Science.gov

Sample records for eo-1 hyperspectral hyperion

  1. Arid land characterisation with EO-1 Hyperion hyperspectral data

    NASA Astrophysics Data System (ADS)

    Jafari, R.; Lewis, M. M.

    2012-10-01

    The low spectral resolution of multispectral satellite imagery limits its capability for extracting information in arid environments with sparse vegetation cover. The higher spectral resolution of hyperspectral imagery may improve discrimination of different vegetation types, even with low cover. The aim of this study was to evaluate the potential of Earth Observing 1 (EO-1) Hyperion hyperspectral data to discriminate arid landscape components in the southern rangelands of South Australia. Hyperion imagery was analysed with spectral mixture analysis to discriminate spectrally distinct land cover components. Five distinct end-members were extracted: two associated with vegetation cover and the remaining three associated with different soils and surface gravel and stone. The end-members were characterised with field spectra collected by ASD Fieldspec Pro spectrometer. To confirm the identity of the end-members we also investigated relationships between their abundance and field cover data collected at 54 sample sites using a step-point technique. One vegetation end-member was significantly correlated with Cottonbush (Maireanaaphylla) vegetation cover (R2 = 0.89) that was distributed as patches throughout the study area. The second vegetation end-member mapped green and grey-green perennial shrubs (e.g. Mulga, Acacia aneura) and was significantly correlated with total vegetation cover (R2 = 0.68). The soil and surface gravel and stone were not significantly correlated with the field estimates of these physical components. Despite the high spectral resolution of the Hyperion scene, spectral mixture analysis was unable to identify more than five meaningful spectral end-members in this arid environment. This may be the result of low vegetation cover of the region (28%), the lack of spectral contrast in arid vegetation types, and the ground resolution of Hyperion (900 m2) that reduced the ability to identify spectrally pure end-members to represent different land cover

  2. Mapping the land cover in coastal Gabes oases using the EO-1 HYPERION hyperspectral sensor

    NASA Astrophysics Data System (ADS)

    Ben-Arfa, Jouda; Bergès, Jean Claude; Beltrando, Gérard; Rim, Katlane; Zargouni, Fouad

    2015-04-01

    Gabes region is characterized by unique maritime oases in Mediterranean basin. Unfortunately these oases are sensitive areas due to a harsh competition for land and water between different user groups (urban, industry, agriculture). An industrial complex is now located in center of this region, cultivation practices have shifted from a traditional multi-layer plant association system and moreover the Gabes city itself is expanding in the very core of oases. The oases of Gabes are transformed into city oases; they undergo multiform interactions whose amplify their environmental dynamic. A proper management of this environment should be based on a fine cartography of land use and remote sensing plays a major role in this issue. However the use of legacy natural resource remote sensing data is disappointing. The crop production strategies rely on a fine scale ground split among various uses and the ground resolution of these satellites is not adequate. Our study relies on hyperspectral images in order to cartography oases boundaries and land use. We tested the potential of Hyperion hyperspectral satellite imagery for mapping dynamics oases covered. We have the opportunity to access EO1/Hyperion data on seven different dates on 2009 and 2010. This dataset allows us to compare various hyperspectral based processing both on the basis on information pertinence and time stability. In this frame some index appear as significantly efficient: cellulose index, vegetation mask, water presence index. On another side spectral unmixing looks as more sensitive to slight ground changes. These results raise the issue of compared interest of enhancing spatial resolution versus spectral resolution. Whereas high resolution ground observation satellites are obviously more appropriate for visual recognition process, reliable information could be extracted from hyperspectral information through a fully automatic process.

  3. Discrimination And Biophysical Characterization Of Brazilian Cerrado Physiognomies With Eo-1 Hyperspectral Hyperion

    NASA Technical Reports Server (NTRS)

    Miura, Tomoaki; Huete, Alfredo R.; Ferreira, Laerte G.; Sano, Edson E.

    2004-01-01

    The savanna, typically found in the sub-tropics and seasonal tropics, are the dominant vegetation biome type in the southern hemisphere, covering approximately 45% of the South America. In Brazil, the savanna, locally known as "cerrado," is the most intensely stressed biome with both natural environmental pressures (e.g., the strong seasonality in weather, extreme soil nutrient impoverishment, and widespread fire occurrences) and rapid/aggressive land conversions (Skole et al., 1994; Ratter et al., 1997). Better characterization and discrimination of cerrado physiognomies are needed in order to improve understanding of cerrado dynamics and its impact on carbon storage, nutrient dynamics, and the prospect for sustainable land use in the Brazilian cerrado biome. Satellite remote sensing have been known to be a useful tool for land cover and land use mapping (Rougharden et al., 1991; Hansen et al., 2000). However, attempts to discriminate and classify Brazilian cerrado using multi-spectral sensors (e.g., Landsat TM) and/or moderate resolution sensors (e.g., NOAA AVHRR NDVI) have often resulted in a limited success due partly to small contrasts depicted in their multiband, spectral reflectance or vegetation index values among cerrado classes (Seyler et al., 2002; Fran a and Setzer, 1998). In this study, we aimed to improve discrimination as well as biophysical characterization of the Brazilian cerrado physiognomies with hyperspectral remote sensing. We used Hyperion, the first satellite-based hyperspectral imager, onboard the Earth Observing-1 (EO-1) platform.

  4. Mapping an invasive plant, Phragmites australis, in coastal wetlands using the EO-1 Hyperion hyperspectral sensor

    USGS Publications Warehouse

    Pengra, B.W.; Johnston, C.A.; Loveland, T.R.

    2007-01-01

    Mapping tools are needed to document the location and extent of Phragmites australis, a tall grass that invades coastal marshes throughout North America, displacing native plant species and degrading wetland habitat. Mapping Phragmites is particularly challenging in the freshwater Great Lakes coastal wetlands due to dynamic lake levels and vegetation diversity. We tested the applicability of Hyperion hyperspectral satellite imagery for mapping Phragmites in wetlands of the west coast of Green Bay in Wisconsin, U.S.A. A reference spectrum created using Hyperion data from several pure Phragmites stands within the image was used with a Spectral Correlation Mapper (SCM) algorithm to create a raster map with values ranging from 0 to 1, where 0 represented the greatest similarity between the reference spectrum and the image spectrum and 1 the least similarity. The final two-class thematic classification predicted monodominant Phragmites covering 3.4% of the study area. Most of this was concentrated in long linear features parallel to the Green Bay shoreline, particularly in areas that had been under water only six years earlier when lake levels were 66??cm higher. An error matrix using spring 2005 field validation points (n = 129) showed good overall accuracy-81.4%. The small size and linear arrangement of Phragmites stands was less than optimal relative to the sensor resolution, and Hyperion's 30??m resolution captured few if any pure pixels. Contemporary Phragmites maps prepared with Hyperion imagery would provide wetland managers with a tool that they currently lack, which could aid attempts to stem the spread of this invasive species. ?? 2006 Elsevier Inc. All rights reserved.

  5. Detection and Assessment of Abiotic Stress of Coniferous Landscapes Caused by Uranium Mining (Using Hyperspectral EO-1/Hyperion Data)

    NASA Astrophysics Data System (ADS)

    Filchev, Lachezar

    2013-12-01

    The paper presents the results from a study aiming at detecting and assessing abiotic stress in coniferous landscapes of Black pine monocultures (Pinus nigra L.) by using ground-based geochemical data, models of technogenic pollution, and satellite hyperspectral data from EO-1/Hyperion. Four vegetation indices (VIs), such as, MCARI, TCARI, MTVI 2, and PRI, as well as the shape and area attributes of the red-edge spectral features, have been studied in order to detect changes caused by the geochemical pollution. The analysis was performed on 4 test sites sized each 30m × 30 m, to correspond to EO-1/Hyperion pixel subspace, in homogenous coniferous landscapes in the Teyna River basin - a left tributary to Iskar River. In effect, the red-edge position index for unstressed coniferous landscapes (Black pine) was found to be at about λ=683 nm, whereas the stressed ones' red-edge position is at λ=671 nm. It was found that VIs, such as TCARI/MCARI and Zc has highest correlation (r2 =0.63; F: 5.20 at F: <0.1), followed by MTVI 2 and Zc (r2 =0.42; F: 2.48 at F: <0.21), and PRI and Zc (r2 =0.30; F: 1.34 at F: <0.33). Subsequently, the four test sites chosen were subdivided in two pairs, corresponding to the modeled Zc values after Inverse Multiquadratic Function (IMF) from the set of Radial Basis Function (RBF), into unstressed (test sites No. 2 and No. 5) and stressed coniferous landscapes (test sites No. 10 and No. 11). The hypothesis tested is that the clustering of EO-1/Hyperion VIs corresponds to Zc clustering using hierarchical clustering method (Ward). As a result, the MTVI 2 and TCARI/MCARI values group their first cluster relatively farther than Zc but the PRI does not reflect the Zc clusters. This lead to the conclusion that the satellite hyperspectral narrowband VIs are still not sensitive enough to study the geochemical background and vegetation stress of geochemically stressed coniferous landscapes by uranium mining without a priori ground based data.

  6. Detection and Assessment of Abiotic Stress of Coniferous Landscapes Caused By Uranium Mining (Using Hyperspectral EO-1/Hyperion Data)

    NASA Astrophysics Data System (ADS)

    Filchev, Lachezar

    2013-12-01

    The paper presents the results from a study aiming at detecting and assessing abiotic stress in coniferous landscapes of Black pine monocultures (Pinus nigra L.) by using ground-based geochemical data, models of technogenic pollution, and satellite hyperspectral data from EO-1/Hyperion. Four vegetation indices (VIs), such as, MCARI, TCARI, MTVI 2, and PRI, as well as the shape and area attributes of the red-edge spectral features, have been studied in order to detect changes caused by the geochemical pollution. The analysis was performed on 4 test sites sized each 30m × 30m, to correspond to EO-1/Hyperion pixel subspace, in homogenous coniferous landscapes in the Teyna River basin – a left tributary to Iskar River. In effect, the red-edge position index for unstressed coniferous landscapes (Black pine) was found to be at about λ=683 nm, whereas the stressed ones' red-edge position is at λ=671 nm. It was found that VIs, such as TCARI/MCARI and Zc has highest correlation (r2=0.63; F: 5.20 at F: <0.1), followed by MTVI 2 and Zc (r2=0.42; F: 2.48 at F: <0.21), and PRI and Zc (r2=0.30; F: 1.34 at F: <0.33). Subsequently, the four test sites chosen were subdivided in two pairs, corresponding to the modeled Zc values after Inverse Multiquadratic Function (IMF) from the set of Radial Basis Function (RBF), into unstressed (test sites No. 2 and No. 5) and stressed coniferous landscapes (test sites No. 10 and No. 11). The hypothesis tested is that the clustering of EO-1/Hyperion VIs corresponds to Zc clustering using hierarchical clustering method (Ward). As a result, the MTVI 2 and TCARI/MCARI values group their first cluster relatively farther than Zc but the PRI does not reflect the Zc clusters. This lead to the conclusion that the satellite hyperspectral narrowband VIs are still not sensitive enough to study the geochemical background and vegetation stress of geochemically stressed coniferous landscapes by uranium mining without a priori ground based data.

  7. Remote sensing of spruce budworm defoliation using EO-1 Hyperion hyperspectral data: an example in Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Zhang, Y.

    2016-04-01

    Each year, the spruce budworm (SBW) causes severe, widespread damage to spruces and fir in east coast Canada. Early estimation of the defoliation can provide crucial support to mitigate the socio-economic impact on vulnerable forests. Remote sensing techniques are suitable to investigate the affected regions that usually consist of large and inaccessible forestry areas. Using satellite images, surface reflectance values at two or more wavelengths are combined to generate vegetation indices (VIs), revealing a relative abundance of features of interest. Forest health analysis based on VIs is considered as one of the primary information sources for monitoring vegetation conditions. Especially the spectral resolution of Hyperion hyperspectral satellite imagery used in this study allows for a detailed examination of the red to near-infrared portion of the spectrum to identify areas of stressed vegetation. Several narrow-band vegetation indices are used to indicate the overall amount and quality of photosynthetic material and moisture content in vegetation. By integrating the information from VIs that focus on different aspects of overall health and vigour in forested areas, the study aims at detecting defoliated condition in a forested region in the Province of Quebec, Canada. In June and August of 2014 two Hyperion images were acquired by NASA's EO-1 satellite for this study. Changes in vegetation health and vigour are observed and quantitatively compared using the multi-temporal remote sensing images. The experimental results suggest that the VI- based forest health analysis is effective in estimating SBW defoliation in the study area.

  8. Mapping forest biomass from space - Fusion of hyperspectral EO1-hyperion data and Tandem-X and WorldView-2 canopy height models

    NASA Astrophysics Data System (ADS)

    Kattenborn, Teja; Maack, Joachim; Faßnacht, Fabian; Enßle, Fabian; Ermert, Jörg; Koch, Barbara

    2015-03-01

    Spaceborne sensors allow for wide-scale assessments of forest ecosystems. Combining the products of multiple sensors is hypothesized to improve the estimation of forest biomass. We applied interferometric (Tandem-X) and photogrammetric (WorldView-2) based predictors, e.g. canopy height models, in combination with hyperspectral predictors (EO1-Hyperion) by using 4 different machine learning algorithms for biomass estimation in temperate forest stands near Karlsruhe, Germany. An iterative model selection procedure was used to identify the optimal combination of predictors. The most accurate model (Random Forest) reached a r2 of 0.73 with a RMSE of 14.9% (29.4 t/ha). Further results revealed that the predictive accuracy depended highly on the statistical model and the area size of the field samples. We conclude that a fusion of canopy height and spectral information allows for accurate estimations of forest biomass from space.

  9. A whole image approach using field measurements for transforming EO1 Hyperion hyperspectral data into canopy reflectance spectra

    USGS Publications Warehouse

    Ramsey, Elijah W., III; Nelson, G.

    2005-01-01

    To maximize the spectral distinctiveness (information) of the canopy reflectance, an atmospheric correction strategy was implemented to provide accurate estimates of the intrinsic reflectance from the Earth Observing 1 (EO1) satellite Hyperion sensor signal. In rendering the canopy reflectance, an estimate of optical depth derived from a measurement of downwelling irradiance was used to drive a radiative transfer simulation of atmospheric scattering and attenuation. During the atmospheric model simulation, the input whole-terrain background reflectance estimate was changed to minimize the differences between the model predicted and the observed canopy reflectance spectra at 34 sites. Lacking appropriate spectrally invariant scene targets, inclusion of the field and predicted comparison maximized the model accuracy and, thereby, the detail and precision in the canopy reflectance necessary to detect low percentage occurrences of invasive plants. After accounting for artifacts surrounding prominent absorption features from about 400nm to 1000nm, the atmospheric adjustment strategy correctly explained 99% of the observed canopy reflectance spectra variance. Separately, model simulation explained an average of 88%??9% of the observed variance in the visible and 98% ?? 1% in the near-infrared wavelengths. In the 34 model simulations, maximum differences between the observed and predicted reflectances were typically less than ?? 1% in the visible; however, maximum reflectance differences higher than ?? 1.6% (

  10. Mapping the invasive species, Chinese tallow, with EO1 satellite Hyperion hyperspectral image data and relating tallow occurrences to a classified Landsat Thematic Mapper land cover map

    USGS Publications Warehouse

    Ramsey, Elijah W., III; Rangoonwala, A.; Nelson, G.; Ehrlich, R.

    2005-01-01

    Our objective was to provide a realistic and accurate representation of the spatial distribution of Chinese tallow (Triadica sebifera) in the Earth Observing 1 (EO1) Hyperion hyperspectral image coverage by using methods designed and tested in previous studies. We transformed, corrected, and normalized Hyperion reflectance image data into composition images with a subpixel extraction model. Composition images were related to green vegetation, senescent foliage and senescing cypress-tupelo forest, senescing Chinese tallow with red leaves ('red tallow'), and a composition image that only corresponded slightly to yellowing vegetation. These statistical and visual comparisons confirmed a successful portrayal of landscape features at the time of the Hyperion image collection. These landscape features were amalgamated in the Landsat Thematic Mapper (TM) pixel, thereby preventing the detection of Chinese tallow occurrences in the Landsat TM classification. With the occurrence in percentage of red tallow (as a surrogate for Chinese tallow) per pixel mapped, we were able to link dominant land covers generated with Landsat TM image data to Chinese tallow occurrences as a first step toward determining the sensitivity and susceptibility of various land covers to tallow establishment. Results suggested that the highest occurrences and widest distribution of red tallow were (1) apparent in disturbed or more open canopy woody wetland deciduous forests (including cypress-tupelo forests), upland woody land evergreen forests (dominantly pines and seedling plantations), and upland woody land deciduous and mixed forests; (2) scattered throughout the fallow fields or located along fence rows separating active and non-active cultivated and grazing fields, (3) found along levees lining the ubiquitous canals within the marsh and on the cheniers near the coastline; and (4) present within the coastal marsh located on the numerous topographic highs. ?? 2005 US Government.

  11. Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in crop biomass estimation

    USGS Publications Warehouse

    Marshall, Michael T.; Thenkabail, Prasad S.

    2015-01-01

    Crop biomass is increasingly being measured with surface reflectance data derived from multispectral broadband (MSBB) and hyperspectral narrowband (HNB) space-borne remotely sensed data to increase the accuracy and efficiency of crop yield models used in a wide array of agricultural applications. However, few studies compare the ability of MSBBs versus HNBs to capture crop biomass variability. Therefore, we used standard data mining techniques to identify a set of MSBB data from the IKONOS, GeoEye-1, Landsat ETM+, MODIS, WorldView-2 sensors and compared their performance with HNB data from the EO-1 Hyperion sensor in explaining crop biomass variability of four important field crops (rice, alfalfa, cotton, maize). The analysis employed two-band (ratio) vegetation indices (TBVIs) and multiband (additive) vegetation indices (MBVIs) derived from Singular Value Decomposition (SVD) and stepwise regression. Results demonstrated that HNB-derived TBVIs and MBVIs performed better than MSBB-derived TBVIs and MBVIs on a per crop basis and for the pooled data: overall, HNB TBVIs explained 5–31% greater variability when compared with various MSBB TBVIs; and HNB MBVIs explained 3–33% greater variability when compared with various MSBB MBVIs. The performance of MSBB MBVIs and TBVIs improved mildly, by combining spectral information across multiple sensors involving IKONOS, GeoEye-1, Landsat ETM+, MODIS, and WorldView-2. A number of HNBs that advance crop biomass modeling were determined. Based on the highest factor loadings on the first component of the SVD, the “red-edge” spectral range (700–740 nm) centered at 722 nm (bandwidth = 10 nm) stood out prominently, while five additional and distinct portions of the recorded spectral range (400–2500 nm) centered at 539 nm, 758 nm, 914 nm, 1130 nm, 1320 nm (bandwidth = 10 nm) were also important. The best HNB vegetation indices for crop biomass estimation involved 549 and 752 nm for rice (R2 = 0.91); 925 and 1104 nm for

  12. Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in crop biomass estimation

    NASA Astrophysics Data System (ADS)

    Marshall, Michael; Thenkabail, Prasad

    2015-10-01

    Crop biomass is increasingly being measured with surface reflectance data derived from multispectral broadband (MSBB) and hyperspectral narrowband (HNB) space-borne remotely sensed data to increase the accuracy and efficiency of crop yield models used in a wide array of agricultural applications. However, few studies compare the ability of MSBBs versus HNBs to capture crop biomass variability. Therefore, we used standard data mining techniques to identify a set of MSBB data from the IKONOS, GeoEye-1, Landsat ETM+, MODIS, WorldView-2 sensors and compared their performance with HNB data from the EO-1 Hyperion sensor in explaining crop biomass variability of four important field crops (rice, alfalfa, cotton, maize). The analysis employed two-band (ratio) vegetation indices (TBVIs) and multiband (additive) vegetation indices (MBVIs) derived from Singular Value Decomposition (SVD) and stepwise regression. Results demonstrated that HNB-derived TBVIs and MBVIs performed better than MSBB-derived TBVIs and MBVIs on a per crop basis and for the pooled data: overall, HNB TBVIs explained 5-31% greater variability when compared with various MSBB TBVIs; and HNB MBVIs explained 3-33% greater variability when compared with various MSBB MBVIs. The performance of MSBB MBVIs and TBVIs improved mildly, by combining spectral information across multiple sensors involving IKONOS, GeoEye-1, Landsat ETM+, MODIS, and WorldView-2. A number of HNBs that advance crop biomass modeling were determined. Based on the highest factor loadings on the first component of the SVD, the "red-edge" spectral range (700-740 nm) centered at 722 nm (bandwidth = 10 nm) stood out prominently, while five additional and distinct portions of the recorded spectral range (400-2500 nm) centered at 539 nm, 758 nm, 914 nm, 1130 nm, 1320 nm (bandwidth = 10 nm) were also important. The best HNB vegetation indices for crop biomass estimation involved 549 and 752 nm for rice (R2 = 0.91); 925 and 1104 nm for alfalfa (R2 = 0

  13. Karst rocky desertification information extraction with EO-1 Hyperion data

    NASA Astrophysics Data System (ADS)

    Yue, Yuemin; Wang, Kelin; Zhang, Bing; Jiao, Quanjun; Yu, Yizun

    2008-12-01

    Karst rocky desertification is a special kind of land desertification developed under violent human impacts on the vulnerable eco-geo-environment of karst ecosystem. The process of karst rocky desertification results in simultaneous and complex variations of many interrelated soil, rock and vegetation biogeophysical parameters, rendering it difficult to develop simple and robust remote sensing mapping and monitoring approaches. In this study, we aimed to use Earth Observing 1 (EO-1) Hyperion hyperspectral data to extract the karst rocky desertification information. A spectral unmixing model based on Monte Carlo approach, was employed to quantify the fractional cover of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and bare substrates. The results showed that SWIR (1.9-2.35μm) portions of the spectrum were significantly different in PV, NPV and bare rock spectral properties. It has limitations in using full optical range or only SWIR (1.9-2.35μm) region of Hyperion to decompose image into PV, NPV and bare substrates covers. However, when use the tied-SWIR, the sub-pixel fractional covers of PV, NPV and bare substrates were accurately estimated. Our study indicates that the "tied-spectrum" method effectively accentuate the spectral characteristics of materials, while the spectral unmixing model based on Monte Carlo approach is a useful tool to automatically extract mixed ground objects in karst ecosystem. Karst rocky desertification information can be accurately extracted with EO-1 Hyperion. Imaging spectroscopy can provide a powerful methodology toward understanding the extent and spatial pattern of land degradation in karst ecosystem.

  14. Selection of Hyperspectral Narrowbands (HNBs) and Composition of Hyperspectral Twoband Vegetation Indices (HVIs) for Biophysical Characterization and Discrimination of Crop Types Using Field Reflectance and Hyperion-EO-1 Data

    NASA Technical Reports Server (NTRS)

    Thenkabail, Prasad S.; Mariotto, Isabella; Gumma, Murali Krishna; Middleton, Elizabeth M.; Landis, David R.; Huemmrich, K. Fred

    2013-01-01

    The overarching goal of this study was to establish optimal hyperspectral vegetation indices (HVIs) and hyperspectral narrowbands (HNBs) that best characterize, classify, model, and map the world's main agricultural crops. The primary objectives were: (1) crop biophysical modeling through HNBs and HVIs, (2) accuracy assessment of crop type discrimination using Wilks' Lambda through a discriminant model, and (3) meta-analysis to select optimal HNBs and HVIs for applications related to agriculture. The study was conducted using two Earth Observing One (EO-1) Hyperion scenes and other surface hyperspectral data for the eight leading worldwide crops (wheat, corn, rice, barley, soybeans, pulses, cotton, and alfalfa) that occupy approx. 70% of all cropland areas globally. This study integrated data collected from multiple study areas in various agroecosystems of Africa, the Middle East, Central Asia, and India. Data were collected for the eight crop types in six distinct growth stages. These included (a) field spectroradiometer measurements (350-2500 nm) sampled at 1-nm discrete bandwidths, and (b) field biophysical variables (e.g., biomass, leaf area index) acquired to correspond with spectroradiometer measurements. The eight crops were described and classified using approx. 20 HNBs. The accuracy of classifying these 8 crops using HNBs was around 95%, which was approx. 25% better than the multi-spectral results possible from Landsat-7's Enhanced Thematic Mapper+ or EO-1's Advanced Land Imager. Further, based on this research and meta-analysis involving over 100 papers, the study established 33 optimal HNBs and an equal number of specific two-band normalized difference HVIs to best model and study specific biophysical and biochemical quantities of major agricultural crops of the world. Redundant bands identified in this study will help overcome the Hughes Phenomenon (or "the curse of high dimensionality") in hyperspectral data for a particular application (e

  15. Selection of hyperspectral narrowbands (HNBs) and composition of hyperspectral twoband vegetation indices (HVIs) for biophysical characterization and discrimination of crop types using field reflectance and Hyperion/EO-1 data

    USGS Publications Warehouse

    Thenkabail, P.S.; Mariotto, I.; Gumma, M.K.; Middleton, E.M.; Landis, D.R.; Huemmrich, K.F.

    2013-01-01

    The overarching goal of this study was to establish optimal hyperspectral vegetation indices (HVIs) and hyperspectral narrowbands (HNBs) that best characterize, classify, model, and map the world's main agricultural crops. The primary objectives were: (1) crop biophysical modeling through HNBs and HVIs, (2) accuracy assessment of crop type discrimination using Wilks' Lambda through a discriminant model, and (3) meta-analysis to select optimal HNBs and HVIs for applications related to agriculture. The study was conducted using two Earth Observing One (EO-1) Hyperion scenes and other surface hyperspectral data for the eight leading worldwide crops (wheat, corn, rice, barley, soybeans, pulses, cotton, and alfalfa) that occupy ~70% of all cropland areas globally. This study integrated data collected from multiple study areas in various agroecosystems of Africa, the Middle East, Central Asia, and India. Data were collected for the eight crop types in six distinct growth stages. These included (a) field spectroradiometer measurements (350-2500 nm) sampled at 1-nm discrete bandwidths, and (b) field biophysical variables (e.g., biomass, leaf area index) acquired to correspond with spectroradiometer measurements. The eight crops were described and classified using ~20 HNBs. The accuracy of classifying these 8 crops using HNBs was around 95%, which was ~ 25% better than the multi-spectral results possible from Landsat-7's Enhanced Thematic Mapper+ or EO-1's Advanced Land Imager. Further, based on this research and meta-analysis involving over 100 papers, the study established 33 optimal HNBs and an equal number of specific two-band normalized difference HVIs to best model and study specific biophysical and biochemical quantities of major agricultural crops of the world. Redundant bands identified in this study will help overcome the Hughes Phenomenon (or “the curse of high dimensionality”) in hyperspectral data for a particular application (e.g., biophysi- al

  16. EO-1/Hyperion: Nearing Twelve Years of Successful Mission Science Operation and Future Plans

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.; Campbell, Petya K.; Huemmrich, K. Fred; Zhang, Qingyuan; Landis, David R.; Ungar, Stephen G.; Ong, Lawrence; Pollack, Nathan H.; Cheng, Yen-Ben

    2012-01-01

    The Earth Observing One (EO-1) satellite is a technology demonstration mission that was launched in November 2000, and by July 2012 will have successfully completed almost 12 years of high spatial resolution (30 m) imaging operations from a low Earth orbit. EO-1 has two unique instruments, the Hyperion and the Advanced Land Imager (ALI). Both instruments have served as prototypes for NASA's newer satellite missions, including the forthcoming (in early 2013) Landsat-8 and the future Hyperspectral Infrared Imager (HyspIRI). As well, EO-1 is a heritage platform for the upcoming German satellite, EnMAP (2015). Here, we provide an overview of the mission, and highlight the capabilities of the Hyperion for support of science investigations, and present prototype products developed with Hyperion imagery for the HyspIRI and other space-borne spectrometers.

  17. Vicarious Calibration of EO-1 Hyperion

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Thome, Kurt; Lawrence, Ong

    2012-01-01

    The Hyperion imaging spectrometer on the Earth Observing-1 satellite is the first high-spatial resolution imaging spectrometer to routinely acquire science-grade data from orbit. Data gathered with this instrument needs to be quantitative and accurate in order to derive meaningful information about ecosystem properties and processes. Also, comprehensive and long-term ecological studies require these data to be comparable over time, between coexisting sensors and between generations of follow-on sensors. One method to assess the radiometric calibration is the reflectance-based approach, a common technique used for several other earth science sensors covering similar spectral regions. This work presents results of radiometric calibration of Hyperion based on the reflectance-based approach of vicarious calibration implemented by University of Arizona during 2001 2005. These results show repeatability to the 2% level and accuracy on the 3 5% level for spectral regions not affected by strong atmospheric absorption. Knowledge of the stability of the Hyperion calibration from moon observations allows for an average absolute calibration based on the reflectance-based results to be determined and applicable for the lifetime of Hyperion.

  18. Hyperspectral Transformation from EO-1 ALI Imagery Using Pseudo-Hyperspectral Image Synthesis Algorithm

    NASA Astrophysics Data System (ADS)

    Tien Hoang, Nguyen; Koike, Katsuaki

    2016-06-01

    Hyperspectral remote sensing is more effective than multispectral remote sensing in many application fields because of having hundreds of observation bands with high spectral resolution. However, hyperspectral remote sensing resources are limited both in temporal and spatial coverage. Therefore, simulation of hyperspectral imagery from multispectral imagery with a small number of bands must be one of innovative topics. Based on this background, we have recently developed a method, Pseudo-Hyperspectral Image Synthesis Algorithm (PHISA), to transform Landsat imagery into hyperspectral imagery using the correlation of reflectance at the corresponding bands between Landsat and EO-1 Hyperion data. This study extends PHISA to simulate pseudo-hyperspectral imagery from EO-1 ALI imagery. The pseudo-hyperspectral imagery has the same number of bands as that of high-quality Hyperion bands and the same swath width as ALI scene. The hyperspectral reflectance data simulated from the ALI data show stronger correlation with the original Hyperion data than the one simulated from Landsat data. This high correlation originates from the concurrent observation by the ALI and Hyperion sensors that are on-board the same satellite. The accuracy of simulation results are verified by a statistical analysis and a surface mineral mapping. With a combination of the advantages of both ALI and Hyperion image types, the pseudo-hyperspectral imagery is proved to be useful for detailed identification of minerals for the areas outside the Hyperion coverage.

  19. ASE Floodwater Classifier Development for EO-1 Hyperion Imagery

    NASA Technical Reports Server (NTRS)

    Ip, Felipe; Dohm, J. M.; Baker, V. R.; Doggett, T.; Davies, A. G.; Castano, B.; Chien, S.; Cichy, B.; Greeley, R.; Sherwood, R.

    2004-01-01

    The objective of this investigation is to develop a prototype floodwater detection algorithm for Hyperion imagery. It will be run autonomously onboard the EO-1 spacecraft under the Autonomous Sciencecraft Experiment (ASE). This effort resulted in the development of two classifiers for floodwater, one of several classifier types that have been developed and will be uploaded to EO-1 in early 2004 in order to detect change related to transient processes such as volcanism, flooding, and ice formation and retreat.

  20. Endmember identification from EO-1 Hyperion L1_R hyperspectral data to build saltmarsh spectral library in Hunter Wetland, NSW, Australia

    NASA Astrophysics Data System (ADS)

    Rasel, Sikdar M. M.; Chang, Hsing-Chung; Ralph, Tim; Saintilan, Neil

    2015-10-01

    Saltmarsh is one of the important communities of wetlands, however, due to a range of pressures, it has been declared as an EEC (Ecological Endangered Community) in Australia. In order to correctly identify different saltmarsh species, development of spectral libraries of saltmarsh species is essential to monitor this EEC. Hyperspectral remote sensing, can explore the area of wetland monitoring and mapping. The benefits of Hyperion data to wetland monitoring have been studied at Hunter Wetland Park, NSW, Australia. After exclusion of bad bands from the original data, an atmospheric correction model was applied to minimize atmospheric effect and to retrieve apparent surface reflectance for different land cover. Large data dimensionality was reduced by Forward Minimum Noise Fraction (MNF) algorithm. It was found that first 32 MNF band contains more than 80% information of the image. Pixel Purity Index (PPI) algorithm worked properly to extract pure pixel for water, builtup area and three vegetation Casuarina sp., Phragmitis sp. and green grass. The result showed it was challenging to extract extreme pure pixel for Sporobolus and Sarcocornia from the data due to coarse resolution (30 m) and small patch size (<3 m) of those vegetation on the ground . Spectral Angle Mapper, classified the image into five classes: Casuarina, Saltmarsh (Phragmitis), Green grass, Water and Builtup area with 43.55 % accuracy. This classification also failed to classify Sporobolus as a distinct group due to the same reason. A high spatial resolution airborne hyperspectral data and a new study site with a bigger patch of Sporobolus and Sarcocornia is proposed to overcome the issue.

  1. Multiscale quantification of urban composition from EO-1/Hyperion data using object-based spectral unmixing

    NASA Astrophysics Data System (ADS)

    Zhang, Caiyun

    2016-05-01

    Quantification of the urban composition is important in urban planning and management. Previous research has primarily focused on unmixing medium-spatial resolution multispectral imagery using spectral mixture analysis (SMA) in order to estimate the abundance of urban components. For this study an object-based multiple endmember spectral mixture analysis (MESMA) approach was applied to unmix the 30-m Earth Observing-1 (EO-1)/Hyperion hyperspectral imagery. The abundance of two physical urban components (vegetation and impervious surface) was estimated and mapped at multiple scales and two defined geographic zones. The estimation results were validated by a reference dataset generated from fine spatial resolution aerial photography. The object-based MESMA approach was compared with its corresponding pixel-based one, and EO-1/Hyperion hyperspectral data was compared with the simulated EO-1/Advanced Land Imager (ALI) multispectral data in the unmixing modeling. The pros and cons of the object-based MESMA were evaluated. The result illustrates that the object-based MESMA is promising for unmixing the medium-spatial resolution hyperspectral imagery to quantify the urban composition, and it is an attractive alternative to the traditional pixel-based mixture analysis for various applications.

  2. Surface retrievals from Hyperion EO1 using a new, fast, 1D-Var based retrieval code

    NASA Astrophysics Data System (ADS)

    Thelen, Jean-Claude; Havemann, Stephan; Wong, Gerald

    2015-05-01

    We have developed a new algorithm for the simultaneous retrieval of the atmospheric profiles (temperature, humidity, ozone and aerosol) and the surface reflectance from hyperspectral radiance measurements obtained from air/space-borne, hyperspectral imagers such as Hyperion EO-1. The new scheme, proposed here, consists of a fast radiative transfer code, based on empirical orthogonal functions (EOFs), in conjunction with a 1D-Var retrieval scheme. The inclusion of an 'exact' scattering code based on spherical harmonics, allows for an accurate treatment of Rayleigh scattering and scattering by aerosols, water droplets and ice-crystals, thus making it possible to also retrieve cloud and aerosol optical properties, although here we will concentrate on non-cloudy scenes. We successfully tested this new approach using hyperspectral images taken by Hyperion EO-1, an experimental pushbroom imaging spectrometer operated by NASA.

  3. Estimating canopy chlorophyll and nitrogen concentration of rice from EO-1 Hyperion data

    NASA Astrophysics Data System (ADS)

    Chen, Junying; Tian, Qingjiu

    2006-09-01

    In this study, investigation was designed to find an effective method for estimating chlorophyll and nitrogen concentration in the canopies of rice from hyperspectral EO-1 Hyperion image. Continuum-removal analysis enables the isolation of absorption features and minimizes the background influence, thus absorption features stand out. We applied stepwise regression analysis and absorption feature analysis to the field measured foliage and canopy continuum-removed spectra. The results showed that the continuum-removed spectra from the whole range could be broke down into four isolated wavelength ranges and the first wavelength range was centered at 670nm. The area of the wavelength range centered at 670nm based on the BNC spectra was strongly correlated with the chlorophyll and nitrogen concentration. It was validated by EO-1 Hyperion image data, the results showed that the multiple correlation coefficients (R2) between the area of the wavelength range centered at 670nm based on the BNC image spectra and chlorophyll and nitrogen concentration were 0.485 and 0.783 separately. Then the estimation equations were applied to the rice pixels of image which were recognized through Normalized Difference Vegetation Index (NDVI), Land Surface Water Index (LSWI) and Enhanced Vegetation Index (EVI). Thus the chlorophyll and nitrogen concentration distribution maps were obtained. The values in the maps were quite consistent with those of field measurements.

  4. Status of Current and Future Remote Sensing with EO-1 Hyperion

    NASA Technical Reports Server (NTRS)

    Ungar, Stephen

    2006-01-01

    The Earth Observing-One (EO-1) satellite, launched in November of 2000, will complete six full years of operation near the end of this year. Observations from the Hyperion Imaging Spectrometer on board EO-1 have contributed to over 300 papers in refereed journals, conference proceeds and other presentations. Hyperion has been used to study a variety of natural and anthropogenic phenomena including hazards and catastrophes, agricultural health and productivity, ecological disturbance/development, and land use/land cover change. As an example, Hyperion has been used in hazard and catastrophe studies to monitor and assess effects of tsunamis, earthquakes, volcanic eruptions, mudslides, tornadoes, hurricanes, wild-fires (natural and human ignited), oil spills, and the aftermath of world trade center bombing. This presentation summarizes the current status of EO-1 Hyperion in terms of key scientific findings to date and future plans for operation of this instrument through 2007.

  5. Mineral Mapping with AVIRIS and EO-1 Hyperion

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.

    2004-01-01

    Imaging Spectrometry data or Hyperspectral Imagery (HSI) acquired using airborne systems have been used in the geologic community since the early 1980 s and represent a mature technology (Goetz et al., 1985; Kruse et al., 1999). The solar spectral range, 0.4 to 2.5 m, provides abundant information about many important Earth-surface minerals (Clark et al., 1990). In particular, the 2.0 to 2.5 m (SWIR) spectral range covers spectral features of hydroxyl-bearing minerals, sulfates, and carbonates common to many geologic units and hydrothermal alteration assemblages. Previous research has proven the ability of airborne and spaceborne hyperspectral systems to uniquely identify and map these and other minerals, even in sub-pixel abundances (Kruse and Lefkoff, 1993; Boardman and Kruse, 1994; Boardman et al., 1995; Kruse, et al., 1999). This paper describes a case history for a site in northern Death Valley, California and Nevada along with selected SNR calculations/results for other sites around the world. Various hyperspectral mineral mapping results for this site have previously been presented and published (Kruse, 1988; Kruse et al., 1993, 1999, 2001, 2002, 2003), however, this paper presents a condensed summary of key details for hyperspectral data from 2000 and 2001 and the results of accuracy assessment for satellite hyperspectral data compared to airborne hyperspectral data used as ground truth.

  6. Sub-pixel mineral mapping of a porphyry copper belt using EO-1 Hyperion data

    NASA Astrophysics Data System (ADS)

    Hosseinjani Zadeh, Mahdieh; Tangestani, Majid H.; Roldan, Francisco Velasco; Yusta, Iñaki

    2014-02-01

    The main aim of the present study was to examine the feasibility of the EO-1 Hyperion data in discriminating and mapping diagnostic alteration minerals around porphyry copper deposits (PCDs), verified by field surveys and laboratory analyses. A partial sub-pixel method, mixture tuned matched filtering (MTMF), was implemented on a pre-processed and calibrated Hyperion dataset. The tested area is situated at the Central Iranian Volcano-Sedimentary Complex, where abundant porphyry copper deposits like Sarcheshmeh, Darrehzar, and Sereidun are located. The characteristic alteration minerals identified by Hyperion data included biotite, muscovite, illite, kaolinite, goethite, hematite, jarosite, pyrophyllite, and chlorite. Discrimination of these minerals especially biotite and iron oxide (hematite and goethite) can provide valuable evidences for PCD exploration projects. Results revealed that Hyperion data prove to be powerful in discriminating and mapping various types of alteration zones while the data were subjected to adequate pre-processing.

  7. Eo-1 Hyperion Measures Canopy Drought Stress In Amazonia

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P.; Nepstad, Daniel; Cardinot, Gina; Moutinho, Paulo; Harris, Thomas; Ray, David

    2004-01-01

    The central, south and southeast portions of the Amazon Basin experience a period of decreased cloud cover and precipitation from June through November. There are likely important effects of seasonal and interannual rainfall variation on forest leaf area index, canopy water stress, productivity and regional carbon cycling in the Amazon. While both ground and spaceborne studies of precipitation continue to improve, there has been almost no progress made in observing forest canopy responses to rainfall variability in the humid tropics. This shortfall stems from the large stature of the vegetation and great spatial extent of tropical forests, both of which strongly impede field studies of forest responses to water availability. Those few studies employing satellite measures of canopy responses to seasonal and interannual drought (e.g., Bohlman et al. 1998, Asner et al. 2000) have been limited by the spectral resolution and sampling available from Landsat and AVHRR sensors. We report on a study combining the first landscape-level, managed drought experiment in Amazon tropical forest with the first spaceborne imaging spectrometer observations of this experimental area. Using extensive field data on rainfall inputs, soil water content, and both leaf and canopy responses, we test the hypothesis that spectroscopic signatures unique to hyperspectral observations can be used to quantify relative differences in canopy stress resulting from water availability.

  8. Using EO-1 Hyperion Images to Prototype Environmental Products for Hyspiri

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.; Campbell, Petya K. E.; Ungar, Stephen G.; Ong, Lawrence; Zhang, Qingyuan; Huemmrich, K. Fred; Mandl, Daniel J.; Frye, Stuart W.

    2011-01-01

    In November 2010, the Earth Observing One (EO-1) Satellite Mission will successfully complete a decade of Earth imaging by its two unique instruments, the Hyperion and the Advanced Land Imager (ALI). Both instruments are serving as prototypes for new orbital sensors, and the EO-1 is a heritage platform for the upcoming German mission, EnMAP. We provide an overview of the mission's lifetime. We briefly describe calibration & validation activities and overview the technical and scientific accomplishments of this mission. Some examples of the Mission Science Office (MSO) products are provided, as is an example of a image collected for disaster monitoring.

  9. Simulation of EO-1 Hyperion Data from ALI Multispectral Data Based on the Spectral Reconstruction Approach

    PubMed Central

    Liu, Bo; Zhang, Lifu; Zhang, Xia; Zhang, Bing; Tong, Qingxi

    2009-01-01

    Data simulation is widely used in remote sensing to produce imagery for a new sensor in the design stage, for scale issues of some special applications, or for testing of novel algorithms. Hyperspectral data could provide more abundant information than traditional multispectral data and thus greatly extend the range of remote sensing applications. Unfortunately, hyperspectral data are much more difficult and expensive to acquire and were not available prior to the development of operational hyperspectral instruments, while large amounts of accumulated multispectral data have been collected around the world over the past several decades. Therefore, it is reasonable to examine means of using these multispectral data to simulate or construct hyperspectral data, especially in situations where hyperspectral data are necessary but hard to acquire. Here, a method based on spectral reconstruction is proposed to simulate hyperspectral data (Hyperion data) from multispectral Advanced Land Imager data (ALI data). This method involves extraction of the inherent information of source data and reassignment to newly simulated data. A total of 106 bands of Hyperion data were simulated from ALI data covering the same area. To evaluate this method, we compare the simulated and original Hyperion data by visual interpretation, statistical comparison, and classification. The results generally showed good performance of this method and indicated that most bands were well simulated, and the information both preserved and presented well. This makes it possible to simulate hyperspectral data from multispectral data for testing the performance of algorithms, extend the use of multispectral data and help the design of a virtual sensor. PMID:22574064

  10. Initial lunar calibration observations by the EO-1 Hyperion imaging spectrometer

    USGS Publications Warehouse

    Kieffer, H.H.; Jarecke, P.; Pearlman, Jay

    2002-01-01

    The Moon provides an exo-atmospheric radiance source that can be used to determine trends in instrument radio-metric responsivity with high precision. Lunar observations can also be used for absolute radiometric calibration; knowledge of the radiometric scale will steadily improve through independent study of lunar spectral photometry and with sharing of the Moon as a calibration target by increasing numbers of spacecraft, each with its own calibration history. EO-1 calibration includes periodic observation of the Moon by all three of its instruments. Observations are normally made with a phase angle of about 7 degrees (or about 12 hours from the time of Full Moon). Also, SeaWiFS has been making observations at such phase angles for several years, and observations of the Moon by instrument pairs, even if at different times, can be used to transfer absolute calibration. A challenge for EO-1 is pointing to include the entire full Moon in the narrow Hyperion scan. Three Hyperion observations in early 2001 covering an order-of-magnitude difference in lunar irradiance show good agreement for responsivity; the SWIR detector has undergone some changes in responsivity. Small discrepancies of calibration with wavelength could be smoothed using the Moon as a source. Off-axis scattered light response and cross-track response variations can be assessed using the lunar image.

  11. Unsupervised multiple endmember spectral mixture analysis-based detection of opium poppy fields from an EO-1 Hyperion image in Helmand, Afghanistan.

    PubMed

    Wang, Jian-Jun; Zhang, Yun; Bussink, Coen

    2014-04-01

    Since 1992, Afghanistan has gradually become the primary illicit opium producer in the entire world. To efficiently eradicate the opium poppy, it is crucial for the United Nations Office on Drugs and Crime (UNODC) and Ministry of Counter Narcotics of Afghanistan to monitor opium poppy cultivation timely. In situ detection of opium fields, however, is often expensive, time-consuming and dangerous in Afghanistan. To overcome the constraints of inaccessibility of opium fields, high-resolution (≤1 m) images, like pan-sharpened IKONOS, have been applied in previous studies. Unfortunately, these high-resolution images are expensive when monitoring a large area. In contrast, EO-1 Hyperion imagery, the only source of spaceborne hyperspectral data, has a coarse resolution (30 m), but it is free of charge. Moreover, Hyperion's large number of channels may increase the detection capability of subpixel size targets. Until now, however, little research has been found that identified opium fields from spaceborne or aerial hyperspectral images. Therefore, this study attempts to detect opium fields from a Hyperion image covering a study area in Southwest Afghanistan in a situation where training samples were not available. A proposed methodology based on unsupervised endmember-selection and multiple-endmember spectral mixture analysis can detect opium fields directly from the Hyperion image. The number of poppy pixels was overestimated by 12%. PMID:24463021

  12. Use of EO-1 Hyperion data to calculate spectral band adjustment factors (SBAF) between the L7 ETM+ and Terra MODIS sensors

    USGS Publications Warehouse

    Chander, Gyanesh; Mishra, N.; Helder, Dennis L.; Aaron, D.; Choi, T.; Angal, A.; Xiong, X.

    2010-01-01

    Different applications and technology developments in Earth observations necessarily require different spectral coverage. Thus, even for the spectral bands designed to look at the same region of the electromagnetic spectrum, the relative spectral responses (RSR) of different sensors may be different. In this study, spectral band adjustment factors (SBAF) are derived using hyperspectral Earth Observing-1 (EO-1) Hyperion measurements to adjust for the spectral band differences between the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) top-of-atmosphere (TOA) reflectance measurements from 2000 to 2009 over the pseudo-invariant Libya 4 reference standard test site.

  13. Seasonal spectral dynamics and carbon fluxes at core EOS sites using EO-1 Hyperion images

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Campbell, P.; Price, R. M.

    2010-12-01

    Fluxes of water and carbon into the atmosphere are critical components in order to monitor and predict climate change. Spatial heterogeneity and seasonal changes in vegetation contribute to ambiguities in regional and global CO2 and water cycle dynamics. Satellite remote sensing is essential for monitoring the spatial and temporal dynamics of various vegetation types for the purposes of determining carbon and water fluxes. Satellite data from the EO-1 Hyperion sensor was acquired for five Earth Observing Satellite (EOS) sites, Mongu (Zambia, Africa), Konza Prairie (Kansas, USA), Duke Forest (North Carolina, USA), Barrow (Alaska, USA) and Sevilleta (New Mexico, USA). Each EOS site represented a distinct vegetative ecosystem type; hardwood forest, grassland, evergreen forest, lichens, and shrubland/grassland respectively. Satellite data was atmospherically corrected using the Atmosphere CORrection Now (ACORN) model and subsequently, the spectral reflectance data was extracted in the vicinity of existing flux towers. The EO-1 Hyperion sensor proved advantageous because of its high and continuous spectral resolution (10 nm intervals from 355 to 2578 nm wavelengths). The high spectral resolution allowed us calculate biophysical indices based on specific wavelengths in the electromagnetic spectrum that are associated with alterations in foliar chemistry and plant membrane structure (i.e., vegetation stress) brought upon by many environmental factors. Previous studies have focused on relationships within a specific site or vegetation community. This study however, incorporated many sites with different vegetation types and various geographic locations throughout the world. Monitoring the fluctuations in vegetation stress with contemporaneous environmental conditions and carbon flux measurements from each site will provide better insight into water and carbon flux dynamics in many different biomes. Noticeable spectral signatures were identified based on site specific

  14. Evaluation of classifiers for processing Hyperion (EO-1) data of tropical vegetation

    NASA Astrophysics Data System (ADS)

    Vyas, Dhaval; Krishnayya, N. S. R.; Manjunath, K. R.; Ray, S. S.; Panigrahy, Sushma

    2011-04-01

    There is an urgent necessity to monitor changes in the natural surface features of earth. Compared to broadband multispectral data, hyperspectral data provides a better option with high spectral resolution. Classification of vegetation with the use of hyperspectral remote sensing generates a classical problem of high dimensional inputs. Complexity gets compounded as we move from airborne hyperspectral to Spaceborne technology. It is unclear how different classification algorithms will perform on a complex scene of tropical forests collected by spaceborne hyperspectral sensor. The present study was carried out to evaluate the performance of three different classifiers (Artificial Neural Network, Spectral Angle Mapper, Support Vector Machine) over highly diverse tropical forest vegetation utilizing hyperspectral (EO-1) data. Appropriate band selection was done by Stepwise Discriminant Analysis. The Stepwise Discriminant Analysis resulted in identifying 22 best bands to discriminate the eight identified tropical vegetation classes. Maximum numbers of bands came from SWIR region. ANN classifier gave highest OAA values of 81% with the help of 22 selected bands from SDA. The image classified with the help SVM showed OAA of 71%, whereas the SAM showed the lowest OAA of 66%. All the three classifiers were also tested to check their efficiency in classifying spectra coming from 165 processed bands. SVM showed highest OAA of 80%. Classified subset images coming from ANN (from 22 bands) and SVM (from 165 bands) are quite similar in showing the distribution of eight vegetation classes. Both the images appeared close to the actual distribution of vegetation seen in the study area. OAA levels obtained in this study by ANN and SVM classifiers identify the suitability of these classifiers for tropical vegetation discrimination.

  15. Generation and validation of characteristic spectra from EO1 Hyperion image data for detecting the occurrence of the invasive species, Chinese tallow

    USGS Publications Warehouse

    Ramsey, Elijah W., III; Rangoonwala, A.; Nelson, G.; Ehrlich, R.; Martella, K.

    2005-01-01

    Chinese tallow (Triadica sebifera) is an invasive tree that is spreading throughout the south-eastern United States and now into the west, and in many places causing extensive change to native habitat and associated wildlife. Detecting and mapping the relative distribution of this species is important to its control and eradication. To map the relative distribution of Chinese tallow within a southwestern Louisiana coastal wetland to upland environment, Earth Observing 1 (EO1) satellite Hyperion sensor hyperspectral image data were combined with a subpixel extraction method that modelled characteristic spectra from the image data without requiring a priori characteristic spectra. Because of the low percentage occurrences of Chinese tallow and high spectral covariation in the environment, unique validation and verification methods were implemented, relying on simultaneous collection of field canopy reflectance spectra and subsequent classification of canopy compositions. The subpixel extraction method produced five characteristic spectra, which we further refined to four that adequately represented the field spectra, as well as the Hyperion imaged canopy reflectance datasets. Characteristic spectra were designated as senescing foliage, cypress-tupelo trees, and trees without leaves; shadows and green vegetation; senescing Chinese tallow with yellow leaves and yellowing foliage; and senescing Chinese tallow with red leaves ('red tallow'). About 81% (n=34) of the field and 78% (n=33) of the Hyperion imaged characteristic spectra associated with 'red tallow' were explained by the compositions generated in the field slide classifications. ?? 2005 US Government.

  16. Spectral Compatibility Analysis of the Enhanced Vegetation Indices (EVI) across VIIRS, MODIS, and AVHRR Using EO-1 Hyperion

    NASA Astrophysics Data System (ADS)

    Miura, T.; Turner, J. P.; Huete, A. R.

    2012-12-01

    Spectral vegetation indices (VIs) are one of the more important satellite products for monitoring terrestrial vegetation and characterizing their seasonal dynamics and interannual variability in regional to global scales. The enhanced vegetation index (EVI), designed for the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, has been shown to effectively characterize global vegetation states and ecosystem processes, and encompass the range of biophysical/biochemical information in manners to complement the conventional, normalized difference vegetation index (NDVI). Because the EVI is limited to sensor systems designed with a blue band, a 2-band EVI, without a blue band, was recently developed (referred to as the EVI2), which has the best similarity with the 3-band EVI, particularly when residual atmospheric effects are insignificant and data quality is good. In this study, we evaluated cross-sensor spectral compatibilities of the EVI and EVI2 across Visible/Infrared Imager/Radiometer Suite (VIIRS), MODIS, and NOAA-14 and -19 Advanced Very High Resolution Radiometer (AVHRR/2 and AVHRR/3, respectively) bandpasses using a global set of Earth Observing One (EO-1) Hyperion hyperspectral data. Hyperion scenes were spectrally aggregated into red and near-infrared (NIR) bandpasses of the four sensors and blue bandpasses of the MODIS and VIIRS sensors, and spatially aggregated into 1 km resolution pixels. Two atmospheric correction scenarios were also applied to examine the impact of the atmosphere on inter-sensor EVI/EVI2 compatibility: (1) Rayleigh/ozone/water vapor (ROW)-corrected and (2) total-atmosphere-corrected "top-of-canopy (TOC)" reflectances. The EVI and EVI2 were computed from these reflectance data. The highest compatibility was obtained for VIIRS EVI2 vs. MODIS EVI2 and for AVHRR/3 EVI2 vs. AVHRR/2 EVI2. VIIRS EVI vs. MODIS EVI was subject to large systematic

  17. Simulation of the long term radiometric responses of the Terra MODIS and EO-1 ALI using Hyperion spectral responses over Railroad Valley Playa in Nevada (RVPN)

    NASA Astrophysics Data System (ADS)

    Choi, Taeyoung; Xiong, Xiaoxiong J.; Angal, Amit; Chander, Gyanesh

    2010-10-01

    The Earth Observing-1 (EO-1) Hyperion instrument provides 220 spectral bands with wavelengths between 400 and 2500 nm at 30 m spatial resolution, which covers a 7.5 km by 100 km area on the ground. The EO-1 spacecraft has another multispectral sensor called the Advanced Land Imager (ALI), which has 10 spectral bands with wavelengths between 400 and 2350 nm at 30 m spatial resolution. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the Terra spacecraft was launched in Dec., 1999, and flies approximately 30 minutes behind EO-1. Nearsimultaneous observations from Terra MODIS, EO-1 ALI and Hyperion over a well characterized Railroad Valley Playa in Nevada (RVPN) target are chosen for this study. A uniform region of interest (ROI) within the playa within latitudes and longitudes of 38.48 and -115.71 to 38.53 and -115.66 was chosen for this analysis. A representation of the ground spectra during every near-simultaneous acquisition of MODIS and ALI is obtained using EO-1 Hyperion data. Using the EO-1 Hyperion derived top-of-atmosphere (TOA) reflectance profile along with the ALI and MODIS relative spectral responses (RSR), simulated reflectance for the matching band pairs is calculated. The Hyperion simulated TOA reflectance results are compared to the measured TOA reflectance trends of ALI and MODIS. The long-term measured versus simulated reflectance results are used to examine the relationships and calibration differences between the ALI and MODIS sensors.

  18. Comparative Analysis of EO-1 ALI and Hyperion, and Landsat ETM+ Data for Mapping Forest Crown Closure and Leaf Area Index

    PubMed Central

    Pu, Ruiliang; Gong, Peng; Yu, Qian

    2008-01-01

    In this study, a comparative analysis of capabilities of three sensors for mapping forest crown closure (CC) and leaf area index (LAI) was conducted. The three sensors are Hyperspectral Imager (Hyperion) and Advanced Land Imager (ALI) onboard EO-1 satellite and Landsat-7 Enhanced Thematic Mapper Plus (ETM+). A total of 38 mixed coniferous forest CC and 38 LAI measurements were collected at Blodgett Forest Research Station, University of California at Berkeley, USA. The analysis method consists of (1) extracting spectral vegetation indices (VIs), spectral texture information and maximum noise fractions (MNFs), (2) establishing multivariate prediction models, (3) predicting and mapping pixel-based CC and LAI values, and (4) validating the mapped CC and LAI results with field validated photo-interpreted CC and LAI values. The experimental results indicate that the Hyperion data are the most effective for mapping forest CC and LAI (CC mapped accuracy (MA) = 76.0%, LAI MA = 74.7%), followed by ALI data (CC MA = 74.5%, LAI MA = 70.7%), with ETM+ data results being least effective (CC MA = 71.1%, LAI MA = 63.4%). This analysis demonstrates that the Hyperion sensor outperforms the other two sensors: ALI and ETM+. This is because of its high spectral resolution with rich subtle spectral information, of its short-wave infrared data for constructing optimal VIs that are slightly affected by the atmosphere, and of its more available MNFs than the other two sensors to be selected for establishing prediction models. Compared to ETM+ data, ALI data are better for mapping forest CC and LAI due to ALI data with more bands and higher signal-to-noise ratios than those of ETM+ data.

  19. Comparison of Very Near Infrared (vnir) Wavelength from EO-1 Hyperion and Worldview 2 Images for Saltmarsh Classification

    NASA Astrophysics Data System (ADS)

    Rasel, Sikdar M. M.; Chang, Hsing-Chung; Jahan Diti, Israt; Ralph, Tim; Saintilan, Neil

    2016-06-01

    Saltmarsh is one of the important communities of wetlands. Due to a range of pressures, it has been declared as an EEC (Ecological Endangered Community) in Australia. In order to correctly identify different saltmarsh species, development of distinct spectral characteristics is essential to monitor this EEC. This research was conducted to classify saltmarsh species based on spectral characteristics in the VNIR wavelength of Hyperion Hyperspectral and Worldview 2 multispectral remote sensing data. Signal Noise Ratio (SNR) and Principal Component Analysis (PCA) were applied in Hyperion data to test data quality and to reduce data dimensionality respectively. FLAASH atmospheric correction was done to get surface reflectance data. Based on spectral and spatial information a supervised classification followed by Mapping Accuracy (%) was used to assess the classification result. SNR of Hyperion data was varied according to season and wavelength and it was higher for all land cover in VNIR wavelength. There was a significant difference between radiance and reflectance spectra. It was found that atmospheric correction improves the spectral information. Based on the PCA of 56 VNIR band of Hyperion, it was possible to segregate 16 bands that contain 99.83 % variability. Based on reference 16 bands were compared with 8 bands of Worldview 2 for classification accuracy. Overall Accuracy (OA) % for Worldview 2 was increased from 72 to 79 while for Hyperion, it was increased from 70.47 to 71.66 when bands were added orderly. Considering the significance test with z values and kappa statistics at 95% confidence level, Worldview 2 classification accuracy was higher than Hyperion data.

  20. Quantifying Libya-4 Surface Reflectance Heterogeneity With WorldView-1, 2 and EO-1 Hyperion

    NASA Technical Reports Server (NTRS)

    Neigh, Christopher S. R.; McCorkel, Joel; Middleton, Elizabeth M.

    2015-01-01

    The land surface imaging (LSI) virtual constellation approach promotes the concept of increasing Earth observations from multiple but disparate satellites. We evaluated this through spectral and spatial domains, by comparing surface reflectance from 30-m Hyperion and 2-m resolution WorldView-2 (WV-2) data in the Libya-4 pseudoinvariant calibration site. We convolved and resampled Hyperion to WV-2 bands using both cubic convolution and nearest neighbor (NN) interpolation. Additionally, WV-2 and WV-1 same-date imagery were processed as a cross-track stereo pair to generate a digital terrain model to evaluate the effects from large (>70 m) linear dunes. Agreement was moderate to low on dune peaks between WV-2 and Hyperion (R2 <; 0.4) but higher in areas of lower elevation and slope (R2 > 0.6). Our results provide a satellite sensor intercomparison protocol for an LSI virtual constellation at high spatial resolution, which should start with geolocation of pixels, followed by NN interpolation to avoid tall dunes that enhance surface reflectance differences across this internationally utilized site.

  1. Low-Cost Evaluation of EO-1 Hyperion and ALI for Detection and Biophysical Characterization of Forest Logging in Amazonia (NCC5-481)

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P.; Keller, Michael M.; Silva, Jose Natalino; Zweede, Johan C.; Pereira, Rodrigo, Jr.

    2002-01-01

    quantify both the presence and degree of structural disturbance caused by various logging regimes. Our quantitative assessment of Hyperion hyperspectral and ALI multi-spectral data for the detection and structural characterization of selective logging in Amazonia will benefit from data collected through an ongoing project run by the Tropical Forest Foundation, within which we have developed a study of the canopy and landscape biophysics of conventional and reduced-impact logging. We will add to our base of forest structural information in concert with an EO-1 overpass. Using a photon transport model inversion technique that accounts for non-linear mixing of the four biogeophysical indicators, we will estimate these parameters across a gradient of selective logging intensity provided by conventional and reduced impact logging sites. We will also compare our physical ly-based approach to both conventional (e.g., NDVI) and novel (e.g., SWIR-channel) vegetation indices as well as to linear mixture modeling methods. We will cross-compare these approaches using Hyperion and ALI imagers to determine the strengths and limitations of these two sensors for applications of forest biophysics. This effort will yield the first physical ly-based, quantitative analysis of the detection and intensity of selective logging in Amazonia, comparing hyperspectral and improved multi-spectral approaches as well as inverse modeling, linear mixture modeling, and vegetation index techniques.

  2. EO-1 Hyperion reflectance time series at calibration and validation sites: stability and sensitivity to seasonal dynamics

    USGS Publications Warehouse

    Campbell, P.K.E.; Middleton, E.M.; Thome, K.J.; Kokaly, Raymond F.; Huemmrich, K.F.; Novick, K.A.; Brunsell, N.A.

    2013-01-01

    This study evaluated Earth Observing 1 (EO-1) Hyperion reflectance time series at established calibration sites to assess the instrument stability and suitability for monitoring vegetation functional parameters. Our analysis using three pseudo-invariant calibration sites in North America indicated that the reflectance time series are devoid of apparent spectral trends and their stability consistently is within 2.5-5 percent throughout most of the spectral range spanning the 12+ year data record. Using three vegetated sites instrumented with eddy covariance towers, the Hyperion reflectance time series were evaluated for their ability to determine important variables of ecosystem function. A number of narrowband and derivative vegetation indices (VI) closely described the seasonal profiles in vegetation function and ecosystem carbon exchange (e.g., net and gross ecosystem productivity) in three very different ecosystems, including a hardwood forest and tallgrass prairie in North America, and a Miombo woodland in Africa. Our results demonstrate the potential for scaling the carbon flux tower measurements to local and regional landscape levels. The VIs with stronger relationships to the CO2 parameters were derived using continuous reflectance spectra and included wavelengths associated with chlorophyll content and/or chlorophyll fluorescence. Since these indices cannot be calculated from broadband multispectral instrument data, the opportunity to exploit these spectrometer-based VIs in the future will depend on the launch of satellites such as EnMAP and HyspIRI. This study highlights the practical utility of space-borne spectrometers for characterization of the spectral stability and uniformity of the calibration sites in support of sensor cross-comparisons, and demonstrates the potential of narrowband VIs to track and spatially extend ecosystem functional status as well as carbon processes measured at flux towers.

  3. EO-1 Hyperion Reflectance Time Series at Calibration and Validation Sites: Stability and Sensitivity to Seasonal Dynamics

    NASA Technical Reports Server (NTRS)

    Campbell, Petya K. Entcheva; Middleton, Elizabeth M.; Thome, Kurt J.; Kokaly, Raymond F.; Huemmrich, Karl Fred; Lagomasino, David; Novick, Kimberly A.; Brunsell, Nathaniel A.

    2013-01-01

    This study evaluated Earth Observing 1 (EO-1) Hyperion reflectance time series at established calibration sites to assess the instrument stability and suitability for monitoring vegetation functional parameters. Our analysis using three pseudo-invariant calibration sites in North America indicated that the reflectance time series are devoid of apparent spectral trends and their stability consistently is within 2.5-5 percent throughout most of the spectral range spanning the 12-plus year data record. Using three vegetated sites instrumented with eddy covariance towers, the Hyperion reflectance time series were evaluated for their ability to determine important variables of ecosystem function. A number of narrowband and derivative vegetation indices (VI) closely described the seasonal profiles in vegetation function and ecosystem carbon exchange (e.g., net and gross ecosystem productivity) in three very different ecosystems, including a hardwood forest and tallgrass prairie in North America, and a Miombo woodland in Africa. Our results demonstrate the potential for scaling the carbon flux tower measurements to local and regional landscape levels. The VIs with stronger relationships to the CO2 parameters were derived using continuous reflectance spectra and included wavelengths associated with chlorophyll content and/or chlorophyll fluorescence. Since these indices cannot be calculated from broadband multispectral instrument data, the opportunity to exploit these spectrometer-based VIs in the future will depend on the launch of satellites such as EnMAP and HyspIRI. This study highlights the practical utility of space-borne spectrometers for characterization of the spectral stability and uniformity of the calibration sites in support of sensor cross-comparisons, and demonstrates the potential of narrowband VIs to track and spatially extend ecosystem functional status as well as carbon processes measured at flux towers.

  4. Assessment of spectral band impact on intercalibration over desert sites using simulation based on EO-1 Hyperion data

    USGS Publications Warehouse

    Henry, P.; Chander, G.; Fougnie, B.; Thomas, C.; Xiong, Xiaoxiong

    2013-01-01

    Since the beginning of the 1990s, stable desert sites have been used for the calibration monitoring of many different sensors. Many attempts at sensor intercalibration have been also conducted using these stable desert sites. As a result, site characterization techniques and the quality of intercalibration techniques have gradually improved over the years. More recently, the Committee on Earth Observation Satellites has recommended a list of reference pseudo-invariant calibration sites for frequent image acquisition by multiple agencies. In general, intercalibration should use well-known or spectrally flat reference. The reflectance profile of desert sites, however, might not be flat or well characterized (from a fine spectral point of view). The aim of this paper is to assess the expected accuracy that can be reached when using desert sites for intercalibration. In order to have a well-mastered estimation of different errors or error sources, this study is performed with simulated data from a hyperspectral sensor. Earth Observing-1 Hyperion images are chosen to provide the simulation input data. Two different cases of intercalibration are considered, namely, Landsat 7 Enhanced Thematic Mapper Plus with Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and Environmental Satellite MEdium Resolution Imaging Spectrometer (MERIS) with Aqua MODIS. The simulation results have confirmed that intercalibration accuracy of 1% to 2% can be achieved between sensors, provided there are a sufficient number of available measurements. The simulated intercalibrations allow explaining results obtained during real intercalibration exercises and to establish some recommendations for the use of desert sites for intercalibration.

  5. Synthesis of Multispectral Bands from Hyperspectral Data: Validation Based on Images Acquired by AVIRIS, Hyperion, ALI, and ETM+

    NASA Technical Reports Server (NTRS)

    Blonksi, Slawomir; Gasser, Gerald; Russell, Jeffrey; Ryan, Robert; Terrie, Greg; Zanoni, Vicki

    2001-01-01

    Multispectral data requirements for Earth science applications are not always studied rigorously studied before a new remote sensing system is designed. A study of the spatial resolution, spectral bandpasses, and radiometric sensitivity requirements of real-world applications would focus the design onto providing maximum benefits to the end-user community. To support systematic studies of multispectral data requirements, the Applications Research Toolbox (ART) has been developed at NASA's Stennis Space Center. The ART software allows users to create and assess simulated datasets while varying a wide range of system parameters. The simulations are based on data acquired by existing multispectral and hyperspectral instruments. The produced datasets can be further evaluated for specific end-user applications. Spectral synthesis of multispectral images from hyperspectral data is a key part of the ART software. In this process, hyperspectral image cubes are transformed into multispectral imagery without changes in spatial sampling and resolution. The transformation algorithm takes into account spectral responses of both the synthesized, broad, multispectral bands and the utilized, narrow, hyperspectral bands. To validate the spectral synthesis algorithm, simulated multispectral images are compared with images collected near-coincidentally by the Landsat 7 ETM+ and the EO-1 ALI instruments. Hyperspectral images acquired with the airborne AVIRIS instrument and with the Hyperion instrument onboard the EO-1 satellite were used as input data to the presented simulations.

  6. Synthesis of Multispectral Bands from Hyperspectral Data: Validation Based on Images Acquired by AVIRIS, Hyperion, ALI, and ETM+

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Glasser, Gerald; Russell, Jeffrey; Ryan, Robert; Terrie, Greg; Zanoni, Vicki

    2003-01-01

    Spectral band synthesis is a key step in the process of creating a simulated multispectral image from hyperspectral data. In this step, narrow hyperspectral bands are combined into broader multispectral bands. Such an approach has been used quite often, but to the best of our knowledge accuracy of the band synthesis simulations has not been evaluated thus far. Therefore, the main goal of this paper is to provide validation of the spectral band synthesis algorithm used in the ART software. The next section contains a description of the algorithm and an example of its application. Using spectral responses of AVIRIS, Hyperion, ALI, and ETM+, the following section shows how the synthesized spectral bands compare with actual bands, and it presents an evaluation of the simulation accuracy based on results of MODTRAN modeling. In the final sections of the paper, simulated images are compared with data acquired by actual satellite sensors. First, a Landsat 7 ETM+ image is simulated using an AVIRIS hyperspectral data cube. Then, two datasets collected with the Hyperion instrument from the EO-1 satellite are used to simulate multispectral images from the ALI and ETM+ sensors.

  7. Detecting vegetation stress in coastal Gabes oases using Hyperion hyperspectral sensor

    NASA Astrophysics Data System (ADS)

    Ben Arfa, Jouda; Beltrando, Gerard; Berges, Jean Claude; Zargouni, Fouad

    2016-04-01

    In the last decades, the environmental changes due to the human activities are the main causes of disturbance of oasian agro-systems. Gabes region, in the southeastern of Tunisia, is characterized by unique maritime oases in Mediterranean basin. Unfortunately these oases are sensitive areas due to a harsh competition for land and water between different user groups (urban, industry, agriculture). An industrial complex is now located in center of this region, cultivation practices have shifted from a traditional multi-layer plant association system and moreover the Gabes city itself is expanding in the very core of oases. The oases of Gabes are transformed into city oases; they undergo multiform interactions whose amplify their environmental dynamic. A proper management of this environment should be based on a fine cartography of land use change and remote sensing plays a major role in this issue. Although Landsat long time series archive is a valuable tool it gets some limitations due to TM sensor spectral definition. Both sparse vegetation cover area and crop stress and disease are difficult to assess. Our study deals on potential improvement of hyperspectral sensor to overcome these limitations. EO1/Hyperion data on seven different dates on 2009 and 2010 have been retrieved from NASA Web-site. From this dataset dataset, an intercomparison of various hyperspectral based indices has been carried out with a focus on information complimentary from normalized vegetation index. On this basis the most efficient indices are the anthocyanin reflectance index (ARI2), the disease water stress index (DWSI) and the photochemical reflectance index (PRI). They allow an analysis of vegetation status beyond a global greenness assessment.

  8. Hyperion

    Energy Science and Technology Software Center (ESTSC)

    2014-09-01

    The Hyperion system was designed to "look inside" an executable program and determine software's function or "behavior" without the use of the software's source code. Hyperion accomplishes this by generating associated program behaviors and the complete set of conditions under which they occur. These behaviors can be automatically checked for known malicious signatures and inspected by domain experts to assure correct operation and the absence of malicious content. Hyperion can also be used to checkmore » a program's security properties and to optimize a program.« less

  9. Hyperion

    SciTech Connect

    Prowell, Stacy; Sayre, Kirk; Willems, Richard; Pleszkoch, Mark; Lindberg, Steven; Reed, Joel; Testa, Kelly; Lamb, Logan; Heise, David

    2014-09-01

    The Hyperion system was designed to "look inside" an executable program and determine software's function or "behavior" without the use of the software's source code. Hyperion accomplishes this by generating associated program behaviors and the complete set of conditions under which they occur. These behaviors can be automatically checked for known malicious signatures and inspected by domain experts to assure correct operation and the absence of malicious content. Hyperion can also be used to check a program's security properties and to optimize a program.

  10. Aggregation of Hyperion hyperspectral spectral bands into Landsat-7 ETM+ spectral bands

    NASA Astrophysics Data System (ADS)

    Jarecke, Peter J.; Barry, Pamela; Pearlman, Jay; Markham, Brian L.

