Science.gov

Sample records for epa indoor air

  1. EPA's indoor air/pollution prevention workshop

    SciTech Connect

    Leovic, K.W.; White, J.B.; Sarsony, C.

    1993-01-01

    The paper discusses a workshop held as a step toward EPA's prioritizing potential areas of research for applying pollution prevention to indoor air quality (IAQ). The workshop involved technical experts in the fields of IAQ, pollution prevention, and selected industries. Workshop goals were to identify major IAQ issues and their pollution prevention opportunities, and to suggest research strategies for IAQ/pollution prevention. The paper summarizes the suggestions made by workshop participants and highlights opportunities for IAQ/pollution prevention research.

  2. EPA (ENVIRONMENTAL PROTECTION AGENCY) RESEARCH ON INDOOR AIR QUALITY

    EPA Science Inventory

    The paper discusses EPA's research program on indoor air quality. Now in its third year, it is a broad-based program that includes: field surveys of pollutant concentrations in homes, characterization of emissions from sources, health studies of genotoxic and irritant/neurobehavi...

  3. "INSIDE IAQ" -- EPA'S INDOOR AIR QUALITY RESEARCH UPDATE (INDOOR ENVIRONMENT MANAGEMENT BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL).

    EPA Science Inventory

    "Inside IAQ" is published twice a year and highlights indoor air quality (IAQ) research conducted by EPA's National Risk Management Research Laboratory's Indoor Environment Management Branch and other parts of EPA's Office of Research and Development.To view previous issues of ...

  4. INDOOR AIR QUALITY AND FURNITURE PROCUREMENT IN EPA'S NEW RESEARCH TRIANGLE CAMPUS

    EPA Science Inventory

    The paper discusses various aspects of the EPA's new 1.2 million square foot building in Research Triangle Park that pertain to indoor air, with a particular focus on the process EPA used to select furniture to meet its indoor air guidelines. In keeping with its mission of protec...

  5. ESTABLISHING PRIORITIES IN THE U.S. EPA'S INDOOR AIR ENGINEERING RESEARCH PROGRAM

    EPA Science Inventory

    The paper gives results of consultations by participants in the U.S. EPA's Indoor Air Engineering Research Program with a panel of key researchers and planners within government, industry, and academia to help identify priority program areas for indoor air research. rogram elemen...

  6. EPA (Environmental Protection Agency) Indoor-Air Quality Implementation Plan. A report to Congress under Title IV of the Superfund Amendments and Reauthorization Act of 1986: radon gas and indoor air-quality research. Final report

    SciTech Connect

    Not Available

    1987-06-01

    The EPA Indoor Air Quality Implementation Plan provides information on the direction of EPA's indoor air program, including the Agency's policy on indoor air and priorities for research and information dissemination over the next two years. EPA submitted the report to Congress on July 2, 1987 as required by the Superfund Amendments and Reauthorization Act of 1986. There are five appendices to the report: Appendix A--Preliminary Indoor Air Pollution Information Assessment; Appendix B--FY 87 Indoor Air Research Program; Appendix C--EPA Radon Program; Appendix D--Indoor Air Resource History (Published with Appendix C); Appendix E--Indoor Air Reference Data Base.

  7. PROCEEDINGS: EPA/AEERL'S INDOOR AIR QUALITY/POLLUTION PREVENTION WORKSHOP

    EPA Science Inventory

    The report documents an EPA-sponsored workshop on indoor air quality (IAQ) and pollution prevention (P2) at the North Carolina State University (NCSU) College of Textiles in Raleigh, NC, March 9-10, 1993. oals of the workshop were to identify P2 opportunities and to obtain recomm...

  8. VERIFICATION AND USES OF THE ENVIRONMENTAL PROTECTION AGENCY (EPA) INDOOR AIR QUALITY MODEL

    EPA Science Inventory

    The paper describes a set of experiments used to verify an indoor air quality (IAQ) model for estimating the impact of various pollution sources on IAQ in a multiroom building. he model treats each room as a well-mixed chamber that contains pollution sources and sinks. he model a...

  9. Comparison of EPA (Environmental Protection Agency) test house data with predictions of an indoor-air-quality model

    SciTech Connect

    Sparks, L.E.; Jackson, M.D.; Tichenor, B.A.

    1988-07-01

    An easy-to-use indoor-air-quality (IAQ) model is described. It is multi-compartmented and based on a well-mixed mixing model. Sources and sinks are allowed in each compartment. A menu-driven fill-in-the-form user interface controls program flow and is used to obtain data from the user. On-screen graphical output is provided. The model estimates the effects of heating, ventilation, and air conditioning (HVAC), air cleaning, room-to-room air movement, and natural ventilation on pollutant concentrations. Experiments conducted in the EPA test house using moth crystal cakes for model verification are described. The agreement between small chamber emission factors, model predictions, and test house data is very good. Predicted weight loss of the moth crystal cakes was within 5% of the measured weight loss. Predicted room concentrations of p-dichlorobenzene are within 20% of the measured values. Future directions for model development and experimental studies are discussed.

  10. Verification and uses of the Environmental Protection Agency (EPA) indoor air quality model

    SciTech Connect

    Sparks, L.E.; Tichenor, B.A.; Jackson, M.D.; White, J.B.

    1989-01-01

    The paper describes a set of experiments used to verify an indoor air quality (IAQ) model for estimating the impact of various pollution sources on IAQ in a multiroom building. The model treats each room as a well-mixed chamber that contains pollution sources and sinks. The model allows analysis of the impact of room-to-room air flows, HVAC (heating, ventilating, and air-conditioning) systems, and air cleaners on IAQ. The model is written for personal computers. The experiments were conducted in a test house. Three pollution sources were used: moth crystals, kerosene heaters, and dry cleaned cloths. The model predictions were in good agreement with the experimental data, especially when a sink term was included in the model. The paper gives a brief discussion of the theory on which the model is based. Preliminary data and theory of sources and sinks are also discussed. Examples demonstrating the use of the model to analyze IAQ options and to estimate exposure from a pollutant are included.

  11. THE DISTRIBUTION OF CHLORPYRIFOS FOLLOWING A CRACK AND CREVICE TYPE APPLICATION IN THE U.S. EPA INDOOR AIR QUALITY RESEARCH HOUSE

    EPA Science Inventory

    The paper gives results of a study to determine the spatial and temporal distribution of chlorpyrifos following a professional crack-and-crevice application in the kitchen of the U.S. EPA's indoor air quality research house in North Carolina. Following the application, measuremen...

  12. THE DISTRIBUTION OF CHLORPYRIFOS FOLLOWING A CRACK AND CREVICE TYPE APPLICATION IN THE U.S. EPA INDOOR AIR QUALITY RESEARCH HOUSE

    EPA Science Inventory

    A study was conducted in the U.S. EPA Indoor Air Quality Research House to determine the spatial and temporal distribution of chlorpyrifos following a professional crack and crevice application in the kitchen. Following the application, measurements were made in the kitchen, de...

  13. THE DISTRIBUTION OF CHLORPYRIFOS FOLLOWING A CRACK AND CREVICE TYPE APPLICATION IN THE U.S. EPA INDOOR AIR QUALITY TEST HOUSE

    EPA Science Inventory

    A study was conducted in the U.S. EPA Indoor Air Quality Test House to determine the spatial and temporal distribution of chlorpyrifos following a professional crack and crevice application in the kitchen. Following the application, measurements were made in the kitchen, den a...

  14. EPA'S INDOOR AIR QUALITY AND WORK ENVIRONMENT STUDY: RELATIONSHIPS OF EMPLOYEE'S SELF-REPORTED HEALTHY SYMPTOMS WITH DIRECT INDOOR AIR QUALITY MEASUREMENTS

    EPA Science Inventory

    In recent years, employees at the three headquarters buildings of the U.S. Environmental Protection Agency (EPA) in the Washington, D.C. area have expressed concerns about air quality and work environment discomforts. s part of a large-scale study of health and comfort concerns, ...

  15. Energy Efficiency and Indoor Environmental Quality in Schools. A Joint EPA Working Paper from Energy Star[R] and Indoor Air Quality.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    This paper describes how to protect and enhance indoor environmental quality without sacrificing energy performance, lists the common pollutants and their sources, and explores how energy efficiency projects affect indoor environmental quality. Also highlighted are study figures showing the energy costs of outdoor air ventilation and an…

  16. Total volatile organic concentrations in 2700 personal, indoor, and outdoor air samples collected in the US EPA team studies

    SciTech Connect

    Wallace, L.; Pellizzari, E.; Wendel, C.

    1990-12-01

    Sick Building Syndrome may be caused in part by volatile organic compounds (VOCs). One hypothesis is that the total volatile organic concentration (TVOC), rather than individual compounds, is a main factor in the syndrome. The TVOC level at which symptoms occur has been estimated to be in the range of 1-2 mg/cum, based on measurements employing GC-FID techniques. Very few measured data are available to determine the frequency with which homes and buildings in the United States may approach TVOC levels of this magnitude. However, data on 12-hour average values of individual VOCs from 750 homes and 10 buildings were available from EPA's TEAM Studies (1981-88). An initial study to determine the feasibility of obtaining a TVOC value from stored GC/MS data showed that TVOC estimated could be obtained with satisfactory precision ((+ or -) 30-60%). Therefore TVOC values were calculated from about 2700 personal, indoor, and outdoor air samples collected in the TEAM Studies.

  17. Controlling Indoor Air Pollution.

    ERIC Educational Resources Information Center

    Nero, Anthony V, Jr.

    1988-01-01

    Discusses the health risks posed by indoor air pollutants, such as airborne combustion products, toxic chemicals, and radioactivity. Questions as to how indoor air might be regulated. Calls for new approaches to environmental protection. (TW)

  18. COMPARISON OF EPA (ENVIRONMENTAL PROTECTION AGENCY) TEST HOUSE DATA WITH PREDICTIONS OF AN INDOOR AIR QUALITY MODEL

    EPA Science Inventory

    An easy-to-use indoor air quality (IAQ) model is described. It is multi-compartmented and based on a well-mixed mixing model. Sources and sinks are allowed in each compartment. A menu-driven fill-in-the-form user interface controls program flow and is used to obtain data from the...

  19. EPA's indoor-air-quality and work-environment survey: Relationships of employees' self-reported health symptoms with direct indoor-air-quality measurements

    SciTech Connect

    Nelson, C.J.; Clayton, C.A.; Wallace, L.A.; Highsmith, V.R.; Kollander, M.

    1991-06-07

    In recent years, employees at the three headquarters buildings of the U.S. Environmental Protection Agency (EPA) in the Washington, D.C. area have expressed concerns about air quality and work environment discomforts. As part of a large-scale study of health and comfort concerns, environmental monitoring was carried out in March 1989 at approximately 100 sites (rooms) within these buildings. Employees in the vicinity of the monitors were administered a brief questionnaire to elicit information regarding their work environment, comfort levels, odors noticed, health symptoms, mood states, and perceptions of overall air quality. Statistical analyses were carried out for the 191 males and the 192 females for whom both questionnaire and monitoring data were available. The analyses entailed estimation of linear regression and logistic regression models aimed at testing for associations between the employees' responses and the environmental measurements, which included temperature, humidity, carbon dioxide, and particlate concentrations (100 sites), and various microbiologic and volatile organic compound concentrations (subset of 56 sites). Principal component analyses were used to develop some of the outcome and explanatory variables used in the models. In the paper, the authors describe the study design, the study limitations, the statistical models and methods, and the results and implications of the data analysis.

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION FOR INDOOR AIR PRODUCTS

    EPA Science Inventory

    The paper discusses environmental technology verification (ETV) for indoor air products. RTI is developing the framework for a verification testing program for indoor air products, as part of EPA's ETV program. RTI is establishing test protocols for products that fit into three...

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION AND INDOOR AIR

    EPA Science Inventory

    The paper discusses environmental technology verification and indoor air. RTI has responsibility for a pilot program for indoor air products as part of the U.S. EPA's Environmental Technology Verification (ETV) program. The program objective is to further the development of sel...

  2. Indoor Air Quality Manual.

    ERIC Educational Resources Information Center

    Baldwin Union Free School District, NY.

    This manual identifies ways to improve a school's indoor air quality (IAQ) and discusses practical actions that can be carried out by school staff in managing air quality. The manual includes discussions of the many sources contributing to school indoor air pollution and the preventive planning for each including renovation and repair work,…

  3. Indoor Air Pollution

    MedlinePlus

    We usually think of air pollution as being outdoors, but the air in your house or office could also be polluted. Sources of indoor pollution ... is known as sick building syndrome. Usually indoor air quality problems only cause discomfort. Most people feel ...

  4. Indoor Air Pollution

    MedlinePlus

    We usually think of air pollution as being outdoors, but the air in your house or office could also be polluted. Sources of indoor pollution include Mold and pollen Tobacco smoke Household products ...

  5. ASSESSING ALLERGENICITY OF INDOOR AIR FUNGAL CONTAMINANTS

    EPA Science Inventory

    Assessing Allergenicity of Indoor Air Fungal Contaminants
    M D W Ward1, M E Viana2, N Haykal-Coates1, L B Copeland1, S H Gavett1, and MJ K Selgrade1. 1US EPA, ORD, NHEERL, RTP, NC, USA. 2NCSU, CVM, Raleigh, NC, USA.
    Rationale: The indoor environment has increased in impor...

  6. Evaluating sources of indoor air pollution

    SciTech Connect

    Tichenor, B.A.; Sparks, L.A.; White, J.B.; Jackson, M.D. )

    1990-04-01

    Evaluation of indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: (1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; (2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and (3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: (1) para-dichlorobenzene emissions from solid moth repellant; and (2) emissions from unvented kerosene heaters. The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA's Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed in large chambers at the J.B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA's IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on sink surfaces.

  7. TECHNICAL ASSISTANCE, TECHNOLOGY TRANSFER, AND DISSEMINATION OF EPA SCIENCE ON INDOOR ENVIRONMENTAL ISSUES

    EPA Science Inventory

    Technical Assistance, technology transfer, and dissemination of EPA science on maintenance of good indoor air quality, reducing exposure to radon, reducing exposure to environmental tobacco smoke, and the environmental management of asthma and asthma trigger reduction. This is a...

  8. INDOOR AIR REFERENCE BIBLIOGRAPHY

    EPA Science Inventory

    In October 1986, Congress passed the Superfund Amendments and Reauthorization Act (SARA, PL 99-499). he ultimate goal of SARA Title IV is the dissemination of information to the public. his activity includes the publication of scientific and technical information on indoor air qu...

  9. 59 FR- Indoor Air Quality

    Federal Register 2010, 2011, 2012, 2013, 2014

    1994-09-16

    ... 5, 1994, OSHA issued a notice of proposed rulemaking addressing indoor air quality issues, including... to clarify that it is not proposing to regulate smoking or indoor air quality in private homes, and... which a final standard would preempt state and local regulation of smoking and other indoor air...

  10. Office of radiation and indoor air: Program description

    SciTech Connect

    Not Available

    1993-06-01

    The goal of the Environmental Protection Agency`s (EPA) Office of Radiation and Indoor Air is to protect the public and the environment from exposures to radiation and indoor air pollutants. The Office develops protection criteria, standards, and policies and works with other programs within EPA and other agencies to control radiation and indoor air pollution exposures; provides technical assistance to states through EPA`s regional offices and other agencies having radiation and indoor air protection programs; directs an environmental radiation monitoring program; responds to radiological emergencies; and evaluates and assesses the overall risk and impact of radiation and indoor air pollution. The Office is EPA`s lead office for intra- and interagency activities coordinated through the Committee for Indoor Air Quality. It coordinates with and assists the Office of Enforcement in enforcement activities where EPA has jurisdiction. The Office disseminates information and works with state and local governments, industry and professional groups, and citizens to promote actions to reduce exposures to harmful levels of radiation and indoor air pollutants.

  11. THE DISTRIBUTION OF CHLORPYRIFOS FOLLOWING A CRACK AND CREVICE TYPE APPLICAITON IN THE U.S. EPA INDOOR AIR QUALITY (IAQ) TEST HOUSE

    EPA Science Inventory

    Pesticides found in homes may result from indoor applications to control household pests or by translocation from outdoor sources. Pesticides disperse according to their physical properties and other factors such as human activity, residential air exchange, temperature and humi...

  12. THE SPATIAL AND TEMPORAL DISTRIBUTION OF CHLORPYRIFOS IN THE U.S. EPA INDOOR AIR QUALITY (IAQ) TEST HOUSE FOLLOWING CRACK AND CREVICE TYPE APPLICATIONS

    EPA Science Inventory

    Pesticides found in homes may result from indoor applications to control household pests or by translocation from outdoor sources. Pesticides disperse according to their physical properties and other factors such as human activity, air exchange, temperature and humidity. Insect...

  13. Indoor Air Quality

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takeji

    The reduction of intake of outdoor air volume in air conditioned buildings, adopted as the strategy for saving energy, has caused sick building syndrome abroad. Such symptoms of sick building as headache, stimuli of eye and nose and lethargy, appears to result from cigarette smoke, folmaldehyde and volatile organic carbons. On the other hand, in airtight residences not only carbon monoxide and nitrogen oxides from domestic burning appliances but also allergens of mite, fungi, pollen and house dust, have become a subject of discussion. Moreover, asbestos and radon of carcinogen now attract a great deal of attention. Those indoor air pollutants are discussed.

  14. EPA`s clean air power initiative

    SciTech Connect

    Critchfield, L.R.

    1997-12-31

    The Clean Air Power Initiative (CAPI) is a multi-stakeholder project intended to improve air pollution control efforts involving the power generating industry. This paper documents the progress made in the first year of the initiative, which included a number of meetings with interested stakeholders and development and analysis of alternative approaches for more efficient and effective pollution control. The project`s goal is to develop an integrated regulatory strategy or three major pollutants emitted from electric power generators; namely, sulfur dioxide, nitrogen oxides, and, potentially, mercury. Major reductions in these pollutants are expected to be needed to reduce the detrimental health effects of ground-level ozone, fine particles, and hazardous air pollutants and reduce the environmental effects of acidification, eutrophication, ecosystem, crop, and materials damage, and regional haze. The Clean Air Power Initiative has considered, where feasible, new approaches to pollution control that recognize the long-range transport of many air pollutants and the economic benefits of emissions trading. The project was initiated by EPA`s Assistant Administrator for Air and Radiation in 1995. As individual companies develop and implement strategies to participate in more competitive power markets, they could benefit from greater certainty in being able to plan for and reduce costs of future environmental regulations. The EPA is interested in reinventing its regulatory approach to reduce the number, administrative complexity, and cost of its requirements while improving the likelihood of achieving environmental results.

  15. STATISTICAL COMPARISON OF RESULTS OF TWO INDOOR AIR PILOT STUDIES

    EPA Science Inventory

    The objective of this study was to compare the results between two previous indoor air PAH monitoring studies conducted by EPA in 1984 and 1987. Both of the previous studies were pilot studies involving ambient and indoor air monitoring at a small number of residences in Columbus...

  16. AIR TOXICS DEVELOPMENT AT EPA

    EPA Science Inventory

    The paper gives an overview of research activities in EPA's Air and Energy Engineering Research Laboratory, including the identification, assessment, and control of sources of volatile organic compounds (VOCs), hazardous air pollutants (NAPs), and chlorofluorocarbons (CFCs). VOCs...

  17. CANDLES AND INCENSE AS POTENTIAL SOURCES OF INDOOR AIR POLLUTION: MARKET ANALYSIS AND LITERATURE SEARCH (EPA/600/R-01/001)

    EPA Science Inventory

    The report summarizes available information on candles and incense as potential sources of indoor air pollution. It covers market information and a review of the scientific literature. The market information collected focuses on production and sales data, typical uses in the U.S....

  18. CANDLES AND INCENSE AS POTENTIAL SOURCES OF INDOOR AIR POLLUTION: MARKET ANALYSIS AND LITERATURE REVIEW (EPA/600/R-01/001)

    EPA Science Inventory

    This report summarizes available information on candles and incense as potential sources of indoor air pollution. It covers market information and a review of the scientific literature. The market information collected focuses on production and sales data, typical uses in the U.S...

  19. 59 FR- Indoor Air Quality

    Federal Register 2010, 2011, 2012, 2013, 2014

    1994-09-30

    ... Occupational Safety and Health Administration 29 CFR Parts 1910, 1915, 1926, 1928 RIN 1218-AB37 Indoor Air.... SUPPLEMENTARY INFORMATION: On April 5, 1994, OSHA issued a notice of proposed rulemaking addressing indoor air quality issues, including environmental tobacco smoke in the workplace. 59 FR 15968. On June 14, 1994...

  20. Introduction to Indoor Air Quality

    MedlinePlus

    ... as conditions caused by outdoor impacts (such as climate change). Many reports and studies indicate that the following ... Air Duct Cleaning Asthma Health, Energy Efficiency and Climate Change Flood Cleanup Home Remodel Indoor airPLUS Mold Radon ...

