrobin (22.50 mg kg(-1)). PMID:26343782

  16. Enzymatic Activity Assays for Base Excision Repair Enzymes in Cell Extracts from Vertebrate Cells

    PubMed Central

    Çağlayan, Melike; Horton, Julie K.; Wilson, Samuel H.

    2016-01-01

    We previously reported enzymatic activity assays for the base excision repair (BER) enzymes DNA polymerase β (pol β), aprataxin (APTX), and flap endonuclease 1 (FEN1) in cell extracts from Saccharomyces cerevisiae (Çağlayan and Wilson, 2014). Here, we describe a method to prepare cell extracts from vertebrate cells to investigate these enzymatic activities for the processing of the 5′-adenylated-sugar phosphate-containing BER intermediate. This new protocol complements our previous publication. The cell lines used are wild-type and APTX-deficient human lymphoblast cells from an Ataxia with Oculomotor Apraxia Type 1 (AOA1) disease patient, wild-type and APTX-null DT40 chicken B cells, and mouse embryonic fibroblast (MEF) cells. This protocol is a quick and efficient way to make vertebrate cell extracts without using commercial kits. PMID:27390764

  17. Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces

    NASA Astrophysics Data System (ADS)

    Langer, Andreas; Schräml, Michael; Strasser, Ralf; Daub, Herwin; Myers, Thomas; Heindl, Dieter; Rant, Ulrich

    2015-07-01

    The engineering of high-performance enzymes for future sequencing and PCR technologies as well as the development of many anticancer drugs requires a detailed analysis of DNA/RNA synthesis processes. However, due to the complex molecular interplay involved, real-time methodologies have not been available to obtain comprehensive information on both binding parameters and enzymatic activities. Here we introduce a chip-based method to investigate polymerases and their interactions with nucleic acids, which employs an electrical actuation of DNA templates on microelectrodes. Two measurement modes track both the dynamics of the induced switching process and the DNA extension simultaneously to quantitate binding kinetics, dissociation constants and thermodynamic energies. The high sensitivity of the method reveals previously unidentified tight binding states for Taq and Pol I (KF) DNA polymerases. Furthermore, the incorporation of label-free nucleotides can be followed in real-time and changes in the DNA polymerase conformation (finger closing) during enzymatic activity are observable.

  18. Characterization of Amino Acid Profile and Enzymatic Activity in Adult Rat Astrocyte Cultures.

    PubMed

    Souza, Débora Guerini; Bellaver, Bruna; Hansel, Gisele; Arús, Bernardo Assein; Bellaver, Gabriela; Longoni, Aline; Kolling, Janaina; Wyse, Angela T S; Souza, Diogo Onofre; Quincozes-Santos, André

    2016-07-01

    Astrocytes are multitasking players in brain complexity, possessing several receptors and mechanisms to detect, participate and modulate neuronal communication. The functionality of astrocytes has been mainly unraveled through the study of primary astrocyte cultures, and recently our research group characterized a model of astrocyte cultures derived from adult Wistar rats. We, herein, aim to characterize other basal functions of these cells to explore the potential of this model for studying the adult brain. To characterize the astrocytic phenotype, we determined the presence of GFAP, GLAST and GLT 1 proteins in cells by immunofluorescence. Next, we determined the concentrations of thirteen amino acids, ATP, ADP, adenosine and calcium in astrocyte cultures, as well as the activities of Na(+)/K(+)-ATPase and acetylcholine esterase. Furthermore, we assessed the presence of the GABA transporter 1 (GAT 1) and cannabinoid receptor 1 (CB 1) in the astrocytes. Cells demonstrated the presence of glutamine, consistent with their role in the glutamate-glutamine cycle, as well as glutamate and D-serine, amino acids classically known to act as gliotransmitters. ATP was produced and released by the cells and ADP was consumed. Calcium levels were in agreement with those reported in the literature, as were the enzymatic activities measured. The presence of GAT 1 was detected, but the presence of CB 1 was not, suggesting a decreased neuroprotective capacity in adult astrocytes under in vitro conditions. Taken together, our results show cellular functionality regarding the astrocytic role in gliotransmission and neurotransmitter management since they are able to produce and release gliotransmitters and to modulate the cholinergic and GABAergic systems. PMID:26915106

  19. The subunit composition of human extracellular superoxide dismutase (EC-SOD) regulate enzymatic activity

    PubMed Central

    Petersen, Steen V; Valnickova, Zuzana; Oury, Tim D; Crapo, James D; Chr Nielsen, Niels; Enghild, Jan J

    2007-01-01

    Background Human extracellular superoxide dismutase (EC-SOD) is a tetrameric metalloenzyme responsible for the removal of superoxide anions from the extracellular space. We have previously shown that the EC-SOD subunit exists in two distinct folding variants based on differences in the disulfide bridge pattern (Petersen SV, Oury TD, Valnickova Z, Thøgersen IB, Højrup P, Crapo JD, Enghild JJ. Proc Natl Acad Sci USA. 2003;100(24):13875–80). One variant is enzymatically active (aEC-SOD) while the other is inactive (iEC-SOD). The EC-SOD subunits are associated into covalently linked dimers through an inter-subunit disulfide bridge creating the theoretical possibility of 3 dimers (aa, ai or ii) with different antioxidant potentials. We have analyzed the quaternary structure of the endogenous EC-SOD disulfide-linked dimer to investigate if these dimers in fact exist. Results The analyses of EC-SOD purified from human tissue show that all three dimer combinations exist including two homo-dimers (aa and ii) and a hetero-dimer (ai). Because EC-SOD is a tetramer the dimers may combine to generate 5 different mature EC-SOD molecules where the specific activity of each molecule is determined by the ratio of aEC-SOD and iEC-SOD subunits. Conclusion This finding shows that the aEC-SOD and iEC-SOD subunits combine in all 3 possible ways supporting the presence of tetrameric enzymes with variable enzymatic activity. This variation in enzymatic potency may regulate the antioxidant level in the extracellular space and represent a novel way of modulating enzymatic activity. PMID:17937792

  20. Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning.

    PubMed

    Chakraborty, Somsubhra; Das, Bhabani S; Ali, Md Nasim; Li, Bin; Sarathjith, M C; Majumdar, K; Ray, D P

    2014-03-01

    The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost samples representative of five different compost facilities were scanned by DRS, and the raw reflectance spectra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfactorily identified the clusters by compost types, it could not separate different FDA contents. Furthermore, the artificial neural network multilayer perceptron (residual prediction deviation=3.2, validation r(2)=0.91 and RMSE=13.38 μg g(-1) h(-1)) outperformed other multivariate models to capture the highly non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Savitzky-Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for predicting compost enzymatic as well as microbial activity. PMID:24398221

  1. Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress.

    PubMed

    Ozden, Ozkan; Park, Seong-Hoon; Kim, Hyun-Seok; Jiang, Haiyan; Coleman, Mitchell C; Spitz, Douglas R; Gius, David

    2011-02-01

    A fundamental observation in biology is that mitochondrial function, as measured by increased reactive oxygen species (ROS), changes significantly with age, suggesting a potential mechanistic link between the cellular processes governing longevity and mitochondrial metabolism homeostasis. In addition, it is well established that altered ROS levels are observed in multiple age-related illnesses including carcinogenesis, neurodegenerative, fatty liver, insulin resistance, and cardiac disease, to name just a few. Manganese superoxide dismutase (MnSOD) is the primary mitochondrial ROS scavenging enzyme that converts superoxide to hydrogen peroxide, which is subsequently converted to water by catalase and other peroxidases. It has recently been shown that MnSOD enzymatic activity is regulated by the reversible acetylation of specific, evolutionarily conserved lysine(s) in the protein. These results, suggest for the first time, that the mitochondria contain bidirectional post-translational signaling networks, similar to that observed in the cytoplasm and nucleus, and that changes in lysine acetylation alter MnSOD enzymatic activity. In addition, these new results demonstrate that the mitochondrial anti-aging or fidelity / sensing protein, SIRT3, responds to changes in mitochondrial nutrient and/or redox status to alter the enzymatic activity of specific downstream targets, including MnSOD that adjusts and/or maintains ROS levels as well as metabolic homeostatic poise. PMID:21386137

  2. Fusion-Triggered Switching of Enzymatic Activity on an Artificial Cell Membrane

    PubMed Central

    Mukai, Masaru; Sasaki, Yoshihiro; Kikuchi, Jun-ichi

    2012-01-01

    A nanosensory membrane device was constructed for detecting liposome fusion through changes in an enzymatic activity. Inspired by a biological signal transduction system, the device design involved functionalized liposomal membranes prepared by self-assembly of the following molecular components: a synthetic peptide lipid and a phospholipid as matrix membrane components, a Schiff's base of pyridoxal 5′-phosphate with phosphatidylethanolamine as a thermo-responsive artificial receptor, NADH-dependent L-lactate dehydrogenase as a signal amplifier, and Cu2+ ion as a signal mediator between the receptor and enzyme. The enzymatic activity of the membrane device was adjustable by changing the matrix lipid composition, reflecting the thermotropic phase transition behavior of the lipid membranes, which in turn controlled receptor binding affinity toward the enzyme-inhibiting mediator species. When an effective fusogen anionic polymer was added to these cationic liposomes, membrane fusion occurred, and the functionalized liposomal membranes responded with changes in enzymatic activity, thus serving as an effective nanosensory device for liposome fusion detection. PMID:22778625

  3. Enzymatic activation of autotaxin by divalent cations without EF-hand loop region involvement.

    PubMed

    Lee, J; Jung, I D; Nam, S W; Clair, T; Jeong, E M; Hong, S Y; Han, J W; Lee, H W; Stracke, M L; Lee, H Y

    2001-07-15

    Autotaxin (ATX) is a recently described member of the nucleotide pyrophosphatase/phosphodiesterase (NPP) family of proteins with potent tumor cell motility-stimulating activity. Like other NPPs, ATX is a glycoprotein with peptide sequences homologous to the catalytic site of bovine intestinal alkaline phosphodiesterase (PDE) and the loop region of an EF-hand motif. The PDE active site of ATX has been associated with the motility-stimulating activity of ATX. In this study, we examined the roles of the EF-hand loop region and of divalent cations on the enzymatic activities of ATX. Ca(2+) or Mg(2+) was each demonstrated to increase the PDE activity of ATX in a concentration-dependent manner, whereas incubation of ATX with chelating agents abolished this activity, indicating a requirement for divalent cations. Non-linear regression analysis of enzyme kinetic data indicated that addition of these divalent cations increases reaction velocity predominantly through an effect on V(max.) Three mutant proteins, Ala(740)-, Ala(742)-, and Ala(751)-ATX, in the EF-hand loop region of ATX had enzymatic activity comparable to that of the wild-type protein. A deletion mutation of the entire loop region resulted in slightly reduced PDE activity but normal motility-stimulating activity. However, the PDE activity of this same deletion mutant remained sensitive to augmentation by cations, strongly implying that cations exert their effect by interactions outside of the EF-hand loop region. PMID:11389881

  4. Ebselen inhibits QSOX1 enzymatic activity and suppresses invasion of pancreatic and renal cancer cell lines

    PubMed Central

    Hanavan, Paul D.; Borges, Chad R.; Katchman, Benjamin A.; Faigel, Douglas O.; Ho, Thai H.; Ma, Chen-Ting; Sergienko, Eduard A.; Meurice, Nathalie; Petit, Joachim L.; Lake, Douglas F.

    2015-01-01

    Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that is overexpressed in diverse tumor types. Its enzymatic activity promotes the growth and invasion of tumor cells and alters extracellular matrix composition. In a nude mouse-human tumor xenograft model, tumors containing shRNA for QSOX1 grew significantly more slowly than controls, suggesting that QSOX1 supports a proliferative phenotype in vivo. High throughput screening experiments identified ebselen as an in vitro inhibitor of QSOX1 enzymatic activity. Ebselen treatment of pancreatic and renal cancer cell lines stalled tumor growth and inhibited invasion through Matrigel in vitro. Daily oral treatment with ebselen resulted in a 58% reduction in tumor growth in mice bearing human pancreatic tumor xenografts compared to controls. Mass spectrometric analysis of ebselen-treated QSOX1 mechanistically revealed that C165 and C237 of QSOX1 covalently bound to ebselen. This report details the anti-neoplastic properties of ebselen in pancreatic and renal cancer cell lines. The results here offer a “proof-of-principle” that enzymatic inhibition of QSOX1 may have clinical relevancy. PMID:26158899

  5. DNA-fueled molecular machine for label-free and non-enzymatic ultrasensitive detection of telomerase activity.

    PubMed

    Sun, Panpan; Ran, Xiang; Liu, Chaoqun; Liu, Chaoying; Pu, Fang; Ren, Jinsong; Qu, Xiaogang

    2016-08-01

    Herein, a non-enzymatic and label-free strategy based on DNA-fueled molecular machine was developed for ultrasensitive detection of telomerase activity in cancer cell extracts even at the single-cell level. PMID:27405851

  6. Characterization of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties.

    PubMed

    Mertsalov, Ilya B; Novikov, Boris N; Scott, Hilary; Dangott, Lawrence; Panin, Vladislav M

    2016-07-01

    CMP-sialic acid synthetase (CSAS) is a key enzyme of the sialylation pathway. CSAS produces the activated sugar donor, CMP-sialic acid, which serves as a substrate for sialyltransferases to modify glycan termini with sialic acid. Unlike other animal CSASs that normally localize in the nucleus, Drosophila melanogaster CSAS (DmCSAS) localizes in the cell secretory compartment, predominantly in the Golgi, which suggests that this enzyme has properties distinct from those of its vertebrate counterparts. To test this hypothesis, we purified recombinant DmCSAS and characterized its activity in vitro Our experiments revealed several unique features of this enzyme. DmCSAS displays specificity for N-acetylneuraminic acid as a substrate, shows preference for lower pH and can function with a broad range of metal cofactors. When tested at a pH corresponding to the Golgi compartment, the enzyme showed significant activity with several metal cations, including Zn(2+), Fe(2+), Co(2+) and Mn(2+), whereas the activity with Mg(2+) was found to be low. Protein sequence analysis and site-specific mutagenesis identified an aspartic acid residue that is necessary for enzymatic activity and predicted to be involved in co-ordinating a metal cofactor. DmCSAS enzymatic activity was found to be essential in vivo for rescuing the phenotype of DmCSAS mutants. Finally, our experiments revealed a steep dependence of the enzymatic activity on temperature. Taken together, our results indicate that DmCSAS underwent evolutionary adaptation to pH and ionic environment different from that of counterpart synthetases in vertebrates. Our data also suggest that environmental temperatures can regulate Drosophila sialylation, thus modulating neural transmission. PMID:27114558

  7. 15 CFR 930.36 - Consistency determinations for proposed activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND COASTAL RESOURCE MANAGEMENT FEDERAL CONSISTENCY WITH APPROVED COASTAL MANAGEMENT PROGRAMS... project (e.g., ongoing maintenance, waste disposal) which cumulatively has an effect upon any coastal use... coastal management issues and have similar enforceable policies, e.g., protection of a particular...

  8. 15 CFR 930.36 - Consistency determinations for proposed activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND COASTAL RESOURCE MANAGEMENT FEDERAL CONSISTENCY WITH APPROVED COASTAL MANAGEMENT PROGRAMS... project (e.g., ongoing maintenance, waste disposal) which cumulatively has an effect upon any coastal use... coastal management issues and have similar enforceable policies, e.g., protection of a particular...

  9. A Single Glycan at the 99-Loop of Human Kallikrein-related Peptidase 2 Regulates Activation and Enzymatic Activity.

    PubMed

    Guo, Shihui; Skala, Wolfgang; Magdolen, Viktor; Briza, Peter; Biniossek, Martin L; Schilling, Oliver; Kellermann, Josef; Brandstetter, Hans; Goettig, Peter

    2016-01-01

    Human kallikrein-related peptidase 2 (KLK2) is a key serine protease in semen liquefaction and prostate cancer together with KLK3/prostate-specific antigen. In order to decipher the function of its potential N-glycosylation site, we produced pro-KLK2 in Leishmania tarentolae cells and compared it with its non-glycosylated counterpart from Escherichia coli expression. Mass spectrometry revealed that Asn-95 carries a core glycan, consisting of two GlcNAc and three hexoses. Autocatalytic activation was retarded in glyco-pro-KLK2, whereas the activated glyco-form exhibited an increased proteolytic resistance. The specificity patterns obtained by the PICS (proteomic identification of protease cleavage sites) method are similar for both KLK2 variants, with a major preference for P1-Arg. However, glycosylation changes the enzymatic activity of KLK2 in a drastically substrate-dependent manner. Although glyco-KLK2 has a considerably lower catalytic efficiency than glycan-free KLK2 toward peptidic substrates with P2-Phe, the situation was reverted toward protein substrates, such as glyco-pro-KLK2 itself. These findings can be rationalized by the glycan-carrying 99-loop that prefers to cover the active site like a lid. By contrast, the non-glycosylated 99-loop seems to favor a wide open conformation, which mostly increases the apparent affinity for the substrates (i.e. by a reduction of Km). Also, the cleavage pattern and kinetics in autolytic inactivation of both KLK2 variants can be explained by a shift of the target sites due to the presence of the glycan. These striking effects of glycosylation pave the way to a deeper understanding of kallikrein-related peptidase biology and pathology. PMID:26582203

  10. Aerobic and anaerobic enzymatic activity of orange roughy (Hoplostethus atlanticus) and alfonsino (Beryx splendens) from the Juan Fernandez seamounts area.

    PubMed

    Saavedra, L M; Quiñones, R A; Gonzalez-Saldía, R R; Niklitschek, E J

    2016-06-01

    The aerobic and anaerobic enzymatic activity of two important commercial bathypelagic species living in the Juan Fernández seamounts was analyzed: alfonsino (Beryx splendens) and orange roughy (Hoplostethus atlanticus). These seamounts are influenced by the presence of an oxygen minimum zone (OMZ) located between 160 and 250 m depth. Both species have vertical segregation; alfonsino is able to stay in the OMZ, while orange roughy remains at greater depths. In this study, we compare the aerobic and anaerobic capacity of these species, measuring the activity of key metabolic enzymes in different body tissues (muscle, heart, brain and liver). Alfonsino has higher anaerobic potential in its white muscle due to greater lactate dehydrogenase (LDH) activity (190.2 μmol NADH min(-1) g ww(-1)), which is related to its smaller body size, but it is also a feature shared with species that migrate through OMZs. This potential and the higher muscle citrate synthase and electron transport system activities indicate that alfonsino has greater swimming activity level than orange roughy. This species has also a high MDH/LDH ratio in its heart, brain and liver, revealing a potential capacity to conduct aerobic metabolism in these organs under prolonged periods of environmental low oxygen conditions, preventing lactic acid accumulation. With these metabolic characteristics, alfonsino may have increased swimming activity to migrate and also could stay for a period of time in the OMZ. The observed differences between alfonsino and orange roughy with respect to their aerobic and anaerobic enzymatic activity are consistent with their characteristic vertical distributions and feeding behaviors. PMID:26687132

  11. Yeasts from sub-Antarctic region: biodiversity, enzymatic activities and their potential as oleaginous microorganisms.

    PubMed

    Martinez, A; Cavello, I; Garmendia, G; Rufo, C; Cavalitto, S; Vero, S

    2016-09-01

    Various microbial groups are well known to produce a range of extracellular enzymes and other secondary metabolites. However, the occurrence and importance of investment in such activities have received relatively limited attention in studies of Antarctic soil microbiota. Sixty-one yeasts strains were isolated from King George Island, Antarctica which were characterized physiologically and identified at the molecular level using the D1/D2 region of rDNA. Fifty-eight yeasts (belonging to the genera Cryptococcus, Leucosporidiella, Rhodotorula, Guehomyces, Candida, Metschnikowia and Debaryomyces) were screened for extracellular amylolytic, proteolytic, esterasic, pectinolytic, inulolytic xylanolytic and cellulolytic activities at low and moderate temperatures. Esterase activity was the most common enzymatic activity expressed by the yeast isolates regardless the assay temperature and inulinase was the second most common enzymatic activity. No cellulolytic activity was detected. One yeast identified as Guehomyces pullulans (8E) showed significant activity across six of seven enzymes types tested. Twenty-eight yeast isolates were classified as oleaginous, being the isolate 8E the strain that accumulated the highest levels of saponifiable lipids (42 %). PMID:27469174

  12. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss

    USGS Publications Warehouse

    Sinsabaugh, R. L.; Carreiro, M.M.; Repert, D.A.

    2002-01-01

    Decomposition of plant material is a complex process that requires interaction among a diversity of microorganisms whose presence and activity is subject to regulation by a wide range of environmental factors. Analysis of extracellular enzyme activity (EEA) provides a way to relate the functional organization of microdecomposer communities to environmental variables. In this study, we examined EEA in relation to litter composition and nitrogen deposition. Mesh bags containing senescent leaves of Quercus borealis (red oak), Acer rubrum (red maple) and Cornus florida (flowering dogwood) were placed on forest floor plots in southeastern New York. One-third of the plots were sprayed monthly with distilled water. The other plots were sprayed monthly with NH4NO3 solution at dose rates equivalent to 2 or 8 g N m-2 y-1. Mass loss, litter composition, fungal mass, and the activities of eight enzymes were measured on 13 dates for each litter type. Dogwood was followed for one year, maple for two, oak for three, For each litter type and treatment, enzymatic turnover activities were calculated from regressions of LN (%mass remaining) vs. cumulative activity. The decomposition of dogwood litter was more efficient than that of maple and oak. Maple litter had the lowest fungal mass and required the most enzymatic work to decompose, even though its mass loss rate was twice that of oak. Across litter types, N amendment reduced apparent enzymatic efficiencies and shifted EEA away from N acquisition and toward P acquisition, and away from polyphenol oxidation and toward polysaccharide hydrolysis. The effect of these shifts on decomposition rate varied with litter composition: dogwood was stimulated, oak was inhibited and maple showed mixed effects. The results show that relatively small shifts in the activity of one or two critical enzymes can significantly alter decomposition rates.

  13. Methods for determining enzymatic activity comprising heating and agitation of closed volumes

    DOEpatents

    Thompson, David Neil; Henriksen, Emily DeCrescenzo; Reed, David William; Jensen, Jill Renee

    2016-03-15

    Methods for determining thermophilic enzymatic activity include heating a substrate solution in a plurality of closed volumes to a predetermined reaction temperature. Without opening the closed volumes, at least one enzyme is added, substantially simultaneously, to the closed volumes. At the predetermined reaction temperature, the closed volumes are agitated and then the activity of the at least one enzyme is determined. The methods are conducive for characterizing enzymes of high-temperature reactions, with insoluble substrates, with substrates and enzymes that do not readily intermix, and with low volumes of substrate and enzyme. Systems for characterizing the enzymes are also disclosed.

  14. Blocked Enzymatic Etching of Gold Nanorods: Application to Colorimetric Detection of Acetylcholinesterase Activity and Its Inhibitors.

    PubMed

    Saa, Laura; Grinyte, Ruta; Sánchez-Iglesias, Ana; Liz-Marzán, Luis M; Pavlov, Valeri

    2016-05-01

    The anisotropic morphology of gold nanorods (AuNRs) has been shown to lead to nonuniform ligand distribution and preferential etching through their tips. We have recently demonstrated that this effect can be achieved by biocatalytic oxidation with hydrogen peroxide, catalyzed by the enzyme horseradish peroxidase (HRP). We report here that modification of AuNRs with thiol-containing organic molecules such as glutathione and thiocholine hinders enzymatic AuNR etching. Higher concentrations of thiol-containing molecules in the reaction mixture gradually decrease the rate of enzymatic etching, which can be monitored by UV-vis spectroscopy through changes in the AuNR longitudinal plasmon band. This effect can be applied to develop novel optical assays for acetylcholinesterase (AChE) activity. The biocatalytic hydrolysis of acetylthiocholine by AChE yields thiocholine, which prevents enzymatic AuNR etching in the presence of HRP. Additionally, the same bioassay can be used for the detection of nanomolar concentrations of AChE inhibitors such as paraoxon and galanthamine. PMID:27070402

  15. Decipher the dynamic coordination between enzymatic activity and structural modulation at focal adhesions in living cells

    NASA Astrophysics Data System (ADS)

    Lu, Shaoying; Seong, Jihye; Wang, Yi; Chang, Shiou-Chi; Eichorst, John Paul; Ouyang, Mingxing; Li, Julie Y.-S.; Chien, Shu; Wang, Yingxiao

    2014-07-01

    Focal adhesions (FAs) are dynamic subcellular structures crucial for cell adhesion, migration and differentiation. It remains an enigma how enzymatic activities in these local complexes regulate their structural remodeling in live cells. Utilizing biosensors based on fluorescence resonance energy transfer (FRET), we developed a correlative FRET imaging microscopy (CFIM) approach to quantitatively analyze the subcellular coordination between the enzymatic Src activation and the structural FA disassembly. CFIM reveals that the Src kinase activity only within the microdomain of lipid rafts at the plasma membrane is coupled with FA dynamics. FA disassembly at cell periphery was linearly dependent on this raft-localized Src activity, although cells displayed heterogeneous levels of response to stimulation. Within lipid rafts, the time delay between Src activation and FA disassembly was 1.2 min in cells seeded on low fibronectin concentration ([FN]) and 4.3 min in cells on high [FN]. CFIM further showed that the level of Src-FA coupling, as well as the time delay, was regulated by cell-matrix interactions, as a tight enzyme-structure coupling occurred in FA populations mediated by integrin αvβ3, but not in those by integrin α5β1. Therefore, different FA subpopulations have distinctive regulation mechanisms between their local kinase activity and structural FA dynamics.

  16. Enzymatic activities produced by mixed Saccharomyces and non-Saccharomyces cultures: relationship with wine volatile composition.

    PubMed

    Maturano, Yolanda Paola; Assof, Mariela; Fabani, María Paula; Nally, María Cristina; Jofré, Viviana; Rodríguez Assaf, Leticia Anahí; Toro, María Eugenia; Castellanos de Figueroa, Lucía Inés; Vazquez, Fabio

    2015-11-01

    During certain wine fermentation processes, yeasts, and mainly non-Saccharomyces strains, produce and secrete enzymes such as β-glucosidases, proteases, pectinases, xylanases and amylases. The effects of enzyme activity on the aromatic quality of wines during grape juice fermentation, using different co-inoculation strategies of non-Saccharomyces and Saccharomyces cerevisiae yeasts, were assessed in the current study. Three strains with appropriate enological performance and high enzymatic activities, BSc562 (S. cerevisiae), BDv566 (Debaryomyces vanrijiae) and BCs403 (Candida sake), were assayed in pure and mixed Saccharomyces/non-Saccharomyces cultures. β-Glucosidase, pectinase, protease, xylanase and amylase activities were quantified during fermentations. The aromatic profile of pure and mixed cultures was determined at the end of each fermentation. In mixed cultures, non-Saccharomyces species were detected until day 4-5 of the fermentation process, and highest populations were observed in MSD2 (10% S. cerevisiae/90% D. vanrijiae) and MSC1 (1% S. cerevisiae/99% C. sake). According to correlation and multivariate analysis, MSD2 presented the highest concentrations of terpenes and higher alcohols which were associated with pectinase, amylase and xylanase activities. On the other hand, MSC1 high levels of β-glucosidase, proteolytic and xylanolytic activities were correlated to esters and fatty acids. Our study contributes to a better understanding of the effect of enzymatic activities by yeasts on compound transformations that occur during wine fermentation. PMID:26386703

  17. Mass Spectrometric Detection of Bacterial Protein Toxins and Their Enzymatic Activity

    PubMed Central

    Kalb, Suzanne R.; Boyer, Anne E.; Barr, John R.

