Note: This page contains sample records for the topic enzymatic phosphoryl transfer from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: November 12, 2013.
1

Theoretical Investigation of the Enzymatic Phosphoryl Transfer of ?-phosphoglucomutase: Revisiting Both Steps of the Catalytic Cycle  

SciTech Connect

Enzyme catalyzed phosphate transfer is a part of almost all metabolic processes. Such reactions are of central importance for the energy balance in all organisms and play important roles in cellular control at all levels. Mutases transfer a phosphoryl group while nucleases cleave the phosphodiester linkages between two nucleotides. The subject of our present study is the Lactococcus lactis ?-phosphoglucomutase (?-PGM), which effectively catalyzes the interconversion of ?-D-glucose-1-phosphate (?-G1P) to ?- D-glucose-6-phosphate (?-G6P) and vice versa via stabile intermediate ?-D-glucose-1,6-(bis)phosphate (?-G1,6diP) in the presence of Mg2+. In this paper we revisited the reaction mechanism of the phosphoryl transfer starting from the bisphosphate ?-G1,6diP in both directions (toward ?-G1P and ?-G6P) combining docking techniques and QM/MM theoretical method at the DFT/PBE0 level of theory. In addition we performed NEB (nudged elastic band) and free energy calculations to optimize the path and to identify the transition states and the energies involved in the catalytic cycle. Our calculations reveal that both steps proceed via dissociative pentacoordinated phosphorane, which is not a stabile intermediate but rather a transition state. In addition to the Mg2+ ion, Ser114 and Lys145 also play important roles in stabilizing the large negative charge on the phosphate through strong coordination with the phosphate oxygens and guiding the phosphate group throughout the catalytic process. The calculated energy barrier of the reaction for the ?-G1P to ?-G1,6diP step is only slightly higher than for the ?-G1,6diP to ?-G6P step (16.10 kcal mol-1 versus 15.10 kcal mol-1) and is in excellent agreement with experimental findings (14.65 kcal mol-1).

Elsasser, Brigitta M.; Dohmeier-Fischer, Silvia; Fels, Gregor

2012-07-12

2

Arginine Coordination in Enzymatic Phosphoryl Transfer: Evaluation of the Effect of Arg166 Mutations in Escherichia coli Alkaline Phosphatase † ‡  

Microsoft Academic Search

Arginine residues are commonly found in the active sites of enzymes catalyzing phosphoryl transfer reactions. Numerous site-directed mutagenesis experiments establish the importance of these residues for efficient catalysis, but their role in catalysis is not clear. To examine the role of arginine residues in the phosphoryl transfer reaction, we have measured the consequences of mutations to arginine 166 in Escherichia

Patrick J. O’Brien; Jonathan Kyle Lassila; Timothy D. Fenn; Jesse G. Zalatan; Daniel Herschlag

2008-01-01

3

Arginine Coordination in Enzymatic Phosphoryl Transfer: Evaluation of the Effect of Arg166 Mutations in Escherichia Coli Alkaline Phosphatase  

SciTech Connect

Arginine residues are commonly found in the active sites of enzymes catalyzing phosphoryl transfer reactions. Numerous site-directed mutagenesis experiments establish the importance of these residues for efficient catalysis, but their role in catalysis is not clear. To examine the role of arginine residues in the phosphoryl transfer reaction, we have measured the consequences of mutations to arginine 166 in Escherichia coli alkaline phosphatase on hydrolysis of ethyl phosphate, on individual reaction steps in the hydrolysis of the covalent enzyme-phosphoryl intermediate, and on thio substitution effects. The results show that the role of the arginine side chain extends beyond its positive charge, as the Arg166Lys mutant is as compromised in activity as Arg166Ser. Through measurement of individual reaction steps, we construct a free energy profile for the hydrolysis of the enzyme-phosphate intermediate. This analysis indicates that the arginine side chain strengthens binding by {approx}3 kcal/mol and provides an additional 1-2 kcal/mol stabilization of the chemical transition state. A 2.1 {angstrom} X-ray diffraction structure of Arg166Ser AP is presented, which shows little difference in enzyme structure compared to the wild-type enzyme but shows a significant reorientation of the bound phosphate. Altogether, these results support a model in which the arginine contributes to catalysis through binding interactions and through additional transition state stabilization that may arise from complementarity of the guanidinum group to the geometry of the trigonal bipyramidal transition state.

O'Brien, P.J.; Lassila, J.K.; Fenn, T.D.; Zalatan, J.G.; Herschlag, D.

2009-05-22

4

Enzymatic and structural analysis of inhibitors designed against Mycobacterium tuberculosis thymidylate kinase. New insights into the phosphoryl transfer mechanism.  

PubMed

The chemical synthesis of new compounds designed as inhibitors of Mycobacterium tuberculosis TMP kinase (TMPK) is reported. The synthesis concerns TMP analogues modified at the 5-position of the thymine ring as well as a novel compound with a six-membered sugar ring. The binding properties of the analogues are compared with the known inhibitor azido-TMP, which is postulated here to work by excluding the TMP-bound Mg(2+) ion. The crystallographic structure of the complex of one of the compounds, 5-CH(2)OH-dUMP, with TMPK has been determined at 2.0 A. It reveals a major conformation for the hydroxyl group in contact with a water molecule and a minor conformation pointing toward Ser(99). Looking for a role for Ser(99), we have identified an unusual catalytic triad, or a proton wire, made of strictly conserved residues (including Glu(6), Ser(99), Arg(95), and Asp(9)) that probably serves to protonate the transferred PO(3) group. The crystallographic structure of the commercially available bisubstrate analogue P(1)-(adenosine-5')-P(5)-(thymidine-5')-pentaphosphate bound to TMPK is also reported at 2.45 A and reveals an alternative binding pocket for the adenine moiety of the molecule compared with what is observed either in the Escherichia coli or in the yeast enzyme structures. This alternative binding pocket opens a way for the design of a new family of specific inhibitors. PMID:12454011

Haouz, Ahmed; Vanheusden, Veerle; Munier-Lehmann, Hélène; Froeyen, Mattheus; Herdewijn, Piet; Van Calenbergh, Serge; Delarue, Marc

2002-11-25

5

Biochemical control of CARM1 enzymatic activity by phosphorylation.  

PubMed

Coactivator-associated arginine methyltransferase 1 (CARM1) is a dual functional coregulator that facilitates transcription initiation by methylation of Arg(17) and Arg(26) of histone H3 and also dictates the subsequent coactivator complex disassembly by methylation of the steroid receptor coactivator family coactivators and p300/cAMP-response element-binding protein-binding protein. However, the regulation of CARM1 enzymatic activity and substrate specificity remains largely unknown. In this study, we report that CARM1 function is regulated by phosphorylation at Ser(217), a residue completely conserved in the type I protein arginine methyltransferase (PRMT) family of enzymes. Comparative analysis of the published CARM1 crystal structures reveals that the hydroxyl group of Ser(217) forms a strong hydrogen bond with the carbonyl oxygen atom of Tyr(154) to lock the cofactor S-adenosylmethionine inside the binding cavity. Phosphorylation of Ser(217) disrupts this hydrogen bond and subsequently abolishes S-adenosylmethionine binding and its methyltransferase activity. Importantly, Tyr(154) is also conserved in the type I PRMT family of enzymes, suggesting a general role of this hydrogen bond in maintaining the holo structure of the type I PRMT catalytic domain. Moreover, we found that phosphorylation at Ser(217) also promoted CARM1 cytoplasmic localization and that this translocation occurred mainly during mitosis. We propose that phosphorylation at Ser(217) serves as a molecular switch for controlling CARM1 enzymatic activity during the cell cycle. PMID:19843527

Feng, Qin; He, Bin; Jung, Sung-Yun; Song, Yongcheng; Qin, Jun; Tsai, Sophia Y; Tsai, Ming-Jer; O'Malley, Bert W

2009-10-20

6

How do kinases transfer phosphoryl groups?  

Microsoft Academic Search

Understanding how phosphoryl transfer is accomplished by kinases, a ubiquitous group of enzymes, is central to many biochemical processes. Qualitative analysis of the crystal structures of enzyme–substrate complexes of kinases reveals structural features of these enzymes important to phosphoryl transfer. Recently determined crystal structures which mimic the transition state complex have added new insight into the debate as to whether

Allan Matte; Leslie W Tari; Louis TJ Delbaere

1998-01-01

7

Biological Phosphoryl-Transfer Reactions: Understanding Mechanism and Catalysis  

PubMed Central

Phosphoryl-transfer reactions are central to biology. These reactions also have some of the slowest nonenzymatic rates and thus require enormous rate accelerations from biological catalysts. Despite the central importance of phosphoryl transfer and the fascinating catalytic challenges it presents, substantial confusion persists about the properties of these reactions. This confusion exists despite decades of research on the chemical mechanisms underlying these reactions. Here we review phosphoryl-transfer reactions with the goal of providing the reader with the conceptual and experimental background to understand this body of work, to evaluate new results and proposals, and to apply this understanding to enzymes. We describe likely resolutions to some controversies, while emphasizing the limits of our current approaches and understanding. We apply this understanding to enzyme-catalyzed phosphoryl transfer and provide illustrative examples of how this mechanistic background can guide and deepen our understanding of enzymes and their mechanisms of action. Finally, we present important future challenges for this field.

Lassila, Jonathan K.; Zalatan, Jesse G.; Herschlag, Daniel

2012-01-01

8

Metallic fluoride complexes as phosphate analogues for structural and mechanistic studies of phosphoryl group transfer enzymes.  

PubMed

There have been intensive efforts to try to understand the details of phosphoryl transfer reactions extending from nonenzymatic (or enzyme model) systems to the mechanisms of the enzyme catalysed reactions. As phosphate analogues, few metallic fluorides AlFx, BeFx and MgFx affect the activity of a variety of phosphoryl transfer enzymes, and it is accepted that these small inorganic complexes are useful chemical probes for structural and mechanistic studies in enzymology because they are able to mimic phosphoryl group in ground state (BeFx) as well as in transition state (AlFx,MgFx). Al3+ and Be2+ tend to form stable complexes with different fluoride anions (x = 1 to 4) spontaneously in aqueous solution but Mg2+ does not. BeFx geometry is strictly tetrahedral resembling the phosphate ground state when bound to an acyl group of protein active site (phosphorylated acyl groups are unstable otherwise), or the Michaelis complex when BeFx concominantly with nucleoside diphosphate replaces g-phosphate group in nucleoside triphosphate sites. AlFx and MgFx are identified as enzymatic analogues of phosphoryl transition state where both are able to form different coordination geometries within the enzyme active sites: trigonal bipyramidal (AlF3 and MgF3-) or octahedral (AlF4- or MgF42-). The geometry and charge of MgF3- are the best suited to mimicking the trigonal planar PO3- moiety of phosphoryl transfer transition state but MgF3- does not, unlike aluminum and beryllium fluoride complexes, exists in solution and can be assembled and stabilized in suitable active site only. Therefore it is particularly interesting to characterize as a potentially highly accurate transition state analogue and may be the best reagent of choice for studying phosphoryl transfer reactions in future. PMID:24061722

Goli?nik, Marko

2010-06-01

9

Enzymatic Catalysis of Proton Transfer and Decarboxylation Reactions  

PubMed Central

Deprotonation of carbon and decarboxylation at enzyme active sites proceed through the same carbanion intermediates as for the uncatalyzed reactions in water. The mechanism for the enzymatic reactions can be studied at the same level of detail as for nonenzymatic reactions, using the mechanistic tools developed by physical organic chemists. Triosephosphate isomerase (TIM) catalyzed interconversion of D-glyceraldehyde 3-phosphate and dihydroxyacetone phosphate is being studied as a prototype for enzyme catalyzed proton transfer, and orotidine monophosphate decarboxylase (OMPDC) catalyzed decarboxylation of orotidine 5?-monophosphate is being studied as a prototype for enzyme-catalyzed decarboxylation. 1H NMR spectroscopy is an excellent analytical method to monitor proton transfer to and from carbon catalyzed by these enzymes in D2O. Studies of these partial enzyme-catalyzed exchange reactions provide novel insight into the stability of carbanion reaction intermediates, that is not accessible in studies of the full enzymatic reaction. The importance of flexible enzyme loops and the contribution of interactions between these loops and the substrate phosphodianion to the enzymatic rate acceleration are discussed. The similarity in the interactions of OMPDC and TIM with the phosphodianion of bound substrate is emphasized.

Richard, John P.

2012-01-01

10

Calcineurin-mediated dephosphorylation of eNOS at serine 116 affects eNOS enzymatic activity indirectly by facilitating c-Src binding and tyrosine 83 phosphorylation.  

PubMed

It has been shown previously that phosphorylation of the endothelial nitric oxide synthase (eNOS) at serine 116 (S116) under basal conditions suppresses eNOS enzymatic activity in endothelial cells. It has also been shown that vascular endothelial growth factor (VEGF) treatment of endothelial cells produces a rapid S116 dephosphorylation, which is blocked by the calcineurin inhibitor, cyclosporin A (CsA). In this study, we show that activation of eNOS in response to a variety of other eNOS-activating agonists and the cytosolic calcium-elevating agent, thapsigargin also involves CsA-inhibitable S116 dephosphorylation. Studies with the purified eNOS enzyme also demonstrate that neither mimicking phosphorylation at S116 nor phosphorylation of the purified enzyme at S116 in vitro has any effect on enzymatic activity. Phospho-mimicking, however, does interfere with the interaction of eNOS with c-Src, an interaction which is known to activate eNOS by phosphorylation at tyrosine 83 (Y83). Agonist-stimulated eNOS-Src complex formation, as well as agonist-stimulated Y83 phosphorylation, are blocked by calcineurin inhibition by CsA and by a cell-permeable calcineurin inhibitory peptide. Taken together, these data suggest a mechanism of eNOS regulation whereby calcineurin-mediated dephosphorylation of eNOS at S116 affects eNOS enzymatic activity indirectly, rather than directly, by facilitating c-Src binding and Y83 phosphorylation. PMID:23727078

Ruan, Ling; Torres, Christina M; Buffett, Ryan J; Kennard, Simone; Fulton, David; Venema, Richard C

2013-05-30

11

Continuous monitoring of enzymatic activity within native electrophoresis gels: application to mitochondrial oxidative phosphorylation complexes.  

PubMed

Native gel electrophoresis allows the separation of very small amounts of protein complexes while retaining aspects of their activity. In-gel enzymatic assays are usually performed by using reaction-dependent deposition of chromophores or light-scattering precipitates quantified at fixed time points after gel removal and fixation, limiting the ability to analyze the enzyme reaction kinetics. Herein, we describe a custom reaction chamber with reaction medium recirculation and filtering and an imaging system that permits the continuous monitoring of in-gel enzymatic activity even in the presence of turbidity. Images were continuously collected using time-lapse high-resolution digital imaging, and processing routines were developed to obtain kinetic traces of the in-gel activities and analyze reaction time courses. This system also permitted the evaluation of enzymatic activity topology within the protein bands of the gel. This approach was used to analyze the reaction kinetics of two mitochondrial complexes in native gels. Complex IV kinetics showed a short initial linear phase in which catalytic rates could be calculated, whereas Complex V activity revealed a significant lag phase followed by two linear phases. The utility of monitoring the entire kinetic behavior of these reactions in native gels, as well as the general application of this approach, is discussed. PMID:22975200

Covian, Raul; Chess, David; Balaban, Robert S

2012-09-10

12

Phosphoryl transfer by a concerted reaction mechanism in UMP/CMP-kinase.  

PubMed

The reaction mechanism of phosphoryl transfer catalyzed by UMP/CMP-kinase from Dictyostelium discoideum was investigated by semiempirical AM1 molecular orbital computations of an active site model system derived from crystal structures that contain a transition state analog or a bisubstrate inhibitor. The computational results suggest that the nucleoside monophosphate must be protonated for the forward reaction while it is unprotonated in the presence of aluminium fluoride, a popular transition state analog for phosphoryl transfer reactions. Furthermore, a compactification of the active site model system during the reaction and for the corresponding complex containing AlF3 was observed. For the active site residues that are part of the LID domain, conformational flexibility during the reaction proved to be crucial. On the basis of the calculations, a concerted phosphoryl transfer mechanism is suggested that involves the synchronous shift of a proton from the monophosphate to the transferred PO3-group. The proposed mechanism is thus analogous to the phosphoryl transfer mechanism in cAMP-dependent protein kinase that phosphorylates the hydroxyl groups of serine residues. PMID:11152133

Hutter, M C; Helms, V

2000-11-01

13

Phosphoryl transfer by protein kinase A is captured in a crystal lattice  

PubMed Central

The catalytic (C) subunit of cAMP-dependent protein kinase (PKA) is a serine/threonine kinase responsible for most of the effects of cAMP signaling, and PKA serves as a prototype for the entire kinase family. Despite multiple studies of PKA, the steps involved in phosphoryl transfer, the roles of the catalytically essential magnesium ions, and the processes that govern the rate-limiting step of ADP release are unresolved. Here we identified conditions that yielded slow phosphoryl transfer of the ?-phosphate from the generally non-hydrolyzable analog of ATP, adenosine-5'-(?,?-imido)triphosphate (AMP-PNP), onto a substrate peptide within protein crystals. By trapping both products in the crystal lattice, we now have a complete resolution profile of all the catalytic steps. One crystal structure refined to 1.55 Å resolution shows two states of the protein with 55% displaying intact AMP-PNP and unphosphorylated substrate and 45% displaying transfer of the ?-phosphate of AMP-PNP onto the substrate peptide yielding AMP-PN and phosphorylated substrate. Another structure refined to 2.15 Å resolution displays complete phosphoryl transfer to the substrate. These structures, in addition to trapping both products in the crystal lattice, implicate one magnesium ion, previously termed Mg2, as the more stably bound ion. Following phosphoryl transfer, Mg2 recruits a water molecule to retain an octahedral coordination geometry suggesting strong binding character of this magnesium ion, and Mg2 remains in the active site following complete phosphoryl transfer while Mg1 is expelled. Loss of Mg1 may thus be an important part of the rate-limiting step of ADP release.

Bastidas, Adam C.; Deal, Michael S.; Steichen, Jon M.; Guo, Yurong; Wu, Jian; Taylor, Susan S.

2013-01-01

14

Biomimetic phosphoryl transfer catalysed by iron(II)-mineral precipitates  

NASA Astrophysics Data System (ADS)

Iron(II) minerals have been found to catalyse the formation of pyrophosphate from activated phosphate compounds and inorganic phosphate at near neutral pH in water. Iron(II) phosphate catalyses the formation of pyrophosphate, from either acetyl phosphate or phosphoenolpyruvate as the activated phosphoryl donor, in yields of up to 25% and 14% respectively. Under similar conditions, these minerals also retard the hydrolysis of pyrophosphate. The catalysis of pyrophosphate formation is tolerant of sulfide ions: pyrophosphate being produced from acetyl phosphate in 12% yield in the presence of equimolar amounts of sulfide. These reactions mimic the extant biosynthesis of ATP from acetyl phosphate or phosphoenolpyruvate; they counter the concern that hydrolysis of polyphosphates would out-compete their accumulation under prebiotic conditions; and hence suggest a possible prebiotic route to polyphosphates under conditions that may have occurred on the early earth.

de Zwart, Icenius I.; Meade, Susie J.; Pratt, Andrew J.

2004-10-01

15

Molecular mapping of tyrosine-phosphorylated proteins in focal adhesions using fluorescence resonance energy transfer.  

PubMed

Microscopy-based fluorescence resonance energy transfer (FRET) provides an opportunity to monitor molecular processes in the natural environment in live cells. Here we studied molecular interactions and tyrosine phosphorylation of paxillin, Crk-associated substrate (CAS), and focal adhesion kinase (FAK) in focal adhesions. For that purpose, these focal adhesion phosphoproteins, fused to cyan or yellow fluorescent proteins (CFP or YFP) were expressed in cultured fibroblasts. To assess the dynamics of tyrosine phosphorylation we used YFP- or CFP-tagged SH2 domain of pp60(src) (dSH2), which specifically binds to phosphotyrosine residues. FRET measurements, combined with immunolabeling with phosphospecific antibodies revealed that FAK, CAS and paxillin are tyrosine phosphorylated in early matrix adhesions and that FAK is in FRET proximity to CAS and paxillin in focal complexes and focal adhesions. Data suggest that paxillin incorporation into nascent focal complexes precedes its tyrosine phosphorylation, which then gradually increases. In cells treated with Rho-kinase inhibitors or expressing constitutively active Rac, focal complexes showed similar levels of paxillin tyrosine phosphorylation as seen in mature focal adhesions. Dynamic FRET-based examination indicated that paxillin phosphorylation occurs in specific areas (hotspots) within focal adhesions, whereas FAK phosphorylation is broadly distributed. PMID:16478788

Ballestrem, Christoph; Erez, Noam; Kirchner, Joachim; Kam, Zvi; Bershadsky, Alexander; Geiger, Benjamin

2006-02-14

16

Molecular mapping of tyrosine-phosphorylated proteins in focal adhesions using fluorescence resonance energy transfer  

Microsoft Academic Search

Microscopy-based fluorescence resonance energy transfer (FRET) provides an opportunity to monitor molecular processes in the natural environment in live cells. Here we studied molecular interactions and tyrosine phosphorylation of paxillin, Crk-associated substrate (CAS), and focal adhesion kinase (FAK) in focal adhesions. For that purpose, these focal adhesion phosphoproteins, fused to cyan or yellow fluorescent proteins (CFP or YFP) were expressed

Christoph Ballestrem; Noam Erez; Joachim Kirchner; Zvi Kam; Alexander Bershadsky; Benjamin Geiger

2006-01-01

17

Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation.  

PubMed

PINK1 and PARKIN are causal genes for autosomal recessive familial Parkinsonism. PINK1 is a mitochondrial Ser/Thr kinase, whereas Parkin functions as an E3 ubiquitin ligase. Under steady-state conditions, Parkin localizes to the cytoplasm where its E3 activity is repressed. A decrease in mitochondrial membrane potential triggers Parkin E3 activity and recruits it to depolarized mitochondria for ubiquitylation of mitochondrial substrates. The molecular basis for how the E3 activity of Parkin is re-established by mitochondrial damage has yet to be determined. Here we provide in vitro biochemical evidence for ubiquitin-thioester formation on Cys-431 of recombinant Parkin. We also report that Parkin forms a ubiquitin-ester following a decrease in mitochondrial membrane potential in cells, and that this event is essential for substrate ubiquitylation. Importantly, the Parkin RING2 domain acts as a transthiolation or acyl-transferring domain rather than an E2-recruiting domain. Furthermore, formation of the ubiquitin-ester depends on PINK1 phosphorylation of Parkin Ser-65. A phosphorylation-deficient mutation completely inhibited formation of the Parkin ubiquitin-ester intermediate, whereas phosphorylation mimics, such as Ser to Glu substitution, enabled partial formation of the intermediate irrespective of Ser-65 phosphorylation. We propose that PINK1-dependent phosphorylation of Parkin leads to the ubiquitin-ester transfer reaction of the RING2 domain, and that this is an essential step in Parkin activation. PMID:23754282

Iguchi, Masahiro; Kujuro, Yuki; Okatsu, Kei; Koyano, Fumika; Kosako, Hidetaka; Kimura, Mayumi; Suzuki, Norihiro; Uchiyama, Shinichiro; Tanaka, Keiji; Matsuda, Noriyuki

2013-06-10

18

Structures of active conformations of UMP kinase from Dictyostelium discoideum suggest phosphoryl transfer is associative.  

PubMed

UMP/CMP kinase from Dictyostelium discoideum (UmpKdicty) catalyzes the specific transfer of the terminal phosphate of ATP to UMP or CMP. Crystal structures of UmpKdicty with substrates and the transition state analogs AlF3 or BeF2 that lock UmpKdicty in active conformations were solved. The positions of the catalytic Mg2+ and the highly conserved lysine of the P loop are virtually invariant in the different structures. In contrast, catalytic arginines move to stabilize charges that develop during this reaction. The location of the arginines indicates formation of negative charges during the reaction at the transferred phosphoryl group, but not at the phosphate bridging oxygen atoms. This is consistent with an associative phosphoryl transfer mechanism but not with a dissociative one. PMID:9280438

Schlichting, I; Reinstein, J

1997-08-01

19

Conserved phosphoryl transfer mechanisms within kinase families and the role of the C8 proton of ATP in the activation of phosphoryl transfer  

PubMed Central

Background The kinome is made up of a large number of functionally diverse enzymes, with the classification indicating very little about the extent of the conserved kinetic mechanisms associated with phosphoryl transfer. It has been demonstrated that C8-H of ATP plays a critical role in the activity of a range of kinase and synthetase enzymes. Results A number of conserved mechanisms within the prescribed kinase fold families have been identified directly utilizing the C8-H of ATP in the initiation of phosphoryl transfer. These mechanisms are based on structurally conserved amino acid residues that are within hydrogen bonding distance of a co-crystallized nucleotide. On the basis of these conserved mechanisms, the role of the nucleotide C8-H in initiating the formation of a pentavalent intermediate between the ?-phosphate of the ATP and the substrate nucleophile is defined. All reactions can be clustered into two mechanisms by which the C8-H is induced to be labile via the coordination of a backbone carbonyl to C6-NH2 of the adenyl moiety, namely a "push" mechanism, and a "pull" mechanism, based on the protonation of N7. Associated with the "push" mechanism and "pull" mechanisms are a series of proton transfer cascades, initiated from C8-H, via the tri-phosphate backbone, culminating in the formation of the pentavalent transition state between the ?-phosphate of the ATP and the substrate nucleophile. Conclusions The "push" mechanism and a "pull" mechanism are responsible for inducing the C8-H of adenyl moiety to become more labile. These mechanisms and the associated proton transfer cascades achieve the proton transfer via different family-specific conserved sets of amino acids. Each of these mechanisms would allow for the regulation of the rate of formation of the pentavalent intermediate between the ATP and the substrate nucleophile. Phosphoryl transfer within kinases is therefore a specific event mediated and regulated via the coordination of the adenyl moiety of ATP and the C8-H of the adenyl moiety.

2012-01-01

20

Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry  

PubMed Central

We present a strategy for the analysis of the yeast phosphoproteome that uses endo-Lys C as the proteolytic enzyme, immobilized metal affinity chromatography for phosphopeptide enrichment, a 90-min nanoflow-HPLC/electrospray-ionization MS/MS experiment for phosphopeptide fractionation and detection, gas phase ion/ion chemistry, electron transfer dissociation for peptide fragmentation, and the Open Mass Spectrometry Search Algorithm for phosphoprotein identification and assignment of phosphorylation sites. From a 30-?g (?600 pmol) sample of total yeast protein, we identify 1,252 phosphorylation sites on 629 proteins. Identified phosphoproteins have expression levels that range from <50 to 1,200,000 copies per cell and are encoded by genes involved in a wide variety of cellular processes. We identify a consensus site that likely represents a motif for one or more uncharacterized kinases and show that yeast kinases, themselves, contain a disproportionately large number of phosphorylation sites. Detection of a pHis containing peptide from the yeast protein, Cdc10, suggests an unexpected role for histidine phosphorylation in septin biology. From diverse functional genomics data, we show that phosphoproteins have a higher number of interactions than an average protein and interact with each other more than with a random protein. They are also likely to be conserved across large evolutionary distances.

Chi, An; Huttenhower, Curtis; Geer, Lewis Y.; Coon, Joshua J.; Syka, John E. P.; Bai, Dina L.; Shabanowitz, Jeffrey; Burke, Daniel J.; Troyanskaya, Olga G.; Hunt, Donald F.

2007-01-01

21

Increased site-specific phosphorylation of tyrosine hydroxylase accompanies stimulation of enzymatic activity induced by cessation of dopamine neuronal activity.  

PubMed

Activation of striatal dopamine (DA) neurons by neuroleptic treatment or by electrical stimulation of the nigrostriatal pathway increases the activity of tyrosine hydroxylase (TH). The increase is mediated by phosphorylation of the enzyme. However, abolition of DA neuronal activity [by gamma-butyrolactone (GBL) treatment or transection of the nigrostriatal pathway] also increases TH activity. Quantitative blot immunolabeling experiments using site- and phosphorylation state-specific antibodies to TH demonstrated that GBL treatment (750 mg/kg, 35 min) significantly increased phosphorylation at Ser19 (+40%) and Ser40 (+217%) without altering Ser31 phosphorylation. Concomitantly, GBL treatment [along with the 3,4-dihydroxyphenylalanine (dopa) decarboxylase inhibitor NSD-1015, 100 mg/kg, 30 min] increased in vivo striatal dopa accumulation and in vitro TH activity 3-fold. Likewise, cerebral hemitransection of the nigrostriatal pathway significantly increased phosphorylation of TH at Ser19 (+89%) and Ser40 (+158%) but not at Ser31; dopa levels were increased accordingly (+191%). Kinetic analysis of TH activity established that GBL treatment and hemitransection primarily decreased the Km for the cofactor tetrahydrobiopterin (3-fold). The effects of GBL and hemitransection were abolished or attenuated by pretreatment with the DA agonist R-(-)-N-n-propylnorapomorphine (NPA; 30 microgram/kg, 40 min), presumably via stimulation of inhibitory presynaptic DA autoreceptors. NPA dose-response curves for reversal of GBL-induced dopa accumulation and Ser40 phosphorylation were identical; however, only the highest dose of NPA reversed the small and variable increase in Ser19 phosphorylation. Thus, TH activity seems to be regulated by phosphorylation in both hyper- and hypoactive striatal DA neurons; in the latter case, activation seems to be caused by selective phosphorylation of Ser40. PMID:9927609

Lew, J Y; Garcia-Espana, A; Lee, K Y; Carr, K D; Goldstein, M; Haycock, J W; Meller, E

1999-02-01

22

Protein Phosphorylation and Intermolecular Electron Transfer: A Joint Experimental and Computational Study of a Hormone Biosynthesis Pathway  

PubMed Central

Protein phosphorylation is a common regulator of enzyme activity. Chemical modification of a protein surface, including phosphorylation, could alter the function of biological electron-transfer reactions. However, the sensitivity of intermolecular electron-transfer kinetics to post-translational protein modifications has not been widely investigated. We have therefore combined experimental and computational studies to assess the potential role of phosphorylation in electron-transfer reactions. We investigated the steroid hydroxylating system from bovine adrenal glands, which consists of adrenodoxin (Adx), adrenodoxin reductase (AdR), and a cytochrome P450, CYP11A1. We focused on the phosphorylation of Adx at Thr-71, since this residue is located in the acidic interaction domain of Adx, and a recent study has demonstrated that this residue is phosphorylated by casein kinase 2 (CK2) in vitro.1 Optical biosensor experiments indicate that the presence of this phosphorylation slightly increases the binding affinity of oxidized Adx with CYP11A1ox but not AdRox. This tendency was confirmed by KA values extracted from Adx concentration-dependent stopped-flow experiments that characterize the interaction between AdRred and Adxox or between Adxred and CYP11A1ox. In addition, acceleration of the electron-transfer kinetics measured with stopped-flow is seen only for the phosphorylated Adx–CYP11A1 reaction. Biphasic reaction kinetics are observed only when Adx is phosphorylated at Thr-71, and the Brownian dynamics (BD) simulations suggest that this phosphorylation may enhance the formation of a secondary Adx–CYP11A1 binding complex that provides an additional electron-transfer pathway with enhanced coupling.

Zollner, Andy; Bernhardt, Rita; Beratan, David N.

2012-01-01

23

Application of Electron Transfer Dissociation Mass Spectrometry in Analyses of Non-enzymatically Glycated Peptides  

SciTech Connect

Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in diabetes mellitus research, particularly in the context of development of diabetic complications. The fragmentation behavior of glycated peptides produced from reaction of D-glucose with lysine residues was investigated by electron transfer dissociation (ETD) and collision induced dissociation (CID) tandem mass spectrometry. It was found that high abundance ions corresponding to various degrees of neutral water losses, as well as furylium ion production, dominate the CID spectra, and that the sequence informative b and y ions were rarely observed when Amadori-modified peptides were fragmented. Contrary to what was observed under CID conditions, ions corresponding to neutral losses of water or furylium ion production were not observed in the ETD spectra. Instead, abundant and almost complete series of c and z type ions were observed regardless of whether the modification site was located in the middle of the sequence or close to the N-terminus, greatly facilitating the peptide sequencing. This study strongly suggests that ETD is a better technique for proteomics studies of non-enzymatically glycated peptides and proteins.

Zhang, Qibin; Frolov, Andrej; Tang, Ning; Hoffman, Ralf; van der Goor, Tom; Metz, Thomas O.; Smith, Richard D.

2007-03-15

24

Enzymatic Activity and Substrate Specificity of Mitogen-activated Protein Kinase p38? in Different Phosphorylation States*S?  

PubMed Central

The mitogen-activated protein (MAP) kinases are essential signaling molecules that mediate many cellular effects of growth factors, cytokines, and stress stimuli. Full activation of the MAP kinases requires dual phosphorylation of the Thr and Tyr residues in the TXY motif of the activation loop by MAP kinase kinases. Down-regulation of MAP kinase activity can be initiated by multiple serine/threonine phosphatases, tyrosine-specific phosphatases, and dual specificity phosphatases (MAP kinase phosphatases). This would inevitably lead to the formation of monophosphorylated MAP kinases. However, the biological functions of these monophosphorylated MAP kinases are currently not clear. In this study, we have prepared MAP kinase p38?, a member of the MAP kinase family, in all phosphorylated forms and characterized their biochemical properties. Our results indicated the following: (i) p38? phosphorylated at both Thr-180 and Tyr-182 was 10–20-fold more active than p38? phosphorylated at Thr-180 only, whereas p38? phosphorylated at Tyr-182 alone was inactive; (ii) the dual-specific MKP5, the tyrosine-specific hematopoietic protein-tyrosine phosphatase, and the serine/threonine-specific PP2C? are all highly specific for the dephosphorylation of p38?, and the dephosphorylation rates were significantly affected by different phosphorylated states of p38?; (iii) the N-terminal domain of MPK5 has no effect on enzyme catalysis, whereas deletion of the MAP kinase-binding domain in MKP5 leads to a 370-fold decrease in kcat/Km for the dephosphorylation of p38?. This study has thus revealed the quantitative contributions of phosphorylation of Thr, Tyr, or both to the activation of p38? and to the substrate specificity for various phosphatases.

Zhang, Yuan-Yuan; Mei, Zi-Qing; Wu, Jia-Wei; Wang, Zhi-Xin

2008-01-01

25

Atomic details of near-transition state conformers for enzyme phosphoryl transfer revealed by MgF3- rather than by phosphoranes  

PubMed Central

Prior evidence supporting the direct observation of phosphorane intermediates in enzymatic phosphoryl transfer reactions was based on the interpretation of electron density corresponding to trigonal species bridging the donor and acceptor atoms. Close examination of the crystalline state of ?-phosphoglucomutase, the archetypal phosphorane intermediate-containing enzyme, reveals that the trigonal species is not PO3-, but is MgF3- (trifluoromagnesate). Although MgF3- complexes are transition state analogues rather than phosphoryl group transfer reaction intermediates, the presence of fluorine nuclei in near-transition state conformations offers new opportunities to explore the nature of the interactions, in particular the independent measures of local electrostatic and hydrogen-bonding distributions using F19 NMR. Measurements on three ?-PGM-MgF3--sugar phosphate complexes show a remarkable relationship between NMR chemical shifts, primary isotope shifts, NOEs, cross hydrogen bond F?H-N scalar couplings, and the atomic positions determined from the high-resolution crystal structure of the ?-PGM-MgF3--G6P complex. The measurements provide independent validation of the structural and isoelectronic MgF3- model of near-transition state conformations.

Baxter, Nicola J.; Bowler, Matthew W.; Alizadeh, Tooba; Cliff, Matthew J.; Hounslow, Andrea M.; Wu, Bin; Berkowitz, David B.; Williams, Nicholas H.; Blackburn, G. Michael; Waltho, Jonathan P.

2010-01-01

26

Development of a homogeneous competitive immunoassay for phosphorylated protein antigen based on the enhanced fluorescence resonance energy transfer technology.  

PubMed

We describe a homogeneous competitive immunoassay for a phosphorylated protein antigen. The assay takes advantage of the enhanced fluorescence resonance energy transfer (FRET) technology, which has a unique characteristic that the FRET signal is increased by the specific interaction of two fluorolabeled leucine zippers. We chose extracellular signal-regulated kinase (ERK) as a model antigen and constructed two molecular probes in which either anti-phosphorylation site antibody or the antigen peptide was chemically conjugated to the enhanced FRET probes. While these molecular probes indicated sufficient FRET signal without antigen, they displayed a significant change in the fluorescent spectrum by mixing with phosphorylated antigens. With this competitive enhanced FRET immunoassay, a phosphorylated ERK concentration within the range from 15 nM to 250 nM could be determined. Because the assay is very simple, it would be applied to not only in vitro assay but also in vivo detection of protein phosphorylation. PMID:20129075

Ohiro, Yoshiyuki; Ueda, Hiroshi; Shibata, Norio; Nagamune, Teruyuki

2009-07-29

27

Unraveling the evolutionary history of the phosphoryl-transfer chain of the phosphoenolpyruvate:phosphotransferase system through phylogenetic analyses and genome context  

Microsoft Academic Search

BACKGROUND: The phosphoenolpyruvate phosphotransferase system (PTS) plays a major role in sugar transport and in the regulation of essential physiological processes in many bacteria. The PTS couples solute transport to its phosphorylation at the expense of phosphoenolpyruvate (PEP) and it consists of general cytoplasmic phosphoryl transfer proteins and specific enzyme II complexes which catalyze the uptake and phosphorylation of solutes.

Iñaki Comas; Fernando González-Candelas; Manuel Zúñiga

2008-01-01

28

Ground State Destabilization by Anionic Nucleophiles Contributes to the Activity of Phosphoryl Transfer Enzymes  

PubMed Central

Enzymes stabilize transition states of reactions while limiting binding to ground states, as is generally required for any catalyst. Alkaline Phosphatase (AP) and other nonspecific phosphatases are some of Nature's most impressive catalysts, achieving preferential transition state over ground state stabilization of more than 1022-fold while utilizing interactions with only the five atoms attached to the transferred phosphorus. We tested a model that AP achieves a portion of this preference by destabilizing ground state binding via charge repulsion between the anionic active site nucleophile, Ser102, and the negatively charged phosphate monoester substrate. Removal of the Ser102 alkoxide by mutation to glycine or alanine increases the observed Pi affinity by orders of magnitude at pH 8.0. To allow precise and quantitative comparisons, the ionic form of bound Pi was determined from pH dependencies of the binding of Pi and tungstate, a Pi analog lacking titratable protons over the pH range of 5–11, and from the 31P chemical shift of bound Pi. The results show that the Pi trianion binds with an exceptionally strong femtomolar affinity in the absence of Ser102, show that its binding is destabilized by ?108-fold by the Ser102 alkoxide, and provide direct evidence for ground state destabilization. Comparisons of X-ray crystal structures of AP with and without Ser102 reveal the same active site and Pi binding geometry upon removal of Ser102, suggesting that the destabilization does not result from a major structural rearrangement upon mutation of Ser102. Analogous Pi binding measurements with a protein tyrosine phosphatase suggest the generality of this ground state destabilization mechanism. Our results have uncovered an important contribution of anionic nucleophiles to phosphoryl transfer catalysis via ground state electrostatic destabilization and an enormous capacity of the AP active site for specific and strong recognition of the phosphoryl group in the transition state.

Andrews, Logan D.; Fenn, Tim D.; Herschlag, Daniel

2013-01-01

29

Triple isotopic labeling and kinetic isotope effects: exposing H-transfer steps in enzymatic systems.  

PubMed

Kinetic isotope effect (KIE) studies can provide insight into the mechanism and kinetics of specific chemical steps in complex catalytic cascades. Recent results from hydrogen KIE measurements have examined correlations between enzyme dynamics and catalytic function, leading to a surge of studies in this area. Unfortunately, most enzymatic H-transfer reactions are not rate limiting, and the observed KIEs do not reliably reflect the intrinsic KIEs on the chemical step of interest. Given their importance to understanding the chemical step under study, accurate determination of the intrinsic KIE from the observed data is essential. In 1975, Northrop developed an elegant method to assess intrinsic KIEs from their observed values [Northrop, D. B. (1975) Steady-state analysis of kinetic isotope effects in enzymic reactions. Biochemistry 14, 2644-2651]. The Northrop method involves KIE measurements using all three hydrogen isotopes, where one of them serves as the reference isotope. This method has been successfully used with different combinations of observed KIEs over the years, but criteria for a rational choice of reference isotope have never before been experimentally determined. Here we compare different reference isotopes (and hence distinct experimental designs) using the reduction of dihydrofolate and dihydrobiopterin by two dissimilar enzymes as model reactions. A number of isotopic labeling patterns have been applied to facilitate the comparative study of reference isotopes. The results demonstrate the versatility of the Northrop method and that such experiments are limited only by synthetic techniques, availability of starting materials, and the experimental error associated with the use of distinct combinations of isotopologues. PMID:21688781

Sen, Arundhuti; Yahashiri, Atsushi; Kohen, Amnon

2011-06-30

30

Non-enzymatic synthesis of the coenzymes, uridine diphosphate glucose and cytidine diphosphate choline, and other phosphorylated metabolic intermediates  

NASA Astrophysics Data System (ADS)

The synthesis of uridine diphosphate glucose (UDPG), cytidine diphosphate choline (CDP-choline), glucose-1-phosphate (G1P) and glucose-6-phosphate (G6P) has been accomplished under simulated prebiotic conditions using urea and cyanamide, two condensing agents considered to have been present on the primitive Earth. The synthesis of UDPG was carried out by reacting G1P and UTP at 70 °C for 24 hours in the presence of the condensing agents in an aqueous medium. CDP-choline was obtained under the same conditions by reacting choline phosphate and CTP. G1P and G6P were synthesized from glucose and inorganic phosphate at 70 °C for 16 hours. Separation and identification of the reaction products have been performed by paper chromatography, thin layer chromatography, enzymatic analysis and ion pair reverse phase high performance liquid chromatography. These results suggest that metabolic intermediates could have been synthesized on the primitive Earth from simple precursors by means of prebiotic condensing agents.

Mar, A.; Dworkin, J.; Oró, J.

1987-09-01

31

The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.  

PubMed

Protein kinases are important enzymes controlling the majority of cellular signaling events via a transfer of the gamma-phosphate of ATP to a target protein. Even after many years of study, the mechanism of this reaction is still poorly understood. Among many factors that may be responsible for the 1011-fold rate enhancement due to this enzyme, the role of the conserved aspartate (Asp166) has been given special consideration. While the essential presence of Asp166 has been established by mutational studies, its function is still debated. The general base catalyst role assigned to Asp166 on the basis of its position in the active site has been brought into question by the pH dependence of the reaction rate, isotope measurements, and pre-steady-state kinetics. Recent semiempirical calculations have added to the controversy surrounding the role of Asp166 in the catalytic mechanism. No major role for Asp166 has been found in these calculations, which have predicted the reaction process consisting of an early transfer of a substrate proton onto the phosphate group. These conclusions were inconsistent with experimental observations. To address these differences between experimental results and theory with a more reliable computational approach and to provide a theoretical platform for understanding catalysis in this important enzyme family, we have carried out first-principles structural and dynamical calculations of the reaction process in cAPK kinase. To preserve the essential features of the reaction, representations of all of the key conserved residues (82 atoms) were included in the calculation. The structural calculations were performed using the local basis density functional (DFT) approach with both hybrid B3LYP and PBE96 generalized gradient approximations. This kind of calculation has been shown to yield highly accurate structural information for a large number of systems. The optimized reactant state structure is in good agreement with X-ray data. In contrast to semiempirical methods, the lowest energy product state places the substrate proton on Asp166. First-principles molecular dynamics simulations provide additional support for the stability of this product state. The latter also demonstrate that the proton transfer to Asp166 occurs at a point in the reaction where bond cleavage at the PO bridging position is already advanced. This mechanism is further supported by the calculated structure of the transition state in which the substrate hydroxyl group is largely intact. A metaphoshate-like structure is present in the transition state, which is consistent with the X-ray structures of transition state mimics. On the basis of the calculated structure of the transition state, it is estimated to be 85% dissociative. Our analysis also indicates an increase in the hydrogen bond strength between Asp166 and substrate hydroxyl and a small decrease in the bond strength of the latter in the transition state. In summary, our calculations demonstrate the importance of Asp166 in the enzymatic mechanism as a proton acceptor. However, the proton abstraction from the substrate occurs late in the reaction process. Thus, in the catalytic mechanism of cAPK protein kinase, Asp166 plays a role of a "proton trap" that locks the transferred phosphoryl group to the substrate. These results resolve prior inconsistencies between theory and experiment and bring new understanding of the role of Asp166 in the protein kinase catalytic mechanism. PMID:12914447

Valiev, Marat; Kawai, R; Adams, Joseph A; Weare, John H

2003-08-20

32

Phosphoryl transfer is not rate-limiting for the ROCK I-catalyzed kinase reaction.  

PubMed

Rho-associated coiled-coil kinase, ROCK, is implicated in Rho-mediated cell adhesion and smooth muscle contraction. Animal models suggest that the inhibition of ROCK can ameliorate conditions, such as vasospasm, hypertension, and inflammation. As part of our effort to design novel inhibitors of ROCK, we investigated the kinetic mechanism of ROCK I. Steady-state bisubstrate kinetics, inhibition kinetics, isotope partition analysis, viscosity effects, and presteady-state kinetics were used to explore the kinetic mechanism. Plots of reciprocals of initial rates obtained in the presence of nonhydrolyzable ATP analogues and the small molecule inhibitor of ROCK, Y-27632, against the reciprocals of the peptide concentrations yielded parallel lines (uncompetitive pattern). This pattern is indicative of an ordered binding mechanism, with the peptide adding first. The staurosporine analogue K252a, however, gave a noncompetitive pattern. When a pulse of (33)P-gamma-ATP mixed with ROCK was chased with excess unlabeled ATP and peptide, 0.66 enzyme equivalent of (33)P-phosphate was incorporated into the product in the first turnover. The presence of ATPase activity coupled with the isotope partition data is a clear evidence for the existence of a viable [E-ATP] complex in the kinase reaction and implicates a random binding mechanism. The k(cat)/K(m) parameters were fully sensitive to viscosity (viscosity effects of 1.4 +/- 0.2 and 0.9 +/- 0.3 for ATP and peptide 5, respectively), and therefore, the barriers to dissociation of either substrate are higher than the barrier for the phosphoryl transfer step. As a consequence, not all the binding steps are at fast equilibrium. The observation of a burst in presteady-state kinetics (k(b) = 10.2 +/- 2.1 s(-)(1)) and the viscosity effect on k(cat) of 1.3 +/- 0.2 characterize the phosphoryl transfer step to be fast and the release of product and/or the enzyme isomerization step accompanying it as rate-limiting at V(max) conditions. From the multiple kinetic studies, most of the rate constants for the individual steps were either evaluated or estimated. PMID:16784244

Futer, Olga; Saadat, Ahmad R; Doran, John D; Raybuck, Scott A; Pazhanisamy, S

2006-06-27

33

Enzyme-immobilized SiO2-Si electrode: Fast interfacial electron transfer with preserved enzymatic activity  

NASA Astrophysics Data System (ADS)

The enzyme, glucose oxidase (GOx), is immobilized using electrostatic interaction on the native oxide of heavily doped n-type silicon. Voltammetric measurement shows that the immobilized GOx gives rise to a very fast enzyme-silicon interfacial electron transfer rate constant of 7.9 s-1. The measurement also suggests that the enzyme retains its native conformation when immobilized on the silicon surface. The preserved native conformation of GOx is further confirmed by testing the enzymatic activity of the immobilized GOx using glucose. The GOx-immobilized silicon is shown to behave as a glucose sensor that detects glucose with concentrations as low as 50 ?M.

Wang, Gang; Yau, Siu-Tung

2005-12-01

34

Molecular basis of 1,6-anhydro bond cleavage and phosphoryl transfer by Pseudomonas aeruginosa 1,6-anhydro-N-acetylmuramic acid kinase.  

PubMed

Anhydro-N-acetylmuramic acid kinase (AnmK) catalyzes the ATP-dependent conversion of the Gram-negative peptidoglycan (PG) recycling intermediate 1,6-anhydro-N-acetylmuramic acid (anhMurNAc) to N-acetylmuramic acid-6-phosphate (MurNAc-6-P). Here we present crystal structures of Pseudomonas aeruginosa AnmK in complex with its natural substrate, anhMurNAc, and a product of the reaction, ADP. AnmK is homodimeric, with each subunit comprised of two subdomains that are separated by a deep active site cleft, which bears similarity to the ATPase core of proteins belonging to the hexokinase-hsp70-actin superfamily of proteins. The conversion of anhMurNAc to MurNAc-6-P involves both cleavage of the 1,6-anhydro ring of anhMurNAc along with addition of a phosphoryl group to O6 of the sugar, and thus represents an unusual enzymatic mechanism involving the formal addition of H3PO4 to anhMurNAc. The structural complexes and NMR analysis of the reaction suggest that a water molecule, activated by Asp-182, attacks the anomeric carbon of anhMurNAc, aiding cleavage of the 1,6-anhydro bond and facilitating the capture of the ? phosphate of ATP by O6 via an in-line phosphoryl transfer. AnmK is active only against anhMurNAc and not the metabolically related 1,6-anhydro-N-acetylmuramyl peptides, suggesting that the cytosolic N-acetyl-anhydromuramyl-l-alanine amidase AmpD must first remove the stem peptide from these PG muropeptide catabolites before anhMurNAc can be acted upon by AnmK. Our studies provide the foundation for a mechanistic model for the dual activities of AnmK as a hydrolase and a kinase of an unusual heterocyclic monosaccharide. PMID:21288904

Bacik, John-Paul; Whitworth, Garrett E; Stubbs, Keith A; Yadav, Anuj K; Martin, Dylan R; Bailey-Elkin, Ben A; Vocadlo, David J; Mark, Brian L

2011-02-02

35

Molecular Basis of 1,6-Anhydro Bond Cleavage and Phosphoryl Transfer by Pseudomonas aeruginosa 1,6-Anhydro-N-acetylmuramic Acid Kinase*  

PubMed Central

Anhydro-N-acetylmuramic acid kinase (AnmK) catalyzes the ATP-dependent conversion of the Gram-negative peptidoglycan (PG) recycling intermediate 1,6-anhydro-N-acetylmuramic acid (anhMurNAc) to N-acetylmuramic acid-6-phosphate (MurNAc-6-P). Here we present crystal structures of Pseudomonas aeruginosa AnmK in complex with its natural substrate, anhMurNAc, and a product of the reaction, ADP. AnmK is homodimeric, with each subunit comprised of two subdomains that are separated by a deep active site cleft, which bears similarity to the ATPase core of proteins belonging to the hexokinase-hsp70-actin superfamily of proteins. The conversion of anhMurNAc to MurNAc-6-P involves both cleavage of the 1,6-anhydro ring of anhMurNAc along with addition of a phosphoryl group to O6 of the sugar, and thus represents an unusual enzymatic mechanism involving the formal addition of H3PO4 to anhMurNAc. The structural complexes and NMR analysis of the reaction suggest that a water molecule, activated by Asp-182, attacks the anomeric carbon of anhMurNAc, aiding cleavage of the 1,6-anhydro bond and facilitating the capture of the ? phosphate of ATP by O6 via an in-line phosphoryl transfer. AnmK is active only against anhMurNAc and not the metabolically related 1,6-anhydro-N-acetylmuramyl peptides, suggesting that the cytosolic N-acetyl-anhydromuramyl-l-alanine amidase AmpD must first remove the stem peptide from these PG muropeptide catabolites before anhMurNAc can be acted upon by AnmK. Our studies provide the foundation for a mechanistic model for the dual activities of AnmK as a hydrolase and a kinase of an unusual heterocyclic monosaccharide.

Bacik, John-Paul; Whitworth, Garrett E.; Stubbs, Keith A.; Yadav, Anuj K.; Martin, Dylan R.; Bailey-Elkin, Ben A.; Vocadlo, David J.; Mark, Brian L.

2011-01-01

36

Aluminum coordination chemistry and the inhibition of phosphoryl-transferring enzymes  

SciTech Connect

Aluminium ion is a potent inhibitor of the enzymes hexokinase (K/sub i/ = 0.16 ..mu..M) and glycerokinase (K/sub i/ = 4.0 ..mu..M). It has been shown that aluminum forms a complex with ATP that is 80 times more stable than the magnesium complex with ATP which is the normal substrate for phosphoryl-transferring enzymes. Kinetic studies performed on several kinases at pH 7.0 have shown that Al-ATP is a competitive inhibitor vs. Mg-ATP with moderate K/sub i/ values (0.1-0.5 mM) for creatine kinase(CK) and myokinase(MK), and weakly competitive (K/sub i/ > 0.5 mM) with acetate, galactose, arginine and gluconate kinases. Equilibrium dialysis binding studies indicate no significant binding of aluminum ion by the enzymes, while the interaction of aluminum ion with ADP and ATP has been characterized by /sup 13/C, /sup 27/Al, and /sup 31/P NMR spectroscopy. It appears that the inhibition by aluminum is as the Al-nucleotide complex rather than direct binding of free aluminum ion by the enzyme. Kinetic studies indicate that Al/sup 3 +/ inhibition of CK and MK is pH dependent with decreased values of K/sub i/ at lower pH. At pH 6.1 K/sub i/ = 25 ..mu..M for MK (160 ..mu..M at pH 7.0) and 53 ..mu..M for CK (240 ..mu..M at pH 7.0). This may be due to an increased effective concentration of aluminum ion at lower pH.

Furumo, N.C.; Viola, R.E.

1986-05-01

37

AMP-activated protein kinase phosphorylates glutamine : fructose-6-phosphate amidotransferase 1 at Ser243 to modulate its enzymatic activity  

Microsoft Academic Search

Glutamine : fructose-6-phosphate amidotransferase 1 (GFAT1) was identified as a protein phosphorylated in glucose-deprived cells by immunoprecipitation using the anti-phospho Akt substrates (PAS) antibody, which recognizes the phosphorylation motif site by AMP-activated protein kinase (AMPK), followed by mass fingerprinting analysis. Glucose depletion-induced phosphorylation of endogenous GFAT was potentiated by 2-deoxyglucose (2-DG), an AMPK activator, and the 2-DG-stimulated phosphorylation of FLAG-tagged

Satoshi Eguchia; Noriko Oshiro; Takafumi Miyamotob; Ken-ichi Yoshino; Sumiko Okamoto; Takamasa Ono; Ushio Kikkawa; Kazuyoshi Yonezawa

2009-01-01

38

Phosphorylation-induced conformational changes in short peptides probed by fluorescence resonance energy transfer in the 10A domain.  

PubMed

Phosphorylation-induced conformational changes in short polypeptides were probed by a fluorescence resonance energy transfer (FRET) method by employing a short-distance FRET pair (R(0) approximately 10 A) based on tryptophan as natural donor and a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) as synthetic acceptor. Two substrates for kinases, LeuArgArgTrpSerLeuGly-Dbo (peptide I) and TrpLysArgThrLeuArgArg-Dbo (peptide II), were investigated, with serine and threonine, respectively, as phosphorylation sites. Steady-state and time-resolved fluorescence experiments in H(2)O revealed a decrease in FRET efficiency for peptide I and an increase for peptide II; this suggested that the effective distances between donor and acceptor increased and decreased, respectively. The same trends and similar absolute variations in effective donor-acceptor distances were observed in propylene glycol, a less polar and highly viscous solvent; this suggested that the variations are due to intrinsic structural preferences. Fitting of the time-resolved decay traces according to a distribution function model (Gaussian distribution) provided the mean donor-acceptor distances, which showed an increase upon phosphorylation for peptide I (from 9.7 to 10.5 A) and a decrease for peptide II (from 10.9 to 9.3 A) in H(2)O. The broadness (half-width) of the distributions, which provides a measure of the rigidity of the peptides, remained similar upon phosphorylation of peptide I (3.0 versus 3.1 A), but decreased for peptide II (from 3.1 to 0.73 A in H(2)O); this suggests a more compact, structured conformation upon phosphorylation of the latter peptide. The elongation of the peptide backbone (by ca. 0.7 A) for peptide I is attributed to an increase in steric demand upon phosphorylation, which favors an extended conformation. The contraction (by ca. 1.4 A) and structural rigidification of peptide II is attributed to attractive Coulombic interactions and hydrogen bonding between the phosphate group and the arginine residues. PMID:17299825

Sahoo, Harekrushna; Nau, Werner M

2007-03-26

39

Benchmark calculations of proton affinities and gas-phase basicities of molecules important in the study of biological phosphoryl transfer.  