    2002-01-01

    The LANDSAT-7 ETM+ spectral bands centered at 479nm, 561 nm, 661 nm and 834 nm (bands 1, 2, 3, and 4) fall nicely across the Hyperion VNIR hyperspectral response region. They have bandwidths of 67nm, 78nm, 60 nm and 120 nm, respectively. The Hyperion spectral bandwidth of 10.2 nm results in 10 to 15 Hyperion spectral samples across each Landsat band in the VNIR. When the Hyperion spectral responses in the 10.2 nm bands are properly weighted to aggregate to a given Landsat band, the radiometric response of the Landsat band can be reproduced by Hyperion. Landsat bands 5 and 7 centered at 1650 and 2207 nm (with bandwidths of 190 and 250 nm respectively) fall in the Hyperion SWIR spectral response region. Hyperion spectral response for one area of a scene in Railroad Valley, NV on May 13, 2001 has been binned into Landsat bands and compared with Landsat values collected at the same time.

  11. Using EO-1 Hyperion to Simulate HyspIRI Products for a Coniferous Forest: The Fraction of PAR Absorbed by Chlorophyll (fAPAR(sub chl)) and Leaf Water Content (LWC)

    NASA Technical Reports Server (NTRS)

    Zhang, Qingyuan; Middleton, Elizabeth M.; Gao, Bo-Cai; Cheng, Yen-Ben

    2011-01-01

    This study presents development of prototype products for terrestrial ecosystems in preparation for the future imaging spectrometer planned for the Hyperspectral Infrared Imager (HyspIRI) mission. We present a successful demonstration example in a coniferous forest of two product prototypes: fraction of photosynthetic active radiation (PAR) absorbed by chlorophyll of a canopy (fAPAR(sub chl)) and leaf water content (LWC), for future HyspIRI implementation at 60 m spatial resolution. For this, we used existing 30 m resolution imaging spectrometer data available from the Earth Observing One (EO-1) Hyperion satellite to simulate and prototype the level one radiometrically corrected radiance (L1R) images expected from the HyspIRI visible through shortwave infrared spectrometer. The HyspIRI-like images were atmospherically corrected to obtain surface reflectance, and spectrally resampled to produce 60 m reflectance images for wavelength regions that were comparable to all seven of the MODerate resolution Imaging Spectroradiometer (MODIS) land bands. Thus, we developed MODIS-like surface reflectance in seven spectral bands at the HyspIRI-like spatial scale, which was utilized to derive fAPARchl and LWC with a coupled canopy-leaf radiative transfer model (PROSAIL2) for the coniferous forest[1]. With this study, we provide additional evidence that the fAPARchl product is more realistic for describing the physiologically active canopy than the traditional fAPAR parameter for the whole canopy (fAPAR(sub canopy)), and thus should replace it in ecosystem process models to reduce uncertainties in terrestrial carbon cycle studies and ecosystem studies.

  12. Using EO-1 Hyperion to Simulate HyspIRI Products for a Coniferous Forest: The Fraction of PAR Absorbed by Chlorophyll (fAPAR(sub chl)) and Leaf Water Content(LWC)

    NASA Technical Reports Server (NTRS)

    Zhang, Qingyuan; Middleton, Elizabeth M.; Gao, Bo-Cai; Cheng, Yen-Ben

    2012-01-01

    This paper presents development of prototype products for terrestrial ecosystems in preparation for the future imaging spectrometer planned for the Hyperspectral Infrared Imager (HyspIRI) mission. We present a successful demonstration example in a coniferous forest of two product prototypes: fraction of photosynthetically active radiation (PAR) absorbed by chlorophyll of a canopy (fAPARchl) and leaf water content (LWC), for future HyspIRI implementation at 60-m spatial resolution. For this, we used existing 30-m resolution imaging spectrometer data available from the Earth Observing One (EO-1) Hyperion satellite to simulate and prototype the level one radiometrically corrected radiance (L1R) images expected from the HyspIRI visible through shortwave infrared spectrometer. The HyspIRIlike images were atmospherically corrected to obtain surface reflectance and spectrally resampled to produce 60-m reflectance images for wavelength regions that were comparable to all seven of the MODerate resolution Imaging Spectroradiometer (MODIS) land bands. Thus, we developed MODIS-like surface reflectance in seven spectral bands at the HyspIRI-like spatial scale, which was utilized to derive fAPARchl and LWC with a coupled canopy-leaf radiative transfer model (PROSAIL2) for the coniferous forest. With this paper, we provide additional evidence that the fAPARchl product is more realistic in describing the physiologically active canopy than the traditional fAPAR parameter for the whole canopy (fAPARcanopy), and thus, it should replace it in ecosystem process models to reduce uncertainties in terrestrial carbon cycle and ecosystem studies.

  13. An ensemble training scheme for machine-learning classification of Hyperion satellite imagery with independent hyperspectral libraries

    NASA Astrophysics Data System (ADS)

    Friedel, Michael; Buscema, Massimo

    2016-04-01

    A training scheme is proposed for the real-time classification of soil and vegetation (landscape) components in EO-1 Hyperion hyperspectral images. First, an auto-contractive map is used to compute connectivity of reflectance values for spectral bands (N=200) from independent laboratory spectral library components. Second, a minimum spanning tree is used to identify optimal grouping of training components from connectivity values. Third, the reflectance values for optimal landscape component signatures are sorted. Fourth, empirical distribution functions (EDF) are computed for each landscape component. Fifth, the Monte-Carlo technique is used to generate realizations (N=30) for each landscape EDF. The correspondence of component realizations to original signatures validates the stochastic procedure. Presentation of the realizations to the self-organizing map (SOM) is done using three different map sizes: 14x10, 28x20, and 40 x 30. In each case, the SOM training proceeds first with a rough phase (20 iterations using a Gaussian neighborhood with an initial and final radius of 11 units and 3 units) and then fine phase (400 iterations using a Gaussian neighborhood with an initial and final radius of 3 units and 1 unit). The initial and final learning rates of 0.5 and 0.05 decay linearly down to 10-5, and the Gaussian neighborhood function decreases exponentially (decay rate of 10-3 iteration-1) providing reasonable convergence. Following training of the three networks, each corresponding SOM is used to independently classify the original spectral library signatures. In comparing the different SOM networks, the 28x20 map size is chosen for independent reproducibility and processing speed. The corresponding universal distance matrix reveals separation of the seven component classes for this map size thereby supporting it use as a Hyperion classifier.

  14. A protocol for improving mapping and assessing of seagrass abundance along the West Central Coast of Florida using Landsat TM and EO-1 ALI/Hyperion images

    NASA Astrophysics Data System (ADS)

    Pu, Ruiliang; Bell, Susan

    2013-09-01

    Seagrass habitats are characteristic features of shallow waters worldwide and provide a variety of ecosystem functions. Remote sensing techniques can help collect spatial and temporal information about seagrass resources. In this study, we evaluate a protocol that utilizes image optimization algorithms followed by atmospheric and sunglint corrections to the three satellite sensors [Landsat 5 Thematic Mapper (TM), Earth Observing-1 (EO-1) Advanced Land Imager (ALI) and Hyperion (HYP)] and a fuzzy synthetic evaluation technique to map and assess seagrass abundance in Pinellas County, FL, USA. After image preprocessed with image optimization algorithms and atmospheric and sunglint correction approaches, the three sensors' data were used to classify the submerged aquatic vegetation cover (%SAV cover) into 5 classes with a maximum likelihood classifier. Based on three biological metrics [%SAV, leaf area index (LAI), and Biomass] measured from the field, nine multiple regression models were developed for estimating the three biometrics with spectral variables derived from the three sensors' data. Then, five membership maps were created with the three biometrics along with two environmental factors (water depth and distance-to-shoreline). Finally, seagrass abundance maps were produced by using a fuzzy synthetic evaluation technique and five membership maps. The experimental results indicate that the HYP sensor produced the best results of the 5-class classification of %SAV cover (overall accuracy = 87% and Kappa = 0.83 vs. 82% and 0.77 by ALI and 79% and 0.73 by TM) and better multiple regression models for estimating the three biometrics (R2 = 0.66, 0.62 and 0.61 for %SAV, LAI and Biomass vs. 0.62, 0.61 and 0.55 by ALI and 0.58, 0.56 and 0.52 by TM) for creating seagrass abundance maps along with two environmental factors. Combined our results demonstrate that the image optimization algorithms and the fuzzy synthetic evaluation technique were effective in mapping

  15. Mapping impervious surface type and sub-pixel abundance using hyperion hyperspectral imagery

    USGS Publications Warehouse

    Falcone, J.A.; Gomez, R.

    2005-01-01

    Impervious surfaces have been identified as an important and quantifiable indicator of environmental degradation in urban settings. A number of research efforts have been directed at mapping impervious surface type using multispectral imagery. To date, however, no studies have compared equivalent techniques using multispectral and hyperspectral imagery to that end. In this study, data from NASA's 220-channel Hyperion instrument were used to: a) delineate three types of impervious surface, and b) map sub-pixel percent abundance for a study site near Washington, D.C., USA. The results were compared with the results of similar methods using same-spatial-resolution Landsat ETM+ data for mapping impervious surface type, and with the results of the U.S. Geological Survey's National Land Cover Data (NLCD) 2001 impervious surface data layer, which is derived from Landsat and high-resolution Ikonos data. The accuracy of discriminating impervious surface type using Hyperion data was assessed at 88% versus Landsat at 59%. The sub-pixel percent impervious map corresponded well with the NLCD 2001; impervious surface in the study area was calculated at 29.3% for NLCD 2001 and 28.4% for the Hyperion-derived layer. The results suggest that fairly simple techniques using hyperspectral data are effective for quantifying impervious surface type, and that high-spectral- resolution imagery may be a good alternative to high-spatial-resolution data.

  16. Observations of Active Volcanoes Using the EO-1 Satellite

    NASA Astrophysics Data System (ADS)

    Flynn, L. P.; Harris, A. J.; Wright, R.; Oppenheimer, C.; Geschwind, L. R.; Donegan, S.; Garbeil, H.

    2001-12-01

    Previous satellite observations of active volcanoes have been hampered by instruments that are primarily designed to measure surface reflectance of the Earth's vegetation. Sensors detecting radiation in the near-IR and IR are frequently saturated by highly radiant active volcanic features. Two satellite instruments, Hyperion and the Advanced Land Imager (ALI) on the Earth Observing -1 (EO-1) offer a means to circumvent saturation issues. Hyperion is a hyperspectral instrument that collects data in 242 narrow spectral bands between 0.4 and 2.5 microns and produces images that are 7.5 km x 100 km. For each 30m x 30m pixel, accurate atmospheric corrections and multiple component thermal models for lava flows can be generated. ALI is a Landsat-like instrument having 10 spectral bands at 0.4 - 2.35 microns. One of these, the 1.2 micron band, is sensitive to high temperature thermal anomalies such as overturning lava lakes and open lava channels. ALI also has a 10-m panchromtic band that allows for greater detailed mapping of volcanic features. ALI and Hyperion analyses for Erta Ale (Ethiopia), Mt. Etna (Sicily), Santiaguito (Guatemala), Popocatepetl (Mexico), and Mayon (Philippines) will be presented. While distribution of these data sets is limited to the EO-1 Science Team, the future of NASA's high spatial resolution terrestrial observation program will likely be based on a hybrid of these EO-1 sensors.

  17. Land Cover Change Detection Based on Genetically Feature Aelection and Image Algebra Using Hyperion Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Seydi, S. T.; Hasanlou, M.

    2015-12-01

    The Earth has always been under the influence of population growth and human activities. This process causes the changes in land use. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Satellite remote sensing has several advantages for monitoring land use/cover resources, especially for large geographic areas. Change detection and attribution of cultivation area over time present additional challenges for correctly analyzing remote sensing imagery. In this regards, for better identifying change in multi temporal images we use hyperspectral images. Hyperspectral images due to high spectral resolution created special placed in many of field. Nevertheless, selecting suitable and adequate features/bands from this data is crucial for any analysis and especially for the change detection algorithms. This research aims to automatically feature selection for detect land use changes are introduced. In this study, the optimal band images using hyperspectral sensor using Hyperion hyperspectral images by using genetic algorithms and Ratio bands, we select the optimal band. In addition, the results reveal the superiority of the implemented method to extract change map with overall accuracy by a margin of nearly 79% using multi temporal hyperspectral imagery.

  18. Calibration Lessons Learned from Hyperion Experience

    NASA Astrophysics Data System (ADS)

    Casement, S.; Ho, K.; Sandor-Leahy, S.; Biggar, S.; Czapla-Myers, J.; McCorkel, J.; Thome, K.

    2009-12-01

    The use of hyperspectral imagers to provide climate-quality data sets, such as those expected from the solar reflective sensor on the Climate Absolute Radiance and Refractivity Observatory (CLARREO), requires stringent radiometric calibration requirements. These stringent requirements have been nearly met with broadband radiometers such as CERES, but high resolution spectrometers pose additional challenges. A review of the calibration processes for past space-based HSIs provide guidance on the calibration processes that will be needed for future sensors. In November 2000, the Earth Observer-1 (EO-1) platform was launched onboard a Boeing Delta II launch vehicle. The primary purpose of the EO-1 mission was to provide a technological testbed for spaceborne components. The platform has three sensors onboard, of which, the hyperspectral imager (HSI) Hyperion, is discussed here. The Hyperion sensor at the time had no comparable sensor in earth orbit, being the first grating-based, hyperspectral, civilian sensor in earth orbit. Ground and on-orbit calibration procedures including all cross-calibration activities have achieved an estimated instrument absolute radiometric error of 2.9% in the Visible channel (0.4 - 1.0 microns) and 3.4% in the shortwave infrared (SWIR, 0.9 - 2.5 microns) channel (EO-1/Hyperion Early Orbit Checkout Report Part II On-Orbit Performance Verification and Calibration). This paper describes the key components of the Hyperion calibration process that are applicable to future HSI missions. The pre-launch methods relied on then newly-developed, detector-based methods. Subsequent vicarious methods including cross-calibration with other sensors and the reflectance-based method showed significant differences from the prelaunch calibration. Such a difference demonstrated the importance of the vicarious methods as well as pointing to areas for improvement in the prelaunch methods. We also identify areas where lessons learned from Hyperion regarding

  19. Soil Fertility Evaluation for Fertiliser Recommendation Using Hyperion Data

    NASA Astrophysics Data System (ADS)

    Ghosh, Ranendu; Padmanabhan, N.; Patel, K. C.

    2015-12-01

    Soil fertility characterised by nitrogen, phosphorus, potassium, calcium, magnesium and sulphur is traditionally measured from soil samples collected from the field. The process is very cumbersome and time intensive. Hyperspectral data available from Hyperion payload of EO 1 was used for facilitating preparation of soil fertility map of Udaipur district of Rajasthan state, India. Hyperion data was pre-processed for band and area sub setting, atmospheric correction and reflectance data preparation. Spectral analysis in the form of SFF and PPI were carried out for selecting the ground truth sites for soil sample collection. Soil samples collected from forty one sites were analysed for analysis of nutrient composition. Generation of correlogram followed by multiple regressions was done for identifying the most important bands and spectral parameters that can be used for nutrient map generation.

  20. Predicting Thaumastocoris peregrinus damage using narrow band normalized indices and hyperspectral indices using field spectra resampled to the Hyperion sensor

    NASA Astrophysics Data System (ADS)

    Oumar, Z.; Mutanga, O.; Ismail, R.

    2013-04-01

    Thaumastocoris peregrinus (T. peregrinus) is a sap sucking insect that feeds on Eucalyptus leaves. It poses a threat to the forest industry by reducing the photosynthetic ability of the tree, resulting in stunted growth and even death of severely infested trees. Remote sensing techniques offer the potential to detect and map T. peregrinus infestations in plantation forests using current operational hyperspectral scanners. This study resampled field spectral data measured from a field spectrometer to the band settings of the Hyperion sensor in order to assess its potential in predicting T. peregrinus damage. Normalized indices based on NDVI ratios were calculated using the resampled visible and near-infrared bands of the Hyperion sensor to assess its utility in predicting T. peregrinus damage using Partial Least Squares (PLS) regression. The top 20 normalized indices were based on specific biochemical absorption features that predicted T. peregrinus damage with a mean bootstrapped R2 value of 0.63 on an independent test dataset. The top 20 indices were located in the near-infrared region between 803.3 nm and 894.9 nm. Twenty three previously published hyperspectral indices which have been used to assess stress in vegetation were also used to predict T. peregrinus damage and resulted in a mean bootstrapped R2 value of 0.59 on an independent test dataset. The datasets were combined to assess its collective strength in predicting T. peregrinus damage and significant indices were chosen based on variable importance scores (VIP) and were then entered into a PLS model. The indices chosen by VIP predicted T. peregrinus damage with a mean bootstrapped R2 value of 0.71 on an independent test dataset. A greedy backward variable selection model was further tested on the VIP selected indices in order to find the best subset of indices with the best predictive accuracy. The greedy backward variable selection model identified 3 indices and performed the best by predicting damage

  1. Onboard Classification of Hyperspectral Data on the Earth Observing One Mission

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Tran, Daniel; Schaffer, Steve; Rabideau, Gregg; Davies, Ashley Gerard; Doggett, Thomas; Greeley, Ronald; Ip, Felipe; Baker, Victor; Doubleday, Joshua; Castano, Rebecca; Mandl, Daniel; Frye, Stuart; Ong, Lawrence; Rogez, Francois; Oaida, Bogdan

    2009-01-01

    Remote-sensed hyperspectral data represents significant challenges in downlink due to its large data volumes. This paper describes a research program designed to process hyperspectral data products onboard spacecraft to (a) reduce data downlink volumes and (b) decrease latency to provide key data products (often by enabling use of lower data rate communications systems). We describe efforts to develop onboard processing to study volcanoes, floods, and cryosphere, using the Hyperion hyperspectral imager and onboard processing for the Earth Observing One (EO-1) mission as well as preliminary work targeting the Hyperspectral Infrared Imager (HyspIRI) mission.

  2. Realtime Decision Making on EO-1 Using Onboard Science Analysis

    NASA Technical Reports Server (NTRS)

    Sherwood, Robert; Chien, Steve; Davies, Ashley; Mandl, Dan; Frye, Stu

    2004-01-01

    Recent autonomy experiments conducted on Earth Observing 1 (EO-1) using the Autonomous Sciencecraft Experiment (ASE) flight software has been used to classify key features in hyperspectral images captured by EO-1. Furthermore, analysis is performed by this software onboard EO-1 and then used to modify the operational plan without interaction from the ground. This paper will outline the overall operations concept and provide some details and examples of the onboard science processing, science analysis, and replanning.

  3. Validation of On-board Cloud Cover Assessment Using EO-1

    NASA Technical Reports Server (NTRS)

    Mandl, Dan; Miller, Jerry; Griffin, Michael; Burke, Hsiao-hua

    2003-01-01

    The purpose of this NASA Earth Science Technology Office funded effort was to flight validate an on-board cloud detection algorithm and to determine the performance that can be achieved with a Mongoose V flight computer. This validation was performed on the EO-1 satellite, which is operational, by uploading new flight code to perform the cloud detection. The algorithm was developed by MIT/Lincoln Lab and is based on the use of the Hyperion hyperspectral instrument using selected spectral bands from 0.4 to 2.5 microns. The Technology Readiness Level (TRL) of this technology at the beginning of the task was level 5 and was TRL 6 upon completion. In the final validation, an 8 second (0.75 Gbytes) Hyperion image was processed on-board and assessed for percentage cloud cover within 30 minutes. It was expected to take many hours and perhaps a day considering that the Mongoose V is only a 6-8 MIP machine in performance. To accomplish this test, the image taken had to have level 0 and level 1 processing performed on-board before the cloud algorithm was applied. For almost all of the ground test cases and all of the flight cases, the cloud assessment was within 5% of the correct value and in most cases within 1-2%.

  4. The selection of narrow wavebands for optimizing water quality monitoring on the rivers of Tucuman using hyperspectral remote sensor data (EO1)

    NASA Astrophysics Data System (ADS)

    Rios, V.; Rios, E.; Guyot, E.; Zelaya, D.; Lepen, F.; Padilla, P.; Soria, F.

    Remote sensing data were successfully used to estimate spatial and temporal variation of optical water quality parameters such as chlorophyll a, turbidity and Total Suspended Solids (TSS) on the Rivers of Tucumán. Relationships between optical water quality parameters and one or two broad wavebands were determined. An attempt was made to utilize portions of the electromagnetic spectrum, which minimize the effects of atmospheric anomalies, in turn normalizing the spectrally additive constants in all wavebands. Because this assumption was not met for turbidity, a first derivative constants in all wavebands. Because this assumption was not met for turbidity, a first derivative approach was used. The derivative reflectance is an alternative and theoretically more robust relationship between the water quality parameter and adjacent wavebands. The ratio of wavebands 705 and 672 were highly correlated with chlorophyll a, and the first derivative of wavebands 700 and 675 were highly correlated with turbidity. These correlations made it possible to estimate the concentration of chlorophyll a and level of turbidity in portions of Tucumán Rivers where only hyperspectral data were taken. Maps of the relative distributions of chlorophyll a and turbidity were created from the hyperspectral images of the rivers.

  5. Hyperspectral Cubesat Constellation for Rapid Natural Hazard Response

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Huemmrich, Karl; Crum, Gary; Ly, Vuong; Handy, Matthew; Ong, Lawrence

    2015-01-01

    Earth Observing 1 (E0-1) satellite has an imaging spectrometer (hyperspectral) instrument called Hyperion. The satellite is able to image any spot on Earth in the nadir looking direction every 16 days. With slewing of the satellite and allowing for up to a 23 degree view angle, any spot on the Earth can be imaged approximately every 2 to 3 days. EO-1 has been used to track many natural hazards such as wildfires, volcanoes and floods. An enhanced capability that is sought is the ability to image natural hazards in a daily time series for space based imaging spectrometers. The Hyperion can not provide this capability on EO-1 with the present polar orbit. However, a constellation of cubesats, each with the same imaging spectrometer, positioned strategically in the same orbit, can be used to provide daily coverage, cost-effectively.

  6. EO-1 Prototyping for Environmental Applications

    NASA Astrophysics Data System (ADS)

    Campbell, P. K.; Middleton, E.; Ungar, S.; Zhang, Q.; Ong, L.; Huemmrich, K. F.

    2009-12-01

    The Earth Observing One (EO-1) Mission, launched in November, 2000 as part of NASA’s New Millennium Program, is in it’s eight year of operation. From the start it was recognized that a key criteria for evaluating the EO-1 technology and outlining future Earth science mission needs is the ability of the technology to characterize terrestrial surface state and processes. EO-1 is participating in a broad range of investigations, demonstrating the utility of imaging spectroscopy in applications relating to forestry, agriculture, species discrimination, invasive species, desertification, land-use, vulcanization, fire management, homeland security, natural and anthropogenic hazards and disaster assessments and has provided characterization for a variety of instruments on EOS platforms. By generating a high spectral and spatial resolution data set for the corral reefs and islands, it is contributing for realizing the goals of the National Decadal survey and providing an excellent platform for testing strategies to be employed in the HyspIRI mission. The EO1 Mission Science Office (MSO) is developing tools and prototypes for new science products, addressing the HyspIRI goals to assess vegetation status and health and provide vegetation spectral bio-indicators and biophysical parameters such as LAI and fAPAR at <100 m spatial resolution. These are being used to resolve variability in heterogeneous areas (e.g. agriculture, narrow shapes, urban and developed lands) and for managed ecosystems less than 10 km2. A set of invariable reference targets (e.g. sun, moon, deserts, Antarctica) are being characterised to allow cross-calibration of current and future EO sensors, comparison of land products generated by multiple sensors and retroactive processing of time series data. Such products are needed to develop Science Requirements for the next generation of hyperspectral satellite sensors and to address global societal needs.

  7. Development of Bayesian-based transformation method of Landsat imagery into pseudo-hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Hoang, Nguyen Tien; Koike, Katsuaki

    2015-10-01

    It has been generally accepted that hyperspectral remote sensing is more effective and provides greater accuracy than multispectral remote sensing in many application fields. EO-1 Hyperion, a representative hyperspectral sensor, has much more spectral bands, while Landsat data has much wider image scene and longer continuous space-based record of Earth's land. This study aims to develop a new method, Pseudo-Hyperspectral Image Synthesis Algorithm (PHISA), to transform Landsat imagery into pseudo hyperspectral imagery using the correlation between Landsat and EO-1 Hyperion data. At first Hyperion scene was precisely pre-processed and co-registered to Landsat scene, and both data were corrected for atmospheric effects. Bayesian model averaging method (BMA) was applied to select the best model from a class of several possible models. Subsequently, this best model is utilized to calculate pseudo-hyperspectral data by R programming. Based on the selection results by BMA, we transform Landsat imagery into 155 bands of pseudo-hyperspectral imagery. Most models have multiple R-squared values higher than 90%, which assures high accuracy of the models. There are no significant differences visually between the pseudo- and original data. Most bands have Pearson's coefficients < 0.95, and only a small fraction has the coefficients < 0.93 like outliers in the data sets. In a similar manner, most Root Mean Square Error values are considerably low, smaller than 0.014. These observations strongly support that the proposed PHISA is valid for transforming Landsat data into pseudo-hyperspectral data from the outlook of statistics.

  8. Mineral mapping on the Chilean-Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: Data dimensionality issues and solutions

    USGS Publications Warehouse

    Hubbard, B.E.; Crowley, J.K.

    2005-01-01

    Hyperspectral data coverage from the EO-1 Hyperion sensor was useful for calibrating Advanced Land Imager (ALI) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images of a volcanic terrane area of the Chilean-Bolivian Altiplano. Following calibration, the ALI and ASTER datasets were co-registered and joined to produce a 13-channel reflectance cube spanning the Visible to Short Wave Infrared (0.4-2.4 ??m). Eigen analysis and comparison of the Hyperion data with the ALI + ASTER reflectance data, as well as mapping results using various ALI+ASTER data subsets, provided insights into the information dimensionality of all the data. In particular, high spectral resolution, low signal-to-noise Hyperion data were only marginally better for mineral mapping than the merged 13-channel, low spectral resolution, high signal-to-noise ALI + ASTER dataset. Neither the Hyperion nor the combined ALI + ASTER datasets had sufficient information dimensionality for mapping the diverse range of surface materials exposed on the Altiplano. However, it is possible to optimize the use of the multispectral data for mineral-mapping purposes by careful data subsetting, and by employing other appropriate image-processing strategies.

  9. [An Analysis of the Spectrums between Different Canopy Structures Based on Hyperion Hyperspectral Data in a Temperate Forest of Northeast China].

    PubMed

    Yu, Quan-zhou; Wang, Shao-qiang; Huang, Kun; Zhou, Lei; Chen, Die-cong

    2015-07-01

    Canopy is a major structural layer for vegetation to carry out ecological activities. The differences of light radiative transfer processes in canopies caused by forest canopy structure directly influence remote sensing inversion of forest canopy biochemical composition. Thus an analysis of spectral characteristics between different canopy structures contributes to improve the accuracy of remote sensing inversion of forest canopy biochemical components. Based on a Hyperion hyperspectral image in the north Slope of Changbai Mountain Nature Reserve, through FLAASH (the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) atmospheric correction, different canopy reflectance spectra were extracted, and spectral transforms were carried out using continuum removal method and first derivative method for quantitative analysis of the spectral characteristics. A set of spectral indices were calculated, including NIR (near infrared reflectance), NDVI (normalized difference vegetation index), EVI (Enhanced Vegetation Index), NDNI (normalized difference nitrogen index), SPRI (normalized photochemical reflectance index) * NDVI and SPRI * EVI (vegetation productivity index). Combined with the broad foliar dominance index (BFDI), the relationships between the spectral indices and canopy structure composition were investigated. The characteristics of canopy structure composition impacting its spectral curve and indices were clarified in the temperate forest. The results showed that: (1) there existed significantly different spectral characteristics between different canopy structures: comparing to the spectrum of broad-leaved forest canopies, the red edge moved to the left and their slope decreased, blue edge and yellow edge features were also weakened, near-infrared reflectance decreased, normalized reflectance in visible region risen for the spectrum of conifer forest canopies; (2) the spectrum variation were controlled by BFDL The correlations between BFDI and the

  10. Classification of river water pollution using Hyperion data

    NASA Astrophysics Data System (ADS)

    Kar, Soumyashree; Rathore, V. S.; Champati ray, P. K.; Sharma, Richa; Swain, S. K.

    2016-06-01

    A novel attempt is made to use hyperspectral remote sensing to identify the spatial variability of metal pollutants present in river water. It was also attempted to classify the hyperspectral image - Earth Observation-1 (EO-1) Hyperion data of an 8 km stretch of the river Yamuna, near Allahabad city in India depending on its chemical composition. For validating image analysis results, a total of 10 water samples were collected and chemically analyzed using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). Two different spectral libraries from field and image data were generated for the 10 sample locations. Advanced per-pixel supervised classifications such as Spectral Angle Mapper (SAM), SAM target finder using BandMax and Support Vector Machine (SVM) were carried out along with the unsupervised clustering procedure - Iterative Self-Organizing Data Analysis Technique (ISODATA). The results were compared and assessed with respect to ground data. Analytical Spectral Devices (ASD), Inc. spectroradiometer, FieldSpec 4 was used to generate the spectra of the water samples which were compiled into a spectral library and used for Spectral Absorption Depth (SAD) analysis. The spectral depth pattern of image and field spectral libraries was found to be highly correlated (correlation coefficient, R2 = 0.99) which validated the image analysis results with respect to the ground data. Further, we carried out a multivariate regression analysis to assess the varying concentrations of metal ions present in water based on the spectral depth of the corresponding absorption feature. Spectral Absorption Depth (SAD) analysis along with metal analysis of field data revealed the order in which the metals affected the river pollution, which was in conformity with the findings of Central Pollution Control Board (CPCB). Therefore, it is concluded that hyperspectral imaging provides opportunity that can be used for satellite based remote monitoring of water quality from

  11. Hyperspectral Cubesat Constellation for Natural Hazard Response

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Crum, Gary; Ly, Vuong; Handy, Matthew; Huemmrich, Karl F.; Ong, Lawrence; Holt, Ben; Maharaja, Rishabh

    2016-01-01

    The authors on this paper are team members of the Earth Observing 1 (E0-1) mission which has flown an imaging spectrometer (hyperspectral) instrument called Hyperion for the past 15+ years. The satellite is able to image any spot on Earth in the nadir looking direction every 16 days and with slewing, of the satellite for up to a 23 degree view angle, any spot on the Earth can be imaged approximately every 2 to 3 days. EO-1 has been used to track many natural hazards such as wildfires, volcanoes and floods. An enhanced capability that has been sought is the ability to image natural hazards in a daily time series for space-based imaging spectrometers. The Hyperion cannot provide this capability on EO-1 with the present polar orbit. However, a constellation of cubesats, each with the same imaging spectrometer, positioned strategically can be used to provide daily coverage or even diurnal coverage, cost-effectively. This paper sought to design a cubesat constellation mission that would accomplish this goal and then to articulate the key tradeoffs.

  12. Efficient Spectral Endmember Detection Onboard the EO-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Bornstein, Ben; Thompson, David R.; Tran, Daniel; Bue, Brian; Chien, Steve; Castano, Rebecca

    2011-01-01

    Spaceflight and planetary exploration place severe constraints on the available bandwidth for downlinking large hyperspectral images. In addition, communications with spacecraft often occur intermittently, so mission-relevant hyperspectral data must wait for analysis on the ground before it can inform spacecraft activity planning. Onboard endmember detection can help alleviate these problems. It enables novelty detection and target identification for scheduling follow-up activities such as additional observation by narrow field of view instruments. Additionally, endmember analysis can facilitate data summary for downlink. This work describes a planned experiment of selective downlink by the EO-1 autonomous spacecraft. Here an efficient superpixel endmember detection algorithm keeps to the limited computational constraints of the flight processor. Tests suggest the procedure could enable significant improvements in downlink efficiency.

  13. Revolutionising Science-Driven Deep Space Mission Operations Using Autonomously-Operating Spacecraft as Demonstrated with ASE on EO-1.

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Chien, S.; Doggett, T. C.; Ip, F.; Dohm, J.; Greeley, R.; Baker, V.; Castano, R.; Sherwood, R.; Wagstaff, K.

    2005-12-01

    Until now, deep-space missions, separated from Earth by long communication times, have not had the capacity to quickly react to dynamic, ephemeral events that are of high science value. The capability of a spacecraft to react on a short time scale to such events is now a reality. The New Millennium Program Autonomous Sciencecraft Experiment (ASE) has successfully demonstrated autonomous, science-driven spacecraft operations. This flight-proven technology consists of (1) data classifiers, used to detect features of scientific interest; (2) an onboard planner than allocates available resources and creates observation sequences; and (3) a spacecraft command language that operates the spacecraft and instruments. ASE is flying on the Earth Observing 1 (EO-1) spacecraft in Earth orbit and autonomously detects active cloud cover, volcanism, changes in the cryosphere and flood events. Data are processed on-board EO-1. The spacecraft and Hyperion hyperspectral imager are then re-tasked to obtain further observations of the target. So far, this process has been executed over 300 times on-board EO-1. Additionally, in the special case of active volcanism, a data subset containing spectra of hot pixels is extracted and preferentially returned. This technology can enhance science return per returned byte by orders of magnitude. ASE technology is being infused onto Mars Odyssey to process THEMIS thermal imager data, with the goal of autonomously detecting thermal anomalies (hot spots), dust storms, and tracking the advance and retreat of seasonal ice caps. ASE allows THEMIS to collect a large volume of additional data, more than can be transmitted due to bandwidth constraints, and quickly analyze it to determine which images are of the highest priority (such as an image containing a thermal anomaly) or to transmit only the essential information, such as the location of a detection (such as the edge of the polar cap). Spacecraft autonomy is a requirement on certain deep

  14. Mapping Regolith and Gossan for Mineral Exploration in the Eastern Kumaon Himalaya, India using hyperion data and object oriented image classification

    NASA Astrophysics Data System (ADS)

    Farooq, S.; Govil, H.

    2014-06-01

    Crystalline in the Kumaon Himalaya, India near Askot area is a prominent site of the base metal mineralization and gossanised surface. This area is hosted by the sulphides and sulphates of Cu, Pb, Zn and Au and Ag mineralization with the altered rocks like sericite chlorite schist, gneiss etc. Due to the deep weathering this area is also a good illustration site of the gossanised outcrop. Regolith mapping through the multispectral remotely sensed data using different parametric and nonparametric classification algorithm has been used for many years. In recent years, object oriented classification for classification of object rather than pixel has gained a good success within the geospatial community. On the other hand, space borne hyperspectral remote sensing has gained a great success in identification of the minerals from space. The narrow contiguous bands of this hyperspectral remote sensing data can provide more information of the chemical content of the different minerals. In this study EO1 (Earth Observation) Hyperion hyperspectral sensor data has been evaluated for regolith and gossan mapping using the object oriented image classification technique. The efficacy of the hyperion data is evaluated in and around the Askot base metal mineral deposits for hydrothermal alteration and base metal minerals. Three sites were selected by regolith mapping using object oriented image classification method and were evaluated by the aid of hyperspectral data for alteration minerals. During the field verification it was found that the mineralization within these sites was associated with the dolomite, gneiss and schists. Strong hydrothermal activity and shearing were dominated at these sites. Minerals like carbonates, sulphates and sulphides of copper, lead, zinc and silver, magnetite along with the altered minerals like, mica, chlorite, talc etc. were found at the target sites. eCognition™ and ENVI® software's were used for the object based classification and for the

  15. Hyperspectral image analysis for the determination of alteration minerals in geothermal fields: Çürüksu (Denizli) Graben, Turkey

    NASA Astrophysics Data System (ADS)

    Uygur, Merve; Karaman, Muhittin; Kumral, Mustafa

    2016-04-01

    Çürüksu (Denizli) Graben hosts various geothermal fields such as Kızıldere, Yenice, Gerali, Karahayıt, and Tekkehamam. Neotectonic activities, which are caused by extensional tectonism, and deep circulation in sub-volcanic intrusions are heat sources of hydrothermal solutions. The temperature of hydrothermal solutions is between 53 and 260 degree Celsius. Phyllic, argillic, silicic, and carbonatization alterations and various hydrothermal minerals have been identified in various research studies of these areas. Surfaced hydrothermal alteration minerals are one set of potential indicators of geothermal resources. Developing the exploration tools to define the surface indicators of geothermal fields can assist in the recognition of geothermal resources. Thermal and hyperspectral imaging and analysis can be used for defining the surface indicators of geothermal fields. This study tests the hypothesis that hyperspectral image analysis based on EO-1 Hyperion images can be used for the delineation and definition of surfaced hydrothermal alteration in geothermal fields. Hyperspectral image analyses were applied to images covering the geothermal fields whose alteration characteristic are known. To reduce data dimensionality and identify spectral endmembers, Kruse's multi-step process was applied to atmospherically and geometrically-corrected hyperspectral images. Minimum Noise Fraction was used to reduce the spectral dimensions and isolate noise in the images. Extreme pixels were identified from high order MNF bands using the Pixel Purity Index. n-Dimensional Visualization was utilized for unique pixel identification. Spectral similarities between pixel spectral signatures and known endmember spectrum (USGS Spectral Library) were compared with Spectral Angle Mapper Classification. EO-1 Hyperion hyperspectral images and hyperspectral analysis are sensitive to hydrothermal alteration minerals, as their diagnostic spectral signatures span the visible and shortwave

  16. Hyperion image analysis and linear spectral unmixing to evaluate the grades of iron ores in parts of Noamundi, Eastern India

    NASA Astrophysics Data System (ADS)

    Magendran, T.; Sanjeevi, S.

    2014-02-01

    This paper reports the results of a study to differentiate iron ores in terms of their grades, using the hyperspectral (EO-1 Hyperion) image data, covering a mineralized belt in the Noamundi area, eastern India. The study involves hyperspectral data collection, pre-processing (reduction of atmospheric and solar flux effects), generation of spectral curves from the image for the iron ore deposits, extraction of key spectral parameters and linear spectral unmixing for mapping iron ore abundance. Spectral curves for iron ore deposits extracted from the Hyperion image pixels exhibit strong absorption at 850-900 nm and 2150-2250 nm wavelengths, which is typical of iron ores. The strength of the absorption features in the continuum removed spectra varies spatially in the image around the mining areas, indicating differences in composition/grade of the iron ores. Spectral parameters such as the depth, width, area and wavelength position of the absorption features, derived from image spectra in the 850-900 nm and 2150-2250 nm regions, correlate well with the concentration of iron-oxide and alumina (gangue) in the ore samples obtained from the mine face. Well defined correlations are evident between the concentration of iron oxide and (i) the depth of NIR absorption feature (R2 = 0.883); (ii) the width of NIR absorption feature (R2 = 0.912); and (iii) the area of the NIR absorption feature and (R2 = 0.882). Further, the linear spectral unmixing resulted in an iron ore abundance map which, in conjunction with the image- and laboratory-spectra, helped in assessing the grades of iron ores in the study area. Thus, this study demonstrates the feasibility of discriminating grades of iron ores based on spectral information derived from spaceborne hyperspectral imagery.

  17. Satellite Hyperspectral Imaging Simulation

    NASA Technical Reports Server (NTRS)

    Zanoni, Vicki; Stanley, Tom; Blonski, Slawomir; Cao, Changyong; Gasser, Jerry; Ryan, Robert

    1999-01-01

    Simulation of generic pushbroom satellite hyperspectral sensors have been performed to evaluate the potential performance and validation techniques for satellite systems such as COIS(NEMO), Warfighter-1(OrbView-4) and Hyperion(EO-1). The simulations start with a generation of synthetic scenes from material maps of studied terrain. Scene-reflected radiance is corrected for atmospheric effects and convolved with sensor spectral response using MODTRAN 4 radiance and transmissions calculations. Scene images are further convolved with point spread functions derived from Optical Transfer Functions (OTF's) of the sensor system. Photon noise and etectorr/electronics noise are added to the simulated images, which are also finally quantized to the sensor bit resolution. Studied scenes include bridges and straight roads used for evaluation of sensor spatial resolution, as well as fields of minerals, vegetation and manmade materials used for evaluation of sensor radiometric response and sensitivity. The scenes are simulated with various seasons and weather conditions. Signal-to-noise ratios and expected performance are estimated for typical satellite system specifications and are discussed for all the scenes.

  18. Urban land cover classification using hyperspectral data

    NASA Astrophysics Data System (ADS)

    Hegde, G.; Ahamed, J. Mohammed; Hebbar, R.; Raj, U.

    2014-11-01

    Urban land cover classification using remote sensing data is quite challenging due to spectrally and spatially complex urban features. The present study describes the potential use of hyperspectral data for urban land cover classification and its comparison with multispectral data. EO-1 Hyperion data of October 05, 2012 covering parts of Bengaluru city was analyzed for land cover classification. The hyperspectral data was initially corrected for atmospheric effects using MODTRAN based FLAASH module and Minimum Noise Fraction (MNF) transformation was applied to reduce data dimensionality. The threshold Eigen value of 1.76 in VNIR region and 1.68 in the SWIR region was used for selection of 145 stable bands. Advanced per pixel classifiers viz., Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) were used for general urban land cover classification. Accuracy assessment of the classified data revealed that SVM was quite superior (82.4 per cent) for urban land cover classification as compared to SAM (67.1 per cent). Selecting training samples using end members significantly improved the classification accuracy by 20.1 per cent in SVM. The land cover classification using multispectral LISS-III data using SVM showed lower accuracy mainly due to limitation of spectral resolution. The study indicated the requirement of additional narrow bands for achieving reasonable classification accuracy of urban land cover. Future research is focused on generating hyperspectral library for different urban features.

  19. Fire Characterization and Fire-Related Land Cover Classification Using Hyperion Data over Selected Alaskan Boreal Forest Fires

    NASA Astrophysics Data System (ADS)

    Waigl, C. F.; Prakash, A.; Stuefer, M.; Dennison, P. E.

    2014-12-01

    In this study, NIR and SWIR EO-1 Hyperion data acquired over two large Alaskan forest fires are used to detect active fires, map their immediate vicinity, and retrieve fire temperatures. The study sites are located in black spruce stands within the 2004 Boundary fire (215,000 ha total affected area) and the 2009 Wood River 1 fire (50,000 ha). Even though fires in the North American boreal forest ecosystem contribute greatly to global carbon cycling and large-scale air pollution, they have been less studied so far using satellite-borne imaging spectroscopy. We adapted the Hyperspectral Fire Detection Index (HFDI) so that it worked well for the high-latitude Hyperion data. This involved selecting suitable bands which best separated fire from non-fire pixels and averaging them to further improve the detection signal. Resulting fire detection maps compare favorably to uniform radiance thresholding of the Hyperion data and are consistent with fires detected on near-simultaneous Landsat 7 ETM+ data. Unsupervised classification of the vicinity of the active fire zones served to delineate 5 to 6 well separated classes: high- and low-intensity fire, various unburnt vegetation classes, recent fire scar, and a transitional zone ahead of the active fire front that shows evidence of fire impact but no emitted radiance component. Furthermore, MODTRAN5 was used for atmospheric correction to retrieve fire temperatures by modeling a mixture of emitted and reflected radiance signatures of the fire and background areas, respectively. As most of the carbon consumption and subsequent emissions in boreal forest fires stem from the combustion of dead plant material on the forest floor, estimates on fire intensities and high/low intensity burn areas provide valuable insight into the amount of carbon cycling in the system. Imaging spectroscopy can therefore contribute an important step forward in quantitative studies of boreal fires and their impacts. These techniques are set to advance

  20. Evolving spatio-spectral feature extraction algorithms for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Brumby, Steven P.; Galbraith, Amy E.

    2002-11-01

    Hyperspectral imagery data sets present an interesting challenge to feature extraction algorithm developers. Beyond the immediate problem of dealing with the sheer amount of spectral information per pixel in a hyperspectral image, the remote sensing scientist must explore a complex algorithm space in which both spatial and spectral signatures may be required to identify a feature of interest. Rather than carry out this algorithm exploration by hand, we are interested in developing learning systems that can evolve these algorithms. We describe a genetic programming/supervised classifier software system, called GENIE, which evolves image processing tools for remotely sensed imagery. Our primary application has been land-cover classification from satellite imagery. GENIE was developed to evolve classification algorithms for multispectral imagery, and the extension to hyperspectral imagery presents a chance to test a genetic programming system by greatly increasing the complexity of the data under analysis, as well as a chance to find interesting spatio-spectral algorithms for hyperspectral imagery. We demonstrate our system on publicly available imagery from the new Hyperion imaging spectrometer onboard the NASA Earth Observing-1 (EO-1) satellite.

  1. Autonomous Science on the EO-1 Mission

    NASA Technical Reports Server (NTRS)

    Chien, S.; Sherwood, R.; Tran, D.; Castano, R.; Cichy, B.; Davies, A.; Rabideau, G.; Tang, N.; Burl, M.; Mandl, D.; Frye, S.; Hengemihle, J.; Agostino, J. D.; Bote, R.; Trout, B.; Shulman, S.; Ungar, S.; Gaasbeck, J. Van; Boyer, D.; Griffin, M.; Burke, H.; Greeley, R.; Doggett, T.; Williams, K.; Baker, V.

    2003-01-01

    In mid-2003, we will fly software to detect science events that will drive autonomous scene selectionon board the New Millennium Earth Observing 1 (EO-1) spacecraft. This software will demonstrate the potential for future space missions to use onboard decision-making to detect science events and respond autonomously to capture short-lived science events and to downlink only the highest value science data.

  2. Mapping intertidal surface sediment type distribution with retrieved sedimental components using EO-1 Hyperion data

    NASA Astrophysics Data System (ADS)

    Li, Huan; Zhang, Dong; Zhang, Ying; Xu, Yong

    2010-11-01

    Sediment type was one of the most important parameters of intertidal zone. The hydrodynamics and morphological changes could be indicated by sediment types very well, and the understanding of their distribution and stability could provide an important insight into littoral marine ecology. The way of conventional survey for sediment types was expensive and time-consuming. The objective of this study was to develop a method to distinguish sediment types using remote sensing, and enable which to be an alternative to traditional methods. Intertidal zone sediments were sampled at the south of Dafeng port, Yancheng city, Jiangsu province, China. Samples were collected from the upper 3cm surface of intertidal zone. The laboratory spectral reflectance data were obtained using a spectrometer. Particle-size of sediment samples were measured by Mastersizer 2000. Through analyzing characteristics of spectral reflectance for sediment samples, we found that two bands were sensitive to content of sediment components (sand, silt and clay) with central wavelengths at 864 and 1034 nm. However, the position of sensitive bands changed as moisture varied. In order to eliminate the impact of moisture on sediment spectral reflectance, moisture was introduced as a crucial factor to build regression equations with reflectance of sensitive bands to get contents of different sediment components, and then Shepard classification system was applied to acquire spatial distribution of sediment types. This way provided a quick, non-destructive and nonpolluting survey method. Meanwhile, this intelligent way of extracting information from muddy coastal zone will contribute to constructing digital earth, the huge system which benefits human beings.

  3. Mapping intertidal surface sediment type distribution with retrieved sedimental components using EO-1 Hyperion data

    NASA Astrophysics Data System (ADS)

    Li, Huan; Zhang, Dong; Zhang, Ying; Xu, Yong

    2009-09-01

    Sediment type was one of the most important parameters of intertidal zone. The hydrodynamics and morphological changes could be indicated by sediment types very well, and the understanding of their distribution and stability could provide an important insight into littoral marine ecology. The way of conventional survey for sediment types was expensive and time-consuming. The objective of this study was to develop a method to distinguish sediment types using remote sensing, and enable which to be an alternative to traditional methods. Intertidal zone sediments were sampled at the south of Dafeng port, Yancheng city, Jiangsu province, China. Samples were collected from the upper 3cm surface of intertidal zone. The laboratory spectral reflectance data were obtained using a spectrometer. Particle-size of sediment samples were measured by Mastersizer 2000. Through analyzing characteristics of spectral reflectance for sediment samples, we found that two bands were sensitive to content of sediment components (sand, silt and clay) with central wavelengths at 864 and 1034 nm. However, the position of sensitive bands changed as moisture varied. In order to eliminate the impact of moisture on sediment spectral reflectance, moisture was introduced as a crucial factor to build regression equations with reflectance of sensitive bands to get contents of different sediment components, and then Shepard classification system was applied to acquire spatial distribution of sediment types. This way provided a quick, non-destructive and nonpolluting survey method. Meanwhile, this intelligent way of extracting information from muddy coastal zone will contribute to constructing digital earth, the huge system which benefits human beings.

  4. Use of EO-1 Hyperion Data for Inter-Sensor Calibration of Vegetation Indices

    NASA Technical Reports Server (NTRS)

    Huete, Alfredo; Miura, Tomoaki; Kim, HoJin; Yoshioka, Hiroki

    2004-01-01

    Numerous satellite sensor systems useful in terrestrial Earth observation and monitoring have recently been launched and their derived products are increasingly being used in regional and global vegetation studies. The increasing availability of multiple sensors offer much opportunity for vegetation studies aimed at understanding the terrestrial carbon cycle, climate change, and land cover conversions. Potential applications include improved multiresolution characterization of the surface (scaling); improved optical-geometric characterization of vegetation canopies; improved assessments of surface phenology and ecosystem seasonal dynamics; and improved maintenance of long-term, inter-annual, time series data records. The Landsat series of sensors represent one group of sensors that have produced a long-term, archived data set of the Earth s surface, at fine resolution and since 1972, capable of being processed into useful information for global change studies (Hall et al., 1991).

  5. Jeffries Matusita based mixed-measure for improved spectral matching in hyperspectral image analysis

    NASA Astrophysics Data System (ADS)

    Padma, S.; Sanjeevi, S.

    2014-10-01

    This paper proposes a novel hyperspectral matching technique by integrating the Jeffries-Matusita measure (JM) and the Spectral Angle Mapper (SAM) algorithm. The deterministic Spectral Angle Mapper and stochastic Jeffries-Matusita measure are orthogonally projected using the sine and tangent functions to increase their spectral ability. The developed JM-SAM algorithm is implemented in effectively discriminating the landcover classes and cover types in the hyperspectral images acquired by PROBA/CHRIS and EO-1 Hyperion sensors. The reference spectra for different land-cover classes were derived from each of these images. The performance of the proposed measure is compared with the performance of the individual SAM and JM approaches. From the values of the relative spectral discriminatory probability (RSDPB) and relative discriminatory entropy value (RSDE), it is inferred that the hybrid JM-SAM approach results in a high spectral discriminability than the SAM and JM measures. Besides, the use of the improved JM-SAM algorithm for supervised classification of the images results in 92.9% and 91.47% accuracy compared to 73.13%, 79.41%, and 85.69% of minimum-distance, SAM and JM measures. It is also inferred that the increased spectral discriminability of JM-SAM measure is contributed by the JM distance. Further, it is seen that the proposed JM-SAM measure is compatible with varying spectral resolutions of PROBA/CHRIS (62 bands) and Hyperion (242 bands).

  6. 2016 Mission Operations Working Group: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Frye, Stuart

    2016-01-01

    EO-1 Mission Status for the Constellation Mission Operations Working Group to discuss the EO-1 flight systems, mission enhancements, debris avoidance maneuver, orbital information, 5-year outlook, and new ground stations.

  7. Mapping advanced argillic alteration zones with ASTER and Hyperion data in the Andes Mountains of Peru

    NASA Astrophysics Data System (ADS)

    Ramos, Yuddy; Goïta, Kalifa; Péloquin, Stéphane

    2016-04-01

    This study evaluates Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Hyperion hyperspectral sensor datasets to detect advanced argillic minerals. The spectral signatures of some alteration clay minerals, such as dickite and alunite, have similar absorption features; thus separating them using multispectral satellite images is a complex challenge. However, Hyperion with its fine spectral bands has potential for good separability of features. The Spectral Angle Mapper algorithm was used in this study to map three advanced argillic alteration minerals (alunite, kaolinite, and dickite) in a known alteration zone in the Peruvian Andes. The results from ASTER and Hyperion were analyzed, compared, and validated using a Portable Infrared Mineral Analyzer field spectrometer. The alterations corresponding to kaolinite and alunite were detected with both ASTER and Hyperion (80% to 84% accuracy). However, the dickite mineral was identified only with Hyperion (82% accuracy).

  8. Detection of neolithic settlements in thessaly (Greece) through multispectral and hyperspectral satellite imagery.

    PubMed

    Alexakis, Dimitrios; Sarris, Apostolos; Astaras, Theodoros; Albanakis, Konstantinos

    2009-01-01

    Thessaly is a low relief region in Greece where hundreds of Neolithic settlements/tells called magoules were established from the Early Neolithic period until the Bronze Age (6,000 - 3,000 BC). Multi-sensor remote sensing was applied to the study area in order to evaluate its potential to detect Neolithic settlements. Hundreds of sites were geo-referenced through systematic GPS surveying throughout the region. Data from four primary sensors were used, namely Landsat ETM, ASTER, EO1 - HYPERION and IKONOS. A range of image processing techniques were originally applied to the hyperspectral imagery in order to detect the settlements and validate the results of GPS surveying. Although specific difficulties were encountered in the automatic classification of archaeological features composed by a similar parent material with the surrounding landscape, the results of the research suggested a different response of each sensor to the detection of the Neolithic settlements, according to their spectral and spatial resolution. PMID:22399961

  9. Detection of Neolithic Settlements in Thessaly (Greece) Through Multispectral and Hyperspectral Satellite Imagery

    PubMed Central

    Alexakis, Dimitrios; Sarris, Apostolos; Astaras, Theodoros; Albanakis, Konstantinos

    2009-01-01

    Thessaly is a low relief region in Greece where hundreds of Neolithic settlements/tells called magoules were established from the Early Neolithic period until the Bronze Age (6,000 – 3,000 BC). Multi-sensor remote sensing was applied to the study area in order to evaluate its potential to detect Neolithic settlements. Hundreds of sites were geo-referenced through systematic GPS surveying throughout the region. Data from four primary sensors were used, namely Landsat ETM, ASTER, EO1 - HYPERION and IKONOS. A range of image processing techniques were originally applied to the hyperspectral imagery in order to detect the settlements and validate the results of GPS surveying. Although specific difficulties were encountered in the automatic classification of archaeological features composed by a similar parent material with the surrounding landscape, the results of the research suggested a different response of each sensor to the detection of the Neolithic settlements, according to their spectral and spatial resolution. PMID:22399961

  10. Hyperspectral remote sensing for water quality applications in Guatemala

    NASA Astrophysics Data System (ADS)

    Flores Cordova, A. I.; Christopher, S. A.; Irwin, D.

    2013-12-01

    Water quality measurements are relevant to control and prevent the pollution of surface water essential for human use. Previous studies have used standard methods of water sampling to estimate water quality parameters. Nevertheless those methods are extremely expensive and time-consuming and do not provide information for an entire water body. Hence it is important to implement techniques that allow for the monitoring of water quality parameters in a timely and cost-effective manner, and remote sensing represents a feasible alternative. This study focuses on the largest algal bloom affecting Lake Atitlan, located in Guatemala, by using the hyperspectral sensor Hyperion on board the EO-1 satellite. This algal bloom had a life span that extended for a little more than a month and had a maximum coverage of approximately 40% of the lake's 137 square kilometer surface. This algal bloom occurred at the end of the year 2009, with November being the most critical month. Different satellite sensors were used to monitor the extent of the algal bloom, including Landsat Enhanced Thematic Mapper Plus (ETM+), the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Advanced Land Imager (ALI). However, Hyperion images were used to distinguish the characteristics of the vegetation populating the algal bloom. Hyperion satellite images provided a more complete spectral profile of the algal bloom affecting the lake due to its high spectral resolution characteristics. This enabled the identification of unique peaks of reflectance and absorption features of the spectral signature obtained from the algal bloom. The algal bloom was formed mainly by the cyanobacteria Lyngbya robusta. Hyperion satellite images were used to characterize the algal bloom and the unique pigments of cyanobacteria such as phycocyanin. Atmospheric correction was critical to obtain the pure reflectance of the algal bloom and differentiate the spectral features unique to the cyanobacteria

  11. Mapping and Assessing Surface Morphology of Holocene Lava Field in Krafla (NE Iceland) Using Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Aufaristama, M.; Höskuldsson, A.; Jónsdóttir, I.; Ólafsdóttir, R.

    2016-01-01

    Iceland is well known for its volcanic activity due to its location on the spreading Mid Atlantic Ridge and one of the earth's hot spot. In the past 1000 years there were about 200 eruptions occurring in Iceland, meaning volcanic eruptions occurred every four to five years, on average. Iceland currently has 30 active volcano systems, distributed evenly throughout the so- called Neovolcanic Zone. One of these volcanic systems is the Krafla central volcano, which is located in the northern Iceland at latitude 65°42'53'' N and longitude 16°43'40'' W. Krafla has produced two volcanic events in historic times: 1724-1729 (Myvatn Fires) and 1975-1984 (Krafla Fires). The Krafla Fires began in December 1975 and lasted until September 1984. This event covered about 36-km2 surrounding area with lava, having a total volume of 0.25-0.3 km3. Previous studies of lava surface morphology at Krafla focused on an open channel area by remote sensing are essential as a complementary tool to the previous investigations and to extend the area of mapping. Using Spectral Angle Mapper (SAM) classification approach by selecting spectral reflectance end members, this study has successfully produced a detailed map of the surface morphology in Krafla lava field EO-1 Hyperion (Hyperspectral) satellite images. The overall accuracy of lava morphology map is 61.33% (EO-1 Hyperion). These results show that hyperspectral remote sensing is an acceptable alternative to field mapping and assessing the lava surface morphology in the Krafla lava field. In order to get validation of the satellite image's spectral reflectance, in-situ measurements of the lava field's spectral reflectance using ASD FieldSpec3 is essential.

  12. Evaluation of Algorithms for Compressing Hyperspectral Data

    NASA Technical Reports Server (NTRS)

    Cook, Sid; Harsanyi, Joseph; Faber, Vance

    2003-01-01

    With EO-1 Hyperion in orbit NASA is showing their continued commitment to hyperspectral imaging (HSI). As HSI sensor technology continues to mature, the ever-increasing amounts of sensor data generated will result in a need for more cost effective communication and data handling systems. Lockheed Martin, with considerable experience in spacecraft design and developing special purpose onboard processors, has teamed with Applied Signal & Image Technology (ASIT), who has an extensive heritage in HSI spectral compression and Mapping Science (MSI) for JPEG 2000 spatial compression expertise, to develop a real-time and intelligent onboard processing (OBP) system to reduce HSI sensor downlink requirements. Our goal is to reduce the downlink requirement by a factor > 100, while retaining the necessary spectral and spatial fidelity of the sensor data needed to satisfy the many science, military, and intelligence goals of these systems. Our compression algorithms leverage commercial-off-the-shelf (COTS) spectral and spatial exploitation algorithms. We are currently in the process of evaluating these compression algorithms using statistical analysis and NASA scientists. We are also developing special purpose processors for executing these algorithms onboard a spacecraft.

  13. Chaotic rotation of Hyperion?

    NASA Technical Reports Server (NTRS)

    Binzel, R. P.; Green, J. R.; Opal, C. B.

    1986-01-01

    Thomas et al. (1984) analyzed 14 Voyager 2 images of Saturn's satellite Hyperion and interpreted them to be consistent with a coherent (nonchaotic) rotation period of 13.1 days. This interpretation was criticized by Peale and Wisdom (1984), who argued that the low sampling frequency of Voyager data does not allow chaotic or nonchaotic rotation to be distinguished. New observations obtained with a higher sampling frequency are reported here which conclusively show that the 13.1 day period found by Thomas et al. was not due to coherent rotation.

  14. Improved Classification of Mangroves Health Status Using Hyperspectral Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Vidhya, R.; Vijayasekaran, D.; Ahamed Farook, M.; Jai, S.; Rohini, M.; Sinduja, A.

    2014-11-01

    Mangrove ecosystem plays a crucial role in costal conservation and provides livelihood supports to humans. It is seriously affected by the various climatic and anthropogenic induced changes. The continuous monitoring is imperative to protect this fragile ecosystem. In this study, the mangrove area and health status has been extracted from Hyperspectral remote sensing data (EO- 1Hyperion) using support vector machine classification (SVM). The principal component transformation (PCT) technique is used to perform the band reduction in Hyperspectral data. The soil adjusted vegetation Indices (SAVI) were used as additional parameters. The mangroves are classified into three classes degraded, healthy and sparse. The SVM classification is generated overall accuracy of 73 % and kappa of 0.62. The classification results were compared with the results of spectral angle mapper classification (SAM). The SAVI also included in SVM classification and the accuracy found to be improved to 82 %. The sparse and degraded mangrove classes were well separated. The results indicate that the mapping of mangrove health is accurate when the machine learning classifier like SVM combined with different indices derived from hyperspectral remote sensing data.

  15. Mapping the distribution of mangrove species in the Core Zone of Mai Po Marshes Nature Reserve, Hong Kong, using hyperspectral data and high-resolution data

    NASA Astrophysics Data System (ADS)

    Jia, Mingming; Zhang, Yuanzhi; Wang, Zongming; Song, Kaishan; Ren, Chunying

    2014-12-01

    Mangrove species compositions and distributions are essential for conservation and restoration efforts. In this study, hyperspectral data of EO-1 HYPERION sensor and high spatial resolution data of SPOT-5 sensor were used in Mai Po mangrove species mapping. Objected-oriented method was used in mangrove species classification processing. Firstly, mangrove objects were obtained via segmenting high spatial resolution data of SPOT-5. Then the objects were classified into different mangrove species based on the spectral differences of HYPERION image. The classification result showed that in the top canopy, Kandelia obovata and Avicennia marina dominated Mai Po Marshes Natural Reserve, with area of 196.8 ha and 110.8 ha, respectively, Acanthus ilicifolius and Aegiceras corniculatum were mixed together and living at the edge of channels with an area of 11.7 ha. Additionally, mangrove species shows clearly zonations and associations in the Mai Po Core Zone. The overall accuracy of our mangrove map was 88% and the Kappa confidence was 0.83, which indicated great potential of using hyperspectral and high-resolution data for distinguishing and mapping mangrove species.

  16. Advancing Glaciological Applications of Remote Sensing with EO-1: (1) Mapping Snow Grain Size and Albedo on the Greenland Ice Sheet Using an Imaging Spectrometer, and (2) ALI Evaluation for Subtle Surface Topographic Mapping via Shape-from Shading

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Hyperion sensor, onboard NASA's Earth Observing-1 (EO-1) satellite,is an imaging spectroradiometer with 220 spectral bands over the spectral range from 0.4 - 2.5 microns. Over the course of summer 2001, the instrument acquired numerous images over the Greenland ice sheet. Our main motivation is to develop an accurate and robust approach for measuring the broadband albedo of snow from satellites. Satellite-derived estimates of broadband have typically been plagued with three problems: errors resulting from inaccurate atmospheric correction, particularly in the visible wavelengths from the conversion of reflectance to albedo (accounting for snow BRDE); and errors resulting from regression-based approaches used to convert narrowband albedo to broadband albedo. A typerspectral method has been developed that substantially reduces these three main sources of error and produces highly accurate estimates of snow albedo. This technique uses hyperspectral data from 0.98 - 1.06 microns, spanning a spectral absorption feature centered at 1.03 microns. A key aspect of this work is that this spectral range is within an atmospheric transmission window and reflectances are largely unaffected by atmospheric aerosols, water vapor, or ozone. In this investigation, we make broadband albedo measurements at four sites on the Greenland ice sheet: Summit, a high altitude station in central Greenland; the ETH/CU camp, a camp on the equilibrium line in western Greenland; Crawford Point, a site located between Summit and the ETH/CU camp; and Tunu, a site located in northeastern Greenland at 2000 m. altitude. Each of these sites has an automated weather station (AWS) that continually measures broadband albedo thereby providing validation data.

  17. Soil sail content estimation in the yellow river delta with satellite hyperspectral data

    USGS Publications Warehouse

    Weng, Yongling; Gong, Peng; Zhu, Zhi-Liang

    2008-01-01

    Soil salinization is one of the most common land degradation processes and is a severe environmental hazard. The primary objective of this study is to investigate the potential of predicting salt content in soils with hyperspectral data acquired with EO-1 Hyperion. Both partial least-squares regression (PLSR) and conventional multiple linear regression (MLR), such as stepwise regression (SWR), were tested as the prediction model. PLSR is commonly used to overcome the problem caused by high-dimensional and correlated predictors. Chemical analysis of 95 samples collected from the top layer of soils in the Yellow River delta area shows that salt content was high on average, and the dominant chemicals in the saline soil were NaCl and MgCl2. Multivariate models were established between soil contents and hyperspectral data. Our results indicate that the PLSR technique with laboratory spectral data has a strong prediction capacity. Spectral bands at 1487-1527, 1971-1991, 2032-2092, and 2163-2355 nm possessed large absolute values of regression coefficients, with the largest coefficient at 2203 nm. We obtained a root mean squared error (RMSE) for calibration (with 61 samples) of RMSEC = 0.753 (R2 = 0.893) and a root mean squared error for validation (with 30 samples) of RMSEV = 0.574. The prediction model was applied on a pixel-by-pixel basis to a Hyperion reflectance image to yield a quantitative surface distribution map of soil salt content. The result was validated successfully from 38 sampling points. We obtained an RMSE estimate of 1.037 (R2 = 0.784) for the soil salt content map derived by the PLSR model. The salinity map derived from the SWR model shows that the predicted value is higher than the true value. These results demonstrate that the PLSR method is a more suitable technique than stepwise regression for quantitative estimation of soil salt content in a large area. ?? 2008 CASI.

  18. The Integration, Testing and Flight of the EO-1 GPS

    NASA Technical Reports Server (NTRS)

    Quinn, David A.; Sanneman, Paul A.; Shulman, Seth E.; Sager, Jennifer A.

    2001-01-01

    The Global Positioning System has long been hailed as the wave of the future for autonomous on-board navigation of low Earth orbiting spacecraft despite the fact that relatively few spacecraft have actually employed it for this purpose. While several missions operated out of the Goddard Space Flight Center have flown GPS receivers on board, the New Millenium Program (NMP) Earth Orbiting-1 (EO-1) spacecraft is the first to employ GPS for active, autonomous on-board navigation. Since EO-1 was designed to employ GPS as its primary source of the navigation ephemeris, special care had to be taken during the integration phase of spacecraft construction to assure proper performance. This paper is a discussion of that process: a brief overview of how the GPS works, how it fits into the design of the EO-1 Attitude Control System (ACS), the steps taken to integrate the system into the EO-1 spacecraft, the ultimate on-orbit performance during launch and early operations of the EO-1 mission and the performance of the on-board GPS ephemeris versus the ground based ephemeris. Conclusions will include a discussion of the lessons learned.

  19. Hyperspectral Systems Increase Imaging Capabilities

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In 1983, NASA started developing hyperspectral systems to image in the ultraviolet and infrared wavelengths. In 2001, the first on-orbit hyperspectral imager, Hyperion, was launched aboard the Earth Observing-1 spacecraft. Based on the hyperspectral imaging sensors used in Earth observation satellites, Stennis Space Center engineers and Institute for Technology Development researchers collaborated on a new design that was smaller and used an improved scanner. Featured in Spinoff 2007, the technology is now exclusively licensed by Themis Vision Systems LLC, of Richmond, Virginia, and is widely used in medical and life sciences, defense and security, forensics, and microscopy.

  20. Optimization of field spectroscopy and Hyperion data to evaluate water quality in the Shenandoah River Basin, Virginia

    NASA Astrophysics Data System (ADS)

    Mbuh, M. J.; Houser, P. R.

    2014-12-01

    Several studies have demonstrated the importance of Hyperspectral remote sensing in monitoring the spatial variation of optical water quality parameters in lakes, rivers and oceans. A multiband quasi analytical algorithm is used to estimate the inherent optical properties of water, and the Bio-optical model based tool is also used to estimate water quality and bottom properties from remote sensing images for chlorophyll a, colored dissolved organic matter, and total suspended sediments concentrations across the Shenandoah River basin using EO-1, Hyperion data and field spectroscopy. Preliminary results show that Chl a concentrations compared with values reported for coastal and inland waters around the world are high in the Shenandoah River with values varying from 0.001 - 12.636 μg/l, with an average concentration of 9.67 μg/l. Total suspended sediment concentration values are in good agreement with the TSS concentrations measured on the field with a range of 0.001 - 3.0227 mg l-1, and, an average concentration of 0.266 mg l-.1. CDOM concentration varies from 0.001 - 0.4 μg/l, with average values of 0.13 and 0.15 μg/l for the South Fork section of the River. Our results also suggests that, the river is dominated by high CDOM absorption, high Chl a concentrations and abnormally high reflection in the red, probably caused by the high concentrations of red clays found in the river since CDOM is a mixture of compounds of terrestrial and marine origins. To validate the performance of our analysis, we used; error, bias and root mean square, and obtained 0.0697 μg/l, 0.0048 μg/l and 0.0174 μg/l respectively, for the River Basin show that the data had sufficient sensitivity to detect optical water quality concentrations. Key words: Hyperion, field spectroscopy, inherent optical properties, Bio-optical model Shenandoah River, water quality, chlorophyll a, colored dissolved organic matter, and total suspended sediments.

  1. Intra-sensor Spectral Compatibility Analysis of the Enhanced Vegetation Index for Moderate Resolution Imagers Using Hyperion

    NASA Astrophysics Data System (ADS)

    Miura, T.; Obata, K.; Huete, A. R.

    2013-12-01

    Spectral vegetation indices (VIs) are one of the more important satellite products for monitoring and characterizing seasonal dynamics and interannual variability of terrestrial vegetation in regional to global scales. The enhanced vegetation index (EVI), designed for the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, has been shown to effectively characterize global vegetation states and ecosystem processes, and encompass the range of biophysical/biochemical information in manners to complement the conventional, normalized difference vegetation index (NDVI). Because the EVI is limited to sensor systems designed with a blue band, a 2-band EVI, without a blue band, was recently developed (referred to as the EVI2), which has the best similarity with the 3-band EVI for the MODIS sensors, particularly when residual atmospheric effects are insignificant and data quality is good. In this study, we evaluated intra-sensor spectral compatibility between the EVI and EVI2 and their sensitivities to aerosol contaminations for select moderate resolution imaging sensors, including Visible/Infrared Imager/Radiometer Suite (VIIRS), MODIS, Second Generation Global Imager (S-GLI), and SPOT-4 VEGETATION, and for Landsat-7 Enhanced Thematic Mapper Plus (ETM+), using a global set of Earth Observing One (EO-1) Hyperion hyperspectral data. Hyperion scenes were spectrally aggregated into red, near-infrared (NIR), and blue bandpasses of the five sensors and spatially aggregated into 1 km resolution pixels. Two atmospheric correction scenarios were also applied to examine the impact of the atmosphere on intra-sensor EVI/EVI2 compatibility: (1) Rayleigh/ozone/water vapor (ROW)-corrected and (2) total-atmosphere-corrected 'top-of-canopy (TOC)' reflectances. The EVI of all the five sensor bandpasses exhibited great resistance to atmospheric aerosol contaminations. The EVI2 of every sensor was, on

  2. The information of oil and gas micro-seepage in Dongsheng region of inner Mongolia based on the airborne hyperspectral remote sensing image

    NASA Astrophysics Data System (ADS)

    Tian, Shu-Fang; Chen, Jian-Ping; Zhou, Mi

    2008-11-01

    The technology of hyper-spectral remote sensing which has higher spatial resolution characteristic, and optimizes the qualification of identifying and extracting salt mines, not only enhances the capacity of natural scenes detection and recognition, but also advances the level of quantitative remote sensing. It has important meaning for using the technology of hyper-spectral remote sensing to quantitative extraction. The paper investigate gas micro-seepage based on the Airborne Hyper-spectral Remote Sensing in Dongsheng of Inner Mongolia on the basis of gas micro-seepage theory using EO-1 Hyperion data collected by Satellite-Borne Sensor which has highest spatial resolution presently in the world. On the basis of data pretreated this paper adopts band math extracted the distribution of oil and gas micro-seepage using diagnostic assimilating spectrum of alteration minerals by the numbers. With eigenvector length model evaluates the research area comprehensive index, oil and gas micro-seepage information model of the research area is established and key regions of oil and gas micro-seepage are confirmed, which offers academic gist for oil and gas resource exploitation of Dongsheng.

  3. Urban vegetation cover extraction from hyperspectral imagery and geographic information system spatial analysis techniques: case of Athens, Greece

    NASA Astrophysics Data System (ADS)

    Petropoulos, George P.; Kalivas, Dionissios P.; Georgopoulou, Iro A.; Srivastava, Prashant K.

    2015-01-01

    The present study aimed at evaluating the performance of two different pixel-based classifiers [spectral angle mapper (SAM) and support vector machines (SVMs)] in discriminating different land-cover classes in a typical urban setting, focusing particularly on urban vegetation cover by utilizing hyperspectral (EO-1 Hyperion) data. As a case study, the city of Athens, Greece, was used. Validation of urban vegetation predictions was based on the error matrix statistics. Additionally, the final urban vegetation cover maps were compared at a municipality level against reference urban vegetation cover estimates derived from the digitization of very high-resolution imagery. To ensure consistency and comparability of the results, the same training and validation points dataset were used to compare the different classifiers. The results showed that SVMs outperformed SAM in terms of both classification and urban vegetation cover mapping with an overall accuracy of 86.53% and Kappa coefficient 0.823, whereas for SAM classification, the accuracy statistics obtained were 75.13% and 0.673, respectively. Our results confirmed the ability of both techniques, when combined with Hyperion imagery, to extract urban vegetation cover for the case of a densely populated city with complex urban features, such as Athens. Our findings offer significant information at the local scale as regards to the presence of open green spaces in the urban environment of Athens. Such information is vital for successful infrastructure development, urban landscape planning, and improvement of urban environment. More widely, this study also contributes significantly toward an objective assessment of Hyperion in detecting and mapping urban vegetation cover.