    2015-01-01

    Mass spectrometry has recently become a powerful technique for bacterial identification. Mass spectrometry approaches generally rely upon introduction of the bacteria into a matrix-assisted laser-desorption time-of-flight (MALDI-TOF) mass spectrometer with mass spectrometric recognition of proteins specific to that organism that form a reliable fingerprint. With some bacteria, such as Bacillus anthracis and Clostridium botulinum, the health threat posed by these organisms is not the organism itself, but rather the protein toxins produced by the organisms. One such example is botulinum neurotoxin (BoNT), a potent neurotoxin produced by C. botulinum. There are seven known serotypes of BoNT, A–G, and many of the serotypes can be further differentiated into toxin variants, which are up to 99.9% identical in some cases. Mass spectrometric proteomic techniques have been established to differentiate the serotype or toxin variant of BoNT produced by varied strains of C. botulinum. Detection of potent biological toxins requires high analytical sensitivity and mass spectrometry based methods have been developed to determine the enzymatic activity of BoNT and the anthrax lethal toxins produced by B. anthracis. This enzymatic activity, unique for each toxin, is assessed with detection of the toxin-induced cleavage of strategically designed peptide substrates by MALDI-TOF mass spectrometry offering unparalleled specificity. Furthermore, activity assays allow for the assessment of the biological activity of a toxin and its potential health risk. Such methods have become important diagnostics for botulism and anthrax. Here, we review mass spectrometry based methods for the enzymatic activity of BoNT and the anthrax lethal factor toxin. PMID:26404376

  18. Mass Spectrometric Detection of Bacterial Protein Toxins and Their Enzymatic Activity.

    PubMed

    Kalb, Suzanne R; Boyer, Anne E; Barr, John R

    2015-09-01

    Mass spectrometry has recently become a powerful technique for bacterial identification. Mass spectrometry approaches generally rely upon introduction of the bacteria into a matrix-assisted laser-desorption time-of-flight (MALDI-TOF) mass spectrometer with mass spectrometric recognition of proteins specific to that organism that form a reliable fingerprint. With some bacteria, such as Bacillus anthracis and Clostridium botulinum, the health threat posed by these organisms is not the organism itself, but rather the protein toxins produced by the organisms. One such example is botulinum neurotoxin (BoNT), a potent neurotoxin produced by C. botulinum. There are seven known serotypes of BoNT, A-G, and many of the serotypes can be further differentiated into toxin variants, which are up to 99.9% identical in some cases. Mass spectrometric proteomic techniques have been established to differentiate the serotype or toxin variant of BoNT produced by varied strains of C. botulinum. Detection of potent biological toxins requires high analytical sensitivity and mass spectrometry based methods have been developed to determine the enzymatic activity of BoNT and the anthrax lethal toxins produced by B. anthracis. This enzymatic activity, unique for each toxin, is assessed with detection of the toxin-induced cleavage of strategically designed peptide substrates by MALDI-TOF mass spectrometry offering unparalleled specificity. Furthermore, activity assays allow for the assessment of the biological activity of a toxin and its potential health risk. Such methods have become important diagnostics for botulism and anthrax. Here, we review mass spectrometry based methods for the enzymatic activity of BoNT and the anthrax lethal factor toxin. PMID:26404376

  19. Enzymatic improvement in the polyphenol extractability and antioxidant activity of green tea extracts.

    PubMed

    Hong, Yang-Hee; Jung, Eun Young; Park, Yooheon; Shin, Kwang-Soon; Kim, Tae Young; Yu, Kwang-Won; Chang, Un Jae; Suh, Hyung Joo

    2013-01-01

    This study describes increases in extraction efficiency and the bioconversion of catechins after treatment with several commercial enzymes. Tannase was also used to improve the anti-radical activities of green tea extracts. Enzymatic treatment with various commercial enzymes was introduced to improve the extraction efficiency of polyphenols. The total polyphenol, flavonoid, and catechin contents and the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity of the green tea extract treated with Viscozyme (VG) were significantly higher than those treated with other commercial enzymatic extractions (p<0.05). More than 95% of the epigallocatechingallate (EGCG) and of the epicatechingallate (ECG) was hydrolyzed to epigallocatechin (EGC) and to epicatechin (EC) in successive 20 min treatments with Viscozyme and tannase (TG). Due to its hydrolytic activity, treatment involving tannase resulted in a significant release of gallic acid (GA), EGC, and EC, leading to greater radical scavenging activities. Regarding the IC(50) values of the DPPH and 2,2-azino-di-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, the green tea extract treated with TG showed values of 131.23 and 28.83 µg/mL, VG showed values of 224.70 and 32.54 µg/mL, and normal green tea extract (NG) showed values of 241.11 and 66.27 µg/mL, respectively. These results indicate that successive treatment with Viscozyme and tannase improves the extraction efficiency of polyphenols and increases radical scavenging activities. PMID:23291774

  20. Sensing Enzymatic Activity by Exposure and Selection of DNA-Encoded Probes.

    PubMed

    Jetson, Rachael R; Krusemark, Casey J

    2016-08-01

    A sensing approach is applied to encode quantitative enzymatic activity information into DNA sequence populations. The method utilizes DNA-linked peptide substrates as activity probes. Signal detection involves chemical manipulation of a probe population downstream of sample exposure and application of purifying, selective pressure for enzyme products. Selection-induced changes in DNA abundance indicate sample activity. The detection of protein kinase, protease, and farnesyltransferase activities is demonstrated. The assays were employed to measure enzyme inhibition by small molecules and activity in cell lysates using parallel DNA sequencing or quantitative PCR. This strategy will allow the extensive infrastructure for genetic analysis to be applied to proteomic assays, which has a number of advantages in throughput, sensitivity, and sample multiplexing. PMID:27355201

  1. Glycation of Ribonuclease A affects its enzymatic activity and DNA binding ability.

    PubMed

    Dinda, Amit Kumar; Tripathy, Debi Ranjan; Dasgupta, Swagata

    2015-11-01

    Prolonged non-enzymatic glycation of proteins results in the formation of advanced glycation end products (AGEs) that cause several diseases. The glycation of Ribonuclease A (RNase A) at pH 7.4 and 37 °C with ribose, glucose and fructose has been monitored by UV-vis, fluorescence, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix assisted laser desorption ionization spectroscopy-time of flight (MALDI-TOF) methods. The enzymatic activity and DNA binding ability of glycated RNase A was also investigated by an agarose gel-based assay. A precipitation assay examined the ribonucleolytic activity of the glycated enzyme. An increase in incubation time resulted in the formation of high molecular weight AGEs with a decrease in ribonucleolytic activity. Ribose exhibits the highest potency as a glycating agent and showed the greatest reduction in the ribonucleolytic activity of the enzyme. Interestingly, glycated RNase A was unable to bind with the ribonuclease inhibitor (RI) and DNA. The glycated form of the protein was also found to be ineffective in DNA melting unlike native RNase A. PMID:26365067

  2. Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

    PubMed Central

    Koch, Claudia; Eber, Fabian J; Azucena, Carlos; Förste, Alexander; Walheim, Stefan; Schimmel, Thomas; Bittner, Alexander M; Jeske, Holger; Gliemann, Hartmut; Eiben, Sabine; Geiger, Fania C

    2016-01-01

    Summary The rod-shaped nanoparticles of the widespread plant pathogen tobacco mosaic virus (TMV) have been a matter of intense debates and cutting-edge research for more than a hundred years. During the late 19th century, their behavior in filtration tests applied to the agent causing the 'plant mosaic disease' eventually led to the discrimination of viruses from bacteria. Thereafter, they promoted the development of biophysical cornerstone techniques such as electron microscopy and ultracentrifugation. Since the 1950s, the robust, helically arranged nucleoprotein complexes consisting of a single RNA and more than 2100 identical coat protein subunits have enabled molecular studies which have pioneered the understanding of viral replication and self-assembly, and elucidated major aspects of virus–host interplay, which can lead to agronomically relevant diseases. However, during the last decades, TMV has acquired a new reputation as a well-defined high-yield nanotemplate with multivalent protein surfaces, allowing for an ordered high-density presentation of multiple active molecules or synthetic compounds. Amino acid side chains exposed on the viral coat may be tailored genetically or biochemically to meet the demands for selective conjugation reactions, or to directly engineer novel functionality on TMV-derived nanosticks. The natural TMV size (length: 300 nm) in combination with functional ligands such as peptides, enzymes, dyes, drugs or inorganic materials is advantageous for applications ranging from biomedical imaging and therapy approaches over surface enlargement of battery electrodes to the immobilization of enzymes. TMV building blocks are also amenable to external control of in vitro assembly and re-organization into technically expedient new shapes or arrays, which bears a unique potential for the development of 'smart' functional 3D structures. Among those, materials designed for enzyme-based biodetection layouts, which are routinely applied, e.g., for

  3. Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies.

    PubMed

    Koch, Claudia; Eber, Fabian J; Azucena, Carlos; Förste, Alexander; Walheim, Stefan; Schimmel, Thomas; Bittner, Alexander M; Jeske, Holger; Gliemann, Hartmut; Eiben, Sabine; Geiger, Fania C; Wege, Christina

    2016-01-01

    The rod-shaped nanoparticles of the widespread plant pathogen tobacco mosaic virus (TMV) have been a matter of intense debates and cutting-edge research for more than a hundred years. During the late 19th century, their behavior in filtration tests applied to the agent causing the 'plant mosaic disease' eventually led to the discrimination of viruses from bacteria. Thereafter, they promoted the development of biophysical cornerstone techniques such as electron microscopy and ultracentrifugation. Since the 1950s, the robust, helically arranged nucleoprotein complexes consisting of a single RNA and more than 2100 identical coat protein subunits have enabled molecular studies which have pioneered the understanding of viral replication and self-assembly, and elucidated major aspects of virus-host interplay, which can lead to agronomically relevant diseases. However, during the last decades, TMV has acquired a new reputation as a well-defined high-yield nanotemplate with multivalent protein surfaces, allowing for an ordered high-density presentation of multiple active molecules or synthetic compounds. Amino acid side chains exposed on the viral coat may be tailored genetically or biochemically to meet the demands for selective conjugation reactions, or to directly engineer novel functionality on TMV-derived nanosticks. The natural TMV size (length: 300 nm) in combination with functional ligands such as peptides, enzymes, dyes, drugs or inorganic materials is advantageous for applications ranging from biomedical imaging and therapy approaches over surface enlargement of battery electrodes to the immobilization of enzymes. TMV building blocks are also amenable to external control of in vitro assembly and re-organization into technically expedient new shapes or arrays, which bears a unique potential for the development of 'smart' functional 3D structures. Among those, materials designed for enzyme-based biodetection layouts, which are routinely applied, e.g., for

  4. EPSPS variability, gene expression, and enzymatic activity in glyphosate-resistant biotypes of Digitaria insularis.

    PubMed

    Galeano, E; Barroso, A A M; Vasconcelos, T S; López-Rubio, A; Albrecht, A J P; Victoria Filho, R; Carrer, H

    2016-01-01

    Weed resistance to herbicides is a natural phenomenon that exerts selection on individuals in a population. In Brazil, glyphosate resistance was recently detected in Digitaria insularis. The objective of this study was to elucidate mechanisms of weed resistance in this plant, including genetic variability, allelism, amino acid substitutions, gene expression, and enzymatic activity levels. Most of these have not previously been studied in this species. D. insularis DNA sequences were used to analyze genetic variability. cDNA from resistant and susceptible plants was used to identify mutations, alleles, and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) expression, using real-time quantitative reverse transcription-polymerase chain reaction. In addition, EPSPS activity was measured. We found a decrease in genetic variability between populations related to glyphosate application. Substitutions from proline to threonine and tyrosine to cysteine led to a decrease in EPSPS affinity for the glyphosate. In addition, the EPSPS enzymatic activity was slightly higher in resistant plants, whereas EPSPS gene expression was almost identical in both biotypes, suggesting feedback regulation at different levels. To conclude, our results suggest new molecular mechanisms used by D. insularis to increase glyphosate resistance. PMID:27525929

  5. Antioxidant activity and functional properties of enzymatic protein hydrolysates from common carp (Cyprinus carpio) roe (egg).

    PubMed

    Chalamaiah, M; Jyothirmayi, T; Diwan, Prakash V; Dinesh Kumar, B

    2015-09-01

    Previously, we have reported the composition, molecular mass distribution and in vivo immunomodulatory effects of common carp roe protein hydrolysates. In the current study, antioxidative activity and functional properties of common carp (Cyprinus carpio) roe (egg) protein hydrolysates, prepared by pepsin, trypsin and Alcalase, were evaluated. The three hydrolysates showed excellent antioxidant activities in a dose dependent manner in various in vitro models such as 2,2 diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2,2'-azino-bis(3-ethylbenzthiazoline-6)-sulfonic acid (ABTS(+)) radical scavenging activity, ferric reducing antioxidant power (FRAP) and ferrous ion (Fe(2+)) chelating ability. Enzymatic hydrolysis significantly increased protein solubility of the hydrolysates to above 62 % over a wide pH range (2-12). Carp roe hydrolysates exhibited good foaming and emulsification properties. The results suggest that bioactive carp roe protein hydrolysates (CRPHs) with good functional properties could be useful in health food/nutraceutical/pharmaceutical industry for various applications. PMID:26344996

  6. Novel, dually radiolabeled peptides for simultaneous monitoring of enzymatic activity and protein targets

    SciTech Connect

    Efrem Mebrahtu, Suzanne Lapi

    2012-12-13

    This application investigated a novel imaging approach to develop methods to incorporate multiple radionuclides into a single peptide at chemoselective sites for simultaneous monitoring of cell-bound protein targets as well as specific enzymatic activity, both of which are associated with enhanced tumor growth and metastasis. This imaging construct was synthesized in such a manner so that the PET radionuclide will remain associated with the tumor cells and the SPECT radionuclide was cleaved from the imaging agent. Measurement of the PET agent only will yield information about the tumor marker density while measurement of the amount of co-localization and mismatch of the two radionuclides will yield information about the enzymatic activity. This coincident measuring technique using both PET and SPECT agents allows us to draw correlations involving the interactions of enzymes (cathepsin, serine-protease urokinase (uPA) and matrix metalloproteases) and other cellular proteins which play a role in cancer growth and metastasis. This technique will allow for studies in xenograft or genetic models of cancer in the same animal at the same time, thus eliminating problems that may occur when trying to invoke comparisons across animals or timepoints. By using radionuclide imaging as opposed to other imaging modalities, this technique has the potential to be translatable and can exploit the high specific activity probes which can be generated with radiotracers. The proof of principle test of this system investigated simultaneous monitoring of matrix metalloprotease (MMP) activity in the extracellular matrix (ECM) as well as density of integrins on the cell surface, both of which can serve as tumor markers. The outcomes/deliverables of this project were as follows: 1. Peptides were synthesized dually labeled at chemospecific sites with PET and SPECT agents. 2. Stability (intrinsic and to radiolysis) and specific activity of these labeled compounds were determined. 3. The

  7. Enzymatically crosslinked dendritic polyglycerol nanogels for encapsulation of catalytically active proteins.

    PubMed

    Wu, Changzhu; Böttcher, Christoph; Haag, Rainer

    2015-02-01

    The enormous potential of nanogel scaffolds for protein encapsulation has been widely recognized. However, constructing stable polymeric nanoscale networks in a facile, mild, and controllable fashion still remains a technical challenge. Here, we present a novel nanogel formation strategy using horseradish peroxidase (HRP) catalyzed crosslinking on phenolic derivatized dendritic polyglycerol (dPG) in the presence of H2O2 in an inverse miniemulsion. This "enzymatic nanogelation" approach was efficient to produce stable 200 nm dPG nanogel particles, and was performed under physiological conditions, thus making it particularly beneficial for encapsulating biological proteins. Purification of the nanogels was easy to handle and practical because there was no need for a post-quenching step. Interestingly, the use of dPG resulted in higher HRP laden nanogels than for linear polyethylene glycol (PEG) analogs, which illustrates the benefits of dendritic backbones in nanogels for protein encapsulation. In addition, the mild immobilization contributed to the enhanced thermal stability and reusability of HRP. The nanogel preparation could be easily optimized to achieve the best HRP activity. Furthermore, a second enzyme, Candida antarctica lipase B (CalB), was successfully encapsulated and optimized for activity in dPG nanogels by the same enzymatic methodology, which shows the perspective applications of such techniques for encapsulation of diverse proteins. PMID:25519490

  8. Selection and validation of enzymatic activities as functional markers in wood biotechnology and fungal ecology.

    PubMed

    Mathieu, Yann; Gelhaye, Eric; Dumarçay, Stéphane; Gérardin, Philippe; Harvengt, Luc; Buée, Marc

    2013-02-15

    The dead wood and forest soils are sources of diversity and under-explored fungal strains with biotechnological potential, which require to be studied. Numerous enzymatic tests have been proposed to investigate the functional potential of the soil microbial communities or to test the functional abilities of fungal strains. Nevertheless, the diversity of these functional markers and their relevance in environmental studies or biotechnological screening does still have not been demonstrated. In this work, we assessed ten different extracellular enzymatic activities involved in the wood decaying process including β-etherase that specifically cleaves the β-aryl ether linkages in the lignin polymer. For this purpose, a collection of 26 fungal strains, distributed within three ecological groups (white, brown and soft rot fungi), has been used. Among the ten potential functional markers, the combinatorial use of only six of them allowed separation between the group of white and soft rot fungi from the brown rot fungi. Moreover, our results suggest that extracellular β-etherase is a rare and dispensable activity among the wood decay fungi. Finally, we propose that this set of markers could be useful for the analysis of fungal communities in functional and environmental studies, and for the selection of strains with biotechnological interests. PMID:23206919

  9. Isolation of Enzymatically Active Replication Complexes from Feline Calicivirus-Infected Cells

    PubMed Central

    Green, Kim Y.; Mory, Aaron; Fogg, Mark H.; Weisberg, Andrea; Belliot, Gaël; Wagner, Mariam; Mitra, Tanaji; Ehrenfeld, Ellie; Cameron, Craig E.; Sosnovtsev, Stanislav V.

    2002-01-01

    A membranous fraction that could synthesize viral RNA in vitro in the presence of magnesium salt, ribonucleotides, and an ATP-regenerating system was isolated from feline calicivirus (FCV)-infected cells. The enzymatically active component of this fraction was designated FCV replication complexes (RCs), by analogy to other positive-strand RNA viruses. The newly synthesized RNA was characterized by Northern blot analysis, which demonstrated the production of both full-length (8.0-kb) and subgenomic-length (2.5-kb) RNA molecules similar to those synthesized in FCV-infected cells. The identity of the viral proteins associated with the fraction was investigated. The 60-kDa VP1 major capsid protein was the most abundant viral protein detected. VP2, a minor structural protein encoded by open reading frame 3 (ORF3), was also present. Nonstructural proteins associated with the fraction included the precursor polypeptides Pro-Pol (76 kDa) and p30-VPg (43 kDa), as well as the mature nonstructural proteins p32 (derived from the N-terminal region of the ORF1 polyprotein), p30 (the putative “3A-like” protein), and p39 (the putative nucleoside triphosphatase). The isolation of enzymatically active RCs containing both viral and cellular proteins should facilitate efforts to dissect the contributions of the virus and the host to FCV RNA replication. PMID:12163578

  10. Enzymatic modification of chitosan by cinnamic acids: Antibacterial activity against Ralstonia solanacearum.

    PubMed

    Yang, Caifeng; Zhou, Yu; Zheng, Yu; Li, Changlong; Sheng, Sheng; Wang, Jun; Wu, Fuan

    2016-06-01

    This study aimed to identify chitosan polymers that have antibacterial activity against the bacterial wilt pathogen. The chitosan polymers were enzymatically synthesized using chitosan and five cinnamic acids (CADs): caffeic acid (CA), ferulic acid (FA), cinnamic acid (CIA), p-coumaric acid (COA) and chlorogenic acid (CHA), using laccase from Pleurotus ostreatus as a catalyst. The reaction was performed in a phosphate buffered solution under heterogenous reaction conditions. The chitosan derivatives (CTS-g-CADs) were characterized by FT-IR, XRD, TGA and SEM. FT-IR demonstrated that the reaction products bound covalently to the free amino groups or hydroxyl groups of chitosan via band of amide I or ester band. XRD showed a reduced packing density for grafted chitosan comparing to original chitosan. TGA demonstrated that CTS-g-CADs have a higher thermostability than chitosan. Additionally, chitosan and its derivatives showed similar antibacterial activity. However, the IC50 value of the chitosan-caffeic acid derivative (CTS-g-CA) against the mulberry bacterial wilt pathogen RS-5 was 0.23mg/mL, which was two-fifths of the IC50 value of chitosan. Therefore, the enzymatically synthesized chitosan polymers can be used to control plant diseases in biotechnological domains. PMID:26993531

  11. Protein assembly onto patterned microfabricated devices through enzymatic activation of fusion pro-tag.

    PubMed

    Lewandowski, Angela T; Yi, Hyunmin; Luo, Xiaolong; Payne, Gregory F; Ghodssi, Reza; Rubloff, Gary W; Bentley, William E

    2008-02-15

    We report a versatile approach for covalent surface-assembly of proteins onto selected electrode patterns of pre-fabricated devices. Our approach is based on electro-assembly of the aminopolysaccharide chitosan scaffold as a stable thin film onto patterned conductive surfaces of the device, which is followed by covalent assembly of the target protein onto the scaffold surface upon enzymatic activation of the protein's "pro-tag." For our demonstration, the model target protein is green fluorescent protein (GFP) genetically fused with a pentatyrosine pro-tag at its C-terminus, which assembles onto both two-dimensional chips and within fully packaged microfluidic devices in situ and under flow. Our surface-assembly approach enables spatial selectivity and orientational control under mild experimental conditions. We believe that our integrated approach harnessing genetic manipulation, in situ enzymatic activation, and electro-assembly makes it advantageous for a wide variety of bioMEMS and biosensing applications that require facile "biofunctionalization" of microfabricated devices. PMID:17625789

  12. Enzymatic activity of Microsporum canis and Trichophyton mentagrophytes from breeding rabbits with and without skin lesions.

    PubMed

    Cafarchia, Claudia; Figueredo, Luciana A; Coccioli, Carmela; Camarda, Antonio; Otranto, Domenico

    2012-01-01

    Microsporum canis and Trichophyton mentagrophytes are zoophilic dermatophytes which can cause skin infections in animals and humans. The clinical expression of this infection strongly varies depending on host, fungal species as well as enzyme production. No comparative studies are available on the enzymatic activities of M. canis and T. mentagrophytes isolated from breeding rabbits. Thus, the aim of this work was to assess the capability of M. canis and T. mentagrophytes isolated from rabbits both with and without lesions in producing different enzymes. The relationship of dermatophyte enzymatic activities and presence/absence of skin lesions has also been investigated. A total of 260 isolates of T. mentagrophytes and 25 isolates of M. canis sampled both from healthy and lesioned skin of rabbits, as well as from air samples of positive farms were examined. The results showed that T. mentagrophytes and M. canis from rabbits produce different enzymes. However, only elastase and gelatinase were linked to the appearance of lesions in T. mentagrophytes infections, whereas lipase in those by M. canis. PMID:22175244

  13. Improvement of antioxidant and moisture-preserving activities of Sargassum horneri polysaccharide enzymatic hydrolyzates.

    PubMed

    Shao, Ping; Chen, Xiaoxiao; Sun, Peilong

    2015-03-01

    In the previous study, we have found that polysaccharides isolated from Sargassum horneri exhibited bioactivities. The aim of this study was to investigate the antioxidant and moisture-preserving activities of molecular weight alteration of Sargassum horneri polysaccharide in vitro. For this purpose, the homogeneous active polysaccharide SHP was isolated from Sargassum horneri, and response surface methodology was employed to optimize the enzymatic degradation conditions to get SHP-derived fragments with different molecular weight. Results proved that the polysaccharide is capable of scavenging both ABTS and DPPH radicals in vitro. The study revealed that the polysaccharides had strong moisture-absorption and -retention capacities as compared to propanediol and glycerin. Furthermore, these data demonstrated that molecular weight had a certain effect on antioxidant activities and strong moisture-retention capacities of the polysaccharide from Sargassum horneri. PMID:25572719

  14. Integrated catalysis opens new arylation pathways via regiodivergent enzymatic C-H activation.

    PubMed

    Latham, Jonathan; Henry, Jean-Marc; Sharif, Humera H; Menon, Binuraj R K; Shepherd, Sarah A; Greaney, Michael F; Micklefield, Jason

    2016-01-01

    Despite major recent advances in C-H activation, discrimination between two similar, unactivated C-H positions is beyond the scope of current chemocatalytic methods. Here we demonstrate that integration of regioselective halogenase enzymes with Pd-catalysed cross-coupling chemistry, in one-pot reactions, successfully addresses this problem for the indole heterocycle. The resultant 'chemobio-transformation' delivers a range of functionally diverse arylated products that are impossible to access using separate enzymatic or chemocatalytic C-H activation, under mild, aqueous conditions. This use of different biocatalysts to select different C-H positions contrasts with the prevailing substrate-control approach to the area, and presents opportunities for new pathways in C-H activation chemistry. The issues of enzyme and transition metal compatibility are overcome through membrane compartmentalization, with the optimized process requiring no intermediate work-up or purification steps. PMID:27283121

  15. Integrated catalysis opens new arylation pathways via regiodivergent enzymatic C–H activation

    PubMed Central

    Latham, Jonathan; Henry, Jean-Marc; Sharif, Humera H.; Menon, Binuraj R. K.; Shepherd, Sarah A.; Greaney, Michael F.; Micklefield, Jason

    2016-01-01

    Despite major recent advances in C–H activation, discrimination between two similar, unactivated C–H positions is beyond the scope of current chemocatalytic methods. Here we demonstrate that integration of regioselective halogenase enzymes with Pd-catalysed cross-coupling chemistry, in one-pot reactions, successfully addresses this problem for the indole heterocycle. The resultant ‘chemobio-transformation' delivers a range of functionally diverse arylated products that are impossible to access using separate enzymatic or chemocatalytic C–H activation, under mild, aqueous conditions. This use of different biocatalysts to select different C–H positions contrasts with the prevailing substrate-control approach to the area, and presents opportunities for new pathways in C–H activation chemistry. The issues of enzyme and transition metal compatibility are overcome through membrane compartmentalization, with the optimized process requiring no intermediate work-up or purification steps. PMID:27283121

  16. Enzymatic browning and antioxidant activities in harvested litchi fruit as influenced by apple polyphenols.

    PubMed

    Zhang, Zhengke; Huber, Donald J; Qu, Hongxia; Yun, Ze; Wang, Hui; Huang, Zihui; Huang, Hua; Jiang, Yueming

    2015-03-15

    'Guiwei' litchi fruit were treated with 5 ga.i. L(-1) apple polyphenols (APP) and then stored at 25°C to investigate the effects on pericarp browning. APP treatment effectively reduced pericarp browning and retarded the loss of red colour. APP-treated fruit exhibited higher levels of anthocyanins and cyanidin-3-rutinoside, which correlated with suppressed anthocyanase activity. APP treatment also maintained membrane integrity and reduced oxidative damage, as indicated by a lower relative leakage rate, malondialdehyde content, and reactive oxygen species (ROS) generation. The data suggest that decompartmentalisation of peroxidase and polyphenoloxidase and respective browning substrates was reduced. In addition, APP treatment enhanced the activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase), as well as non-enzymatic antioxidant capacity (DPPH radical-scavenging activity and reducing power), which might be beneficial in scavenging ROS. We propose that APP treatment is a promising safe strategy for controlling postharvest browning of litchi fruit. PMID:25308659

  17. Enzymatic digestive activity and absorption efficiency in Tagelus dombeii upon Alexandrium catenella exposure

    NASA Astrophysics Data System (ADS)

    Fernández-Reiriz, M. J.; Navarro, J. M.; Cisternas, B. A.; Babarro, J. M. F.; Labarta, U.

    2013-12-01

    We analyzed absorption efficiency (AE) and digestive enzyme activity (amylase, cellulase complex, and laminarinase) of the infaunal bivalve Tagelus dombeii originating from two geographic sites, Corral-Valdivia and Melinka-Aysén, which have different long-term paralytic shellfish poisoning (PSP) exposure rates. We report the effects of past feeding history (origin) on T. dombeii exposed to a mixed diet containing the toxic dinoflagellate Alexandrium catenella and another dinoflagellate-free control diet over a 12-day period in the laboratory. Absorption efficiency values of T. dombeii individuals that experienced PSP exposure in their habitat (Melinka-Aysén) remained unchanged during exposure to toxic food in the laboratory. In contrast, T. dombeii from a non-PSP exposure field site (Corral-Valdivia) showed a significant reduction in AE with toxic exposure time. This study established that the amylase and cellulase complexes were the most important enzymes in the digestive glands of Tagelus from both sites. The temporal evolution of enzymatic activity under toxic diet was fitted to exponential (amylase and cellulase) and to a logarithmic (laminarinase) models. In all fits, we found significant effect of origin in the model parameters. At the beginning of the experiment, higher enzymatic activity was observed for clams from Corral-Valdivia. The amylase activity decreased with time exposure for individuals from Corral and increased for individuals from Melinka. Cellulase activity did not vary over time for clams from Corral, but increased for individuals from Melinka and laminarinase activity decreased over time for individuals from Corral and remained unchanged over time for Melinka. A feeding history of exposure to the dinoflagellate A. catenella was reflected in the digestive responses of both T. dombeii populations.

  18. Enhancing cellular uptake of activable cell-penetrating peptide-doxorubicin conjugate by enzymatic cleavage.

    PubMed

    Shi, Nian-Qiu; Gao, Wei; Xiang, Bai; Qi, Xian-Rong

    2012-01-01

    The use of activable cell-penetrating peptides (ACPPs) as molecular imaging probes is a promising new approach for the visualization of enzymes. The cell-penetrating function of a polycationic cell-penetrating peptide (CPP) is efficiently blocked by intramolecular electrostatic interactions with a polyanionic peptide. Proteolysis of a proteinase-sensitive substrate present between the CPP and polyanionic peptide affords dissociation of both domains and enables the activated CPP to enter cells. This ACPP strategy could also be used to modify antitumor agents for tumor-targeting therapy. Here, we aimed to develop a conjugate of ACPP with antitumor drug doxorubicin (DOX) sensitive to matrix metalloproteinase-2 and -9 (MMP-2/9) for tumor-targeting therapy purposes. The ACPP-DOX conjugate was successfully synthesized. Enzymatic cleavage of ACPP-DOX conjugate by matrix metalloproteinase (MMP)-2/9 indicated that the activation of ACPP-DOX occurred in an enzyme concentration-dependent manner. Flow cytometry and laser confocal microscope studies revealed that the cellular uptake of ACPP-DOX was enhanced after enzymatic-triggered activation and was higher in HT-1080 cells (overexpressed MMPs) than in MCF-7 cells (under-expressed MMPs). The antiproliferative assay showed that ACPP had little toxicity and that ACPP-DOX effectively inhibited HT-1080 cell proliferation. These experiments revealed that the ACPP-DOX conjugate could be triggered by MMP-2/9, which enabled the activated CPP-DOX to enter cells. ACPP-DOX conjugate may be a potential prodrug delivery system used to carry antitumor drugs for MMP-related tumor therapy. PMID:22619516

  19. Ontogeny of nitric oxide synthase I and III protein expression and enzymatic activity in the guinea pig hippocampus.

    PubMed

    Kimura, K A; Reynolds, J N; Brien, J F

    1999-09-01

    60. NOS enzymatic activity increased throughout prenatal and postnatal life, and attained highest activity in the adult. The developmental profile of NOS III protein expression was similar to that for NOS enzymatic activity. There was differential expression of NOS I protein, which was low in the GD 50 fetus and increased rapidly during fetal development to attain adult level by GD 62. These data suggest that the guinea pig is a reliable animal model in which to investigate the roles of NO in normal hippocampal development and in mediating neuronal injury in this brain region. PMID:10521566

  20. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity

    PubMed Central

    Washburn, Nathaniel; Schwab, Inessa; Ortiz, Daniel; Bhatnagar, Naveen; Lansing, Jonathan C.; Medeiros, Amy; Tyler, Steven; Mekala, Divya; Cochran, Edward; Sarvaiya, Hetal; Garofalo, Kevin; Meccariello, Robin; Meador, James W.; Rutitzky, Laura; Schultes, Birgit C.; Ling, Leona; Avery, William; Nimmerjahn, Falk; Manning, Anthony M.; Kaundinya, Ganesh V.; Bosques, Carlos J.