  1. 66 FR 24370 - Agency Information Collection Activities: Submission for OMB Review; Comment Request; Indoor Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2001-05-14

    ... Budget (OMB) for review and approval: Title: Indoor Air Quality Practices in Schools Survey, The ICR... Guevin at EPA by phone at (202) 564-9055. SUPPLEMENTARY INFORMATION: Title: Indoor Air Quality Practices... preventing, identifying, and solving indoor air quality (IAQ) problems in schools and has developed...

  2. 65 FR 37971 - Agency Information Collection Activities: Submission for OMB Review; Comment Request; Indoor Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2000-06-19

    ... and Budget (OMB) for review and approval: Indoor Air Quality Practices in Large Buildings Survey. The... Salmon at EPA by phone at (202) 564-9451. SUPPLEMENTARY INFORMATION: Title: Indoor Air Quality Practices... identifying and solving indoor air quality (IAQ) problems and has developed guidance for that purpose....

  3. Indoor Air Quality in Schools.

    ERIC Educational Resources Information Center

    Torres, Vincent M.

    Asserting that the air quality inside schools is often worse than outdoor pollution, leading to various health complaints and loss of productivity, this paper details factors contributing to schools' indoor air quality. These include the design, operation, and maintenance of heating, ventilating, and air conditioning (HVAC) systems; building…

  4. AIR CLEANING FOR ACCEPTABLE INDOOR AIR QUALITY

    EPA Science Inventory

    The paper discusses air cleaning for acceptable indoor air quality. ir cleaning has performed an important role in heating, ventilation, and air-conditioning systems for many years. raditionally, general ventilation air-filtration equipment has been used to protect cooling coils ...

  5. Workshop on indoor air quality research needs

    SciTech Connect

    Not Available

    1980-01-01

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized. (DLS)

  6. Indoor air radon

    SciTech Connect

    Cothern, C.R.

    1990-01-01

    This review concerns primarily the health effects that result from indoor air exposure to radon gas and its progeny. Radon enters homes mainly from the soil through cracks in the foundation and other holes to the geologic deposits beneath these structures. Once inside the home the gas decays (half-life 3.8 d) and the ionized atoms adsorb to dust particles and are inhaled. These particles lodge in the lung and can cause lung cancer. The introduction to this review gives some background properties of radon and its progeny that are important to understanding this public health problem as well as a discussion of the units used to describe its concentrations. The data describing the health effects of inhaled radon and its progeny come both from epidemiological and animal studies. The estimates of risk from these two data bases are consistent within a factor of two. The epidemiological studies are primarily for hard rock miners, although some data exist for environmental exposures. The most complete studies are those of the US, Canadian, and Czechoslovakian uranium miners. Although all studies have some deficiencies, those of major importance include uranium miners in Saskatchewan, Canada, Swedish iron miners, and Newfoundland fluorspar miners. These six studies provide varying degrees of detail in the form of dose-response curves. Other epidemiological studies that do not provide quantitative dose-response information, but are useful in describing the health effects, include coal, iron ore and tin miners in the UK, iron ore miners in the Grangesburg and Kiruna, Sweden, metal miners in the US, Navajo uranium miners in the US, Norwegian niobian and magnitite miners, South African gold and uranium miners, French uranium miners, zinc-lead miners in Sweden and a variety of small studies of environmental exposure. An analysis of the epidemiological studies reveals a variety of interpretation problem areas.172 references.

  7. IAQPC: AN INDOOR AIR QUALITY SIMULATOR

    EPA Science Inventory

    The paper discusses an Indoor Air Quality Simulator for Personal Computers (IAQPC), developed in response to the growing need for quick accurate predictions of indoor air contamination levels. eating, ventilating, and air conditioning (HVAC) system designers need ways to determin...

  8. Manual on indoor air quality

    SciTech Connect

    Diamond, R.C.; Grimsrud, D.T.

    1983-12-01

    This reference manual was prepared to assist electric utilities in helping homeowners, builders, and new home buyers to understand a broad range of issues related to indoor air quality. The manual is directed to technically knowledgeable persons employed by utility companies - the customer service or marketing representative, applications engineer, or technician - who may not have specific expertise in indoor air quality issues. In addition to providing monitoring and control techniques, the manual summarizes the link between pollutant concentrations, air exchange, and energy conservation and describes the characteristics and health effects of selected pollutants. Where technical information is too lengthy or complex for inclusion in this volume, reference sources are given. Information for this manual was gathered from technical studies, manufacturers' information, and other materials from professional societies, institutes, and associations. The aim has been to provide objective technical and descriptive information that can be used by utility personnel to make informed decisions about indoor air quality issues.

  9. Mind Your Indoor Air Quality

    ERIC Educational Resources Information Center

    Mak, Lily

    2012-01-01

    When it comes to excelling in the classroom, it turns out the air students are breathing is just as important as the lessons they are learning. Studies show poor indoor air quality (IAQ) can lessen the comfort of students as well as staff--affecting concentration, attendance and student performance. It can even lead to lower IQs. What's more, poor…

  10. Indoor air radon.

    PubMed

    Cothern, C R

    1990-01-01

    This review concerns primarily the health effects that result from indoor air exposure to radon gas and its progeny. Radon enters homes mainly from the soil through cracks in the foundation and other holes to the geologic deposits beneath these structures. Once inside the home the gas decays (half-life 3.8 d) and the ionized atoms adsorb to dust particles and are inhaled. These particles lodge in the lung and can cause lung cancer. The introduction to this review gives some background properties of radon and its progeny that are important to understanding this public health problem as well as a discussion of the units used to describe its concentrations. The data describing the health effects of inhaled radon and its progeny come both from epidemiological and animal studies. The estimates of risk from these two data bases are consistent within a factor of two. The epidemiological studies are primarily for hard rock miners, although some data exist for environmental exposures. The most complete studies are those of the US, Canadian, and Czechoslovakian uranium miners. Although all studies have some deficiencies, those of major importance include uranium miners in Saskatchewan, Canada, Swedish iron miners, and Newfoundland fluorspar miners. These six studies provide varying degrees of detail in the form of dose-response curves. Other epidemiological studies that do not provide quantitative dose-response information, but are useful in describing the health effects, include coal, iron ore and tin miners in the UK, iron ore miners in the Grangesburg and Kiruna, Sweden, metal miners in the US, Navajo uranium miners in the US, Norwegian niobian and magnitite miners, South African gold and uranium miners, French uranium miners, zinc-lead miners in Sweden and a variety of small studies of environmental exposure. An analysis of the epidemiological studies reveals a variety of interpretation problem areas. The major and almost universal problem is in estimating exposure

  11. Indoor air quality and health

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    During the last two decades there has been increasing concern within the scientific community over the effects of indoor air quality on health. Changes in building design devised to improve energy efficiency have meant that modern homes and offices are frequently more airtight than older structures. Furthermore, advances in construction technology have caused a much greater use of synthetic building materials. Whilst these improvements have led to more comfortable buildings with lower running costs, they also provide indoor environments in which contaminants are readily produced and may build up to much higher concentrations than are found outside. This article reviews our current understanding of the relationship between indoor air pollution and health. Indoor pollutants can emanate from a range of sources. The health impacts from indoor exposure to combustion products from heating, cooking, and the smoking of tobacco are examined. Also discussed are the symptoms associated with pollutants emitted from building materials. Of particular importance might be substances known as volatile organic compounds (VOCs), which arise from sources including paints, varnishes, solvents, and preservatives. Furthermore, if the structure of a building begins to deteriorate, exposure to asbestos may be an important risk factor for the chronic respiratory disease mesothelioma. The health effects of inhaled biological particles can be significant, as a large variety of biological materials are present in indoor environments. Their role in inducing illness through immune mechanisms, infectious processes, and direct toxicity is considered. Outdoor sources can be the main contributors to indoor concentrations of some contaminants. Of particular significance is Radon, the radioactive gas that arises from outside, yet only presents a serious health risk when found inside buildings. Radon and its decay products are now recognised as important indoor pollutants, and their effects are

  12. RANKING INDOOR AIR TOXICS

    EPA Science Inventory

    The basis of the ranking is 10 monitoring studies chosen to represent "typical" concentrations of the pollutants found indoors. The studies were conducted in the United States during the last 15 years, and mainly focused on concentrations of pollutants in homes, schools, and off...

  13. Indoor Air Quality

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2008-01-01

    When a problem affects one out of every 13 children, it clearly is an issue that schools must address. According to the U.S. Environmental Protection Agency (EPA), that is the incident rate for asthma among the nation's children. The inflammatory disease causes a person's airways to constrict, leading to wheezing, breathlessness, chest tightness…

  14. Indoor Air vs. Indoor Construction: A New Beginning.

    ERIC Educational Resources Information Center

    Manicone, Santo

    2000-01-01

    Identifies the steps that can be taken to lessen the impact of indoor air pollution created from indoor renovation projects, including project management tips to help contractors avoid creating unnecessary air pollution. Final comments address air pollution control when installing new furniture, smoking restrictions, occupant relations, and the…

  15. 59 FR- Indoor Air Quality

    Federal Register 2010, 2011, 2012, 2013, 2014

    1994-04-18

    ... From the Federal Register Online via the Government Printing Office ] DEPARTMENT OF LABOR Occupational Safety and Health Administration 29 CFR Parts 1910, 1915, 1926, and 1928 RIN 1218-AB37 Indoor Air Quality Correction In proposed rule document 94-7619 beginning on page 15968 in the issue of...

  16. INDOOR AIR CONCENTRATION UNIT CONVERSIONS

    EPA Science Inventory

    Migration of volatile chemicals from the subsurface into overlying buildings is called vapor intrusion (VI). Volatile organic chemicals in contaminated soils or groundwater can emit vapors, which can migrate through subsurface soils and may enter the indoor air of overlying buil...

  17. Indoor Air Quality and Disease

    EPA Science Inventory

    Concern over the quality of indoor (i.e., residential) as well as outdoor (i.e., environmental) air is increasing. Accordingly, owners of companion animals may approach their veterinarian about the potential for airborne irritants, allergens, pollutants, or infectious agents to n...

  18. Indoor Air Quality Management Program.

    ERIC Educational Resources Information Center

    Anne Arundel County Public Schools, Annapolis, MD.

    In an effort to provide Indoor Air Quality (IAQ) management guidance, Anne Arundel County Public Schools was selected by the Maryland State Department of Education to develop a program that could be used by other school systems. A major goal was to produce a handbook that was "user friendly." Hence, its contents are a mix of history, philosophy,…

  19. 59 FR- Indoor Air Quality; Proposed Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    1994-06-14

    ... hearing on the proposed rule on indoor air quality which was published on April 5, 1994 (59 FR 15968). The... published a notice of proposed rulemaking on indoor air quality (59 FR 15968 et seq.). The proposal covered a broad range of issues falling into two major categories: (1) General indoor air quality...

  20. THE ALLERGENIC POTENTIAL OF INDOOR AIR FUNGAL CONTAMINANTS

    EPA Science Inventory


    The Allergenic Potential of Indoor Air Fungal Contaminants
    Marsha D W Ward1, Michael E Viana2, Yongjoo Chung3, Najwa Haykal-Coates1, Lisa B Copeland1, Steven H Gavett1, and MaryJane K Selgrade1. 1US EPA, ORD, NHEERL, RTP, NC, USA. 2NCSU, CVM, Raleigh, NC, USA, 3 UNC, SPH,...

  1. COMPREHENSIVE INDOOR AIR QUALITY RESEARCH STRATEGY, JANUARY 1, 1985

    EPA Science Inventory

    In the Department of Housing and Urban Development-Independent Agencies 1984 House Appropriation Report, EPA was directed to expand indoor air research planning into a long-term comprehensive strategy. This strategy was developed and coordinated through the Interagency Committee ...

  2. CATALOG OF MATERIALS AS POTENTIAL SOURCES OF INDOOR AIR POLLUTION

    EPA Science Inventory

    The paper discusses a series of documents being developed by the U.S. EPA, summarizing available information on building materials and products brought into homes and office buildings as potential sources of indoor air pollution. he documents will provide a complete list of mater...

  3. ASSESSING THE ALLERGIC POTENTIAL OF INDOOR AIR FUNGAL CONTAMINANTS

    EPA Science Inventory

    Assessing the Allergic Potential of Indoor Air Fungal Contaminants
    Marsha D W Ward1, Michael E Viana2, Yonjoo Chung3, Najwa Haykal-Coates1, Lisa B Copeland1, Steven H Gavett1, and MaryJane K Selgrade1. 1US EPA, ORD, NHEERL, RTP, NC, USA. 2NCSU, CVM, Raleigh, NC, USA, 3 UNC, S...

  4. The indoor air we breathe.

    PubMed

    Oliver, L C; Shackleton, B W

    1998-01-01

    Increasingly recognized as a potential public health problem since the outbreak of Legionnaire's disease in Philadelphia in 1976, polluted indoor air has been associated with health problems that include asthma, sick building syndrome, multiple chemical sensitivity, and hypersensitivity pneumonitis. Symptoms are often nonspecific and include headache, eye and throat irritation, chest tightness and shortness of breath, and fatigue. Air-borne contaminants include commonly used chemicals, vehicular exhaust, microbial organisms, fibrous glass particles, and dust. Identified causes include defective building design and construction, aging of buildings and their ventilation systems, poor climate control, inattention to building maintenance. A major contributory factor is the explosion in the use of chemicals in building construction and furnishing materials over the past four decades. Organizational issues and psychological variables often contribute to the problem and hinder its resolution. This article describes the health problems related to poor indoor air quality and offers solutions. PMID:9769764

  5. BIOASSAY OF COMPLEX MIXTURES OF INDOOR AIR POLLUTANTS

    EPA Science Inventory

    Indoor air pollution is a complex mixture of chemicals originating from outdoor air and indoor sources. oxicology studies of these mixtures are limited by difficulties in obtaining indoor air samples or appropriately simulated exposures. he concentration of pollutants from indoor...

  6. Indoor Air Quality

    MedlinePlus

    ... is critical. Learn how to recognize and eliminate pollution sources in and around your home, on the ... especially vulnerable to the harmful effects of air pollution. Cleaning up pollution in their schools will help ...

  7. Evaluating sources of indoor air pollution

    SciTech Connect

    Tichenor, B.A.; Sparks, L.E.; White, J.B.; Jackson, M.D. )

    1988-01-01

    Scientists and engineers in the Indoor Air Brand of EPS'a Air and Energy Engineering Research Laboratory are conducting research to increase the state of knowledge concerning indoor air pollution factors. A three phase program is being implemented. The purpose of this paper is to show how their approach can be used to evaluate specific sources of indoor air pollution. Pollutants from two sources are examined: para-dichlorobenzene emissions from moth crystal cakes; and particulate emissions from unvented kerosene heaters.

  8. FUNDAMENTAL MASS TRANSFER MODEL FOR INDOOR AIR EMISSION FROM SURFACE COATINGS

    EPA Science Inventory

    The paper, discusses the work of researchers at the U.S. EPA's Air and Energy Engineering Research Laboratory (Indoor Air Branch) who are evaluating mass transfer models based on fundamental principles to determine their effectiveness in predicting emissions from indoor architect...

  9. EPA Pushing Improved Air Quality in Schools.

    ERIC Educational Resources Information Center

    Sack, Joetta L.

    2002-01-01

    Discusses how, in response to the growing problem of poor air quality in schools, the Environmental Protection Agency (EPA) has set new voluntary air-quality guidelines for schools. Addresses common air-related irritants; successful efforts at Guerrero Elementary School in Mesa, Arizona; preventive maintenance; and a sample of the EPA's…

  10. INDOOR AIR QUALITY MODELING (INDOOR ENVIRONMENT MANAGEMENT BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Indoor Environment Management Branch of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC, has developed an indoor air quality (IAQ) model for analyzing the impact of sources, sinks, ventilation, and air cleaners on indoor air quality. Early ...

  11. TESTING INDOOR AIR PRODUCTS: ONE APPROACH TO DEVELOPING WIDELY ACCEPTED PROTOCOLS

    EPA Science Inventory

    The paper describes an approach to developing widely acce ted products for testing indoor air products. [NOTE: Research Triangle Institute (RTI) is a partner in the U.S. Environmental Protection Agency's (EPA's) Environmental Technology Verification (ETV) Program with responsibil...

  12. A Breath of Fresh Air: Addressing Indoor Air Quality

    ERIC Educational Resources Information Center

    Palliser, Janna

    2011-01-01

    Indoor air pollution refers to "chemical, biological, and physical contamination of indoor air," which may result in adverse health effects (OECD 2003). The causes, sources, and types of indoor air pollutants will be addressed in this article, as well as health effects and how to reduce exposure. Learning more about potential pollutants in home…

  13. Indoor Air Quality in Schools: Clean Air Is Good Business.

    ERIC Educational Resources Information Center

    Guarneiri, Michele A.

    2003-01-01

    Describes the effect of poor indoor air quality (IAQ) on student health, the cost of safeguarding good IAQ, the cause of poor IAQ in schools, how to tell whether a school has an IAQ problem, and how the U.S. Environmental Protection Agency can help schools improve indoor air quality though the use of their free "Indoor Air Quality Tools for…

  14. Solid waste transuranic storage and assay facility indoor air sampling

    SciTech Connect

    Pingel, L.A., Westinghouse Hanford

    1996-08-20

    The purpose of the study is to collect and analyze samples of the indoor air at the Transuranic Storage and Assay Facility (TRUSAF), Westinghouse Hanford. A modified US EPA TO-14 methodology, using gas chromatography/mass spectrography, may be used for the collection and analysis of the samples. The information obtained will be used to estimate the total release of volatile organic compounds from TRUSAF to determine the need for air emmission permits.

  15. Managing Indoor Air Quality in Schools.

    ERIC Educational Resources Information Center

    Woolums, Jennifer

    This publication examines the causes and effects of poor indoor air quality and provides information for reducing exposure to indoor contaminants in schools. It discusses the various indoor pollutants found in schools, including dust, chemical agents, gases, and volatile organic compounds; where they are found in schools; and their health effects…

  16. INDOOR AIR ASSESSMENT - INDOOR CONCENTRATIONS OF ENVIRONMENTAL CARCINOGENS

    EPA Science Inventory

    In this report, indoor concentration data are presented for the following general categories of air pollutants: adon-222, environmental tobacco smoke (ETS), asbestos, gas phase organic compounds, formaldehyde, polycyclic aromatic hydrocarbons (PAN), pesticides, and inorganic comp...

  17. 66 FR 64946 - Indoor Air Quality

    Federal Register 2010, 2011, 2012, 2013, 2014

    2001-12-17

    ... Occupational Safety and Health Administration 29 CFR Parts 1910, 1915, 1926 and 1928 RIN 1218-AB37 Indoor Air Quality AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION: Withdrawal of proposal. SUMMARY: OSHA is withdrawing its Indoor Air Quality proposal and terminating the...

  18. TESTS OF INDOOR AIR QUALITY SINKS

    EPA Science Inventory

    Experiments were conducted in a room-size test chamber to determine the sink effects of selected materials on indoor air concentrations of p-dichlorobenzene (PDCB). hese effects might alter pollutant behavior from that predicted using similar indoor air quality models, by reducin...