  4. Study on Exploring for Oil, Gas Using Hyperion data

    NASA Astrophysics Data System (ADS)

    Xu, D.-Q.; Ni, G.-Q.; Jiang, L.-L.; Ge, S.-L.

    Reflectance spectra in the visible and near-infrared wavelengths provide a rapid and inexpensive means for determining the mineralogy of samples and obtaining information on chemical composition Hydrocarbon microseepage theory setup a cause-and-effect relation between oil and gas reservoirs and some special surface alterations Therefore we can explore for oil gas by determining reflectance spectra of surface alterations This determination can be fulfilled by means of field work and hyperspectral remote sensing Our cooperative R D project which is sponsored by China National Petroleum Corporation CNPC and committing itself to exploration of oil gas in Qinghai area of China using NASA experimental Hyperion hyperspectral satellite documents a macroscopical feature of reflectance spectra of typical observation points in gas fields and then proposes a method in order to provide surface distribution information e g classification of alterations based on the reflectance spectra determined from the field and remote sensing and obtain anomaly zones of the special alterations This method mainly includes preprocessing of Hyperion images to improve the poor SNR Signal Noise Ratio of them principal component analysis PCA based on wavelet transform to reduce dimensionality and techniques providing surface distribution information using both absorption-band parameters such as the position depth width and asymmetry of the spectra and similarity of the entire shape between two spectra Finally several anomaly zones of alterations are obtained which are

  5. Mission Operations of EO-1 with Onboard Autonomy

    NASA Technical Reports Server (NTRS)

    Tran, Daniel Q.

    2006-01-01

    Space mission operations are extremely labor and knowledge-intensive and are driven by the ground and flight systems. Inclusion of an autonomy capability can have dramatic effects on mission operations. We describe the prior, labor and knowledge intensive mission operations flow for the Earth Observing-1 (EO-1) spacecraft as well as the new autonomous operations as part of the Autonomous Sciencecraft Experiment.

  6. COMPARISON OF AVIRIS AND EO-1 HYPERION FOR CLASSIFICATION AND MAPPING OF INVASIVE LEAFY SPURGE IN THEODORE ROOSEVELT NATIONAL PARK

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive species are rapidly becoming a threat to the world's biodiversity. In the United States alone, non-native species are causing environmental damage and economic losses estimated to exceed $100 billion per year (Pimentel et al., 2000). Morse et al. (1995) estimate that approximately 5,000 ...

  7. Mapping post-fire forest regeneration and vegetation recovery using a combination of very high spatial resolution and hyperspectral satellite imagery

    NASA Astrophysics Data System (ADS)

    Mitri, George H.; Gitas, Ioannis Z.

    2013-02-01

    Careful evaluation of forest regeneration and vegetation recovery after a fire event provides vital information useful in land management. The use of remotely sensed data is considered to be especially suitable for monitoring ecosystem dynamics after fire. The aim of this work was to map post-fire forest regeneration and vegetation recovery on the Mediterranean island of Thasos by using a combination of very high spatial (VHS) resolution (QuickBird) and hyperspectral (EO-1 Hyperion) imagery and by employing object-based image analysis. More specifically, the work focused on (1) the separation and mapping of three major post-fire classes (forest regeneration, other vegetation recovery, unburned vegetation) existing within the fire perimeter, and (2) the differentiation and mapping of the two main forest regeneration classes, namely, Pinus brutia regeneration, and Pinus nigra regeneration. The data used in this study consisted of satellite images and field observations of homogeneous regenerated and revegetated areas. The methodology followed two main steps: a three-level image segmentation, and, a classification of the segmented images. The process resulted in the separation of classes related to the aforementioned objectives. The overall accuracy assessment revealed very promising results (approximately 83.7% overall accuracy, with a Kappa Index of Agreement of 0.79). The achieved accuracy was 8% higher when compared to the results reported in a previous work in which only the EO-1 Hyperion image was employed in order to map the same classes. Some classification confusions involving the classes of P. brutia regeneration and P. nigra regeneration were observed. This could be attributed to the absence of large and dense homogeneous areas of regenerated pine trees in the study area.

  8. Development of a PPT for the EO-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Benson, Scott W.; Arrington, Lynn A.; Hoskins, W. Andrew; Meckel, Nicole J.

    2000-01-01

    A Pulsed Plasma Thruster (PPT) has been developed for use in a technology demonstration flight experiment on the Earth Observing 1 (EO-1) New Millennium Program mission. The thruster replaces the spacecraft pitch axis momentum wheel for control and momentum management during an experiment of a minimum three-day duration. The EO-1 PPT configuration is a combination of new technology and design heritage from similar systems flown in the 1970's and 1980's. Acceptance testing of the protoflight unit has validated readiness for flight, and integration with the spacecraft, including initial combined testing, has been completed. The thruster provides a range of capability from 90 microN-sec impulse bit at 650 sec specific impulse for 12 W input power, through 860 microN-sec impulse bit at 1400 see specific impulse for 70 W input power. Development of this thruster reinitiates technology research and development and re-establishes an industry base for production of flight hardware. This paper reviews the EO-1 PPT development, including technology selection, design and fabrication, acceptance testing, and initial spacecraft integration and test.

  9. ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration.

    PubMed

    Beiranvand Pour, Amin; Hashim, Mazlan

    2014-01-01

    This paper provides a review of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and Hyperion data and applications of the data as a tool for ore minerals exploration, lithological and structural mapping. Spectral information extraction from ASTER, ALI, and Hyperion data has great ability to assist geologists in all disciplines to map the distribution and detect the rock units exposed at the earth's surface. The near coincidence of Earth Observing System (EOS)/Terra and Earth Observing One (EO-1) platforms allows acquiring ASTER, ALI, and Hyperion imagery of the same ground areas, resulting accurate information for geological mapping applications especially in the reconnaissance stages of hydrothermal copper and gold exploration, chromite, magnetite, massive sulfide and uranium ore deposits, mineral components of soils and structural interpretation at both regional and district scales. Shortwave length infrared and thermal infrared bands of ASTER have sufficient spectral resolution to map fundamental absorptions of hydroxyl mineral groups and silica and carbonate minerals for regional mapping purposes. Ferric-iron bearing minerals can be discriminated using six unique wavelength bands of ALI spanning the visible and near infrared. Hyperion visible and near infrared bands (0.4 to 1.0 μm) and shortwave infrared bands (0.9 to 2.5 μm) allowed to produce image maps of iron oxide minerals, hydroxyl-bearing minerals, sulfates and carbonates in association with hydrothermal alteration assemblages, respectively. The techniques and achievements reviewed in the present paper can further introduce the efficacy of ASTER, ALI, and Hyperion data for future mineral and lithological mapping and exploration of the porphyry copper, epithermal gold, chromite, magnetite, massive sulfide and uranium ore deposits especially in arid and semi-arid territory. PMID:25674434

  10. Autonomous Sciencecraft Experiment (ASE) Operations on EO-1 in 2004

    NASA Technical Reports Server (NTRS)

    Davies, A. G.; Baker, V.; Castano, R.; Chien, S.; Cichy, B.; Doggett, T.; Dohm, J. M.; Greeley, R.; Lee, R.; Sherwood, R.

    2004-01-01

    The Autonomous Sciencecraft Experiment (ASE) has been selected for flight demonstration by NASAs New Millennium Program (NMP) as part of the Space Technology 6 (ST6) mission. NASA has identified the development of an autonomously operating spacecraft as a necessity for an expanded program of missions exploring the Solar System. The versatile ASE spacecraft command and control software, image formation software, and science processing software will be uploaded to the Earth Observer 1 (EO-1) spacecraft in early 2004 to detect surface modification related to volcanism, ice formation and retreat, and flooding.

  11. Striping noise mitigation: performance evaluation on real and simulated hyperspectral images

    NASA Astrophysics Data System (ADS)

    Lastri, Cinzia; Guzzi, Donatella; Barducci, Alessandro; Pippi, Ivan; Nardino, Vanni; Raimondi, Valentina

    2015-10-01

    Striping noise is a phenomenon intrinsic to the process of image acquisition by means of scanning or pushbroom systems, caused by a poor radiometric calibration of the sensor. Although in-flight calibration has been performed, residual spatially and spectrally coherent noise may perturb the quantitative analysis of images and the extraction of physical parameters. Destriping methods can be classified in three main groups: statistical-based methods, digital-filtering methods and radiometric-equalisation methods. Their performances depend both on the scene under investigation and on the type and intensity of noise to be treated. Availability of simulated data at each step of the digital image formation process, including that one before the introduction of the striping effect, is particularly useful since it offers the opportunity to test and adjust a variety of image processing and calibration algorithms. This paper presents the performance of a statistical-based destriping method applied to a set of simulated and to images acquired by the EO-1 Hyperion hyperspectral sensor. The set of simulated data with different intensities of coherent and random noise was generated using an image simulator implemented for the PRISMA mission. Algorithm's performance was tested by evaluating most commonly used quality indexes. For the same purpose, a statistical evaluation based on image correlation and image differences between the corrected and ideal images was carried out. Results of the statistical analysis were compared with the outcome of the quality indexes-based analysis.

  12. The Fate of Ejecta from Hyperion

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Dobrovolskis, Anthony R.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Ejecta from Saturn's moon Hyperion is subject to powerful perturbations from nearby Titan, which control its ultimate fate. We have performed numerical integrations to simulate a simplified system consisting of Saturn (including oblateness), Tethys, Dione, Titan, Hyperion, Iapetus, and the Sun (treated simply as a massive satellite). In addition, 1050 massless particles were ejected from Hyperion at five different points in its orbit. These particles started more or less evenly distributed over latitude and longitude, 1 km above Hyperion's mean radius, and were ejected radially outward at speeds 10\\% faster than its escape speed. Only about 4\\% of the particles survived for the 100,000-year course of the integration, while $\\sim$8/% escaped from the Saturnian system. Titan accreted $\\sim$77\\% of all the particles, while Hyperion reaccreted only $\\sim$5\\%. This may help to account for Hyperion's rugged shape. Three particles hit Rhea and 2 hit Dione, but $\\sim$5\\% of the particles were removed when they penetrated within 150,000 km of Saturn. Most removals occurred within the first few thousand years. In general, ejecta from Hyperion are much more widely scattered than previously thought, and cross the orbits of all of the other classical satellites.

  13. How to Leverage Existing Spectral Knowledge when Clustering Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Wagstaff, K.; Shu, H.; Castano, R.

    2004-12-01

    Hyperspectral images collect large volumes of data, with observations at hundreds or thousands of different wavelengths. The large data size renders a thorough manual analysis difficult, expensive, and time-consuming. For example, the Hyperion instrument on the EO-1 spacecraft regularly produces image cubes that are over 1 gigabyte in size (256 × 7000 pixels, at 242 wavelengths). Automated techniques for analyzing and summarizing these mega-data sets provide two major benefits: 1) scientists can quickly obtain high-level views of the data contents, and 2) summaries produced on-board the spacecraft enable quick prioritization of data for transmission to make the best use of limited bandwidth. One approach for generating summaries is to partition the pixels from a given image into a set of k clusters. Each cluster contains pixels that are more similar to each other than to pixels in other clusters. The image can be summarized by the set of k clusters, represented by the cluster means and standard deviations (of the pixel values for each cluster). However, typical clustering algorithms are completely data-driven and will produce summaries based on the largest distinguishing factor between pixels (often, brightness), regardless of whether that distinction is physically meaningful. In contrast, we seek to include knowledge from existing spectral libraries to improve the automated summaries. In this work, we present a knowledge-driven clustering method that incorporates laboratory spectra as ``seeds'' for some, or all, of the data clusters. We contrast the summaries produced by data-driven and knowledge-driven clustering. We find that summaries that incorporate the spectral library have greater science value than those produced from the data alone. Knowledge-based summaries are more interpretable and more likely to be based on true compositional differences in the areas being imaged. We present sample results from several diverse areas to illustrate the benefits of

  14. Satellite-based land use mapping: comparative analysis of Landsat-8, Advanced Land Imager, and big data Hyperion imagery

    NASA Astrophysics Data System (ADS)

    Pervez, Wasim; Uddin, Vali; Khan, Shoab Ahmad; Khan, Junaid Aziz

    2016-04-01

    Until recently, Landsat technology has suffered from low signal-to-noise ratio (SNR) and comparatively poor radiometric resolution, which resulted in limited application for inland water and land use/cover mapping. The new generation of Landsat, the Landsat Data Continuity Mission carrying the Operational Land Imager (OLI), has improved SNR and high radiometric resolution. This study evaluated the utility of orthoimagery from OLI in comparison with the Advanced Land Imager (ALI) and hyperspectral Hyperion (after preprocessing) with respect to spectral profiling of classes, land use/cover classification, classification accuracy assessment, classifier selection, study area selection, and other applications. For each data source, the support vector machine (SVM) model outperformed the spectral angle mapper (SAM) classifier in terms of class discrimination accuracy (i.e., water, built-up area, mixed forest, shrub, and bare soil). Using the SVM classifier, Hyperion hyperspectral orthoimagery achieved higher overall accuracy than OLI and ALI. However, OLI outperformed both hyperspectral Hyperion and multispectral ALI using the SAM classifier, and with the SVM classifier outperformed ALI in terms of overall accuracy and individual classes. The results show that the new generation of Landsat achieved higher accuracies in mapping compared with the previous Landsat multispectral satellite series.

  15. Assessing the biophysical naturalness of grassland in eastern North Dakota with hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang

    Over the past two decades, non-native species within grassland communities have quickly developed due to human migration and commerce. Invasive species like Smooth Brome grass (Bromus inermis) and Kentucky Blue Grass (Poa pratensis), seriously threaten conservation of native grasslands. This study aims to discriminate between native grasslands and planted hayfields and conservation areas dominated by introduced grasses using hyperspectral imagery. Hyperspectral imageries from the Hyperion sensor on EO-1 were acquired in late spring and late summer on 2009 and 2010. Field spectra for widely distributed species as well as smooth brome grass and Kentucky blue grass were collected from the study sites throughout the growing season. Imagery was processed with an unmixing algorithm to estimate fractional cover of green and dry vegetation and bare soil. As the spectrum is significantly different through growing season, spectral libraries for the most common species are then built for both the early growing season and late growing season. After testing multiple methods, the Adaptive Coherence Estimator (ACE) was used for spectral matching analysis between the imagery and spectral libraries. Due in part to spectral similarity among key species, the results of spectral matching analysis were not definitive. Additional indexes, "Level of Dominance" and "Band variance", were calculated to measure the predominance of spectral signatures in any area. A Texture co-occurrence analysis was also performed on both "Level of Dominance" and "Band variance" indexes to extract spatial characteristics. The results suggest that compared with disturbed area, native prairie tend to have generally lower "Level of Dominance" and "Band variance" as well as lower spatial dissimilarity. A final decision tree model was created to predict presence of native or introduced grassland. The model was more effective for identification of Mixed Native Grassland than for grassland dominated by a single

  16. Quantitative analysis of alteration mineral content and characteristic spectra of Hyperion image at oil and gas microseepage area

    NASA Astrophysics Data System (ADS)

    Liu, Na; Chen, Xiaomei; Li, Qianqian

    2015-08-01

    With Sanhu region of Qaidam Basin as the test area and the mineral compositions and hyperspectral remote sensing images as test data, the present paper sets up the quantitative relationships between clay and carbonate of altered minerals caused by oil and gas microseepage and the characteristic parameters from hyperspectral remote sensing image. To get the quantitative relationships between these characteristic parameters and contents, the statistical regression method is used after the spectral characteristics extraction from Hyperion image. The research results show the contents of clay and carbonate have a high degree fitting with the depth of spectral absorption peak, while there are low correlations between other characteristic parameters and the contents. This conclusion provides references for using the hyperspectral remote sensing information to explore the oil and gas direct and lessening or even getting rid of the groundwork, and provides a statistical basis for inversing the surface mineral contents with the hyperspectral remote sensing image.

  17. Addressing EO-1 Spacecraft Pulsed Plasma Thruster EMI Concerns

    NASA Technical Reports Server (NTRS)

    Zakrzwski, C. M.; Davis, Mitch; Sarmiento, Charles; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing One (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. Results from PPT unit level radiated electromagnetic interference (EMI) tests led to concerns about potential interference problems with other spacecraft subsystems. Initial plans to address these concerns included firing the PPT at the spacecraft level both in atmosphere, with special ground support equipment. and in vacuum. During the spacecraft level tests, additional concerns where raised about potential harm to the Advanced Land Imager (ALI). The inadequacy of standard radiated emission test protocol to address pulsed electromagnetic discharges and the lack of resources required to perform compatibility tests between the PPT and an ALI test unit led to changes in the spacecraft level validation plan. An EMI shield box for the PPT was constructed and validated for spacecraft level ambient testing. Spacecraft level vacuum tests of the PPT were deleted. Implementation of the shield box allowed for successful spacecraft level testing of the PPT while eliminating any risk to the ALI. The ALI demonstration will precede the PPT demonstration to eliminate any possible risk of damage of ALI from PPT operation.

  18. Radiometric calibration of the EO-1 Advanced Land Imager

    NASA Astrophysics Data System (ADS)

    Mendenhall, Jeffrey A.; Lencioni, Donald E.; Parker, Alexander C.

    1999-09-01

    The radiometric calibration of the Earth Observation 1 Advanced Land Imager (EO-1 ALI) was completed in the Spring of 1999 at Lincoln Laboratory. This calibration was conducted with the ALI as a fully assembled instrument in a thermal vacuum chamber at operation temperatures. The ALI was calibrated radiometrically at the system level from 0 to > 100 percent Earth-equivalent albedo using a combination of internal and external halogen and Xenon lamps attached to a large integrating sphere. Absolute radiometric calibration was achieved by measuring the output of the integrating sphere at each radiance level prior to ALI illumination using a NIST-traceable spectroradiometer. Additional radiometric characterization of this instrument was obtained from data collected using a collimator designed for the spectral calibration of the ALI. In this paper we review the techniques employed during radiometric calibration and present the measured gain, linearity, offset, signal-to- noise ratio and polarization sensitivity of each pixel. The testing result of a novel, in-flight solar calibration technique are also discussed. Finally, the results from a Lincoln Laboratory/Goddard Space Flight Center Landsat transfer radiometric study are presented.

  19. Spectral matching in Hyperion images for improved characterization of Mangrove ecosystems in southern India

    NASA Astrophysics Data System (ADS)

    Padma, S.; Sanjeevi, S.

    2014-11-01

    Mangrove ecosystem study is one of the main beneficiaries of the application of hyperspectral data and spectral matching techniques. Diversity and density of mangrove species leads to complexity of the ecosystem. Hence, species level mapping becomes difficult. Though hyperspectral images are appropriate for such a mapping, different mangrove species with closely matching spectra pose a challenge. This paper proposes a novel hyperspectral matching algorithm by integrating the stochastic Jeffries-Matusita measure (JM) and deterministic Spectral Angle Mapper (SAM) to accurately map most species of the mangrove ecosystem. The JM-SAM algorithm signifies the combination of an quantitative angle measure (SAM) and an qualitative distance measure (JM). The spectral capabilities of both the measures are orthogonally projected using tangent and sine functions to result in the combined algorithm. The developed JM-SAM algorithm is implemented to discriminate the mangrove species and the landcover classes of Pichavaram and Muthupet mangrove forests of southern India using the Hyperion datasets. The developed algorithm is extended in a supervised framework for improved classification of the Hyperion image. The reference spectra of the mangrove species and other cover types are extracted from the Hyperion image. From the values of relative spectral discriminatory probability and relative discriminatory entropy value, it can be inferred that hybrid JM-SAM matching measure results in improved discriminability than the individual SAM and JM algorithms. This performance is reflected in the classification results where the JM-SAM (TAN) and JM-SAM (SIN) matching algorithms yielded an improved accuracy of (86.25%,85%) and (88.10%, 86.96) for both the study sites.

  20. Follow That Satellite: EO-1 Maneuvers into Closed Formation With Landsat-7

    NASA Technical Reports Server (NTRS)

    DeFazio, Robert; Owens, Skip; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    As the Landsat-7 spacecraft continued NASA's historic program of earth imaging, begun over three decades ago, NASA launched the Earth Observing-1 (EO-1) spacecraft carrying examples of the next generation of Landsat-7 instruments. The validation method for these instruments was to have EO-1 fly in a close formation behind Landsat-7 on the same World Reference System path. From that formation hundreds of near coincident images would be taken by each spacecraft and compared to evaluate improvements in the EO-1 instruments. This paper will address the mission analysis required to launch and maneuver EO-1 into the formation with Landsat-7 where instrument validation was to occur plus a summary of completing the formation acquisition. EO-1 is required to operate one minute +/- 6 seconds behind Landsat-7 during the period of co-fly imaging with a cross track separation of within + 3 kilometers. This separation time can also be stated as a one minute +/- 6 seconds time difference in the Mean Local Time (MLT) at the descending nodes. Achieving the required MLT is heavily dependent on the time of launch. The EO-1 launch window, which had to accommodate the dual payloads of EO-1 and SAC-C, was very limited ranging from 0 to 22 seconds over the 16 day Landsat-7 WRS repeat cycle during which EO-1 was launched. Each EO-1 launch opportunity that occurred on a different day of a Landsat-7 16 day repeat cycle required a separate and distinct maneuver profile. These profiles varied significantly in duration and amount of onboard propellant required to achieve them. EO-1 launched on a day judged to have "medium" resource requirements for achieving the formation with Landsat-7. To phase EO-1 one minute behind Landsat-7 in the along track direction, a series of altitude adjusts separated by specific drift intervals were executed. Additional maneuvers slightly changed the EO-1 inclination to maintain the MLT requirements. Orbit maneuvers were planned and executed within errors of less

  1. Surface Features Analysis in Salt-Affected Area Using Hyperspectral Data: A Case Study in the Zone of Chotts, Tunisia

    NASA Astrophysics Data System (ADS)

    Bouaziz, Moncef; Liesenberg, Veraldo; Bouaziz, Samir; Gloaguen, Richard

    2010-12-01

    Arid and semi-arid regions are most affected by Salinity. Chotts regions in southern Tunisia are such an area, where the excessive content of salt in the soil is a hard faced problem. Soil salinity in this area enforces several environmental problems such as limiting plant growth, reducing crop productivity, degrading soil quality and leads to accelerated rates rill and gully erosion . Remote sensing analysis by the mean of spectral analysis, geomorphologic aspect from digital elevation models and distribution of rainfall intensity from satellite data are used in this study to discern features and patterns of areas affected by salt. Correlation between these remote sensing indicators is made in order to assess the contribution of each indicator to identify the salt-affected area. The approach followed in this study was applied on Hyperspectral data from EO-1 Mission. Hyperion data are promoted due to their very high spectral resolution and wide enhanced spatial information. The present study highlighted the high correlation between the flat surfaces and the high content of salt in the soil (from soil salinity indices) on one hand and a low correlation between the high intensity of rainfall distribution and indicators of low salt content in the soil on the other hand.

  2. 16. LIGHTING AND PILLAR DETAIL VIEW ON HYPERION BOULEVARD VIADUCT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. LIGHTING AND PILLAR DETAIL VIEW ON HYPERION BOULEVARD VIADUCT AT OVERCROSSING OF RIVERSIDE DRIVE. LOOKING NORTH. - Glendale-Hyperion Viaduct, Spanning Golden State Freeway (I-5) & Los Angeles River at Glendale Boulevard, Los Angeles, Los Angeles County, CA

  3. Follow That Satellite: EO-1 Maneuvers Into Close Formation With Landsat-7

    NASA Technical Reports Server (NTRS)

    DeFazio, Robert L.; Owens, Skip; Good, Susan; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    As the Landsat-7 (LS-7) spacecraft continued NASA's historic program of earth imaging begun over three decades ago, NASA launched the Earth Observing-1 (EO-1) spacecraft carrying examples of the next generation of LS instruments. The validation method for these instruments was to have EO-1 fly in a close formation behind LS-7 on the same World Reference System (WRS) path. From that formation hundreds of near-coincident images would be taken by each spacecraft and compared to evaluate improvements in the EO-1 instruments. This paper will address the mission analysis required to launch and maneuver EO-1 into the formation with LS-7 where instrument validation was to occur plus a summary of completing the formation acquisition. Each EO-1 launch opportunity that occurred on a different day of a LS-7 16-day repeat cycle required a separate and distinct maneuver profile.

  4. Assessment of the Spectral Stability of Libya 4, Libya 1, and Mauritania 2 Sites Using Earth Observing One Hyperion

    NASA Technical Reports Server (NTRS)

    Choi, Taeyoung; Xiong, Xiaoxiong; Angal, Amit; Chander, Gyanesh; Qu, John J.

    2014-01-01

    The objective of this paper is to formulate a methodology to assess the spectral stability of the Libya 4, Libya 1, and Mauritania 2 pseudo-invariant calibration sites (PICS) using Earth Observing One (EO-1) Hyperion sensor. All the available Hyperion collections, downloaded from the Earth Explorer website, were utilized for the three PICS. In each site, a reference spectrum is selected at a specific day in the vicinity of the region of interest (ROI) defined by Committee on Earth Observation Satellites (CEOS). A series of ROIs are predefined in the along-track direction with 196 spectral top-of-atmosphere reflectance values in each ROI. Based on the reference ROI spectrum, the spectral stability of these ROIs is evaluated by average deviations (ADs) and spectral angle mapper (SAM) methods in the specific ranges of time and geo-spatial locations. Time and ROI location-dependent SAM and AD results are very stable within +/- 2 deg and +/-1.7% of 1sigma standard deviations. Consequently, the Libya 4, Mauritania 2, and Libya 1 CEOS selected PICS are spectrally stable targets within the time and spatial swath ranges of the Hyperion collections.

  5. Spatial resolution enhancement of EO-1 ALI bands

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos G.

    2006-09-01

    spectral characteristics, they do not take into account the resolution ratio of the input images. Usually the spatial resolution of the panchromatic image is two (Landsat 7, Spot 1-4) or four times (Ikonos, Quickbird) better than the size of the multispectral images. This paper is an attempt to fuse high-resolution panchromatic and low-resolution multispectral bands of the EO-1 ALI sensor. ALI collects nine multispectral bands with 30m resolution and a panchromatic band with 3 times better resolution (10m). ALI has a panchromatic band narrower than the respective band of Landsat7. It has also two narrower bands in the spectral range of Landsat7 band 4. It has also an extra narrower band near the spectral range of Landsat7 band 1. In this study we compare the efficiency of seven fusion techniques and more especially the efficiency of Gram Schmidt, Modified IHS, PCA, Pansharp, Wavelet and LMM (Local Mean Matching) LMVM (Local Mean and Variance Matching) fusion techniques for the fusion of ALI data. Two ALI images collected over the same area have been used. In order to quantitatively measure the quality of the fused images we have made the following controls: Firstly, we have examined the optical qualitative result. Then, we examined the correlation between the original multispectral and the fused images and all the statistical parameters of the histograms of the various frequency bands. All the fusion techniques improve the resolution and the optical result. In contrary to the fusion of other data (ETM, Spot5, Ikonos and Quickbird) all the algorithms provoke small changes to the statistical parameters.

  6. Ecological site classification of semiarid rangelands: Synergistic use of Landsat and Hyperion imagery

    NASA Astrophysics Data System (ADS)

    Blanco, Paula D.; del Valle, Héctor F.; Bouza, Pablo J.; Metternicht, Graciela I.; Hardtke, Leonardo A.

    2014-06-01

    Ecological sites are the basic entity used in rangeland health assessment. This study evaluates the synergistic use of multi- and hyper-spectral satellite imagery for sub-pixel classification of ecological sites in semiarid rangelands. Hyperion and Landsat enhanced thematic mapper (ETM) data are included in a two-step procedure to mapping ecological sites in Patagonian rangelands of Argentina. Firstly, mixture tuned matched filtering and logistic regression analyses are used for Hyperion data processing to obtain ecological site probability images in the area covered by hyperspectral imagery. Secondly, artificial neural networks are applied to model the relationships between the spectral response patterns of Landsat and the probability images from Hyperion, and used to map ecological sites over the entire study area. Overall classification accuracy was 81% (kappa = 0.77) with relatively high accuracies for all ecological sites demonstrating that their spectral signatures are sufficiently distinct to be detectable. Better accuracies were obtained for shrub steppes with desert pavement (producer's and user's accuracies of 89% and 84%, respectively), and shrub-grass steppes associated to tertiary calcareous outcrops (producer's and user's accuracies of 100% and 86%, respectively), while poorer accuracies resulted for shrub-grass steppes on old alluvial plains (producer's and user's accuracies of 75% and 56%, respectively). Fuzzy maps of ecological sites as presented in this research can provide rangeland managers with a tool to stratify the landscape and organize ecological information for rangeland health assessment and monitoring, prioritizing and selecting appropriate management actions, and promoting the recovery of areas degraded in these environments.

  7. Active Volcano Monitoring using a Space-based Hyperspectral Imager

    NASA Astrophysics Data System (ADS)

    Cipar, J. J.; Dunn, R.; Cooley, T.

    2010-12-01

    Active volcanoes occur on every continent, often in close proximity to heavily populated areas. While ground-based studies are essential for scientific research and disaster mitigation, remote sensing from space can provide rapid and continuous monitoring of active and potentially active volcanoes [Ramsey and Flynn, 2004]. In this paper, we report on hyperspectral measurements of Kilauea volcano, Hawaii. Hyperspectral images obtained by the US Air Force TacSat-3/ARTEMIS sensor [Lockwood et al, 2006] are used to obtain estimates of the surface temperatures for the volcano. ARTEMIS measures surface-reflected light in the visible, near-infrared, and short-wave infrared bands (VNIR-SWIR). The SWIR bands are known to be sensitive to thermal radiation [Green, 1996]. For example, images from the NASA Hyperion hyperspectral sensor have shown the extent of wildfires and active volcanoes [Young, 2009]. We employ the methodology described by Dennison et al, (2006) to obtain an estimate of the temperature of the active region of Kilauea. Both day and night-time images were used in the analysis. To improve the estimate, we aggregated neighboring pixels. The active rim of the lava lake is clearly discernable in the temperature image, with a measured temperature exceeding 1100o C. The temperature decreases markedly on the exterior of the summit crater. While a long-wave infrared (LWIR) sensor would be ideal for volcano monitoring, we have shown that the thermal state of an active volcano can be monitored using the SWIR channels of a reflective hyperspectral imager. References: Dennison, Philip E., Kraivut Charoensiri, Dar A. Roberts, Seth H. Peterson, and Robert O. Green (2006). Wildfire temperature and land cover modeling using hyperspectral data, Remote Sens. Environ., vol. 100, pp. 212-222. Green, R. O. (1996). Estimation of biomass fire temperature and areal extent from calibrated AVIRIS spectra, in Summaries of the 6th Annual JPL Airborne Earth Science Workshop, Pasadena, CA

  8. Hyperion 5113/GP Infrasound Sensor Evaluation.

    SciTech Connect

    Merchant, Bion J.

    2015-08-01

    Sandia National Laboratories has tested and evaluated an infrasound sensor, the 5113/GP manufactured by Hyperion. These infrasound sensors measure pressure output by a methodology developed by the University of Mississippi. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, transfer function, power, self-noise, dynamic range, and seismic sensitivity. These sensors are being evaluated prior to deployment by the U.S. Air Force.

  9. Lead-bismuth eutectic technology for Hyperion reactor

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Kapernick, R. J.; McClure, P. R.; Trapp, T. J.

    2013-10-01

    A small lead-bismuth eutectic-cooled reactor concept (referred to as the Hyperion reactor concept) is being studied at Los Alamos National Laboratory and Hyperion Power Generation. In this report, a critical assessment of the lead-bismuth eutectic technology for Hyperion reactor is presented based on currently available knowledge. Included are: material compatibility, oxygen control, thermal hydraulics, polonium control. The key advances in the technology and their applications to Hyperion reactor design are analyzed. Also, the near future studies in main areas of the technology are recommended for meeting the design requirements.

  10. Satellite Hyperspectral Imaging Simulation

    NASA Technical Reports Server (NTRS)

    Zanoni, Vicki; Stanley, Tom; Blonski, Slawomir; Cao, Changyong; Gasser, Jerry; Ryan, Robert; Zanoni, Vicki; Stanley, Tom

    1999-01-01

    Simulations of generic pushbroom satellite hyperspetral sensors have been performed to evaluate the potential performance and validation techniques for satellite systems such as COIS (NEMO), Warfighter-1 (OrbView-4), and Hyperion (EO-1). The simulaitons start with a generation of synthetic scenes form material maps of studied terrain. Scene-reflected radiance is corrected for atmospheric effects and convolved with sensor spectral response uwing MODTRAN 4 radiance and transmission calculations. Scene images are further convolved with point spread functions derived from Optical Transfer Functions (OTF's) of the sensor system. Photon noise and detector/electronics noise are added to the simulated images, which are also finally quantized to the sensor bit resolution. Studied scenes include bridges and straight roads used for evaluation of sensor spatial resolution, as well as fields of minerals, vegetation, and manmade materials used for evaluation of sensor radiometric response and sensitivity. The scenes are simulated with various seasons and weather conditions. Signal-to-noise ratos and expected performance are estimated for typica satellite system specifications and are discussed for all the scenes.

  11. The new millennium program EO-1 mission and spacecraft design concept.

    NASA Astrophysics Data System (ADS)

    Speer, D.; Hestnes, P.; Perry, M.; Stabnow, B.

    Earth Orbiter 1 (EO-1) is the first in a series of Earth Orbiter spacecraft for NASA's New Millennium Program (NMP). Government, academia and industry have been teamed together to develop the EO-1 spacecraft. The mission, instruments, NMP technologies, and spacecraft subsystems are discussed. The remote sensing science instruments which will be flown on the EO-1 spacecraft are the Advanced Land Imager and the Atmospheric Corrector. The NMP technologies planned for spaceflight validation by EO-1 include an X-band phased array antenna, a pulsed plasma thruster, a high-rate fiber optic data bus, a lightweight flexible solar array, formation flight with Landsat-7, and carbon-carbon thermal radiators. The data subsystem contains several new technologies. Other subsystems include attitude control, power, RF communications, structure and mechanisms, and thermal subsystem. The EO-1 mission is a good example of the faster-better-cheaper philosophy that NASA has adopted for its spacecraft, and paves the way for constructing future spacecraft in the new millennium.

  12. Tree Canopy Characterization for EO-1 Reflective and Thermal Infrared Validation Studies: Rochester, New York

    NASA Technical Reports Server (NTRS)

    Ballard, Jerrell R., Jr.; Smith, James A.

    2002-01-01

    The tree canopy characterization presented herein provided ground and tree canopy data for different types of tree canopies in support of EO-1 reflective and thermal infrared validation studies. These characterization efforts during August and September of 2001 included stem and trunk location surveys, tree structure geometry measurements, meteorology, and leaf area index (LAI) measurements. Measurements were also collected on thermal and reflective spectral properties of leaves, tree bark, leaf litter, soil, and grass. The data presented in this report were used to generate synthetic reflective and thermal infrared scenes and images that were used for the EO-1 Validation Program. The data also were used to evaluate whether the EO-1 ALI reflective channels can be combined with the Landsat-7 ETM+ thermal infrared channel to estimate canopy temperature, and also test the effects of separating the thermal and reflective measurements in time resulting from satellite formation flying.

  13. 5. VICTORY MEMORIAL, SOUT SIDE OF HYPERION BOULEVARD VIADUCT LOCATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VICTORY MEMORIAL, SOUT SIDE OF HYPERION BOULEVARD VIADUCT LOCATED IN MIDDLE OF VIADUCT BETWEEN LOS ANGELES RIVER CROSSING AND INTERSTATE I-5 CROSSING. LOOKING NORTHWEST. SEE PHOTO CA-275-3 FOR CONTEXTUAL VIEW. - Glendale-Hyperion Viaduct, Spanning Golden State Freeway (I-5) & Los Angeles River at Glendale Boulevard, Los Angeles, Los Angeles County, CA

  14. 15. LIGHTING DETAIL ON WAVERLY DRIVE OVERCROSSING HYPERION BOULEVARD. LAMPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. LIGHTING DETAIL ON WAVERLY DRIVE OVERCROSSING HYPERION BOULEVARD. LAMPS ALSO SEEN IN CA-272-13. LOOKING EAST/SOUTHEAST. - Glendale-Hyperion Viaduct, Spanning Golden State Freeway (I-5) & Los Angeles River at Glendale Boulevard, Los Angeles, Los Angeles County, CA

  15. Spectral Ratio Imaging with Hyperion Satellite Data for Geological Mapping

    NASA Technical Reports Server (NTRS)

    Vincent, Robert K.; Beck, Richard A.

    2005-01-01

    Since the advent of LANDSAT I in 1972, many different multispectral satellites have been orbited by the U.S. and other countries. These satellites have varied from 4 spectral bands in LANDSAT I to 14 spectral bands in the ASTER sensor aboard the TERRA space platform. Hyperion is a relatively new hyperspectral sensor with over 220 spectral bands. The huge increase in the number of spectral bands offers a substantial challenge to computers and analysts alike when it comes to the task of mapping features on the basis of chemical composition, especially if little or no ground truth is available beforehand from the area being mapped. One approach is the theoretical approach of the modeler, where all extraneous information (atmospheric attenuation, sensor electronic gain and offset, etc.) is subtracted off and divided out, and laboratory (or field) spectra of materials are used as training sets to map features in the scene of similar composition. This approach is very difficult to keep accurate because of variations in the atmosphere, solar illumination, and sensor electronic gain and offset that are not always perfectly recorded or accounted for. For instance, to apply laboratory or field spectra of materials as data sets from the theoretical approach, the header information of the files must reflect the correct, up-to-date sensor electronic gain and offset and the analyst must pick the exact atmospheric model that is appropriate for the day of data collection in order for classification procedures to accurately match pixels in the scene with the laboratory or field spectrum of a desired target on the basis of the hyperspectral data. The modeling process is so complex that it is difficult to tell when it is operating well or determine how to fix it when it is incorrect. Recently RSI has announced that the latest version of their ENVI software package is not performing atmospheric corrections correctly with the FLAASH atmospheric model. It took a long time to determine

  16. Hyperion 5113/A Infrasound Sensor Evaluation

    SciTech Connect

    Merchant, Bion John

    2015-09-01

    Sandia National Laboratories has tested and evaluated an infrasound sensor, the 5113/A manufactured by Hyperion. These infrasound sensors measure pressure output by a methodology developed by the University of Mississippi. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, transfer function, power, self-noise, and dynamic range. The 5113/A infrasound sensor is a new revision of the 5000 series intended to meet the infrasound application requirements for use in the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO).

  17. On-orbit characterization of hyperspectral imagers

    NASA Astrophysics Data System (ADS)

    McCorkel, Joel

    Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne- and satellite-based sensors. Often, ground-truth measurements at these tests sites are not always successful due to weather and funding availability. Therefore, RSG has also employed automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor. This dissertation presents a method for determining the radiometric calibration of a hyperspectral imager using multispectral imagery. The work relies on a multispectral sensor, Moderate-resolution Imaging Spectroradiometer (MODIS), as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. A method to predict hyperspectral surface reflectance using a combination of MODIS data and spectral shape information is developed and applied for the characterization of Hyperion. Spectral shape information is based on RSG's historical in situ data for the Railroad Valley test site and spectral library data for the Libyan test site. Average atmospheric parameters, also based on historical measurements, are used in reflectance prediction and transfer to space. Results of several cross-calibration scenarios that differ in image acquisition coincidence, test site, and reference sensor are found for the characterization of Hyperion. These are compared with results from the reflectance-based approach of vicarious calibration, a well-documented method developed by the RSG that serves as a baseline for calibration performance for the cross-calibration method developed here. Cross-calibration provides results that are within 2% of those of reflectance-based results in most spectral regions. Larger disagreements exist

  18. ESTIMATION OF LAND SURFACE BROADBAND ALBEDOS AND LEAF AREA INDEX FROM EO-1 DATA AND VALIDATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Advanced Land Imager (ALI) is a multispectral sensor onboard NASA Earth Observer-1 (EO-1). It has similar spatial resolution to the Landsat-7 Enhanced Thematic Mapper Plus (ETM+), with three additional spectral bands. We developed new algorithms for estimating both land surface broadband albedo...

  19. SensorWeb Evolution Using the Earth Observing One (EO-1) Satellite as a Test Platform

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Frye, Stuart; Cappelaere, Pat; Ly, Vuong; Handy, Matthew; Chien, Steve; Grossman, Robert; Tran, Daniel

    2012-01-01

    The Earth Observing One (EO-1) satellite was launched in November 2000 as a one year technology demonstration mission for a variety of space technologies. After the first year, in addition to collecting science data from its instruments, the EO-1 mission has been used as a testbed for a variety of technologies which provide various automation capabilities and which have been used as a pathfinder for the creation of SensorWebs. A SensorWeb is the integration of variety of space, airborne and ground sensors into a loosely coupled collaborative sensor system that automatically provides useful data products. Typically, a SensorWeb is comprised of heterogeneous sensors tied together with a messaging architecture and web services. This paper provides an overview of the various technologies that were tested and eventually folded into normal operations. As these technologies were folded in, the nature of operations transformed. The SensorWeb software enables easy connectivity for collaboration with sensors, but the side benefit is that it improved the EO-1 operational efficiency. This paper presents the various phases of EO-1 operation over the past 12 years and also presents operational efficiency gains demonstrated by some metrics.

  20. Are Hyperion and Phoebe Linked to Iapetus?

    NASA Astrophysics Data System (ADS)

    Jarvis, Kandy S.; Vilas, Faith; Larson, Stephen M.; Gaffey, Michael J.

    2000-07-01

    Narrowband reflectance spectra of the saturnian satellites S VII Hyperion and S IX Phoebe were obtained across the 0.4- to 0.8-μm spectral region. The spectrum of Phoebe shows an absorption feature centered near 0.43 μm superimposed on the UV/blue intervalence charge transfer transition present in the spectrum, similar to absorptions identified in the spectra of C-class asteroids (Vilas et al. 1993b. Icarus105, 67-78). We use a linear mixing model to separate the reflectance spectrum of the dark material on Hyperion from the icy material. A distinct absorption feature centered at 0.67 μm is present. A slight inflection suggesting an absorption feature near 0.4-0.6 μm, and change in slope near 0.73 μm suggesting the lower wavelength edge of an absorption, are also present. These absorptions are very similar to those identified in the spectrum of the dark material on the surface of Iapetus (Vilas et al. 1996. Icarus124, 262-267), suggesting that the dark material on these two satellites is compositionally similar and has a similar origin. We attribute these absorption features to the 6A 1→ 4T 2(G) and 6A 1→ 4T 1(G) ferric charge transfer transitions in iron alteration minerals such as goethite and hematite that are products of the aqueous alteration of anhydrous silicates.

  1. Detection and correction of spectral and spatial misregistrations for hyperspectral data using phase correlation method.

    PubMed

    Yokoya, Naoto; Miyamura, Norihide; Iwasaki, Akira

    2010-08-20

    Hyperspectral imaging sensors suffer from spectral and spatial misregistrations due to optical-system aberrations and misalignments. These artifacts distort spectral signatures that are specific to target objects and thus reduce classification accuracy. The main objective of this work is to detect and correct spectral and spatial misregistrations of hyperspectral images. The Hyperion visible near-infrared subsystem is used as an example. An image registration method based on phase correlation demonstrates the accurate detection of the spectral and spatial misregistrations. Cubic spline interpolation using estimated properties makes it possible to modify the spectral signatures. The accuracy of the proposed postlaunch estimation of the Hyperion characteristics is comparable to that of the prelaunch measurements, which enables the accurate onboard calibration of hyperspectral sensors. PMID:20733628

  2. Simulating Visible/Infrared Imager Radiometer Suite Normalized Difference Vegetation Index Data Using Hyperion and MODIS

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; Russell, Jeffrey; Ryan, Robert E.

    2006-01-01

    The success of MODIS (the Moderate Resolution Imaging Spectrometer) in creating unprecedented, timely, high-quality data for vegetation and other studies has created great anticipation for data from VIIRS (the Visible/Infrared Imager Radiometer Suite). VIIRS will be carried onboard the joint NASA/Department of Defense/National Oceanic and Atmospheric Administration NPP (NPOESS (National Polar-orbiting Operational Environmental Satellite System) Preparatory Project). Because the VIIRS instruments will have lower spatial resolution than the current MODIS instruments 400 m versus 250 m at nadir for the channels used to generate Normalized Difference Vegetation Index data, scientists need the answer to this question: how will the change in resolution affect vegetation studies? By using simulated VIIRS measurements, this question may be answered before the VIIRS instruments are deployed in space. Using simulated VIIRS products, the U.S. Department of Agriculture and other operational agencies can then modify their decision support systems appropriately in preparation for receipt of actual VIIRS data. VIIRS simulations and validations will be based on the ART (Application Research Toolbox), an integrated set of algorithms and models developed in MATLAB(Registerd TradeMark) that enables users to perform a suite of simulations and statistical trade studies on remote sensing systems. Specifically, the ART provides the capability to generate simulated multispectral image products, at various scales, from high spatial hyperspectral and/or multispectral image products. The ART uses acquired ( real ) or synthetic datasets, along with sensor specifications, to create simulated datasets. For existing multispectral sensor systems, the simulated data products are used for comparison, verification, and validation of the simulated system s actual products. VIIRS simulations will be performed using Hyperion and MODIS datasets. The hyperspectral and hyperspatial properties of Hyperion

  3. Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin; Bauer, Frank (Technical Monitor)

    2002-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Flight Dynamics Analysis Branch at the Goddard Space Flight Center implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm, the onboard flight design and the validation results of this unique system. Results from fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon, its ground-based predecessor used in operations, and the original standalone algorithm. Maneuvers discussed encompass reactionary, routine formation maintenance, and inclination control. Orbital data is also examined to verify that all formation flying requirements were met.

  4. Results Of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin

    2002-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called Enhanced Formation Flying. To enable this technology, a team at the Goddard Space Flight Center implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm, the onboard flight design and the validation results of this unique system. Results from fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(trademark), its ground-based predecessor used in operations, and the original standalone algorithm. Maneuvers discussed encompass reactionary, routine formation maintenance, and inclination control. Orbital data is also examined to verify that all formation flying requirements were met.

  5. Integration and Test Flight Validation Plans for the Pulsed Plasma Thruster Experiment on EO- 1

    NASA Technical Reports Server (NTRS)

    Zakrzwski, Charles; Benson, Scott; Sanneman, Paul; Hoskins, Andy; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing One (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. The PPT is a small, self-contained pulsed electromagnetic propulsion system capable of delivering high specific impulse (900-1200 s), very small impulse bits (10-1000 uN-s) at low average power (less than 1 to 100 W). Teflon fuel is ablated and slightly ionized by means of a capacitative discharge. The discharge also generates electromagnetic fields that accelerate the plasma by means of the Lorentz Force. EO-1 has a single PPT that can produce thrust in either the positive or negative pitch direction. The flight validation has been designed to demonstrate of the ability of the PPT to provide precision pointing accuracy, response and stability, and confirmation of benign plume and EMI effects. This paper will document the success of the flight validation.

  6. Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Hawkins, Albin; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center (GSFC) implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard flight design and presents the validation results of this unique system. Results from functionality assessment through fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a standalone algorithm.

  7. Preliminary Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin

    2001-01-01

    NASA's first autonomous formation flying mission is completing a primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center has implemented an autonomous universal three-axis formation flying algorithm in executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard design and presents the preliminary validation results of this unique system. Results from functionality assessment and autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a stand-alone algorithm.

  8. A geometric performance assessment of the EO-1 advanced land imager

    USGS Publications Warehouse

    Storey, J.C.; Choate, M.J.; Meyer, D.J.

    2004-01-01

    The Earth Observing 1 (EO-1) Advanced Land Imager (ALI) demonstrates technology applicable to a successor system to the Landsat Thematic Mapper series. A study of the geometric performance characteristics of the ALI was conducted under the auspices of the EO-1 Science Validation Team. This study evaluated ALI performance with respect to absolute pointing knowledge, focal plane sensor chip assembly alignment, and band-to-band registration for purposes of comparing this new technology to the heritage Landsat systems. On-orbit geometric calibration procedures were developed that allowed the generation of ALI geometrically corrected products that compare favorably with their Landsat 7 counterparts with respect to absolute geodetic accuracy, internal image geometry, and band registration.

  9. Design of the EO-1 Pulsed Plasma Thruster Attitude Control Experiment

    NASA Technical Reports Server (NTRS)

    Zakrzwski, Charles; Sanneman, Paul; Hunt, Teresa; Blackman, Kathie; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing 1 (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. The PPT is a small, self-contained pulsed electromagnetic Propulsion system capable of delivering high specific impulse (900-1200 s), very small impulse bits (10-1000 micro N-s) at low average power (less than 1 to 100 W). EO-1 has a single PPT that can produce torque in either the positive or negative pitch direction. For the PPT in-flight experiment, the pitch reaction wheel will be replaced by the PPT during nominal EO-1 nadir pointing. A PPT specific proportional-integral-derivative (PID) control algorithm was developed for the experiment. High fidelity simulations of the spacecraft attitude control capability using the PPT were conducted. The simulations, which showed PPT control performance within acceptable mission limits, will be used as the benchmark for on-orbit performance. The flight validation will demonstrate the ability of the PPT to provide precision pointing resolution. response and stability as an attitude control actuator.

  10. Flora: A Proposed Hyperspectral Mission

    NASA Technical Reports Server (NTRS)

    Ungar, Stephen; Asner, Gregory; Green, Robert; Knox, Robert

    2006-01-01

    In early 2004, one of the authors (Stephen Ungar, NASA GSFC) presented a mission concept called "Spectrasat" at the AVIRIS Workshop in Pasadena, CA. This mission concept grew out of the lessons learned from the Earth Observing-One (EO-1) Hyperion Imaging Spectrometer and was structured to more effectively accomplish the types of studies conducted with Hyperion. The Spectrasat concept represented an evolution of the technologies and operation strategies employed on EO-I. The Spectrasat concept had been preceded by two community-based missions proposed by Susan Ustin, UC Davis and Robert Green, NASA JPL. As a result of community participation, starting at this AVIRIS Workshop, the Spectrasat proposal evolved into the Flora concept which now represents the combined visions of Gregory Asner (Carnegie Institute), Stephen Ungar, Robert Green and Robert Knox, NASA GSFC. Flora is a proposed imaging spectrometer mission, designed to address global carbon cycle science issues. This mission centers on measuring ecological disturbance for purposes of ascertaining changes in global carbon stocks and draws heavily on experience gained through AVIRIS airborne flights and Hyperion space born flights. The observing strategy exploits the improved ability of imaging spectrometers, as compared with multi-spectral observing systems, to identify vegetation functional groups, detect ecosystem response to disturbance and assess the related discovery. Flora will be placed in a sun synchronous orbit, with a 45 meter pixel size, a 90 km swath width and a 31 day repeat cycle. It covers the spectral range from 0.4 to 2.5 micrometers with a spectral sampling interval of 10 nm. These specifications meet the needs of the Flora science team under the leadership of Gregory Asner. Robert Green, has introduced a spectrometer design for Flora which is expected to have a SNR of 600: 1 in the VNIR and 450: 1 in the SWIR. The mission team at NASA GSFC is designing an Intelligent Payload Module (IPM

  11. Radiometric Characterization of Hyperspectral Imagers using Multispectral Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Kurt, Thome; Leisso, Nathan; Anderson, Nikolaus; Czapla-Myers, Jeff

    2009-01-01

    The Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne and satellite based sensors. Often, ground-truth measurements at these test sites are not always successful due to weather and funding availability. Therefore, RSG has also automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor, This work studies the feasibility of determining the radiometric calibration of a hyperspectral imager using multispectral a imagery. The work relies on the Moderate Resolution Imaging Spectroradiometer (M0DIS) as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. Hyperion bands are compared to MODIS by band averaging Hyperion's high spectral resolution data with the relative spectral response of M0DlS. The results compare cross-calibration scenarios that differ in image acquisition coincidence, test site used for the calibration, and reference sensor. Cross-calibration results are presented that show agreement between the use of coincident and non-coincident image pairs within 2% in most brands as well as similar agreement between results that employ the different MODIS sensors as a reference.

  12. Radiometric characterization of hyperspectral imagers using multispectral sensors

    NASA Astrophysics Data System (ADS)

    McCorkel, Joel; Thome, Kurt; Leisso, Nathan; Anderson, Nikolaus; Czapla-Myers, Jeff

    2009-08-01

    The Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne and satellite based sensors. Often, ground-truth measurements at these tests sites are not always successful due to weather and funding availability. Therefore, RSG has also employed automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor. This work studies the feasibility of determining the radiometric calibration of a hyperspectral imager using multispectral imagery. The work relies on the Moderate Resolution Imaging Spectroradiometer (MODIS) as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. Hyperion bands are compared to MODIS by band averaging Hyperion's high spectral resolution data with the relative spectral response of MODIS. The results compare cross-calibration scenarios that differ in image acquisition coincidence, test site used for the calibration, and reference sensor. Cross-calibration results are presented that show agreement between the use of coincident and non-coincident image pairs within 2% in most bands as well as similar agreement between results that employ the different MODIS sensors as a reference.

  13. Cross calibration of the Landsat-7 ETM+ and EO-1 ALI sensor

    USGS Publications Warehouse

    Chander, G.; Meyer, D.J.; Helder, D.L.

    2004-01-01

    As part of the Earth Observer 1 (EO-1) Mission, the Advanced Land Imager (ALI) demonstrates a potential technological direction for Landsat Data Continuity Missions. To evaluate ALI's capabilities in this role, a cross-calibration methodology has been developed using image pairs from the Landsat-7 (L7) Enhanced Thematic Mapper Plus (ETM+) and EO-1 (ALI) to verify the radiometric calibration of ALI with respect to the well-calibrated L7 ETM+ sensor. Results have been obtained using two different approaches. The first approach involves calibration of nearly simultaneous surface observations based on image statistics from areas observed simultaneously by the two sensors. The second approach uses vicarious calibration techniques to compare the predicted top-of-atmosphere radiance derived from ground reference data collected during the overpass to the measured radiance obtained from the sensor. The results indicate that the relative sensor chip assemblies gains agree with the ETM+ visible and near-infrared bands to within 2% and the shortwave infrared bands to within 4%.

  14. On-Orbit Testing of the EO-1 Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Zakrzwski, Charles; Benson, Scott; Sanneman, Paul; Hoskins, Andrew

    2002-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing 1 (EO-1) spacecraft has demonstrated the capability of a new generation PPT to perform spacecraft attitude control. The PPT is a small, self-contained pulsed electromagnetic propulsion system capable of delivering high specific impulse (900-1200 s) and very small impulse bits (10-1000 microN-s) at low average power (4 to 100 W). EO-1 has a single PPT that can produce torque in the positive or negative pitch direction and replace the function of the spacecraft s pitch reaction wheel. The flight validation experiment was designed to demonstrate the ability of the PPT to provide precision pointing accuracy, response and stability, and to confirm that the thruster plume and EMI effects on the spacecraft and instruments were benign. The PPT has been successfully used for pitch attitude control accumulating over 26 hours of operational time with over 96,000 pulses. Thruster performance has been nominal and all spacecraft subsystems and instruments continue to show no detrimental effects from PPT operation.

  15. NASA's Autonomous Formation Flying Technology Demonstration, Earth Observing-1(EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Bristow, John; Hawkins, Albin; Dell, Greg

    2002-01-01

    NASA's first autonomous formation flying mission, the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft, recently completed its principal goal of demonstrating advanced formation control technology. This paper provides an overview of the evolution of an onboard system that was developed originally as a ground mission planning and operations tool. We discuss the Goddard Space Flight Center s formation flying algorithm, the onboard flight design and its implementation, the interface and functionality of the onboard system, and the implementation of a Kalman filter based GPS data smoother. A number of safeguards that allow the incremental phasing in of autonomy and alleviate the potential for mission-impacting anomalies from the on- board autonomous system are discussed. A comparison of the maneuvers planned onboard using the EO-1 autonomous control system to those from the operational ground-based maneuver planning system is presented to quantify our success. The maneuvers discussed encompass reactionary and routine formation maintenance. Definitive orbital data is presented that verifies all formation flying requirements.

  16. Evolving EO-1 Sensor Web Testbed Capabilities in Pursuit of GEOSS

    NASA Technical Reports Server (NTRS)

    Mandi, Dan; Ly, Vuong; Frye, Stuart; Younis, Mohamed

    2006-01-01

    A viewgraph presentation to evolve sensor web capabilities in pursuit of capabilities to support Global Earth Observing System of Systems (GEOSS) is shown. The topics include: 1) Vision to Enable Sensor Webs with "Hot Spots"; 2) Vision Extended for Communication/Control Architecture for Missions to Mars; 3) Key Capabilities Implemented to Enable EO-1 Sensor Webs; 4) One of Three Experiments Conducted by UMBC Undergraduate Class 12-14-05 (1 - 3); 5) Closer Look at our Mini-Rovers and Simulated Mars Landscae at GSFC; 6) Beginning to Implement Experiments with Standards-Vision for Integrated Sensor Web Environment; 7) Goddard Mission Services Evolution Center (GMSEC); 8) GMSEC Component Catalog; 9) Core Flight System (CFS) and Extension for GMSEC for Flight SW; 10) Sensor Modeling Language; 11) Seamless Ground to Space Integrated Message Bus Demonstration (completed December 2005); 12) Other Experiments in Queue; 13) Acknowledgements; and 14) References.

  17. Radiometric calibration stability of the EO-1 advanced land imager: 5 years on-orbit

    USGS Publications Warehouse

    Markham, B.L.; Ong, L.; Barsi, J.A.; Mendenhall, J.A.; Lencioni, D.E.; Helder, D.L.; Hollaren, D.M.; Morfitt, R.

    2006-01-01

    The Advanced Land Imager (ALI) was developed as a prototype sensor for follow on missions to Landsat-7. It was launched in November 2000 on the Earth Observing One (EO-1) satellite as a nominal one-year technology demonstration mission. As of this writing, the sensor has continued to operate in excess of 5 years. Six of the ALl's nine multi-spectral (MS) bands and the panchromatic band have similar spectral coverage as those on the Landsat-7 ETM+. In addition to on-board lamps, which have been significantly more stable than the lamps on ETM+, the ALI has a solar diffuser and has imaged the moon monthly since launch. This combined calibration dataset allows understanding of the radiometric stability of the ALI system, its calibrators and some differentiation of the sources of the changes with time. The solar dataset is limited as the mechanism controlling the aperture to the solar diffuser failed approximately 18 months after launch. Results over 5 years indicate that: the shortest wavelength band (443 nm) has degraded in response about 2%; the 482 nm and 565 nm bands decreased in response about 1%; the 660 nm, 790 nm and 868 nm bands each degraded about 5%; the 1250 nm and 1650 nm bands did not change significantly and the 2215 nm band increased in response about 2%.

  18. Carbon-Carbon Composite Radiator Development for the EO-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Vaughn, Wallace; Shinn, Elizabeth; Rawal, Suraj; Wright, Joe

    2004-01-01

    The Carbon-Carbon Space Radiator Partnership (CSRP), an informal partnership of Government and industrial personnel, was formed to promote the use of Carbon-carbon composites (C-C) as engineering materials for spacecraft thermal management applications . As a part of this effort the partnership has built a structural radiator for the Earth Orbiter - 1 (EO-1) spacecraft. This radiator, using C-C face-sheets with an aluminum honeycomb core, will demonstrate both the thermal and structural properties of C-C under actual service conditions as well as provide performance data from space flight. This paper will present results from the design of the radiator, the thermal/mechanical tests of the facesheet materials, and sub-component test results on the C-C/Al honeycomb sandwich material. The 29- by 28-inch radiator was designed to support two electronics boxes with a combined heat output of 60 watts maximum and a weight of 58 lbs. The analysis of the radiator design shows that the radiator constructed with 20-mil-thick facesheets of a P30-fiber-reinforced C-C from BFGoodrich is able to meet or exceed all the required thermal and mechanical requirements.

  19. The Hyperion Project: Partnership for an Advaned Technology Cluster Testbed

    SciTech Connect

    Seager, M; Leininger, M

    2008-04-28

    The Hyperion project offers a unique opportunity to participate in a community-driven testing and development resource at a scale beyond what can be accomplished by one entity alone. Hyperion is a new strategic technology partnership intended to support the member-driven development and testing at scale. This partnership will allow commodity clusters to scale up to meet the growing demands of customers multi-core petascale simulation environments. Hyperion will tightly couple together the outstanding research and development capabilities of Lawrence Livermore National Laboratory with leading technology companies, including Cisco, Data Direct Networks, Dell, Intel, LSI, Mellanox, Qlogic, RedHat, SuperMicro and Sun. The end goal of this project is to revolutionize cluster computing in fundamental ways by providing the critical software and hardware components for a highly scalable simulation environment. This environment will include support for high performance networking, parallel file systems, operating system, and cluster management. This goal will be achieved by building a scalable technology cluster testbed that will be fully dedicated to the partners and provide: (1) A scalable development testing and benchmarking environment for critical enabling Linux cluster technologies; (2) An evaluation testbed for new hardware and software technologies; and (3) A vehicle for forming long term collaborations.

  20. Enhanced Formation Flying for the Earth Observing-1 (EO-1) New Millennium Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Quinn, David

    1997-01-01

    With scientific objectives for Earth observation programs becoming more ambitious and spacecraft becoming more autonomous, the need for new technical approaches on the feasibility of achieving and maintaining formations of spacecraft has come to the forefront. The trend to develop small low cost spacecraft has led many scientists to recognize the advantage of flying several spacecraft in formation, an example of which is shown in the figure below, to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, formation flying imposes additional complications on orbit maintenance, especially when each spacecraft has its own orbit requirements. However, advances in automation proposed by GSFC Codes 550 and 712 allow more of the burden in maneuver planning and execution to be placed onboard the spacecraft, mitigating some of the associated operational concerns. The purpose of this analysis is to develop the fundamentals of formation flying mechanics, concepts for understanding the relative motion of free flying spacecraft, and an operational control theory for formation maintenance of the Earth Observing-1 (EO-l) spacecraft that is part of the New Millennium. Results of this development can be used to determine the appropriateness of formation flying for a particular case as well as the operational impacts. Applications to the Mission to Planet Earth (MTPE) Earth Observing System (EOS) and New Millennium (NM) were highly considered in analysis and applications. This paper presents the proposed methods for the guidance and control of the EO-1 spacecraft to formation fly with the Landsat-7 spacecraft using an autonomous closed loop three axis navigation control, GPS, and Cross link navigation support. Simulation results using various fidelity levels of modeling, algorithms developed and implemented in MATLAB, and autonomous 'fuzzy logic' control using AutoCon will be presented. The results of these

  1. Hyperspectral imagery for disaggregation of land surface temperature with selected regression algorithms over different land use land cover scenes

    NASA Astrophysics Data System (ADS)

    Ghosh, Aniruddha; Joshi, P. K.

    2014-10-01

    Land surface temperature (LST), a key parameter in understanding thermal behavior of various terrestrial processes, changes rapidly and hence mapping and modeling its spatio-temporal evolution requires measurements at frequent intervals and finer resolutions. We designed a series of experiments for disaggregation of LST (DLST) derived from the Landsat ETM + thermal band using narrowband reflectance information derived from the EO1-Hyperion hyperspectral sensor and selected regression algorithms over three geographic locations with different climate and land use land cover (LULC) characteristics. The regression algorithms applied to this end were: partial least square regression (PLS), gradient boosting machine (GBM) and support vector machine (SVM). To understand the scale dependence of regression algorithms for predicting LST, we developed individual models (local models) at four spatial resolutions (480 m, 240 m, 120 m and 60 m) and tested the differences between these using RMSE derived from cross-validated samples. The sharpening capabilities of the models were assessed by predicting LST at finer resolutions using models developed at coarser spatial resolution. The results were also compared with LST produced by DisTrad sharpening model. It was found that scale dependence of the models is a function of the study area characteristics and regression algorithms. Considering the sharpening experiments, both GBM and SVM performed better than PLS which produced noisy LST at finer spatial resolutions. Based on the results, it can be concluded that GBM and SVM are more suitable algorithms for operational implementation of this application. These algorithms outperformed DisTrad model for heterogeneous landscapes with high variation in soil moisture content and photosynthetic activities. The variable importance measure derived from PLS and GBM provided insights about the characteristics of the relevant bands. The results indicate that wavelengths centered around 457, 671

  2. [Estimation of canopy chlorophyll content using hyperspectral data].

    PubMed

    Dong, Jing-Jing; Wang, Li; Niu, Zheng

    2009-11-01

    Many researches have developed models to estimate chlorophyl content at leaf and canopy level, but they were species-specific. The objective of the present paper was to develop a new model. First, canopy reflectance was simulated for different species and different canopy architecture using radiative transfer models. Based on the simulated canopy reflectance, the relationship between canopy reflectance and canopy chlorophyll content was studied, and then a chlorophyll estimation model was built using the method of spectral index. The coefficient of determination (R2) between spectral index based model and canopy chlorophyll content reached 0.75 for simulated data. To investigate the applicability of this chlorophyll model, the authors chose a field sample area in Gansu Province to carry out the measurement of leaf chlorophyll content, canopy reflectance and other parameters. Besides, the authors also ordered the synchronous Hyperion data, a hyperspectral image with a spatial resolution of 30 m. Canopy reflectance from field measurment and reflectance from Hyperion image were respectively used as the input parameter for the chlorophyll estimation model. Both of them got good results, which indicated that the model could be used for accurate canopy chlorophyll estimation using canopy reflectance. However, while using spaceborne hyperspectral data to estimate canopy chlorophyll content, good atmospheric correction is required. PMID:20101973

  3. Hyperspectral bands prediction based on inter-band spectral correlation structure

    NASA Astrophysics Data System (ADS)

    Ahmed, Ayman M.; Sharkawy, Mohamed El.; Elramly, Salwa H.

    2013-02-01

    Hyperspectral imaging has been widely studied in many applications; notably in climate changes, vegetation, and desert studies. However, such kind of imaging brings a huge amount of data, which requires transmission, processing, and storage resources for both airborne and spaceborne imaging. Compression of hyperspectral data cubes is an effective solution for these problems. Lossless compression of the hyperspectral data usually results in low compression ratio, which may not meet the available resources; on the other hand, lossy compression may give the desired ratio, but with a significant degradation effect on object identification performance of the hyperspectral data. Moreover, most hyperspectral data compression techniques exploits the similarities in spectral dimensions; which requires bands reordering or regrouping, to make use of the spectral redundancy. In this paper, we analyze the spectral cross correlation between bands for AVIRIS and Hyperion hyperspectral data; spectral cross correlation matrix is calculated, assessing the strength of the spectral matrix, we propose new technique to find highly correlated groups of bands in the hyperspectral data cube based on "inter band correlation square", and finally, we propose a new technique of band regrouping based on correlation values weights for different group of bands as network of correlation.

  4. Lunar and Planetary Science XXXV: Image Processing and Earth Observations

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) Expansion in Geographic Information Services for PIGWAD; 2) Modernization of the Integrated Software for Imagers and Spectrometers; 3) Science-based Region-of-Interest Image Compression; 4) Topographic Analysis with a Stereo Matching Tool Kit; 5) Central Avra Valley Storage and Recovery Project (CAVSARP) Site, Tucson, Arizona: Floodwater and Soil Moisture Investigations with Extraterrestrial Applications; 6) ASE Floodwater Classifier Development for EO-1 HYPERION Imagery; 7) Autonomous Sciencecraft Experiment (ASE) Operations on EO-1 in 2004; 8) Autonomous Vegetation Cover Scene Classification of EO-1 Hyperion Hyperspectral Data; 9) Long-Term Continental Areal Reduction Produced by Tectonic Processes.

  5. A total variation denoising algorithm for hyperspectral data

    NASA Astrophysics Data System (ADS)

    Li, Ting; Chen, Xiao-mei; Xue, Bo; Li, Qian-qian; Ni, Guo-qiang

    2010-11-01

    Since noise can undermine the effectiveness of information extracted from hyperspectral imagery, noise reduction is a prerequisite for many classification-based applications of hyperspectral imagery. In this paper, an effective three dimensional total variation denoising algorithm for hyperspectral imagery is introduced. First, a three dimensional objective function of total variation denoising model is derived from the classical two dimensional TV algorithms. For the consideration of the fact that the noise of hyperspectral imagery shows different characteristics in spatial and spectral domain, the objective function is further improved by utilizing two terms (spatial term and spectral term) and separate regularization parameters respectively which can adjust the trade-off between the two terms. Then, the improved objective function is discretized by approximating gradients with local differences, optimized by a quadratic convex function and finally solved by a majorization-minimization based iteration algorithm. The performance of the new algorithm is experimented on a set of Hyperion imageries acquired in a desert-dominated area in 2007. Experimental results show that, properly choosing the values of parameters, the new approach removes the indention and restores the spectral absorption peaks more effectively while having a similar improvement of signal-to-noise-ratio as minimum noise fraction (MNF) method.

  6. Hyperspectral data and methods for coastal water mapping

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos G.; Karathanassi, Vassilia; Rokos, Demetrius

    2006-09-01

    Motivated by the increasing importance of hyperspectral remote sensing, this study investigates the potential of the current-generation satellite hyperspectral data for coastal water mapping. Two narrow-band Hyperion images, acquired in summer 2004 within a nine day period, were used. The study area is situated at the northern sector of south Evvoikos Gulf, in Central Greece. Underwater springs, inwater streams, urban waste and industrial waste are present in the gulf. Thus, further research regarding the most appropriate methods for coastal water mapping is advisable. In situ measurements with a GPS have located the positions of all sources of water and waste. At these positions groundspectro-radiometer measurements were also implemented. Two different approaches were used for the reduction of the Hyperion bands. First, on the basis of histogram statistics the uncalibrated bands were selected and removed. Then the Minimum Noise Fraction was used to classify the bands according to their signal to noise ratio. The noisiest bands were removed and thirty-eight bands were selected for further processing. Second, mathematical and statistical criteria were applied to the in situ radiometer measurements of reflectance and radiance in order to identify the most appropriate parts of the spectrum for the detection of underwater springs and urban waste. This approach has determined nine hyperspectral bands. Τhe Pixel Purity Index and the n-D Visualiser methods were used for the identification of the spectra endmembers. Both whole (Spectral Angle Mapper or Spectral Feature Fitting) and sub pixel methods (Linear Unmixing or Mixture-Tuned Matched Filtering) were used for further analysis and classification of the data. Bands resulting from processing the groundspectro-radiometer measurements produced the highest classification results. The spatial resolution of the Hyperion hyperspectral data hardly allows the detection and classification of underwater springs. Contrary

  7. Hydrocarbons on Phoebe, Iapetus, and Hyperion: Quantitative Analysis

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; MoreauDalleOre, Cristina; Pendleton, Yvonne J.; Clark, Roger Nelson

    2012-01-01

    We present a quantitative analysis of the hydrocarbon spectral bands measured on three of Saturn's satellites, Phoebe, Iaperus, and Hyperion. These bands, measured with the Cassini Visible-Infrared Mapping Spectrometer on close fly-by's of these satellites, are the C-H stretching modes of aromatic hydrocarbons at approximately 3.28 micrometers (approximately 3050 per centimeter), and the are four blended bands of aliphatic -CH2- and -CH3 in the range approximately 3.36-3.52 micrometers (approximately 2980- 2840 per centimeter) bably indicating the presence of polycyclic aromatic hydrocarbons (PAH), is unusually strong in comparison to the aliphatic bands, resulting in a unique signarure among Solar System bodies measured so far, and as such offers a means of comparison among the three satellites. The ratio of the C-H bands in aromatic molecules to those in aliphatic molecules in the surface materials of Phoebe, NAro:NAliph approximately 24; for Hyperion the value is approximately 12, while laperus shows an intermediate value. In view of the trend of the evolution (dehydrogenation by heat and radiation) of aliphatic complexes toward more compact molecules and eventually to aromatics, the relative abundances of aliphatic -CH2- and -CH3- is an indication of the lengths of the molecular chain structures, hence the degree of modification of the original material. We derive CH2:CH3 approximately 2.2 in the spectrum of low-albedo material on laperus; this value is the same within measurement errors to the ratio in the diffuse interstellar medium. The similarity in the spectral signatures of the three satellites, plus the apparent weak trend of aromatic/aliphatic abundance from Phoebe to Hyperion, is consistent with, and effectively confirms that the source of the hydrocarbon-bearing material is Phoebe, and that the appearance of that material on the other two satellites arises from the deposition of the inward-spiraling dust that populates the Phoebe ring.

  8. The Uranian satellites and Hyperion - New spectrophotometry and compositional implications

    NASA Technical Reports Server (NTRS)

    Brown, R. H.