    2015-01-01

    Despite the beneficial therapeutic effects of intravenous immunoglobulin (IVIg) in inflammatory diseases, consistent therapeutic efficacy and potency remain major limitations for patients and physicians using IVIg. These limitations have stimulated a desire to generate therapeutic alternatives that could leverage the broad mechanisms of action of IVIg while improving therapeutic consistency and potency. The identification of the important anti-inflammatory role of fragment crystallizable domain (Fc) sialylation has presented an opportunity to develop more potent Ig therapies. However, translating this concept to potent anti-inflammatory therapeutics has been hampered by the difficulty of generating suitable sialylated products for clinical use. Therefore, we set out to develop the first, to our knowledge, robust and scalable process for generating a well-qualified sialylated IVIg drug candidate with maximum Fc sialylation devoid of unwanted alterations to the IVIg mixture. Here, we describe a controlled enzymatic, scalable process to produce a tetra-Fc–sialylated (s4-IVIg) IVIg drug candidate and its qualification across a wide panel of analytic assays, including physicochemical, pharmacokinetic, biodistribution, and in vivo animal models of inflammation. Our in vivo characterization of this drug candidate revealed consistent, enhanced anti-inflammatory activity up to 10-fold higher than IVIg across different animal models. To our knowledge, this candidate represents the first s4-IVIg suitable for clinical use; it is also a valuable therapeutic alternative with more consistent and potent anti-inflammatory activity. PMID:25733881

  1. Chitin extraction from shrimp shell using enzymatic treatment. Antitumor, antioxidant and antimicrobial activities of chitosan.

    PubMed

    Younes, Islem; Hajji, Sawssen; Frachet, Véronique; Rinaudo, Marguerite; Jellouli, Kemel; Nasri, Moncef

    2014-08-01

    Chitin was recovered through enzymatic deproteinization of the shrimp processing by-products. Different microbial and fish viscera proteases were tested for their deproteinization efficiency. High levels of protein removal of about 77±3% and 78±2% were recorded using Bacillus mojavensis A21 and Balistes capriscus proteases, respectively, after 3h of hydrolysis at 45°C using an enzyme/substrate ratio of 20U/mg. Therefore, these two crude proteases were used separately for chitin extraction and then chitosan preparation by N-deacetylation. Chitin and chitosan samples were then characterized by 13 Cross polarization magic angle spinning nuclear magnetic resonance (CP/MAS)-NMR spectroscopy and compared to samples prepared through chemical deproteinization. All chitins and chitosans showed identical spectra. Chitosans prepared through enzymatic deproteinization have practically the same acetylation degree but higher molecular weights compared to that obtained through chemical process. Antimicobial, antioxidant and antitumoral activitities of chitosan-M obtained by treatment with A21 proteases and chitosan-C obtained by alkaline treatment were investigated. Results showed that both chitosans inhibited the growth of most Gram-negative, Gram-positive bacteria and fungi tested. Furthermore, both chitosans exhibited antioxidant and antitumor activities which was dependent on the molecular weight. PMID:24950313

  2. Pertussis toxin analog with reduced enzymatic and biological activities is a protective immunogen.

    PubMed Central

    Kimura, A; Mountzouros, K T; Schad, P A; Cieplak, W; Cowell, J L

    1990-01-01

    Bordetella pertussis TOX3201 has a 12-base-pair insertion in the S1 subunit gene of pertussis toxin (PTX), which encodes for a 4-amino-acid insertion between residues 107 and 108 of the mature S1 subunit (Black et al., Science 240:656-659, 1988). This mutant strain has been shown to secrete a holotoxin analog of PTX, designated CRM3201, with reduced ADP-ribosyltransferase activity. In the present study, we evaluated the biochemical, biological, and immunoprotective activities of purified CRM3201. Assay of enzymatic activities showed that CRM3201 had 20 to 30% of the ADP-ribosyltransferase activity and 55 to 60% of the NAD glycohydrolase activity of native PTX. CRM3201, however, had only 2 to 6% of the activity of PTX in clustering CHO cells, promoting leukocytosis, inducing histamine sensitization, and potentiating an anaphylactic response to bovine serum albumin. In contrast, activities associated with the B oligomer (binding to fetuin, hemagglutination of goose erythrocytes, and lymphocyte mitogen activity) were comparable to those of native PTX. Injection of BALB/c mice with CRM3201 mixed with Al(OH)3 elicited high titers of antibody to PTX (as measured by enzyme-linked immunosorbent assay), which neutralized a leukocytosis-promoting dose of PTX in these mice and neutralized PTX in a CHO cell assay. Passive transfer of the anti-CRM3201 antibody protected 20-day-old Swiss-Webster mice against a lethal aerosol challenge with B. pertussis 18323. Active immunization with CRM3201 significantly reduced lung colonization in adult BALB/c mice with a B. pertussis respiratory infection. These results demonstrate (i) that the reduced ADP-ribosyltransferase activity of CRM3201 is associated with reductions in certain biological and toxic activities of PTX (the enzymatic and biological activities are not, however, totally concordant); (ii) that CRM3201 possesses a functional B oligomer; and (iii) that CRM3201 can induce toxin-neutralizing antibodies which protect mice

  3. Antioxidative activities of hydrolysates from edible birds nest using enzymatic hydrolysis

    NASA Astrophysics Data System (ADS)

    Muhammad, Nurul Nadia; Babji, Abdul Salam; Ayub, Mohd Khan

    2015-09-01

    Edible bird's nest protein hydrolysates (EBN) were prepared via enzymatic hydrolysis to investigate its antioxidant activity. Two types of enzyme (alcalase and papain) were used in this study and EBN had been hydrolysed with different hydrolysis time (30, 60, 90 and 120 min). Antioxidant activities in EBN protein hydrolysate were measured using DPPH, ABTS+ and Reducing Power Assay. From this study, increased hydrolysis time from 30 min to 120 min contributed to higher DH, as shown by alcalase (40.59%) and papain (24.94%). For antioxidant assay, EBN hydrolysed with papain showed higher scavenging activity and reducing power ability compared to alcalase. The highest antioxidant activity for papain was at 120 min hydrolysis time with ABTS (54.245%), DPPH (49.78%) and Reducing Power (0.0680). Meanwhile for alcalase, the highest antioxidant activity was at 30 min hydrolysis time. Even though scavenging activity for EBN protein hydrolysates were high, the reducing power ability was quite low as compared to BHT and ascorbic Acid. This study showed that EBN protein hydrolysate with alcalase and papain treatments potentially exhibit high antioxidant activity which have not been reported before.

  4. Chemical and enzymatic reductive activation of acylfulvene to isomeric cytotoxic reactive intermediates

    PubMed Central

    Pietsch, Kathryn E.; Neels, James F.; Yu, Xiang; Gong, Jiachang; Sturla, Shana J.

    2011-01-01

    Acylfulvenes, a class of semisynthetic analogues of the sesquiterpene natural product illudin S, are cytotoxic towards cancer cells. The minor structural changes between illudin S and AFs translate to an improved therapeutic window in preclinical cell-based assays and xenograft models. AFs are, therefore, unique tools for addressing the chemical and biochemical basis of cytotoxic selectivity. AFs elicit cytotoxic responses by alkylation of biological targets, including DNA. While AFs are capable of direct alkylation, cytosolic reductive bioactivation to an electrophilic intermediate is correlated with enhanced cytotoxicity. Data obtained in this study illustrates chemical aspects of the process of AF activation. By tracking reaction mechanisms with stable isotope-labeled reagents, enzymatic versus chemical activation pathways for AF were compared for reactions involving the NADPH-dependent enzyme prostaglandin reductase 1 (PTGR1) or sodium borohydride, respectively. These two processes resulted in isomeric products that appear to give rise to similar patterns of DNA modification. The chemically activated isomer has been newly isolated and chemically characterized in this study, including an assessment of its relative stereochemistry, and stability at varying pH and under bioassay conditions. In mammalian cancer cells, this chemically activated analog was shown to not rely on further cellular activation to significantly enhance cytotoxic potency, in contrast to the requirements of AF. On the basis of this study, we anticipate that the chemically activated form of AF will serve as a useful chemical probe for evaluating biomolecular interactions independent of enzyme-mediated activation. PMID:21939268

  5. Mitochondrial Respiration Chain Enzymatic Activities in the Human Brain: Methodological Implications for Tissue Sampling and Storage.

    PubMed

    Ronsoni, Marcelo Fernando; Remor, Aline Pertile; Lopes, Mark William; Hohl, Alexandre; Troncoso, Iris H Z; Leal, Rodrigo Bainy; Boos, Gustavo Luchi; Kondageski, Charles; Nunes, Jean Costa; Linhares, Marcelo Neves; Lin, Kátia; Latini, Alexandra Susana; Walz, Roger

    2016-04-01

    Mitochondrial respiratory chain complexes enzymatic (MRCCE) activities were successfully evaluated in frozen brain samples. Epilepsy surgery offers an ethical opportunity to study human brain tissue surgically removed to treat drug resistant epilepsies. Epilepsy surgeries are done with hemodynamic and laboratory parameters to maintain physiology, but there are no studies analyzing the association among these parameters and MRCCE activities in the human brain tissue. We determined the intra-operative parameters independently associated with MRCCE activities in middle temporal neocortex (Cx), amygdala (AMY) and head of hippocampus (HIP) samples of patients (n = 23) who underwent temporal lobectomy using multiple linear regressions. MRCCE activities in Cx, AMY and HIP are differentially associated to trans-operative mean arterial blood pressure, O2 saturation, hemoglobin, and anesthesia duration to time of tissue sampling. The time-course between the last seizure occurrence and tissue sampling as well as the sample storage to biochemical assessments were also associated with enzyme activities. Linear regression models including these variables explain 13-17 % of MRCCE activities and show a moderate to strong effect (r = 0.37-0.82). Intraoperative hemodynamic and laboratory parameters as well as the time from last seizure to tissue sampling and storage time are associated with MRCCE activities in human samples from the Cx, AMYG and HIP. Careful control of these parameters is required to minimize confounding biases in studies using human brain samples collected from elective neurosurgery. PMID:26586405

  6. Specific inflammatory response of Anemonia sulcata (Cnidaria) after bacterial injection causes tissue reaction and enzymatic activity alteration.

    PubMed

    Trapani, M R; Parisi, M G; Parrinello, D; Sanfratello, M A; Benenati, G; Palla, F; Cammarata, M

    2016-03-01

    The evolution of multicellular organisms was marked by adaptations to protect against pathogens. The mechanisms for discriminating the ''self'' from ''non-self" have evolved into a long history of cellular and molecular strategies, from damage repair to the co-evolution of host-pathogen interactions. We investigated the inflammatory response in Anemonia sulcata (Cnidaria: Anthozoa) following injection of substances that varied in type and dimension, and observed clear, strong and specific reactions, especially after injection of Escherichia coli and Vibrio alginolyticus. Moreover, we analyzed enzymatic activity of protease, phosphatase and esterase, showing how the injection of different bacterial strains alters the expression of these enzymes and suggesting a correlation between the appearance of the inflammatory reaction and the modification of enzymatic activities. Our study shows for the first time, a specific reaction and enzymatic responses following injection of bacteria in a cnidarian. PMID:26836977

  7. Exonic splicing signals impose constraints upon the evolution of enzymatic activity.

    PubMed

    Falanga, Alessia; Stojanović, Ozren; Kiffer-Moreira, Tina; Pinto, Sofia; Millán, José Luis; Vlahoviček, Kristian; Baralle, Marco

    2014-05-01

    Exon splicing enhancers (ESEs) overlap with amino acid coding sequences implying a dual evolutionary selective pressure. In this study, we map ESEs in the placental alkaline phosphatase gene (ALPP), absent in the corresponding exon of the ancestral tissue-non-specific alkaline phosphatase gene (ALPL). The ESEs are associated with amino acid differences between the transcripts in an area otherwise conserved. We switched out the ALPP ESEs sequences with the sequence from the related ALPL, introducing the associated amino acid changes. The resulting enzymes, produced by cDNA expression, showed different kinetic characteristics than ALPL and ALPP. In the organism, this enzyme will never be subjected to selection because gene splicing analysis shows exon skipping due to loss of the ESE. Our data prove that ESEs restrict the evolution of enzymatic activity. Thus, suboptimal proteins may exist in scenarios when coding nucleotide changes and consequent amino acid variation cannot be reconciled with the splicing function. PMID:24692663

  8. A Selective Glutathione Probe based on AIE Fluorogen and its Application in Enzymatic Activity Assay

    PubMed Central

    Lou, Xiaoding; Hong, Yuning; Chen, Sijie; Leung, Chris Wai Tung; Zhao, Na; Situ, Bo; Lam, Jacky Wing Yip; Tang, Ben Zhong

    2014-01-01

    In this work, we design and synthesize a malonitrile-functionalized TPE derivative (TPE-DCV), which can react with thiol group through thiol-ene click reaction, leading to the fluorescence change of the system. Combined with the unique AIE property, TPE-DCV can selectively detect glutathione (GSH) but not cysteine or homocysteine. As the cleavage of GSSG with the aid of glutathione reductase produces GSH, which turns on the fluorescence of TPE-DCV, the ensemble of TPE-DCV and GSSG can thus serve as a label-free sensor for enzymatic activity assay of glutathione reductase. We also apply TPE-DCV for the detection of intracellular GSH in living cells. PMID:24603274

  9. The Effects of Storage Conditions on the Preservation of Enzymatic Activity in Bone

    PubMed Central

    Cosby, Christi N.; Troiano, Nancy W.; Kacena, Melissa A.

    2009-01-01

    Alkaline phosphatase and acid phosphatase are two major enzymatic measures of osteoblastic and osteoclastic activity, respectively. As a result, the preservation of the enzymes in bone specimens to near in vivo accuracy is essential. Despite standardization of the staining process, several factors related to the storage of blocks and slides before sectioning and staining impact the level of enzymes detected in the tissue. Block condition (intact, faced, or unstained) as well as environment (temperature and length of time in storage) affect alkaline phosphatase preservation while the acid phosphatase enzyme remains unaffected. We conclude that to optimally preserve alkaline phosphatase enzyme, methacrylate-embedded undecalcified murine bones should be stored as intact blocks. After sectioning, the faced blocks should be stored at 4°C for optimal enzyme staining of future sections. Furthermore, it is best to stain sections immediately after sectioning. PMID:20686670

  10. A Selective Glutathione Probe based on AIE Fluorogen and its Application in Enzymatic Activity Assay

    NASA Astrophysics Data System (ADS)

    Lou, Xiaoding; Hong, Yuning; Chen, Sijie; Leung, Chris Wai Tung; Zhao, Na; Situ, Bo; Lam, Jacky Wing Yip; Tang, Ben Zhong

    2014-03-01

    In this work, we design and synthesize a malonitrile-functionalized TPE derivative (TPE-DCV), which can react with thiol group through thiol-ene click reaction, leading to the fluorescence change of the system. Combined with the unique AIE property, TPE-DCV can selectively detect glutathione (GSH) but not cysteine or homocysteine. As the cleavage of GSSG with the aid of glutathione reductase produces GSH, which turns on the fluorescence of TPE-DCV, the ensemble of TPE-DCV and GSSG can thus serve as a label-free sensor for enzymatic activity assay of glutathione reductase. We also apply TPE-DCV for the detection of intracellular GSH in living cells.

  11. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway

    PubMed Central

    Keller, Markus A.; Zylstra, Andre; Castro, Cecilia; Turchyn, Alexandra V.; Griffin, Julian L.; Ralser, Markus

    2016-01-01

    Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks. PMID:26824074

  12. An 11-kDa form of human immunodeficiency virus protease expressed in Escherichia coli is sufficient for enzymatic activity.

    PubMed Central

    Graves, M C; Lim, J J; Heimer, E P; Kramer, R A

    1988-01-01

    In order to define the protease domain of human immunodeficiency virus 1, various regions of the pol open reading frame were cloned and expressed in Escherichia coli. Antiserum directed against the conserved retroviral protease active site was used to identify pol precursor and processed species containing the presumed protease domain. The smallest product that accumulates is about 11 kDa as measured by NaDodSO4/PAGE. This size agrees with that predicted from the presence in this region of two Phe-Pro sequences, which is one of the cleavage sites recognized by HIV protease. DNA encoding only the predicted 11-kDa protein was cloned, bypassing the need for autoprocessing, and the protein was expressed to a high level in E. coli. This form is active as demonstrated by its ability to specifically cleave protease-deficient pol protein in vivo in E. coli. Extracts of E. coli containing the 11-kDa protease also process human immunodeficiency virus gag substrates in vitro. These results demonstrate that the 11-kDa protease is sufficient for enzymatic activity and are consistent with a major role for this form in virus maturation. Images PMID:3282230

  13. Linking Microbial Enzymatic Activities and Functional Diversity of Soil around Earthworm Burrows and Casts

    PubMed Central

    Lipiec, Jerzy; Frąc, Magdalena; Brzezińska, Małgorzata; Turski, Marcin; Oszust, Karolina

    2016-01-01

    The aim of this work was to evaluate the effect of earthworms (Lumbricidae) on the enzymatic activity and microbial functional diversity in the burrow system [burrow wall (BW) 0–3 mm, transitional zone (TZ) 3–7 mm, bulk soil (BS) > 20 mm from the BW] and cast aggregates of a loess soil under a pear orchard. The dehydrogenase, β-glucosidase, protease, alkaline phosphomonoesterase, and acid phosphomonoesterase enzymes were assessed using standard methods. The functional diversity (catabolic potential) was assessed using the Average Well Color Development and Richness Index following the community level physiological profiling from Biolog Eco Plates. All measurements were done using soil from each compartment immediately after in situ sampling in spring. The enzymatic activites including dehydrogenase, protease, β-glucosidase and alkaline phosphomonoesterase were appreciably greater in the BW or casts than in BS and TZ. Conversely, acid phosphomonoesterase had the largest value in the BS. Average Well Color Development in both the TZ and the BS (0.98–0.94 A590 nm) were more than eight times higher than in the BWs and casts. The lowest richness index in the BS (15 utilized substrates) increased by 86–113% in all the other compartments. The PC1 in principal component analysis mainly differentiated the BWs and the TZ. Utilization of all substrate categories was the lowest in the BS. The PC2 differentiated the casts from the other compartments. The enhanced activity of a majority of the enzymes and increased microbial functional diversity in most earthworm-influenced compartments make the soils less vulnerable to degradation and thus increases the stability of ecologically relevant processes in the orchard ecosystem. PMID:27625645

  14. Linking Microbial Enzymatic Activities and Functional Diversity of Soil around Earthworm Burrows and Casts.

    PubMed

    Lipiec, Jerzy; Frąc, Magdalena; Brzezińska, Małgorzata; Turski, Marcin; Oszust, Karolina

    2016-01-01

    The aim of this work was to evaluate the effect of earthworms (Lumbricidae) on the enzymatic activity and microbial functional diversity in the burrow system [burrow wall (BW) 0-3 mm, transitional zone (TZ) 3-7 mm, bulk soil (BS) > 20 mm from the BW] and cast aggregates of a loess soil under a pear orchard. The dehydrogenase, β-glucosidase, protease, alkaline phosphomonoesterase, and acid phosphomonoesterase enzymes were assessed using standard methods. The functional diversity (catabolic potential) was assessed using the Average Well Color Development and Richness Index following the community level physiological profiling from Biolog Eco Plates. All measurements were done using soil from each compartment immediately after in situ sampling in spring. The enzymatic activites including dehydrogenase, protease, β-glucosidase and alkaline phosphomonoesterase were appreciably greater in the BW or casts than in BS and TZ. Conversely, acid phosphomonoesterase had the largest value in the BS. Average Well Color Development in both the TZ and the BS (0.98-0.94 A590 nm) were more than eight times higher than in the BWs and casts. The lowest richness index in the BS (15 utilized substrates) increased by 86-113% in all the other compartments. The PC1 in principal component analysis mainly differentiated the BWs and the TZ. Utilization of all substrate categories was the lowest in the BS. The PC2 differentiated the casts from the other compartments. The enhanced activity of a majority of the enzymes and increased microbial functional diversity in most earthworm-influenced compartments make the soils less vulnerable to degradation and thus increases the stability of ecologically relevant processes in the orchard ecosystem. PMID:27625645

  15. Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions

    PubMed Central

    Yokogawa, Mariko; Tsushima, Takashi; Noda, Nobuo N.; Kumeta, Hiroyuki; Enokizono, Yoshiaki; Yamashita, Kazuo; Standley, Daron M.; Takeuchi, Osamu; Akira, Shizuo; Inagaki, Fuyuhiko

    2016-01-01

    Regnase-1 is an RNase that directly cleaves mRNAs of inflammatory genes such as IL-6 and IL-12p40, and negatively regulates cellular inflammatory responses. Here, we report the structures of four domains of Regnase-1 from Mus musculus—the N-terminal domain (NTD), PilT N-terminus like (PIN) domain, zinc finger (ZF) domain and C-terminal domain (CTD). The PIN domain harbors the RNase catalytic center; however, it is insufficient for enzymatic activity. We found that the NTD associates with the PIN domain and significantly enhances its RNase activity. The PIN domain forms a head-to-tail oligomer and the dimer interface overlaps with the NTD binding site. Interestingly, mutations blocking PIN oligomerization had no RNase activity, indicating that both oligomerization and NTD binding are crucial for RNase activity in vitro. These results suggest that Regnase-1 RNase activity is tightly controlled by both intramolecular (NTD-PIN) and intermolecular (PIN-PIN) interactions. PMID:26927947

  16. Optical Detection of Enzymatic Activity and Inhibitors on Non-Covalently Functionalized Fluorescent Graphene Oxide.

    PubMed

    Kang, Tae Woog; Jeon, Su-Ji; Kim, Hye-In; Park, Jung Hyun; Yim, DaBin; Lee, Hye-Rim; Ju, Jong-Min; Kim, Man-Jin; Kim, Jong-Ho

    2016-05-24

    It has been of great interest to measure the activity of acetylcholinesterase (AChE) and its inhibitor, as AChE is known to accelerate the aggregation of the amyloid beta peptides that underlie Alzheimer's disease. Herein, we report the development of graphene oxide (GO) fluorescence-based biosensors for the detection of AChE activity and AChE inhibitors. To this end, GO was non-covalently functionalized with phenoxy-modified dextran (PhO-dex-GO) through hydrophobic interaction; the resulting GO showed excellent colloidal stability and intense fluorescence in various aqueous solutions as compared to pristine GO and the GO covalently functionalized with dextran. The fluorescence of PhO-dex-GO remarkably increased as AChE catalyzed the hydrolysis of acetylthiocholine (ATCh) to give thiocholine and acetic acid. It was found that the turn-on fluorescence response of PhO-dex-GO to AChE activity was induced by protonation of carboxyl groups on it from the product of the enzymatic hydrolysis reaction, acetic acid. On the basis of its turn-on fluorescence response, PhO-dex-GO was able to report kinetic and thermodynamic parameters involving a maximum velocity, a Michaelis constant, and an inhibition dissociation constant for AChE activity and inhibition. These parameters enable us to determine the activity of AChE and the efficiency of the inhibitor. PMID:27136042

  17. Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions.

    PubMed

    Yokogawa, Mariko; Tsushima, Takashi; Noda, Nobuo N; Kumeta, Hiroyuki; Enokizono, Yoshiaki; Yamashita, Kazuo; Standley, Daron M; Takeuchi, Osamu; Akira, Shizuo; Inagaki, Fuyuhiko

    2016-01-01

    Regnase-1 is an RNase that directly cleaves mRNAs of inflammatory genes such as IL-6 and IL-12p40, and negatively regulates cellular inflammatory responses. Here, we report the structures of four domains of Regnase-1 from Mus musculus-the N-terminal domain (NTD), PilT N-terminus like (PIN) domain, zinc finger (ZF) domain and C-terminal domain (CTD). The PIN domain harbors the RNase catalytic center; however, it is insufficient for enzymatic activity. We found that the NTD associates with the PIN domain and significantly enhances its RNase activity. The PIN domain forms a head-to-tail oligomer and the dimer interface overlaps with the NTD binding site. Interestingly, mutations blocking PIN oligomerization had no RNase activity, indicating that both oligomerization and NTD binding are crucial for RNase activity in vitro. These results suggest that Regnase-1 RNase activity is tightly controlled by both intramolecular (NTD-PIN) and intermolecular (PIN-PIN) interactions. PMID:26927947

  18. Seasonal and spatial distribution of extracellular enzymatic activities and microbial incorporation of dissolved organic substrates in marine sediments

    SciTech Connect

    Meyer-Reil, L.

    1987-08-01

    Seasonal and spatial distributions of extracellular enzymatic activities and microbial incorporations of dissolved organic substrates were followed in sediments of the brackish water Kiel Bight (Baltic Sea). Enzymatic hydrolysis of polymeric organic compounds was determined by means of fluorogenic substrates; incorporation of dissolved organic substrates into microbial biomass was measured by using tritiated substances (acetate, leucine, and thymidine). Based on a recently developed core injection technique, substrates were injected in microliter portions into undisturbed sediment cores. Enzymatic and incorporation activities underwent strong seasonal variations related to the enrichment of organic material in the sediment surface following sedimentation events. The input of the phytoplankton bloom during autumn caused stimulation of both enzymatic hydrolysis of polymeric organic compounds and microbial incorporation of dissolved organic substrates. Following input by spring phytoplankton bloom, mainly incorporation activities were stimulated. In late spring the development of the benthic fauna obviously greatly influenced microbial activities. During summer individual periods of high microbial activities were observed which might be traced back to short-term sedimentation events.

  19. 15 CFR 930.38 - Consistency determinations for activities initiated prior to management program approval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT FEDERAL CONSISTENCY WITH APPROVED COASTAL MANAGEMENT PROGRAMS Consistency for Federal Agency Activities § 930.38 Consistency determinations for... activities initiated prior to management program approval. 930.38 Section 930.38 Commerce and Foreign...

  20. Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugs.

    PubMed

    Andresen, Thomas L; Davidsen, Jesper; Begtrup, Mikael; Mouritsen, Ole G; Jørgensen, Kent

    2004-03-25

    An enzymatically activated liposome-based drug-delivery concept involving masked antitumor ether lipids (AELs) has been investigated. This concept takes advantage of the cytotoxic properties of AEL drugs as well as the membrane permeability enhancing properties of these molecules, which can lead to enhanced drug diffusion into cells. Three prodrugs of AELs (proAELs) have been synthesized and four liposome systems, consisting of these proAELs, were investigated for enzymatic degradation by secretory phospholipase A(2) (sPLA(2)), resulting in the release of AELs. The three synthesized proAELs were (R)-1-O-hexadecyl-2-palmitoyl-sn-glycero-3-phosphocholine (1-O-DPPC), (R)-1-O-hexadecyl-2-palmitoyl-sn-glycero-3-phosphoethanolamine poly(ethylene glycol)(350) (1-O-DPPE-PEG(350)), and 1-O-DPPE-PEG(2000) of which 1-O-DPPC was the main liposome component. All three phospholipids were synthesized from the versatile starting material (R)-O-benzyl glycidol. A phosphorylation method, employing methyl dichlorophosphate, was developed and applied in the synthesis of two analogues of (R)-1-O-hexadecyl-2-palmitoyl-sn-glycero-3-phosphoethanolamine poly(ethylene glycol). Differential scanning calorimetry has been used to investigate the phase behavior of the lipid bilayers. A release study, employing calcein encapsulated in non-hydrolyzable 1,2-bis-O-octadecyl-sn-glycero-3-phosphocholine (D-O-SPC) liposomes, showed that proAELs, activated by sPLA(2), perturb membranes because of the detergent-like properties of the released hydrolysis products. A hemolysis investigation was conducted on human red blood cells, and the results demonstrate that proAEL liposomes display a very low hemotoxicity, which has been a major obstacle for using AELs in cancer therapy. The results suggest a possible way of combining a drug-delivery and prodrug concept in a single liposome system. Our investigation of the permeability-enhancing properties of the AEL molecules imply that by encapsulating conventional

  1. Cell-free extracellular enzymatic activity is linked to seasonal temperature changes: a case study in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Baltar, Federico; Legrand, Catherine; Pinhassi, Jarone

    2016-05-01

    Extracellular enzymatic activities (EEAs) are a crucial step in the degradation of organic matter. Dissolved (cell-free) extracellular enzymes in seawater can make up a significant contribution of the bulk EEA. However, the factors controlling the proportion of dissolved EEA in the marine environment remain unknown. Here we studied the seasonal changes in the proportion of dissolved relative to total EEA (of alkaline phosphatase (APase), β-glucosidase (BGase), and leucine aminopeptidase (LAPase)), in the Baltic Sea for 18 months. The proportion of dissolved EEA ranged between 37 and 100, 0 and 100, and 34 and 100 % for APase, BGase, and LAPase, respectively. A consistent seasonal pattern in the proportion of dissolved EEA was found among all the studied enzymes, with values up to 100 % during winter and < 40 % during summer. A significant negative relation was found between the proportion of dissolved EEA and temperature, indicating that temperature might be a critical factor controlling the proportion of dissolved relative to total EEA in marine environments. Our results suggest a strong decoupling of hydrolysis rates from microbial dynamics in cold waters. This implies that under cold conditions, cell-free enzymes can contribute to substrate availability at large distances from the producing cell, increasing the dissociation between the hydrolysis of organic compounds and the actual microbes producing the enzymes. This might also suggest a potential effect of global warming on the hydrolysis of organic matter via a reduction of the contribution of cell-free enzymes to the bulk hydrolytic activity.