  19. Indoor Air Quality Tools for Schools Program: Benefits of Improving Air Quality in the School Environment.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    The U.S. Environmental Protection Agency (EPA) developed the Indoor Air Quality Tools for Schools (IAQ TfS) Program to help schools prevent, identify, and resolve their IAQ problems. This publication describes the program and its advantages, explaining that through simple, low-cost measures, schools can: reduce IAQ-related health risks and…

  20. Controlling Indoor Air Pollution from Moxibustion

    PubMed Central

    Lu, Chung-Yen; Kang, Sy-Yuan; Liu, Shu-Hui; Mai, Cheng-Wei; Tseng, Chao-Heng

    2016-01-01

    Indoor air quality (IAQ) control of hospitals plays a critical role in protecting both hospital staffs and patients, particularly those who are highly susceptible to the adverse effects of indoor noxious hazards. However, moxibustion in outpatient departments (OPDs) of traditional Chinese medicine (TCM) may be a source of indoor air pollution in hospitals. Some studies have investigated indoor air pollution during moxibustion in Chinese medicine clinics (CMCs) and moxibustion rooms, demonstrating elevated air pollutants that pose a threat to the health of medical staff and patients. Our study investigated the indoor air pollutants of indoor carbon dioxide (CO2), carbon monoxide (CO), formaldehyde (HCHO), total volatile organic compounds (TVOCs), airborne particulate matter with a diameter of ≤10 µm (PM10) and ≤2.5 µm (PM2.5) during moxibustion in an acupuncture and moxibustion room of the OPD in a hospital in Taipei. To evaluate the different control strategies for indoor air pollution from moxibution, a comparison of air pollutants during moxibution among the methods of using alternative old moxa wools, local exhaust ventilation and an air cleaner was conducted. In this study, burning alternative old moxa wools for moxibustion obviously reduced all gaseous pollutants except for aerosols comparing burning fresh moxa wools. Using local exhaust ventilation reduced most of the aerosols after burning moxa. We also found that using an air cleaner was inefficient for controlling indoor air pollutants, particularly gaseous pollutants. Therefore, combining replacing alternative old moxa wools and local exhaust ventilation could be a suitable design for controlling indoor air pollution during moxibustion therapy. PMID:27331817

  1. Controlling Indoor Air Pollution from Moxibustion.

    PubMed

    Lu, Chung-Yen; Kang, Sy-Yuan; Liu, Shu-Hui; Mai, Cheng-Wei; Tseng, Chao-Heng

    2016-01-01

    Indoor air quality (IAQ) control of hospitals plays a critical role in protecting both hospital staffs and patients, particularly those who are highly susceptible to the adverse effects of indoor noxious hazards. However, moxibustion in outpatient departments (OPDs) of traditional Chinese medicine (TCM) may be a source of indoor air pollution in hospitals. Some studies have investigated indoor air pollution during moxibustion in Chinese medicine clinics (CMCs) and moxibustion rooms, demonstrating elevated air pollutants that pose a threat to the health of medical staff and patients. Our study investigated the indoor air pollutants of indoor carbon dioxide (CO₂), carbon monoxide (CO), formaldehyde (HCHO), total volatile organic compounds (TVOCs), airborne particulate matter with a diameter of ≤10 µm (PM10) and ≤2.5 µm (PM2.5) during moxibustion in an acupuncture and moxibustion room of the OPD in a hospital in Taipei. To evaluate the different control strategies for indoor air pollution from moxibution, a comparison of air pollutants during moxibution among the methods of using alternative old moxa wools, local exhaust ventilation and an air cleaner was conducted. In this study, burning alternative old moxa wools for moxibustion obviously reduced all gaseous pollutants except for aerosols comparing burning fresh moxa wools. Using local exhaust ventilation reduced most of the aerosols after burning moxa. We also found that using an air cleaner was inefficient for controlling indoor air pollutants, particularly gaseous pollutants. Therefore, combining replacing alternative old moxa wools and local exhaust ventilation could be a suitable design for controlling indoor air pollution during moxibustion therapy. PMID:27331817

  2. PROJECT SUMMARY -CANDLES AND INCENSE AS POTENTIAL SOURCES OF INDOOR AIR POLLUTION: MARKET ANALYSIS AND LITERATURE REVIEW (EPA/600/SR-01/001)

    EPA Science Inventory

    The report summarizes available information on candles and incense as potential sources ofindoor air pollution. It covers (1) market information and (2) a scientific literature review. The market information collected focuses on production and sales data, typical uses in the US,...

  3. SOLUTIONS TO INDOOR AIR PROBLEMS-LET'S FIRST UNDERSTAND THE SOURCE

    EPA Science Inventory

    The paper shows how EPA's Source Ranking Database (SRD) can be used, together with literature studies, to identify industrial product categories worthy of indoor air source characterization research. The SRD is a tool under development by EPA to identify potentially hazardous in...

  4. EVALUATING SOURCES OF INDOOR AIR POLLUTION

    EPA Science Inventory

    The article discusses a three-phase approach, employing environmental chambers, indoor air quality (IAQ) models, and test house experiments, that is effective in linking sources of indoor pollutants to measured concentrations. mission factors developed in test chambers can be use...

  5. Indoor Air Quality Basics for Schools.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    This fact sheet details important information on Indoor Air Quality (IAQ) in school buildings, problems associated with IAQ, and various prevention and problem-solving strategies. Most people spend 90 percent of their time indoors, therefore the Environmental Protection Agency ranks IAQ in the top four environmental risks to the public. The…

  6. Indoor Air Quality Guidelines for Pennsylvania Schools.

    ERIC Educational Resources Information Center

    Zimmerman, Robert S., Jr.

    This report provides information and practical guidance on how to prevent indoor air quality (IAQ) problems in schools, and it describes how to implement a practical plan of action using a minimal amount of resources. It includes general guidelines to prevent or help resolve IAQ problems, guidelines on specific indoor contaminants, recommendations…

  7. Research review: Indoor air quality control techniques

    SciTech Connect

    Fisk, W.J.

    1986-10-01

    Techniques for controlling the concentration of radon, formaldehyde, and combustion products in the indoor air are reviewed. The most effective techniques, which are generally based on limiting or reducing indoor pollutant source strengths, can decrease indoor pollutant concentrations by a factor of 3 to 10. Unless the initial ventilation rate is unusually low, it is difficult to reduce indoor pollutant concentrations more than approximately 50% by increasing the ventilation rate of an entire building. However, the efficiency of indoor pollutant control by ventilation can be enhanced through the use of local exhaust ventilation near concentrated sources of pollutants, by minimizing short circuiting of air from supply to exhaust when pollutant sources are dispersed and, in some situations, by promoting a displacement flow of air and pollutants toward the exhaust. Active air cleaning is also examined briefly. Filtration and electrostatic air cleaning for removal of particles from the indoor air are the most practical and effective currently available techniques of air cleaning. 49 refs., 7 figs.

  8. Classroom Air Quality: Exploring the Indoor Environment.

    ERIC Educational Resources Information Center

    Borst, Richard

    1997-01-01

    Describes a teacher's experiences with Global Lab, which is depicted as a real-world networked science laboratory connecting individuals investigating global and local environmental change. Focuses on techniques to monitor indoor air quality. (DDR)

  9. Indoor air quality investigation protocols

    SciTech Connect

    Greene, R.E.; Williams, P.L.

    1996-10-01

    Over the past 10 to 15 years, an increasing number of complaints about discomfort and health effects related to indoor air quality (IAQ) have been reported. The increase in complaints has been accompanied by an increase in requests for IAQ investigations. This study presents an overview of the many IAQ investigation protocols published since 1984. For analysis, the protocols are divided into four categories: solution-oriented, building diagnostics, industrial hygiene, and epidemiology. In general, the protocols begin with general observations, proceed to collect more specific data as indicated, and end with conclusions and recommendations. A generic IAQ protocol is presented that incorporates the common aspects of the various protocols. All of the current protocols place heavy emphasis on the ventilation system during the investigation. A major problem affecting all of the current protocols is the lack of generally accepted IAQ standards. IN addition, the use of questionnaires, occupant interviews, and personal diaries (as well as the point in the investigation at which they are administered) differs among the protocols. Medical evaluations and verification procedures also differ among the protocols.

  10. EPA AIR MONITORING BANK PROPOSAL

    EPA Science Inventory

    Specimen banking of air pollution samples has not been attempted because of the complexity of this type of environmental medium. ollutants may exist in air as gases or particles or distributed in between these two states. mpirically, air pollutants may be categorized as volatiles...

  11. Enhancing indoor air quality -The air filter advantage.

    PubMed

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality. PMID:26628762

  12. Enhancing indoor air quality –The air filter advantage

    PubMed Central

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality. PMID:26628762

  13. Indoor Air Quality: Is Increased Ventilation the Answer?

    ERIC Educational Resources Information Center

    Hansen, Shirley

    1989-01-01

    Explains how indoor air quality is affected by pollutants in the air and also by temperature, humidity, and ventilation. Increased ventilation alone seldom solves the "sick building syndrome." Lists ways to improve indoor air quality and optimize energy efficiency. (MLF)

  14. The status of indoor air pollution.

    PubMed Central

    Esmen, N A

    1985-01-01

    Indoor air pollution, specifically restricted in its meaning to chemicals in home indoor air environment, presents a new and probably an important challenge to the researchers of the air pollution field. The general overview of this topic suggests that the voluminous data generated in the past ten or so years have only defined the rudiments of the problem, and significant areas of research still exist. Among the important areas where information is lacking, the exposures to contaminants generated by the use of consumer products and through hobbies and crafts represent perhaps the most urgent need for substantial research. PMID:4085429

  15. RESEARCH OVERVIEW: SOURCES OF INDOOR AIR POLLUTANTS

    EPA Science Inventory

    The paper briefly traces the history of air quality problems in residential, office, and public access buildings to show the evolution of indoor air quality (IAQ) concerns. It then briefly discusses sources of IAQ problems--both known and suspected--then reviews the current state...

  16. MANAGING INDOOR AIR QUALITY IN THE USA

    EPA Science Inventory

    The paper gives an overview of managing indoor air quality (IAQ) in the U.S. In contrast to outdoor air, which is regulated through various federal and state statutes, there is no unified and comprehensive governmental regulation of IAQ. Therefore, IAQ is managed through variou...

  17. Indoor Air Quality in Brazilian Universities

    PubMed Central

    Jurado, Sonia R.; Bankoff, Antônia D. P.; Sanchez, Andrea

    2014-01-01

    This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC) (n = 15) and naturally ventilated (NV) (n = 15) classrooms. The parameters of interest were indoor carbon dioxide (CO2), temperature, relative humidity (RH), wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively). The average indoor airborne dust concentration exceeded the Brazilian standards (<80 μg/m3) in both NV and AC classrooms. The levels of CO2 in the AC rooms were significantly different from the NV rooms (1433.62 ± 252.80 and 520.12 ± 37.25 ppm, respectively). The indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem. PMID:25019268

  18. What is IAQ. [Indoor Air Quality (IAQ)

    SciTech Connect

    Huff, G.

    1992-01-01

    Does indoor air quality (IAQ) affect you The answer is an emphatic YES Problems affecting indoor air quality can range from a stinky rest room to Sick Building Syndrome. IAQ goes beyond avoiding odors through sufficient ventilation. Many health issues are also involved. IAQ problems are generally complex with no single source causing them. Rather, they result from a combination of several sources that require an organized, but flexible, plan of attack. The purpose of this paper is to define the terms associated with the subject of IAQ, provide some history on the subject, and finally describe my experiences with the continuing process of assessing and remediating problems associated with poor indoor air quality in a new laboratory building.

  19. Building ventilation and indoor air quality

    SciTech Connect

    Hollowell, C.D.; Berk, J.V.; Boegel, M.L.; Miksch, R.R.; Nazaroff, W.W.; Traynor, G.W.

    1980-01-01

    Rising energy prices, among other factors, have generated an incentive to reduce ventilation rates and thereby reduce the cost of heating and cooling buildings. Reduced infiltration and ventilation in buildings may significantly increase exposure to indoor contaminants and perhaps have adverse effects on occupant health and comfort. Four indoor air contaminants - carbon monoxide and nitrogen dioxide from gas appliances; formaldehyde from particleboard, plywood, urea-formaldehyde foam insulation, and gas appliances; and radon from building materials, soil, and ground water - are currently receiving considerable attention in the context of potential health risks associated with reduced infiltration and ventilation rates. These air contaminants in conventional and energy efficient buildings were measured and analyzed with a view to assessing their potential health risks and various control strategies capable of lowering pollutant concentrations. Preliminary findings suggest that further intensive studies are needed in order to develop criteria for maintaining acceptable indoor air quality without compromising energy efficiency.

  20. Parent's Guide to School Indoor Air Quality. Revised

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., 2012

    2012-01-01

    Air pollution is air pollution, indoors or out. Good indoor air quality (IAQ) contributes to a favorable learning environment for students, protects health, and supports the productivity of school personnel. In schools in poor repair, leaky roofs and crumbling walls have caused additional indoor air quality problems, including contamination with…

  1. Air Quality and Indoor Environmental Exposures: Clinical Impacts

    EPA Science Inventory

    Indoor air quality (IAQ) is a term which refers to the air quality within and around buildings and homes as it relates to the health and comfort of the occupants. Many ambient (outdoor) air pollutants readily permeate indoor spaces. Because indoor air can be considerably more pol...

  2. Evaluating sources of indoor air pollution

    SciTech Connect

    Tichenor, B.A.; Sparks, L.E.; White, J.B.; Jackson, M.D.

    1988-05-01

    This paper discusses a three-phase approach, employing environmental chambers, indoor air quality (IAQ) models, and test-house experiments, that is effective in linking sources of indoor pollutants to measured concentrations. Emission factors developed in test chambers can be used to evaluate full-scale indoor environments. A PC-based IAQ model has been developed that can accurately predict indoor concentrations of specific pollutants under controlled conditions in a test house. The model is also useful in examining the effect of pollutant sinks and variations in ventilation parameters. Pollutants were examined from: (1) para-dichloro-benzene emissions from moth crystal cakes; and, (2) particulate emissions from unvented kerosene heaters. However, the approach has not been validated for other source types, including solvent based materials and aerosol products.

  3. AIR CLEANERS FOR INDOOR AIR POLLUTION CONTROL (CHAPTER 10)

    EPA Science Inventory

    The chapter describes an experimental study to evaluate performance characteristics of currently available controls for indoor air pollutants, including both particles and gases. he study evaluated the particle-size-dependent collection efficiency of seven commercially available ...

  4. Office Building Occupant's Guide to Indoor Air Quality

    MedlinePlus

    ... building ventilation systems; moisture and humidity; and occupant perceptions and susceptibilities. In addition, there are many other factors that affect comfort or perception of indoor air quality. Controlling indoor air quality ...

  5. Foliage Plants for Improving Indoor Air Quality

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1988-01-01

    NASA's research with foliage houseplants during the past 10 years has produced a new concept in indoor air quality improvement. This new and exciting technology is quite simple. Both plant leaves and roots are utilized in removing trace levels of toxic vapors from inside tightly sealed buildings. Low levels of chemicals such as carbon monoxide and formaldehyde can be removed from indoor environments by plant leaves alone, while higher concentrations of numerous toxic chemicals can be removed by filtering indoor air through the plant roots surrounded by activated carbon. The activated carbon absorbs large quantities of the toxic chemicals and retains them until the plant roots and associated microorganisms degrade and assimilate these chemicals.

  6. INDOOR AIR QUALITY MODELING (CHAPTER 58)

    EPA Science Inventory

    The chapter discussses indoor air quality (IAQ) modeling. Such modeling provides a way to investigate many IAQ problems without the expense of large field experiments. Where experiments are planned, IAQ models can be used to help design experiments by providing information on exp...

  7. CARBON ADSORPTION FOR INDOOR AIR CLEANING

    EPA Science Inventory

    The paper discusses the use of carbon adsorption for indoor air cleaning, focusing on the removal of volatile organic compounds (VOCs) using granular activated carbon (GAC). It addresses GAC performance in two directions. Initially, it presents performance measurements for GAC at...

  8. HARVARD'S INDOOR AIR POLLUTION/HEALTH STUDY

    EPA Science Inventory

    An indoor air pollution/acute respiratory health study is being conducted by researchers at the Harvard University School of Public Health. Upper and lower respiratory symptoms of 300 children living in Watertown, Massachusetts, have been recorded on a daily diary by a parent. Ev...

  9. Teacher's Guide to Indoor Air Pollutants.

    ERIC Educational Resources Information Center

    National Safety Council, Washington, DC. Environmental Health Center.

    This guide, designed for fourth- through sixth-grade classrooms, contains information teachers will need to teach an educational unit on indoor air quality. It draws on a variety of students' skills, including science, vocabulary, reasoning, math, and basic biology. Each lesson comes with suggested activities that highlight and reinforce what is…

  10. Indoor Air Pollution: An Energy Management Problem?

    ERIC Educational Resources Information Center

    Cousins, David M.; Kulba, John W.

    1987-01-01

    Energy conservation measures have led to airtight buildings and reduced levels of ventilation resulting in indoor air pollution. Five kinds of contaminants--tobacco smoke, combustion products, microorganisms, organic compounds, and radon--are described, their hazards considered, and countermeasures outlined. (MLF)

  11. Elderly exposure to indoor air pollutants

    NASA Astrophysics Data System (ADS)

    Almeida-Silva, M.; Wolterbeek, H. T.; Almeida, S. M.

    2014-03-01

    The aim of this work was to characterize the indoor air quality in Elderly Care Centers (ECCs) in order to assess the elders' daily exposure to air pollutants. Ten ECCs hosting 384 elderly were selected in Lisbon and Loures. Firstly, a time-budget survey was created based on questionnaires applied in the studied sites. Results showed that in average elders spend 95% of their time indoors splitted between bedrooms and living-rooms. Therefore, a set of physical and chemical parameters were measured continuously during the occupancy period in these two indoor micro-environments and in the outdoor. Results showed that indoor was the main environment contributing for the elders' daily exposure living in ECCs. In the indoor, the principal micro-environment contributing for the elders' daily exposure varied between bedrooms and living-rooms depending not only on the characteristics of the ECCs but also on the pollutants. The concentrations of CO2, VOCt, O3 and PM10 exceeded the limit values predominantly due to the insufficient ventilation preconized in the studied sites.

  12. Indoor air and human health: major indoor air pollutants and their health implications

    SciTech Connect

    Not Available

    1984-01-01

    This publication is a collection of abstracts of papers presented at the Indoor Air and Human Health symposium. Session titles include: Radon, Microorganisms, Passive Cigarette Smoke, Combustion Products, Organics, and Panel and Audience Discussion.

  13. 59 FR- Indoor Air Quality; Proposed Rule DEPARTMENT OF LABOR

    Federal Register 2010, 2011, 2012, 2013, 2014

    1994-04-05

    ... September 20, 1991, a Request for Information (RFI) (56 FR 47892) on indoor air quality problems, in order... Occupational Safety and Health Administration 29 CFR Parts 1910, 1915, 1926, and 1928 Indoor Air Quality..., 1926, 1928 RIN 1218-AB37 Indoor Air Quality AGENCY: Occupational Safety and Health Administration...

  14. SURVEY OF INDOOR AIR QUALITY HEALTH CRITERIA AND STANDARDS

    EPA Science Inventory

    The report is a survey of the state-of-the-art of the scientific studies on indoor air quality criteria and standards. The principal subject is the indoor nonworkplace environment. Indoor air quality standards are classified into three types: (1) maximum allowable air quality sta...

  15. A smart indoor air quality sensor network

    NASA Astrophysics Data System (ADS)

    Wen, Jin

    2006-03-01

    The indoor air quality (IAQ) has an important impact on public health. Currently, the indoor air pollution, caused by gas, particle, and bio-aerosol pollutants, is considered as the top five environmental risks to public health and has an estimated cost of $2 billion/year due to medical cost and lost productivity. Furthermore, current buildings are especially vulnerable for chemical and biological warfare (CBW) agent contamination because the central air conditioning and ventilation system serve as a nature carrier to spread the released agent from one location to the whole indoor environment within a short time period. To assure the IAQ and safety for either new or existing buildings, real time comprehensive IAQ and CBW measurements are needed. With the development of new sensing technologies, economic and reliable comprehensive IAQ and CBW sensors become promising. However, few studies exist that examine the design and evaluation issues related to IAQ and CBW sensor network. In this paper, relevant research areas including IAQ and CBW sensor development, demand control ventilation, indoor CBW sensor system design, and sensor system design for other areas such as water system protection, fault detection and diagnosis, are reviewed and summarized. Potential research opportunities for IAQ and CBW sensor system design and evaluation are discussed.

  16. Quality of indoor residential air and health

    PubMed Central

    Dales, Robert; Liu, Ling; Wheeler, Amanda J.; Gilbert, Nicolas L.

    2008-01-01

    About 90% of our time is spent indoors where we are exposed to chemical and biological contaminants and possibly to carcinogens. These agents may influence the risk of developing nonspecific respiratory and neurologic symptoms, allergies, asthma and lung cancer. We review the sources, health effects and control strategies for several of these agents. There are conflicting data about indoor allergens. Early exposure may increase or may decrease the risk of future sensitization. Reports of indoor moulds or dampness or both are consistently associated with increased respiratory symptoms but causality has not been established. After cigarette smoking, exposure to environmental tobacco smoke and radon are the most common causes of lung cancer. Homeowners can improve the air quality in their homes, often with relatively simple measures, which should provide health benefits. PMID:18625986

  17. ANALYSIS OF BASELINE INDOOR AIR QUALITY PARAMETERS IN U.S. OFFICE BUILDINGS

    EPA Science Inventory

    The U.S. EPA's Office of Radiation and Indoor Air studied 100 public and private offices buildings across the U.S. from 1994-1998. The purpose of the study, entitled the Building Assessment Survey and Evaluation Study (BASE), was to: a) provide a distribution of IAQ, building, a...

  18. Equivalence in Ventilation and Indoor Air Quality

    SciTech Connect

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  19. Indoor air quality: The legal landscape II

    SciTech Connect

    Neet, J.O. Jr.; Smith, T.A.