PubMed

Benchmark calculations of proton affinities and gas-phase basicities of molecules most relevant to biological phosphoryl transfer reactions are presented and compared with available experimental results. The accuracy of proton affinity and gas-phase basicity results obtained from several multi-level model chemistries (CBS-QB3, G3B3, and G3MP2B3) and density-functional quantum models (PBE0, B1B95, and B3LYP) are assessed and compared. From these data, a set of empirical bond enthalpy, entropy, and free energy corrections are introduced that considerably improve the accuracy and predictive capability of the methods. These corrections are applied to the prediction of proton affinity and gas-phase basicity values of important biological phosphates and phosphoranes for which experimental data does not currently exist. Comparison is made with results from semiempirical quantum models that are commonly employed in hybrid quantum mechanical/molecular mechanical simulations. Data suggest that the design of improved semiempirical quantum models with increased accuracy for relative proton affinity values is necessary to obtain quantitative accuracy for phosphoryl transfer reactions in solution, enzymes, and ribozymes. PMID:16186912

Range, Kevin; Riccardi, Demian; Cui, Qiang; Elstner, Marcus; York, Darrin M

2005-07-07

40

Enzymatic catalysis and transfers in solution. I. Theory and computations, a unified view  

NASA Astrophysics Data System (ADS)

The transfer of hydride, proton, or H atom between substrate and cofactor in enzymes has been extensively studied for many systems, both experimentally and computationally. A simple equation for the reaction rate, an analog of an equation obtained earlier for electron transfer rates, is obtained, but now containing an approximate analytic expression for the bond rupture-bond forming feature of these H transfers. A ``symmetrization,'' of the potential energy surfaces is again introduced [R. A. Marcus, J. Chem. Phys. 43, 679 (1965); J. Phys. Chem. 72, 891 (1968)], together with Gaussian fluctuations of the remaining coordinates of the enzyme and solution needed for reaching the transition state. Combining the two expressions for the changes in the difference of the two bond lengths of the substrate-cofactor subsystem and in the fluctuation coordinates of the protein leading to the transition state, an expression is obtained for the free energy barrier. To this end a two-dimensional reaction space (m,n) is used that contains the relative coordinates of the H in the reactants, the heavy atoms to which it is bonded, and the protein/solution reorganization coordinate, all leading to the transition state. The resulting expression may serve to characterize in terms of specific parameters (two ``reorganization'' terms, thermodynamics, and work terms), experimental and computational data for different enzymes, and different cofactor-substrate systems. A related characterization was used for electron transfers. To isolate these factors from nuclear tunneling, when the H-tunneling effect is large, use of deuterium and tritium transfers is of course helpful, although tunneling has frequently and understandably dominated the discussions. A functional form is suggested for the dependence of the deuterium kinetic isotope effect (KIE) on ?G° and a different form for the 13C KIE. Pressure effects on deuterium and 13C KIEs are also discussed. Although formulated for a one-step transfer of a light particle in an enzyme, the results would also apply to single-step transfers of other atoms and groups in enzymes and in solution.

Marcus, R. A.

2006-11-01

41

Physical Properties and Enzymatic Digestibility of Phosphorylated ae, wx , and Normal Maize Starch Prepared at Different pH Levels 1  

Microsoft Academic Search

Cereal Chem. 76(6):938-943 Phosphorylated starches were prepared with sodium tripolyphosphate (STPP) at pH 6, 8, and 10 from waxy (wx, 3.3% amylose), normal (22.4% amylose), and two high-amylose (ae, 47 and 66% amylose) maize starches. After phosphorylation, the gelatinization peak temperature ( Tp) decreased and pasting peak viscosity (PV) increased for all the starches except wx, which showed a slight

Huijun Liu; Lawrence Ramsden; Harold Corke

1999-01-01

42

Solution NMR of a 463-Residue Phosphohexomutase: Domain 4 Mobility, Substates, and Phosphoryl Transfer Defect  

PubMed Central

Phosphomannomutase/phosphoglucomutase contributes to infectivity of Pseudomonas aeruginosa, retains and reorients its intermediate by 180°, and rotates domain 4 to close the deep catalytic cleft. NMR spectra of the backbone of wild-type and S108C-inactivated enzymes were assigned to at least 90%. 13C secondary chemical shifts report excellent agreement of solution and crystallographic structure over the 14 ?-helices, C-capping motifs, and 20 of the 22 ?-strands. Major and minor NMR peaks implicate substates affecting 28% of assigned residues. These are attributable to the phosphorylation state and possibly to conformational interconversions. S108C substitution of the phosphoryl donor and acceptor slowed transformation of the glucose-1-phosphate substrate by impairment of kcat. Addition of the glucose-1,6-bisphosphate intermediate accelerated this reaction by 2 – 3 orders of magnitude, somewhat bypassing the defect and apparently relieving substrate inhibition. The S108C mutation perturbs the NMR spectra and electron density map around the catalytic cleft, while preserving the secondary structure in solution. Diminished peak heights and faster 15N relaxation are suggestive of line broadening and millisecond fluctuations within four loops that can contact phosphosugars. 15N NMR relaxation and peak heights suggest that domain 4 reorients slightly faster in solution than domains 1 to 3, and with a different principal axis of diffusion. This adds to the crystallographic evidence for domain 4 rotations in the enzyme, which were previously suggested to couple to reorientation of intermediate, substrate binding, and product release.

Sarma, Akella V.S.; Anbanandam, Asokan; Kelm, Allek; Mehra-Chaudhary, Ritcha; Wei, Yirui; Qin, Peiwu; Lee, Yingying; Berjanskii, Mark V.; Mick, Jacob A.; Beamer, Lesa J.; Van Doren, Steven R.

2012-01-01

43

Solution NMR of a 463-Residue Phosphohexomutase: Domain 4 Mobility, Substates, and Phosphoryl Transfer Defect  

SciTech Connect

Phosphomannomutase/phosphoglucomutase contributes to the infectivity of Pseudomonas aeruginosa, retains and reorients its intermediate by 180°, and rotates domain 4 to close the deep catalytic cleft. Nuclear magnetic resonance (NMR) spectra of the backbone of wild-type and S108C-inactivated enzymes were assigned to at least 90%. 13C secondary chemical shifts report excellent agreement of solution and crystallographic structure over the 14 ?-helices, C-capping motifs, and 20 of the 22 ?-strands. Major and minor NMR peaks implicate substates affecting 28% of assigned residues. These can be attributed to the phosphorylation state and possibly to conformational interconversions. The S108C substitution of the phosphoryl donor and acceptor slowed transformation of the glucose 1-phosphate substrate by impairing kcat. Addition of the glucose 1,6-bisphosphate intermediate accelerated this reaction by 2?3 orders of magnitude, somewhat bypassing the defect and apparently relieving substrate inhibition. The S108C mutation perturbs the NMR spectra and electron density map around the catalytic cleft while preserving the secondary structure in solution. Diminished peak heights and faster 15N relaxation suggest line broadening and millisecond fluctuations within four loops that can contact phosphosugars. 15N NMR relaxation and peak heights suggest that domain 4 reorients slightly faster in solution than domains 1?3, and with a different principal axis of diffusion. This adds to the crystallographic evidence of domain 4 rotations in the enzyme, which were previously suggested to couple to reorientation of the intermediate, substrate binding, and product release.

Sarma, Akella V.; Anbanandam, A.; Kelm, Allek; Mehra-Chaudhary, Ritcha; Wei, Yirui; Qin, Peiwu; Lee, Yingying; Berjanskii, Mark V.; Mick, Jacob A.; Beamer, Lesa J.; Van Doren, Steven R.

2012-01-05

44

Enrichment and Analysis of Non-enzymatically Glycated Peptides: Boronate Affinity Chromatography Coupled with Electron Transfer Dissociation Mass Spectrometry  

PubMed Central

Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. However, no effective high-throughput methods exist for identifying proteins containing this low abundance post-translational modification in bottom-up proteomic studies. In this report, phenylboronate affinity chromatography was used in a two-step enrichment scheme to selectively isolate first glycated proteins and then glycated, tryptic peptides from human serum glycated in vitro. Enriched peptides were subsequently analyzed by alternating electron transfer dissociation (ETD) and collision induced dissociation (CID) tandem mass spectrometry. ETD fragmentation mode permitted identification of a significantly higher number of glycated peptides (87.6% of all identified peptides) versus CID mode (17.0% of all identified peptides), when utilizing enrichment on first the protein and then the peptide level. This study illustrates that phenylboronate affinity chromatography coupled with LC-MS/MS and using ETD as the fragmentation mode is an efficient approach for analysis of glycated proteins and may have broad application in studies of diabetes mellitus.

Zhang, Qibin; Tang, Ning; Brock, Jonathan W. C.; Mottaz, Heather M.; Ames, Jennifer M.; Baynes, John W.; Smith, Richard D.; Metz, Thomas O.

2008-01-01

45

Cardiac mitochondrial matrix and respiratory complex protein phosphorylation  

PubMed Central

It has become appreciated over the last several years that protein phosphorylation within the cardiac mitochondrial matrix and respiratory complexes is extensive. Given the importance of oxidative phosphorylation and the balance of energy metabolism in the heart, the potential regulatory effect of these classical signaling events on mitochondrial function is of interest. However, the functional impact of protein phosphorylation and the kinase/phosphatase system responsible for it are relatively unknown. Exceptions include the well-characterized pyruvate dehydrogenase and branched chain ?-ketoacid dehydrogenase regulatory system. The first task of this review is to update the current status of protein phosphorylation detection primarily in the matrix and evaluate evidence linking these events with enzymatic function or protein processing. To manage the scope of this effort, we have focused on the pathways involved in energy metabolism. The high sensitivity of modern methods of detecting protein phosphorylation and the low specificity of many kinases suggests that detection of protein phosphorylation sites without information on the mole fraction of phosphorylation is difficult to interpret, especially in metabolic enzymes, and is likely irrelevant to function. However, several systems including protein translocation, adenine nucleotide translocase, cytochrome c, and complex IV protein phosphorylation have been well correlated with enzymatic function along with the classical dehydrogenase systems. The second task is to review the current understanding of the kinase/phosphatase system within the matrix. Though it is clear that protein phosphorylation occurs within the matrix, based on 32P incorporation and quantitative mass spectrometry measures, the kinase/phosphatase system responsible for this process is ill-defined. An argument is presented that remnants of the much more labile bacterial protein phosphoryl transfer system may be present in the matrix and that the evaluation of this possibility will require the application of approaches developed for bacterial cell signaling to the mitochondria.

Covian, Raul

2012-01-01

46

Cardiac mitochondrial matrix and respiratory complex protein phosphorylation.  

PubMed

It has become appreciated over the last several years that protein phosphorylation within the cardiac mitochondrial matrix and respiratory complexes is extensive. Given the importance of oxidative phosphorylation and the balance of energy metabolism in the heart, the potential regulatory effect of these classical signaling events on mitochondrial function is of interest. However, the functional impact of protein phosphorylation and the kinase/phosphatase system responsible for it are relatively unknown. Exceptions include the well-characterized pyruvate dehydrogenase and branched chain ?-ketoacid dehydrogenase regulatory system. The first task of this review is to update the current status of protein phosphorylation detection primarily in the matrix and evaluate evidence linking these events with enzymatic function or protein processing. To manage the scope of this effort, we have focused on the pathways involved in energy metabolism. The high sensitivity of modern methods of detecting protein phosphorylation and the low specificity of many kinases suggests that detection of protein phosphorylation sites without information on the mole fraction of phosphorylation is difficult to interpret, especially in metabolic enzymes, and is likely irrelevant to function. However, several systems including protein translocation, adenine nucleotide translocase, cytochrome c, and complex IV protein phosphorylation have been well correlated with enzymatic function along with the classical dehydrogenase systems. The second task is to review the current understanding of the kinase/phosphatase system within the matrix. Though it is clear that protein phosphorylation occurs within the matrix, based on (32)P incorporation and quantitative mass spectrometry measures, the kinase/phosphatase system responsible for this process is ill-defined. An argument is presented that remnants of the much more labile bacterial protein phosphoryl transfer system may be present in the matrix and that the evaluation of this possibility will require the application of approaches developed for bacterial cell signaling to the mitochondria. PMID:22886415

Covian, Raul; Balaban, Robert S

2012-08-10

47

Lewis acid catalysis of phosphoryl transfer from a copper(II)-NTP complex in a kinase ribozyme.  

PubMed

The chemical strategies used by ribozymes to enhance reaction rates are revealed in part from their metal ion and pH requirements. We find that kinase ribozyme K28(1-77)C, in contrast with previously characterized kinase ribozymes, requires Cu(2+) for optimal catalysis of thiophosphoryl transfer from GTP?S. Phosphoryl transfer from GTP is greatly reduced in the absence of Cu(2+), indicating a specific catalytic role independent of any potential interactions with the GTP?S thiophosphoryl group. In-line probing and ATP?S competition both argue against direct Cu(2+) binding by RNA; rather, these data establish that Cu(2+) enters the active site within a Cu(2+)•GTP?S or Cu(2+)•GTP chelation complex, and that Cu(2+)•nucleobase interactions further enforce Cu(2+) selectivity and position the metal ion for Lewis acid catalysis. Replacing Mg(2+) with [Co(NH3)6](3+) significantly reduced product yield, but not kobs, indicating that the role of inner-sphere Mg(2+) coordination is structural rather than catalytic. Replacing Mg(2+) with alkaline earths of increasing ionic radii (Ca(2+), Sr(2+) and Ba(2+)) gave lower yields and approximately linear rates of product accumulation. Finally, we observe that reaction rates increased with pH in log-linear fashion with an apparent pKa = 8.0 ± 0.1, indicating deprotonation in the rate-limiting step. PMID:23358821

Biondi, Elisa; Poudyal, Raghav R; Forgy, Joshua C; Sawyer, Andrew W; Maxwell, Adam W R; Burke, Donald H

2013-01-28

48

Anionic charge is prioritized over geometry in aluminum and magnesium fluoride transition state analogs of phosphoryl transfer enzymes.  

PubMed

Phosphoryl transfer reactions are ubiquitous in biology and metal fluoride complexes have played a central role in structural approaches to understanding how they are catalyzed. In particular, numerous structures of AlFx-containing complexes have been reported to be transition state analogs (TSAs). A survey of nucleotide kinases has proposed a correlation between the pH of the crystallization solution and the number of coordinated fluorides in the resulting aluminum fluoride TSA complexes formed. Enzyme ligands crystallized above pH 7.0 were attributed to AlF3, whereas those crystallized at or below pH 7.0 were assigned as AlF4-. We use 19F NMR to show that for beta-phosphoglucomutase from Lactococcus lactis, the pH-switch in fluoride coordination does not derive from an AlF4- moiety converting into AlF3. Instead, AlF4- is progressively replaced by MgF3- as the pH increases. Hence, the enzyme prioritizes anionic charge at the expense of preferred native trigonal geometry over a very broad range of pH. We demonstrate similar behavior for two phosphate transfer enzymes that represent typical biological phosphate transfer catalysts: an amino acid phosphatase, phosphoserine phosphatase from Methanococcus jannaschii and a nucleotide kinase, phosphoglycerate kinase from Geobacillus stearothermophilus. Finally, we establish that at near-physiological ratios of aluminum to magnesium, aluminum can dominate over magnesium in the enzyme-metal fluoride inhibitory TSA complexes, and hence is the more likely origin of some of the physiological effects of fluoride. PMID:18318536

Baxter, Nicola J; Blackburn, G Michael; Marston, James P; Hounslow, Andrea M; Cliff, Matthew J; Bermel, Wolfgang; Williams, Nicholas H; Hollfelder, Florian; Wemmer, David E; Waltho, Jonathan P

2008-03-05

49

The role of the C8 proton of ATP in the regulation of phosphoryl transfer within kinases and synthetases  

PubMed Central

Background The kinome comprises functionally diverse enzymes, with the current classification indicating very little about the extent of conserved regulatory mechanisms associated with phosphoryl transfer. The apparent Km of the kinases ranges from less than 0.4 ?M to in excess of 1000 ?M for ATP. It is not known how this diverse range of enzymes mechanistically achieves the regulation of catalysis via an affinity range for ATP varying by three-orders of magnitude. Results We have demonstrated a previously undiscovered mechanism in kinase and synthetase enzymes where the overall rate of reaction is regulated via the C8-H of ATP. Using ATP deuterated at the C8 position (C8D-ATP) as a molecular probe it was shown that the C8-H plays a direct role in the regulation of the overall rate of reaction in a range of kinase and synthetase enzymes. Using comparative studies on the effect of the concentration of ATP and C8D-ATP on the activity of the enzymes we demonstrated that not only did C8D-ATP give a kinetic isotope effect (KIE) but the KIE's obtained are clearly not secondary KIE effects as the magnitude of the KIE in all cases was at least 2 fold and in most cases in excess of 7 fold. Conclusions Kinase and synthetase enzymes utilise C8D-ATP in preference to non-deuterated ATP. The KIE obtained at low ATP concentrations is clearly a primary KIE demonstrating strong evidence that the bond to the isotopically substituted hydrogen is being broken. The effect of the ATP concentration profile on the KIE was used to develop a model whereby the C8H of ATP plays a role in the overall regulation of phosphoryl transfer. This role of the C8H of ATP in the regulation of substrate binding appears to have been conserved in all kinase and synthetase enzymes as one of the mechanisms associated with binding of ATP. The induction of the C8H to be labile by active site residues coordinated to the ATP purine ring may play a significant role in explaining the broad range of Km associated with kinase enzymes.

2011-01-01

50

Phosphorylated histone H2A.x in porcine embryos produced by IVF and somatic cell nuclear transfer.  

PubMed

Phosphorylated histone H2A.x (H2AX139ph) is a key factor for the repair of DNA double-strand breaks (DSBs) and the presence of H2AX139ph foci indicates the sites of DSBs. In this study, we characterized the presence of H2AX139ph during in vitro development of porcine embryos produced by IVF and somatic cell nuclear transfer (SCNT). Pronuclear stage embryos produced by IVF had, on average, 9.2 H2AX139ph foci per pronucleus. The number of H2AX139ph foci was higher in the 2-cell-stage embryos than in the 4-cell-stage embryos fixed at 48?h post-fertilization. The percentage of H2AX139ph-positive nuclei was higher in SCNT embryos that were activated with ionomycin (ION) alone than in those activated with ION and strontium chloride (ION+Sr(2+)). A negative correlation was found between the percentage of H2AX139ph-positive cells and the total number of cells per embryo in day 7 blastocysts produced by IVF or SCNT. Based on the detection of H2AX139ph foci, the findings of this study indicate that DSBs occur in a high proportion of porcine embryos produced by either IVF or SCNT; fast-cleaving embryos have fewer DSBs than slow-cleaving embryos; the oocyte activation protocol can affect DNA integrity in SCNT embryos; and better-quality blastocysts have fewer DSBs. We propose that the presence of H2AX139ph foci can be a useful marker of embryo quality. PMID:23858475

Bohrer, Rodrigo C; Che, Limei; Gonçalves, Paulo B D; Duggavathi, Raj; Bordignon, Vilceu

2013-08-21

51

Enzymic phosphoryl transfer to carbon and oxygen acceptors: An investigation of the biosynthesis of 2-aminoethylphosphonic acid in Tetrahymena pyriformis W. and the kinetic mechanism and cofactor controlled substrate specificity of yeast inorganic pyrophosphatase  

SciTech Connect

This research is concerned with the study of two enzymatic systems which catalyze phosphoryl transfer reactions to carbon and oxygen acceptors. The first portion of this study is concerned with the elucidation of the T. pyriformis 2-aminoethylphosphonate (AEP) biosynthetic pathway. The de novo formation of AEP from exogenously added precursors in Tetrahymena cell-free preparations was evaluated by using radioisotopic techniques and NMR spectral analysis. Incubation of ({sup 32}P)-phosphoenolpyruvate (PEP) with cell-free preparations yielded ({sup 32}P)-labelled material that was chromatographically identical to authentic phosphonopyruvate (p-pry). A reexamination of AEP biosynthesis was initiated. In the second portion of this study the kinetic mechanism of yeast inorganic pyrophosphatase (PPase) was examined by carrying-out initial velocity studies. Ca{sup 2+} and Rh(H{sub 2}O){sub 4} (methylenediphosphonate) (Rh(H{sub 2}O){sub 4}PCP) were used as dead-end inhibitors to study the order of binding of Cr(H{sub 2}O){sub 4}PP to the substrate site and Mg{sup 2+} to the low affinity activator site on the enzyme.

Barry, R.J.

1987-01-01

52

Vibrational studies of phosphoryl transfer enzymes: ras- p21(*)magnesium-GTP and Myosin S1(*)magnesium-ADP- vanadate  

NASA Astrophysics Data System (ADS)

We have measured the Raman spectra of monophosphate compounds in aqueous solution. The measured frequencies were correlated with P••O valence bond order by using a modification of the Hardcastle- Wachs procedure. The P••O bond order and bond length in phosphates can be determined from vibrational spectra by using the derived bond order/stretching frequency correlation and the bond length/bond order correlation of Brown and Wu. The Raman and infrared spectra of guanosine 5'-diphosphate (GDP) and guanosine 5'-triphosphate (GTP) in aqueous solution were also examined. Frequency shifts were observed as Mg2+ complexes with GDP and GTP in aqueous solution. These results suggested that Mg2+ binds to GDP in a bidentate manner to the ?,? P••O bonds and in a tridentate manner to the ?,? and ? P••O bonds of Mg•GTP . We have analyzed the previously obtained isotope edited Raman difference spectra of 1:1 complexes of Mg•GDP and Mg•GTP in ras-p21. Frequency changes of the phosphate groups were observed when Mg•GDP , Mg•GTP bind to the protein. Employing both the previous empirical relationships between bond orders/lengths and frequencies as well as vibrational analysis from ab initio calculations, the spectral changes can be explained by the change of the Mg2+ binding sites and hydrogen-bonding. Implications of these structural results for the reaction mechanism of GTP hydrolysis catalyzed by the GTPase are discussed. We have analyzed previously obtained isotope edited Raman difference spectra of the non-bridging V••O bonds of vanadates, both in solution, and when bound to the myosin S1•MgADP complex. By use of ab initio calculations on a model of the vanadate binding site in myosin, the angles between the non-bridging V••O bonds and between these bonds and the apical bonds in the myosin S1•MgADP -Vi complex were determined. The summed bond order of the two apical bonds between the attacking and leaving group oxygens with the central vanadium ion in the S1•MgADP -Vi complex was found to increase only slightly compared with the bond order of the ester V-O bond of a monoester vanadate model compound in solution, suggesting an SN2 like mechanism for the phosphoryl transfer reaction catalyzed by myosin.

Wang, Jianghua

1999-07-01

53

Insights into the Phosphoryl Transfer Mechanism of Cyclin-dependent Protein Kinases from Ab Initio QM/MM Free-energy Studies  

PubMed Central

Phosphorylation reactions catalyzed by kinases and phosphatases play an indispensible role in cellular signaling, and their malfunctioning is implicated in many diseases. A better understanding of the catalytic mechanism will help design novel and effective mechanism-based inhibitors of these enzymes. In this work, ab initio quantum mechanical/molecular mechanical studies are reported for the phosphoryl transfer reaction catalyzed by a cyclin-dependent kinase, CDK2. Our results suggest that an active-site Asp residue, rather than ATP as previously proposed, serves as the general base to activate the Ser nucleophile. The corresponding transition state features a dissociative, metaphosphate-like structure, stabilized by the Mg2+ ion and several hydrogen bonds. The calculated free-energy barrier is consistent with experimental values. Implications of our results in this and other protein kinases are discussed.

Smith, Gregory K.; Ke, Zhihong; Hengge, Alvan C.

2011-01-01

54

Unraveling Molecular Complexity of Phosphorylated Human Cardiac Troponin I by Top Down Electron Capture Dissociation\\/Electron Transfer Dissociation  

Microsoft Academic Search

Cardiac troponin I (cTnI), the inhibitory subunit of the thin filament troponin-tropomyosin regulatory complex, is re- quired for heart muscle relaxation during the cardiac cycle. Expressed only in cardiac muscle, cTnI is widely used in the clinic as a serum biomarker of cardiac injury. In vivo func- tion of cTnI is influenced by phosphorylation and proteoly- sis; therefore analysis of

Mass Spectrometry; Vlad Zabrouskov; Ying Ge; Jae Schwartz; Jeffery W. Walker

55

Enrichment and Site Mapping of O-Linked N-Acetylglucosamine by a Combination of Chemical/Enzymatic Tagging, Photochemical Cleavage, and Electron Transfer Dissociation Mass Spectrometry*  

PubMed Central

Numerous cellular processes are regulated by the reversible addition of either phosphate or O-linked ?-N-acetylglucosamine (O-GlcNAc) to nuclear and cytoplasmic proteins. Although sensitive methods exist for the enrichment and identification of protein phosphorylation sites, those for the enrichment of O-GlcNAc-containing peptides are lacking. Reported here is highly efficient methodology for the enrichment and characterization of O-GlcNAc sites from complex samples. In this method, O-GlcNAc-modified peptides are tagged with a novel biotinylation reagent, enriched by affinity chromatography, released from the solid support by photochemical cleavage, and analyzed by electron transfer dissociation mass spectrometry. Using this strategy, eight O-GlcNAc sites were mapped from a tau-enriched sample from rat brain. Sites of GlcNAcylation were characterized on important neuronal proteins such as tau, synucleins, and methyl CpG-binding protein 2.

Wang, Zihao; Udeshi, Namrata D.; O'Malley, Meaghan; Shabanowitz, Jeffrey; Hunt, Donald F.; Hart, Gerald W.

2010-01-01

56

Rate-promoting vibrations and coupled hydrogen-electron transfer reactions in the condensed phase: A model for enzymatic catalysis  

Microsoft Academic Search

A model is presented for coupled hydrogen-electron transfer reactions in condensed phase in the presence of a rate promoting vibration. Large kinetic isotope effects (KIEs) are found when the hydrogen is substituted with deuterium. While these KIEs are essentially temperature independent, reaction rates do exhibit temperature dependence. These findings agree with recent experimental data for various enzyme-catalyzed reactions, such as

Joshua S. Mincer; Steven D. Schwartz

2004-01-01

57

Rate-promoting vibrations and coupled hydrogen–electron transfer reactions in the condensed phase: A model for enzymatic catalysis  

Microsoft Academic Search

A model is presented for coupled hydrogen–electron transfer reactions in condensed phase in the presence of a rate promoting vibration. Large kinetic isotope effects (KIEs) are found when the hydrogen is substituted with deuterium. While these KIEs are essentially temperature independent, reaction rates do exhibit temperature dependence. These findings agree with recent experimental data for various enzyme-catalyzed reactions, such as

Joshua S. Mincer; Steven D. Schwartz

2004-01-01

58

A simple and inexpensive method for investigating microbiological, enzymatic, or inorganic catalysis using standard histology and microbiology laboratory equipment: assembly, mass transfer properties, hydrodynamic conditions and evaluation.  

PubMed

We introduce a generic, simple, and inexpensive method for performing microbiological, enzymatic, or inorganic catalysis with solids using standard histology and microbiology laboratory equipment. Histology cassettes were used to standardize hydrodynamic conditions and to protect the catalysts and their solid supports. Histology cassettes have the following advantages: they are readily available, inexpensive, solvent and acid resistant, automatable, and the slots in the cassette walls allow liquid to circulate freely. Standard Erlenmeyer flasks were used as reaction vessels. We developed a new camera to observe the movement and position of the histology cassettes as well as the liquid in the Erlenmeyer flasks. The camera produces a stable image of the rotating liquid in the Erlenmeyer flask. This visualization method revealed that in a 250 ml Erlenmeyer flask, stable operating conditions are achieved at a shaking frequency of 300 rpm and a fill volume of 30 ml. In vessels with vertical walls, such as beakers or laboratory bottles, the movement of the histology cassette is not reproducible. Mass transfer characterization using a biological model system and the chemical sulfite-oxidation method revealed that the histology cassette does not influence gas-liquid mass transfer. PMID:17129996

Seletzky, J M; Otten, K; Lotter, S; Fricke, J; Peter, C P; Maier, H R; Büchs, J

59

Enzymatic Methyl Transfer: Role of An Active Site Residue in Generating Active Site Compaction that Correlates with Catalytic Efficiency  

PubMed Central

Human catechol-O-methyltransferase (COMT) catalyzes a methyl transfer from S-adenosylmethionine (AdoMet) to dopamine. Site-specific mutants at three positions (Tyr68, Trp38, and Val108) have been characterized with regard to product distribution, catalytic efficiency and secondary kinetic isotope effects. The series of mutations at Tyr68 within wild-type protein and the common polymorphic variant (Val108Met) yields a linear correlation between the catalytic efficiency and the size of the secondary kinetic isotope effect. We conclude that active site compaction in COMT is modulated by a proximal side chain residing behind the sulfur-bearing methyl group of AdoMet. These findings are discussed in the context of the active site compression that has been postulated to accompany enzyme-supported hydrogen tunneling.

Zhang, Jianyu; Klinman, Judith P.

2011-01-01

60

Modifications on the hydrogen bond network by mutations of Escherichia coli copper efflux oxidase affect the process of proton transfer to dioxygen leading to alterations of enzymatic activities.  

PubMed

CueO has a branched hydrogen bond network leading from the exterior of the protein molecule to the trinuclear copper center. This network transports protons in the four-electron reduction of dioxygen. We replaced the acidic Glu506 and Asp507 residues with the charged and uncharged amino acid residues. Peculiar changes in the enzyme activity of the mutants relative to the native enzyme indicate that an acidic amino acid residue at position 506 is essential for effective proton transport. The Ala mutation resulted in the formation of a compensatory hydrogen bond network with one or two extra water molecules. On the other hand, the Ile mutation resulted in the complete shutdown of the hydrogen bond network leading to loss of enzymatic activities of CueO. In contrast, the hydrogen bond network without the proton transport function was constructed by the Gln mutation. These results exerted on the hydrogen bond network in CueO are discussed in comparison with proton transfers in cytochrome oxidase. PMID:22564733

Kajikawa, Takao; Kataoka, Kunishige; Sakurai, Takeshi

2012-04-30

61

Insights into the Phosphoryl Transfer Catalyzed by cAMP-Dependent Protein Kinase: An X-ray Crystallographic Study of Complexes with Various Metals and Peptide Substrate SP20  

PubMed Central

X-ray structures of several ternary substrate and product complexes of the catalytic subunit of cAMP-dependent protein kinase (PKAc) have been determined with different bound metal ions. In the PKAc complexes, Mg2+, Ca2+, Sr2+, and Ba2+ metal ions could bind to the active site and facilitate the phosphoryl transfer reaction. ATP and a substrate peptide (SP20) were modified, and the reaction products ADP and the phosphorylated peptide were found trapped in the enzyme active site. Finally, we determined the structure of a pseudo-Michaelis complex containing Mg2+, nonhydrolyzable AMP-PCP (?,?-methyleneadenosine 5?-triphosphate) and SP20. The product structures together with the pseudo-Michaelis complex provide snapshots of different stages of the phosphorylation reaction. Comparison of these structures reveals conformational, coordination, and hydrogen bonding changes that might occur during the reaction and shed new light on its mechanism, roles of metals, and active site residues.

2013-01-01

62

Tau Phosphorylation  

Microsoft Academic Search

\\u000a Tau protein is a brain microtubule–associated protein having 79 putative phosphorylatable sites that could be modified by\\u000a serine\\/threonine protein kinases. This phosphorylation can be divided in two types, depending whether the modified residue\\u000a is phosphorylated by proline-directed or by non-proline-directed protein kinases. In neurodegenerative processes (tauopathies),\\u000a tau is mainly (but not only) modified by a proline-directed protein kinase, glycogen synthase

Jesús Avila; Félix Hernández

63

PHOSPHORYLATION OF METABOLIC ENZYMES: EFFECTS ON ACTIVITY, LOCALIZATION AND DEGRADATION  

Technology Transfer Automated Retrieval System (TEKTRAN)

Protein phosphorylation can affect enzymatic activity, protein localization and protein:protein interactions. With sucrose synthase (Sus), phosphorylation of a major site (Ser-15) affects the conformation of the N-terminus and may influence the association of this soluble, globular protein with cel...

64

Substrate-dependent control of MAPK phosphorylation in vivo  

Microsoft Academic Search

Phosphorylation of the mitogen-activated protein kinase (MAPK) is essential for its enzymatic activity and ability to control multiple substrates inside a cell. According to the current models, control of MAPK phosphorylation is independent of its substrates, which are viewed as mere sensors of MAPK activity. Contrary to this modular view of MAPK signaling, our studies in the Drosophila embryo demonstrate

Yoosik Kim; Ze'ev Paroush; Knud Nairz; Ernst Hafen; Gerardo Jiménez; Stanislav Y Shvartsman

2011-01-01

65

Enzymatic phosphorylation and pyrophosphorylation of 2',3'-dideoxyadenosine-5'-monophosphate, a key metabolite in the pathway for activation of the anti-HIV (human immunodeficiency virus) agent 2',3'-dideoxyinosine.  

PubMed

2',3'-Dideoxyadenosine-5'-monophosphate (ddAMP) is a key intermediate in the metabolic pathway involved in the activation of the anti-retroviral agent 2',3'-dideoxyinosine (ddI) to 2',3'-dideoxyadenosine-5'-triphosphate (ddATP). The potential phosphorylation of ddAMP by adenylate kinase (myokinase) and pyrophosphorylation by the reverse reaction of 5-phosphoribosyl-1-pyrophosphate (PRPP) synthetase were investigated. Using ATP as phosphate donor, ddAMP was phosphorylated by adenylate kinase with an efficiency of 8.8% of that for AMP, as estimated from the Vmax/Km ratios. In the presence of PRPP, Escherichia coli and rat PRPP synthetases catalysed the pyrophosphorylation of ddAMP with efficiencies of 52 and 35% of that determined for AMP, respectively. Two carbocyclic phosphonate analogues of ddAMP were not substrates of adenylate kinase. Yet, they were pyrophosphorylated by both PRPP synthetases, albeit less efficiently than ddAMP. In vivo, the usual function of PRPP synthetase is to synthesize PRPP from ribose-5-phosphate and ATP. In the forward reaction ddATP proved to be a substrate as efficient as ATP for rat PRPP synthetase. ddATP was also studied as a potential phosphate donor in the reaction catalysed by adenylate kinase with AMP as phosphate acceptor and found to be as efficient as ATP. The relevance of these in vitro results to the in vivo situation is discussed. PMID:7945403

Navé, J F; Eschbach, A; Wolff-Kugel, D; Halazy, S; Balzarini, J

1994-09-15

66

Structural Characterizations of Glycerol Kinase: Unraveling Phosphorylation-Induced Long-Range Activation  

SciTech Connect

Glycerol metabolism provides a central link between sugar and fatty acid catabolism. In most bacteria, glycerol kinase plays a crucial role in regulating channel/facilitator-dependent uptake of glycerol into the cell. In the firmicute Enterococcus casseliflavus, this enzyme's activity is enhanced by phosphorylation of the histidine residue (His232) located in its activation loop, approximately 25 A from its catalytic cleft. We reported earlier that some mutations of His232 altered enzyme activities; we present here the crystal structures of these mutant GlpK enzymes. The structure of a mutant enzyme with enhanced enzymatic activity, His232Arg, reveals that residues at the catalytic cleft are more optimally aligned to bind ATP and mediate phosphoryl transfer. Specifically, the position of Arg18 in His232Arg shifts by approximately 1 A when compared to its position in wild-type (WT), His232Ala, and His232Glu enzymes. This new conformation of Arg18 is more optimally positioned at the presumed gamma-phosphate location of ATP, close to the glycerol substrate. In addition to structural changes exhibited at the active site, the conformational stability of the activation loop is decreased, as reflected by an approximately 35% increase in B factors ('thermal factors') in a mutant enzyme displaying diminished activity, His232Glu. Correlating conformational changes to alteration of enzymatic activities in the mutant enzymes identifies distinct localized regions that can have profound effects on intramolecular signal transduction. Alterations in pairwise interactions across the dimer interface can communicate phosphorylation states over 25 A from the activation loop to the catalytic cleft, positioning Arg18 to form favorable interactions at the beta,gamma-bridging position with ATP. This would offset loss of the hydrogen bonds at the gamma-phosphate of ATP during phosphoryl transfer to glycerol, suggesting that appropriate alignment of the second substrate of glycerol kinase, the ATP molecule, may largely determine the rate of glycerol 3-phosphate production.

Yeh, Joanne I.; Kettering, Regina; Saxl, Ruth; Bourand, Alexa; Darbon, Emmanuelle; Joly, Nathalie; Briozzo, Pierre; Deutscher, Josef; (Pitt); (CNRS-CRMD)

2009-09-11

67

Regulation of Photosynthesis by Chloroplast Protein Phosphorylation  

Microsoft Academic Search

Several polypeptides of the chloroplast photosynthetic membrane are reversibly phosphorylated in vivo and in vitro. The most conspicuous phosphoproteins belong to the light-harvesting chlorophyll a\\/b complex (LHC), which accounts for about half of the photons absorbed by the pigments of the photosynthetic membrane and can transfer excitation energy to either photosystem I or photosystem II. Phosphorylation of LHC increases (and

J. Bennett; P. Cohen; D. E. Hanke; L. A. Pinna

1983-01-01

68

Cellular regulation by protein phosphorylation.  

PubMed

A historical account of the discovery of reversible protein phosphorylation is presented. This process was uncovered in the mid 1950s in a study undertaken with Edwin G. Krebs to elucidate the complex hormonal regulation of skeletal muscle glycogen phosphorylase. Contrary to the known activation of this enzyme by AMP which serves as an allosteric effector, its hormonal regulation results from a phosphorylation of the protein by phosphorylase kinase following the activation of the latter by Ca(2+) and ATP. The study led to the establishment of the first hormonal cascade of successive enzymatic reactions, kinases acting on kinases, initiated by cAMP discovered by Earl Sutherland. It also showed how two different physiological processes, carbohydrate metabolism and muscle contraction, could be regulated in concert. PMID:23058924

Fischer, Edmond H

2012-10-09

69

Aromatase is phosphorylated in situ at Serine-118  

PubMed Central

Phosphorylation of the cytochrome P450 aromatase has been proposed as a switch to rapidly modulate enzymatic activity and estrogen biosynthesis. Herein, we demonstrate that aromatase serine-118 is a potential phosphorylation site in mammalian cells. The amino acid context surrounding S118 is highly conserved among diverse animal species and suggests that an AGC-like kinase may phosphorylate aromatase. Mutation of S118 to Ala blocked phosphorylation. Mutation of S118 to either Ala or Asp destabilized aromatase, indicating an important structural role for S118. The phosphomimetic S118D mutant showed decreased specific enzymatic activity, decreased Vmax, and increased Km, while the S118A phospho-inhibiting mutant showed opposite effects. Our findings suggest that phosphorylation of S118 may decrease aromatase activity, presenting a mechanism whereby kinase signaling may modulate estrogen production and hormone balance.

Miller, Todd W.; Shin, Incheol; Kagawa, Norio; Evans, Dean B.; Waterman, Michael R.; Arteaga, Carlos L.

2010-01-01

70

Enzymatic depolymerization of coal  

SciTech Connect

This patent describes a method for enzymatically depolymerizing polymeric substituents of coal. It comprises: combining in an aqueous solution, in which a lignin peroxidase is enzymatically active, an aqueous soluble polymeric coal substrate, the lignin peroxidase, hydrogen peroxide and oxygen.

Wood, W.A.; Wondrack, L.M.

1990-10-02

71

Phosphospecific proteolysis for mapping sites of protein phosphorylation  

Microsoft Academic Search

Protein phosphorylation is a dominant mechanism of information transfer in cells, and a major goal of current proteomic efforts is to generate a system-level map describing all the sites of protein phosphorylation. Recent efforts have focused on developing technologies for enriching and quantifying phosphopeptides. Identification of the sites of phosphorylation typically relies on tandem mass spectrometry to sequence individual peptides.

Zachary A Knight; Birgit Schilling; Richard H Row; Denise M Kenski; Bradford W Gibson; Kevan M Shokat

2003-01-01

72

Catalytic and regulatory roles of divalent metal cations on the phosphoryl-transfer mechanism of ADP-dependent sugar kinases from hyperthermophilic archaea.  

PubMed

In some archaea, glucose degradation proceeds through a modified version of the Embden-Meyerhof pathway where glucose and fructose-6-P phosphorylation is carried out by kinases that use ADP as the phosphoryl donor. Unlike their ATP-dependent counterparts these enzymes have been reported as non-regulated. Based on the three dimensional structure determination of several ADP-dependent kinases they can be classified as members of the ribokinase superfamily. In this work, we have studied the role of divalent metal cations on the catalysis and regulation of ADP-dependent glucokinases and phosphofructokinase from hyperthermophilic archaea by means of initial velocity assays as well as molecular dynamics simulations. The results show that a divalent cation is strictly necessary for the activity of these enzymes and they strongly suggest that the true substrate is the metal-nucleotide complex. Also, these enzymes are promiscuous in relation to their metal usage where the only considerations for metal assisted catalysis seem to be related to the ionic radii and coordination geometry of the cations. Molecular dynamics simulations strongly suggest that this metal is bound to the highly conserved NXXE motif, which constitutes one of the signatures of the ribokinase superfamily. Although free ADP cannot act as a phosphoryl donor it still can bind to these enzymes with a reduced affinity, stressing the importance of the metal in the proper binding of the nucleotide at the active site. Also, data show that the binding of a second metal to these enzymes produces a complex with a reduced catalytic constant. On the basis of these findings and considering evolutionary information for the ribokinase superfamily, we propose that the regulatory metal acts by modulating the energy difference between the protein-substrates complex and the reaction transition state, which could constitute a general mechanism for the metal regulation of the enzymes that belong this superfamily. PMID:21906652

Merino, Felipe; Rivas-Pardo, Jaime Andrés; Caniuguir, Andrés; García, Ivonne; Guixé, Victoria

2011-09-02

73

Effect of Ageing and Ischemia on Enzymatic Activities Linked to Krebs’ Cycle, Electron Transfer Chain, Glutamate and Aminoacids Metabolism of Free and Intrasynaptic Mitochondria of Cerebral Cortex  

Microsoft Academic Search

The effect of ageing and the relationships between the catalytic properties of enzymes linked to Krebs’ cycle, electron transfer\\u000a chain, glutamate and aminoacid metabolism of cerebral cortex, a functional area very sensitive to both age and ischemia, were\\u000a studied on mitochondria of adult and aged rats, after complete ischemia of 15 minutes duration. The maximum rate (V\\u000a max) of the following

Roberto Federico Villa; Antonella Gorini; Siegfried Hoyer

2009-01-01

74

Enzymatic synthesis of farnesyl laurate in organic solvent: initial water activity, kinetics mechanism, optimization of continuous operation using packed bed reactor and mass transfer studies.  

PubMed

The influence of water activity and water content was investigated with farnesyl laurate synthesis catalyzed by Lipozyme RM IM. Lipozyme RM IM activity depended strongly on initial water activity value. The best results were achieved for a reaction medium with an initial water activity of 0.11 since it gives the best conversion value of 96.80%. The rate constants obtained in the kinetics study using Ping-Pong-Bi-Bi and Ordered-Bi-Bi mechanisms with dead-end complex inhibition of lauric acid were compared. The corresponding parameters were found to obey the Ordered-Bi-Bi mechanism with dead-end complex inhibition of lauric acid. Kinetic parameters were calculated based on this model as follows: V (max) = 5.80 mmol l(-1) min(-1) g enzyme(-1), K (m,A) = 0.70 mmol l(-1) g enzyme(-1), K (m,B) = 115.48 mmol l(-1) g enzyme(-1), K (i) = 11.25 mmol l(-1) g enzyme(-1). The optimum conditions for the esterification of farnesol with lauric acid in a continuous packed bed reactor were found as the following: 18.18 cm packed bed height and 0.9 ml/min substrate flow rate. The optimum molar conversion of lauric acid to farnesyl laurate was 98.07 ± 0.82%. The effect of mass transfer in the packed bed reactor has also been studied using two models for cases of reaction limited and mass transfer limited. A very good agreement between the mass transfer limited model and the experimental data obtained indicating that the esterification in a packed bed reactor was mass transfer limited. PMID:21327986

Rahman, N K; Kamaruddin, A H; Uzir, M H

2011-02-13

75

Determination of HDL phosphatidyl choline by an enzymatic method.  

PubMed

A routine method is described for the enzymatic determination of phosphatidyl choline in the apolipoprotein B-free supernatant after precipitation of blood sera with phosphotungstic acid/MgCl2. The principle of this method is based on the specific cleavage of phosphatidyl choline by purified phospholipase C from B. cereus, and the enzymatic determination of choline by choline kinase after hydrolysis of phosphoryl-choline. The enzymatic method provides HDL phosphatidyl choline values which coincide with those of the conventional chemical method. Furthermore, the values obtained with the enzymatic method for the HDL fraction isolated by ultracentrifugation (1.063--1.21 kg/l) also closely coincide with those of the apolipoprotein B-free supernatant fraction. The precision, linearity and sample stability were also checked. The findings obtained show that the enzymatic assay introduced here is suitable for the routine determination of phosphatidyl choline in the apolipoprotein B-free supernatant. PMID:6854225

Schriewer, H; Jabs, H U; Günnewig, V; Assmann, G

1983-03-01

76

Enzymatic single-molecule kinetic isotope effects.  

PubMed

Ensemble-based measurements of kinetic isotope effects (KIEs) have advanced physical understanding of enzyme-catalyzed reactions, but controversies remain. KIEs are used as reporters of rate-limiting H-transfer steps, quantum mechanical tunnelling, dynamics and multiple reactive states. Single molecule (SM) enzymatic KIEs could provide new information on the physical basis of enzyme catalysis. Here, single pair fluorescence energy transfer (spFRET) was used to measure SM enzymatic KIEs on the H-transfer catalyzed by the enzyme pentaerythritol tetranitrate reductase. We evaluated a range of methods for extracting the SM KIE from single molecule spFRET time traces. The SM KIE enabled separation of contributions from nonenzymatic protein and fluorophore processes and H-transfer reactions. Our work demonstrates SM KIE analysis as a new method for deconvolving reaction chemistry from intrinsic dynamics. PMID:23402437

Pudney, Christopher R; Lane, Richard S K; Fielding, Alistair J; Magennis, Steven W; Hay, Sam; Scrutton, Nigel S

2013-02-19

77

Novel method for the synthesis of 2' -phosphorylated oligonucleotides.  

PubMed

We have developed a new method for the preparation of oligodeoxyribonucleotides and oligo(2'-O-methylribonucleotides) that contain a 2'-phosphorylated ribonucleoside residue, and optimized it to avoid 2' -3' -isomerization and chain cleavage. Structures of the 2' -phosphorylated oligonucleotides were confirmed by MALDI-TOF MS and enzymatic digestion, and the stability of their duplexes with DNA and RNA was investigated. 2'-Phosphorylated oligonucleotides may be useful intermediates for the introduction of various chemical groups for a wide range of applications. PMID:18066907

Novopashina, Darya S; Totskaya, Olesya S; Meschaninova, Maria I; Stetsenko, Dmitry A; Venyaminova, Alya G

2007-01-01

78

PROTEIN PHOSPHORYLATION AS A POSSIBLE TRIGGER FOR DEGRADATION OF METABOLIC ENZYMES  

Technology Transfer Automated Retrieval System (TEKTRAN)

The phosphorylation of a protein can affect its enzymatic activity, localization or interaction with other proteins. In addition, recent results suggest that phosphorylation of metabolic enzymes at certain sites might be a trigger for degradation via the ubiquitin/proteasome pathway. Recent result...

79

Enzymatic Template Polymerization.  

National Technical Information Service (NTIS)

A conductive polymer is formed enzymatically in the presence of a polynucleotide template. The method includes combining at least one redox monomer with a polynucleotide template and a redox enzyme, such as horseradish peroxidase, to form a reaction mixtu...

L. A. Samuelson F. Bruno S. K. Tripathy S. Tripathy R. Nagarajan J. Kumar W. Liu

2004-01-01

80

Enzymatic Transformations of Lignin.  

National Technical Information Service (NTIS)

Research efforts in the areas of biochemical engineering, enzymology, and lignin chemistry and an analysis relating to enzymatic transformations of lignin are reported. Biochemical engineering investigations of microbial metabolism on lignin were studied....

P. L. Hall

1979-01-01

81

Structural and biochemical insights into the mechanism of fosfomycin phosphorylation by fosfomycin resistance kinase FomA.  

PubMed

We present here the crystal structures of fosfomycin resistance protein (FomA) complexed with MgATP, with ATP and fosfomycin, with MgADP and fosfomycin vanadate, with MgADP and the product of the enzymatic reaction, fosfomycin monophosphate, and with ADP at 1.87, 1.58, 1.85, 1.57, and 1.85 Å resolution, respectively. Structures of these complexes that approximate different reaction steps allowed us to distinguish the catalytically active conformation of ATP and to reconstruct the model of the MgATP·fosfomycin complex. According to the model, the triphosphate tail of the nucleotide is aligned toward the phosphonate moiety of fosfomycin, in contest to the previously published MgAMPPNP complex, with the attacking fosfomycin oxygen positioned 4 Å from the ?-phosphorus of ATP. Site-directed mutagenesis studies and comparison of these structures with that of homologous N-acetyl-l-glutamate and isopentenyl phosphate kinases allowed us to propose a model of phosphorylation of fosfomycin by FomA enzyme. A Mg cation ligates all three phosphate groups of ATP and together with positively charged K216, K9, K18, and H58 participates in the dissipation of negative charge during phosphoryl transfer, indicating that the transferred phosphate group is highly negatively charged, which would be expected for an associative mechanism. K216 polarizes the ?-phosphoryl group of ATP. K9, K18, and H58 participate in stabilization of the transition state. D150 and D208 play organizational roles in catalysis. S148, S149, and T210 participate in fosfomycin binding, with T210 being crucial for catalysis. Hence, it appears that as in the homologous enzymes, FomA-catalyzed phosphoryl transfer takes place by an in-line predominantly associative mechanism. PMID:21728358

Pakhomova, Svetlana; Bartlett, Sue G; Doerner, Pamela A; Newcomer, Marcia E

2011-07-18

82

Structural and Biochemical Insights into the Mechanism of Fosfomycin Phosphorylation by Fosfomycin Resistance Kinase FomA  

PubMed Central

We present here the crystal structures of fosfomycin resistance protein (FomA) complexed with MgATP, with ATP and fosfomycin, with MgADP and fosfomycin vanadate, with MgADP and the product of the enzymatic reaction, fosfomycin monophosphate, and with ADP at 1.87, 1.58, 1.85, 1.57, and 1.85 Å resolution, respectively. Structures of these complexes that approximate different reaction steps allowed us to distinguish the catalytically active conformation of ATP and to reconstruct the model of the MgATP·fosfomycin complex. According to the model, the triphosphate tail of the nucleotide is aligned toward the phosphonate moiety of fosfomycin, in contast to the previously published MgAMPPNP complex, with the attacking fosfomycin oxygen positioned 4 Å from the ?-phosphorus of ATP. Site-directed mutagenesis studies and comparison of these structures with that of homologous N-acetyl-l-glutamate and isopentenyl phosphate kinases allowed us to propose a model of phosphorylation of fosfomycin by FomA enzyme. A Mg cation ligates all three phosphate groups of ATP and together with positively charged K216, K9, K18, and H58 participates in the dissipation of negative charge during phosphoryl transfer, indicating that the transferred phosphate group is highly negatively charged, which would be expected for an associative mechanism. K216 polarizes the ?-phosphoryl group of ATP. K9, K18, and H58 participate in stabilization of the transition state. D150 and D208 play organizational roles in catalysis. S148, S149, and T210 participate in fosfomycin binding, with T210 being crucial for catalysis. Hence, it appears that as in the homologous enzymes, FomA-catalyzed phosphoryl transfer takes place by an in-line predominantly associative mechanism.

Pakhomova, Svetlana; Bartlett, Sue G.; Doerner, Pamela A.; Newcomer, Marcia E.

2011-01-01

83

Enzymatic desulfurization of coal  

SciTech Connect

Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

Marquis, J.K. (Boston Univ., MA (United States). School of Medicine); Kitchell, J.P. (Holometrix, Inc., Cambridge, MA (United States))

1988-12-15

84

Enzymatic desulfurization of coal  

SciTech Connect

Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes as well as commercially available enzymes. Our work is focused on the treatment of model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V. (Holometrix, Inc., Cambridge, MA (United States)); Marquis, J.K. (Boston Univ., MA (United States). School of Medicine)

1989-06-16

85

Enzymatic desulfurization of coal  

SciTech Connect

Our current efforts to develop clean coal technology, emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

Marquis, J.K. (Boston Univ., MA (United States). School of Medicine); Kitchell, J.P. (Holometrix, Inc., Cambridge, MA (United States))

1988-10-07

86

Regulation of protein phosphorylation in oat mitochondria  

SciTech Connect

We sought to identify phosphorylated proteins in isolated oat mitocchondria and to characterize the enzymatic and regulatory properties of the protein kinase(s). Mitochondria from oats (Avena sativa L. cv. Garry) were purified on Percoll gradients. Mitochondria were incubated with {sup 32}P-{gamma}-ATP; proteins were separated by SDS-PAGE. A small number of bands was detected on autoradiograms, most prominently at 70 kD and 42 kD; the latter band has been tentatively identified as a subunit of the pyruvate dehydrogenase complex, a well-known phosphoprotein. The protein kinase(s) could also phosphorylate casein, but not histone. Spermine enhanced the phosphorylation of casein and inhibited the phosphorylation of the 42 kD band. These studies were carried out on both intact and burst mitochondria. Control by calcium and other ions was investigated. The question of the action of regulators on protein kinase or protein phosphatase was studied by the use of {sup 35}S-adenosine thiotriphosphate.

Pike, C.; Kopeck, K.; Sceppa, E. (Franklin and Marshall College, Lancaster, PA (USA))

1989-04-01

87

Protein Scaffolds Can Enhance the Bistability of Multisite Phosphorylation Systems  

PubMed Central

The phosphorylation of a substrate at multiple sites is a common protein modification that can give rise to important structural and electrostatic changes. Scaffold proteins can enhance protein phosphorylation by facilitating an interaction between a protein kinase enzyme and its target substrate. In this work we consider a simple mathematical model of a scaffold protein and show that under specific conditions, the presence of the scaffold can substantially raise the likelihood that the resulting system will exhibit bistable behavior. This phenomenon is especially pronounced when the enzymatic reactions have sufficiently large KM, compared to the concentration of the target substrate. We also find for a closely related model that bistable systems tend to have a specific kinetic conformation. Using deficiency theory and other methods, we provide a number of necessary conditions for bistability, such as the presence of multiple phosphorylation sites and the dependence of the scaffold binding/unbinding rates on the number of phosphorylated sites.

Chan, Carlo; Liu, Xinfeng; Wang, Liming; Bardwell, Lee

2012-01-01

88

Phosphorylation meets proteolysis.  

PubMed

Phosphorylation is a reversible post-translational modification that regulates many proteins and enzymes, including proteases, as shown by two recent publications. Huang and colleagues and Velázquez-Delgado and Hardy (this issue of Structure) describe how phosphorylation activates the protease activity of the deubiquitinating enzyme DUBA and how it inhibits caspase-6, respectively. PMID:22483104

Renatus, Martin; Farady, Christopher J

2012-04-03

89

Reduction of Cysteine Sulfinic Acid in Peroxiredoxin by Sulfiredoxin Proceeds Directly Through a Sulfinic Phosphoryl Ester Intermediate  

SciTech Connect

Sulfiredoxin (Srx) catalyzes a novel enzymatic reaction, the reduction of protein cysteine sulfinic acid, Prx-SO{sub 2}{sup -}. This reaction is unique to the typical 2-Cys peroxiredoxins (Prx) and plays a role in peroxide-mediated signaling by regulating the activity of Prxs. Two mechanistic schemes have been proposed that differ regarding the first step of the reaction. This step involves either the direct transfer of the {gamma}-phosphate of ATP to the Prx molecule or through Srx acting as a phosphorylated intermediary. In an effort to clarify this step of the Srx reaction, we have determined the 1.8 Angstroms resolution crystal structure of Srx in complex with ATP and Mg2+. This structure reveals the role of the Mg2+ ion to position the {gamma}-phosphate toward solvent, thus preventing an in-line attack by the catalytic residue Cys-99 of Srx. A model of the quaternary complex is consistent with this proposal. Furthermore, phosphorylation studies on several site-directed mutants of Srx and Prx, including the Prx-Asp mimic of the Prx-SO{sub 2}{sup -} species, support a mechanism where phosphorylation of Prx-SO{sub 2}{sup -} is the first chemical step.

Jonsson,T.; Murray, M.; Johnson, L.; Lowther, W.

2008-01-01

90

Phosphorylated Phospholamban Stabilizes a Compact Conformation of the Cardiac Calcium-ATPase.  

PubMed

The sarcoendoplasmic reticulum calcium ATPase (SERCA) plays a key role in cardiac calcium handling and is considered a high-value target for the treatment of heart failure. SERCA undergoes conformational changes as it harnesses the chemical energy of ATP for active transport. X-ray crystallography has provided insight into SERCA structural substates, but it is not known how well these static snapshots describe in vivo conformational dynamics. The goals of this work were to quantify the direction and magnitude of SERCA motions as the pump performs work in live cardiac myocytes, and to identify structural determinants of SERCA regulation by phospholamban. We measured intramolecular fluorescence resonance energy transfer (FRET) between fluorescent proteins fused to SERCA cytoplasmic domains. We detected four discrete structural substates for SERCA expressed in cardiac muscle cells. The relative populations of these discrete states oscillated with electrical pacing. Low FRET states were most populated in low Ca (diastole), and were indicative of an open, disordered structure for SERCA in the E2 (Ca-free) enzymatic substate. High FRET states increased with Ca (systole), suggesting rigidly closed conformations for the E1 (Ca-bound) enzymatic substates. Notably, a special compact E1 state was observed after treatment with ?-adrenergic agonist or with coexpression of phosphomimetic mutants of phospholamban. The data suggest that SERCA calcium binding induces the pump to undergo a transition from an open, dynamic conformation to a closed, ordered structure. Phosphorylated phospholamban stabilizes a unique conformation of SERCA that is characterized by a compact architecture. PMID:24138857

Pallikkuth, Sandeep; Blackwell, Daniel J; Hu, Zhihong; Hou, Zhanjia; Zieman, Dane T; Svensson, Bengt; Thomas, David D; Robia, Seth L

2013-10-15

91

Phosphorylated Phospholamban Stabilizes a Compact Conformation of the Cardiac Calcium-ATPase  

PubMed Central

The sarcoendoplasmic reticulum calcium ATPase (SERCA) plays a key role in cardiac calcium handling and is considered a high-value target for the treatment of heart failure. SERCA undergoes conformational changes as it harnesses the chemical energy of ATP for active transport. X-ray crystallography has provided insight into SERCA structural substates, but it is not known how well these static snapshots describe in vivo conformational dynamics. The goals of this work were to quantify the direction and magnitude of SERCA motions as the pump performs work in live cardiac myocytes, and to identify structural determinants of SERCA regulation by phospholamban. We measured intramolecular fluorescence resonance energy transfer (FRET) between fluorescent proteins fused to SERCA cytoplasmic domains. We detected four discrete structural substates for SERCA expressed in cardiac muscle cells. The relative populations of these discrete states oscillated with electrical pacing. Low FRET states were most populated in low Ca (diastole), and were indicative of an open, disordered structure for SERCA in the E2 (Ca-free) enzymatic substate. High FRET states increased with Ca (systole), suggesting rigidly closed conformations for the E1 (Ca-bound) enzymatic substates. Notably, a special compact E1 state was observed after treatment with ?-adrenergic agonist or with coexpression of phosphomimetic mutants of phospholamban. The data suggest that SERCA calcium binding induces the pump to undergo a transition from an open, dynamic conformation to a closed, ordered structure. Phosphorylated phospholamban stabilizes a unique conformation of SERCA that is characterized by a compact architecture.