  2. Membrane Phospholipid Augments Cytochrome P4501a Enzymatic Activity by Modulating Structural Conformation during Detoxification of Xenobiotics

    PubMed Central

    Ghosh, Manik C.; Ray, Arun K.

    2013-01-01

    Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD) in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment. PMID:23469105

  3. Effect of compatible and noncompatible osmolytes on the enzymatic activity and thermal stability of bovine liver catalase.

    PubMed

    Sepasi Tehrani, H; Moosavi-Movahedi, A A; Ghourchian, H; Ahmad, F; Kiany, A; Atri, M S; Ariaeenejad, Sh; Kavousi, K; Saboury, A A

    2013-12-01

    Catalase is an important antioxidant enzyme that catalyzes the disproportionation of H2O2 into harmless water and molecular oxygen. Due to various applications of the enzyme in different sectors of industry as well as medicine, the enhancement of stability of the enzyme is important. Effect of various classes of compatible as well as noncompatible osmolytes on the enzymatic activity, disaggregation, and thermal stability of bovine liver catalase have been investigated. Compatible osmolytes, proline, xylitol, and valine destabilize the denatured form of the enzyme and, therefore, increase its disaggregation and thermal stability. The increase in the thermal stability is accompanied with a slight increase of activity in comparison to the native enzyme at 25 °C. On the other hand, histidine, a noncompatible osmolyte stabilizes the denatured form of the protein and hence causes an overall decrease in the thermal stability and enzymatic activity of the enzyme. Chemometric results have confirmed the experimental results and have provided insight into the distribution and number of mole fraction components for the intermediates. The increase in melting temperature (Tm) and enzymatic rate could be further amplified by the intrinsic effect of temperature enhancement on the enzymatic activity for the industrial purposes. PMID:23249140

  4. Enzymatic properties of immobilized Alcaligenes faecalis cells with cell-associated beta-glucosidase activity

    SciTech Connect

    Wheatly, M.A.; Phillips, C.R.

    1984-06-01

    Enzymatic properties of Alcaligenes faecalis cells immobilized in polyacrylamide were characterized and compared with those reported for the extracted enzyme, and with those measured for free cells. Many of the properties reflected those of the extracted enzyme rather than those measured in the free whole cells prior to immobilization, suggesting cell disruption during immobilization. These properties included the pH activity profile, a slightly broader pH stability profile, and the activation energy. Electron micrographs showed evidence of cell debris among the polymer matrix. The immobilized cells were not viable, and did not consume glucose. Thermal stability was less after immobilization with a half-line of 16 h at 45 degrees C, and 3.5 h at 50 degrees C. The immobilized preparation was more stable when stored lyophilized rather than in buffer, losing 23 and 52% activity, respectively, after six months. The enzyme was irreversibly inhibited by both acetate and citrate buffers. If the immobilized enzyme is to be used in conjunction with cellulases from Trichoderma reesei for cellulase saccharification, the optimal conditions would be pH 5.5 and 45 degrees C in a buffer containing no carboxylic acid groups.

  5. Topical formulations with superoxide dismutase: influence of formulation composition on physical stability and enzymatic activity.

    PubMed

    Di Mambro, Valéria M; Borin, Maria F; Fonseca, Maria J V

    2003-04-24

    Three different topical formulations were supplemented with superoxide dismutase (SOD) and evaluated concerning physical and chemical stabilities in order to determine the most stable formulation that would maintain SOD activity. Physical stability was evaluated by storing the formulation at room temperature, and at 37 and 45 degrees C for 28 days. Samples were collected at 7-day intervals for assessment of rheological behavior. Chemical stability was evaluated by the measurement of enzymatic activity in formulations stored at room temperature and at 45 degrees C for 75 days. The formulations showed a pseudoplastic behavior, with a flow index of less than 1. There was no significant difference in the initial values of flow index, hysteresis loop or minimum apparent viscosity. The simple emulsion and the one stabilized with hydroxyethylcellulose showed decreased viscosity by the 21st day and with higher temperature, but no significant changes concerning the presence of SOD. Although there were no significant changes concerning storage time or temperature, the formulation stabilized with hydroxyethylcellulose showed a marked loss of SOD activity. The addition of SOD to the formulations studied did not affect their physical stability. Simple emulsions or emulsions stabilized with carboxypolymethylene seem to be better bases for enzyme addition than emulsion stabilized with hydroxyethylcellulose. PMID:12852452

  6. Bioengineering of stainless steel surface by covalent immobilization of enzymes. Physical characterization and interfacial enzymatic activity.

    PubMed

    Caro, Anne; Humblot, Vincent; Méthivier, Christophe; Minier, Michel; Barbes, Lucica; Li, Joachim; Salmain, Michèle; Pradier, Claire-Marie

    2010-09-01

    Two hydrolytic enzymes, namely lysozyme and trypsin, were covalently immobilized onto stainless steel surfaces using wet chemistry processes. The immobilization strategy took advantage of the spontaneous physisorption of the polymer poly(ethylene imine) (PEI) onto stainless steel to yield a firmly attached, thin organic layer containing a high density of primary amine functions. Both enzymes were then covalently grafted to the surface via a glutaraldehyde cross-linker. Alternatively, a thicker underlayer of PEI was chemisorbed by cross-linking two PEI layers by glutaraldehyde. The effective presence of both enzymes on the stainless steel surfaces and their relative amount were assessed by immunochemical assays employing specific anti-enzyme antibodies. Eventually, the hydrolytic activity of the immobilized enzymes was evaluated by local enzymatic tests with suitable substrates. This work demonstrates that, although the amount of enzymes did not vary significantly with the underlayer thickness, their hydrolytic activity could be much improved by increasing the distance from the oxide surface and, likely, by favoring their accessibility. Our data suggest that the immobilization of enzymes on solid oxide surfaces is feasible and efficient, and that the enzymes retain catalytic activity. It may thus provide a promising route towards biofilm-resistant materials. PMID:20566201

  7. Downregulation of Rubisco Activity by Non-enzymatic Acetylation of RbcL.

    PubMed

    Gao, Xiang; Hong, Hui; Li, Wei-Chao; Yang, Lili; Huang, Jirong; Xiao, You-Li; Chen, Xiao-Ya; Chen, Gen-Yun

    2016-07-01

    Atmospheric carbon dioxide (CO2) is assimilated by the most abundant but sluggish enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Here we show that acetylation of lysine residues of the Rubisco large subunit (RbcL), including Lys201 and Lys334 in the active sites, may be an important mechanism in the regulation of Rubisco activities. It is well known that Lys201 reacts with CO2 for carbamylation, a prerequisite for both carboxylase and oxygenase activities of Rubisco, and Lys334 contacts with ribulose-1,5-bisphosphate (RuBP). The acetylation level of RbcL in plants is lower during the day and higher at night, inversely correlating with the Rubisco carboxylation activity. A search of the chloroplast proteome database did not reveal a canonical acetyltransferase; instead, we found that a plant-derived metabolite, 7-acetoxy-4-methylcoumarin (AMC), can non-enzymatically acetylate both native Rubisco and synthesized RbcL peptides spanning Lys334 or Lys201. Furthermore, lysine residues were modified by synthesized 4-methylumbelliferone esters with different electro- and stereo-substitutes, resulting in varied Rubisco activities. 1-Chloroethyl 4-methylcoumarin-7-yl carbonate (ClMC) could transfer the chloroethyl carbamate group to lysine residues of RbcL and completely inactivate Rubisco, whereas bis(4-methylcoumarin-7-yl) carbonate (BMC) improved Rubisco activity through increasing the level of Lys201 carbamylation. Our findings indicate that RbcL acetylation negatively regulates Rubisco activity, and metabolic derivatives can be designed to dissect and improve CO2 fixation efficiency of plants through lysine modification. PMID:27109602

  8. 29 CFR 779.205 - Enterprise must consist of “related activities.”

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Enterprise must consist of ârelated activities.â 779.205... STANDARDS ACT AS APPLIED TO RETAILERS OF GOODS OR SERVICES Employment to Which the Act May Apply; Enterprise Coverage Related Activities § 779.205 Enterprise must consist of “related activities.” The enterprise...

  9. 29 CFR 779.205 - Enterprise must consist of “related activities.”

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Enterprise must consist of ârelated activities.â 779.205... STANDARDS ACT AS APPLIED TO RETAILERS OF GOODS OR SERVICES Employment to Which the Act May Apply; Enterprise Coverage Related Activities § 779.205 Enterprise must consist of “related activities.” The enterprise...

  10. 29 CFR 779.205 - Enterprise must consist of “related activities.”

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Enterprise must consist of ârelated activities.â 779.205... STANDARDS ACT AS APPLIED TO RETAILERS OF GOODS OR SERVICES Employment to Which the Act May Apply; Enterprise Coverage Related Activities § 779.205 Enterprise must consist of “related activities.” The enterprise...

  11. 29 CFR 779.205 - Enterprise must consist of “related activities.”

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Enterprise must consist of ârelated activities.â 779.205... STANDARDS ACT AS APPLIED TO RETAILERS OF GOODS OR SERVICES Employment to Which the Act May Apply; Enterprise Coverage Related Activities § 779.205 Enterprise must consist of “related activities.” The enterprise...

  12. 29 CFR 779.205 - Enterprise must consist of “related activities.”

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Enterprise must consist of ârelated activities.â 779.205... STANDARDS ACT AS APPLIED TO RETAILERS OF GOODS OR SERVICES Employment to Which the Act May Apply; Enterprise Coverage Related Activities § 779.205 Enterprise must consist of “related activities.” The enterprise...

  13. Development of APE1 enzymatic DNA repair assays: low APE1 activity is associated with increase lung cancer risk.

    PubMed

    Sevilya, Ziv; Leitner-Dagan, Yael; Pinchev, Mila; Kremer, Ran; Elinger, Dalia; Lejbkowicz, Flavio; Rennert, Hedy S; Freedman, Laurence S; Rennert, Gad; Paz-Elizur, Tamar; Livneh, Zvi

    2015-09-01

    The key role of DNA repair in removing DNA damage and minimizing mutations makes it an attractive target for cancer risk assessment and prevention. Here we describe the development of a robust assay for apurinic/apyrimidinic (AP) endonuclease 1 (APE1; APEX1), an essential enzyme involved in the repair of oxidative DNA damage. APE1 DNA repair enzymatic activity was measured in peripheral blood mononuclear cell protein extracts using a radioactivity-based assay, and its association with lung cancer was determined using conditional logistic regression with specimens from a population-based case-control study with 96 lung cancer cases and 96 matched control subjects. The mean APE1 enzyme activity in case patients was 691 [95% confidence interval (CI) = 655-727] units/ng protein, significantly lower than in control subjects (mean = 793, 95% CI = 751-834 units/ng protein, P = 0.0006). The adjusted odds ratio for lung cancer associated with 1 SD (211 units) decrease in APE1 activity was 2.0 (95% CI = 1.3-3.1; P = 0.002). Comparison of radioactivity- and fluorescence-based assays showed that the two are equivalent, indicating no interference by the fluorescent tag. The APE1Asp148Glu SNP was associated neither with APE1 enzyme activity nor with lung cancer risk. Taken together, our results indicate that low APE1 activity is associated with lung cancer risk, consistent with the hypothesis that 'bad DNA repair', rather than 'bad luck', is involved in cancer etiology. Such assays may be useful, along with additional DNA repair biomarkers, for risk assessment of lung cancer and perhaps other cancers, and for selecting individuals to undergo early detection techniques such as low-dose CT. PMID:26045303

  14. Formation of marine snow and enhanced enzymatic activities in oil-contaminated seawater

    NASA Astrophysics Data System (ADS)

    Ziervogel, K.; McKay, L.; Yang, T.; Rhodes, B.; Nigro, L.; Gutierrez, T.; Teske, A.; Arnosti, C.

    2010-12-01

    The fate of oil spilled into the ocean depends on its composition, as well as on biological, chemical, and physical characteristics of the spill site. We investigated the effects of oil addition from the Deepwater Horizon (DH) spill on otherwise uncontaminated water collected close to the spill site. Incubation on a roller table mimicked the physical dynamics of natural seawater, leading to the formation of marine snow-oil aggregates. We measured the enzymatic activities of heterotrophic microbes associated with the aggregates and in the surrounding water, and assessed microbial population and community composition as oil-marine snow aggregates formed and aged in the water. Surface seawater taken near the spill site in May 2010 that had no visible crude oil was incubated in 1-l glass bottles with (oil-bottles) and without (no-oil bottles) a seawater-oil mixture collected from the same site. In the oil-bottles formation of brownish, densely packed marine snow (2-3 cm diameter) was observed within the first hour of the roller table incubation. In contrast no-oil bottles showed aggregate formation only after 3 days, and aggregates were almost transparent, less abundant, and smaller in size (< 1cm diameter). Subsamples of the water surrounding the aggregates were taken throughout 21 days of the roller table incubation, and analyzed for bacterial abundance and community structure as well as the activities of hydrolytic enzymes that are used by heterotrophic bacteria to degrade organic matter. We monitored oil-degrading activities with MUF-stearate and -butyrate, and also measured b-glucosidase, alkaline phosphatase, aminopeptidase, and six different polysaccharide hydrolase activities. Enzymatic activities were up to one order of magnitude higher in the oil-bottles compared with the no-oil bottles throughout the entire incubation time. Butyrate hydrolysis was elevated throughout the time course of the incubation, and stearate hydrolysis was particularly high over the

  15. Green Tea and Bone Marrow Transplantation: From Antioxidant Activity to Enzymatic and Multidrug-resistance Modulation.

    PubMed

    Peluso, Ilaria; Palmery, Maura; Vitalone, Annabella

    2016-10-25

    Epigallocatechin-3-gallate (EGCG), the main flavonoid of green tea (GT), could play an active role in the prevention of oxidative-stress-related diseases, such as hematologic malignancies. Some effects of EGCG are not imputable to antioxidant activity, but involve modulation of antioxidant enzymes and uric acid (UA) levels. The latter is the major factor responsible of the plasma non-enzymatic antioxidant capacity (NEAC). However, hyperuricemia is a frequent clinical feature caused by tumor lysis syndrome or cyclosporine side effects, both before and after bone marrow transplantation (BMT). Besides this, food-drug interactions could be associated with GT consumption and could have clinical implications. The molecular mechanisms involved in the redox and drug metabolizing/transporting pathways were discussed, with particular reference to the potential role of GT and EGCG in BMT. Moreover, on reviewing data on NEAC, isoprostanes, uric acid, and various enzymes from human studies on GT, its extract, or EGCG, an increase in NEAC, without effect on isoprostanes, and contrasting results on UA and enzymes were observed. Currently, few and contrasting available evidences suggest caution for GT consumption in BMT patients and more studies are needed to better understand the potential impact of EGCG on oxidative stress and metabolizing/transporting systems. PMID:26047551

  16. Molecular characterization and enzymatic activity of laccases in two Pleurotus spp. with different pathogenic behaviour.

    PubMed

    Punelli, Federico; Reverberi, Massimo; Porretta, Daniele; Nogarotto, Sara; Fabbri, Anna A; Fanelli, Corrado; Urbanelli, Sandra

    2009-03-01

    Pleurotus eryngii and P. ferulae, two species belonging to the P. eryngii complex, synthesize laccases, ligninolytic enzymes that play a role in the host-pathogen interaction in the first step of infection. Ecological studies have shown that although both fungi have been recognized as saprophytes, P. eryngii weakly pathogenic when colonizing the roots and stems of Eryngium campestre, whereas P. ferulae is mostly pathogenic to Ferula communis. The paper describes the genomic organization of four putative laccase genes (lac1, lac2, lac3, and lac5-like gene; gene names were assigned on the basis of sequence homologies) of P. eryngii and P. ferulae. The mRNA expression and enzymatic activity of the laccases were analysed under culture conditions where a source of lignin (wheat bran) or lyophilized roots of E. campestre or F. communis were present. These experiments indicated that the four lac-like genes were differentially regulated in the two mushrooms. Specifically, the addition of the lyophilized roots of the respective host plant to the culture media induced an advance in the mRNA expression of the four lac-like genes and a seven-fold higher total laccase activity in P. ferulae than in P. eryngii. The results obtained are discussed in relation to the possible role of laccases in the interaction of P. eryngii and P. ferulae with their respective host. PMID:19116166

  17. A 96-well electrochemical method for the screening of enzymatic activities.

    PubMed

    Abdellaoui, Sofiène; Noiriel, Alexandre; Henkens, Robert; Bonaventura, Celia; Blum, Loïc J; Doumèche, Bastien

    2013-04-01

    The rapid electrochemical screening of enzyme activities in bioelectronics is still a challenging issue. In order to solve this problem, we propose to use a 96-well electrochemical assay. This system is composed of 96 screen-printed electrodes on a printed circuit board adapted from a commercial system (carbon is used as the working electrode and silver chloride as the counter/reference electrode). The associated device allows for the measurements on the 96 electrodes to be performed within a few seconds. In this work, we demonstrate the validity of the screening method with the commercial laccase from the fungus Trametes versicolor. The signal-to-noise ratio (S/N) is found to be the best way to analyze the electrochemical signals. The S/N follows a saturation-like mechanism with a dynamic linear range of two decades ranging from 0.5 to 75 ng of laccase (corresponding to enzymatic activities from 62 × 10(-6) to 9.37 × 10(-3) μmol min(-1)) and a sensitivity of 3027 μg(-1) at +100 mV versus Ag/AgCl. Laccase inhibitors (azide and fluoride anions), pH optima, and interfering molecules could also be identified within a few minutes. PMID:23461701

  18. Proteomic analysis of tylosin-resistant Mycoplasma gallisepticum reveals enzymatic activities associated with resistance.

    PubMed

    Xia, Xi; Wu, Congming; Cui, Yaowen; Kang, Mengjiao; Li, Xiaowei; Ding, Shuangyang; Shen, Jianzhong

    2015-01-01

    Mycoplasma gallisepticum is a significant pathogenic bacterium that infects poultry, causing chronic respiratory disease and sinusitis in chickens and turkeys, respectively. M. gallisepticum infection poses a substantial economic threat to the poultry industry, and this threat is made worse by the emergence of antibiotic-resistant strains. The mechanisms of resistance are often difficult to determine; for example, little is known about antibiotic resistance of M. gallisepticum at the proteome level. In this study, we performed comparative proteomic analyses of an antibiotic (tylosin)-resistant M. gallisepticum mutant and a susceptible parent strain using a combination of two-dimensional differential gel electrophoresis and nano-liquid chromatography-quadrupole-time of flight mass spectrometry. Thirteen proteins were identified as differentially expressed in the resistant strain compared to the susceptible strain. Most of these proteins were related to catalytic activity, including catalysis that promotes the formylation of initiator tRNA and energy production. Elongation factors Tu and G were over-expressed in the resistant strains, and this could promote the binding of tRNA to ribosomes and catalyze ribosomal translocation, the coordinated movement of tRNA, and conformational changes in the ribosome. Taken together, our results indicate that M. gallisepticum develops resistance to tylosin by regulating associated enzymatic activities. PMID:26584633

  19. Single-molecule kinetics under force: probing protein folding and enzymatic activity with optical tweezers

    NASA Astrophysics Data System (ADS)

    Wong, Wesley

    2010-03-01

    Weak non-covalent bonds between and within single molecules govern many aspects of biological structure and function (e.g. DNA base-paring, receptor-ligand binding, protein folding, etc.) In living systems, these interactions are often subject to mechanical forces, which can greatly alter their kinetics and activity. My group develops and applies novel single-molecule manipulation techniques to explore and quantify these force-dependent kinetics. Using optical tweezers, we have quantified the force-dependent unfolding and refolding kinetics of different proteins, including the cytoskeletal protein spectrin in collaboration with E. Evans's group [1], and the A2 domain of the von Willebrand factor blood clotting protein in collaboration with T. Springer's group [2]. Furthermore, we have studied the kinetics of the ADAMTS13 enzyme acting on a single A2 domain, and have shown that physiolgical forces in the circulation can act as a cofactor for enzymatic cleavage, regulating hemostatic activity [2]. References: 1. E. Evans, K. Halvorsen, K. Kinoshita, and W.P. Wong, Handbook of Single Molecule Biophysics, P. Hinterdorfer, ed., Springer (2009). 2. X. Zhang, K. Halvorsen, C.-Z. Zhang, W.P. Wong, and T.A. Springer, Science 324 (5932), 1330-1334 (2009).

  20. α-Galactosidase-A Loaded-Nanoliposomes with Enhanced Enzymatic Activity and Intracellular Penetration.

    PubMed

    Cabrera, Ingrid; Abasolo, Ibane; Corchero, José L; Elizondo, Elisa; Gil, Pilar Rivera; Moreno, Evelyn; Faraudo, Jordi; Sala, Santi; Bueno, Dolores; González-Mira, Elisabet; Rivas, Merche; Melgarejo, Marta; Pulido, Daniel; Albericio, Fernando; Royo, Miriam; Villaverde, Antonio; García-Parajo, Maria F; Schwartz, Simó; Ventosa, Nora; Veciana, Jaume

    2016-04-01

    Lysosomal storage disorders (LSD) are caused by lysosomal dysfunction usually as a consequence of deficiency of a single enzyme required for the metabolism of macromolecules, such as lipids, glycoproteins, and mucopolysaccharides. For instance, the lack of α-galactosidase A (GLA) activity in Fabry disease patients causes the accumulation of glycosphingolipids in the vasculature leading to multiple organ pathology. Enzyme replacement therapy, which is the most common treatment of LSD, exhibits several drawbacks mainly related to the instability and low efficacy of the exogenously administered therapeutic enzyme. In this work, the unprecedented increased enzymatic activity and intracellular penetration achieved by the association of a human recombinant GLA to nanoliposomes functionalized with Arginine-Glycine-Aspartic acid (RGD) peptides is reported. Moreover, these new GLA loaded nanoliposomes lead to a higher efficacy in the reduction of the GLA substrate named globotriasylceramide in a cellular model of Fabry disease, than that achieved by the same concentration of the free enzyme. The preparation of these new liposomal formulations by DELOS-SUSP, based on the depressurization of a CO2 -expanded liquid organic solution, shows the great potential of this CO2 -based methodology for the one-step production of protein-nanoliposome conjugates as bioactive nanomaterials with therapeutic interest. PMID:26890358

  1. Enzymatically synthesized inorganic polymers as morphogenetically active bone scaffolds: application in regenerative medicine.

    PubMed

    Wang, Xiaohong; Schröder, Heinz C; Müller, Werner E G

    2014-01-01

    In recent years a paradigm shift in understanding of human bone formation has occurred that starts to change current concepts in tissue engineering of bone and cartilage. New discoveries revealed that fundamental steps in biomineralization are enzyme driven, not only during hydroxyapatite deposition, but also during initial bioseed formation, involving the transient deposition and subsequent transformation of calcium carbonate to calcium phosphate mineral. The principal enzymes mediating these reactions, carbonic anhydrase and alkaline phosphatase, open novel targets for pharmacological intervention of bone diseases like osteoporosis, by applying compounds acting as potential activators of these enzymes. It is expected that these new findings will give an innovation boost for the development of scaffolds for bone repair and reconstruction, which began with the use of bioinert materials, followed by bioactive materials and now leading to functional regenerative tissue units. These new developments have become possible with the discovery of the morphogenic activity of bioinorganic polymers, biocalcit, bio-polyphosphate and biosilica that are formed by a biogenic, enzymatic mechanism, a driving force along with the development of novel rapid-prototyping three-dimensional (3D) printing methods and bioprinting (3D cell printing) techniques that may allow a fabrication of customized implants for patients suffering in bone diseases in the future. PMID:25376489

  2. Phenylpropanoid Glycoside Analogues: Enzymatic Synthesis, Antioxidant Activity and Theoretical Study of Their Free Radical Scavenger Mechanism

    PubMed Central

    López-Munguía, Agustín; Hernández-Romero, Yanet; Pedraza-Chaverri, José; Miranda-Molina, Alfonso; Regla, Ignacio; Martínez, Ana; Castillo, Edmundo

    2011-01-01

    Phenylpropanoid glycosides (PPGs) are natural compounds present in several medicinal plants that have high antioxidant power and diverse biological activities. Because of their low content in plants (less than 5% w/w), several chemical synthetic routes to produce PPGs have been developed, but their synthesis is a time consuming process and the achieved yields are often low. In this study, an alternative and efficient two-step biosynthetic route to obtain natural PPG analogues is reported for the first time. Two galactosides were initially synthesized from vanillyl alcohol and homovanillyl alcohol by a transgalactosylation reaction catalyzed by Kluyveromyces lactis β-galactosidase in saturated lactose solutions with a 30%–35% yield. To synthesize PPGs, the galactoconjugates were esterified with saturated and unsaturated hydroxycinnamic acid derivatives using Candida antarctica Lipase B (CaL-B) as a biocatalyst with 40%–60% yields. The scavenging ability of the phenolic raw materials, intermediates and PPGs was evaluated by the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) method. It was found that the biosynthesized PPGs had higher scavenging abilities when compared to ascorbic acid, the reference compound, while their antioxidant activities were found similar to that of natural PPGs. Moreover, density functional theory (DFT) calculations were used to determine that the PPGs antioxidant mechanism proceeds through a sequential proton loss single electron transfer (SPLET). The enzymatic process reported in this study is an efficient and versatile route to obtain PPGs from different phenylpropanoid acids, sugars and phenolic alcohols. PMID:21674039

  3. Enzymatic activity in the rhizosphere of Spartina maritima: potential contribution for phytoremediation of metals.

    PubMed

    Reboreda, Rosa; Caçador, Isabel

    2008-02-01

    Extracellular enzymatic activity (EEA) of five enzymes (peroxidase, phenol oxidase, beta-glucosidase, beta-N-acetylglucosaminidase and acid phosphatase) was analysed in sediments colonised by Spartina maritima in two salt marshes (Rosário and Pancas) of the Tagus estuary (Portugal) with different characteristics such as sediment parameters and metal contaminant levels. Our aim was a better understanding of the influence of the halophyte on microbial activity in the rhizosphere under different site conditions, and its potential consequences for metal cycling and phytoremediation in salt marshes. Acid phosphatase and beta-N-acetylglucosaminidase presented significantly higher EEA in Rosário than in Pancas, whereas the opposite occurred for peroxidase. This was mainly attributed to differences in organic matter between the two sites. A positive correlation between root biomass and EEA of hydrolases (beta-glucosidase, beta-N-acetylglucosaminidase and acid phosphatase) was found, indicating a possible influence of the halophyte in sediment microbial function. This would potentially affect metal cycling in the rhizosphere through microbial reactions. PMID:17935772

  4. Determination of myoglobin based on its enzymatic activity by stopped-flow spectrophotometry

    NASA Astrophysics Data System (ADS)

    Zheng, Qi; Liu, Zhihong; Cai, Ruxiu

    2005-04-01

    A new method has been developed for the determination of myoglobin (Mb) based on its enzymatic activity for the oxidation of o-phenylenediamine (OPDA) with hydrogen peroxide. Stopped-flow spectrophotometry was used to study the kinetic behavior of the oxidation reaction. The catalytic activity of Mb was compared to other three kinds of catalyst. The time dependent absorbance of the reaction product, 2,3-diamimophenazine (DAPN), at a wavelength of 426 nm was recorded. The initial reaction rate obtained at 40 °C was found to be proportional to the concentration of Mb in the range of 1.0 × 10 -6 to 4.0 × 10 -9 mol L -1. The detection limit of Mb was found to be 9.93 × 10 -10 mol L -1. The relative standard deviations were within 5% for the determination of different concentrations of Mb. Excess of bovine serum albumin (BSA), Ca(II), Mg(II), Cu(II), glucose, caffeine, lactose and uric acid did not interfere.