    1997-12-31

    Today`s office environment is as different from its predecessor as an automobile is from a horse and buggy. A 1950s office typically contained tile floors, painted walls, plaster ceilings, carbon paper, and plentiful fresh air circulating through windows that were usually open when weather permitted. In the 1990s, the decor has shifted to carpeted floors, synthetic wall coverings, ceiling tile and multiple copiers. Sophisticated building materials and motorized office products can emit unwelcome constituents into the indoor air, yet ventilation is limited by windows that do not open. One result of these changes has been an unprecedented and ever-increasing concern about indoor air quality (IAQ). Some studies rank indoor air pollution as today`s number one environmental health risk. Increased media attention to the topic has increased public awareness, which has increased litigation and regulatory activity in the area. This paper explores the legal landscape of IAQ in the US, ranging from legislative to regulatory activity on both the federal and state levels, and from civil litigation to actions brought before administrative boards. Along the way, the paper defines and discusses such IAQ problems as building-related illness (BRI) and sick building syndrome (SBS), examining the magnitude of the problems and their possible causes. Finally, the paper provides suggestions to those potentially liable for alleged injuries from indoor air pollution, including architects, builders, contractors, building product manufacturers, building owners and managers, building sellers, employers, and engineering and environmental consultants. This paper is an update of a paper presented at the Air and Waste Management Association`s Annual Meeting in 1992.

  20. Indoor air quality and health in schools*

    PubMed Central

    Ferreira, Ana Maria da Conceição; Cardoso, Massano

    2014-01-01

    Objective: To determine whether indoor air quality in schools is associated with the prevalence of allergic and respiratory diseases in children. Methods: We evaluated 1,019 students at 51 elementary schools in the city of Coimbra, Portugal. We applied a questionnaire that included questions regarding the demographic, social, and behavioral characteristics of students, as well as the presence of smoking in the family. We also evaluated the indoor air quality in the schools. Results: In the indoor air of the schools evaluated, we identified mean concentrations of carbon dioxide (CO2) above the maximum reference value, especially during the fall and winter. The CO2 concentration was sometimes as high as 1,942 ppm, implying a considerable health risk for the children. The most prevalent symptoms and respiratory diseases identified in the children were sneezing, rales, wheezing, rhinitis, and asthma. Other signs and symptoms, such as poor concentration, cough, headache, and irritation of mucous membranes, were identified. Lack of concentration was associated with CO2 concentrations above the maximum recommended level in indoor air (p = 0.002). There were no other significant associations. Conclusions: Most of the schools evaluated presented with reasonable air quality and thermal comfort. However, the concentrations of various pollutants, especially CO2, suggest the need for corrective interventions, such as reducing air pollutant sources and improving ventilation. There was a statistically significant association between lack of concentration in the children and exposure to high levels of CO2. The overall low level of pollution in the city of Coimbra might explain the lack of other significant associations. PMID:25029649

  1. Coping with Indoor Air Pollution

    MedlinePlus

    ... itself. Household chemical cleaners Use baking soda or vinegar and water as household cleaners. For a job ... after each use by using one-part white vinegar to three-parts water. Let the pieces air- ...

  2. DEVELOPING A FRAMEWORK FOR TESTING INDOOR AIR PRODUCTS

    EPA Science Inventory

    The paper discusses the development of a framework for testing products used indoors for appropriate environmental attributes, as part of EPA's Environmental Technology Verification (ETV) program. Test protocols are being established for products that fit into three categories: ...

  3. The hydroxyl radical (OH) in indoor air: Sources and implications

    NASA Astrophysics Data System (ADS)

    Gligorovski, Sasho; Wortham, Henri; Kleffmann, Jörg

    2014-12-01

    Considering that people spend on average 80-90% of their life indoors, indoor air quality is of major importance for human health. In addition to specific indoor sources and entrainment from the outside atmosphere, harmful pollutants can be also formed indoors by in-situ secondary chemistry. While the first two processes have been well studied in the past, our understanding of indoor oxidation processes is still in its infancy compared to the ambient atmosphere.

  4. Safe as houses? Indoor air pollution and health.

    PubMed

    Sharpe, Mike

    2004-05-01

    Indoor air pollution has long been the Cinderella of the environmental world: left at home, out of sight and out of mind. But as our knowledge of indoor pollution grows, policy-makers are coming to realise that improving indoor environments can deliver big gains for public health. The new front line on air quality will be on our own doorsteps. PMID:15152301

  5. The impact of wood stove technology upgrades on indoor residential air quality

    NASA Astrophysics Data System (ADS)

    Allen, Ryan W.; Leckie, Sara; Millar, Gail; Brauer, Michael

    2009-12-01

    Fine particulate matter (PM 2.5) air pollution has been linked to adverse health impacts, and combustion sources including residential wood-burning may play an important role in some regions. Recent evidence suggests that indoor air quality may improve in homes where older, non-certified wood stoves are exchanged for lower emissions EPA-certified alternatives. As part of a wood stove exchange program in northern British Columbia, Canada, we sampled outdoor and indoor air at 15 homes during 6-day sampling sessions both before and after non-certified wood stoves were exchanged. During each sampling session two consecutive 3-day PM 2.5 samples were collected onto Teflon filters, which were weighed and analyzed for the wood smoke tracer levoglucosan. Residential PM 2.5 infiltration efficiencies ( Finf) were estimated from continuous light scattering measurements made with nephelometers, and estimates of Finf were used to calculate the outdoor- and indoor-generated contributions to indoor air. There was not a consistent relationship between stove technology and outdoor or indoor concentrations of PM 2.5 or levoglucosan. Mean Finf estimates were low and similar during pre- and post-exchange periods (0.32 ± 0.17 and 0.33 ± 0.17, respectively). Indoor sources contributed the majority (˜65%) of the indoor PM 2.5 concentrations, independent of stove technology, although low indoor-outdoor levoglucosan ratios (median ≤ 0.19) and low indoor PM 2.5-levoglucosan correlations ( r ≤ 0.19) suggested that wood smoke was not a major indoor PM 2.5 source in most of these homes. In summary, despite the potential for extensive wood stove exchange programs to reduce outdoor PM 2.5 concentrations in wood smoke-impacted communities, we did not find a consistent relationship between stove technology upgrades and indoor air quality improvements in homes where stoves were exchanged.

  6. JV Task 86 - Identifying the Source of Benzene in Indoor Air Using Different Compound Classes from TO-15 Data

    SciTech Connect

    Steven B. Hawthorne

    2007-04-15

    Volatile organic compound (VOC) data that had already been collected using EPA method TO-15 at four different sites under regulatory scrutiny (a school, strip mall, apartment complex, and business/residential neighborhood) were evaluated to determine whether the source of indoor air benzene was outdoor air or vapor intrusion from contaminated soil. Both the use of tracer organics characteristic of different sources and principal component statistical analysis demonstrated that the source of indoor air at virtually all indoor sampling locations was a result of outdoor air, and not contaminated soil in and near the indoor air-sampling locations. These results show that proposed remediation activities to remove benzene-contaminated soil are highly unlikely to reduce indoor air benzene concentrations. A manuscript describing these results is presently being prepared for submission to a peer-reviewed journal.

  7. PASSIVE/DIFFUSIVE SAMPLERS FOR PESTICIDES IN RESIDENTIAL INDOOR AIR

    EPA Science Inventory

    Pesticides applied indoors vaporize from treated surfaces (e.g., carpets and baseboards) resulting in elevated air concentrations that may persist for long periods after applications. Estimating long-term respiratory exposures to pesticide vapors in residential indoor environme...

  8. ISSUES THAT MUST BE ADDRESSED FOR RISK ASSESSMENT OF MIXED EXPOSURES: THE EPA EXPERIENCE WITH AIR QUALITY

    EPA Science Inventory

    Issues that Must be Addressed for Risk Assessment of Mixed Exposures: The EPA Experience with Air Quality

    Daniel L. Costa, Sc.D.

    Abstract
    Humans are routinely exposed to a complex mixture of air pollutants in both their outdoor and indoor environments. The wide...

  9. Regulation of indoor air quality: The last frontier of environmental regulation

    SciTech Connect

    Dickson, R.B.

    1994-12-31

    Indoor air pollution (IAP) is ranked by the Environmental Protection Agency (EPA) among the top five environmental risks to human health. The World Health Organization estimates that nearly one in every six commercial buildings in the United States suffers from sick-building syndrome and that occupants of another one in twelve suffer from building-related illnesses. Indoor air quality (IAQ) problems cost American business $10 billion per year through lowered productivity, absenteeism, and medical costs. Yet despite the importance and high cost of IAQ problems, indoor air is not yet specifically addressed in any federal regulatory program. The reason probably is because indoor air is a quanitatively different environment in which traditional modes of regulation, based on pollutant-by pollutant risk assessments, are of limited utility. This paper covers the following topics: four factors influencing IAQ regulation; EPA regulation of indoor air; the role of the consumer product safety commission; OSHA and IAQ issues; state regulation and economic concerns; the pressure for legislation.

  10. Achieving indoor air quality through contaminant control

    SciTech Connect

    Katzel, J.

    1995-07-10

    Federal laws outlining industry`s responsibilities in creating a healthy, hazard-free workspace are well known. OSHA`s laws on interior air pollution establish threshold limit values (TLVs) and permissible exposure limits (PELs) for more than 500 potentially hazardous substances found in manufacturing operations. Until now, OSHA has promulgated regulations only for the manufacturing environment. However, its recently-proposed indoor air quality (IAQ) ruling, if implemented, will apply to all workspaces. It regulates IAQ, including environmental tobacco smoke, and requires employers to write and implement IAQ compliance plans.

  11. Air Conditioning Does Reduce Air Pollution Indoors

    ERIC Educational Resources Information Center

    Healy, Bud

    1970-01-01

    Report of the winter meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. Subjects covered are--(1) title subject, (2) predictions for the human habitat in 1994, (3) fans, and (4) fire safety in buildings. (JW)

  12. Commissioning to avoid indoor air quality problems

    SciTech Connect

    Sterling, E.M.; Collett, C.W. ); Turner, S. ); Downing, C.C. )

    1992-10-01

    This paper reports on indoor air quality (IAQ) which has become a pervasive problem plaguing the building industry worldwide. Poor IAQ in commercial and office buildings is primarily related to new building technology, new materials and equipment and energy management operating systems. Occupants of buildings with air quality problems suffer from a common series of symptoms. As early as 1982, ASHRAE, realizing the significance of the problem, produced an IAQ position statement that identified strategies for solving IAQ problems. Many of those strategies have now been implemented, including Standard 62-1989, Ventilation for Acceptable Air Quality; Standard 90.1, Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings; the 100 series of energy standards; and Guideline 1, Guideline for Commissioning of HVAC Systems.

  13. Are Ventilation Filters Degrading Indoor Air Quality in California Classrooms?

    SciTech Connect

    Fisk, William J.; Destaillats, H.; Apte, M.G.; Destaillats,, Hugo; Fisk, Michael G. Apte and William J.

    2008-10-01

    Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects studenthealth and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air?conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone deposition in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent towhich filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.

  14. How to avoid indoor air quality (IAQ) claims through better design and materials selection

    SciTech Connect

    Halliwell, J.L.

    1994-12-31

    Over the past 5 years, there has been an explosion of complaints, claims and subsequent litigation resulting from unacceptable indoor air quality (IAQ) in buildings. Unlike asbestos claims that were directed primarily against manufacturers, IAQ litigation is often leveled against building owners, their architects, engineers, and contractors by building occupants. The problem is getting worse. EPA, citing that the air inside buildings is often as much as 100 times more polluted than the air outside, now considers indoor air pollution as one of the most severe environmental risks to Human Health in the US. The World Health Organization (WHO) estimates that approximately 30% of all new or renovated buildings have an indoor air quality problem. In the past, the importance of indoor air quality was overshadowed by concerns with the outdoor environment. The quality of the indoor air is now a major health and legal issue for building owners and their agents. This presentation will offer a brief overview of Halliwell Engineering Associates` 40 years of HVAC experience in analyzing and resolving IAQ problems in buildings. It will present some of the typical causes of IAQ complaints, common mistakes that designers make and how to avoid them. It will also present an overview of how construction materials often contribute to the problem by generating a large number of pollutants themselves, and what building owners can do to minimize that problem. Finally, they will provide specifics on how to ensure that the newly constructed space will not result in future IAQ complaints or claims.

  15. Correlated model for indoor and outdoor air pollutants

    SciTech Connect

    Chen, L.; Lee, J.S.; Cheng, K.S.

    1998-12-31

    This study tries to correlate outdoor concentration of air pollutants with indoor data statistically and physically by means of on-site measurement. The authors measured concentrations of THC, NMHC, NO{sub x}, SO{sub 2} and O{sub 3} at two residential sites where were closed to a fossil industry area. An air sampling system was designed to alternately sample air from different locations, therefore they can obtain semi-simultaneously indoor and outdoor concentration of air pollutants. Four measurements were taken during a year period. The measured data were analyzed by means of statistical regression and were used to calibrate indoor decay constants in a mass balance physical model. The results of statistical regression show that indoor concentration of air pollutant is highly correlated with outdoor concentration and indoor concentration at one hour earlier rather than outdoor climate parameters such as wind speed, temperature and humidity. The results explained that outdoor concentration actually included factors of outdoor climate parameters implicitly. In physical model, they calibrated the indoor concentration decay constants in an indoor/outdoor mass conservation equation at various air exchange rates under different seasons and day/night conditions. The established statistical and physical models can be used to estimate indoor air quality from monitored or calculated outdoor data. With the proposed correlation models it becomes convenient to perform the overall indoor and outdoor air pollutants exposure and risk assessment.

  16. Monitoring of pyrocatechol indoor air pollution

    NASA Astrophysics Data System (ADS)

    Eškinja, I.; Grabarić, Z.; Grabarić, B. S.

    Spectrophotometric and electrochemical methods for monitoring of pyrocatechol (PC) indoor air pollution have been investigated. Spectrophotometric determination was performed using Fe(III) and iodine methods. The adherence to Beer's law was found in the concentration range between 0 and 12 μg ml - for iodine method at pH = 5.7 measuring absorbance at 725 nm, and in the range 0-30 μg ml - for Fe(III) method at pH = 9.5 measuring absorbance at 510 nm. The former method showed greater sensitivity than the latter one. Differential pulse voltammetry (DPV) and chronoamperometric (CA) detection in flow injection analysis (FIA) using carbon paste electrode in phosphate buffer solution of pH = 6.5 was also used for pyrocatechol determination. The electrochemical methods allowed pyrocatechol quantitation in submicromolar concentration level with an overall reproducibility of ± 1%. The efficiency of pyrocatechol sampling collection was investigated at two temperatures (27 and 40°C) in water, 0.1 M NaOH and 0.1 M HCl solutions. Solution of 0.1 M HCl gave the best collection efficiency (95.5-98.5%). A chamber testing simulating the indoor pollution has been performed. In order to check the reliability of the proposed methods for monitoring of the indoor pyrocatechol pollution, the air in working premises with pyrocatechol released from meteorological charts during mapping and paper drying was analyzed using proposed methods. The concentration of pyrocatechol in the air during mapping was found to be 1.8 mg m -3 which is below the hygienic standard of permissible exposure of 20 mg m -3 (≈ 5 ppm). The release of pyrocatechol from the paper impregnated with pyrocatechol standing at room temperature during one year was also measured. The proposed methods can be used for indoor pyrocatechol pollution monitoring in working premises of photographic, rubber, oil and dye industries, fur and furniture dyeing and cosmetic or pharmaceutical premises where pyrocatechol and related

  17. Fungi as contaminants in indoor air

    NASA Astrophysics Data System (ADS)

    Miller, J. David

    This article reviews the subject of contamination of indoor air with fungal spores. In the last few years there have been advances in several areas of research on this subject. A number of epidemiological studies have been conducted in the U.K., U.S.A. and Canada. These suggest that exposure to dampness and mold in homes is a significant risk factor for a number of respiratory symptoms. Well-known illnesses caused by fungi include allergy and hypersensitivity pneumonitis. There is now evidence that other consequences of exposure to spores of some fungi may be important. In particular, exposure to low molecular weight compounds retained in spores of some molds such as mycotoxins and β 1,3 glucans appears to contribute to some symptoms reported. Fungal contamination of building air is almost always caused by poor design and/or maintenance. Home owners and building operators need to take evidence of fungal contamination seriously.

  18. Indoor Air Quality in Schools: Understanding the Problem and Finding the Solution.

    ERIC Educational Resources Information Center

    Bacci, Geoff

    2002-01-01

    Describes issues and solutions involving indoor air quality in school. Includes indoor air quality action plans, the role of the environmental consultant, and resources available to help school districts develop an indoor air quality action plan. (PKP)

  19. Indoor Air Quality and Student Performance [and Case Studies].

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    This report examines how indoor air quality (IAQ) affects a child's ability to learn and provides several case studies of schools that have successfully addressed their indoor air problems, the lessons learned from that experience, and what long-term practices and policies emerged from the effort. The report covers the effects from…

  20. Reference Guide. Indoor Air Quality Tools for Schools

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2009

    2009-01-01

    Understanding the importance of good indoor air quality (IAQ) in schools is the backbone of developing an effective Indoor Air Quality (IAQ) program. Poor IAQ can lead to a large variety of health problems and potentially affect comfort, concentration, and staff/student performance. In recognition of tight school budgets, this guidance is designed…

  1. INDOOR AIR QUALITY AND INHALATION EXPOSURE - SIMULATION TOOL KIT

    EPA Science Inventory

    A Microsoft Windows-based indoor air quality (IAQ) simulation software package is presented. Named Simulation Tool Kit for Indoor Air Quality and Inhalation Exposure, or IAQX for short, this package complements and supplements existing IAQ simulation programs and is desi...

  2. School Policies and Practices that Improve Indoor Air Quality

    ERIC Educational Resources Information Center

    Jones, Sherry Everett; Smith, Alisa M.; Wheeler, Lani S.; McManus, Tim

    2010-01-01

    Background: To determine whether schools with a formal indoor air quality management program were more likely than schools without a formal program to have policies and practices that promote superior indoor air quality. Methods: This study analyzed school-level data from the 2006 School Health Policies and Programs Study, a national study of…

  3. THE STATUS OF INDOOR AIR POLLUTION RESEARCH 1976

    EPA Science Inventory

    Numerous research projects have examined the occurrences of air pollution in outdoor and workplace environments. A smaller, newer body of research has examined air pollution in nonworkplace, indoor environments. A new emphasis on measures to conserve energy in buildings, curbing ...

  4. Indoor air quality in Latino homes in Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Escobedo, Luis E.; Champion, Wyatt M.; Li, Ning; Montoya, Lupita D.

    2014-08-01

    Indoor concentrations of airborne pollutants can be several times higher than those found outdoors, often due to poor ventilation, overcrowding, and the contribution of indoor sources within a home. Americans spend most of their time indoors where exposure to poor indoor air quality (IAQ) can result in diminished respiratory and cardiovascular health. This study measured the indoor air quality in 30 homes of a low-income Latino community in Boulder, Colorado during the summer of 2012. Participants were administered a survey, which included questions on their health conditions and indoor air pollution sources like cigarette smoke, heating fuel, and building materials. Twenty-four hour samples of fine particulate matter (PM2.5) from the indoor air were collected in each home; ambient PM2.5 samples were collected each day as well. Concurrent air samples were collected onto 47 mm Teflo and Tissuquartz filter at each location. Teflo filters were analyzed gravimetrically to measure PM2.5 and their extracts were used to determine levels of proteins and endotoxins in the fine fraction. The Tissuquartz filters were analyzed for elemental and organic carbon content (EC/OC). Results indicated that the indoor air contained higher concentrations of PM2.5 than the ambient air, and that the levels of OC were much higher than EC in both indoor and outdoor samples. This community showed no smoking in their homes and kept furry pets indoors at very low rates; therefore, cooking is likely the primary source of indoor PM. For responders with significant exposure to PM, it appeared to be primarily from occupational environments or childhood exposure abroad. Our findings indicate that for immigrant communities such as this, it is important to consider not only their housing conditions but also the relevant prior exposures when conducting health assessments.

  5. Reaching agreements on indoor air quality

    SciTech Connect

    Stewart, S.M.

    1992-08-01

    The phrases sick building syndrome and indoor air quality (IAQ) are in common use today because of a heightened public awareness of various environmental issues. IAQ complaints must be diplomatically resolved because employers and building owners and managers now face a potential impact on their bottom-lines. The office's IAQ was first questioned when 12 of the 47 employees reported complaints particular to the time they spent in the office building. Three employees were so severely affected, they developed respective cases of rhinitis, conjunctivitis and sinus infection. When the tenant presented this information to the building owner, he was told that there was not an IAQ problem within the building. This article summarizes an unfortunate, yet typical, aspect of IAQ problems. It also offers a more efficient method for evaluating and resolving all IAQ problems.

  6. Relationship between air exchange rate and indoor VOC levels

    SciTech Connect

    Otson, R.; Williams, D.T.; Fellin, P.