Pallikkuth, Sandeep; Blackwell, Daniel J.; Hu, Zhihong; Hou, Zhanjia; Zieman, Dane T.; Svensson, Bengt; Thomas, David D.; Robia, Seth L.

2013-01-01

92

Modeling intrinsic kinetics of enzymatic cellulose hydrolysis.  

PubMed

A multistep approach was taken to investigate the intrinsic kinetics of the cellulase enzyme complex as observed with hydrolysis of noncrystalline cellulose (NCC). In the first stage, published initial rate mechanistic models were built and critically evaluated for their performance in predicting time-course kinetics, using the data obtained from enzymatic hydrolysis experiments performed on two substrates: NCC and alpha-cellulose. In the second stage, assessment of the effect of reaction intermediates and products on intrinsic kinetics of enzymatic hydrolysis was performed using NCC hydrolysis experiments, isolating external factors such as mass transfer effects, physical properties of substrate, etc. In the final stage, a comprehensive intrinsic kinetics mechanism was proposed. From batch experiments using NCC, the time-course data on cellulose, cello-oligosaccharides (COS), cellobiose, and glucose were taken and used to estimate the parameters in the kinetic model. The model predictions of NCC, COS, cellobiose, and glucose profiles show a good agreement with experimental data generated from hydrolysis of different initial compositions of substrate (NCC supplemented with COS, cellobiose, and glucose). Finally, sensitivity analysis was performed on each model parameter; this analysis provides some insights into the yield of glucose in the enzymatic hydrolysis. The proposed intrinsic kinetic model parametrized for dilute cellulose systems forms a basis for modeling the complex enzymatic kinetics of cellulose hydrolysis in the presence of limiting factors offered by substrate and enzyme characteristics. PMID:17465526

Peri, Suma; Karra, Srinivas; Lee, Y Y; Karim, M Nazmul

2007-04-28

93

[Enzymatic properties in muscle membranes].  

PubMed

A study in the enzymatic properties of muscle membranes established that sarcolemma of the rabbit skeletal muscles contains the Ca2+-ATPase system which does not require Mg2+ for manifestation of ions activity. By some kinetic properties it differs from ATPase of myosin. The complex Ca-ATP2+ is a substrate of Ca2+-ATPase. Ions of a series of bivalent metals inhibit the latter as well as the passive transport of Ca2+, that may evidence for a definite relation of Ca2+-ATPase with Ca+2 transport in skeletal muscles. Acetyl cholinesterase and AMP-aminohydrolase are strongly bound with the sarcolemma. The sarcolemma structural organization is shown to play a certain role in manifestation of their activity. On the basis of the data obtained when studying the activity in the ATPase systems and dynamics of formation and decay of the intermediate phosphorylated product in the microsomal fraction of cow and rabbit myometrium certain peculiarities are established for the active mechanisms of Ca2+ transport in smooth muscles. A problem is under discussion on the possible active participation of sarcolemma in regulation of Ca2+ concentration in the smooth muscle cells. Two ATPase systems, Mg2+-dependent and Mg2+-dependent Ca2+ activated are found in nuclei; the role of lipids of the skeletal muscles in manifestation of their activity is studied. AMP-amino hydrolase properties are characterized for different areas of the sarcoplasmatic reticulum membranes. The model of E-avitaminous muscular distrophy was used to show disturbances in the structure of sarcolemma and membranes of the sarcoplasmatic reticulum which are accompanied by changes in their ATPase and Ca2+-transporting properties. PMID:128174

Kursky, M D; Grigoryeva, V A

94

Enzymatic desulfurization of coal  

SciTech Connect

The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

1991-05-16

95

Enzymatic hydrolysis of molasses  

Microsoft Academic Search

Kinetic studies of the enzymatic hydrolysis of molasses were conducted using glucoamylase. Central Sugar Refinery SDN BHD contains 13–20% glucose. The molasses was diluted and the kinetic experiments were conducted at 67 °C with 100–1000 mg\\/l of glucoamylase. The glucose contents of the molasses were enhanced after hydrolysis of molasses solution with 1000 mg\\/l glucoamylase. A Lineweaver–Burk plot was obtained

Ghasem D. Najafpour; Cheong Poi Shan

2003-01-01

96

Myoblast myosin phosphorylation is a prerequisite for actin-activation  

Microsoft Academic Search

CYTOPLASMIC myosins are found in most non-muscle cellular systems studied to date1. In vertebrates these myosins are composed of two heavy chains of 200,000 molecular weight (MW) and four light chains, two each of 20,000 and 15,000 MW. A number of cytoplasmic myosins, as well as skeletal, smooth, and cardiac muscle myosin, can be enzymatically phosphorylated2-6. That is, those light

Stylianos P. Scordilis; Robert S. Adelstein

1977-01-01

97

Relationship between Site-Specific HSL Phosphorylation and Adipocyte Lipolysis in Obese Women  

Microsoft Academic Search

SummaryBackground\\/Aims: In fat cells of obese humans, basal lipolysis is increased but catecholamine-stimulated lipolysis is blunted. This is linked to decreased expression of hormone-sensitive lipase (HSL). Upon stimulation by cAMP, HSL is phosphorylated at several serine residues (P-Ser552, P-Ser649 and P-Ser650) leading to enzymatic activation. In contrast, P-Ser554 prevents phosphorylation at Ser552 and is thus considered an inactivating site. We

Silvia Lorente-Cebrián; Agné Kulyté; Per Hedén; Erik Näslund; Peter Arner; Mikael Rydén

2011-01-01

98

Enzymatic temperature change indicator  

DOEpatents

A temperature change indicator is described which is composed of an enzyme and a substrate for that enzyme suspended in a solid organic solvent or mixture of solvents as a support medium. The organic solvent or solvents are chosen so as to melt at a specific temperature or in a specific temperature range. When the temperature of the indicator is elevated above the chosen, or critical temperature, the solid organic solvent support will melt, and the enzymatic reaction will occur, producing a visually detectable product which is stable to further temperature variation.

Klibanov, Alexander M. (Newton, MA); Dordick, Jonathan S. (Iowa City, IA)

1989-01-21

99

Enzymatic quantification of sphingosine in the picomole range in cultured cells  

Microsoft Academic Search

An enzymatic method to quantify the mass levels of free sphingosine in cellular lipid extracts was developed. The assay is based upon the observation that ceramide is phosphorylated by Escherichia coli diacylglycerol kinase. Although sphingosine is not recognized by the enzyme, it can be converted to a substrate by acylation with hexanoic anhydride. Using a mixed micellar assay, previously reported

P. P. Van Veldhoven; W. R. Bishop; R. M. Bell

1989-01-01

100

Phosphorylated Ndr kinase  

US Patent & Trademark Office Database

The present invention relates to the phosphorylated form of nuclear serine/threonine protein kinase, designated nuclear, Dbf2-related kinase (Ndr), and provides assays and materials for identifying modulators thereof. The invention relates to the fields of molecular biology, chemistry, pharmacology, and screening technology.

2011-08-30

101

Phosphorylation of RNAPII  

PubMed Central

The C-terminal domain of RNA polymerase II undergoes a cycle of phosphorylation which allows it to temporally couple transcription with transcription-associated processes. The characterization of hitherto unrecognized metazoan elongation phase CTD kinase activities expands our understanding of this coupling. We discuss the circumstances that delayed the recognition of these kinase activities.

Bartkowiak, Bartlomiej

2011-01-01

102

Enzymatic synthesis of alkyds.  

PubMed

Lipases were used as catalysts in the synthesis of "all-trans" polyester oligomers in organic solvents. Esters of fumaric acid and 1,4-butane diol served as the substrates in the enzyme-catalyzed polytransesterification. No isomerization of the double bond was found under the mild conditions of enzymatic catalysis used by us, as opposed to the extensive isomerization found during chemical polycondensation. The alkoxy leaving group of the ester fumarate was found to be responsible for the rate of transesterification. Low (M(w) approximately 600-800) and high (M(w) = 1250) molecular weight alkyds were synthesized depending on whether tetrahedrofuran or acetonitrile, respectively, was used as the solvent. PMID:18595078

Geresh, S; Giiboa, Y

1990-07-01

103

Phosphorylating enzymes involved in glucose fermentation of Actinomyces naeslundii.  

PubMed

Enzymatic activities involved in glucose fermentation of Actinomyces naeslundii were studied with glucose-grown cells from batch cultures. Glucose could be phosphorylated to glucose 6-phosphate by a glucokinase that utilized polyphosphate and GTP instead of ATP as a phosphoryl donor. Glucose 6-phosphate was further metabolized to the end products lactate, formate, acetate, and succinate through the Embden-Meyerhof-Parnas pathway. The phosphoryl donor for phosphofructokinase was only PPi. Phosphoglycerate kinase, pyruvate kinase, and acetate kinase coupled GDP as well as ADP, but P(i) compounds were not their phosphoryl acceptor. Cell extracts showed GDP-dependent activity of phosphoenolpyruvate carboxykinase, which assimilates bicarbonate and phosphoenolpyruvate into oxaloacetate, a precursor of succinate. Considerable amounts of GTP, polyphosphate, and PPi were found in glucose-fermenting cells, indicating that these compounds may serve as phosphoryl donors or acceptors in Actinomyces cells. PPi could be generated from UTP and glucose 1-phosphate through catalysis of UDP-glucose synthase, which provides UDP-glucose, a precursor of glycogen. PMID:7592327

Takahashi, N; Kalfas, S; Yamada, T

1995-10-01

104

Phosphorylating enzymes involved in glucose fermentation of Actinomyces naeslundii.  

PubMed Central

Enzymatic activities involved in glucose fermentation of Actinomyces naeslundii were studied with glucose-grown cells from batch cultures. Glucose could be phosphorylated to glucose 6-phosphate by a glucokinase that utilized polyphosphate and GTP instead of ATP as a phosphoryl donor. Glucose 6-phosphate was further metabolized to the end products lactate, formate, acetate, and succinate through the Embden-Meyerhof-Parnas pathway. The phosphoryl donor for phosphofructokinase was only PPi. Phosphoglycerate kinase, pyruvate kinase, and acetate kinase coupled GDP as well as ADP, but P(i) compounds were not their phosphoryl acceptor. Cell extracts showed GDP-dependent activity of phosphoenolpyruvate carboxykinase, which assimilates bicarbonate and phosphoenolpyruvate into oxaloacetate, a precursor of succinate. Considerable amounts of GTP, polyphosphate, and PPi were found in glucose-fermenting cells, indicating that these compounds may serve as phosphoryl donors or acceptors in Actinomyces cells. PPi could be generated from UTP and glucose 1-phosphate through catalysis of UDP-glucose synthase, which provides UDP-glucose, a precursor of glycogen.

Takahashi, N; Kalfas, S; Yamada, T

1995-01-01

105

Phosphorylation Primes Vinculin for Activation  

PubMed Central

Vinculin phosphorylation has been implicated as a potential mechanism for focal adhesion growth and maturation. Four vinculin residues—Y100, S1033, S1045, and Y1065—are phosphorylated by kinases during focal adhesion maturation. In this study, phosphorylation at each of these residues is simulated using molecular dynamics models. The simulations demonstrate that once each phosphorylated vinculin structure is at equilibrium, significant local conformational changes result that may impact either vinculin activation or vinculin binding to actin and PIP2. Simulation of vinculin activation after phosphorylation shows that the added phosphoryl groups can prime vinculin for activation. It remains to be seen if vinculin can be phosphorylated at S1033 in vivo, but these simulations highlight that in the event of a S1033 phophorylation vinculin will likely be primed for activation.

Golji, Javad; Wendorff, Timothy; Mofrad, Mohammad R.K.

2012-01-01

106

Enzymatic Template Polymerization, Part Two.  

National Technical Information Service (NTIS)

A conductive polymer is formed enzymatically in the presence of a polynucleotide template. The method includes combining at least one redox monomer with a polynucleotide template and a redox enzyme, such as horseradish peroxidase, to form a reaction mixtu...

L. A. Samuelson F. Bruno S. K. Tripathy S. Tripathy R. Nagarajan J. Kumar W. Liu

2004-01-01

107

Homogeneous, Heterogeneous, and Enzymatic Catalysis.  

ERIC Educational Resources Information Center

Discusses three areas of catalysis: homegeneous, heterogeneous, and enzymatic. Explains fundamentals and economic impact of catalysis. Lists and discusses common industrial catalysts. Provides a list of 107 references. (MVL)

Oyama, S. Ted; Somorjai, Gabor A.

1988-01-01

108

Enzymatic labeling of nucleic acids  

Microsoft Academic Search

Enzymatic labeling of nucleic acids is a fundamental tool in molecular biology with virtually every aspect of nucleic acid\\u000a hybridization technique involving the use of labeled probes. Different methods for enzymatic labeling of DNA, RNA and oligonucleotide\\u000a probes are available today. In this review, we will describe both radioactive and nonradioactive labeling methods, yet the\\u000a choice of system for labeling

Jamal Temsamani; Sudhir Agrawal

1996-01-01

109

Phosphorylation regulates the assembly of chloroplast import machinery  

PubMed Central

Chloroplast function depends on the translocation of cytosolically synthesized precursor proteins into the organelle. The recognition and transfer of most precursor proteins across the outer membrane depend on a membrane inserted complex. Two receptor components of this complex, Toc34 and Toc159, are GTPases, which can be phosphorylated by kinases present in the hosting membrane. However, the physiological function of phosphorylation is not yet understood in detail. It is demonstrated that both receptors are phosphorylated within their G-domains. In vitro, the phosphorylation of Toc34 disrupts both homo- and heterodimerization of the G-domains as determined using a phospho-mimicking mutant. In endogenous membranes this mutation or phosphorylation of the wild-type receptor disturbs the association of Toc34, but not of Toc159 with the translocation pore. Therefore, phosphorylation serves as an inhibitor for the association of Toc34 with other components of the complex and phosphorylation can now be discussed as a mechanism to exchange different isoforms of Toc34 within this ensemble.

Oreb, Mislav; Hofle, Anja; Mirus, Oliver; Schleiff, Enrico

2008-01-01

110

AMP-activated protein kinase phosphorylation in brain is dependent on method of sacrifice and tissue preparation  

PubMed Central

AMP-activated protein kinase is activated when the catalytic ? subunit is phosphorylated on Thr172 and therefore, phosphorylation of the ? subunit is used as a measure of activation. However, measurement of ?-AMP-activated protein kinase phosphorylation in vivo can be technically challenging. To determine the most accurate method for measuring ?-AMP-activated protein kinase phosphorylation in the mouse brain, we compared different methods of sacrifice and tissue preparation. We found that freeze/thawing samples after homogenization on ice dramatically increased ?-AMP-activated protein kinase phosphorylation in mice sacrificed by cervical dislocation. Sacrifice of mice by focused microwave irradiation, which rapidly heats the brain and causes enzymatic inactivation, prevented the freeze/thaw-induced increase in ?-AMP-activated protein kinase phosphorylation and similar levels of phosphorylation were observed compared to mice sacrificed with cervical dislocation without freeze/thawing of samples. Sonication of samples in hot 1% sodium dodecyl sulfate blocked the freeze/thaw-induced increase in ?-AMP-activated protein kinase phosphorylation, but phosphorylation was higher in mice sacrificed by cervical dislocation compared to mice sacrificed by focused microwave irradiation. These results demonstrate that ?-AMP-activated protein kinase phosphorylation is dependent on method of sacrifice and tissue preparation and that ?-AMP-activated protein kinase phosphorylation can increase in a manner that does not reflect biological alterations.

Scharf, Matthew T.; Mackiewicz, Miroslaw; Naidoo, Nirinjini; O'Callaghan, James P.; Pack, Allan I.

2013-01-01

111

Mechanism of activation of ERK2 by dual phosphorylation.  

PubMed

The mitogen-activated protein (MAP) kinases are characterized by their requirement for dual phosphorylation at a conserved threonine and tyrosine residue for catalytic activation. The structural consequences of dual-phosphorylation in the MAP kinase ERK2 (extracellular signal-regulated kinase 2) include active site closure, alignment of key catalytic residues that interact with ATP, and remodeling of the activation loop. In this study, we report the specific effects of dual phosphorylation on the individual catalytic reaction steps in ERK2. Dual phosphorylation leads to an increase in overall catalytic efficiency and turnover rate of approximately 600,000- and 50,000-fold, respectively. Solvent viscosometric studies reveal moderate decreases in the equilibrium dissociation constants (K(d)) for both ATP and myelin basic protein. However, the majority of the overall rate enhancement is due to an increase in the rate of the phosphoryl group transfer step by approximately 60,000-fold. By comparison, the rate of the same step in the ATPase reaction is enhanced only 2000-fold. This suggests that optimizing the position of the invariant residues Lys(52) and Glu(69), which stabilize the phosphates of ATP, accounts for only part of the enhanced rate of phosphoryl group transfer in the kinase reaction. Thus, significant stabilization of the protein phosphoacceptor group must also occur. Our results demonstrate similarities between the activation mechanisms of ERK2 and the cell cycle control enzyme, Cdk2 (cyclin-dependent kinase 2). Rather than dual phosphorylation, however, activation of the latter is controlled by cyclin binding followed by phosphorylation at Thr(160). PMID:11016942

Prowse, C N; Lew, J

2001-01-01

112

Uncouplers of oxidative phosphorylation.  

PubMed Central

Uncouplers of oxidative phosphorylation in mitochondria inhibit the coupling between the electron transport and phosphorylation reactions and thus inhibit ATP synthesis without affecting the respiratory chain and ATP synthase (H(+)-ATPase). Miscellaneous compounds are known to be uncouplers, but weakly acidic uncouplers are representative because they show very potent activities. The most potent uncouplers discovered so far are the hindered phenol SF 6847, and hydrophobic salicylanilide S-13, which are active in vitro at concentrations in the 10 nM range. For induction of uncoupling, an acid dissociable group, bulky hydrophobic moiety and strong electron-withdrawing group are required. Weakly acidic uncouplers are considered to produce uncoupling by their protonophoric action in the H(+)-impermeable mitochondrial membrane. For exerting these effects, the stability of the respective uncoupler anions in the hydrophobic membrane is very important. High stability is achieved by delocalization of the polar ionic charge through uncoupler (chemical)-specific mechanisms. Such an action of weakly acidic uncouplers is characteristic of the highly efficient membrane targeting action of a nonsite-specific type of bioactive compound.

Terada, H

1990-01-01

113

Global Identification and Characterization of Both O-GlcNAcylation and Phosphorylation at the Murine Synapse*  

PubMed Central

O-linked N-acetylglucosamine (O-GlcNAc) is a dynamic, reversible monosaccharide modifier of serine and threonine residues on intracellular protein domains. Crosstalk between O-GlcNAcylation and phosphorylation has been hypothesized. Here, we identified over 1750 and 16,500 sites of O-GlcNAcylation and phosphorylation from murine synaptosomes, respectively. In total, 135 (7%) of all O-GlcNAcylation sites were also found to be sites of phosphorylation. Although many proteins were extensively phosphorylated and minimally O-GlcNAcylated, proteins found to be extensively O-GlcNAcylated were almost always phosphorylated to a similar or greater extent, indicating the O-GlcNAcylation system is specifically targeting a subset of the proteome that is also phosphorylated. Both PTMs usually occur on disordered regions of protein structure, within which, the location of O-GlcNAcylation and phosphorylation is virtually random with respect to each other, suggesting that negative crosstalk at the structural level is not a common phenomenon. As a class, protein kinases are found to be more extensively O-GlcNAcylated than proteins in general, indicating the potential for crosstalk of phosphorylation with O-GlcNAcylation via regulation of enzymatic activity.

Trinidad, Jonathan C.; Barkan, David T.; Gulledge, Brittany F.; Thalhammer, Agnes; Sali, Andrej; Schoepfer, Ralf; Burlingame, Alma L.

2012-01-01

114

Phosphorylation of androgen receptor isoforms  

PubMed Central

Phosphorylation of the human AR (androgen receptor) is directly correlated with the appearance of at least three AR isoforms on an SDS/polyacrylamide gel. However, it is still not clear to what extent phosphorylation is involved in the occurrence of isoforms, which sites are phosphorylated and what are the functions of these phosphosites. The human AR was expressed in COS-1 cells and AR phosphorylation was studied further by mutational analyses and by using reversed-phase HPLC and MS. The reversed-phase HPLC elution pattern of the three isoforms revealed that Ser-650 was phosphorylated constitutively. After de novo synthesis, only Ser-650 was phosphorylated in the smallest isoform of 110 kDa and both Ser-650 and Ser-94 were phosphorylated in the second isoform of 112 kDa. The hormone-induced 114 kDa isoform shows an overall increase in phosphorylation of all the isolated peptides. The activities of the Ser–Ala substitution mutant S650A (Ser-650?Ala) was found to be identical with wild-type AR activation in four different cell lines and three different functional analyses, e.g. transactivation, N- and C-terminal-domain interaction and co-activation by transcriptional intermediary factor 2. This was also found for mutants S94A and S515A with respect to transactivation. However, the S515A mutation, which should eliminate phosphorylation of the potential mitogen-activated protein kinase site, Ser-515, resulted in an unphosphorylated form of the peptide containing Ser-650. This suggests that Ser-515 can modulate phosphorylation at another site. The present study shows that the AR isoform pattern from AR de novo synthesis is directly linked to differential phosphorylation of a distinct set of sites. After mutagenesis of these sites, no major change in functional activity of the AR was observed.

2004-01-01

115

How Phosphotransferase System-Related Protein Phosphorylation Regulates Carbohydrate Metabolism in Bacteria†  

PubMed Central

The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.

Deutscher, Josef; Francke, Christof; Postma, Pieter W.

2006-01-01

116

Phosphorylation of chicken growth hormone.  

PubMed

The possibility that chicken growth hormone (cGH) can be phosphorylated has been examined. Both native and biosynthetic cGH were phosphorylated by cAMP-dependent protein kinase (and gamma -32P-ATP). The extent of phosphorylation was however less than that observed with ovine prolactin. Under the conditions employed, glycosylated cGH was not phosphorylated. Chicken anterior pituitary cells in primary culture were incubated in the presence of 32P-phosphate. Radioactive phosphate was incorporated in vitro into the fraction immunoprecipitable with antisera against cGH. Incorporation was increased with cell number and time of incubation. The presence of GH releasing factor (GRF) increased the release of 32P-phosphate labelled immunoprecipitable GH into the incubation media but not content of immunoprecipitable GH in the cells. The molecular weight of the phosphorylated immunoreactive cGH in the cells corresponded to cGH dimer. PMID:2215076

Aramburo, C; Donoghue, D; Montiel, J L; Berghman, L R; Scanes, C G

1990-01-01

117

Regulation of Lrp6 phosphorylation.  

PubMed

The Wnt/beta-catenin signaling pathway plays important roles in embryonic development and tissue homeostasis, and is implicated in human disease. Wnts transduce signals via transmembrane receptors of the Frizzled (Fzd/Fz) family and the low density lipoprotein receptor-related protein 5/6 (Lrp5/6). A key mechanism in their signal transduction is that Wnts induce Lrp6 signalosomes, which become phosphorylated at multiple conserved sites, notably at PPSPXS motifs. Lrp6 phosphorylation is crucial to beta-catenin stabilization and pathway activation by promoting Axin and Gsk3 recruitment to phosphorylated sites. Here, we summarize how proline-directed kinases (Gsk3, PKA, Pftk1, Grk5/6) and non-proline-directed kinases (CK1 family) act upon Lrp6, how the phosphorylation is regulated by ligand binding and mitosis, and how Lrp6 phosphorylation leads to beta-catenin stabilization. PMID:20229235

Niehrs, Christof; Shen, Jinlong

2010-03-14

118

Enzymatic Modification of Hemp Fibres for Sustainable Production of High Quality Materials  

Microsoft Academic Search

The main focus of this paper is the influence of processing parameters in enzymatic hemp separation on the fibre quality. The effect of NaOH-, EDTA- and Soda-pre-treatment, and enzymatic treatment with Lyvelin® was determined. The results show that processing parameters from, e.g., flax treatment can not easily be transferred to hemp, since there is a different pectin structure. NaOH treatment

Holger Fischer; Jörg Müssig; Cornelia Bluhm

2006-01-01

119

Enzymatic synthesis of water-soluble derivatives of salicylic acid in organic media  

Microsoft Academic Search

A novel enzymatic method for preparing water-soluble derivatives of salicylic acid catalyzed by immobilized lipase was described. This study is the first to describe the enzymatic transesterification of methyl salicylate in organic solvents with different hydroxyl donors. The acyl-transfer between methyl salicylate and sorbitol was best supported by solvents of log P values -0.33 to 1.4. With Candida antarctica lipase

Thierry Maugard; Melanie Boulonne; Barbara Rejasse; Marie Dominique Legoy

2001-01-01

120

A sensitive enzymatic assay for the determination of sucrose in serum and urine  

Microsoft Academic Search

Background: Sucrose permeability has been suggested as a simple and non-invasive marker of gastric mucosal damage. We here report on a sensitive enzymatic assay using four sequential enzyme reactions coupled with reduced thio-NADPH. Methods: Sucrose is phosphorylated by sucrose phosphorylase (EC2.4.1.7). The subsequent reaction in the presence of phosphoglucomutase (EC5.4.2.2) and glucose-1,6-diphosphate forms glucose-6-phosphate. Sucrose of the monad forms the

Masanori Seimiya; Susumu Osawa; Nobuo Hisae; Tadayuki Shishido; Taketo Yamaguchi; Fumio Nomura

2004-01-01

121

Phosphorylation of Threonine 3  

PubMed Central

Huntingtin (Htt) is a widely expressed protein that causes tissue-specific degeneration when mutated to contain an expanded polyglutamine (poly(Q)) domain. Although Htt is large, 350 kDa, the appearance of amino-terminal fragments of Htt in extracts of postmortem brain tissue from patients with Huntington disease (HD), and the fact that an amino-terminal fragment, Htt exon 1 protein (Httex1p), is sufficient to cause disease in models of HD, points to the importance of the amino-terminal region of Htt in the disease process. The first exon of Htt encodes 17 amino acids followed by a poly(Q) repeat of variable length and culminating with a proline-rich domain of 50 amino acids. Because modifications to this fragment have the potential to directly affect pathogenesis in several ways, we have surveyed this fragment for potential post-translational modifications that might affect Htt behavior and detected several modifications of Httex1p. Here we report that the most prevalent modifications of Httex1p are NH2-terminal acetylation and phosphorylation of threonine 3 (pThr-3). We demonstrate that pThr-3 occurs on full-length Htt in vivo, and that this modification affects the aggregation and pathogenic properties of Htt. Thus, therapeutic strategies that modulate these events could in turn affect Htt pathogenesis.

Aiken, Charity T.; Steffan, Joan S.; Guerrero, Cortnie M.; Khashwji, Hasan; Lukacsovich, Tamas; Simmons, Danielle; Purcell, Judy M.; Menhaji, Kimia; Zhu, Ya-Zhen; Green, Kim; LaFerla, Frank; Huang, Lan; Thompson, Leslie Michels; Marsh, J. Lawrence

2009-01-01

122

Processive phosphorylation: mechanism and biological importance  

PubMed Central

Recent proteomic data indicate that a majority of the phosphorylated proteins in a eucaryotic cell contain multiple sites of phosphorylation. In many signaling events, a single kinase phosphorylates multiple sites on a target protein. Processive phosphorylation occurs when a protein kinase binds once to a substrate and phosphorylates all of the available sites before dissociating. In this review, we discuss examples of processive phosphorylation by serine/threonine kinases and tyrosine kinases. We describe current experimental approaches for distinguishing processive from non-processive phosphorylation. Finally, we contrast the biological situations that are suited to regulation by processive and non-processive phosphorylation.

Patwardhan, Parag; Miller, W. Todd

2007-01-01

123

Oxidative and Photosynthetic Phosphorylation Mechanisms  

ERIC Educational Resources Information Center

|Proposes a molecular mechanism for the coupling of phosphorylation to electron transport in both mitochondria and chloroplasts. Justifies the proposed reaction schemes in terms of thermodynamics and biochemical data. Suggests how areobic respiration could have evolved. (EB)|

Wang, Jui H.

1970-01-01

124

The enzymatic oxidation of graphene oxide.  

PubMed

Two-dimensional graphitic carbon is a new material with many emerging applications, and studying its chemical properties is an important goal. Here, we reported a new phenomenon--the enzymatic oxidation of a single layer of graphitic carbon by horseradish peroxidase (HRP). In the presence of low concentrations of hydrogen peroxide (?40 ?M), HRP catalyzed the oxidation of graphene oxide, which resulted in the formation of holes on its basal plane. During the same period of analysis, HRP failed to oxidize chemically reduced graphene oxide (RGO). The enzymatic oxidation was characterized by Raman, ultraviolet-visible, electron paramagnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and gas chromatography-mass spectrometry. Computational docking studies indicated that HRP was preferentially bound to the basal plane rather than the edge for both graphene oxide and RGO. Owing to the more dynamic nature of HRP on graphene oxide, the heme active site of HRP was in closer proximity to graphene oxide compared to RGO, thereby facilitating the oxidation of the basal plane of graphene oxide. We also studied the electronic properties of the reduced intermediate product, holey reduced graphene oxide (hRGO), using field-effect transistor (FET) measurements. While RGO exhibited a V-shaped transfer characteristic similar to a single layer of graphene that was attributed to its zero band gap, hRGO demonstrated a p-type semiconducting behavior with a positive shift in the Dirac points. This p-type behavior rendered hRGO, which can be conceptualized as interconnected graphene nanoribbons, as a potentially attractive material for FET sensors. PMID:21344859

Kotchey, Gregg P; Allen, Brett L; Vedala, Harindra; Yanamala, Naveena; Kapralov, Alexander A; Tyurina, Yulia Y; Klein-Seetharaman, Judith; Kagan, Valerian E; Star, Alexander

2011-02-23

125

The Enzymatic Oxidation of Graphene Oxide  

PubMed Central

Two-dimensional graphitic carbon is a new material with many emerging applications, and studying its chemical properties is an important goal. Here, we reported a new phenomenon – the enzymatic oxidation of a single layer of graphitic carbon by horseradish peroxidase (HRP). In the presence of low concentrations of hydrogen peroxide (~40 µM), HRP catalyzed the oxidation of graphene oxide, which resulted in the formation of holes on its basal plane. During the same period of analysis, HRP failed to oxidize chemically reduced graphene oxide (RGO). The enzymatic oxidation was characterized by Raman, UV-Vis, EPR and FT-IR spectroscopy, TEM, AFM, SDS-PAGE, and GC-MS. Computational docking studies indicated that HRP was preferentially bound to the basal plane rather than the edge for both graphene oxide and RGO. Due to the more dynamic nature of HRP on graphene oxide, the heme active site of HRP was in closer proximity to graphene oxide compared to RGO, thereby facilitating the oxidation of the basal plane of graphene oxide. We also studied the electronic properties of the reduced intermediate product, holey reduced graphene oxide (hRGO), using field-effect transistor (FET) measurements. While RGO exhibited a V-shaped transfer characteristic similar to a single layer of graphene that was attributed to its zero band gap, hRGO demonstrated a p-type semiconducting behavior with a positive shift in the Dirac points. This p-type behavior rendered hRGO, which can be conceptualized as interconnected graphene nanoribbons, as a potentially attractive material for FET sensors.

Kotchey, Gregg P.; Allen, Brett L.; Vedala, Harindra; Yanamala, Naveena; Kapralov, Alexander A.; Tyurina, Yulia Y.; Klein-Seetharaman, Judith; Kagan, Valerian E.; Star, Alexander

2011-01-01

126

Phosphorylation of Photosystem II Proteins  

Microsoft Academic Search

Light induces phosphorylation of a number of Photosystem II-related proteins in the thylakoid membrane. Four proteins of Photosystem II (PS II) complex, the D1 and D2 reaction center proteins, the 43-kDa chlorophyll a-binding protein and the psbH gene product are reversibly phosphorylated. Three proteins of the PS II antenna, Lhcb1 and Lhcb2 (designated as LHCII), as well as Lhcb4 also

Eevi Rintamäki; Eva-Mari Aro

127

Phosphorylation regulates human OCT4  

PubMed Central

The transcription factor OCT4 is fundamental to maintaining pluripotency and self-renewal. To better understand protein-level regulation of OCT4, we applied liquid chromatography–MS to identify 14 localized sites of phosphorylation, 11 of which were previously unknown. Functional analysis of two sites, T234 and S235, suggested that phosphorylation within the homeobox region of OCT4 negatively regulates its activity by interrupting sequence-specific DNA binding. Mutating T234 and S235 to mimic constitutive phosphorylation at these sites reduces transcriptional activation from an OCT4-responsive reporter and decreases reprogramming efficiency. We also cataloged 144 unique phosphopeptides on known OCT4 interacting partners, including SOX2 and SALL4, that copurified during immunoprecipitation. These proteins were enriched for phosphorylation at motifs associated with ERK signaling. Likewise, OCT4 harbored several putative ERK phosphorylation sites. Kinase assays confirmed that ERK2 phosphorylated these sites in vitro, providing a direct link between ERK signaling and the transcriptional machinery that governs pluripotency.

Brumbaugh, Justin; Russell, Jason D.; Howden, Sara E.; Yu, Pengzhi; Ledvina, Aaron R.; Coon, Joshua J.; Thomson, James A.

2012-01-01

128

Triggering enzymatic activity with force.  

PubMed

Integrating single molecule force spectroscopy with fluorescence-based techniques allows the manipulation of an enzyme with a periodic stretching and relaxation protocol while simultaneously monitoring its catalytic activity. After releasing the stretching force we observe a higher probability for enzymatic activity at a time of 1.7 s. A detailed theoretical analysis reveals that the relaxation from the force-induced enzyme conformation to the observed active conformation follows a cascade reaction with several steps and a free energy difference of at least 8 k(B)T. Our study clearly points out the direct influence of force on enzymatic activity and opens up a new way to study and manipulate (bio)catalytic reactions at the single molecule level. PMID:19658405

Gumpp, Hermann; Puchner, Elias M; Zimmermann, Julia L; Gerland, Ulrich; Gaub, Hermann E; Blank, Kerstin

2009-09-01

129

Enzymatic reactions on immobilised substrates.  

PubMed

This review gives an overview of enzymatic reactions that have been conducted on substrates attached to solid surfaces. Such biochemical reactions have become more important with the drive to miniaturisation and automation in chemistry, biology and medicine. Technical aspects such as choice of solid surface and analytical methods are discussed and examples of enzyme reactions that have been successful on these surfaces are provided. PMID:23579870

Gray, Christopher J; Weissenborn, Martin J; Eyers, Claire E; Flitsch, Sabine L

2013-08-01

130

Enzymatic glycerolysis of soybean oil  

Microsoft Academic Search

Enzymatic glycerolysis of soybean oil was studied. Of the nine lipases that were tested in the initial screening, Pseudomonas sp. resulted in the highest yield of monoglycerides. Lipase from Pseudomonas sp. was further studied for the influence of temperature, thermal stability, enzyme\\/oil ratio, and glycerol\\/oil ratio. A\\u000a full factorial optimization approach was performed. The following conditions were tested over the

H. Noureddini; S. E. Harmeier

1998-01-01

131

Regulation of phosphoglucomutase 1 phosphorylation and activity by a signaling kinase  

Microsoft Academic Search

We have identified a novel mechanism of cross-talk between cell signaling and metabolic pathways, whereby the signaling kinase p21-activated kinase 1 (Pak1) binds to, phosphorylates and enhances the enzymatic activity of phosphoglucomutase 1 (PGM), an important regulatory enzyme in cellular glucose utilization and energy homeostasis. Pak1 and PGM were colocalized in model cell systems and showed functional interactions in a

Anupama Gururaj; Christopher J Barnes; Ratna K Vadlamudi; Rakesh Kumar; R Kumar

2004-01-01

132

Protein phosphorylation and regulation of adaptive responses in bacteria.  

PubMed Central

Bacteria continuously adapt to changes in their environment. Responses are largely controlled by signal transduction systems that contain two central enzymatic components, a protein kinase that uses adenosine triphosphate to phosphorylate itself at a histidine residue and a response regulator that accepts phosphoryl groups from the kinase. This conserved phosphotransfer chemistry is found in a wide range of bacterial species and operates in diverse systems to provide different regulatory outputs. The histidine kinases are frequently membrane receptor proteins that respond to environmental signals and phosphorylate response regulators that control transcription. Four specific regulatory systems are discussed in detail: chemotaxis in response to attractant and repellent stimuli (Che), regulation of gene expression in response to nitrogen deprivation (Ntr), control of the expression of enzymes and transport systems that assimilate phosphorus (Pho), and regulation of outer membrane porin expression in response to osmolarity and other culture conditions (Omp). Several additional systems are also examined, including systems that control complex developmental processes such as sporulation and fruiting-body formation, systems required for virulent infections of plant or animal host tissues, and systems that regulate transport and metabolism. Finally, an attempt is made to understand how cross-talk between parallel phosphotransfer pathways can provide a global regulatory curcuitry.

Stock, J B; Ninfa, A J; Stock, A M

1989-01-01

133

c-Myc phosphorylation by PKC? represses prostate tumorigenesis  

PubMed Central

Studies showing reduced PKC? expression or enzymatic activity in different types of human cancers support the clinical relevance of PKC? as a tumor suppressor. However, the in vivo role of PKC? and its mechanisms of action in prostate cancer remain unclear. Here we demonstrate that the genetic inactivation of PKC? in mice results in invasive prostate carcinoma in vivo in the context of phosphatase and tensin homolog deficiency. Bioinformatic analysis of human prostate cancer gene-expression sets revealed increased c-Myc transcriptional activity in PKC?-inactive cells, which correlated with increased cell growth, invasion, and metastasis. Interestingly, PKC? knockdown or the overexpression of a kinase-inactive mutant resulted in enhanced cell proliferation and invasion in vitro through increased c-Myc mRNA and protein levels and decreased Ser-373 phosphorylation of c-Myc. Analysis of prostate cancer samples demonstrated increased expression and decreased phosphorylation of c-Myc at Ser-373 in PKC? knockout tumors. In vivo xenograft studies revealed that c-Myc phosphorylation by PKC? is a critical event in the control of metastasis. Collectively, these results establish PKC? as an important tumor suppressor and regulator of c-Myc function in prostate cancer.

Kim, Ji Young; Valencia, Tania; Abu-Baker, Shadi; Linares, Juan; Lee, Sang Jun; Yajima, Tomoko; Chen, Jing; Eroshkin, Alexey; Castilla, Elias A.; Brill, Laurence M.; Medvedovic, Mario; Leitges, Michael; Moscat, Jorge; Diaz-Meco, Maria T.

2013-01-01

134

Tyrosine phosphorylation in human neutrophil.  

PubMed

Protein tyrosine phosphorylation in human neutrophils was examined by immunoblotting with antibodies specific for phosphotyrosine. The addition of the human hormone granulocyte-macrophage colony stimulating factor to human neutrophils caused an increase in the tyrosine phosphorylation levels of several proteins. The increases in at least two of these proteins having molecular masses of 40 kDa (p40) and 54 kDa (p54) were rapid and were inhibited in pertussis toxin treated cells. The newly synthesized tyrosine kinase inhibitor ST 638 inhibited the increases in the levels of the tyrosine phosphorylation in p92, p78, p54 and p40 proteins. The epidermal growth factor receptor tyrosine kinase inhibitors were less effective. The addition of the chemotactic factor fMet-Leu-Phe to human neutrophils also caused an increase in tyrosine phosphorylation in some of these proteins. The pattern of the fMet-Leu-Phe-induced tyrosine phosphorylation was different from that produced by GM-CSF. The increases were also inhibited by ST 638. In addition, ST 638 inhibited superoxide production but not actin polymerization in control and GM-CSF-treated cells stimulated with fMet-Leu-Phe. Moreover, the active but not inactive phorbol esters increase the tyrosine phosphorylation only in the 40 kDa protein. These results suggest several points: (a) some of the responses produced by GM-CSF and fMet-Leu-Phe are mediated through tyrosine phosphorylation, (b) the GM-CSF receptor is coupled to a pertussis toxin sensitive G-protein, (c) the 40 kDa protein is probably the Gi alpha 2, and (d) the 78 or the 92 kDa protein is most likely the receptor for GM-CSF, which indicates that the receptor may have a tyrosine kinase domain. PMID:2475109

Gomez-Cambronero, J; Huang, C K; Bonak, V A; Wang, E; Casnellie, J E; Shiraishi, T; Sha'afi, R I

1989-08-15

135

Regulation of the filament structure and assembly of Acanthamoeba myosin II by phosphorylation of serines in the heavy-chain nonhelical tailpiece  

PubMed Central

Acanthamoeba myosin II (AMII) has two heavy chains ending in a 27-residue nonhelical tailpiece and two pairs of light chains. In a companion article, we show that five, and only five, serine residues can be phosphorylated both in vitro and in vivo: Ser639 in surface loop 2 of the motor domain and serines 1489, 1494, 1499, and 1504 in the nonhelical tailpiece of the heavy chains. In that paper, we show that phosphorylation of Ser639 down-regulates the actin-activated MgATPase activity of AMII and that phosphorylation of the serines in the nonhelical tailpiece has no effect on enzymatic activity. Here we show that bipolar tetrameric, hexameric, and octameric minifilaments of AMII with the nonhelical tailpiece serines either phosphorylated or mutated to glutamate have longer bare zones and more tightly clustered heads than minifilaments of unphosphorylated AMII, irrespective of the phosphorylation state of Ser639. Although antiparallel dimers of phosphorylated and unphosphorylated myosins are indistinguishable, phosphorylation inhibits dimerization and filament assembly. Therefore, the different structures of tetramers, hexamers, and octamers of phosphorylated and unphosphorylated AMII must be caused by differences in the longitudinal stagger of phosphorylated and unphosphorylated bipolar dimers and tetramers. Thus, although the actin-activated MgATPase activity of AMII is regulated by phosphorylation of Ser639 in loop 2 of the motor domain, the structure of AMII minifilaments is regulated by phosphorylation of one or more of four serines in the nonhelical tailpiece of the heavy chain.

Liu, Xiong; Hong, Myoung-Soon; Shu, Shi; Yu, Shuhua; Korn, Edward D.

2013-01-01

136

Electrochemical enzymatic biosensors using carbon nanofiber nanoelectrode arrays  

NASA Astrophysics Data System (ADS)

The reduction of electrode size down to nanometers could dramatically enhance detection sensitivity and temporal resolution. Nanoelectrode arrays (NEAs) are of particular interest for ultrasensitive biosensors. Here we report the study of two types of biosensors for measuring enzyme activities using NEAs fabricated with vertically aligned carbon nanofibers (VACNFs). VACNFs of ~100 nm in average diameter and 3-5 ?m in length were grown on conductive substrates as uniform vertical arrays which were then encapsulated in SiO2 matrix leaving only the tips exposed. We demonstrate that such VACNF NEAs can be used in profiling enzyme activities through monitoring the change in electrochemical signals induced by enzymatic reactions to the peptides attached to the VACNF tip. The cleavage of the tetrapeptide with a ferrocene tag by a cancerrelated protease (legumain) was monitored with AC voltammetry. Real-time electrochemical impedance spectroscopy (REIS) was used for fast label-free detection of two reversible processes, i.e. phosphorylation by c-Src tyrosine kinase and dephosphorylation by protein tyrosine phosphatase 1B (PTP1B). The REIS data of phosphorylation were slow and unreliable, but those of dephosphorylation showed large and fast exponential decay due to much higher activity of phosphatase PTP1B. The kinetic data were analyzed with a heterogeneous Michaelis-Menten model to derive the "specificity constant" kcat/Km, which is 8.2x103 M-1s-1 for legumain and (2.1 ± 0.1) x 107 M-1s-1 for phosphatase (PTP1B), well consistent with literature. It is promising to develop VACNF NEA based electrochemical enzymatic biosensors as portable multiplex electronic techniques for rapid cancer diagnosis and treatment monitoring.

Li, Jun; Li, Yi-fen; Swisher, Luxi Z.; Syed, Lateef U.; Prior, Allan M.; Nguyen, Thu A.; Hua, Duy H.

137

Aberrant neurofilament phosphorylation in Alzheimer disease.  

PubMed Central

Alzheimer tangles, despite their location in neuronal perikarya, react immunocytochemically with monoclonal antibodies to phosphorylated epitopes of neurofilaments. Normal perikarya do not contain phosphorylated neurofilaments. The aberrant phosphorylation in both plaques and tangles seems to be largely restricted to individual phosphorylation sites among the many sites available in neurofilaments. It is suggested that the Alzheimer lesion involves an imbalance within specific kinases responsible for phosphorylation of different sites in neurofilaments. Images

Sternberger, N H; Sternberger, L A; Ulrich, J

1985-01-01

138

Herpes simplex virus 2 VP22 phosphorylation induced by cellular and viral kinases does not influence intracellular localization  

SciTech Connect

Phosphorylation of the herpes simplex virus (HSV) VP22 protein is regulated by cellular kinases and the UL13 viral kinase, but the sites at which these enzymes induce phosphorylation of HSV-2 VP22 are not known. Using serine-to-alanine mutants to map phosphorylation sites on HSV-2 VP22 in cells, we made three major observations. First, phosphorylation by a cellular kinase mapped to serines 70, 71, and/or 72 within CKII consensus sites analogous to previously identified phosphorylation sites in HSV-1 VP22. Second, we mapped UL13-mediated phosphorylation of HSV-2 VP22 to serines 28 and 34, describing for the first time UL13-dependent phosphorylation sites on VP22. Third, previously identified VP22-associated cellular kinase sites in HSV-1 VP22 (serines 292 and 294) were not phosphorylated in HSV-2 VP22 (serines 291 and 293). VP22 expressed alone accumulated in the cytoplasm and to a lesser extent in the nucleus. Phosphorylation by endogenous cellular kinase(s) did not alter the localization of VP22. Co-expression of HSV-2 VP22 with active UL13, but not with enzymatically inactive UL13, resulted in nuclear accumulation of VP22 and altered nuclear morphology. Surprisingly, redistribution of VP22 to the nucleus occurred independently of UL13-induced phosphorylation of VP22. The altered nuclear morphology of UL13-expressing cells was not due to apoptosis. These results demonstrate that phosphorylation of HSV-2 VP22 at multiple serine residues is induced by UL13 and cellular kinase(s), and that the nuclear/cytoplasmic distribution of VP22 is independent of its phosphorylation status but is controlled indirectly by UL13 kinase activity.

Geiss, Brian J. [Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104-1083 (United States); Cano, Gina L. [Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104-1083 (United States); Tavis, John E. [Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104-1083 (United States); Morrison, Lynda A. [Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104-1083 (United States)]. E-mail: morrisla@slu.edu

2004-12-05

139

Grb2 negatively regulates epidermal growth factor-induced phospholipase C-?1 activity through the direct interaction with tyrosine-phosphorylated phospholipase C-?1  

Microsoft Academic Search

Phospholipase C-?1 (PLC-?1) plays pivotal roles in cellular growth and proliferation. Upon the stimulation of growth factors and hormones, PLC-?1 is rapidly phosphorylated at three known sites; Tyr771, Tyr783 and Tyr1254 and its enzymatic activity is up-regulated. In this study, we demonstrate for the first time that Grb2, an adaptor protein, specifically interacts with tyrosine-phosphorylated PLC-?1 at Tyr783. The association

Jang Hyun Choi; Won-Pyo Hong; Sanguk Yun; Hyeon Soo Kim; Jong-Ryul Lee; Jong Bae Park; Yun Soo Bae; Sung Ho Ryu; Pann-Ghill Suh

2005-01-01

140

Oxidative Phosphorylation at the fin de siècle  

NSDL National Science Digital Library

Mitochondria produce most of the energy in animal cells by a process called oxidative phosphorylation. Electrons are passed along a series of respiratory enzyme complexes located in the inner mitochondrial membrane, and the energy released by this electron transfer is used to pump protons across the membrane. The resultant electrochemical gradient enables another complex, adenosine 5â²-triphosphate (ATP) synthase, to synthesize the energy carrier ATP.

Matti Saraste (European Molecular Biology Laboratory;)

1999-03-05

141

Propofol Directly Increases Tau Phosphorylation  

PubMed Central

In Alzheimer's disease (AD) and other tauopathies, the microtubule-associated protein tau can undergo aberrant hyperphosphorylation potentially leading to the development of neurofibrillary pathology. Anesthetics have been previously shown to induce tau hyperphosphorylation through a mechanism involving hypothermia-induced inhibition of protein phosphatase 2A (PP2A) activity. However, the effects of propofol, a common clinically used intravenous anesthetic, on tau phosphorylation under normothermic conditions are unknown. We investigated the effects of a general anesthetic dose of propofol on levels of phosphorylated tau in the mouse hippocampus and cortex under normothermic conditions. Thirty min following the administration of propofol 250 mg/kg i.p., significant increases in tau phosphorylation were observed at the AT8, CP13, and PHF-1 phosphoepitopes in the hippocampus, as well as at AT8, PHF-1, MC6, pS262, and pS422 epitopes in the cortex. However, we did not detect somatodendritic relocalization of tau. In both brain regions, tau hyperphosphorylation persisted at the AT8 epitope 2 h following propofol, although the sedative effects of the drug were no longer evident at this time point. By 6 h following propofol, levels of phosphorylated tau at AT8 returned to control levels. An initial decrease in the activity and expression of PP2A were observed, suggesting that PP2A inhibition is at least partly responsible for the hyperphosphorylation of tau at multiple sites following 30 min of propofol exposure. We also examined tau phosphorylation in SH-SY5Y cells transfected to overexpress human tau. A 1 h exposure to a clinically relevant concentration of propofol in vitro was also associated with tau hyperphosphorylation. These findings suggest that propofol increases tau phosphorylation both in vivo and in vitro under normothermic conditions, and further studies are warranted to determine the impact of this anesthetic on the acceleration of neurofibrillary pathology.

Whittington, Robert A.; Virag, Laszlo; Marcouiller, Francois; Papon, Marie-Amelie; Khoury, Noura B. El.; Julien, Carl; Morin, Francoise; Emala, Charles W.; Planel, Emmanuel

2011-01-01

142

Nucleoside phosphorylation by phosphate minerals.  

PubMed

In the presence of formamide, crystal phosphate minerals may act as phosphate donors to nucleosides, yielding both 5'- and, to a lesser extent, 3'-phosphorylated forms. With the mineral Libethenite the formation of 5'-AMP can be as high as 6% of the adenosine input and last for at least 10(3) h. At high concentrations, soluble non-mineral phosphate donors (KH(2)PO(4) or 5'-CMP) afford 2'- and 2':3'-cyclic AMP in addition to 5'-and 3'-AMP. The phosphate minerals analyzed were Herderite Ca[BePO(4)F], Hureaulite Mn(2+)(5)(PO(3)(OH)(2)(PO(4))(2)(H(2)O)(4), Libethenite Cu(2+)(2)(PO(4))(OH), Pyromorphite Pb(5)(PO(4))(3)Cl, Turquoise Cu(2+)Al(6)(PO(4))(4)(OH)(8)(H(2)O)(4), Fluorapatite Ca(5)(PO(4))(3)F, Hydroxylapatite Ca(5)(PO(4))(3)OH, Vivianite Fe(2+)(3)(PO(4))(2)(H(2)O)(8), Cornetite Cu(2+)(3)(PO(4))(OH)(3), Pseudomalachite Cu(2+)(5)(PO(4))(2)(OH)(4), Reichenbachite Cu(2+)(5)(PO(4))(2)(OH)(4), and Ludjibaite Cu(2+)(5)(PO(4))(2)(OH)(4)). Based on their behavior in the formamide-driven nucleoside phosphorylation reaction, these minerals can be characterized as: 1) inactive, 2) low level phosphorylating agents, or 3) active phosphorylating agents. Instances were detected (Libethenite and Hydroxylapatite) in which phosphorylation occurs on the mineral surface, followed by release of the phosphorylated compounds. Libethenite and Cornetite markedly protect the beta-glycosidic bond. Thus, activated nucleic monomers can form in a liquid non-aqueous environment in conditions compatible with the thermodynamics of polymerization, providing a solution to the standard-state Gibbs free energy change (DeltaG degrees ') problem, the major obstacle for polymerizations in the liquid phase in plausible prebiotic scenarios. PMID:17412692

Costanzo, Giovanna; Saladino, Raffaele; Crestini, Claudia; Ciciriello, Fabiana; Di Mauro, Ernesto

2007-04-05

143

Evolutionary patterns of phosphorylated serines  

PubMed Central

Posttranslationally modified amino acids are chemically distinct types of amino acids and in terms of evolution they might behave differently from their non-modified counterparts. In order to check this possibility, we reconstructed the evolutionary history of phosphorylated serines in several groups of organisms. Comparisons of substitution vectors have revealed some significant differences in the evolution of modified and corresponding non-modified amino acids. In particular, phosphoserines are more frequently substituted to aspartate and glutamate, compared to non-phosphorylated serines. Reviewers This article was reviewed by Arcady Mushegian and Sandor Pongor.

2011-01-01

144

Strategies to Overcome the Enzymatic Barrier  

Microsoft Academic Search

Enzymatic degradation of various hydrophilic macromolecules including peptide- or protein drugs by enzymes present in the\\u000a gastrointestinal tract can be regarded as one main reason for their poor bioavailability after peroral administration. Within\\u000a the current chapter, strategies to overcome the so-called enzymatic barrier are described. Besides formulations that can protect\\u000a the drug from enzymatic digestion via, e.g., drug encapsulation and

Martin Werle; Hirofumi Takeuchi

145

Method for the enzymatic production of hydrogen  

DOEpatents

The present invention is an enzymatic method for producing hydrogen comprising the steps of: a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch. The reaction mixture further comprises an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and c) detecting the hydrogen produced from the reaction mixture.

Woodward, Jonathan (Kingston, TN); Mattingly, Susan M. (State College, PA)

1999-01-01

146

Method for the enzymatic production of hydrogen  

SciTech Connect

The present invention is an enzymatic method for producing hydrogen comprising the steps of: (a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch; the reaction mixture also comprising an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; (b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and (c) detecting the hydrogen produced from the reaction mixture. 8 figs.

Woodward, J.; Mattingly, S.M.

1999-08-24

147

Enzymatic glycosylation of multivalent scaffolds.  

PubMed

The design of glycoclusters, glycodendrimers, glycopolymers and other complex glycostructures that mimic the multivalent carbohydrate display on the cell surface is of immense interest for diagnosis and therapy. This review presents a detailed insight into the exciting possibilities of multiple glycosylation using enzymes, particularly glycosyltransferases (EC 2.4). A representative choice of available scaffolds for the enzyme action is practically infinite and comprises synthetic polymers, carbosilane dendrimers, multiantennary glycans or hyperbranched conjugates. The introduced glyco-patterns range from common sialyl Lewis(x) and sialyl lacto-chains to chemically functionalized carbohydrate units for detection purposes. The possibilities of in vitro enzymatic production of N- and O-glycans and other natural polymers are also discussed. In harmony with their natural tasks, glycosyltransferases may in vitro complete the imperfect glycosylation pattern of proteins, recombinantly produced in pro- and eukaryotic hosts. What is more, the required enzymatic battery may be directly co-expressed with the protein, in order to elegantly accomplish the production of eukaryotic glycans. Ingenious metabolic labeling enables facile imaging of glycostructures. The boom of glycoarray technology opens vast possibilities in high-throughput screening for novel enzymes and substrate specificities as well as in the synthesis. Though there is still a long way until the Nature's ideal of multivalent glycans is achievable in the laboratory, the sketched pathways to multivalent glycostructures open tremendous possibilities for the future glycobiological research. PMID:23348496

Bojarová, Pavla; Rosencrantz, Ruben R; Elling, Lothar; K?en, Vladimír

2013-06-01

148

Vitamin K and oxidative phosphorylation  

PubMed Central

1. Oxidative phosphorylation was studied in a cell-free preparation of Mycobacterium phlei and in rat-liver mitochondria. Phosphorylation was destroyed in both systems by long-wave ultraviolet radiation and restored by the addition of small amounts of [2-Me-14C,3H]phylloquinone. When the radioactive quinones were recovered from the phosphorylating system and chromatographed with carrier phylloquinone and menaquinone-4 in adsorption and partition systems, only the phylloquinone band was labelled, and its isotopic ratio was identical with that of the original [2-Me-14C,3H]phylloquinone. This result does not support the contention that the role of vitamin K in oxidative phosphorylation involves a cyclic mechanism with intermediate formation of a quinone methide. 2. When the [2-Me-14C,3H]phylloquinone was given intravenously to rats and radioactive phylloquinone isolated from their liver mitochondria and microsomes 20hr. later, its isotopic ratio was unchanged. There was thus no evidence for quinone methide formation in vivo. No measurable conversion of phylloquinone into menaquinone-4 was observed. 3. When [14C]menadione was given intraperitoneally to rats whose alimentary tract had been treated with neomycin, conversion into menaquinone-4 was found in the liver mitochondria and microsomes, but there was also some indication that there had been synthesis of phylloquinone.

Horth, C. E.; McHale, D.; Jeffries, L. R.; Price, S. A.; Diplock, A. T.; Green, J.

1966-01-01

149

Kinetic resolution of propargylamines via a highly enantioselective non-enzymatic N-acylation process.  