    1983-01-01

    New reflectance spectra at 3.5 percent resolution have been obtained for Ariel, Titania, Oberon, and Hyperion in the 0.8 to 1.6-micron spectrum region. The new spectra show no absorptions other than the 1.5 micron water-ice feature (within the precision of the data), and demonstrate extension into the 0.8- to 1.6 micron region of the 1.5- to 2.5 micron spectral similarity ofo Ariel to Hyperion (Brown and Cruikshank, 1983). The new data confirm the presence of a dark, spectrally bland component on/in the water-ice surfaces of the Uranian satellites, which, with some reservations, has spectral similarities to the dark substance on the leading side of lapetus and the dark material on/in the surface of Hyperion, as well as other dark, spectrally neutral substances such as charcoal. Attempts were made to match the spectra of Ariel, Titania, and Oberon with additive reflectance mixes (aeral coverage) of fine-grained water frost and various dark components such as charcoal, lampblack, and charcoal-water-ice mixtures. The results were broad limits on the amounts of possible areal coverage of a charcoal-like spectral component on the surfaces of the Uranian satellites, but the data are not of sufficient precision to conclusively determine whether the dominant mode of contaminant dispersal is areal or voluminal. The effect of highly variegated albedos on the diameters derived by Brown, Cruikshank, and Morrison (1982) is found to be small.

  9. Development of a Decision Support Tree Approach for Mapping Urban Vegetation Cover From Hyperspectral Imagery and GIS: the case of Athens, Greece

    NASA Astrophysics Data System (ADS)

    Georgopoulou, Iro; Petropoulos, George P.; Kalivas, Dionissios P.

    2013-04-01

    Urban vegetation represents one of the main factors directly influencing human life. Consequently, extracting information on its spatial distribution is of crucial importance to ensure, between other, sustainable urban planning and successful environmental management. To this end, remote sensing & Geographical Information Systems (GIS) technology has demonstrated a very promising, viable solution. In comparison to multispectral systems, use of hyperspectral imagery in particular, enhances dramatically our ability to accurately identify different targets on the Earth's surface. In our study, a decision tree-based classification method is presented for mapping urban vegetation cover from hyperspectral imagery. The ability of the proposed method is demonstrated using as a case study the city of Athens, Greece, for which satellite hyperspectral imagery from Hyperion sensor has been acquired. Hyperion collects spectral data in 242 spectral bands from visible to middle-infrared regions of electromagnetic spectrum and at a spatial resolution of 30 meters. Validation of our proposed method is carried out on a GIS environment based on the error matrix statistics, using as reference very high resolution imagery acquired nearly concurrently to Hyperion at our study region, supported by field visits conducted in the studied area. Additionally, the urban vegetation cover maps derived from our proposed here technique are compared versus analogous results obtained against other classification methods traditionally used in mapping urban vegetation cover. Our results confirmed the ability of our approach combined with Hyperion imagery to extract urban vegetation cover for the case of a densely-populated city with complex urban features, such as Athens. Our findings can potentially offer significant information at local scale as regards the presence of open green spaces in urban environment, since such information is vital for the successful infrastructure development, urban

  10. Hyperspectral image processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperspectral image processing refers to the use of computer algorithms to extract, store and manipulate both spatial and spectral information contained in hyperspectral images across the visible and near-infrared portion of the electromagnetic spectrum. A typical hyperspectral image processing work...

  11. Hyperspectral image processing methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperspectral image processing refers to the use of computer algorithms to extract, store and manipulate both spatial and spectral information contained in hyperspectral images across the visible and near-infrared portion of the electromagnetic spectrum. A typical hyperspectral image processing work...

  12. Water Quality Measurements from Hyperspectral Remote Sensing: The Case of the River Ganga

    NASA Astrophysics Data System (ADS)

    Baruch, A.; Carbonneau, P.; Sinha, R.; Scott, S.

    2014-12-01

    Water pollution is a major challenge in large river systems such as the Ganga (i.e. Ganges). With a population of 400 million, widespread agriculture and a heavy industrial base, this river basin is facing multiple stressors and as a result, is now notorious for poor water quality. One of the key issues in addressing this problem remains basic water quality monitoring with systematic and reliable methods. Currently, water quality datasets in the River Ganga are highly fragmented and inadequate for most investigations. Given the sub-continental scale of the system, remote sensing could offer a plausible solution if capable of producing holistic assessments of water quality with a standardised methodology. Specifically, the development of hyperspectral remote sensing, capable of detecting very small changes in incident radiation, offers the potential to mimic laboratory spectroscopy and thus identify the chemicals polluting a body of water, and perhaps, even measure their concentration. However, the use of hyperspectral remote sensing in order to measure water quality is not yet established and remains a very challenging problem. In this study, laboratory experiments, ancillary field data and hyperspectral imagery from the Hyperion sensor were used to explore the feasibility of using remote sensing to detect chromium pollution in the River Ganga. The laboratory experiments demonstrated that field spectroscopy was indeed capable of detecting chromium in concentrations that can currently be found in the Ganga. Furthermore, the analysis of the Hyperion images of the River Ganga shows some promising results which suggest that chromium compounds can be detected using hyperspectral satellite imagery. However, the results confirm that measuring water quality from spaceborne hyperspectral imagery is extremely challenging and further research is required to improve the confidence of these results and refine this methodology.

  13. Hyperspectral Sensor Data Capability for Retrieving Complex Urban Land Cover in Comparison with Multispectral Data: Venice City Case Study (Italy)

    PubMed Central

    Cavalli, Rosa Maria; Fusilli, Lorenzo; Pascucci, Simone; Pignatti, Stefano; Santini, Federico

    2008-01-01

    This study aims at comparing the capability of different sensors to detect land cover materials within an historical urban center. The main objective is to evaluate the added value of hyperspectral sensors in mapping a complex urban context. In this study we used: (a) the ALI and Hyperion satellite data, (b) the LANDSAT ETM+ satellite data, (c) MIVIS airborne data and (d) the high spatial resolution IKONOS imagery as reference. The Venice city center shows a complex urban land cover and therefore was chosen for testing the spectral and spatial characteristics of different sensors in mapping the urban tissue. For this purpose, an object-oriented approach and different common classification methods were used. Moreover, spectra of the main anthropogenic surfaces (i.e. roofing and paving materials) were collected during the field campaigns conducted on the study area. They were exploited for applying band-depth and sub-pixel analyses to subsets of Hyperion and MIVIS hyperspectral imagery. The results show that satellite data with a 30m spatial resolution (ALI, LANDSAT ETM+ and HYPERION) are able to identify only the main urban land cover materials.

  14. The French proposal for a high spatial resolution Hyperspectral mission

    NASA Astrophysics Data System (ADS)

    Carrère, Véronique; Briottet, Xavier; Jacquemoud, Stéphane; Marion, Rodolphe; Bourguignon, Anne; Chami, Malik; Chanussot, Jocelyn; Chevrel, Stéphane; Deliot, Philippe; Dumont, Marie; Foucher, Pierre-Yves; Gomez, Cécile; Roman-Minghelli, Audrey; Sheeren, David; Weber, Christiane; Lefèvre, Marie-José; Mandea, Mioara

    2014-05-01

    More than 25 years of airborne imaging spectroscopy and spaceborne sensors such as Hyperion or HICO have clearly demonstrated the ability of such a remote sensing technique to produce value added information regarding surface composition and physical properties for a large variety of applications. Scheduled missions such as EnMAP and PRISMA prove the increased interest of the scientific community for such a type of remote sensing data. In France, a group of Science and Defence users of imaging spectrometry data (Groupe de Synthèse Hyperspectral, GSH) established an up-to-date review of possible applications, define instrument specifications required for accurate, quantitative retrieval of diagnostic parameters, and identify fields of application where imaging spectrometry is a major contribution. From these conclusions, CNES (French Space Agency) decided a phase 0 study for an hyperspectral mission concept, named at this time HYPXIM (HYPerspectral-X IMagery), the main fields of applications are vegetation biodiversity, coastal and inland waters, geosciences, urban environment, atmospheric sciences, cryosphere and Defence. Results pointed out applications where high spatial resolution was necessary and would not be covered by the other foreseen hyperspectral missions. The phase A started at the beginning of 2013 based on the following HYPXIM characteristics: a hyperspectral camera covering the [0.4 - 2.5 µm] spectral range with a 8 m ground sampling distance (GSD) and a PAN camera with a 1.85 m GSD, onboard a mini-satellite platform. This phase A is currently stopped due to budget constraints. Nevertheless, the Science team is currently focusing on the preparation for the next CNES prospective meeting (March, 2014), an important step for the future of the mission. This paper will provide an update of the status of this mission and of new results obtained by the Science team.

  15. Hyperspectral cytometry.

    PubMed

    Grégori, Gérald; Rajwa, Bartek; Patsekin, Valery; Jones, James; Furuki, Motohiro; Yamamoto, Masanobu; Paul Robinson, J

    2014-01-01

    Hyperspectral cytometry is an emerging technology for single-cell analysis that combines ultrafast optical spectroscopy and flow cytometry. Spectral cytometry systems utilize diffraction gratings or prism-based monochromators to disperse fluorescence signals from multiple labels (organic dyes, nanoparticles, or fluorescent proteins) present in each analyzed bioparticle onto linear detector arrays such as multianode photomultipliers or charge-coupled device sensors. The resultant data, consisting of a series of characterizing every analyzed cell, are not compensated by employing the traditional cytometry approach, but rather are spectrally unmixed utilizing algorithms such as constrained Poisson regression or non-negative matrix factorization. Although implementations of spectral cytometry were envisioned as early as the 1980s, only recently has the development of highly sensitive photomultiplier tube arrays led to design and construction of functional prototypes and subsequently to introduction of commercially available systems. This chapter summarizes the historical efforts and work in the field of spectral cytometry performed at Purdue University Cytometry Laboratories and describes the technology developed by Sony Corporation that resulted in release of the first commercial spectral cytometry system-the Sony SP6800. A brief introduction to spectral data analysis is also provided, with emphasis on the differences between traditional polychromatic and spectral cytometry approaches. PMID:24271566

  16. Hyperspectral remote sensing of water quality in Lake Atitlan, Guatemala

    NASA Astrophysics Data System (ADS)

    Flores Cordova, Africa Ixmucane

    Lake Atitlan in Guatemala is a vital source of drinking water. The deteriorating conditions of water quality in this lake threaten human and ecological health as well as the local and national economy. Given the sporadic and limited measurements available, it is impossible to determine the changing conditions of water quality. The goal of this thesis is to use Hyperion satellite images to measure water quality parameters in Lake Atitlan. For this purpose in situ measurements and satellite-derived reflectance data were analyzed to generate an algorithm that estimated Chlorophyll concentrations. This research provides for the first time a quantitative application of hyperspectral satellite remote sensing for water quality monitoring in Guatemala. This approach is readily transferable to other countries in Central America that face similar issues in the management of their water resources.

  17. Use of the Earth Observing One (EO-1) Satellite for the Namibia SensorWeb Flood Early Warning Pilot

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Frye, Stuart; Cappelaere, Pat; Handy, Matthew; Policelli, Fritz; Katjizeu, McCloud; Van Langenhove, Guido; Aube, Guy; Saulnier, Jean-Francois; Sohlberg, Rob; Silva, Julie; Kussul, Nataliia; Skakun, Sergii; Ungar, Stephen; Grossman, Robert

    2012-01-01

    The Earth Observing One (EO-1) satellite was launched in November 2000 as a one year technology demonstration mission for a variety of space technologies. After the first year, it was used as a pathfinder for the creation of SensorWebs. A SensorWeb is the integration of variety of space, airborne and ground sensors into a loosely coupled collaborative sensor system that automatically provides useful data products. Typically, a SensorWeb is comprised of heterogeneous sensors tied together with a messaging architecture and web services. Disasters are the perfect arena to use SensorWebs. One SensorWeb pilot project that has been active since 2009 is the Namibia Early Flood Warning SensorWeb pilot project. The Pilot Project was established under the auspices of the Namibian Ministry of Agriculture Water and Forestry (MAWF)/Department of Water Affairs, the Committee on Earth Observing Satellites (CEOS)/Working Group on Information Systems and Services (WGISS) and moderated by the United Nations Platform for Space-based Information for Disaster Management and Emergency Response (UN-SPIDER). The effort began by identifying and prototyping technologies which enabled the rapid gathering and dissemination of both space-based and ground sensor data and data products for the purpose of flood disaster management and water-borne disease management. This was followed by an international collaboration to build small portions of the identified system which was prototyped during that past few years during the flood seasons which occurred in the February through May timeframe of 2010 and 2011 with further prototyping to occur in 2012. The SensorWeb system features EO-1 data along with other data sets from such satellites as Radarsat, Terra and Aqua. Finally, the SensorWeb team also began to examine the socioeconomic component to determine the impact of the SensorWeb technology and how best to assist in the infusion of this technology in lesser affluent areas with low levels of basic

  18. Hyperspectral sensing of forests

    NASA Astrophysics Data System (ADS)

    Goodenough, David G.; Dyk, Andrew; Chen, Hao; Hobart, Geordie; Niemann, K. Olaf; Richardson, Ash

    2007-11-01

    Canada contains 10% of the world's forests covering an area of 418 million hectares. The sustainable management of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of new and improved information products to resource managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory, forest health, foliar biochemistry, biomass, and aboveground carbon than are currently available. This paper surveys recent methods and results in hyperspectral sensing of forests and describes space initiatives for hyperspectral sensing.

  19. Oil and gas reservoir exploration based on hyperspectral remote sensing and super-low-frequency electromagnetic detection

    NASA Astrophysics Data System (ADS)

    Qin, Qiming; Zhang, Zili; Chen, Li; Wang, Nan; Zhang, Chengye

    2016-01-01

    This paper proposes a method that combined hyperspectral remote sensing with super-low-frequency (SLF) electromagnetic detection to extract oil and gas reservoir characteristics from surface to underground, for the purpose of determining oil and gas exploration target regions. The study area in Xinjiang Karamay oil-gas field, China, was investigated. First, a Hyperion dataset was used to extract altered minerals (montmorillonite, chlorite, and siderite), which were comparatively verified by field survey and spectral measurement. Second, the SLF electromagnetic datasets were then acquired where the altered minerals were distributed. An inverse distance weighting method was utilized to acquire two-dimensional profiles of the electrical feature distribution of different formations on the subsurface. Finally, existing geological data, field work, and the results derived from Hyperion images and SLF electromagnetic datasets were comprehensively analyzed to confirm the oil and gas exploration target region. The results of both hyperspectral remote sensing and SLF electromagnetic detection had a good consistency with the geological materials in this study. This paper demonstrates that the combination of hyperspectral remote sensing and SLF electromagnetic detection is suitable for the early exploration of oil and gas reservoirs, which is characterized by low exploration costs, large exploration areas, and a high working efficiency.

  20. Hyperspectral Remote Sensing of Vegetation:Knowledge Gain and Knowledge Gap after 40 years of research

    NASA Astrophysics Data System (ADS)

    Thenkabail, P. S.; Huete, A. R.

    2012-12-01

    This presentation summarizes the advances made over 40+ years in understanding, modeling, and mapping terrestrial vegetation as reported in the new book on "Hyperspectral Remote Sensing of Vegetation" (Publisher: Taylor and Francis inc.). The advent of spaceborne hyperspectral sensors or imaging spectroscopy (e.g., NASA's Hyperion, ESA's PROBA, and upcoming Italy's ASI's Prisma, Germany's DLR's EnMAP, Japanese HIUSI, NASA's HyspIRI) as well as the advancements in processing large volumes of hyperspectral data have generated tremendous interest in expanding the hyperspectral applications' knowledge base to large areas. Advances made in using hyperspectral data, relative to broadband spectral data, include: (a) significantly improved characterization and modeling of a wide array of biophysical and biochemical properties of vegetation, (b) the ability to discriminate plant species and vegetation types with high degree of accuracy, (c) reduced uncertainty in determining net primary productivity or carbon assessments from terrestrial vegetation, (d) improved crop productivity and water productivity models, (e) the ability to assess stress resulting from causes such as management practices, pests and disease, water deficit or water excess, and (f) establishing wavebands and indices with greater sensitivity for analyzing vegetation characteristics. Current state of knowledge on hyperspectral narrowbands (HNBs) for agricultural and vegetation studies inferred from the Book entitled hyperspectral remote sensing of vegetation by Thenkabail et al., 2011. Six study areas of the World for which we have extensive data from field spectroradiometers for 8 major world crops (wheat, corn, rice, barley, soybeans, pulses, and cotton). Approx. 10,500 such data points will be used in crop modeling and in building spectral libraries.

  1. Study on Oil-Gas Reservoir Detecting Methods Using Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Tian, Q.

    2012-07-01

    Oil-gas reservoir exploration using hyperspectral remote sensing, which based on the theory of hydrocarbon microseepage information and fine spectral response of target, is a new direction for the application of remote sensing technology. In this paper, Qaidam Basin and Liaodong Bay in China were selected as the study areas. Based on the hydrocarbon microseepage theory, the analysis of crude oil in soil in Qaidam Basin and spectral experiment of crude oil in sea water in Liaodong Bay, Hyperion hyperspectral remote sensing images were used to develop the method of oil-gas exploration. The results indicated that the area of oil-gas reservoir in Qaidam Basin could be delimited in two ways: the oil-gas reservoir can be obtained directly by the absorption bands near 1730nm in Hyperion image; and Linear Spectral Unmixing (LSU) and Spectral Angle Matching (SAM) of alteration mineral (e.g. kaolinite, illite) could be used to indirectly detect the target area in Qaidam Basin. In addition, combined with the optimal bands in the region of visible/near-infrared, SAM was used to extract the thin oil slick of microseepage in Liaodong Bay. Then the target area of oil-gas reservoir in Liaodong Bay can be delineated.

  2. Multipurpose hyperspectral imaging system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral i...

  3. Automated ground data acquisition and processing system for calibration and performance assessment of the EO-1 Advanced Land Imager

    NASA Astrophysics Data System (ADS)

    Viggh, Herbert E. M.; Mendenhall, Jeffrey A.; Sayer, Ronald W.; Stuart, J. S.; Gibbs, Margaret D.

    1999-09-01

    The calibration and performance assessment of the Earth Observing-1 (EO-1) Advanced Land Imager (ALI) required a ground data system for acquiring and processing ALI data. In order to meet tight schedule and budget requirements, an automated system was developed that could be run by a single operator. This paper describes the overall system and the individual Electrical Ground Support Equipment (EGSE) and computer components used. The ALI Calibration Control Node (ACCN) serves as a test executive with a single graphical user interface to the system, controlling calibration equipment and issuing data acquisition and processing requests to the other EGSE and computers. EGSE1, a custom data acquisition syste, collects ALI science data and also passes ALI commanding and housekeeping telemetry collection requests to EGSE2 and EGSE3 which are implemented on an ASIST workstation. The performance assessment machine, stores and processes collected ALI data, automatically displaying quick-look processing results. The custom communications protocol developed to interface these various machines and to automate their interactions is described, including the various modes of operation needed to support spatial, radiometric, spectral, and functional calibration and performance assessment of the ALI.

  4. Volcanic Carbon Dioxide Retrieved by Means Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Spinetti, C.; Buongiorno, M. F.

    2012-11-01

    The hyperspectral remote sensing gives a large and fast view of volcanic plumes and permits to detect volatiles components exolving from craters if they are abundant and absorption bands are in the sensor spectral range. In the present study the developed algorithm to calculate CO2 columnar abundance in tropospheric volcanic plume is presented. The algorithm is based on CIBR 'Continuum Interpolated Band Ratio' remote sensing technique initially developed to calculate water vapor columnar abundance. The algorithm has been firstly applied to the digital remote sensing images acquired by AVIRIS hyperspectral sensor over the Hawaiian Pu'u'O'o Vent cone of the Kilauea volcano (Hawaii). Then has been adapted to MIVIS data acquired over Stromboli volcano (Italy) and to Hyperion data over Mt. Etna. The atmosphere has been simulated using Modtran radiative transfer model in the spectral range between 1,9 to 2,1 microns, where the CO2 absorption band is present. The results are spatial distributions of CO2 columnar abundance of the volcanic plumes. The obtained results in terms of CO2 columnar abundance over the Pu'u'O'o Vent has been has been compared to the CO2 flux rate deduced by the SO2/CO2 ratio measured at ground.

  5. Comparison of Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Earth Observing One (EO-1) Advanced Land Imager

    NASA Technical Reports Server (NTRS)

    Pedelty, Jeffrey A.; Morisette, Jeffrey T.; Smith, James A.

    2004-01-01

    We compare images from the Enhanced Thematic Mapper Plus (ETM+) sensor on Landsat-7 and the Advanced Land Imager (ALI) instrument on Earth Observing One (EO-1) over a test site in Rochester, New York. The site contains a variety of features, ranging from water of varying depths, deciduous/coniferous forest, and grass fields, to urban areas. Nearly coincident cloud-free images were collected one minute apart on 25 August 2001. We also compare images of a forest site near Howland, Maine, that were collected on 7 September, 2001. We atmospherically corrected each pair of images with the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) atmosphere model, using aerosol optical thickness and water vapor column density measured by in situ Cimel sun photometers within the Aerosol Robotic Network (AERONET), along with ozone density derived from the Total Ozone Mapping Spectrometer (TOMS) on the Earth Probe satellite. We present true-color composites from each instrument that show excellent qualitative agreement between the multispectral sensors, along with grey-scale images that demonstrate a significantly improved ALI panchromatic band. We quantitatively compare ALI and ETM+ reflectance spectra of a grassy field in Rochester and find < or equal to 6% differences in the visible/near infrared and approx. 2% differences in the short wave infrared. Spectral comparisons of forest sites in Rochester and Howland yield similar percentage agreement except for band 1, which has very low reflectance. Principal component analyses and comparison of normalized difference vegetation index histograms for each sensor indicate that the ALI is able to reproduce the information content in the ETM+ but with superior signal-to-noise performance due to its increased 12-bit quantization.

  6. [Interpretation of spatial distribution pattern for dissolved inorganic nitrogen concentration in coastal estuary using hyperspectral data].

    PubMed

    Zhang, Dong; Xu, Yong; Zhang, Ying; Li, Huan

    2010-06-01

    Choosing dissolved inorganic nitrogen (DIN) as one of the representative nutritional salt monitoring indexes, a hyperspectral remotely sensed inversion model was built and applied to quantitatively retrieve water quality parameters with its spatial distribution patterns in coastal estuary with high suspended sediment concentration (SSC). It was found that when SSC was larger than 0.1 kg/m3, DIN concentration had a notable inverse correlation with SSC and the correlation coefficient R2 reached 0.617. Based on this conclusion, firstly the in-situ observed water surface remote sensing reflectance was resampled according to the spectral response characters of Hyperion sensor. And then, statistical correlation analysis between reflectance and DIN concentration was carried out. The results showed that band reflectance of R804 and R630 representing the second and first reflectance peak of water spectrum curve were sensitive to the variation of DIN concentration. And then, a pseudo remotely sensed sand parameter index R804 x R630/(R804 - R630) was calculated for the construction of the nonlinear DIN quantitative reversion model. Correlation coefficient R2 between observed and simulated DIN concentrations for 29 calibrating samples and 10 validating samples were 0.746 and 0.67, while their mean absolute errors reached 109.07 and 147.58 microg/L, respectively. The model was then applied on Hyperion hyperspectral image to get the spatial distribution character of DIN concentration in Sheyanghe river estuary and the DIN concentration was between 52 to 513 microg/L. Results indicated that in coastal estuary which was dominated by suspended sediments, the diffusive trends of DIN concentration reversed by remote sensing techniques had an intimate relationship with motions of tidal current and transportation attributes of SSC. As the hydrodynamic conditions were unclear, hyperspectral remote sensing technique was an effective technical way for dynamic survey of DIN concentration

  7. 3D Polarized Radiative Transfer for Solar System Applications Using the public-domain HYPERION Code

    NASA Astrophysics Data System (ADS)

    Wolff, M. J.; Robitaille, T.; Whitney, B. A.

    2012-12-01

    We present a public-domain radiative transfer tool that will allow researchers to examine a wide-range of interesting solar system applications. Hyperion is a new three-dimensional continuum Monte-Carlo radiative transfer code that is designed to be as general as possible, allowing radiative transfer to be computed through a variety of three-dimensional grids (Robitaille, 2011, Astronomy & Astrophysics 536 A79). The main part of the code is problem-independent, and only requires the user to define the three-dimensional density structure, and the opacity and the illumination properties (as well as a few parameters that control execution and output of the code). Hyperion is written in Fortran 90 and parallelized using the MPI-2 standard. It is bundled with Python libraries that enable very flexible pre- and post-processing options (arbitrary shapes, multiple aerosol components, etc.). These routines are very amenable to user-extensibility. The package is currently distributed at www.hyperion-rt.org. Our presentation will feature 1) a brief overview of the code, including a description of the solar system-specific modifications that we have made beyond the capabilities in the original release; 2) Several solar system applications (i.e., Deep Impact Plume, Martian atmosphere, etc.); 3) discussion of availability and distribution of code components via www.hyperion-rt.org.

  8. Hyperspectral observation of anthropogenic and biogenic pollution in coastal zone

    NASA Astrophysics Data System (ADS)

    Lavrova, Olga; Loupian, Evgeny; Mityagina, Marina; Uvarov, Ivan

    The work presents results of anthropogenic and biogenic pollution detection in coastal zones of the Black and Caspian Seas based on satellite hyperspetral data provided by the Hyperion and HICO instruments. Techniques developed on the basis of the analysis of spectral characteristics calculated in special points were employed to address the following problems: (a) assessment of the blooming intensity of cyanobacteria and their distribution in bays of western Crimea and discrimination between anthropogenic pollutant discharge events and algae bloom; (b) detection of anthropogenic pollution in Crimean lakes utilized as industrial liquid discharge reservoirs; (c) detection of oil pollution in areas of shelf oil production in the Caspian Sea. Information values of different spectral bands and their composites were estimated in connection with the retrieval of the main sea water components: phytoplankton, suspended matter and colored organic matter, and also various anthropogenic pollutants, including oil. Software tools for thematic hyperspectral data processing in application to the investigation of sea coastal zones and internal water bodies were developed on the basis of the See the Sea geoportal created by the Space Research Institute RAS. The geoportal is focused on the study of processes in the world ocean with the emphasis on the advantages of satellite systems of observation. The tools that were introduced into the portal allow joint analysis of quasi-simultaneous satellite data, in particular data from the Hyperion, HICO, OLI Landsat-8, ETM Landsat-7 and TM Landsat-5 instruments. Results of analysis attempts combining data from different sensors are discussed. Their strong and weak points are highlighted. The study was completed with partial financial support from The Russian Foundation for Basic Research grants # 14-05-00520-a and 13-07-12017.

  9. Detection of Amazonian Black Earth Sites using Hyperspectral Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Braswell, B. H.; Palace, M.; Bush, M. B.; Neves, E.; Mcmichael, C.; Czarnecki, C.; Moraes, B.; Raczka, M.

    2012-12-01

    The pre-Columbian indigenous population estimates of the Amazon Basin lowlands are highly uncertain and the subject of considerable controversy. One of the archaeological sources used in reconstruction of Amazonian societies are Amazonian black earths (ABE) or terra preta soils. The immense size of Amazonia, remoteness of many areas, forest vegetation, and lack of archaeological field surveys, make remote sensing beneficial to archaeological studies in this region. Remote sensing allows for comparison and analysis of vegetation across vast areas. Previous research has shown that hyperspectral image data can detect vegetation canopy chemistry differences, associated with soil nutrients and chemistry anomalies at ABE locations. We conducted a preliminary analysis that indicates nine portions of the spectrum where three ABE sites are completely separable from the three non-ABE sites. A discriminant function analysis using stepwise variable selection indicated that five bands were adequate in distinguishing between ABE and non-ABE sites. These five bands ranged between the 2000-2400 nm, indicating that canopy moisture is useful in remotely sensing terra preta. The wealth of site locations we are compiling from numerous sources provides a unique opportunity to develop algorithms for the classification of ABE and non-ABE sites. Our current data holdings include over 1600 Hyperion images and a database of ABE/ non-ABE field observations at approximately 2900 sites. The distribution and number of ABE sites provides information useful for both archaeological research and has consequences for the interpretation of Amazonian forest ecology. Knowledge of the disturbance history of the Amazonian forest provides a context and framework for the placement of all environmental research in the region. This presentation reports results of statistical modeling using extracted spectra from about 400 sites that are within Hyperion scenes.

  10. Handheld hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Saari, Heikki; Aallos, Ville-Veikko; Holmlund, Christer; Malinen, Jouko; Mäkynen, Jussi

    2010-04-01

    VTT Technical Research Centre of Finland has developed a new low cost hand-held staring hyperspectral imager for applications previously blocked by high cost of the instrumentation. The system is compatible with standard video and microscope lenses. The instrument can record 2D spatial images at several wavelength bands simultaneously. The concept of the hyperspectral imager has been published in SPIE Proc. 7474. The prototype fits in an envelope of 100 mm x 60 mm x 40 mm and its weight is ca. 300 g. The benefits of the new device compared to Acousto-Optic Tunable filter (AOTF) or Liquid Crystal Tunable Filter (LCTF) devices are small size and weight, speed of wavelength tuning, high optical throughput, independence of polarization state of incoming light and capability to record three wavelengths simultaneously. The operational wavelength range with Silicon-based CCD or CMOS sensors is 200 - 1100 nm and spectral resolution is 2 - 10 nm @ FWHM. Similar IR imagers can be built using InGaAs, InSb or MCT imaging sensors. The spatial resolution of the prototype is 480 x 750 pixels. It contains control system and memory for the image data acquisition. It operates either autonomously recording hyperspectral data cubes continuously or controlled by a laptop computer. The prototype was configured as a hyperspectral microscope for the spectral range 400 - 700 nm. The design of the hyperspectral imager, characterization results and sample measurement results are presented.

  11. Hyperspectral light field imaging

    NASA Astrophysics Data System (ADS)

    Leitner, Raimund; Kenda, Andreas; Tortschanoff, Andreas

    2015-05-01

    A light field camera acquires the intensity and direction of rays from a scene providing a 4D representation L(x,y,u,v) called the light field. The acquired light field allows to virtually change view point and selectively re-focus regions algorithmically, an important feature for many applications in imaging and microscopy. The combination with hyperspectral imaging provides the additional advantage that small objects (beads, cells, nuclei) can be categorised using their spectroscopic signatures. Using an inverse fluorescence microscope, a LCTF tuneable filter and a light field setup as a test-bed, fluorescence-marked beads have been imaged and reconstructed into a 4D hyper-spectral image cube LHSI(x,y,z,λ). The results demonstrate the advantages of the approach for fluorescence microscopy providing extended depth of focus (DoF) and the fidelity of hyper-spectral imaging.

  12. Unsupervised hyperspectral image classification

    NASA Astrophysics Data System (ADS)

    Jiao, Xiaoli; Chang, Chein-I.

    2007-09-01

    Two major issues encountered in unsupervised hyperspectral image classification are (1) how to determine the number of spectral classes in the image and (2) how to find training samples that well represent each of spectral classes without prior knowledge. A recently developed concept, Virtual dimensionality (VD) is used to estimate the number of spectral classes of interest in the image data. This paper proposes an effective algorithm to generate an appropriate training set via a recently developed Prioritized Independent Component Analysis (PICA). Two sets of hyperspectral data, Airborne Visible Infrared Imaging Spectrometer (AVIRIS) Cuprite data and HYperspectral Digital Image Collection Experiment (HYDICE) data are used for experiments and performance analysis for the proposed method.

  13. Hyperspectral remote sensing of vegetation and agricultural crops: knowledge gain and knowledge gap after 40 years of research

    USGS Publications Warehouse

    Thenkabail, Prasad S.; Lyon, John G.; Huete, Alfredo

    2011-01-01

    The focus of this chapter was to summarize the advances made over last 40+ years, as reported in various chapters of this book, in understanding, modeling, and mapping terrestrial vegetation using hyperspectral remote sensing (or imaging spectroscopy) using sensors that are ground-based, truck-mounted, airborne, and spaceborne. As we have seen in various chapters of this book and synthesized in this chapter, the advances made include: (a) significantly improved characterization and modeling of a wide array of biophysical and biochemical properties of vegetation, (b) ability to discriminate plant species and vegetation types with high degree of accuracies (c) reducing uncertainties in determining net primary productivity or carbon assessments from terrestrial vegetation, (d) improved crop productivity and water productivity models, (b), (e) ability to access stress resulting from causes such as management practices, pests and disease, water deficit or excess; , and (f) establishing more sensitive wavebands and indices to detect plant water\\moisture content. The advent of spaceborne hyperspectral sensors (e.g., NASA’s Hyperion, ESA’s PROBA, and upcoming NASA’s HyspIRI) and numerous methods and techniques espoused in this book to overcome Hughes phenomenon or data redundancy when handling large volumes of hyperspectral data have generated tremendous interest in advancing our hyperspectral applications knowledge base over larger spatial extent such as region, nation, continent, and globe.

  14. Miniaturized handheld hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Wu, Huawen; Haibach, Frederick G.; Bergles, Eric; Qian, Jack; Zhang, Charlie; Yang, William

    2014-05-01

    A miniaturized hyperspectral imager is enabled with image sensor integrated with dispersing elements in a very compact form factor, removing the need for expensive, moving, bulky and complex optics that have been used in conventional hyperspectral imagers for decades. The result is a handheld spectral imager that can be installed on miniature UAV drones or conveyor belts in production lines. Eventually, small handhelds can be adapted for use in outpatient medical clinics for point-of-care diagnostics and other in-field applications.

  15. Hyperspectral remote sensing of evaporate minerals and associated sediments in Lake Magadi area, Kenya

    NASA Astrophysics Data System (ADS)

    Kodikara, Gayantha R. L.; Woldai, Tsehaie; van Ruitenbeek, Frank J. A.; Kuria, Zack; van der Meer, Freek; Shepherd, Keith D.; van Hummel, G. J.

    2012-02-01

    Pleistocene to present evaporitic lacustrine sediments in Lake Magadi, East African Rift Valley, Kenya were studied and mapped using spectral remote sensing methods. This approach incorporated surface mineral mapping using space-borne hyperspectral Hyperion imagery together with laboratory analysis, including visible, near-infrared diffuse reflectance spectroscopy (VNIR) measurements and X-ray diffraction for selected rock and soil samples of the study area. The spectral signatures of Magadiite and Kenyaite, which have not been previously reported, were established and the spectral signatures of trona, chert series, volcanic tuff and the High Magadi bed were also analyzed. Image processing techniques, MNF (Minimum Noise Fraction) and MTMF (Mixture Tuned Matched Filtering) using a stratified approach (image analysis with and without the lake area), were used to enhance the mapping of evaporates. High Magadi beds, chert series and volcanic tuff were identified from the Hyperion image with an overall mapping accuracy of 84.3%. Even though, the spatial distribution of evaporites and sediments in Lake Magadi area change in response to climate variations, the mineralogy of this area has not been mapped recently. The results of this study shows the usefulness of the hypersspectral remote sensing to map the surface geology of this kind of environment and to locate promising sites for industrial open-pit trona mining in a qualitative and quantitative manner.

  16. Detection of a strongly negative surface potential at Saturn's moon Hyperion

    PubMed Central

    Nordheim, T A; Jones, G H; Roussos, E; Leisner, J S; Coates, A J; Kurth, W S; Khurana, K K; Krupp, N; Dougherty, M K; Waite, J H

    2014-01-01

    On 26 September 2005, Cassini conducted its only close targeted flyby of Saturn's small, irregularly shaped moon Hyperion. Approximately 6 min before the closest approach, the electron spectrometer (ELS), part of the Cassini Plasma Spectrometer (CAPS) detected a field-aligned electron population originating from the direction of the moon's surface. Plasma wave activity detected by the Radio and Plasma Wave instrument suggests electron beam activity. A dropout in energetic electrons was observed by both CAPS-ELS and the Magnetospheric Imaging Instrument Low-Energy Magnetospheric Measurement System, indicating that the moon and the spacecraft were magnetically connected when the field-aligned electron population was observed. We show that this constitutes a remote detection of a strongly negative (∼ −200 V) surface potential on Hyperion, consistent with the predicted surface potential in regions near the solar terminator. PMID:26074639

  17. Detection of a strongly negative surface potential at Saturn's moon Hyperion

    NASA Astrophysics Data System (ADS)

    Nordheim, T. A.; Jones, G. H.; Roussos, E.; Leisner, J. S.; Coates, A. J.; Kurth, W. S.; Khurana, K. K.; Krupp, N.; Dougherty, M. K.; Waite, J. H.

    2014-10-01

    On 26 September 2005, Cassini conducted its only close targeted flyby of Saturn's small, irregularly shaped moon Hyperion. Approximately 6 min before the closest approach, the electron spectrometer (ELS), part of the Cassini Plasma Spectrometer (CAPS) detected a field-aligned electron population originating from the direction of the moon's surface. Plasma wave activity detected by the Radio and Plasma Wave instrument suggests electron beam activity. A dropout in energetic electrons was observed by both CAPS-ELS and the Magnetospheric Imaging Instrument Low-Energy Magnetospheric Measurement System, indicating that the moon and the spacecraft were magnetically connected when the field-aligned electron population was observed. We show that this constitutes a remote detection of a strongly negative (~ -200 V) surface potential on Hyperion, consistent with the predicted surface potential in regions near the solar terminator.

  18. Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images.

    PubMed

    Arellano, Paul; Tansey, Kevin; Balzter, Heiko; Boyd, Doreen S

    2015-10-01

    The global demand for fossil energy is triggering oil exploration and production projects in remote areas of the world. During the last few decades hydrocarbon production has caused pollution in the Amazon forest inflicting considerable environmental impact. Until now it is not clear how hydrocarbon pollution affects the health of the tropical forest flora. During a field campaign in polluted and pristine forest, more than 1100 leaf samples were collected and analysed for biophysical and biochemical parameters. The results revealed that tropical forests exposed to hydrocarbon pollution show reduced levels of chlorophyll content, higher levels of foliar water content and leaf structural changes. In order to map this impact over wider geographical areas, vegetation indices were applied to hyperspectral Hyperion satellite imagery. Three vegetation indices (SR, NDVI and NDVI705) were found to be the most appropriate indices to detect the effects of petroleum pollution in the Amazon forest. PMID:26074164

  19. Forming The Surfaces Of Hyperion, Atlas, And Telesto: Nature Versus Nurture

    NASA Astrophysics Data System (ADS)

    Thomas, Peter C.; Burns, J.; Charnoz, S.; Brahic, A.; Porco, C.; Weiss, J.

    2007-10-01

    Hyperion, Atlas and Telesto present three radically different faces: Hyperion has a sponge-like topography at the 2-10 km scale; Telesto is buried in debris, and Atlas has a smooth equatorial ridge contrasting with rugged polar regions. Are these the result of materials (nature) or environment (nurture), and what implications do these greatly differing forms have for other satellites and other icy objects in the outer solar system? Porosity may play a crucial role in Hyperion's sponge-like appearance, this satellite differing from other porous ones in its size and lack of processes competing with cratering. Recent Cassini images (Porco et al. 2007) show Atlas's flying-saucer shape to reflect two distinct regions: rough polar and smooth equatorial. These may be a reflection of ring-related particle accretion (Charnoz et . al. 2007). Telesto, partly buried in (its own?) debris, appears a stochastic result of its environment: perhaps similar to Deimos’ self-covering. Irregular objects do not yield easily to correlation of surface appearance and shape parameters such as axial ratios or gravitational relief relative to object size. Only the presence of a wide range of surface acceleration seems to qualitatively affect surface processes. We discuss the implications for other small satellites of outer planets and for small KBOs. Porco, C. et al. (2007) , submitted to Science. Charnoz, S. et al. (2007) Submitted to Science.

  20. Hyperspectral fundus imager

    NASA Astrophysics Data System (ADS)

    Truitt, Paul W.; Soliz, Peter; Meigs, Andrew D.; Otten, Leonard John, III

    2000-11-01

    A Fourier Transform hyperspectral imager was integrated onto a standard clinical fundus camera, a Zeiss FF3, for the purposes of spectrally characterizing normal anatomical and pathological features in the human ocular fundus. To develop this instrument an existing FDA approved retinal camera was selected to avoid the difficulties of obtaining new FDA approval. Because of this, several unusual design constraints were imposed on the optical configuration. Techniques to calibrate the sensor and to define where the hyperspectral pushbroom stripe was located on the retina were developed, including the manufacturing of an artificial eye with calibration features suitable for a spectral imager. In this implementation the Fourier transform hyperspectral imager can collect over a hundred 86 cm-1 spectrally resolved bands with 12 micro meter/pixel spatial resolution within the 1050 nm to 450 nm band. This equates to 2 nm to 8 nm spectral resolution depending on the wavelength. For retinal observations the band of interest tends to lie between 475 nm and 790 nm. The instrument has been in use over the last year successfully collecting hyperspectral images of the optic disc, retinal vessels, choroidal vessels, retinal backgrounds, and macula diabetic macular edema, and lesions of age-related macular degeneration.

  1. Vega-Constellation Tools to Analize Hyperspectral Images

    NASA Astrophysics Data System (ADS)

    Savorskiy, V.; Loupian, E.; Balashov, I.; Kashnitskii, A.; Konstantinova, A.; Tolpin, V.; Uvarov, I.; Kuznetsov, O.; Maklakov, S.; Panova, O.; Savchenko, E.

    2016-06-01

    Creating high-performance means to manage massive hyperspectral data (HSD) arrays is an actual challenge when it is implemented to deal with disparate information resources. Aiming to solve this problem the present work develops tools to work with HSD in a distributed information infrastructure, i.e. primarily to use those tools in remote access mode. The main feature of presented approach is in the development of remotely accessed services, which allow users both to conduct search and retrieval procedures on HSD sets and to provide target users with tools to analyze and to process HSD in remote mode. These services were implemented within VEGA-Constellation family information systems that were extended by adding tools oriented to support the studies of certain classes of natural objects by exploring their HSD. Particular developed tools provide capabilities to conduct analysis of such objects as vegetation canopies (forest and agriculture), open soils, forest fires, and areas of thermal anomalies. Developed software tools were successfully tested on Hyperion data sets.

  2. Chlorophyll content retrieval from hyperspectral remote sensing imagery.

    PubMed

    Yang, Xiguang; Yu, Ying; Fan, Wenyi

    2015-07-01

    Chlorophyll content is the essential parameter in the photosynthetic process determining leaf spectral variation in visible bands. Therefore, the accurate estimation of the forest canopy chlorophyll content is a significant foundation in assessing forest growth and stress affected by diseases. Hyperspectral remote sensing with high spatial resolution can be used for estimating chlorophyll content. In this study, the chlorophyll content was retrieved step by step using Hyperion imagery. Firstly, the spectral curve of the leaf was analyzed, 25 spectral characteristic parameters were identified through the correlation coefficient matrix, and a leaf chlorophyll content inversion model was established using a stepwise regression method. Secondly, the pixel reflectance was converted into leaf reflectance by a geometrical-optical model (4-scale). The three most important parameters of reflectance conversion, including the multiple scattering factor (M 0 ), and the probability of viewing the sunlit tree crown (P T ) and the background (P G ), were estimated by leaf area index (LAI), respectively. The results indicated that M 0 , P T , and P G could be described as a logarithmic function of LAI, with all R (2) values above 0.9. Finally, leaf chlorophyll content was retrieved with RMSE = 7.3574 μg/cm(2), and canopy chlorophyll content per unit ground surface area was estimated based on leaf chlorophyll content and LAI. Chlorophyll content mapping can be useful for the assessment of forest growth stage and diseases. PMID:26095901

  3. Best band selection of hyperspectral remote sensing image based on differential evolution algorithm

    NASA Astrophysics Data System (ADS)

    Cai, Z.; Li, Z.; Jiang, A.; Chen, X.

    2010-12-01

    the idea of recombining different individuals. Evolutionary approach imitates the natural evolution in order to optimize the parameters. Differential evolution method illustrates individuals with floating-point vectors, and processes simple operations to search the optimal solution by natural selection. We employ hyperspectral remote sensing images of 701 uranium deposit (EO1H1320332005197110PY) in the areas of Gansu, China. We compared our new method with the traditional bands selection ways such as genetic algorithm, exhaustive search and steepest rise methods. The experiment results show that the new algorithm can improve the efficiency and stability of the band selection algorithm.

  4. Snapshot Hyperspectral Volumetric Microscopy.

    PubMed

    Wu, Jiamin; Xiong, Bo; Lin, Xing; He, Jijun; Suo, Jinli; Dai, Qionghai

    2016-01-01

    The comprehensive analysis of biological specimens brings about the demand for capturing the spatial, temporal and spectral dimensions of visual information together. However, such high-dimensional video acquisition faces major challenges in developing large data throughput and effective multiplexing techniques. Here, we report the snapshot hyperspectral volumetric microscopy that computationally reconstructs hyperspectral profiles for high-resolution volumes of ~1000 μm × 1000 μm × 500 μm at video rate by a novel four-dimensional (4D) deconvolution algorithm. We validated the proposed approach with both numerical simulations for quantitative evaluation and various real experimental results on the prototype system. Different applications such as biological component analysis in bright field and spectral unmixing of multiple fluorescence are demonstrated. The experiments on moving fluorescent beads and GFP labelled drosophila larvae indicate the great potential of our method for observing multiple fluorescent markers in dynamic specimens. PMID:27103155

  5. Snapshot Hyperspectral Volumetric Microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Jiamin; Xiong, Bo; Lin, Xing; He, Jijun; Suo, Jinli; Dai, Qionghai

    2016-04-01

    The comprehensive analysis of biological specimens brings about the demand for capturing the spatial, temporal and spectral dimensions of visual information together. However, such high-dimensional video acquisition faces major challenges in developing large data throughput and effective multiplexing techniques. Here, we report the snapshot hyperspectral volumetric microscopy that computationally reconstructs hyperspectral profiles for high-resolution volumes of ~1000 μm × 1000 μm × 500 μm at video rate by a novel four-dimensional (4D) deconvolution algorithm. We validated the proposed approach with both numerical simulations for quantitative evaluation and various real experimental results on the prototype system. Different applications such as biological component analysis in bright field and spectral unmixing of multiple fluorescence are demonstrated. The experiments on moving fluorescent beads and GFP labelled drosophila larvae indicate the great potential of our method for observing multiple fluorescent markers in dynamic specimens.

  6. Hyperspectral confocal microscope

    NASA Astrophysics Data System (ADS)

    Sinclair, Michael B.; Haaland, David M.; Timlin, Jerilyn A.; Jones, Howland D. T.

    2006-08-01

    We have developed a new, high performance, hyperspectral microscope for biological and other applications. For each voxel within a three-dimensional specimen, the microscope simultaneously records the emission spectrum from 500 nm to 800 nm, with better than 3 nm spectral resolution. The microscope features a fully confocal design to ensure high spatial resolution and high quality optical sectioning. Optical throughput and detection efficiency are maximized through the use of a custom prism spectrometer and a backside thinned electron multiplying charge coupled device (EMCCD) array. A custom readout mode and synchronization scheme enable 512-point spectra to be recorded at a rate of 8300 spectra per second. In addition, the EMCCD readout mode eliminates curvature and keystone artifacts that often plague spectral imaging systems. The architecture of the new microscope is described in detail, and hyperspectral images from several specimens are presented.

  7. Hyperspectral confocal microscope.

    PubMed

    Sinclair, Michael B; Haaland, David M; Timlin, Jerilyn A; Jones, Howland D T

    2006-08-20

    We have developed a new, high performance, hyperspectral microscope for biological and other applications. For each voxel within a three-dimensional specimen, the microscope simultaneously records the emission spectrum from 500 nm to 800 nm, with better than 3 nm spectral resolution. The microscope features a fully confocal design to ensure high spatial resolution and high quality optical sectioning. Optical throughput and detection efficiency are maximized through the use of a custom prism spectrometer and a backside thinned electron multiplying charge coupled device (EMCCD) array. A custom readout mode and synchronization scheme enable 512-point spectra to be recorded at a rate of 8300 spectra per second. In addition, the EMCCD readout mode eliminates curvature and keystone artifacts that often plague spectral imaging systems. The architecture of the new microscope is described in detail, and hyperspectral images from several specimens are presented. PMID:16892134

  8. Compressed hyperspectral sensing

    NASA Astrophysics Data System (ADS)

    Tsagkatakis, Grigorios; Tsakalides, Panagiotis

    2015-03-01

    Acquisition of high dimensional Hyperspectral Imaging (HSI) data using limited dimensionality imaging sensors has led to restricted capabilities designs that hinder the proliferation of HSI. To overcome this limitation, novel HSI architectures strive to minimize the strict requirements of HSI by introducing computation into the acquisition process. A framework that allows the integration of acquisition with computation is the recently proposed framework of Compressed Sensing (CS). In this work, we propose a novel HSI architecture that exploits the sampling and recovery capabilities of CS to achieve a dramatic reduction in HSI acquisition requirements. In the proposed architecture, signals from multiple spectral bands are multiplexed before getting recorded by the imaging sensor. Reconstruction of the full hyperspectral cube is achieved by exploiting a dictionary of elementary spectral profiles in a unified minimization framework. Simulation results suggest that high quality recovery is possible from a single or a small number of multiplexed frames.

  9. Snapshot Hyperspectral Volumetric Microscopy

    PubMed Central

    Wu, Jiamin; Xiong, Bo; Lin, Xing; He, Jijun; Suo, Jinli; Dai, Qionghai

    2016-01-01

    The comprehensive analysis of biological specimens brings about the demand for capturing the spatial, temporal and spectral dimensions of visual information together. However, such high-dimensional video acquisition faces major challenges in developing large data throughput and effective multiplexing techniques. Here, we report the snapshot hyperspectral volumetric microscopy that computationally reconstructs hyperspectral profiles for high-resolution volumes of ~1000 μm × 1000 μm × 500 μm at video rate by a novel four-dimensional (4D) deconvolution algorithm. We validated the proposed approach with both numerical simulations for quantitative evaluation and various real experimental results on the prototype system. Different applications such as biological component analysis in bright field and spectral unmixing of multiple fluorescence are demonstrated. The experiments on moving fluorescent beads and GFP labelled drosophila larvae indicate the great potential of our method for observing multiple fluorescent markers in dynamic specimens. PMID:27103155

  10. Simulation of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Richsmeier, Steven C.; Singer-Berk, Alexander; Bernstein, Lawrence S.

    2004-01-01

    A software package generates simulated hyperspectral imagery for use in validating algorithms that generate estimates of Earth-surface spectral reflectance from hyperspectral images acquired by airborne and spaceborne instruments. This software is based on a direct simulation Monte Carlo approach for modeling three-dimensional atmospheric radiative transport, as well as reflections from surfaces characterized by spatially inhomogeneous bidirectional reflectance distribution functions. In this approach, "ground truth" is accurately known through input specification of surface and atmospheric properties, and it is practical to consider wide variations of these properties. The software can treat both land and ocean surfaces, as well as the effects of finite clouds with surface shadowing. The spectral/spatial data cubes computed by use of this software can serve both as a substitute for, and a supplement to, field validation data.

  11. Planetary Hyperspectral Imager (PHI)

    NASA Technical Reports Server (NTRS)

    Silvergate, Peter

    1996-01-01

    A hyperspectral imaging spectrometer was breadboarded. Key innovations were use of a sapphire prism and single InSb focal plane to cover the entire spectral range, and a novel slit optic and relay optics to reduce thermal background. Operation over a spectral range of 450 - 4950 nm (approximately 3.5 spectral octaves) was demonstrated. Thermal background reduction by a factor of 8 - 10 was also demonstrated.

  12. Quantitative Hyperspectral Reflectance Imaging

    PubMed Central

    Klein, Marvin E.; Aalderink, Bernard J.; Padoan, Roberto; de Bruin, Gerrit; Steemers, Ted A.G.

    2008-01-01

    Hyperspectral imaging is a non-destructive optical analysis technique that can for instance be used to obtain information from cultural heritage objects unavailable with conventional colour or multi-spectral photography. This technique can be used to distinguish and recognize materials, to enhance the visibility of faint or obscured features, to detect signs of degradation and study the effect of environmental conditions on the object. We describe the basic concept, working principles, construction and performance of a laboratory instrument specifically developed for the analysis of historical documents. The instrument measures calibrated spectral reflectance images at 70 wavelengths ranging from 365 to 1100 nm (near-ultraviolet, visible and near-infrared). By using a wavelength tunable narrow-bandwidth light-source, the light energy used to illuminate the measured object is minimal, so that any light-induced degradation can be excluded. Basic analysis of the hyperspectral data includes a qualitative comparison of the spectral images and the extraction of quantitative data such as mean spectral reflectance curves and statistical information from user-defined regions-of-interest. More sophisticated mathematical feature extraction and classification techniques can be used to map areas on the document, where different types of ink had been applied or where one ink shows various degrees of degradation. The developed quantitative hyperspectral imager is currently in use by the Nationaal Archief (National Archives of The Netherlands) to study degradation effects of artificial samples and original documents, exposed in their permanent exhibition area or stored in their deposit rooms.

  13. Crater numbers and geological histories of Iapetus, Enceladus, Tethys and Hyperion

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.; Boyce, J. M.

    1983-01-01

    The surfaces of the Saturn satellites Tethys, Iapetus and Encedalus display surfaces which indicate active geological processes and therefore suggest a degree of internal evolution. By contrast, the Saturn satellite Hyperion and the coorbitals 1980S1 and 1980S3 show no trace of geological activity and may be fragments of once-larger bodies. Activity on Iapetus appears to have been confined to the dark terrain, and offers no clue as to its timing and extent. The widest terrain type and crater number variations are those of Encedalus, which indicate the most prolonged period of geological activity of any of the satellites studied.

  14. Hyperspectral Biofilm Classification Analysis for Carrying Capacity of Migratory Birds in the South Bay Salt Ponds

    NASA Technical Reports Server (NTRS)

    Hsu, Wei-Chen; Kuss, Amber Jean; Ketron, Tyler; Nguyen, Andrew; Remar, Alex Covello; Newcomer, Michelle; Fleming, Erich; Debout, Leslie; Debout, Brad; Detweiler, Angela; Skiles, Joseph

    2011-01-01

    Tidal marshes are highly productive ecosystems that support migratory birds as roosting and over-wintering habitats on the Pacific Flyway. Microphytobenthos, or more commonly 'biofilms' contribute significantly to the primary productivity of wetland ecosystems, and provide a substantial food source for macroinvertebrates and avian communities. In this study, biofilms were characterized based on taxonomic classification, density differences, and spectral signatures. These techniques were then applied to remotely sensed images to map biofilm densities and distributions in the South Bay Salt Ponds and predict the carrying capacity of these newly restored ponds for migratory birds. The GER-1500 spectroradiometer was used to obtain in situ spectral signatures for each density-class of biofilm. The spectral variation and taxonomic classification between high, medium, and low density biofilm cover types was mapped using in-situ spectral measurements and classification of EO-1 Hyperion and Landsat TM 5 images. Biofilm samples were also collected in the field to perform laboratory analyses including chlorophyll-a, taxonomic classification, and energy content. Comparison of the spectral signatures between the three density groups shows distinct variations useful for classification. Also, analysis of chlorophyll-a concentrations show statistically significant differences between each density group, using the Tukey-Kramer test at an alpha level of 0.05. The potential carrying capacity in South Bay Salt Ponds is estimated to be 250,000 birds.

  15. Hyperspectral Biofilm Classification Analysis for Carrying Capacity of Migratory Birds in the South Bay Salt Ponds

    NASA Astrophysics Data System (ADS)

    Ketron, T.; Hsu, W.; Kuss, A. M.; Nguyen, A.; Remar, A. C.; Newcomer, M. E.; Fleming, E.; Bebout, L.; Bebout, B.; Detweiler, A. M.; Skiles, J. W.

    2011-12-01

    Tidal marshes are highly productive ecosystems that support migratory birds as roosting and over-wintering habitats on the Pacific Flyway. Microphytobenthos, or more commonly 'biofilms' contribute significantly to the primary productivity of wetland ecosystems, and provide a substantial food source for macroinvertebrates and avian communities. In this study, biofilms were characterized based on taxonomic classification, density differences, and spectral signatures. These techniques were then applied to remotely sensed images to map biofilm densities and distributions in the South Bay Salt Ponds and predict the carrying capacity of these newly restored ponds for migratory birds. The GER-1500 spectroradiometer was used to obtain in situ spectral signatures for each density-class of biofilm. The spectral variation and taxonomic classification between high, medium, and low density biofilm cover types was mapped using in-situ spectral measurements and classification of EO-1 Hyperion and Landsat TM 5 images. Biofilm samples were also collected in the field to perform laboratory analyses including chlorophyll-a, taxonomic classification, and energy content. Comparison of the spectral signatures between the three density groups shows distinct variations useful for classification. Also, analysis of chlorophyll-a concentrations show statistically significant differences between each density group, using the Tukey-Kramer test at an alpha level of 0.05. The potential carrying capacity in South Bay Salt Ponds is estimated to be 250,000 birds.

  16. Hyperspectral Feature Detection Onboard the Earth Observing One Spacecraft using Superpixel Segmentation and Endmember Extraction

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Bornstein, Benjamin; Bue, Brian D.; Tran, Daniel Q.; Chien, Steve A.; Castano, Rebecca

    2012-01-01

    We present a demonstration of onboard hyperspectral image processing with the potential to reduce mission downlink requirements. The system detects spectral endmembers and then uses them to map units of surface material. This summarizes the content of the scene, reveals spectral anomalies warranting fast response, and reduces data volume by two orders of magnitude. We have integrated this system into the Autonomous Science craft Experiment for operational use onboard the Earth Observing One (EO-1) Spacecraft. The system does not require prior knowledge about spectra of interest. We report on a series of trial overflights in which identical spacecraft commands are effective for autonomous spectral discovery and mapping for varied target features, scenes and imaging conditions.

  17. VST-based lossy compression of hyperspectral data for new generation sensors

    NASA Astrophysics Data System (ADS)

    Zemliachenko, Alexander N.; Kozhemiakin, Ruslan A.; Uss, Mykhail L.; Abramov, Sergey K.; Lukin, Vladimir V.; Vozel, Benoit; Chehdi, Kacem

    2013-10-01

    This paper addresses lossy compression of hyperspectral images acquired by sensors of new generation for which signaldependent component of the noise is prevailing compared to the noise-independent component. First, for sub-band (component-wise) compression, it is shown that there can exist an optimal operation point (OOP) for which MSE between compressed and noise-free image is minimal, i.e., maximal noise filtering effect is observed. This OOP can be observed for two approaches to lossy compression where the first one presumes direct application of a coder to original data and the second approach deals with applying direct and inverse variance stabilizing transform (VST). Second, it is demonstrated that the second approach is preferable since it usually provides slightly smaller MSE and slightly larger compression ratio (CR) in OOP. One more advantage of the second approach is that the coder parameter that controls CR can be set fixed for all sub-band images. Moreover, CR can be considerably (approximately twice) increased if sub-band images after VST are grouped and lossy compression is applied to a first sub-band image in a group and to "difference" images obtained for this group. The proposed approach is tested for Hyperion hyperspectral images and shown to provide CR about 15 for data compression in the neighborhood of OOP.

  18. Multi-pass encoding of hyperspectral imagery with spectral quality control

    NASA Astrophysics Data System (ADS)

    Wasson, Steven; Walker, William

    2015-05-01

    Multi-pass encoding is a technique employed in the field of video compression that maximizes the quality of an encoded video sequence within the constraints of a specified bit rate. This paper presents research where multi-pass encoding is extended to the field of hyperspectral image compression. Unlike video, which is primarily intended to be viewed by a human observer, hyperspectral imagery is processed by computational algorithms that generally attempt to classify the pixel spectra within the imagery. As such, these algorithms are more sensitive to distortion in the spectral dimension of the image than they are to perceptual distortion in the spatial dimension. The compression algorithm developed for this research, which uses the Karhunen-Loeve transform for spectral decorrelation followed by a modified H.264/Advanced Video Coding (AVC) encoder, maintains a user-specified spectral quality level while maximizing the compression ratio throughout the encoding process. The compression performance may be considered near-lossless in certain scenarios. For qualitative purposes, this paper presents the performance of the compression algorithm for several Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Hyperion datasets using spectral angle as the spectral quality assessment function. Specifically, the compression performance is illustrated in the form of rate-distortion curves that plot spectral angle versus bits per pixel per band (bpppb).

  19. Airborne Hyperspectral Imaging System

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E.; Cooper, Moogega; Adler, John; Jacobson, Tobias

    2012-01-01

    A document discusses a hyperspectral imaging instrument package designed to be carried aboard a helicopter. It was developed to map the depths of Greenland's supraglacial lakes. The instrument is capable of telescoping to twice its original length, allowing it to be retracted with the door closed during takeoff and landing, and manually extended in mid-flight. While extended, the instrument platform provides the attached hyperspectral imager a nadir-centered and unobstructed view of the ground. Before flight, the instrument mount is retracted and securely strapped down to existing anchor points on the floor of the helicopter. When the helicopter reaches the destination lake, the door is opened and the instrument mount is manually extended. Power to the instrument package is turned on, and the data acquisition computer is commanded via a serial cable from an onboard user-operated laptop to begin data collection. After data collection is complete, the instrument package is powered down and the mount retracted, allowing the door to be closed in preparation for landing. The present design for the instrument mount consists of a three-segment telescoping cantilever to allow for a sufficient extended length to see around the landing struts and provide a nadir-centered and unobstructed field of view for the hyperspectral imager. This instrument works on the premise that water preferentially absorbs light with longer wavelengths on the red side of the visible spectrum. This property can be exploited in order to remotely determine the depths of bodies of pure freshwater. An imager flying over such a lake receives light scattered from the surface, the bulk of the water column, and from the lake bottom. The strength of absorption of longer-wavelength light depends on the depth of the water column. Through calibration with in situ measurements of the water depths, a depth-determining algorithm may be developed to determine lake depth from these spectral properties of the

  20. Multipurpose Hyperspectral Imaging System

    NASA Technical Reports Server (NTRS)

    Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon

    2005-01-01

    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.

  1. Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission

    USGS Publications Warehouse

    Mariotto, Isabella; Thenkabail, Prasad S.; Huete, Alfredo; Slonecker, E. Terrence; Platonov, Alexander

    2013-01-01

    Precise monitoring of agricultural crop biomass and yield quantities is critical for crop production management and prediction. The goal of this study was to compare hyperspectral narrowband (HNB) versus multispectral broadband (MBB) reflectance data in studying irrigated cropland characteristics of five leading world crops (cotton, wheat, maize, rice, and alfalfa) with the objectives of: 1. Modeling crop productivity, and 2. Discriminating crop types. HNB data were obtained from Hyperion hyperspectral imager and field ASD spectroradiometer, and MBB data were obtained from five broadband sensors: Landsat-7 Enhanced Thematic Mapper Plus (ETM +), Advanced Land Imager (ALI), Indian Remote Sensing (IRS), IKONOS, and QuickBird. A large collection of field spectral and biophysical variables were gathered for the 5 crops in Central Asia throughout the growing seasons of 2006 and 2007. Overall, the HNB and hyperspectral vegetation index (HVI) crop biophysical models explained about 25% greater variability when compared with corresponding MBB models. Typically, 3 to 7 HNBs, in multiple linear regression models of a given crop variable, explained more than 93% of variability in crop models. The evaluation of λ1 (400–2500 nm) versus λ2 (400–2500 nm) plots of various crop biophysical variables showed that the best two-band normalized difference HVIs involved HNBs centered at: (i) 742 nm and 1175 nm (HVI742-1175), (ii) 1296 nm and 1054 nm (HVI1296-1054), (iii) 1225 nm and 697 nm (HVI1225-697), and (iv) 702 nm and 1104 nm (HVI702-1104). Among the most frequently occurring HNBs in various crop biophysical models, 74% were located in the 1051–2331 nm spectral range, followed by 10% in the moisture sensitive 970 nm, 6% in the red and red-edge (630–752 nm), and the remaining 10% distributed between blue (400–500 nm), green (501–600 nm), and NIR (760–900 nm). Discriminant models, used for discriminating 3 or 4 or 5 crop types, showed significantly higher accuracies

  2. Spatial Field Variability Mapping of Rice Crop using Clustering Technique from Space Borne Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Moharana, S.; Dutta, S.

    2015-12-01

    Precision farming refers to field-specific management of an agricultural crop at a spatial scale with an aim to get the highest achievable yield and to achieve this spatial information on field variability is essential. The difficulty in mapping of spatial variability occurring within an agriculture field can be revealed by employing spectral techniques in hyperspectral imagery rather than multispectral imagery. However an advanced algorithm needs to be developed to fully make use of the rich information content in hyperspectral data. In the present study, potential of hyperspectral data acquired from space platform was examined to map the field variation of paddy crop and its species discrimination. This high dimensional data comprising 242 spectral narrow bands with 30m ground resolution Hyperion L1R product acquired for Assam, India (30th Sept and 3rd Oct, 2014) were allowed for necessary pre-processing steps followed by geometric correction using Hyperion L1GST product. Finally an atmospherically corrected and spatially deduced image consisting of 112 band was obtained. By employing an advanced clustering algorithm, 12 different clusters of spectral waveforms of the crop were generated from six paddy fields for each images. The findings showed that, some clusters were well discriminated representing specific rice genotypes and some clusters were mixed treating as a single rice genotype. As vegetation index (VI) is the best indicator of vegetation mapping, three ratio based VI maps were also generated and unsupervised classification was performed for it. The so obtained 12 clusters of paddy crop were mapped spatially to the derived VI maps. From these findings, the existence of heterogeneity was clearly captured in one of the 6 rice plots (rice plot no. 1) while heterogeneity was observed in rest of the 5 rice plots. The degree of heterogeneous was found more in rice plot no.6 as compared to other plots. Subsequently, spatial variability of paddy field was

  3. Hyperspectral digital holography of microobjects

    NASA Astrophysics Data System (ADS)

    Kalenkov, Sergey G.; Kalenkov, Georgy S.; Shtanko, Alexander E.

    2015-03-01

    Novel method is suggested for a hyperspectral wave field holographic recording, based on asymmetrical Fourier spectrometer with a flat microobject placed in one of its arms. The output signal, which is the interference of the reference field with the field diffracted by the object, is registered by CCD. The process of recording is reduced to consecutive registration of two-dimensional interferograms by changing the optical length of the reference arm of the interferometer. One-dimensional Fourier transform of the interferogram in each pixel gives a spatial distribution of the complex amplitude for all spectral components of a hyperspectral object field. Inverse Fresnel transform of this field gives a hyperspectral object field in the object plane. Hyperspectral amplitude and average-phase profile images of standard microscope samples obtained experimentally are presented. Coloring, Fellgett's advantage and speckle noise reduction are discussed.

  4. Hyperspectral image analysis. A tutorial.

    PubMed

    Amigo, José Manuel; Babamoradi, Hamid; Elcoroaristizabal, Saioa

    2015-10-01

    This tutorial aims at providing guidelines and practical tools to assist with the analysis of hyperspectral images. Topics like hyperspectral image acquisition, image pre-processing, multivariate exploratory analysis, hyperspectral image resolution, classification and final digital image processing will be exposed, and some guidelines given and discussed. Due to the broad character of current applications and the vast number of multivariate methods available, this paper has focused on an industrial chemical framework to explain, in a step-wise manner, how to develop a classification methodology to differentiate between several types of plastics by using Near infrared hyperspectral imaging and Partial Least Squares - Discriminant Analysis. Thus, the reader is guided through every single step and oriented in order to adapt those strategies to the user's case. PMID:26481986

  5. Hyperspectral Imager-Tracker

    NASA Technical Reports Server (NTRS)

    Agurok, Llya

    2013-01-01

    The Hyperspectral Imager-Tracker (HIT) is a technique for visualization and tracking of low-contrast, fast-moving objects. The HIT architecture is based on an innovative and only recently developed concept in imaging optics. This innovative architecture will give the Light Prescriptions Innovators (LPI) HIT the possibility of simultaneously collecting the spectral band images (hyperspectral cube), IR images, and to operate with high-light-gathering power and high magnification for multiple fast- moving objects. Adaptive Spectral Filtering algorithms will efficiently increase the contrast of low-contrast scenes. The most hazardous parts of a space mission are the first stage of a launch and the last 10 kilometers of the landing trajectory. In general, a close watch on spacecraft operation is required at distances up to 70 km. Tracking at such distances is usually associated with the use of radar, but its milliradian angular resolution translates to 100- m spatial resolution at 70-km distance. With sufficient power, radar can track a spacecraft as a whole object, but will not provide detail in the case of an accident, particularly for small debris in the onemeter range, which can only be achieved optically. It will be important to track the debris, which could disintegrate further into more debris, all the way to the ground. Such fragmentation could cause ballistic predictions, based on observations using high-resolution but narrow-field optics for only the first few seconds of the event, to be inaccurate. No optical imager architecture exists to satisfy NASA requirements. The HIT was developed for space vehicle tracking, in-flight inspection, and in the case of an accident, a detailed recording of the event. The system is a combination of five subsystems: (1) a roving fovea telescope with a wide 30 field of regard; (2) narrow, high-resolution fovea field optics; (3) a Coude optics system for telescope output beam stabilization; (4) a hyperspectral

  6. Multi- and hyperspectral remote-sensing retrieval of floodplain-forest aboveground biomass using machine learning

    NASA Astrophysics Data System (ADS)

    Filippi, A. M.; Guneralp, I.; Randall, J.

    2014-12-01

    Forests within dynamic floodplain landscapes, such as meandering-river landscapes, are composed of uneven-aged trees and entail high spatial variability, which results from intersecting hydrological, fluvial, and ecological processes. Floodplain forests are an important carbon sink relative to other terrestrial ecosystems and thus serve a critical role in the global carbon cycle. Accurate, quantitative aboveground biomass (AGB) retrieval within floodplain forests is urgently needed for improved carbon-pool estimates in such areas and enhanced process understanding of river-floodplain biomorphodynamics. We perform remote AGB retrieval for a meander-bend bottomland hardwood forest, based on utilization of stochastic gradient boosting (SGB), multivariate adaptive regression splines (MARS), and Cubist algorithms and multi- and hyperspectral image-based data sets. For multispectral experiments, we use 30-m and 10-m image bands (Landsat 7 ETM+ and SPOT 5, respectively) and ancillary input vectors; for hyperspectral-based experiments, we use 30-m Hyperion bands and other input variables. Results indicate that for both the multispectral and hyperspectral experimental trials, SGB- and MARS-derived AGB are significantly more accurate than Cubist estimates. (Cubist is used for U.S. national-scale forest biomass mapping.) For the multispectral results, across all data-experiments and algorithms, at 10-m spatial resolution, SGB gives the most accurate estimates (RMSE = 22.49 tonnes/ha; coefficient of determination (R2) = 0.96) when geomorphometric data are also included. For 30-m multispectral data trials, MARS performs the best (RMSE = 29.2 tonnes/ha; R2 = 0.94) when image-derived data are also incorporated. For the hyperspectral experiments, the most accurate MARS- and SGB-based retrievals have R2 of 0.97 and 0.95, respectively; the most accurate Cubist AGB retrieval has R2 of 0.85. MARS and SGB AGB are not significantly different though for the hyperspectral experiments. The

  7. Development and implementation of a multiscale biomass model using hyperspectral vegetation indices for winter wheat in the North China Plain

    NASA Astrophysics Data System (ADS)

    Gnyp, Martin L.; Bareth, Georg; Li, Fei; Lenz-Wiedemann, Victoria I. S.; Koppe, Wolfgang; Miao, Yuxin; Hennig, Simon D.; Jia, Liangliang; Laudien, Rainer; Chen, Xinping; Zhang, Fusuo

    2014-12-01

    Crop monitoring during the growing season is important for regional management decisions and biomass prediction. The objectives of this study were to develop, improve and validate a scale independent biomass model. Field studies were conducted in Huimin County, Shandong Province of China, during the 2006-2007 growing season of winter wheat (Triticum aestivum L.). The field design had a multiscale set-up with four levels which differed in their management, such as nitrogen fertilizer inputs and cultivars, to create different biomass conditions: small experimental fields (L1), large experimental fields (L2), small farm fields (L3), and large farm fields (L4). L4, planted with different winter wheat varieties, was managed according to farmers' practice while L1 through L3 represented controlled field experiments. Multitemporal spectral measurements were taken in the fields, and biomass was sampled for each spectral campaign. In addition, multitemporal Hyperion data were obtained in 2006 and 2007. L1 field data were used to develop biomass models based on the relation between the winter wheat spectra and biomass: several published vegetation indices, including NRI, REP, OSAVI, TCI, and NDVI, were investigated. A new hyperspectral vegetation index, which uses a four-band combination in the NIR and SWIR domains, named GnyLi, was developed. Following the multiscale concept, the data of higher levels (L2 through L4) were used stepwise to validate and improve the models of the lower levels, and to transfer the improved models to the next level. Lastly, the models were transferred and validated at the regional scale using Hyperion images of 2006 and 2007. The results showed that the GnyLi and NRI models, which were based on the NIR and SWIR domains, performed best with R2 > 0.74. All the other indices explained less than 60% model variability. Using the Hyperion data for regionalization, GnyLi and NRI explained 81-89% of the biomass variability. These results highlighted

  8. Use of EO-1 Advanced Land Imager (ALI) multispectral image data and real-time field sampling for water quality mapping in the Hirfanlı Dam Lake, Turkey.