    1998-12-31

    It is often assumed that the air quality is better in leaky than in airtight buildings. To test this anecdotal hypothesis, data from two Canadian surveys were examined. Indoor measurements of 28 volatile organic compounds (VOCs) were made by means of a passive sampling method during the 24 to 48 h study periods in both studies, and air exchange rates were determined by the perfluorocarbon tracer approach. The air exchange rates ranged between about 0.1 to 2.5 air changes per hour in 54 test homes in the Greater Toronto Area (GTA). Other information on building age and construction, renovation activities and occupant activities that potentially influenced indoor VOC concentrations in the homes was collected by means of a questionnaire. The statistical relationships between the concentrations of VOCs and air exchange were determined. Correlation coefficients between the airborne concentrations of each VOC and the air exchange rates for the homes were all < 0.1 indicating that the relationship between the air exchange and indoor VOC concentrations is tenuous. Since the questionnaire responses did not provide quantitative estimates of indoor emissions, a quantitative correlation between responses and indoor concentrations could not be established nor was a consistent pattern evident between these responses and the occurrence of high indoor concentrations. The lack of definitive quantitative relationships is not surprising considering the complexity of indoor environments, the lack of a detailed inventory of indoor sources and their emission rates and a lack of information or understanding of indoor sinks. The findings, on the effect of air exchange rates and the value of questionnaires in studies on indoor VOCs are consistent with findings in other similar studies.

  7. Indoor air quality analysis based on Hadoop

    NASA Astrophysics Data System (ADS)

    Tuo, Wang; Yunhua, Sun; Song, Tian; Liang, Yu; Weihong, Cui

    2014-03-01

    The air of the office environment is our research object. The data of temperature, humidity, concentrations of carbon dioxide, carbon monoxide and ammonia are collected peer one to eight seconds by the sensor monitoring system. And all the data are stored in the Hbase database of Hadoop platform. With the help of HBase feature of column-oriented store and versioned (automatically add the time column), the time-series data sets are bulit based on the primary key Row-key and timestamp. The parallel computing programming model MapReduce is used to process millions of data collected by sensors. By analysing the changing trend of parameters' value at different time of the same day and at the same time of various dates, the impact of human factor and other factors on the room microenvironment is achieved according to the liquidity of the office staff. Moreover, the effective way to improve indoor air quality is proposed in the end of this paper.

  8. FUNDAMENTAL MASS TRANSFER MODELS FOR INDOOR AIR POLLUTION SOURCES

    EPA Science Inventory

    The paper discusses a simple, fundamental mass transfer model, based on Fick's Law of Diffusion, for indoor air pollution wet sorbent-based sources. (Note: Models are needed to predict emissions from indoor sources. hile empirical approaches based on dynamic chamber data are usef...

  9. AIRBORNE PARTICLE SIZES AND SOURCES FOUND IN INDOOR AIR

    EPA Science Inventory

    As concern about indoor air quality (IAQ) has grown in recent years, understanding indoor aerosols has become increasingly important so that control techniques may be implemented to reduce damaging health effects and soiling problems. This paper begins with a brief look at the me...

  10. CONCRETE BLOCKS' ADVERSE EFFECTS ON INDOOR AIR AND RECOMMENDED SOLUTIONS

    EPA Science Inventory

    Air infiltration through highly permeable concrete blocks can allow entry of various serious indoor air pollutants. An easy approach to avoiding these pollutants is to select a less–air-permeable concrete block. Tests show that air permeability of concrete blocks can vary by a fa...

  11. THE NOAA - EPA NATIONAL AIR QUALITY FORECASTING SYSTEM

    EPA Science Inventory

    Building upon decades of collaboration in air pollution meteorology research, in 2003 the National Oceanic and Atmospheric Administration (NOAA) and the United States Environmental Protection Agency (EPA) signed formal partnership agreements to develop and implement an operationa...

  12. AIR CLEANER RESEARCH (INDOOR ENVIRONMENT MANAGEMENT BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    Using air cleaners to remove pollutants from indoor air is part an integrated indoor air quality strategy. Air cleaners can be used either alone or in combination with other control options when source control and improvements in ventilation are insufficient, impractical, or oth...

  13. NARSTO EPA SS ST LOUIS AIR CHEM PM MET DATA

    Atmospheric Science Data Center

    2014-05-07

    NARSTO EPA SS ST LOUIS AIR CHEM PM MET DATA Project Title:  NARSTO ... Amount Surface Pressure Solar Radiation Surface Air Temperature Particulates Trace Metals Order Data:  ... Data Guide Documents:  St Louis Air Chem Guide St Louis Final Report  (PDF) St Louis QA ...

  14. Indoor Air Quality (IAQ) Schools and Universities: Overview of Indoor Air Quality Issues, and Preliminary Design Guide.

    ERIC Educational Resources Information Center

    Healthy Buildings International, Inc., Fairfax, VA.

    This guide is intended to help the building design, engineering, and maintenance staff of school buildings maintain a common standard of high indoor air quality (IAQ) and a productive and comfortable workplace for students and staff. The report defines the four basic classifications of indoor environmental pollution, lists the factors impacting…

  15. Indoor air quality in elementary schools of Lisbon in spring.

    PubMed

    Pegas, P N; Alves, C A; Evtyugina, M G; Nunes, T; Cerqueira, M; Franchi, M; Pio, C A; Almeida, S M; Freitas, M C

    2011-10-01

    Analysis of indoor air quality (IAQ) in schools usually reveals higher levels of pollutants than in outdoor environments. The aims of this study are to measure indoor and outdoor concentrations of NO(2), speciated volatile organic compounds (VOCs) and carbonyls at 14 elementary schools in Lisbon, Portugal. The investigation was carried out in May-June 2009. Three of the schools were selected to also measure comfort parameters, such as temperature and relative humidity, carbon dioxide (CO(2)), carbon monoxide (CO), total VOCs, and bacterial and fungal colony-forming units per cubic metre. Indoor concentrations of CO(2) in the three main schools indicated inadequate classroom air exchange rates. The indoor/outdoor (I/O) NO(2) ratio ranged between 0.36 and 0.95. At the three main schools, the total bacterial and fungal colony-forming units (CFU) in both indoor and outdoor air were above the advised maximum value of 500 CFU/m(3) defined by Portuguese legislation. The aromatic compounds benzene, toluene, ethylbenzene and xylenes, followed by ethers, alcohols and terpenes, were usually the most abundant classes of VOCs. In general, the indoor total VOC concentrations were markedly higher than those observed outdoors. At all locations, indoor aldehyde levels were higher than those observed outdoors, particularly for formaldehyde. The inadequate ventilation observed likely favours accumulation of pollutants with additional indoor sources. PMID:21042927

  16. Indoor air quality. [Health hazards due to energy conservation measures

    SciTech Connect

    Hollowell, C.D.

    1981-06-01

    Rising energy prices, among other factors, have generated an incentive to reduce ventilation rates and thereby reduce the cost of heating and cooling buildings. Reduced ventilation in buildings may significantly increase exposure to indoor air pollution and perhaps have adverse effects on occupant health and comfort. Preliminary findings suggest that reduced ventilation may adversely affect indoor air quality unless appropriate control strategies are undertaken. The strategies used to control indoor air pollution depend on the specific pollutant or class of pollutants encountered, and differ somewhat depending on whether the application is to an existing building or a new building under design and construction. Whenever possible, the first course of action is prevention or reduction of pollutant emissions at the source. In most buildings, control measures involve a combination of prevention, removal, and suppression. Common sources of indoor air pollution in buildings, the specific pollutants emitted by each source, the potential health effects, and possible control techniques are discussed.

  17. Doing Your Homework on Indoor Air Quality Issues.

    ERIC Educational Resources Information Center

    Caldwell, Rick

    2000-01-01

    Explains how administrators at the Georgia Institute of Technology were able to build a new residence hall that included a cost-effective ventilation system providing high quality indoor air. Project considerations, design solutions, and project economies are discussed. (GR)

  18. OFFICE EQUIPMENT: DESIGN, INDOOR AIR EMISSIONS, AND POLLUTION PREVENTION OPPORTUNITIES

    EPA Science Inventory

    The report summarizes available information on office equipment design; indoor air emissions of organics, ozone, and particulates from office equipment; and pollution prevention approaches for reducing these emissions. Since much of the existing emissions data from office equipme...

  19. INVENTORY OF CURRENT INDOOR AIR QUALITY-RELATED RESEARCH

    EPA Science Inventory

    The Inventory lists a total of 171 current or recently completed projects relating to indoor air quality. It covers six specific areas of research: monitoring, instrumentation, health effects, control technology, risk assessment and pollutant characterization. It is cross-referen...

  20. An Innovative Reactor Technology to Improve Indoor Air Quality

    SciTech Connect

    Rempel, Jane

    2013-03-30

    As residential buildings achieve tighter envelopes in order to minimize energy used for space heating and cooling, accumulation of indoor air pollutants such as volatile organic compounds (VOCs), becomes a major concern causing poor air quality and increased health risks. Current VOC removal methods include sorbents, ultraviolet photocatalytic oxidation (UVPCO), and increased ventilation, but these methods do not capture or destroy all VOCs or are prohibitively expensive to implement. TIAX's objective in this program was to develop a new VOC removal technology for residential buildings. This novel air purification technology is based on an innovative reactor and light source design along with UVPCO properties of the chosen catalyst to purify indoor air and enhance indoor air quality (IAQ). During the program we designed, fabricated and tested a prototype air purifier to demonstrate its feasibility and effectiveness. We also measured kinetics of VOC destruction on photocatalysts, providing deep insight into reactor design.

  1. Indoor air quality environmental information handbook: Combustion sources

    SciTech Connect

    Not Available

    1990-06-01

    This environmental information handbook was prepared to assist both the non-technical reader (i.e., homeowner) and technical persons (such as researchers, policy analysts, and builders/designers) in understanding the current state of knowledge regarding combustion sources of indoor air pollution. Quantitative and descriptive data addressing the emissions, indoor concentrations, factors influencing indoor concentrations, and health effects of combustion-generated pollutants are provided. In addition, a review of the models, controls, and standards applicable to indoor air pollution from combustion sources is presented. The emphasis is on the residential environment. The data presented here have been compiled from government and privately-funded research results, conference proceedings, technical journals, and recent publications. It is intended to provide the technical reader with a comprehensive overview and reference source on the major indoor air quality aspects relating to indoor combustion activities, including tobacco smoking. In addition, techniques for determining potential concentrations of pollutants in residential settings are presented. This is an update of a 1985 study documenting the state of knowledge of combustion-generated pollutants in the indoor environment. 191 refs., 51 figs., 71 tabs.

  2. NARSTO EPA SS NEW YORK AIR CHEM PM MET DATA

    Atmospheric Science Data Center

    2014-04-25

    NARSTO EPA SS NEW YORK AIR CHEM PM MET DATA Project Title:  NARSTO ... Thermooptical Transmission Location:  New York Spatial Resolution:  Point Measurements ...   Order Data Guide Documents:  New York Air Chem Guide CPM Summary Report  (PDF) ...

  3. Indoor air quality and occupational exposures at a bus terminal.

    PubMed

    El-Fadel, Mutasem; El-Hougeiri, Nisrine

    2003-07-01

    This article presents an assessment of indoor air quality at a bus terminal. For this purpose, field surveys were conducted, and air samples were collected and analyzed for the presence of selected indoor air quality indicators. Mathematical modeling was performed to simulate bus emission rates, occupational exposure, and ventilation requirements to maintain acceptable indoor air quality. A sensitivity analysis based on literature-derived emission rates estimates was conducted to evaluate the effect of seasonal temperature changes within the terminal. Control measures to improve indoor air quality at the terminal are also outlined. While carbon monoxide concentrations were below the corresponding American Conference of Governmental Industrial Hygienists' (ACGIH) standards under normal operating conditions, they exceeded the 8-hr recommended average standard at peak hours and the World Health Organization (WHO) standard at all times. Total suspended particulates levels, on the other hand, were above the 24-hr American Society of Heating, Refrigerating and Air Conditioning Engineers' (ASHRAE) standard. Carbon monoxide emission rates that were estimated using the transient mass balance model correlated relatively well with those reported in the literature. Modeling results showed that the natural ventilation rate should be at least doubled for acceptable indoor air quality. While pollutant exposure levels depended on the individual activity patterns and the pollutant concentration, pollutant emissions rates within the terminal were affected mostly by the temperature with a 20-25 percent variation in carbon monoxide levels due to changes in seasonal temperatures. PMID:12791548

  4. CFD simulation research on residential indoor air quality.

    PubMed

    Yang, Li; Ye, Miao; He, Bao-Jie

    2014-02-15

    Nowadays people are excessively depending on air conditioning to create a comfortable indoor environment, but it could cause some health problems in a long run. In this paper, wind velocity field, temperature field and air age field in a bedroom with wall-hanging air conditioning running in summer are analyzed by CFD numerical simulation technology. The results show that wall-hanging air conditioning system can undertake indoor heat load and conduct good indoor thermal comfort. In terms of wind velocity, air speed in activity area where people sit and stand is moderate, most of which cannot feel wind flow and meet the summer indoor wind comfort requirement. However, for air quality, there are local areas without ventilation and toxic gases not discharged in time. Therefore it is necessary to take effective measures to improve air quality. Compared with the traditional measurement method, CFD software has many advantages in simulating indoor environment, so it is hopeful for humans to create a more comfortable, healthy living environment by CFD in the future. PMID:24365517

  5. Which ornamental plant species effectively remove benzene from indoor air?

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Ju; Mu, Yu-Jing; Zhu, Yong-Guan; Ding, Hui; Crystal Arens, Nan

    Phytoremediation—using plants to remove toxins—is an attractive and cost effective way to improve indoor air quality. This study screened ornamental plants for their ability to remove volatile organic compounds from air by fumigating 73 plant species with 150 ppb benzene, an important indoor air pollutant that poses a risk to human health. The 10 species found to be most effective at removing benzene from air were fumigated for two more days (8 h per day) to quantify their benzene removal capacity. Crassula portulacea, Hydrangea macrophylla, Cymbidium Golden Elf., Ficus microcarpa var. fuyuensis, Dendranthema morifolium, Citrus medica var. sarcodactylis, Dieffenbachia amoena cv. Tropic Snow; Spathiphyllum Supreme; Nephrolepis exaltata cv. Bostoniensis; Dracaena deremensis cv. Variegata emerged as the species with the greatest capacity to remove benzene from indoor air.

  6. Evaluation of indoor air composition time variation in air-tight occupied spaces during night periods

    NASA Astrophysics Data System (ADS)

    Markov, Detelin

    2012-11-01

    This paper presents an easy-to-understand procedure for prediction of indoor air composition time variation in air-tight occupied spaces during the night periods. The mathematical model is based on the assumptions for homogeneity and perfect mixing of the indoor air, the ideal gas model for non-reacting gas mixtures, mass conservation equations for the entire system and for each species, a model for prediction of basal metabolic rate of humans as well as a model for prediction of O2 consumption rate and both CO2 and H2O generation rates by breathing. Time variation of indoor air composition is predicted at constant indoor air temperature for three scenarios based on the analytical solution of the mathematical model. The results achieved reveal both the most probable scenario for indoor air time variation in air-tight occupied spaces as well as the cause for morning tiredness after having a sleep in a modern energy efficient space.

  7. Primary and secondary consequences of indoor air cleaners.

    PubMed

    Siegel, J A

    2016-02-01

    Air cleaning is broadly applied to reduce contaminant concentrations in many buildings. Although diverse in underlying technology, mode of application, target contaminants, and effectiveness, there are also commonalities in the framework for understanding their primary impact (i.e. concentration reductions) and secondary impacts (e.g. energy use and by-product production). Furthermore, both primary and secondary impacts are moderated by the specific indoor context in which an air cleaner is used. This investigation explores the dynamics of removal efficiency in a variety of air cleaners and combines efficiency and flow rate to put air cleaning in the context of real indoor environments. This allows for the direct comparison to other indoor pollutant loss mechanisms (ventilation and deposition) and further suggests that effective air cleaner use is context and contaminant specific. The concentration reduction impacts of air cleaning need to be contrasted with the secondary consequences that arise from the use of air cleaners. This study emphasizes two important secondary consequences: energy use of the air cleaning process and primary and secondary emissions from air cleaners. This study also identifies current research challenges and areas for large leaps in our understanding of the role of air cleaners in improving indoor environmental quality. PMID:25689321

  8. Fundamental mass transfer model for indoor air emissions from surface coatings

    SciTech Connect

    Tichenor, B.A.; Guo, Z.; Sparks, L.E.

    1994-01-01

    The paper discusses the work of researchers at the U.S. EPA's Air and Energy Engineering Research Laboratory (Indoor Air Branch) who are evaluating mass transfer models based on fundamental principles to determine their effectiveness in predicting emissions from indoor architectural coatings. As a first step, a simple model based on Fick's Law of Diffusion has been developed. In the model, the mass transfer rate is assumed to be controlled by the boundary layer mass transfer coefficient, the saturation vapor pressure of the material being emitted, and the mass of volatile material remaining in the source at any point in time. Both static and dynamic chamber tests were conducted to obtain model validation data. Further validation experiments were conducted in a test house. Results of these tests are presented.

  9. Distribution of volatile organic chemicals in outdoor and indoor air

    NASA Technical Reports Server (NTRS)

    Shah, Jitendra J.; Singh, Hanwant B.

    1988-01-01

    The EPA volatile organic chemistry (VOC) national ambient data base (Shah, 1988) is discussed. The 320 chemicals included in the VOC data base are listed. The methods used to obtain the data are reviewed and the availability, accessibility, and operation of the data base are examined. Tables of the daily outdoor concentrations for 66 chemicals and the daily indoor concentrations for 35 chemicals are presented.

  10. Indoor Air Quality (IAQ) model for windows, risk (version 1.0) (for microcomputers). Model-Simulation

    SciTech Connect

    1995-07-01

    A computer model, called RISK, for calculating individual exposure to indoor air pollutants from sources is presented. The model is designed to calculate exposure due to individual, as opposed to population, activities patterns and source use. The model also provides the capability to calculate risk due to the calculated exposure. RISK is the third in a series of indoor air quality (IAQ) models developed by the Indoor Environment Management Branch of U.S. EPA`s National Risk Management Research Laboratory. The model uses data on source emissions, room-to-room air flows, air exchange with the outdoors, and indoor sinks to predict concentration-time profiles for all rooms. The concentration-time profiles are then combined with individual activity patterns to estimate exposure. Risk is calculated using a risk calculation using a risk calculation framework developed by Naugle and Pierson (1991). The model allows analysis of the effects of air cleaners located in either/or both the central air circulating system or individual rooms on IAQ and exposure. The model allows simulation of a wide range of sources including long term steady state sources, on/off sources, and decaying sources. Several sources are allowed in each room. The model allows the analysis of the effects of sinks and sink re-emissions on IAQ. The results of test house experiments are compared with model predictions. The agreement between predicted concentration-time profiles and the test house data is good.

  11. EPA- NEW ENGLAND AIR FACILITY EMISSIONS

    EPA Science Inventory

    The AirData NET Facility Emissions report displays the amount of air pollution released in a year by individual sources (facilities). Electric power plants, steel mills, factories, and universities are examples of facilities. The main purpose of the report is to compare the emis...