  5. Proteomic analysis of tylosin-resistant Mycoplasma gallisepticum reveals enzymatic activities associated with resistance

    PubMed Central

    Xia, Xi; Wu, Congming; Cui, Yaowen; Kang, Mengjiao; Li, Xiaowei; Ding, Shuangyang; Shen, Jianzhong

    2015-01-01

    Mycoplasma gallisepticum is a significant pathogenic bacterium that infects poultry, causing chronic respiratory disease and sinusitis in chickens and turkeys, respectively. M. gallisepticum infection poses a substantial economic threat to the poultry industry, and this threat is made worse by the emergence of antibiotic-resistant strains. The mechanisms of resistance are often difficult to determine; for example, little is known about antibiotic resistance of M. gallisepticum at the proteome level. In this study, we performed comparative proteomic analyses of an antibiotic (tylosin)-resistant M. gallisepticum mutant and a susceptible parent strain using a combination of two-dimensional differential gel electrophoresis and nano-liquid chromatography-quadrupole-time of flight mass spectrometry. Thirteen proteins were identified as differentially expressed in the resistant strain compared to the susceptible strain. Most of these proteins were related to catalytic activity, including catalysis that promotes the formylation of initiator tRNA and energy production. Elongation factors Tu and G were over-expressed in the resistant strains, and this could promote the binding of tRNA to ribosomes and catalyze ribosomal translocation, the coordinated movement of tRNA, and conformational changes in the ribosome. Taken together, our results indicate that M. gallisepticum develops resistance to tylosin by regulating associated enzymatic activities. PMID:26584633

  6. Three in one: Identification, expression and enzymatic activity of lysozymes in amphioxus.

    PubMed

    Xu, Na; Pan, Junli; Liu, Shousheng; Xue, Qinggang; Zhang, Shicui

    2014-10-01

    The lysozymes identified so far in animals belong to the g-type, c-type, and i-type. Vertebrate animals possess only the former two types, i.e., g- and c-types, while all the three types have been reported in invertebrates. Here we demonstrate that (1) three cDNAs that encode g-, c-, and i-type lysozymes, respectively, were identified in a single species of the amphioxus Branchiostoma japonicum; (2) all the 3-type genes displayed distinct tissue-specific expression pattern; (3) recombinant g-, c-, and i-type lysozymes all exhibited enzymatic activities; and (4) native g-, c-, and i-type lysozymes were identified in the different tissues of amphioxus. Collectively, these results suggest the presence of all the 3-type lysozymes in a single animal species, first such data ever reported. The presence of biologically active i-type lysozyme in amphioxus also suggests that i-type lysozyme gene is retained at least in Protochordata, contrasting to the previous proposal that i-type lysozyme gene has been lost in a common ancestor of all chordates. PMID:24968076

  7. Angiotensin-converting enzyme inhibitory and antioxidant activities of enzymatically synthesized phenolic and vitamin glycosides.

    PubMed

    Charles, Rajachristu Einstein; Ponrasu, Thangavel; Sivakumar, Ramaiah; Divakar, Soundar

    2009-03-01

    Amyloglucosidase from Rhizopus mould and beta-glucosidase from sweet almond were employed for the preparation of phenolic and vitamin glycosides of vanillin, N-vanillylnonanamide, DL-dopa, dopamine, curcumin, alpha-tocopherol (vitamin E), pyridoxine (vitamin B(6)), ergocalciferol (vitamin D(2)), thiamin (vitamin B(1)) and riboflavin (vitamin B(2)). Approx. 20 enzymatically prepared phenolic and vitamin glycosides were subjected to ACE (angiotensin-converting enzyme) inhibition activity measurements, and 14 glycosides were tested for antioxidant activities. Both phenolic and vitamin glycosides exhibited IC(50) values for ACE inhibition in the 0.52+/-0.03-3.33+/-0.17 mM range and antioxidant activities ranging from 0.8+/-0.04 to 1.18+/-0.06 mM. Comparable ACE inhibition values were observed between free phenols and vitamin glycosides. However, antioxidant activities of glycosides were, in general, lesser than those of free phenols. Best IC(50) value for ACE inhibition were observed for 11-O-(D-fructofuranosyl)thiamin (0.52+/-0.03 mM), 3-hydroxy-4-O-(6-D-sorbitol)phenylalanine (0.56+/-0.03 mM), 4-O-(beta-D-glucopyranosyl)vanillin (0.61+/-0.03 mM), 4-O-(D-galactopyranosyl)vanillin (0.61+/-0.03 mM) and pyridoxine-D-glucoside (0.84+/-0.04 mM). Similarly, best IC(50) values for antioxidant activity were observed for 1,7-O-(bis-beta-D-glucopyranosyl)curcumin (0.8+/-0.04 mM), 4-O-(beta-D-glucopyranosyl)vanillin (0.9+/-0.05 mM), 3-hydroxy-4-O-(beta-D-galactopyranosyl-(1'-->4)beta-D-glucopyranosyl)phenylalanine (0.9+/-0.05 mM), 20-O-(D-glucopyranosyl)ergocalciferol (0.9+/-0.05 mM) and dopamine-D-galactoside (0.93+/-0.05 mM). PMID:18547170

  8. Highly efficient recombinant production and purification of streptococcal cysteine protease streptopain with increased enzymatic activity.

    PubMed

    Lane, Michael D; Seelig, Burckhard

    2016-05-01

    Streptococcus pyogenes produces the cysteine protease streptopain (SpeB) as a critical virulence factor for pathogenesis. Despite having first been described seventy years ago, this protease still holds mysteries which are being investigated today. Streptopain can cleave a wide range of human proteins, including immunoglobulins, the complement activation system, chemokines, and structural proteins. Due to the broad activity of streptopain, it has been challenging to elucidate the functional results of its action and precise mechanisms for its contribution to S. pyogenes pathogenesis. To better study streptopain, several expression and purification schemes have been developed. These methods originally involved isolation from S. pyogenes culture but were more recently expanded to include recombinant Escherichia coli expression systems. While substantially easier to implement, the latter recombinant approach can prove challenging to reproduce, often resulting in mostly insoluble protein and poor purification yields. After extensive optimization of a wide range of expression and purification conditions, we applied the autoinduction method of protein expression and developed a two-step column purification scheme that reliably produces large amounts of purified soluble and highly active streptopain. This method reproducibly yielded 3 mg of streptopain from 50 mL of expression culture at >95% purity, with an activity of 5306 ± 315 U/mg, and no remaining affinity tags or artifacts from recombinant expression. This improved method therefore enables the facile production of the important virulence factor streptopain at higher yields, with no purification scars that might bias functional studies, and with an 8.1-fold increased enzymatic activity compared to previously described procedures. PMID:26773742

  9. Tissue-specific bioenergetic effects and increased enzymatic activities following acute sublethal peroral exposure to cyanide in the mallard duck.

    PubMed

    Ma, J; Pritsos, C A

    1997-02-01

    Protection of wildlife and in particular migratory birds, which are protected by the Migratory Bird Treaty Act, from cyanide waste in and around gold mining operations is an important environmental issue. We have investigated the bioenergetic effects of sublethal peroral cyanide exposure using the mallard duck (Anus platyrhynchos) as a model migratory bird. At cyanide concentrations well below levels considered safe by the mining industry and some regulatory agencies (50 ppm weak acid dissociable (WAD) cyanide) significant depletions of heart, liver, and brain tissue ATP levels were observed. Tissue ATP levels were restored to normal by 24 hr postexposure. Rhodanese and 3-mercaptopyruvate sulfurtransferase activities were determined in these tissues both for basal activity and post-cyanide exposure. Only brain tissue showed increased enzymatic activity following cyanide exposure, suggesting tissue-specific regulation of these enzymatic activities. These studies suggest that 50 ppm WAD cyanide is not a safe level of cyanide in water where avian wildlife exposure can occur. PMID:9070352

  10. The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor.

    PubMed

    Nguyen, Luong N; Hai, Faisal I; Price, William E; Leusch, Frederic D L; Roddick, Felicity; Ngo, Hao H; Guo, Wenshan; Magram, Saleh F; Nghiem, Long D

    2014-09-01

    The removal of four recalcitrant trace organic contaminants (TrOCs), namely carbamazepine, diclofenac, sulfamethoxazole and atrazine by laccase in an enzymatic membrane reactor (EMR) was studied. Laccases are not effective for degrading non-phenolic compounds; nevertheless, 22-55% removal of these four TrOCs was achieved by the laccase EMR. Addition of the redox-mediator syringaldehyde (SA) to the EMR resulted in a notable dose-dependent improvement (15-45%) of TrOC removal affected by inherent TrOC properties and loading rates. However, SA addition resulted in a concomitant increase in the toxicity of the treated effluent. A further 14-25% improvement in aqueous phase removal of the TrOCs was consistently observed following a one-off dosing of 3g/L granular activated carbon (GAC). Mass balance analysis reveals that this improvement was not due solely to adsorption but also enhanced biodegradation. GAC addition also reduced membrane fouling and the SA-induced toxicity of the effluent. PMID:24980029

  11. The Use of Adenovirus Dodecahedron in the Delivery of an Enzymatic Activity in the Cell

    PubMed Central

    Sumarheni; Gallet, Benoit; Fender, Pascal

    2016-01-01

    Penton-dodecahedron (Pt-Dd) derived from adenovirus type 3 is a symmetric complex of pentameric penton base plus fiber which can be produced in the baculovirus system at a high concentration. The size of Pt-Dd is smaller than the virus, but this virus-like particle (VLP) has the major proteins recognized by specific receptors on the surface of almost all types of cell. In this study, by direct observation with fluorescence microscopy on a fixed and living cell, the intracellular trafficking and localization of Pt-Dd labeled with fluorescence dyes in the cytoplasm of HeLa Tub-GFP showed a rapid internalization characteristic. Subsequently, the linkage of horseradish peroxidase (HRP) with Pt-Dd as the vector demonstrated an efficient system to deliver this enzyme into the cell without interfering its enzymatic activity as shown by biochemical and cellular experiments. These results were supported by additional studies using Bs-Dd or free form of the HRP used as the control. Overall, this study strengthens the potential role of Pt-Dd as an alternative vector for delivering therapeutic agents. PMID:27242929

  12. Changes in antioxidant and antiinflammatory activity of black bean (Phaseolus vulgaris L.) protein isolates due to germination and enzymatic digestion.

    PubMed

    López-Barrios, Lidia; Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A

    2016-07-15

    Germination is an inexpensive process to improve the nutritional properties of legumes. The effect of germinating black bean seeds on the production of cotyledon protein hydrolysates (CPH) with antioxidant and antiinflammatory activities was analyzed in this research. After simulated enzymatic digestion, the oxygen radical absorbance capacity (ORAC) of CPH obtained from germinated black beans was lower than that observed for raw cotyledons. There were no significant differences among CPH cellular antioxidant activities (CAA), except for the high CAA of the 120 min hydrolysate obtained from one day germinated black bean cotyledons. The most significant changes due to germination and enzymatic hydrolysis were observed for the inhibition of nitric oxide (NO) production in macrophages. The NO synthesis inhibition observed for raw CPH was reduced after simulated gastrointestinal digestion but for germinated samples the inhibition was doubled. Peptides derived from cell wall proteins produced during germination could be responsible of antiinflammatory activity. PMID:26948633

  13. Mutation of Asn28 Disrupts the Dimerization and Enzymatic Activity of SARS 3CL

    SciTech Connect

    Barrila, J.; Gabelli, S; Bacha, U; Amzel, M; Freire, E

    2010-01-01

    Coronaviruses are responsible for a significant proportion of annual respiratory and enteric infections in humans and other mammals. The most prominent of these viruses is the severe acute respiratory syndrome coronavirus (SARS-CoV) which causes acute respiratory and gastrointestinal infection in humans. The coronavirus main protease, 3CL{sup pro}, is a key target for broad-spectrum antiviral development because of its critical role in viral maturation and high degree of structural conservation among coronaviruses. Dimerization is an indispensable requirement for the function of SARS 3CL{sup pro} and is regulated through mechanisms involving both direct and long-range interactions in the enzyme. While many of the binding interactions at the dimerization interface have been extensively studied, those that are important for long-range control are not well-understood. Characterization of these dimerization mechanisms is important for the structure-based design of new treatments targeting coronavirus-based infections. Here we report that Asn28, a residue 11 {angstrom} from the closest residue in the opposing monomer, is essential for the enzymatic activity and dimerization of SARS 3CLpro. Mutation of this residue to alanine almost completely inactivates the enzyme and results in a 19.2-fold decrease in the dimerization K{sub d}. The crystallographic structure of the N28A mutant determined at 2.35 {angstrom} resolution reveals the critical role of Asn28 in maintaining the structural integrity of the active site and in orienting key residues involved in binding at the dimer interface and substrate catalysis. These findings provide deeper insight into complex mechanisms regulating the activity and dimerization of SARS 3CL{sup pro}.

  14. Activation and stabilization of the hydroperoxide lyase enzymatic extract from mint leaves (Mentha spicata) using selected chemical additives.

    PubMed

    Akacha, Najla B; Karboune, Salwa; Gargouri, Mohamed; Kermasha, Selim

    2010-03-01

    The effects of selected lyoprotecting excipients and chemical additives on the specific activity and the thermal stability of the hydroperoxide lyase (HPL) enzymatic extract from mint leaves were investigated. The addition of KCl (5%, w/w) and dextran (2.5%, w/w) to the enzymatic extract, prior to lyophilization, increased the HPL specific activity by 2.0- and 1.2-fold, respectively, compared to the control lyophilized extract. From half-life time (t (1/2)), it can be seen that KCl has enhanced the HPL stability by 1.3- to 2.3-fold, during long-period storage at -20 degrees Celsius and 4 degrees Celsius. Among the selected additives used throughout this study, glycine appeared to be the most effective one. In addition to the activation effect conferred by glycine, it also enhanced the HPL thermal stability. In contrast, polyhydroxyl-containing additives were not effective for stabilizing the HPL enzymatic extract. On the other hand, there was no signification increase in HPL activity and its thermal stability with the presence of Triton X-100. The results also showed that in the presence of glycine (10%), the catalytic efficiency of HPL was increased by 2.45-fold than that without additive. PMID:19430937

  15. Hybrid [FeFe]-hydrogenases with modified active sites show remarkable residual enzymatic activity.

    PubMed

    Siebel, Judith F; Adamska-Venkatesh, Agnieszka; Weber, Katharina; Rumpel, Sigrun; Reijerse, Edward; Lubitz, Wolfgang

    2015-02-24

    [FeFe]-hydrogenases are to date the only enzymes for which it has been demonstrated that the native inorganic binuclear cofactor of the active site Fe2(adt)(CO)3(CN)2 (adt = azadithiolate = [S-CH2-NH-CH2-S](2-)) can be synthesized on the laboratory bench and subsequently inserted into the unmaturated enzyme to yield fully functional holo-enzyme (Berggren, G. et al. (2013) Nature 499, 66-70; Esselborn, J. et al. (2013) Nat. Chem. Biol. 9, 607-610). In the current study, we exploit this procedure to introduce non-native cofactors into the enzyme. Mimics of the binuclear subcluster with a modified bridging dithiolate ligand (thiodithiolate, N-methylazadithiolate, dimethyl-azadithiolate) and three variants containing only one CN(-) ligand were inserted into the active site of the enzyme. We investigated the activity of these variants for hydrogen oxidation as well as proton reduction and their structural accommodation within the active site was analyzed using Fourier transform infrared spectroscopy. Interestingly, the monocyanide variant with the azadithiolate bridge showed ∼50% of the native enzyme activity. This would suggest that the CN(-) ligands are not essential for catalytic activity, but rather serve to anchor the binuclear subsite inside the protein pocket through hydrogen bonding. The inserted artificial cofactors with a propanedithiolate and an N-methylazadithiolate bridge as well as their monocyanide variants also showed residual activity. However, these activities were less than 1% of the native enzyme. Our findings indicate that even small changes in the dithiolate bridge of the binuclear subsite lead to a rather strong decrease of the catalytic activity. We conclude that both the Brønsted base function and the conformational flexibility of the native azadithiolate amine moiety are essential for the high catalytic activity of the native enzyme. PMID:25633077

  16. Proteins and enzymatic activities in Erbaluce grape berries with different response to the withering process.

    PubMed

    Vincenzi, Simone; Tolin, Serena; Cocolin, Luca; Rantsiou, Kalliopi; Curioni, Andrea; Rolle, Luca

    2012-06-30

    During the off-vine natural withering process of Erbaluce (white) grapes to obtain "Erbaluce Caluso" Passito wine, some berries change in color from green-yellow to blue. This phenomenon appears at different extents in different years and might be related to several parameters, such as temperature and humidity during withering, grape composition and Botrytis cinerea loading. To better understand the mechanism involved in color variation, the metabolic changes corresponding to this event were studied. At the end of the withering process berries with different colors were separated using a reflectance spectrophotometer, obtaining three color classes identified as "green" (L*=40.3, a*=-0.56, b*=15.20), "gold" (L*=37.7, a*=5.01, b*=14.12) and "blue" (L*=28.6, a*=0.89, b*=-0.67). The three groups of berries had different water contents, the blue berries containing about 30% less water than the green ones. Samples were crushed and the juices were analyzed. The juice yield for blue berries was less than 50% of that of the other two classes, confirming their higher dehydration level. Protein extraction from de-seeded berries was carried out using two different protocols, the first involving a treatment with phenol (to remove polyphenolic substances) and the second based on an extraction with a mild detergent (to recover the proteins to be used for enzymatic analyses). No trace of laccase activity was found in any of the samples, although DNA analysis, by quantitative PCR, suggested the presence of B. cinerea infection in the blue grapes. Chitinase activity of the blue berries was only 30% of that of the other two samples, as confirmed also by zymographic analysis on electrophoretic gels. The same was found also for esterase activity, which was lower (of about 85%) in the blue berries, which, in contrast, showed the highest beta-glucosidase activity. The electrophoretic analysis of the protein extracts revealed strong differences among the samples. Compared to the green and

  17. Three enzymatically active neurotoxins of Clostridium botulinum strain Af84: BoNT/A2, /F4, and /F5.

    PubMed

    Kalb, Suzanne R; Baudys, Jakub; Smith, Theresa J; Smith, Leonard A; Barr, John R

    2014-04-01

    Botulinum neurotoxins (BoNTs) are produced by various species of clostridia and are potent neurotoxins which cause the disease botulism, by cleaving proteins needed for successful nerve transmission. There are currently seven confirmed serotypes of BoNTs, labeled A-G, and toxin-producing clostridia typically only produce one serotype of BoNT. There are a few strains (bivalent strains) which are known to produce more than one serotype of BoNT, producing either both BoNT/A and /B, BoNT/A and /F, or BoNT/B and /F, designated as Ab, Ba, Af, or Bf. Recently, it was reported that Clostridium botulinum strain Af84 has three neurotoxin gene clusters: bont/A2, bont/F4, and bont/F5. This was the first report of a clostridial organism containing more than two neurotoxin gene clusters. Using a mass spectrometry based proteomics approach, we report here that all three neurotoxins, BoNT/A2, /F4, and /F5, are produced by C. botulinum Af84. Label free MS(E) quantification of the three toxins indicated that toxin composition is 88% BoNT/A2, 1% BoNT/F4, and 11% BoNT/F5. The enzymatic activity of all three neurotoxins was assessed by examining the enzymatic activity of the neurotoxins upon peptide substrates, which mimic the toxins' natural targets, and monitoring cleavage of the substrates by mass spectrometry. We determined that all three neurotoxins are enzymatically active. This is the first report of three enzymatically active neurotoxins produced in a single strain of Clostridium botulinum. PMID:24605815

  18. Comparison of enzymatic and non-enzymatic nitroethane anion formation: thermodynamics and contribution of tunneling.

    PubMed

    Valley, Michael P; Fitzpatrick, Paul F

    2004-05-26

    In the reaction of nitroalkane oxidase (NAO), the oxidation of nitroalkanes to the corresponding aldehydes or ketones is initiated by the deprotonation of the neutral nitroalkane. The energetics of nitroethane ionization for both the enzymatic and non-enzymatic reactions have been determined by measuring rate constants as a function of temperature. At 25 degrees C, the rate constant for the acetate-catalyzed reaction is a billionfold smaller than the kcat/Km value for NAO. This corresponds to a difference of 12.3 kcal/mol in the free energy of activation that is largely due to a difference in the activation enthalpy. Analysis of the temperature dependence of the deuterium kinetic isotope effects on the reactions yields similar DeltaEa and AH/AD values for the acetate, phosphate, and NAO-catalyzed reactions that fall within the semiclassical limits, consistent with similar contributions of tunneling to the enzymatic and non-enzymatic reactions. PMID:15149217

  19. Heavy metal concentrations and enzymatic activities in the functional zone sediments of Haizhou Bay, Lianyungang, Jiangsu, China.

    PubMed

    Li, Yu; Liu, Fu-cheng

    2015-11-01

    Surface sediments were collected at 31 sites covering five functional zones of Haizhou Bay, Lianyungang, Jiangsu, China. Heavy metal concentrations and enzymatic activity of phosphatase and urease were determined on a dry-weight basis of sediments. Metal concentrations in sediments were comparable to the Chinese National Standard of Marine Sediment Quality and were as follows: Cu, 8.60-55.8 mg kg(-1); Zn, 107-384 mg kg(-1); Pb, 33.6-200 mg kg(-1); Cd, 0.24-2.57 mg kg(-1); Cr, 30.3-92.1 mg kg(-1); As, 12.9-110 mg kg(-1); Ni, 15.8-49.6 mg kg(-1); Mn, 379-1272 mg kg(-1); and Fe, 13,790-38,240 mg kg(-1). A geoaccumulation index (I geo) was calculated to help researchers understand the status of pollutants in the sediments. I geo showed that Cd and As contamination existed in the study area. The mobility of the metals and the relationship between heavy metal concentrations of chemical fractions and enzymatic activities were also investigated. Results showed that Cd and Mn had higher mobility than other metals, and enzymatic activities may play an important role in controlling the bioavailability and transformation trend of heavy metals from one fraction to another in sediments. PMID:26431704

  20. Impaired enzymatic defensive activity, mitochondrial dysfunction and proteasome activation are involved in RTT cell oxidative damage.

    PubMed

    Cervellati, Carlo; Sticozzi, Claudia; Romani, Arianna; Belmonte, Giuseppe; De Rasmo, Domenico; Signorile, Anna; Cervellati, Franco; Milanese, Chiara; Mastroberardino, Pier Giorgio; Pecorelli, Alessandra; Savelli, Vinno; Forman, Henry J; Hayek, Joussef; Valacchi, Giuseppe

    2015-10-01

    A strong correlation between oxidative stress (OS) and Rett syndrome (RTT), a rare neurodevelopmental disorder affecting females in the 95% of the cases, has been well documented although the source of OS and the effect of a redox imbalance in this pathology has not been yet investigated. Using freshly isolated skin fibroblasts from RTT patients and healthy subjects, we have demonstrated in RTT cells high levels of H2O2 and HNE protein adducts. These findings correlated with the constitutive activation of NADPH-oxidase (NOX) and that was prevented by a NOX inhibitor and iron chelator pre-treatment, showing its direct involvement. In parallel, we demonstrated an increase in mitochondrial oxidant production, altered mitochondrial biogenesis and impaired proteasome activity in RTT samples. Further, we found that the key cellular defensive enzymes: glutathione peroxidase, superoxide dismutase and thioredoxin reductases activities were also significantly lower in RTT. Taken all together, our findings suggest that the systemic OS levels in RTT can be a consequence of both: increased endogenous oxidants as well as altered mitochondrial biogenesis with a decreased activity of defensive enzymes that leads to posttranslational oxidant protein modification and a proteasome activity impairment. PMID:26189585

  1. A Novel Red Clover Hydroxycinnamoyl Transferase Has Enzymatic Activities Consistent With a Role in Phaselic Acid Biosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red clover (Trifolium pratense L.) leaves accumulate several micromol per g fresh weight of phaselic acid [2-O-(caffeoyl)-L-malate]. Post-harvest oxidation of such o-diphenols to o-quinones by endogenous polyphenol oxidases prevents breakdown of forage protein during storage. Forages like alfalfa (M...

  2. Influence of short-time imidacloprid and acetamiprid application on soil microbial metabolic activity and enzymatic activity.

    PubMed

    Wang, Fei; Yao, Jun; Chen, Huilun; Yi, Zhengji; Choi, Martin M F

    2014-09-01

    The influence of two neonicotinoids, i.e., imidacloprid (IMI) and acetamiprid (ACE), on soil microbial activities was investigated in a short period of time using a combination of the microcalorimetric approach and enzyme tests. Thermodynamic parameters such as Q T (J g(-1) soil), ∆H met (kJ mol(-1)), J Q/S (J g(-1) h(-1)), k (h(-1)), and soil enzymatic activities, dehydrogenase, phosphomonoesterase, arginine deaminase, and urease, were used to evaluate whole metabolic activity changes and acute toxicity following IMI and ACE treatment. Various profiles of thermogenic curves reflect different soil microbial activities. The microbial growth rate constant k, total heat evolution Q T (expect for IMI), and inhibitory ratio I show linear relationship with the doses of IMI and ACE. Q T for IMI increases at 0.0-20 μg g(-1) and then decreases at 20-80 μg g(-1), possibly attributing to the presence of tolerant microorganisms. The 50 % inhibitory ratios (IC50) of IMI and ACE are 95.7 and 77.2 μg g(-1), respectively. ACE displays slightly higher toxicity than IMI. Plots of k and Q T against microbial biomass-C indicate that the k and Q T are growth yield-dependent. IMI and ACE show 29.6; 40.4 and 23.0; and 23.3, 21.7, and 30.5 % inhibition of dehydrogenase, phosphomonoesterase, and urease activity, respectively. By contrast, the arginine deaminase activity is enhanced by 15.2 and 13.2 % with IMI and ACE, respectively. The parametric indices selected give a quantitative dose-response relationship of both insecticides and indicate that ACE is more toxic than IMI due to their difference in molecular structures. PMID:24819438

  3. Pretreatment and Enzymatic Hydrolysis

    SciTech Connect

    2006-06-01

    Activities in this project are aimed at overcoming barriers associated with high capital and operating costs and sub-optimal sugar yields resulting from pretreatment and subsequent enzymatic hydrolysis of biomass.

  4. Nickel hydroxide nanoparticle activated semi-metallic TiO(2) nanotube arrays for non-enzymatic glucose sensing.

    PubMed

    Gao, Zhi-Da; Guo, Jing; Shrestha, Nabeen K; Hahn, Robert; Song, Yan-Yan; Schmuki, Patrik

    2013-11-11

    Semi-metallic TiO2 nanotube arrays (TiOx Cy NTs) have been decorated uniformly with Ni(OH)2 nanoparticles without the aid of a polymer binder. The resulting hybrid nanotube arrays exhibit excellent catalytic activity towards non-enzymatic glucose electro-oxidation. The anodic current density of the glucose oxidation is significantly improved compared with traditional TiO2 nanotubes decorated with Ni(OH)2 . Moreover, the Ni(OH)2 /TiOx Cy NT-based electrode shows a fast response, high sensitivity, wide linear range, good selectivity and stability towards glucose electro-oxidation, and thus provides a promising and cost-effective sensing platform for non-enzymatic glucose detection. PMID:24115116

  5. Effect of commercial cellulases and refining on kraft pulp properties: correlations between treatment impacts and enzymatic activity components.