    PubMed

    Kavurmacı, Murat; Ekercin, Semih; Altaş, Levent; Kurmaç, Yakup

    2013-08-01

    This paper focuses on the evaluation of water quality variations in Hirfanlı Water Reservoir, which is one of the most important water resources in Turkey, through EO-1 (Earth Observing-1) Advanced Land Imager (ALI) multispectral data and real-time field sampling. The study was materialized in 20 different sampling points during the overpass of the EO-1 ALI sensor over the study area. A multi-linear regression technique was used to explore the relationships between radiometrically corrected EO-1 ALI image data and water quality parameters: chlorophyll a, turbidity, and suspended solids. The retrieved and verified results show that the measured and estimated values of water quality parameters are in good agreement (R (2) >0.93). The resulting thematic maps derived from EO-1 multispectral data for chlorophyll a, turbidity, and suspended solids show the spatial distribution of the water quality parameters. The results indicate that the reservoir has average nutrient values. Furthermore, chlorophyll a, turbidity, and suspended solids values increased at the upstream reservoir and shallow coast of the Hirfanlı Water Reservoir. PMID:23423869

  9. Sublimation-driven erosion on Hyperion: Topographic analysis and landform simulation model tests

    NASA Astrophysics Data System (ADS)

    Howard, Alan D.; Moore, Jeffrey M.; Schenk, Paul M.; White, Oliver L.; Spencer, John

    2012-07-01

    The unique appearance of Hyperion can be explained in part by the loss to space of ballistic ejecta during impact events, as was proposed by Thomas et al. (Thomas, P.C. et al. [2007a]. Icarus 190, 573-584). We conclude that such loss is a partial explanation, accounting for the lack of appreciable intercrater plains on a saturation-cratered surface. In order to create the smooth surfaces and the reticulate, honeycomb pattern of narrow divides between old craters, appreciable subsequent modification of crater morphology must occur through mass-wasting processes accompanied by sublimation, probably facilitated by the loss of CO2 as a component of the relief-supporting matrix of the bedrock. During early stages of crater degradation, steep, crenulate bedrock slopes occupy the upper crater walls with abrupt transitions downslope onto smooth slopes near the angle of repose mantled by mass wasting debris, as can be seen within young craters. Long-continued mass wasting eventually results in slopes totally mantled with particulate debris. This mass wasting effectively destroys small craters, at least in part accounting for the paucity of sub-kilometer craters on Hyperion. Surface temperatures measured by Cassini CIRS range from 58 K to 127 K and imply a surface thermal inertia of 11 ± 2 J m-2 K-1 s-1/2 and bolometric albedo ranging from 0.05 to 0.33. Resulting H2O sublimation rates are only tens of cm per billion years for most of the surface, so the evolution of the observed landforms is likely to require sublimation of more volatile species such as CO2.

  10. Modeling soil parameters using hyperspectral image reflectance in subtropical coastal wetlands

    NASA Astrophysics Data System (ADS)

    Anne, Naveen J. P.; Abd-Elrahman, Amr H.; Lewis, David B.; Hewitt, Nicole A.

    2014-12-01

    Developing spectral models of soil properties is an important frontier in remote sensing and soil science. Several studies have focused on modeling soil properties such as total pools of soil organic matter and carbon in bare soils. We extended this effort to model soil parameters in areas densely covered with coastal vegetation. Moreover, we investigated soil properties indicative of soil functions such as nutrient and organic matter turnover and storage. These properties include the partitioning of mineral and organic soil between particulate (>53 μm) and fine size classes, and the partitioning of soil carbon and nitrogen pools between stable and labile fractions. Soil samples were obtained from Avicennia germinans mangrove forest and Juncus roemerianus salt marsh plots on the west coast of central Florida. Spectra corresponding to field plot locations from Hyperion hyperspectral image were extracted and analyzed. The spectral information was regressed against the soil variables to determine the best single bands and optimal band combinations for the simple ratio (SR) and normalized difference index (NDI) indices. The regression analysis yielded levels of correlation for soil variables with R2 values ranging from 0.21 to 0.47 for best individual bands, 0.28 to 0.81 for two-band indices, and 0.53 to 0.96 for partial least-squares (PLS) regressions for the Hyperion image data. Spectral models using Hyperion data adequately (RPD > 1.4) predicted particulate organic matter (POM), silt + clay, labile carbon (C), and labile nitrogen (N) (where RPD = ratio of standard deviation to root mean square error of cross-validation [RMSECV]). The SR (0.53 μm, 2.11 μm) model of labile N with R2 = 0.81, RMSECV= 0.28, and RPD = 1.94 produced the best results in this study. Our results provide optimism that remote-sensing spectral models can successfully predict soil properties indicative of ecosystem nutrient and organic matter turnover and storage, and do so in areas with dense

  11. Compact hyperspectral image sensor based on a novel hyperspectral encoder

    NASA Astrophysics Data System (ADS)

    Hegyi, Alex N.; Martini, Joerg

    2015-06-01

    A novel hyperspectral imaging sensor is demonstrated that can enable breakthrough applications of hyperspectral imaging in domains not previously accessible. Our technology consists of a planar hyperspectral encoder combined with a traditional monochrome image sensor. The encoder adds negligibly to the sensor's overall size, weight, power requirement, and cost (SWaP-C); therefore, the new imager can be incorporated wherever image sensors are currently used, such as in cell phones and other consumer electronics. In analogy to Fourier spectroscopy, the technique maintains a high optical throughput because narrow-band spectral filters are unnecessary. Unlike conventional Fourier techniques that rely on Michelson interferometry, our hyperspectral encoder is robust to vibration and amenable to planar integration. The device can be viewed within a computational optics paradigm: the hardware is uncomplicated and serves to increase the information content of the acquired data, and the complexity of the system, that is, the decoding of the spectral information, is shifted to computation. Consequently, system tradeoffs, for example, between spectral resolution and imaging speed or spatial resolution, are selectable in software. Our prototype demonstration of the hyperspectral imager is based on a commercially-available silicon CCD. The prototype encoder was inserted within the camera's ~1 cu. in. housing. The prototype can image about 49 independent spectral bands distributed from 350 nm to 1250 nm, but the technology may be extendable over a wavelength range from ~300 nm to ~10 microns, with suitable choice of detector.

  12. Fiber optic snapshot hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Mansur, David J.; Rentz Dupuis, Julia; Vaillancourt, Robert

    2012-06-01

    OPTRA is developing a snapshot hyperspectral imager (HSI) employing a fiber optic bundle and dispersive spectrometer. The fiber optic bundle converts a broadband spatial image to an array of fiber columns which serve as multiple entrance slits to a prism spectrometer. The dispersed spatially resolved spectra are then sampled by a two-dimensional focal plane array (FPA) at a greater than 30 Hz update rate, thereby qualifying the system as snapshot. Unlike snapshot HSI systems based on computed tomography or coded apertures, our approach requires only the remapping of the FPA frame into hyperspectral cubes rather than a complex reconstruction. Our system has high radiometric efficiency and throughput supporting sufficient signal to noise for hyperspectral imaging measurements made over very short integration times (< 33 ms). The overall approach is compact, low cost, and contains no moving parts, making it ideal for unmanned airborne surveillance. In this paper we present a preliminary design for the fiber optic snapshot HSI system.

  13. Medical hyperspectral imaging: a review

    NASA Astrophysics Data System (ADS)

    Lu, Guolan; Fei, Baowei

    2014-01-01

    Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the tissue physiology, morphology, and composition. This review paper presents an overview of the literature on medical hyperspectral imaging technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application.

  14. Medical hyperspectral imaging: a review

    PubMed Central

    Lu, Guolan; Fei, Baowei

    2014-01-01

    Abstract. Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the tissue physiology, morphology, and composition. This review paper presents an overview of the literature on medical hyperspectral imaging technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. PMID:24441941

  15. Hyperspectral Mapping of the Invasive Species Pepperweed and the Development of a Habitat Suitability Model

    NASA Technical Reports Server (NTRS)

    Nguyen, Andrew; Gole, Alexander; Randall, Jarom; Dlott, Glade; Zhang, Sylvia; Alfaro, Brian; Schmidt, Cindy; Skiles, J. W.

    2011-01-01

    Mapping and predicting the spatial distribution of invasive plant species is central to habitat management, however difficult to implement at landscape and regional scales. Remote sensing techniques can reduce the impact field campaigns have on these ecologically sensitive areas and can provide a regional and multi-temporal view of invasive species spread. Invasive perennial pepperweed (Lepidium latifolium) is now widespread in fragmented estuaries of the South San Francisco Bay, and is shown to degrade native vegetation in estuaries and adjacent habitats, thereby reducing forage and shelter for wildlife. The purpose of this study is to map the present distribution of pepperweed in estuarine areas of the South San Francisco Bay Salt Pond Restoration Project (Alviso, CA), and create a habitat suitability model to predict future spread. Pepperweed reflectance data were collected in-situ with a GER 1500 spectroradiometer along with 88 corresponding pepperweed presence and absence points used for building the statistical models. The spectral angle mapper (SAM) classification algorithm was used to distinguish the reflectance spectrum of pepperweed and map its distribution using an image from EO-1 Hyperion. To map pepperweed, we performed a supervised classification on an ASTER image with a resulting classification accuracy of 71.8%. We generated a weighted overlay analysis model within a geographic information system (GIS) framework to predict areas in the study site most susceptible to pepperweed colonization. Variables for the model included propensity for disturbance, status of pond restoration, proximity to water channels, and terrain curvature. A Generalized Additive Model (GAM) was also used to generate a probability map and investigate the statistical probability that each variable contributed to predict pepperweed spread. Results from the GAM revealed distance to channels, distance to ponds and curvature were statistically significant (p < 0.01) in determining

  16. Hyperspectral Mapping of the Invasive Species Pepperweed and the Development of a Habitat Suitability Model

    NASA Astrophysics Data System (ADS)

    Nguyen, A.; Gole, A.; Randall, J.; Dlott, G. A.; Zhang, S.; Alfaro, B.; Schmidt, C.; Skiles, J. W.

    2011-12-01

    Mapping and predicting the spatial distribution of invasive plant species is central to habitat management, however difficult to implement at landscape and regional scales. Remote sensing techniques can reduce the cost of field campaigns and can provide a regional and multi-temporal view of invasive species spread. Invasive perennial pepperweed (Lepidium latifolium) is now widespread in fragmented estuaries of the South San Francisco Bay, and is shown to degrade native vegetation in estuaries and adjacent habitats, thereby reducing forage and shelter for wildlife. The purpose of this study is to map the current distribution of pepperweed in estuarine areas of the South San Francisco Bay Salt Pond Restoration Project, and create a habitat suitability model to predict future spread. Pepperweed reflectance data were collected in-situ with a GER 1500 spectroradiometer along with 88 corresponding pepperweed presence and absence points used for building the statistical models. The spectral angle mapper (SAM) classification algorithm was used to distinguish the reflectance spectrum of pepperweed and map its distribution using an EO-1 Hyperion satellite image. To map pepperweed, a supervised classification was performed on an ASTER image with a resulting classification accuracy of 71.8%. We generated a weighted overlay analysis model within a geographic information system (GIS) framework to predict areas in the study site most susceptible to pepperweed colonization. Variables for the model included propensity for disturbance, status of pond restoration, proximity to water channels, and terrain curvature. A Generalized Additive Model (GAM) was also used to generate a probability map and investigate the statistical probability that each variable contributed to predict pepperweed spread. Results from the GAM revealed distance to channels, distance to ponds and curvature were statistically significant (p < 0.01) in determining the locations of suitable pepperweed habitats.

  17. Land degradation mapping based on hyperion data in desertification region of northwest China

    NASA Astrophysics Data System (ADS)

    Cheng, Penggen; Wu, Jian; Ouyang, Ping; He, Ting

    2008-10-01

    Desertification is an alarming sign of land degradation in Henshan county of northwest china. Due to the considerable costs of detailed ground surveys of this phenomenon, remote sensing is an appropriate alternative for analyzing and evaluating the risks of the expansion of land degradation. Degradation features can be detected directly or indirectly by using image data. In this paper, based on the Hyperion images of Hengshan desertification region of northwest china, a new algorithm aimed at land degradation mapping, called Land Degradation Index (LDI), was put forward. This new algorithm is based on the classified process. We applied the linear spectral unmixing algorithm with the training samples derived from the formerly classified process so as to find out new endmembers in the RMS error imagine. After that, using neutral net mapping with new training samples, the classified result was gained. In addition, after applying mask processing, the soils were grouped to 3 types (Kappa =0.90): highly degraded soils, moderately degraded soils and slightly degraded soils. By analyzing 3 mapping methods: mixture-classification, the spectral angle mapper and mixturetuned matched filtering, the results suggest that the mixture-classification has the higher accuracy (Kappa=0.7075) than the spectral angle mapper (Kappa=0.5418) and the mixture-tuned matched filter (Kappa=0.6039). As a result, the mixture-classification is selected to carry out Land Degradation Index analysis.

  18. Sea ice density estimation in the Bohai Sea using the hyperspectral remote sensing technology

    NASA Astrophysics Data System (ADS)

    Liu, Chengyu; Shao, Honglan; Xie, Feng; Wang, Jianyu

    2014-11-01

    Sea ice density is one of the significant physical properties of sea ice and the input parameters in the estimation of the engineering mechanical strength and aerodynamic drag coefficients; also it is an important indicator of the ice age. The sea ice in the Bohai Sea is a solid, liquid and gas-phase mixture composed of pure ice, brine pockets and bubbles, the density of which is mainly affected by the amount of brine pockets and bubbles. The more the contained brine pockets, the greater the sea ice density; the more the contained bubbles, the smaller the sea ice density. The reflectance spectrum in 350~2500 nm and density of sea ice of different thickness and ages were measured in the Liaodong Bay of the Bohai Sea during the glacial maximum in the winter of 2012-2013. According to the measured sea ice density and reflectance spectrum, the characteristic bands that can reflect the sea ice density variation were found, and the sea ice density spectrum index (SIDSI) of the sea ice in the Bohai Sea was constructed. The inversion model of sea ice density in the Bohai Sea which refers to the layer from surface to the depth of penetration by the light was proposed at last. The sea ice density in the Bohai Sea was estimated using the proposed model from Hyperion image which is a hyperspectral image. The results show that the error of the sea ice density inversion model is about 0.0004 g•cm-3. The sea ice density can be estimated through hyperspectral remote sensing images, which provide the data support to the related marine science research and application.

  19. Hyperspectral Remote Sensing Techniques in Predicting Phycocyanin Concentrations in Cyanobacteria: A Comprehensive Study

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Mishra, D. R.; Schluchter, W. M.

    2009-12-01

    The purpose of this research was to evaluate the performance of existing spectral band ratio algorithms and develop a novel algorithm to quantify phycocyanin (PC) in cyanobacteria using hyperspectral remotely-sensed data. We performed four spectroscopic experiments on two different laboratory cultured cyanobacterial species and found that the existing band ratio algorithms are highly sensitive to chlorophylls, making them inaccurate in predicting cyanobacterial abundance in the presence of other chlorophyll-containing organisms. Our results also show that the widely used 654 nm reflectance peak in existing algorithms is highly sensitive to changes in chlorophyll-a concentration and offers poor PC predictive ability. We present a novel spectral band ratio algorithm that is least sensitive to the presence of chlorophyll. The newly developed band ratio model showed promising results by yielding low root mean squared error (RMSE, 15,260 cells mL-1) and significantly low relative root mean squared error (RMS, 101%) as compared to the existing band ratio algorithms. Natural logarithmic transformation of the new model yielded the lowest RMSE (13,885 cells mL-1) and a high coefficient of determination (0.95) between measured and predicted PC concentration. We also show that the new algorithm is species independent and accurately retrieves PC concentration in the presence of varying amount of chlorophyll-a in the system. Band setting of the model confirms that it can be used for retrieval of PC using hyperspectral sensors such as Hyperion as well as data acquired by other airborne sensors. Figure (A, B, C) Percent reflectance spectra of Synechocystis PCC 6803 from Exp I, II, III respectively. (D) Percent reflectance spectra of Anabaena from Exp IV. Data collected from these experiments were included in the evaluation of existing PC predictive models and the calibration and validation of the new spectral band ratio model.

  20. Multi range spectral feature fitting for hyperspectral imagery in extracting oilseed rape planting area

    NASA Astrophysics Data System (ADS)

    Pan, Zhuokun; Huang, Jingfeng; Wang, Fumin

    2013-12-01

    Spectral feature fitting (SFF) is a commonly used strategy for hyperspectral imagery analysis to discriminate ground targets. Compared to other image analysis techniques, SFF does not secure higher accuracy in extracting image information in all circumstances. Multi range spectral feature fitting (MRSFF) from ENVI software allows user to focus on those interesting spectral features to yield better performance. Thus spectral wavelength ranges and their corresponding weights must be determined. The purpose of this article is to demonstrate the performance of MRSFF in oilseed rape planting area extraction. A practical method for defining the weighted values, the variance coefficient weight method, was proposed to set up criterion. Oilseed rape field canopy spectra from the whole growth stage were collected prior to investigating its phenological varieties; oilseed rape endmember spectra were extracted from the Hyperion image as identifying samples to be used in analyzing the oilseed rape field. Wavelength range divisions were determined by the difference between field-measured spectra and image spectra, and image spectral variance coefficient weights for each wavelength range were calculated corresponding to field-measured spectra from the closest date. By using MRSFF, wavelength ranges were classified to characterize the target's spectral features without compromising spectral profile's entirety. The analysis was substantially successful in extracting oilseed rape planting areas (RMSE ≤ 0.06), and the RMSE histogram indicated a superior result compared to a conventional SFF. Accuracy assessment was based on the mapping result compared with spectral angle mapping (SAM) and the normalized difference vegetation index (NDVI). The MRSFF yielded a robust, convincible result and, therefore, may further the use of hyperspectral imagery in precision agriculture.

  1. JAVA implemented MSE optimal bit-rate allocation applied to 3-D hyperspectral imagery using JPEG2000 compression

    NASA Astrophysics Data System (ADS)

    Melchor, J. L., Jr.; Cabrera, S. D.; Aguirre, A.; Kosheleva, O. M.; Vidal, E., Jr.

    2005-08-01

    This paper describes an efficient algorithm and its Java implementation for a recently developed mean-squared error (MSE) rate-distortion optimal (RDO) inter-slice bit-rate allocation (BRA) scheme applicable to the JPEG2000 Part 2 (J2KP2) framework. Its performance is illustrated on hyperspectral imagery data using the J2KP2 with the Karhunen- Loeve transform (KLT) for decorrelation. The results are contrasted with those obtained using the traditional logvariance based BRA method and with the original RDO algorithm. The implementation has been developed as a Java plug-in to be incorporated into our evolving multi-dimensional data compression software tool denoted CompressMD. The RDO approach to BRA uses discrete rate distortion curves (RDCs) for each slice of transform coefficients. The generation of each point on a RDC requires a full decompression of that slice, therefore, the efficient version minimizes the number of RDC points needed from each slice by using a localized coarse-to-fine approach denoted RDOEfficient. The scheme is illustrated in detail using a subset of 10 bands of hyperspectral imagery data and is contrasted to the original RDO implementation and the traditional (log-variance) method of BRA showing that better results are obtained with the RDO methods. The three schemes are also tested on two hyperspectral imagery data sets with all bands present: the Cuprite radiance data from AVIRIS and a set derived from the Hyperion satellite. The results from the RDO and RDOEfficient are very close to each other in the MSE sense indicating that the adaptive approach can find almost the same BRA solution. Surprisingly, the traditional method also performs very close to the RDO methods, indicating that it is very close to being optimal for these types of data sets.

  2. Analyses of the soil surface dynamic of South African Kalahari salt pans based on hyperspectral and multitemporal data

    NASA Astrophysics Data System (ADS)

    Milewski, Robert; Chabrillat, Sabine; Behling, Robert; Mielke, Christian; Schleicher, Anja Maria; Guanter, Luis

    2016-04-01

    The consequences of climate change represent a major threat to sustainable development and growth in Southern Africa. Understanding the impact on the geo- and biosphere is therefore of great importance in this particular region. In this context the Kalahari salt pans (also known as playas or sabkhas) and their peripheral saline and alkaline habitats are an ecosystem of major interest. They are very sensitive to environmental conditions, and as thus hydrological, mineralogical and ecological responses to climatic variations can be analysed. Up to now the soil composition of salt pans in this area have been only assessed mono-temporally and on a coarse regional scale. Furthermore, the dynamic of the salt pans, especially the formation of evaporites, is still uncertain and poorly understood. High spectral resolution remote sensing can estimate evaporite content and mineralogy of soils based on the analyses of the surface reflectance properties within the Visible-Near InfraRed (VNIR 400-1000 nm) and Short-Wave InfraRed (SWIR 1000-2500 nm) regions. In these wavelength regions major chemical components of the soil interact with the electromagnetic radiation and produce characteristic absorption features that can be used to derive the properties of interest. Although such techniques are well established for the laboratory and field scale, the potential of current (Hyperion) and upcoming spaceborne sensors such as EnMAP for quantitative mineralogical and salt spectral mapping is still to be demonstrated. Combined with hyperspectral methods, multitemporal remote sensing techniques allow us to derive the recent dynamic of these salt pans and link the mineralogical analysis of the pan surface to major physical processes in these dryland environments. In this study we focus on the analyses of the Namibian Omongwa salt pans based on satellite hyperspectral imagery and multispectral time-series data. First, a change detection analysis is applied using the Iterative

  3. Application of Gibbs sampling in efficient hyperspectral unmixing based on the mixtures of Dirichlet components

    NASA Astrophysics Data System (ADS)

    Babakan, Solmaz; Oskouei, Majid Mohammady

    2015-01-01

    The independent component analysis has been commonly employed in hyperspectral unmixing. However, the success of this method is highly dependent on the independency of its sources assumption. Dependent component analysis (DECA) algorithm, which utilizes a Dirichlet mixture model, was developed to provide more adequate spectral unmixing of dependent sources. Estimation of the unknown model parameters using the expectation maximization algorithm in DECA resulted in some insufficiencies. DECAGibbs algorithm is introduced to improve unmixing accuracy by applying the Gibbs sampling method to the parameter estimation process of DECA, which is conducted in different manners of modeling the observations. Functionality of the DECAGibbs algorithm is examined through the artificial datasets and an AVIRIS image of Cuprite, Nevada, indicating better decomposition of mixed observations. Finally, the best performing model was employed in mineralogical mapping of the Lahroud region, northwest Iran, by a Hyperion image. The results represent the high reliability of the proposed method according to the geological studies of the area. Since the practical application of the mixture models relies upon the efficient estimation of their involved parameters, the performance of the DECA algorithm is improved by employing the Bayesian parameter estimation approaches in this research.

  4. Combination of Biochemical and Hyperspectral Remote Sensing Methods for Detection of Heavy Metal Pollutions in Eucalyptus Leaves (case Study: the City of Bam)

    NASA Astrophysics Data System (ADS)

    Khalili, R.; Anvari, S.; Honarmand, M.

    2015-12-01

    Environmental pollution may be caused due to mines and mineral deposits. The accumulation of the associated heavy metals in soil and especially at the root zone of plants would result in plant contamination. This paper aims to detect the dominant heavy metals in Eucalyptus leaves using both biochemical and hyperspectral techniques for northern part of Bam in Iran. In this regards, using biochemical approach, some Eucalyptus leaf samples were collected, and their laboratory data containing the concentration of heavy metals were measured by Graphite Furnace Atomic Absorption Spectrometry (GF-AAS). Using ASD FieldSpec3 Pro spectrometer (Analytical Spectral Devices) also, the spectral profile of leaf samples was measured and compared with healthy ones namely control samples. Finally, using supervised classification methods, the spatial distribution of heavy metals was determined by combination of biochemical results, spectral measurements of samples and hyperspectral images of EO-1 satellite. Results showed that Eucalyptus trees accumulates the heavy metals of As and Pb with the average concentrations equalling 9.98 and 14.31 ppb while compared with the relevant control samples equalling 2.32 and 8.98 ppb, respectively. Combination of biochemical and hyperspectral data analysis also proved by increasing heavy metals concentrations in all samples, their spectral profiles for the visible and near infrared regions will be changed in comparison with those obtained from the control sample.

  5. Hyperspectral remote sensing of vegetation

    USGS Publications Warehouse

    Thenkabail, Prasad S.; Lyon, John G.; Huete, Alfredo

    2011-01-01

    Hyperspectral narrow-band (or imaging spectroscopy) spectral data are fast emerging as practical solutions in modeling and mapping vegetation. Recent research has demonstrated the advances in and merit of hyperspectral data in a range of applications including quantifying agricultural crops, modeling forest canopy biochemical properties, detecting crop stress and disease, mapping leaf chlorophyll content as it influences crop production, identifying plants affected by contaminants such as arsenic, demonstrating sensitivity to plant nitrogen content, classifying vegetation species and type, characterizing wetlands, and mapping invasive species. The need for significant improvements in quantifying, modeling, and mapping plant chemical, physical, and water properties is more critical than ever before to reduce uncertainties in our understanding of the Earth and to better sustain it. There is also a need for a synthesis of the vast knowledge spread throughout the literature from more than 40 years of research.

  6. Bayesian segmentation of hyperspectral images

    NASA Astrophysics Data System (ADS)

    Mohammadpour, Adel; Féron, Olivier; Mohammad-Djafari, Ali

    2004-11-01

    In this paper we consider the problem of joint segmentation of hyperspectral images in the Bayesian framework. The proposed approach is based on a Hidden Markov Modeling (HMM) of the images with common segmentation, or equivalently with common hidden classification label variables which is modeled by a Potts Markov Random Field. We introduce an appropriate Markov Chain Monte Carlo (MCMC) algorithm to implement the method and show some simulation results.

  7. Hyperspectral imaging system for UAV

    NASA Astrophysics Data System (ADS)

    Zhang, Da; Zheng, Yuquan

    2015-10-01

    Hyperspectral imaging system for Unmanned Aerial Vehicle (UAV) is proposed under airborne remote sensing application background. By the application of Offner convex spherical grating spectral imaging system and using large area array detector push-broom imaging, hyperspectral imaging system with the indicators of 0.4μm to 1.0μm spectral range, 120 spectral bands, 5nm spectral resolution and 1m ground sampling interval (flight altitude 5km) is developed and completed. The Offner convex grating spectral imaging system is selected to achieve non-spectral line bending and colorless distortion design results. The diffraction efficiency is 15%-30% in the range of 0.4μm to 1.0μm wavelength. The system performances are tested by taking spectral and radiometric calibration methods in the laboratory. Based on monochromatic collimated light method for spectral performance parameters calibration of hyperspectral optical remote sensor, the analysis results of spectral calibration data show that the calibration test repeatability is less than 0.2 nm within one hour. The spectral scaling results show that the average spectral resolution of hyperspectral optical remote sensor is 4.94 nm, and the spatial dimension of the high-spectral optical remote sensor spectral resolution is less than 5 nm, the average of the typical spectral bandwidth is about 6 nm, the system average signal-to-noise ratio (SNR) is up to 43dB under typical operating conditions. Finally the system functionalities and performance indicators are verified by the aviation flight tests, which it's equipped on UAV. The actual image quality is good, and the spectral position is stable.

  8. Estimation of a genetically viable population for multigenerational interstellar voyaging: Review and data for project Hyperion

    NASA Astrophysics Data System (ADS)

    Smith, Cameron M.

    2014-04-01

    Designing interstellar starships for human migration to exoplanets requires establishing the starship population, which factors into many variables including closed-ecosystem design, architecture, mass and propulsion. I review the central issues of population genetics (effects of mutation, migration, selection and drift) for human populations on such voyages, specifically referencing a roughly 5-generation (c. 150-year) voyage currently in the realm of thought among Icarus Interstellar's Project Hyperion research group. I present several formulae as well as concrete numbers that can be used to help determine populations that could survive such journeys in good health. I find that previously proposed such populations, on the order of a few hundred individuals, are significantly too low to consider based on current understanding of vertebrate (including human) genetics and population dynamics. Population genetics theory, calculations and computer modeling determine that a properly screened and age- and sex-structured total founding population (Nc) of anywhere from roughly 14,000 to 44,000 people would be sufficient to survive such journeys in good health. A safe and well-considered Nc figure is 40,000, an Interstellar Migrant Population (IMP) composed of an Effective Population [Ne] of 23,400 reproductive males and females, the rest being pre- or post-reproductive individuals. This number would maintain good health over five generations despite (a) increased inbreeding resulting from a relatively small human population, (b) depressed genetic diversity due to the founder effect, (c) demographic change through time and (d) expectation of at least one severe population catastrophe over the 5-generation voyage.

  9. Fractal Characterization of Hyperspectral Imagery

    NASA Technical Reports Server (NTRS)

    Qiu, Hon-Iie; Lam, Nina Siu-Ngan; Quattrochi, Dale A.; Gamon, John A.

    1999-01-01

    Two Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral images selected from the Los Angeles area, one representing urban and the other, rural, were used to examine their spatial complexity across their entire spectrum of the remote sensing data. Using the ICAMS (Image Characterization And Modeling System) software, we computed the fractal dimension values via the isarithm and triangular prism methods for all 224 bands in the two AVIRIS scenes. The resultant fractal dimensions reflect changes in image complexity across the spectral range of the hyperspectral images. Both the isarithm and triangular prism methods detect unusually high D values on the spectral bands that fall within the atmospheric absorption and scattering zones where signature to noise ratios are low. Fractal dimensions for the urban area resulted in higher values than for the rural landscape, and the differences between the resulting D values are more distinct in the visible bands. The triangular prism method is sensitive to a few random speckles in the images, leading to a lower dimensionality. On the contrary, the isarithm method will ignore the speckles and focus on the major variation dominating the surface, thus resulting in a higher dimension. It is seen where the fractal curves plotted for the entire bandwidth range of the hyperspectral images could be used to distinguish landscape types as well as for screening noisy bands.

  10. Hyperspectral imaging of bruised skin

    NASA Astrophysics Data System (ADS)

    Randeberg, Lise L.; Baarstad, Ivar; Løke, Trond; Kaspersen, Peter; Svaasand, Lars O.

    2006-02-01

    Bruises can be important evidence in legal medicine, for example in cases of child abuse. Optical techniques can be used to discriminate and quantify the chromophores present in bruised skin, and thereby aid dating of an injury. However, spectroscopic techniques provide only average chromophore concentrations for the sampled volume, and contain little information about the spatial chromophore distribution in the bruise. Hyperspectral imaging combines the power of imaging and spectroscopy, and can provide both spectroscopic and spatial information. In this study a hyperspectral imaging system developed by Norsk Elektro Optikk AS was used to measure the temporal development of bruised skin in a human volunteer. The bruises were inflicted by paintball bullets. The wavelength ranges used were 400 - 1000 nm (VNIR) and 900 - 1700 nm (SWIR), and the spectral sampling intervals were 3.7 and 5 nm, respectively. Preliminary results show good spatial discrimination of the bruised areas compared to normal skin. Development of a white spot can be seen in the central zone of the bruises. This central white zone was found to resemble the shape of the object hitting the skin, and is believed to develop in areas where the impact caused vessel damage. These results show that hyperspectral imaging is a promising technique to evaluate the temporal and spatial development of bruises on human skin.

  11. Longwave infrared compressive hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Dupuis, Julia R.; Kirby, Michael; Cosofret, Bogdan R.

    2015-06-01

    Physical Sciences Inc. (PSI) is developing a longwave infrared (LWIR) compressive sensing hyperspectral imager (CS HSI) based on a single pixel architecture for standoff vapor phase plume detection. The sensor employs novel use of a high throughput stationary interferometer and a digital micromirror device (DMD) converted for LWIR operation in place of the traditional cooled LWIR focal plane array. The CS HSI represents a substantial cost reduction over the state of the art in LWIR HSI instruments. Radiometric improvements for using the DMD in the LWIR spectral range have been identified and implemented. In addition, CS measurement and sparsity bases specifically tailored to the CS HSI instrument and chemical plume imaging have been developed and validated using LWIR hyperspectral image streams of chemical plumes. These bases enable comparable statistics to detection based on uncompressed data. In this paper, we present a system model predicting the overall performance of the CS HSI system. Results from a breadboard build and test validating the system model are reported. In addition, the measurement and sparsity basis work demonstrating the plume detection on compressed hyperspectral images is presented.

  12. Spectral Analysis of Hyperion, ALI, SPOT and ASTER Data to Characterize Geological Features in Northern Pakistan

    NASA Astrophysics Data System (ADS)

    Mahmood, Syed Amer; Liesenberg, Veraldo; Wijaya, Arief; Shahzad, Faisal; Siddiqui, Saima; Gloaguen, Richard

    2010-12-01

    In this investigation, we intend to evaluate at which degree geomorphological features can be characterized from both hyperspectral and multispectral data in Chitral Region, Eastern Hindukush (N. Pakistan). We apply Minimum Noise Fraction-Transformation (MNF) for data quality assessment and noise reduction as well as Spectral Angle Mapper (SAM) for classification purposes. Input data for this process was both corrected atmospherically and geometrically. The selection of the classes was based on inspection of previously published geologic maps and field work of the study area supported by the visual interpretation of high spatial resolution data. Preliminary results showed that hyperspectral data were better than multispectral data for lithology and the geological structure examination. The complementary use of the high spatial resolution of SPOT-5 was useful to characterize some main lithologic units by visual interpretation and selection of endmembers. However, classification results were affected by the steep and rugged topography that was responsible for reflectance value changes due to different degrees of exposure of the units and the generation of spectral endmembers with some degrees of uncertainties. Further investigations will include illumination and exposure effect correction based on a non-Lambertian assumption as well as seasonal remote sensing data analysis.

  13. Progressive band processing for hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Schultz, Robert C.

    Hyperspectral imaging has emerged as an image processing technique in many applications. The reason that hyperspectral data is called hyperspectral is mainly because the massive amount of information provided by the hundreds of spectral bands that can be used for data analysis. However, due to very high band-to-band correlation much information may be also redundant. Consequently, how to effectively and best utilize such rich spectral information becomes very challenging. One general approach is data dimensionality reduction which can be performed by data compression techniques, such as data transforms, and data reduction techniques, such as band selection. This dissertation presents a new area in hyperspectral imaging, to be called progressive hyperspectral imaging, which has not been explored in the past. Specifically, it derives a new theory, called Progressive Band Processing (PBP) of hyperspectral data that can significantly reduce computing time and can also be realized in real-time. It is particularly suited for application areas such as hyperspectral data communications and transmission where data can be communicated and transmitted progressively through spectral or satellite channels with limited data storage. Most importantly, PBP allows users to screen preliminary results before deciding to continue with processing the complete data set. These advantages benefit users of hyperspectral data by reducing processing time and increasing the timeliness of crucial decisions made based on the data such as identifying key intelligence information when a required response time is short.

  14. Hyperspectral imaging for nondestructive evaluation of tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Machine vision methods for quality and defect evaluation of tomatoes have been studied for online sorting and robotic harvesting applications. We investigated the use of a hyperspectral imaging system for quality evaluation and defect detection for tomatoes. Hyperspectral reflectance images were a...

  15. A hyperspectral approach to estimating biomass and plant production in a heterogeneous restored temperate peatland

    NASA Astrophysics Data System (ADS)

    Byrd, K. B.; Schile, L. M.; Windham-Myers, L.; Kelly, M.; Hatala, J.; Baldocchi, D. D.

    2012-12-01

    inundation and NPV. fAPAR values were combined with GPP estimates at the field scale from eddy correlation flux measurements to develop a LUE model of plant production. To compare the effectiveness of broadband vs. narrowband indices in predicting biomass and fAPAR, we simulated eight multispectral World View-2 (WV-2) bands and 164 hyperspectral Hyperion bands with the field spectroradiometer data. We calculated NDVI-type two band vegetation indices (TBVI) using all possible band combinations, with a total of 28 WV-2 indices and 13,366 Hyperion indices. Biomass estimation was affected by water depth; regression of cattail biomass to TBVI680,910 produced a R2 that was 47% higher (R2 = 0.53) when water levels were under 50 cm compared to when water levels were over 50 cm (R2 = 0.28). fAPAR estimation was affected by the density of NPV; regression of fAPAR to TBVI539,1114 when PARtransmitted was measured above thatch was 49% higher (R2 = 0.50) than when PARtransmitted was measured below thatch (R2 = 0.20, TBVI1286,1266). Accounting for background effects in this heterogeneous environment will aid in the development of robust indices that can be applied to other wetland sites for estimates of carbon storage potential across large extents.

  16. Lossy compression of hyperspectral images based on noise parameters estimation and variance stabilizing transform

    NASA Astrophysics Data System (ADS)

    Zemliachenko, Alexander N.; Kozhemiakin, Ruslan A.; Uss, Mikhail L.; Abramov, Sergey K.; Ponomarenko, Nikolay N.; Lukin, Vladimir V.; Vozel, Benoît; Chehdi, Kacem

    2014-01-01

    A problem of lossy compression of hyperspectral images is considered. A specific aspect is that we assume a signal-dependent model of noise for data acquired by new generation sensors. Moreover, a signal-dependent component of the noise is assumed dominant compared to a signal-independent noise component. Sub-band (component-wise) lossy compression is studied first, and it is demonstrated that optimal operation point (OOP) can exist. For such OOP, the mean square error between compressed and noise-free images attains global or, at least, local minimum, i.e., a good effect of noise removal (filtering) is reached. In practice, we show how compression in the neighborhood of OOP can be carried out, when a noise-free image is not available. Two approaches for reaching this goal are studied. First, lossy compression directly applied to the original data is considered. According to another approach, lossy compression is applied to images after direct variance stabilizing transform (VST) with properly adjusted parameters. Inverse VST has to be performed only after data decompression. It is shown that the second approach has certain advantages. One of them is that the quantization step for a coder can be set the same for all sub-band images. This offers favorable prerequisites for applying three-dimensional (3-D) methods of lossy compression for sub-band images combined into groups after VST. Two approaches to 3-D compression, based on the discrete cosine transform, are proposed and studied. A first approach presumes obtaining the reference and "difference" images for each group. A second performs compression directly for sub-images in a group. We show that it is a good choice to have 16 sub-images in each group. The abovementioned approaches are tested for Hyperion hyperspectral data. It is demonstrated that the compression ratio of about 15-20 can be provided for hyperspectral image compression in the neighborhood of OOP for 3-D coders, which is sufficiently larger than

  17. The Hyperspectral Stereo Camera Project

    NASA Astrophysics Data System (ADS)

    Griffiths, A. D.; Coates, A. J.

    2006-12-01

    The MSSL Hyperspectral Stereo Camera (HSC) is developed from Beagle2 stereo camera heritage. Replaceing filter wheels with liquid crystal tuneable filters (LCTF) turns each eye into a compact hyperspectral imager. Hyperspectral imaging is defined here as acquiring 10s-100s of images in 10-20 nm spectral bands. Combined together these bands form an image `cube' (with wavelength as the third dimension) allowing a detailed spectrum to be extracted at any pixel position. A LCTF is conceptually similar to the Fabry-Perot tuneable filter design but instead of physical separation, the variable refractive index of the liquid crystal etalons is used to define the wavelength of interest. For 10 nm bandwidths, LCTFs are available covering the 400-720 nm and 650-1100 nm ranges. The resulting benefits include reduced imager mechanical complexity, no limitation on the number of filter wavelengths available and the ability to change the wavelengths of interest in response to new findings as the mission proceeds. LCTFs are currently commercially available from two US companies - Scientific Solutions Inc. and Cambridge Research Inc. (CRI). CRI distribute the `Varispec' LCTFs used in the HSC. Currently, in Earth orbit hyperspectral imagers can prospect for minerals, detect camouflaged military equipment and determine the species and state of health of crops. Therefore, we believe this instrument shows great promise for a wide range of investigations in the planetary science domain (below). MSSL will integrate and test at representative Martian temperatures the HSC development model (to determine power requirements to prevent the liquid crystals freezing). Additionally, a full radiometric calibration is required to determine the HSC sensitivity. The second phase of the project is to demonstrate (in a ground based lab) the benefit of much higher spectral resolution to the following Martian scientific investigations: - Determination of the mineralogy of rocks and soil - Detection of

  18. Hyperspectral Imaging of human arm

    NASA Technical Reports Server (NTRS)

    2003-01-01

    ProVision Technologies, a NASA research partnership center at Sternis Space Center in Mississippi, has developed a new hyperspectral imaging (HSI) system that is much smaller than the original large units used aboard remote sensing aircraft and satellites. The new apparatus is about the size of a breadbox. Health-related applications of HSI include non-invasive analysis of human skin to characterize wounds and wound healing rates (especially important for space travelers who heal more slowly), determining if burns are first-, second-, or third degree (rather than painful punch biopsies). The work is sponsored under NASA's Space Product Development (SPD) program.

  19. False alarm recognition in hyperspectral gas plume identification

    DOEpatents

    Conger, James L.; Lawson, Janice K.; Aimonetti, William D.

    2011-03-29

    According to one embodiment, a method for analyzing hyperspectral data includes collecting first hyperspectral data of a scene using a hyperspectral imager during a no-gas period and analyzing the first hyperspectral data using one or more gas plume detection logics. The gas plume detection logic is executed using a low detection threshold, and detects each occurrence of an observed hyperspectral signature. The method also includes generating a histogram for all occurrences of each observed hyperspectral signature which is detected using the gas plume detection logic, and determining a probability of false alarm (PFA) for all occurrences of each observed hyperspectral signature based on the histogram. Possibly at some other time, the method includes collecting second hyperspectral data, and analyzing the second hyperspectral data using the one or more gas plume detection logics and the PFA to determine if any gas is present. Other systems and methods are also included.

  20. Hyperspectral imaging camera using wavefront division interference.

    PubMed

    Bahalul, Eran; Bronfeld, Asaf; Epshtein, Shlomi; Saban, Yoram; Karsenty, Avi; Arieli, Yoel

    2016-03-01

    An approach for performing hyperspectral imaging is introduced. The hyperspectral imaging is based on Fourier transform spectroscopy, where the interference is performed by wavefront division interference rather than amplitude division interference. A variable phase delay between two parts of the wavefront emanating from each point of an object is created by a spatial light modulator (SLM) to obtain variable interference patterns. The SLM is placed in the exit pupil of an imaging system, thus enabling conversion of a general imaging optical system into an imaging hyperspectral optical system. The physical basis of the new approach is introduced, and an optical apparatus is built. PMID:26974085

  1. Vessel contrast enhancement in hyperspectral images

    NASA Astrophysics Data System (ADS)

    Bjorgan, Asgeir; Denstedt, Martin; Milanič, Matija; Paluchowski, Lukasz A.; Randeberg, Lise L.

    2015-03-01

    Imaging of vessel structures can be useful for investigation of endothelial function, angiogenesis and hyper-vascularization. This can be challenging for hyperspectral tissue imaging due to photon scattering and absorption in other parts of the tissue. Real-time processing techniques for enhancement of vessel contrast in hyperspectral tissue images were investigated. Wavelet processing and an inverse diffusion model were employed, and compared to band ratio metrics and statistical methods. A multiscale vesselness filter was applied for further enhancement. The results show that vessel structures in hyperspectral images can be enhanced and characterized using a combination of statistical, numerical and more physics informed models.

  2. Is there a best hyperspectral detection algorithm?

    NASA Astrophysics Data System (ADS)

    Manolakis, D.; Lockwood, R.; Cooley, T.; Jacobson, J.

    2009-05-01

    A large number of hyperspectral detection algorithms have been developed and used over the last two decades. Some algorithms are based on highly sophisticated mathematical models and methods; others are derived using intuition and simple geometrical concepts. The purpose of this paper is threefold. First, we discuss the key issues involved in the design and evaluation of detection algorithms for hyperspectral imaging data. Second, we present a critical review of existing detection algorithms for practical hyperspectral imaging applications. Finally, we argue that the "apparent" superiority of sophisticated algorithms with simulated data or in laboratory conditions, does not necessarily translate to superiority in real-world applications.

  3. Use of Reflectance Ratios as a Proxy for Coastal Water Constituent Monitoring in the Pearl River Estuary

    PubMed Central

    Fang, Li-Gang; Chen, Shui-Sen; Li, Dong; Li, Hong-Li

    2009-01-01

    Spectra, salinity, total suspended solids (TSS, in mg/L) and colored dissolved organic matter (CDOM, ag(400) at 400 nm) sampled in stations in 44 different locations on December 18, 19 and 21, in 2006 were measured and analyzed. The studied field covered a large variety of optically different waters, the absorption coefficient of CDOM ([ag(400)] in m-1) varied between 0.488 and 1.41 m-1, and the TSS concentrations (mg/L) varied between 7.0 and 241.1 mg/L. In order to detect salinity of the Pearl River Estuary, we analyzed the spectral properties of TSS and CDOM, and the relationships between field water reflectance spectra and water constituents' concentrations based on the synchronous in-situ and satellite hyper-spectral image analysis. A good correlation was discovered (the positive correlation by linear fit), between in-situ reflectance ratio R680/R527 and TSS concentrations (R2 = 0.65) for the salinity range of 1.74-22.12. However, the result also showed that the absorption coefficient of CDOM was not tightly correlated with reflectance. In addition, we also observed two significant relationships (R2 > 0.77), one between TSS concentrations and surface salinity and the other between the absorption coefficient of CDOM and surface salinity. Finally, we develop a novel method to understand surface salinity distribution of estuarine waters from the calibrated EO-1 Hyperion reflectance data in the Pearl River Estuary, i.e. channels with high salinity and shoals with low salinity. The EO-1 Hyperion derived surface salinity and TSS concentrations were validated using in-situ data that were collected on December 21, 2006, synchronous with EO-1 Hyperion satellite imagery acquisition. The results showed that the semi-empirical relationships are capable of predicting salinity from EO-1 Hyperion imagery in the Pearl River Estuary (RMSE < 2‰). PMID:22389623

  4. Hyperspectral Shack–Hartmann test

    PubMed Central

    Birch, Gabriel C.; Descour, Michael R.; Tkaczyk, Tomasz S.

    2011-01-01

    A hyperspectral Shack–Hartmann test bed has been developed to characterize the performance of miniature optics across a wide spectral range, a necessary first step in developing broadband achromatized all-polymer endomicroscopes. The Shack–Hartmann test bed was used to measure the chromatic focal shift (CFS) of a glass singlet lens and a glass achromatic lens, i.e., lenses representing the extrema of CFS magnitude in polymer elements to be found in endomicroscope systems. The lenses were tested from 500 to 700 nm in 5 and 10 nm steps, respectively. In both cases, we found close agreement between test results obtained from a ZEMAX model of the test bed and test lens and those obtained by experiment (maximum error of 12 μm for the singlet lens and 5 μm for the achromatic triplet lens). Future applications of the hyperspectral Shack–Hartmann test include measurements of aberrations as a function of wavelength, characterization of manufactured plastic endomicroscope elements and systems, and reverse optimization. PMID:20885478

  5. Common hyperspectral image database design

    NASA Astrophysics Data System (ADS)

    Tian, Lixun; Liao, Ningfang; Chai, Ali

    2009-11-01

    This paper is to introduce Common hyperspectral image database with a demand-oriented Database design method (CHIDB), which comprehensively set ground-based spectra, standardized hyperspectral cube, spectral analysis together to meet some applications. The paper presents an integrated approach to retrieving spectral and spatial patterns from remotely sensed imagery using state-of-the-art data mining and advanced database technologies, some data mining ideas and functions were associated into CHIDB to make it more suitable to serve in agriculture, geological and environmental areas. A broad range of data from multiple regions of the electromagnetic spectrum is supported, including ultraviolet, visible, near-infrared, thermal infrared, and fluorescence. CHIDB is based on dotnet framework and designed by MVC architecture including five main functional modules: Data importer/exporter, Image/spectrum Viewer, Data Processor, Parameter Extractor, and On-line Analyzer. The original data were all stored in SQL server2008 for efficient search, query and update, and some advance Spectral image data Processing technology are used such as Parallel processing in C#; Finally an application case is presented in agricultural disease detecting area.

  6. Hyperspectral imaging using compressed sensing

    NASA Astrophysics Data System (ADS)

    Ramirez I., Gabriel Eduardo; Manian, Vidya B.

    2012-06-01

    Compressed sensing (CS) has attracted a lot of attention in recent years as a promising signal processing technique that exploits a signal's sparsity to reduce its size. It allows for simple compression that does not require a lot of additional computational power, and would allow physical implementation at the sensor using spatial light multiplexers using Texas Instruments (TI) digital micro-mirror device (DMD). The DMD can be used as a random measurement matrix, reflecting the image off the DMD is the equivalent of an inner product between the images individual pixels and the measurement matrix. CS however is asymmetrical, meaning that the signals recovery or reconstruction from the measurements does require a higher level of computation. This makes the prospect of working with the compressed version of the signal in implementations such as detection or classification much more efficient. If an initial analysis shows nothing of interest, the signal need not be reconstructed. Many hyper-spectral image applications are precisely focused on these areas, and would greatly benefit from a compression technique like CS that could help minimize the light sensor down to a single pixel, lowering costs associated with the cameras while reducing the large amounts of data generated by all the bands. The present paper will show an implementation of CS using a single pixel hyper-spectral sensor, and compare the reconstructed images to those obtained through the use of a regular sensor.

  7. Quality assessment for hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Chen, Yuheng; Chen, Xinhua; Zhou, Jiankang; Shen, Weimin

    2014-11-01

    Image quality assessment is an essential value judgement approach for many applications. Multi & hyper spectral imaging has more judging essentials than grey scale or RGB imaging and its image quality assessment job has to cover up all-around evaluating factors. This paper presents an integrating spectral imaging quality assessment project, in which spectral-based, radiometric-based and spatial-based statistical behavior for three hyperspectral imagers are jointly executed. Spectral response function is worked out based on discrete illumination images and its spectral performance is deduced according to its FWHM and spectral excursion value. Radiometric response ability of different spectral channel under both on-ground and airborne imaging condition is judged by SNR computing based upon local RMS extraction and statistics method. Spatial response evaluation of the spectral imaging instrument is worked out by MTF computing with slanted edge analysis method. Reported pioneering systemic work in hyperspectral imaging quality assessment is carried out with the help of several domestic dominating work units, which not only has significance in the development of on-ground and in-orbit instrument performance evaluation technique but also takes on reference value for index demonstration and design optimization for instrument development.

  8. Using hyperspectral data in precision farming applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision farming practices such as variable rate applications of fertilizer and agricultural chemicals require accurate field variability mapping. This chapter investigated the value of hyperspectral remote sensing in providing useful information for five applications of precision farming: (a) Soil...

  9. Hyperspectral forest monitoring and imaging implications

    NASA Astrophysics Data System (ADS)

    Goodenough, David G.; Bannon, David

    2014-05-01

    The forest biome is vital to the health of the earth. Canada and the United States have a combined forest area of 4.68 Mkm2. The monitoring of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of improved information products to land managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory (major forest species), forest health, foliar biochemistry, biomass, and aboveground carbon. Operationally there is a requirement for a mix of airborne and satellite approaches. This paper surveys some methods and results in hyperspectral sensing of forests and discusses the implications for space initiatives with hyperspectral sensing

  10. Real-time hyperspectral detection and cuing

    NASA Astrophysics Data System (ADS)

    Stellman, Christopher M.; Hazel, Geoff; Bucholtz, Frank; Michalowicz, Joseph V.; Stocker, Alan D.; Schaaf, William

    2000-07-01

    The Dark HORSE 1 (Hyperspectral Overhead Reconnaissance and Surveillance Experiment 1) flight test has demonstrated autonomous, real-time visible hyperspectral detection of military ground targets with real-time cuing of a high- resolution framing camera. An overview of the Dark HORSE 1 hyperspectral sensor system is presented. The system hardware components are described in detail, with an emphasis on the visible hyperspectral sensor and the real- time processor. Descriptions of system software and processing methods are also provided. The recent field experiment in which the Dark HORSE 1 system was employed is described in detail along with an analysis of the collected data. The results evince per-pixel false-alarm rates on the order of 10-5/km2, and demonstrate the improved performance obtained by operating two detection algorithms simultaneously.

  11. Constructing satellite-derived hyperspectral indices sensitive to canopy structure variables of a Cordilleran Cypress (Austrocedrus chilensis) forest

    NASA Astrophysics Data System (ADS)

    Peña, Marco A.; Brenning, Alexander; Sagredo, Ariel

    2012-11-01

    Satellite hyperspectral data were used to construct empirical spectral indices related to the canopy structure of a Cordilleran Cypress (Austrocedrus chilensis) forest located in the Andes of central Chile. Measurements of tree diameter at breast height (DBH) and tree height (TH) were performed for a set of plots located within a pure and unevenly aged stand of A. chilensis with moderate cover. Normalized difference vegetation indices (NDIs) related to DBH and TH were constructed from the corresponding hyperspectral data in Hyperion imagery. NDIs construction utilized the original spectral reflectance curve, its first derivative, and the continuum-removed reflectance in a two-step procedure that ranks NDIs based on their Spearman correlation with the response variable while controlling the false discovery rate. Several reflectance-based NDIs as well as a larger group of derivative-based NDIs were significantly related to DBH or TH (ρ > 0.70). The NDIs most strongly related to the field variables were based on derivative bands located within the same spectral regions used by the broadband greenness index known as green normalized difference vegetation index. Most other significant NDIs used NIR bands, which are well-known for their sensitivity to foliage amount changes. The results obtained in this exploratory study mostly agreed with the spectral regions expected to be most sensitive to changes in the canopy structure of vegetation. Further research in other A. chilensis forests subject to different site and environmental conditions is needed in order to assess the applicability of the NDIs over a wider range of this endemic species.

  12. Uncooled long-wave infrared hyperspectral imaging

    NASA Technical Reports Server (NTRS)

    Lucey, Paul G. (Inventor)

    2006-01-01

    A long-wave infrared hyperspectral sensor device employs a combination of an interferometer with an uncooled microbolometer array camera to produce hyperspectral images without the use of bulky, power-hungry motorized components, making it suitable for UAV vehicles, small mobile platforms, or in extraterrestrial environments. The sensor device can provide signal-to-noise ratios near 200 for ambient temperature scenes with 33 wavenumber resolution at a frame rate of 50 Hz, with higher results indicated by ongoing component improvements.

  13. Reflectance and fluorescence hyperspectral elastic image registration

    NASA Astrophysics Data System (ADS)

    Lange, Holger; Baker, Ross; Hakansson, Johan; Gustafsson, Ulf P.

    2004-05-01

    Science and Technology International (STI) presents a novel multi-modal elastic image registration approach for a new hyperspectral medical imaging modality. STI's HyperSpectral Diagnostic Imaging (HSDI) cervical instrument is used for the early detection of uterine cervical cancer. A Computer-Aided-Diagnostic (CAD) system is being developed to aid the physician with the diagnosis of pre-cancerous and cancerous tissue regions. The CAD system uses the fusion of multiple data sources to optimize its performance. The key enabling technology for the data fusion is image registration. The difficulty lies in the image registration of fluorescence and reflectance hyperspectral data due to the occurrence of soft tissue movement and the limited resemblance of these types of imagery. The presented approach is based on embedding a reflectance image in the fluorescence hyperspectral imagery. Having a reflectance image in both data sets resolves the resemblance problem and thereby enables the use of elastic image registration algorithms required to compensate for soft tissue movements. Several methods of embedding the reflectance image in the fluorescence hyperspectral imagery are described. Initial experiments with human subject data are presented where a reflectance image is embedded in the fluorescence hyperspectral imagery.

  14. Hyperspectral imaging utility for transportation systems

    NASA Astrophysics Data System (ADS)

    Bridgelall, Raj; Rafert, J. Bruce; Tolliver, Denver

    2015-03-01

    The global transportation system is massive, open, and dynamic. Existing performance and condition assessments of the complex interacting networks of roadways, bridges, railroads, pipelines, waterways, airways, and intermodal ports are expensive. Hyperspectral imaging is an emerging remote sensing technique for the non-destructive evaluation of multimodal transportation infrastructure. Unlike panchromatic, color, and infrared imaging, each layer of a hyperspectral image pixel records reflectance intensity from one of dozens or hundreds of relatively narrow wavelength bands that span a broad range of the electromagnetic spectrum. Hence, every pixel of a hyperspectral scene provides a unique spectral signature that offers new opportunities for informed decision-making in transportation systems development, operations, and maintenance. Spaceborne systems capture images of vast areas in a short period but provide lower spatial resolution than airborne systems. Practitioners use manned aircraft to achieve higher spatial and spectral resolution, but at the price of custom missions and narrow focus. The rapid size and cost reduction of unmanned aircraft systems promise a third alternative that offers hybrid benefits at affordable prices by conducting multiple parallel missions. This research formulates a theoretical framework for a pushbroom type of hyperspectral imaging system on each type of data acquisition platform. The study then applies the framework to assess the relative potential utility of hyperspectral imaging for previously proposed remote sensing applications in transportation. The authors also introduce and suggest new potential applications of hyperspectral imaging in transportation asset management, network performance evaluation, and risk assessments to enable effective and objective decision- and policy-making.

  15. Hyperspectral imaging of atherosclerotic plaques in vitro

    NASA Astrophysics Data System (ADS)

    Larsen, Eivind L. P.; Randeberg, Lise L.; Olstad, Elisabeth; Haugen, Olav A.; Aksnes, Astrid; Svaasand, Lars O.

    2011-02-01

    Vulnerable plaques constitute a risk for serious heart problems, and are difficult to identify using existing methods. Hyperspectral imaging combines spectral- and spatial information, providing new possibilities for precise optical characterization of atherosclerotic lesions. Hyperspectral data were collected from excised aorta samples (n = 11) using both white-light and ultraviolet illumination. Single lesions (n = 42) were chosen for further investigation, and classified according to histological findings. The corresponding hyperspectral images were characterized using statistical image analysis tools (minimum noise fraction, K-means clustering, principal component analysis) and evaluation of reflectance/fluorescence spectra. Image analysis combined with histology revealed the complexity and heterogeneity of aortic plaques. Plaque features such as lipids and calcifications could be identified from the hyperspectral images. Most of the advanced lesions had a central region surrounded by an outer rim or shoulder-region of the plaque, which is considered a weak spot in vulnerable lesions. These features could be identified in both the white-light and fluorescence data. Hyperspectral imaging was shown to be a promising tool for detection and characterization of advanced atherosclerotic plaques in vitro. Hyperspectral imaging provides more diagnostic information about the heterogeneity of the lesions than conventional single point spectroscopic measurements.

  16. Mapping Alteration Caused by Hydrocarbon Microseepages in Patrick Draw area Southwest Wyoming Using Image Spectroscopy and Hyperspectral Remote Sensing

    SciTech Connect

    Shuhab D. Khan

    2008-06-21

    Detection of underlying reservoir accumulations using remote sensing techniques had its inception with the identification of macroseeps. However, today we find ourselves relying on the detection of more subtle characteristics associated with petroleum reservoirs, such as microseeps. Microseepages are the result of vertical movement of light hydrocarbons from the reservoir to the surface through networks of fractures, faults, and bedding planes that provide permeable routes within the overlying rock. Microseepages express themselves at the surface in an array of alterations and anomalies, such as chemical or mineralogical changes in overlying soils and sediments. Using NASA's Hyperion hyperspectral imaging sensors, this project has developed spectral and geochemical ground truthing techniques to identify and map alterations caused by hydrocarbon microseepages and to determine their relationships to the underlying geology in the Patrick Draw area of Southwest Wyoming. Training the classification of satellite imagery with spectral inputs of samples collected over previously defined areas of hydrocarbon microseepage resulted in the successful identification of an anomalous zone. Geochemical characteristics of samples that defined this anomalous zone were then compared to the remaining non-anomalous samples using XRD, ICP, spectroscopy and carbon isotope techniques.

  17. A new method for spatial resolution enhancement of hyperspectral images using sparse coding and linear spectral unmixing

    NASA Astrophysics Data System (ADS)

    Hashemi, Nezhad Z.; Karami, A.

    2015-10-01

    Hyperspectral images (HSI) have high spectral and low spatial resolutions. However, multispectral images (MSI) usually have low spectral and high spatial resolutions. In various applications HSI with high spectral and spatial resolutions are required. In this paper, a new method for spatial resolution enhancement of HSI using high resolution MSI based on sparse coding and linear spectral unmixing (SCLSU) is introduced. In the proposed method (SCLSU), high spectral resolution features of HSI and high spatial resolution features of MSI are fused. In this case, the sparse representation of some high resolution MSI and linear spectral unmixing (LSU) model of HSI and MSI is simultaneously used in order to construct high resolution HSI (HRHSI). The fusion process of HSI and MSI is formulated as an ill-posed inverse problem. It is solved by the Split Augmented Lagrangian Shrinkage Algorithm (SALSA) and an orthogonal matching pursuit (OMP) algorithm. Finally, the proposed algorithm is applied to the Hyperion and ALI datasets. Compared with the other state-of-the-art algorithms such as Coupled Nonnegative Matrix Factorization (CNMF) and local spectral unmixing, the SCLSU has significantly increased the spatial resolution and in addition the spectral content of HSI is well maintained.

  18. Retrieval Lesson Learned from NAST-I Hyperspectral Data

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Liu, Xu; Larar, Allen M.; Mango, Stephen A.

    2007-01-01

    The retrieval lesson learned is important to many current and future hyperspectral remote sensors. Validated retrieval algorithms demonstrate the advancement of hyperspectral remote sensing capabilities to be achieved with current and future satellite instruments.

  19. Hyperspectral observations of space objects

    NASA Astrophysics Data System (ADS)

    Rafert, J. Bruce; Holbert, Eirik; Sellar, R. Glenn; Durham, Susan E.; Payne, Tamara E.; Tarr, Gregory L.; Carreras, Richard A.; Duneman, Dennis C.; Stone, David H.; Gregory, Steven; Prochko, Amy E.

    1994-06-01

    In this paper we present (1) the optical system design and operational overview, (2) laboratory evaluation spectra, and (3) a sample of the first observational data taken with HYSAT. The hyperspectral sensor systems which are being developed and whose utility is being pioneered by the Phillips Laboratory are applicable to several important SOI (space object identification), military, and civil applications including (1) spectral signature simulations, satellite model validation, and satellite database observations and (3) simultaneous spatial/spectral observations of booster plumes for strategic and surrogate tactical missile signature identification. The sensor system is also applicable to a wide range of other applications, including astronomy, camouflage discrimination, smoke chemical analysis, environmental/agricultural resource sensing, terrain analysis, and ground surveillance. Only SOI applications will be discussed here.

  20. Pavement management using hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Ayalew, Balehager; Gomez, Richard B.; Roper, William E.; Carrasco, Oscar

    2003-08-01

    Public Works facilities require up-to-date information on the health status of the road network they maintain. However, roadway maintenance and rehabilitation involves the greatest portion of a municipality's annual operating budget. Government officials use various technologies such as a pavement management system to assist in making better decisions about their roadways systems, pavement condition, history, and projects. Traditionally, manual surveying has served as the method of obtaining this information. To better assist in decision-making, a regionally specific spectral library for urban areas is being developed and used in conjunction with hyperspecrtal imaging, to map urban materials and pavement conditions. A Geographical Information and Positioning System (GIS/GPS) will also be implemented to overlay relative locations. This paper will examine the benefits of using hyperspectral imaging over traditional methods of roadway maintenance and rehabilitation for pavement management applications. In doing so, we will identify spatial and spectral requirements for successful large-scale road feature extraction.

  1. Multi- and hyperspectral scene modeling

    NASA Astrophysics Data System (ADS)

    Borel, Christoph C.; Tuttle, Ronald F.

    2011-06-01

    This paper shows how to use a public domain raytracer POV-Ray (Persistence Of Vision Raytracer) to render multiand hyper-spectral scenes. The scripting environment allows automatic changing of the reflectance and transmittance parameters. The radiosity rendering mode allows accurate simulation of multiple-reflections between surfaces and also allows semi-transparent surfaces such as plant leaves. We show that POV-Ray computes occlusion accurately using a test scene with two blocks under a uniform sky. A complex scene representing a plant canopy is generated using a few lines of script. With appropriate rendering settings, shadows cast by leaves are rendered in many bands. Comparing single and multiple reflection renderings, the effect of multiple reflections is clearly visible and accounts for 25% of the overall apparent canopy reflectance in the near infrared.

  2. Unsupervised linear unmixing of hyperspectral image for crop yield estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multispectral and hyperspectral imagery are often used for estimating crop yield. This paper describes an unsupervised unmixing scheme of hyperspectral images to estimate crop yield. From the hyperspectral images, the endmembers and their abundance maps are computed by unsupervised unmixing. The abu...

  3. Research on hyperspectral dynamic infrared scene simulation technology

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Hu, Yu; Ding, Na; Sun, Kefeng; Sun, Dandan; Xie, Junhu; Wu, Wenli; Gao, Jiaobo

    2015-02-01

    The paper presents a hardware in loop dynamic IR scene simulation technology for IR hyperspectral imaging system. Along with fleetly development of new type EO detecting, remote sensing and hyperspectral imaging technique, not only static parameters' calibration of hyperspectral IR imaging system but also dynamic parameters' testing and evaluation are required, thus hyperspectral dynamic IR simulation and evaluation become more and more important. Hyperspectral dynamic IR scene projector utilizes hyperspectral space and time domain features controlling spectrum and time synchronously to realize hardware in loop simulation. Hyperspectral IR target and background simulating image can be gained by the accomplishment of 3D model and IR characteristic romancing, hyperspectral dynamic IR scene is produced by image converting device. The main parameters of a developed hyperspectral dynamic IR scene projector: wave band range is 3~5μm, 8~12μm Field of View (FOV) is 8°; spatial resolution is 1024×768 spectrum resolution is 1%~2%. IR source and simulating scene features should be consistent with spectrum characters of target, and different spectrum channel's images can be gotten from calibration. A hyperspectral imaging system splits light with dispersing type grating, pushbrooms and collects the output signal of dynamic IR scene projector. With hyperspectral scene spectrum modeling, IR features romancing, atmosphere transmission feature modeling and IR scene projecting, target and scene in outfield can be simulated ideally, simulation and evaluation of IR hyperspectral imaging system's dynamic features are accomplished in laboratory.

  4. Hyperspectral imaging using RGB color for foodborne pathogen detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reports the latest development of a color vision technique for detecting colonies of foodborne pathogens grown on agar plates with a hyperspectral image classification model that was developed using full hyperspectral data. The hyperspectral classification model depended on reflectance sp...

  5. Wavelet compression techniques for hyperspectral data

    NASA Technical Reports Server (NTRS)

    Evans, Bruce; Ringer, Brian; Yeates, Mathew

    1994-01-01

    Hyperspectral sensors are electro-optic sensors which typically operate in visible and near infrared bands. Their characteristic property is the ability to resolve a relatively large number (i.e., tens to hundreds) of contiguous spectral bands to produce a detailed profile of the electromagnetic spectrum. In contrast, multispectral sensors measure relatively few non-contiguous spectral bands. Like multispectral sensors, hyperspectral sensors are often also imaging sensors, measuring spectra over an array of spatial resolution cells. The data produced may thus be viewed as a three dimensional array of samples in which two dimensions correspond to spatial position and the third to wavelength. Because they multiply the already large storage/transmission bandwidth requirements of conventional digital images, hyperspectral sensors generate formidable torrents of data. Their fine spectral resolution typically results in high redundancy in the spectral dimension, so that hyperspectral data sets are excellent candidates for compression. Although there have been a number of studies of compression algorithms for multispectral data, we are not aware of any published results for hyperspectral data. Three algorithms for hyperspectral data compression are compared. They were selected as representatives of three major approaches for extending conventional lossy image compression techniques to hyperspectral data. The simplest approach treats the data as an ensemble of images and compresses each image independently, ignoring the correlation between spectral bands. The second approach transforms the data to decorrelate the spectral bands, and then compresses the transformed data as a set of independent images. The third approach directly generalizes two-dimensional transform coding by applying a three-dimensional transform as part of the usual transform-quantize-entropy code procedure. The algorithms studied all use the discrete wavelet transform. In the first two cases, a wavelet

  6. Observing the 2010 Eyjafjallajökull, Iceland, Eruptions with NASA's Earth Observing-1 Spacecraft - Improving Data Flow In a Volcanic Crisis Through Use of Autonomy

    NASA Astrophysics Data System (ADS)

    Chien, S.; Davies, A. G.; Doubleday, J.; Tran, D. Q.; Gudmundsson, M. T.; Jónsdóttir, I.; Hoskuldsson, A.; Thordarson, T.; Jakobsdottir, S.; Wright, R.

    2010-12-01

    Eyjafjallajökull volcano, Iceland, erupted from 20 March to 12 April 2010 (a flank eruption) and again from 14 April to 23 May 2010. The latter eruption heavily impacted air travel across much of northern Europe, and highlighted the need to monitor and quickly react to new eruptions. The NASA Earth Observing 1 spacecraft (EO-1), which is managed by the NASA Goddard Space Flight Center, obtained over 50 observation pairs with the Hyperion hyperspectral imager and ALI (Advanced Land Imager) multispectral camera. EO-1 is the remote-sensing asset of a globe-spanning Volcano Sensor Web [1], where low spatial resolution data (e.g., MODIS) or alerts of ongoing or possible volcanic activity are used to trigger requests for high resolution EO-1 data. Advanced resource management software, developed in part for flight onboard EO-1 as part of the Autonomous Sciencecraft [2, 3] is now used to task EO-1. This system allowed rapid re-tasking of EO-1 to obtain both day and night data at high temporal resolution (on average every 2 days), unusual for such high spatial resolution imagers (Hyperion and ALI at 30 m/pixel, with an ALI panchromatic band at 10 m/pixel). About 50% of the data were impacted by cloud. Advances in data handling and communications during the last two years means that Hyperion and ALI data are typically on the ground and ready for analysis within a few hours of data acquisition. Automatic data processing systems at the NASA’s Jet Propulsion Laboratory process Hyperion data to (1) correct for atmospheric adsorption; (2) remove the sunlight component in daytime data; (3) identify hot pixels; (4) fit unsaturated data to determine temperature and area of sub-pixel thermal sources; (5) calculate total thermal emission and, from this, an effusion rate; (6) generate geo-located data products. The entire process is autonomous. Data products, as well as images generated, were sent to volcanologists in the field to aid in eruption assessment. The JPL group is now

  7. [Validation of feasibility of virtual hyperspectral technology].

    PubMed

    Lin, Ling; Wu, Hong-jie; Li, Zhe; Li, Gang; Zhang, Bao-ju; Wu, Jin-cheng

    2011-12-01

    To verify the virtual hyperspectral technology for acquiring the internal composition and structure information, the virtual hyperspectral system, which took apples as the test materials, was built. First, we detected the virtual hyperspectral system of the normal apples and ill apples. Then, the virtual hyperspectral of apple slices and apple slices with a piece of red optical filter embedded was detected. Finally, the reflection spectrum of normal apple, ill apple, apple slice and slice with a piece of red filter embedded was detected. The results showed that virtual hyperspectral, which can gain more information than reflection spectrum, could be used for detecting the variation of internal composition and structure. It is a strong evidence that this technology can be used in human body in the future. Virtual hpyerspectral is a new path applied to detecting the biological information, and it can be used for the multi-information and cross-information detection simultaneously and systematically. More foundation for quick disease check-up in vivo was expected to be provided by this technology. PMID:22295793

  8. Portable Hyperspectral Imaging Broadens Sensing Horizons

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Broadband multispectral imaging can be very helpful in showing differences in energy being radiated and is often employed by NASA satellites to monitor temperature and climate changes. In addition, hyperspectral imaging is ideal for advanced laboratory uses, biomedical imaging, forensics, counter-terrorism, skin health, food safety, and Earth imaging. Lextel Intelligence Systems, LLC, of Jackson, Mississippi purchased Photon Industries Inc., a spinoff company of NASA's Stennis Space Center and the Institute for Technology Development dedicated to developing new hyperspectral imaging technologies. Lextel has added new features to and expanded the applicability of the hyperspectral imaging systems. It has made advances in the size, usability, and cost of the instruments. The company now offers a suite of turnkey hyperspectral imaging systems based on the original NASA groundwork. It currently has four lines of hyperspectral imaging products: the EagleEye VNIR 100E, the EagleEye SWIR 100E, the EagleEye SWIR 200E, and the EagleEye UV 100E. These Lextel instruments are used worldwide for a wide variety of applications including medical, military, forensics, and food safety.

  9. Characterizing Hyperspectral Imagery (AVIRIS) Using Fractal Technique

    NASA Technical Reports Server (NTRS)

    Qiu, Hong-Lie; Lam, Nina Siu-Ngan; Quattrochi, Dale

    1997-01-01

    With the rapid increase in hyperspectral data acquired by various experimental hyperspectral imaging sensors, it is necessary to develop efficient and innovative tools to handle and analyze these data. The objective of this study is to seek effective spatial analytical tools for summarizing the spatial patterns of hyperspectral imaging data. In this paper, we (1) examine how fractal dimension D changes across spectral bands of hyperspectral imaging data and (2) determine the relationships between fractal dimension and image content. It has been documented that fractal dimension changes across spectral bands for the Landsat-TM data and its value [(D)] is largely a function of the complexity of the landscape under study. The newly available hyperspectral imaging data such as that from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) which has 224 bands, covers a wider spectral range with a much finer spectral resolution. Our preliminary result shows that fractal dimension values of AVIRIS scenes from the Santa Monica Mountains in California vary between 2.25 and 2.99. However, high fractal dimension values (D > 2.8) are found only from spectral bands with high noise level and bands with good image quality have a fairly stable dimension value (D = 2.5 - 2.6). This suggests that D can also be used as a summary statistics to represent the image quality or content of spectral bands.