  12. The influence of photocatalytic interior paints on indoor air quality

    NASA Astrophysics Data System (ADS)

    Auvinen, Joonas; Wirtanen, Leif

    2008-06-01

    A clean indoor air is important for the well-being and health of people. Lately, new photocatalytic paints have been launched on the market, which are claimed to have air-purifying effects. Photocatalysis initiates radical reactions. Radicals are formed when a photocatalyst (e.g. TiO2) is subjected to radiation. Typical radicals are the hydroxyl radical (radOH) and the superoxide radical (radO2-). Radicals cause chain reactions, which degrade and decompose organic compounds. The end products of these chain reactions are water and carbon dioxide, if the reactions are fully completed (mineralization). If mineralization does not take place, then a great number of side products can be formed, whose properties are not well understood. The side products of photocatalytic reactions can be permanent and stabile. The decomposition of indoor air impurities on the surface of photocatalytic paints is not obvious. The ability of photocatalytic indoor paints to reduce chemical indoor air impurities is the key issue of this study. Six different paints with different binder systems, such as lime, polyorganic siloxane, silica sol-gel and organic binders, were examined. The experiments were divided into three topics: degradation of an organic binder, photocatalytic decomposition of formaldehyde, and a volatile organic compound (VOC) mixture consisting of five different indoor air VOCs. All tests were carried out in an environmental test chamber under dynamic conditions. The test results indicate that many indoor pollutants are generated under normal- and UVA-light. Typical compounds formed include formaldehyde, acetone, acetaldehyde, etc. A clear decrease of formaldehyde or the VOC mixture concentration was not observed. All possibly generated compounds could not be collected or analyzed in this research project, but the measurements show that photocatalytic reactions do not generate only carbon dioxide and water. Photocatalytic decomposition of indoor air impurities can, however

  13. Indoor air and human exposure assessment--needs and approaches.

    PubMed

    Kotzias, Dimitris

    2005-07-01

    The Commission launched on June 9, 2004 the Environment and Health Action Plan to reduce diseases caused by a polluted environment. The plan would develop an EU system integrating information on the state of the environment, the ecosystem and human health. The action plan identifies 13 actions (including an action on indoor air quality), which refer to initiatives on how to better understand the environment-health link and establish how environmental exposure leads to epidemiological effects. The ultimate goal of the proposed "Environment and Health Strategy" is to develop an environment and health "cause-effect framework" that will provide the necessary information for the development of Community policy dealing with sources and the impact pathway of health stressors. The need for policy-science interface in the EU guided in the last few years the research on indoor air pollution. In particular, the lack of information regarding human exposure to air pollutants makes it necessary, in line with the Environment and Health Action Plan, to develop targeted strategies to evaluate the impact of indoor air pollution on human health. This includes apart from specific measurements in selected confined spaces (homes, schools, public buildings, etc.), large-scale monitoring campaigns at European level, specifically designed to assess indoor and outdoor air quality and personal exposure to pollutants in combination with micro-environmental activity patterns. Information from these studies will be considered as crucial for a first evaluation of the overall situation in indoor environments and the possible sources and source strengths of pollutants to which humans are exposed during working, commuting and rest time. As a first approach to systematically evaluate the relationship between indoor air pollution and human (chronic) exposure to pollutants, we started at the end of 2003 with the AIRMEX project (Indoor Air Monitoring and Exposure Assessment Study). In the frame of

  14. Improving Indoor Air Quality in St. Cloud Schools.

    ERIC Educational Resources Information Center

    Forer, Mike; Haus, El

    2000-01-01

    Describes how the St. Cloud Area School District (Minnesota), using Tools for Schools provided by the U.S. Environmental Protection Agency, managed the improvement of their school building indoor air quality (IAQ). The district goals of the IAQ Management Committee and the policy elements used to maintain high classroom air quality are…

  15. Negotiating indoor air-case report on negotiation of teachers' union, school board on air contaminants.

    PubMed

    Gibson, Sarah; Levenstein, Charles

    2010-01-01

    School districts increasingly understand the need for an indoor air quality plan, but may have difficulty in producing a plan that all necessary parties will accept. This article provides a case study of how one Massachusetts school district, after experiencing environmental problems in an elementary school, worked with parents and unions to develop a comprehensive indoor air quality plan. PMID:20359997

  16. Improvement of Atopic Dermatitis Severity after Reducing Indoor Air Pollutants

    PubMed Central

    Kim, Hye One; Kim, Jin Hye; Cho, Soo Ick; Chung, Bo Young; Ahn, In Su; Lee, Cheol Heon

    2013-01-01

    Background Recent epidemiologic studies have shown that environmental contaminants such as air pollution and tobacco smoke play an important role in the pathophysiology of atopic dermatitis (AD). Objective The aim of this study was to evaluate the relationship between the severity of AD and indoor air pollution. Methods The study population consisted of 425 children from 9 kindergartens, Korea. The authors surveyed the prevalence of AD and evaluated disease severity by the eczema area and severity index (EASI) score and investigator's global assessment (IGA). After measuring indoor air pollution, a program to improve indoor air quality was conducted in 9 kindergartens. Seven months later, the prevalence and disease severity were evaluated. Results The initial prevalence of AD was 8% and the mean EASI score was 2.37. The levels of particulate material 10 (PM10) and carbon dioxide (CO2) were higher in some kindergartens compared to the normal values. Subsequent to the completion of the indoor air quality improvement program, the mean PM10 level was significantly decreased from 182.7 to 73.4 µg/m3. After the completion of the program, the prevalence of AD and the mean EASI were decreased, and the changes were both statistically significant. The mean number of hospital visits decreased from 1.3 per month during the first survey to 0.7 per month during the second survey, which was statistically significant. Conclusion Indoor air pollution could be related to AD. The reduction of PM10 through improving indoor air quality should be considered in kindergartens and schools in order to prevent and relieve AD in children. PMID:24003270

  17. Development of wireless sensor network for monitoring indoor air pollutant

    NASA Astrophysics Data System (ADS)

    Saad, Shaharil Mad; Shakaff, Ali Yeon Md; Saad, Abdul Rahman Mohd; Yusof @ Kamarudin, Azman Muhamad

    2015-05-01

    The air that we breathe with everyday contains variety of contaminants and particles. Some of these contaminants and particles are hazardous to human health. Most of the people don't realize that the content of air they being exposed to whether it was a good or bad air quality. The air quality whether in indoor or outdoor environment can be influenced by physical factors like dust particles, gaseous pollutants (including carbon dioxide, carbon monoxide and volatile organic compounds) and biological like molds and bacteria growth which largely depend on temperature and humidity condition of a room. These kinds of pollutants can affect human health, physical reaction, comfort or work performance. In this study, a wireless sensor network (WSN) monitoring system for monitor air pollutant in indoor environment was developed. The system was divided into three parts: web-based interface program, sensing module and a base station. The measured data was displayed on the web which is can be accessed by the user. The result shows that the overall measured parameters were meet the acceptable limit, requirement and criteria of indoor air pollution inside the building. The research can be used to improve the indoor air quality level in order to create a comfortable working and healthy environment for the occupants inside the building.

  18. Disinfection of indoor air microorganisms in stack room of university library using gaseous chlorine dioxide.

    PubMed

    Hsu, Ching-Shan; Lu, Ming-Chun; Huang, Da-Ji

    2015-02-01

    As with all indoor public spaces in Taiwan, the stack rooms in public libraries should meet the air quality guidelines laid down by the Taiwan Environmental Protection Administration. Accordingly, utilizing a university library in Taiwan for experimental purposes, this study investigates the efficiency of gaseous chlorine dioxide (ClO2) as a disinfection agent when applied using three different treatment modes, namely a single-daily disinfection mode (SIM), a twice-daily disinfection mode (TWM), and a triple-daily disinfection mode (TRM). For each treatment mode, the ClO2 is applied using an ultrasonic aerosol device and is performed both under natural lighting conditions and under artificial lighting conditions. The indoor air quality is evaluated before and after each treatment session by measuring the bioaerosol levels of bacteria and fungi. The results show that for all three disinfection modes, the application of ClO2 reduces the indoor bacteria and fungi concentrations to levels lower than those specified by the Taiwan EPA (i.e., bacteria <1500 CFU/m(3), fungi <1000 CFU/m(3)), irrespective of the lighting conditions under which the disinfection process is performed. For each disinfection mode, a better disinfection efficiency is obtained under natural lighting conditions since ClO2 readily decomposes under strong luminance levels. Among the three treatment modes, the disinfection efficiencies of the TWM and TRM modes are very similar under natural lighting conditions and are significantly better than that of the SIM mode. Thus, overall, the results suggest that the TWM treatment protocol represents the most cost-effective and efficient method for meeting the indoor air quality requirements of the Taiwan EPA. PMID:25626564

  19. Concentration and risk assessment of phthalates present in indoor air from newly decorated apartments

    NASA Astrophysics Data System (ADS)

    Pei, X. Q.; Song, M.; Guo, M.; Mo, F. F.; Shen, X. Y.

    2013-04-01

    Phthalate esters (PAEs) are ubiquitous in the indoor environment, owing to their use in consumer products. People spend a considerable amount of time indoors. As a result, human exposure to indoor contaminants is of great concern. People are exposed to phthalates through inhalation and dermal absorption of indoor air. In this study, the concentrations, characteristics and carcinogenic risks of gas-phase and particle-phase phthalates in indoor air from bedroom, living room and study room of 10 newly decorated apartments in Hangzhou, China were first investigated. The mean concentration of phthalates (gas-phase and particle-phase) present in household air was 12 096.4 ng m-3, of which diethyl phthalate (DEP), butylbenzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP) were the most abundant compounds with concentrations of 2290 ng m-3, 3975 ng m-3 and 2437 ng m-3, respectively, totally accounting for 72.0% of ∑6PAEs. Contamination levels of phthalates varied in different compartments. The concentration of phthalates was the highest 17 363.7 ng m-3 in living room, followed with 11 389.5 ng m-3 in study room, and the lowest 9739.1 ng m-3 in bedroom. It was also found that phthalates mainly accumulated in gaseous form in household air. DEHP posed the greatest health risk to children aged 1-2. Carcinogenic risk of DEHP was evaluated to be 3.912 × 10-5, and was 39 times higher than the limit set by the U.S. EPA.

  20. Could houseplants improve indoor air quality in schools?

    PubMed

    Pegas, P N; Alves, C A; Nunes, T; Bate-Epey, E F; Evtyugina, M; Pio, C A

    2012-01-01

    Previous studies performed by the National Aeronautics Space Administration (NASA) indicated that plants and associated soil microorganisms may be used to reduce indoor pollutant levels. This study investigated the ability of plants to improve indoor air quality in schools. A 9-wk intensive monitoring campaign of indoor and outdoor air pollution was carried out in 2011 in a primary school of Aveiro, Portugal. Measurements included temperature, carbon dioxide (CO₂), carbon monoxide (CO), concentrations of volatile organic compounds (VOC), carbonyls, and particulate matter (PM₁₀) without and with plants in a classroom. PM₁₀ samples were analyzed for the water-soluble inorganic ions, as well for carbonaceous fractions. After 6 potted plants were hung from the ceiling, the mean CO₂ concentration decreased from 2004 to 1121 ppm. The total VOC average concentrations in the indoor air during periods of occupancy without and with the presence of potted plants were, respectively, 933 and 249 μg/m³. The daily PM₁₀ levels in the classroom during the occupancy periods were always higher than those outdoors. The presence of potted plants likely favored a decrease of approximately 30% in PM₁₀ concentrations. Our findings corroborate the results of NASA studies suggesting that plants might improve indoor air and make interior breathing spaces healthier. PMID:23095155

  1. Filtration and indoor air quality: A practical approach

    SciTech Connect

    Liu, R.T.; Huza, M.A.

    1995-02-01

    This article describes how filtration systems can be a practical and effective means to control indoor contaminants when properly designed and applied. Although indoor air quality appears to be a complex subject, in reality it reduces to two simple concerns: human health and human comfort. While the interactions exist, the environmental factors that affect human comfort are different from those factors that affect human health. Generally speaking, temperature, relative humidity, air movement and noise level contribute to human comfort, and indoor contaminants affect human health, but they can also cause comfort problems, such as odors. It is important to point out this distinction because many IAQ problems can be solved simply by a small adjustment of the temperature, humidity o ventilation rate, especially when the environment of concern is outside of the comfort zone and the air is perceived as stuffy. However, when the occupants experience headaches, fatigue, eye irritation or coughing or when they smell odors, it is likely that the problems are caused by contaminants in the indoor air. Indoor contaminants may be grouped into four categories: bioaerosols (microorganisms); respirable particulates; gaseous contaminants; and vaporous contaminants. While their concentrations may vary, all of these contaminants may exist regardless of types of building, HVAC system and occupant activity.

  2. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  3. Indoor air pollution: Sources and control. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-10-01

    The bibliography contains citations concerning indoor air pollution in residential, commercial, industrial, and institutional buildings. Indoor air quality assessment, health hazard evaluation, and contaminant identification and measurement are discussed. Indoor air pollution control methods and equipment are evaluated. Air quality analyses of energy efficient buildings are presented. Indoor air pollution from radon and asbestos are discussed in other bibliographies.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  4. Indoor air pollution: Sources and control. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-01-01

    The bibliography contains citations concerning indoor air pollution in residential, commercial, industrial, and institutional buildings. Indoor air quality assessment, health hazard evaluation, and contaminant identification and measurement are discussed. Indoor air pollution control methods and equipment are evaluated. Air quality analyses of energy efficient buildings are presented. Indoor air pollution from radon and asbestos are discussed in other bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  5. Indoor air pollution: Sources and control. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-12-01

    The bibliography contains citations concerning indoor air pollution in residential, commercial, industrial, and institutional buildings. Indoor air quality assessment, health hazard evaluation, and contaminant identification and measurement are discussed. Indoor air pollution control methods and equipment are evaluated. Air quality analyses of energy efficient buildings are presented. Indoor air pollution from radon and asbestos are discussed in other bibliographies.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Indoor air pollution: Sources and control. (Latest citations from the NTIS Bibliographic database). NewSearch

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning indoor air pollution in residential, commercial, industrial, and institutional buildings. Indoor air quality assessment, health hazard evaluation, and contaminant identification and measurement are discussed. Indoor air pollution control methods and equipment are evaluated. Air quality analyses of energy efficient buildings are presented. Indoor air pollution from radon and asbestos are discussed in other bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  7. Indoor air pollution: Sources and control. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1998-02-01

    The bibliography contains citations concerning indoor air pollution in residential, commercial, industrial, and institutional buildings. Indoor air quality assessment, health hazard evaluation, and contaminant identification and measurement are discussed. Indoor air pollution control methods and equipment are evaluated. Air quality analyses of energy efficient buildings are presented. Indoor air pollution from radon and asbestos are discussed in other bibliographies. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  8. An EPA Pilot Study Evaluating Personal, Housing, and Community Factors Influencing Children's Potential Exposures to Indoor Contaminants at Various Lifestages

    EPA Science Inventory

    EPA pilot studyAddresses how young children’s exposures to various indoor pollutants (both chemical and biological agents) change as a result of building renovation-based interventions, potentially affecting their asthma exacerbation and morbidityProvide additional informat...

  9. Humidification and perceived indoor air quality in the office environment.

    PubMed Central

    Reinikainen, L M; Aunela-Tapola, L; Jaakkola, J J

    1997-01-01

    OBJECTIVE: To evaluate the effect of humidification on the odour, acceptability, and stuffiness of indoor air. METHODS: In a six period cross over trial at the Pasila Office Center, Helsinki, the air of two wings of the building in turn were ventilated with air of 30%-40% humidity. A third wing served as a non-humidified control area. The quality of indoor air was assessed weekly by a panel containing 18 to 23 members. The intraindividual differences in the ratings for odour, stuffiness, and acceptability between humidified and non-humidified wings were used to assess the effect of humidification. The roles of sex, current smoking, and age as potential effect modifiers were assessed by comparing the mean intraindividual differences in ratings between the groups. RESULTS: Humidified air was found to be more odorous and stuffy (paired t test P = 0.0001) and less acceptable than the non-humidified air (McNemar's test P < 0.001). The differences in odour and stuffiness between humidified and non-humidified air were greater for women and for non-smokers, and greatest differences were in the youngest age group, and least in the oldest age group. The differences were not significant. CONCLUSIONS: An untrained panel of 20 members is able to differentiate a slight malodour and stuffiness in indoor air. The results suggest that steam air humidification decreases the perceived air quality. This effect is strongest in women and young subjects. PMID:9196454

  10. Developments in EPA`s air dispersion modeling for hazardous/toxic releases

    SciTech Connect

    Touma, J.S.

    1995-12-31

    Title 3 of the 1990 Clean Air Act Amendments (CAAA) lists many chemicals as hazardous air pollutants and requires establishing regulations to prevent their accidental release, and to minimize the consequence, if any such releases occur. With the large number of potential release scenarios that are associated with these chemicals, there is a need for a systematic approach for applying air dispersion models to estimate impact. Because some chemicals may form dense gas clouds upon release, and dispersion models that can simulate these releases are complex, EPA has paid attention to the development of modeling tools and guidance on the use of models that can address these types of releases.

  11. An investigation of infiltration and indoor air quality

    SciTech Connect

    Not Available

    1990-09-01

    A multitask study was performed in the State of New York to provide information for guiding home energy conservation programs while maintaining acceptable indoor air quality. During this study, the statistical distribution of radon concentrations inside 2400 homes was determined. The relationships among radon levels, house characteristics, and sources were also investigated. The direct impact that two specific air infiltration reduction measures -- caulking and weatherstripping of windows and doors, and installation of storm windows and storm doors -- have on house air leakage was investigated in 60 homes. The effect of house age on the impact of weatherization was also evaluated. Indoor and outdoor measurements of NO{sub 2}, CO, SO{sub 2}, and respirable suspended particulates (RSP) were made for 400 homes to determine the effect of combustion sources on indoor air quality and to characterize the statistical distribution of the concentrations. Finally, the combustion source data were combined with the information on air infiltration reduction measures to estimate the potential impact of these measures on indoor air quality. 87 tabs.

  12. Impacts of contaminant storage on indoor air quality: Model development

    SciTech Connect

    Sherman, Max H.; Hult, Erin L.

    2013-02-26

    A first-order, lumped capacitance model is used to describe the buffering of airborne chemical species by building materials and furnishings in the indoor environment. The model is applied to describe the interaction between formaldehyde in building materials and the concentration of the species in the indoor air. Storage buffering can decrease the effect of ventilation on the indoor concentration, compared to the inverse dependence of indoor concentration on the air exchange rate that is consistent with a constant emission rate source. If the exposure time of an occupant is long relative to the time scale of depletion of the compound from the storage medium, however, the total exposure will depend inversely on the air exchange rate. This lumped capacitance model is also applied to moisture buffering in the indoor environment, which occurs over much shorter depletion timescales of the order of days. This model provides a framework to interpret the impact of storage buffering on time-varying concentrations of chemical species and resulting occupant exposure. Pseudo-steady state behavior is validated using field measurements. Model behavior over longer times is consistent with formaldehyde and moisture concentration measurements in previous studies.

  13. USEPA SEMINARS ON INDOOR AIR VAPOR INTRUSION

    EPA Science Inventory

    This interactive CD has been developed to introduce you to the seminar speakers and their presentation topics. It includes introduction and overview video clips, an interactive class exercise that explains how to interpret and use the new EPA IAVI Guidance, a scrolling seminar vi...

  14. Interior Landscape Plants for Indoor Air Pollution Abatement

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Johnson, Anne; Bounds, Keith

    1989-01-01

    In this study, the leaves, roots, soil, and associated microorganisms of plants have been evaluated as a possible means of reducing indoor air pollutants. Additionally, a novel approach of using plant systems for removing high concentrations of indoor air pollutants such as cigarette smoke, organic solvents, and possibly radon has been designed from this work. This air filter design combines plants with an activated carbon filter. The rationale for this design, which evolved from wastewater treatment studies, is based on moving large volumes of contaminated air through an activated carbon bed where smoke, organic chemicals, pathogenic microorganisms (if present), and possibly radon are absorbed by the carbon filter. Plant roots and their associated microorganisms then destroy the pathogenic viruses, bacteria, and the organic chemicals, eventually converting all of these air pollutants into new plant tissue. It is believed that the decayed radon products would be taken up the plant roots and retained in the plant tissue.

  15. MANAGING EXPOSURE TO INDOOR AIR POLLUTANTS IN RESIDENTIAL AND OFFICE ENVIRONMENTS

    EPA Science Inventory

    The paper discusses the factors to be considered in managing indoor air pollutants in residential and office environments to reduce occupant exposures. Techniques for managing indoor air pollution sources include: source elimination, substitution, modification, and pretreatment a...

  16. RESEARCH AREA -- POLLUTION PREVENTION (INDOOR ENVIRONMENT MANAGEMENT BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The strategy of NRMRL's Air Pollution Prevention and Control Division's Indoor Environment Management Branch (IEMB) is to apply IEMB's expertise in indoor air quality (i.e., source characterization, ventilation, filtration, modeling, biocontaminants, and sustainable buildings) to...

  17. INDOOR ENVIRONMENT MANAGEMENT BRANCH (AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    Research conducted by NRMRL's Air pollution Prevention and Control Division's Indoor Environment Management Branch in Research Triangle Park, NC, has been the basis for developing a better understanding of the relationship between indoor air quality (IAQ) and emissions sources, h...

  18. Formaldehyde--study of indoor air pollution in Austria.

    PubMed

    Koeck, M; Pichler-Semmelrock, F P; Schlacher, R

    1997-09-01

    As part of a long-term study of indoor air pollution, formaldehyde concentrations were determined in 792 apartments following complaints by inhabitants. Measurements were carried out using Draeger tubes as well as the acetyl acetone method. In 157 apartments, HCHO concentrations of more than 0.1 ppm, exceeding the recommended standard values for indoor air concentrations, were determined. The concentrations determined tended to decrease over time. As far as they were caused by furnishings, they were limited to the spaces where these furnishings were installed. In older-style prefabricated houses with foam-filled particle-board wall systems, concentrations of more than 1.0 ppm were determined. In spite of legal regulations governing the release of formaldehyde from substances, preparations and products containing formaldehyde which have been in existence in Austria since 1990, this substance must still be considered as a possible factor of indoor pollution in causing feelings of ill-health. PMID:9386898

  19. Interior Painting and Indoor Air Quality in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Ways in which school facility planners, managers, and others can guard against the potential indoor air quality (IAQ) problems presented by paint are covered in this bulletin. It opens with an overview of paint formulations and the functional quality of different paints, paying special attention to the volatile organic compounds present in some…

  20. ASHRAE STANDARD 62: VENTILATION FOR ACCEPTABLE INDOOR AIR QUALITY

    EPA Science Inventory

    The paper highlights some of the key features of the design procedures in ASHRAE Standard 62 (Ventilation for Acceptable Indoor Air Quality) and summarizes the status of the related review process. he Standard contains design procedures and guidelines for ventilation rates in "al...