PubMed

The non-enzymatic kinetic resolution of diversely substituted primary propargylic amines is reported featuring a highly selective acetyl transfer using (1S,2S)- in conjunction with Aliquat(TM) 336, affording the corresponding enantio-enriched N-acetylated propargylic amines with unprecedented levels of selectivity (s-factors of up to 193 at 50% conversion). PMID:22996071

Kolleth, Amandine; Christoph, Sarah; Arseniyadis, Stellios; Cossy, Janine

2012-11-01

150

Human and Quail Aromatase Activity Is Rapidly and Reversibly Inhibited by Phosphorylating Conditions  

PubMed Central

Besides their slow genomic actions, estrogens also induce rapid physiological responses. To be functionally relevant, these effects must be associated with rapid changes in local concentrations of estrogens. Rapid changes in aromatase activity (AA) controlled by calcium-dependent phosphorylations of the enzyme can alter in a rapid manner local estrogen concentrations, but so far this mechanism was identified only in the avian (quail) brain. We show here that AA is also rapidly down-regulated by phosphorylating conditions in quail ovary homogenates and in various cell lines transfected with human aromatase (HEK 293, Neuro2A, and C6). Enzymatic activity was also rapidly inhibited after depolarization of aromatase-expressing HEK 293 cells with 100 mm KCl, and activity was fully restored when cells returned to control conditions. Western blot analysis demonstrated that the reduction of enzymatic activity is not due to protein degradation. We next investigated by site-directed mutagenesis the potential implication in the control of AA of specific aromatase residues identified by bioinformatic analysis. Mutation of the amino acids S118, S247, S267, T462, T493, or S497 to alanine, alone or in combination, did not block the rapid inhibition of enzymatic activity induced by phosphorylating conditions, but basal AA was markedly decreased in the S118A mutant. Altogether, these results demonstrate that the rapid inhibition of AA is a widespread and fully reversible process and that phosphorylation of specific residues modulate AA. These processes provide a new general mechanism by which local estrogen concentration can be rapidly altered in the brain and other tissues.

Harada, Nobuhiro; Balthazart, Jacques; Cornil, Charlotte A.

2011-01-01

151

Sweetness and enzymatic activity of lysozyme.  

PubMed

Hen egg lysozyme elicits a sweet taste sensation for human beings. Effects of reduction of disulfide bonds, heat treatment, and chemical modification of hen egg lysozyme on both sweetness and hydrolytic activity were investigated. Both the sweetness and enzymatic activities were lost when the intradisulfide linkage in a lysozyme molecule was reduced and S-3-(trimethylated amino) propylated. The sweetness and enzymatic activity of lysozyme were lost on heating at 95 degrees C for 18 h. These facts suggest that tertiary structures of lysozyme are indispensable for eliciting a sweet taste as well as enzymatic activity. Although the modification of carboxyl residues in a lysozyme by glycine methylester or aminomethansulfonic acid resulted in the loss of enzymatic activity by blocking the catalytic residues, the sweetness was fully retained. These results indicate that the sweetness of lysozyme was independent of its enzymatic activity. The lysozyme purified from goose egg white similarly elicited a sweet taste, although goose (g-type) lysozyme is quite different from hen egg lysozyme (c-type) on the basis of structural, immunological, and enzymatic properties. These findings indicate that a specific protein property of lysozyme is required for sweetness elicitation and that the enzymatic activity and carbohydrates produced by enzymatic reaction are not related to the sweet taste. PMID:11600047

Masuda, T; Ueno, Y; Kitabatake, N

2001-10-01

152

The biochemistry and control of enzymatic browning  

Microsoft Academic Search

Half of the world's fruit and vegetable crops is lost due to postharvest deteriorative reactions. Polyphenol oxidase (PPO), found in most fruit and vegetables, is responsible for enzymatic browning of fresh horticultural products, following bruising, cutting or other damage to the cell. Chemical methods for controlling enzymatic browning include the use of sodium bisulfite, ascorbic acid and\\/or packaging under controlled

M. Victoria Martinez; John R. Whitaker

1995-01-01

153

Synthesis and characterization of diblock and triblock copolymer by enzymatic ring-opening polymerization of ?-caprolactone and ATRP of styrene  

Microsoft Academic Search

Summary Diblock and triblock copolymer of e-caprolactone(e-CL) and styrene(St) were obtained by the combination of two different polymerization process, namely enzymatic ring-opening polymerization(ROP) and atom transfer radical polymerization(ATRP) methods. Mono-\\/di- hydroxyl terminated macromolecules were prepared by enzymatic ROP of e-CL in the presence of Novozyme-435 and methanol\\/ethylene glycol as biocatalyst and initiator, respectively, and subsequently converted to bromine ended polycaprolactone(PCL)

Ke Sha; Lu Qin; Dongshuang Li; Xiaotian Liu; Jingyuan Wang

2005-01-01

154

Synthesis and characterization of diblock copolymer by enzymatic ring-opening polymerization and ATRP from a novel bifunctional initiator  

Microsoft Academic Search

A new method is reported for synthesizing AB-type diblock copolymer polycaprolactone-block-polystyrene (PCL-b-PSt) from a novel bifunctional initiator 2.2.2-trichloroethanol (TCE) by combining two different polymerization techniques: enzymatic ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). Trichloromethyl terminated PCL was prepared by enzymatic ROP of ?-caprolactone (?-CL) in the presence of Novozyme-435 and TCE as biocatalyst and initiator, respectively, and subsequently

Ke Sha; Dongshuang Li; Shuwei Wang; Lu Qin; Jingyuan Wang

2005-01-01

155

Mass spectrometry detection of histidine phosphorylation on NM23-H1.  

PubMed

Phosphorylation is a ubiquitous protein post-translational modification that is intimately involved in most aspects of cellular regulation. Currently, most proteomic analyses are performed with phosphorylation searches for serine, threonine, and tyrosine modifications, as the phosphorylated residues of histidine and aspartic acid are acid labile and thus undetectable with most proteomic methodologies. Here, we present a novel buffer system to show histidine phosphorylation of NM23-H1, the product of the first identified putative human metastasis suppressor gene (NME1), which catalyzes the transfer of the ?-phosphate from nucleoside triphosphates to nucleoside diphosphates. On the basis of a pH titration of LC elution buffers and MS/MS identification, recombinant NM23-H1 subjected to autophosphorylation was shown to contain phosphorylated histidine at residue 118 at pH 5 and 6, with each level giving over 75% peptide coverage for identification. The solvent system presented permits the detection of all five possible phosphorylation moieties. Application of histidine and aspartic acid phosphorylation modifications to proteomic analyses will significantly advance the understanding of phosphorylation relay signaling in cellular regulation, including elucidation of the role of NM23-H1 in metastasis. PMID:21121676

Lapek, John D; Tombline, Gregory; Friedman, Alan E

2010-12-28

156

Protein kinase C phosphorylates and regulates UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase.  

PubMed

UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (UDP-GlcNAc 2-epimerase) is the key enzyme in the de novo synthesis pathway of neuraminic acid, which is widely expressed as a terminal carbohydrate residue on glycoconjugates. UDP-GlcNAc 2-epimerase is a bifunctional enzyme and catalyzes the first two steps of neuraminic acid synthesis in the cytosol, the conversion of UDP-N-acetylglucosamine to ManAc and the phosphorylation to ManAc-6-phosphate. So far, regulation of this essential enzyme by posttranslational modification has not been shown. Since UDP-N-acetylglucosamine is a cytosolic protein containing eight conserved motifs for protein kinase C (PKC), we investigated whether its enzymatic activity might be regulated by phosphorylation by PKC. We showed that UDP-GlcNAc 2-epimerase interacts with several isoforms of PKC in mouse liver and is phosphorylated in vivo. Furthermore, PKC phosphorylates UDP-GlcNAc 2-epimerase and this phosphorylation results in an upregulation of the UDP-GlcNAc 2-epimerase enzyme activity. PMID:10745088

Horstkorte, R; Nöhring, S; Danker, K; Effertz, K; Reutter, W; Lucka, L

2000-03-31

157

Grb2 controls phosphorylation of FGFR2 by inhibiting receptor kinase and Shp2 phosphatase activity.  

PubMed

Constitutive receptor tyrosine kinase phosphorylation requires regulation of kinase and phosphatase activity to prevent aberrant signal transduction. A dynamic mechanism is described here in which the adaptor protein, growth factor receptor-bound protein 2 (Grb2), controls fibroblast growth factor receptor 2 (FGFR2) signaling by regulating receptor kinase and SH2 domain-containing protein tyrosine phosphatase 2 (Shp2) phosphatase activity in the absence of extracellular stimulation. FGFR2 cycles between its kinase-active, partially phosphorylated, nonsignaling state and its Shp2-dephosphorylated state. Concurrently, Shp2 cycles between its FGFR2-phosphorylated and dephosphorylated forms. Both reciprocal activities of FGFR2 and Shp2 were inhibited by binding of Grb2 to the receptor. Phosphorylation of Grb2 by FGFR2 abrogated its binding to the receptor, resulting in up-regulation of both FGFR2's kinase and Shp2's phosphatase activity. Dephosphorylation of Grb2 by Shp2 rescued the FGFR2-Grb2 complex. This cycling of enzymatic activity results in a homeostatic, signaling-incompetent state. Growth factor binding perturbs this background cycling, promoting increased FGFR2 phosphorylation and kinase activity, Grb2 dissociation, and downstream signaling. Grb2 therefore exerts constitutive control over the mutually dependent activities of FGFR2 and Shp2. PMID:23420874

Ahmed, Zamal; Lin, Chi-Chuan; Suen, Kin M; Melo, Fernando A; Levitt, James A; Suhling, Klaus; Ladbury, John E

2013-02-18

158

Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt.  

PubMed

Forkhead box O (FOXO) transcription factors, the key regulators of cell survival, are negatively controlled through the PI3K-Akt signaling pathway. Phosphorylation of FOXO by Akt leads to cytoplasmic localization and subsequent degradation via the ubiquitin-proteasome system. Here we show a paradigm of FOXO1 regulation by the protein arginine methyltransferase PRMT1. PRMT1 methylated FOXO1 at conserved Arg248 and Arg250 within a consensus motif for Akt phosphorylation; this methylation directly blocked Akt-mediated phosphorylation of FOXO1 at Ser253 in vitro and in vivo. Silencing of PRMT1 by small interfering RNA enhanced nuclear exclusion, polyubiquitination, and proteasomal degradation of FOXO1. PRMT1 knockdown led to a decrease in oxidative-stress-induced apoptosis depending on the PI3K-Akt signaling pathway. Furthermore, stable expression of enzymatic inactive PRMT1 mutant increased resistance to apoptosis, whereas this effect was reversed by expression of phosphorylation-deficient FOXO1. Our findings predict a role for arginine methylation as an inhibitory modification against Akt-mediated phosphorylation. PMID:18951090

Yamagata, Kazuyuki; Daitoku, Hiroaki; Takahashi, Yuta; Namiki, Kana; Hisatake, Koji; Kako, Koichiro; Mukai, Hidehito; Kasuya, Yoshitoshi; Fukamizu, Akiyoshi

2008-10-24

159

Comprehensive Characterization of Heat Shock Protein 27 Phosphorylation in Human Endothelial Cells Stimulated by the Microbial Dithiole Thiolutin  

PubMed Central

Thiolutin is a sulfur-based microbial compound with known activity as an angiogenesis inhibitor. Relative to previously studied angiogenesis inhibitors, thiolutin is a remarkably potent inducer of heat shock protein 27 (Hsp27) phosphorylation. This phosphorylation requires p38 kinase but is independent of increased p38 phosphorylation. To elucidate how thiolutin regulates Hsp27 phosphorylation and ultimately angiogenesis, Hsp27 was immunoprecipitated using nonphosphorylated and phospho-Ser78 specific antibodies from lysates of thiolutin treated and untreated human umbilical vein endothelial cells and analyzed by LC–MS. Separate LC–MS analyses of Lys-C, Lys-C plus trypsin, and Lys-C plus Glu-C digests provided 100% sequence coverage, including the identification of a very large 13 kDa Lys-C fragment using a special sample handling procedure (4 M guanidine HCl) prior to the LC–MS analysis to improve the large peptide recovery. The analysis revealed a novel post-translational modification of Hsp27 involving truncation of the N-terminal Met and acetylation of the penultimate Thr. Analysis of a Glu-C fragment containing two phosphorylation sites, Ser78 and Ser82, and a tryptic fragment containing the other phosphorylation site, Ser15, enabled quantitative stoichiometry of Hsp27 phosphorylation by LC–MS. The strategy revealed details of Hsp27 phosphorylation, including significant di-phosphorylation at both Ser78 and Ser82, that would be difficult to obtain by traditional approaches because oligomerization of the hydrophobic N-terminal region of the molecule prevents efficient enzymatic cleavage. The combination of Western blotting, immunoprecipation, and LC–MS provides a quantitative analysis of thiolutin-stimulated Hsp27 phosphorylation and further defines the role of Hsp27 in the antiangiogenic activities of thiolutin and related dithiolethiones.

Dai, Shujia; Jia, Yifeng; Wu, Shiaw-Lin; Isenberg, Jeff S.; Ridnour, Lisa A.; Bandle, Russell W.; Wink, David A.; Roberts, David D.; Karger, Barry L.

2009-01-01

160

Comprehensive characterization of heat shock protein 27 phosphorylation in human endothelial cells stimulated by the microbial dithiole thiolutin.  

PubMed

Thiolutin is a sulfur-based microbial compound with known activity as an angiogenesis inhibitor. Relative to previously studied angiogenesis inhibitors, thiolutin is a remarkably potent inducer of heat shock protein 27 (Hsp27) phosphorylation. This phosphorylation requires p38 kinase but is independent of increased p38 phosphorylation. To elucidate how thiolutin regulates Hsp27 phosphorylation and ultimately angiogenesis, Hsp27 was immunoprecipitated using nonphosphorylated and phospho-Ser78 specific antibodies from lysates of thiolutin treated and untreated human umbilical vein endothelial cells and analyzed by LC-MS. Separate LC-MS analyses of Lys-C, Lys-C plus trypsin, and Lys-C plus Glu-C digests provided 100% sequence coverage, including the identification of a very large 13 kDa Lys-C fragment using a special sample handling procedure (4 M guanidine HCl) prior to the LC-MS analysis to improve the large peptide recovery. The analysis revealed a novel post-translational modification of Hsp27 involving truncation of the N-terminal Met and acetylation of the penultimate Thr. Analysis of a Glu-C fragment containing two phosphorylation sites, Ser78 and Ser82, and a tryptic fragment containing the other phosphorylation site, Ser15, enabled quantitative stoichiometry of Hsp27 phosphorylation by LC-MS. The strategy revealed details of Hsp27 phosphorylation, including significant di-phosphorylation at both Ser78 and Ser82, that would be difficult to obtain by traditional approaches because oligomerization of the hydrophobic N-terminal region of the molecule prevents efficient enzymatic cleavage. The combination of Western blotting, immunoprecipation, and LC-MS provides a quantitative analysis of thiolutin-stimulated Hsp27 phosphorylation and further defines the role of Hsp27 in the antiangiogenic activities of thiolutin and related dithiolethiones. PMID:18720982

Dai, Shujia; Jia, Yifeng; Wu, Shiaw-Lin; Isenberg, Jeff S; Ridnour, Lisa A; Bandle, Russell W; Wink, David A; Roberts, David D; Karger, Barry L

2008-08-23

161

Stat1 Serine Phosphorylation Occurs Independently of Tyrosine Phosphorylation and Requires an Activated Jak2 Kinase  

Microsoft Academic Search

Gamma interferon (IFN-g) induces both tyrosine and serine phosphorylation of Stat1. Stat1 serine phos- phorylation is required for maximal transcriptional activity of Stat1. In this report, we present evidence that Stat1 tyrosine phosphorylation is not a prerequisite for Stat1 serine phosphorylation, although an active Jak2 kinase is required for both phosphorylation events. Stat1 serine phosphorylation occurs with a more delayed

XUEJUN ZHU; ZILONG WEN; LIANG ZHONG XU; JAMES E. DARNELL

1997-01-01

162

Conformational motions regulate phosphoryl transfer in related protein tyrosine phosphatases.  

PubMed

Many studies have implicated a role for conformational motions during the catalytic cycle, acting to optimize the binding pocket or facilitate product release, but a more intimate role in the chemical reaction has not been described. We address this by monitoring active-site loop motion in two protein tyrosine phosphatases (PTPs) using nuclear magnetic resonance spectroscopy. The PTPs, YopH and PTP1B, have very different catalytic rates; however, we find in both that the active-site loop closes to its catalytically competent position at rates that mirror the phosphotyrosine cleavage kinetics. This loop contains the catalytic acid, suggesting that loop closure occurs concomitantly with the protonation of the leaving group tyrosine and explains the different kinetics of two otherwise chemically and mechanistically indistinguishable enzymes. PMID:23970698

Whittier, Sean K; Hengge, Alvan C; Loria, J Patrick

2013-08-23

163

Oxidative Phosphorylation at the fin de siècle  

NSDL National Science Digital Library

Mitochondria produce most of the energy in animal cells by a process called oxidative phosphorylation. Electrons are passed along a series of respiratory enzyme complexes located in the inner mitochondrial membrane, and the energy released by this electron transfer is used to pump protons across the membrane. The resultant electrochemical gradient enables another complex, adenosine 5â²-triphosphate (ATP) synthase, to synthesize the energy carrier ATP. Important new mechanistic insights into oxidative phosphorylation have emerged from recent three-dimensional structural analyses of ATP synthase and two of the respiratory enzyme complexes, cytochrome bc1 and cytochrome c oxidase. This work, and new enzymological studies of ATP synthase's unusual catalytic mechanism, are reviewed here.

Matti Saraste (European Molecular Biology Laboratory;)

1999-03-05

164

Enzymatic Reactions in Microfluidic Devices  

NASA Astrophysics Data System (ADS)

We establish simple scaling laws for enzymatic reactions in microfluidic devices, and we demonstrate that kinetic parameters obtained conventionally using multiple stop-flow experiments may instead be extracted from a single microfluidic experiment. Introduction of an enzyme and substrate species in different arms of a Y-shaped channel allows the two species to diffuse across the parallel streamlines and to begin reacting. Measurements of the product concentration versus distance down the channel provide information about the kinetics of the reaction. In the limit where the enzyme is much larger (and thus less diffusive) than the substrate, we show that near the entrance the total amount of product (P) formed varies as a power law in the distance x down the channel. For reactions that follow standard Michaelis-Menten kinetics, the power law takes the form P˜(Vmax/Km) x^5/2, where Vmax and Km are the maximum reaction rate and Michaelis constant respectively. If a large excess of substrate is used, then Km is identified by measuring Vmax far downstream where the different species are completely mixed by diffusion. Numerical simulations and experiments using the bioluminescent reaction between luciferase and ATP as a model system are both shown to accord with the model. We discuss the implications for significant savings in the amount of time and enzyme required for determination of kinetic parameters.

Ristenpart, W. D.; Wan, J.; Stone, H. A.

2008-11-01

165

Enzymatic degradation of thiolated chitosan.  

PubMed

The objective of this study was to evaluate the biodegradability of thiolated chitosans in comparison to unmodified chitosan. Mediated by carbodiimide, thioglycolic acid (TGA) and mercaptonicotinic acid (MNA) were covalently attached to chitosan via formation an amide bond. Applying two different concentrations of carbodiimide 50 and 100?mM, two chitosan TGA conjugates (TGA A and TGA B) were obtained. According to chitosan solution (3% m/v) thiomer solutions were prepared and chitosanolytic enzyme solutions were added. Lysozyme, pectinase and cellulase were examined in chitosan degrading activity. The enzymatic degradability of these thiomers was investigated by viscosity measurements with a plate-plate viscometer. The obtained chitosan TGA conjugate A displayed 267.7 µmol and conjugate B displayed 116.3 µmol of immobilized thiol groups. With 325.4 µmol immobilized thiol groups, chitosan MNA conjugate displayed the most content of thiol groups. In rheological studies subsequently the modification proved that chitosan TGA conjugates with a higher coupling rate of thiol groups were not only degraded to a lesser extent by 20.9-26.4% but also more slowly. Chitosan mercaptonicotinic acid was degraded by 31.4-50.1% depending the investigated enzyme and even faster than unmodified chitosan. According to these results the biodegradability can be influenced by various modifications of the polymer which showed in particular that the rate of biodegradation is increased when MNA is the ligand, whereas the degradation is hampered when TGA is used as ligand for chitosan. PMID:23057506

Laffleur, Flavia; Hintzen, Fabian; Rahmat, Deni; Shahnaz, Gul; Millotti, Gioconda; Bernkop-Schnürch, Andreas

2012-10-12

166

Enzymatic reduction studies of nitroheterocycles.  

PubMed

The nitroimidazole derivative Megazol is a highly active compound used against several strains of Trypanosoma cruzi, the causative agent of Chagas' disease (American trypanomiasis). With the aim of gaining an insight into the probable mode of action, the interaction of Megazol with different redox enzymes was studied in comparison to that of Nifurtimox and Metronidazole. The three nitroaromatic compounds are reduced by L-lactate cytochrome c-reductase, adrenodoxin reductase, and NADPH:cytochrome P-450 reductase (EC 1.6.2.4), the efficiencies of the enzymatic reductions being roughly related to the reduction potentials of these pseudo-substrates. As the enzyme responsible for the reduction of Megazol within the parasite has not yet been identified, the nitroimidazole was assayed with T. cruzi lipoamide dehydrogenase and trypanothione reductase. Megazol did not inhibit the physiological reactions but proved to be a weak substrate of both flavoenzymes. The single electron reduction of the compound by NADPH:cytochrome P-450 reductase, by rat liver as well as by trypanosome microsomes was confirmed by ESR experiments. As shown here, Megazol interferes with the oxygen metabolism of the parasite, but its extra activity when compared to Nifurtimox may be related to other features not yet identified. PMID:9952319

Viodé, C; Bettache, N; Cenas, N; Krauth-Siegel, R L; Chauvière, G; Bakalara, N; Périé, J

1999-03-01

167

Ethanol production from poplar wood through enzymatic ...  

Treesearch

Bioconversion performance of NE222 and DN5 fell between that of aspen and NM6. ... poplar, enzymatic hydrolysis, fermentation, cellulosic ethanol, pretreatment, ... fungi, yeast fungi, Saccharomyces cerevisiae, hydrolysis, SPORL , biomass ...

168

IMPORTANCE OF ENZYMATIC BIOTRANSFORMATION IN IMMUNOTOXICOLOGY  

EPA Science Inventory

Many immunotoxic compounds, such as benzene and other organic solvents, pesticides, mycotoxins and polycyclic aromatic hydrocarbons, can alter immune function only after undergoing enzyme-mediated reactions within various tissues. In the review that follows, the role of enzymatic...

169

Rapid Enzymatic Measurement of Serum Flucytosine Levels.  

National Technical Information Service (NTIS)

A method is provided for the rapid enzymatic determination of serum flucytosine or cytosine. The serum is first incubated with glutamate dehydrogenase to release endogenous ammonia which is measured, and the serum is then incubated with creatinine iminohy...

M. H. Kroll C. M. Huang R. G. Washburn

1987-01-01

170

Phosphorylation of the estradiol receptor in MCF-7 human breast cancer cells in culture.  

PubMed

Double labelling and Western blot techniques were used to demonstrate phosphorylation of estradiol receptor. Cells in monolayer culture were incubated with [32P]orthophosphate for 18 h followed by covalent whole cell labelling of the estradiol receptor with tritiated tamoxifen aziridine [( 3H]TA). Labelled receptor was precipitated with the monoclonal antibodies H222 or JS 34/32, coupled to protein A-Sepharose, and purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), or transferred to nitrocellulose paper. Receptor protein was detected on the Western blot with the monoclonal antibody H222 and rabbit anti-rat peroxidase conjugate. Phosphorylated receptor was visualized by autoradiography. Tritium and 32P activities were monitored in the gels. Two phosphorylated forms of the receptor (molecular weights 67 and 50 kDa) have been detected in MCF-7 cells. Estradiol treatment of the cells was found to increase phosphorylation of the receptor. In estradiol-treated cells both phosphorylated receptor forms were present mainly in the nuclear extract. Both forms bound [3H]TA as evidence by SDS-PAGE. [3H]TA binding was abolished by excess non-radioactive estradiol. In addition two phosphorylated proteins of approximately 120 and 90 kDa were regularly coprecipitated with receptor in cytosol. These proteins did not bind [3H]TA. The 90 kDa phosphorylated protein was identified as a heat shock protein (hsp-90). PMID:2282977

Lahooti, H; Thorsen, T; Aakvaag, A

1990-11-12

171

[Studies of distribution of phosphorylated H3 in human MCF-7 cells by immunofluroescence labeling].  

PubMed

One of the prominent cell cycle-related modifications of histone proteins whose function is correlated with chromosome condensation is the phosphorylation of histone H3. In this work we used immunofluorescence labeling on human MCF-7 cells with the antibody that was specific for phosphorylated histone H3 at Ser10 to examine the cellular distribution of this protein. The acid-soluble proteins from interphase and mitotic cells were separated by SDS-PAGE and the transferred proteins were probed with the antibody. A strong H3-specific band was only detected in the acid-soluble proteins from mitotic cells, demonstrating the correlation between H3 phosphorylation and mitosis. With confocal microscopy on whole cells, our results showed that mitotic phosphorylation of H3 initiated in discrete foci near the nuclear envelope in early prophase cells. Following initiation, H3 phosphorylation appeared to spread throughout the condensing chromatin and reached maximum in early metaphase cells. Dephosphorylation of H3 began in anaphase cells and was complete immediately prior to detectable chromosome decondensation in telophase cells. There was a precise spatial and temporal correlation between H3 phosphorylation and initial stages of chromatin condensation. The possible functions of the singular phosphorylation of the amino-terminus of H3 were discussed. PMID:12096621

Yang, Qin; Chen, Jia-Tong; Geng, Zhao-Hui; Yu, Xin-Da; Huang, Xi-Tai

2002-06-01

172

Extracellular enzymatic activity of Malassezia spp. isolates  

Microsoft Academic Search

Extracellular enzymatic activity of different species of Malassezia spp was evaluated. Thirty-three isolates of animal origin (dogs and cats) and stock culture samples were studied. Twenty\\u000a isolates of M. pachydermatis, 8 of M. furfur, 2 of M. sympodialis and M. globosa and one of M. restricta, M. obtusa and M. slooffiae were examined. The enzymatic activity was investigatedusing Api Zym

Francesca Mancianti; Antonello Rum; Simona Nardoni; Michele Corazza

2001-01-01

173

Protein phosphorylation in the brain  

NASA Astrophysics Data System (ADS)

Protein phosphorylation represents an approach, sometimes the only approach available, to study the molecular basis for a wide variety of neurophysiological phenomena. The injection of protein kinases or protein kinase inhibitors into neurones has provided direct evidence that activation of protein kinases has an obligatory role in the mechanisms by which numerous extracellular signals produce specific physiological responses in neurones. A diversity of substrate proteins for the kinases have already been found. In several instances, the identity and functional role of these substrate proteins have been established.

Nestler, Eric J.; Greengard, Paul

1983-10-01

174

Regulation of Lrp6 phosphorylation  

Microsoft Academic Search

The Wnt\\/?-catenin signaling pathway plays important roles in embryonic development and tissue homeostasis, and is implicated\\u000a in human disease. Wnts transduce signals via transmembrane receptors of the Frizzled (Fzd\\/Fz) family and the low density lipoprotein\\u000a receptor-related protein 5\\/6 (Lrp5\\/6). A key mechanism in their signal transduction is that Wnts induce Lrp6 signalosomes,\\u000a which become phosphorylated at multiple conserved sites, notably

Christof Niehrs; Jinlong Shen

2010-01-01

175

Phosphorylation and Functional Properties of the IIA Domain of the Lactose Transport Protein of Streptococcus thermophilus  

PubMed Central

The lactose-H+ symport protein (LacS) of Streptococcus thermophilus has a carboxyl-terminal regulatory domain (IIALacS) that is homologous to a family of proteins and protein domains of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) in various organisms, of which IIAGlc of Escherichia coli is the best-characterized member. On the basis of these similarities, it was anticipated that IIALacS would be able to perform one or more functions associated with IIAGlc, i.e., carry out phosphoryl transfer and/or affect other catabolic functions. The gene fragment encoding IIALacS was overexpressed in Escherichia coli, and the protein was purified in two steps by metal affinity and anion-exchange chromatography. IIALacS was unable to restore glucose uptake in a IIAGlc-deficient strain, which is consistent with a very low rate of phosphorylation of IIALacS by phosphorylated HPr (HPr?P) from E. coli. With HPr?P from S. thermophilus, the rate was more than 10-fold higher, but the rate constants for the phosphorylation of IIALacS (k1 = 4.3 × 102 M?1 s?1) and dephosphorylation of IIALacS?P by HPr (k?1 = 1.1 × 103 M?1 s?1) are still at least 4 orders of magnitude lower than for the phosphoryltransfer between IIAGlc and HPr from E. coli. This finding suggests that IIALacS has evolved into a protein domain whose main function is not to transfer phosphoryl groups rapidly. On the basis of sequence alignment of IIA proteins with and without putative phosphoryl transfer functions and the known structure of IIAGlc, we constructed a double mutant [IIALacS(I548E/G556D)] that was predicted to have increased phosphoryl transfer activity. Indeed, the phosphorylation rate of IIALacS(I548E/G556D) by HPr?P increased (k1 = 4.0 × 103 M?1 s?1) and became nearly independent of the source of HPr?P (S. thermophilus, Bacillus subtilis, or E. coli). The increased phosphoryl transfer rate of IIALacS(I548E/G556D) was insufficient to complement IIAGlc in PTS-mediated glucose transport in E. coli. Both IIALacS and IIALacS(I548E/G556D) could replace IIAGlc, but in another function: they inhibited glycerol kinase (inducer exclusion) when present in the unphosphorylated form.

Gunnewijk, Marga G. W.; Postma, Pieter W.; Poolman, Bert

1999-01-01

176

Enzymatic properties of rhea lysozyme.  

PubMed

Rhea lysozyme was analyzed for its enzymatic properties both lytic and oligomer activities to reveal the structural and functional relationships of goose type lysozyme. Rhea lysozyme had the highest lytic activity at pH 6, followed by ostrich and goose at pH 5.5-6, whereas the optimum of cassowary was at pH 5. pH profile was correlated to the net charge of each molecule surface. On the other hand, the pH optimum for oligomer substrate was found to be pH 4, indicating the mechanism of rhea catalysis as a general acid. The time-course of the reaction was studied using beta-1,4-linked oligosaccharide of N-acetylglucosamine (GlcNAc) with a polymerization degree of n ((GlcNAc)n) (n=4, 5, and 6) as the substrate. This enzyme hydrolyzed (GlcNAc)6 in an endo-splitting manner, which produced (GlcNAc)3+(GlcNAc)3 predominating over that to (GlcNAc)2+ (GlcNAc)4. This indicates that the lysozyme hydrolyzed preferentially the third glycosidic linkage from the nonreducing end. Theoretical analysis has shown the highest rate constant value at 1.5 s-1 with (GlcNAc)6. This confirmed six substrate binding subsites as goose lysozyme (Honda, Y., and Fukamizo, T., Biochim. Biophys. Acta, 1388, 53-65 (1998)). The different binding free energy values for subsites B, C, F, and G from goose lysozyme might responsible for the amino acid substitutions, Asn122Ser and Phe123Met, located at the subsite B. PMID:15665474

Pooart, Jureerut; Torikata, Takao; Araki, Tomohiro

2005-01-01

177

Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart.  

PubMed

Heart failure is a consequence of progressive deterioration of cardiac performance. Little is known about the role of impaired oxidative phosphorylation in the progression of the disease, since previous studies of mitochondrial injuries are restricted to end-stage chronic heart failure. The present study aimed at evaluating the involvement of mitochondrial dysfunction in the development of human heart failure. We measured the control of oxidative phosphorylation with high-resolution respirometry in permeabilized myocardial fibres from donor hearts (controls), and patients with no or mild heart failure but presenting with heart disease, or chronic heart failure due to dilated or ischemic cardiomyopathy. The capacity of the phosphorylation system exerted a strong limitation on oxidative phosphorylation in the human heart, estimated at 121 pmol O(2)s(-1)mg(-1) in the healthy left ventricle. In heart disease, a specific defect of the phosphorylation system, Complex I-linked respiration, and mass-specific fatty acid oxidation were identified. These early defects were also significant in chronic heart failure, where the capacities of the oxidative phosphorylation and electron transfer systems per cardiac tissue mass were decreased with all tested substrate combinations, suggesting a decline of mitochondrial density. Oxidative phosphorylation and electron transfer system capacities were higher in ventricles compared to atria, but the impaired mitochondrial quality was identical in the four cardiac chambers of chronic heart failure patients. Coupling was preserved in heart disease and chronic heart failure, in contrast to the mitochondrial dysfunction observed after prolonged cold storage of cardiac tissue. Mitochondrial defects in the phosphorylation system, Complex I respiration and mass-specific fatty acid oxidation occurred early in the development of heart failure. Targeting these mitochondrial injuries with metabolic therapy may offer a promising approach to delay the progression of heart disease. PMID:21871578

Lemieux, Hélène; Semsroth, Severin; Antretter, Herwig; Höfer, Daniel; Gnaiger, Erich

2011-08-16

178

Correlation between persistent forms of zeaxanthin-dependent energy dissipation and thylakoid protein phosphorylation.  

PubMed

High light stress induced not only a sustained form of xanthophyll cycle-dependent energy dissipation but also sustained thylakoid protein phosphorylation. The effect of protein phosphatase inhibitors (fluoride and molybdate ions) on recovery from a 1-h exposure to a high PFD was examined in leaf discs of Parthenocissus quinquefolia (Virginia creeper). Inhibition of protein dephosphorylation induced zeaxanthin retention and sustained energy dissipation (NPQ) upon return to low PFD for recovery, but had no significant effects on pigment and Chl fluorescence characteristics under high light exposure. In addition, whole plants of Monstera deliciosa and spinach grown at low to moderate PFDs were transferred to high PFDs, and thylakoid protein phosphorylation pattern (assessed with anti-phosphothreonine antibody) as well as pigment and Chl fluorescence characteristics were examined over several days. A correlation was obtained between dark-sustained D1/D2 phosphorylation and dark-sustained zeaxanthin retention and maintenance of PS II in a state primed for energy dissipation in both species. The degree of these dark-sustained phenomena was more pronounced in M. deliciosa compared with spinach. Moreover, M. deliciosa but not spinach plants showed unusual phosphorylation patterns of Lhcb proteins with pronounced dark-sustained Lhcb phosphorylation even under low PFD growth conditions. Subsequent to the transfer to a high PFD, dark-sustained Lhcb protein phosphorylation was further enhanced. Thus, phosphorylation patterns of D1/D2 and Lhcb proteins differed from each other as well as among plant species. The results presented here suggest an association between dark-sustained D1/D2 phosphorylation and sustained retention of zeaxanthin and energy dissipation (NPQ) in light-stressed, and particularly 'photoinhibited', leaves. Functional implications of these observations are discussed. PMID:16228317

Ebbert, V; Demmig-Adams, B; Adams, W W; Mueh, K E; Staehelin, L A

2001-01-01

179

Phosphorylation Controls the Localization and Activation of the Lumenal Carbonic Anhydrase in Chlamydomonas reinhardtii  

PubMed Central

Background Cah3 is the only carbonic anhydrase (CA) isoform located in the thylakoid lumen of Chlamydomonas reinhardtii. Previous studies demonstrated its association with the donor side of the photosystem II (PSII) where it is required for the optimal function of the water oxidizing complex. However this enzyme has also been frequently proposed to perform a critical function in inorganic carbon acquisition and CO2 fixation and all mutants lacking Cah3 exhibit very poor growth after transfer to low CO2 conditions. Results/Conclusions In the present work we demonstrate that after transfer to low CO2, Cah3 is phosphorylated and that phosphorylation is correlated to changes in its localization and its increase in activity. When C. reinhardtii wild-type cells were acclimated to limiting CO2 conditions, the Cah3 activity increased about 5–6 fold. Under these conditions, there were no detectable changes in the level of the Cah3 polypeptide. The increase in activity was specifically inhibited in the presence of Staurosporine, a protein kinase inhibitor, suggesting that the Cah3 protein was post-translationally regulated via phosphorylation. Immunoprecipitation and in vitro dephosphorylation experiments confirm this hypothesis. In vivo phosphorylation analysis of thylakoid polypeptides indicates that there was a 3-fold increase in the phosphorylation signal of the Cah3 polypeptide within the first two hours after transfer to low CO2 conditions. The increase in the phosphorylation signal was correlated with changes in the intracellular localization of the Cah3 protein. Under high CO2 conditions, the Cah3 protein was only associated with the donor side of PSII in the stroma thylakoids. In contrast, in cells grown at limiting CO2 the protein was partly concentrated in the thylakoids crossing the pyrenoid, which did not contain PSII and were surrounded by Rubisco molecules. Significance This is the first report of a CA being post-translationally regulated and describing phosphorylation events in the thylakoid lumen.

Blanco-Rivero, Amaya; Shutova, Tatiana; Roman, Maria Jose; Martinez, Flor

2012-01-01

180

Salt stress-induced protein phosphorylation  

SciTech Connect

Protein phosphorylation induced by salt stress in tomato germinating seeds were investigated by two-dimensional polyacrilamide gel electrophoresis of proteins labeled in vivo with ({sup 32}P)-Phosphate. NaCl induced the phosphorylation of a 14 Kd polypeptide. Pulse-chase experiments revealed that the phosphorylated molecules of this polypeptide are only stable while the stress is present. Phosphorylated 14 Kd polypeptides could be detected in radicles of salt-shocked seedlings after 6 hours stress period. 14 Kd polypeptide phosphorylation was also observed in seeds germinating in the presence of abscisic acid (ABA). The amount of phosphorylated 14 Kd polypeptide was significantly increased in seeds treated simultaneously with NaCl and ABA.

Godoy, J.A.; Torres-Schumann, S.; Llobell, A.; Pintor-Toro, J.A.

1989-04-01

181

Chemical approaches to reversible protein phosphorylation.  

PubMed

Protein phosphorylation catalyzed by protein kinases plays a critical role in cellular signaling. Here we review several chemical approaches to understanding protein kinases and the consequences of protein phosphorylation. We discuss the design of bisubstrate analogue inhibitors based on a dissociative transition state, the development of reagents for cross-linking protein kinases with their substrates, the chemical rescue of mutant protein tyrosine kinases, and the application of expressed protein ligation to understanding protein phosphorylation. PMID:12809531

Cole, Philip A; Courtney, Aliya D; Shen, Kui; Zhang, Zhongsen; Qiao, Yingfeng; Lu, Wei; Williams, Daniel M

2003-06-01

182

Regulation of Smad Function by Phosphorylation  

Microsoft Academic Search

Phosphorylation is a dynamic and reversible post-translational modification which has a strong impact on structural features\\u000a of proteins. All Smad proteins have been reported as phosphoproteins. Phosphorylation of receptor-activated Smad proteins\\u000a by type I receptors initiates TGF-? family signaling. Phosphorylation of Smads by a number of other kinases is a mechanism\\u000a of cross-talk between Smads and other signaling pathways. Smad

Ihor Yakymovych; Serhiy Souchelnytskyi

183

Phosphorylation of Nucleotide Molecules in Hydrothermal Environments  

NASA Astrophysics Data System (ADS)

Phosphorylation of AMP into ADP and ATP, that can outrun their hydrolysis, was made possible in a simulated hydrothermal environment when trimetaphosphate was used as the phosphate source. The best yields of phosphorylated products were obtained when the reaction fluids whose temperature was set at about 100 degrees centigrade was injected into the cold environment maintained at 0 degree in a recycling manner. Hydrothermal environments in the primitive ocean could also have served as prebiotic sites for phosphorylation, among others.

Ozawa, Keita; Nemoto, Atsushi; Imai, Ei-ichi; Honda, Hajime; Hatori, Kuniyuki; Matsuno, Koichiro

2004-10-01

184

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides  

Microsoft Academic Search

Electron transfer and capture mass spectra of a series of doubly charged ions that were phosphorylated pentapeptides of a\\u000a tryptic type (pS,A,A,A,R) showed conspicuous differences in dissociations of charge-reduced ions. Electron transfer from both\\u000a gaseous cesium atoms at 100 keV kinetic energies and fluoranthene anion radicals in an ion trap resulted in the loss of a\\u000a hydrogen atom, ammonia, and backbone

Christopher L. Moss; Thomas W. Chung; Jean A. Wyer; Steen Brøndsted Nielsen; Preben Hvelplund; František Ture?ek

2011-01-01

185

Inactivation of Bcl-2 by phosphorylation.  

PubMed Central

The antiapoptosis potential of Bcl-2 protein is well established, but the mechanism of Bcl-2 action is still poorly understood. Using the phosphatase inhibitor okadaic acid or the chemotherapeutic drug taxol, we found that Bcl-2 was phosphorylated in lymphoid cells. Phospho amino acid analysis revealed that Bcl-2 was phosphorylated on serine. Under similar conditions, okadaic acid or taxol treatment led to the induction of apoptosis in these cells. Thus, phosphorylation of Bcl-2 seems to inhibit its ability to interfere with apoptosis. In addition, phosphorylated Bcl-2 can no longer prevent lipid peroxidation as required to protect cells from apoptosis. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4

Haldar, S; Jena, N; Croce, C M

1995-01-01

186

Phosphorylation and metabolism of sucrose and its five linkage-isomeric alpha-D-glucosyl-D-fructoses by Klebsiella pneumoniae.  

PubMed

Not only sucrose but the five isomeric alpha-D-glucosyl-D-fructoses trehalulose, turanose, maltulose, leucrose, and palatinose are utilized by Klebsiella pneumoniae as energy sources for growth, thereby undergoing phosphorylation by a phosphoenolpyruvate-dependent phosphotransferase system uniformly at 0-6 of the glucosyl moiety. Similarly, maltose, isomaltose, and maltitol, when exposed to these conditions, are phosphorylated regiospecifically at O-6 of their non-reducing glucose portion. The structures of these novel compounds have been established unequivocally by enzymatic analysis, acid hydrolysis, FAB negative-ion spectrometry, and 1H and 13C NMR spectroscopy. In cells of K. pneumoniae, hydrolysis of sucrose 6-phosphate is catalyzed by sucrose 6-phosphate hydrolase from Family 32 of the glycosylhydrolase superfamily. The five 6'-O-phosphorylated alpha-D-glucosyl-fructoses are hydrolyzed by an inducible (approximately 49-50 Kda) phospho-alpha-glucosidase from Family 4 of the glycosylhydrolase superfamily. PMID:11322729

Thompson, J; Robrish, S A; Pikis, A; Brust, A; Lichtenthaler, F W

2001-03-22

187

Structural perspective on enzymatic halogenation.  

PubMed

Simple halogen substituents frequently afford key structural features that account for the potency and selectivity of natural products, including antibiotics and hormones. For example, when a single chlorine atom on the antibiotic vancomycin is replaced by hydrogen, the resulting antibacterial activity decreases by up to 70% ( Harris , C. M. ; Kannan , R. ; Kopecka , H. ; Harris , T. M. J. Am. Chem. Soc. 1985 , 107 , 6652 - 6658 ). This Account analyzes how structure underlies mechanism in halogenases, the molecular machines designed by nature to incorporate halogens into diverse substrates. Traditional synthetic methods of integrating halogens into complex molecules are often complicated by a lack of specificity and regioselectivity. Nature, however, has developed a variety of elegant mechanisms for halogenating specific substrates with both regio- and stereoselectivity. An improved understanding of the biological routes toward halogenation could lead to the development of novel synthetic methods for the creation of new compounds with enhanced functions. Already, researchers have co-opted a fluorinase from the microorganism Streptomyces cattleya to produce (18)F-labeled molecules for use in positron emission tomography (PET) ( Deng , H. ; Cobb , S. L. ; Gee , A. D. ; Lockhart , A. ; Martarello , L. ; McGlinchey , R. P. ; O'Hagan , D. ; Onega , M. Chem. Commun. 2006 , 652 - 654 ). Therefore, the discovery and characterization of naturally occurring enzymatic halogenation mechanisms has become an active area of research. The catalogue of known halogenating enzymes has expanded from the familiar haloperoxidases to include oxygen-dependent enzymes and fluorinases. Recently, the discovery of a nucleophilic halogenase that catalyzes chlorinations has expanded the repertoire of biological halogenation chemistry ( Dong , C. ; Huang , F. ; Deng , H. ; Schaffrath , C. ; Spencer , J. B. ; O'Hagan , D. ; Naismith , J. H. Nature 2004 , 427 , 561 - 565 ). Structural characterization has provided a basis toward a mechanistic understanding of the specificity and chemistry of these enzymes. In particular, the latest crystallographic snapshots of active site architecture and halide binding sites have provided key insights into enzyme catalysis. Herein is a summary of the five classes of halogenases, focusing on the three most recently discovered: flavin-dependent halogenases, non-heme iron-dependent halogenases, and nucleophilic halogenases. Further, the potential roles of halide-binding sites in determining halide selectivity are discussed, as well as whether or not binding-site composition is always a seminal factor for selectivity. Expanding our understanding of the basic chemical principles that dictate the activity of the halogenases will advance both biology and chemistry. A thorough mechanistic analysis will elucidate the biological principles that dictate specificity, and the application of those principles to new synthetic techniques will expand the utility of halogenations in small-molecule development. PMID:18774824

Blasiak, Leah C; Drennan, Catherine L

2009-01-20

188

The negative impact of ?-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation.  

PubMed

A decline in ?-ketoglutarate dehydrogenase complex (KGDHC) activity has been associated with neurodegeneration. Provision of succinyl-CoA by KGDHC is essential for generation of matrix ATP (or GTP) by substrate-level phosphorylation catalyzed by succinyl-CoA ligase. Here, we demonstrate ATP consumption in respiration-impaired isolated and in situ neuronal somal mitochondria from transgenic mice with a deficiency of either dihydrolipoyl succinyltransferase (DLST) or dihydrolipoyl dehydrogenase (DLD) that exhibit a 20-48% decrease in KGDHC activity. Import of ATP into the mitochondrial matrix of transgenic mice was attributed to a shift in the reversal potential of the adenine nucleotide translocase toward more negative values due to diminished matrix substrate-level phosphorylation, which causes the translocase to reverse prematurely. Immunoreactivity of all three subunits of succinyl-CoA ligase and maximal enzymatic activity were unaffected in transgenic mice as compared to wild-type littermates. Therefore, decreased matrix substrate-level phosphorylation was due to diminished provision of succinyl-CoA. These results were corroborated further by the finding that mitochondria from wild-type mice respiring on substrates supporting substrate-level phosphorylation exhibited ~30% higher ADP-ATP exchange rates compared to those obtained from DLST(+/-) or DLD(+/-) littermates. We propose that KGDHC-associated pathologies are a consequence of the inability of respiration-impaired mitochondria to rely on "in-house" mitochondrial ATP reserves. PMID:23475850

Kiss, Gergely; Konrad, Csaba; Doczi, Judit; Starkov, Anatoly A; Kawamata, Hibiki; Manfredi, Giovanni; Zhang, Steven F; Gibson, Gary E; Beal, M Flint; Adam-Vizi, Vera; Chinopoulos, Christos

2013-03-08

189

Phosphorylation-mediated inactivation of coactivator-associated arginine methyltransferase 1.  

PubMed

Multiple protein arginine methyltransferases are involved in transcriptional activation of nuclear receptors. Coactivator-associated arginine methyltransferase 1 (CARM1)-mediated histone methylation has been shown to activate nuclear receptor-dependent transcription; however, little is known about the regulation of its enzymatic activity. Here, we report that the methyltransferase activity of CARM1 is negatively regulated through phosphorylation at a conserved serine residue. When the serine residue is mutated to glutamic acid, which mimics the phosphorylated serine residue, the mutant CARM1 exhibits diminished ability to bind the methyl donor adenosylmethionine and diminished histone methylation activity. Moreover, such mutation leads to the inhibition of CARM1 transactivation of estrogen receptor-dependent transcription. Our results provide an example for the regulation of protein arginine methyltransferase activity by phosphorylation. As CARM1 is a potent transcriptional coactivator of estrogen receptor, our results suggest that phosphorylation of CARM1 serves as a unique mechanism for inactivating CARM1-regulated estrogen-dependent gene expression. PMID:17640894

Higashimoto, Ken; Kuhn, Peter; Desai, Dhaval; Cheng, Xiaodong; Xu, Wei

2007-07-17

190

Regulation of Polar Peptidoglycan Biosynthesis by Wag31 Phosphorylation in Mycobacteria  

PubMed Central

Background Sensing and responding to environmental changes is a central aspect of cell division regulation. Mycobacterium tuberculosis contains eleven Ser/Thr kinases, two of which, PknA and PknB, are key signaling molecules that regulate cell division/morphology. One substrate of these kinases is Wag31, and we previously showed that partial depletion of Wag31 caused morphological changes indicative of cell wall defects, and that the phosphorylation state of Wag31 affected cell growth in mycobacteria. In the present study, we further characterized the role of the Wag31 phosphorylation in polar peptidoglycan biosynthesis. Results We demonstrate that the differential growth among cells expressing different wag31 alleles (wild-type, phosphoablative, or phosphomimetic) is caused by, at least in part, dissimilar nascent peptidoglycan biosynthesis. The phosphorylation state of Wag31 is found to be important for protein-protein interactions between the Wag31 molecules, and thus, for its polar localization. Consistent with these results, cells expressing a phosphomimetic wag31 allele have a higher enzymatic activity in the peptidoglycan biosynthetic pathway. Conclusions The Wag31Mtb phosphorylation is a novel molecular mechanism by which Wag31Mtb regulates peptidoglycan synthesis and thus, optimal growth in mycobacteria.

2010-01-01

191

Tyrosine Phosphorylation of the Human Glutathione S-Transferase P1 by Epidermal Growth Factor Receptor*  

PubMed Central

Epidermal growth factor receptor (EGFR) gene amplification, mutations, and/or aberrant activation are frequent abnormalities in malignant gliomas and other human cancers and have been associated with an aggressive clinical course and a poor therapeutic outcome. Elevated glutathione S-transferase P1 (GSTP1), a major drug-metabolizing and stress response signaling protein, is also associated with drug resistance and poor clinical outcome in gliomas and other cancers. Here, we provide evidence that GSTP1 is a downstream EGFR target and that EGFR binds to and phosphorylates tyrosine residues in the GSTP1 protein in vitro and in vivo. Mass spectrometry and mutagenesis analyses in a cell-free system and in gliomas cells identified Tyr-7 and Tyr-198 as major EGFR-specific phospho-acceptor residues in the GSTP1 protein. The phosphorylation increased GSTP1 enzymatic activity significantly, and computer-based modeling showed a corresponding increase in electronegativity of the GSTP1 active site. In human glioma and breast cancer cells, epidermal growth factor stimulation rapidly increased GSTP1 tyrosine phosphorylation and decreased cisplatin sensitivity. Lapatinib, a clinically active EGFR inhibitor, significantly reversed the epidermal growth factor-induced cisplatin resistance. These data define phosphorylation and activation of GSTP1 by EGFR as a novel, heretofore unrecognized component of the EGFR signaling network and a novel mechanism of tumor drug resistance, particularly in tumors with elevated GSTP1 and/or activated EGFR.

Okamura, Tatsunori; Singh, Simendra; Buolamwini, John; Haystead, Timothy; Friedman, Henry; Bigner, Darell; Ali-Osman, Francis

2009-01-01

192

Extracellular Phosphorylation and Phosphorylated Proteins: Not Just Curiosities But Physiologically Important  

NSDL National Science Digital Library

With 3 figures, 1 table, and 221 references plus 2 supplementary figures and 1 supplementary table, this Review describes the evidence supporting physiological and pathological functions of phosphorylated extracellular proteins. In addition, evidence for extracellular phosphorylation in various contexts and tissues is also presented. To facilitate the study of the extracellular phosphoproteome, annotation of the phosphorylated proteins found in proteomic databases is supplied.

Garif Yalak (ETH Zurich;Department of Health Sciences and Technology REV); Viola Vogel (ETH Zurich;Department of Health Sciences and Technology REV)

2012-12-18

193

Relationships between histone phosphorylation and cell proliferation  

SciTech Connect

From studies with various Peromyscus cell lines, correlations were made which led to the proposal that H2A phosphorylation is most active in constitutive heterochromatin. Recent studies on the two H2A variants found in these cells have revealed that the high level of H2A phosphorylation associated with heterochromatin is not the result of an increase in H2A phosphorylation rate or an increase in the number of phosphorylation sites, but rather, is due to an increase in the proportion of one of the H2A variants which is more highly phosphorylated than the other. If H2A phosphorylation is necessary for the constitutive heterochromatin state, it is reasonable that the cell would accomplish the generation of this structure by permanently installing a more highly phosphorylated H2A in the heterochromatin nucleosome rather than by trying to modulate the phosphorylation rate in such a condensed structure. The proposal that histone phosphorylation is involved with the condensed structures of chromatin is based primarily on correlations between histone phosphorylation measurements and cellular phenomena. One proof that this concept is correct ultimately rests in the ability to demonstrate these correlations in isolated chromosomes and chromatin fractions. This demonstration is presently limited by the excessive dephosphorylation of histones which occurs during the isolation of chromosomes and chromatin fractions. Thus, the demonstration of an effective inhibitor of histone dephosphorylation which is compatible with the isolation of nuclear structures and chromatin fractions having native morphologies is essential for future studies on the biological function of histone phosphorylation. (ERB)

Gurley, L.R.; D'Anna, J.A.; Halleck, M.S.; Barham, S.S.; Walters, R.A.; Jett, J.H.; Tobey, R.A.

1980-01-01

194

[Biological aspects of non-enzymatic glycosylation].  

PubMed

Non-enzymatic reactions commonly play an ambiguous role in living organism. It is well known that non-enzymatic glycosylation may lead to disruption of the structure and function of biomolecules, thus initiating the development and accompanying different diseases. On the other hand, under certain conditions the products of non-enzymatic glycosylation act as signaling molecules and play an important role in the immune response. Data concerning the influence of non-enzymatic glycosylation and carbonyl stress on living organisms are summarized in the work. The role of reactive carbonyl compounds and reducing carbohydrates in glycation of biomolecules, involvement of non-enzymatic glycosylation in carbonyl stress development and interplay between glycation and free radical processes in living organisms are summarized. The basic ways to prevent glycation and formation of reactive carbonyl compounds that induce carbonyl stress are highlighted. Special attention is paid to the role of the yeast Saccharomyces cerevisiae as a model system to study the glycation processes in vivo. PMID:23342632

Lozins'ka, L M; Semchyshyn, H M

195

Modulation of P1798 lymphosarcoma proliferation by protein phosphorylation  

SciTech Connect

The role of protein kinases in modulating cell proliferation was examined. Studies characterized the regulation of cell proliferation by adenosine 3':5'-monophosphate-dependent protein kinase (cA-Pk). Calcium/calmodulin-dependent myosin light chain kinase (MLCK) was isolated and examined as a potential substrate regulated by cA-PK in the rapidly proliferating P1798 lymphosarcoma. Modulation of cell proliferation by cA-PK was characterized by quantitating cell division by (methyl-/sup 3/H) thymidine ((/sup 3/H)-dT) incorporation into DNA, cAMP accumulations, and activation of cA-PK using P1798 lymphosarcoma cells. Epinephrine and prostaglandin E/sub 1/ (PGE/sub 1/) were demonstrated to suppress (/sup 3/H)-dT incorporation into DNA, to stimulate cAMP accumulation, and to activate cA-PK with dose-dependency. Calcium/calmodulin-dependent MLCK was partially purified from P1798 lymphosarcoma. P1798 MLCK phosphorylated myosin regulatory light chains (P-LC) from thymus, cardiac and skeletal muscles. One mol (/sup 32/Pi) was transferred into one mol cardiac or skeletal P-LC by P1798 MLCK. Apparent Km values of 65 ..mu..M and 51 ..mu..M were determined for ATP and cardiac P-LC, respectively. The apparent molecular weight of P1798 MLCK was 135,000. P1798 MLCK was phosphorylated by cA-PK. Phosphorylated MLCK showed a 41% decrease in calcium-dependent activity. Two additional protein kinases from P1798 lymphosarcoma phosphorylated cardiac and skeletal light chains (MLC).

Michnoff, C.A.H.

1983-01-01

196

Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome  

Microsoft Academic Search

In signal transduction in eukaryotes, protein phosphorylation is a key event. To understand signaling processes, we must first acquire an inventory of phosphoproteins and their phosphorylation sites under different conditions. Because phosphorylation is a dynamic process, elucidation of signaling networks also requires quantitation of these phosphorylation events. In this article, we outline several methods for enrichment of phosphorylated proteins and

Matthias Mann; Shao-En Ong; Mads Grønborg; Hanno Steen; Ole N. Jensen; Akhilesh Pandey

2002-01-01

197

Histone H3 phosphorylation of mammalian chromosomes  

Microsoft Academic Search

Inferences about the role and location of phosphorylated histone H3 are derived primarily from biochemical studies. A few direct observations at chromosome level have shown that phosphorylation begins at the site of heterochromatin and spreads throughout the chromosome. However, a comparative study of chromosomes of mouse (L929 cells), Chinese hamster (CHO 9 cells) and the Indian muntjac (male cells) reveals

Africa Garcia-Orad; Patricia Gomez Vargas; Baldev K. Vig

2001-01-01

198

Chkl binds and phosphorylates BAD protein.  