    PubMed

    Cui, Li; Meddeb-Mouelhi, Fatma; Laframboise, François; Beauregard, Marc

    2015-01-22

    The importance of enzymes as biotechnological catalysts for paper industry is now recognized. In this study, five cellulase formulations were used for fibre modification. The number of PFI revolutions decreased by about 50% while achieving the same freeness value (decrease in CSF by 200 mL) with the enzymatic pretreatment. The physical properties of handsheets were modified after enzymatic pretreatment followed by PFI refining. A slight decrease in tear strength was observed with enzymes C1 and C4 at pH 7 while the most decrease in tear was observed after C2, C3, C5 treatments. C1 and C4 which had xylanase activity improved paper properties, while other enzymes had a negative impact. Therefore, the intricate balance between cellulolytic and hemicellulolytic activity is the key to optimizing biorefining and paper properties. It was also observed that C1 impact was pH dependent, which supports the importance of pH in developing an enzymatic strategy for refining energy reduction. PMID:25439885

  6. New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel†

    PubMed Central

    Zhao, Hua; Baker, Gary A.; Holmes, Shaletha

    2012-01-01

    The enzymatic preparation of biodiesel has been hampered by the lack of suitable solvents with desirable properties such as high lipase compatibility, low cost, low viscosity, high biodegradability, and ease of product separation. Recent interest in using ionic liquids (ILs) as advanced reaction media has led to fast reaction rates and high yields in the enzymatic synthesis of biodiesel. However, conventional (i.e., cation–anion paired) ILs based on imidazolium and other quaternary ammonium salts remain too expensive for wide application at industrial scales. In this study, we report on newly-synthesized eutectic ILs derived from choline acetate or choline chloride coupled with biocompatible hydrogen-bond donors, such as glycerol. These eutectic solvents have favorable properties including low viscosity, high biodegradability, and excellent compatibility with Novozym® 435, a commercial immobilized Candida antarctica lipase B. Furthermore, in a model biodiesel synthesis system, we demonstrate high reaction rates for the enzymatic transesterification of Miglyol® oil 812 with methanol, catalyzed by Novozym® 435 in choline acetate/glycerol (1 : 1.5 molar ratio). The high conversion (97%) of the triglyceride obtained within 3 h, under optimal conditions, suggests that these novel eutectic solvents warrant further exploration as potential media in the enzymatic production of biodiesel. PMID:21283901

  7. Multi-compound polarization by DNP allows simultaneous assessment of multiple enzymatic activities in vivo

    NASA Astrophysics Data System (ADS)

    Wilson, David M.; Keshari, Kayvan R.; Larson, Peder E. Z.; Chen, Albert P.; Hu, Simon; Van Criekinge, Mark; Bok, Robert; Nelson, Sarah J.; Macdonald, Jeffrey M.; Vigneron, Daniel B.; Kurhanewicz, John

    2010-07-01

    Methods for the simultaneous polarization of multiple 13C-enriched metabolites were developed to probe several enzymatic pathways and other physiologic properties in vivo, using a single intravenous bolus. A new method for polarization of 13C sodium bicarbonate suitable for use in patients was developed, and the co-polarization of 13C sodium bicarbonate and [1- 13C] pyruvate in the same sample was achieved, resulting in high solution-state polarizations (15.7% and 17.6%, respectively) and long spin-lattice relaxation times ( T1) (46.7 s and 47.7 s respectively at 3 T). Consistent with chemical shift anisotropy dominating the T1 relaxation of carbonyls, T1 values for 13C bicarbonate and [1- 13C] pyruvate were even longer at 3 T (49.7 s and 67.3 s, respectively). Co-polarized 13C bicarbonate and [1- 13C] pyruvate were injected into normal mice and a murine prostate tumor model at 3 T. Rapid equilibration of injected hyperpolarized 13C sodium bicarbonate with 13C CO 2 allowed calculation of pH on a voxel by voxel basis, and simultaneous assessment of pyruvate metabolism with cellular uptake and conversion of [1- 13C] pyruvate to its metabolic products. Initial studies in a Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model demonstrated higher levels of hyperpolarized lactate and lower pH within tumor, relative to surrounding benign tissues and to the abdominal viscera of normal controls. There was no significant difference observed in the tumor lactate/pyruvate ratio obtained after the injection of co-polarized 13C bicarbonate and [1- 13C] pyruvate or polarized [1- 13C] pyruvate alone. The technique was extended to polarize four 13C labelled substrates potentially providing information on pH, metabolism, necrosis and perfusion, namely [1- 13C]pyruvic acid, 13C sodium bicarbonate, [1,4- 13C]fumaric acid, and 13C urea with high levels of solution polarization (17.5%, 10.3%, 15.6% and 11.6%, respectively) and spin-lattice relaxation values similar to those

  8. Priming effects and enzymatic activity in Israeli soils under treated wastewater and freshwater irrigation

    NASA Astrophysics Data System (ADS)

    Anissimova, Marina; Heinze, Stefanie; Chen, Yona; Tarchitzky, Jorge; Marschner, Bernd

    2014-05-01

    Irrigation of soils with treated wastewater (TWW) directly influences microbial processes of soil. TWW contains easily decomposable organic material, which can stimulate the activity of soil microorganisms and, as a result, lead to the excessive consumption of soil organic carbon pool. We investigated the effects of irrigation with TWW relative to those of irrigation with freshwater (FW) on the microbial parameters in soils with low (7%) and medium (13%) clay content in a lysimeter experiment. The objectives of our study were to (i) determine the impact of water quality on soil respiration and enzymatic activity influenced by clay content and depth, and (ii) work out the changes in the turnover of soil organic matter (PE, priming effects). Samples were taken from three soil depths (0-10, 10-20, and 40-60 cm). Soil respiration and PE were determined in a 21-days incubation experiment after addition of uniformly 14C-labeled fructose. Activity of 10 extracellular enzymes (EEA, from C-, N-, P-, and S-cycle), phenol oxidase and peroxidase activity (PO+PE), and dehydrogenase activity (DHA) were assayed. Microbial Community-Level Physiological Profiles (CLPP) using four substrates, and microbial biomass were determined. The results showed that the clay content acted as the main determinative factor. In the soil with low clay content the water quality had a greater impact: the highest PE (56%) was observed in the upper layer (0-10cm) under FW irrigation; EEA of C-, P-, and S-cycles was significantly higher in the upper soil layer under TWW irrigation. Microbial biomass was higher in the soil under TWW irrigation and decreased with increasing of depth (50 μg/g soil in the upper layer, 15 μg/g soil in the lowest layer). This tendency was also observed for DHA. Contrary to the low clay content, in the soil with medium clay content both irrigation types caused the highest PE in the lowest layer (65% under FW irrigation, 48% under TWW irrigation); the higher substrate

  9. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    SciTech Connect

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  10. Guinea pig phospholipase B, identification of the catalytic serine and the proregion involved in its processing and enzymatic activity.

    PubMed

    Nauze, Michel; Gonin, Lauriane; Chaminade, Brigitte; Perès, Christine; Hullin-Matsuda, Francoise; Perret, Bertrand; Chap, Hugues; Gassama-Diagne, Ama

    2002-11-15

    Guinea pig phospholipase B (GPPLB) is a glycosylated ectoenzyme of intestinal brush border membrane. It displays a broad substrate specificity and is activated by trypsin cleavage. The primary sequence contains four tandem repeat domains (I to IV) and several serines in lipase consensus sequences. We used site-directed mutagenesis to demonstrate that only the serine 399 present in repeat II is responsible for the various enzymatic activities of GPPLB. Furthermore, we characterized for the first time the retinyl esterase activity of the enzyme. We also constructed and expressed in COS-7 cells, an NH(2)-terminal repeat I deletion mutant which was detected at a very low level by immunoblot. However, confocal microscopy study showed a strong intracellular accumulation with a weak membrane expression of the mutated protein, indicating a role of the NH(2)-terminal repeat I in the processing of GPPLB. Nevertheless, the Western blot-detected protein presented a glycosylation and trypsin sensitivity patterns similar to wild type PLB. The mutant is also fully active without trypsin treatment, in contrast to native enzyme. Thus, we propose a structural model for GPPLB, in which the repeat I constitutes a lid covering the active site and impairing enzymatic activity, its removal by trypsin leading to an active protein. PMID:12194976

  11. The generalized active space concept in multiconfigurational self-consistent field methods.

    PubMed

    Ma, Dongxia; Li Manni, Giovanni; Gagliardi, Laura

    2011-07-28

    A multiconfigurational self-consistent field method based on the concept of generalized active space (GAS) is presented. GAS wave functions are obtained by defining an arbitrary number of active spaces with arbitrary occupation constraints. By a suitable choice of the GAS spaces, numerous ineffective configurations present in a large complete active space (CAS) can be removed, while keeping the important ones in the CI space. As a consequence, the GAS self-consistent field approach retains the accuracy of the CAS self-consistent field (CASSCF) ansatz and, at the same time, can deal with larger active spaces, which would be unaffordable at the CASSCF level. Test calculations on the Gd atom, Gd(2) molecule, and oxoMn(salen) complex are presented. They show that GAS wave functions achieve the same accuracy as CAS wave functions on systems that would be prohibitive at the CAS level. PMID:21806111

  12. Effects of different bulking agents on the maturity, enzymatic activity, and microbial community functional diversity of kitchen waste compost.

    PubMed

    Wang, Xiaojuan; Zhang, Wenwei; Gu, Jie; Gao, Hua; Qin, Qingjun

    2016-10-01

    Aerobic composting is an effective method for the disposal and utilization of kitchen waste. However, the addition of a bulking agent is necessary during kitchen waste composting because of its high moisture content and low C/N ratio. In order to select a suitable bulking agent, we investigated the influence of leaf litter (LL), sawdust (SD), and wheat straw (WS) on the enzymatic activity, microbial community functional diversity, and maturity indices during the kitchen waste composting process. The results showed that the addition of WS yielded the highest maturity (the C/N ratio decreased from 25 to 13, T value = 0.5, and germination index (GI) = 114.7%), whereas the compost containing SD as a bulking agent had the lowest maturity (GI = 32.4%). The maximum cellulase and urease activities were observed with the WS treatment on day 8, whereas the SD treatment had the lowest cellulase activity and the LL treatment had the lowest urease activity. The compost temperature and microbial activity (as the average well color development) showed that bulking the composts with SD prolonged the composting process. The diversity index based on the community-level physiological profile showed that the composts bulked with LL and WS had greater microbial community functional diversity compared with those bulked with SD. Thus, the maturity indexes and enzymatic activities suggest that WS is a suitable bulking agent for use in kitchen waste composting systems. PMID:26895274

  13. Enzymatic Activity of the Soybean Ecto-Apyrase GS52 Is Essential for Stimulation of Nodulation1[W][OA

    PubMed Central

    Tanaka, Kiwamu; Nguyen, Cuong T.; Libault, Marc; Cheng, Jianlin; Stacey, Gary

    2011-01-01

    Nitrogen is an essential nutrient for plant growth. In the Rhizobium-legume symbiosis, root nodules are the sites of bacterial nitrogen fixation, in which atmospheric nitrogen is converted into a form that plants can utilize. While recent studies suggested an important role for the soybean (Glycine max) ecto-apyrase GS52 in rhizobial root hair infection and root nodule formation, precisely how this protein impacts the nodulation process remains undetermined. In this study, the biochemical characteristics of the GS52 enzyme were investigated. Computer modeling of the GS52 apyrase structure identified key amino acid residues important for catalytic activity, which were subsequently mutagenized. Although the GS52 enzyme exhibited broad substrate specificity, its activity on pyrimidine nucleotides and diphosphate nucleotides was significantly higher than on ATP. This result was corroborated by structural modeling of GS52, which predicted a low specificity for the adenine base within the substrate-binding pocket of the enzyme. The wild-type enzyme and its inactive mutant forms were expressed in soybean roots in order to evaluate the importance of GS52 enzymatic activity for nodulation. The results indicated a clear correlation between GS52 enzymatic activity and nodule number. Altogether, our study indicates that the catalytic activity of the GS52 apyrase, likely acting on extracellular nucleotides, is critical for rhizobial infection and nodulation. PMID:21346172

  14. Predictive modelling of growth and measurement of enzymatic synthesis and activity by a cocktail of selected Enterobacteriaceae and Aeromonas hydrophila.

    PubMed

    Braun, P; Sutherland, J P

    2005-11-25

    The possibility was examined of developing a predictive model that would predict food spoilage by combining microbial growth (increase in cellular number) with extracellular enzymatic activity of a cocktail of five strains of Enterobacteriaceae: Escherichia coli, Enterobacter agglomerans, Klebsiella oxytoca, Klebsiella pneumoniae and Proteus vulgaris and one Aeromonas hydrophila strain. Estimations of growth and enzyme activity were made within a three-dimensional matrix of conditions: temperature 2-20 degrees C, pH value 4.0-7.5 and water activity (a(w)) 0.95-0.995. A mathematical model was constructed which predicted growth based on increases in cell number. However, although notable effects of extracellular lipases and proteases were detected, it was not possible to model enzymatic activity and prepare a combined model because the data did not follow the characteristic profile that would allow curve-fitting. Nevertheless, the model for microbial growth and information relating to enzyme activity will be made freely available in a database on the internet. PMID:16154655

  15. Consistency of Moderate to Vigorous Physical Activity in Middle School Physical Education.

    PubMed

    Gill, Monique; Chan-Golston, Alec M; Rice, Lindsay N; Cole, Brian L; Koniak-Griffin, Deborah; Prelip, Michael L

    2016-01-01

    This study assessed the consistency of moderate to vigorous physical activity (MVPA) in a sample of middle school physical education lessons. Random intercept hierarchical linear regressions were employed to model the relationship between consistency of MVPA and independent variables, including lesson and teacher characteristics. Larger classes spent significantly more time in consistent MVPA in the absence of controlling for teacher characteristics. A significant interaction between class size and teacher experience suggests that experience may play a beneficial role in larger classes, and overall class size does not have to be a barrier to achieving high levels of MVPA. PMID:27536933

  16. Absorption of enzymatically active sup 125 I-labeled bovine milk xanthine oxidase fed to rabbits

    SciTech Connect

    Rzucidlo, S.J. ); Zikakis, J.P. )

    1990-05-01

    Rabbits fed a regular laboratory diet supplemented with a high-fat milk containing xanthine oxidase (XO) were studied to determine the presence of active XO in the blood. A pilot feeding study, where rabbits consumed a high-fat diet containing xanthine oxidase, showed a correlation between dairy food consumption and XO activity in the blood. Antibody to dietary XO was also found. In a second study, rabbits were fed ad libitum the high-fat milk and blood serum samples were tested weekly for XO activity. No elevation in serum XO activity was found. A third study showed that serum XO activity was increased when rabbits were force fed the high-fat milk. The final study consisted of force feeding {sup 125}I-labeled XO to one rabbit to ascertain whether the observed increase in serum XO was due to dietary or endogenous XO. Isoelectric focusing of sera collected from the test rabbit strongly suggested that at least a portion of the serum XO contained the radioactive label. This is the first direct evidence showing the uptake of dietary active XO from the gut.

  17. Inhibitory effect of pinostrobin from Renealmia alpinia, on the enzymatic and biological activities of a PLA2.

    PubMed

    Gómez-Betancur, Isabel; Pereañez, Jaime Andrés; Patiño, Arley Camilo; Benjumea, Dora

    2016-08-01

    Pinostrobin is a flavanone isolated from Renealmia alpinia, a plant used in folk medicine to treat snakebites. We tested the inhibitory ability of pinostrobin on the enzymatic, anticoagulant, myotoxic and edema-inducing activities of a PLA2 isolated from Crotalus durissus cumanensis venom. The compound displayed IC50 values of 1.76mM and 1.85mM (95% Confidence intervals: 1.34-2.18 and 1.21-2.45) on the PLA2 enzymatic activity, when either aggregated or monodispersed substrates were used, respectively. When mice were injected with PLA2 preincubated with 0.4, 2.0 and 4.0mM of pinostrobin, myotoxic activity induced by the PLA2 was inhibited up to 87%. Nevertheless, these values decreased up to 56% when the pinostrobin was injected into muscle after PLA2. Pinostrobin inhibited edema-forming and anticoagulant activities of the PLA2. In order to have insights on the mode of action of pinostrobin, intrinsic fluorescence and ultraviolet studies were performed. Results suggest that pinostrobin interacts directly with the PLA2. These findings were supported by molecular docking results, which suggested that pinostrobin forms hydrogen bonds with residues His48 and Asp49 of PLA2, besides, a π-π stacking interactions with those of residues Phe5 and Trp31, and rings C of flavanone and Tyr52 of the toxin. PMID:27109758

  18. Enzymatic Inhibitory Activity and Trypanocidal Effects of Extracts and Compounds from Siphoneugena densiflora O. Berg and Vitex polygama Cham

    PubMed Central

    Gallo, Margareth B. C.; Marques, Anna Sylvia F.; Vieira, Paulo C.; da Silva, Maria Fátima das G. F.; Fernandes, João B.; Silva, Márcio; Guido, Rafael V.; Oliva, Glaucius; Thiemann, Otávio H.; Albuquerque, Sérgio; Fairlamb, Alan H.

    2012-01-01

    Hexanic, methanolic, and hydroalcoholic extracts, and 34 isolated compounds from Vitex polygama Cham. (Lamiaceae, formely Verbenaceae) and Siphoneugena densiflora O. Berg (Myrtaceae) were screened for their trypanocidal effects on bloodstream forms of Trypanosoma cruzi and T. brucei, as well as for their enzymatic inhibitory activities on glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) and trypanothione reductase (TR) enzymes from T. cruzi and adeninephosphoribosyl transferase (APRT) enzyme from Leishmania tarentolae. In general, polar extracts displayed strong effects and some of the tested compounds have shown good results in comparison to positive controls of the bioassays. PMID:18669023

  19. Diiron centre mutations in Ciona intestinalis alternative oxidase abolish enzymatic activity and prevent rescue of cytochrome oxidase deficiency in flies

    PubMed Central

    Andjelković, Ana; Oliveira, Marcos T.; Cannino, Giuseppe; Yalgin, Cagri; Dhandapani, Praveen K.; Dufour, Eric; Rustin, Pierre; Szibor, Marten; Jacobs, Howard T.

    2015-01-01

    The mitochondrial alternative oxidase, AOX, carries out the non proton-motive re-oxidation of ubiquinol by oxygen in lower eukaryotes, plants and some animals. Here we created a modified version of AOX from Ciona instestinalis, carrying mutations at conserved residues predicted to be required for chelation of the diiron prosthetic group. The modified protein was stably expressed in mammalian cells or flies, but lacked enzymatic activity and was unable to rescue the phenotypes of flies knocked down for a subunit of cytochrome oxidase. The mutated AOX transgene is thus a potentially useful tool in studies of the physiological effects of AOX expression. PMID:26672986

  20. Enzymatic Activities of RNase H Domains of HIV-1 Reverse Transcriptase with Substrate Binding Domains of Bacterial RNases H1 and H2.

    PubMed

    Permanasari, Etin-Diah; Yasukawa, Kiyoshi; Kanaya, Shigenori

    2015-06-01

    Thermotoga maritima RNase H1 and Bacillus stearothermophilus RNase H2 have an N-terminal substrate binding domain, termed hybrid binding domain (TmaHBD), and N-terminal domain (BstNTD), respectively. HIV-1 reverse transcriptase (RT) is a heterodimer consisting of a P66 subunit and a P51 subunit. The P66 subunit contains a C-terminal RNase H domain, which exhibits RNase H activity either in the presence of Mg(2+) or Mn(2+) ions. The isolated RNase H domain of HIV-1 RT (RNH(HIV)) is inactive, possibly due to the lack of a substrate binding ability, disorder of a loop containing His539, and increased flexibility. To examine whether the activity of RNH(HIV) is restored by the attachment of TmaHBD or BstNTD to its N-terminus, two chimeric proteins, TmaHBD-RNH(HIV) and BstNTD-RNH(HIV), were constructed and characterized. Both chimeric proteins bound to RNA/DNA hybrid more strongly than RNH(HIV) and exhibited enzymatic activity in the presence of Mn(2+) ions. They did not exhibit activity or exhibited very weak activity in the presence of Mg(2+) ions. These results indicate that TmaHBD and BstNTD function as an RNA/DNA hybrid binding tag, and greatly increase the substrate binding affinity and Mn(2+)-dependent activity of RNH(HIV) but do not restore the Mg(2+)-dependent activity of RNH(HIV). PMID:25673083

  1. Transcriptional Co-activator LEDGF Interacts with Cdc7-Activator of S-phase Kinase (ASK) and Stimulates Its Enzymatic Activity*

    PubMed Central

    Hughes, Siobhan; Jenkins, Victoria; Dar, Mohd Jamal; Engelman, Alan; Cherepanov, Peter

    2010-01-01

    Lens epithelium-derived growth factor (LEDGF) is an important co-factor of human immunodeficiency virus DNA integration; however, its cellular functions are poorly characterized. We now report identification of the Cdc7-activator of S-phase kinase (ASK) heterodimer as a novel interactor of LEDGF. Both kinase subunits co-immunoprecipitated with endogenous LEDGF from human cell extracts. Truncation analyses identified the integrase-binding domain of LEDGF as essential and minimally sufficient for the interaction with Cdc7-ASK. Reciprocally, the interaction required autophosphorylation of the kinase and the presence of 50 C-terminal residues of ASK. The kinase phosphorylated LEDGF in vitro, with Ser-206 being the major target, and LEDGF phosphorylated at this residue could be detected during S phase of the cell cycle. LEDGF potently stimulated the enzymatic activity of Cdc7-ASK, increasing phosphorylation of MCM2 in vitro by more than 10-fold. This enzymatic stimulation as well as phosphorylation of LEDGF depended on the protein-protein interaction. Intriguingly, removing the C-terminal region of ASK, involved in the interaction with LEDGF, resulted in a hyperactive kinase. Our results indicate that the interaction with LEDGF relieves autoinhibition of Cdc7-ASK kinase, imposed by the C terminus of ASK. PMID:19864417

  2. Enzymatically-Processed Wheat Bran Enhances Macrophage Activity and Has in Vivo Anti-Inflammatory Effects in Mice

    PubMed Central

    Kang, Hee; Lee, Mi-Gi; Lee, Jae-Kang; Choi, Yong-Hyun; Choi, Yong-Seok

    2016-01-01

    Wheat bran is a rich source of dietary fiber, of which arabinoxylan is the most abundant non-starch polysaccharide. Arabinoxylan has been known to exert in vivo immunological activities. Based on prior findings, we pretreated wheat bran with enzymatic hydrolysis to increase the release of soluble arabinoxylan and investigated whether oral administration of wheat bran altered macrophage activity in a mouse model. After four weeks of treatment, we isolated peritoneal macrophages for phagocytic receptor analysis and lipopolysaccharide (LPS)-induced inflammatory changes. In the second experiment, mice given wheat bran were intraperitoneally stimulated with LPS and serum levels of pro- and anti-inflammatory cytokines were determined. The expression of SRA and CD36, and phagocytic activity increased (p < 0.05, respectively). Ex vivo stimulation of macrophages by LPS resulted in reduced surface expression of CD40 (p < 0.05) and decreased production of nitric oxide (p < 0.005), tumor necrosis factor (TNF)-α (p < 0.005), interleukin (IL)-6 (p < 0.01), and IL-12 (p < 0.05). Mice treated with wheat bran showed decreased levels of serum TNF-α and IL-6 (p < 0.05, respectively) and an increased level of serum anti-inflammatory IL-10 (p < 0.05) in response to intraperitoneal LPS. Enzymatically-processed wheat bran boosts macrophage phagocytic capacity possibly through up-regulation of scavenger receptors and confers anti-inflammatory effects, indicating its potential as an immuno-enhancing functional food. PMID:27043618

  3. Contrasting effects of untreated textile wastewater onto the soil available nitrogen-phosphorus and enzymatic activities in aridisol.

    PubMed

    Arif, Muhammad Saleem; Riaz, Muhammad; Shahzad, Sher Muhammad; Yasmeen, Tahira; Buttler, Alexandre; Garcıa-Gil, Juan Carlos; Roohi, Mahnaz; Rasool, Akhtar

    2016-02-01

    Water shortage and soil qualitative degradation are significant environmental problems in arid and semi-arid regions of the world. The increasing demand for water in agriculture and industry has resulted in the emergence of wastewater use as an alternative in these areas. Textile wastewater is produced in surplus amounts which poses threat to the environment as well as associated flora and fauna. A 60-day incubation study was performed to assess the effects of untreated textile wastewater at 0, 25, 50, 75, and 100% dilution levels on the physico-chemical and some microbial and enzymatic properties of an aridisol soil. The addition of textile wastewater provoked a significant change in soil pH and electrical conductivity and soil dehydrogenase and urease activities compared to the distilled-water treated control soil. Moreover, compared to the control treatment, soil phosphomonoesterase activity was significantly increased from 25 to 75% application rates, but decreased at 100% textile wastewater application rate. Total and available soil N contents increased significantly in response to application of textile wastewater. Despite significant increases in the soil total P contents after the addition of textile wastewater, soil available P content decreased with increasing concentration of wastewater. Changes in soil nutrient contents and related enzymatic activities suggested a dynamic match between substrate availability and soil N and P contents. Aridisols have high fixation and low P availability, application of textile wastewater to such soils should be considered only after careful assessment. PMID:26787271

  4. Ferredoxin:NADP+ oxidoreductase in junction with CdSe/ZnS quantum dots: characteristics of an enzymatically active nanohybrid.

    PubMed

    Szczepaniak, Krzysztof; Worch, Remigiusz; Grzyb, Joanna

    2013-05-15

    Ferredoxin:NADP(+) oxidoreductase (FNR) is a plant and cyanobacterial photosynthetic enzyme, also found in non-photosynthetic tissues, where it is involved in redox reactions of biosynthetic pathways. In vivo it transfers electrons to nicotinamide adenine dinucleotide phosphate (NADP(+)), forming its reduced version, NADPH, while in vitro it can also use NADPH to reduce several substrates, such as ferricyanide, various quinones and nitriles. As an oxidoreductase catalyzing reaction of a broad range of substrates, FNR may be used in biotechnological processes. Quantum dots are semiconductor nanocrystals of a few to several nanometers diameter, having very useful luminescent properties. We present the spectroscopic and functional characteristics of a covalent conjugation of FNR and CdSe/ZnS quantum dots. Two types of quantum dots, of different diameter and emission maximum (550 and 650 nm), were used for comparison. Steady-state fluorescence and gel electrophoresis confirmed efficient conjugation, while fluorescence correlation spectroscopy (FCS) allowed for determination of the conjugates' radii. The nanohybrids sustained enzymatic activity; however, changes in maximal reaction rates and Michaelis constant were found. Detailed analysis of the kinetic parameters showed that the changes in the enzyme activity depend on the substrate used for activity measurement but also on the size of the quantum dots. The presented nanohybrids, as the first example using plant and photosynthetic enzyme as a protein partner, may became a tool to study photosynthesis as well as other biosynthetic and biotechnological processes, involving enzymatically catalyzed electron transfer. PMID:23611948

  5. Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils

    PubMed Central

    2012-01-01

    Background Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation. Methods In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran) and their growth ability was checked in potato dextrose agar (PDA) media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase) was evaluated in the fungal colonies and bioremediation ability of the fungi was checked in the experimental pots containing 3 kg sterilized soil and different concentrations of petroleum (0-10% w/w). Results Four fungal strains, Acromonium sp., Alternaria sp., Aspergillus terreus and Penicillium sp., were selected as the most resistant ones. They were able to growth in the subjected concentrations and Alternaria sp. showed the highest growth ability in the petroleum containing media. The enzyme assay showed that the enzymatic activity was increased in the oil-contaminated media. Bioremediation results showed that the studied fungi were able to decrease petroleum pollution. The highest petroleum removing efficiency of Aspergillus terreus, Penicillium sp., Alternaria sp. and Acromonium sp. was evaluated in the 10%, 8%, 8% and 2% petroleum pollution respectively. Conclusions Fungi are important microorganisms in decreasing of petroleum pollution. They have bioremediation potency that is related to their enzymatic activities. PMID:23369665

  6. Enzymatic degradation of aromatic hydrocarbon intermediates using a recombinant dioxygenase immobilized onto surfactant-activated carbon nanotube.

    PubMed

    Suma, Yanasinee; Lim, Heejun; Kwean, Oh Sung; Cho, Suyeon; Yang, Junwon; Kim, Yohan; Kang, Christina S; Kim, Han S

    2016-06-01

    This study examined the enzymatic decomposition of aromatic hydrocarbon intermediates (catechol, 4-chlorocatechol, and 3-methylcatechol) using a dioxygenase immobilized onto single-walled carbon nanotube (SWCNT). The surfaces of SWCNTs were activated with surfactants. The dioxygenase was obtained by recombinant technique: the corresponding gene was cloned from Arthrobacter chlorophenolicus A6, and the enzyme was overexpressed and purified subsequently. The enzyme immobilization yield was 62%, and the high level of enzyme activity was preserved (60-79%) after enzyme immobilization. Kinetic analyses showed that the substrate utilization rates and the catalytic efficiencies of the immobilized enzyme for all substrates (target aromatic hydrocarbon intermediates) tested were similar to those of the free enzyme, indicating that the loss of enzyme activity was minimal during enzyme immobilization. The immobilized enzyme was more stable than the free enzyme against abrupt changes in pH, temperature, and ionic strength. Moreover, it retained high enzyme activity even after repetitive use. PMID:26810145

  7. Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab

    2015-11-01

    To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P < 0.05). In the hypertensive chickens, superoxide dismutase activity was decreased (forebrain, midbrain, and hindbrain), while catalase activity was increased (forebrain and midbrain) ( P < 0.05). Glutathione peroxidase activity did not change. Relative gene expression of catalase and superoxide dismutases (1 and 2) was downregulated, while glutathione peroxidase was upregulated in the brain of the cold-induced pulmonary hypertensive chickens. Probably, these situations in the oxidant and antioxidant status of the brain especially hindbrain may change its function at cardiovascular center and sympathetic nervous system to exacerbate pulmonary hypertension.

  8. A Light-Activated Microheater for the Remote Control of Enzymatic Catalysis.

    PubMed

    Cao, Yuanyuan; Wang, Zhen; Liao, Shenglong; Wang, Jian; Wang, Yapei

    2016-01-18

    The remote control of enzymatic catalysis is of significant importance in disease treatment and industrial applications. Herein, we designed a microheater composed of a porous polylactic acid (PLA) matrix and polydopamine (PDA) with notable photothermal conversion capability. Starch hydrolysis, catalyzed by using α-amylase, was accelerated in the presence of the microheater under illumination with near-infrared light or natural sunlight at room temperature. Additionally, the methodology was extended to the preparation of microwave-absorbing materials with the deposition of polyaniline on porous PLA matrix. The porous morphology improves the energy-conversion efficiency. PMID:26603499

  9. Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical re-flocculation with inorganic coagulants: Kinetics of enzymatic reaction and re-flocculation morphology.

    PubMed

    Chen, Zhan; Zhang, Weijun; Wang, Dongsheng; Ma, Teng; Bai, Runying

    2015-10-15

    The feasibility of combined process of composite enzymatic treatment and chemical flocculation with inorganic salt coagulants was investigated in this study. The evolution of extracellular polymeric substances (EPS) distribution, composition and morphological properties were analyzed to unravel the sludge conditioning mechanism. It was found that sludge filtration performance was deteriorated due to release of a large amount of biopolymers after enzymatic treatment. The change in EPS followed the pseudo-first-order kinetic equation well under enzymatic treatment. The feeding modes of enzymes had a significant influence on sludge lysis efficiency under compound enzymes treatment. Alpha amylase + protease was more effective in solubilization than other two addition modes (protease + α-amylase or simultaneous addition). The sludge floc re-formed and macromolecule biopolymers were effectively removed through coagulation process. At the same time, both of filtration rate and cake solid content of sludge treated with enzymes were improved with increasing dosage of coagulants, and ferric iron (FeCl3) had better performance in sludge dewaterability enhancement than polyaluminium chloride (PACl). In addition, sludge filtration property was slightly deteriorated, while the cake moisture reduction was favored at the optimal dosage of inorganic coagulants. PMID:26196306

  10. Amifostine Induces Antioxidant Enzymatic Activities in Normal Tissues and a Transplantable Tumor That Can Affect Radiation Response

    SciTech Connect

    Grdina, David J. Murley, Jeffrey S.; Kataoka, Yasushi; Baker, Kenneth L.; Kunnavakkam, Rangesh; Coleman, Mitchell C.; Spitz, Douglas R.