  10. MEMS FPI-based smartphone hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Rissanen, Anna; Saari, Heikki; Rainio, Kari; Stuns, Ingmar; Viherkanto, Kai; Holmlund, Christer; Näkki, Ismo; Ojanen, Harri

    2016-05-01

    This paper demonstrates a mobile phone- compatible hyperspectral imager based on a tunable MEMS Fabry-Perot interferometer. The realized iPhone 5s hyperspectral imager (HSI) demonstrator utilizes MEMS FPI tunable filter for visible-range, which consist of atomic layer deposited (ALD) Al2O3/TiO2-thin film Bragg reflectors. Characterization results for the mobile phone hyperspectral imager utilizing MEMS FPI chip optimized for 500 nm is presented; the operation range is λ = 450 - 550 nm with FWHM between 8 - 15 nm. Also a configuration of two cascaded FPIs (λ = 500 nm and λ = 650 nm) combined with an RGB colour camera is presented. With this tandem configuration, the overall wavelength tuning range of MEMS hyperspectral imagers can be extended to cover a larger range than with a single FPI chip. The potential applications of mobile hyperspectral imagers in the vis-NIR range include authentication, counterfeit detection and potential health/wellness and food sensing applications.

  11. Novel hyperspectral imager for lightweight UAVs

    NASA Astrophysics Data System (ADS)

    Saari, Heikki; Aallos, Ville-Veikko; Holmlund, Christer; Mäkynen, Jussi; Delauré, Bavo; Nackaerts, Kris; Michiels, Bart

    2010-04-01

    VTT Technical Research Centre of Finland has developed a new miniaturized staring hyperspectral imager with a weight of 350 g making the system compatible with lightweight UAS platforms. The instrument is able to record 2D spatial images at the selected wavelength bands simultaneously. The concept of the hyperspectral imager has been published in the SPIE Proc. 74741. The operational wavelength range of the imager can be tuned in the range 400 - 1100 nm and spectral resolution is in the range 5 - 10 nm @ FWHM. Presently the spatial resolution is 480 × 750 pixels but it can be increased simply by changing the image sensor. The field of view of the system is 20 × 30 degrees and ground pixel size at 100 m flying altitude is around 7.5 cm. The system contains batteries, image acquisition control system and memory for the image data. It can operate autonomously recording hyperspectral data cubes continuously or controlled by the autopilot system of the UAS. The new hyperspectral imager prototype was first tried in co-operation with the Flemish Institute for Technological Research (VITO) on their UAS helicopter. The instrument was configured for the spectral range 500 - 900 nm selected for the vegetation and natural water monitoring applications. The design of the UAS hyperspectral imager and its characterization results together with the analysis of the spectral data from first test flights will be presented.

  12. Hyperspectral image feature extraction accelerated by GPU

    NASA Astrophysics Data System (ADS)

    Qu, HaiCheng; Zhang, Ye; Lin, Zhouhan; Chen, Hao

    2012-10-01

    PCA (principal components analysis) algorithm is the most basic method of dimension reduction for high-dimensional data1, which plays a significant role in hyperspectral data compression, decorrelation, denoising and feature extraction. With the development of imaging technology, the number of spectral bands in a hyperspectral image is getting larger and larger, and the data cube becomes bigger in these years. As a consequence, operation of dimension reduction is more and more time-consuming nowadays. Fortunately, GPU-based high-performance computing has opened up a novel approach for hyperspectral data processing6. This paper is concerning on the two main processes in hyperspectral image feature extraction: (1) calculation of transformation matrix; (2) transformation in spectrum dimension. These two processes belong to computationally intensive and data-intensive data processing respectively. Through the introduction of GPU parallel computing technology, an algorithm containing PCA transformation based on eigenvalue decomposition 8(EVD) and feature matching identification is implemented, which is aimed to explore the characteristics of the GPU parallel computing and the prospects of GPU application in hyperspectral image processing by analysing thread invoking and speedup of the algorithm. At last, the result of the experiment shows that the algorithm has reached a 12x speedup in total, in which some certain step reaches higher speedups up to 270 times.

  13. Military applications of hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Briottet, X.; Boucher, Y.; Dimmeler, A.; Malaplate, A.; Cini, A.; Diani, M.; Bekman, H.; Schwering, P.; Skauli, T.; Kasen, I.; Renhorn, I.; Klasén, L.; Gilmore, M.; Oxford, D.

    2006-05-01

    Optical imaging, including infrared imaging, generally has many important applications, both civilian and military. In recent years, technological advances have made multi- and hyperspectral imaging a viable technology in many demanding military application areas. The aim of the CEPA JP 8.10 program has been to evaluate the potential benefit of spectral imaging techniques in tactical military applications. This unclassified executive summary describes the activities in the program and outlines some of the results. More specific results are given in classified reports and presentations. The JP 8.10 program started in March 2002 and ended in February 2005. The participating nations were France, Germany, Italy, Netherlands, Norway, Sweden and United-Kingdom, each with a contribution of 2 man-years per year. Essential objectives of the program were to: 1) analyze the available spectral information in the optronic landscape from visible to infrared; 2) analyze the operational utility of multi- and hyperspectral imaging for detection, recognition and identification of targets, including low-signature targets; 3) identify applications where spectral imaging can provide a strong gain in performance; 4) propose technical recommendations of future spectral imaging systems and critical components. Finally, a stated objective of the JP 8.10 program is to "ensure the proper link with the image processing community". The presentation is organized as follows. In a first step, the two trials (Pirrene and Kvarn) are presented including a summary of the acquired optical properties of the different landscape materials and of the spectral images. Then, a phenomenology study is conducted analyzing the spectral behavior of the optical properties, understanding the signal at the sensor and, by processing spectroradiometric measurements evaluating the potential to discriminate spectral signatures. Cameo-Sim simulation software is presented including first validation results and the

  14. Hyperspectral vital sign signal analysis for medical data

    NASA Astrophysics Data System (ADS)

    Gao, Cheng; Li, Yao; Li, Hsiao-Chi; Chang, Chein-I.; Hu, Peter; Mackenzie, Colin

    2015-05-01

    This paper develops a completely new technology,) from a hyperspectral imaging perspective, called Hyperspectral Vital Sign Signal Analysis (HyVSSA. A hyperspectral image is generally acquired by hundreds of contiguous spectral bands, each of which is an optical sensor specified by a particular wavelength. In medical application, we can consider a patient with different vital sign signals as a pixel vector in hyperspectral image and each vital sign signal as a particular band. In light of this interpretation, a revolutionary concept is developed, which translates medical data to hyperspectral data in such a way that hyperspectral technology can be readily applied to medical data analysis. One of most useful techniques in hyperspectral data processing is, Anomaly Detection (AD) which in this medical application is used to predict outcomes such as transfusion, length of stay (LOS) and mortality using various vital signs. This study compared transfusion prediction performance of Anomaly Detection (AD) and Logistic Regression (LR).

  15. Research on hyperspectral polarization imaging technique

    NASA Astrophysics Data System (ADS)

    Zhao, Haibo; Feng, Lei; Zhou, Yu; Wang, Zheng; Lin, Xuling

    2015-08-01

    The summary of hyperspectral polarization remote sensing detection is presented, including the characteristics and mechanism of polarization detection, the expression of polarization light and the detection method. The present research of hyperspectral polarization remote sensing is introduced. A novel method of hyperspectral polarization imaging technique is discussed, which is based on static modulation adding with the double refraction crystal. The static modulation is composed of one polarizer and two retarders. The double refraction crystal is used to generate interference image. The four Stokes vectors and spectral information can be detected only by one measurement. The method of static modulation is introduced in detail and is simulated by computer. The experimental system is also established in laboratory. The basic concept of the technique is verified. The simulation error of DOP (polarization degree detection) is about 1%. The experimental error of DOP is less than 5%. The merits of the novel system are no moving parts, compactness and no electrical element.

  16. Compressive Hyperspectral Imaging With Side Information

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Tsai, Tsung-Han; Zhu, Ruoyu; Llull, Patrick; Brady, David; Carin, Lawrence

    2015-09-01

    A blind compressive sensing algorithm is proposed to reconstruct hyperspectral images from spectrally-compressed measurements.The wavelength-dependent data are coded and then superposed, mapping the three-dimensional hyperspectral datacube to a two-dimensional image. The inversion algorithm learns a dictionary {\\em in situ} from the measurements via global-local shrinkage priors. By using RGB images as side information of the compressive sensing system, the proposed approach is extended to learn a coupled dictionary from the joint dataset of the compressed measurements and the corresponding RGB images, to improve reconstruction quality. A prototype camera is built using a liquid-crystal-on-silicon modulator. Experimental reconstructions of hyperspectral datacubes from both simulated and real compressed measurements demonstrate the efficacy of the proposed inversion algorithm, the feasibility of the camera and the benefit of side information.

  17. Real-time snapshot hyperspectral imaging endoscope

    PubMed Central

    Kester, Robert T.; Bedard, Noah; Gao, Liang; Tkaczyk, Tomasz S.

    2011-01-01

    Hyperspectral imaging has tremendous potential to detect important molecular biomarkers of early cancer based on their unique spectral signatures. Several drawbacks have limited its use for in vivo screening applications: most notably the poor temporal and spatial resolution, high expense, and low optical throughput of existing hyperspectral imagers. We present the development of a new real-time hyperspectral endoscope (called the image mapping spectroscopy endoscope) based on an image mapping technique capable of addressing these challenges. The parallel high throughput nature of this technique enables the device to operate at frame rates of 5.2 frames per second while collecting a (x, y, λ) datacube of 350 × 350 × 48. We have successfully imaged tissue in vivo, resolving a vasculature pattern of the lower lip while simultaneously detecting oxy-hemoglobin. PMID:21639573

  18. Dynamical Spectral Unmixing of Multitemporal Hyperspectral Images

    NASA Astrophysics Data System (ADS)

    Henrot, Simon; Chanussot, Jocelyn; Jutten, Christian

    2016-07-01

    In this paper, we consider the problem of unmixing a time series of hyperspectral images. We propose a dynamical model based on linear mixing processes at each time instant. The spectral signatures and fractional abundances of the pure materials in the scene are seen as latent variables, and assumed to follow a general dynamical structure. Based on a simplified version of this model, we derive an efficient spectral unmixing algorithm to estimate the latent variables by performing alternating minimizations. The performance of the proposed approach is demonstrated on synthetic and real multitemporal hyperspectral images.

  19. Hyperspectral Thermal Emission Spectrometer: Engineering Flight Campaign

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Shoen, Steven S.; Eng, Bjorn T.

    2013-01-01

    The Hyperspectral Thermal Emission Spectrometer (HyTES) successfully completed its first set of engineering test flights. HyTES was developed in support of the Hyperspectral Infrared Imager (HyspIRI). HyspIRI is one of the Tier II Decadal Survey missions. HyTES currently provides both high spectral resolution (17 nm) and high spatial resolution (2-5m) data in the thermal infrared (7.5-12 micron) part of the electromagnetic spectrum. HyTES data will be used to help determine the optimum band positions for the HyspIRI Thermal Infrared (TIR) sensor and provide antecedent data for HyspIRI related studies.

  20. Tongue Tumor Detection in Medical Hyperspectral Images

    PubMed Central

    Liu, Zhi; Wang, Hongjun; Li, Qingli

    2012-01-01

    A hyperspectral imaging system to measure and analyze the reflectance spectra of the human tongue with high spatial resolution is proposed for tongue tumor detection. To achieve fast and accurate performance for detecting tongue tumors, reflectance data were collected using spectral acousto-optic tunable filters and a spectral adapter, and sparse representation was used for the data analysis algorithm. Based on the tumor image database, a recognition rate of 96.5% was achieved. The experimental results show that hyperspectral imaging for tongue tumor diagnosis, together with the spectroscopic classification method provide a new approach for the noninvasive computer-aided diagnosis of tongue tumors. PMID:22368462

  1. The EO-1 Autonomous Science Agent Architecture

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Sherwood, Rob; Tran, Daniel; Cichy, Benjamin; Rabideau, Gregg; Castano, Rebecca; Davies, Ashley; Lee, Rachel; Mandl, Dan; Frye, Stuart; Trout, Bruce; Hengemihle, Jerry; D'Agostino, Jeff; Shulman, Seth; Ungar, Stephen; Brakke, Thomas; Boyer, Darrell; Van Gaasbeck, Jim; Greeley, Ronald; Doggett, Thomas; Baker, Victor; Dohm, James; Ip, Felipe

    2004-01-01

    An Autonomous Science Agent is currently flying onboard the Earth Observing One Spacecraft. This software enables the spacecraft to autonomously detect and respond to science events occurring on the Earth. The package includes software systems that perform science data analysis, deliberative planning, and run-time robust execution. Because of the deployment to a remote spacecraft, this Autonomous Science Agent has stringent constraints of autonomy, reliability, and limited computing resources. We describe these constraints and how they are reflected in our agent architecture.

  2. Maintenance of Ecosystem Nitrogen Limitation by Ephemeral Forest Disturbance: An Assessment using MODIS, Hyperion, and Landsat ETM+

    NASA Technical Reports Server (NTRS)

    McNeil, Brenden E.; deBeurs, Kirsten M.; Eshleman, Keith N.; Foster, Jane R.; Townsend, Philip A.

    2007-01-01

    Ephemeral disturbances, such as non-lethal insect defoliations and crown damage from meteorological events, can significantly affect the delivery of ecosystem services by helping maintain nitrogen (N) limitation in temperate forest ecosystems. However, the impacts of these disturbances are difficult to observe across the broad-scales at which they affect ecosystem function. Using remotely sensed measures and field data, we find support for the hypothesis that ephemeral disturbances help maintain landscape-wide ecosystem N limitation. Specifically, a phenology-based defoliation index derived from daily MODIS satellite imagery predicts three ecosystem responses from oak-dominated forested watersheds: elevated stream water N export (R(exp 2) = 0.48), decreased foliar N (R(exp 2) = 0.69, assessed with Hyperion imagery), and reduced vegetation growth vigor (R(exp 2) = 0.49, assessed with Landsat ETM+ imagery). The results indicate that ephemeral disturbances and other forest stressors may sustain N limitation by reducing the ability of trees to compete for--and retain--soil available N.

  3. Maintenance of ecosystem nitrogen limitation by ephemeral forest disturbance: An assessment using MODIS, Hyperion, and Landsat ETM+

    NASA Astrophysics Data System (ADS)

    McNeil, Brenden E.; de Beurs, Kirsten M.; Eshleman, Keith N.; Foster, Jane R.; Townsend, Philip A.

    2007-10-01

    Ephemeral disturbances, such as non-lethal insect defoliations and crown damage from meteorological events, can significantly affect the delivery of ecosystem services by helping maintain nitrogen (N) limitation in temperate forest ecosystems. However, the impacts of these disturbances are difficult to observe across the broad-scales at which they affect ecosystem function. Using remotely sensed measures and field data, we find support for the hypothesis that ephemeral disturbances help maintain landscape-wide ecosystem N limitation. Specifically, a phenology-based defoliation index derived from daily MODIS satellite imagery predicts three ecosystem responses from oak-dominated forested watersheds: elevated stream water N export (R2 = 0.48), decreased foliar N (R2 = 0.69, assessed with Hyperion imagery), and reduced vegetation growth vigor (R2 = 0.49, assessed with Landsat ETM+ imagery). The results indicate that ephemeral disturbances and other forest stressors may sustain N limitation by reducing the ability of trees to compete for -and retain- soil available N.

  4. Cross-calibration of the Terra MODIS, Landsat 7 ETM+ and EO-1 ALI sensors using near-simultaneous surface observation over the Railroad Valley Playa, Nevada, test site

    USGS Publications Warehouse

    Chander, G.; Angal, A.; Choi, T.; Meyer, D.J.; Xiong, X.; Teillet, P.M.

    2007-01-01

    A cross-calibration methodology has been developed using coincident image pairs from the Terra Moderate Resolution Imaging Spectroradiometer (MODIS), the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Earth Observing EO-1 Advanced Land Imager (ALI) to verify the absolute radiometric calibration accuracy of these sensors with respect to each other. To quantify the effects due to different spectral responses, the Relative Spectral Responses (RSR) of these sensors were studied and compared by developing a set of "figures-of-merit." Seven cloud-free scenes collected over the Railroad Valley Playa, Nevada (RVPN), test site were used to conduct the cross-calibration study. This cross-calibration approach was based on image statistics from near-simultaneous observations made by different satellite sensors. Homogeneous regions of interest (ROI) were selected in the image pairs, and the mean target statistics were converted to absolute units of at-sensor reflectance. Using these reflectances, a set of cross-calibration equations were developed giving a relative gain and bias between the sensor pair.

  5. Cross-calibration of the Terra MODIS, Landsat 7 ETM+ and EO-1 ALI sensors using near-simultaneous surface observation over the Railroad Valley Playa, Nevada, test site

    NASA Astrophysics Data System (ADS)

    Chander, Gyanesh; Angal, Amit; Choi, Taeyoung Jason; Meyer, David J.; Xiong, Xiaoxiong Jack; Teillet, Philippe M.

    2007-09-01

    A cross-calibration methodology has been developed using coincident image pairs from the Terra Moderate Resolution Imaging Spectroradiometer (MODIS), the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Earth Observing EO-1 Advanced Land Imager (ALI) to verify the absolute radiometric calibration accuracy of these sensors with respect to each other. To quantify the effects due to different spectral responses, the Relative Spectral Responses (RSR) of these sensors were studied and compared by developing a set of "figures-of-merit." Seven cloud-free scenes collected over the Railroad Valley Playa, Nevada (RVPN), test site were used to conduct the cross-calibration study. This cross-calibration approach was based on image statistics from near-simultaneous observations made by different satellite sensors. Homogeneous regions of interest (ROI) were selected in the image pairs, and the mean target statistics were converted to absolute units of at-sensor reflectance. Using these reflectances, a set of cross-calibration equations were developed giving a relative gain and bias between the sensor pair.

  6. Nonnegative Matrix Factorization for Efficient Hyperspectral Image Projection

    NASA Technical Reports Server (NTRS)

    Iacchetta, Alexander S.; Fienup, James R.; Leisawitz, David T.; Bolcar, Matthew R.

    2015-01-01

    Hyperspectral imaging for remote sensing has prompted development of hyperspectral image projectors that can be used to characterize hyperspectral imaging cameras and techniques in the lab. One such emerging astronomical hyperspectral imaging technique is wide-field double-Fourier interferometry. NASA's current, state-of-the-art, Wide-field Imaging Interferometry Testbed (WIIT) uses a Calibrated Hyperspectral Image Projector (CHIP) to generate test scenes and provide a more complete understanding of wide-field double-Fourier interferometry. Given enough time, the CHIP is capable of projecting scenes with astronomically realistic spatial and spectral complexity. However, this would require a very lengthy data collection process. For accurate but time-efficient projection of complicated hyperspectral images with the CHIP, the field must be decomposed both spectrally and spatially in a way that provides a favorable trade-off between accurately projecting the hyperspectral image and the time required for data collection. We apply nonnegative matrix factorization (NMF) to decompose hyperspectral astronomical datacubes into eigenspectra and eigenimages that allow time-efficient projection with the CHIP. Included is a brief analysis of NMF parameters that affect accuracy, including the number of eigenspectra and eigenimages used to approximate the hyperspectral image to be projected. For the chosen field, the normalized mean squared synthesis error is under 0.01 with just 8 eigenspectra. NMF of hyperspectral astronomical fields better utilizes the CHIP's capabilities, providing time-efficient and accurate representations of astronomical scenes to be imaged with the WIIT.

  7. Hyperspectral imaging of melanocytic lesions.

    PubMed

    Gaudi, Sudeep; Meyer, Rebecca; Ranka, Jayshree; Granahan, James C; Israel, Steven A; Yachik, Theodore R; Jukic, Drazen M

    2014-02-01

    Hyperspectral imaging (HSI) allows the identification of objects through the analysis of their unique spectral signatures. Although first developed many years ago for use in terrestrial remote sensing, this technology has more recently been studied for application in the medical field. With preliminary data favoring a role for HSI in distinguishing normal and lesional skin tissues, we sought to investigate the potential use of HSI as a diagnostic aid in the classification of atypical Spitzoid neoplasms, a group of lesions that often leave dermatopathologists bewildered. One hundred and two hematoxylin and eosin-stained tissue samples were divided into 1 of 4 diagnostic categories (Spitz nevus, Spitz nevus with unusual features, atypical Spitzoid neoplasm, and Spitzoid malignant melanoma) and 1 of 2 control groups (benign melanocytic nevus and malignant melanoma). A region of interest was selected from the dermal component of each sample, thereby maximizing the examination of melanocytes. Tissue samples were examined at ×400 magnification using a spectroscopy system interfaced with a light microscope. The absorbance patterns of wavelengths from 385 to 880 nm were measured and then analyzed within and among groups. All tissue groups demonstrated 3 common absorbance spectra at 496, 533, and 838 nm. Each sample group contained at least one absorption point that was unique to that group. The Spitzoid malignant melanoma category had the highest number of total and unique absorption points for any sample group. The data were then clustered into 12 representative spectral classes. Although each of the sample groups contained all 12 spectral vectors, they did so in differing proportions. These preliminary results reveal differences in the spectral signatures of the Spitzoid lesions examined in this study. Further investigation into a role for HSI in classifying atypical Spitzoid neoplasms is encouraged. PMID:24247577

  8. Hyperspectral exploitation with plant sentinels

    NASA Astrophysics Data System (ADS)

    Shaw, Arnab K.; Medford, June; Antunes, Mauricio; McCormick, William S.; Wicker, Devert

    2007-04-01

    The primary goal of this paper is to develop Hyperspectral algorithms for early detection of a readout system used in conjunction with plants designed to de-green or discolor after detection of explosives, harmful chemicals, and environmental pollutants. Work in progress is aimed to develop a new class of biosensors or Plant Sentinels that can serve as inexpensive plant-based biological early-warning systems capable of detecting substances that are harmful to human or the environment [LoHe03]. The de-greening circuits in the laboratory plant, Arabidopsis, have been shown to induce rapid chlorophyll loss, thereby change color under the influence of synthetic estrogens. However, as of now, the bio de-greening phenomenon is detectable by human eyes or with a system (chlorophyll fluorescence) that works best in laboratory conditions. In order to make the plant sentinel system practically viable, we have developed automated monitoring scheme for early detection of the de-greening phenomenon. The automated detection capability would lead to practical applicability and wider usage. This paper presents novel and effective HSI-based algorithms for early detection of de-greening of plants and vegetation due to explosives or chemical agents. The image processing based automated degreening detector, presented in this paper will be capable of 24/7 monitoring of the plant sentinels and to detect minutest possible discoloration of the plant-sensors to serve as an early-warning system. We also present preliminary results on estimating the length of time that the explosive or chemical agent has been present.

  9. Novel hyperspectral prediction method and apparatus

    NASA Astrophysics Data System (ADS)

    Kemeny, Gabor J.; Crothers, Natalie A.; Groth, Gard A.; Speck, Kathy A.; Marbach, Ralf

    2009-05-01

    Both the power and the challenge of hyperspectral technologies is the very large amount of data produced by spectral cameras. While off-line methodologies allow the collection of gigabytes of data, extended data analysis sessions are required to convert the data into useful information. In contrast, real-time monitoring, such as on-line process control, requires that compression of spectral data and analysis occur at a sustained full camera data rate. Efficient, high-speed practical methods for calibration and prediction are therefore sought to optimize the value of hyperspectral imaging. A novel method of matched filtering known as science based multivariate calibration (SBC) was developed for hyperspectral calibration. Classical (MLR) and inverse (PLS, PCR) methods are combined by spectroscopically measuring the spectral "signal" and by statistically estimating the spectral "noise." The accuracy of the inverse model is thus combined with the easy interpretability of the classical model. The SBC method is optimized for hyperspectral data in the Hyper-CalTM software used for the present work. The prediction algorithms can then be downloaded into a dedicated FPGA based High-Speed Prediction EngineTM module. Spectral pretreatments and calibration coefficients are stored on interchangeable SD memory cards, and predicted compositions are produced on a USB interface at real-time camera output rates. Applications include minerals, pharmaceuticals, food processing and remote sensing.

  10. Landmine detection using passive hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    McFee, John E.; Anger, Cliff; Achal, Steve; Ivanco, Tyler

    2007-04-01

    Airborne hyperspectral imaging has been studied since the late 1980s as a tool to detect minefields for military countermine operations and for level I clearance for humanitarian demining. Hyperspectral imaging employed on unmanned ground vehicles may also be used to augment or replace broadband imagers to detect individual mines. This paper will discuss the ability of different optical wavebands - the visible/near infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) - to detect surface-laid and buried mines. The phenomenology that determines performance in the different bands is discussed. Hyperspectral imagers have usually been designed and built for general purpose remote sensing applications and often do not meet the requirements of mine detection. The DRDC mine detection research program has sponsored the development by Itres Research of VNIR, SWIR and TIR instruments specifically intended for mine detection. The requirements for such imagers are described, as well as the instruments. Some results of mine detection experiments are presented. To date, reliable day time detection of surface-laid mines in non-real-time, independent of solar angle, time of day and season has been demonstrated in the VNIR and SWIR. Real-time analysis, necessary for military applications, has been demonstrated from low speed ground vehicles and recently from airborne platforms. Reliable, repeatable detection of buried mines has yet to be demonstrated, although a recently completed TIR hyperspectral imager will soon be tested for such a capability.

  11. GPU Lossless Hyperspectral Data Compression System

    NASA Technical Reports Server (NTRS)

    Aranki, Nazeeh I.; Keymeulen, Didier; Kiely, Aaron B.; Klimesh, Matthew A.

    2014-01-01

    Hyperspectral imaging systems onboard aircraft or spacecraft can acquire large amounts of data, putting a strain on limited downlink and storage resources. Onboard data compression can mitigate this problem but may require a system capable of a high throughput. In order to achieve a high throughput with a software compressor, a graphics processing unit (GPU) implementation of a compressor was developed targeting the current state-of-the-art GPUs from NVIDIA(R). The implementation is based on the fast lossless (FL) compression algorithm reported in "Fast Lossless Compression of Multispectral-Image Data" (NPO- 42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26, which operates on hyperspectral data and achieves excellent compression performance while having low complexity. The FL compressor uses an adaptive filtering method and achieves state-of-the-art performance in both compression effectiveness and low complexity. The new Consultative Committee for Space Data Systems (CCSDS) Standard for Lossless Multispectral & Hyperspectral image compression (CCSDS 123) is based on the FL compressor. The software makes use of the highly-parallel processing capability of GPUs to achieve a throughput at least six times higher than that of a software implementation running on a single-core CPU. This implementation provides a practical real-time solution for compression of data from airborne hyperspectral instruments.

  12. Mapping Waterhyacinth Infestations Using Airborne Hyperspectral Imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waterhyacinth [Eichhornia crassipes (Mart.) Solms] is an exotic aquatic weed that often invades and clogs waterways in many tropical and subtropical regions of the world. The objective of this study was to evaluate airborne hyperspectral imagery and different image classification techniques for mapp...

  13. First observations using SPICE hyperspectral dataset

    NASA Astrophysics Data System (ADS)

    Rosario, Dalton; Romano, Joao; Borel, Christoph

    2014-06-01

    Our first observations using the longwave infrared (LWIR) hyperspectral data subset of the Spectral and Polarimetric Imagery Collection Experiment (SPICE) database are summarized in this paper, focusing on the inherent challenges associated with using this sensing modality for the purpose of object pattern recognition. Emphases are also put on data quality, qualitative validation of expected atmospheric spectral features, and qualitative comparison against another dataset of the same site using a different LWIR hyperspectral sensor. SPICE is a collaborative effort between the Army Research Laboratory, U.S. Army Armament RDEC, and more recently the Air Force Institute of Technology. It focuses on the collection and exploitation of longwave and midwave infrared (LWIR and MWIR) hyperspectral and polarimetric imagery. We concluded from this work that the quality of SPICE hyperspectral LWIR data is categorically comparable to other datasets recorded by a different sensor of similar specs; and adequate for algorithm research, given the scope of SPICE. The scope was to conduct a long-term infrared data collection of the same site with targets, using both sensing modalities, under various weather and non-ideal conditions. Then use the vast dataset and associated ground truth information to assess performance of the state of the art algorithms, while determining performance degradation sources. The expectation is that results from these assessments will spur new algorithmic ideas with the potential to augment pattern recognition performance in remote sensing applications. Over time, we are confident the SPICE database will prove to be an asset to the wide open remote sensing community.

  14. Hyperspectral signature analysis of skin parameters

    NASA Astrophysics Data System (ADS)

    Vyas, Saurabh; Banerjee, Amit; Garza, Luis; Kang, Sewon; Burlina, Philippe

    2013-02-01

    The temporal analysis of changes in biological skin parameters, including melanosome concentration, collagen concentration and blood oxygenation, may serve as a valuable tool in diagnosing the progression of malignant skin cancers and in understanding the pathophysiology of cancerous tumors. Quantitative knowledge of these parameters can also be useful in applications such as wound assessment, and point-of-care diagnostics, amongst others. We propose an approach to estimate in vivo skin parameters using a forward computational model based on Kubelka-Munk theory and the Fresnel Equations. We use this model to map the skin parameters to their corresponding hyperspectral signature. We then use machine learning based regression to develop an inverse map from hyperspectral signatures to skin parameters. In particular, we employ support vector machine based regression to estimate the in vivo skin parameters given their corresponding hyperspectral signature. We build on our work from SPIE 2012, and validate our methodology on an in vivo dataset. This dataset consists of 241 signatures collected from in vivo hyperspectral imaging of patients of both genders and Caucasian, Asian and African American ethnicities. In addition, we also extend our methodology past the visible region and through the short-wave infrared region of the electromagnetic spectrum. We find promising results when comparing the estimated skin parameters to the ground truth, demonstrating good agreement with well-established physiological precepts. This methodology can have potential use in non-invasive skin anomaly detection and for developing minimally invasive pre-screening tools.

  15. Structured Sparse Method for Hyperspectral Unmixing

    NASA Astrophysics Data System (ADS)

    Zhu, Feiyun; Wang, Ying; Xiang, Shiming; Fan, Bin; Pan, Chunhong

    2014-02-01

    Hyperspectral Unmixing (HU) has received increasing attention in the past decades due to its ability of unveiling information latent in hyperspectral data. Unfortunately, most existing methods fail to take advantage of the spatial information in data. To overcome this limitation, we propose a Structured Sparse regularized Nonnegative Matrix Factorization (SS-NMF) method based on the following two aspects. First, we incorporate a graph Laplacian to encode the manifold structures embedded in the hyperspectral data space. In this way, the highly similar neighboring pixels can be grouped together. Second, the lasso penalty is employed in SS-NMF for the fact that pixels in the same manifold structure are sparsely mixed by a common set of relevant bases. These two factors act as a new structured sparse constraint. With this constraint, our method can learn a compact space, where highly similar pixels are grouped to share correlated sparse representations. Experiments on real hyperspectral data sets with different noise levels demonstrate that our method outperforms the state-of-the-art methods significantly.

  16. Apple Mealiness Detection Using Hyperspectral Scattering Technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mealiness is a symptom of internal fruit disorder, which is characterized by abnormal softness and lack of free juice in the fruit. This research investigated the potential of hyperspectral scattering technique for detecting mealy apples. Spectral scattering profiles between 600 nm and 1,000 nm were...

  17. Phase congruency assesses hyperspectral image quality

    NASA Astrophysics Data System (ADS)

    Shao, Xiaopeng; Zhong, Cheng

    2012-10-01

    Blind image quality assessment (QA) is a tough task especially for hyperspectral imagery which is degraded by noise, distortion, defocus, and other complex factors. Subjective hyperspectral imagery QA methods are basically measured the degradation of image from human perceptual visual quality. As the most important image quality measurement features, noise and blur, determined the image quality greatly, are employed to predict the objective hyperspectral imagery quality of each band. We demonstrate a novel no-reference hyperspectral imagery QA model based on phase congruency (PC), which is a dimensionless quantity and provides an absolute measure of the significance of feature point. First, Log Gabor wavelet is used to calculate the phase congruency of frequencies of each band image. The relationship between noise and PC can be derived from above transformation under the assumption that noise is additive. Second, PC focus measure evaluation model is proposed to evaluate blur caused by different amounts of defocus. The ratio and mean factors of edge blur level and noise is defined to assess the quality of each band image. This image QA method obtains excellent correlation with subjective image quality score without any reference. Finally, the PC information is utilized to improve the quality of some bands images.

  18. Quality evaluation of fruit by hyperspectral imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter presents new applications of hyperspectral imaging for measuring the optical properties of fruits and assessing their quality attributes. A brief overview is given of current techniques for measuring optical properties of turbid and opaque biological materials. Then a detailed descripti...

  19. Parallel hyperspectral compressive sensing method on GPU

    NASA Astrophysics Data System (ADS)

    Bernabé, Sergio; Martín, Gabriel; Nascimento, José M. P.

    2015-10-01

    Remote hyperspectral sensors collect large amounts of data per flight usually with low spatial resolution. It is known that the bandwidth connection between the satellite/airborne platform and the ground station is reduced, thus a compression onboard method is desirable to reduce the amount of data to be transmitted. This paper presents a parallel implementation of an compressive sensing method, called parallel hyperspectral coded aperture (P-HYCA), for graphics processing units (GPU) using the compute unified device architecture (CUDA). This method takes into account two main properties of hyperspectral dataset, namely the high correlation existing among the spectral bands and the generally low number of endmembers needed to explain the data, which largely reduces the number of measurements necessary to correctly reconstruct the original data. Experimental results conducted using synthetic and real hyperspectral datasets on two different GPU architectures by NVIDIA: GeForce GTX 590 and GeForce GTX TITAN, reveal that the use of GPUs can provide real-time compressive sensing performance. The achieved speedup is up to 20 times when compared with the processing time of HYCA running on one core of the Intel i7-2600 CPU (3.4GHz), with 16 Gbyte memory.

  20. Convex geometry analysis method of hyperspectral data

    NASA Astrophysics Data System (ADS)

    Gong, Yanjun; Wang, XiChang; Qi, Hongxing; Yu, BingXi

    2003-06-01

    We present matrix expression of convex geometry analysis method of hyperspectral data by linear mixing model and establish a mathematic model of endmembers. A 30-band remote sensing image is applied to testify the model. The results of analysis reveal that the method can analyze mixed pixel questions. The targets that are smaller than earth surface pixel can be identified by applying the method.

  1. Hyperspectral image analysis for plant stress detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abiotic and disease-induced stress significantly reduces plant productivity. Automated on-the-go mapping of plant stress allows timely intervention and mitigating of the problem before critical thresholds are exceeded, thereby, maximizing productivity. A hyperspectral camera analyzed the spectral ...

  2. Biometric study using hyperspectral imaging during stress

    NASA Astrophysics Data System (ADS)

    Nagaraj, Sheela; Quoraishee, Shafik; Chan, Gabriel; Short, Kenneth R.

    2010-04-01

    To the casual observer, transient stress results in a variety of physiological changes that can be seen in the face. Although the conditions can be seen visibly, the conditions affect the emissivity and absorption properties of the skin, which imaging spectrometers, commonly referred to as Hyperspectral (HS) cameras, can quantify at every image pixel. The study reported on in this paper, using Hyperspectral cameras, provides a basis for continued study of HS imaging to eventually quantify biometric stress. This study was limited to the visible to near infrared (VNIR) spectral range. Signal processing tools and algorithms have been developed and are described for using HS face data from human subjects. The subjects were placed in psychologically stressful situations and the camera data were analyzed to detect stress through changes in dermal reflectance and emissivity. Results indicate that hyperspectral imaging may potentially serve as a non-invasive tool to measure changes in skin emissivity indicative of a stressful incident. Particular narrow spectral bands in the near-infrared region of the electromagnetic spectrum seem especially important. Further studies need to be performed to determine the optimal spectral bands and to generalize the conclusions. The enormous information available in hyperspectral imaging needs further analysis and more spectral regions need to be exploited. Non-invasive stress detection is a prominent area of research with countless applications for both military and commercial use including border patrol, stand-off interrogation, access control, surveillance, and non-invasive and un-attended patient monitoring.

  3. Hyperspectral Data Classification Using Factor Graphs

    NASA Astrophysics Data System (ADS)

    Makarau, A.; Müller, R.; Palubinskas, G.; Reinartz, P.

    2012-07-01

    Accurate classification of hyperspectral data is still a competitive task and new classification methods are developed to achieve desired tasks of hyperspectral data use. The objective of this paper is to develop a new method for hyperspectral data classification ensuring the classification model properties like transferability, generalization, probabilistic interpretation, etc. While factor graphs (undirected graphical models) are unfortunately not widely employed in remote sensing tasks, these models possess important properties such as representation of complex systems to model estimation/decision making tasks. In this paper we present a new method for hyperspectral data classification using factor graphs. Factor graph (a bipartite graph consisting of variables and factor vertices) allows factorization of a more complex function leading to definition of variables (employed to store input data), latent variables (allow to bridge abstract class to data), and factors (defining prior probabilities for spectral features and abstract classes; input data mapping to spectral features mixture and further bridging of the mixture to an abstract class). Latent variables play an important role by defining two-level mapping of the input spectral features to a class. Configuration (learning) on training data of the model allows calculating a parameter set for the model to bridge the input data to a class. The classification algorithm is as follows. Spectral bands are separately pre-processed (unsupervised clustering is used) to be defined on a finite domain (alphabet) leading to a representation of the data on multinomial distribution. The represented hyperspectral data is used as input evidence (evidence vector is selected pixelwise) in a configured factor graph and an inference is run resulting in the posterior probability. Variational inference (Mean field) allows to obtain plausible results with a low calculation time. Calculating the posterior probability for each class

  4. Mapping Soil Organic Matter with Hyperspectral Imaging

    NASA Astrophysics Data System (ADS)

    Moni, Christophe; Burud, Ingunn; Flø, Andreas; Rasse, Daniel

    2014-05-01

    Soil organic matter (SOM) plays a central role for both food security and the global environment. Soil organic matter is the 'glue' that binds soil particles together, leading to positive effects on soil water and nutrient availability for plant growth and helping to counteract the effects of erosion, runoff, compaction and crusting. Hyperspectral measurements of samples of soil profiles have been conducted with the aim of mapping soil organic matter on a macroscopic scale (millimeters and centimeters). Two soil profiles have been selected from the same experimental site, one from a plot amended with biochar and another one from a control plot, with the specific objective to quantify and map the distribution of biochar in the amended profile. The soil profiles were of size (30 x 10 x 10) cm3 and were scanned with two pushbroomtype hyperspectral cameras, one which is sensitive in the visible wavelength region (400 - 1000 nm) and one in the near infrared region (1000 - 2500 nm). The images from the two detectors were merged together into one full dataset covering the whole wavelength region. Layers of 15 mm were removed from the 10 cm high sample such that a total of 7 hyperspectral images were obtained from the samples. Each layer was analyzed with multivariate statistical techniques in order to map the different components in the soil profile. Moreover, a 3-dimensional visalization of the components through the depth of the sample was also obtained by combining the hyperspectral images from all the layers. Mid-infrared spectroscopy of selected samples of the measured soil profiles was conducted in order to correlate the chemical constituents with the hyperspectral results. The results show that hyperspectral imaging is a fast, non-destructive technique, well suited to characterize soil profiles on a macroscopic scale and hence to map elements and different organic matter quality present in a complete pedon. As such, we were able to map and quantify biochar in our

  5. ICER-3D Hyperspectral Image Compression Software

    NASA Technical Reports Server (NTRS)

    Xie, Hua; Kiely, Aaron; Klimesh, matthew; Aranki, Nazeeh

    2010-01-01

    Software has been developed to implement the ICER-3D algorithm. ICER-3D effects progressive, three-dimensional (3D), wavelet-based compression of hyperspectral images. If a compressed data stream is truncated, the progressive nature of the algorithm enables reconstruction of hyperspectral data at fidelity commensurate with the given data volume. The ICER-3D software is capable of providing either lossless or lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The compression algorithm, which was derived from the ICER image compression algorithm, includes wavelet-transform, context-modeling, and entropy coding subalgorithms. The 3D wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of sets of hyperspectral image data, while facilitating elimination of spectral ringing artifacts, using a technique summarized in "Improving 3D Wavelet-Based Compression of Spectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. Correlation is further exploited by a context-modeling subalgorithm, which exploits spectral dependencies in the wavelet-transformed hyperspectral data, using an algorithm that is summarized in "Context Modeler for Wavelet Compression of Hyperspectral Images" (NPO-43239), which follows this article. An important feature of ICER-3D is a scheme for limiting the adverse effects of loss of data during transmission. In this scheme, as in the similar scheme used by ICER, the spatial-frequency domain is partitioned into rectangular error-containment regions. In ICER-3D, the partitions extend through all the wavelength bands. The data in each partition are compressed independently of those in the other partitions, so that loss or corruption of data from any partition does not affect the other partitions. Furthermore, because compression is progressive within each partition, when data are lost, any data from that partition received

  6. Hyperspectral analysis of columbia spotted frog habitat

    USGS Publications Warehouse

    Shive, J.P.; Pilliod, D.S.; Peterson, C.R.

    2010-01-01

    Wildlife managers increasingly are using remotely sensed imagery to improve habitat delineations and sampling strategies. Advances in remote sensing technology, such as hyperspectral imagery, provide more information than previously was available with multispectral sensors. We evaluated accuracy of high-resolution hyperspectral image classifications to identify wetlands and wetland habitat features important for Columbia spotted frogs (Rana luteiventris) and compared the results to multispectral image classification and United States Geological Survey topographic maps. The study area spanned 3 lake basins in the Salmon River Mountains, Idaho, USA. Hyperspectral data were collected with an airborne sensor on 30 June 2002 and on 8 July 2006. A 12-year comprehensive ground survey of the study area for Columbia spotted frog reproduction served as validation for image classifications. Hyperspectral image classification accuracy of wetlands was high, with a producer's accuracy of 96 (44 wetlands) correctly classified with the 2002 data and 89 (41 wetlands) correctly classified with the 2006 data. We applied habitat-based rules to delineate breeding habitat from other wetlands, and successfully predicted 74 (14 wetlands) of known breeding wetlands for the Columbia spotted frog. Emergent sedge microhabitat classification showed promise for directly predicting Columbia spotted frog egg mass locations within a wetland by correctly identifying 72 (23 of 32) of known locations. Our study indicates hyperspectral imagery can be an effective tool for mapping spotted frog breeding habitat in the selected mountain basins. We conclude that this technique has potential for improving site selection for inventory and monitoring programs conducted across similar wetland habitat and can be a useful tool for delineating wildlife habitats. ?? 2010 The Wildlife Society.

  7. Hyperspectral imager development at Army Research Laboratory

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam

    2008-04-01

    Development of robust compact optical imagers that can acquire both spectral and spatial features from a scene of interest is of utmost importance for standoff detection of chemical and biological agents as well as targets and backgrounds. Spectral features arise due to the material properties of objects as a result of the emission, reflection, and absorption of light. Using hyperspectral imaging one can acquire images with narrow spectral bands and take advantage of the characteristic spectral signatures of different materials making up the scene in detection of objects. Traditional hyperspectral imaging systems use gratings and prisms that acquire one-dimensional spectral images and require relative motion of sensor and scene in addition to data processing to form a two-dimensional image cube. There is much interest in developing hyperspectral imagers using tunable filters that acquire a two-dimensional spectral image and build up an image cube as a function of time. At the Army Research Laboratory (ARL), we are developing hyperspectral imagers using a number of novel tunable filter technologies. These include acousto-optic tunable filters (AOTFs) that can provide adaptive no-moving-parts imagers from the UV to the long wave infrared, diffractive optics technology that can provide image cubes either in a single spectral region or simultaneously in different spectral regions using a single moving lens or by using a lenslet array, and micro-electromechanical systems (MEMS)-based Fabry-Perot (FP) tunable etalons to develop miniature sensors that take advantage of the advances in microfabrication and packaging technologies. New materials are being developed to design AOTFs and a full Stokes polarization imager has been developed, diffractive optics lenslet arrays are being explored, and novel FP tunable filters are under fabrication for the development of novel miniature hyperspectral imagers. Here we will brief on all the technologies being developed and present

  8. Modified wavelet kernel methods for hyperspectral image classification

    NASA Astrophysics Data System (ADS)

    Hsu, Pai-Hui; Huang, Xiu-Man

    2015-10-01

    Hyperspectral images have the capability of acquiring images of earth surface with several hundred of spectral bands. Providing such abundant spectral data should increase the abilities in classifying land use/cover type. However, due to the high dimensionality of hyperspectral data, traditional classification methods are not suitable for hyperspectral data classification. The common method to solve this problem is dimensionality reduction by using feature extraction before classification. Kernel methods such as support vector machine (SVM) and multiple kernel learning (MKL) have been successfully applied to hyperspectral images classification. In kernel methods applications, the selection of kernel function plays an important role. The wavelet kernel with multidimensional wavelet functions can find the optimal approximation of data in feature space for classification. The SVM with wavelet kernels (called WSVM) have been also applied to hyperspectral data and improve classification accuracy. In this study, wavelet kernel method combined multiple kernel learning algorithm and wavelet kernels was proposed for hyperspectral image classification. After the appropriate selection of a linear combination of kernel functions, the hyperspectral data will be transformed to the wavelet feature space, which should have the optimal data distribution for kernel learning and classification. Finally, the proposed methods were compared with the existing methods. A real hyperspectral data set was used to analyze the performance of wavelet kernel method. According to the results the proposed wavelet kernel methods in this study have well performance, and would be an appropriate tool for hyperspectral image classification.

  9. Operational multi-angle hyperspectral remote sensing for feature detection

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R.; Brooks, Donald K.

    2013-10-01

    Remote sensing results of land and water surfaces from airborne and satellite platforms are dependent upon the illumination geometry and the sensor viewing geometry. Correction of pushbroom hyperspectral imagery can be achieved using bidirectional reflectance factors (BRF's) image features based upon their multi-angle hyperspectral signatures. Ground validation of features and targets utilize non-imaging sensors such as hemispherical goniometers. In this paper, a new linear translation based hyperspectral imaging goniometer system is described. Imagery and hyperspectral signatures obtained from a rotation stage platform and the new linear non-hemispherical goniometer system shows applications and a multi-angle correction approach for multi-angle hyperspectral pushbroom imagery corrections. Results are presented in a manner in order to describe how ground, vessel and airborne based multi-angle hyperspectral signatures can be applied to operational hyperspectral image acquisition by the calculation of hyperspectral anisotropic signature imagery. The results demonstrate the analysis framework from the systems to water and coastal vegetation for exploitation of surface and subsurface feature or target detection based using the multi-angle radiative transfer based BRF's. The hyperspectral pushbroom multi-angle analysis methodology forms a basis for future multi-sensor based multi-angle change detection algorithms.

  10. Multiview hyperspectral topography of tissue structural and functional characteristics

    NASA Astrophysics Data System (ADS)

    Zhang, Shiwu; Liu, Peng; Huang, Jiwei; Xu, Ronald

    2012-12-01

    Accurate and in vivo characterization of structural, functional, and molecular characteristics of biological tissue will facilitate quantitative diagnosis, therapeutic guidance, and outcome assessment in many clinical applications, such as wound healing, cancer surgery, and organ transplantation. However, many clinical imaging systems have limitations and fail to provide noninvasive, real time, and quantitative assessment of biological tissue in an operation room. To overcome these limitations, we developed and tested a multiview hyperspectral imaging system. The multiview hyperspectral imaging system integrated the multiview and the hyperspectral imaging techniques in a single portable unit. Four plane mirrors are cohered together as a multiview reflective mirror set with a rectangular cross section. The multiview reflective mirror set was placed between a hyperspectral camera and the measured biological tissue. For a single image acquisition task, a hyperspectral data cube with five views was obtained. The five-view hyperspectral image consisted of a main objective image and four reflective images. Three-dimensional topography of the scene was achieved by correlating the matching pixels between the objective image and the reflective images. Three-dimensional mapping of tissue oxygenation was achieved using a hyperspectral oxygenation algorithm. The multiview hyperspectral imaging technique is currently under quantitative validation in a wound model, a tissue-simulating blood phantom, and an in vivo biological tissue model. The preliminary results have demonstrated the technical feasibility of using multiview hyperspectral imaging for three-dimensional topography of tissue functional properties.

  11. Quantification and threshold detection in real-time hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Driver, Richard D.

    2009-05-01

    The technical challenges of applying hyperspectral imaging techniques to on-line real-time food monitoring is discussed. System optimization must be applied to the design of the hyperspectral imaging spectrograph, the choice and operation of the imaging detector, the design of the illumination system and finally the development of software algorithms to correctly quantify the hyperspectral images. The signal to noise limitation of hyperspectral detection is discussed with particular emphasis on the detection of moving objects at high measurement bandwidths. An example is given of the development of a simple but accurate algorithm for the detection and discrimination of rust particles on leaves.

  12. See the Sea: multi-user information system for investigating processes and phenomena in coastal zones via satellite remotely sensed data, particularly hyperspectral data

    NASA Astrophysics Data System (ADS)

    Mityagina, Marina I.; Lavrova, Olga Yu.; Uvarov, Ivan A.

    2014-10-01

    The functionality, the goals and the current state of the distributed information system "See the Sea" (STS) are presented and discussed. This system is designed for investigating various processes and phenomena in the ocean and marine atmosphere using different types of satellite remotely sensed data. The STS system provides researchers with the possibilities to deal with the satellite remote sensing data as well as with the result of its analysis. The key feature of STS is the ability to work simultaneously with satellite information of different types. STS provides tools for joint analysis of different types of satellite data, as well as data of ground meteorological stations, cartographic data etc. This paper gives an overview of the system and data processing use cases. Some example cases are described including processing and joint analysis of various satellite data. The data from different sensors (obtained by Envisat ASAR, Landsat-8 OLI, Landsat-7 ETM+, Landsat-5 TM, Terra/Aqua MODIS as well as Hyperion and HICO hyperspectral data) was analyzed jointly for differentiation between different types of coastal waters, and for reconstruction of suspended matter distribution in the test areas of the Azov and Black Seas.

  13. Evaluation of thermophilic anaerobic digestion processes for full-scale Class A biosolids disinfection at Hyperion Treatment Plant.

    PubMed

    Iranpour, R; Cox, H H J

    2007-05-01

    This paper describes 5 phases of full-scale testing at the City of Los Angeles Hyperion Treatment Plant (HTP) for producing Class A biosolids (U.S. EPA Part 503 Biosolids Rule) by thermophilic anaerobic digestion. Phases I and II were tests with a two-stage continuous-batch process in a thermophilic battery of six digesters and a designated post-digestion train that was isolated from mesophilic operations. These tests demonstrated that digester outflow biosolids met the Class A limits for fecal coliforms and Salmonella sp. However, fecal coliform densities sharply increased during post-digestion. The recurrence was possibly related to a combination of a large drop of the biosolids temperature after the dewatering centrifuges and contamination of thermophilically digested biosolids from mesophilic operations. Phase III was conducted after insulation and electrical heat-tracing of the post-digestion train to maintain a biosolids temperature throughout post-digestion at about the same level as in the digester outflow. Biosolids monitoring at the last points of plant control (silos at Truck Loading Facility and farm for land application) indicated that fecal coliform recurrence was prevented. After completing the conversion of HTP to thermophilic operation, certification tests of Phases IV and V demonstrated Class A compliance of a two-stage continuous-batch process under Alternatives 1 and 3 of the Part 503 Biosolids Rule, respectively. HTP received the permit for Class A (indeed exceptional quality) biosolids land application in Kern County, California, in December 2002 under Alternative 3. Since 2003, HTP has consistently complied with the federal and local standards for Class A biosolids, indicating that Class A limits can be met under conditions less stringent than defined by the Alternative 1 time-temperature requirement for batch treatment. PMID:17054113

  14. Metric Learning to Enhance Hyperspectral Image Segmentation

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Castano, Rebecca; Bue, Brian; Gilmore, Martha S.

    2013-01-01

    Unsupervised hyperspectral image segmentation can reveal spatial trends that show the physical structure of the scene to an analyst. They highlight borders and reveal areas of homogeneity and change. Segmentations are independently helpful for object recognition, and assist with automated production of symbolic maps. Additionally, a good segmentation can dramatically reduce the number of effective spectra in an image, enabling analyses that would otherwise be computationally prohibitive. Specifically, using an over-segmentation of the image instead of individual pixels can reduce noise and potentially improve the results of statistical post-analysis. In this innovation, a metric learning approach is presented to improve the performance of unsupervised hyperspectral image segmentation. The prototype demonstrations attempt a superpixel segmentation in which the image is conservatively over-segmented; that is, the single surface features may be split into multiple segments, but each individual segment, or superpixel, is ensured to have homogenous mineralogy.

  15. Estimating physiological skin parameters from hyperspectral signatures.

    PubMed

    Vyas, Saurabh; Banerjee, Amit; Burlina, Philippe

    2013-05-01

    We describe an approach for estimating human skin parameters, such as melanosome concentration, collagen concentration, oxygen saturation, and blood volume, using hyperspectral radiometric measurements (signatures) obtained from in vivo skin. We use a computational model based on Kubelka-Munk theory and the Fresnel equations. This model forward maps the skin parameters to a corresponding multiband reflectance spectra. Machine-learning-based regression is used to generate the inverse map, and hence estimate skin parameters from hyperspectral signatures. We test our methods using synthetic and in vivo skin signatures obtained in the visible through the short wave infrared domains from 24 patients of both genders and Caucasian, Asian, and African American ethnicities. Performance validation shows promising results: good agreement with the ground truth and well-established physiological precepts. These methods have potential use in the characterization of skin abnormalities and in minimally-invasive prescreening of malignant skin cancers. PMID:23722495

  16. Supervised Classification Techniques for Hyperspectral Data

    NASA Technical Reports Server (NTRS)

    Jimenez, Luis O.

    1997-01-01

    The recent development of more sophisticated remote sensing systems enables the measurement of radiation in many mm-e spectral intervals than previous possible. An example of this technology is the AVIRIS system, which collects image data in 220 bands. The increased dimensionality of such hyperspectral data provides a challenge to the current techniques for analyzing such data. Human experience in three dimensional space tends to mislead one's intuition of geometrical and statistical properties in high dimensional space, properties which must guide our choices in the data analysis process. In this paper high dimensional space properties are mentioned with their implication for high dimensional data analysis in order to illuminate the next steps that need to be taken for the next generation of hyperspectral data classifiers.

  17. Hyperspectral all-sky imaging of auroras.

    PubMed

    Sigernes, Fred; Ivanov, Yuriy; Chernouss, Sergey; Trondsen, Trond; Roldugin, Alexey; Fedorenko, Yury; Kozelov, Boris; Kirillov, Andrey; Kornilov, Ilia; Safargaleev, Vladimir; Holmen, Silje; Dyrland, Margit; Lorentzen, Dag; Baddeley, Lisa

    2012-12-01

    A prototype auroral hyperspectral all-sky camera has been constructed and tested. It uses electro-optical tunable filters to image the night sky as a function of wavelength throughout the visible spectrum with no moving mechanical parts. The core optical system includes a new high power all-sky lens with F-number equal to f/1.1. The camera has been tested at the Kjell Henriksen Observatory (KHO) during the auroral season of 2011/2012. It detects all sub classes of aurora above ~½ of the sub visual 1kR green intensity threshold at an exposure time of only one second. Supervised classification of the hyperspectral data shows promise as a new method to process and identify auroral forms. PMID:23262713

  18. Hyperspectral image data compression based on DSP

    NASA Astrophysics Data System (ADS)

    Fan, Jiming; Zhou, Jiankang; Chen, Xinhua; Shen, Weimin

    2010-11-01

    The huge data volume of hyperspectral image challenges its transportation and store. It is necessary to find an effective method to compress the hyperspectral image. Through analysis and comparison of current various algorithms, a mixed compression algorithm based on prediction, integer wavelet transform and embedded zero-tree wavelet (EZW) is proposed in this paper. We adopt a high-powered Digital Signal Processor (DSP) of TMS320DM642 to realize the proposed algorithm. Through modifying the mixed algorithm and optimizing its algorithmic language, the processing efficiency of the program was significantly improved, compared the non-optimized one. Our experiment show that the mixed algorithm based on DSP runs much faster than the algorithm on personal computer. The proposed method can achieve the nearly real-time compression with excellent image quality and compression performance.

  19. Software for Simulation of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Richtsmeier, Steven C.; Singer-Berk, Alexander; Bernstein, Lawrence S.

    2002-01-01

    A package of software generates simulated hyperspectral images for use in validating algorithms that generate estimates of Earth-surface spectral reflectance from hyperspectral images acquired by airborne and spaceborne instruments. This software is based on a direct simulation Monte Carlo approach for modeling three-dimensional atmospheric radiative transport as well as surfaces characterized by spatially inhomogeneous bidirectional reflectance distribution functions. In this approach, 'ground truth' is accurately known through input specification of surface and atmospheric properties, and it is practical to consider wide variations of these properties. The software can treat both land and ocean surfaces and the effects of finite clouds with surface shadowing. The spectral/spatial data cubes computed by use of this software can serve both as a substitute for and a supplement to field validation data.

  20. Estimating physiological skin parameters from hyperspectral signatures

    NASA Astrophysics Data System (ADS)

    Vyas, Saurabh; Banerjee, Amit; Burlina, Philippe

    2013-05-01

    We describe an approach for estimating human skin parameters, such as melanosome concentration, collagen concentration, oxygen saturation, and blood volume, using hyperspectral radiometric measurements (signatures) obtained from in vivo skin. We use a computational model based on Kubelka-Munk theory and the Fresnel equations. This model forward maps the skin parameters to a corresponding multiband reflectance spectra. Machine-learning-based regression is used to generate the inverse map, and hence estimate skin parameters from hyperspectral signatures. We test our methods using synthetic and in vivo skin signatures obtained in the visible through the short wave infrared domains from 24 patients of both genders and Caucasian, Asian, and African American ethnicities. Performance validation shows promising results: good agreement with the ground truth and well-established physiological precepts. These methods have potential use in the characterization of skin abnormalities and in minimally-invasive prescreening of malignant skin cancers.

  1. Anomaly Detection and Comparative Analysis of Hydrothermal Alteration Materials Trough Hyperspectral Multisensor Data in the Turrialba Volcano

    NASA Astrophysics Data System (ADS)

    Rejas, J. G.; Martínez-Frías, J.; Bonatti, J.; Martínez, R.; Marchamalo, M.

    2012-07-01

    The aim of this work is the comparative study of the presence of hydrothermal alteration materials in the Turrialba volcano (Costa Rica) in relation with computed spectral anomalies from multitemporal and multisensor data adquired in spectral ranges of the visible (VIS), short wave infrared (SWIR) and thermal infrared (TIR). We used for this purposes hyperspectral and multispectral images from the HyMAP and MASTER airborne sensors, and ASTER and Hyperion scenes in a period between 2002 and 2010. Field radiometry was applied in order to remove the atmospheric contribution in an empirical line method. HyMAP and MASTER images were georeferenced directly thanks to positioning and orientation data that were measured at the same time in the acquisition campaign from an inertial system based on GPS/IMU. These two important steps were allowed the identification of spectral diagnostic bands of hydrothermal alteration minerals and the accuracy spatial correlation. Enviromental impact of the volcano activity has been studied through different vegetation indexes and soil patterns. Have been mapped hydrothermal materials in the crater of the volcano, in fact currently active, and their surrounding carrying out a principal components analysis differentiated for a high and low absorption bands to characterize accumulations of kaolinite, illite, alunite and kaolinite+smectite, delimitating zones with the presence of these minerals. Spectral anomalies have been calculated on a comparative study of methods pixel and subpixel focused in thermal bands fused with high-resolution images. Results are presented as an approach based on expert whose main interest lies in the automated identification of patterns of hydrothermal altered materials without prior knowledge or poor information on the area.

  2. Synergetics Framework for Hyperspectral Image Classification

    NASA Astrophysics Data System (ADS)

    Müller, R.; Cerra, D.; Reinartz, P.

    2013-05-01

    In this paper a new classification technique for hyperspectral data based on synergetics theory is presented. Synergetics - originally introduced by the physicist H. Haken - is an interdisciplinary theory to find general rules for pattern formation through selforganization and has been successfully applied in fields ranging from biology to ecology, chemistry, cosmology, and thermodynamics up to sociology. Although this theory describes general rules for pattern formation it was linked also to pattern recognition. Pattern recognition algorithms based on synergetics theory have been applied to images in the spatial domain with limited success in the past, given their dependence on the rotation, shifting, and scaling of the images. These drawbacks can be discarded if such methods are applied to data acquired by a hyperspectral sensor in the spectral domain, as each single spectrum, related to an image element in the hyperspectral scene, can be analysed independently. The classification scheme based on synergetics introduces also methods for spatial regularization to get rid of "salt and pepper" classification results and for iterative parameter tuning to optimize class weights. The paper reports an experiment on a benchmark data set frequently used for method comparisons. This data set consists of a hyperspectral scene acquired by the Airborne Visible Infrared Imaging Spectrometer AVIRIS sensor of the Jet Propulsion Laboratory acquired over the Salinas Valley in CA, USA, with 15 vegetation classes. The results are compared to state-of-the-art methodologies like Support Vector Machines (SVM), Spectral Information Divergence (SID), Neural Networks, Logistic Regression, Factor Graphs or Spectral Angle Mapper (SAM). The outcomes are promising and often outperform state-of-the-art classification methodologies.

  3. LIFTERS-hyperspectral imaging at LLNL

    SciTech Connect

    Fields, D.; Bennett, C.; Carter, M.

    1994-11-15

    LIFTIRS, the Livermore Imaging Fourier Transform InfraRed Spectrometer, recently developed at LLNL, is an instrument which enables extremely efficient collection and analysis of hyperspectral imaging data. LIFTIRS produces a spatial format of 128x128 pixels, with spectral resolution arbitrarily variable up to a maximum of 0.25 inverse centimeters. Time resolution and spectral resolution can be traded off for each other with great flexibility. We will discuss recent measurements made with this instrument, and present typical images and spectra.

  4. Pattern classification and reconstruction for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Li, Wei

    In this dissertation, novel techniques for hyperspectral classification and signal reconstruction from random projections are presented. A classification paradigm designed to exploit the rich statistical structure of hyperspectral data is proposed. The proposed framework employs the local Fisher's discriminant analysis to reduce the dimensionality of the data while preserving its multimodal structure, followed by a subsequent Gaussian-mixture-model or support-vector-machine classifier. An extension of this framework in a kernel induced space is also studied. This classification approach employs a maximum likelihood classifier and dimensionality reduction based on a kernel local Fisher's discriminant analysis. The technique imposes an additional constraint on the kernel mapping---it ensures that neighboring points in the input space stay close-by in the projected subspace. In a typical remote sensing flow, the sender needs to invoke an appropriate compression strategy for downlinking signals (e.g., imagery to a base station). Signal acquisition using random projections significantly decreases the sender-side computational cost, while preserving useful information. In this dissertation, a novel class-dependent hyperspectral image reconstruction strategy is also proposed. The proposed method employs statistics pertinent to each class as opposed to the average statistics estimated over the entire dataset, resulting in a more accurate reconstruction from random projections. An integrated spectral-spatial model for signal reconstruction from random projections is also developed. In this approach, spatially homogeneous segments are combined with spectral pixel-wise classification results in the projected subspace. An appropriate reconstruction strategy, such as compressive projection principal component analysis (CPPCA), is employed individually in each category based on this integrated map. The proposed method provides better reconstruction performance as compared to

  5. Ore minerals textural characterization by hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Picone, Nicoletta; Serranti, Silvia

    2013-02-01

    The utilization of hyperspectral detection devices, for natural resources mapping/exploitation through remote sensing techniques, dates back to the early 1970s. From the first devices utilizing a one-dimensional profile spectrometer, HyperSpectral Imaging (HSI) devices have been developed. Thus, from specific-customized devices, originally developed by Governmental Agencies (e.g. NASA, specialized research labs, etc.), a lot of HSI based equipment are today available at commercial level. Parallel to this huge increase of hyperspectral systems development/manufacturing, addressed to airborne application, a strong increase also occurred in developing HSI based devices for "ground" utilization that is sensing units able to play inside a laboratory, a processing plant and/or in an open field. Thanks to this diffusion more and more applications have been developed and tested in this last years also in the materials sectors. Such an approach, when successful, is quite challenging being usually reliable, robust and characterised by lower costs if compared with those usually associated to commonly applied analytical off- and/or on-line analytical approaches. In this paper such an approach is presented with reference to ore minerals characterization. According to the different phases and stages of ore minerals and products characterization, and starting from the analyses of the detected hyperspectral firms, it is possible to derive useful information about mineral flow stream properties and their physical-chemical attributes. This last aspect can be utilized to define innovative process mineralogy strategies and to implement on-line procedures at processing level. The present study discusses the effects related to the adoption of different hardware configurations, the utilization of different logics to perform the analysis and the selection of different algorithms according to the different characterization, inspection and quality control actions to apply.

  6. Compressive hyperspectral sensor for LWIR gas detection

    NASA Astrophysics Data System (ADS)

    Russell, Thomas A.; McMackin, Lenore; Bridge, Bob; Baraniuk, Richard

    2012-06-01

    Focal plane arrays with associated electronics and cooling are a substantial portion of the cost, complexity, size, weight, and power requirements of Long-Wave IR (LWIR) imagers. Hyperspectral LWIR imagers add significant data volume burden as they collect a high-resolution spectrum at each pixel. We report here on a LWIR Hyperspectral Sensor that applies Compressive Sensing (CS) in order to achieve benefits in these areas. The sensor applies single-pixel detection technology demonstrated by Rice University. The single-pixel approach uses a Digital Micro-mirror Device (DMD) to reflect and multiplex the light from a random assortment of pixels onto the detector. This is repeated for a number of measurements much less than the total number of scene pixels. We have extended this architecture to hyperspectral LWIR sensing by inserting a Fabry-Perot spectrometer in the optical path. This compressive hyperspectral imager collects all three dimensions on a single detection element, greatly reducing the size, weight and power requirements of the system relative to traditional approaches, while also reducing data volume. The CS architecture also supports innovative adaptive approaches to sensing, as the DMD device allows control over the selection of spatial scene pixels to be multiplexed on the detector. We are applying this advantage to the detection of plume gases, by adaptively locating and concentrating target energy. A key challenge in this system is the diffraction loss produce by the DMD in the LWIR. We report the results of testing DMD operation in the LWIR, as well as system spatial and spectral performance.

  7. Instrumental error in chromotomosynthetic hyperspectral imaging.

    PubMed

    Bostick, Randall L; Perram, Glen P

    2012-07-20

    Chromotomosynthetic imaging (CTI) is a method of convolving spatial and spectral information that can be reconstructed into a hyperspectral image cube using the same transforms employed in medical tomosynthesis. A direct vision prism instrument operating in the visible (400-725 nm) with 0.6 mrad instantaneous field of view (IFOV) and 0.6-10 nm spectral resolution has been constructed and characterized. Reconstruction of hyperspectral data cubes requires an estimation of the instrument component properties that define the forward transform. We analyze the systematic instrumental error in collected projection data resulting from prism spectral dispersion, prism alignment, detector array position, and prism rotation angle. The shifting and broadening of both the spectral lineshape function and the spatial point spread function in the reconstructed hyperspectral imagery is compared with experimental results for monochromatic point sources. The shorter wavelength (λ<500 nm) region where the prism has the highest spectral dispersion suffers mostly from degradation of spectral resolution in the presence of systematic error, while longer wavelengths (λ>600 nm) suffer mostly from a shift of the spectral peaks. The quality of the reconstructed hyperspectral imagery is most sensitive to the misalignment of the prism rotation mount. With less than 1° total angular error in the two axes of freedom, spectral resolution was degraded by as much as a factor of 2 in the blue spectral region. For larger errors than this, spectral peaks begin to split into bimodal distributions, and spatial point response functions are reconstructed in rings with radii proportional to wavelength and spatial resolution. PMID:22858961

  8. Unsupervised data fusion for hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Jimenez-Rodriguez, Luis O.; Velez-Reyes, Miguel; Rivera-Medina, Jorge; Velasquez, Hector

    2002-01-01

    Hyperspectral images contain a great amount of information in terms of hundreds of narrowband channels. This should lead to better parameter estimation and to more accurate classifications. However, traditional classification methods based on multispectral analysis fail to work properly on this type of data. High dimensional space poses a difficulty in obtaining accurate parameter estimates and as a consequence this makes unsupervised classification a challenge that requires new techniques. Thus, alternative methods are needed to take advantage of the information provided by the hyperdimensional data. Data fusion is an alternative when dealing with such large data sets in order to improve classification accuracy. Data fusion is an important process in the areas of environmental systems, surveillance, automation, medical imaging, and robotics. The uses of this technique in Remote Sensing have been recently expanding. A relevant application is to adapt the data fusion approaches to be used on hyperspectral imagery taking into consideration the special characteristics of such data. The approach of this paper is to presents a scheme that integrates information from most of the hyperspectral narrow-bands in order to increase the discrimination accuracy in unsupervised classification.

  9. Hyperspectral surveying for mineral resources in Alaska

    USGS Publications Warehouse

    Kokaly, Raymond F.; Graham, Garth E.; Hoefen, Todd M.; Kelley, Karen D.; Johnson, Michaela R.; Hubbard, Bernard E.

    2016-01-01

    Alaska is a major producer of base and precious metals and has a high potential for additional undiscovered mineral resources. However, discovery is hindered by Alaska’s vast size, remoteness, and rugged terrain. New methods are needed to overcome these obstacles in order to fully evaluate Alaska’s geology and mineral resource potential. Hyperspectral surveying is one method that can be used to rapidly acquire data about the distributions of surficial materials, including different types of bedrock and ground cover. In 2014, the U.S. Geological Survey began the Alaska Hyperspectral Project to assess the applicability of this method in Alaska. The primary study area is a remote part of the eastern Alaska Range where porphyry deposits are exposed. In collaboration with the Alaska Division of Geological and Geophysical Surveys, the University of Alaska Fairbanks, and the National Park Service, the U.S. Geological Survey is collecting and analyzing hyperspectral data with the goals of enhancing geologic mapping and developing methods to identify and characterize mineral deposits elsewhere in Alaska.

  10. PET and PVC Separation with Hyperspectral Imagery

    PubMed Central

    Moroni, Monica; Mei, Alessandro; Leonardi, Alessandra; Lupo, Emanuela; La Marca, Floriana

    2015-01-01

    Traditional plants for plastic separation in homogeneous products employ material physical properties (for instance density). Due to the small intervals of variability of different polymer properties, the output quality may not be adequate. Sensing technologies based on hyperspectral imaging have been introduced in order to classify materials and to increase the quality of recycled products, which have to comply with specific standards determined by industrial applications. This paper presents the results of the characterization of two different plastic polymers—polyethylene terephthalate (PET) and polyvinyl chloride (PVC)—in different phases of their life cycle (primary raw materials, urban and urban-assimilated waste and secondary raw materials) to show the contribution of hyperspectral sensors in the field of material recycling. This is accomplished via near-infrared (900–1700 nm) reflectance spectra extracted from hyperspectral images acquired with a two-linear-spectrometer apparatus. Results have shown that a rapid and reliable identification of PET and PVC can be achieved by using a simple two near-infrared wavelength operator coupled to an analysis of reflectance spectra. This resulted in 100% classification accuracy. A sensor based on this identification method appears suitable and inexpensive to build and provides the necessary speed and performance required by the recycling industry. PMID:25609050

  11. Hyperspectral Anomaly Detection in Urban Scenarios

    NASA Astrophysics Data System (ADS)

    Rejas Ayuga, J. G.; Martínez Marín, R.; Marchamalo Sacristán, M.; Bonatti, J.; Ojeda, J. C.

    2016-06-01

    We have studied the spectral features of reflectance and emissivity in the pattern recognition of urban materials in several single hyperspectral scenes through a comparative analysis of anomaly detection methods and their relationship with city surfaces with the aim to improve information extraction processes. Spectral ranges of the visible-near infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) from hyperspectral data cubes of AHS sensor and HyMAP and MASTER of two cities, Alcalá de Henares (Spain) and San José (Costa Rica) respectively, have been used. In this research it is assumed no prior knowledge of the targets, thus, the pixels are automatically separated according to their spectral information, significantly differentiated with respect to a background, either globally for the full scene, or locally by image segmentation. Several experiments on urban scenarios and semi-urban have been designed, analyzing the behaviour of the standard RX anomaly detector and different methods based on subspace, image projection and segmentation-based anomaly detection methods. A new technique for anomaly detection in hyperspectral data called DATB (Detector of Anomalies from Thermal Background) based on dimensionality reduction by projecting targets with unknown spectral signatures to a background calculated from thermal spectrum wavelengths is presented. First results and their consequences in non-supervised classification and extraction information processes are discussed.