PubMed

Chk1 (checkpoint kinase 1) is a serine-threonine kinase that is critical for G2/M arrest in response to DNA damage. Chk1 phosphorylates Cdc25C at serine-216, a major regulatory site, in response to DNA damage. Furthermore, Chk1 also phosphorylates Cdc25A on serine 123 which accelerates its degradation through the ubiquitin-proteasome pathway and arrests cells in late G2-phase after DNA damage. In the present study, we demonstrated that Chk1 phosphorylates pro-apoptotic protein BAD (Bcl-2/Bcl-XL-Antagonist, causing cell Death) in vitro. In vitro phosphorylation analysis with various mouse BAD peptides has revealed two phosphorylation sites for Chk1 at serine-155 and serine-170. When wild-type and mutant BAD (S155A) constructs were transfected into 293T cells, an association between BAD and Chk1 was observed by co-immunoprecipitation. In addition, there was an increase in the phosphorylation of serine-155 following DNA damage by adriamycin treatment. Our results suggest that Chk1 associates with BAD and phosphorylates the BAD protein at serine-155. Taken together, our results suggest that Chk1 may inactivate BAD by associating with and phosphorylating residues critical for BAD function in response to DNA damage. PMID:15736430

Han, Edward Kyu-ho; Butler, Chris; Zhang, Haichao; Severin, Jean M; Qin, Wenying; Holzman, Tom F; Gubbins, Earl J; Simmer, Robert L; Rosenberg, Saul; Giranda, Vincent L; Ng, Shi-Chung; Luo, Y

199

Tyrosine Phosphorylation of CRKL in Philadelphia+ Leukemia  

Microsoft Academic Search

current study, we show that in peripheral blood cells a direct correlation exists between the presence of BCR\\/ABL and the phosphorylation status of CRKL. In Ph- peripheral blood cells, CRKL is present only in the nonphosphoryleted form. In contrast, all BCR\\/ABL+ CML and acute lymphoblastic leu- kemia patient samples examined showed clear tyrosine- phosphorylation of CRKL. This result strongly suggests

Ralph B. Arlinghaus; Jie Qiang Guo; Nora Heisterkamp; John Groffen

1994-01-01

200

Regulation of transcription factor function by phosphorylation  

Microsoft Academic Search

Changes in protein phosphorylation represent a mechanism that is frequently employed by cells to regulate transcription factor activity. In response to alterations in the extracellular environment, signal transduction pathways target transcription factors, transcriptional coregulators and chromatin-modifying factors, leading to their phosphorylation by protein kinases or dephosphorylation by protein phosphatases. These modifications either positively or negatively regulate transcription factor activity to

A. J. Whitmarsh

2000-01-01

201

On the Electronic Nature of Low-Barrier Hydrogen Bonds in Enzymatic Reactions  

Microsoft Academic Search

The electronic nature of low-barrier hydrogen bonds (LBHBs) in enzymatic reactions is discussed based on combined low temperature neutron and x-ray diffraction experiments and on high level ab initio calculations by using the model substrate benzoylacetone. This molecule has a LBHB, as the intramolecular hydrogen bond is described by a double-well potential with a small barrier for hydrogen transfer. From

Birgit Schiott; Bo Brummerstedt Iversen; Georg Kent Hellerup Madsen; Finn Krebs Larsen; Thomas C. Bruice

1998-01-01

202

Regulation of transcription factor function by phosphorylation.  

PubMed

Changes in protein phosphorylation represent a mechanism that is frequently employed by cells to regulate transcription factor activity. In response to alterations in the extracellular environment, signal transduction pathways target transcription factors, transcriptional coregulators and chromatin-modifying factors, leading to their phosphorylation by protein kinases or dephosphorylation by protein phosphatases. These modifications either positively or negatively regulate transcription factor activity to facilitate a program of gene expression that results in appropriate changes in cell behavior. Protein phosphorylation and dephosphorylation can directly regulate distinct aspects of transcription factor function, including cellular localization, protein stability, protein-protein interactions and DNA binding. The phosphorylation-dependent modulation of the activities of transcriptional coregulators and chromatin-modifying factors can also control transcription factor activity. Here we review recent studies that have led to a better understanding of the mechanisms by which protein phosphorylation and dephosphorylation governs transcription factor function. PMID:11028910

Whitmarsh, A J; Davis, R J

2000-08-01

203

A novel isoform of glucan, water dikinase phosphorylates pre-phosphorylated alpha-glucans and is involved in starch degradation in Arabidopsis.  

PubMed

An Arabidopsis thaliana gene encoding a homologue of the potato alpha-glucan, water dikinase GWD, previously known as R1, was identified by screening the Arabidopsis genome and named AtGWD3. The AtGWD3 cDNA was isolated, heterologously expressed and the protein was purified to apparent homogeneity to determine the enzymatic function. In contrast to the potato GWD protein, the AtGWD3 primarily catalysed phosphorylation at the C-3 position of the glucose unit of preferably pre-phosphorylated amylopectin substrate with long side chains. An Arabidopsis mutant, termed Atgwd3, with downregulated expression of the AtGWD3 gene was analysed. In Atgwd3 the amount of leaf starch was constantly higher than wild type during the diurnal cycle. Compared with wild-type leaf starch, the level of C-3 phosphorylation of the glucosyl moiety of starch in this mutant was reduced. Taken together, these data indicate that the C-3 linked phospho-ester in starch plays a so far unnoticed specific role in the degradation of transitory starch. PMID:15686522

Baunsgaard, Lone; Lütken, Henrik; Mikkelsen, René; Glaring, Mikkel A; Pham, Tam T; Blennow, Andreas

2005-02-01

204

Quantitative analysis of aquaporin-2 phosphorylation.  

PubMed

The action of vasopressin in rodent collecting ducts to regulate water permeability depends in part on increases in phosphorylation of the water channel aquaporin-2 (AQP2) at three sites: Ser256, Ser264, and Ser269. Previous studies of AQP2 phosphorylation have depended largely on qualitative data using protein mass spectrometry and phospho-specific antibodies. Here, we use a new method employing phospho-specific antibodies to determine the percentage of total AQP2 phosphorylated at each site in the presence and absence of the V2-receptor-selective vasopressin analog dDAVP in rat renal inner medullary collecting duct (IMCD) and cultured mpkCCD cells. Phosphorylation of Ser269, a site previously implicated in plasma membrane retention, was found to increase from 3 to 26% of total AQP2 in rat IMCD cells following dDAVP. Quantification of immunogold labeling of the opposite kidneys from the same rats estimated that 11% of total AQP2 is present in the apical plasma membrane (APM) without injection of dDAVP and 25% is present in the APM after dDAVP. Surprisingly, the baseline level of Ser256 phosphorylation was constitutively high, and there was no increase with dDAVP (confirmed in 2 more sets of rats). In general, Ser264 phosphorylation remained below 5% of total. The pattern of response was similar in cultured mpkCCD cells (large increase in Ser269 phosphorylation following dDAVP, but constitutively high levels of Ser256 phosphorylation). We suggest from these studies that Ser269 phosphorylation may be a more consistent indicator of vasopressin action and AQP2 membrane abundance than is Ser256 phosphorylation. PMID:20089674

Xie, Luke; Hoffert, Jason D; Chou, Chung-Lin; Yu, Ming-Jiun; Pisitkun, Trairak; Knepper, Mark A; Fenton, Robert A

2010-01-20

205

Quantitative analysis of aquaporin-2 phosphorylation  

PubMed Central

The action of vasopressin in rodent collecting ducts to regulate water permeability depends in part on increases in phosphorylation of the water channel aquaporin-2 (AQP2) at three sites: Ser256, Ser264, and Ser269. Previous studies of AQP2 phosphorylation have depended largely on qualitative data using protein mass spectrometry and phospho-specific antibodies. Here, we use a new method employing phospho-specific antibodies to determine the percentage of total AQP2 phosphorylated at each site in the presence and absence of the V2-receptor-selective vasopressin analog dDAVP in rat renal inner medullary collecting duct (IMCD) and cultured mpkCCD cells. Phosphorylation of Ser269, a site previously implicated in plasma membrane retention, was found to increase from 3 to 26% of total AQP2 in rat IMCD cells following dDAVP. Quantification of immunogold labeling of the opposite kidneys from the same rats estimated that 11% of total AQP2 is present in the apical plasma membrane (APM) without injection of dDAVP and 25% is present in the APM after dDAVP. Surprisingly, the baseline level of Ser256 phosphorylation was constitutively high, and there was no increase with dDAVP (confirmed in 2 more sets of rats). In general, Ser264 phosphorylation remained below 5% of total. The pattern of response was similar in cultured mpkCCD cells (large increase in Ser269 phosphorylation following dDAVP, but constitutively high levels of Ser256 phosphorylation). We suggest from these studies that Ser269 phosphorylation may be a more consistent indicator of vasopressin action and AQP2 membrane abundance than is Ser256 phosphorylation.

Xie, Luke; Hoffert, Jason D.; Chou, Chung-Lin; Yu, Ming-Jiun; Pisitkun, Trairak; Knepper, Mark A.

2010-01-01

206

Enzymatic polyester synthesis in ionic liquids  

Microsoft Academic Search

The enzymatic synthesis of polyesters by ring-opening polymerization (ROP) and polycondensation in three ionic liquids, i.e., [bmim][Tf2N], [bmim][PF6] and [bmim][BF4] was investigated. For the enzymatic ROP of ?-caprolactone it was found that [bmim][PF6] and [bmim][BF4] result in an inhomogeneous reaction mixture upon polymerization, causing polymerization characteristics similar to bulk polymerization. In contrast, for [bmim][Tf2N] characteristics similar to toluene were observed.

Rebeca Marcilla; Matthijs de Geus; David Mecerreyes; Christopher J. Duxbury; Cor E. Koning; Andreas Heise

2006-01-01

207

Engineering enzymatic cascades on nanoscale scaffolds.  

PubMed

Scaffold proteins are involved in many enzyme cascades in signaling pathways and metabolic processes. The study of scaffolds occurring in biological systems advances at a rapid pace and recently developed engineered synthetic scaffolds enable the precise placement of components of an enzymatic cascade within nanometer distances. Recent experimental results demonstrate significantly increased throughput of enzymatic cascades as a result of the utilization of a scaffold, but our understanding of the mechanisms responsible for this increase is not complete. We discuss the physics of diffusive transport processes relevant for these unique reaction-diffusion systems. PMID:23357532

Idan, Ofer; Hess, Henry

2013-01-25

208

Photoreceptor coupling is controlled by connexin 35 phosphorylation in zebrafish retina  

PubMed Central

Electrical coupling of neurons is widespread throughout the central nervous system and is observed among retinal photoreceptors from essentially all vertebrates. Coupling dampens voltage noise in photoreceptors and rod-cone coupling provides a means for rod signals to enter the cone pathway, extending the dynamic range of rod-mediated vision. This coupling is dynamically regulated by a circadian rhythm and light adaptation. We examined the molecular mechanism that controls photoreceptor coupling in zebrafish retina. Connexin 35 (homologous to Cx36 of mammals) was found at both cone-cone and rod-cone gap junctions. Photoreceptors showed strong Neurobiotin tracer coupling at night, extensively labeling the network of cones. Tracer coupling was significantly reduced in the daytime, showing a 20-fold lower diffusion coefficient for Neurobiotin transfer. The phosphorylation state of Cx35 at two regulatory phosphorylation sites, Ser110 and Ser276, was directly related to tracer coupling. Phosphorylation was high at night and low during the day. Protein kinase A (PKA) activity directly controlled both phosphorylation state and tracer coupling. Both were significantly increased in the day by pharmacological activation of PKA and significantly reduced at night by inhibition of PKA. The data are consistent with direct phosphorylation of Cx35 by PKA. We conclude that the magnitude of photoreceptor coupling is controlled by the dynamic phosphorylation and dephosphorylation of Cx35. Furthermore, the nighttime state is characterized by extensive coupling that results in a well-connected cone network.

Li, Hongyan; Chuang, Alice Z.; O'Brien, John

2010-01-01

209

Salmonella Biofilm Development Depends on the Phosphorylation Status of RcsB  

PubMed Central

The Rcs phosphorelay pathway is a complex signaling pathway involved in the regulation of many cell surface structures in enteric bacteria. In response to environmental stimuli, the sensor histidine kinase (RcsC) autophosphorylates and then transfers the phosphate through intermediary steps to the response regulator (RcsB), which, once phosphorylated, regulates gene expression. Here, we show that Salmonella biofilm development depends on the phosphorylation status of RcsB. Thus, unphosphorylated RcsB, hitherto assumed to be inactive, is essential to activate the expression of the biofilm matrix compounds. The prevention of RcsB phosphorylation either by the disruption of the phosphorelay at the RcsC or RcsD level or by the production of a nonphosphorylatable RcsB allele induces biofilm development. On the contrary, the phosphorylation of RcsB by the constitutive activation of the Rcs pathway inhibits biofilm development, an effect that can be counteracted by the introduction of a nonphosphorylatable RcsB allele. The inhibition of biofilm development by phosphorylated RcsB is due to the repression of CsgD expression, through a mechanism dependent on the accumulation of the small noncoding RNA RprA. Our results indicate that unphosphorylated RcsB plays an active role for integrating environmental signals and, more broadly, that RcsB phosphorylation acts as a key switch between planktonic and sessile life-styles in Salmonella enterica serovar Typhimurium.

Latasa, Cristina; Garcia, Begona; Echeverz, Maite; Toledo-Arana, Alejandro; Valle, Jaione; Campoy, Susana; Garcia-del Portillo, Francisco; Solano, Cristina

2012-01-01

210

Salmonella biofilm development depends on the phosphorylation status of RcsB.  

PubMed

The Rcs phosphorelay pathway is a complex signaling pathway involved in the regulation of many cell surface structures in enteric bacteria. In response to environmental stimuli, the sensor histidine kinase (RcsC) autophosphorylates and then transfers the phosphate through intermediary steps to the response regulator (RcsB), which, once phosphorylated, regulates gene expression. Here, we show that Salmonella biofilm development depends on the phosphorylation status of RcsB. Thus, unphosphorylated RcsB, hitherto assumed to be inactive, is essential to activate the expression of the biofilm matrix compounds. The prevention of RcsB phosphorylation either by the disruption of the phosphorelay at the RcsC or RcsD level or by the production of a nonphosphorylatable RcsB allele induces biofilm development. On the contrary, the phosphorylation of RcsB by the constitutive activation of the Rcs pathway inhibits biofilm development, an effect that can be counteracted by the introduction of a nonphosphorylatable RcsB allele. The inhibition of biofilm development by phosphorylated RcsB is due to the repression of CsgD expression, through a mechanism dependent on the accumulation of the small noncoding RNA RprA. Our results indicate that unphosphorylated RcsB plays an active role for integrating environmental signals and, more broadly, that RcsB phosphorylation acts as a key switch between planktonic and sessile life-styles in Salmonella enterica serovar Typhimurium. PMID:22582278

Latasa, Cristina; García, Begoña; Echeverz, Maite; Toledo-Arana, Alejandro; Valle, Jaione; Campoy, Susana; García-del Portillo, Francisco; Solano, Cristina; Lasa, Iñigo

2012-05-11

211

A recombinant Escherichia coli whole cell biocatalyst harboring a cytochrome P450cam monooxygenase system coupled with enzymatic cofactor regeneration  

Microsoft Academic Search

A cytochrome P450cam monooxygenase (P450cam) system from the soil bacterium Pseudomonas putida requires electron transfer among three different proteins and a cofactor, nicotinamide adenine dinucleotide (NADH), for oxygenation of its natural substrate, camphor. Herein, we report a facile way to significantly enhance the catalytic efficiency of the P450cam system by the coupling of its native electron transfer system with enzymatic

Tsuyoshi Mouri; Junji Michizoe; Hirofumi Ichinose; Noriho Kamiya; Masahiro Goto

2006-01-01

212

Species- and tissue-dependent diversity of G-protein beta subunit phosphorylation: evidence for a cofactor.  

PubMed Central

We previously reported that, in the membranes of HL-60 cells during activation of G-proteins, a phosphate transfer reaction occurs which involves transient G-protein beta subunit (G beta) phosphorylation [Wieland, Nürnberg, Ulibarri, Kaldenberg-Stasch, Schultz and Jakobs (1993) J. Biol. Chem. 268, 18111-18118]. Here, the generality of this phenomenon is evaluated by studying membranes of various tissues obtained from different mammalian species. All membranes tested expressed at least G beta 1 and G beta 2 subunits. Cell membranes from bovine and porcine brain and liver, rat brain and human blood cells exhibited predominantly G beta 1 or both subtypes at roughly equal concentrations. In contrast, significantly more G beta 2 immunoreactivity was detected in membranes from human placenta. Bovine and porcine liver membranes exhibited weak, G beta-specific immunoreactive signals. Conversely, these membranes showed the highest levels of G beta phosphorylation after incubation with [gamma-32P]GTP or 35S-labelled guanosine 5'-[gamma-thio]triphosphate. Interestingly, G beta-specific phosphorylation of membranes from human erythrocytes and platelets was very weak. G beta phosphorylation was confirmed by immunoprecipitation with G beta-specific antibodies, and the target amino acid was identified as histidine. On SDS/PAGE, phosphorylated or thiophosphorylated G beta-proteins differed in their apparent molecular size from unmodified G beta-proteins. Moreover, phosphorylated G beta-proteins differed in a species-dependent fashion in their electrophoretic mobility. Solubilization of membrane proteins with detergent did not abolish G beta phosphorylation. In contrast, reconstituted purified Gi/Go proteins showed no G beta phosphorylation. From these experiments we conclude that: (i) G beta phosphorylation represents a general phenomenon occurring in the cells of various species to different degrees, (ii) phosphorylated G beta-proteins exhibit species-dependent diverse electrophoretic mobilities, and (iii) G beta phosphorylation requires a membrane-associated cofactor(s) which is lost during routine G-protein purification.

Nurnberg, B; Harhammer, R; Exner, T; Schulze, R A; Wieland, T

1996-01-01

213

Agrobacterium tumefaciens-gene transfer into wheat tissues  

Microsoft Academic Search

DNA can be transferred by Agrobacterium tumefaciens to wheat, albeit at very low frequencies. Transfer of agrobacterial DNA occurred in cultures where the embryos had been subjected to partial enzymatic digestion prior to cocultivation with the bacteria. It is unclear whether this is by the normal process mediated by the Ti virulence genes and the border repeats of the T-DNA.

Pauline A. Mooney; Peter B. Goodwin; Elizabeth S. Dennis; Danny J. Llewellyn

1991-01-01

214

Tyrosine phosphorylation of a 120-kilodalton pp60src substrate upon epidermal growth factor and platelet-derived growth factor receptor stimulation and in polyomavirus middle-T-antigen-transformed cells.  

PubMed Central

The monoclonal antibody 2B12 is directed toward p120, a 120-kDa cellular protein originally identified as a protein tyrosine kinase substrate in cells expressing membrane-associated oncogenic variants of pp60src. In this report, we show that p120 was tyrosine phosphorylated in avian cells expressing membrane-associated, enzymatically activated variants of c-src, including variants having structural alterations in the src homology regions 2 and 3. In contrast, p120 was not tyrosine phosphorylated in cells expressing enzymatically activated, nonmyristylated pp60src. Furthermore, p120 was tyrosine phosphorylated in avian cells expressing middle T antigen, the transforming protein of polyomavirus, as well as in rodent cells stimulated with either epidermal growth factor (EGF) or platelet-derived growth factor. Analysis of the time course of p120 tyrosine phosphorylation in EGF-stimulated cells revealed a rapid onset of tyrosine phosphorylation. In addition, both the extent and duration of p120 phosphorylation increased when cells overexpressing the EGF receptor were stimulated with EGF. Biochemical analysis showed that p120 (in both normal and src-transformed cells) was membrane associated, was myristylated, and was phosphorylated on serine and threonine residues. Hence, p120 appears to be a substrate of both nonreceptor- and ligand-activated transmembrane receptor tyrosine kinases and of serine/threonine kinases and is perhaps a component of both mitogen-stimulated and tyrosine kinase oncogene-induced signaling pathways. Images

Kanner, S B; Reynolds, A B; Parsons, J T

1991-01-01

215

Motif-All: discovering all phosphorylation motifs  

PubMed Central

Background Phosphorylation motifs represent common patterns around the phosphorylation site. The discovery of such kinds of motifs reveals the underlying regulation mechanism and facilitates the prediction of unknown phosphorylation event. To date, people have gathered large amounts of phosphorylation data, making it possible to perform substrate-driven motif discovery using data mining techniques. Results We describe an algorithm called Motif-All that is able to efficiently identify all statistically significant motifs. The proposed method explores a support constraint to reduce search space and avoid generating random artifacts. As the number of phosphorylated peptides are far less than that of unphosphorylated ones, we divide the mining process into two stages: The first step generates candidates from the set of phosphorylated sequences using only support constraint and the second step tests the statistical significance of each candidate using the odds ratio derived from the whole data set. Experimental results on real data show that Motif-All outperforms current algorithms in terms of both effectiveness and efficiency. Conclusions Motif-All is a useful tool for discovering statistically significant phosphorylation motifs. Source codes and data sets are available at: http://bioinformatics.ust.hk/MotifAll.rar.

2011-01-01

216

Tyrosine phosphorylation of the asialoglycoprotein receptor  

SciTech Connect

The asialoglycoprotein (ASGP) receptor undergoes constitutive endocytosis through the coated pit/coated vesicle pathway in hepatocytes. Studies on HepG2 cells have shown that the receptor is phosphorylated at serine under control conditions and following protein kinase C stimulation. This study examined whether the ASGP receptor could also serve as a substrate for a tyrosine kinase in HepG2 cells. 32P labeling was performed in membrane preparations, in permeabilized cells at 4 degrees C, and in intact cells at 37 degrees C. The phosphorylated ASGP receptor was isolated by immunoprecipitation, hydrolyzed in 6 N HCl at 110 degrees C, and analyzed by two-dimensional high voltage electrophoresis. The receptor isolated from a membrane preparation incubated in vitro with (gamma-32P)ATP incorporated radiolabel predominantly (greater than 90%) into phosphotyrosine. ASGP receptor phosphorylation at both tyrosine and serine was detected in intact cells incubated with phosphatase inhibitors for 60 min at 37 degrees C. The presence of both phenylarsine oxide (20 microM) and sodium orthovanadate (200 microM) was required for tyrosine phosphorylation. Use of these inhibitors together resulted in a 16.4-fold increase in phosphorylation of the immunoprecipitated ASGP receptor, whereas phosphorylation of total HepG2 membrane proteins was not significantly augmented by this procedure. Selective proteolytic digestion of ASGP receptors in isolated vesicles demonstrated that the phosphorylation site identified in these studies is located at tyrosine 5 in the cytoplasmic tail.

Fallon, R.J. (Washington Univ. School of Medicine, St. Louis, MO (USA))

1990-02-25

217

Combinatorial enzymatic synthesis of heparan sulfate.  

PubMed

Escherichia coli K5 heparosan was enzymatically modified by Chen and colleagues to construct a library of heparan sulfate polysaccharides for evaluation, leading to the discovery that a 2-O-sulfoiduronic acid residue is not essential for antithrombin-mediated anticoagulant activity in larger oligosaccharide and polysaccharide structures. PMID:17884627

Linhardt, Robert J; Kim, Jin-Hwan

2007-09-01

218

Enzymatic saccharification of sugar-beet pulp  

Microsoft Academic Search

Nine commercial enzymatic preparations have been tested for their ability to release ferulic acid, rhamnose, arabinose, and galacturonic acid from sugar-beet pulp. SP 584, SP 585, and SP 342 from Novo Nordisk gave the highest release of ferulic acid, arabinose, and rhamnose. SP 584 and SP 585 degraded the pulp more rapidly than SP 342. Only SP 342 released free

V. Micard; C. M. G. C. Renard; J.-F. Thibault

1996-01-01

219

Asymmetric enzymatic oxidoreductions in organic solvents  

Microsoft Academic Search

It is now beyond doubt that enzymes can vigorously work even in neat organic solvents containing little or no water. Switching the enzymatic reaction medium from aqueous to nonaqueous can make previously problematic processes feasible through, for example, increased substrate solubility or diminished side reactions. Moreover, when placed in this highly unnatural milieu, enzymes exhibit new and potentially valuable properties,

Alexander M Klibanov

2003-01-01

220

Inhibition of enzymatic cellulolysis by phenolic compounds.  

PubMed

Phenolics derived from lignin and other plant components can pose significant inhibition on enzymatic conversion of cellulosic biomass materials to useful chemicals. Understanding the mechanism of such inhibition is of importance for the development of viable biomass conversion technologies. In native plant cell wall, most of the phenolics and derivatives are found in polymeric lignin. When biomass feedstocks are pretreated (prior to enzymatic hydrolysis), simple or oligomeric phenolics and derivatives are often generated from lignin modification/degradation, which can inhibit biomass-converting enzymes. To further understand how such phenolic substances may affect cellulase reaction, we carried out a comparative study on a series of simple and oligomeric phenolics representing or mimicking the composition of lignin or its degradation products. Consistent to previous studies, we observed that oligomeric phenolics could exert more inhibition on enzymatic cellulolysis than simple phenolics. Oligomeric phenolics could inactivate cellulases by reversibly complexing them. Simple and oligomeric phenolics could also inhibit enzymatic cellulolysis by adsorbing onto cellulose. Individual cellulases showed different susceptibility toward these inhibitions. Polyethylene glycol and tannase could respectively bind and degrade the studied oligomeric phenolics, and by doing so mitigate the oligomeric phenolic's inhibition on cellulolysis. PMID:22112906

Tejirian, Ani; Xu, Feng

2010-11-18

221

ON THE SIMULATION OF ENZYMATIC DIGEST PATTERNS  

Technology Transfer Automated Retrieval System (TEKTRAN)

A simulation methodology for predicting the time-course of enzymatic digestions is described. The model is based solely on the enzyme’s sub-site architecture and concomitant binding energies. This allows sub-site binding energies to be used to predict the evolution of the relative amounts of differ...

222

Frank Westheimer's Early Demonstration of Enzymatic Specificity  

ERIC Educational Resources Information Center

|In this article I review one of the most significant accomplishments of Frank H. Westheimer, one of the most respected chemists of the 20th century. This accomplishment was a series of stereospecific enzymatic oxidation and reduction experiments that led chemists to recognize what we now call the enantiotopic and diastereotopic relationships of…

Ault, Addison

2008-01-01

223

Heavy metal pollution and soil enzymatic activity  

Microsoft Academic Search

The activity of hydrolytic soil enzymes was studied on spruce mor, polluted with Cu and Zn from a brass foundry in Sweden. Approximately straight regression lines were obtained between enzymatic activity or respiration rate and log Cu+Zn concentration, with highly significant negative regression coefficients for urease and acid phosphatase activity as well as respiration rate, whereas ß-glucosidase activity was not

Germund Tyler

1974-01-01

224

Ethanol from biomass by enzymatic hydrolysis  

SciTech Connect

Enzymes are biological catalysts that generally are designed to do one job well, but to do one job only. Therefore, the enzymes that catalyze the hydrolysis of cellulose to sugar do not break down the sugars. Thus, enzymatic processes are capable of yields approaching 100%. Enzymatic hydrolysis processes have been under development for only 10 years. Although improvements have been made in enzymatic technology, more are both possible and necessary. The important research issues include understanding the processes necessary to render the crystalline cellulose easily digestible, understanding and improving the basic mechanisms in the hydrolysis step, and developing better and less expensive enzymes. The hemicellulose fraction (25%) is primarily composed of xylan, which is simple to convert to the simple sugar xylose, but the xylose is difficult to ferment to ethanol. There were no practical systems for xylose fermentation 10 years ago. Today, methods have been identified using new yeasts, fungi, bacteria, and processes combining enzymes and yeasts. Although none of the fermentations is yet ready for commercial use, considerable progress has been made. The following sections describe current research efforts in each of the major areas (cellulose hydrolysis, xylose fermentation, and lignin conversion), with an emphasis on enzymatic hydrolysis using fungal enzymes.

Wright, J.D.

1988-08-01

225

Ultrasonic acceleration of enzymatic processing of cotton  

Technology Transfer Automated Retrieval System (TEKTRAN)

Enzymatic bio-processing of cotton generates significantly less hazardous wastewater effluents, which are readily biodegradable, but it also has several critical shortcomings that impede its acceptance by industries: expensive processing costs and slow reaction rates. It has been found that the intr...

226

pH & Rate of Enzymatic Reactions.  

ERIC Educational Resources Information Center

|A quantitative and inexpensive way to measure the rate of enzymatic reaction is provided. The effects of different pH levels on the reaction rate of an enzyme from yeast are investigated and the results graphed. Background information, a list of needed materials, directions for preparing solutions, procedure, and results and discussion are…

Clariana, Roy B.

1991-01-01

227

Continuous Enzymatic Synthesis with Coenzyme Regeneration.  

National Technical Information Service (NTIS)

NAD(H) dependent enzymatic production of L-alanine and L-leucine was performed in an enzyme membrane reactor (EMR). An EMR is a continuous stirred tank reactor which is equipped with an ultrafiltration (UF) membrane at the exit of the reactor to retain en...

R. Wichmann

1981-01-01

228

Enzymatic Conversion of Red Cells for Transfusion.  

National Technical Information Service (NTIS)

Our interest is in enzymatically converting type A and B erythrocytes to type O under conditions which render them useful in transfusion therapy. We are currently attempting such conversions of A cells using an alpha-N-acetylgalactosamindase (A-zyme) for ...

J. Goldstein

1985-01-01

229

Enzymatic biosynthesis of ricinoleic acid estolides  

Microsoft Academic Search

Candida rugosa lipase has been shown to have sufficient activity to catalyse the enzymatic synthesis of ricinoleic acid estolides in a batch reactor. The water requirements of the reactor change during the reaction: at the beginning of the process a minimum amount of water is necessary but, later, the reaction mixture must be dried out to obtain an estolide with

A. Bódalo-Santoyo; J. Bastida-Rodríguez; M. F. Máximo-Martín; M. C. Montiel-Morte; M. D. Murcia-Almagro

2005-01-01

230

STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation.  

PubMed Central

Recent studies have indicated that serine phosphorylation regulates the activities of STAT1 and STAT3. However, the kinase(s) responsible and the role of serine phosphorylation in STAT function remain unresolved. In the present studies, we examined the growth factor-dependent serine phosphorylation of STAT1 and STAT3. We provide in vitro and in vivo evidence that the ERK family of mitogen-activated protein (MAP) kinases, but not JNK or p38, specifically phosphorylate STAT3 at serine 727 in response to growth factors. Evidence for additional mitogen-regulated serine phosphorylation is also provided. STAT1 is a relatively poor substrate for all MAP kinases tested both in vitro and in vivo. STAT3 serine phosphorylation, not its tyrosine phosphorylation, results in retarded mobility of the STAT3 protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Importantly, serine 727 phosphorylation negatively modulates STAT3 tyrosine phosphorylation, which is required for dimer formation, nuclear translocation, and the DNA binding activity of this transcriptional regulator. Interestingly, the cytokine interleukin-6 also stimulates STAT3 serine phosphorylation, but in contrast to growth factors, this occurs by an ERK-independent process.

Chung, J; Uchida, E; Grammer, T C; Blenis, J

1997-01-01

231

Transfer form  

Cancer.gov

06/06 Transfer Investigational Agent Form This form is to be used for an intra-in stitutional transfer, one transfer/form. Cancer Therapy Evaluation Program Division of Cancer Treatment and Diagnosis National Cancer Institute National Institutes of

232

Comparison of enzymatic and non-enzymatic nitroethane anion formation: thermodynamics and contribution of tunneling.  

PubMed

In the reaction of nitroalkane oxidase (NAO), the oxidation of nitroalkanes to the corresponding aldehydes or ketones is initiated by the deprotonation of the neutral nitroalkane. The energetics of nitroethane ionization for both the enzymatic and non-enzymatic reactions have been determined by measuring rate constants as a function of temperature. At 25 degrees C, the rate constant for the acetate-catalyzed reaction is a billionfold smaller than the kcat/Km value for NAO. This corresponds to a difference of 12.3 kcal/mol in the free energy of activation that is largely due to a difference in the activation enthalpy. Analysis of the temperature dependence of the deuterium kinetic isotope effects on the reactions yields similar DeltaEa and AH/AD values for the acetate, phosphate, and NAO-catalyzed reactions that fall within the semiclassical limits, consistent with similar contributions of tunneling to the enzymatic and non-enzymatic reactions. PMID:15149217

Valley, Michael P; Fitzpatrick, Paul F

2004-05-26

233

Pseudomonas aeruginosa Exotoxin Y Is a Promiscuous Cyclase That Increases Endothelial Tau Phosphorylation and Permeability*  

PubMed Central

Exotoxin Y (ExoY) is a type III secretion system effector found in ? 90% of the Pseudomonas aeruginosa isolates. Although it is known that ExoY causes inter-endothelial gaps and vascular leak, the mechanisms by which this occurs are poorly understood. Using both a bacteria-delivered and a codon-optimized conditionally expressed ExoY, we report that this toxin is a dual soluble adenylyl and guanylyl cyclase that results in intracellular cAMP and cGMP accumulation. The enzymatic activity of ExoY caused phosphorylation of endothelial Tau serine 214, accumulation of insoluble Tau, inter-endothelial cell gap formation, and increased macromolecular permeability. To discern whether the cAMP or cGMP signal was responsible for Tau phosphorylation and barrier disruption, pulmonary microvascular endothelial cells were engineered for the conditional expression of either wild-type guanylyl cyclase, which synthesizes cGMP, or a mutated guanylyl cyclase, which synthesizes cAMP. Sodium nitroprusside stimulation of the cGMP-generating cyclase resulted in transient Tau serine 214 phosphorylation and gap formation, whereas stimulation of the cAMP-generating cyclase induced a robust increase in Tau serine 214 phosphorylation, gap formation, and macromolecular permeability. These results indicate that the cAMP signal is the dominant stimulus for Tau phosphorylation. Hence, ExoY is a promiscuous cyclase and edema factor that uses cAMP and, to some extent, cGMP to induce the hyperphosphorylation and insolubility of endothelial Tau. Because hyperphosphorylated and insoluble Tau are hallmarks in neurodegenerative tauopathies such as Alzheimer disease, acute Pseudomonas infections cause a pathophysiological sequela in endothelium previously recognized only in chronic neurodegenerative diseases.

Ochoa, Cristhiaan D.; Alexeyev, Mikhail; Pastukh, Viktoriya; Balczon, Ron; Stevens, Troy

2012-01-01

234

IGF-I Stimulates Cooperative Interaction between the IGF-I Receptor and CSK Homologous Kinase that Regulates SHPS-1 Phosphorylation in Vascular Smooth Muscle Cells  

PubMed Central

IGF-I plays an important role in smooth muscle cell proliferation and migration. In vascular smooth muscle cells cultured in 25 mm glucose, IGF-I stimulated a significant increase in Src homology 2 domain containing protein tyrosine phosphatase substrate-1 (SHPS-1) phosphorylation compared with 5 mm glucose and this increase was required for smooth muscle cell proliferation. A proteome-wide screen revealed that carboxyl-terminal SRC kinase homologous kinase (CTK) bound directly to phosphotyrosines in the SHPS-1 cytoplasmic domain. Because the kinase(s) that phosphorylates these tyrosines in response to IGF-I is unknown, we determined the roles of IGF-I receptor (IGF-IR) and CTK in mediating SHPS-1 phosphorylation. After IGF-I stimulation, CTK was recruited to IGF-IR and subsequently to phospho-SHPS-1. Expression of an IGF-IR mutant that eliminated CTK binding reduced CTK transfer to SHPS-1, SHPS-1 phosphorylation, and cell proliferation. IGF-IR phosphorylated SHPS-1, which provided a binding site for CTK. CTK recruitment to SHPS-1 resulted in a further enhancement of SHPS-1 phosphorylation. CTK knockdown also impaired IGF-I-stimulated SHPS-1 phosphorylation and downstream signaling. Analysis of specific tyrosines showed that mutation of tyrosines 428/452 in SHPS-1 to phenylalanine reduced SHPS-1 phosphorylation but allowed CTK binding. In contrast, the mutation of tyrosines 469/495 inhibited IGF-IR-mediated the phosphorylation of SHPS-1 and CTK binding, suggesting that IGF-IR phosphorylated Y469/495, allowing CTK binding, and that CTK subsequently phosphorylated Y428/452. Based on the above findings, we conclude that after IGF-I stimulation, CTK is recruited to IGF-IR and its recruitment facilitates CTK's subsequent association with phospho-SHPS-1. This results in the enhanced CTK transfer to SHPS-1, and the two kinases then fully phosphorylate SHPS-1, which is necessary for IGF-I stimulated cellular proliferation.

Radhakrishnan, Yashwanth; Shen, Xinchun; Maile, Laura A.; Xi, Gang

2011-01-01

235

Crossflow microfiltration of passion fruit juice after partial enzymatic liquefaction  

Microsoft Academic Search

To obtain clarified passion fruit juice, crossflow microfiltration after enzymatic liquefaction was studied using ceramic membranes with 0.2 ?m pore size. The effect of a high-rate enzymatic treatment for the degradation of suspended solids was assessed, resulting in the selection of a commercial enzymatic preparation. Partial enzymatic liquefaction of cell-wall polysaccharides prior to microfiltration provided an unusual pattern of flux

F. Vaillant; P. Millan; G. O’Brien; M. Dornier; M. Decloux; M. Reynes

1999-01-01

236

Enzymatic route to preparative-scale synthesis of UDP-GlcNAc/GalNAc, their analogues and GDP-fucose  

PubMed Central

Enzymatic synthesis using glycosyltransferases is a powerful approach to building polysaccharides with high efficiency and selectivity. Sugar nucleotides are fundamental donor molecules in enzymatic glycosylation reactions by Leloir-type glycosyltransferases. The applications of these donors are restricted by their limited availability. In this protocol, N-acetylglucosamine (GlcNAc)/N-acetylgalactosamine (GalNAc) are phosphorylated by N-acetylhexosamine 1-kinase (NahK) and subsequently pyrophosphorylated by N-acetylglucosamine uridyltransferase (GlmU) to give UDP–GlcNAc/GalNAc. Other UDP–GlcNAc/GalNAc analogues can also be prepared depending on the tolerance of these enzymes to the modified sugar substrates. Starting from l-fucose, GDP–fucose is constructed by one bifunctional enzyme l-fucose pyrophosphorylase (FKP) via two reactions.

Zhao, Guohui; Guan, Wanyi; Cai, Li; Wang, Peng George

2010-01-01

237

Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high-solids loadings  

PubMed Central

Background Screening new lignocellulosic biomass pretreatments and advanced enzyme systems at process relevant conditions is a key factor in the development of economically viable lignocellulosic ethanol. Shake flasks, the reaction vessel commonly used for screening enzymatic saccharifications of cellulosic biomass, do not provide adequate mixing at high-solids concentrations when shaking is not supplemented with hand mixing. Results We identified roller bottle reactors (RBRs) as laboratory-scale reaction vessels that can provide adequate mixing for enzymatic saccharifications at high-solids biomass loadings without any additional hand mixing. Using the RBRs, we developed a method for screening both pretreated biomass and enzyme systems at process-relevant conditions. RBRs were shown to be scalable between 125 mL and 2 L. Results from enzymatic saccharifications of five biomass pretreatments of different severities and two enzyme preparations suggest that this system will work well for a variety of biomass substrates and enzyme systems. A study of intermittent mixing regimes suggests that mass transfer limitations of enzymatic saccharifications at high-solids loadings are significant but can be mitigated with a relatively low amount of mixing input. Conclusion Effective initial mixing to promote good enzyme distribution and continued, but not necessarily continuous, mixing is necessary in order to facilitate high biomass conversion rates. The simplicity and robustness of the bench-scale RBR system, combined with its ability to accommodate numerous reaction vessels, will be useful in screening new biomass pretreatments and advanced enzyme systems at high-solids loadings.

2009-01-01

238

Conformation-dependent phosphorylation of p53  

PubMed Central

Phosphorylation of the p53 tumor suppressor protein is known to modulate its functions. Using bacterially produced glutathione S-transferase (GST)-p53 fusion protein and baculovirus-expressed histidine-tagged p53 (Hisp53), we have determined human p53 phosphorylation by purified forms of jun-N-kinase (JNK), protein kinase A (PKA), and ? subunit of casein kinase II (CKII?) as well as by kinases present in whole cell extracts (WCEs). We demonstrate that PKA is potent p53 kinase, albeit, in a conformation- and concentration-dependent manner, as concluded by comparing full-length with truncated forms of p53. We further demonstrate JNK interaction with GST-p53 and the ability of JNK to phosphorylate truncated forms of GST-p53 or full-length Hisp53. Dependence of phosphorylation on conformation of p53 is further supported by the finding that the wild-type form of p53 (p53wt) undergoes better phosphorylation by CKII? and by WCE kinases than mutant forms of p53 at amino acid 249 (p53249) or 273 (p53273). Moreover, shifting the kinase reaction’s temperature from 37°C to 18°C reduces the phosphorylation of mutant p53 to a greater extent than of p53wt. Comparing truncated forms of p53 revealed that the ability of CKII?, PKA, or WCE kinases to phosphorylate p53 requires amino acids 97–155 within the DNA-binding domain region. Among three 20-aa peptides spanning this region we have identified residues 97–117 that increase p53 phosphorylation by CKII? while inhibiting p53 phosphorylation by PKA or WCE kinases. The importance of this region is further supported by computer modeling studies, which demonstrated that mutant p53249 exhibits significant changes to the conformation of p53 within amino acids 97–117. In summary, phosphorylation-related analysis of different p53 forms in vitro indicates that conformation of p53 is a key determinant in its availability as a substrate for different kinases, as for the phosphorylation pattern generated by the same kinase.

Adler, Victor; Pincus, Matthew R.; Minamoto, Toshinari; Fuchs, Serge Y.; Bluth, Mark J.; Brandt-Rauf, Paul W.; Friedman, Fred K.; Robinson, Richard C.; Chen, James M.; Wang, Xin Wei; Harris, Curtis C.; Ronai, Ze'ev

1997-01-01

239

Tyrosyl phosphorylation toggles a Runx1 switch  

PubMed Central

The Runx1 transcription factor is post-translationally modified by seryl/threonyl phosphorylation, acetylation, and methylation that control its interactions with transcription factor partners and epigenetic coregulators. In this issue of Genes & Development, Huang and colleagues (pp. 1587–1601) describe how the regulation of Runx1 tyrosyl phosphorylation by Src family kinases and the Shp2 phosphatase toggle Runx1's interactions between different coregulatory molecules.

Neel, Benjamin G.; Speck, Nancy A.

2012-01-01

240

The effect of phosphorylation on pyruvate dehydrogenase  

Microsoft Academic Search

Phosphorylation of the pyruvate dehydrogenase component (E1) of the muscle pyruvate dehydrogenase complex (PDC) by E1-kinase inhibits substrate conversion both in oxidative and non-oxidative reactions. Circular dichroism spectra were used to monitor the effect of phosphorylation on the following stages of the process: holoform formation from apo-E1 and thiamine pyrophosphate (TPP), substrate binding and active site deacetylation. It has been

L. G. Korotchkina; L. S. Khailova; S. E. Severin

1995-01-01

241

Increased phospholipase A2 activity with phosphorylation of peroxiredoxin 6 requires a conformational change in the protein  

PubMed Central

We have shown previously and confirmed in the present study that the phospholipase A2 (PLA2) activity of peroxiredoxin 6 (Prdx6) is markedly increased by phosphorylation. This report evaluated the conformation and thermodynamic stability of Prdx6 protein after phosphorylation to understand the physical basis for increased activity. Phosphorylation resulted in decreased negative far-UV CD, increased ANS binding, and lack of rigid tertiary structure, compatible with a change in conformation to that of a molten globule. The ?GDo was 3.3 ± 0.3 kcal mol-1 for Prdx6 and 1.7 ± 0.7 kcal mol-1 for pPrdx6 suggesting that phosphorylation destabilizes the protein. Phosphorylation of Prdx6 changed the conformation of the N-terminal domain exposing Trp 33, as determined by tryptophan fluorescence and NaI fluorescence quenching. The kinetics of interaction of proteins with unilamellar liposomes (DPPC/egg PC/cholesterol/PG; 50:25:15:10, mol/mol) was evaluated with tryptophan fluorescence. pPrdx6 bound to liposomes with higher affinity (Kd, 5.6 ± 1.2 ?M) in comparison to Prdx6 (Kd, 24.9 ± 4.5 ?M). By isothermal titration calorimetry, pPrdx6 bound to liposomes with a large exothermic heat loss (?H = -31.49 ± 0.22 kcal mol-1). Correlating our conformation studies with the published crystal structure of oxidized Prdx6 suggests that phosphorylation results in exposure of hydrophobic residues, thereby providing accessibility to the sites for liposome binding. Because binding of the enzyme to the phospholipid substrate interface is a requirement for PLA2 activity, these results indicate that a change in the conformation of Prdx6 upon its phosphorylation is the basis for enhancement of PLA2 enzymatic activity.

Rahaman, Hamidur; Zhou, Suiping; Dodia, Chandra; Feinstein, Sheldon I.; Huang, Shaohui; Speicher, David; Fisher, Aron B.

2012-01-01

242

In Vivo and in Vitro Phosphorylation of Membrane and Soluble Forms of Soybean Nodule Sucrose Synthase1  

PubMed Central

Sucrose synthase (SS) is a known phosphoserine (SerP)-containing enzyme in a variety of plant “sink” organs, including legume root nodules, where it is phosphorylated primarily at Ser-11. Using immunofluorescence confocal microscopy, we documented that part of the total SS (nodulin-100) pool in mature soybean (Glycine max) nodules is apparently associated with the plasma membrane in situ, and we report that this association is very “tight,” as evidenced by a variety of chemical and enzymatic pretreatments of the isolated microsomal fraction. To investigate the in situ and in planta phosphorylation state of the membrane (m) and soluble (s) forms of nodule SS, three complementary approaches were used. First, excised nodules were radiolabeled in situ with [32P]Pi for subsequent analysis of phosphorylated m- and s-SS; second, immunopurified s- and m-SS were used as substrate in “on-bead” assays of phosphorylation by nodule Ca2+-dependent protein kinase; and third, SS-Ser-11(P) phosphopeptide-specific antibodies were developed and used. The collective results provide convincing evidence that microsomal nodulin-100 is phosphorylated in mature nodules, and that it is hypophosphorylated relative to s-SS (on an equivalent SS protein basis) in attached, unstressed nodules. Moreover, the immunological data and related phosphopeptide mapping analyses indicate that a homologous N-terminal seryl-phosphorylation domain and site reside in microsomal nodulin-100. We also observed that mild, short-term inorganic nitrogen and salt stresses have a significant negative impact on the content and N-terminal phosphorylation state of nodule m- and s-SS, with the former being the more sensitive of the two SS forms.

Komina, Olga; Zhou, You; Sarath, Gautam; Chollet, Raymond

2002-01-01

243

Increased phospholipase A2 activity with phosphorylation of peroxiredoxin 6 requires a conformational change in the protein.  

PubMed

We have shown previously and confirmed in this study that the phospholipase A(2) (PLA(2)) activity of peroxiredoxin 6 (Prdx6) is markedly increased by phosphorylation. This report evaluates the conformation and thermodynamic stability of Prdx6 protein after phosphorylation to understand the physical basis for increased activity. Phosphorylation resulted in decreased negative far-UV CD, strengthened ANS binding, and a lack of rigid tertiary structure, compatible with a change in conformation to that of a molten globule. The ?G°(D) was 3.3 ± 0.3 kcal mol(-1) for Prdx6 and 1.7 ± 0.7 kcal mol(-1) for pPrdx6, suggesting that phosphorylation destabilizes the protein. Phosphorylation of Prdx6 changed the conformation of the N-terminal domain exposing Trp 33, as determined by tryptophan fluorescence and NaI fluorescence quenching. The kinetics of interaction of proteins with unilamellar liposomes (50:25:15:10 DPPC:egg PC:cholesterol:PG molar ratio) were evaluated with tryptophan fluorescence. pPrdx6 bound to liposomes with a higher affinity (K(d) = 5.6 ± 1.2 ?M) than Prdx6 (K(d) = 24.9 ± 4.5 ?M). By isothermal titration calorimetry, pPrdx6 bound to liposomes with a large exothermic heat loss (?H = -31.49 ± 0.22 kcal mol(-1)). Correlating our conformational studies with the published crystal structure of oxidized Prdx6 suggests that phosphorylation results in exposure of hydrophobic residues, thereby providing accessibility to the sites for liposome binding. Because binding of the enzyme to the phospholipid substrate interface is a requirement for PLA(2) activity, these results indicate that a change in the conformation of Prdx6 upon its phosphorylation is the basis for enhancement of PLA(2) enzymatic activity. PMID:22663767

Rahaman, Hamidur; Zhou, Suiping; Dodia, Chandra; Feinstein, Sheldon I; Huang, Shaohui; Speicher, David; Fisher, Aron B

2012-06-29

244

Comparison of chemical and enzymatic synthesis of 2 -acetamido-2-deoxy- d-mannose 6-phosphate: a new approach  

Microsoft Academic Search

Chemical and enzymatic methods to synthesis of 2-acetamido-2-deoxy-d-mannose-6-phosphate (ManNAc-6-P) have been investigated. A new preparative method has been developed although some established procedures were tried. In this new method, a 6-O-acetyl or 4,6-di-O-acetyl group of the per-O-acetylated 2-acetamido-2-deoxy-d-mannose (ManNAc) were regioselectively removed with an esterase from the yellow yeast, Rhodosporidium toruloides, followed by phosphorylation and O-deacetylation under mild conditions. 1H

Mei-Zheng Liu; Yuan C. Lee

2001-01-01

245

Comparison of chemical and enzymatic synthesis of 2-acetamido-2-deoxy-D-mannose 6-phosphate: a new approach.  

PubMed

Chemical and enzymatic methods to synthesis of 2-acetamido-2-deoxy-D-mannose-6-phosphate (ManNAc-6-P) have been investigated. A new preparative method has been developed although some established procedures were tried. In this new method, a 6-O-acetyl or 4,6-di-O-acetyl group of the per-O-acetylated 2-acetamido-2-deoxy-D-mannose (ManNAc) were regioselectively removed with an esterase from the yellow yeast, Rhodosporidium toruloides, followed by phosphorylation and O-deacetylation under mild conditions. 1H and 13C NMR data spectra of ManNAc-6-P were recorded. PMID:11270821

Liu, M Z; Lee, Y C

2001-02-15

246

Phosphorylation of prolactin and growth hormone.  

PubMed

To determine whether GH and prolactin could be phosphorylated, turkey GH, chicken GH, chicken prolactin and turkey prolactin were incubated in vitro with the catalytic subunit of protein kinase A and [gamma-32P]ATP. Phosphorylation was assessed after sodium dodecyl sulphate-polyacrylamide gel electrophoresis, Western blotting and autoradiography. Polyacrylamide electrophoresis showed that both purified native chicken GH and turkey GH were phosphorylated under the conditions employed. However, the glycosylated variant of chicken GH did not appear to be labelled. Chicken prolactin, turkey prolactin and the glycosylated variant of turkey prolactin were all intensely phosphorylated by protein kinase A. Ovine and rat prolactins could also be phosphorylated by protein kinase A. The phosphate content of different native prolactin (turkey, ovine and rat) and GH (ovine and chicken) preparations was also determined and found to be significant. Chicken pituitary cells in primary culture incorporated 32P in GH- and prolactin-like bands isolated by non-denaturing polyacrylamide gel electrophoresis, and this was stimulated by phorbol myristate acetate. Phosphorylation of GH and prolactin may thus explain some of the charge heterogeneity of these hormones. PMID:1632894

Arámburo, C; Montiel, J L; Proudman, J A; Berghman, L R; Scanes, C G

1992-06-01

247

Phosphorylation of human skeletal muscle myosin  

SciTech Connect

Phosphorylation of the P-light chains (phosphorylatable light chains) in human skeletal muscle myosin was studied in vitro and in vivo under resting an d contracted conditions. biopsy samples from rested vastus lateralis muscle of male and female subjects were incubated in oxygenated physiological solution at 30/sup 0/C. Samples frozen following a quiescent period showed the presence of only unphosphorylated P-light chains designated LC2f (light chain two of fast myosin) CL2s and LC2s'(light chains two of slow myosin). Treatment with caffeine (10 mM) or direct electrical stimulation resulted in the appearance of three additional bands which were identified as the phosphorylated forms of the P-light chains i.e. LC2f-P, LC2s-P and LC2s'-P. The presence of phosphate was confirmed by prior incubation with (/sup 30/P) orthophosphate. Muscle samples rapidly frozen from resting vastus lateralis muscle revealed the presence of unphosphorylated and phosphorylated P-light chains in approximately equal ratios. Muscle samples rapidly frozen following a maximal 10 second isometric contraction showed virtually only phosphorylated fast and slow P-light chains. These results reveal that the P-light chains in human fast and slow myosin may be rapidly phosphorylated, but the basal level of phosphorylation in rested human muscle considerably exceeds that observed in animal muscles studied in vitro or in situ.

Houston, M.E.; Lingley, M.D.; Stuart, D.S.; Hoffman-Goetz, L.

1986-03-01

248

Fibronectin phosphorylation by ecto-protein kinase  

SciTech Connect

The presence of membrane-associated, extracellular protein kinase (ecto-protein kinase) and its substrate proteins was examined with serum-free cultures of Swiss 3T3 fibroblast. When cells were incubated with ({gamma}-{sup 32})ATP for 10 min at 37{degree}C, four proteins with apparent molecular weights between 150 and 220 kDa were prominently phosphorylated. These proteins were also radiolabeled by lactoperoxidase catalyzed iodination and were sensitive to mild tryptic digestion, suggesting that they localized on the cell surface or in the extracellular matrix. Phosphorylation of extracellular proteins with ({gamma}-{sup 32}P)ATP in intact cell culture is consistent with the existence of ecto-protein kinase. Anti-fibronectin antibody immunoprecipitated one of the phosphoproteins which comigrated with a monomer and a dimer form of fibronectin under reducing and nonreducing conditions of electrophoresis, respectively. The protein had affinity for gelatin as demonstrated by retention with gelatin-conjugated agarose. This protein substrate of ecto-protein kinase was thus concluded to be fibronectin. The sites of phosphorylation by ecto-protein kinase were compared with those of intracellularly phosphorylated fibronectin by the analysis of radiolabeled amino acids and peptides. Ecto-protein kinase phosphorylated fibronectin at serine and threonine residues which were distinct from the sites of intracellular fibronectin phosphorylation.

Imada, Sumi; Sugiyama, Yayoi; Imada, Masaru (Meiji Institute of Health Science, Odawara (Japan))

1988-12-01

249

Phosphorylation meets nuclear import: a review  

PubMed Central

Phosphorylation is the most common and pleiotropic modification in biology, which plays a vital role in regulating and finely tuning a multitude of biological pathways. Transport across the nuclear envelope is also an essential cellular function and is intimately linked to many degeneration processes that lead to disease. It is therefore not surprising that phosphorylation of cargos trafficking between the cytoplasm and nucleus is emerging as an important step to regulate nuclear availability, which directly affects gene expression, cell growth and proliferation. However, the literature on phosphorylation of nucleocytoplasmic trafficking cargos is often confusing. Phosphorylation, and its mirror process dephosphorylation, has been shown to have opposite and often contradictory effects on the ability of cargos to be transported across the nuclear envelope. Without a clear connection between attachment of a phosphate moiety and biological response, it is difficult to fully understand and predict how phosphorylation regulates nucleocytoplasmic trafficking. In this review, we will recapitulate clue findings in the field and provide some general rules on how reversible phosphorylation can affect the nuclear-cytoplasmic localization of substrates. This is only now beginning to emerge as a key regulatory step in biology.

2010-01-01

250

Haloperoxidases: Enzymatic Synthesis of ?,?-Halohydrins from Gaseous Alkenes  

PubMed Central

The enzymatic synthesis of ?,?-halohydrins from gaseous alkenes is described. The enzymatic reaction required an alkene, a halide ion, dilute hydrogen peroxide, and a haloperoxidase enzyme. A wide range of gaseous alkenes were suitable for this reaction, including those containing isolated, conjugated, and cumulative carbon-carbon double bonds. Chlorohydrins, bromohydrins, and iodohydrins could be formed. The combining of this enzymatic synthesis with a previously described enzymatic synthesis of epoxides from ?,?-halohydrins provides an alternate pathway, other than the well-known enzymatic direct epoxidation pathway, from alkene to an epoxide.

Geigert, John; Neidleman, Saul L.; Dalietos, Demetrios J.; DeWitt, Susanne K.

1983-01-01

251

Ascorbate stimulates endothelial nitric oxide synthase enzyme activity by rapid modulation of its phosphorylation status  

PubMed Central

Long-term exposure to ascorbate is known to enhance endothelial nitric oxide synthase (eNOS) activity by stabilizing the eNOS cofactor tetrahydrobiopterin (BH4). We investigated acute effects of ascorbate on eNOS function in primary (HUVEC) and immortalized human endothelial cells (EA.hy926), aiming to provide a molecular explanation for the rapid vasodilatation seen in vivo upon administration of ascorbate. Enzymatic activity of eNOS and intracellular BH4 levels were assessed by means of an arginine–citrulline conversion assay and HPLC analysis, respectively. Over a period of 4 h, ascorbate steadily increased eNOS activity, although endothelial BH4 levels remained unchanged compared to untreated control cells. Immunoblot analyses revealed that as early as 5 min after treatment ascorbate dose-dependently increased phosphorylation at eNOS-Ser1177 and concomitantly decreased phosphorylation at eNOS-Thr495, a phosphorylation pattern indicative of increased eNOS activity. By employing pharmacological inhibitors, siRNA-mediated knockdown approaches, and overexpression of the catalytic subunit of protein phosphatase 2A (PP2A), we show that this effect was at least partly owing to reduction of PP2A activity and subsequent activation of AMP-activated kinase. In this report, we unravel a novel mechanism for how ascorbate rapidly activates eNOS independent of its effects on BH4 stabilization.

Ladurner, Angela; Schmitt, Christoph A.; Schachner, Daniel; Atanasov, Atanas G.; Werner, Ernst R.; Dirsch, Verena M.; Heiss, Elke H.

2012-01-01

252

Phosphorylation regulates myo-inositol-3-phosphate synthase: a novel regulatory mechanism of inositol biosynthesis.  