    2009-03-01

    Purpose: To determine whether amifostine can induce elevated manganese superoxide dismutase (SOD2) in murine tissues and a transplantable SA-NH tumor, resulting in a delayed tumor cell radioprotective effect. Methods and Materials: SA-NH tumor-bearing C3H mice were treated with a single 400 mg/kg or three daily 50 mg/kg doses of amifostine administered intraperitoneally. At selected time intervals after the last injection, the heart, liver, lung, pancreas, small intestine, spleen, and SA-NH tumor were removed and analyzed for SOD2, catalase, and glutathione peroxidase (GPx) enzymatic activity. The effect of elevated SOD2 enzymatic activity on the radiation response of SA-NH cells was determined. Results: SOD2 activity was significantly elevated in selected tissues and a tumor 24 h after amifostine treatment. Catalase and GPx activities remained unchanged except for significant elevations in the spleen. GPx was also elevated in the pancreas. SA-NH tumor cells exhibited a twofold elevation in SOD2 activity and a 27% elevation in radiation resistance. Amifostine administered in three daily fractions of 50 mg/kg each also resulted in significant elevations of these antioxidant enzymes. Conclusions: Amifostine can induce a delayed radioprotective effect that correlates with elevated levels of SOD2 activity in SA-NH tumor. If limited to normal tissues, this delayed radioprotective effect offers an additional potential for overall radiation protection. However, amifostine-induced elevation of SOD2 activity in tumors could have an unanticipated deleterious effect on tumor responses to fractionated radiation therapy, given that the radioprotector is administered daily just before each 2-Gy fractionated dose.

  11. fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization

    NASA Astrophysics Data System (ADS)

    Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda

    2010-03-01

    Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.

  12. A cell-free enzymatic activity assay for the evaluation of HIV-1 drug resistance to protease inhibitors

    PubMed Central

    Matsunaga, Satoko; Masaoka, Takashi; Sawasaki, Tatsuya; Morishita, Ryo; Iwatani, Yasumasa; Tatsumi, Masashi; Endo, Yaeta; Yamamoto, Naoki; Sugiura, Wataru; Ryo, Akihide

    2015-01-01

    Due to their high frequency of genomic mutations, human retroviruses often develop resistance to antiretroviral drugs. The emergence of drug-resistant human immunodeficiency virus type 1 (HIV-1) is a significant obstacle to the effective long-term treatment of HIV infection. The development of a rapid and versatile drug-susceptibility assay would enable acquisition of phenotypic information and facilitate determination of the appropriate choice of antiretroviral agents. In this study, we developed a novel in vitro method, termed the Cell-free drug susceptibility assay (CFDSA), for monitoring phenotypic information regarding the drug resistance of HIV-1 protease (PR). The CFDSA utilizes a wheat germ cell-free protein production system to synthesize enzymatically active HIV-1 PRs directly from PCR products amplified from HIV-1 molecular clones or clinical isolates in a rapid one-step procedure. Enzymatic activity of PRs can be readily measured by AlphaScreen (Amplified Luminescent Proximity Homogeneous Assay Screen) in the presence or absence of clinically used protease inhibitors (PIs). CFDSA measurement of drug resistance was based on the fold resistance to the half-maximal inhibitory concentration (IC50) of various PIs. The CFDSA could serve as a non-infectious, rapid, accessible, and reliable alternative to infectious cell-based phenotypic assays for evaluation of PI-resistant HIV-1. PMID:26583013

  13. Chromophoric dissolved organic matter and microbial enzymatic activity. A biophysical approach to understand the marine carbon cycle.

    PubMed

    Gonnelli, Margherita; Vestri, Stefano; Santinelli, Chiara

    2013-12-01

    This study reports the first information on extracellular enzymatic activity (EEA) combined with a study of DOM dynamics at the Arno River mouth. DOM dynamics was investigated from both a quantitative (dissolved organic carbon, DOC) and a qualitative (absorption and fluorescence of chromophoric DOM, CDOM) perspective. The data here reported highlight that the Arno River was an important source of both DOC and CDOM for this coastal area. CDOM optical properties suggested that terrestrial DOM did not undergo simple dilution at the river mouth but, other physical-chemical and biological processes were probably at work to change its molecular characteristics. This observation was further supported by the "potential" enzymatic activity of β-glucosidase (BG) and leucine aminopeptidase (LAP). Their Vmax values were markedly higher in the river water than in the seawater and their ratio suggested that most of the DOM used by microbes in the Arno River was polysaccharide-like, while in the seawater it was mainly protein-like. PMID:23850176

  14. Effect of salinity tolerant PDH45 transgenic rice on physicochemical properties, enzymatic activities and microbial communities of rhizosphere soils

    PubMed Central

    Sahoo, Ranjan Kumar; Tuteja, Narendra

    2013-01-01

    The effect of genetically modified (GM) plants on environment is now major concern worldwide. The plant roots of rhizosphere soil interact with variety of bacteria which could be influenced by the transgene in GM plants. The antibiotic resistance genes in GM plants may be transferred to soil microbes. In this study we have examined the effect of overexpression of salinity tolerant pea DNA helicase 45 (PDH45) gene on microbes and enzymatic activities in the rhizosphere soil of transgenic rice IR64 in presence and absence of salt stress in two different rhizospheric soils (New Delhi and Odisha, India). The diversity of the microbial community and soil enzymes viz., dehydrogenase, alkaline phosphatase, urease and nitrate reductase was assessed. The results revealed that there was no significant effect of transgene expression on rhizosphere soil of the rice plants. The isolated bacteria were phenotyped both in absence and presence of salt and no significant changes were found in their phenotypic characters as well as in their population. Overall, the overexpression of PDH45 in rice did not cause detectable changes in the microbial population, soil enzymatic activities and functional diversity of the rhizosphere soil microbial community. PMID:23733066

  15. Modulated expression and enzymatic activities of Darkbarbel catfish, Pelteobagrus vachelli for oxidative stress induced by acute hypoxia and reoxygenation.

    PubMed

    Zhang, Guosong; Mao, Jianqiang; Liang, Fenfei; Chen, Jiawei; Zhao, Cheng; Yin, Shaowu; Wang, Li; Tang, Zhonglin; Chen, Shuqiao

    2016-05-01

    Large changes in oxygen availability in aquatic environments, ranging from anoxia through to hyperoxia, can lead to corresponding wide variation in the production of reactive oxygen species (ROS) by fish with aquatic respiration. In order to evaluate the effects of hypoxia and reoxygenation on oxidative stress in fish, the mRNA and protein expression of SODs (Cu/Zn-SOD and Mn-SOD) as well as indices (CP, LPO and MDA) and enzymatic activities (SOD, CAT, GPx, GR and GST) were analyzed in liver and brain tissues of Pelteobagrus vachelli. Predominant expression of PvSOD2 was detected in heart, brain, and liver. In contrast, PvSOD1 was highly expressed in liver. Based on the expression patterns of above parameters, we inferred that brain tissue of P. vachelli under 0.7 mg/L degree of acute hypoxia condition could experience hypometabolic states or no suffering stress, but brain tissue has effective mechanisms to minimize or prevent oxidative stress during the transition from hypoxia to reoxygenation. Our results also demonstrated an increased expression of SODs and enzymatic activities for oxidative stress in liver under hypoxic conditions, which supports the hypothesis that anticipatory preparation takes place in order to deal with the encountered oxidative stress during the recovery from hypoxia as proposed by M. Hermes-Lima. Therefore, this study will provide a clue to better understand the action mode of antioxidant genes and enzymes under oxidative stress in fish. PMID:26945243

  16. Detection of endopeptidase activity and analysis of cleavage specificity using a radiometric solid-phase enzymatic assay

    SciTech Connect

    Jean, F.; Basak, A.; Chretien, M.; Lazure, C. , Quebec )

    1991-05-01

    A radiometric procedure to detect the presence of proteolytic enzymes and analyze their substrate specificity is described. The enzymatic activity is first measured by the release into solution of a radiolabeled reporter group from an immobilized peptidyl substrate. Two peptidyl substrates encompassing multiple cleavage sites, a derivative of Leu-enkephalin and a peptide related to the bait region of human {alpha} 2-macroglobulin, are prepared and linked via a spacer molecule to an insoluble support. The labeled peptides released are then separated by high-performance liquid chromatography. The position of the released peptides upon chromatography allows direct identification of the sites of cleavage. The assay, using a radioactive iodinated tyrosine residue as reporter group, is extremely sensitive (less than 0.02 pg/ml of trypsin), reproducible, and easy to perform while yielding unambiguous identification of the sites of cleavage. This assay can be used to detect the presence of enzymatic activities and/or of enzyme inhibitors. Furthermore, it can be easily adapted to detect from a variety of sources all four classes of enzymes known by using appropriate peptidyl substrate sequences, buffer, pH, and incubation conditions.

  17. Mitochondrial intermediate peptidase: Expression in Escherichia coli and improvement of its enzymatic activity detection with FRET substrates

    SciTech Connect

    Marcondes, Marcelo F.; Torquato, Ricardo J.S.; Assis, Diego M.; Juliano, Maria A.; Hayashi, Mirian A.F.; Oliveira, Vitor

    2010-01-01

    In the present study, soluble, functionally-active, recombinant human mitochondrial intermediate peptidase (hMIP), a mitochondrial metalloendoprotease, was expressed in a prokaryotic system. The hMIP fusion protein, with a poly-His-tag (6x His), was obtained by cloning the coding region of hMIP cDNA into the pET-28a expression vector, which was then used to transform Escherichia coli BL21 (DE3) pLysS. After isolation and purification of the fusion protein by affinity chromatography using Ni-Sepharose resin, the protein was purified further using ion exchange chromatography with a Hi-trap resource Q column. The recombinant hMIP was characterized by Western blotting using three distinct antibodies, circular dichroism, and enzymatic assays that used the first FRET substrates developed for MIP and a series of protease inhibitors. The successful expression of enzymatically-active hMIP in addition to the FRET substrates will contribute greatly to the determination of substrate specificity of this protease and to the development of specific inhibitors that are essential for a better understanding of the role of this protease in mitochondrial functioning.

  18. Antioxidant activities and functional properties of enzymatic protein hydrolysates from defatted Camellia oleifera seed cake.

    PubMed

    Li, Xu; Deng, Junlin; Shen, Shian; Li, Tian; Yuan, Ming; Yang, Ruiwu; Ding, Chunbang

    2015-09-01

    Seed cake protein (SCP) from Camellia oleifera was hydrolyzed by five commercial proteases (Flavorzyme, Trypsin, Neutrase, Papain, Alcalase). Amino acid composition, molecular weight distribution, antioxidant activity and functional property of the seed cake protein hydrolysates (SCPH) were investigated. Enzymatic hydrolysis improved protein solubility significantly but impaired the foaming and emulsifying property. Hydrolysate generated by alcalase had the highest hydrolysis degree (DH) and antioxidant activity, and displayed excellent protein solubility over wide range of pH, while hydrolysate prepared by flavorzyme showed better copper chelating capacity and emulsifying stability with low molecular weight distribution. Trypsin-treated SCPH showed better foaming property than original protein. The results indicated that enzyme type greatly influenced the molecular weight, functional property and antioxidant activity of SCPH. It was also found that electing appropriate protease and controlling the DH could be enhanced or reduced functional property according to actual applications. PMID:26344981

  19. Effects of cerium oxide nanoparticles on soil enzymatic activities and wheat grass nutrients uptake

    NASA Astrophysics Data System (ADS)

    Li, Biting; Chen, Yirui; Bai, Lingyun; Jacobson, Astrid; Darnault, Christophe

    2015-04-01

    The US National Science Foundation estimated that the use of nanomaterials and nanotechnology would reach a global market value of 1 million this year. Concomitant with the wide applications of nanoparticles is an increasing risk of adverse effects to the environment and human health. As a common nanomaterial used as a fuel catalyst and polish material, cerium (IV) oxide nanoparticles (CeO2 NP) were tested for their potential impact on soil health and plant growth. Through exposure by air, water, and solid deposition, nanoparticles may accumulate in soils and impact agricultural systems. The objectives of this research were to determine whether CeO2 NPs affect the growth of wheat grass and selected soil enzyme activities chose as indicators of soil health. Wheat grass was grown in plant boxes containing CeO2 NPs mixed with agricultural soil at different concentrations. Two control groups were included: one consisting of soil with plants but no CeO2 NPs, and one containing only soil, i.e., no NP or wheat plants added. The plants were grown for 10 weeks and harvested every two weeks in a laboratory under sodium growth lights. At the end of the each growing period, two weeks, soils were assayed for phosphatase, β-glucosidase, and urease activities, and NPK values. Spectrophotometer analyses were used to assess enzyme activities, and NPK values were tested by Clemson Agricultural Center. Wheat yields were estimated by shoot and root lengths and weights.

  20. Consistency in boldness, activity and exploration at different stages of life

    PubMed Central

    2013-01-01

    Background Animals show consistent individual behavioural patterns over time and over situations. This phenomenon has been referred to as animal personality or behavioural syndromes. Little is known about consistency of animal personalities over entire life times. We investigated the repeatability of behaviour in common voles (Microtus arvalis) at different life stages, with different time intervals, and in different situations. Animals were tested using four behavioural tests in three experimental groups: 1. before and after maturation over three months, 2. twice as adults during one week, and 3. twice as adult animals over three months, which resembles a substantial part of their entire adult life span of several months. Results Different behaviours were correlated within and between tests and a cluster analysis showed three possible behavioural syndrome-axes, which we name boldness, exploration and activity. Activity and exploration behaviour in all tests was highly repeatable in adult animals tested over one week. In animals tested over maturation, exploration behaviour was consistent whereas activity was not. Voles that were tested as adults with a three-month interval showed the opposite pattern with stable activity but unstable exploration behaviour. Conclusions The consistency in behaviour over time suggests that common voles do express stable personality over short time. Over longer periods however, behaviour is more flexible and depending on life stage (i.e. tested before/after maturation or as adults) of the tested individual. Level of boldness or activity does not differ between tested groups and maintenance of variation in behavioural traits can therefore not be explained by expected future assets as reported in other studies. PMID:24314274

  1. A consistent muscle activation strategy underlies crawling and swimming in Caenorhabditis elegans

    PubMed Central

    Butler, Victoria J.; Branicky, Robyn; Yemini, Eviatar; Liewald, Jana F.; Gottschalk, Alexander; Kerr, Rex A.; Chklovskii, Dmitri B.; Schafer, William R.

    2015-01-01

    Although undulatory swimming is observed in many organisms, the neuromuscular basis for undulatory movement patterns is not well understood. To better understand the basis for the generation of these movement patterns, we studied muscle activity in the nematode Caenorhabditis elegans. Caenorhabditis elegans exhibits a range of locomotion patterns: in low viscosity fluids the undulation has a wavelength longer than the body and propagates rapidly, while in high viscosity fluids or on agar media the undulatory waves are shorter and slower. Theoretical treatment of observed behaviour has suggested a large change in force–posture relationships at different viscosities, but analysis of bend propagation suggests that short-range proprioceptive feedback is used to control and generate body bends. How muscles could be activated in a way consistent with both these results is unclear. We therefore combined automated worm tracking with calcium imaging to determine muscle activation strategy in a variety of external substrates. Remarkably, we observed that across locomotion patterns spanning a threefold change in wavelength, peak muscle activation occurs approximately 45° (1/8th of a cycle) ahead of peak midline curvature. Although the location of peak force is predicted to vary widely, the activation pattern is consistent with required force in a model incorporating putative length- and velocity-dependence of muscle strength. Furthermore, a linear combination of local curvature and velocity can match the pattern of activation. This suggests that proprioception can enable the worm to swim effectively while working within the limitations of muscle biomechanics and neural control. PMID:25551155

  2. A consistent muscle activation strategy underlies crawling and swimming in Caenorhabditis elegans.

    PubMed

    Butler, Victoria J; Branicky, Robyn; Yemini, Eviatar; Liewald, Jana F; Gottschalk, Alexander; Kerr, Rex A; Chklovskii, Dmitri B; Schafer, William R

    2015-01-01

    Although undulatory swimming is observed in many organisms, the neuromuscular basis for undulatory movement patterns is not well understood. To better understand the basis for the generation of these movement patterns, we studied muscle activity in the nematode Caenorhabditis elegans. Caenorhabditis elegans exhibits a range of locomotion patterns: in low viscosity fluids the undulation has a wavelength longer than the body and propagates rapidly, while in high viscosity fluids or on agar media the undulatory waves are shorter and slower. Theoretical treatment of observed behaviour has suggested a large change in force-posture relationships at different viscosities, but analysis of bend propagation suggests that short-range proprioceptive feedback is used to control and generate body bends. How muscles could be activated in a way consistent with both these results is unclear. We therefore combined automated worm tracking with calcium imaging to determine muscle activation strategy in a variety of external substrates. Remarkably, we observed that across locomotion patterns spanning a threefold change in wavelength, peak muscle activation occurs approximately 45° (1/8th of a cycle) ahead of peak midline curvature. Although the location of peak force is predicted to vary widely, the activation pattern is consistent with required force in a model incorporating putative length- and velocity-dependence of muscle strength. Furthermore, a linear combination of local curvature and velocity can match the pattern of activation. This suggests that proprioception can enable the worm to swim effectively while working within the limitations of muscle biomechanics and neural control. PMID:25551155

  3. Solvent environments significantly affect the enzymatic function of Escherichia coli dihydrofolate reductase: comparison of wild-type protein and active-site mutant D27E.

    PubMed

    Ohmae, Eiji; Miyashita, Yurina; Tate, Shin-Ichi; Gekko, Kunihiko; Kitazawa, Soichiro; Kitahara, Ryo; Kuwajima, Kunihiro

    2013-12-01

    To investigate the contribution of solvent environments to the enzymatic function of Escherichia coli dihydrofolate reductase (DHFR), the salt-, pH-, and pressure-dependence of the enzymatic function of the wild-type protein were compared with those of the active-site mutant D27E in relation to their structure and stability. The salt concentration-dependence of enzymatic activity indicated that inorganic cations bound to and inhibited the activity of wild-type DHFR at neutral pH. The BaCl2 concentration-dependence of the (1)H-(15)N HSQC spectra of the wild-type DHFR-folate binary complex showed that the cation-binding site was located adjacent to the Met20 loop. The insensitivity of the D27E mutant to univalent cations, the decreased optimal pH for its enzymatic activity, and the increased Km and Kd values for its substrate dihydrofolate suggested that the substrate-binding cleft of the mutant was slightly opened to expose the active-site side chain to the solvent. The marginally increased fluorescence intensity and decreased volume change due to unfolding of the mutant also supported this structural change or the modified cavity and hydration. Surprisingly, the enzymatic activity of the mutant increased with pressurization up to 250MPa together with negative activation volumes of -4.0 or -4.8mL/mol, depending on the solvent system, while that of the wild-type was decreased and had positive activation volumes of 6.1 or 7.7mL/mol. These results clearly indicate that the insertion of a single methylene at the active site could substantially change the enzymatic reaction mechanism of DHFR, and solvent environments play important roles in the function of this enzyme. PMID:24140567

  4. Enzymatic Activities and DNA Substrate Specificity of Mycobacterium tuberculosis DNA Helicase XPB

    PubMed Central

    Balasingham, Seetha V.; Zegeye, Ephrem Debebe; Homberset, Håvard; Rossi, Marie L.; Laerdahl, Jon K.; Bohr, Vilhelm A.; Tønjum, Tone

    2012-01-01

    XPB, also known as ERCC3 and RAD25, is a 3′→5′ DNA repair helicase belonging to the superfamily 2 of helicases. XPB is an essential core subunit of the eukaryotic basal transcription factor complex TFIIH. It has two well-established functions: in the context of damaged DNA, XPB facilitates nucleotide excision repair by unwinding double stranded DNA (dsDNA) surrounding a DNA lesion; while in the context of actively transcribing genes, XPB facilitates initiation of RNA polymerase II transcription at gene promoters. Human and other eukaryotic XPB homologs are relatively well characterized compared to conserved homologs found in mycobacteria and archaea. However, more insight into the function of bacterial helicases is central to understanding the mechanism of DNA metabolism and pathogenesis in general. Here, we characterized Mycobacterium tuberculosis XPB (Mtb XPB), a 3′→5′ DNA helicase with DNA-dependent ATPase activity. Mtb XPB efficiently catalyzed DNA unwinding in the presence of significant excess of enzyme. The unwinding activity was fueled by ATP or dATP in the presence of Mg2+/Mn2+. Consistent with the 3′→5′ polarity of this bacterial XPB helicase, the enzyme required a DNA substrate with a 3′ overhang of 15 nucleotides or more. Although Mtb XPB efficiently unwound DNA model substrates with a 3′ DNA tail, it was not active on substrates containing a 3′ RNA tail. We also found that Mtb XPB efficiently catalyzed ATP-independent annealing of complementary DNA strands. These observations significantly enhance our understanding of the biological roles of Mtb XPB. PMID:22615856

  5. [Isolation of wood-decaying fungi and evaluation of their enzymatic activity (Quindío, Colombia)].

    PubMed

    Chaparro, Deisy Fernanda; Rosas, Diana Carolina; Varela, Amanda

    2009-12-31

    White rot fungi (Ascomycota and Basidiomycota) were collected on fallen trunks with different decay stages, in a subandean forest (La Montaña del Ocaso nature reserve), and it was evaluated their ligninolitic activity. They were cultured on malt extract agar. Then it was performed semiquantitative tests for laccase and cellobiose dehydrogenase (CDH) activity using ABTS and DCPIP as enzymatic inducers. Based on the results of these tests, the fungi with higher activities from trunks with different decay stages were selected: Cookeina sulcipes (for stage 1), a fungus from the family Corticiaceae (for stage 2), Xylaria polymorpha (for stage 3) and Earliella sp. (for stage 4). A fermentation was performed at 28 degrees C, during 11 days, in a rotatory shaker at 150 rpm. Biomass, glucose, proteins and enzyme activities measurements were performed daily. The fungi that were in the trunks with decay states from 1 to 3, showed higher laccase activity as the state of decay increased. A higher DCH activity was also associated with a higher. Also, there was a positive relationship between both enzymes' activities. Erliella was the fungus which presented the highest biomass production (1140,19 g/l), laccase activity (157 UL(-1)) and CDH activity (43,50 UL(-1)). This work is the first report of laccase and CDH activity for Cookeina sulcipes and Earliella sp. Moreover, it gives basis for the use of these native fungi in biotechnological applications and the acknowledgment of their function in the wood decay process in native forest. PMID:19796977

  6. Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.

    PubMed

    Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura

    2016-07-12

    A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion. PMID:27276688

  7. Enzymatic and microbiological inhibitory activity in eggshell membranes as influenced by layer strains and age and storage variables.

    PubMed

    Ahlborn, G; Sheldon, B W

    2005-12-01

    Eggshell membranes (ESM) have been shown to exhibit antibacterial activity. The purpose of this study was to evaluate the enzymatic and biological [decimal reduction times (D-values)] activities of ESM as a function of bird breed, age, and ESM stabilization treatments. Younger White Leghorn (WL) hens produced ESM with 28% higher lysozyme activity than Rhode Island Red (RIR) layers. In contrast, older WL layers produced ESM with 17% less lysozyme activity than ESM from RIR layers. Similarly, beta-N-acetylglucosaminidase (beta-NAGase) ESM activities differed by hen age within breeds with younger hens yielding 14 to 16% more enzyme activity. D54 degrees C-values of Salmonella Typhimurium cells preexposed to WL ESM did not differ as a function of bird age (33, 50, and 81 wk). The ESM Lysozyme and beta-NAGase activities varied somewhat over a 6-mo storage study after treatment with 1 of 5 stabilization methods [i.e., storage at 4 degrees C, -20 degrees C, or ambient air storage after freeze drying, air drying (23 degrees C), or forced-air drying (50 degrees C)]. Both air and forced-air drying yielded significant reductions in beta-NAGase and lysozyme ESM activity (ca 12 to 30%) after the initial 24 h and then remained fairly stable during the extended storage. Freeze-dried samples retained the most enzymatic activity (95%) throughout the 6-mo trial, whereas refrigerated ESM lost 20 and 18% of the beta-NAGase and lysozyme activities, respectively. Frozen ESM lost 22% of the beta-NAGase activity, whereas lysozyme was nearly unaffected after 6 mo. The ESM biological activities against S. Typhimurium were not adversely impacted by layer breed or age. No significant loss in biological activity of ESM was detected 24 h after processing or after 6 mo of storage for refrigerated, frozen, and freeze-dried membranes, whereas significant reductions were observed for air- and heat-dried ESM. These findings demonstrate that ESM enzyme and biological activities are relatively

  8. Monoclonal antibodies raised against 167-180 aa sequence of human carbonic anhydrase XII inhibit its enzymatic activity.

    PubMed

    Dekaminaviciute, Dovile; Kairys, Visvaldas; Zilnyte, Milda; Petrikaite, Vilma; Jogaite, Vaida; Matuliene, Jurgita; Gudleviciene, Zivile; Vullo, Daniela; Supuran, Claudiu T; Zvirbliene, Aurelija

    2014-12-01

    Abstract Human carbonic anhydrase XII (CA XII) is a single-pass transmembrane protein with an extracellular catalytic domain. This enzyme is being recognized as a potential biomarker for different tumours. The current study was aimed to generate monoclonal antibodies (MAbs) neutralizing the enzymatic activity of CA XII. Bioinformatics analysis of CA XII structure revealed surface-exposed sequences located in a proximity of its catalytic centre. Two MAbs against the selected antigenic peptide spanning 167-180 aa sequence of CA XII were generated. The MAbs were reactive with recombinant catalytic domain of CA XII expressed either in E. coli or mammalian cells. Inhibitory activity of the MAbs was demonstrated by a stopped flow CO2 hydration assay. The study provides new data on the surface-exposed linear CA XII epitope that may serve as a target for inhibitory antibodies with a potential immunotherapeutic application. PMID:24400872

  9. Thiobarbituric acid reactive substances, Fe3+ reduction and enzymatic activities in cultures of Ganoderma australe growing on Drimys winteri wood.

    PubMed

    Elissetche, Juan-Pedro; Ferraz, André; Freer, Juanita; Mendonça, Régis; Rodríguez, Jaime

    2006-07-01

    Ganoderma australe is a basidiomycete responsible for a natural process of selective and extensive lignin degradation. Fatty acids, thiobarbituric acid reactive substances (TBARS), Fe3+-reduction and enzymatic activities were monitored in cultures of G. australe growing on Drimys winteri wood chips. Linoleic acid was de novo synthesized, and steadily increased during 12 weeks of cultivation. Part of the unsaturated fatty acids underwent peroxidation as TBARS accumulated with biodegradation time. TBARS accumulation was proportional to the wood weight and component losses. Manganese-dependent peroxidase and lignin peroxidase were not detected in the culture extracts, whereas laccase-induced oxidation of syringaldazine peaked after 2 weeks (104+/-9 micromol oxidized min(-1) kg(-1) of dry wood), subsequently decreasing. On the other hand, nonenzymatic Fe3+-reducing activity increased as a function of cultivation time and could be involved in the initiation of lipid peroxidation. PMID:16790026

  10. New Tricks for Old Proteins: Single Mutations in a Nonenzymatic Protein Give Rise to Various Enzymatic Activities.

    PubMed

    Moroz, Yurii S; Dunston, Tiffany T; Makhlynets, Olga V; Moroz, Olesia V; Wu, Yibing; Yoon, Jennifer H; Olsen, Alissa B; McLaughlin, Jaclyn M; Mack, Korrie L; Gosavi, Pallavi M; van Nuland, Nico A J; Korendovych, Ivan V

    2015-12-01

    Design of a new catalytic function in proteins, apart from its inherent practical value, is important for fundamental understanding of enzymatic activity. Using a computationally inexpensive, minimalistic approach that focuses on introducing a single highly reactive residue into proteins to achieve catalysis we converted a 74-residue-long C-terminal domain of calmodulin into an efficient esterase. The catalytic efficiency of the resulting stereoselective, allosterically regulated catalyst, nicknamed AlleyCatE, is higher than that of any previously reported de novo designed esterases. The simplicity of our design protocol should complement and expand the capabilities of current state-of-art approaches to protein design. These results show that even a small nonenzymatic protein can efficiently attain catalytic activities in various reactions (Kemp elimination, ester hydrolysis, retroaldol reaction) as a result of a single mutation. In other words, proteins can be just one mutation away from becoming entry points for subsequent evolution. PMID:26555770

  11. Enzymatic Methylation and Structure-Activity-Relationship Studies on Polycarcin V, a Gilvocarcin-Type Antitumor Agent

    PubMed Central

    Chen, Jhong-Min; Shepherd, Micah D.; Horn, Jamie; Leggas, Markos; Rohr, Jürgen

    2014-01-01

    Polycarcin V, a polyketide natural product of Streptomyces polyformus, was chosen to study structure-activity-relationships of the gilvocarcin group of antitumor antibiotics, because of a similar chemical structure and comparable bioactivity with gilvocarcin V, the principle compound of this group, and the feasibility of enzymatic modifications of its sugar moiety by auxiliary O-methyltransferases. Such enzymes were used to modify the interaction of the drug with histone H3, the biological target that interacts with the sugar moiety. Cytotoxicity assays revealed that a free 2’-OH group of the sugar moiety is essential to maintain the bioactivity of polycarcin V, apparently an important H-bond donor for the interaction with histone H3, while converting 3'-OH into an OCH3 group improved the bioactivity. Bis-methylated polycarcin derivatives revealed weaker activity than the parent compound, indicating that at least two H-bond donors in the sugar are necessary for optimal binding. PMID:25366963

  12. Childhood Sexual Violence and Consistent, Effective Contraception Use among Young, Sexually Active Urban Women

    PubMed Central

    Nelson, Deborah B.; Lepore, Stephen J.; Mastrogiannis, Dimitrios S.