  12. Excitation-scanning hyperspectral imaging microscope.

    PubMed

    Favreau, Peter F; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F; Rich, Thomas C; Prabhat, Prashant; Leavesley, Silas J

    2014-04-01

    Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications. PMID:24727909

  13. A Small Satellite Hyper-Spectral Mission

    NASA Astrophysics Data System (ADS)

    Cutter, M.

    This paper describes a hyper-spectral mission based around the CHRIS instrument that has been developed at Sira Technology Ltd. The CHRIS instrument is flying on the ESA PROBA platform, a small agile satellite of the 100 kg class, which was launch in October 2001. The over mission costs are significantly less than many other Earth observation missions. The instrument is currently acquires approximately 400 hyper-spectral images each month via two European ground stations. Today this instrument provides the highest sampling capability of any space-borne hyper-spectral instrument. The main purpose of the instrument is to provide images of land areas, although the applications have extended to include coastal monitoring. The platform provides pointing in both across-track and along-track directions, for target acquisition and slow pitch during imaging (motion compensation) to enhance the radiometric performance and increase the number of bands that can be acquired. An observational mission has been developed around the facility and this is catering for over 70 or so Principal Investigators (PI) around the world, including Europe, North America, Australia and China with over 100 observational sites.

  14. PET and PVC separation with hyperspectral imagery.

    PubMed

    Moroni, Monica; Mei, Alessandro; Leonardi, Alessandra; Lupo, Emanuela; Marca, Floriana La

    2015-01-01

    Traditional plants for plastic separation in homogeneous products employ material physical properties (for instance density). Due to the small intervals of variability of different polymer properties, the output quality may not be adequate. Sensing technologies based on hyperspectral imaging have been introduced in order to classify materials and to increase the quality of recycled products, which have to comply with specific standards determined by industrial applications. This paper presents the results of the characterization of two different plastic polymers--polyethylene terephthalate (PET) and polyvinyl chloride (PVC)--in different phases of their life cycle (primary raw materials, urban and urban-assimilated waste and secondary raw materials) to show the contribution of hyperspectral sensors in the field of material recycling. This is accomplished via near-infrared (900-1700 nm) reflectance spectra extracted from hyperspectral images acquired with a two-linear-spectrometer apparatus. Results have shown that a rapid and reliable identification of PET and PVC can be achieved by using a simple two near-infrared wavelength operator coupled to an analysis of reflectance spectra. This resulted in 100% classification accuracy. A sensor based on this identification method appears suitable and inexpensive to build and provides the necessary speed and performance required by the recycling industry. PMID:25609050

  15. Infrared hyperspectral imaging for chemical vapour detection

    NASA Astrophysics Data System (ADS)

    Ruxton, K.; Robertson, G.; Miller, W.; Malcolm, G. P. A.; Maker, G. T.; Howle, C. R.

    2012-10-01

    Active hyperspectral imaging is a valuable tool in a wide range of applications. One such area is the detection and identification of chemicals, especially toxic chemical warfare agents, through analysis of the resulting absorption spectrum. This work presents a selection of results from a prototype midwave infrared (MWIR) hyperspectral imaging instrument that has successfully been used for compound detection at a range of standoff distances. Active hyperspectral imaging utilises a broadly tunable laser source to illuminate the scene with light at a range of wavelengths. While there are a number of illumination methods, the chosen configuration illuminates the scene by raster scanning the laser beam using a pair of galvanometric mirrors. The resulting backscattered light from the scene is collected by the same mirrors and focussed onto a suitable single-point detector, where the image is constructed pixel by pixel. The imaging instrument that was developed in this work is based around an IR optical parametric oscillator (OPO) source with broad tunability, operating in the 2.6 to 3.7 μm (MWIR) and 1.5 to 1.8 μm (shortwave IR, SWIR) spectral regions. The MWIR beam was primarily used as it addressed the fundamental absorption features of the target compounds compared to the overtone and combination bands in the SWIR region, which can be less intense by more than an order of magnitude. We show that a prototype NCI instrument was able to locate hydrocarbon materials at distances up to 15 metres.

  16. Information efficiency in hyperspectral imaging systems

    NASA Astrophysics Data System (ADS)

    Reichenbach, Stephen E.; Cao, Luyin; Narayanan, Ram M.

    2002-07-01

    In this work we develop a method for assessing the information density and efficiency of hyperspectral imaging systems that have spectral bands of nonuniform width. Imaging system designs with spectral bands of nonuniform width can efficiently gather information about a scene by allocating bandwidth among the bands according to their information content. The information efficiency is the ratio of information density to data density and is a function of the scene's spectral radiance, hyperspectral system design, and signal-to-noise ratio. The assessment can be used to produce an efficient system design. For example, one approach to determining the number and width of the spectral bands for an information-efficient design is to begin with a design that has a single band and then to iteratively divide a band into two bands until no further division improves the system's efficiency. Two experiments illustrate this approach, one using a simple mathematical model for the scene spectral-radiance autocorrelation function and the other using the deterministic spectral-radiance autocorrelation function of a hyperspectral image from NASA's Advanced Solid-State Array Spectroradiometer. The approach could be used either to determine a fixed system design or to dynamically control a system with variable-width spectral bands (e.g., using on-board processing in a satellite system).

  17. Hyperspectral imaging of skin and lung cancers

    NASA Astrophysics Data System (ADS)

    Zherdeva, Larisa A.; Bratchenko, Ivan A.; Alonova, Marina V.; Myakinin, Oleg O.; Artemyev, Dmitry N.; Moryatov, Alexander A.; Kozlov, Sergey V.; Zakharov, Valery P.

    2016-04-01

    The problem of cancer control requires design of new approaches for instrumental diagnostics, as the accuracy of cancer detection on the first step of diagnostics in clinics is slightly more than 50%. In this study, we present a method of visualization and diagnostics of skin and lung tumours based on registration and processing of tissues hyperspectral images. In a series of experiments registration of hyperspectral images of skin and lung tissue samples is carried out. Melanoma, basal cell carcinoma, nevi and benign tumours are studied in skin ex vivo and in vivo experiments; adenocarcinomas and squamous cell carcinomas are studied in ex vivo lung experiments. In a series of experiments the typical features of diffuse reflection spectra for pathological and normal tissues were found. Changes in tissues morphology during the tumour growth lead to the changes of blood and pigments concentration, such as melanin in skin. That is why tumours and normal tissues maybe differentiated with information about spectral response in 500-600 nm and 600 - 670 nm areas. Thus, hyperspectral imaging in the visible region may be a useful tool for cancer detection as it helps to estimate spectral properties of tissues and determine malignant regions for precise resection of tumours.

  18. Comparative alteration mineral mapping using visible to shortwave infrared (0.4-2.4 μm) Hyperion, ALI, and ASTER imagery

    USGS Publications Warehouse

    Hubbard, B.E.; Crowley, J.K.; Zimbelman, D.R.

    2003-01-01

    Advanced Land Imager (ALI), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Hyperion imaging spectrometer data covering an area in the Central Andes between Volcan Socompa and Salar de Llullaillaco were used to map hydrothermally altered rocks associated with several young volcanic systems. Six ALI channels in the visible and near-infrared wavelength range (0.4-1.0 ??m) were useful for discriminating between ferric-iron alteration minerals based on the spectral shapes of electronic absorption features seen in continuum-removed spectra. Six ASTER channels in the short wavelength infrared (1.0-2.5 ??m) enabled distinctions between clay and sulfate mineral types based on the positions of band minima related to Al-OH vibrational absorption features. Hyperion imagery embedded in the broader image coverage of ALI and ASTER provided essential leverage for calibrating and improving the mapping accuracy of the multispectral data. This capability is especially valuable in remote areas of the earth where available geologic and other ground truth information is limited.

  19. Mineral resources prospecting by synthetic application of TM/ETM+, Quickbird and Hyperion data in the Hatu area, West Junggar, Xinjiang, China.

    PubMed

    Liu, Lei; Zhou, Jun; Jiang, Dong; Zhuang, Dafang; Mansaray, Lamin R; Hu, Zhijun; Ji, Zhengbao

    2016-01-01

    The Hatu area, West Junggar, Xinjiang, China, is situated at a potential gold-copper mineralization zone in association with quartz veins and small granitic intrusions. In order to identify the alteration zones and mineralization occurrences in this area, the Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+), Quickbird, Hyperion data and laboratory measured spectra were combined in identifying structures, alteration zones, quartz veins and small intrusions. The hue-saturation-intensity (HSI) color model transformation was applied to transform principal component analysis (PCA) combinations from R (Red), G (Green) and B (Blue) to HSI space to enhance faults. To wipe out the interference of the noise, a method, integrating Crosta technique and anomaly-overlaying selection, was proposed and implemented. Both Jet Propulsion Laboratory Spectral Library spectra and laboratory-measured spectra, combining with matched filtering method, were used to process Hyperion data. In addition, high-resolution Quickbird data were used for unraveling the quartz veins and small intrusions along the alteration zones. The Baobei fault and a SW-NE-oriented alteration zone were identified for the first time. This study eventually led to the discovery of four weak gold-copper mineralized locations through ground inspection and brought new geological knowledge of the region's metallogeny. PMID:26911195

  20. Mineral resources prospecting by synthetic application of TM/ETM+, Quickbird and Hyperion data in the Hatu area, West Junggar, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Zhou, Jun; Jiang, Dong; Zhuang, Dafang; Mansaray, Lamin R.; Hu, Zhijun; Ji, Zhengbao

    2016-02-01

    The Hatu area, West Junggar, Xinjiang, China, is situated at a potential gold-copper mineralization zone in association with quartz veins and small granitic intrusions. In order to identify the alteration zones and mineralization occurrences in this area, the Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+), Quickbird, Hyperion data and laboratory measured spectra were combined in identifying structures, alteration zones, quartz veins and small intrusions. The hue-saturation-intensity (HSI) color model transformation was applied to transform principal component analysis (PCA) combinations from R (Red), G (Green) and B (Blue) to HSI space to enhance faults. To wipe out the interference of the noise, a method, integrating Crosta technique and anomaly-overlaying selection, was proposed and implemented. Both Jet Propulsion Laboratory Spectral Library spectra and laboratory-measured spectra, combining with matched filtering method, were used to process Hyperion data. In addition, high-resolution Quickbird data were used for unraveling the quartz veins and small intrusions along the alteration zones. The Baobei fault and a SW-NE-oriented alteration zone were identified for the first time. This study eventually led to the discovery of four weak gold-copper mineralized locations through ground inspection and brought new geological knowledge of the region’s metallogeny.

  1. Mineral resources prospecting by synthetic application of TM/ETM+, Quickbird and Hyperion data in the Hatu area, West Junggar, Xinjiang, China

    PubMed Central

    Liu, Lei; Zhou, Jun; Jiang, Dong; Zhuang, Dafang; Mansaray, Lamin R.; Hu, Zhijun; Ji, Zhengbao

    2016-01-01

    The Hatu area, West Junggar, Xinjiang, China, is situated at a potential gold-copper mineralization zone in association with quartz veins and small granitic intrusions. In order to identify the alteration zones and mineralization occurrences in this area, the Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+), Quickbird, Hyperion data and laboratory measured spectra were combined in identifying structures, alteration zones, quartz veins and small intrusions. The hue-saturation-intensity (HSI) color model transformation was applied to transform principal component analysis (PCA) combinations from R (Red), G (Green) and B (Blue) to HSI space to enhance faults. To wipe out the interference of the noise, a method, integrating Crosta technique and anomaly-overlaying selection, was proposed and implemented. Both Jet Propulsion Laboratory Spectral Library spectra and laboratory-measured spectra, combining with matched filtering method, were used to process Hyperion data. In addition, high-resolution Quickbird data were used for unraveling the quartz veins and small intrusions along the alteration zones. The Baobei fault and a SW-NE-oriented alteration zone were identified for the first time. This study eventually led to the discovery of four weak gold-copper mineralized locations through ground inspection and brought new geological knowledge of the region’s metallogeny. PMID:26911195

  2. A Hyperspectral Imaging System for Quality Detection of Pickles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A hyperspectral imaging system in simultaneous reflectance (400-675 nm) and transmittance (675-1000 nm) modes was developed for detection of hollow or bloater damage on whole pickles. Hyperspectral reflectance and transmittance images were acquired from normal and bloated whole pickle samples collec...

  3. Multiview hyperspectral topography of tissue structural and functional characteristics

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Huang, Jiwei; Zhang, Shiwu; Xu, Ronald X.

    2016-01-01

    Accurate and in vivo characterization of structural, functional, and molecular characteristics of biological tissue will facilitate quantitative diagnosis, therapeutic guidance, and outcome assessment in many clinical applications, such as wound healing, cancer surgery, and organ transplantation. We introduced and tested a multiview hyperspectral imaging technique for noninvasive topographic imaging of cutaneous wound oxygenation. The technique integrated a multiview module and a hyperspectral module in a single portable unit. Four plane mirrors were cohered to form a multiview reflective mirror set with a rectangular cross section. The mirror set was placed between a hyperspectral camera and the target biological tissue. For a single image acquisition task, a hyperspectral data cube with five views was obtained. The five-view hyperspectral image consisted of a main objective image and four reflective images. Three-dimensional (3-D) topography of the scene was achieved by correlating the matching pixels between the objective image and the reflective images. 3-D mapping of tissue oxygenation was achieved using a hyperspectral oxygenation algorithm. The multiview hyperspectral imaging technique was validated in a wound model, a tissue-simulating blood phantom, and in vivo biological tissue. The experimental results demonstrated the technical feasibility of using multiview hyperspectral imaging for 3-D topography of tissue functional properties.

  4. HYPERSPECTRAL SYSTEM CALIBRATION FOR IMPROVED CONTAMINANT DETECTION ON POULTRY CARCASSES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A hyperspectral imaging system was used to detect surface contaminants on 64 poultry carcasses fed a corn/soybean diet and subjected to a 53.3 degree C scald for 120 s. Hyperspectral data were analyzed with four pre-processing methods consisting of: uncalibrated data without spectral smoothing (u...

  5. Hyperspectral microscopy to identify foodborne bacteria with optimum lighting source

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperspectral microscopy is an emerging technology for rapid detection of foodborne pathogenic bacteria. Since scattering spectral signatures from hyperspectral microscopic images (HMI) vary with lighting sources, it is important to select optimal lights. The objective of this study is to compare t...

  6. Online Unmixing of Multitemporal Hyperspectral Images Accounting for Spectral Variability

    NASA Astrophysics Data System (ADS)

    Thouvenin, Pierre-Antoine; Dobigeon, Nicolas; Tourneret, Jean-Yves

    2016-09-01

    Hyperspectral unmixing is aimed at identifying the reference spectral signatures composing an hyperspectral image and their relative abundance fractions in each pixel. In practice, the identified signatures may vary spectrally from an image to another due to varying acquisition conditions, thus inducing possibly significant estimation errors. Against this background, hyperspectral unmixing of several images acquired over the same area is of considerable interest. Indeed, such an analysis enables the endmembers of the scene to be tracked and the corresponding endmember variability to be characterized. Sequential endmember estimation from a set of hyperspectral images is expected to provide improved performance when compared to methods analyzing the images independently. However, the significant size of hyperspectral data precludes the use of batch procedures to jointly estimate the mixture parameters of a sequence of hyperspectral images. Provided that each elementary component is present in at least one image of the sequence, we propose to perform an online hyperspectral unmixing accounting for temporal endmember variability. The online hyperspectral unmixing is formulated as a two-stage stochastic program, which can be solved using a stochastic approximation. The performance of the proposed method is evaluated on synthetic and real data. A comparison with independent unmixing algorithms finally illustrates the interest of the proposed strategy.

  7. Online Unmixing of Multitemporal Hyperspectral Images Accounting for Spectral Variability.

    PubMed

    Thouvenin, Pierre-Antoine; Dobigeon, Nicolas; Tourneret, Jean-Yves

    2016-09-01

    Hyperspectral unmixing is aimed at identifying the reference spectral signatures composing a hyperspectral image and their relative abundance fractions in each pixel. In practice, the identified signatures may vary spectrally from an image to another due to varying acquisition conditions, thus inducing possibly significant estimation errors. Against this background, the hyperspectral unmixing of several images acquired over the same area is of considerable interest. Indeed, such an analysis enables the endmembers of the scene to be tracked and the corresponding endmember variability to be characterized. Sequential endmember estimation from a set of hyperspectral images is expected to provide improved performance when compared with methods analyzing the images independently. However, the significant size of the hyperspectral data precludes the use of batch procedures to jointly estimate the mixture parameters of a sequence of hyperspectral images. Provided that each elementary component is present in at least one image of the sequence, we propose to perform an online hyperspectral unmixing accounting for temporal endmember variability. The online hyperspectral unmixing is formulated as a two-stage stochastic program, which can be solved using a stochastic approximation. The performance of the proposed method is evaluated on synthetic and real data. Finally, a comparison with independent unmixing algorithms illustrates the interest of the proposed strategy. PMID:27305679

  8. Citrus greening detection using airborne hyperspectral and multispectral imaging techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperspectral imaging can provide unique spectral signatures for diseased vegetation. Airborne multispectral and hyperspectral imaging can be used to detect potentially infected trees over a large area for rapid detection of infected zones. This paper proposes a method to detect the citrus greening...

  9. Hyperspectral Imaging for Defect Detection of Pickling Cucumber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter reviews the recent progress on hyperspectral imaging technology for defect inspection of pickling cucumbers. The chapter first describes near-infrared hyperspectral reflectance imaging technique for the detection of bruises on pickling cucumbers. The technique showed good detection...

  10. Citrus greening disease detection using airborne multispectral and hyperspectral imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperspectral imaging can provide unique spectral signatures for diseased vegetation. Airborne hyperspectral imaging can be used to detect potentially infected trees over a large area for rapid detection of infected zones. Ground inspection and management can be focused on these infected zones rath...

  11. Detection of hatching and table egg defects using hyperspectral imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A hyperspectral imaging system was developed to detect problem hatching eggs (non-fertile or dead embryos) prior to or during early incubation and to detect table eggs with blood spots and cracked shells. All eggs were imaged using a hyperspectral camera system (wavelengths detected from 400-900mm) ...

  12. Using Hyperspectral Imagery to Identify Turfgrass Stresses

    NASA Technical Reports Server (NTRS)

    Hutto, Kendall; Shaw, David

    2008-01-01

    The use of a form of remote sensing to aid in the management of large turfgrass fields (e.g. golf courses) has been proposed. A turfgrass field of interest would be surveyed in sunlight by use of an airborne hyperspectral imaging system, then the raw observational data would be preprocessed into hyperspectral reflectance image data. These data would be further processed to identify turfgrass stresses, to determine the spatial distributions of those stresses, and to generate maps showing the spatial distributions. Until now, chemicals and water have often been applied, variously, (1) indiscriminately to an entire turfgrass field without regard to localization of specific stresses or (2) to visible and possibly localized signs of stress for example, browning, damage from traffic, or conspicuous growth of weeds. Indiscriminate application is uneconomical and environmentally unsound; the amounts of water and chemicals consumed could be insufficient in some areas and excessive in most areas, and excess chemicals can leak into the environment. In cases in which developing stresses do not show visible signs at first, it could be more economical and effective to take corrective action before visible signs appear. By enabling early identification of specific stresses and their locations, the proposed method would provide guidance for planning more effective, more economical, and more environmentally sound turfgrass-management practices, including application of chemicals and water, aeration, and mowing. The underlying concept of using hyperspectral imagery to generate stress maps as guides to efficient management of vegetation in large fields is not new; it has been applied in the growth of crops to be harvested. What is new here is the effort to develop an algorithm that processes hyperspectral reflectance data into spectral indices specific to stresses in turfgrass. The development effort has included a study in which small turfgrass plots that were, variously, healthy or

  13. A Developed Spectral Identification Tree for Mineral Mapping using Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Gan, Fuping; Wang, Runsheng; Yan, Bokun; Shang, Kun

    2016-04-01

    The relationship between the spectral features and the composition of minerals are the basis of mineral identification using hyperspectral data. The reflectance spectrum of minerals results from the systematic combination of several modes of interaction between electromagnetic energy and mineral particles in the form of reflection and absorption. Minerals tend to have absorbing features at specific wavelengths with a characteristic shape, which can be used as diagnostic indicators for identification. The spectral identification tree (SIT) method for mineral identification is developed in our research to map minerals accurately and applied in some typical mineral deposits in China. The SIT method is based on the diagnostic absorption features of minerals through comparing and statistically analyzing characteristic spectral data of minerals. We establish several levels of identification rules for the type, group and species of minerals using IF-THEN rule according to the spectral identification criteria so that the developed SIT can be further used to map minerals at different levels of detail from mineral type to mineral species. Identifiable minerals can be grouped into six types: Fe2+-bearing, Fe3+-bearing, Mn2+-bearing, Al-OH-bearing, Mg-OH-bearing and carbonate minerals. Each type can be further divided into several mineral groups. Each group contains several mineral species or specific minerals. A mineral spectral series, therefore, can be constructed as "type-group-species-specific mineral (mineral variety)" for mineral spectral identification. It is noted that the mineral classification is based mainly on spectral reflectance characteristics of minerals which may not be consistent with the classification in mineralogy. We applied the developed SIT method to the datasets acquired at the Eastern Tianshan Mountains of Xinjiang (HyMap data) and the Qulong district of Xizang (Hyperion data). In Xinjiang, the two major classes of Al-OH and Mg-OH minerals were

  14. Small object hyperspectral detection from a low-flying UAV

    NASA Astrophysics Data System (ADS)

    Murray-Krezan, J.; Neumann, J. G.; Leathers, R. A.

    2008-04-01

    Small object detection with a low false alarm rate remains a challenge for automated hyperspectral detection algorithms when the background environment is cluttered. In order to approach this problem we are developing a compact hyperspectral sensor that can be fielded from a small unmanned airborne platform. This platform is capable of flying low and slow, facilitating the collection of hyperspectral imagery that has a small ground-sample distance (GSD) and small atmospheric distortion. Using high-resolution hyperspectral imagery we simulate various ranges between the sensor and the objects of interest. This numerical study aids in analysis of the effects of stand-off distance on detection versus false alarm rates when using standard hyperspectral detection algorithms. Preliminary experimental evidence supports our simulation results.

  15. Mapping pigment distribution in mud samples through hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Mehrübeoglu, Mehrube; Nicula, Cosmina; Trombley, Christopher; Smith, Shane W.; Smith, Dustin K.; Shanks, Elizabeth S.; Zimba, Paul V.

    2015-09-01

    Mud samples collected from bodies of water reveal information about the distribution of microorganisms in the local sediments. Hyperspectral imaging has been investigated as a technology to identify phototropic organisms living on sediments collected from the Texas Coastal Bend area based on their spectral pigment profiles and spatial arrangement. The top pigment profiles identified through high-performance liquid chromatography (HPLC) have been correlated with spectral signatures extracted from the hyperspectral data of mud using fast Fourier transform (FFT). Spatial distributions have also been investigated using 2D hyperspectral image processing. 2D pigment distribution maps have been created based on the correlation with pigment profiles in the FFT domain. Among the tested pigments, the results show match among four out of five pigment distribution trends between HPLC and hyperspectral data analysis. Differences are attributed mainly to the difference between area and volume of scale between the HPLC analysis and area covered by hyperspectral imaging.

  16. Thermophilic-anaerobic digestion to produce class A biosolids: initial full-scale studies at Hyperion Treatment Plant.

    PubMed

    Iranpour, R; Cox, H H J; Oh, S; Fan, S; Kearney, R J; Abkian, V; Haug, R T

    2006-02-01

    The highest quality of biosolids is called exceptional quality. To qualify for this classification, biosolids must comply with three criteria: (1) metal concentrations, (2) vector-attraction reduction, and (3) the Class A pathogen-density requirements. The City of Los Angeles Bureau of Sanitation Hyperion Treatment Plant (HTP) (Playa del Rey, California) meets the first two requirements. Thus, the objective of this study was to ensure that HTP's biosolids production would meet the Class A pathogen-reduction requirements following the time-temperature regimen for batch processing (U.S. EPA, 1993; Subsection 32, Alternative 1). Because regulations require the pathogen limits to be met at the last point of plant control, biosolids sampling was not limited to immediately after the digesters, i.e., the digester outflows. The sampling extended to several locations in HTP's postdigestion train, in particular, the last points of plant control, i.e., the truck loading facility and the farm for land application. A two-stage, thermophilic-continuous-batch process, consisting of a battery of six egg-shaped digesters, was established in late 2001 for phase I of this study and modified in early 2002 for phase II. As the biosolids were discharged from the second-stage digesters, the Salmonella sp. (pathogen) and fecal-coliform (indicator) densities were well below the limits for Class A biosolids, even though the second-stage-digester temperatures were a few degrees below the temperature required by Alternative 1. Salmonella sp. densities remained below the Class A limit at all postdigestion sampling locations. Fecal-coliform densities were also below the Class A limit at postdigestion-sampling locations, except the truck-loading facility (phases I and II) and the farm for final use of the biosolids (phase II). Although federal regulations require one of the limits for either fecal coliforms or Salmonella sp. to be met, local regulations in Kern County, California, where the

  17. Hyperspectral Imaging for Cancer Surgical Margin Delineation: Registration of Hyperspectral and Histological Images

    PubMed Central

    Lu, Guolan; Halig, Luma; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei

    2014-01-01

    The determination of tumor margins during surgical resection remains a challenging task. A complete removal of malignant tissue and conservation of healthy tissue is important for the preservation of organ function, patient satisfaction, and quality of life. Visual inspection and palpation is not sufficient for discriminating between malignant and normal tissue types. Hyperspectral imaging (HSI) technology has the potential to noninvasively delineate surgical tumor margin and can be used as an intra-operative visual aid tool. Since histological images provide the ground truth of cancer margins, it is necessary to warp the cancer regions in ex vivo histological images back to in vivo hyperspectral images in order to validate the tumor margins detected by HSI and to optimize the imaging parameters. In this paper, principal component analysis (PCA) is utilized to extract the principle component bands of the HSI images, which is then used to register HSI images with the corresponding histological image. Affine registration is chosen to model the global transformation. A B-spline free form deformation (FFD) method is used to model the local non-rigid deformation. Registration experiment was performed on animal hyperspectral and histological images. Experimental results from animals demonstrated the feasibility of the hyperspectral imaging method for cancer margin detection. PMID:25328640

  18. Hyperspectral imaging for cancer surgical margin delineation: registration of hyperspectral and histological images

    NASA Astrophysics Data System (ADS)

    Lu, Guolan; Halig, Luma; Wang, Dongsheng; Chen, Zhuo G.; Fei, Baowei

    2014-03-01

    The determination of tumor margins during surgical resection remains a challenging task. A complete removal of malignant tissue and conservation of healthy tissue is important for the preservation of organ function, patient satisfaction, and quality of life. Visual inspection and palpation is not sufficient for discriminating between malignant and normal tissue types. Hyperspectral imaging (HSI) technology has the potential to noninvasively delineate surgical tumor margin and can be used as an intra-operative visual aid tool. Since histological images provide the ground truth of cancer margins, it is necessary to warp the cancer regions in ex vivo histological images back to in vivo hyperspectral images in order to validate the tumor margins detected by HSI and to optimize the imaging parameters. In this paper, principal component analysis (PCA) is utilized to extract the principle component bands of the HSI images, which is then used to register HSI images with the corresponding histological image. Affine registration is chosen to model the global transformation. A B-spline free form deformation (FFD) method is used to model the local non-rigid deformation. Registration experiment was performed on animal hyperspectral and histological images. Experimental results from animals demonstrated the feasibility of the hyperspectral imaging method for cancer margin detection.

  19. Investigating coral hyperspectral properties across coral species and coral state using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; Smith, Dustin K.; Smith, Shane W.; Strychar, Kevin B.; McLauchlan, Lifford

    2013-09-01

    Coral reefs are one of the most diverse and threatened ecosystems in the world. Corals worldwide are at risk, and in many instances, dying due to factors that affect their environment resulting in deteriorating environmental conditions. Because corals respond quickly to the quality of the environment that surrounds them, corals have been identified as bioindicators of water quality and marine environmental health. The hyperspectral imaging system is proposed as a noninvasive tool to monitor different species of corals as well as coral state over time. This in turn can be used as a quick and non-invasive method to monitor environmental health that can later be extended to climate conditions. In this project, a laboratory-based hyperspectral imaging system is used to collect spectral and spatial information of corals. In the work presented here, MATLAB and ENVI software tools are used to view and process spatial information and coral spectral signatures to identify differences among the coral data. The results support the hypothesis that hyperspectral properties of corals vary among different coral species, and coral state over time, and hyperspectral imaging can be a used as a tool to document changes in coral species and state.

  20. Hyperspectral Imaging for Cancer Surgical Margin Delineation: Registration of Hyperspectral and Histological Images.

    PubMed

    Lu, Guolan; Halig, Luma; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei

    2014-03-12

    The determination of tumor margins during surgical resection remains a challenging task. A complete removal of malignant tissue and conservation of healthy tissue is important for the preservation of organ function, patient satisfaction, and quality of life. Visual inspection and palpation is not sufficient for discriminating between malignant and normal tissue types. Hyperspectral imaging (HSI) technology has the potential to noninvasively delineate surgical tumor margin and can be used as an intra-operative visual aid tool. Since histological images provide the ground truth of cancer margins, it is necessary to warp the cancer regions in ex vivo histological images back to in vivo hyperspectral images in order to validate the tumor margins detected by HSI and to optimize the imaging parameters. In this paper, principal component analysis (PCA) is utilized to extract the principle component bands of the HSI images, which is then used to register HSI images with the corresponding histological image. Affine registration is chosen to model the global transformation. A B-spline free form deformation (FFD) method is used to model the local non-rigid deformation. Registration experiment was performed on animal hyperspectral and histological images. Experimental results from animals demonstrated the feasibility of the hyperspectral imaging method for cancer margin detection. PMID:25328640

  1. Atmospheric Correction Algorithm for Hyperspectral Imagery

    SciTech Connect

    R. J. Pollina

    1999-09-01

    In December 1997, the US Department of Energy (DOE) established a Center of Excellence (Hyperspectral-Multispectral Algorithm Research Center, HyMARC) for promoting the research and development of algorithms to exploit spectral imagery. This center is located at the DOE Remote Sensing Laboratory in Las Vegas, Nevada, and is operated for the DOE by Bechtel Nevada. This paper presents the results to date of a research project begun at the center during 1998 to investigate the correction of hyperspectral data for atmospheric aerosols. Results of a project conducted by the Rochester Institute of Technology to define, implement, and test procedures for absolute calibration and correction of hyperspectral data to absolute units of high spectral resolution imagery will be presented. Hybrid techniques for atmospheric correction using image or spectral scene data coupled through radiative propagation models will be specifically addressed. Results of this effort to analyze HYDICE sensor data will be included. Preliminary results based on studying the performance of standard routines, such as Atmospheric Pre-corrected Differential Absorption and Nonlinear Least Squares Spectral Fit, in retrieving reflectance spectra show overall reflectance retrieval errors of approximately one to two reflectance units in the 0.4- to 2.5-micron-wavelength region (outside of the absorption features). These results are based on HYDICE sensor data collected from the Southern Great Plains Atmospheric Radiation Measurement site during overflights conducted in July of 1997. Results of an upgrade made in the model-based atmospheric correction techniques, which take advantage of updates made to the moderate resolution atmospheric transmittance model (MODTRAN 4.0) software, will also be presented. Data will be shown to demonstrate how the reflectance retrieval in the shorter wavelengths of the blue-green region will be improved because of enhanced modeling of multiple scattering effects.

  2. Monitoring Earth's Climate with Shortwave Hyperspectral Reflectance

    NASA Astrophysics Data System (ADS)

    Pilewskie, Peter

    The Sun provides nearly all the energy that fuels the dynamical, chemical, and biological processes in the Earth system. Absorbed solar radiation, the difference between incoming and reflected sunlight, defines Earth’s equilibrium temperature and, along with the emitted infrared radiation, determines the climate state of the planet. The transfer of solar radiation through the atmosphere is modulated by wavelength-specific interactions that are unique for given surface types and the intervening atmospheric gases and condensed species. Reflected radiation that exits the Earth’s atmosphere carries with it the complex fingerprint of the Earth system state. How this signal varies temporally, spatially, and spectrally is a measure of those processes within the Earth system that affect climate change. Despite its importance to the basic energy balance between Earth and the solar-terrestrial environment in which it resides, a precise record of the nature of reflected solar spectral radiation over all climate-relevant time scales remains elusive. A primary goal of a climate observing system is to obtain climate benchmark data records with sufficient accuracy for identifying climate variability on decadal time scales and longer, and with sufficient information content to attribute change to underlying causes. Until recently, detecting climate change signatures in reflected solar radiance has been hindered by instrument accuracy and stability, insufficient spectral coverage and resolution, and inherent sampling limitations from low-Earth orbit observations. This talk will discuss the challenges to monitoring the shortwave energy budget from space. I will present new studies on methods to separate the various contributions in the top-of-atmosphere outgoing shortwave radiance using existing satellite (SCIAMACHY) data and explore methods to enhance trend detection in hyperspectral reflectance time series. Finally, I look ahead to the requirements for a climate observing

  3. Advances in hyperspectral LWIR pushbroom imagers

    NASA Astrophysics Data System (ADS)

    Holma, Hannu; Mattila, Antti-Jussi; Hyvärinen, Timo; Weatherbee, Oliver

    2011-06-01

    Two long-wave infrared (LWIR) hyperspectral imagers have been under extensive development. The first one utilizes a microbolometer focal plane array (FPA) and the second one is based on an Mercury Cadmium Telluride (MCT) FPA. Both imagers employ a pushbroom imaging spectrograph with a transmission grating and on-axis optics. The main target has been to develop high performance instruments with good image quality and compact size for various industrial and remote sensing application requirements. A big challenge in realizing these goals without considerable cooling of the whole instrument is to control the instrument radiation. The challenge is much bigger in a hyperspectral instrument than in a broadband camera, because the optical signal from the target is spread spectrally, but the instrument radiation is not dispersed. Without any suppression, the instrument radiation can overwhelm the radiation from the target even by 1000 times. The means to handle the instrument radiation in the MCT imager include precise instrument temperature stabilization (but not cooling), efficient optical background suppression and the use of background-monitoring-on-chip (BMC) method. This approach has made possible the implementation of a high performance, extremely compact spectral imager in the 7.7 to 12.4 μm spectral range. The imager performance with 84 spectral bands and 384 spatial pixels has been experimentally verified and an excellent NESR of 14 mW/(m2srμm) at 10 μm wavelength with a 300 K target has been achieved. This results in SNR of more than 700. The LWIR imager based on a microbolometer detector array, first time introduced in 2009, has been upgraded. The sensitivity of the imager has improved drastically by a factor of 3 and SNR by about 15 %. It provides a rugged hyperspectral camera for chemical imaging applications in reflection mode in laboratory and industry.

  4. Adaptation of Industrial Hyperspectral Line Scanner for Archaeological Applications

    NASA Astrophysics Data System (ADS)

    Miljković, V.; Gajski, D.

    2016-06-01

    The spectral characteristic of the visible light reflected from any of archaeological artefact is the result of the interaction of its surface illuminated by incident light. Every particular surface depends on what material it is made of and/or which layers put on it has its spectral signature. Recent archaeometry recognises this information as very valuable data to extend present documentation of artefacts and as a new source for scientific exploration. However, the problem is having an appropriate hyperspectral imaging system available and adopted for applications in archaeology. In this paper, we present the new construction of the hyperspectral imaging system, made of industrial hyperspectral line scanner ImSpector V9 and CCD-sensor PixelView. The hyperspectral line scanner is calibrated geometrically, and hyperspectral data are geocoded and converted to the hyperspectral cube. The system abilities are evaluated for various archaeological artefacts made of different materials. Our experience in applications, visualisations, and interpretations of collected hyperspectral data are explored and presented.

  5. An Approach for Characterizing and Comparing Hyperspectral Microscopy Systems

    PubMed Central

    Annamdevula, Naga S.; Sweat, Brenner; Favreau, Peter; Lindsey, Ashley S.; Alvarez, Diego F.; Rich, Thomas C.; Leavesley, Silas J.

    2013-01-01

    Hyperspectral imaging and analysis approaches offer accurate detection and quantification of fluorescently-labeled proteins and cells in highly autofluorescent tissues. However, selecting optimum acquisition settings for hyperspectral imaging is often a daunting task. In this study, we compared two hyperspectral systems—a widefield system with acoustic optical tunable filter (AOTF) and charge coupled device (CCD) camera, and a confocal system with diffraction gratings and photomultiplier tube (PMT) array. We measured the effects of system parameters on hyperspectral image quality and linear unmixing results. Parameters that were assessed for the confocal system included pinhole diameter, laser power, PMT gain and for the widefield system included arc lamp intensity, and camera gain. The signal-to-noise ratio (SNR) and the root-mean-square error (RMS error) were measured to assess system performance. Photobleaching dynamics were studied. Finally, theoretical sensitivity studies were performed to estimate the incremental response (sensitivity) and false-positive detection rates (specificity). Results indicate that hyperspectral imaging assays are highly dependent on system parameters and experimental conditions. For detection of green fluorescent protein (GFP)-expressing cells in fixed lung tissues, a confocal pinhole of five airy disk units, high excitation intensity and low detector gain were optimal. The theoretical sensitivity studies revealed that widefield hyperspectral microscopy was able to detect GFP with fewer false positive occurrences than confocal microscopy, even though confocal microscopy offered improved signal and noise characteristics. These studies provide a framework for optimization that can be applied to a variety of hyperspectral imaging systems. PMID:23877125

  6. Thin-film tunable filters for hyperspectral fluorescence microscopy

    PubMed Central

    Favreau, Peter; Hernandez, Clarissa; Lindsey, Ashley Stringfellow; Alvarez, Diego F.; Rich, Thomas; Prabhat, Prashant

    2013-01-01

    Abstract. Hyperspectral imaging is a powerful tool that acquires data from many spectral bands, forming a contiguous spectrum. Hyperspectral imaging was originally developed for remote sensing applications; however, hyperspectral techniques have since been applied to biological fluorescence imaging applications, such as fluorescence microscopy and small animal fluorescence imaging. The spectral filtering method largely determines the sensitivity and specificity of any hyperspectral imaging system. There are several types of spectral filtering hardware available for microscopy systems, most commonly acousto-optic tunable filters (AOTFs) and liquid crystal tunable filters (LCTFs). These filtering technologies have advantages and disadvantages. Here, we present a novel tunable filter for hyperspectral imaging—the thin-film tunable filter (TFTF). The TFTF presents several advantages over AOTFs and LCTFs, most notably, a high percentage transmission and a high out-of-band optical density (OD). We present a comparison of a TFTF-based hyperspectral microscopy system and a commercially available AOTF-based system. We have characterized the light transmission, wavelength calibration, and OD of both systems, and have then evaluated the capability of each system for discriminating between green fluorescent protein and highly autofluorescent lung tissue. Our results suggest that TFTFs are an alternative approach for hyperspectral filtering that offers improved transmission and out-of-band blocking. These characteristics make TFTFs well suited for other biomedical imaging devices, such as ophthalmoscopes or endoscopes. PMID:24077519

  7. Compressive and classical hyperspectral systems: a fundamental comparison

    NASA Astrophysics Data System (ADS)

    Shay, Adi; August, Isaac Y.; Stern, Adrian

    2015-05-01

    Hyperspectral imagery involves capturing and processing a tremendous amount of data, which sets severe system resource requirements. This has motivated the application of compressive sensing for different spectroscopic and spectroscopic imager systems. Several new compressive hyperspectral architectures have been designed to stretch the common limitations of classical systems. However, the application of the compressive sensing framework involves design of system architectures that differ significantly from the conventional ones. Since compressive sensing differs essentially from conventional sensing, it cannot be implemented for hyperspectral imaging by simply modifying one of the components of a conventional hyperspectral system, rather it requires a complete new design. In this work we present a comparison between four compressive hyperspectral architectures to conventional architectures. The compressive hyperspectral sensing compared are: Coded Aperture Snapshot Spectral Imaging (CASSI), Compressive HS Imaging by Separable Spatial And Spectral Operators (CHISSS), (Liquid-crystal Compressive spectral Imager) LiCSI and (Spectral Single-Pixel) SSP systems. Those methods are compared to conventional spatial/spectral scanning hyperspectral such as pushbroom, whiskbroom and color filter techniques. A fundamental comparison between these architectures is presented in terms of optical system volume and radiometric efficiency.

  8. DMD based hyperspectral augmentation for multi-object tracking systems

    NASA Astrophysics Data System (ADS)

    Neumann, Jonathan G.

    2009-02-01

    Current wide area pan-chromatic or dual band persistent surveillance systems often do not provide enough observable data to maintain accurate and unique tracks of multiple objects over a large field of regard. Previous experiments have shown augmentation with hyperspectral imagery can enhance tracking performance. However, hyperspectral imagers have significantly slower coverage rates than persistent surveillance systems, essentially because a hyperspectral pixel contains vector data while a standard image pixel is typically either scalar or RGB. This coverage rate gap is a fundamental mismatch between the two systems and presents a technological hurdle to the practical use of hyperspectral imagers for tracking multiple objects spread over the entire field of regard of persistent surveillance systems. In this non-mapping hyperspectral application, we assume much of the information in a hyperspectral data cube is superfluous background and need not be processed or even collected. The effective coverage rate of the hyperspectral imager can be made compatible with modern persistent surveillance systems, at least for the objects of interest, by using a DMD to judiciously select which data are collected and processed. A proof-of-concept sensor has been developed and preliminary results are presented.

  9. An approach for characterizing and comparing hyperspectral microscopy systems.

    PubMed

    Annamdevula, Naga S; Sweat, Brenner; Favreau, Peter; Lindsey, Ashley S; Alvarez, Diego F; Rich, Thomas C; Leavesley, Silas J

    2013-01-01

    Hyperspectral imaging and analysis approaches offer accurate detection and quantification of fluorescently-labeled proteins and cells in highly autofluorescent tissues. However, selecting optimum acquisition settings for hyperspectral imaging is often a daunting task. In this study, we compared two hyperspectral systems-a widefield system with acoustic optical tunable filter (AOTF) and charge coupled device (CCD) camera, and a confocal system with diffraction gratings and photomultiplier tube (PMT) array. We measured the effects of system parameters on hyperspectral image quality and linear unmixing results. Parameters that were assessed for the confocal system included pinhole diameter, laser power, PMT gain and for the widefield system included arc lamp intensity, and camera gain. The signal-to-noise ratio (SNR) and the root-mean-square error (RMS error) were measured to assess system performance. Photobleaching dynamics were studied. Finally, theoretical sensitivity studies were performed to estimate the incremental response (sensitivity) and false-positive detection rates (specificity). Results indicate that hyperspectral imaging assays are highly dependent on system parameters and experimental conditions. For detection of green fluorescent protein (GFP)-expressing cells in fixed lung tissues, a confocal pinhole of five airy disk units, high excitation intensity and low detector gain were optimal. The theoretical sensitivity studies revealed that widefield hyperspectral microscopy was able to detect GFP with fewer false positive occurrences than confocal microscopy, even though confocal microscopy offered improved signal and noise characteristics. These studies provide a framework for optimization that can be applied to a variety of hyperspectral imaging systems. PMID:23877125

  10. Small satellite's role in future hyperspectral Earth observation missions

    NASA Astrophysics Data System (ADS)

    Guelman, M.; Ortenberg, F.

    2009-06-01

    Along with various advanced satellite onboard sensors, an important place in the near future will belong to hyperspectral instruments, considered as suitable for different scientific, commercial and military missions. As was demonstrated over the last decade, hyperspectral Earth observations can be provided by small satellites at considerably lower costs and shorter timescales, even though with some limitations on resolution, spectral response, and data rate. In this work the requirements on small satellites with imaging hyperspectral sensors are studied. Physical and technological limitations of hyperspectral imagers are considered. A mathematical model of a small satellite with a hyperspectral imaging spectrometer system is developed. The ability of the small satellites of different subclasses (micro- and mini-) to obtain hyperspectral images with a given resolution and quality is examined. As a result of the feasibility analysis, the constraints on the main technical parameters of hyperspectral instruments suitable for application onboard the small satellites are outlined. Comparison of the data for designed and planned instruments with simulation results validates the presented approach to the estimation of the small satellite size limitations. Presented analysis was carried out for sensors with conventional filled aperture optics.

  11. Reconfigurable Hardware for Compressing Hyperspectral Image Data

    NASA Technical Reports Server (NTRS)

    Aranki, Nazeeh; Namkung, Jeffrey; Villapando, Carlos; Kiely, Aaron; Klimesh, Matthew; Xie, Hua

    2010-01-01

    High-speed, low-power, reconfigurable electronic hardware has been developed to implement ICER-3D, an algorithm for compressing hyperspectral-image data. The algorithm and parts thereof have been the topics of several NASA Tech Briefs articles, including Context Modeler for Wavelet Compression of Hyperspectral Images (NPO-43239) and ICER-3D Hyperspectral Image Compression Software (NPO-43238), which appear elsewhere in this issue of NASA Tech Briefs. As described in more detail in those articles, the algorithm includes three main subalgorithms: one for computing wavelet transforms, one for context modeling, and one for entropy encoding. For the purpose of designing the hardware, these subalgorithms are treated as modules to be implemented efficiently in field-programmable gate arrays (FPGAs). The design takes advantage of industry- standard, commercially available FPGAs. The implementation targets the Xilinx Virtex II pro architecture, which has embedded PowerPC processor cores with flexible on-chip bus architecture. It incorporates an efficient parallel and pipelined architecture to compress the three-dimensional image data. The design provides for internal buffering to minimize intensive input/output operations while making efficient use of offchip memory. The design is scalable in that the subalgorithms are implemented as independent hardware modules that can be combined in parallel to increase throughput. The on-chip processor manages the overall operation of the compression system, including execution of the top-level control functions as well as scheduling, initiating, and monitoring processes. The design prototype has been demonstrated to be capable of compressing hyperspectral data at a rate of 4.5 megasamples per second at a conservative clock frequency of 50 MHz, with a potential for substantially greater throughput at a higher clock frequency. The power consumption of the prototype is less than 6.5 W. The reconfigurability (by means of reprogramming) of

  12. 2D stepping drive for hyperspectral systems

    NASA Astrophysics Data System (ADS)

    Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin

    2015-07-01

    We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.

  13. Hyperspectral confocal fluorescence imaging of cells

    NASA Astrophysics Data System (ADS)

    Haaland, David M.; Jones, Howland D. T.; Sinclair, Michael B.; Carson, Bryan; Branda, Catherine; Poschet, Jens F.; Rebeil, Roberto; Tian, Bing; Liu, Ping; Brasier, Allan R.

    2007-09-01

    Confocal fluorescence imaging of biological systems is an important method by which researchers can investigate molecular processes occurring in live cells. We have developed a new 3D hyperspectral confocal fluorescence microscope that can further enhance the usefulness of fluorescence microscopy in studying biological systems. The new microscope can increase the information content obtained from the image since, at each voxel, the microscope records 512 wavelengths from the emission spectrum (490 to 800 nm) while providing optical sectioning of samples with diffraction-limited spatial resolution. When coupled with multivariate curve resolution (MCR) analyses, the microscope can resolve multiple spatially and spectrally overlapped emission components, thereby greatly increasing the number of fluorescent labels, relative to most commercial microscopes, that can be monitored simultaneously. The MCR algorithm allows the "discovery" of all emitting sources and estimation of their relative concentrations without cross talk, including those emission sources that might not have been expected in the imaged cells. In this work, we have used the new microscope to obtain time-resolved hyperspectral images of cellular processes. We have quantitatively monitored the translocation of the GFP-labeled RelA protein (without interference from autofluorescence) into and out of the nucleus of live HeLa cells in response to continuous stimulation by the cytokine, TNFα. These studies have been extended to imaging live mouse macrophage cells with YFP-labeled RelA and GFP-labeled IRF3 protein. Hyperspectral imaging coupled with MCR analysis makes possible, for the first time, quantitative analysis of GFP, YFP, and autofluorescence without concern for cross-talk between emission sources. The significant power and quantitative capabilities of the new hyperspectral imaging system are further demonstrated with the imaging of a simple fluorescence dye (SYTO 13) traditionally used to stain the

  14. Hyperspectral Image Turbulence Measurements of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Lane, Sarah E.; West, Leanne L.; Gimmestad, Gary G.; Kireev, Stanislav; Smith, William L., Sr.; Burdette, Edward M.; Daniels, Taumi; Cornman, Larry

    2012-01-01

    A Forward Looking Interferometer (FLI) sensor has the potential to be used as a means of detecting aviation hazards in flight. One of these hazards is mountain wave turbulence. The results from a data acquisition activity at the University of Colorado s Mountain Research Station will be presented here. Hyperspectral datacubes from a Telops Hyper-Cam are being studied to determine if evidence of a turbulent event can be identified in the data. These data are then being compared with D&P TurboFT data, which are collected at a much higher time resolution and broader spectrum.

  15. Spatial Mutual Information Based Hyperspectral Band Selection for Classification

    PubMed Central

    2015-01-01

    The amount of information involved in hyperspectral imaging is large. Hyperspectral band selection is a popular method for reducing dimensionality. Several information based measures such as mutual information have been proposed to reduce information redundancy among spectral bands. Unfortunately, mutual information does not take into account the spatial dependency between adjacent pixels in images thus reducing its robustness as a similarity measure. In this paper, we propose a new band selection method based on spatial mutual information. As validation criteria, a supervised classification method using support vector machine (SVM) is used. Experimental results of the classification of hyperspectral datasets show that the proposed method can achieve more accurate results. PMID:25918742

  16. Post-processing for improving hyperspectral anomaly detection accuracy

    NASA Astrophysics Data System (ADS)

    Wu, Jee-Cheng; Jiang, Chi-Ming; Huang, Chen-Liang

    2015-10-01

    Anomaly detection is an important topic in the exploitation of hyperspectral data. Based on the Reed-Xiaoli (RX) detector and a morphology operator, this research proposes a novel technique for improving the accuracy of hyperspectral anomaly detection. Firstly, the RX-based detector is used to process a given input scene. Then, a post-processing scheme using morphology operator is employed to detect those pixels around high-scoring anomaly pixels. Tests were conducted using two real hyperspectral images with ground truth information and the results based on receiver operating characteristic curves, illustrated that the proposed method reduced the false alarm rates of the RXbased detector.

  17. Hyperspectral image compression using an online learning method

    NASA Astrophysics Data System (ADS)

    Ülkü, Ä.°rem; Töreyin, B. Uǧur

    2015-05-01

    A hyperspectral image compression method is proposed using an online dictionary learning approach. The online learning mechanism is aimed at utilizing least number of dictionary elements for each hyperspectral image under consideration. In order to meet this "sparsity constraint", basis pursuit algorithm is used. Hyperspectral imagery from AVIRIS datasets are used for testing purposes. Effects of non-zero dictionary elements on the compression performance are analyzed. Results indicate that, the proposed online dictionary learning algorithm may be utilized for higher data rates, as it performs better in terms of PSNR values, as compared with the state-of-the-art predictive lossy compression schemes.

  18. Research on a project of the new computational hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Li, Huan; Zhou, Feng; Zhang, Zhi; Shi, Guang-ming

    2012-09-01

    This paper brings hyperspectral technology and compute image together, on the basis of geometrical optics theory and compressed sensing theory, put forward a new computational spectral Imaging technology. That raises two to four times on spatial resolution and double on spectral resolution compared conventional hyperspectral imagers. Owing to have finished compressing when getting the imaging signal, that could resolve the conflict between the mass of data bringing with high resolution and transfers and storage. The paper carries out a project to the new hyperspectral imager.

  19. Camouflage target reconnaissance based on hyperspectral imaging technology

    NASA Astrophysics Data System (ADS)

    Hua, Wenshen; Guo, Tong; Liu, Xun

    2015-08-01

    Efficient camouflaged target reconnaissance technology makes great influence on modern warfare. Hyperspectral images can provide large spectral range and high spectral resolution, which are invaluable in discriminating between camouflaged targets and backgrounds. Hyperspectral target detection and classification technology are utilized to achieve single class and multi-class camouflaged targets reconnaissance respectively. Constrained energy minimization (CEM), a widely used algorithm in hyperspectral target detection, is employed to achieve one class camouflage target reconnaissance. Then, support vector machine (SVM), a classification method, is proposed to achieve multi-class camouflage target reconnaissance. Experiments have been conducted to demonstrate the efficiency of the proposed method.

  20. Classification of Roof Materials Using Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Chisense, C.

    2012-07-01

    Mapping of surface materials in urban areas using aerial imagery is a challenging task. This is because there are numerous materials present in relatively small regions. Hyperspectral data features a fine spectral resolution and thus has a significant capability for automatic identification and mapping of urban surface materials. In this study an approach for identification of roof surface materials using hyperspectral data is presented. The study is based on an urban area in Ludwigsburg, Germany, using a HyMap data set recorded during the HyMap campaign in August, 2010. Automatisierte Liegenschaftskarte (ALK) vector data with a building layer is combined with the HyMap data to limit the analysis to roofs. A spectral library for roofs is compiled based on field and image measurements. In the roof material identification process, supervised classification methods, namely spectral angle mapper and spectral information divergence and the object oriented ECHO (extraction and classification of homogeneous objects) approach are compared. In addition to the overall shape of spectral curves, position and strength of absorptions features are used to enhance material identification. The discriminant analysis feature extraction method is applied to the HyMap data in order to identify features (band combinations) suitable for discriminating between the target classes. The identified optimal features are used to create a new data set which is later classified using the ECHO classifier. The classification results with respect to material types of roofs are presented in this study. The most important results are evaluated using orthophotos, probability maps and field visits.

  1. Acceleration of tomographic hyperspectral restoration algorithms

    NASA Astrophysics Data System (ADS)

    Schau, Harvey C.

    2006-05-01

    Hyperspectral imaging spectrometers have proven to be both versatile and powerful instruments with applications in diverse areas such as medical diagnosis, land usage, military target detection, and art forgery. In many applications scanning systems cannot be effectively employed and true "flash" operation is necessary. Multiplex systems have been developed which can gather information in multispectral bands simultaneously, and then produce a datacube after mathematical restoration. Such system enjoy compact size, robust construction, inexpensive costs and zero moving parts at the cost of highly complex mathematical restoration operations. Currently the limiting feature of such tomographic hyperspectral imagers such as the FMDIS [1,2] is the speed of restoration. Due to the large sizes of the restoration kernel, restorations are typically recursive and require many iterations to achieve satisfactory results. Little can be done to make the systems smaller since the size is determined by the number of colors and pixel size of the focal plane arrays (FPA) employed. Thus, techniques must be investigated to speed up the restoration either by reducing the number of iterations or reducing the number of operations within an iteration. It is assumed that little can be done to reduce the number of operations in an iteration since the operations are done in sparse format, we therefore investigate reducing the number of iterations through mathematical accelerations. We assume this acceleration will work to advantage regardless of the mechanism (PC-based or dedicated processor such as a gate array) by which the restoration is implemented.

  2. Separability between pedestrians in hyperspectral imagery.

    PubMed

    Herweg, Jared; Kerekes, John; Eismann, Michael

    2013-02-20

    The popularity of hyperspectral imaging (HSI) in remote sensing continues to lead to it being adapted in novel ways to overcome challenging imaging problems. This paper reports on research efforts exploring the phenomenology of using HSI as an aid in detecting and tracking human pedestrians. An assessment of the likelihood of distinguishing between pedestrians based on the measured spectral reflectance of observable materials and the presence of noise is presented. The assessments included looking at the spectral separation between pedestrian material subregions using different spectral-reflectance regions within the full range (450-2500 nm), as well as when the spectral content of the pedestrian subregions are combined. In addition to the pedestrian spectral-reflectance data analysis, the separability of pedestrian subregions in remotely sensed hyperspectral images was assessed using a unique data set garnered as part of this work. Results indicated that skin was the least distinguishable material between pedestrians using the spectral Euclidean distance metric. The clothing, especially the shirt, offered the most salient feature for distinguishing the pedestrian. Additionally, significant spectral separability performance is realized when combining the reflectance information of two or more subregions. PMID:23435007

  3. Onboard Image Processing System for Hyperspectral Sensor.

    PubMed

    Hihara, Hiroki; Moritani, Kotaro; Inoue, Masao; Hoshi, Yoshihiro; Iwasaki, Akira; Takada, Jun; Inada, Hitomi; Suzuki, Makoto; Seki, Taeko; Ichikawa, Satoshi; Tanii, Jun

    2015-01-01

    Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS) sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS), which is a hierarchical predictive coding method with resolution scaling. To improve FELICS's performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost. PMID:26404281

  4. Onboard Image Processing System for Hyperspectral Sensor

    PubMed Central

    Hihara, Hiroki; Moritani, Kotaro; Inoue, Masao; Hoshi, Yoshihiro; Iwasaki, Akira; Takada, Jun; Inada, Hitomi; Suzuki, Makoto; Seki, Taeko; Ichikawa, Satoshi; Tanii, Jun

    2015-01-01

    Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS) sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS), which is a hierarchical predictive coding method with resolution scaling. To improve FELICS’s performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost. PMID:26404281

  5. A new hyperspectral dataset and some challenges

    NASA Astrophysics Data System (ADS)

    Wadströmer, Niclas; Ahlberg, Jörgen; Svensson, Thomas

    2010-04-01

    We present a new hyperspectral data set that FOI will keep publicly available. The hyperspectral data set was collected in an airborne measurement over the countryside. The spectral resolution was about 10 nm which allowed registrations in 60 spectral bands in the visual and near infrared range (390-960 nm). Objects with various signature properties were placed in three areas: the edge of a wood, an open field and a rough open terrain. Several overflights were performed over the areas. Between the overflights some of the objects were moved, representing different scenarios. Our interest is primarily in anomaly detection of man-made objects placed in nature where no such objects are expected. The objects in the trial were military and civilian vehicles, boards of different size and a camouflage net. The size of the boards range from multipixel to subpixel size. Due to wind and cloud conditions the stability and the flight height of the airplane vary between the overflights, which makes the analysis extra challenging.

  6. Hyperspectral Aerosol Optical Depths from TCAP Flights

    SciTech Connect

    Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

    2013-11-13

    4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the world’s first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STAR’s spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

  7. Hyperspectral Imagery Data for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Garegnani, Jerry; Gualtney, Lawrence

    1999-01-01

    In order for remotely sensed data to be useful in a practical application for agriculture, an information product must be made available to the land management decision maker within 24 to 48 hours of data acquisition. Hyperspectral imagery data is proving useful in differentiation of plant species potentially allowing identification of non-healthy areas and pest infestations within crop fields that may require the farm managers attention. Currently however, extracting the needed site-specific feature information from the vast spectral content of large hyperspectral image files is a labor intensive and time consuming task prohibiting the necessary fast turnaround from raw data to final product. We illustrate the methods, techniques and technologies necessary to produce field-level information products from imagery and other related spatial data that are useful to the farm manager for specific decisions that must be made throughout the growing season. We also propose to demonstrate the cost effectiveness of an integrated system, from acquisition to final product distribution, to utilize imagery for decisions on a working farm in conjunction with a commercial agricultural services company and their crop scouts. The demonstration farm is Chesapeake Farms, a 3000 acre research farm in Chestertown, Maryland on the Eastern Shore and is owned by the DuPont Corporation.

  8. APEX - the Hyperspectral ESA Airborne Prism Experiment

    PubMed Central

    Itten, Klaus I.; Dell'Endice, Francesco; Hueni, Andreas; Kneubühler, Mathias; Schläpfer, Daniel; Odermatt, Daniel; Seidel, Felix; Huber, Silvia; Schopfer, Jürg; Kellenberger, Tobias; Bühler, Yves; D'Odorico, Petra; Nieke, Jens; Alberti, Edoardo; Meuleman, Koen

    2008-01-01

    The airborne ESA-APEX (Airborne Prism Experiment) hyperspectral mission simulator is described with its distinct specifications to provide high quality remote sensing data. The concept of an automatic calibration, performed in the Calibration Home Base (CHB) by using the Control Test Master (CTM), the In-Flight Calibration facility (IFC), quality flagging (QF) and specific processing in a dedicated Processing and Archiving Facility (PAF), and vicarious calibration experiments are presented. A preview on major applications and the corresponding development efforts to provide scientific data products up to level 2/3 to the user is presented for limnology, vegetation, aerosols, general classification routines and rapid mapping tasks. BRDF (Bidirectional Reflectance Distribution Function) issues are discussed and the spectral database SPECCHIO (Spectral Input/Output) introduced. The optical performance as well as the dedicated software utilities make APEX a state-of-the-art hyperspectral sensor, capable of (a) satisfying the needs of several research communities and (b) helping the understanding of the Earth's complex mechanisms.

  9. Image visualization of hyperspectral spectrum for LWIR

    NASA Astrophysics Data System (ADS)

    Chong, Eugene; Jeong, Young-Su; Lee, Jai-Hoon; Park, Dong Jo; Kim, Ju Hyun

    2015-07-01

    The image visualization of a real-time hyperspectral spectrum in the long-wave infrared (LWIR) range of 900-1450 cm-1 by a color-matching function is addressed. It is well known that the absorption spectra of main toxic industrial chemical (TIC) and chemical warfare agent (CWA) clouds are detected in this spectral region. Furthermore, a significant spectral peak due to various background species and unknown targets are also present. However, those are dismissed as noise, resulting in utilization limit. Herein, we applied a color-matching function that uses the information from hyperspectral data, which is emitted from the materials and surfaces of artificial or natural backgrounds in the LWIR region. This information was used to classify and differentiate the background signals from the targeted substances, and the results were visualized as image data without additional visual equipment. The tristimulus value based visualization information can quickly identify the background species and target in real-time detection in LWIR.

  10. Hyperspectral imaging applied to forensic medicine

    NASA Astrophysics Data System (ADS)

    Malkoff, Donald B.; Oliver, William R.

    2000-03-01

    Remote sensing techniques now include the use of hyperspectral infrared imaging sensors covering the mid-and- long wave regions of the spectrum. They have found use in military surveillance applications due to their capability for detection and classification of a large variety of both naturally occurring and man-made substances. The images they produce reveal the spatial distributions of spectral patterns that reflect differences in material temperature, texture, and composition. A program is proposed for demonstrating proof-of-concept in using a portable sensor of this type for crime scene investigations. It is anticipated to be useful in discovering and documenting the affects of trauma and/or naturally occurring illnesses, as well as detecting blood spills, tire patterns, toxic chemicals, skin injection sites, blunt traumas to the body, fluid accumulations, congenital biochemical defects, and a host of other conditions and diseases. This approach can significantly enhance capabilities for determining the circumstances of death. Potential users include law enforcement organizations (police, FBI, CIA), medical examiners, hospitals/emergency rooms, and medical laboratories. Many of the image analysis algorithms already in place for hyperspectral remote sensing and crime scene investigations can be applied to the interpretation of data obtained in this program.

  11. Hyperspectral monitoring of chemically sensitive plant sentinels

    NASA Astrophysics Data System (ADS)

    Simmons, Danielle A.; Kerekes, John P.; Raqueno, Nina G.

    2009-08-01

    Automated detection of chemical threats is essential for an early warning of a potential attack. Harnessing plants as bio-sensors allows for distributed sensing without a power supply. Monitoring the bio-sensors requires a specifically tailored hyperspectral system. Tobacco plants have been genetically engineered to de-green when a material of interest (e.g. zinc, TNT) is introduced to their immediate vicinity. The reflectance spectra of the bio-sensors must be accurately characterized during the de-greening process for them to play a role in an effective warning system. Hyperspectral data have been collected under laboratory conditions to determine the key regions in the reflectance spectra associated with the degreening phenomenon. Bio-sensor plants and control (nongenetically engineered) plants were exposed to TNT over the course of two days and their spectra were measured every six hours. Rochester Institute of Technologys Digital Imaging and Remote Sensing Image Generation Model (DIRSIG) was used to simulate detection of de-greened plants in the field. The simulated scene contains a brick school building, sidewalks, trees and the bio-sensors placed at the entrances to the buildings. Trade studies of the bio-sensor monitoring system were also conducted using DIRSIG simulations. System performance was studied as a function of field of view, pixel size, illumination conditions, radiometric noise, spectral waveband dependence and spectral resolution. Preliminary results show that the most significant change in reflectance during the degreening period occurs in the near infrared region.

  12. Pork grade evaluation using hyperspectral imaging techniques

    NASA Astrophysics Data System (ADS)

    Zhou, Rui; Cai, Bo; Wang, Shoubing; Ji, Huihua; Chen, Huacai

    2011-11-01

    The method to evaluate the grade of the pork based on hyperspectral imaging techniques was studied. Principal component analysis (PCA) was performed on the hyperspectral image data to extract the principal components which were used as the inputs of the evaluation model. By comparing the different discriminating rates in the calibration set and the validation set under different information, the choice of the components can be optimized. Experimental results showed that the classification evaluation model was the optimal when the principal of component (PC) of spectra was 3, while the corresponding discriminating rate was 89.1% in the calibration set and 84.9% in the validation set. It was also good when the PC of images was 9, while the corresponding discriminating rate was 97.2% in the calibration set and 91.1% in the validation set. The evaluation model based on both information of spectra and images was built, in which the corresponding PCs of spectra and images were used as the inputs. This model performed very well in grade classification evaluation, and the discriminating rates of calibration set and validation set were 99.5% and 92.7%, respectively, which were better than the two evaluation models based on single information of spectra or images.

  13. Hyper-spectral scanner design and analysis

    SciTech Connect

    Canavan, G.; Moses, J.; Smith, R.

    1996-06-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). An earlier project produced rough designs for key components of a compact hyper-spectral sensor for environmental and ecological measurements. Such sensors could be deployed on unmanned vehicles, aircraft, or satellites for measurements important to agriculture, the environment, and ecologies. This represents an important advance in remote sensing. Motorola invited us to propose an add-on, proof-of-principle sensor for their Comet satellite, whose primary mission is to demonstrate a channel of the IRIDIUM satellite communications system. Our project converted the preliminary designs from the previous effort into final designs for the telescope, camera, computer and interfaces that constitute the hyper-spectral scanning sensor. The work concentrated on design, fabrication, preliminary integration, and testing of the electronic circuit boards for the computer, data compression board, and interface board for the camera-computer and computer-modulator (transmitter) interfaces.

  14. Hyperspectral imaging from space: Warfighter-1

    NASA Astrophysics Data System (ADS)

    Cooley, Thomas; Seigel, Gary; Thorsos, Ivan

    1999-01-01

    The Air Force Research Laboratory Integrated Space Technology Demonstrations (ISTD) Program Office has partnered with Orbital Sciences Corporation (OSC) to complement the commercial satellite's high-resolution panchromatic imaging and Multispectral imaging (MSI) systems with a moderate resolution Hyperspectral imaging (HSI) spectrometer camera. The program is an advanced technology demonstration utilizing a commercially based space capability to provide unique functionality in remote sensing technology. This leveraging of commercial industry to enhance the value of the Warfighter-1 program utilizes the precepts of acquisition reform and is a significant departure from the old-school method of contracting for government managed large demonstration satellites with long development times and technology obsolescence concerns. The HSI system will be able to detect targets from the spectral signature measured by the hyperspectral camera. The Warfighter-1 program will also demonstrate the utility of the spectral information to theater military commanders and intelligence analysts by transmitting HSI data directly to a mobile ground station that receives and processes the data. After a brief history of the project origins, this paper will present the details of the Warfighter-1 system and expected results from exploitation of HSI data as well as the benefits realized by this collaboration between the Air Force and commercial industry.

  15. Hyperspectral and multispectral sensors for remote sensing

    NASA Astrophysics Data System (ADS)

    Miller, James; Kullar, Sukhbir; Cochrane, David; O, Nixon; Lomako, Andrey; Draijer, Cees

    2010-11-01

    Remote Hyperspectral and Multispectral sensors have been developed using modern CCD and CMOS fabrication techniques combined with advanced dichroic filters. The resulting sensors are more cost effective while maintaining the high performance needed in remote sensing applications. A single device can contain multiple imaging areas tailored to different multispectral bandwidths in a highly cost effective and reliable package. This paper discusses a five band visible to near IR scanning sensor. By bonding advanced dichroic filters onto the cover glass and directly in the imaging path a highly efficient multispectral sensor is achieved. Up to 12,000 linear pixel arrays are possible1 with this advanced filter technology approach. Individual imaging areas on the device are designed to have unique pixel sizes and clocking to enable tailored imaging performance for the individual spectral bands. Individual elements are also based on high resolution Time Delay and Integration technology2,3 (TDI) to maximize sensitivity and throughput. Additionally for hyperspectral imagers, a split frame CCD design is discussed using high sensitivity back side illuminated (BSI) processes that can achieve high quantum efficiency. As these sensors are used in remote sensing applications, device robustness and radiation tolerance was required.

  16. Dried fruits quality assessment by hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Serranti, Silvia; Gargiulo, Aldo; Bonifazi, Giuseppe

    2012-05-01

    Dried fruits products present different market values according to their quality. Such a quality is usually quantified in terms of freshness of the products, as well as presence of contaminants (pieces of shell, husk, and small stones), defects, mould and decays. The combination of these parameters, in terms of relative presence, represent a fundamental set of attributes conditioning dried fruits humans-senses-detectable-attributes (visual appearance, organolectic properties, etc.) and their overall quality in terms of marketable products. Sorting-selection strategies exist but sometimes they fail when a higher degree of detection is required especially if addressed to discriminate between dried fruits of relatively small dimensions and when aiming to perform an "early detection" of pathogen agents responsible of future moulds and decays development. Surface characteristics of dried fruits can be investigated by hyperspectral imaging (HSI). In this paper, specific and "ad hoc" applications addressed to propose quality detection logics, adopting a hyperspectral imaging (HSI) based approach, are described, compared and critically evaluated. Reflectance spectra of selected dried fruits (hazelnuts) of different quality and characterized by the presence of different contaminants and defects have been acquired by a laboratory device equipped with two HSI systems working in two different spectral ranges: visible-near infrared field (400-1000 nm) and near infrared field (1000-1700 nm). The spectra have been processed and results evaluated adopting both a simple and fast wavelength band ratio approach and a more sophisticated classification logic based on principal component (PCA) analysis.

  17. Hyperspectral image classification for mapping agricultural tillage practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An efficient classification framework for mapping agricultural tillage practice using hyperspectral remote sensing imagery is proposed, which has the potential to be implemented practically to provide rapid, accurate, and objective surveying data for precision agricultural management and appraisal f...

  18. Unsupervised hyperspectral image analysis using independent component analysis (ICA)

    SciTech Connect

    S. S. Chiang; I. W. Ginsberg

    2000-06-30

    In this paper, an ICA-based approach is proposed for hyperspectral image analysis. It can be viewed as a random version of the commonly used linear spectral mixture analysis, in which the abundance fractions in a linear mixture model are considered to be unknown independent signal sources. It does not require the full rank of the separating matrix or orthogonality as most ICA methods do. More importantly, the learning algorithm is designed based on the independency of the material abundance vector rather than the independency of the separating matrix generally used to constrain the standard ICA. As a result, the designed learning algorithm is able to converge to non-orthogonal independent components. This is particularly useful in hyperspectral image analysis since many materials extracted from a hyperspectral image may have similar spectral signatures and may not be orthogonal. The AVIRIS experiments have demonstrated that the proposed ICA provides an effective unsupervised technique for hyperspectral image classification.

  19. Hyperspectral and multispectral imaging for evaluating food safety and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spectral imaging technologies have been developed rapidly during the past decade. This paper presents hyperspectral and multispectral imaging technologies in the area of food safety and quality evaluation, with an introduction, demonstration, and summarization of the spectral imaging techniques avai...

  20. High spectral resolution airborne short wave infrared hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Wei, Liqing; Yuan, Liyin; Wang, Yueming; Zhuang, Xiaoqiong

    2016-05-01

    Short Wave InfraRed(SWIR) spectral imager is good at detecting difference between materials and penetrating fog and mist. High spectral resolution SWIR hyperspectral imager plays a key role in developing earth observing technology. Hyperspectral data cube can help band selections that is very important for multispectral imager design. Up to now, the spectral resolution of many SWIR hyperspectral imagers is about 10nm. A high sensitivity airborne SWIR hyperspectral imager with narrower spectral band will be presented. The system consists of TMA telescope, slit, spectrometer with planar blazed grating and high sensitivity MCT FPA. The spectral sampling interval is about 3nm. The IFOV is 0.5mrad. To eliminate the influence of the thermal background, a cold shield is designed in the dewar. The pixel number of spatial dimension is 640. Performance measurement in laboratory and image analysis for flight test will also be presented.

  1. Titanbrowse: Using a new Paradigm for Access to Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Penteado, P.; Trilling, D.

    2015-06-01

    Hyperspectral planetary data demand more elaborate tools than those usually available, to evaluate complex functions of geometrical and spectral data, with integrated visualization. We present one such database, exploration and visualization system.

  2. System and method for progressive band selection for hyperspectral images

    NASA Technical Reports Server (NTRS)

    Fisher, Kevin (Inventor)

    2013-01-01

    Disclosed herein are systems, methods, and non-transitory computer-readable storage media for progressive band selection for hyperspectral images. A system having module configured to control a processor to practice the method calculates a virtual dimensionality of a hyperspectral image having multiple bands to determine a quantity Q of how many bands are needed for a threshold level of information, ranks each band based on a statistical measure, selects Q bands from the multiple bands to generate a subset of bands based on the virtual dimensionality, and generates a reduced image based on the subset of bands. This approach can create reduced datasets of full hyperspectral images tailored for individual applications. The system uses a metric specific to a target application to rank the image bands, and then selects the most useful bands. The number of bands selected can be specified manually or calculated from the hyperspectral image's virtual dimensionality.