PubMed

myo-Inositol-3-phosphate synthase (MIPS) plays a crucial role in inositol homeostasis. Transcription of the coding gene INO1 is highly regulated. However, regulation of the enzyme is not well defined. We previously showed that MIPS is indirectly inhibited by valproate, suggesting that the enzyme is post-translationally regulated. Using (32)Pi labeling and phosphoamino acid analysis, we show that yeast MIPS is a phosphoprotein. Mass spectrometry analysis identified five phosphosites, three of which are conserved in the human MIPS. Analysis of phosphorylation-deficient and phosphomimetic site mutants indicated that the three conserved sites in yeast (Ser-184, Ser-296, and Ser-374) and humans (Ser-177, Ser-279, and Ser-357) affect MIPS activity. Both S296A and S296D yeast mutants and S177A and S177D human mutants exhibited decreased enzymatic activity, suggesting that a serine residue is critical at that location. The phosphomimetic mutations S184D (human S279D) and S374D (human S357D) but not the phosphodeficient mutations decreased activity, suggesting that phosphorylation of these two sites is inhibitory. The double mutation S184A/S374A caused an increase in MIPS activity, conferred a growth advantage, and partially rescued sensitivity to valproate. Our findings identify a novel mechanism of regulation of inositol synthesis by phosphorylation of MIPS. PMID:23902760

Deranieh, Rania M; He, Quan; Caruso, Joseph A; Greenberg, Miriam L

2013-07-30

253

Enzymatically Triggered Actuation of Miniaturized Tools  

PubMed Central

We demonstrate a methodology that utilizes the specificity of enzyme-substrate biomolecular interactions to trigger miniaturized tools under biocompatible conditions. Miniaturized grippers were constructed using multilayer hinges that employed intrinsic strain energy and biopolymer triggers, as well as ferromagnetic elements. This composition obviated the need for external energy sources, and allowed for remote manipulation of the tools. Selective enzymatic degradation of biopolymer hinge components triggered closing of the grippers; subsequent reopening was achieved with an orthogonal enzyme. We highlight the utility of these enzymatically triggered tools by demonstrating the biopsy of liver tissue from a model organ system and gripping and releasing an alginate bead. This strategy suggests an approach for the development of smart materials and devices that autonomously reconfigure in response to extremely specific biological environments.

Bassik, Noy; Brafman, Alla; Zarafshar, Aasiyeh M.; Jamal, Mustapha; Luvsanjav, Delgermaa; Selaru, Florin M.; Gracias, David H.

2010-01-01

254

A singular enzymatic megacomplex from Bacillus subtilis  

PubMed Central

Nonribosomal peptide synthetases (NRPS), polyketide synthases (PKS), and hybrid NRPS/PKS are of particular interest, because they produce numerous therapeutic agents, have great potential for engineering novel compounds, and are the largest enzymes known. The predicted masses of known enzymatic assembly lines can reach almost 5 megadaltons, dwarfing even the ribosome (?2.6 megadaltons). Despite their uniqueness and importance, little is known about the organization of these enzymes within the native producer cells. Here we report that an 80-kb gene cluster, which occupies ?2% of the Bacillus subtilis genome, encodes the subunits of ?2.5 megadalton active hybrid NRPS/PKS. Many copies of the NRPS/PKS assemble into a single organelle-like membrane-associated complex of tens to hundreds of megadaltons. Such an enzymatic megacomplex is unprecedented in bacterial subcellular organization and has important implications for engineering novel NRPS/PKSs.

Straight, Paul D.; Fischbach, Michael A.; Walsh, Christopher T.; Rudner, David Z.; Kolter, Roberto

2007-01-01

255

Phosphorylation of Tau by Fyn: Implications for Alzheimer's Disease  

Microsoft Academic Search

The abnormal phosphorylation of tau protein on serines and threonines is a hallmark characteristic of the neurofibrillary tangles of Alzheimer's disease (AD). The discovery that tau could be phosphorylated on tyrosine and evidence that A signal transduction involved tyrosine phosphorylation led us to question whether tyrosine phosphorylation of tau occurred during the neurodegenerative process. In this study we determined that

Gloria Lee; Ramasamy Thangavel; Vandana M. Sharma; Joel M. Litersky; Kiran Bhaskar; Sandy M. Fang; Lana H. Do; Athena Andreadis; Gary Van Hoesen; Hanna Ksiezak-Reding

2004-01-01

256

ENZYMATIC DEACYLATION OF S35-BENZYLPENICILLIN.  

PubMed

Pruess, David L. (University of Wisconsin, Madison), and Marvin J. Johnson. Enzymatic deacylation of S(35)-benzylpenicillin. J. Bacteriol. 90:380-383. 1965.-S(35)-benzylpenicillin, penicilloic acid, and penilloic acid were deacylated by cell suspensions of Escherichia coli and Micrococcus roseus. Both cultures deacylated penicillin most rapidly and penilloic acid least rapidly. The deacylase activity of M. roseus against penicilloic acid was cell-bound, probably requiring a metal ion for activity. PMID:14329451

PRUESS, D L; JOHNSON, M J

1965-08-01

257

Hybrid model for an enzymatic reactor  

Microsoft Academic Search

Cheese whey proteolysis, carried out by immobilized enzymes, can either change or evidence functional properties of the produced\\u000a peptides, increasing the potential applications of this byproduct of the dairy industry. Optimization and scale-up of the\\u000a enzymatic reactor relies on its mathematical model—a set of mass balance equations, with reaction rates usually given by Michaelis-Menten-like\\u000a kinetics; no information about the distribution

Ruy Sousa; Mariam M. Resende; Raquel L. C. Giordano; Roberto C. Giordano

2003-01-01

258

EnzymaticColorimetryof Lecithinand Sphingomyelinin Aqueous Solution  

Microsoft Academic Search

A procedure for the enzymaticdeterminationof lecithinand sphingomyelinin aqueous solutionis described.The phos- pholipidsare first dissolvedin chlorofomi:methanol(2:1 by vol), the solvent is evaporated, and the residue is re- dissolvedin an aqueouszwittenonicdetergentsolution.The enzymaticreactionsequencesof bothassaysinvolvehydrol- ysis of the phospholipidsto producecholine,which is then oxidizedto betaine,thusgeneratinghydrogenperoxide.The hydrogen peroxide is subsequently utilized in the enzymatic coupling of 4-aminoantipyrineand sodium 2-hydroxy-3,5- dichlorobenzenesulfonate,an intensely red color being formed. The

Michael W. McGowan; Joseph D. Artlss; Bennie Zak

259

Enzymatic transformation of nonfood biomass to starch  

PubMed Central

The global demand for food could double in another 40 y owing to growth in the population and food consumption per capita. To meet the world’s future food and sustainability needs for biofuels and renewable materials, the production of starch-rich cereals and cellulose-rich bioenergy plants must grow substantially while minimizing agriculture’s environmental footprint and conserving biodiversity. Here we demonstrate one-pot enzymatic conversion of pretreated biomass to starch through a nonnatural synthetic enzymatic pathway composed of endoglucanase, cellobiohydrolyase, cellobiose phosphorylase, and alpha-glucan phosphorylase originating from bacterial, fungal, and plant sources. A special polypeptide cap in potato alpha-glucan phosphorylase was essential to push a partially hydrolyzed intermediate of cellulose forward to the synthesis of amylose. Up to 30% of the anhydroglucose units in cellulose were converted to starch; the remaining cellulose was hydrolyzed to glucose suitable for ethanol production by yeast in the same bioreactor. Next-generation biorefineries based on simultaneous enzymatic biotransformation and microbial fermentation could address the food, biofuels, and environment trilemma.

You, Chun; Chen, Hongge; Myung, Suwan; Sathitsuksanoh, Noppadon; Ma, Hui; Zhang, Xiao-Zhou; Li, Jianyong; Zhang, Y.-H. Percival

2013-01-01

260

Chitooligosaccharides enzymatic production by Metarhizium anisopliae.  

PubMed

The products of chitosan hydrolysis are chitooligosaccharides and are used mainly for medical applications due to their specific biological activities. The objective of this study was to detect and identify the products of enzymatic hydrolysis of chitosan (dimers to hexamers) using a crude extract of chitosanolytic enzymes produced by the fungus Metarhizium anisopliae. These fungus was able to produce, during 48 h cultivation in a medium containing chitosan, chitooligosaccharides ranging from dimers, trimers, tetramers and pentamers at concentrations 0.2, 0.19, 0.06, 0.04 mg/mL, respectively, and the enzymatic activity was 2.5 U/L. Using the crude enzyme extract for chitosan hydrolysis, we detected the presence of dimers to hexamers at hydrolysis times of 10, 20, 30, 40, 50 and 60 min of enzymatic reaction, but the yields were higher at 10 min (54%). The hexamers was obtained only with 30 min of reaction with concentration of 0.004 mg/mL. PMID:20165886

de Assis, Cristiane Fernandes; Araújo, Nathália Kelly; Pagnoncelli, Maria Giovana Binder; da Silva Pedrini, Márcia Regina; de Macedo, Gorete Ribeiro; dos Santos, Everaldo Silvino

2010-02-18

261

Identification of CaMKII phosphorylation sites in Connexin43 by high-resolution mass spectrometry.  

PubMed

Connexin43 (Cx43) is a major cardiac gap junction channel protein required for normal electrical and contractile activity. Gap junction channel assembly, function, and turnover are regulated by phosphorylation under both normal and disease conditions. The carboxyl terminus (CT) of Cx43 contains numerous amino acid residues that are phosphorylated by protein kinases. However, our knowledge of the specific residues and kinases involved is incomplete. The objective of this study was to identify amino acid residues in the Cx43-CT that are targets of the multifunctional protein kinase, Ca(2+)/calmodulin protein kinase II (CaMKII), an enzyme known to play critical roles in Ca(2+) homeostasis, transcription, apoptosis, and ischemic heart disease. We subjected fusion protein containing the Cx43-CT to phosphorylation by CaMKII in vitro, digestion with Lys-C and trypsin followed by enrichment for phosphorylated peptides using TiO(2), and analysis in an LTQ XL Orbitrap with collision-induced dissociation and electron transfer dissociation. We deduced the sites of modification by interpreting tandem spectra from these "orthogonal" methods of gas phase peptide fragmentation. We have identified 15 serine residues, including one novel site, in the Cx43-CT that are phosphorylated by CaMKII, the activity of which may be important in regulating Cx43 in normal and diseased hearts. PMID:21158428

Huang, Richard Y-C; Laing, James G; Kanter, Evelyn M; Berthoud, Viviana M; Bao, Mingwei; Rohrs, Henry W; Townsend, R Reid; Yamada, Kathryn A

2011-02-04

262

Dynamics of bovine glial fibrillary acidic protein phosphorylation.  

PubMed

Recently, the dynamic features of the intermediate filaments (IF) have been revealed. The effect of phosphorylation on the dynamics of bovine glial fibrillary acidic protein (GFAP), the astroglial IF, was studied in vitro with fluorescently labeled GFAP. Soluble GFAP in low ionic strength buffer was rapidly and fully phosphorylated to be used as phosphorylated GFAP. Assembly of GFAP was observed to be inhibited in proportion to the extent of phosphorylation by mixing phosphorylated and non-phosphorylated GFAP at various ratios, and phosphorylated GFAP could not be assembled with non-phosphorylated GFAP into filaments at all. Furthermore, the subunit exchange was suppressed in proportion to the extent of phosphorylation. Phosphorylation affects the dynamic equilibrium of GFAP, and contributes to breaking down GFAP frameworks in mitotic glial cells. PMID:8907324

Nakamura, Y; Takeda, M; Nishimura, T

1996-02-23

263

The Abnormal Phosphorylation of Tau Protein at Ser202 in Alzheimer Disease Recaptitulates Phosphorylation During Development  

Microsoft Academic Search

Tau is a neuronal phosphoprotein whose expression is developmentally regulated. A single tau isoform is expressed in fetal human brain but six isoforms are expressed in adult brain, with the fetal isoform corresponding to the shortest of the adult isoforms. Phosphorylation of tau is also developmentally regulated, as fetal tau is phosphorylated at more sites than adult tau. In Alzheimer

M. Goedert; R. Jakes; R. A. Crowther; U. Lubke; M. Vandermeeren; P. Cras; J. Q. Trojanowski; V. M.-Y. Lee

1993-01-01

264

Phosphorylation Reaction in cAPK Protein Kinase - Free Energy Quantum Mechanic/Molecular Mechanics Simulations.  

SciTech Connect

Protein kinases catalyze the transfer of the ?-phosphoryl group from ATP, a key regulatory process governing signalling pathways in eukaryotic cells. The structure of the active site in these enzymes is highly conserved implying common catalytic mechanism. In this work we investigate the reaction process in cAPK protein kinase (PKA) using a combined quantum mechanics and molecular mechanics approach. The novel computational features of our work include reaction pathway determination with nudged elastic band methodology and calculation of free energy profiles of the reaction process taking into account finite temperature fluctuations of the protein environment. We find that the transfer of the ?-phosphoryl group in the protein environment is an exothermic reaction with the reaction barrier of 15 kcal/mol.

Valiev, Marat; Yang, Jie; Adams, Joseph; Taylor, Susan S.; Weare, John H.

2007-11-29

265

Protein phosphorylation systems in postmortem human brain  

SciTech Connect

Protein phosphorylation systems regulated by cyclic adenosine 3',5'-monophosphate (cyclic AMP), or calcium in conjunction with calmodulin or phospholipid/diacylglycerol, have been studied by phosphorylation in vitro of particulate and soluble fractions from human postmortem brain samples. One-dimensional or two-dimensional gel electrophoretic protein separations were used for analysis. Protein phosphorylation catalyzed by cyclic AMP-dependent protein kinase was found to be highly active in both particulate and soluble preparations throughout the human CNS, with groups of both widely distributed and region-specific substrates being observed in different brain nuclei. Dopamine-innervated parts of the basal ganglia and cerebral cortex contained the phosphoproteins previously observed in rodent basal ganglia. In contrast, calcium/phospholipid-dependent and calcium/calmodulin-dependent protein phosphorylation systems were less prominent in human postmortem brain than in rodent brain, and only a few widely distributed substrates for these protein kinases were found. Protein staining indicated that postmortem proteolysis, particularly of high-molecular-mass proteins, was prominent in deeply located, subcortical regions in the human brain. Our results indicate that it is feasible to use human postmortem brain samples, when obtained under carefully controlled conditions, for qualitative studies on brain protein phosphorylation. Such studies should be of value in studies on human neurological and/or psychiatric disorders.

Walaas, S.I.; Perdahl-Wallace, E.; Winblad, B.; Greengard, P. (Rockefeller Univ., New York, NY (USA))

1989-01-01

266

Systematic discovery of in vivo phosphorylation networks.  

PubMed

Protein kinases control cellular decision processes by phosphorylating specific substrates. Thousands of in vivo phosphorylation sites have been identified, mostly by proteome-wide mapping. However, systematically matching these sites to specific kinases is presently infeasible, due to limited specificity of consensus motifs, and the influence of contextual factors, such as protein scaffolds, localization, and expression, on cellular substrate specificity. We have developed an approach (NetworKIN) that augments motif-based predictions with the network context of kinases and phosphoproteins. The latter provides 60%-80% of the computational capability to assign in vivo substrate specificity. NetworKIN pinpoints kinases responsible for specific phosphorylations and yields a 2.5-fold improvement in the accuracy with which phosphorylation networks can be constructed. Applying this approach to DNA damage signaling, we show that 53BP1 and Rad50 are phosphorylated by CDK1 and ATM, respectively. We describe a scalable strategy to evaluate predictions, which suggests that BCLAF1 is a GSK-3 substrate. PMID:17570479

Linding, Rune; Jensen, Lars Juhl; Ostheimer, Gerard J; van Vugt, Marcel A T M; Jørgensen, Claus; Miron, Ioana M; Diella, Francesca; Colwill, Karen; Taylor, Lorne; Elder, Kelly; Metalnikov, Pavel; Nguyen, Vivian; Pasculescu, Adrian; Jin, Jing; Park, Jin Gyoon; Samson, Leona D; Woodgett, James R; Russell, Robert B; Bork, Peer; Yaffe, Michael B; Pawson, Tony

2007-06-14

267

Systematic Discovery of In Vivo Phosphorylation Networks  

PubMed Central

Summary Protein kinases control cellular decision processes by phosphorylating specific substrates. Proteome-wide mapping has identified thousands of in vivo phosphorylation sites. However, systematically resolving which kinase targets each site is presently infeasible, due to the limited specificity of consensus motifs and the potential influence of contextual factors, such as protein scaffolds, localisation and expression, on cellular substrate specificity. We have therefore developed a computational method, NetworKIN, that augments motifs with context for kinases and phosphoproteins. This can pinpoint individual kinases responsible for specific in vivo phosphorylation events and yields a 2.5-fold improvement in the accuracy with which phosphorylation networks can be constructed. We show that context provides 60–80% of the computational capability to assign in vivo substrate specificity. Applying this approach to a DNA damage signalling network, we extend its cell-cycle regulation by showing that 53BP1 is a CDK1 substrate, show that Rad50 is phosphorylated by ATM kinase under genotoxic stress, and suggest novel roles of ATM in apoptosis. Finally, we present a scalable strategy to validate our predictions and use it to support the prediction that BCLAF1 is a GSK3 substrate.

Linding, Rune; Jensen, Lars Juhl; Ostheimer, Gerard J.; van Vugt, Marcel A.T.M.; J?rgensen, Claus; Miron, Ioana M.; Diella, Francesca; Colwill, Karen; Taylor, Lorne; Elder, Kelly; Metalnikov, Pavel; Nguyen, Vivian; Pasculescu, Adrian; Jin, Jing; Park, Jin Gyoon; Samson, Leona D.; Woodgett, James R.; Russell, Robert B.; Bork, Peer; Yaffe, Michael B.; Pawson, Tony

2009-01-01

268

Dynamic Simulation of Mitochondrial Respiration and Oxidative Phosphorylation: Comparison with Experimental Results  

Microsoft Academic Search

Hypoxia hampers ATP production and threatens cell survival. Since cellular energetics tightly controls cell responses and\\u000a fate, ATP levels and dynamics are of utmost importance. An integrated mathematical model of ATP synthesis by the mitochondrial\\u000a oxidative phosphorylation\\/electron transfer chain system has been recently published (Beard, PLoS Comput Biol 1(4):e36, 2005).\\u000a This model was validated under static conditions. To evaluate its

François Guillaud; Patrick Hannaert

2008-01-01

269

Modulation of actin structure and function by phosphorylation of Tyr53 and profilin binding  

Microsoft Academic Search

On starvation, Dictyostelium cells aggregate to form multicellular fruiting bodies containing spores that germinate when transferred to nutrient-rich medium. This developmental cycle correlates with the extent of actin phosphorylation at Tyr-53 (pY53-actin), which is low in vegetative cells but high in viable mature spores. Here we describe high-resolution crystal structures of pY53-actin and unphosphorylated actin in complexes with gelsolin segment

Kyuwon Baek; Xiong Liu; François Ferron; Shi Shu; Edward D. Korn; Roberto Dominguez

2008-01-01

270

Signal transduction via CD40 involves activation of lyn kinase and phosphatidylinositol-3-kinase, and phosphorylation of phospholipase C gamma 2  

PubMed Central

CD40 is a 50-kD glycoprotein that plays an important role in B cell survival, memory, and immunoglobulin isotype switch. Engagement of the CD40 antigen by monoclonal antibodies (mAbs) results in increased protein tyrosine kinase (PTK) activity, which plays an important role in mediating the biologic effects of CD40. We demonstrate, using an in situ phosphorylation technique, that CD40 cross-linking by the anti- CD40 mAb 626.1 resulted within 1 min in increased phosphorylation of the src type kinase, lyn, in Daudi B cell lines and remained sustained for up to 20 min. The activity of lyn kinase, as measured by immune complex kinase assay, was also increased after CD40 engagement, with similar kinetics. In contrast, the phosphorylation and activity of fyn, fgr, and lck kinases demonstrated minimal changes following stimulation of Daudi cells with mAb 626.1 over this same time period. CD40 engagement also resulted in phosphorylation of phospholipase C gamma 2 of phosphatidylinositol (PLC gamma 2) and phosphatidylinositol (PI)-3- kinase. Phosphorylation of PI-3-kinase was shown to be associated with an increase in its enzymatic activity. These results suggest that lyn plays an important role in CD40-mediated PTK activation and identify PLC gamma 2 and PI-3-kinase targets for CD40-mediated phosphorylation, suggesting a role for these two enzymes in CD40 signal transduction.

1994-01-01

271

Carbonic anhydrase inhibitors: aliphatic N-phosphorylated sulfamates--a novel zinc-anchoring group leading to nanomolar inhibitors.  

PubMed

A small library of phosphorylated sulfamates (N-(O-alkylsulfamoyl)-phosphoramidic acids) incorporating long aliphatic chains (C8-C16) has been synthesized and investigated for their interaction with two physiologically relevant carbonic anhydrase (CA) isozymes. These compounds behaved as very potent inhibitors of both isozymes, with inhibition constants in the range of 8.2-16.1nM against isozyme hCA I, and 5.3-11.9nM against isozyme hCA II. Activity was optimal for the n-octyl derivative (similarly with that of the corresponding unsubstituted sulfamates) and gradually decreased for the longer chain derivatives. Some of these compounds are much more effective CA inhibitors as compared to the clinically used derivatives acetazolamide, sulfanilamide or topiramate, which are used as standards for the enzymatic determinations. The phosphorylated sulfamate moiety represents a novel zinc-binding group for the design of effective CA inhibitors. PMID:15500000

Bonnac, Laurent; Innocenti, Alessio; Winum, Jean-Yves; Casini, Angela; Montero, Jean-Louis; Scozzafava, Andrea; Barragan, Veronique; Supuran, Claudiu T

2004-06-01

272

Src kinase regulation by phosphorylation and dephosphorylation  

SciTech Connect

Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTP{alpha}, PTP{epsilon}, and PTP{lambda}. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shown to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined.

Roskoski, Robert [Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1100 Florida Avenue, New Orleans, LA 70119 (United States)]. E-mail: biocrr@lsuhsc.edu

2005-05-27

273

Focus Issue: Systems Analysis of Protein Phosphorylation  

NSDL National Science Digital Library

Kinases and phosphatases are key regulatory molecules that participate in most cell signaling pathways. Systems-level analyses are providing new insights into phosphorylation sites and kinase specificity, and phosphoproteomic analyses are creating not just a wealth of data, but are also revealing rich revelations about cellular behavior, cellular responses to changing environmental conditions, and mechanisms of disease. Phosphatases are not merely signal terminators, but play active roles in signal transduction and are especially important in redox signaling. In this Focus Issue, Science Signaling highlights protein phosphorylation as the center of the signaling universe.

Nancy R. Gough (American Association for the Advancement of Science;Science Signaling REV); John F. Foley (American Association for the Advancement of Science;Science Signaling REV)

2010-08-31

274

Mutational analysis of Lck in CD45-negative T cells: dominant role of tyrosine 394 phosphorylation in kinase activity.  

PubMed Central

The CD45 tyrosine phosphatase has been reported to activate the src family tyrosine kinases Lck and Fyn by dephosphorylating regulatory COOH-terminal tyrosine residues 505 and 528, respectively. However, recent studies with CD45- T-cell lines have found that despite the fact that Lck and Fyn were constitutively hyperphosphorylated, the tyrosine kinase activity of both enzymes was actually increased. In the present study, phosphoamino acid analysis revealed that the increased phosphorylation of Lck in CD45- YAC-1 T cells was restricted to tyrosine residues. To understand the relationship between tyrosine phosphorylation and Lck kinase activity, CD45- YAC-1 cells were transfected with forms of Lck in which tyrosines whose phosphorylation is thought to regulate enzyme activity (Tyr-192, Tyr-394, Tyr-505, or both Tyr-394 and Tyr-505) were replaced with phenylalanine. While the Y-to-F mutation at position 192 (192-Y-->F) had little effect, the 505-Y-->F mutation increased enzymatic activity. In contrast, the 394-Y-->F mutation decreased the kinase activity to very low levels, an effect that the double mutation, 394-Y-->F and 505Y-->F, could not reverse. Phosphopeptide analysis of tryptic digests of Lck from CD45- YAC-1 cells revealed that it is hyperphosphorylated on two tyrosine residues, Tyr-505 and, to a lesser extent, Tyr-394. The purified and enzymatically active intracellular portion of CD45 dephosphorylated Lck Tyr-394 in vitro. These results demonstrate that in addition to Tyr-505, CD45 can dephosphorylate Tyr-394, and that in the absence of CD45 the hyperphosphorylation of Tyr-394 can cause an increase in the kinase activity of Lck despite the inhibitory hyperphosphorylation of Tyr-505. Therefore, Lck kinase activity is determined by the balance of activating and inhibitory tyrosine phosphorylations that are, in turn, regulated by CD45.

D'Oro, U; Sakaguchi, K; Appella, E; Ashwell, J D

1996-01-01

275

Pragmatic Transfer.  

ERIC Educational Resources Information Center

Attempting to clarify the concept of pragmatic transfer, this article proposes as a basic distinction Leech/Thomas' dichotomy of sociopragmatics versus pragmalinguistics, presenting evidence for transfer at both levels. Issues discussed include pragmatic universals in speech act realization, conditions for pragmatic transfer, communicative…

Kasper, Gabriele

1992-01-01

276

Troglitazone, a thiazolidinedione, decreases tau phosphorylation through the inhibition of cyclin-dependent kinase 5 activity in SH-SY5Y neuroblastoma cells and primary neurons.  

PubMed

The peroxisome proliferator-activated receptor gamma (PPAR?) agonists thiazolidinediones (TZDs) are prescribed for the treatment of type 2 diabetes mellitus. Furthermore, it has been reported that TZDs have a beneficial effect on neurodegenerative disorders, such as Alzheimer's disease. However, the molecular mechanisms underlying this effect are not fully understood. Here, we investigated whether and how troglitazone, a parent TZD drug, inhibits tau phosphorylation. Treatment with troglitazone decreased tau-Thr(231) phosphorylation and p35, the specific activator of cyclin-dependent kinase 5 (CDK5), in a dose- and time-dependent manner. Troglitazone also decreased CDK5 enzymatic activity, and ectopic expression of p25, the cleaved and more active form of p35, restored the troglitazone-induced decrease in tau-Thr(231) phosphorylation. Treatment with either MG-132, a reversible proteasome inhibitor, or lactacystin, a specific and irreversible 26S proteasome inhibitor, significantly reversed the observed inhibitory effects of troglitazone. However, GW9662, a specific and irreversible PPAR? antagonist, did not alter the observed inhibitory effects. Similar results were also found when other TZD drugs, pioglitazone and rosiglitazone, were used. Treatment with various inhibitors revealed that troglitazone-induced inhibitions of tau-Thr(231) phosphorylation and p35 expression were not mediated by glycogen synthase kinase 3?, protein kinase A, and protein phosphatase 2A signaling pathways. Finally, we also found that the same observed inhibitory effects of troglitazone hold true for the use of primary cortical neurons. Taken together, we demonstrated that TZDs repressed tau-Thr(231) phosphorylation via the inhibition of CDK5 activity, which was mediated by the proteasomal degradation of p35 and a PPAR?-independent signaling pathway. Thiazolidinediones (TZDs) decrease tau-Thr(231) phosphorylation via the inhibition of CDK5 enzymatic activity, which is mediated by the enhanced proteasomal degradation of p35 and a PPAR?-independent signaling pathway. This molecular mechanism implies a role for TZD drugs in the prevention and treatment of Alzheimer's disease. PMID:23581463

Cho, Du-Hyong; Lee, Eun Joo; Kwon, Kyoung Ja; Shin, Chan Young; Song, Kee-Ho; Park, Jung-Hyun; Jo, Inho; Han, Seol-Heui

2013-05-15

277

Optimal enzymatic hydrolysis of urinary benzodiazepine conjugates.  

PubMed

Conditions for the enzymatic hydrolysis of benzodiazepine conjugates were systematically examined. Optimal recovery of the free drugs occurs when 1 mL of urine buffered to pH 4.5 is incubated with 5000 U of Helix pomatia beta-glucuronidase at 56 degrees C for 2 h. Urine specimens containing conjugates of temazepam, oxazepam, lorazepam, alpha-hydroxyalprazolam, 2-hydroxyethylflurazepam, and N-desalkyl-3-hydroxyflurazepam as targeted benzodiazepines were used. The freed drugs were quantitated by gas chromatography-mass spectrometry. PMID:7861750

Meatherall, R

278

RNA structural analysis by enzymatic digestion.  

PubMed

Enzymatic probing is a rapid, straightforward method for determining which regions of a folded RNA are structurally constrained. It can be carried out using very small amounts of material, and is especially suitable for short RNAs. Here we report a protocol that we have found to be useful and readily adaptable to the evaluation of RNAs up to 150-200 nucleotides in length. Considerations for optimization are also included. In brief, the method includes folding end-labeled RNA into its native conformation, partial digestion with structure-sensitive nucleases, and identification of the cleavage sites by electrophoretic separation of the cleavage fragments. PMID:24136597

Biondi, Elisa; Burke, Donald H

2014-01-01

279

Protein phosphorylation in human peripheral nerve: altered phosphorylation of a 25-kDa glycoprotein in leprosy.  

PubMed

Protein phosphorylation in a low speed supernatant of human peripheral nerve (tibial and sural) homogenate was investigated. The major phosphorylated proteins had molecular mass in the range of 70, 55, 45, and 25 kDa. Mg2+ or Mn2+ was essential for maximum phosphorylation although Zn2+, Co2+, and Ca2+ could partially support phosphorylation. External protein substrates casein and histone were also phosphorylated. The protein phosphatase inhibitor orthovanadate enhanced the phosphorylation of the 45 and 25 kDa proteins significantly. Concanavalin A-Sepharose chromatography of the phosphorylated peripheral nerve proteins showed that the 25 kDa protein was a glycoprotein. Protein phosphorylation of peripheral nerves from leprosy affected individuals was compared with normals. The phosphorylation of 25 kDa protein was decreased in most of the patients with leprosy. PMID:8829144

Suneetha, L M; Korula, R J; Balasubramanian, A S

1996-06-01

280

Metabolic fate of orally administered enzymatically synthesized glycogen in rats.  

PubMed

We developed a new process for enzymatically synthesized glycogen (ESG), which is equivalent in physicochemical properties to natural-source glycogen (NSG) except its resistant property to degradation by ?-amylase in vitro. In this study the metabolic fates of orally administered ESG in rats were investigated by a single oral administration test and a 2 week ingestion test. The glycemic index of ESG was 79. After the 2 week ingestion of ESG, the cecal content and production of short chain fatty acids were significantly increased, the pH value of cecal content was lowered, and the counts of Bifidobacterium and Lactobacillus in feces were significantly increased. Additionally, plasma levels of triacylglycerol and total cholesterol were significantly reduced by ESG. In contrast, NSG did not affect these parameters at all. The results collectively suggest that around 20% of orally administered ESG was transferred to the cecum in the form of polymer and assimilated into short chain fatty acids by microbiota and the polymer affected lipid metabolism. PMID:21779577

Furuyashiki, Takashi; Takata, Hiroki; Kojima, Iwao; Kuriki, Takashi; Fukuda, Itsuko; Ashida, Hitoshi

2011-01-26

281

Enzymatic sulfation of mucus glycoprotein in gastric mucosa  

SciTech Connect

Among the posttranslational modifications that mucus glycoprotein undergo prior to secretion into the gastric lumen is the process of sulfation of the carbohydrate chains. These sulfate groups impart strongly negative charge to nucus glycoprotein and are thought to play a major role in the maintenance of gastric mucosal integrity. The authors report here the presence and some properties of an enzyme involved in the sulfation of gastric mucus glycoprotein. The sulfotransferase activity which catalyzes the transfer of sulfate ester group from PAPS to mucus glycoprotein was located in the detergent extracts of the microsomal fraction of rat gastric mucosa. Optimum enzymatic activity for sulfation of gastric mucin was obtained using 0.5% Triton X-100 and 25mM NaF at a pH of 6.8. ATP, ADP, MgCl/sub 2/ and MnCl/sub 2/ at concentrations examined were inhibitory. Under optimal conditions, the rate of sulfate incorporation was proportional to the microsomal enzyme protein concentration up to 50..mu..g and remained constant with time of incubation for at least 1h. The apparent Km value of the enzyme for gastric mucus glycoprotein was 8.3 x 10/sup -6/M. The /sup 35/S-labeled product of the enzyme reaction cochromatographed on Bio-Gel A-50 with gastric mucin, and gave on CsCl equilibrium density gradient centrifugation a band at the density of 1.48 in which the /sup 35/S label coincided with the glycoprotein.

Liau, Y.H.; Carter, S.R.; Gwozdzinski, K.; Nadziejko, C.; Slomiany, A.; Slomiany, B.L.

1986-05-01

282

Ion channels, phosphorylation and mammalian sperm capacitation  

PubMed Central

Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies.

Visconti, Pablo E; Krapf, Dario; de la Vega-Beltran, Jose Luis; Acevedo, Juan Jose; Darszon, Alberto

2011-01-01

283

Dynamics of protein phosphorylation during meiotic maturation  

PubMed Central

Purpose To ask whether distinct kinase signaling pathways mediate cytoplasmic or nuclear maturation of mouse oocytes and if in vitro maturation influences the distribution and timing of these phosphorylation events. Methods Mouse cumulus oocyte complexes (COCs) were matured under conditions known to influence oocyte quality (basal or supplemented media) and assayed with epitope specific antibodies that would distinguish between Cdk1 or tyrosine kinase targets at 0, 2, 4, 8, and 16 hrs. Semi-quantitative image analysis was used to assess the topographical patterns of protein phosphorylation during in vitro maturation. In vitro fertization and embryo culture were used to examine the effects of culture conditions on developmental potential. Results Protein tyrosine phosphorylation increased during meiotic progression from methaphase-I to metaphase-II. Levels were significantly higher in the oocyte cortex. Levels of cortical staining are enhanced in oocytes matured in supplemented media that displayed higher developmental competence. In contrast, bulk substrates for Cdk1 kinase localize to the meiotic spindle while cytoplasmic levels of kinase activity increase throughout meiotic progression; culture media had no measurable effect. Ablation of the tyrosine kinase Fyn significantly reduced cortical levels of tyrosine phosphorylation. Conclusions The findings indicate that distinct signaling pathways mediate nuclear and cytoplasmic maturation during in vitro maturation in a fashion consistent with a role for tyrosine kinases in cortical maturation and oocyte quality.

Albertini, David F.

2010-01-01

284

Metaphase protein phosphorylation in Xenopus laevis eggs.  

PubMed Central

Cytoplasmic extracts of metaphase (M-phase)-arrested Xenopus laevis eggs support nuclear envelope breakdown and chromosome condensation in vitro. Induction of nuclear breakdown is inhibited by AMPP(NH)P, a nonhydrolyzable ATP analog, but not by ATP or gamma-S-ATP, a hydrolyzable ATP analog, suggesting that protein phosphorylation may be required for M-phase nuclear events in vitro. By addition of [gamma-32P]ATP, we have identified in cytoplasmic extracts and in intact eggs at least six phosphoproteins that are present during M-phase but absent in G1/S-phase. These phosphoproteins also appear in response to partially purified preparations of maturation-promoting factor. A subset of these proteins are thiophosphorylated by gamma-S-ATP under conditions that promote nuclear envelope breakdown and chromosome condensation. Each of these proteins is phosphorylated on serine and threonine, and one, a 42-kilodalton protein, is also phosphorylated on tyrosine both in extracts and in intact eggs. These results indicate that activation of protein kinases accounts for at least part of the increased phosphorylation in M-phase and that both protein-serine-threonine kinases and protein-tyrosine kinases may play a role in controlling M-phase nuclear behavior. Images

Lohka, M J; Kyes, J L; Maller, J L

1987-01-01

285

A quantitative method for measuring protein phosphorylation  

Microsoft Academic Search

We have developed a novel method for quantitating protein phosphorylation by a variety of protein kinases. It can be used with purified kinases and their substrates in vitro or in combination with cell extracts. The method is based on the knowledge that protein kinase C (PKC) adds three phosphates to each molecule of its preferred substrate, myelin basic protein (MBP).

J. Andres Mckenzie; Phyllis R. Strauss

2003-01-01

286

Drug Interactions with Zidovudine Phosphorylation In Vitro  

Microsoft Academic Search

We have investigated the effect of a range of drugs (some commonly coadministered with zidovudine (ZDV) to human immunodeficiency virus-positive patients) on intracellular phosphorylation of ZDV by stimulated peripheral blood mononuclear cells, Molt 4 cells, and U937 cells in vitro. Of the drugs tested (azoles, antiviral agents, antibiotics, and anticancer agents), only doxorubicin and ribavirin caused inhibition of anabolite formation

PATRICK G. HOGGARD; GARETH J. VEAL; MARTIN J. WILD; MICHAEL G. BARRY; J. BACK

1995-01-01

287

Phosphorylation network rewiring by gene duplication  

Microsoft Academic Search

Elucidating how complex regulatory networks have assembled during evolution requires a detailed understanding of the evolutionary dynamics that follow gene duplication events, including changes in post-translational modifications. We compared the phosphorylation profiles of paralogous proteins in the budding yeast Saccharomyces cerevisiae to that of a species that diverged from the budding yeast before the duplication of those genes. We found

Luca Freschi; Mathieu Courcelles; Pierre Thibault; Stephen W Michnick; Christian R Landry

2011-01-01

288

Allergenic potential and enzymatic resistance of buckwheat.  

PubMed

Buckwheat is known as a health food but is one of the major food allergens triggering potentially fatal anaphylaxis in Asia, especially in Japan and Korea. This study was conducted to investigate the characteristic of enzymatic resistance of buckwheat protein and allergenic potential. Enzymatic resistance of buckwheat protein was performed with in vitro digestibility test in simulated gastric fluid (SGF), pH 1.2, using pepsin and simulated intestinal fluid (SIF) using chymotrypsin. Reactivity of buckwheat proteins to human IgE was performed using six allergic patients sensitized to buckwheat. Buckwheat's IgE levels were measured using the Phadia UniCAP-system. Buckwheat protein, 16 kDa, still remained after 30 min treatment of pepsin on SDS-PAGE. Even though 16 kDa almost disappeared after 60 min treatment, two out of the six buckwheat patients' sera showed reactivity to hydrolysate after 60 min treatment, indicating that allergenicity still remained. In simulated intestinal fluid (SIF) using chymotrypsin, buckwheat protein, 24 kDa, showed resistance to hydrolysis with chymotrypsin on SDS-PAGE, and still had allergenicity based on the result of ELISA. Our results suggest that buckwheat proteins have strong resistance to enzyme degradation. This may be attributed in part to the allergenic potential of buckwheat. Further study should be continued regarding buckwheat allergy. PMID:23423876

Lee, Sujin; Han, Youngshin; Do, Jeong-Ryong; Oh, Sangsuk

2013-02-04

289

Enzymatic antibody modification by bacterial transglutaminase.  

PubMed

Enzymatic posttranslational modification of proteins permits more precise control over conjugation site than chemical modification of reactive amino acid side chains. Ideally, protein modification by an enzyme yields completely homogeneous conjugates with improved properties for research or therapeutic use. As an example, we here provide a protocol for bacterial transglutaminase (BTGase)-mediated conjugation of cadaverine-derivatized substrates to an IgG1, resulting in stable bond formation between glutamine 295 of the antibody heavy chain and the substrate. This procedure requires enzymatic removal of N-linked glycans from the antibody and yields a defined substrate/antibody ratio of 2:1. Alternatively, a mutant aglycosylated IgG1 variant may be generated by site-directed mutagenesis. The mutation introduces an additional glutamine and yields a substrate/antibody ratio of 4:1 after coupling. Finally, we describe an ESI-TOF mass spectrometry-based method to analyze the uniformity of the resulting conjugates. The presented approach allows the facile generation of homogeneous antibody conjugates and can be applied to any IgG1 and a wide range of cadaverine-derivatized substrates. PMID:23913149

Dennler, Patrick; Schibli, Roger; Fischer, Eliane

2013-01-01

290

Mapping the Reaction Coordinates of Enzymatic Defluorination  

SciTech Connect

The carbon-fluorine bond is the strongest covalent bond in organic chemistry, yet fluoroacetate dehalogenases can readily hydrolyze this bond under mild physiological conditions. Elucidating the molecular basis of this rare biocatalytic activity will provide the fundamental chemical insights into how this formidable feat is achieved. Here, we present a series of high-resolution (1.15-1.80 {angstrom}) crystal structures of a fluoroacetate dehalogenase, capturing snapshots along the defluorination reaction: the free enzyme, enzyme-fluoroacetate Michaelis complex, glycolyl-enzyme covalent intermediate, and enzyme-product complex. We demonstrate that enzymatic defluorination requires a halide pocket that not only supplies three hydrogen bonds to stabilize the fluoride ion but also is finely tailored for the smaller fluorine halogen atom to establish selectivity toward fluorinated substrates. We have further uncovered dynamics near the active site which may play pivotal roles in enzymatic defluorination. These findings may ultimately lead to the development of novel defluorinases that will enable the biotransformation of more complex fluorinated organic compounds, which in turn will assist the synthesis, detoxification, biodegradation, disposal, recycling, and regulatory strategies for the growing markets of organofluorines across major industrial sectors.

Chan, Peter W.Y.; Yakunin, Alexander F.; Edwards, Elizabeth A.; Pai, Emil F. (Toronto)

2011-09-28

291

Palm Date Fibers: Analysis and Enzymatic Hydrolysis  

PubMed Central

Waste palm dates were subjected to analysis for composition and enzymatic hydrolysis of their flesh fibers. The fruit contained 32% glucose and 30% fructose, while the water-insoluble fibers of its flesh consisted of 49.9% lignin and 20.9% polysaccharides. Water-insoluble fibers were settled to 55% of its initial volume in 12 h. The presence of skin and flesh colloidal fibers results in high viscosity and clogging problems during industrial processes. The settling velocity of the fibers was improved by enzymatic hydrolysis. Hydrolysis resulted in 84.3% conversion of the cellulosic part of the fibers as well as reducing the settling time to 10 minutes and the final settled volume to 4% of the initial volume. It implies easier separation of the fibers and facilitates fermentation processes in the corresponding industries. Two kinds of high- and low-lignin fibers were identified from the water-insoluble fibers. The high-lignin fibers (75% lignin) settled easily, while the low-lignin fibers (41.4% lignin) formed a slurry suspension which settled very slowly. The hydrophilicity of these low-lignin fibers is the major challenge of the industrial processes.

Shafiei, Marzieh; Karimi, Keikhosro; Taherzadeh, Mohammad J.

2010-01-01

292

Allergenic potential and enzymatic resistance of buckwheat  

PubMed Central

Buckwheat is known as a health food but is one of the major food allergens triggering potentially fatal anaphylaxis in Asia, especially in Japan and Korea. This study was conducted to investigate the characteristic of enzymatic resistance of buckwheat protein and allergenic potential. Enzymatic resistance of buckwheat protein was performed with in vitro digestibility test in simulated gastric fluid (SGF), pH 1.2, using pepsin and simulated intestinal fluid (SIF) using chymotrypsin. Reactivity of buckwheat proteins to human IgE was performed using six allergic patients sensitized to buckwheat. Buckwheat's IgE levels were measured using the Phadia UniCAP-system. Buckwheat protein, 16 kDa, still remained after 30 min treatment of pepsin on SDS-PAGE. Even though 16 kDa almost disappeared after 60 min treatment, two out of the six buckwheat patients' sera showed reactivity to hydrolysate after 60 min treatment, indicating that allergenicity still remained. In simulated intestinal fluid (SIF) using chymotrypsin, buckwheat protein, 24 kDa, showed resistance to hydrolysis with chymotrypsin on SDS-PAGE, and still had allergenicity based on the result of ELISA. Our results suggest that buckwheat proteins have strong resistance to enzyme degradation. This may be attributed in part to the allergenic potential of buckwheat. Further study should be continued regarding buckwheat allergy.

Lee, Sujin; Han, Youngshin; Do, Jeong-Ryong

2013-01-01

293

Post-translational phosphorylation of serine 74 of human deoxycytidine kinase favors the enzyme adopting the open conformation making it competent for nucleoside binding and release  

PubMed Central

Deoxycytidine kinase (dCK) uses either ATP or UTP as phosphoryl donors to catalyze the phosphorylation of nucleoside acceptors. The kinetic properties of human dCK are modulated in vivo by phosphorylation of serine 74. This residue is a part of the insert region and is situated distant to the active site. Replacing the serine with a glutamic acid (S74E variant) can mimic phosphorylation of Ser74. To understand how phosphorylation affects the catalytic properties of dCK, we examined the S74E variant of dCK both structurally and kinetically. We observe that the presence of a glutamic acid at position 74 favors the enzyme adopting the open conformation. Glu74 stabilizes the open conformation by directly interacting with the indole side chain of Trp58, a residue that is in close proximity to the base of the nucleoside substrate. The open dCK conformation is competent for the binding of nucleoside but not for phosphoryl transfer. In contrast, the closed conformation is competent for phosphoryl transfer but not for product release. Thus, dCK must transition between the open and closed states during the catalytic cycle. We propose a reaction scheme for dCK that incorporates the transition between the open and closed states, and this serves to rationalize the observed kinetic differences between wild type dCK and the S74E variant.

Hazra, Saugata; Szewczak, Andrzej; Ort, Stephan; Konrad, Manfred; Lavie, Arnon

2011-01-01

294

Post-Translational Phosphorylation of Serine 74 of Human Deoxycytidine Kinase Favors the Enzyme Adopting the Open Conformation Making It Competent for Nucleoside Binding and Release  

SciTech Connect

Deoxycytidine kinase (dCK) uses either ATP or UTP as a phosphoryl donor to catalyze the phosphorylation of nucleoside acceptors. The kinetic properties of human dCK are modulated in vivo by phosphorylation of serine 74. This residue is a part of the insert region and is distant from the active site. Replacing the serine with a glutamic acid (S74E variant) can mimic phosphorylation of Ser74. To understand how phosphorylation affects the catalytic properties of dCK, we examined the S74E variant of dCK both structurally and kinetically. We observe that the presence of a glutamic acid at position 74 favors the adoption by the enzyme of the open conformation. Glu74 stabilizes the open conformation by directly interacting with the indole side chain of Trp58, a residue that is in the proximity of the base of the nucleoside substrate. The open dCK conformation is competent for the binding of nucleoside but not for phosphoryl transfer. In contrast, the closed conformation is competent for phosphoryl transfer but not for product release. Thus, dCK must make the transition between the open and closed states during the catalytic cycle. We propose a reaction scheme for dCK that incorporates the transition between the open and closed states, and this serves to rationalize the observed kinetic differences between wild-type dCK and the S74E variant.

Hazra, Saugata; Szewczak, Andrzej; Ort, Stephan; Konrad, Manfred; Lavie, Arnon (UIC); (MXPL-G)

2012-03-26

295

Enzymatic quantification of sphingosine in the picomole range in cultured cells  

SciTech Connect

An enzymatic method to quantify the mass levels of free sphingosine in cellular lipid extracts was developed. The assay is based upon the observation that ceramide is phosphorylated by Escherichia coli diacylglycerol kinase. Although sphingosine is not recognized by the enzyme, it can be converted to a substrate by acylation with hexanoic anhydride. Using a mixed micellar assay, previously reported for the mass quantification of diacylglycerol, the short-chain ceramide (N-C6-sphingosine), generated by acylation, is quantitatively phosphorylated to N-C6-(32P)sphingosine phosphate. This assay allows quantification of sphingosine over a broad range from 25 to 5000 pmol. When this assay was applied to standard compounds, reverse-phase thin-layer chromatography of the reaction products was adequate to separate the phosphorylated derivatives of long-chain ceramide and N-C6-sphingosine. However, the presence of other lipids in extracts from biological samples (mainly monoalkylglycerols which are also a substrate for the diacylglycerol kinase) interfered and necessitated an additional purification step. The most efficient purification step devised was a combination of anion- and cation-exchange chromatography. The mass levels of free sphingoid bases in different cultured cells were quantified using this assay. Levels varied between 8 to 20 pmol/10(6) cells. When normalized to phospholipids, sphingosine levels varied between 0.01 and 0.04 mol%. The lowest levels were found in L929 cells, while Schwann cells derived from Twitcher mice contained the highest levels. These levels were significantly higher than those of Schwann cells derived from normal mice.

Van Veldhoven, P.P.; Bishop, W.R.; Bell, R.M. (Duke Univ. Medical Center, Durham, NC (USA))

1989-11-15

296

Kinases and protein phosphorylation as regulators of steroid hormone action  

PubMed Central

Although the primary signal for the activation of steroid hormone receptors is binding of hormone, there is increasing evidence that the activities of cell signaling pathways and the phosphorylation status of these transcription factors and their coregulators determine the overall response to the hormone. In some cases, enhanced cell signaling is sufficient to cause activation of receptors in medium depleted of steroids. Steroid receptors are targets for multiple kinases. Many of the phosphorylation sites contain Ser/Thr-Pro motifs implicating proline-directed kinases such as the cyclin-dependent kinases and the mitogen-activated kinases (MAPK) in receptor phosphorylation. Although some sites are constitutively phosphorylated, others are phosphorylated in response to hormone. Still others are only phosphorylated in response to specific cell signaling pathways. Phosphorylation of specific sites has been implicated not only in overall transcriptional activity, but also in nuclear localization, protein stability, and DNA binding. The studies of the roles of phosphorylation in coregulator function are more limited, but it is now well established that many of them are highly phosphorylated and that phosphorylation regulates their function. There is good evidence that some of the phosphorylation sites in the receptors and coregulators are targets of multiple signaling pathways. Individual sites have been associated both with functions that enhance the activity of the receptor, as well as with functions that inhibit activity. Thus, the specific combinations of phosphorylations of the steroid receptor combined with the expression levels and phosphorylation status of coregulators will determine the genes regulated and the biological response.

Weigel, Nancy L.; Moore, Nicole L.

2007-01-01

297

Activation loop phosphorylation of the atypical MAP kinases ERK3 and ERK4 is required for binding, activation and cytoplasmic relocalization of MK5.  

PubMed

Mitogen-activated protein (MAP) kinases are typical examples of protein kinases whose enzymatic activity is mainly controlled by activation loop phosphorylation. The classical MAP kinases ERK1/ERK2, JNK, p38 and ERK5 all contain the conserved Thr-Xxx-Tyr motif in their activation loop that is dually phosphorylated by members of the MAP kinase kinases family. Much less is known about the regulation of the atypical MAP kinases ERK3 and ERK4. These kinases display structural features that distinguish them from other MAP kinases, notably the presence of a single phospho-acceptor site (Ser-Glu-Gly) in the activation loop. Here, we show that ERK3 and ERK4 are phosphorylated in their activation loop in vivo. This phosphorylation is exerted, at least in part, in trans by an upstream cellular kinase. Contrary to classical MAP kinases, activation loop phosphorylation of ERK3 and ERK4 is detected in resting cells and is not further stimulated by strong mitogenic or stress stimuli. However, phosphorylation can be modulated indirectly by interaction with the substrate MAP kinase-activated protein kinase 5 (MK5). Importantly, we found that activation loop phosphorylation of ERK3 and ERK4 stimulates their intrinsic catalytic activity and is required for the formation of stable active complexes with MK5 and, consequently, for efficient cytoplasmic redistribution of ERK3/ERK4-MK5 complexes. Our results demonstrate the importance of activation loop phosphorylation in the regulation of ERK3/ERK4 function and highlight differences in the regulation of atypical MAP kinases as compared to classical family members. PMID:18720373

Déléris, Paul; Rousseau, Justine; Coulombe, Philippe; Rodier, Geneviève; Tanguay, Pierre-Luc; Meloche, Sylvain

2008-12-01

298

Protein Synthesis Initiation Factors: Phosphorylation and Regulation  

SciTech Connect

The initiation of the synthesis of proteins is a fundamental process shared by all living organisms. Each organism has both shared and unique mechanisms for regulation of this vital process. Higher plants provide for a major amount of fixation of carbon from the environment and turn this carbon into food and fuel sources for our use. However, we have very little understanding of how plants regulate the synthesis of the proteins necessary for these metabolic processes. The research carried out during the grant period sought to address some of these unknowns in the regulation of protein synthesis initiation. Our first goal was to determine if phosphorylation plays a significant role in plant initiation of protein synthesis. The role of phosphorylation, although well documented in mammalian protein synthesis regulation, is not well studied in plants. We showed that several of the factors necessary for the initiation of protein synthesis were targets of plant casein kinase and showed differential phosphorylation by the plant specific isoforms of this kinase. In addition, we identified and confirmed the phosphorylation sites in five of the plant initiation factors. Further, we showed that phosphorylation of one of these factors, eIF5, affected the ability of the factor to participate in the initiation process. Our second goal was to develop a method to make initiation factor 3 (eIF3) using recombinant methods. To date, we successfully cloned and expressed 13/13 subunits of wheat eIF3 in E. coli using de novo gene construction methods. The final step in this process is to place the subunits into three different plasmid operons for co-expression. Successful completion of expression of eIF3 will be an invaluable tool to the plant translation community.

Karen S. Browning

2009-06-15

299

Bacillus subtilis Two-Component System Sensory Kinase DegS Is Regulated by Serine Phosphorylation in Its Input Domain  

PubMed Central

Bacillus subtilis two-component system DegS/U is well known for the complexity of its regulation. The cytosolic sensory kinase DegS does not receive a single predominant input signal like most two-component kinases, instead it integrates a wide array of metabolic inputs that modulate its activity. The phosphorylation state of the response regulator DegU also does not confer a straightforward “on/off” response; it is fine-tuned and at different levels triggers different sub-regulons. Here we describe serine phosphorylation of the DegS sensing domain, which stimulates its kinase activity. We demonstrate that DegS phosphorylation can be carried out by at least two B. subtilis Hanks-type kinases in vitro, and this stimulates the phosphate transfer towards DegU. The consequences of this process were studied in vivo, using phosphomimetic (Ser76Asp) and non-phosphorylatable (Ser76Ala) mutants of DegS. In a number of physiological assays focused on different processes regulated by DegU, DegS S76D phosphomimetic mutant behaved like a strain with intermediate levels of DegU phosphorylation, whereas DegS S76A behaved like a strain with lower levels of DegU phophorylation. These findings suggest a link between DegS phosphorylation at serine 76 and the level of DegU phosphorylation, establishing this post-translational modification as an additional trigger for this two-component system.

Jers, Carsten; Kobir, Ahasanul; S?ndergaard, Elsebeth Oline; Jensen, Peter Ruhdal; Mijakovic, Ivan

2011-01-01

300

Sensitive Electrochemical Detection of Enzymatically-generated Thiocholine at Carbon Nanotube Modified Glassy Carbon Electrode  

SciTech Connect

A carbon nanotube modified glassy-carbon (CNT/GC) electrode was used for enhancing the sensitivity of electrochemical measurements of enzymatically-generated thiocholine. Cyclic voltammetric and amperometric characteristics of thiocholine at CNT/GC, glassy carbon, carbon paste, and gold electrodes were compared. The CNT layer leads to a greatly improved anodic detection of enzymatically generated thiocholine product including lower oxidation overpotential (0.15 V) and higher sensitivity because of its electrocatalytic activity, fast electron transfer and large surface area. The sensor performance was optimized with respect to the operating conditions. Under the optimal batch conditions, a detection limit of 5 ?10 -6 mol/L was obtained with good precision (RSD = 5.2%, n=10). Furthermore, the attractive response of thiocholine on a CNT/GC electrode has allowed it to be used for constant-potential flow injection analysis. The detection limit was greatly improved to 0.3 ?10-6 mol/L. The high sensitivity electrochemical detection of enzymatically generated thiocholine with a CNT sensing platform holds great promise to prepare an acetylcholinesterase biosensor for monitoring organophosphate pesticides and nerve agents.

Liu, Guodong; Riechers, Shawn L.; Mellen, Maria C.; Lin, Yuehe

2005-11-01

301

A Process for Producing Durable Press Fabrics Through Phosphorylation.  

National Technical Information Service (NTIS)

This invention relates to a process for producing durable press cotton-containing fabrics. More specifically it relates to the phosphorylation of cellulose with inorganic phosphorylating agents in the presence of urea.

E. J. Blanchard

1982-01-01

302

Nuclear tyrosine phosphorylation: the beginning of a map.  

PubMed

Tyrosine phosphorylation is usually associated with cytoplasmic events. Yet, over the years, many reports have accumulated on tyrosine phosphorylation of individual molecules in the nucleus, and several tyrosine kinases and phosphatases have been found to be at least partially nuclear. The question arises as to whether nuclear tyrosine phosphorylation represents a collection of loose ends of events originating in the cytoplasm or if there may be intranuclear signaling circuits relying on tyrosine phosphorylation to regulate specific processes. The recent discovery of a mechanism causing nuclear tyrosine phosphorylation has prompted us to review the cumulative evidence for nuclear tyrosine phosphorylation pathways and their possible role. While we found that no complex nuclear function has yet been shown to rely upon intranuclear tyrosine phosphorylation in an unambiguous fashion, we found a very high number of compelling observations on individual molecules that suggest underlying networks linking individual events. A systematic proteomics approach to nuclear tyrosine phosphorylation should help chart possible interaction pathways. PMID:11007959

Cans, C; Mangano, R; Barilá, D; Neubauer, G; Superti-Furga, G

2000-10-15

303

Phosphorylation of AATYK1 by Cdk5 Suppresses Its Tyrosine Phosphorylation  

PubMed Central

Apoptosis-associated tyrosine kinase 1 (AATYK1), a novel serine/threonine kinase that is highly expressed in the brain, is involved in neurite extension and apoptosis of cerebellar granule neurons; however, its precise function remains unknown. In this study, we investigated the interaction of AATYK1A with Cyclin-dependent kinase 5 (Cdk5)/p35, a proline-directed protein kinase that is predominantly expressed in neurons. AATYK1A bound to the p35 activation subunit of Cdk5 in cultured cells and in mouse brains and colocalized with p35 on endosomes in COS-7 cells. AATYK1A was phosphorylated at Ser34 by Cdk5/p35 in vitro, in cultured neurons and in mouse brain. In PC12D cells, Ser34 phosphorylation increased after treatment with nerve growth factor and phosphorylated AATYK1A accumulated in growth cones of PC12D cells. Ser34 phosphorylation suppressed the tyrosine phosphorylation of AATYK1A by Src family kinases. These results suggest a possibility that AATYK1A plays a role in early to recycling endosomes and its function is regulated by phosphorylation with Cdk5 or Src-family kinases.