  1. Indoor air radon concentration in schools in Prizren, Kosovo.

    PubMed

    Bahtijari, Meleq; Stegnar, Peter; Shemsidini, Zahadin; Kobal, Ivan; Vaupotic, Janja

    2006-01-01

    Indoor air radon ((222)Rn) concentrations were measured in spring and winter in 30 rooms of 9 elementary schools and 19 rooms of 6 high schools in Prizren, Kosovo, using alpha scintillation cells. Only in three rooms of elementary schools and four rooms of high schools did winter concentrations exceed 400 Bq m(-3). PMID:16766569

  2. School Indoor Air Quality Assessment and Program Implementation.

    ERIC Educational Resources Information Center

    Prill, R.; Blake, D.; Hales, D.

    This paper describes the effectiveness of a three-step indoor air quality (IAQ) program implemented by 156 schools in the states of Washington and Idaho during the 2000-2001 school year. An experienced IAQ/building science specialist conducted walk-through assessments at each school. These assessments documented deficiencies and served as an…

  3. Assessment of Indoor Air Pollution in Homes with Infants

    PubMed Central

    Pickett, Anna Ruth; Bell, Michelle L.

    2011-01-01

    Infants spend most of their indoor time at home; however, residential air quality is poorly understood. We investigated the air quality of infants’ homes in the New England area of the U.S. Participants (N = 53) were parents of infants (0–6 months) who completed telephone surveys to identify potential pollutant sources in their residence. Carbon monoxide (CO), carbon dioxide (CO2), particulate matter with aerodynamic diameter ≤0.5 µm (PM0.5), and total volatile organic compounds (TVOCs) were measured in 10 homes over 4–7 days, and levels were compared with health-based guidelines. Pollutant levels varied substantially across homes and within homes with overall levels for some homes up to 20 times higher than for other homes. Average levels were 0.85 ppm, 663.2 ppm, 18.7 µg/m3, and 1626 µg/m3 for CO, CO2, PM0.5, and TVOCs, respectively. CO2, TVOCs, and PM0.5 levels exceeded health-based indoor air quality guidelines. Survey results suggest that nursery renovations and related potential pollutant sources may be associated with differences in urbanicity, income, and presence of older children with respiratory ailments, which could potentially confound health studies. While there are no standards for indoor residential air quality, our findings suggest that additional research is needed to assess indoor pollution exposure for infants, which may be a vulnerable population. PMID:22408586

  4. SUMMARY OF INDOOR AIR QUALITY RESEARCH THROUGH 1984

    EPA Science Inventory

    The report reviews indoor air quality research from 1980 through December 1984. It is also a compilation of two documents that review relevant literature on the subject and summarize the efforts of leading research scientists. The first effort involved: (1) a review of journal ar...

  5. Science Laboratories and Indoor Air Quality in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Some of the issues surrounding the indoor air quality (IAQ) problems presented by science labs are discussed. Described are possible contaminants in labs, such as chemicals and biological organisms, and ways to lessen accidents arising from these sources are suggested. Some of the factors contributing to comfort, such as temperature levels, are…

  6. Indoor air quality standards of performance applications guide

    SciTech Connect

    Linder, R.J.; Dorgan, C.B.; Dorgan, C.E.

    1999-07-01

    This paper discusses the development and application of standards of performance (SOPs) for HVAC and R equipment, plumbing systems, and building envelope systems in relation to maintaining acceptable indoor air quality (IAQ) in buildings. The utilization of the SOP procedure, developed in ASHRAE Research Project 853, will aid in the proper operation of systems and verify that acceptable building IAQ levels are obtained.

  7. Indoor air quality & airborne disease control in healthcare facilities

    SciTech Connect

    Turner, S.

    1997-06-01

    This article is concerned with indoor air quality (IAQ) in the context of healthcare facilities. It defines what is meant by IAQ, lists health outcomes of poor IAQ, addresses specific healthcare IAQ issues, discusses solutions by means of HVAC systems, and covers relevant regulations and standards.

  8. DEVELOPMENT OF AN INDOOR AIR POLLUTION SOURCE EMISSIONS DATABASE

    EPA Science Inventory

    The paper discusses the design, structure, and theory of a microcomputer-based relational database which has been created to archive and retrieve published information concerning sources of indoor air pollutants. The database is designed to be used by researchers, architects, pol...

  9. INDOOR AIR QUALITY MODEL VERSION 1.0 DOCUMENTATION

    EPA Science Inventory

    The report presents a multiroom model for estimating the impact of various sources on indoor air quality (IAQ). The model is written for use on IBM-PC and compatible microcomputers. It is easy to use with a menu-driven user interface. Data are entered using a fill-in-a-form inter...

  10. School Indoor Air Quality Best Management Practices Manual.

    ERIC Educational Resources Information Center

    Hall, Richard; Ellis, Richard; Hardin, Tim

    This manual, written in response to requirements of the Washington State legislature, focuses on practices which can be undertaken during the siting, design, construction, or renovation of a school, recommends practices to help ensure good indoor air quality during building occupancy, and suggests protocols and useful reference documents for…

  11. VOLATILIZATION RATES FROM WATER TO INDOOR AIR PHASE II

    EPA Science Inventory

    Contaminated water can lead to volatilization of chemicals to residential indoor air. Previous research has focused on only one source (shower stalls) and has been limited to chemicals in which gas-phase resistance to mass transfer is of marginal significance. As a result, attemp...

  12. AIRBORNE PARTICLE SIZES AND SOURCES FOUND IN INDOOR AIR

    EPA Science Inventory

    The paper summarizes results of a literature search into the sources, sizes, and concentrations of particles in indoor air, including the various types: plant, animal, mineral, combustion, home/personal care, and radioactive aerosols. This information, presented in a summary figu...

  13. Carpet and Indoor Air Quality in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, Baltimore.

    Ways in which carpeting can affect a school's indoor air quality (IAQ) are discussed. Carpeting is defined as a system of components that includes pads, adhesives, floor preparation compounds, and seam sealers. For the last several years, these products have been increasingly scrutinized as to how they affect IAQ. Carpeting gives off volatile…

  14. Impact of Florida's Clean Indoor Air Act on Student Life.

    ERIC Educational Resources Information Center

    Chandler, Steven B.; Daly, Janice; Lee, Dae Taek

    1997-01-01

    Surveys college students to determine the impact of the Florida Clean Indoor Air Act on student life. Results show that smoking regulations were well supported by the majority of students, represented an inconvenience to smokers rather than a deterrent to smoking and that such restrictions are unlikely to lead to conflict among students. (MKA)

  15. Indoor Air Quality Tools for Schools Action Kit. Second Edition.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This kit contains materials to assist a school indoor air quality (IAQ) coordinator in conducting a school IAQ program. The kit contains the following: IAQ coordinator's guide; IAQ coordinator forms; IAQ backgrounder; teacher's classroom checklist; administrative staff checklist; health officer/school nurse checklist; ventilation checklist and…

  16. Car indoor air pollution - analysis of potential sources

    PubMed Central

    2011-01-01

    The population of industrialized countries such as the United States or of countries from the European Union spends approximately more than one hour each day in vehicles. In this respect, numerous studies have so far addressed outdoor air pollution that arises from traffic. By contrast, only little is known about indoor air quality in vehicles and influences by non-vehicle sources. Therefore the present article aims to summarize recent studies that address i.e. particulate matter exposure. It can be stated that although there is a large amount of data present for outdoor air pollution, research in the area of indoor air quality in vehicles is still limited. Especially, knowledge on non-vehicular sources is missing. In this respect, an understanding of the effects and interactions of i.e. tobacco smoke under realistic automobile conditions should be achieved in future. PMID:22177291

  17. Organic compounds in indoor air—their relevance for perceived indoor air quality?

    NASA Astrophysics Data System (ADS)

    Wolkoff, Peder; Nielsen, Gunnar D.

    It is generally believed that indoor air pollution, one way or another may cause indoor air complaints. However, any association between volatile organic compounds (VOCs) concentrations and increase of indoor climate complaints, like the sick-building syndrome symptoms, is not straightforward. The reported symptom rates of, in particular, eye and upper airway irritation cannot generally be explained by our present knowledge of common chemically non-reactive VOCs measured indoors. Recently, experimental evidence has shown those chemical reactions between ozone (either with or without nitrogen dioxide) and unsaturated organic compounds (e.g. from citrus and pine oils) produce strong eye and airway irritating species. These have not yet been well characterised by conventional sampling and analytical techniques. The chemical reactions can occur indoors, and there is indirect evidence that they are associated with eye and airway irritation. However, many other volatile and non-volatile organic compounds have not generally been measured which could equally well have potent biological effects and cause an increase of complaint rates, and posses a health/comfort risk. As a consequence, it is recommended to use a broader analytical window of organic compounds than the classic VOC window as defined by the World Health Organisation. It may include hitherto not yet sampled or identified intermediary species (e.g., radicals, hydroperoxides and ionic compounds like detergents) as well as species deposited onto particles. Additionally, sampling strategies including emission testing of building products should carefully be linked to the measurement of organic compounds that are expected, based on the best available toxicological knowledge, to have biological effects at indoor concentrations.

  18. Indoor Air Quality in Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Hays, Steve M.

    This paper presents air quality and ventilation data from an existing chemical laboratory facility and discusses the work practice changes implemented in response to deficiencies in ventilation. General methods for improving air quality in existing laboratories are presented and investigation techniques for characterizing air quality are…

  19. Termiticide use and indoor air quality in the United States.

    PubMed

    Savage, E P

    1989-01-01

    Organochlorine insecticides have been used extensively for the past 35 yr to reduce termite damage. The USEPA estimates that chlordane and heptachlor have been used in 24 million homes in the US. The pollution of air inside dwellings is a growing concern in the US because the population at risk includes the young and aged. Those exposed to pollutants in the home may be exposed for 24 hr instead of the usual 8 hr a day in the work place. Many of the halogenated aromatic hydrocarbons have been used as pesticides and have been reported as air contaminants inside buildings. Most of these chemicals are lipophilic, ubiquitous in the environment, and persistent. A number of chemicals found in indoor air have been reported to cause human health effects and some are carcinogenic. Many studies have been conducted using a variety of air samplers inside dwellings to determine levels of termiticides in indoor air. These include the Greenburg-Smith impinger, nylon chiffon screens, polyurethane foam plug samplers, and a Millipore miniature vacuum pump with a sampling tube containing Chromosorb 102 as the collecting medium. Chlordane and heptachlor have been widely used as termiticides and both have been implicated as serious problems. The US Air Force experienced several instances of contamination of houses with airborne chlordane following termite treatment, and numerous other studies have shown the magnitude of the problem. Because of increased instances of indoor air contamination, several new alternatives have been developed for termite control to reduce the potential for chemical exposure in indoor air of houses treated with termiticides. These new techniques include use of growth regulators and newer less hazardous chemicals. PMID:2692087

  20. Fundamental mass transfer models for indoor air pollution sources

    SciTech Connect

    Tichenor, B.A.; Guo, Z.; Sparks, L.E.

    1993-01-01

    The paper discusses a simple, fundamental mass transfer model, based on Fick's Law of Diffusion, for indoor air pollution wet sorbent-based sources. (Note: Models are needed to predict emissions from indoor sources. While empirical approaches based on dynamic chamber data are useful, a more fundamental approach is needed to fully elucidate the relevant mass transfer processes). In the model, the mass transfer rate is assumed to be gas-phase limited and controlled by the boundary layer mass transfer coefficient, the saturation vapor pressure of the material being emitted, and the mass of volatile material remaining. Results of static and dynamic chamber tests, as well as test house studies, are presented.

  1. Lung cancer and indoor air pollution in Xuan Wei, China

    SciTech Connect

    Mumford, J.L.; He, X.Z.; Chapman, R.S.; Cao, S.R.; Harris, D.B.; Li, X.M.; Xian, Y.L.; Jiang, W.Z.; Xu, C.W.; Chuang, J.C.

    1987-01-09

    In Xuan Wei County, Yunnan Province, lung cancer mortality is among China's highest and, especially in females, is more closely associated with indoor burning of smoky coal, as opposed to wood or smokeless coal, than with tobacco smoking. Indoor air samples were collected during the burning of all three fuels. In contrast to wood and smokeless coal emissions, smoky coal emission has high concentrations of submicron particles containing mutagenic organics, especially in aromatic and polar fractions. These studies suggested an etiologic link between domestic smoky coal burning and lung cancer in Xuan Wei.

  2. Indoor Air Quality: Federal and State Actions To Address the Indoor Air Quality Problems of Selected Buildings.

    ERIC Educational Resources Information Center

    Guerrero, Peter F.

    U.S. House of Representative members requested that the General Accounting Office determine what federal and state actions have been taken in addressing indoor air quality (IAQ) concerns raised in certain school, state, and federal buildings within Vermont, Maryland, and the District of Columbia. This report responds to this request and describes…

  3. INDOOR AIR ASSESSMENT - AN INVENTORY OF INDOOR AIR QUALITY RESEARCH IN THE U.S.: 1989-1990

    EPA Science Inventory

    A survey of indoor air quality research projects in the United States was undertaken using a standard form and keyword list. n response to the request for participation, 110 completed forms were received from 69 principal investigators at 34 institutions. Universities had the lar...

  4. COST ANALYSIS OF INDOOR AIR CONTROL TECHNIQUES (INDOOR ENVIRONMENT MANAGEMENT BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    Several studies have been completed addressing the costs and the cost-effectiveness of alternative indoor air quality (IAQ) control measures.A simplified methodology has been defined that can be used by IAQ diagnosticians, architects/engineers, building owners/operators, and th...

  5. Indoor air pollution from unprocessed solid fuels in developing countries.

    PubMed

    Kaplan, Charlotte

    2010-01-01

    Approximately half of the world's population relies on biomass (primarily wood and agricultural residues) or coal fuels (collectively termed solid fuels) for heating, lighting, and cooking. The incomplete combustion of such materials releases byproducts with well-known adverse health effects, hence increasing the risk of many diseases and death. Among these conditions are acute respiratory infections, chronic obstructive pulmonary disease, heart disease, stroke, lung cancer, cataracts and blindness, tuberculosis, asthma, and adverse pregnancy outcomes. The International Agency for Research on Cancer has classified the indoor combustion of coal emissions as Group 1, a known carcinogen to humans. Indoor air pollution exposure is greatest in individuals who live in rural developing countries. Interventions have been limited and show only mixed results. To reduce the morbidity and mortality from indoor air pollution, countermeasures have to be developed that are practical, efficient, sustainable, and economical with involvement from the government, the commercial sector, and individuals. This review focuses on the contribution of solid fuels to indoor air pollution. PMID:21038757

  6. Indoor air pollution in slum neighbourhoods of Addis Ababa, Ethiopia

    NASA Astrophysics Data System (ADS)

    Sanbata, Habtamu; Asfaw, Araya; Kumie, Abera

    2014-06-01

    An estimated 95% of the population of Ethiopia uses traditional biomass fuels, such as wood, dung, charcoal, or crop residues, to meet household energy needs. As a result of the harmful smoke emitted from the combustion of biomass fuels, indoor air pollution is responsible for more than 50,000 deaths annually and causes nearly 5% of the burden of disease in Ethiopia. Very limited research on indoor air pollution and its health impacts exists in Ethiopia. This study was, therefore, undertaken to assess the magnitude of indoor air pollution from household fuel use in Addis Ababa, the capital city of Ethiopia. During January and February, 2012, the concentration of fine particulate matter (PM2.5) in 59 households was measured using the University of California at Berkeley Particle Monitor (UCB PM). The raw data was analysed using Statistical Package of Social Science (SPSS version 20.0) software to determine variance between groups and descriptive statistics. The geometric mean of 24-h indoor PM2.5 concentration is approximately 818 μg m-3 (Standard deviation (SD = 3.61)). The highest 24-h geometric mean of PM2.5 concentration observed were 1134 μg m-3 (SD = 3.36), 637 μg m-3 (SD = 4.44), and 335 μg m-3 (SD = 2.51), respectively, in households using predominantly solid fuel, kerosene, and clean fuel. Although 24-h mean PM2.5 concentration between fuel types differed statistically (P < 0.05), post hoc pairwise comparison indicated no significant difference in mean concentration of PM2.5 between improved biomass stoves and traditional stoves (P > 0.05). The study revealed indoor air pollution is a major environmental and health hazard from home using biomass fuel in Addis Ababa. The use of clean fuels and efficient cooking stoves is recommended.

  7. Manual on indoor air quality. Final report. [Glossary

    SciTech Connect

    Diamond, R.C.; Grimsrud, D.T.

    1984-02-01

    This reference manual was prepared to assist electric utilities in helping homeowners, builders, and new home buyers to understand a broad range of issues related to indoor air quality. The manual is directed to technically knowledgeable persons employed by utility companies - the customer service or marketing representative, applications engineer, or technician - who may not have specific expertise in indoor air quality issues. In addition to providing monitoring and control techniques, the manual summarizes the link between pollutant concentrations, air exchange, and energy conservation and describes the characteristics and health effects of selected pollutants. Where technical information is too lengthy or complex for inclusion in this volume, reference sources are given. 112 references, 19 figures, 13 tables.

  8. Development of an indoor air quality checklist for risk assessment of indoor air pollutants by semiquantitative score in nonindustrial workplaces

    PubMed Central

    Syazwan, AI; Rafee, B Mohd; Hafizan, Juahir; Azman, AZF; Nizar, AM; Izwyn, Z; Muhaimin, AA; Yunos, MA Syafiq; Anita, AR; Hanafiah, J Muhamad; Shaharuddin, MS; Ibthisham, A Mohd; Ismail, Mohd Hasmadi; Azhar, MN Mohamad; Azizan, HS; Zulfadhli, I; Othman, J

    2012-01-01

    Background To meet the current diversified health needs in workplaces, especially in nonindustrial workplaces in developing countries, an indoor air quality (IAQ) component of a participatory occupational safety and health survey should be included. Objectives The purpose of this study was to evaluate and suggest a multidisciplinary, integrated IAQ checklist for evaluating the health risk of building occupants. This IAQ checklist proposed to support employers, workers, and assessors in understanding a wide range of important elements in the indoor air environment to promote awareness in nonindustrial workplaces. Methods The general structure of and specific items in the IAQ checklist were discussed in a focus group meeting with IAQ assessors based upon the result of a literature review, previous industrial code of practice, and previous interviews with company employers and workers. Results For practicality and validity, several sessions were held to elicit the opinions of company members, and, as a result, modifications were made. The newly developed IAQ checklist was finally formulated, consisting of seven core areas, nine technical areas, and 71 essential items. Each item was linked to a suitable section in the Industry Code of Practice on Indoor Air Quality published by the Department of Occupational Safety and Health. Conclusion Combined usage of an IAQ checklist with the information from the Industry Code of Practice on Indoor Air Quality would provide easily comprehensible information and practical support. Intervention and evaluation studies using this newly developed IAQ checklist will clarify the effectiveness of a new approach in evaluating the risk of indoor air pollutants in the workplace. PMID:22570579

  9. Indoor air quality and infiltration in multifamily naval housing

    SciTech Connect

    Parker, G.B.; Wilfert, G.L.; Dennis, G.W.

    1984-11-01

    Measurements of indoor air quality and air infiltration were taken in three units of a multifamily housing complex at the Naval Submarine base in Bangor, Washington, over 5 consecutive days during the heating season of 1983. Three dwelling units of identical size constructed in 1978 were monitored, each in a separate two-story four-unit complex. One unit was a downstairs unit and the other two units were upstairs units. Two of the units were occupied by smokers (one downstairs and one upstairs). None of the units had combustion appliances. Pollutants monitored indoors included radon, formaldehyde, carbon monoxide, particulate matter, and nitrogen dioxide. Indoor and outdoor temperature and windspeed were also recorded. Outdoor formaldehyde and nitrogen dioxide were also measured. Air exchange was measured about three times during each 24-h period, using a perfluorocarbon tracer with automatic tracer sampling. The daily average air exchange rate ranged from 0.22 to 0.91 air changes per hour (ACH). Pollutant concentrations were generally low except for particulate matter in the units with smokers, which were two to four times higher than in the unit with nonsmokers. Levels of carbon monoxide were also slightly elevated in one of the units with a smoker compared to the unit with nonsmokers. 5 references, 4 figures, 4 tables.