  3. Characterization of burns using hyperspectral imaging technique - a preliminary study.

    PubMed

    Calin, Mihaela Antonina; Parasca, Sorin Viorel; Savastru, Roxana; Manea, Dragos

    2015-02-01

    Surgical burn treatment depends on accurate estimation of burn depth. Many methods have been used to asses burns, but none has gained wide acceptance. Hyperspectral imaging technique has recently entered the medical research field with encouraging results. In this paper we present a preliminary study (case presentation) that aims to point out the value of this optical method in burn wound characterization and to set up future lines of investigation. A hyperspectral image of a leg and foot with partial thickness burns was obtained in the fifth postburn day. The image was analyzed using linear spectral unmixing model as a tool for mapping the investigated areas. The article gives details on the mathematical bases of the interpretation model and correlations with clinical examination pointing out the advantages of hyperspectral imaging technique. While the results were encouraging, further more extended and better founded studies are being prepared before recognizing hyperspectral imaging technique as an applicable method of burn wound assessment. PMID:24997530

  4. Physical Retrieval of Surface Emissivity Spectrum from Hyperspectral Infrared Radiances

    NASA Technical Reports Server (NTRS)

    Li, Jun; Weisz, Elisabeth; Zhou, Daniel K.

    2007-01-01

    Retrieval of temperature, moisture profiles and surface skin temperature from hyperspectral infrared (IR) radiances requires spectral information about the surface emissivity. Using constant or inaccurate surface emissivities typically results in large retrieval errors, particularly over semi-arid or arid areas where the variation in emissivity spectrum is large both spectrally and spatially. In this study, a physically based algorithm has been developed to retrieve a hyperspectral IR emissivity spectrum simultaneously with the temperature and moisture profiles, as well as the surface skin temperature. To make the solution stable and efficient, the hyperspectral emissivity spectrum is represented by eigenvectors, derived from the laboratory measured hyperspectral emissivity database, in the retrieval process. Experience with AIRS (Atmospheric InfraRed Sounder) radiances shows that a simultaneous retrieval of the emissivity spectrum and the sounding improves the surface skin temperature as well as temperature and moisture profiles, particularly in the near surface layer.

  5. Black Beauty's Rainbow: Hyperspectral Imaging of Northwest Africa 7034

    NASA Astrophysics Data System (ADS)

    Cannon, K. M.; Mustard, J. F.; Agee, C. B.; Wilson, J. H.; Greenberger, R. N.

    2014-07-01

    Hyperspectral imaging is used to characterize the first basaltic breccia from Mars, Northwest Africa 7034. Initial results show the spectral character of NWA 7034 is unlike other SNC meteorites and may be more representative of average martian crust.

  6. Hyperspectral stimulated emission depletion microscopy and methods of use thereof

    SciTech Connect

    Timlin, Jerilyn A; Aaron, Jesse S

    2014-04-01

    A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").

  7. FAPEC-based lossless and lossy hyperspectral data compression

    NASA Astrophysics Data System (ADS)

    Portell, Jordi; Artigues, Gabriel; Iudica, Riccardo; García-Berro, Enrique

    2015-10-01

    Data compression is essential for remote sensing based on hyperspectral sensors owing to the increasing amount of data generated by modern instrumentation. CCSDS issued the 123.0 standard for lossless hyperspectral compression, and a new lossy hyperspectral compression recommendation is being prepared. We have developed multispectral and hyperspectral pre-processing stages for FAPEC, a data compression algorithm based on an entropy coder. We can select a prediction-based lossless stage that offers excellent results and speed. Alternatively, a DWT-based lossless and lossy stage can be selected, which offers excellent results yet obviously requiring more compression time. Finally, a lossless stage based on our HPA algorithm can also be selected, only lossless for now but with the lossy option in preparation. Here we present the overall design of these data compression systems and the results obtained on a variety of real data, including ratios, speed and quality.

  8. Dental caries imaging using hyperspectral stimulated Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Zi; Zheng, Wei; Jian, Lin; Huang, Zhiwei

    2016-03-01

    We report the development of a polarization-resolved hyperspectral stimulated Raman scattering (SRS) imaging technique based on a picosecond (ps) laser-pumped optical parametric oscillator system for label-free imaging of dental caries. In our imaging system, hyperspectral SRS images (512×512 pixels) in both fingerprint region (800-1800 cm-1) and high-wavenumber region (2800-3600 cm-1) are acquired in minutes by scanning the wavelength of OPO output, which is a thousand times faster than conventional confocal micro Raman imaging. SRS spectra variations from normal enamel to caries obtained from the hyperspectral SRS images show the loss of phosphate and carbonate in the carious region. While polarization-resolved SRS images at 959 cm-1 demonstrate that the caries has higher depolarization ratio. Our results demonstrate that the polarization resolved-hyperspectral SRS imaging technique developed allows for rapid identification of the biochemical and structural changes of dental caries.

  9. Hyperspectral characterization of fluorophore diffusion in human skin using a sCMOS based hyperspectral camera

    NASA Astrophysics Data System (ADS)

    Hernandez-Palacios, J.; Haug, I. J.; Grimstad, Ø.; Randeberg, L. L.

    2011-07-01

    Hyperspectral fluorescence imaging is a modality combining high spatial and spectral resolution with increased sensitivity for low photon counts. The main objective of the current study was to investigate if this technique is a suitable tool for characterization of diffusion properties in human skin. This was done by imaging fluorescence from Alexa 488 in ex vivo human skin samples using an sCMOS based hyperspectral camera. Pre-treatment with acetone, DMSO and mechanical micro-needling of the stratum corneum created variation in epidermal permeability between the measured samples. Selected samples were also stained using fluorescence labelled biopolymers. The effect of fluorescence enhancers on transdermal diffusion could be documented from the collected data. Acetone was found to have an enhancing effect on the transport, and the results indicate that the biopolymers might have a similar effect, The enhancement from these compounds were not as prominent as the effect of mechanical penetration of the sample using a micro-needling device. Hyperspectral fluorescence imaging has thus been proven to be an interesting tool for characterization of fluorophore diffusion in ex vivo skin samples. Further work will include repetition of the measurements in a shorter time scale and mathematical modeling of the diffusion process to determine the diffusivity in skin for the compounds in question.

  10. Design and Analysis of a Hyperspectral Microwave Receiver Subsystem

    NASA Technical Reports Server (NTRS)

    Blackwell, W.; Galbraith, C.; Hancock, T.; Leslie, R.; Osaretin, I.; Shields, M.; Racette, P.; Hillard, L.

    2012-01-01

    Hyperspectral microwave (HM) sounding has been proposed to achieve unprecedented performance. HM operation is achieved using multiple banks of RF spectrometers with large aggregate bandwidth. A principal challenge is Size/Weight/Power scaling. Objectives of this work: 1) Demonstrate ultra-compact (100 cm3) 52-channel IF processor (enabler); 2) Demonstrate a hyperspectral microwave receiver subsystem; and 3) Deliver a flight-ready system to validate HM sounding.

  11. An evaluation of popular hyperspectral images classification approaches

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey; Myasnikov, Vladislav

    2015-12-01

    This work is devoted to the problem of the best hyperspectral images classification algorithm selection. The following algorithms are used for comparison: decision tree using full cross-validation; decision tree C 4.5; Bayesian classifier; maximum-likelihood method; MSE minimization classifier, including a special case - classification by conjugation; spectral angle classifier (for empirical mean and nearest neighbor), spectral mismatch classifier and support vector machine (SVM). There are used AVIRIS and SpecTIR hyperspectral images to conduct experiments.

  12. UAV-based hyperspectral monitoring of small freshwater area

    NASA Astrophysics Data System (ADS)

    Pölönen, I.; Puupponen, H.-H.; Honkavaara, Eija; Lindfors, A.; Saari, H.; Markelin, L.; Hakala, T.; Nurminen, K.

    2014-10-01

    Recent development in compact, lightweight hyperspectral imagers have enabled UAV-based remote sensing with reasonable costs. We used small hyperspectral imager based on Fabry-Perot interferometer for monitoring small freshwater area in southern Finland. In this study we shortly describe the utilized technology and the field studies performed. We explain processing pipeline for gathered spectral data and introduce target detection-based algorithm for estimating levels of algae, aquatic chlorophyll and turbidity in freshwater. Certain challenges we faced are pointed out.

  13. Hyperspectral Image Classification using a Self-Organizing Map

    NASA Technical Reports Server (NTRS)

    Martinez, P.; Gualtieri, J. A.; Aguilar, P. L.; Perez, R. M.; Linaje, M.; Preciado, J. C.; Plaza, A.

    2001-01-01

    The use of hyperspectral data to determine the abundance of constituents in a certain portion of the Earth's surface relies on the capability of imaging spectrometers to provide a large amount of information at each pixel of a certain scene. Today, hyperspectral imaging sensors are capable of generating unprecedented volumes of radiometric data. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), for example, routinely produces image cubes with 224 spectral bands. This undoubtedly opens a wide range of new possibilities, but the analysis of such a massive amount of information is not an easy task. In fact, most of the existing algorithms devoted to analyzing multispectral images are not applicable in the hyperspectral domain, because of the size and high dimensionality of the images. The application of neural networks to perform unsupervised classification of hyperspectral data has been tested by several authors and also by us in some previous work. We have also focused on analyzing the intrinsic capability of neural networks to parallelize the whole hyperspectral unmixing process. The results shown in this work indicate that neural network models are able to find clusters of closely related hyperspectral signatures, and thus can be used as a powerful tool to achieve the desired classification. The present work discusses the possibility of using a Self Organizing neural network to perform unsupervised classification of hyperspectral images. In sections 3 and 4, the topology of the proposed neural network and the training algorithm are respectively described. Section 5 provides the results we have obtained after applying the proposed methodology to real hyperspectral data, described in section 2. Different parameters in the learning stage have been modified in order to obtain a detailed description of their influence on the final results. Finally, in section 6 we provide the conclusions at which we have arrived.

  14. Hyperspectral sounding: a revolutionary advance in atmospheric remote sensing

    NASA Astrophysics Data System (ADS)

    Smith, W. L., Sr.; Revercomb, Henry E.; Zhou, Daniel K.; Huang, Hung-Lung A.

    2005-01-01

    Hyperspectral remote sounding was introduced with the High spectral resolution Interferometer Sounder (HIS) that flew on the NASA ER-2 aircraft in the mid-1980s. The results from the HIS demonstrated that high vertical resolution sounding information could be achieved using quasi-continuous spectra of the atmosphere"s radiance to space. This has led to a series of research and operational satellite instruments designed to exploit the hyperspectral resolution sounding approach. The experimental versions, the ADEOS IMG (Interferometer for the Measurement of trace Gases) and the Aqua AIRS (Atmospheric InfraRed Sounder) have already been orbited. The IASI (Infrared Atmospheric Sounding Interferometer) and the CrIS (Cross-track Infrared Sounder) instruments are soon to be orbited on the METOP and the NPP/NPOESS operational series of polar orbiting satellites, respectively. Geostationary satellite hyperspectral resolution sounding instrumentation was initiated with the experimental GIFTS (Geostationary Imaging Fourier Transform Spectrometer) instrument whose development is providing risk reduction for the next generation of operational geostationary satellite instruments (e.g., the GOES-R Hyperspectral Environmental Suite, HES). This presentation traces the evolution of the hyperspectral resolution sounding program. Intercomparisons of the different satellite instrument approaches are discussed. Experimental results from the current aircraft and experimental satellite systems are presented to demonstrate the power of the hyperspectral resolution sounding technique.

  15. Development of practical thermal infrared hyperspectral imaging system

    NASA Astrophysics Data System (ADS)

    Wang, Jianyu; Li, Chunlai; Lv, Gang; Yuan, Liyin; Liu, Enguang; Jin, Jian; Ji, Hongzhen

    2014-11-01

    As an optical remote sensing equipment, the thermal infrared hyperspectral imager operates in the thermal infrared spectral band and acquires about 180 wavebands in range of 8.0~12.5μm. The field of view of this imager is 13° and the spatial resolution is better than 1mrad. Its noise equivalent temperature difference (NETD) is less than 0.2K@300K(average). 1 The influence of background radiation of the thermal infrared hyperspectral imager,and a simulation model of simplified background radiation is builded. 2 The design and implementationof the Cryogenic Optics. 3 Thermal infrared focal plane array (FPA) and special dewar component for the thermal infrared hyperspectral imager. 4 Parts of test results of the thermal infrared hyperspectral imager.The hyperspectral imaging system is China's first success in developing this type of instrument, whose flight validation experiments have already been embarked on. The thermal infrared hyperspectral data acquired will play an important role in fields such as geological exploration and air pollutant identification.

  16. Random projection and SVD methods in hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Jiani

    Hyperspectral imaging provides researchers with abundant information with which to study the characteristics of objects in a scene. Processing the massive hyperspectral imagery datasets in a way that efficiently provides useful information becomes an important issue. In this thesis, we consider methods which reduce the dimension of hyperspectral data while retaining as much useful information as possible. Traditional deterministic methods for low-rank approximation are not always adaptable to process huge datasets in an effective way, and therefore probabilistic methods are useful in dimension reduction of hyperspectral images. In this thesis, we begin by generally introducing the background and motivations of this work. Next, we summarize the preliminary knowledge and the applications of SVD and PCA. After these descriptions, we present a probabilistic method, randomized Singular Value Decomposition (rSVD), for the purposes of dimension reduction, compression, reconstruction, and classification of hyperspectral data. We discuss some variations of this method. These variations offer the opportunity to obtain a more accurate reconstruction of the matrix whose singular values decay gradually, to process matrices without target rank, and to obtain the rSVD with only one single pass over the original data. Moreover, we compare the method with Compressive-Projection Principle Component Analysis (CPPCA). From the numerical results, we can see that rSVD has better performance in compression and reconstruction than truncated SVD and CPPCA. We also apply rSVD to classification methods for the hyperspectral data provided by the National Geospatial-Intelligence Agency (NGA).

  17. Hyperspectral imaging for safety inspection of food and agricultural products

    NASA Astrophysics Data System (ADS)

    Lu, Renfu; Chen, Yud-Ren

    1999-01-01

    Development of effective food inspection systems is critical in successful implementation of the hazard analysis and critical control points (HACCP) program. Hyperspectral imaging or imaging spectroscopy, which combines techniques of imaging and spectroscopy to acquire spatial and spectral information simultaneously, has great potential in food quality and safety inspection. This paper reviewed the basic principle and features of hyperspectral imaging and its hardware and software implementation. The potential areas of application for hyperspectral imaging in food quality and safety inspection were identified and its limitations were discussed. A hyperspectral imaging system developed for research in food quality and safety inspection was described. Experiments were performed to acquire hyperspectral images from four classes of poultry carcasses: normal, cadaver, septicemia, and tumor. Noticeable differences in the spectra of the relative reflectance and its second difference in the wavelengths between 430 nm and 900 nm were observed between wholesome and unwholesome carcasses. Differences among the three classes of unwholesome carcasses were also observed from their respective spectra. These results showed that hyperspectral imaging can be an effective tool for safety inspection of poultry carcasses.

  18. Autonomous, rapid classifiers for hyperspectral imagers

    NASA Astrophysics Data System (ADS)

    Gilmore, M. S.; Bornstein, B.; Castano, R.; Greenwood, J.

    2006-05-01

    Hyperspectral systems collect huge volumes of multidimensional data that require time consuming, expert analysis. The data analysis costs of global datasets restrict rapid classification to only a subset of an entire mission dataset, reducing mission science return. Data downlink restrictions from planetary missions also highlight the need for robust mineral detection algorithms. For example, both OMEGA and CRISM will map only approximately 5% of the Mars surface at full spatial and spectral resolution. While some targets are preselected for full resolution study, other high priority targets on Mars will be selected in response to observations made by the instruments in a multispectral survey mode. The challenge is to create mineral detection algorithms that can be utilized to analyze any and all image cubes (x, y, λ) for a selected system to help ensure that priority targets are not overlooked in these datasets. This goal is critical both for onboard, real time processing to direct target acquisition and for the mining of returned data. While an ultimate goal would be to accurately classify the composition of every pixel on a planet's surface, this is made difficult by the fact that most pixels are complex mixtures of n materials, which may or may not be represented in library (training) data. We instead focus on the identification of specific important mineral compositions within pixels in the data. For Mars, high priority targets include minerals associated with the presence of water. We have developed highly accurate artificial neural network (ANN) and Support Vector Machine (SVM) based detectors capable of identifying calcite (CaCO3) and jarosite (KFe3(SO4)2(OH)6) in the visible/NIR (350 to 2500 nm) spectra of both laboratory specimens and rocks in Mars analogue field environments. The detectors are trained using a generative model to create 1000s of linear mixtures of library end-member spectra in geologically realistic percentages. Here we will discuss

  19. A hyperspectral imaging prototype for online quality evaluation of pickling cucumbers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A hyperspectral imaging prototype was developed for online evaluation of external and internal quality of pickling cucumbers. The prototype had several new, unique features including simultaneous reflectance and transmittance imaging and inline, real time calibration of hyperspectral images of each ...

  20. [Advances in researches on hyperspectral remote sensing forestry information-extracting technology].

    PubMed

    Wu, Jian; Peng, Dao-Li

    2011-09-01

    The hyperspectral remote sensing technology has become one of the leading technologies in forestry remote sensing domain. In the present review paper, the advances in researches on hyperspectral remote sensing technology in forestry information extraction both at home and abroad were reviewed, and the five main research aspects including the hyperspectral classification and recognition of forest tree species, the hyperspectral inversion and extraction of forest ecological physical parameters, the hyperspectral monitoring and diagnosis of forest nutrient element, the forest crown density information extraction and the hyperspectral monitoring of forest disasters were summarized. The unresolved problems of hyperspectral technology in the forestry remote sensing applications were pointed out and the possible ways to solve these problems were expounded. Finally, the application prospect of hyperspectral remote sensing technology in forestry was analyzed. PMID:22097816

  1. Satellite Remote Sensing Hyperspectral Data Simulator

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhou, D. K.; Larar, A.; Li, H.; Wu, W.; Kizer, S.; Huang, X.

    2013-12-01

    Hyperspectral data from satellite remote sensors provide abundant information on atmospheric temperature, water, trace gases, clouds, and surface. Fast and accurate radiative transfer models are needed to perform and link GCM Observing System Simulation Experiment (OSSE) with remote sensing data. We have developed a Principal Component-based Radiative Transfer Model, which is capable of simulating Top of Atmosphere (TOA) radiance (or reflectance) from far-IR to UV-VIS spectral region. It is 3-4 orders of magnitude faster than line-by-line radiative transfer models. For example, it takes about 10 miliseconds to simulate one IASI spectrum with 8461 spectral channels in IR spectral region. It is about 900 times faster than MODTRAN fast model to simulate SCHIAMACHY data in solar spectral region. It has been validated using real satellite data such as AIRS, IASI, CrIS, and SCHIAMACHY satellite data and it can be easily applied to other satellite data.

  2. Metric Learning for Hyperspectral Image Segmentation

    NASA Technical Reports Server (NTRS)

    Bue, Brian D.; Thompson, David R.; Gilmore, Martha S.; Castano, Rebecca

    2011-01-01

    We present a metric learning approach to improve the performance of unsupervised hyperspectral image segmentation. Unsupervised spatial segmentation can assist both user visualization and automatic recognition of surface features. Analysts can use spatially-continuous segments to decrease noise levels and/or localize feature boundaries. However, existing segmentation methods use tasks-agnostic measures of similarity. Here we learn task-specific similarity measures from training data, improving segment fidelity to classes of interest. Multiclass Linear Discriminate Analysis produces a linear transform that optimally separates a labeled set of training classes. The defines a distance metric that generalized to a new scenes, enabling graph-based segmentation that emphasizes key spectral features. We describe tests based on data from the Compact Reconnaissance Imaging Spectrometer (CRISM) in which learned metrics improve segment homogeneity with respect to mineralogical classes.

  3. Does virtual dimensionality work in hyperspectral images?

    NASA Astrophysics Data System (ADS)

    Bajorski, Peter

    2009-05-01

    The effective dimensionality (ED) of hyperspectral images is often viewed as the dimensionality of an affine subspace defined by linear combinations of spectra of materials present in the image. That affine subspace is expected to give an acceptable approximation to all pixels. At this point, there is no precise definition of ED. In an effort to assess ED, a notion of virtual dimensionality (VD) has been developed, and it is being used in many papers including those published in TGARS. The ever- spreading use of VD warrants its thorough investigation. In this paper, we investigate properties of VD, and we show that VD largely depends on the average value of all spectra rather than on ED. We show specific examples when VD would give entirely misleading results. We also explain fallacies associated with justifications for VD.

  4. Hyper-spectral Atmospheric Sounding. Appendixes 1

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Zhou, D. K.; Revercomb, H. E.; Huang, H. L.; Antonelli, P.; Mango, S. A.

    2002-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) is the first hyper-spectral remote sounding system to be orbited aboard a geosynchronous satellite. The GETS is designed to obtain revolutionary observations of the four dimensional atmospheric temperature, moisture, and wind structure as well as the distribution of the atmospheric trace gases, CO and O3. Although GIFTS will not be orbited until 2006-2008, a glimpse at the its measurement capabilities has been obtained by analyzing data from the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Test-bed-Interferometer (NAST-I) and Aqua satellite Atmospheric Infrared Sounder (AIRS). In this paper we review the GIFTS experiment and empirically assess measurement expectations based on meteorological profiles retrieved from the NAST aircraft and Aqua satellite AIRS spectral radiances.

  5. Hyperspectral processing in graphical processing units

    NASA Astrophysics Data System (ADS)

    Winter, Michael E.; Winter, Edwin M.

    2011-06-01

    With the advent of the commercial 3D video card in the mid 1990s, we have seen an order of magnitude performance increase with each generation of new video cards. While these cards were designed primarily for visualization and video games, it became apparent after a short while that they could be used for scientific purposes. These Graphical Processing Units (GPUs) are rapidly being incorporated into data processing tasks usually reserved for general purpose computers. It has been found that many image processing problems scale well to modern GPU systems. We have implemented four popular hyperspectral processing algorithms (N-FINDR, linear unmixing, Principal Components, and the RX anomaly detection algorithm). These algorithms show an across the board speedup of at least a factor of 10, with some special cases showing extreme speedups of a hundred times or more.

  6. Optical design of wide swath hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Wang, Yueming; Yuan, Liyin; Wang, Jianyu

    2014-05-01

    This paper describes a design concept for wide swath hyperspectral imager. The challenge is to meet the requirement of good image quality and high precision registration from 400nm to 2500nm. A new type spherical prism imaging spectrometer is presented in the paper. The swath of system can reach 60 kilometer from a 600km sun-synchronous orbit with 30 meter ground sample distance (GSD). The optical system consists of a TMA objective and 2 30mm-slit spherical prism spectrometer operating both VNIR and SWIR. Key features of the design include (1) high signal to noise ratio for high efficiency of F-silica prism; (2) high precision band registration for same spectrometer operating from 400nm to 2500nm.

  7. Hyperspectral air-to-air seeker

    NASA Astrophysics Data System (ADS)

    Gat, Nahum; Barhen, Jacob; Gulati, Sandeep; Steiner, Todd D.

    1994-07-01

    Synthetic hyperspectral signatures representing an airborne target engine radiation, a decoy flare, and the engine plume radiation are used to demonstrate computational techniques for the discrimination between such objects. Excellent discrimination is achieved for a `single look' at SNR of -10 dB. Since the atmospheric transmittance perturbs the signature of all objects in an identical fashion, the transmittance is equivalent to a modulation of the target radiance (in the spectral domain). The proper spectral signal decomposition may, therefore, recover the original unperturbed signature accurately enough to allow discrimination. The algorithms described here, and in two accompanying papers, have been tested over the spectral range that includes the VNIR and MWIR and are most appropriate for an intelligent, autonomous, air-to-air or surface-to-air guided munitions. With additional enhancements, the techniques apply to ground targets and other dual-use applications.

  8. Hyperspectral image reconstruction for diffuse optical tomography

    PubMed Central

    Larusson, Fridrik; Fantini, Sergio; Miller, Eric L.

    2011-01-01

    We explore the development and performance of algorithms for hyperspectral diffuse optical tomography (DOT) for which data from hundreds of wavelengths are collected and used to determine the concentration distribution of chromophores in the medium under investigation. An efficient method is detailed for forming the images using iterative algorithms applied to a linearized Born approximation model assuming the scattering coefficient is spatially constant and known. The L-surface framework is employed to select optimal regularization parameters for the inverse problem. We report image reconstructions using 126 wavelengths with estimation error in simulations as low as 0.05 and mean square error of experimental data of 0.18 and 0.29 for ink and dye concentrations, respectively, an improvement over reconstructions using fewer specifically chosen wavelengths. PMID:21483616

  9. Space View Issues for Hyperspectral Sounders

    NASA Technical Reports Server (NTRS)

    Manning, Evan M.; Aumann, Hartmut H.; Broberg, Steven E.

    2013-01-01

    The expectation for climate quality measurements from hyperspectral sounders is absolute calibration accuracy at the 100 mK level and stability at the < 40 mK/decade level. The Atmospheric InfraRed Sounder (AIRS)1, Cross-track Infrared Sounder (CrIS), and Infrared Atmospheric Sounding Interferometer (IASI) hyperspectral sounders currently in orbit have been shown to agree well over most of their brightness temperature range. Some larger discrepancies are seen, however, at the coldest scene temperatures, such as those seen in Antarctic winter and deep convective clouds. A key limiting factor for the calibrated scene radiance accuracy for cold scenes is how well the effective radiance of the cold space view pertains to the scene views. The space view signal is composed of external sources and instrument thermal emission at about 270 K from the scan mirror, external baffles, etc. Any difference in any of these contributions between space views and scene views will impact the absolute calibration accuracy, and the impact can be critical for cold scenes. Any change over time in these will show up as an apparent trend in calibrated radiances. We use AIRS data to investigate the validity of the space view assumption in view of the 100 mK accuracy and 40 mK/decade trend expectations. We show that the space views used for the cold calibration point for AIRS v5 Level-1B products meet these standards except under special circumstances and that AIRS v6 Level-1B products will meet them under all circumstances. This analysis also shows the value of having multiple distinct space views to give operational redundancy and analytic data, and that reaching climate quality requires continuing monitoring of aging instruments and adjustment of calibration.

  10. Radiometric consistency assessment of hyperspectral infrared sounders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.

    2015-07-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark datasets for both inter-calibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and -B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through one year of simultaneous nadir overpass (SNO) observations to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the longwave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both Polar and Tropical SNOs. The combined global SNO datasets indicate that, the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 comparison spectral regions and they range from 0.15 to 0.21 K in the remaining 4 spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.

  11. Radiometric consistency assessment of hyperspectral infrared sounders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.

    2015-11-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark data sets for both intercalibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and MetOp-B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through simultaneous nadir overpass (SNO) observations in 2013, to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the long-wave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both polar and tropical SNOs. The combined global SNO data sets indicate that the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 spectral regions and they range from 0.15 to 0.21 K in the remaining four spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.

  12. Compressive Hyperspectral Imaging via Approximate Message Passing

    NASA Astrophysics Data System (ADS)

    Tan, Jin; Ma, Yanting; Rueda, Hoover; Baron, Dror; Arce, Gonzalo R.

    2016-03-01

    We consider a compressive hyperspectral imaging reconstruction problem, where three-dimensional spatio-spectral information about a scene is sensed by a coded aperture snapshot spectral imager (CASSI). The CASSI imaging process can be modeled as suppressing three-dimensional coded and shifted voxels and projecting these onto a two-dimensional plane, such that the number of acquired measurements is greatly reduced. On the other hand, because the measurements are highly compressive, the reconstruction process becomes challenging. We previously proposed a compressive imaging reconstruction algorithm that is applied to two-dimensional images based on the approximate message passing (AMP) framework. AMP is an iterative algorithm that can be used in signal and image reconstruction by performing denoising at each iteration. We employed an adaptive Wiener filter as the image denoiser, and called our algorithm "AMP-Wiener." In this paper, we extend AMP-Wiener to three-dimensional hyperspectral image reconstruction, and call it "AMP-3D-Wiener." Applying the AMP framework to the CASSI system is challenging, because the matrix that models the CASSI system is highly sparse, and such a matrix is not suitable to AMP and makes it difficult for AMP to converge. Therefore, we modify the adaptive Wiener filter and employ a technique called damping to solve for the divergence issue of AMP. Our approach is applied in nature, and the numerical experiments show that AMP-3D-Wiener outperforms existing widely-used algorithms such as gradient projection for sparse reconstruction (GPSR) and two-step iterative shrinkage/thresholding (TwIST) given a similar amount of runtime. Moreover, in contrast to GPSR and TwIST, AMP-3D-Wiener need not tune any parameters, which simplifies the reconstruction process.

  13. Food quality assessment by NIR hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Whitworth, Martin B.; Millar, Samuel J.; Chau, Astor

    2010-04-01

    Near infrared reflectance (NIR) spectroscopy is well established in the food industry for rapid compositional analysis of bulk samples. NIR hyperspectral imaging provides new opportunities to measure the spatial distribution of components such as moisture and fat, and to identify and measure specific regions of composite samples. An NIR hyperspectral imaging system has been constructed for food research applications, incorporating a SWIR camera with a cooled 14 bit HgCdTe detector and N25E spectrograph (Specim Ltd, Finland). Samples are scanned in a pushbroom mode using a motorised stage. The system has a spectral resolution of 256 pixels covering a range of 970-2500 nm and a spatial resolution of 320 pixels covering a swathe adjustable from 8 to 300 mm. Images are acquired at a rate of up to 100 lines s-1, enabling samples to be scanned within a few seconds. Data are captured using SpectralCube software (Specim) and analysed using ENVI and IDL (ITT Visual Information Solutions). Several food applications are presented. The strength of individual absorbance bands enables the distribution of particular components to be assessed. Examples are shown for detection of added gluten in wheat flour and to study the effect of processing conditions on fat distribution in chips/French fries. More detailed quantitative calibrations have been developed to study evolution of the moisture distribution in baguettes during storage at different humidities, to assess freshness of fish using measurements of whole cod and fillets, and for prediction of beef quality by identification and separate measurement of lean and fat regions.

  14. Experience in the use of hyperspectral data for the detection of vegetation containing narcotic substances

    NASA Astrophysics Data System (ADS)

    Sedelnikov, V. P.; Lukashevich, E. L.; Karpukhina, O. A.

    2014-12-01

    This paper provides the characteristics of an experimental sample of a hyperspectral videospectrometer Sokol-SCP and presents examples of the hyperspectral data received as a result of flight tests. The results of the detection of vegetation containing narcotic substances by spectral attributes using the obtained hyperspectral information are considered. The opportunity for using the hyperspectral data for detection of cannabis and papaver sites, including those in mixed crops with masking vegetation, is confirmed.

  15. Spatial versus spectral compression ratio in compressive sensing of hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    August, Yitzhak; Vachman, Chaim; Stern, Adrian

    2013-05-01

    Compressive hyperspectral imaging is based on the fact that hyperspectral data is highly redundant. However, there is no symmetry between the compressibility of the spatial and spectral domains, and that should be taken into account for optimal compressive hyperspectral imaging system design. Here we present a study of the influence of the ratio between the compression in the spatial and spectral domains on the performance of a 3D separable compressive hyperspectral imaging method we recently developed.

  16. Atmospheric correction of hyperspectral images based on approximate solution of transmittance equation

    NASA Astrophysics Data System (ADS)

    Belov, A. M.; Myasnikov, V. V.

    2015-02-01

    The paper presents a method of atmospheric correction of remote sensing hyperspectral images. The method based on approximate solution of MODTRAN transmittance equation using simultaneous analysis of remote sensing hyperspectral image and "ideal" hyperspectral image which is free from atmospheric distortions. Experimental results show that proposed method is applicable to perform atmospheric correction.

  17. Hyperspectral and Multispectral Imaging Technique for Food Quality and Safety Evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this chapter, recently developed ARS line-scan hyperspectral-based sensing technologies to address agro-food safety concerns are presented including a case study using the laboratory-based hyperspectral imaging platforms. An online line-scan imaging system capable of both hyperspectral and multi...

  18. Analysis of hyperspectral scattering images using a moment method for apple firmness prediction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article reports on using a moment method to extract features from the hyperspectral scattering profiles for apple fruit firmness prediction. Hyperspectral scattering images between 500 nm and 1000 nm were acquired online, using a hyperspectral scattering system, for ‘Golden Delicious’, ’Jonagol...

  19. Hyperspectral image reconstruction using RGB color for foodborne pathogen detection on agar plates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reports the latest development of a color vision technique for detecting colonies of foodborne pathogens grown on agar plates with a hyperspectral image classification model that was developed using full hyperspectral data. The hyperspectral classification model depended on reflectance sp...

  20. Detection of cracks on tomatoes using hyperspectral near-infrared reflectance imaging system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate the use of hyperspectral near-infrared (NIR) reflectance imaging techniques for detection of cuticle cracks on tomatoes. A hyperspectral near-infrared reflectance imaging system in the region of 1000-1700 nm was used to obtain hyperspectral reflectance ima...

  1. Target detection algorithm for airborne thermal hyperspectral data

    NASA Astrophysics Data System (ADS)

    Marwaha, R.; Kumar, A.; Raju, P. L. N.; Krishna Murthy, Y. V. N.

    2014-11-01

    Airborne hyperspectral imaging is constantly being used for classification purpose. But airborne thermal hyperspectral image usually is a challenge for conventional classification approaches. The Telops Hyper-Cam sensor is an interferometer-based imaging system that helps in the spatial and spectral analysis of targets utilizing a single sensor. It is based on the technology of Fourier-transform which yields high spectral resolution and enables high accuracy radiometric calibration. The Hypercam instrument has 84 spectral bands in the 868 cm-1 to 1280 cm-1 region (7.8 μm to 11.5 μm), at a spectral resolution of 6 cm-1 (full-width-half-maximum) for LWIR (long wave infrared) range. Due to the Hughes effect, only a few classifiers are able to handle high dimensional classification task. MNF (Minimum Noise Fraction) rotation is a data dimensionality reducing approach to segregate noise in the data. In this, the component selection of minimum noise fraction (MNF) rotation transformation was analyzed in terms of classification accuracy using constrained energy minimization (CEM) algorithm as a classifier for Airborne thermal hyperspectral image and for the combination of airborne LWIR hyperspectral image and color digital photograph. On comparing the accuracy of all the classified images for airborne LWIR hyperspectral image and combination of Airborne LWIR hyperspectral image with colored digital photograph, it was found that accuracy was highest for MNF component equal to twenty. The accuracy increased by using the combination of airborne LWIR hyperspectral image with colored digital photograph instead of using LWIR data alone.

  2. Meat quality evaluation by hyperspectral imaging technique: an overview.

    PubMed

    Elmasry, Gamal; Barbin, Douglas F; Sun, Da-Wen; Allen, Paul

    2012-01-01

    During the last two decades, a number of methods have been developed to objectively measure meat quality attributes. Hyperspectral imaging technique as one of these methods has been regarded as a smart and promising analytical tool for analyses conducted in research and industries. Recently there has been a renewed interest in using hyperspectral imaging in quality evaluation of different food products. The main inducement for developing the hyperspectral imaging system is to integrate both spectroscopy and imaging techniques in one system to make direct identification of different components and their spatial distribution in the tested product. By combining spatial and spectral details together, hyperspectral imaging has proved to be a promising technology for objective meat quality evaluation. The literature presented in this paper clearly reveals that hyperspectral imaging approaches have a huge potential for gaining rapid information about the chemical structure and related physical properties of all types of meat. In addition to its ability for effectively quantifying and characterizing quality attributes of some important visual features of meat such as color, quality grade, marbling, maturity, and texture, it is able to measure multiple chemical constituents simultaneously without monotonous sample preparation. Although this technology has not yet been sufficiently exploited in meat process and quality assessment, its potential is promising. Developing a quality evaluation system based on hyperspectral imaging technology to assess the meat quality parameters and to ensure its authentication would bring economical benefits to the meat industry by increasing consumer confidence in the quality of the meat products. This paper provides a detailed overview of the recently developed approaches and latest research efforts exerted in hyperspectral imaging technology developed for evaluating the quality of different meat products and the possibility of its widespread

  3. Measurement of Sun Induced Chlorophyll Fluorescence Using Hyperspectral Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Irteza, S. M.; Nichol, J. E.

    2016-06-01

    Solar Induced Chlorophyll Fluorescence (SIF), can be used as an indicator of stress in vegetation. Several scientific approaches have been made and there is considerable evidence that steady state Chlorophyll fluorescence is an accurate indicator of plant stress hence a reliable tool to monitor vegetation health status. Retrieval of Chlorophyll fluorescence provides an insight into photochemical and carbon sequestration processes within vegetation. Detection of Chlorophyll fluorescence has been well understood in the laboratory and field measurement. Fluorescence retrieval methods were applied in and around the atmospheric absorption bands 02B (Red wavelength) approximately 690 nm and 02A (Far red wavelengths) 740 nm. Hyperion satellite images were acquired for the years 2012 to 2015 in different seasons. Atmospheric corrections were applied using the 6S Model. The Fraunhofer Line Discrimanator (FLD) method was applied for retrieval of SIF from the Hyperion images by measuring the signal around the absorption bands in both vegetated and non vegetated land cover types. Absorption values were extracted in all the selected bands and the fluorescence signal was detected. The relationships between NDVI and Fluorescence derived from the satellite images are investigated to understand vegetation response within the absorption bands.

  4. Use of hyperspectral imagery for material classification in outdoor scenes

    NASA Astrophysics Data System (ADS)

    Kwon, Heesung; Der, Sandor Z.; Nasrabadi, Nasser M.; Moon, Hyeonjoon

    1999-10-01

    We present an efficient segmentation algorithm to discriminate between different materials, such as painted metal, vegetation, and soils, using hyperspectral imagery. Most previously attempted segmentation techniques have used a relatively small number of infrared frequency bands that use thermal emission instead of solar radiation. This motivated the use of hyperspectral (or multispectral) imagery for segmentation purposes taken at the visible and near infrared bands with high spectral dimensionality. We propose a segmentation algorithm that uses either a pattern- matching technique using the selected band regions or a principal component analysis method. Segmentation results are provided using several hyperspectral images. We also present a band-selection process based on either pairwise performance evaluation or a band-thickening method to select the particular band regions that contain important band- value information for segmentation. A hyperspectral data set that contains a number of spectral band-value curves collected from eleven hyperspectral images is used as an evaluation data set for the band-selection process.

  5. Quantum computation in the analysis of hyperspectral data

    NASA Astrophysics Data System (ADS)

    Gomez, Richard B.; Ghoshal, Debabrata; Jayanna, Anil

    2004-08-01

    Recent research on the topic of quantum computation provides us with some quantum algorithms with higher efficiency and speedup compared to their classical counterparts. In this paper, it is our intent to provide the results of our investigation of several applications of such quantum algorithms - especially the Grover's Search algorithm - in the analysis of Hyperspectral Data. We found many parallels with Grover's method in existing data processing work that make use of classical spectral matching algorithms. Our efforts also included the study of several methods dealing with hyperspectral image analysis work where classical computation methods involving large data sets could be replaced with quantum computation methods. The crux of the problem in computation involving a hyperspectral image data cube is to convert the large amount of data in high dimensional space to real information. Currently, using the classical model, different time consuming methods and steps are necessary to analyze these data including: Animation, Minimum Noise Fraction Transform, Pixel Purity Index algorithm, N-dimensional scatter plot, Identification of Endmember spectra - are such steps. If a quantum model of computation involving hyperspectral image data can be developed and formalized - it is highly likely that information retrieval from hyperspectral image data cubes would be a much easier process and the final information content would be much more meaningful and timely. In this case, dimensionality would not be a curse, but a blessing.

  6. a Diversified Deep Belief Network for Hyperspectral Image Classification

    NASA Astrophysics Data System (ADS)

    Zhong, P.; Gong, Z. Q.; Schönlieb, C.

    2016-06-01

    In recent years, researches in remote sensing demonstrated that deep architectures with multiple layers can potentially extract abstract and invariant features for better hyperspectral image classification. Since the usual real-world hyperspectral image classification task cannot provide enough training samples for a supervised deep model, such as convolutional neural networks (CNNs), this work turns to investigate the deep belief networks (DBNs), which allow unsupervised training. The DBN trained over limited training samples usually has many "dead" (never responding) or "potential over-tolerant" (always responding) latent factors (neurons), which decrease the DBN's description ability and thus finally decrease the hyperspectral image classification performance. This work proposes a new diversified DBN through introducing a diversity promoting prior over the latent factors during the DBN pre-training and fine-tuning procedures. The diversity promoting prior in the training procedures will encourage the latent factors to be uncorrelated, such that each latent factor focuses on modelling unique information, and all factors will be summed up to capture a large proportion of information and thus increase description ability and classification performance of the diversified DBNs. The proposed method was evaluated over the well-known real-world hyperspectral image dataset. The experiments demonstrate that the diversified DBNs can obtain much better results than original DBNs and comparable or even better performances compared with other recent hyperspectral image classification methods.

  7. In vivo and in vitro hyperspectral imaging of cervical neoplasia

    NASA Astrophysics Data System (ADS)

    Wang, Chaojian; Zheng, Wenli; Bu, Yanggao; Chang, Shufang; Tong, Qingping; Zhang, Shiwu; Xu, Ronald X.

    2014-02-01

    Cervical cancer is a prevalent disease in many developing countries. Colposcopy is the most common approach for screening cervical intraepithelial neoplasia (CIN). However, its clinical efficacy heavily relies on the examiner's experience. Spectroscopy is a potentially effective method for noninvasive diagnosis of cervical neoplasia. In this paper, we introduce a hyperspectral imaging technique for noninvasive detection and quantitative analysis of cervical neoplasia. A hyperspectral camera is used to collect the reflectance images of the entire cervix under xenon lamp illumination, followed by standard colposcopy examination and cervical tissue biopsy at both normal and abnormal sites in different quadrants. The collected reflectance data are calibrated and the hyperspectral signals are extracted. Further spectral analysis and image processing works are carried out to classify tissue into different types based on the spectral characteristics at different stages of cervical intraepithelial neoplasia. The hyperspectral camera is also coupled with a lab microscope to acquire the hyperspectral transmittance images of the pathological slides. The in vivo and the in vitro imaging results are compared with clinical findings to assess the accuracy and efficacy of the method.

  8. A compressive sensing and unmixing scheme for hyperspectral data processing.

    PubMed

    Li, Chengbo; Sun, Ting; Kelly, Kevin F; Zhang, Yin

    2012-03-01

    Hyperspectral data processing typically demands enormous computational resources in terms of storage, computation, and input/output throughputs, particularly when real-time processing is desired. In this paper, a proof-of-concept study is conducted on compressive sensing (CS) and unmixing for hyperspectral imaging. Specifically, we investigate a low-complexity scheme for hyperspectral data compression and reconstruction. In this scheme, compressed hyperspectral data are acquired directly by a device similar to the single-pixel camera based on the principle of CS. To decode the compressed data, we propose a numerical procedure to compute directly the unmixed abundance fractions of given endmembers, completely bypassing high-complexity tasks involving the hyperspectral data cube itself. The reconstruction model is to minimize the total variation of the abundance fractions subject to a preprocessed fidelity equation with a significantly reduced size and other side constraints. An augmented Lagrangian-type algorithm is developed to solve this model. We conduct extensive numerical experiments to demonstrate the feasibility and efficiency of the proposed approach, using both synthetic data and hardware-measured data. Experimental and computational evidences obtained from this paper indicate that the proposed scheme has a high potential in real-world applications. PMID:21914570

  9. Effect of anomalies on data compression onboard a hyperspectral satellite

    NASA Astrophysics Data System (ADS)

    Qian, Shen-En; Bergeron, Martin; Levesque, Josee; Hollinger, Allan

    2005-08-01

    The Canadian Space Agency (CSA) is developing a pre-operational spaceborne Hyperspectral Environment and Resource Observer (HERO). HERO will be a Canadian optical Earth observation mission that will address the stewardship of natural resources for sustainable development within Canada and globally. To deal with the challenge of extremely high data rate and the huge data volume generated onboard, CSA has developed two near lossless data compression techniques for use onboard a satellite. CSA is planning to place a data compressor onboard HERO using these techniques to reduce the requirement for onboard storage and to better match the available downlink capacity. Anomalies in the raw hyperspectral data can be caused by detector and instrument defects. This work focuses on anomalies that are caused by dead detector elements, frozen detector elements, overresponsive detector elements and saturation. This paper addresses the effect of these anomalies in raw hyperspectral imagery on data compression. The outcome of this work will help to decide whether or not an onboard data preprocessing to remove these anomalies is required before compression. Hyperspectral datacubes acquired using two hyperspectral sensors were tested. Statistical measures were used to evaluate the data compression performance with or without removing the anomalies. The effect of anomalies on compressed data was also evaluated using a remote sensing application.

  10. Geographical classification of apple based on hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Guo, Zhiming; Huang, Wenqian; Chen, Liping; Zhao, Chunjiang; Peng, Yankun

    2013-05-01

    Attribute of apple according to geographical origin is often recognized and appreciated by the consumers. It is usually an important factor to determine the price of a commercial product. Hyperspectral imaging technology and supervised pattern recognition was attempted to discriminate apple according to geographical origins in this work. Hyperspectral images of 207 Fuji apple samples were collected by hyperspectral camera (400-1000nm). Principal component analysis (PCA) was performed on hyperspectral imaging data to determine main efficient wavelength images, and then characteristic variables were extracted by texture analysis based on gray level co-occurrence matrix (GLCM) from dominant waveband image. All characteristic variables were obtained by fusing the data of images in efficient spectra. Support vector machine (SVM) was used to construct the classification model, and showed excellent performance in classification results. The total classification rate had the high classify accuracy of 92.75% in the training set and 89.86% in the prediction sets, respectively. The overall results demonstrated that the hyperspectral imaging technique coupled with SVM classifier can be efficiently utilized to discriminate Fuji apple according to geographical origins.

  11. Improving multispectral mapping by spectral modeling with hyperspectral signatures

    NASA Astrophysics Data System (ADS)

    Kruse, Fred A.; Perry, Sandra L.

    2009-01-01

    Hyperspectral imaging (HSI) data in the 0.4 - 2.5 micrometer spectral range allow direct identification of materials using their spectral signatures, however, spatial coverage is limited. Multispectral Imaging (MSI) data are spectrally undersampled and may not allow unique identification, but they do provide synoptic spatial coverage. We have developed an approach that uses coincident HSI/MSI data to extend mineral mapping to larger areas. Hyperspectral data are used to model and extend signatures to multispectral Advanced Spaceborne Thermal Emmission and Reflection Radiometer (ASTER) data. Analysis consists of 1. Atmospheric correction of both the hyperspectral and multispectral data, 2. Analysis of the hyperspectral data to determine spectral endmembers and their spatial distributions, 3. Spectral modeling to convert the hyperspectral signatures to the multispectral response, and 4. Analysis of the MSI data to extend mapping to the larger spatial coverage of the multispectral data. Comparing overlapping area with extensive field verification shows that ASTER mineral mapping using these methods approaches 70% accuracy compared to HSI for selected minerals. Spot checking of extended ASTER mapping results also shows good correspondence. While examples shown are specific to ASTER Short Wave Infrared (SWIR) data, the approach could also be used for other multispectral sensors and spectral ranges.

  12. Hyperspectral imaging of an inter-coastal waterway

    NASA Astrophysics Data System (ADS)

    Bowles, Jeffrey H.; Maness, Shelia J.; Chen, Wei; Davis, Curtiss O.; Donato, Tim F.; Gillis, David B.; Korwan, Daniel; Lamela, Gia; Montes, Marcos J.; Rhea, W. Joseph; Snyder, William A.

    2005-10-01

    This paper demonstrates the characterization of the water properties, bathymetry, and bottom type of the Indian River Lagoon (IRL) on the eastern coast of Florida using hyperspectral imagery. Images of this region were collected from an aircraft in July 2004 using the Portable Hyperspectral Imager for Low Light Spectroscopy (PHILLS). PHILLS is a Visible Near InfraRed (VNIR) spectrometer that was operated at an altitude of 3000 m providing 4 m resolution with 128 bands from 400 to 1000 nm. The IRL is a well studied water body that receives fresh water drainage from the Florida Everglades and also tidal driven flushing of ocean water through several outlets in the barrier islands. Ground truth measurements of the bathymetry of IRL were acquired from recent sonar and LIDAR bathymetry maps as well as water quality studies concurrent to the hyperspectral data collections. From these measurements, bottom types are known to include sea grass, various algae, and a gray mud with water depths less than 6 m over most of the lagoon. Suspended sediments are significant (~35 mg/m3) with chlorophyll levels less than 10 mg/m3 while the absorption due to Colored Dissolved Organic Matter (CDOM) is less than 1 m-1 at 440 nm. Hyperspectral data were atmospherically corrected using an NRL software package called Tafkaa and then subjected to a Look-Up Table (LUT) approach which matches hyperspectral data to calculated spectra with known values for bathymetry, suspended sediments, chlorophyll, CDOM, and bottom type.

  13. Hyperspectral Fluorescence and Reflectance Imaging Instrument

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; O'Neal, S. Duane; Lanoue, Mark; Russell, Jeffrey

    2008-01-01

    The system is a single hyperspectral imaging instrument that has the unique capability to acquire both fluorescence and reflectance high-spatial-resolution data that is inherently spatially and spectrally registered. Potential uses of this instrument include plant stress monitoring, counterfeit document detection, biomedical imaging, forensic imaging, and general materials identification. Until now, reflectance and fluorescence spectral imaging have been performed by separate instruments. Neither a reflectance spectral image nor a fluorescence spectral image alone yields as much information about a target surface as does a combination of the two modalities. Before this system was developed, to benefit from this combination, analysts needed to perform time-consuming post-processing efforts to co-register the reflective and fluorescence information. With this instrument, the inherent spatial and spectral registration of the reflectance and fluorescence images minimizes the need for this post-processing step. The main challenge for this technology is to detect the fluorescence signal in the presence of a much stronger reflectance signal. To meet this challenge, the instrument modulates artificial light sources from ultraviolet through the visible to the near-infrared part of the spectrum; in this way, both the reflective and fluorescence signals can be measured through differencing processes to optimize fluorescence and reflectance spectra as needed. The main functional components of the instrument are a hyperspectral imager, an illumination system, and an image-plane scanner. The hyperspectral imager is a one-dimensional (line) imaging spectrometer that includes a spectrally dispersive element and a two-dimensional focal plane detector array. The spectral range of the current imaging spectrometer is between 400 to 1,000 nm, and the wavelength resolution is approximately 3 nm. The illumination system consists of narrowband blue, ultraviolet, and other discrete

  14. Estimation of tissue optical parameters with hyperspectral imaging and spectral unmixing

    NASA Astrophysics Data System (ADS)

    Lu, Guolan; Qin, Xulei; Wang, Dongsheng; Chen, Zhuo G.; Fei, Baowei

    2015-03-01

    Early detection of oral cancer and its curable precursors can improve patient survival and quality of life. Hyperspectral imaging (HSI) holds the potential for noninvasive early detection of oral cancer. The quantification of tissue chromophores by spectral unmixing of hyperspectral images could provide insights for evaluating cancer progression. In this study, non-negative matrix factorization has been applied for decomposing hyperspectral images into physiologically meaningful chromophore concentration maps. The approach has been validated by computer-simulated hyperspectral images and in vivo tumor hyperspectral images from a head and neck cancer animal model.

  15. Estimation of Tissue Optical Parameters with Hyperspectral Imaging and Spectral Unmixing

    PubMed Central

    Lu, Guolan; Qin, Xulei; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei

    2015-01-01

    Early detection of oral cancer and its curable precursors can improve patient survival and quality of life. Hyperspectral imaging (HSI) holds the potential for noninvasive early detection of oral cancer. The quantification of tissue chromophores by spectral unmixing of hyperspectral images could provide insights for evaluating cancer progression. In this study, non-negative matrix factorization has been applied for decomposing hyperspectral images into physiologically meaningful chromophore concentration maps. The approach has been validated by computer-simulated hyperspectral images and in vivo tumor hyperspectral images from a head and neck cancer animal model. PMID:26855467

  16. Hyperspectral Image Super-Resolution via Non-Negative Structured Sparse Representation.

    PubMed

    Dong, Weisheng; Fu, Fazuo; Shi, Guangming; Cao, Xun; Wu, Jinjian; Li, Guangyu; Li, Guangyu

    2016-05-01

    Hyperspectral imaging has many applications from agriculture and astronomy to surveillance and mineralogy. However, it is often challenging to obtain high-resolution (HR) hyperspectral images using existing hyperspectral imaging techniques due to various hardware limitations. In this paper, we propose a new hyperspectral image super-resolution method from a low-resolution (LR) image and a HR reference image of the same scene. The estimation of the HR hyperspectral image is formulated as a joint estimation of the hyperspectral dictionary and the sparse codes based on the prior knowledge of the spatial-spectral sparsity of the hyperspectral image. The hyperspectral dictionary representing prototype reflectance spectra vectors of the scene is first learned from the input LR image. Specifically, an efficient non-negative dictionary learning algorithm using the block-coordinate descent optimization technique is proposed. Then, the sparse codes of the desired HR hyperspectral image with respect to learned hyperspectral basis are estimated from the pair of LR and HR reference images. To improve the accuracy of non-negative sparse coding, a clustering-based structured sparse coding method is proposed to exploit the spatial correlation among the learned sparse codes. The experimental results on both public datasets and real LR hypspectral images suggest that the proposed method substantially outperforms several existing HR hyperspectral image recovery techniques in the literature in terms of both objective quality metrics and computational efficiency. PMID:27019486

  17. Hyperspectral retinal imaging with a spectrally tunable light source

    NASA Astrophysics Data System (ADS)

    Francis, Robert P.; Zuzak, Karel J.; Ufret-Vincenty, Rafael

    2011-03-01

    Hyperspectral retinal imaging can measure oxygenation and identify areas of ischemia in human patients, but the devices used by current researchers are inflexible in spatial and spectral resolution. We have developed a flexible research prototype consisting of a DLP®-based spectrally tunable light source coupled to a fundus camera to quickly explore the effects of spatial resolution, spectral resolution, and spectral range on hyperspectral imaging of the retina. The goal of this prototype is to (1) identify spectral and spatial regions of interest for early diagnosis of diseases such as glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR); and (2) define required specifications for commercial products. In this paper, we describe the challenges and advantages of using a spectrally tunable light source for hyperspectral retinal imaging, present clinical results of initial imaging sessions, and describe how this research can be leveraged into specifying a commercial product.

  18. Workflow for Building a Hyperspectral Uav: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Proctor, C.; He, Y.

    2015-08-01

    Owing to the limited payload capacities of most UAV platforms within an academic research budget, many UAV systems utilize commercial RGB cameras or modified sensors with some capacity for sensing in the NIR. However, many applications require higher spectral fidelity that only hyperspectral sensors can offer. For instance, the Photochemical Reflectance Index relies upon the narrow band absorbance of xanthophyll pigments at 531 and 570nm to quantify photosynthetic light use efficiency which are important indicators of productivity and stress in agricultural and forest ecosystems. Thus, our research group has been working on building a research paradigm around a commercial off-the-shelf hyperspectral sensor and UAV. This paper discusses some of the key decisions made regarding selection of equipment and navigating the regulatory and logistical landmines. The imagery collected to date and the options available to process and utilize hyperspectral data are discussed at the end.

  19. Classification of Korla fragrant pears using NIR hyperspectral imaging analysis

    NASA Astrophysics Data System (ADS)

    Rao, Xiuqin; Yang, Chun-Chieh; Ying, Yibin; Kim, Moon S.; Chao, Kuanglin

    2012-05-01

    Korla fragrant pears are small oval pears characterized by light green skin, crisp texture, and a pleasant perfume for which they are named. Anatomically, the calyx of a fragrant pear may be either persistent or deciduous; the deciduouscalyx fruits are considered more desirable due to taste and texture attributes. Chinese packaging standards require that packed cases of fragrant pears contain 5% or less of the persistent-calyx type. Near-infrared hyperspectral imaging was investigated as a potential means for automated sorting of pears according to calyx type. Hyperspectral images spanning the 992-1681 nm region were acquired using an EMCCD-based laboratory line-scan imaging system. Analysis of the hyperspectral images was performed to select wavebands useful for identifying persistent-calyx fruits and for identifying deciduous-calyx fruits. Based on the selected wavebands, an image-processing algorithm was developed that targets automated classification of Korla fragrant pears into the two categories for packaging purposes.

  20. Parallel computation for blood cell classification in medical hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wu, Lucheng; Qiu, Xianbo; Ran, Qiong; Xie, Xiaoming

    2016-09-01

    With the advantage of fine spectral resolution, hyperspectral imagery provides great potential for cell classification. This paper provides a promising classification system including the following three stages: (1) band selection for a subset of spectral bands with distinctive and informative features, (2) spectral-spatial feature extraction, such as local binary patterns (LBP), and (3) followed by an effective classifier. Moreover, these three steps are further implemented on graphics processing units (GPU) respectively, which makes the system real-time and more practical. The GPU parallel implementation is compared with the serial implementation on central processing units (CPU). Experimental results based on real medical hyperspectral data demonstrate that the proposed system is able to offer high accuracy and fast speed, which are appealing for cell classification in medical hyperspectral imagery.

  1. Fault tolerance of SVM algorithm for hyperspectral image

    NASA Astrophysics Data System (ADS)

    Cui, Yabo; Yuan, Zhengwu; Wu, Yuanfeng; Gao, Lianru; Zhang, Hao

    2015-10-01

    One of the most important tasks in analyzing hyperspectral image data is the classification process[1]. In general, in order to enhance the classification accuracy, a data preprocessing step is usually adopted to remove the noise in the data before classification. But for the time-sensitive applications, we hope that even the data contains noise the classifier can still appear to execute correctly from the user's perspective, such as risk prevention and response. As the most popular classifier, Support Vector Machine (SVM) has been widely used for hyperspectral image classification and proved to be a very promising technique in supervised classification[2]. In this paper, two experiments are performed to demonstrate that for the hyperspectral data with noise, if the noise of the data is within a certain range, SVM algorithm is still able to execute correctly from the user's perspective.

  2. Spectral-Spatial Classification of Hyperspectral Images Using Hierarchical Optimization

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Tilton, James C.

    2011-01-01

    A new spectral-spatial method for hyperspectral data classification is proposed. For a given hyperspectral image, probabilistic pixelwise classification is first applied. Then, hierarchical step-wise optimization algorithm is performed, by iteratively merging neighboring regions with the smallest Dissimilarity Criterion (DC) and recomputing class labels for new regions. The DC is computed by comparing region mean vectors, class labels and a number of pixels in the two regions under consideration. The algorithm is converged when all the pixels get involved in the region merging procedure. Experimental results are presented on two remote sensing hyperspectral images acquired by the AVIRIS and ROSIS sensors. The proposed approach improves classification accuracies and provides maps with more homogeneous regions, when compared to previously proposed classification techniques.

  3. Hyperspectral Imaging and Related Field Methods: Building the Science

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.; Steffen, Konrad; Wessman, Carol

    1999-01-01

    The proposal requested funds for the computing power to bring hyperspectral image processing into undergraduate and graduate remote sensing courses. This upgrade made it possible to handle more students in these oversubscribed courses and to enhance CSES' summer short course entitled "Hyperspectral Imaging and Data Analysis" provided for government, industry, university and military. Funds were also requested to build field measurement capabilities through the purchase of spectroradiometers, canopy radiation sensors and a differential GPS system. These instruments provided systematic and complete sets of field data for the analysis of hyperspectral data with the appropriate radiometric and wavelength calibration as well as atmospheric data needed for application of radiative transfer models. The proposed field equipment made it possible to team-teach a new field methods course, unique in the country, that took advantage of the expertise of the investigators rostered in three different departments, Geology, Geography and Biology.

  4. Application of Hyperspectral Methods in Hydrothermal Mineral System Studies

    NASA Astrophysics Data System (ADS)

    Laukamp, Carsten; Cudahy, Thomas; Gessner, Klaus; Haest, Maarten; Cacetta, Mike; Rodger, Andrew; Jones, Mal; Thomas, Matilda

    2010-05-01

    Hyperspectral infrared reflectance spectra are used to identify abundances and compositional differences of mineral groups and single mineral phases. 3D mineral maps are derived from surface (airborne and satellite sensed) and sub-surface (drill core) mineralogical data and integrated with geological, geochemical and geophysical datasets, enabling a quantitative mineral systems analysis. The Western Australian Centre of Excellence for 3D Mineral Mapping is working on a variety of mineral deposits to showcase the emerging applications of hyperspectral techniques in mineral system studies. Applied remote sensing technologies comprise hyperspectral airborne surveys (HyMap) covering 126 bands in the visible and shortwave infrared, as well as satellite-based multispectral surveys (ASTER) featuring 14 bands from the visible to thermal infrared. Drill cores were scanned with CSIRO's HyLoggingTM systems, which allow a fast acquisition of mineralogical data in cm-spacing and thereby providing statistically significant datasets. Building on procedures developed for public Australian geosurvey data releases for north Queensland, Broken Hill and Kalgoorlie (http://c3dmm.csiro.au), the ultimate goal is to develop sensor-independent scalars based on the position, depth and shape of selected absorption features in the visible-near (VNIR), shortwave (SWIR) and thermal infrared (TIR), which can be applied to a wide range of mineral deposit types. In the Rocklea Dome Channel Iron Ore deposits of the Pilbara (Western Australia) for example, hyperspectral drill core data were processed into 3D mineral maps to delineate major ore zones by identifying various ore types and possible contaminants. Vitreous (silica-rich) iron ore was successfully separated from ochreous goethitic ore, with both of them requiring different metallurgical processing. The silicified vitreous iron ore as well as outlined carbonate-rich zones are presumably related to overprinting groundwater effects. The

  5. The new hyperspectral microscopic system for cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Hsieh, Yao-Fang; Mang, Ou-Yang; Chiou, Jin-Chern; Lin, Yung-Jiun; Tsai, Ming-Hsui; Bau, Da-Tian; Chiu, Chang-Fang; Teseng, Guan-Chin; Chang, Nai-Wen; Kao, Wen-Chung; Wu, Shun-De

    2011-02-01

    Until now, the cancer was examined by diagnosing the pathological changes of tumor. If the examination of cancer can diagnose the tumor before the cell occur the pathological changes, the cure rate of cancer will increase. This research develops a human-machine interface for hyper-spectral microscope. The hyper-spectral microscope can scan the specific area of cell and records the data of spectrum and intensity. These data is helpful to diagnose tumor. This research aims to develop a new system and a human-machine interface to control the hyper-spectral microscope. The interface can control the moving speed of motor, the exposure-time of hyper-spectrum, real-time focus, image of fluorescence, and record the data of spectral intensity and position.

  6. Hyperspectral image compression using bands combination wavelet transformation

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zhao, Zhongming; Zhu, Haiqing

    2009-10-01

    Hyperspectral imaging technology is the foreland of the remote sensing development in the 21st century and is one of the most important focuses of the remote sensing domain. Hyperspectral images can provide much more information than multispectral images do and can solve many problems which can't be solved by multispectral imaging technology. However this advantage is at the cost of massy quantity of data that brings difficulties of images' process, storage and transmission. Research on hyperspectral image compression method has important practical significance. This paper intends to do some improvement of the famous KLT-WT-2DSPECK (Karhunen-Loeve transform+ wavelet transformation+ two-dimensional set partitioning embedded block compression) algorithm and advances KLT + bands combination 2DWT + 2DSPECK algorithm. Experiment proves that this method is effective.

  7. Iterative compressive sampling for hyperspectral images via source separation

    NASA Astrophysics Data System (ADS)

    Kamdem Kuiteing, S.; Barni, Mauro

    2014-03-01

    Compressive Sensing (CS) is receiving increasing attention as a way to lower storage and compression requirements for on-board acquisition of remote-sensing images. In the case of multi- and hyperspectral images, however, exploiting the spectral correlation poses severe computational problems. Yet, exploiting such a correlation would provide significantly better performance in terms of reconstruction quality. In this paper, we build on a recently proposed 2D CS scheme based on blind source separation to develop a computationally simple, yet accurate, prediction-based scheme for acquisition and iterative reconstruction of hyperspectral images in a CS setting. Preliminary experiments carried out on different hyperspectral images show that our approach yields a dramatic reduction of computational time while ensuring reconstruction performance similar to those of much more complicated 3D reconstruction schemes.

  8. D Hyperspectral Frame Imager Camera Data in Photogrammetric Mosaicking

    NASA Astrophysics Data System (ADS)

    Mäkeläinen, A.; Saari, H.; Hippi, I.; Sarkeala, J.; Soukkamäki, J.

    2013-08-01

    A new 2D hyperspectral frame camera system has been developed by VTT (Technical Research Center of Finland) and Rikola Ltd. It contains frame based and very light camera with RGB-NIR sensor and it is suitable for light weight and cost effective UAV planes. MosaicMill Ltd. has converted the camera data into proper format for photogrammetric processing, and camera's geometrical accuracy and stability are evaluated to guarantee required accuracies for end user applications. MosaicMill Ltd. has also applied its' EnsoMOSAIC technology to process hyperspectral data into orthomosaics. This article describes the main steps and results on applying hyperspectral sensor in orthomosaicking. The most promising results as well as challenges in agriculture and forestry are also described.

  9. Hyperspectral characterization of the adjustable nano-coating systems

    NASA Astrophysics Data System (ADS)

    Murzina, Marina V. A.; Farrell, J. Paul; Aktsipetrov, Oleg A.; Murzina, Tatyana V.

    2005-05-01

    Nano-coatings with adjustable optical features is one of the revolutionary technologies of today. In this work, we investigate how hyperspectral imaging can detect adjustable nano-surfaces used, for example, for active camouflage. The distinct attributes of the nano-coating spectra are discussed. Fast algorithms of utilizing hyperspectral information for recognizing these attributes are suggested. The research applies to both recognizing the camouflaged objects and to building unrecognizable camouflage technology. In the context of tracking active camouflage, the identification of characteristic spectral attributes is especially important. Active spectra can constantly change, therefore confusing traditional hyperspectral classification. In contrast, the identified general spectral attributes stay the same allowing for robust identification and reliable tracking of the camouflaged objects.

  10. Hyperspectral imaging techniques for the characterization of Haematococcus pluvialis (Chlorophyceae).

    PubMed

    Nogami, Satoru; Ohnuki, Shinsuke; Ohya, Yoshikazu

    2014-10-01

    A hyperspectral imaging camera was combined with a bright-field microscope to investigate the intracellular distribution of pigments in cells of the green microalga Haematococcus pluvialis, a synonym for H. lacustris (Chlorophyceae). We applied multivariate curve resolution to the hyperspectral image data to estimate the pigment contents in culture and revealed that the predicted values were consistent with actual measurements obtained from extracted pigments. Because it was possible to estimate pigment contents in every pixel, the intracellular distribution of the pigments was investigated during various life-cycle stages. Astaxanthin was localized specifically at the eyespot of zoospores in early culture stages. Then, it became widely distributed in cells, but subsequently localized differently than the chl. Integrated with our recently developed image-processing program "HaematoCalMorph," the hyperspectral imaging system was useful for monitoring intracellular distributions of pigments during culture as well as for studying cellular responses under various conditions. PMID:26988647

  11. An airborne real-time hyperspectral target detection system

    NASA Astrophysics Data System (ADS)

    Skauli, Torbjorn; Haavardsholm, Trym V.; Kåsen, Ingebjørg; Arisholm, Gunnar; Kavara, Amela; Opsahl, Thomas Olsvik; Skaugen, Atle

    2010-04-01

    An airborne system for hyperspectral target detection is described. The main sensor is a HySpex pushbroom hyperspectral imager for the visible and near-infrared spectral range with 1600 pixels across track, supplemented by a panchromatic line imager. An optional third sensor can be added, either a SWIR hyperspectral camera or a thermal camera. In real time, the system performs radiometric calibration and georeferencing of the images, followed by image processing for target detection and visualization. The current version of the system implements only spectral anomaly detection, based on normal mixture models. Image processing runs on a PC with a multicore Intel processor and an Nvidia graphics processing unit (GPU). The processing runs in a software framework optimized for large sustained data rates. The platform is a Cessna 172 aircraft based close to FFI, modified with a camera port in the floor.

  12. Diagnosis method of cucumber downy mildew with NIR hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Tian, Youwen; Li, Tianlai; Zhang, Lin; Zhang, Xiaodong

    2011-11-01

    This study was carried out to develop a hyperspectral imaging system in the near infrared (NIR) region (900-1700 nm) to diagnose cucumber downy mildew. Hyperspectral images were acquired from each diseased cucumber leaf samples with downy mildew and then their spectral data were extracted. Spectral data were analyzed using principal component analysis (PCA) to reduce the high dimensionality of the data and for selecting some important wavelengths. Out of 256 wavelengths, only two wavelengths (1426 and 1626nm) of first PC were selected as the optimum wavelengths for the diagnosis of cucumber downy mildew. The data analysis showed that it is possible to diagnose cucumber downy mildew with few numbers of wavelengths on the basis of their statistical image features and histogram features. The results revealed the potentiality of NIR hyperspectral imaging as an objective and non-destructive method for the authentication and diagnosis of cucumber downy mildew.

  13. Combining hyperspectral imaging and Raman spectroscopy for remote chemical sensing

    NASA Astrophysics Data System (ADS)

    Ingram, John M.; Lo, Edsanter

    2008-04-01

    The Photonics Research Center at the United States Military Academy is conducting research to demonstrate the feasibility of combining hyperspectral imaging and Raman spectroscopy for remote chemical detection over a broad area of interest. One limitation of future trace detection systems is their ability to analyze large areas of view. Hyperspectral imaging provides a balance between fast spectral analysis and scanning area. Integration of a hyperspectral system capable of remote chemical detection will greatly enhance our soldiers' ability to see the battlefield to make threat related decisions. It can also queue the trace detection systems onto the correct interrogation area saving time and reconnaissance/surveillance resources. This research develops both the sensor design and the detection/discrimination algorithms. The one meter remote detection without background radiation is a simple proof of concept.

  14. Full-scale class A biosolids production by two-stage continuous-batch thermophilic anaerobic digestion at the hyperion treatment plant, Los Angeles, California.

    PubMed

    Iranpour, Reza; Cox, Huub H J; Fan, Steve; Abkian, Varouj; Minamide, Traci; Kearney, Ray J; Haug, Roger T

    2006-10-01

    The City of Los Angeles Hyperion Treatment Plant (HTP) (California) converted its anaerobic digesters to thermophilic operation to produce Class A biosolids. Phase IV tests demonstrated compliance of a two-stage, continuous-batch process with Alternative 1 of U.S. Environmental Protection Agency 40 CFR Part 503 (U.S. EPA, 1993), which defines the time-temperature requirement for batch treatment (T > or = 56.3 degrees C at 16-h holding). Fecal coliforms, Salmonella sp., viable helminth ova, and enteric viruses were not detected in biosolids in the postdigestion train, including the truck-loading facility and the farm for land application as the last points of plant control where compliance is to be demonstrated. The same results were achieved during Phase V tests, after lowering the second-stage holding temperature to 52.6 degrees C to reduce the elevated methyl mercaptan production that was observed during Phase IV. Hence, the Phase V process complied with Alternative 3 of 40 CFR Part 503. Currently, HTP operates its digesters under the same conditions as tested in Phase V. In 2003, monthly monitoring of the biosolids at the truck-loading facility and the farm for land application demonstrated consistent compliance with Alternative 3. PMID:17120443

  15. Quantitative and comparative examination of the spectral features characteristics of the surface reflectance information retrieved from the atmospherically corrected images of Hyperion

    NASA Astrophysics Data System (ADS)

    Kayadibi, Önder; Aydal, Doğan

    2013-01-01

    The retrieval of surface reflectance information from the same single pixel of the Hyperion image atmospherically corrected by using image-based [internal average relative reflectance (IARR), log residuals, and flat field] and radiative transfer model (RTM)-based [the fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) and the Atmospheric and Topographic Correction 2 (ATCOR-2)] approaches and the spectral feature characteristics of this information were quantitatively and comparatively examined based on measured ground spectral reflectance data. The spectral features quantitative analysis results of the reflectance data showed that spectral reflectances that are suitable and best fitting to the ground spectral reflectances which were obtained from the pixels of FLAASH, ATCOR-2, and flat field-corrected images, respectively. The retrieval of surface reflectance from the FLAASH-corrected image pixels, in general, produced high scores in spectral parameter analyses. Of the image-based approaches, only in flat field-derived reflectance data, results were obtained which are high and nearest to those of RTM and ground spectral reflectance data. Generally, low scores obtained in the spectral parameter analyses of the surface reflectance values retrieved from single pixels of IARR and log residuals-corrected images showed the results that fit worst to the measured ground spectral reflectance.

  16. Content-based hyperspectral image retrieval using spectral unmixing

    NASA Astrophysics Data System (ADS)

    Plaza, Antonio J.

    2011-11-01

    The purpose of content-based imag