Tsutsumi, Koji; Takano, Tetsuya; Endo, Ryo; Fukuda, Mitsunori; Ohshima, Toshio; Tomomura, Mineko; Hisanaga, Shin-ichi

2010-01-01

304

Phosphorylation of human calsequestrin: implications for calcium regulation  

Microsoft Academic Search

Both cardiac and skeletal calsequestrin (CASQ2 and CASQ1) serve as a major Ca2+ storage\\/buffer protein in the sarcoplasmic reticulum (SR) by sequestering and releasing large numbers of Ca2+ ions during each muscular contraction and relaxation cycle. CASQ isolated from various species often exists in a phosphorylated\\u000a form, but phosphorylation’s role is not yet understood. Here, the authors identified two phosphorylation

Emiliano J. Sanchez; Gerhard R. Munske; Angela Criswell; Hendrik Milting; A. Keith Dunker; ChulHee Kang

2011-01-01

305

Allosteric Regulation of Even-skipped Repression Activity by Phosphorylation  

Microsoft Academic Search

The Drosophila homeodomain protein Even-skipped (Eve) is a well characterized transcriptional repressor. Here, we show that Eve’s ability to function in vitro is negatively regulated by phosphorylation. DNA-binding activity was unaffected by phosphorylation, but phosphorylated Eve was unable to interact with the TATA-binding protein (TBP), a known target for repression. Unexpectedly, phosphorylation of the Eve N terminus, which is dispensable

Chi Li; James L Manley

1999-01-01

306

Pretreatment and enzymatic hydrolysis of lignocellulosic biomass  

NASA Astrophysics Data System (ADS)

The performance of soybean hulls and forage sorghum as feedstocks for ethanol production was studied. The main goal of this research was to increase fermentable sugars' yield through high-efficiency pretreatment technology. Soybean hulls are a potential feedstock for production of bio-ethanol due to their high carbohydrate content (?50%) of nearly 37% cellulose. Soybean hulls could be the ideal feedstock for fuel ethanol production, because they are abundant and require no special harvesting and additional transportation costs as they are already in the plant. Dilute acid and modified steam-explosion were used as pretreatment technologies to increase fermentable sugars yields. Effects of reaction time, temperature, acid concentration and type of acid on hydrolysis of hemicellulose in soybean hulls and total sugar yields were studied. Optimum pretreatment parameters and enzymatic hydrolysis conditions for converting soybean hulls into fermentable sugars were identified. The combination of acid (H2SO4, 2% w/v) and steam (140°C, 30 min) efficiently solubilized the hemicellulose, giving a pentose yield of 96%. Sorghum is a tropical grass grown primarily in semiarid and dry parts of the world, especially in areas too dry for corn. The production of sorghum results in about 30 million tons of byproducts mainly composed of cellulose, hemicellulose, and lignin. Forage sorghum such as brown midrib (BMR) sorghum for ethanol production has generated much interest since this trait is characterized genetically by lower lignin concentrations in the plant compared with conventional types. Three varieties of forage sorghum and one variety of regular sorghum were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-Ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and enzymatic hydrolysis process. Up to 72% of hexose yield and 94% of pentose yield were obtained using "modified" steam explosion with 2% sulfuric acid at 140°C for 30 min and enzymatic hydrolysis with cellulase (15 FPU/g cellulose) and beta-glucosidase (50 CBU/g cellulose).

Corredor, Deisy Y.

307

Phosphorylation and Intramolecular Stabilization of the Ligand Binding Domain in the Nuclear Receptor Steroidogenic Factor 1  

PubMed Central

Steroidogenic factor 1 (SF-1) is an orphan nuclear receptor with no known ligand. We showed previously that phosphorylation at serine 203 located N?-terminal to the ligand binding domain (LBD) enhanced cofactor recruitment, analogous to the ligand-mediated recruitment in ligand-dependent receptors. In this study, results of biochemical analyses and an LBD helix assembly assay suggest that the SF-1 LBD adopts an active conformation, with helices 1 and 12 packed against the predicted alpha-helical bundle, in the apparent absence of ligand. Fine mapping of the previously defined proximal activation function in SF-1 showed that the activation function mapped fully to helix 1 of the LBD. Limited proteolyses demonstrate that phosphorylation of S203 in the hinge region mimics the stabilizing effects of ligand on the LBD. Moreover, similar effects were observed in an SF-1/thyroid hormone LBD chimera receptor, illustrating that the S203 phosphorylation effects are transferable to a heterologous ligand-dependent receptor. Our collective data suggest that the hinge together with helix 1 is an individualized specific motif, which is tightly associated with its cognate LBD. For SF-1, we find that this intramolecular association and hence receptor activity are further enhanced by mitogen-activated protein kinase phosphorylation, thus mimicking many of the ligand-induced changes observed for ligand-dependent receptors.

Desclozeaux, Marion; Krylova, Irina N.; Horn, Florence; Fletterick, Robert J.; Ingraham, Holly A.

2002-01-01

308

Heat Transfer  

NSDL National Science Digital Library

Students explore heat transfer and energy efficiency using the context of energy efficient houses. They gain a solid understanding of the three types of heat transfer: radiation, convection and conduction, which are explained in detail and related to the real world. They learn about the many ways solar energy is used as a renewable energy source to reduce the emission of greenhouse gasses and operating costs. Students also explore ways in which a device can capitalize on the methods of heat transfer to produce a beneficial result. They are given the tools to calculate the heat transferred between a system and its surroundings.

Integrated Teaching And Learning Program

309

Tau phosphorylation and aggregation in Alzheimer’s disease pathology  

Microsoft Academic Search

In this article I shall review how tau phosphorylation and aggregation participates in Alzheimer’s disease (AD) and other tauopathies. Tau, a microtubule associated protein, is the main component, in phosphorylated form, of the aberrant paired helical filaments found in AD. Tau is present in phosphorylated and aggregated form not only in AD, but in other pathologies (tauopathies). In this review,

Jesús Avila

2006-01-01

310

Evidence of 5-HT components in human sperm: implications for protein tyrosine phosphorylation and the physiology of motility.  

PubMed

Serotonin (5-hydroxytryptamine; C(10)H(12)N(2)O (5-HT)) is produced in the CNS and in some cells of peripheral tissues. In the mammalian male reproductive system, both 5-HT and tryptophan hydroxylase (TPH) have been described in Leydig cells of the testis and in principal cells of the caput epididymis. In capacitated hamster sperm, it has been shown that 5-HT promotes the acrosomal reaction. The aim of this work was to explore the existence of components of the serotoninergic system and their relevance in human sperm physiology. We used both immunocytochemistry and western blot to detect serotoninergic markers such as 5-HT, TPH1, MAO(A), 5-HT(1B), 5-HT(3), and 5HT(T); HPLC for TPH enzymatic activity; Computer Assisted Semen Analysis assays to measure sperm motility parameters and pharmacological approaches to show the effect of 5-HT in sperm motility and tyrosine phosphorylation was assessed by western blot. We found the presence of serotoninergic markers (5-HT, TPH1, MAO(A), 5-HT(1B), 5-HT(2A), 5-HT(3), 5-HT(T), and TPH enzymatic activity) in human sperm. In addition, we observed a significant increase in tyrosine phosphorylation and changes in sperm motility after 5-HT treatment. In conclusion, our data demonstrate the existence of components of a serotoninergic system in human sperm and support the notion for a functional role of 5-HT in mammalian sperm physiology, which can be modulated pharmacologically. PMID:23028123

Jiménez-Trejo, Francisco; Tapia-Rodríguez, Miguel; Cerbón, Marco; Kuhn, Donald M; Manjarrez-Gutiérrez, Gabriel; Mendoza-Rodríguez, C Adriana; Picazo, Ofir

2012-10-01

311

Enzymatic activity in the activated-sludge floc matrix  

Microsoft Academic Search

The enzymatic activity of activated sludge was investigated with special emphasis on the localization of the enzymes in the sludge floc matrix. Activated sludge from an advanced activated-sludge treatment plant, performing biological N and P removal, was used. An enzymatic fingerprint was established using a panel of six different enzymes. The fingerprint revealed peptidase as the most dominating specific enzyme

B. Frølund; T. Griebe; P. H. Nielsen

1995-01-01

312

Studies on the application of ultrasound in leather enzymatic unhairing  

Microsoft Academic Search

Enzymatic unhairing is a clean technology for leather industry. However, one problem hinders the utilization of enzymes in leather unhairing is the slow diffusion of enzymes through skins. As another clean technology, ultrasound can be applied to accelerate the diffusion of enzymes through skins. In this work, effects of ultrasound on the enzymatic unhairing were investigated. Effect of frequency of

Song Jian; Tao Wenyi; Chen Wuyong

2010-01-01

313

Dual enzymatic saccharification of food waste for ethanol fermentation  

Microsoft Academic Search

Lower efficiency serves as limiting factor in the enzymatic saccharification of food waste (FW) for ethanol fermentation. We investigated the effects of temperature, tetracycline; the optimization of dual enzymatic inoculation using simplex lattice design; as well as batch ethanol fermentation based on optimized FW saccharification. The moderate temperature (50?`) was proper to balance the saccharification efficiency and reducing sugar loss.

Xiangfeng Zhang; Tom Richard

2011-01-01

314

Changes in enzymatic activity in composts containing chicken feathers  

Microsoft Academic Search

Enzymatic activity, i.e. respiratory activity, dehydrogenase activity, phosphatase activity, caseinian protease activity, BAA protease activity and urease activity, was determined to investigate the process of biochemical transformations and to select enzymatic indices of maturity of composts prepared from feathers and lignocellulose wastes (bark, straw). Composting was conducted for 7months, with periodic determinations of activity of the enzymes. The study revealed

Justyna Bohacz; Teresa Korni??owicz-Kowalska

2009-01-01

315

Enzymatic hollow fiber membrane bioreactor for penicilin hydrolysis  

Microsoft Academic Search

Continuous enzymatic reaction has been proven as an efficient technique for several industrial applications. In this study, a type of hollow fiber membrane bioreactor where penicillin acylase entrapped within membrane pores was applied to continuously hydrolyze Penicillin G. The influences of various operating conditions on immobilization and enzymatic reaction processes were assessed. A mathematical model of the reactor behaviour at

I. G. Wenten; I. N. Widiasa

2002-01-01

316

Inhibition of enzymatic browning in foods and beverages  

Microsoft Academic Search

Enzymatic browning is a major factor contributing to quality loss in foods and beverages. Sulfiting agents are used commonly to control browning; however, several negative attributes associated with sulfites have created the need for functional alternatives. Recent advances in the development of nonsulfite inhibitors of enzymatic browning are reviewed. The review fouses on compositions that are of practical relevance to

Arthur J. McEvily; Radha Iyengar; W. Steven Otwell

1992-01-01

317

Enzymatic hydrolysis of castor oil: Process intensification studies  

Microsoft Academic Search

The usual methods of castor oil hydrolysis give impure product, i.e. ricinoleic acid. An alternative technique for production is the enzymatic hydrolysis of castor oil where the product is available as a light colored and odorless product. Usually lipase catalyzed enzymatic hydrolysis has been carried out in oil in water emulsions, which require rather high quantities of enzymes limiting the

Meenal S. Puthli; Virendra K. Rathod; Aniruddha B. Pandit

2006-01-01

318

Effect of Homeopathic Dilutions on Subcellular Enzymatic Activity  

Microsoft Academic Search

The activity of various inhibitors on several subcellular enzymes was studied. First we determined the inhibitory concentration required to reduce maximum enzymatic activity by 50%, then the effect of various hahnemannian dilutions of the same inhibitory agent was tested. Seven inhibitory agents were tested in this way on seven different enzymatic systems. No effects of these hahnemannian dilutions were shown.

C. Petit; P. Belon; R. Got

1989-01-01

319

Process simulation and economical evaluation of enzymatic biodiesel production plant  

Microsoft Academic Search

Process simulation and economical evaluation of an enzymatic biodiesel production plant has been carried out. Enzymatic biodiesel production from high quality rapeseed oil and methanol has been investigated for solvent free and cosolvent production processes. Several scenarios have been investigated with different production scales (8 and 200mio. kg biodiesel\\/year) and enzyme price. The cosolvent production process is found to be

Lene Fjerbaek Sotoft; Ben-Guang Rong; Knud V. Christensen; Birgir Norddahl

2010-01-01

320

Enzymatic degradation of nitriles by Klebsiella oxytoca.  

PubMed

Klebsiella oxytoca, isolated from cyanide-containing wastewater, was able to utilize many nitriles as sole source of nitrogen. The major objective of this study was to explore the ability of K. oxytoca to utilize some nitriles and then further evaluate the pathways of transformation of cyanide compounds by K. oxytoca. Results from this study indicate that succinonitrile and valeronitrile were the most optimal sources of nitrogen for the growth of K. oxytoca. The biodegradation of acetonitrile proceeded with the formation of acetamide followed by acetic acid. The production of ammonia was also detected in this biodegradation experiment. Similar results were observed in the propionitrile biodegradation experiments. Collectively, this study suggests that the breakdown of acetonitrile or propionitrile by this bacterium was via a two-step enzymatic hydrolysis with amides as the intermediates and organic acids plus with ammonia as the end products. PMID:16184371

Kao, C M; Chen, K F; Liu, J K; Chou, S M; Chen, S C

2005-09-24

321

Colors as catalysts in enzymatic reactions.  

PubMed

We studied the effects of visible range irradiation (in vitro) on the enzyme solutions (glucose oxidase, cholesterol oxidase + cholesterol esterase and lipase) in order to infer the changes produced in the human body after chromotherapy. The glucose oxidase showed enhanced activity to the color purple (464 nm), while the activity of the other enzymes, cholesterol esterase + cholesterol oxidase and lipase, increased when exposed to dark violet (400 nm). Purple is being used in conventional chromotherapy for diabetes, as supported by the experimental observation in which purple enhanced the activity of enzymes responsible for the oxidation of glucose. Specific wavelengths regulate living processes by acting as catalysts in enzyme activity, while some wavelengths may reduce enzyme activity. The irradiation of specific wavelengths effect enzymatic processes, which as a consequence, accelerated biochemical reactions. This particular frequency when provided to the enzymes (in vitro) lead to changes which may well be occurring in vivo. PMID:20633466

Azeemi, Samina T Yousuf; Raza, Syed Mohsin; Yasinzai, Masoom

2008-12-01

322

Enzymatic degradation of multiwalled carbon nanotubes.  

PubMed

Because of their unique properties, carbon nanotubes and, in particular, multiwalled carbon nanotubes (MWNTs) have been used for the development of advanced composite and catalyst materials. Despite their growing commercial applications and increased production, the potential environmental and toxicological impacts of MWNTs are not fully understood; however, many reports suggest that they may be toxic. Therefore, a need exists to develop protocols for effective and safe degradation of MWNTs. In this article, we investigated the effect of chemical functionalization of MWNTs on their enzymatic degradation with horseradish peroxidase (HRP) and hydrogen peroxide (H(2)O(2)). We investigated HRP/H(2)O(2) degradation of purified, oxidized, and nitrogen-doped MWNTs and proposed a layer-by-layer degradation mechanism of nanotubes facilitated by side wall defects. These results provide a better understanding of the interaction between HRP and carbon nanotubes and suggest an eco-friendly way of mitigating the environmental impact of nanotubes. PMID:21348486

Zhao, Yong; Allen, Brett L; Star, Alexander

2011-02-24

323

Fungal biodegradation and enzymatic modification of lignin  

PubMed Central

Lignin, the most abundant aromatic biopolymer on Earth, is extremely recalcitrant to degradation. By linking to both hemicellulose and cellulose, it creates a barrier to any solutions or enzymes and prevents the penetration of lignocellulolytic enzymes into the interior lignocellulosic structure. Some basidiomycetes white-rot fungi are able to degrade lignin efficiently using a combination of extracellular ligninolytic enzymes, organic acids, mediators and accessory enzymes. This review describes ligninolytic enzyme families produced by these fungi that are involved in wood decay processes, their molecular structures, biochemical properties and the mechanisms of action which render them attractive candidates in biotechnological applications. These enzymes include phenol oxidase (laccase) and heme peroxidases [lignin peroxidase (LiP), manganese peroxidase (MnP) and versatile peroxidase (VP)]. Accessory enzymes such as H2O2-generating oxidases and degradation mechanisms of plant cell-wall components in a non-enzymatic manner by production of free hydroxyl radicals (·OH) are also discussed.

Dashtban, Mehdi; Schraft, Heidi; Syed, Tarannum A.; Qin, Wensheng

2010-01-01

324

The enzymatic basis for pesticide bioremediation.  

PubMed

Enzymes are central to the biology of many pesticides, influencing their modes of action, environmental fates and mechanisms of target species resistance. Since the introduction of synthetic xenobiotic pesticides, enzymes responsible for pesticide turnover have evolved rapidly, in both the target organisms and incidentally exposed biota. Such enzymes are a source of significant biotechnological potential and form the basis of several bioremediation strategies intended to reduce the environmental impacts of pesticide residues. This review describes examples of enzymes possessing the major activities employed in the bioremediation of pesticide residues, and some of the strategies by which they are employed. In addition, several examples of specific achievements in enzyme engineering are considered, highlighting the growing trend in tailoring enzymatic activity to a specific biotechnologically relevant function. PMID:23100701

Scott, Colin; Pandey, Gunjan; Hartley, Carol J; Jackson, Colin J; Cheesman, Matthew J; Taylor, Matthew C; Pandey, Rinku; Khurana, Jeevan L; Teese, Mark; Coppin, Chris W; Weir, Kahli M; Jain, Rakesh K; Lal, Rup; Russell, Robyn J; Oakeshott, John G

2008-05-01

325

?-cyclodextrin assistant flavonoid glycosides enzymatic hydrolysis  

PubMed Central

Background: The content of icaritin and genistein in herba is very low, preparation with relatively large quantities is an important issue for extensive pharmacological studies. Objective: This study focuses on preparing and enzymic hydrolysis of flavonoid glycosides /?-cyclodextrin inclusion complex to increase the hydrolysis rate. Materials and Methods: The physical property of newly prepared inclusion complex was tested by differential scanning calorimetry (DSC). The conditions of enzymatic hydrolysis were optimized for the bioconversion of flavonoid glycosides /?-cyclodextrin inclusion complex by mono-factor experimental design. The experiments are using the icariin and genistein as the model drugs. Results: The solubility of icariin and genistein were increased almost 17 times from 29.2 ?g/ml to 513.5 ?g/ml at 60°C and 28 times from 7.78 ?g/ml to 221.46 ?g/ml at 50°C, respectively, demonstrating that the inclusion complex could significantly increase the solubility of flavonoid glycosides. Under the optimal conditions, the reaction time of icariin and genistin decreased by 68% and 145%, when compared with that without ?-CD inclusion. By using this enzymatic condition, 473 mg icaritin (with the purity of 99.34%) and 567 mg genistein(with the purity of 99.46%), which was finally determined by melt point, ESI-MS, UV, IR, 1H NMR and 13C NMR, was obtained eventually by transforming the inclusion complex(contains 1.0 g substrates). Conclusion: This study can clearly indicate a new attempt to improve the speed of enzyme-hydrolysis of poorly water-soluble flavonoid glycosides and find a more superior condition which is used to prepare icaritin and genistein.

Jin, Xin; Zhang, Zhen-hai; Sun, E.; Jia, Xiao-Bin

2013-01-01

326

Enhancing phosphorylation cascades by anomalous diffusion  

NASA Astrophysics Data System (ADS)

A key event in many cellular signaling cascades is the multiple phosphorylation of proteins by specialized kinases. A prototypical example is the mitogen-activated protein kinase (MAPK) that alters the cell's gene transcription after having been phosphorylated twice by the same kinase. Here, we show that anomalous diffusion, induced, for example, by cytoplasmic crowding, can significantly improve the activation of MAPK. Our results on anomalous diffusion with the characteristics of fractional Brownian motion and obstructed diffusion compare favorably to very recent biochemical data on MAPK activation at varying degrees of cytoplasmic crowding. Our results predict any Michaelis-Menten scheme in which a substrate is modified by the same enzyme several times to show an increased performance due to anomalous diffusion when dissociation rates of the intermediate enzyme-substrate complexes are high while the irreversible catalytic step is slow. Thus, crowding-induced anomalous diffusion can strongly alter the behavior of many cellular signaling pathways.

Hellmann, M.; Heermann, D. W.; Weiss, M.

2012-03-01

327

"Radical theory" of oxidative phosphorylation and photophosphorylation.  

PubMed

Ketyl radicals of acetone, dihydroxy acetone, and cardiolipin ketone react in 1,2-dimethoxyethane with inorganic phosphate (model: diethyl phosphate) to form phosphate esters of isopropanol, glycerol, or cardiolipin, respectively. After administration of diethyl phosphate to phosphate-impoverished rats, cardiolipin diethyl phosphate (probably as enol phosphate) has been isolated from liver mitochondria. Hence it is assumed that the enol phosphates of cardiolipin or of an analogous compound (mitochondria and chloroplasts) can be considered as high-energy intermediates of both oxidative and photochemical phosphorylation. Moreover, owing to earlier investigations which show that the formation of the phosphoric-acid-anhydride bond occurs proton-catalytically by acidolysis of enol phosphates, it is attempted here to combine the classic theories--"Chemical Coupling", "Chemiosmosis", and "Cooperativity", including the "Collision Hypothesis"--into the "Radical Theory of Oxidative Phosphorylation and Photophosphorylation". PMID:7934080

Schole, J; Schole, C

1994-07-21

328

Tau phosphorylation in Alzheimer’s disease  

Microsoft Academic Search

The two predominant pathological concomitants of Alzheimer’s disease (AD) are senile plaques and neurofibrillary tangles.\\u000a Although many biochemical studies have addressed the composition and formation of these AD hallmarks, very little is known\\u000a about the interrelationship between the two. Here we present evidence that the tau phosphorylation characteristic of neurofibrillary\\u000a tangles may be mediated by a physical association of MKK6

Alyson L. Peel; Noah Sorscher; Joseph Y. Kim; Veronica Galvan; Sylvia Chen; Dale E. Bredesen

2004-01-01

329

Clinical Diagnosis of Oxidative Phosphorylation Disorders  

Microsoft Academic Search

Oxidative phosphorylation defects are a common group of inborn errors of metabo lism. Patients may present to a variety of\\u000a different physicians and at any age. Whilst some patients present with a characteristic phenotype that allows early diagnosis,\\u000a in many the clinical features are suggestive rather than diagnostic. Neurological features are often prominent in all age\\u000a groups, but the involvement

Robert McFarland; Patrick F. Chinnery; Robert W. Taylor; Andrew M. Schaefer; Douglass M. Turnbull

330

Protein phosphorylation and beta-cell function  

Microsoft Academic Search

Summary  The central role of reversible protein phosphorylation in regulation of beta-cell function is reviewed and the properties of the protein kinases so far defined in beta cells are summarised. The key effect of Ca2+ to initiate insulin secretion involves activation of a Ca2+\\/calmodulin-dependent protein kinase. Potentiation of secretion by agents activating protein kinase A or C appears to involve an

Stephen John Haslam Ashcroft

1994-01-01

331

Phosphorylation of proteins in Clostridium thermohydrosulfuricum  

SciTech Connect

Cell extracts of the thermophile Clostridium thermohydrosulfuricum catalyzed the phosphorylation by (..gamma..-/sup 32/P)ATP of several endogenous proteins with M/sub r/s between 13,000 and 100,000. Serine and tyrosine were the main acceptors. Distinct substrate proteins were found in the soluble (e.g., proteins p66, p63, and p53 of M/sub r/s 66,000, 63,000, and 53,000, respectively) and particulate (p76 and p30) fractions, both of which contained protein kinase and phosphatase activity. The soluble fraction suppressed the phosphorylation of particulate proteins and contained a protein kinase inhibitor. Phosphorylation of p53 was promoted by 10..mu..M fructose 1,6-bisphosphate or glucose 1,6-bisphosphate and suppressed by hexose monophosphates, whereas p30 and p13 were suppressed by 5 ..mu..M brain (but not spinach) calmodulin. Polyamines, including the odd polyamines characteristic of thermophiles, modulated the labeling of most of the phosphoproteins. Apart from p66, all the proteins labeled in vitro were also rapidly labeled in intact cells by /sub 32/P/sub i/. Several proteins strongly labeled in vivo were labeled slowly or not at all in vitro.

Londesborough, J.

1986-02-01

332

Phosphorylation of erythrocyte membrane liberates calcium  

SciTech Connect

Phosphorylation of permeabilized erythrocyte ghost membranes with ATP results in an increase free calcium level as measured with the help of Ca/sup 2 +/ electrode and /sup 45/Ca. This effect could not be observed in the presence of p/sup -/ chloromercuric benzoate, an inhibitor of kinases. The rise in the free calcium due to phosphorylation of the membrane was accompanied by a decrease in the level of phosphatidylinositol (PI) and an increase in phosphatidylinositolmonophosphate (PIP) and phosphatidylinositolbisphosphate (PIP/sub 2/). These results support the proposal that an inositol shuttle, PI in equilibrium PIP in equilibrium PIP/sub 2/, operates to maintain the intracellular calcium concentration. The cation is believed to be sequestered in a cage formed by the head groups of two acidic phospholipid molecules, e.g., phosphatidylserine and phosphatidylinositol, with the participation of both PO and fatty acid ester CO groups. When the inositol group of such a cage is phosphorylated, inter-headgroup hydrogen bonding between the lipids is broken. As a result the cage opens and calcium is released.

Chauhan, V.P.S.; Brockerhoff, H.

1986-05-01

333

Phosphorylation-dephosphorylation of yeast pyruvate dehydrogenase  

SciTech Connect

Pyruvate dehydrogenase complex (PDC) was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). No pyruvate dehydrogenase (PDH) kinase activity was detected at any stage of the purification. However, the purified PDC was phosphorylated and inactivated by purified PDH kinase from bovine kidney mitochondria, Mg/sup 2 +/, and (..gamma..-/sup 32/P)ATP. The protein-bound radioactivity was localized in the PDH ..cap alpha.. subunit. The phosphorylated, inactivated PDC was dephosphorylated and reactivated with purified bovine PDH phosphatase, Mg/sup 2 +/, and Ca/sup 2 +/. From a tryptic digest of phosphorylated yeast PDC a radioactive peptide was isolated by anion and reverse phase HPLC. The sequence of this tetradecapeptide is Tyr-Gly-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Thr-Thr-Tyr-Arg. This sequence is very similar to the sequence of a tryptic phosphopeptide derived from the ..cap alpha.. subunit of bovine kidney and heart PDH: Tyr-His-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Val-Ser-Tyr-Arg.

Uhlinger, D.J.; Reed, L.J.

1986-05-01

334

Altered Enamelin Phosphorylation Site Causes Amelogenesis Imperfecta  

PubMed Central

Defects in the enamelin gene (ENAM) cause amelogenesis imperfecta (AI). Our objective was to identify the genetic etiology of enamel hypoplasia in a Caucasian proband. Our hypothesis was that ENAM was defective. The proband and his father have an AG insertion (g.13185_13186insAG; p.422FsX448) in ENAM previously identified in AI kindreds from Slovenia and Turkey. The proband, his brother, and his mother have a novel missense mutation (g.12573C>T) that substitutes leucine for a phosphorylated serine (p.S216L) in the 32-kDa enamelin cleavage product. In this family, a defect in one ENAM allele caused minor pitting or localized enamel hypoplasia, whereas defects in both alleles caused severe enamel malformations, with little or no mineral covering dentin. Ser216 is one of two serines on the 32-kDa enamelin that is phosphorylated by Golgi casein kinase and is thought to mediate calcium binding. We propose that phosphorylation of enamelin is critical for its function.

Chan, H.-C.; Mai, L.; Oikonomopoulou, A.; Chan, H.L.; Richardson, A.S.; Wang, S.-K.; Simmer, J.P.; Hu, J.C.-C.

2010-01-01

335

Protein phosphorylation and associative learning in Hermissenda.  

PubMed

Phototaxis in the nudibranch mollusc Hermissenda crassicornis can be modified by a conditioning paradigm which consists of paired light and rotation. Changes in K+ currents and protein phosphorylation have been demonstrated in photoreceptors and eyes of conditioned animals. A working hypothesis has been proposed in which stimulation of photoreceptors and hair cells during the presentation of paired light and rotation leads to synaptic and light-induced depolarization which gives rise to an increase in internal free Ca2+ in photoreceptors. The conditioning-induced increase in Ca2+ can in turn activate protein phosphorylation mechanisms which regulate K+ channel activity. In experiments designed to test this hypothesis, we have found that light plus depolarization increases internal Ca2+, as measured by Arsenazo absorption, Ca2+ increases the rate of inactivation of the same K+ currents which are reduced following conditioning, intracellular injection of Ca2+/calmodulin-dependent and cAMP-dependent protein kinases leads to reductions in these K+ currents, and potent Ca2+- and cAMP-dependent protein kinases are present in Hermissenda neural tissue. Further studies are needed to investigate the nature of the proteins whose levels of phosphorylation are altered following training and the nature of the proteins that are affected by the intracellularly injected protein kinases and to determine if the phosphoproteins affected by conditioning are related to the function of K+ channels. PMID:2432746

Neary, J T; Alkon, D L

1986-01-01

336

Altered enamelin phosphorylation site causes amelogenesis imperfecta.  

PubMed

Defects in the enamelin gene (ENAM) cause amelogenesis imperfecta (AI). Our objective was to identify the genetic etiology of enamel hypoplasia in a Caucasian proband. Our hypothesis was that ENAM was defective. The proband and his father have an AG insertion (g.13185_13186insAG; p.422FsX448) in ENAM previously identified in AI kindreds from Slovenia and Turkey. The proband, his brother, and his mother have a novel missense mutation (g.12573C>T) that substitutes leucine for a phosphorylated serine (p.S216L) in the 32-kDa enamelin cleavage product. In this family, a defect in one ENAM allele caused minor pitting or localized enamel hypoplasia, whereas defects in both alleles caused severe enamel malformations, with little or no mineral covering dentin. Ser(216) is one of two serines on the 32-kDa enamelin that is phosphorylated by Golgi casein kinase and is thought to mediate calcium binding. We propose that phosphorylation of enamelin is critical for its function. PMID:20439930

Chan, H-C; Mai, L; Oikonomopoulou, A; Chan, H L; Richardson, A S; Wang, S-K; Simmer, J P; Hu, J C-C

2010-05-03

337

Multistationarity in sequential distributed multisite phosphorylation networks.  

PubMed

Multisite phosphorylation networks are encountered in many intracellular processes like signal transduction, cell-cycle control, or nuclear signal integration. In this contribution, networks describing the phosphorylation and dephosphorylation of a protein at n sites in a sequential distributive mechanism are considered. Multistationarity (i.e., the existence of at least two positive steady state solutions of the associated polynomial dynamical system) has been analyzed and established in several contributions. It is, for example, known that there exist values for the rate constants where multistationarity occurs. However, nothing else is known about these rate constants.Here, we present a sign condition that is necessary and sufficient for multistationarity in n-site sequential, distributive phosphorylation. We express this sign condition in terms of linear systems, and show that solutions of these systems define rate constants where multistationarity is possible. We then present, for n?2, a collection of feasible linear systems, and hence give a new and independent proof that multistationarity is possible for n?2. Moreover, our results allow to explicitly obtain values for the rate constants where multistationarity is possible. Hence, we believe that, for the first time, a systematic exploration of the region in parameter space where multistationarity occurs has become possible. One consequence of our work is that, for any pair of steady states, the ratio of the steady state concentrations of kinase-substrate complexes equals that of phosphatase-substrate complexes. PMID:24048546

Holstein, Katharina; Flockerzi, Dietrich; Conradi, Carsten

2013-09-19

338

A Comprehensive Model That Explains the Regulation of Phospholipase D2 Activity by Phosphorylation-Dephosphorylation ?  

PubMed Central

We report here that the enzymatic activity of phospholipase D2 (PLD2) is regulated by phosphorylation-dephosphorylation. Phosphatase treatment of PLD2-overexpressing cells showed a biphasic nature of changes in activity that indicated the existence of “activator” and “inhibitory” sites. We identified three kinases capable of phosphorylating PLD2 in vitro—epidermal growth factor receptor (EGFR), JAK3, and Src (with JAK3 reported for the first time in this study)—that phosphorylate an inhibitory, an activator, and an ambivalent (one that can yield either effect) site, respectively. Mass spectrometry analyses indicated the target of each of these kinases as Y296 for EGFR, Y415 for JAK3, and Y511 for Src. The extent to which each site is activated or inhibited depends on the cell type considered. In COS-7, cells that show the highest level of PLD2 activity, the Y415 is a prominent site, and JAK3 compensates the negative modulation by EGFR on Y296. In MCF-7, cells that show the lowest level of PLD2 activity, the converse is the case, with Y296 unable to compensate the positive modulation by Y415. MTLn3, with medium to low levels of lipase activity, show an intermediate pattern of regulation but closer to MCF-7 than to COS-7 cells. The negative effect of EGFR on the two cancer cell lines MTLn3 and MCF-7 is further proven by RNA silencing experiments that yield COS-7 showing lower PLD2 activity, and MTLn3 and MCF-7 cells showing an elevated activity. MCF-7 is a cancer cell line derived from a low-aggressive/invasive form of breast cancer that has relatively low levels of PLD activity. We propose that PLD2 activity is low in the breast cancer cell line MCF-7 because it is kept downregulated by tyrosyl phosphorylation of Y296 by EGFR kinase. Thus, phosphorylation of PLD2-Y296 could be the signal for lowering the level of PLD2 activity in transformed cells with low invasive capabilities.

Henkels, Karen M.; Peng, Hong-Juan; Frondorf, Kathleen; Gomez-Cambronero, Julian

2010-01-01

339

Phosphorylated tyrosine in the flagellum filament protein of Pseudomonas aeruginosa  

SciTech Connect

Purified flagella from two strains of {sup 32}P-labeled Pseudomonas aeruginosa were shown to be phosphorylated. This was confirmed by autoradiography of flagellin protein in polyacrylamide gels. Thin-layer electrophoresis and autoradiography of flagellin partial hydrolysates indicated that phosphotyrosine was the major phosphorylated amino acid. High-pressure liquid chromatographic analysis confirmed the presence of phosphotyrosine in flagellum filament protein. Preliminary data indicated that less than one tyrosine per subunit was phosphorylated. No evidence was found for phosphorylation of serine or threonine. A function related to tyrosine phosphorylation has not been determined.

Kelly-Wintenberg, K.; Anderson, T.; Montie, T.C. (Univ. of Tennessee, Knoxville (USA))

1990-09-01

340

Tyrosine phosphorylation in Myxococcus xanthus, a multicellular prokaryote.  

PubMed Central

Tyrosine phosphorylation is an extremely rare event in prokaryotes, occurring almost exclusively in multicellular eukaryotes. We have identified, for the first time, by the use of antiphosphotyrosine monoclonal antibody and Western blot (immunoblot) analysis, two tyrosine-phosphorylated membrane proteins in the multicellular prokaryote Myxococcus xanthus. The pattern of tyrosine phosphorylation was shown to change during development, indicating a possible role for this regulatory modification during two stages of development, i.e., aggregation and sporulation. Furthermore, the altered pattern of tyrosine phosphorylation observed in a variety of signaling mutants was shown to differ from that observed in the wild type, suggesting further the possible involvement of tyrosine phosphorylation during the development program.

Frasch, S C; Dworkin, M

1996-01-01

341

The evolution of photosynthetic capacity and the antioxidant enzymatic system during acclimatization of micropropagated Calathea plants.  

PubMed

The effects of an increased PPFD on photosynthesis, the functioning of the photosynthetic apparatus and the response of the antioxidant enzymatic system were studied during the ex vitro establishment of micropropagated Calathea 'Maui Queen' plantlets. Measured chlorophyll and carotenoids contents in ex vitro formed leaves were almost three times higher compared to the in vitro formed ones. At the end of the acclimatization, an inverse relation between PPFD and the chlorophyll (a+b)/carotenoids ratio was observed. During the first days after transplantation Calathea plants are not photosynthetically active, as is illustrated by the photosynthetic light response curves. With the appearance of new leaves, higher photosynthetic capacities were observed and light saturation point increased (days 17 and 25). Also the maximal photosynthetic efficiency enlarged as shown by the increased initial slope of the curves. F(v)/F(m) decreased directly after transplantation of the micropropagated plantlets, afterwards a recovery was observed, but highest F(v)/F(m) values were observed in low light (LL) plants. The photochemical quenching coefficient increased gradually during the first two weeks of the acclimatization. In high light (HL) plants, q(P) decreased directly after transfer, while this was not observed in LL and medium light (ML). During the acclimatization period to increasing light intensities significant changes in the activity of the antioxidant enzymatic system were observed. A decrease in superoxide dismutase (SOD) activity was measured during the first half of the acclimatization period followed by a recovery in ML and HL plants by day 35. Dehydroascorbate reductase (DHAR) activity decreased during acclimatization. At the end of the experimental period the lowest levels were measured in ML plants. Catalase (CAT) activity increased significantly during the first two weeks after transfer, a clear inverse relationship to PPFD was detected. The relation between the adquisition of full photosynthetic capacity and the activation of the enzymatic antioxidant system in the leaves of calathea plants during ex vitro acclimatization is discussed. PMID:10773340

Van Huylenbroeck JM; Piqueras; Debergh

2000-06-12

342

Some enzymatic activities associated with purified parapoxvirions.  

PubMed Central

Purified virions of milker's nodule virus, a parapoxvirus, were shown to contain an RNA polymerase, a nucleotide phosphohydrolase, and a protein kinase associated with or encapsulated within the DNA-containing core of the virus. In vitro, the activated viral RNA polymerase transcribed only 7 to 8% of the genome, in the form of 8S to 14S polyadenylated RNA molecules which were complementary to sequences present in milker's nodule virus DNA but not vaccinia virus DNA or DNA prepared from the host cells in which the virus was propagated. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis showed that in vitro, the activated viral protein kinase phosphorylated viral polypeptides of 95, 60, 33.5, 15, and 13.8 kilodaltons. Images

Caplen, H S; Holowczak, J A

1983-01-01

343

Ethanol-induced phosphorylation of cytokeratin in cultured hepatocytes  

SciTech Connect

The authors studied the effect of ethanol on the phosphorylation of cytokeratins (CKs) in cultured hepatocytes since CK filaments are resulted by phosphorylation and they are abnormal in alcoholic liver disease. Hepatocytes were obtained from 14-day-old rats and cultured for 48 hrs. The hepatocytes were exposed to ethanol for 30 min. The residual insoluble cytoskeletons were analyzed by two-dimensional gel electrophoresis and autoradiography. 2D gel electrophoresis showed CK 55 and CK 49 or 8 and 18 and actin. The CKs had several isoelectric variants. The most basic spot was the dominant protein which was not phosphorylated. The more acidic spots were phosphorylated. After ethanol treatment, the phosphorylation of CK 55 and CK 49 were markedly increased over controls. They compared these results, with the effect of vasopressin, TPA and db-cAMP on the phosphorylation of CKs. Vasopressin and TPA caused the phosphorylation of CK 55 and 49 but db-cAMP did not.

Kawahara, Hiromu; Cadrin, M.; French, S.W. (Univ. of Ottawa, Ontario (Canada))

1990-01-01

344

Subcellular Clustering of the Phosphorylated WspR Response Regulator Protein Stimulates Its Diguanylate Cyclase Activity  

PubMed Central

ABSTRACT WspR is a hybrid response regulator-diguanylate cyclase that is phosphorylated by the Wsp signal transduction complex in response to growth of Pseudomonas aeruginosa on surfaces. Active WspR produces cyclic di-GMP (c-di-GMP), which in turn stimulates biofilm formation. In previous work, we found that when activated by phosphorylation, yellow fluorescent protein (YFP)-tagged WspR forms clusters that are visible in individual cells by fluorescence microscopy. Unphosphorylated WspR is diffuse in cells and not visible. Thus, cluster formation is an assay for WspR signal transduction. To understand how and why WspR forms subcellular clusters, we analyzed cluster formation and the enzymatic activities of six single amino acid variants of WspR. In general, increased cluster formation correlated with increased in vivo and in vitro diguanylate cyclase activities of the variants. In addition, WspR specific activity was strongly concentration dependent in vitro, and the effect of the protein concentration on diguanylate cyclase activity was magnified when WspR was treated with the phosphor analog beryllium fluoride. Cluster formation appears to be an intrinsic property of phosphorylated WspR (WspR-P). These results support a model in which the formation of WspR-P subcellular clusters in vivo in response to a surface stimulus is important for potentiating the diguanylate cyclase activity of WspR. Subcellular cluster formation appears to be an additional means by which the activity of a response regulator protein can be regulated.

Huangyutitham, Varisa; Guvener, Zehra Tuzun; Harwood, Caroline S.

2013-01-01

345

Mass spectrometric characterization of phosphorylated peptides using MALDI in-source decay via redox reactions.  

PubMed

Matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) has been used for characterization of a phosphorylated peptides and proteins because labile phosphate group is not lost during the MALDI-ISD process. The conventional MALDI-ISD is initiated by the hydrogen transfer from reducing matrix molecules to peptide backbone, leading to c'- and z'-series ions. In contrast, when an oxidizing chemical 5-nitrosalicylic acid (5-NSA) is served as the MALDI-ISD matrix, a- and x-series ions are specifically generated by hydrogen abstraction from peptide backbone to matrix molecule. The 5-NSA provides useful complementary information to the conventional MALDI-ISD for the analysis of amino acid sequencing and site localization of phosphorylation in peptides. The MALDI-ISD with reducing and oxidizing matrix could be a useful method for the de novo peptide sequencing. PMID:22359327

Asakawa, Daiki; Takayama, Mitsuo

2012-02-01

346

Modulation of tau phosphorylation and intracellular localization by cellular stress.  

PubMed Central

Tau is a microtubule-associated protein that is functionally modulated by phosphorylation and hyperphosphorylated in several neurodegenerative diseases. Because phosphorylation regulates both normal and pathological tau functioning, it is of great interest to identify the signalling pathways and enzymes capable of modulating tau phosphorylation in vivo. The present study examined changes in tau phosphorylation and localization in response to osmotic stress, which activates the stress-activated protein kinases (SAPKs), a family of proline-directed protein kinases shown to phosphorylate tau in vitro and hypothesized to phosphorylate tau in Alzheimer's disease. Immunoblot analysis with phosphorylation-dependent antibodies revealed that osmotic stress increased tau phosphorylation at the non-Ser/Thr-Pro sites Ser-262/356, within the microtubule-binding domain, as well as Ser/Thr-Pro sites outside of tau's microtubule-binding domain. Although all SAPKs examined were activated by osmotic stress, none of the endogenous SAPKs mediated the increase in tau phosphorylation. However, when transfected into SH-SY5Y cells, SAPK3, but not the other SAPKs examined, phosphorylated tau in situ in response to activation by osmotic stress. Osmotic-stress-induced tau phosphorylation correlated with a decrease in the amount of tau associated with the cytoskeleton and an increase in the amount of soluble tau. This stress-induced alteration in tau localization was only partially due to phosphorylation at Ser-262/356 by a staurosporine-sensitive, non-proline-directed, protein kinase. Taken together, these results suggest that osmotic stress activates at least two tau-directed protein kinases, one proline-directed and one non-proline-directed, that SAPK3 can phosphorylate tau on Ser/Thr-Pro residues in situ, and that Ser-262/356 phosphorylation only partially regulates tau localization in the cell.

Jenkins, S M; Zinnerman, M; Garner, C; Johnson, G V

2000-01-01

347

Tyrosine Phosphorylation of CD13 Regulates Inflammatory Cell-Cell Adhesion and Monocyte Trafficking.  

PubMed

CD13 is a large cell surface peptidase expressed on the monocytes and activated endothelial cells that is important for homing to and resolving the damaged tissue at sites of injury. We showed previously that cross-linking of human monocytic CD13 with activating Abs induces strong adhesion to endothelial cells in a tyrosine kinase- and microtubule-dependent manner. In the current study, we examined the molecular mechanisms underlying these observations in vitro and in vivo. We found that cross-linking of CD13 on U937 monocytic cells induced phosphorylation of a number of proteins, including Src, FAK, and ERK, and inhibition of these abrogated CD13-dependent adhesion. We found that CD13 itself was phosphorylated in a Src-dependent manner, which was an unexpected finding because its 7-aa cytoplasmic tail was assumed to be inert. Furthermore, CD13 was constitutively associated with the scaffolding protein IQGAP1, and CD13 cross-linking induced complex formation with the actin-binding protein ?-actinin, linking membrane-bound CD13 to the cytoskeleton, further supporting CD13 as an inflammatory adhesion molecule. Mechanistically, mutation of the conserved CD13 cytoplasmic tyrosine to phenylalanine abrogated adhesion; Src, FAK, and ERK phosphorylation; and cytoskeletal alterations upon Ab cross-linking. Finally, CD13 was phosphorylated in isolated murine inflammatory peritoneal exudate cells, and adoptive transfer of monocytic cell lines engineered to express the mutant CD13 were severely impaired in their ability to migrate into the inflamed peritoneum, confirming that CD13 phosphorylation is relevant to inflammatory cell trafficking in vivo. Therefore, this study identifies CD13 as a novel, direct activator of intracellular signaling pathways in pathophysiological conditions. PMID:23997214

Subramani, Jaganathan; Ghosh, Mallika; Rahman, M Mamunur; Caromile, Leslie A; Gerber, Claire; Rezaul, Karim; Han, David K; Shapiro, Linda H

2013-08-30

348

Inhibition of Phosphorylation of Na+,K+-ATPase by Mutations Causing Familial Hemiplegic Migraine*  

PubMed Central

The neurological disorder familial hemiplegic migraine type II (FHM2) is caused by mutations in the ?2-isoform of the Na+,K+-ATPase. We have studied the partial reaction steps of the Na+,K+-pump cycle in nine FHM2 mutants retaining overall activity at a level still compatible with cell growth. Although it is believed that the pathophysiology of FHM2 results from reduced extracellular K+ clearance and/or changes in Na+ gradient-dependent transport processes in neuroglia, a reduced affinity for K+ or Na+ is not a general finding with the FHM2 mutants. Six of the FHM2 mutations markedly affect the maximal rate of phosphorylation from ATP leading to inhibition by intracellular K+, thereby likely compromising pump function under physiological conditions. In mutants R593W, V628M, and M731T, the defective phosphorylation is caused by local perturbations within the Rossmann fold, possibly interfering with the bending of the P-domain during phosphoryl transfer. In mutants V138A, T345A, and R834Q, long range effects reaching from as far away as the M2 transmembrane helix perturb the function of the catalytic site. Mutant E700K exhibits a reduced rate of E2P dephosphorylation without effect on phosphorylation from ATP. An extremely reduced vanadate affinity of this mutant indicates that the slow dephosphorylation reflects a destabilization of the phosphoryl transition state. This seems to be caused by insertion of the lysine between two other positively charged residues of the Rossmann fold. In mutants R202Q and T263M, effects on the A-domain structure are responsible for a reduced rate of the E1P to E2P transition.

Schack, Vivien Rodacker; Holm, Rikke; Vilsen, Bente

2012-01-01

349

Mucin biosynthesis revisited. The enzymatic transfer of Gal in beta 1,3 linkage to the GalNAc moiety of the core structure R1-GlcNAc beta 1,6GalNAc alpha-O-R2.  

PubMed

Synthetic glycosides containing the core, -Glc-NAc beta 1,6GalNAc alpha-, acted as acceptors for beta-galactosyltransferase of human ovarian tumor. A significant amount of Gal was transferred from UDP-Gal (100 nmol) to the alpha-benzylglycoside of LacNAc beta 1,6GalNAc (LGBn) (25.1 nmol of Gal) and the alpha-ortho-nitrophenylglycosides of LacNAc beta 1,6GalNAc (22.0 nmol of Gal), GlcNAc beta 1,6GalNAc (15.5 nmol of Gal), and Fuc alpha 1,3GlcNAc beta 1,6GalNAc (25.9 nmol of Gal); LacNAc beta 1,6(Gal beta 1,3)GalNAc alpha-O-Bn (where Bn is benzyl) was almost inactive (only 1.2 nmol of Gal), indicating the Gal transfer to the alpha-GalNAc moiety. The product from LGBn was isolated in microgram quantities and identified by fast atom bombardment mass spectrometry as LacNAc beta 1,6(Gal beta 1,3)GalNAc alpha-O-Bn. The alpha GalNAc:beta 1,3Gal transferase was present in high concentration in ovarian tumor tissue (ovarian cancer serum----1.4; ascitic fluid----0.9; tumor----17.4). Asialo Cowper's gland mucin (ACGM) at 5 mg/ml reaction mixture inhibited the transfer of Gal to LGBn (25.2 and 53.4% respectively for 2 and 18 h incubation at 37 degrees C); inhibition by LGBn was 13.4 and 24.5%, respectively. In contrast to the inhibition by ACGM (25.2-31.6%), there was substantial increase (13.4-35.7%) in the inhibition by LGBn, when the incubation for 2 h at 37 degrees C was continued for 40 h at 4 degrees C, indicating the high affinity of LGBn for the enzyme at lower temp. Km for LGBn in presence of ACGM was 7.6 mM and in absence, 2.7 mM; Km for ACGM (M(r) 200,000) in presence of LGBn was 16.1 microM and Ki for ACGM (as the inhibitor) was 41.7 microM. In comparison with two normal ovarian tissues, the enzyme was found to be low (55-67%) in three ovarian tumors and high (146-260%) in two ovarian and one uterus tumors, as measured with ACGM; the synthetic acceptors showed similar activities. The enzyme had nearly the same extent of activity in the pH range 6-8. Fuc alpha 1,3GlcNAc beta 1,6GalNAc alpha-O-ONP had the highest affinity for the enzyme. The present study demonstrates the feasibility of beta 1,3Gal attachment on alpha GalNAc, which has already been substituted by beta 1,6GlcNAc, then elongated by beta 1,4Gal and also terminated by alpha 1,3Fuc. PMID:1400309

Chandrasekaran, E V; Jain, R K; Matta, K L

1992-10-01

350

Enzymatic detection of troponin C and melittin bee  

NASA Astrophysics Data System (ADS)

One of the major goals of biosensor technology is to detect and quantify in detail analytes with very high accuracy. To achieve this, much of the emphasis in sensor fabrication has been laid on antibody-antigen interaction. The consequence of this focus of enzyme biosensor studies is the development of critical techniques which can be extended in the detection of Acute Myocardial Infarction (AMI). Biosensors for AMI have attracted considerable interest in the last few years since the monitoring of a specific substance is central in enzymatic reactions. This interest has led to the investigation of biochemical markers of myocardial injury. These biomarkers facilitate the diagnosis and treatment of patients with AMI. Serial measurements of biochemical markers are now universally accepted as an important determinant in AMI diagnosis. Due to their high sensitivity and specificity over other biomarkers, the troponins are the markers of choice for the diagnosis or exclusion of AMI. The present techniques used in the identification of the troponins are lengthy and require large amount of specimen solution. The present research is directed towards the identification of optical detection procedures that are compatible to the miniaturization. In the present study an effort has been made to study the antigen-antibody reaction of rabbit skeletal muscle troponin C (TnC) and bee venom melittin (ME). Fluorescence energy transfer experiments were done to investigate the Ca 2+ -dependant interaction of TnC-ME in a 1:1 complex. Experiments were also conducted on TnC-ME binding at different ratios. These results validate the biosensor technology and illustrate how a biosensor can be developed based on the study of interaction between monoclonal antibody and antigen reaction in real time. The reported experimental results provide valuable information that will be useful in the development of a biosensor for the detection of AMI.

Jeetender, Amritsar; Stiharu, Ion; Packirisamy, Muthukumaran

2005-04-01

351

MORC2 signaling integrates phosphorylation-dependent, ATPase-coupled chromatin remodeling during the DNA damage response.  

PubMed

Chromatin dynamics play a central role in maintaining genome integrity, but how this is achieved remains largely unknown. Here, we report that microrchidia CW-type zinc finger 2 (MORC2), an uncharacterized protein with a derived PHD finger domain and a conserved GHKL-type ATPase module, is a physiological substrate of p21-activated kinase 1 (PAK1), an important integrator of extracellular signals and nuclear processes. Following DNA damage, MORC2 is phosphorylated on serine 739 in a PAK1-dependent manner, and phosphorylated MORC2 regulates its DNA-dependent ATPase activity to facilitate chromatin remodeling. Moreover, MORC2 associates with chromatin and promotes gamma-H2AX induction in a PAK1 phosphorylation-dependent manner. Consequently, cells expressing MORC2-S739A mutation displayed a reduction in DNA repair efficiency and were hypersensitive to DNA-damaging agent. These findings suggest that the PAK1-MORC2 axis is critical for orchestrating the interplay between chromatin dynamics and the maintenance of genomic integrity through sequentially integrating multiple essential enzymatic processes. PMID:23260667

Li, Da-Qiang; Nair, Sujit S; Ohshiro, Kazufumi; Kumar, Anupam; Nair, Vasudha S; Pakala, Suresh B; Reddy, Sirigiri Divijendra Natha; Gajula, Rajendra P; Eswaran, Jeyanthy; Aravind, L; Kumar, Rakesh

2012-12-27

352

Enzymatic hydrolysis of polylactic acid fiber.  

PubMed

This study investigated the optimization of the enzymatic processing conditions for polylactic acid (PLA) fibers using enzymes consisting of lipases originating from different sources. The hydrolytic activity was evaluated taking into consideration the pH, temperature, enzyme concentration, and treatment time. The structural change of the PLA fibers was measured in the optimal treatment conditions. PLA fiber hydrolysis by lipases was maximized for lipase from Aspergillus niger at 40 °C for 60 min at pH 7.5 with 60% (owf) concentration, for lipase from Candida cylindracea at 40 °C for 120 min at pH 8.0 with 70% (owf) concentration, and for lipase from Candida rugosa at 45 °C for 120 min at pH 8.0 with 70% (owf) concentration. There was a change in protein absorbance of the treatment solution before and after all lipase treatments. The analyses of the chemical structure change and structural properties of the PLA due to lipase treatment was confirmed by tensile strength, differential scanning calorimetry, wide-angle X-ray scattering diffractometry, Fourier transform infrared spectroscopy, and scanning electron microscopy. PMID:21038086

Lee, So Hee; Song, Wha Soon

2010-10-31

353

Enzymatically degradable mussel-inspired adhesive hydrogel.  

PubMed

Mussel-inspired adhesive hydrogels represent innovative candidate medical sealants or glues. In the present work, we describe an enzyme-degradable mussel-inspired adhesive hydrogel formulation, achieved by incorporating minimal elastase substrate peptide Ala-Ala into the branched poly(ethylene glycol) (PEG) macromonomer structure. The system takes advantage of neutrophil elastase expression upregulation and secretion from neutrophils upon recruitment to wounded or inflamed tissue. By integrating adhesive degradation behaviors that respond to cellular cues, we expand the functional range of our mussel-inspired adhesive hydrogel platforms. Rapid (<1 min) and simultaneous gelation and adhesion of the proteolytically active, catechol-terminated precursor macromonomer was achieved by addition of sodium periodate oxidant. Rheological analysis and equilibrium swelling studies demonstrated that the hydrogel is appropriate for soft tissue-contacting applications. Notably, hydrogel storage modulus (G') achieved values on the order of 10 kPa, and strain at failure exceeded 200% strain. Lap shear testing confirmed the material's adhesive behavior (shear strength: 30.4 ± 3.39 kPa). Although adhesive hydrogel degradation was not observed during short-term (27 h) in vitro treatment with neutrophil elastase, in vivo degradation proceeded over several months following dorsal subcutaneous implantation in mice. This work represents the first example of an enzymatically degradable mussel-inspired adhesive and expands the potential biomedical applications of this family of materials. PMID:22059927

Brubaker, Carrie E; Messersmith, Phillip B

2011-11-21

354

Nanostructured Organometallic Polymers for Enzymatic Bioenergy  

NASA Astrophysics Data System (ADS)

The development of efficient enzymatic biofuel cell is a subject of considerable studies in past decades for potential applications such as biomedical devices and microchip systems. One of the key challenges in advancing the technology lies in the power densities of the system. Limitations have been arisen from the buried redox active sites within enzyme structure and poor interplay between redox reactions. In present study, a glucose oxidase is employed as a model enzyme and ferrocene-containing organometallic block copolymers are chosen for the electron mediators. Wiring of glucose oxidase into electrode surface was successfully achieved by cross-linked networks of organometallic polymers and remarkably, catalytic current densities of the fabricated electrodes have proven be a sensitive function of the morphologies of electron mediators. Different nanoscale morphologies, i.e., bicontinous structure, nanowires, and nanoparticles, have been derived and the use of bicontinous morphology confirms 2-50 times improved catalytic current response than the values obtained from other morphologies. The bio-sensing ability of the fabricated electrode with structural optimization was also exploited and good sensitivity is obtained at the physiological concentration of glucose in blood.

Park, Moon Jeong; Lee, Jungphil

2012-02-01

355

Non-eluting Enzymatic Antibiofilm Coatings  

PubMed Central

We developed a highly efficient, biocompatible surface coating that disperses bacterial biofilms through enzymatic cleavage of the extracellular biofilm matrix. The coating was fabricated by binding the naturally existing enzyme dispersin B (DspB) to surface-attached polymer matrices constructed via a layer-by-layer (LbL) deposition technique. LbL matrices were assembled through electrostatic interactions of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMAA), followed by chemical crosslinking with glutaraldehyde and pH triggered removal of PMAA, producing a stable PAH hydrogel matrix used for DspB loading. The amount of DspB loaded increased linearly with the number of PAH layers in surface hydrogels. DspB was retained within these coatings in the pH range from 4 to 7.5. DspB-loaded coatings inhibited biofilm formation by two clinical strains of Staphylococcus epidermidis. Biofilm inhibition was ? 98% compared to mock-loaded coatings as determined by CFU enumeration. In addition, DspB-loaded coatings did not inhibit attachment or growth of cultured human osteoblast cells. We suggest that the use of DspB-loaded multilayer coatings presents a promising method for creating biocompatible surfaces with high antibiofilm efficiency, especially when combined with conventional antimicrobial treatment of dispersed bacteria.