    2015-01-01

    Unintended pregnancy (UP) is a significant public health problem. The consistent use of effective contraception is the primary method to prevent UP. We examined the role of childhood sexual and physical violence and current interpersonal violence on the risk of unintended pregnancy among young, urban, sexually active women. In particular, we were interested in examining the role of childhood violence and interpersonal violence while recognizing the psychological correlates of experiencing violence (i.e., high depressive symptoms and low self-esteem) and consistent use of contraception. For this assessment, 315 sexually active women living in Philadelphia PA were recruited from family planning clinics in 2013. A self-administered, computer-assisted interview was used to collect data on method of contraception use in the past month, consistency of use, experiences with violence, levels of depressive symptoms, self-esteem and sexual self-efficacy, substance use and health services utilization. Fifty percent of young sexually active women reported inconsistent or no contraception use in the past month. Inconsistent users were significantly more likely to report at least one prior episode of childhood sexual violence and were significantly less likely to have received a prescription for contraception from a health care provider. Inconsistent contraception users also reported significantly higher levels of depressive symptoms and significantly lower levels of self-esteem. The relation between childhood sexual violence and UP remained unchanged in the multivariate models adjusting for self-esteem or depressive symptoms. These findings highlight the long-term consequences of childhood sexual violence, independent of current depressive symptoms and low self-esteem, on consistent use of contraception. PMID:26010318

  13. Evolution of Enzymatic Activities in the Enolase Superfamily: D-Tartrate Dehydratase from Bradyrhizobium japonicum

    SciTech Connect

    Yew,W.; Fedorov, A.; Fedorov, E.; Wood, B.; Almo, S.; Gerlt, J.

    2006-01-01

    We focus on the assignment of function to and elucidation of structure-function relationships for a member of the mechanistically diverse enolase superfamily encoded by the Bradyrhizobium japonicum genome (bll6730; GI:27381841). As suggested by sequence alignments, the active site contains the same functional groups found in the active site of mandelate racemase (MR) that catalyzes a 1,1-proton transfer reaction: two acid/base catalysts, Lys 184 at the end of the second {beta}-strand, and a His 322-Asp 292 dyad at the ends of the seventh and sixth -strands, respectively, as well as ligands for an essential Mg{sup 2+}, Asp 213, Glu 239, and Glu 265 at the ends of the third, fourth, and fifth {beta}-strands, respectively. We screened a library of 46 acid sugars and discovered that only D-tartrate is dehydrated, yielding oxaloacetate as product. The kinetic constants (k{sub cat} = 7.3 s{sup -1}; k{sub cat}/K{sub M} = 8.5 x 10{sup 4} M{sup -1} s{sup -1}) are consistent with assignment of the D-tartrate dehydratase (TarD) function. The kinetic phenotypes of mutants as well as the structures of liganded complexes are consistent with a mechanism in which Lys 184 initiates the reaction by abstraction of the {alpha}-proton to generate a Mg{sup 2+}-stabilized enediolate intermediate, and the vinylogous -elimination of the 3-OH group is general acid-catalyzed by the His 322, accomplishing the anti-elimination of water. The replacement of the leaving group by solvent-derived hydrogen is stereorandom, suggesting that the enol tautomer of oxaloacetate is the product; this expectation was confirmed by its observation by {sup 1}H NMR spectroscopy. Thus, the TarD-catalyzed reaction is a 'simple' extension of the two-step reaction catalyzed by MR: base-catalyzed proton abstraction to generate a Mg{sup 2+}-stabilized enediolate intermediate followed by acid-catalyzed decomposition of that intermediate to yield the product.

  14. A two-parameter kinetic model based on a time-dependent activity coefficient accurately describes enzymatic cellulose digestion

    PubMed Central

    Kostylev, Maxim; Wilson, David

    2014-01-01

    Lignocellulosic biomass is a potential source of renewable, low-carbon-footprint liquid fuels. Biomass recalcitrance and enzyme cost are key challenges associated with the large-scale production of cellulosic fuel. Kinetic modeling of enzymatic cellulose digestion has been complicated by the heterogeneous nature of the substrate and by the fact that a true steady state cannot be attained. We present a two-parameter kinetic model based on the Michaelis-Menten scheme (Michaelis L and Menten ML. (1913) Biochem Z 49:333–369), but with a time-dependent activity coefficient analogous to fractal-like kinetics formulated by Kopelman (Kopelman R. (1988) Science 241:1620–1626). We provide a mathematical derivation and experimental support to show that one of the parameters is a total activity coefficient and the other is an intrinsic constant that reflects the ability of the cellulases to overcome substrate recalcitrance. The model is applicable to individual cellulases and their mixtures at low-to-medium enzyme loads. Using biomass degrading enzymes from a cellulolytic bacterium Thermobifida fusca we show that the model can be used for mechanistic studies of enzymatic cellulose digestion. We also demonstrate that it applies to the crude supernatant of the widely studied cellulolytic fungus Trichoderma reesei and can thus be used to compare cellulases from different organisms. The two parameters may serve a similar role to Vmax, KM, and kcat in classical kinetics. A similar approach may be applicable to other enzymes with heterogeneous substrates and where a steady state is not achievable. PMID:23837567

  15. States Lack Physical Activity Policies in Child Care That Are Consistent with National Recommendations

    PubMed Central

    Slining, Meghan M.; Benjamin Neelon, Sara E.

    2014-01-01

    Abstract Background: Child care facilities' policies can importantly impact health behaviors of toddlers and preschoolers. Our aim was to assess state regulations promoting physical activity (PA) in child care and compare regulations to national recommendations. Methods: We reviewed licensing and administrative regulations related to promoting PA for all states and territories for child care centers (centers) and family child care homes (homes). Three reviewers searched two sources (a publically available website and WestlawNext™) and compared regulations with 15 Institute of Medicine recommendations. We used Pearson's and Spearman's correlations to assess associations between geographic region, year of last update, and number of regulations consistent with the recommendations. Results: The average number and range of regulations in centers and homes was 4.1 (standard deviation [SD], 1.4; range, 0–8) and 3.8 (SD, 1.5; range, 0–7), respectively. Nearly all states had regulations consistent with providing an outdoor (centers, 98%; homes, 95%) and indoor (centers, 94%, homes, 92%) environment “with a variety of portable play equipment and adequate space.” No state had regulations for staff joining children, avoiding punishment for being physically active, yearly consultation from a PA expert, or providing training/education on PA for providers. Conclusions: There is room for improvement in child care regulations around PA for young children; PA promotion should be included with future updates to regulations. PMID:25354331

  16. Evidence consistent with the requirement of cresolase activity for suicide inactivation of tyrosinase.

    PubMed

    Land, Edward J; Ramsden, Christopher A; Riley, Patrick A; Stratford, Michael R L

    2008-11-01

    Tyrosinase is a mono-oxygenase with a dinuclear copper catalytic center which is able to catalyze both the ortho-hydroxylation of monophenols (cresolase activity) and the oxidation of catechols (catecholase activity) yielding ortho-quinone products. Tyrosinases appear to have arisen early in evolution and are widespread in living organisms where they are involved in several processes, including antibiosis, adhesion of molluscs, the hardening of the exoskeleton of insects, and pigmentation. Tyrosinase is the principal enzyme of melanin formation in vertebrates and is of clinical interest because of the possible utilization of its activity for targeted treatment of malignant melanoma. Tyrosinase is characterised by an irreversible inactivation that occurs during the oxidation of catechols. In a recent publication we proposed a mechanism to account for this feature based on the ortho-hydroxylation of catecholic substrates, during which process Cu(II) is reduced to Cu(0) which no longer binds to the enzyme and is eliminated (reductive elimination). Since this process is dependent on cresolase activity of tyrosinase, a strong prediction of the proposed inactivation mechanism is that it will not be exhibited by enzymes lacking cresolase activity. We show that the catechol oxidase readily extracted from bananas (Musa cavendishii) is devoid of cresolase activity and that the kinetics of catechol oxidation do not exhibit inactivation. We also show that a species with the molecular mass of the putative cresolase oxidation product is formed during tyrosinase oxidation of 4-methylcatechol. The results presented are entirely consistent with our proposed mechanism to account for suicide-inactivation of tyrosinase. PMID:18987457

  17. Lactogenic Activity of an Enzymatic Hydrolysate from Octopus vulgaris and Carica papaya in SD Rats.

    PubMed

    Cai, Bingna; Chen, Hua; Sun, Han; Sun, Huili; Wan, Peng; Chen, Deke; Pan, Jianyu

    2015-11-01

    The traditional Chinese medicine theory believes that octopus papaya soup can stimulate milk production in lactating women. The objective of this study was to determine whether dietary supplementation with an enzymatic hydrolysate of Octopus vulgaris and Carica papaya (EHOC) could increase milk production and nutritional indexes in Sprague Dawley (SD) rats. Female SD rats (n = 24) were fed a control diet (n = 8), EHOC-supplemented diet, or a positive control diet (Shengruzhi) from day 10 of pregnancy to day 10 of lactation. Maternal serum, mammary gland (day 10 of lactation), milk, and pup weight (daily) were collected for analysis. Results showed that the EHOC diet obviously elevated daily milk yield and pup weight compared to the control group (P < .05). The EHOC diet was found to increase the concentration of prolactin (PRL), progesterone (P), estradiol (E2), and growth hormone (GH) significantly in the circulation and mammary gland. Mammary glands of EHOC-treated dams showed clear lobuloalveolar development and proliferation of myoepithelial cells, but no striking variations were observed among the groups. Furthermore, the nutrition content and immune globulin concentration in the milk of EHOC-supplemented dams were higher than those of the control group, especially the cholesterol, glucose, and IgG were higher by 44.98% (P < .001), 42.76% (P < .01), and 42.23% (P < .01), respectively. In conclusion, this article demonstrates that EHOC administration has beneficial effects on milk production in the dams and on performance of the dam and pup. These results indicate that EHOC could be explored as a potentially lactogenic nutriment for lactating women. PMID:26270883

  18. Strain differences in cytochrome P450 mRNA and protein expression, and enzymatic activity among Sprague Dawley, Wistar, Brown Norway and Dark Agouti rats

    PubMed Central

    NISHIYAMA, Yoshihiro; NAKAYAMA, Shouta M.M.; WATANABE, Kensuke P.; KAWAI, Yusuke K.; OHNO, Marumi; IKENAKA, Yoshinori; ISHIZUKA, Mayumi

    2016-01-01

    Rat cytochrome P450 (CYP) exhibits inter-strain differences, but their analysis has been scattered across studies under different conditions. To identify these strain differences in CYP more comprehensively, mRNA expression, protein expression and metabolic activity among Wistar (WI), Sprague Dawley (SD), Dark Agouti (DA) and Brown Norway (BN) rats were compared. The mRNA level and enzymatic activity of CYP1A1 were highest in SD rats. The rank order of Cyp3a2 mRNA expression mirrored its protein expression, i.e., DA>BN>SD>WI, and was similar to the CYP3A2-dependent warfarin metabolic activity, i.e., DA>SD>BN>WI. These results suggest that the strain differences in CYP3A2 enzymatic activity are caused by differences in mRNA expression. Cyp2b1 mRNA levels, which were higher in DA rats, did not correlate with its protein expression or enzymatic activity. This suggests that the strain differences in enzymatic activity are not related to Cyp2b1 mRNA expression. In conclusion, WI rats tended to have the lowest CYP1A1, 2B1 and 3A2 mRNA expression, protein expression and enzymatic activity among the strains. In addition, SD rats had the highest CYP1A1 mRNA expression and activity, while DA rats had higher CYP2B1 and CYP3A2 mRNA and protein expression. These inter-strain differences in CYP could influence pharmacokinetic considerations in preclinical toxicological studies. PMID:26806536

  19. Identification of an Iron-Sulfur Cluster That Modulates the Enzymatic Activity in NarE, a Neisseria meningitidis ADP-ribosyltransferase*

    PubMed Central

    Del Vecchio, Mariangela; Pogni, Rebecca; Baratto, Maria Camilla; Nobbs, Angela; Rappuoli, Rino; Pizza, Mariagrazia; Balducci, Enrico

    2009-01-01

    In prokaryotes, mono-ADP-ribose transfer enzymes represent a family of exotoxins that display activity in a variety of bacterial pathogens responsible for causing disease in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report here that NarE, a putative ADP-ribosylating toxin previously identified from Neisseria meningitidis, which shares structural homologies with Escherichia coli heat labile enterotoxin and toxin from Vibrio cholerae, possesses an iron-sulfur center. The recombinant protein was expressed in E. coli, and when purified at high concentration, NarE is a distinctive golden brown in color. Evidence from UV-visible spectrophotometry and EPR spectroscopy revealed characteristics consistent of an iron-binding protein. The presence of iron was determined by colorimetric method and by an atomic absorption spectrophotometer. To identify the amino acids involved in binding iron, a combination of site-directed mutagenesis and UV-visible and enzymatic assays were performed. All four cysteine residues were individually replaced by serine. Substitution of Cys67 and Cys128 into serine caused a drastic reduction in the E420/E280 ratio, suggesting that these two residues are essential for the formation of a stable coordination. This modification led to a consistent loss in ADP-ribosyltransferase activity, while decrease in NAD-glycohydrolase activity was less dramatic in these mutants, indicating that the correct assembly of the iron-binding site is essential for transferase but not hydrolase activity. This is the first observation suggesting that a member of the ADP-ribosyltransferase family contains an Fe-S cluster implicated in catalysis. This observation may unravel novel functions exerted by this class of enzymes. PMID:19744927

  20. Identification of an iron-sulfur cluster that modulates the enzymatic activity in NarE, a Neisseria meningitidis ADP-ribosyltransferase.

    PubMed

    Del Vecchio, Mariangela; Pogni, Rebecca; Baratto, Maria Camilla; Nobbs, Angela; Rappuoli, Rino; Pizza, Mariagrazia; Balducci, Enrico

    2009-11-27

    In prokaryotes, mono-ADP-ribose transfer enzymes represent a family of exotoxins that display activity in a variety of bacterial pathogens responsible for causing disease in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report here that NarE, a putative ADP-ribosylating toxin previously identified from Neisseria meningitidis, which shares structural homologies with Escherichia coli heat labile enterotoxin and toxin from Vibrio cholerae, possesses an iron-sulfur center. The recombinant protein was expressed in E. coli, and when purified at high concentration, NarE is a distinctive golden brown in color. Evidence from UV-visible spectrophotometry and EPR spectroscopy revealed characteristics consistent of an iron-binding protein. The presence of iron was determined by colorimetric method and by an atomic absorption spectrophotometer. To identify the amino acids involved in binding iron, a combination of site-directed mutagenesis and UV-visible and enzymatic assays were performed. All four cysteine residues were individually replaced by serine. Substitution of Cys(67) and Cys(128) into serine caused a drastic reduction in the E(420)/E(280) ratio, suggesting that these two residues are essential for the formation of a stable coordination. This modification led to a consistent loss in ADP-ribosyltransferase activity, while decrease in NAD-glycohydrolase activity was less dramatic in these mutants, indicating that the correct assembly of the iron-binding site is essential for transferase but not hydrolase activity. This is the first observation suggesting that a member of the ADP-ribosyltransferase family contains an Fe-S cluster implicated in catalysis. This observation may unravel novel functions exerted by this class of enzymes. PMID:19744927

  1. Dynamics of microbiological parameters, enzymatic activities and worm biomass production during vermicomposting of effluent treatment plant sludge of bakery industry.

    PubMed

    Yadav, Anoop; Suthar, S; Garg, V K

    2015-10-01

    This paper reports the changes in microbial parameters and enzymatic activities during vermicomposting of effluent treatment plant sludge (ETPS) of bakery industry spiked with cow dung (CD) by Eisenia fetida. Six vermibins containing different ratios of ETPS and CD were maintained under controlled laboratory conditions for 15 weeks. Total bacterial and total fungal count increased upto 7th week and declined afterward in all the bins. Maximum bacterial and fungal count was 31.6 CFU × 10(6) g(-1) and 31 CFU × 10(4) g(-1) in 7th week. Maximum dehydrogenase activity was 1921 μg TPF g(-1) h(-1) in 9th week in 100 % CD containing vermibin, whereas maximum urease activity was 1208 μg NH4 (-)N g(-1) h(-1) in 3rd week in 100 % CD containing vermibin. The enzyme activity and microbial counts were lesser in ETPS containing vermibins than control (100 % CD). The growth and fecundity of the worms in different vermibins were also investigated. The results showed that initially biomass and fecundity of the worms increased but decreased at the later stages due to non-availability of the palatable feed. This showed that quality and palatability of food directly affect biological parameters of the system. PMID:25982984

  2. Regulation of MnSOD Enzymatic Activity by Sirt3 Connects the Mitochondrial Acetylome Signaling Networks to Aging and Carcinogenesis

    PubMed Central

    Tao, Randa; Vassilopoulos, Athanassios; Parisiadou, Loukia; Yan, Yufan

    2014-01-01

    Abstract Significance: It is a well-established scientific observation that mammalian cells contain fidelity or watchdog proteins that maintain the correct function of cellular organelles. Recent Advances: Over the past several years, the Sirtuin deacetylase family protein Sirt3 has emerged as a mitochondrial fidelity protein that directs energy generation and regulates reactive oxygen species (ROS) scavenging proteins. Loss of function or genetic mutation of these fidelity proteins has been shown to create a cellular environment that is permissive for the development of cellular damage associated with processes such as aging and carcinogenesis. Critical Issues: Mitochondria are the primary organelles that direct oxidative metabolism for the production of ATP; however, this is also a significant source of ROS. Thus, it is reasonable to propose that mitochondria should contain proteins that would signal downstream target molecules and/or ROS scavenger enzymes to maintain mitochondrial and cellular homeostatic poise. It is also reasonable to hypothesize that the mitochondria contain fidelity proteins similar to those found in the nucleus and cytoplasm. We discuss a new role of Sirt3 in the direction of the primary superoxide scavenger protein, manganese superoxide dismutase (MnSOD), and how the acetylation or deacetylation of several specific lysines appears to direct MnSOD enzymatic dismutase activity. Future Directions: Aberrant downstream regulation of MnSOD by Sirt3 may be a potential source of cellular damage that accumulates with aging to create a tumor-permissive phenotype. Future studies can explore the role of MnSOD in age-related illness using this new mechanism of enzymatic regulation. Antioxid. Redox Signal. 20, 1646–1654 PMID:23886445

  3. An ethoxylated alkyl phosphate (anionic surfactant) for the promotion of activities of proteases and its potential use in the enzymatic processing of wool.

    PubMed

    Zhang, Qinghua; Smith, Edward; Shen, Jinsong; Bishop, David

    2006-05-01

    Pretreatments of wool fabrics with cationic, anionic or non-ionic surfactants were investigated to reduce surface tension and improve the wettability of the fibres in order to promote protease activity on the fibres in subsequent processes. Results showed that an ethoxylated alkyl phosphate (specific anionic surfactant) as well as the widely used non-ionic surfactant was compatible with proteases in the enzymatic treatment of wool. There is therefore a potential for using specific anionic surfactants to achieve efficient enzymatic scouring processes. PMID:16791726

  4. Longitudinal changes in PON1 enzymatic activities in Mexican-American mothers and children with different genotypes and haplotypes

    SciTech Connect

    Huen, Karen; Harley, Kim; Bradman, Asa; Eskenazi, Brenda; Holland, Nina

    2010-04-15

    The paraoxonase 1 (PON1) enzyme prevents low-density lipoprotein oxidation and also detoxifies the oxon derivatives of certain neurotoxic organophosphate (OP) pesticides. PON1 activity in infants is low compared to adults, rendering them with lower metabolic and antioxidant capacities. We made a longitudinal comparison of the role of genetic variability on control of PON1 phenotypes in Mexican-American mothers and their children at the time of delivery (n = 388 and 338, respectively) and again 7 years later (n = 280 and 281, respectively) using generalized estimating equations models. At age 7, children's mean PON1 activities were still lower than those of mothers. This difference was larger in children with genotypes associated with low PON1 activities (PON1{sub -108TT}, PON1{sub 192QQ}, and PON1{sub -909CC}). In mothers, PON1 activities were elevated at delivery and during pregnancy compared to 7 years later when they were not pregnant (p < 0.001). In non-pregnant mothers, PON1 polymorphisms and haplotypes accounted for almost 2-fold more variation of arylesterase (AREase) and chlorpyrifos-oxonase (CPOase) activity than in mothers at delivery. In both mothers and children, the five PON1 polymorphisms (192, 55, -108, -909, -162) explained a noticeably larger proportion of variance of paraoxonase activity (62-78%) than AREase activity (12.3-26.6%). Genetic control of PON1 enzymatic activity varies in children compared to adults and is also affected by pregnancy status. In addition to known PON1 polymorphisms, unidentified environmental, genetic, or epigenetic factors may also influence variability of PON1 expression and therefore susceptibility to OPs and oxidative stress.

  5. Self-consistent simulation of CdTe solar cells with active defects

    DOE PAGESBeta

    Brinkman, Daniel; Guo, Da; Akis, Richard; Ringhofer, Christian; Sankin, Igor; Fang, Tian; Vasileska, Dragica

    2015-07-21

    We demonstrate a self-consistent numerical scheme for simulating an electronic device which contains active defects. As a specific case, we consider copper defects in cadmium telluride solar cells. The presence of copper has been shown experimentally to play a crucial role in predicting device performance. The primary source of this copper is migration away from the back contact during annealing, which likely occurs predominantly along grain boundaries. We introduce a mathematical scheme for simulating this effect in 2D and explain the numerical implementation of the system. Lastly, we will give numerical results comparing our results to known 1D simulations tomore » demonstrate the accuracy of the solver and then show results unique to the 2D case.« less

  6. Self-consistent simulation of CdTe solar cells with active defects

    SciTech Connect

    Brinkman, Daniel; Ringhofer, Christian; Guo, Da; Akis, Richard; Vasileska, Dragica; Sankin, Igor; Fang, Tian

    2015-07-21

    We demonstrate a self-consistent numerical scheme for simulating an electronic device which contains active defects. As a specific case, we consider copper defects in cadmium telluride solar cells. The presence of copper has been shown experimentally to play a crucial role in predicting device performance. The primary source of this copper is migration away from the back contact during annealing, which likely occurs predominantly along grain boundaries. We introduce a mathematical scheme for simulating this effect in 2D and explain the numerical implementation of the system. Finally, we will give numerical results comparing our results to known 1D simulations to demonstrate the accuracy of the solver and then show results unique to the 2D case.

  7. Self-consistent simulation of CdTe solar cells with active defects

    SciTech Connect

    Brinkman, Daniel; Guo, Da; Akis, Richard; Ringhofer, Christian; Sankin, Igor; Fang, Tian; Vasileska, Dragica

    2015-07-21

    We demonstrate a self-consistent numerical scheme for simulating an electronic device which contains active defects. As a specific case, we consider copper defects in cadmium telluride solar cells. The presence of copper has been shown experimentally to play a crucial role in predicting device performance. The primary source of this copper is migration away from the back contact during annealing, which likely occurs predominantly along grain boundaries. We introduce a mathematical scheme for simulating this effect in 2D and explain the numerical implementation of the system. Lastly, we will give numerical results comparing our results to known 1D simulations to demonstrate the accuracy of the solver and then show results unique to the 2D case.

  8. Conformational Changes in a Hyperthermostable Glycoside Hydrolase: Enzymatic Activity Is a Consequence of the Loop Dynamics and Protonation Balance

    PubMed Central

    de Oliveira, Leandro C.; da Silva, Viviam M.; Colussi, Francieli; Cabral, Aline D.; de Oliveira Neto, Mario; Squina, Fabio M.; Garcia, Wanius

    2015-01-01

    Endo-β-1, 4-mannanase from Thermotoga petrophila (TpMan) is a modular hyperthermostable enzyme involved in the degradation of mannan-containing polysaccharides. The degradation of these polysaccharides represents a key step for several industrial applications. Here, as part of a continuing investigation of TpMan, the region corresponding to the GH5 domain (TpManGH5) was characterized as a function of pH and temperature. The results indicated that the enzymatic activity of the TpManGH5 is pH-dependent, with its optimum activity occurring at pH 6. At pH 8, the studies demonstrated that TpManGH5 is a molecule with a nearly spherical tightly packed core displaying negligible flexibility in solution, and with size and shape very similar to crystal structure. However, TpManGH5 experiences an increase in radius of gyration in acidic conditions suggesting expansion of the molecule. Furthermore, at acidic pH values, TpManGH5 showed a less globular shape, probably due to a loop region slightly more expanded and flexible in solution (residues Y88 to A105). In addition, molecular dynamics simulations indicated that conformational changes caused by pH variation did not change the core of the TpManGH5, which means that only the above mentioned loop region presents high degree of fluctuations. The results also suggested that conformational changes of the loop region may facilitate polysaccharide and enzyme interaction. Finally, at pH 6 the results indicated that TpManGH5 is slightly more flexible at 65°C when compared to the same enzyme at 20°C. The biophysical characterization presented here is well correlated with the enzymatic activity and provide new insight into the structural basis for the temperature and pH-dependent activity of the TpManGH5. Also, the data suggest a loop region that provides a starting point for a rational design of biotechnological desired features. PMID:25723179

  9. Conformational changes in a hyperthermostable glycoside hydrolase: enzymatic activity is a consequence of the loop dynamics and protonation balance.

    PubMed

    de Oliveira, Leandro C; da Silva, Viviam M; Colussi, Francieli; Cabral, Aline D; de Oliveira Neto, Mario; Squina, Fabio M; Garcia, Wanius

    2015-01-01

    Endo-β-1, 4-mannanase from Thermotoga petrophila (TpMan) is a modular hyperthermostable enzyme involved in the degradation of mannan-containing polysaccharides. The degradation of these polysaccharides represents a key step for several industrial applications. Here, as part of a continuing investigation of TpMan, the region corresponding to the GH5 domain (TpManGH5) was characterized as a function of pH and temperature. The results indicated that the enzymatic activity of the TpManGH5 is pH-dependent, with its optimum activity occurring at pH 6. At pH 8, the studies demonstrated that TpManGH5 is a molecule with a nearly spherical tightly packed core displaying negligible flexibility in solution, and with size and shape very similar to crystal structure. However, TpManGH5 experiences an increase in radius of gyration in acidic conditions suggesting expansion of the molecule. Furthermore, at acidic pH values, TpManGH5 showed a less globular shape, probably due to a loop region slightly more expanded and flexible in solution (residues Y88 to A105). In addition, molecular dynamics simulations indicated that conformational changes caused by pH variation did not change the core of the TpManGH5, which means that only the above mentioned loop region presents high degree of fluctuations. The results also suggested that conformational changes of the loop region may facilitate polysaccharide and enzyme interaction. Finally, at pH 6 the results indicated that TpManGH5 is slightly more flexible at 65°C when compared to the same enzyme at 20°C. The biophysical characterization presented here is well correlated with the enzymatic activity and provide new insight into the structural basis for the temperature and pH-dependent activity of the TpManGH5. Also, the data suggest a loop region that provides a starting point for a rational design of biotechnological desired features. PMID:25723179

  10. A new generation of flowerlike horseradish peroxides as a nanobiocatalyst for superior enzymatic activity.

    PubMed

    Ocsoy, Ismail; Dogru, Esra; Usta, Seyda

    2015-01-01

    Although various supports including nanomaterials have been widely utilized as platforms for enzymes immobilization in order to enhance their catalytic activities, most of immobilized enzymes exhibited reduced activities compared to free enzymes. In this study, for the first time, we used iron ions (Fe(2+)) and horseradish peroxidase (HRP) enzyme together to synthesize flowerlike hybrid nanostructures with greatly enhanced activity and stability and reported an explanation of the enhancements in both catalytic activity and stability. We demonstrated that Fe(2+)-HRP hybrid nanoflower (HNF) showed catalytic activity of ∼ 512% and ∼ 710%, respectively when stored at +4 °C and room temperature (RT = 20 °C) compared to free HRP. In addition, the HNF stored at +4 °C lost only 2.9% of its original activity within 30 days while the HNF stored at RT lost approximately 10% of its original activity. However, under the same conditions, free HRP enzymes stored at +4 °C and RT lost 68% and 91% of their activities, respectively. We claim that the drastic increases in activities of HNF are associated with to high local HRP concentration in nanoscale dimension, appropriate HRP conformation, less mass transfer limitations, and role of Fe(2+) ion as an activator for HRP. Further biosensors studies based on enhanced activity and stability of HNF are currently underway. PMID:26047912