  10. Preliminary assessment of BTEX concentrations in indoor air of residential buildings and atmospheric ambient air in Ardabil, Iran

    NASA Astrophysics Data System (ADS)

    Hazrati, Sadegh; Rostami, Roohollah; Farjaminezhad, Manoochehr; Fazlzadeh, Mehdi

    2016-05-01

    BTEX concentrations in indoor and outdoor air of 50 homes were studied in Ardabil city and their influencing parameters including; heating system, using gas stove and samovar, tobacco smoking, the floors in which the monitored homes were located, and kitchen plan were considered in the study. Risk assessment analysis was carried out with the obtained concentrations based on EPA IRIS reference doses. BTEX compounds were sampled by charcoal tubes and the samples were analyzed by a GC-FID. Concentrations of benzene (15.18 μg/m3 vs. 8.65 μg/m3), toluene (69.70 μg/m3 vs. 40.56 μg/m3), ethylbenzene (12.07 μg/m3 vs. 4.92 μg/m3) and xylene (48.08 μg/m3 vs. 7.44 μg/m3) in indoor air were significantly (p < 0.05) higher than the levels quantified for outdoor air. The obtained concentrations of benzene were considerably higher than the recommended value of 5 μg/m3 established by Iran environmental protection organization. Among the BTEX compounds, benzene (HQ = 0.51) and xylene (HQ = 0.47) had notable hazard quotient and were the main pollutants responsible for high hazard index in the monitored homes (HI = 1.003). The results showed considerably high cancer risk for lifetime exposure to the indoor (125 × 10-6) and outdoor (71 × 10-6) benzene. Indoor benzene concentrations in homes were significantly influenced by type of heating system, story, and natural gas appliances.

  11. Preliminary assessment of BTEX concentrations in indoor air of residential buildings and atmospheric ambient air in Ardabil, Iran

    NASA Astrophysics Data System (ADS)

    Hazrati, Sadegh; Rostami, Roohollah; Farjaminezhad, Manoochehr; Fazlzadeh, Mehdi

    2016-05-01

    BTEX concentrations in indoor and outdoor air of 50 homes were studied in Ardabil city and their influencing parameters including; heating system, using gas stove and samovar, tobacco smoking, the floors in which the monitored homes were located, and kitchen plan were considered in the study. Risk assessment analysis was carried out with the obtained concentrations based on EPA IRIS reference doses. BTEX compounds were sampled by charcoal tubes and the samples were analyzed by a GC-FID. Concentrations of benzene (15.18 μg/m3 vs. 8.65 μg/m3), toluene (69.70 μg/m3 vs. 40.56 μg/m3), ethylbenzene (12.07 μg/m3 vs. 4.92 μg/m3) and xylene (48.08 μg/m3 vs. 7.44 μg/m3) in indoor air were significantly (p < 0.05) higher than the levels quantified for outdoor air. The obtained concentrations of benzene were considerably higher than the recommended value of 5 μg/m3 established by Iran environmental protection organization. Among the BTEX compounds, benzene (HQ = 0.51) and xylene (HQ = 0.47) had notable hazard quotient and were the main pollutants responsible for high hazard index in the monitored homes (HI = 1.003). The results showed considerably high cancer risk for lifetime exposure to the indoor (125 × 10-6) and outdoor (71 × 10-6) benzene. Indoor benzene concentrations in homes were significantly influenced by type of heating system, story, and natural gas appliances.

  12. Measurement of Radon in Indoor Air.

    ERIC Educational Resources Information Center

    Downey, Daniel M.; Simolunas, Glenn

    1988-01-01

    Describes a laboratory experiment to teach the principles of air sampling, gamma ray spectroscopy, nuclear decay, and radioactive equilibrium. Analyzes radon by carbon adsorption and gamma ray counting. Provides methodology and rate of decay equations. (MVL)

  13. Endocrine disrupting chemicals in indoor and outdoor air

    PubMed Central

    Rudel, Ruthann A.; Perovich, Laura J.

    2009-01-01

    The past 50 years have seen rapid development of new building materials, furnishings, and consumer products and a corresponding explosion in new chemicals in the built environment. While exposure levels are largely undocumented, they are likely to have increased as a wider variety of chemicals came into use, people began spending more time indoors, and air exchange rates decreased to improve energy efficiency. As a result of weak regulatory requirements for chemical safety testing, only limited toxicity data are available for these chemicals. Over the past 15 years, some chemical classes commonly used in building materials, furnishings, and consumer products have been shown to be endocrine disrupting chemicals—that is they interfere with the action of endogenous hormones. These include PCBs, used in electrical equipment, caulking, paints and surface coatings; chlorinated and brominated flame retardants, used in electronics, furniture, and textiles; pesticides, used to control insects, weeds, and other pests in agriculture, lawn maintenance, and the built environment; phthalates, used in vinyl, plastics, fragrances, and other products; alkylphenols, used in detergents, pesticide formulations, and polystyrene plastics; and parabens, used to preserve products like lotions and sunscreens. This paper summarizes reported indoor and outdoor air concentrations, chemical use and sources, and toxicity data for each of these chemical classes. While industrial and transportation-related pollutants have been shown to migrate indoors from outdoor sources, it is expected that indoor sources predominate for these consumer product chemicals; and some studies have identified indoor sources as the predominant factor influencing outdoor ambient air concentrations in densely populated areas. Mechanisms of action, adverse effects, and dose-response relationships for many of these chemicals are poorly understood and no systematic screening of common chemicals for endocrine disrupting

  14. Endocrine disrupting chemicals in indoor and outdoor air

    NASA Astrophysics Data System (ADS)

    Rudel, Ruthann A.; Perovich, Laura J.

    The past 50 years have seen rapid development of new building materials, furnishings, and consumer products and a corresponding explosion in new chemicals in the built environment. While exposure levels are largely undocumented, they are likely to have increased as a wider variety of chemicals came into use, people began spending more time indoors, and air exchange rates decreased to improve energy efficiency. As a result of weak regulatory requirements for chemical safety testing, only limited toxicity data are available for these chemicals. Over the past 15 years, some chemical classes commonly used in building materials, furnishings, and consumer products have been shown to be endocrine disrupting chemicals - that is they interfere with the action of endogenous hormones. These include PCBs, used in electrical equipment, caulking, paints and surface coatings; chlorinated and brominated flame retardants, used in electronics, furniture, and textiles; pesticides, used to control insects, weeds, and other pests in agriculture, lawn maintenance, and the built environment; phthalates, used in vinyl, plastics, fragrances, and other products; alkylphenols, used in detergents, pesticide formulations, and polystyrene plastics; and parabens, used to preserve products like lotions and sunscreens. This paper summarizes reported indoor and outdoor air concentrations, chemical use and sources, and toxicity data for each of these chemical classes. While industrial and transportation-related pollutants have been shown to migrate indoors from outdoor sources, it is expected that indoor sources predominate for these consumer product chemicals; and some studies have identified indoor sources as the predominant factor influencing outdoor ambient air concentrations in densely populated areas. Mechanisms of action, adverse effects, and dose-response relationships for many of these chemicals are poorly understood and no systematic screening of common chemicals for endocrine disrupting

  15. RESIDENTIAL AIR EXCHANGE RATES FOR USE IN INDOOR AIR AND EXPOSURE MODELING STUDIES

    EPA Science Inventory

    Data on air exchange rates are important inputs to indoor air quality models. ndoor air models, in turn, are incorporated into the structure of total human exposure models. ragmentary data on residential ventilation rates are available in various governmental reports, journal art...

  16. Microbiological assessment of indoor air quality at different hospital sites.

    PubMed

    Cabo Verde, Sandra; Almeida, Susana Marta; Matos, João; Guerreiro, Duarte; Meneses, Marcia; Faria, Tiago; Botelho, Daniel; Santos, Mateus; Viegas, Carla

    2015-09-01

    Poor hospital indoor air quality (IAQ) may lead to hospital-acquired infections, sick hospital syndrome and various occupational hazards. Air-control measures are crucial for reducing dissemination of airborne biological particles in hospitals. The objective of this study was to perform a survey of bioaerosol quality in different sites in a Portuguese Hospital, namely the operating theater (OT), the emergency service (ES) and the surgical ward (SW). Aerobic mesophilic bacterial counts (BCs) and fungal load (FL) were assessed by impaction directly onto tryptic soy agar and malt extract agar supplemented with antibiotic chloramphenicol (0.05%) plates, respectively using a MAS-100 air sampler. The ES revealed the highest airborne microbial concentrations (BC range 240-736 CFU/m(3) CFU/m(3); FL range 27-933 CFU/m(3)), exceeding, at several sampling sites, conformity criteria defined in national legislation [6]. Bacterial concentrations in the SW (BC range 99-495 CFU/m(3)) and the OT (BC range 12-170 CFU/m(3)) were under recommended criteria. While fungal levels were below 1 CFU/m(3) in the OT, in the SW (range 1-32 CFU/m(3)), there existed a site with fungal indoor concentrations higher than those detected outdoors. Airborne Gram-positive cocci were the most frequent phenotype (88%) detected from the measured bacterial population in all indoor environments. Staphylococcus (51%) and Micrococcus (37%) were dominant among the bacterial genera identified in the present study. Concerning indoor fungal characterization, the prevalent genera were Penicillium (41%) and Aspergillus (24%). Regular monitoring is essential for assessing air control efficiency and for detecting irregular introduction of airborne particles via clothing of visitors and medical staff or carriage by personal and medical materials. Furthermore, microbiological survey data should be used to clearly define specific air quality guidelines for controlled environments in hospital settings. PMID

  17. Predicting indoor pollutant concentrations, and applications to air quality management

    SciTech Connect

    Lorenzetti, David M.

    2002-10-01

    Because most people spend more than 90% of their time indoors, predicting exposure to airborne pollutants requires models that incorporate the effect of buildings. Buildings affect the exposure of their occupants in a number of ways, both by design (for example, filters in ventilation systems remove particles) and incidentally (for example, sorption on walls can reduce peak concentrations, but prolong exposure to semivolatile organic compounds). Furthermore, building materials and occupant activities can generate pollutants. Indoor air quality depends not only on outdoor air quality, but also on the design, maintenance, and use of the building. For example, ''sick building'' symptoms such as respiratory problems and headaches have been related to the presence of air-conditioning systems, to carpeting, to low ventilation rates, and to high occupant density (1). The physical processes of interest apply even in simple structures such as homes. Indoor air quality models simulate the processes, such as ventilation and filtration, that control pollutant concentrations in a building. Section 2 describes the modeling approach, and the important transport processes in buildings. Because advection usually dominates among the transport processes, Sections 3 and 4 describe methods for predicting airflows. The concluding section summarizes the application of these models.

  18. BIOCONTAMINANT CONTROL (INDOOR ENVIRONMENT MANAGEMENT BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The strategy of NRMRL's Indoor Environment Management Branch in Research Triangle Park, NC, is to work cooperatively with experts to enhance the scientific understanding of indoor air biocontaminants and to develop prevention and control techniques for mitigation of indoor air po...

  19. VOC EMISSIONS FROM AN AIR FRESHENER IN THE INDOOR ENVIRONMENT

    EPA Science Inventory

    The paper describes results of tests, conducted in the U.S. Environmental Protection Agency (EPA) large chamber facility, that investigated emissions of volatile organic compounds (VOCS) from one electrical plug-in type air freshener with pine-scented refills. VOCs were measured ...

  20. 41 CFR 102-80.25 - What are Federal agencies' responsibilities concerning the management of indoor air quality?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... agencies' responsibilities concerning the management of indoor air quality? 102-80.25 Section 102-80.25... Environmental Management Indoor Air Quality § 102-80.25 What are Federal agencies' responsibilities concerning the management of indoor air quality? Federal agencies must assess indoor air quality of......

  1. The compatibility of energy conservation and indoor air quality

    SciTech Connect

    Grimsrud, D.T.; Turk, B.H.; Prill, R.J.; Revzan, K.L.

    1988-10-01

    Two studies of indoor air quality in residences are described. In the first air quality measurements are reported in 111 unweatherized houses followed by careful observation of changes in ventilation rates and air quality in a subset of forty of the houses that received staged weatherization. A large fraction of the houses sampled in the eastern portion of the state of Washington contained high concentrations of radon gas. The major change in air quality seen in the sample as the result of weatherization was a substantial decrease in radon concentration in houses having crawlspaces. A second study reported compares ventilation and air quality in 62 new residences. Half were built using Model Conservation Standards to promote energy efficiency; the other half were built using conventional techniques for the region. Little difference was seen in ventilation rates in spite of significant design differences. Larger variations in air quality were seen between houses in different regions than between the Control and test houses in the same region. We conclude that changes in housing design and construction to promote energy efficiency are not incompatible with good indoor air quality. 20 refs., 13 figs.

  2. Construction/renovation influence on indoor air quality

    SciTech Connect

    Kuehn, T.H.

    1996-10-01

    Much of the current construction activity in the US is renovation of existing buildings. So IAQ issues related to renovation are becoming more important. Indoor air contaminants that originate from nearby construction projects are also receiving increased attention. In some critical applications such as hospitals, IAQ control protocols have been developed and are being implemented. Extensive abatement methods for a few activities such as asbestos removal and fire damage cleanup have been developed that provide guidance for more general contamination control efforts. ASHRAE sponsored a research project to review the published literature and document current practice on indoor air quality issues related to construction and renovation activities (804-RP). This article outlines the major results from the study.

  3. Characterization of Micrococcus strains isolated from indoor air

    PubMed Central

    Kooken, Jennifer M.; Fox, Karen F.; Fox, Alvin

    2014-01-01

    The characterization of microbes, such as of opportunists and pathogens (e.g. methicillin resistant Staphylococcus aureus [MRSA]), in indoor air is important for understanding disease transmission from person-to-person. Common genera found in the human skin microbiome include Micrococcus and Staphylococcus, but there only a limited number of tests to differentiate these genera and/or species. Both genera are believed to be released into indoor air from the shedding of human skin and are morphologically difficult to distinguish. In the current work, after the extraction of proteins from micrococci and the separation of these proteins on one dimensional electrophoretic gels, tryptic peptides were analyzed by MALDI TOF MS and the mass profiles compared with those of a reference strain (ATCC 4698). The results confirmed that all strains were consistent in identity with Micrococcus luteus. PMID:21963944

  4. SOURCE CHARACTERIZATION (INDOOR ENVIRONMENT MANAGEMENT BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Source Characterization Team (SCT) develops, directs, and conducts research on sources of indoor air pollution and their interactions with indoor surfaces (i.e., sinks). Source and sink characterization studies provide quantitative information on the temporal impact of source...

  5. Indoor air and human health revisited: A recent IAQ symposium

    SciTech Connect

    Gammage, R.B.

    1994-12-31

    Indoor Air and Human Health Revisited was a speciality symposium examining the scientific underpinnings of sensory and sensitivity effects, allergy and respiratory disease, neurotoxicity and cancer. An organizing committee selected four persons to chain the sessions and invite experts to give state-of-the-art presentations that will be published as a book. A summary of the presentations is made and some critical issues identified.

  6. Multiplication of microorganisms in an evaporative air cooler and possible indoor air contamination

    SciTech Connect

    Macher, J.M.; Girman, J.R. )

    1990-01-01

    Evaporative air coolers (EACs) cool and humidify hot, dry, outdoor air by pulling it through pads that are wetted continuously by recirculated water. An EAC in a single-family house was examined for three summer months, during which the amount of dissolved solids in the sump water rose to ten times the level in the chlorinated tap water supply. Although the concentration of bacteria in the tap water was always <10 colony-forming units per milliliter (cfu/mL), the concentration in the cooler water reached 1 {times} 10{sup 5} cfu/mL in the ninth week. Indoors and outdoors, the concentrations of airborne microorganisms were similar on individual days, but throughout the study they varied from 10{sup 2} to 10{sup 4} cfu/m{sup 3} for bacteria, and from 10{sup 2} to {ge} 10{sup 3} cfu/m{sup 3} for fungi. When the EAC was not operating, the concentration of airborne microorganisms tended to be higher indoors than outdoors. When operating, the cooler introduced large volumes of outdoor air into the house and there was less difference between the indoor and the outdoor microbiological air quality. Although the pads of the EAC appeared to filter microorganisms from the outdoor air, the types of bacteria that predominated in the sump water were more abundant in the indoor air, and several types of bacteria and fungi were found only in the sump water and in the indoor air.

  7. Field Study of Exhaust Fans for Mitigating Indoor Air Quality Problems & Indoor Air Quality - Exhaust Fan Mitigation.

    SciTech Connect

    United States. Bonneville Power Administration.

    1987-07-01

    Overall, the findings show that exhaust fans basically provide small amounts of ventilation compensation. By monitoring the common indoor air pollutants (radon, formaldehyde, carbon monoxide, nitrogen dioxide, and water vapor), it was found that the quality of the indoor air was not adversely affected by the use of exhaust fans. Nor did their use provide any measurable or significant benefits since no improvement in air quality was ascertained. While exhaust fans of this small size did not increase radon, which is the contaminant of most concern, the researchers caution that operation of a larger fan or installation in a very tight home could result in higher levels because depressurization is greater. The daily energy consumption for use of these appliances during the heating season was calculated to be 1.5 kilowatt hours or approximately 3% of the energy consumption in the study homes. The information collected in this collaborative field study indicates that the use of these particular ventilation systems has no significant effect on indoor air quality.

  8. Method to characterize collective impact of factors on indoor air

    NASA Astrophysics Data System (ADS)

    Szczurek, Andrzej; Maciejewska, Monika; Teuerle, Marek; Wyłomańska, Agnieszka

    2015-02-01

    One of the most important problems in studies of building environment is a description of how it is influenced by various dynamically changing factors. In this paper we characterized the joint impact of a collection of factors on indoor air quality (IAQ). We assumed that the influence is reflected in the temporal variability of IAQ parameters and may be deduced from it. The proposed method utilizes mean square displacement (MSD) analysis which was originally developed for studying the dynamics in various systems. Based on the MSD time-dependence descriptor β, we distinguished three types of the collective impact of factors on IAQ: retarding, stabilizing and promoting. We presented how the aggregated factors influence the temperature, relative humidity and CO2 concentration, as these parameters are informative for the condition of indoor air. We discovered, that during a model day there are encountered one, two or even three types of influence. The presented method allows us to study the impacts from the perspective of the dynamics of indoor air.

  9. Practical approaches for health care: Indoor air quality management

    SciTech Connect

    Turk, A.R.; Poulakos, E.M.

    1996-05-01

    The management of indoor air quality (IAQ) is of interest to building occupants, managers, owners, and regulators alike. Whether by poor design, improper attention, inadequate maintenance or the intent to save energy, many buildings today have significantly degraded IAQ levels. Acceptable IAQ is defined by the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) in Standard 62-1989 {open_quotes}Ventilation for Acceptable Indoor Air Quality{close_quotes} as {open_quotes}air in which there are no known contaminants at harmful concentrations as determined by cognizant authorities and with which a substantial majority (80 percent or more) of the people exposed do not express dissatisfaction.{close_quotes} ASHRAE`s definition not only addresses the chemical compounds that may be present in the air, but it also recognizes a need to address both physiological and psychosocial comfort. The second step is to conduct a performance review of the HVAC systems based on equipment design specifications and guidelines for acceptable IAQ. And the third step is to identify potential chemical, physical and biological sources that are known to contribute to adverse air quality. Upon completion of these three steps, you will able to identify the more significant contributors to IAQ problems and establish applications for prevention and mitigation.

  10. Plants Clean Air and Water for Indoor Environments

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Wolverton Environmental Services Inc., founded by longtime government environmental scientist B.C. "Bill" Wolverton, is an environmental consulting firm that gives customers access to the results of his decades of cutting-edge bioremediation research. Findings about how to use plants to improve indoor air quality have been published in dozens of NASA technical papers and in the book, "How to Grow Fresh Air: 50 Houseplants That Purify Your Home or Office." The book has now been translated into 12 languages and has been on the shelves of bookstores for nearly 10 years. A companion book, "Growing Clean Water: Nature's Solution to Water Pollution," explains how plants can clean waste water. Other discoveries include that the more air that is allowed to circulate through the roots of the plants, the more effective they are at cleaning polluted air; and that plants play a psychological role in welfare in that people recover from illness faster in the presence of plants. Wolverton Environmental is also working in partnership with Syracuse University, to engineer systems consisting of modular wicking filters tied into duct work and water supplies, essentially tying plant-based filters into heating, ventilation, and air conditioning (HVAC) systems. Also, the company has recently begun to assess the ability of the EcoPlanter to remove formaldehyde from interior environments. Wolverton Environmental is also in talks with designers of the new Stennis Visitor's Center, who are interested in using its designs for indoor air-quality filters