Pavlukhina, Svetlana V.; Kaplan, Jeffrey B.; Xu, Li; Chang, Wei; Yu, Xiaojun; Madhyastha, Srinivasa; Yakandawala, Nandadeva; Mentbayeva, Almagul; Khan, Babar; Sukhishvili, Svetlana A.

2012-01-01

356

The enzymatic synthesis of rubber polymer  

SciTech Connect

Washed rubber particles (WRP) isolated from stem homogenates of Parthenium argentatum by ultracentrifugation and gel filtration on columns of LKB Ultrogel AcA34 contain a tightly bound rubber transferase which catalyzes the polymerization of IPP into rubber polymer. The polymerization reaction requires Mg{sup 2+}, IPP and an allylic-PP. The Km values for Mg{sup 2+}, IPP and DMAPP are 5.2{times}10{sup {minus}4}M, 8.3{times}10{sup {minus}5} M and 9.6{times}10{sup {minus}5}M respectively. Gel permeation chromatography of the enzymatic polymer product on 3 linear columns of 1{times}10{sup 6} to 500 {angstrom} Ultrastyragel shows that the in vitro formed polymer has a similar mol wt to natural rubber. Over 90% of the in vitro formation of the rubber polymer was a de novo polymerization reaction from DMAPP initiator and IPP monomers. The bound rubber polymerase substantially differs from cytosolic rubber transferase which catalyzes only chain lengthening reactions. Treatment of the WRP with Chaps solubilized the bound rubber transferase which was further purified by DEAE-cellulose chromatography. The purified preparation primarily consists of a 52 kD polypeptide which binds to a photolabile substrate analog. The soluble rubber transferase catalyzes the synthesis of a 1{times}10{sup 5} mol wt rubber polymer from Mg{sup 2+}, DMAPP, IPP and detergent.

Venkatachalam, K.V.; Wooten, L.; Benedict, C.R. (Texas A M Univ., College Station (USA))

1990-05-01

357

PKC isoforms differentially phosphorylate Cav1.2 ?1c  

PubMed Central

The regulation of Ca2+ influx through the phosphorylation of the L-type Ca2+ channel, Cav1.2, is important for the modulation of excitation-contraction (E-C) coupling in the heart. Cav1.2 is thought to be the target of multiple kinases that mediate the signals of both the renin-angiotensin and sympathetic nervous systems. Detailed biochemical information regarding the protein phosphorylation reactions involved in the regulation of Cav1.2 is limited. The PKC family of kinases can modulate cardiac contractility in a complex manner, such that contractility is either enhanced or depressed, and relaxation is either accelerated or slowed. We have previously reported that Ser1928 in the C-terminus of ?1c was a target for PKC?, ? and ? phosphorylation. Here, we report the identification of seven PKC phosphorylation sites within the ?1c subunit. Using phospho-epitope specific antibodies to Ser1674 and Ser1928, we demonstrate that both sites within C-terminus are phosphorylated in HEK cells in response to PMA. Phosphorylation was inhibited with a PKC inhibitor, bisindolylmaleimide. In Langendorff-perfused rat hearts, both Ser1674 and Ser1928 were phosphorylated in response to PMA. Phosphorylation of Ser1674, but not Ser1928, is PKC isoform-specific, as only PKC ?, ?I, ?II, ?, ? and ?, but not PKC ?, ? and ?, were able to phosphorylate this site. Our results identify a molecular mechanism by which PKC isoforms can have different effects on channel activity by phosphorylating different residues.

Yang, Lin; Doshi, Darshan; Morrow, John; Katchman, Alexander; Chen, Xiang; Marx, Steven O.

2010-01-01

358

Mechanistic and physiological consequences of HPr(ser) phosphorylation on the activities of the phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: studies with site-specific mutants of HPr.  

PubMed Central

The bacterial phosphotransferase system (PTS) catalyzes the transport and phosphorylation of its sugar substrates. The protein-kinase-catalyzed phosphorylation of serine 46 in the phosphocarrier protein, HPr, inhibits PTS activity, but neither the mechanism of this inhibition nor its physiological significance is known. Site-specific HPr mutants were constructed in which serine 46 was replaced by alanine (S46A), threonine (S46T), tyrosine (S46Y) or aspartate (S46D). The purified S46D protein exhibited markedly lower Vmax and higher Km values than the wild-type, S46T or S46A protein for the phosphoryl transfer reactions involving HPr(His approximately P). Interactions of HPr with the enzymes catalyzing phosphoryl transfer to and from HPr regulated the kinase-catalyzed reaction. These results establish the inhibitory effect of a negative charge at position 46 on PTS-mediated phosphoryl transfer and suggest that HPr is phosphorylated on both histidyl and seryl residues by enzymes that recognize its tertiary rather than its primary structure. In vivo studies showed that a negative charge on residue 46 of HPr strongly inhibits PTS-mediated sugar uptake, but that competition of two PTS permeases for HPr(His approximately P) is quantitatively more important to the regulation of PTS function than serine 46 phosphorylation. Images

Reizer, J; Sutrina, S L; Saier, M H; Stewart, G C; Peterkofsky, A; Reddy, P

1989-01-01

359

Control of oxidative phosphorylation during insect metamorphosis.  

PubMed

The midgut of the tobacco hornworm (Manduca sexta) is a highly aerobic tissue that is destroyed and replaced by a pupal epithelium at metamorphosis. To determine how oxidative phosphorylation is altered during the programmed death of the larval cells, top-down control analysis was performed on mitochondria isolated from the midguts of larvae before and after the commitment to pupation. Oxygen consumption and protonmotive force (measured as membrane potential in the presence of nigericin) were monitored to determine the kinetic responses of the substrate oxidation system, proton leak, and phosphorylation system to changes in the membrane potential. Mitochondria from precommitment larvae have higher respiration rates than those from postcommitment larvae. State 4 respiration is controlled by the proton leak and the substrate oxidation system. In state 3, the substrate oxidation system exerted 90% of the control over respiration, and this high level of control did not change with development. Elasticity analysis, however, revealed that, after commitment, the activity of the substrate oxidation system falls. This decline may be due, in part, to a loss of cytochrome c from the mitochondria. There are no differences in the kinetics of the phosphorylation system, indicating that neither the F(1)F(0) ATP synthase nor the adenine nucleotide translocase is affected in the early stages of metamorphosis. An increase in proton conductance was observed in mitochondria isolated from postcommitment larvae, indicating that membrane area, lipid composition, or proton-conducting proteins may be altered during the early stages of the programmed cell death of the larval epithelium. PMID:15072964

Chamberlin, M E

2004-04-08

360

Enhanced detection and identification of multiply phosphorylated peptides using TiO2 enrichment in combination with MALDI TOF/TOF MS.  

PubMed

The analysis of PTMs such as phosphorylation has become an important field in MS because they can directly indicate protein states and interactions. Whereas the characterization of singly and doubly phosphorylated peptides has almost become routine, identifying phosphorylation events at multiple residues within a small region of a protein is still problematic. The identification of multiple modifications can be further hampered by low sequence information due to multiple neutral losses from phosphorylated side chains. Here we present a strategy for the analysis of complex phosphopeptides that combines peptide enrichment by titanium dioxide, separation by RP separation on monolithic columns and MS using high energy HE-CAD in a MALDI TOF/TOF analyser. Using synthetic phosphopeptides our approach is compared to multistage activation (MSA) MS/MS and the recently described electron transfer dissociation (ETD) method using an ESI-LTQ mass spectrometer. PMID:18972529

Schmidt, Andreas; Csaszar, Edina; Ammerer, Gustav; Mechtler, Karl

2008-11-01

361

Proteolytic processing by matrix metalloproteinases and phosphorylation by protein kinase CK2 of fetuin-A, the major globulin of fetal calf serum.  

PubMed

Bovine fetuin-A is a member of a glycoprotein family with a wide spectrum of functions. Until now the bovine protein has been thought to be a single-chain protein. Recently we have shown that native bovine plasma fetuin-A partially exists as a disulfide-bridged two-chain protein with a heavy N-terminal and a lighter C-terminal chain similar to the structure of human fetuin-A homologue (alpha2HS glycoprotein), and also is partially phosphorylated at residues Ser120, Ser302, Ser305 and Ser306 (Wind et al., Anal. Biochem. 317 (2003) 26-33). Both fetuin-A modifications, the phosphorylation at the four sites as well as the proteolysis which causes longer or shorter light chains (termed lc-1 and lc-2, respectively), are probably brought about by targeted enzymatic activities which still need to be defined. In this study we show that authentic bovine fetuin-A disulfide-bridged two-chain forms, which include the original C-terminus, were liberated from the single-chain precursor by metalloproteinases MMP-3 (stromelysin-1) and MMP-7 (matrilysin), but not by elastase, cathepsin E and cathepsin G. Peptide sequencing suggested cleavage sites chiefly at the Pro277-Ser278 or Arg294-His295 peptide bonds. Fetuin-A radioactive phosphorylation in vitro by protein kinase CK2 caused (32)P incorporation into the fetuin-A light chain lc-1 but not lc-2 or the fetuin-A heavy chain, as revealed by MMP assisted proteolysis. Analysis by nanoESI-MS pinpointed phosphorylation at the native phospho-residues Ser302, Ser305 and Ser306 by increased relative abundance following in vitro phosphorylation. Moreover, CK2 phosphorylation of synthetic C-terminal fetuin-A peptides, used as effective controls to the native protein, strongly implies that CK2 is involved in the in vivo phosphorylation of fetuin-A. The phosphorylation of N-terminally truncated peptide homologs seemed highly dependent on the sequence context N-terminal of the phosphorylation sites, thus providing a likely explanation for the non-phosphorylation of the light chain lc-2 in native fetuin-A. PMID:17110014

Kübler, Dieter; Gosenca, Darko; Wind, Mathias; Heid, Hans; Friedberg, Ilan; Jahnen-Dechent, Willi; Lehmann, Wolf D

2006-11-10

362

Enzymatic Activities of Cell-Free Extracts of 'Rickettsia typhi'.  

National Technical Information Service (NTIS)

Cell-free extracts of Rickettsia typhi were tested for activities of enzymes of the tricarboxylic acid cycle, of glutamate catabolism, and of glycolysis. The following enzymatic activities were demonstrated: high levels of malate dehydrogenase (MDH), mode...

J. C. Coolbaugh J. J. Progar E. Weiss

1976-01-01

363

Studies on the Enzymatic Hydrolysis of Organophosphate Poisons in Pigs.  

National Technical Information Service (NTIS)

Phosphate paraoxon was studied in Yorkshire pig, rat and human sera. Enzymatic hydrolysis was significantly affected by certain buffers in the reaction mixture. Kinetic measurements suggest that more than one enzyme hydrolyzes the organophosphate. Dependi...

P. Schmid J. Jaeger

1982-01-01

364

Disposal of Cellulosic Waste Materials by Enzymatic Hydrolysis.  

National Technical Information Service (NTIS)

The paper summarizes studies on pollution abatement by enzymatic conversion of waste cellulose to useful products. Cellulose is the major component of card board boxes, kraft paper, paper bags, correspondence paper, and newspring, or any other product of ...

D. Brandt L. Hontz M. Mandels

1972-01-01

365

NAD(+)-NADH Modelling Studies: An Enzymatic and Chemical Approach.  

National Technical Information Service (NTIS)

Chemical and enzymatic studies on the coenzyme NAD+ and its reduced form NADH are reported. In combination with specific enzymes (dehydrogenases) the coenzyme is involved in the reversible stereospecific dehydrogenation of many substrates. Major focus is ...

N. A. Beijer

1990-01-01

366

Michaelis-Menten equation and detailed balance in enzymatic networks.  

PubMed

Many enzymatic reactions in biochemistry are far more complex than the celebrated Michaelis-Menten scheme, but the observed turnover rate often obeys the hyperbolic dependence on the substrate concentration, a relation established almost a century ago for the simple Michaelis-Menten mechanism. To resolve the longstanding puzzle, we apply the flux balance method to predict the functional form of the substrate dependence in the mean turnover time of complex enzymatic reactions and identify detailed balance (i.e., the lack of unbalanced conformational current) as a sufficient condition for the Michaelis-Menten equation to describe the substrate concentration dependence of the turnover rate in an enzymatic network. This prediction can be verified in single-molecule event-averaged measurements using the recently proposed signatures of detailed balance violations. The finding helps analyze recent single-molecule studies of enzymatic networks and can be applied to other external variables, such as force-dependence and voltage-dependence. PMID:21466190

Cao, Jianshu

2011-04-05

367

Phosphorylation of polysaccharides: New results on synthesis and characterisation of phosphorylated cellulose  

Microsoft Academic Search

New results regarding the synthesis and characterization of water-soluble phosphorylated cellulose by reaction of microcrystalline cellulose with phosphorous acid in molten urea are presented. The maximal value of DS attained by this method was about 1. By elemental analysis of phosphorous, titration of acidic groups and IR spectra the structure of monobasic cellulose phosphate was demonstrated. The results of elemental

Dana Mihaela Suflet; Gabrielle Charlotte Chitanu; Valentin I. Popa

2006-01-01

368

Use of Hsp70 as a regulator of enzymatic activity  

US Patent & Trademark Office Database

The present invention concerns a method for modulating the enzymatic activity of an enzyme, wherein said enzyme interacts with BMP, said method comprising the step of administering or inducing Hsp70, or a functional fragment or variant thereof, in a form suitable for allowing interaction between BMP and Hsp70, or said functional fragment or variant thereof, and thereby modulating the enzymatic activity of an enzyme interacting with BMP.

Jensen; Thomas Kirkegaard (Frederiksberg C, DK); Jaattela; Marja Helena (Kobenhavn O, DK)

2013-09-24

369

Antioxidant activities of enzymatic extracts from brown seaweeds  

Microsoft Academic Search

Potential antioxidative activities of enzymatic extracts from seven species of brown seaweeds were evaluated using four different reactive oxygen species (ROS) scavenging assays containing DPPH (1,1-diphenyl-2-pricrylhydrazyl) free radical, superoxide anion, hydroxyl radical and hydrogen peroxide scavenging assay. The brown seaweeds were enzymatically hydrolyzed to prepare water-soluble extracts by using five carbohydrate degrading enzymes (Viscozyme, Celluclast, AMG, Termamyl and Ultraflo) and

Soo-Jin Heo; Eun-Ju Park; Ki-Wan Lee; You-Jin Jeon

2005-01-01

370

Hydrothermal pre-treatment and enzymatic hydrolysis of sunflower stalks  

Microsoft Academic Search

The production of fermentable sugars by biochemical conversion of pretreated sunflower stalks is studied in this work. Liquid hot water pre-treatment, in a temperature range from 180 to 230°C was used. After pre-treatment, solid residue and liquid fractions are separated by filtration. Pretreated solids are further submitted to enzymatic hydrolysis for glucose release using a commercial enzyme preparation. Enzymatic hydrolysis

Manuel J. Díaz; Cristóbal Cara; Encarnación Ruiz; Mercedes Pérez-Bonilla; Eulogio Castro

2011-01-01

371

Enzymatic hydrolysis and fermentation of agricultural residues to ethanol  

Microsoft Academic Search

A combined enzymatic hydrolysis and fermentation process was used to convert steam-treated wheat and barley straw to ethanol. Maximum conversion efficiencies were obtained when the substrates were steamed for 90 s. These substrates could yield over 0.4 g ethanol\\/g cellulose following a combined enzymatic hydrolysis and fermentation process procedure using culture filtrates derived from Trichoderma harzianum E58. When culture filtrates

M. Mes-Hartree; C. M. Hogan; J. N. Saddler

1984-01-01

372

Effects of Enzymatic Sterilization Detergents on the Corneal Endothelium  

Microsoft Academic Search

Objective: To evaluate the potential of enzymatic de- tergents to cause endothelial damage and anterior seg- ment inflammation. Methods: Paired rabbit corneas were mounted in an in vitro specular microscope. Endothelia were perfused ei- ther with the sterile irrigating solution BSS Plus (Alcon Laboratories Inc, Ft Worth, Tex) (control) or 0.1%, 0.4%, or 1.0% Medline Enzymatic Detergent (Medline Indus- tries

Chirag Parikh; Brian D. Sippy; Daniel F. Martin; Henry F. Edelhauser

373

Can You Hear Me Now? Regulating Transcriptional Activators by Phosphorylation  

NSDL National Science Digital Library

Extracellular signals often modulate the expression of specific genetic programs by triggering the phosphorylation of relevant transcription factors (TFs). Phosphorylation in turn regulates such TFs by altering their cellular localization, DNA binding affinity, or transcriptional activity. Structural approaches have revealed how phosphorylation turns some TFs on or off; but less is known about how phosphorylation regulates other transcription factors in a graded manner that depends on signal intensity. A recent paper by Graves and colleagues reveals how a group of phosphorylation sites in Ets-1 regulates its DNA binding activity. Their studies provide new insight into the importance of multisite phosphorylation for the graded regulation of transcription and highlight the involvement of allosteric mechanisms in this process.

Kevin H. Gardner (University of Texas Southwestern Medical Center;Departments of Biochemistry and Pharmacology REV); Marc Montminy (The Salk Institute for Biological Studies; REV)

2005-09-13

374

Kinase-kinase interaction and modulation of tau phosphorylation.  

PubMed

The microtubule (MT)-associated protein tau attaches to neuronal MT networks and regulates their integrity. The phosphorylation state of tau alters its binding activity. MT integrity is maintained by the phosphorylation state of tau, which is under the control of the kinase-phosphatase balance. This control requires the proper regulation of topographical and temporal characteristics of tau kinases and phosphatases. The tau phosphorylation protein complex (TPPC) anchors tau kinases and phosphatases via scaffold proteins, tau effectors, and tau itself. Targeting these proteins in TPPC fulfills the topographical requirements for maintaining MT functions. The switching of tau kinase activity determines the order of the kinase action. The combined action of kinases is temporally modulated; reversal of the time order of events results in a differential state of tau phosphorylation. Elucidation of protein-protein interaction in the regulation of tau phosphorylation will shed light on the physiology and pathology of tau phosphorylation. PMID:23273861

Hashiguchi, Mitsuko; Hashiguchi, Toshio

2013-01-01

375

Biofabricated film with enzymatic and redox-capacitor functionalities to harvest and store electrons.  

PubMed

Exciting opportunities in bioelectronics will be facilitated by materials that can bridge the chemical logic of biology and the digital logic of electronics. Here we report the fabrication of a dual functional hydrogel film that can harvest electrons from its chemical environment and store these electrons by switching the film's redox-state. The hydrogel scaffold was formed by the anodic deposition of the aminopolysaccharide chitosan. Electron-harvesting function was conferred by co-depositing the enzyme glucose dehydrogenase (GDH) with chitosan. GDH catalyzes the transfer of electrons from glucose to the soluble redox-shuttle NADP(+). Electron-storage function was conferred by the redox-active food phenolic chlorogenic acid (CA) that was enzymatically grafted to the chitosan scaffold using tyrosinase. The grafted CA undergoes redox-cycling reactions with NADPH resulting in the net transfer of electrons to the film where they are stored in the reduced state of CA. The individual and dual functionalities of these films were demonstrated experimentally. There are three general conclusions from this proof-of-concept study. First, enzymatically-grafted catecholic moieties confer redox-capacitor function to the chitosan scaffold. Second, biological materials (i.e. chitosan and CA) and mechanisms (i.e. tyrosinase-mediated grafting) allow the reagentless fabrication of functional films that should be environmentally-friendly, safe and potentially even edible. Finally, the film's ability to mediate the transfer of electrons from a biological metabolite to an electrode suggests an approach to bridge the chemical logic of biology with the digital logic of electronics. PMID:23303212

Liba, Benjamin D; Kim, Eunkyoung; Martin, Alexandra N; Liu, Yi; Bentley, William E; Payne, Gregory F

2013-01-10

376

Modelling the Krebs cycle and oxidative phosphorylation.  

PubMed

The Krebs cycle and oxidative phosphorylation are the two most important sets of reactions in a eukaryotic cell that meet the major part of the total energy demands of a cell. In this paper, we present a computer simulation of the coupled reactions using open source tools for simulation. We also show that it is possible to model the Krebs cycle with a simple black box with a few inputs and outputs. However, the kinetics of the internal processes has been modelled using numerical tools. We also show that the Krebs cycle and oxidative phosphorylation together can be combined in a similar fashion - a black box with a few inputs and outputs. The Octave script is flexible and customisable for any chosen set-up for this model. In several cases, we had no explicit idea of the underlying reaction mechanism and the rate determining steps involved, and we have used the stoichiometric equations that can be easily changed as and when more detailed information is obtained. The script includes the feedback regulation of the various enzymes of the Krebs cycle. For the electron transport chain, the pH gradient across the membrane is an essential regulator of the kinetics and this has been modelled empirically but fully consistent with experimental results. The initial conditions can be very easily changed and the simulation is potentially very useful in a number of cases of clinical importance. PMID:23528175

Korla, Kalyani; Mitra, Chanchal K

2013-03-25

377

Changes in tau phosphorylation in hibernating rodents.  

PubMed

Tau is a cytoskeletal protein present mainly in the neurons of vertebrates. By comparing the sequence of tau molecule among different vertebrates, it was found that the variability of the N-terminal sequence in tau protein is higher than that of the C-terminal region. The N-terminal region is involved mainly in the binding of tau to cellular membranes, whereas the C-terminal region of the tau molecule contains the microtubule-binding sites. We have compared the sequence of Syrian hamster tau with the sequences of other hibernating and nonhibernating rodents and investigated how differences in the N-terminal region of tau could affect the phosphorylation level and tau binding to cell membranes. We also describe a change, in tau phosphorylation, on a casein kinase 1 (ck1)-dependent site that is found only in hibernating rodents. This ck1 site seems to play an important role in the regulation of tau binding to membranes. PMID:23606524

León-Espinosa, Gonzalo; García, Esther; García-Escudero, Vega; Hernández, Félix; Defelipe, Javier; Avila, Jesús

2013-04-19

378

Enzymatic treatment of duck hepatitis B virus: Topology of the surface proteins for virions and noninfectious subviral particles  

SciTech Connect

The large surface antigen L of duck hepatitis B virus exhibits a mixed topology with the preS domains of the protein alternatively exposed to the particles' interior or exterior. After separating virions from subviral particles (SVPs), we compared their L topologies and showed that both particle types exhibit the same amount of L with the following differences: 1-preS of intact virions was enzymatically digested with chymotrypsin, whereas in SVPs only half of preS was accessible, 2-phosphorylation of L at S118 was completely removed by phosphatase treatment only in virions, 3-iodine-125 labeling disclosed a higher ratio of exposed preS to S domains in virions compared to SVPs. These data point towards different surface architectures of virions and SVPs. Because the preS domain acts in binding to a cellular receptor of hepatocytes, our findings implicate the exclusion of SVPs as competitors for the receptor binding and entry of virions.

Franke, Claudia [Heinrich-Pette-Institut fuer Experimentelle Virologie und Immunologie an der Universitaet Hamburg, Martinistrasse 52, D-20251 Hamburg (Germany); Matschl, Urte [Heinrich-Pette-Institut fuer Experimentelle Virologie und Immunologie an der Universitaet Hamburg, Martinistrasse 52, D-20251 Hamburg (Germany); Bruns, Michael [Heinrich-Pette-Institut fuer Experimentelle Virologie und Immunologie an der Universitaet Hamburg, Martinistrasse 52, D-20251 Hamburg (Germany)]. E-mail: mbruns@hpi.uni-hamburg.de

2007-03-01

379

Michaelis-Menten relations for complex enzymatic networks  

PubMed Central

Most biological processes are controlled by complex systems of enzymatic chemical reactions. Although the majority of enzymatic networks have very elaborate structures, there are many experimental observations indicating that some turnover rates still follow a simple Michaelis–Menten relation with a hyperbolic dependence on a substrate concentration. The original Michaelis–Menten mechanism has been derived as a steady-state approximation for a single-pathway enzymatic chain. The validity of this mechanism for many complex enzymatic systems is surprising. To determine general conditions when this relation might be observed in experiments, enzymatic networks consisting of coupled parallel pathways are investigated theoretically. It is found that the Michaelis–Menten equation is satisfied for specific relations between chemical rates, and it also corresponds to a situation with no fluxes between parallel pathways. Our results are illustrated for a simple model. The importance of the Michaelis–Menten relationship and derived criteria for single-molecule experimental studies of enzymatic processes are discussed.

Kolomeisky, Anatoly B.

2011-01-01

380

Effects of cadmium on enzymatic and non-enzymatic antioxidative defences of rice (Oryza sativa L.).  

PubMed

The effects of 60-d cadmium (Cd) exposure on enzymatic and non-enzymatic antioxidative system of Oryza sativa L. seedlings at tillering stage were studied using soil culture experiment. Research findings showed that chlorophyll content of Oryza sativa L. declined with the increase in soil metal concentration. Cd pollution induced the antioxidant stress by inducing O2(-1) and H2O2, which increased in plants; at the same time, MDA as the final product of peroxidation of membrane lipids, accumulated in plant. The antioxidant enzyme system was initiated under the Cd exposure, i.e. almost all the activities of superoxide dismutase (SOD), peroxidase, catalase, glutathione peroxidase, and ascorbate peroxidase were elevated both in leaves and roots. The non-protein thiols including phytochelatins and glutathione to scavenge toxic free radicals caused by Cd stress was also studied. The contents of phytochelatins and glutathione were about 3.12-6.65-fold and 3.27-10.73-fold in leaves, against control; and the corresponding values were about 3.53-9.37-fold and 1.41-5.11-fold in roots, accordingly. PMID:23819293

Yu, Fangming; Liu, Kehui; Li, Mingshun; Zhou, Zhenming; Deng, Hua; Chen, Bin

2013-01-01

381

Phosphorylation represses Ets1 DNA binding by reinforcing autoinhibition  

Microsoft Academic Search

Phosphorylation of transcription factors is a key link between cell signaling and the control of gene expression. Here we report that phosphorylation regulates DNA binding of the Ets-1 transcription factor by reinforcing an autoinhibitory mechanism. Quantitative DNA-binding assays show that calcium-dependent phosphorylation inhibits Ets-1 DNA binding 50-fold. The four serines that mediate this inhibitory effect are distant from the DNA-binding

Dale O. Cowley; Barbara J. Graves

382

Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria.  

PubMed

High accuracy mass spectrometry has proven to be a powerful technology for the large scale identification of serine/threonine/tyrosine phosphorylation in the living cell. However, despite many described phosphoproteomes, there has been no comparative study of the extent of phosphorylation and its evolutionary conservation in all domains of life. Here we analyze the results of phosphoproteomics studies performed with the same technology in a diverse set of organisms. For the most ancient organisms, the prokaryotes, only a few hundred proteins have been found to be phosphorylated. Applying the same technology to eukaryotic species resulted in the detection of thousands of phosphorylation events. Evolutionary analysis shows that prokaryotic phosphoproteins are preferentially conserved in all living organisms, whereas-site specific phosphorylation is not. Eukaryotic phosphosites are generally more conserved than their non-phosphorylated counterparts (with similar structural constraints) throughout the eukaryotic domain. Yeast and Caenorhabditis elegans are two exceptions, indicating that the majority of phosphorylation events evolved after the divergence of higher eukaryotes from yeast and reflecting the unusually large number of nematode-specific kinases. Mitochondria present an interesting intermediate link between the prokaryotic and eukaryotic domains. Applying the same technology to this organelle yielded 174 phosphorylation sites mapped to 74 proteins. Thus, the mitochondrial phosphoproteome is similarly sparse as the prokaryotic phosphoproteomes. As expected from the endosymbiotic theory, phosphorylated as well as non-phosphorylated mitochondrial proteins are significantly conserved in prokaryotes. However, mitochondrial phosphorylation sites are not conserved throughout prokaryotes, consistent with the notion that serine/threonine phosphorylation in prokaryotes occurred relatively recently in evolution. Thus, the phosphoproteome reflects major events in the evolution of life. PMID:20688971

Gnad, Florian; Forner, Francesca; Zielinska, Dorota F; Birney, Ewan; Gunawardena, Jeremy; Mann, Matthias

2010-08-05

383

Discovery of Protein Phosphorylation Motifs through Exploratory Data Analysis  

Microsoft Academic Search

BackgroundThe need for efficient algorithms to uncover biologically relevant phosphorylation motifs has become very important with rapid expansion of the proteomic sequence database along with a plethora of new information on phosphorylation sites. Here we present a novel unsupervised method, called Motif Finder (in short, F-Motif) for identification of phosphorylation motifs. F-Motif uses clustering of sequence information represented by numerical

Yi-Cheng Chen; Kripamoy Aguan; Chu-Wen Yang; Yao-Tsung Wang; Nikhil R. Pal; I.-Fang Chung; Peter Csermely

2011-01-01

384

Tyrosine Phosphorylation of Caveolin-1 in the Endothelium  

Microsoft Academic Search

Caveolin-1, a scaffolding protein of caveolae, is known to be tyrosine-phosphorylated by Src kinases. Recently we generated a specific antibody to caveolin-1 phosphorylated at tyrosine-14 (PY14) (R. Nomura and T. Fujimoto, 1999, Mol. Biol. Cell 10, 975–986). In the present study, by applying PY14 to sections of normal rat tissues, we found that tyrosine phosphorylation of caveolin-1 occurred in limited

Takeo Aoki; Ryuji Nomura; Toyoshi Fujimoto

1999-01-01

385

Phosphorylation of the integrase protein of coliphage HK022  

Microsoft Academic Search

The integrase (Int) proteins of coliphages HK022 and ?, are phosphorylated in one or more of their tyrosine residues. In Int of HK022 the phosphorylated residue(s) belong to its core-binding\\/catalytic domains. Wzc, a protein tyrosine kinase of Escherichia coli, is not required for Int phosphorylation in vivo, however, it can transphosphorylate the conserved Tyr342 catalytic residue of Int in vitro.

Mikhail Kolot; Rena Gorovits; Nava Silberstein; Boris Fichtman; Ezra Yagil

2008-01-01

386

Enzymatic reduction of azo and indigoid compounds.  

PubMed

A customer- and environment-friendly method for the decolorization azo dyes was developed. Azoreductases could be used both to bleach hair dyed with azo dyes and to reduce dyes in vat dyeing of textiles. A new reduced nicotinamide adenine dinucleotide-dependent azoreductase of Bacillus cereus, which showed high potential for reduction of these dyes, was purified using a combination of ammonium sulfate precipitation and chromatography and had a molecular mass of 21.5 kDa. The optimum pH of the azoreductase depended on the substrate and was within the range of pH 6 to 7, while the maximum temperature was reached at 40 degrees C. Oxygen was shown to be an alternative electron acceptor to azo compounds and must therefore be excluded during enzymatic dye reduction. Biotransformation of the azo dyes Flame Orange and Ruby Red was studied in more detail using UV-visible spectroscopy, high-performance liquid chromatography, and mass spectrometry (MS). Reduction of the azo bonds leads to cleavage of the dyes resulting in the cleavage product 2-amino-1,3 dimethylimidazolium and N approximately 1 approximately ,N approximately 1 approximately -dimethyl-1,4-benzenediamine for Ruby Red, while only the first was detected for Flame Orange because of MS instability of the expected 1,4-benzenediamine. The azoreductase was also found to reduce vat dyes like Indigo Carmine (C.I. Acid Blue 74). Hydrogen peroxide (H(2)O(2)) as an oxidizing agent was used to reoxidize the dye into the initial form. The reduction and oxidation mechanism of Indigo Carmine was studied using UV-visible spectroscopy. PMID:17891390

Pricelius, S; Held, C; Murkovic, M; Bozic, M; Kokol, V; Cavaco-Paulo, A; Guebitz, G M

2007-09-22

387

Downstream processing of enzymatically produced geranyl glucoside.  

PubMed

Geraniol plays an important role in the fragrance and flavor industry. The corresponding glucoside has interesting properties as a "slow release" aroma compound. Therefore, the enzymatic production and downstream processing of geranyl glucoside were investigated. Geranyl glucoside was produced in a spray column reactor with an initial production rate of 0.58 mg x U(-1) x h(-1). A pretreated hydrophobic microfiltration membrane was used to prevent migration of the aqueous, enzyme-containing phase to the downstream process. No retention of the glucoside, which accumulated in the geraniol phase, was found. On the basis of examples from the literature, four downstream processes were tested on their viability for this system. Extraction with water and foaming were not suitable to recover geranyl glucoside from geraniol. In the first case, the glucoside selectivity for the geraniol phase was found to be high, which made extraction with water unsuccessful. In the second case it was possible to obtain a stable foam, but significant enrichment of the foam with glucoside did not occur. Adsorption on alumina and distillation under reduced pressure were applied successfully and tested in-line with the bioreactor. A maximum glucoside adsorption of 7.86 mg x g(-1) was achieved on alumina. After desorption and evaporation of the extractant the pure glucoside was obtained quantitatively. A pure product could not be obtained after distillation because a small amount of glucose was present in the permeate as well, which accumulated in the bottom fraction. It was shown that with this reactor system a production of 1 kg of geranyl glucoside in 2 days is possible using an initial amount of 50,000 units of enzyme. PMID:11587579

de Roode, B M; Oliehoek, L; van der Padt, A; Franssen, M C; Boom, R M

388

Nanocrystal Bioassembly: Asymmetry, Proximity, and Enzymatic Manipulation  

SciTech Connect

Research at the interface between biomolecules and inorganic nanocrystals has resulted in a great number of new discoveries. In part this arises from the synergistic duality of the system: biomolecules may act as self-assembly agents for organizing inorganic nanocrystals into functional materials; alternatively, nanocrystals may act as microscopic or spectroscopic labels for elucidating the behavior of complex biomolecular systems. However, success in either of these functions relies heavily uponthe ability to control the conjugation and assembly processes.In the work presented here, we first design a branched DNA scaffold which allows hybridization of DNA-nanocrystal monoconjugates to form discrete assemblies. Importantly, the asymmetry of the branched scaffold allows the formation of asymmetric2assemblies of nanocrystals. In the context of a self-assembled device, this can be considered a step toward the ability to engineer functionally distinct inputs and outputs.Next we develop an anion-exchange high performance liquid chromatography purification method which allows large gold nanocrystals attached to single strands of very short DNA to be purified. When two such complementary conjugates are hybridized, the large nanocrystals are brought into close proximity, allowing their plasmon resonances to couple. Such plasmon-coupled constructs are of interest both as optical interconnects for nanoscale devices and as `plasmon ruler? biomolecular probes.We then present an enzymatic ligation strategy for creating multi-nanoparticle building blocks for self-assembly. In constructing a nanoscale device, such a strategy would allow pre-assembly and purification of components; these constructs can also act as multi-label probes of single-stranded DNA conformational dynamics. Finally we demonstrate a simple proof-of-concept of a nanoparticle analog of the polymerase chain reaction.

Claridge, Shelley A

2008-05-01

389

Topological rearrangement yields structural stabilization and interhelical distance constraints in the Kin.46 self-phosphorylating ribozyme  

Microsoft Academic Search

The Kin.46 ribozyme catalyzes transfer of the gamma (thio)phosphoryl group of ATP (or ATPgS) to the ribozyme's 59 hydroxyl. Single-turnover catalytic activities of topologically rearranged versions of Kin.46 were studied to gain insight into its overall tertiary architecture. The distal ends of stems P3 and P4 were tethered through a single-stranded connection domain that altered the interhelical connectivity. The shortest

BONGRAE CHO; DONALD H. BURKE

2006-01-01

390

Phosphorylation of the recombinant rho1 GABA receptor.  

PubMed

Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian brain. While a growing body of literature indicates that postsynaptic GABA receptors are regulated by phosphorylation, there is discrepancy as to the specific effects of phosphorylation on GABA receptor function. Here, we have identified phosphorylation sites on the human rho1 GABA receptor for six protein kinases widely expressed in the brain: protein kinase C (PKC); cAMP-dependent protein kinase (PKA); calmodulin-dependent kinase (CaMKII); casein kinase (CKII); mitogen-activated protein kinase (MAPK); and cGMP-dependent protein kinase (PKG). We demonstrate that in nearly all cases, the consensus sites and actual phosphorylation sites do not agree supporting the risk of relying on a sequence analysis to identify potential phosphorylation sites. In addition, of the six kinases examined, only CKII phosphorylated the human rho2 subunit. Site-directed mutagenesis of the phosphorylation sites, or activation/inhibition of select kinase pathways, did not alter the receptor sensitivity or maximal GABA-activated current of the rho1 GABA receptor expressed in Xenopus laevis oocytes suggesting phosphorylation of rho1 does not directly alter receptor properties. This study is a first and necessary step towards elucidating the regulation of rho1 GABA receptors by phosphorylation. PMID:12175859

Sedelnikova, Anna; Weiss, David S

391

Sequential Phosphorylation of Smoothened Transduces Graded Hedgehog Signaling  

PubMed Central

The correct interpretation of a gradient of the morphogen Hedgehog (Hh) during development requires phosphorylation of the Hh signaling activator Smoothened (Smo); however, the molecular mechanism by which Smo transduces graded Hh signaling is not well understood. We show that regulation of the phosphorylation status of Smo by distinct phosphatases at specific phosphorylated residues creates differential thresholds of Hh signaling. Phosphorylation of Smo was initiated by adenosine 3?,5?-monophosphate (cAMP)–dependent protein kinase (PKA) and further enhanced by casein kinase I (CKI). We found that protein phosphatase 1 (PP1) directly dephosphorylated PKA-phosphorylated Smo to reduce signaling mediated by intermediate concentrations of Hh, whereas PP2A specifically dephosphorylated PKA-primed, CKI-phosphorylated Smo to restrict signaling by high concentrations of Hh. We also established a functional link between sequentially phosphorylated Smo species and graded Hh activity. Thus, we propose a sequential phosphorylation model in which precise interpretation of morphogen concentration can be achieved upon versatile phosphatase-mediated regulation of the phosphorylation status of an essential activator in developmental signaling.

Su, Ying; Ospina, Jason K.; Zhang, Junzheng; Michelson, Andrew P.; Schoen, Adam M.; Zhu, Alan Jian

2012-01-01

392

Phosphorylation of dopamine transporter serine 7 modulates cocaine analog binding.  

PubMed

As an approach to elucidating dopamine transporter (DAT) phosphorylation characteristics, we examined in vitro phosphorylation of a recombinant rat DAT N-terminal peptide (NDAT) using purified protein kinases. We found that NDAT becomes phosphorylated at single distinct sites by protein kinase A (Ser-7) and calcium-calmodulin-dependent protein kinase II (Ser-13) and at multiple sites (Ser-4, Ser-7, and Ser-13) by protein kinase C (PKC), implicating these residues as potential sites of DAT phosphorylation by these kinases. Mapping of rat striatal DAT phosphopeptides by two-dimensional thin layer chromatography revealed basal and PKC-stimulated phosphorylation of the same peptide fragments and comigration of PKC-stimulated phosphopeptide fragments with NDAT Ser-7 phosphopeptide markers. We further confirmed by site-directed mutagenesis and mass spectrometry that Ser-7 is a site for PKC-stimulated phosphorylation in heterologously expressed rat and human DATs. Mutation of Ser-7 and nearby residues strongly reduced the affinity of rat DAT for the cocaine analog (-)-2?-carbomethoxy-3?-(4-fluorophenyl) tropane (CFT), whereas in rat striatal tissue, conditions that promote DAT phosphorylation caused increased CFT affinity. Ser-7 mutation also affected zinc modulation of CFT binding, with Ala and Asp substitutions inducing opposing effects. These results identify Ser-7 as a major site for basal and PKC-stimulated phosphorylation of native and expressed DAT and suggest that Ser-7 phosphorylation modulates transporter conformational equilibria, shifting the transporter between high and low affinity cocaine binding states. PMID:23161550

Moritz, Amy E; Foster, James D; Gorentla, Balachandra K; Mazei-Robison, Michelle S; Yang, Jae-Won; Sitte, Harald H; Blakely, Randy D; Vaughan, Roxanne A

2012-11-16

393

Phosphorylation of SNAP-23 regulates exocytosis from mast cells.  

PubMed

Regulated exocytosis is a process in which a physiological trigger initiates the translocation, docking, and fusion of secretory granules with the plasma membrane. A class of proteins termed SNAREs (including SNAP-23, syntaxins, and VAMPs) are known regulators of secretory granule/plasma membrane fusion events. We have investigated the molecular mechanisms of regulated exocytosis in mast cells and find that SNAP-23 is phosphorylated when rat basophilic leukemia mast cells are triggered to degranulate. The kinetics of SNAP-23 phosphorylation mirror the kinetics of exocytosis. We have identified amino acid residues Ser(95) and Ser(120) as the major phosphorylation sites in SNAP-23 in rodent mast cells. Quantitative analysis revealed that approximately 10% of SNAP-23 was phosphorylated when mast cell degranulation was induced. These same residues were phosphorylated when mouse platelet degranulation was induced with thrombin, demonstrating that phosphorylation of SNAP-23 Ser(95) and Ser(120) is not restricted to mast cells. Although triggering exocytosis did not alter the absolute amount of SNAP-23 bound to SNAREs, after stimulation essentially all of the SNAP-23 bound to the plasma membrane SNARE syntaxin 4 and the vesicle SNARE VAMP-2 was phosphorylated. Regulated exocytosis studies revealed that overexpression of SNAP-23 phosphorylation mutants inhibited exocytosis from rat basophilic leukemia mast cells, demonstrating that phosphorylation of SNAP-23 on Ser(120) and Ser(95) modulates regulated exocytosis by mast cells. PMID:15611044

Hepp, Régine; Puri, Niti; Hohenstein, Anita C; Crawford, Garland L; Whiteheart, Sidney W; Roche, Paul A

2004-12-17

394

Localization of the phosphorylations of polyomavirus large T antigen.  

PubMed Central

Polyomavirus large T antigen is phosphorylated on both serine and threonine residues at a ratio of approximately 6 to 1. This phosphorylation could be resolved into a series of nine Staphylococcus aureus V8 phosphopeptides. All of these were found in an N-terminal chymotryptic fragment with a molecular weight of 57,000. A C-terminal formic acid fragment of 50,000-molecular-weight lacked phosphate. Therefore, unlike simian virus 40 large T antigen, polyomavirus large T antigen has no significant C-terminal phosphorylation. Limited V8 and hydroxylamine cleavage showed that the phosphorylations can be localized to two different portions of the molecule. A significant fraction of the phosphate was localized in the N-terminal portion of the molecule before residue 183. Within this region V8 peptides 4, 8, and 9 represented phosphorylations that were more proximal, while peptides 1, 2, and 3 included more distal phosphorylations. None of these phosphorylations appeared analogous to those of simian virus 40 large T antigen. V8 phosphopeptides 5 and 7 were more distal and could be distinguished in biological experiments from the N-terminal phosphorylations. Formic acid mapping suggested that much, if not all, of this phosphorylation is located between residues 257 and 285. Images

Bockus, B J; Schaffhausen, B

1987-01-01

395

Regulation of DNA fragmentation: the role of caspases and phosphorylation.  

PubMed

DNA fragmentation is a hallmark of apoptosis that is induced by apoptotic stimuli in various cell types. Apoptotic signal pathways, which eventually cause DNA fragmentation, are largely mediated by the family of cysteinyl aspartate-specific protease caspases. Caspases mediate apoptotic signal transduction by cleavage of apoptosis-implicated proteins and the caspases themselves. In the process of caspase activation, reversible protein phosphorylation plays an important role. The activation of various proteins is regulated by phosphorylation and dephosphorylation, both upstream and downstream of caspase activation. Many kinases/phosphatases are involved in the control of cell survival and death, including the mitogen-activated protein kinase signal transduction pathways. Reversible protein phosphorylation is involved in the widespread regulation of cellular signal transduction and apoptotic processes. Therefore, phosphatase/kinase inhibitors are commonly used as apoptosis inducers/inhibitors. Whether protein phosphorylation induces apoptosis depends on many factors, such as the type of phosphorylated protein, the degree of activation and the influence of other proteins. Phosphorylation signaling pathways are intricately interrelated; it was previously shown that either induction or inhibition of phosphorylation causes cell death. Determination of the relationship between protein and phosphorylation helps to reveal how apoptosis is regulated. Here we discuss DNA fragmentation and protein phosphorylation, focusing on caspase and serine/threonine protein phosphatase activation. PMID:21182594

Kitazumi, Ikuko; Tsukahara, Masayoshi

2010-12-23

396

High-sensitivity determination of tyrosine-phosphorylated peptides by on-line enzyme reactor and electrospray ionization mass spectrometry.  

PubMed Central

We describe a simple, fast, sensitive, and nonisotopic bioanalytical technique for the detection of tyrosine-phosphorylated peptides and the determination of sites of protein tyrosine phosphorylation. The technique employs a protein tyrosine phosphatase micro enzyme reactor coupled on-line to either capillary electrophoresis or liquid chromatography and electrospray ionization mass spectrometry instruments. The micro enzyme reactor was constructed by immobilizing genetically engineered, metabolically biotinylated human protein tyrosine phosphatase beta onto the inner surface of a small piece of a 50-microns inner diameter, 360-microns outer diameter fused silica capillary or by immobilization of the phosphatase onto 40-90-microns avidin-activated resins. By coupling these reactors directly to either a capillary electrophoresis column or a liquid chromatography column, we were able to rapidly perform enzymatic dephosphorylation and separation of the reaction products. Detection and identification of the components of the reaction mixture exiting these reactors were done by mass analysis with an on-line electrospray ionization mass spectrometer. Tyrosine-phosphorylated peptides, even if present in a complex peptide mixture, were identified by subtractive analysis of peptide patterns generated with or without phosphatase treatment. Two criteria, namely a phosphatase-induced change in hydropathy and charge, respectively, and a change in molecular mass by 80 Da, were used jointly to identify phosphopeptides. We demonstrate that, with this technique, low picomole amounts of a tyrosine-phosphorylated peptide can be detected in a complex peptide mixture generated by proteolysis of a protein and that even higher sensitivities can be realized if more sensitive detection systems are applied.

Amankwa, L. N.; Harder, K.; Jirik, F.; Aebersold, R.

1995-01-01

397

Phosphorylation of the Mycobacterium tuberculosis ?-Ketoacyl-Acyl Carrier Protein Reductase MabA Regulates Mycolic Acid Biosynthesis*  

PubMed Central

Mycolic acids are key cell wall components for the survival, pathogenicity, and antibiotic resistance of the human tubercle bacillus. Although it was thought that Mycobacterium tuberculosis tightly regulates their production to adapt to prevailing environmental conditions, the molecular mechanisms governing mycolic acid biosynthesis remained extremely obscure. Meromycolic acids, the direct precursors of mycolic acids, are synthesized by a type II fatty acid synthase from acyl carrier protein-bound substrates that are extended iteratively, with a reductive cycle in each round of extension, the second step of which is catalyzed by the essential ?-ketoacyl-acyl carrier protein reductase, MabA. In this study, we investigated whether post-translational modifications of MabA might represent a strategy employed by M. tuberculosis to regulate mycolic acid biosynthesis. Indeed, we show here that MabA was efficiently phosphorylated in vitro by several M. tuberculosis Ser/Thr protein kinases, including PknB, as well as in vivo in mycobacteria. Mass spectrometric analyses using LC-ESI/MS/MS and site-directed mutagenesis identified three phosphothreonines, with Thr191 being the primary phosphor-acceptor. A MabA_T191D mutant, designed to mimic constitutive phosphorylation, exhibited markedly decreased ketoacyl reductase activity compared with the wild-type protein, as well as impaired binding of the NADPH cofactor, as demonstrated by fluorescence spectroscopy. The hypothesis that phosphorylation of Thr191 alters the enzymatic activity of MabA, and subsequently mycolic acid biosynthesis, was further supported by the fact that constitutive overexpression of the mabA_T191D allele in Mycobacterium bovis BCG strongly impaired mycobacterial growth. Importantly, conditional expression of the phosphomimetic MabA_T191D led to a significant inhibition of de novo biosynthesis of mycolic acids. This study provides the first information on the molecular mechanism(s) involved in mycolic acid regulation through Ser/Thr protein kinase-dependent phosphorylation of a type II fatty acid synthase enzyme.

Veyron-Churlet, Romain; Zanella-Cleon, Isabelle; Cohen-Gonsaud, Martin; Molle, Virginie; Kremer, Laurent

2010-01-01

398

Casein kinase II-mediated phosphorylation of general repressor Maf1 triggers RNA polymerase III activation  

PubMed Central

Maf1 protein is a global negative regulator of RNA polymerase (Pol) III transcription conserved from yeast to man. We report that phosphorylation of Maf1 by casein kinase II (CK2), a highly evolutionarily conserved eukaryotic kinase, is required for efficient Pol III transcription. Both recombinant human and yeast CK2 were able to phosphorylate purified human or yeast Maf1, indicating that Maf1 can be a direct substrate of CK2. Upon transfer of Saccharomyces cerevisiae from repressive to favorable growth conditions, CK2 activity is required for the release of Maf1 from Pol III bound to a tRNA gene and for subsequent activation of tRNA transcription. In a yeast strain lacking Maf1, CK2 inhibition showed no effect on tRNA synthesis, confirming that CK2 activates Pol III via Maf1. Additionally, CK2 was found to associate with tRNA genes, and this association is enhanced in absence of Maf1, especially under repressive conditions. These results corroborate the previously reported TFIIIB–CK2 interaction and indicate an important role of CK2-mediated Maf1 phosphorylation in triggering Pol III activation.

Graczyk, Damian; Debski, Janusz; Muszynska, Grazyna; Bretner, Maria; Lefebvre, Olivier; Boguta, Magdalena

2011-01-01

399

Phosphorylation of phenylalanine ammonia-lyase: evidence for a novel protein kinase and identification of the phosphorylated residue  

Microsoft Academic Search

The site of phosphorylation of phenylalanine ammonia-lyase (PAL) has been identified as a threonine residue. A Ca2+-stimulated protein kinase of approximately 55 kDa has been partially purified from elicited cells. The kinase can phosphorylate a synthetic peptide derived from PAL and a recombinant poplar PAL. PAL phosphorylation was associated with a decrease in Vmax in agreement with the suggestion that

Ellen G. Allwood; Dewi R. Davies; Chris Gerrish; Brian E. Ellis; G. Paul Bolwell

1999-01-01

400

A comparison of glucose oxidase and aldose dehydrogenase as mediated anodes in printed glucose/oxygen enzymatic fuel cells using ABTS/laccase cathodes.  

PubMed

Current generation by mediated enzyme electron transfer at electrode surfaces can be harnessed to provide biosensors and redox reactions in enzymatic fuel cells. A glucose/oxygen enzymatic fuel cell can provide power for portable and implantable electronic devices. High volume production of enzymatic fuel cell prototypes will likely require printing of electrode and catalytic materials. Here we report on preparation and performance of, completely enzymatic, printed glucose/oxygen biofuel cells. The cells are based on filter paper coated with conducting carbon inks, enzyme and mediator. A comparison of cell performance using a range of mediators for either glucose oxidase (GOx) or aldose dehydrogenase (ALDH) oxidation of glucose at the anode and ABTS and a fungal laccase, for reduction of oxygen at the cathode, is reported. Highest power output, although of limited stability, is observed for ALDH anodes mediated by an osmium complex, providing a maximum power density of 3.5 ?W cm(-2) at 0.34 V, when coupled to a laccase/ABTS cathode. The stability of cell voltage in a biobattery format, above a threshold of 200 mV under a moderate 75 k? load, is used to benchmark printed fuel cell performance. Highest stability is obtained for printed fuel cells using ALDH, providing cell voltages over the threshold for up to 74 h, compared to only 2 h for cells with anodes using GOx. These results provide promising directions for further development of mass-producible, completely enzymatic, printed biofuel cells. PMID:22200380

Jenkins, Peter; Tuurala, Saara; Vaari, Anu; Valkiainen, Matti; Smolander, Maria; Leech, Dónal

2011-12-07

401

Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose.  

PubMed

The rates and extents of enzymatic cellulose hydrolysis of dilute acid pretreated corn stover (PCS) decline with increasing slurry concentration. However, mass transfer limitations are not apparent until insoluble solids concentrations approach 20% w/w, indicating that inhibition of enzyme hydrolysis at lower solids concentrations is primarily due to soluble components. Consequently, the inhibitory effects of pH-adjusted pretreatment liquor on the enzymatic hydrolysis of PCS were investigated. A response surface methodology (RSM) was applied to empirically model how hydrolysis performance varied as a function of enzyme loading (12-40 mg protein/g cellulose) and insoluble solids concentration (5-13%) in full-slurry hydrolyzates. Factorial design and analysis of variance (ANOVA) were also used to assess the contribution of the major classes of soluble components (acetic acid, phenolics, furans, sugars) to total inhibition. High sugar concentrations (130 g/L total initial background sugars) were shown to be the primary cause of performance inhibition, with acetic acid (15 g/L) only slightly inhibiting enzymatic hydrolysis and phenolic compounds (9 g/L total including vanillin, syringaldehyde, and 4-hydroxycinnamic acid) and furans (8 g/L total of furfural and hydroxymethylfurfural, HMF) with only a minor effect on reaction kinetics. It was also demonstrated that this enzyme inhibition in high-solids PCS slurries can be approximated using a synthetic hydrolyzate composed of pure sugars supplemented with a mixture of acetic acid, furans, and phenolic compounds, which indicates that generally all of the reaction rate-determining soluble compounds for this system can be approximated synthetically. PMID:18585030

Hodge, David B; Karim, M Nazmul; Schell, Daniel J; McMillan, James D

2008-06-26

402

A cytosolic Arabidopsis D-xylulose kinase catalyzes the phosphorylation of 1-deoxy-D-xylulose into a precursor of the plastidial isoprenoid pathway.  

PubMed

Plants are able to integrate exogenous 1-deoxy-D-xylulose (DX) into the 2C-methyl-D-erythritol 4-phosphate pathway, implicated in the biosynthesis of plastidial isoprenoids. Thus, the carbohydrate needs to be phosphorylated into 1-deoxy-D-xylulose 5-phosphate and translocated into plastids, or vice versa. An enzyme capable of phosphorylating DX was partially purified from a cell-free Arabidopsis (Arabidopsis thaliana) protein extract. It was identified by mass spectrometry as a cytosolic protein bearing D-xylulose kinase (XK) signatures, already suggesting that DX is phosphorylated within the cytosol prior to translocation into the plastids. The corresponding cDNA was isolated and enzymatic properties of a recombinant protein were determined. In Arabidopsis, xylulose kinases are encoded by a small gene family, in which only two genes are putatively annotated. The additional gene is coding for a protein targeted to plastids, as was proved by colocalization experiments using green fluorescent protein fusion constructs. Functional complementation assays in an Escherichia coli strain deleted in xk revealed that the cytosolic enzyme could exclusively phosphorylate xylulose in vivo, not the enzyme that is targeted to plastids. xk activities could not be detected in chloroplast protein extracts or in proteins isolated from its ancestral relative Synechocystis sp. PCC 6803. The gene encoding the plastidic protein annotated as "xylulose kinase" might in fact yield an enzyme having different phosphorylation specificities. The biochemical characterization and complementation experiments with DX of specific Arabidopsis knockout mutants seedlings treated with oxo-clomazone, an inhibitor of 1-deoxy-D-xylulose 5-phosphate synthase, further confirmed that the cytosolic protein is responsible for the phosphorylation of DX in planta. PMID:16920870

Hemmerlin, Andréa; Tritsch, Denis; Hartmann, Michael; Pacaud, Karine; Hoeffler, Jean-François; van Dorsselaer, Alain; Rohmer, Michel; Bach, Thomas J

2006-08-18

403

Oxidative phosphorylation and energy buffering in cyanobacteria.  

PubMed Central

The onset of respiration in the cyanobacteria Anacystis nidulans and Nostoc sp. strain Mac upon a shift from dark anaerobic to aerobic conditions was accompanied by rapid energization of the adenylate pool (owing to the combined action of ATP synthase and adenylate kinase) and also the guanylate, uridylate, and cytidylate pools (owing to nucleoside diphosphate and nucleoside monophosphate kinases). Rates of the various transphosphorylation reactions were comparable to the rate of oxidative phosphorylation, thus explaining, in part, low approximately P/O ratios which incorporate adenylates only. The increase of ATP, GTP, UTP, and CTP levels (nanomoles per minute per milligram [dry weight]) in oxygen-pulsed cells of A. nidulans and Nostoc species was calculated to be, on average, 2.3, 1.05, 0.8, and 0.57, respectively. Together with aerobic steady-state pool sizes of 1.35, 0.57, 0.5, and 0.4 nmol/mg (dry weight) for these nucleotides, a fairly uniform turnover of 1.3 to 1.5 min-1 was derived. All types of nucleotides, therefore, may be conceived of as being in equilibrium with each other, reflecting the energetic homeostasis or energy buffering of the (respiring) cyanobacterial cell. For the calculation of net efficiencies of oxidative phosphorylation in terms of approximately P/O ratios, this energy buffering was taken into account. Moreover, in A. nidulans an additional 30% of the energy initially conserved in ATP by oxidative phosphorylation was immediately used up by a plasma membrane-bound reversible H+-ATPase for H+ extrusion. Consequently, by allowing for energy buffering and ATPase-linked H+ extrusion, maximum P/O ratios of 2.6 to 3.3 were calculated. By contrast, in Nostoc sp. all the H+ extrusion, appeared to be linked to a plasma membrane-bound respiratory chain, thus bypassing any ATP formation and leading to P/O ratios of only 1.3 to 1.5 despite the correction for energy buffering.

Nitschmann, W H; Peschek, G A