Science.gov

Sample records for epimerase enzymatic function

  1. Discovery of a Dipeptide Epimerase Enzymatic Function Guided by Homology Modeling and Virtual Screening

    SciTech Connect

    Kalyanaraman, C.; Imker, H; Fedorov, A; Fedorov, E; Glasner, M; Babbitt, P; Almo, S; Gerlt, J; Jacobson, M

    2008-01-01

    We have developed a computational approach to aid the assignment of enzymatic function for uncharacterized proteins that uses homology modeling to predict the structure of the binding site and in silico docking to identify potential substrates. We apply this method to proteins in the functionally diverse enolase superfamily that are homologous to the characterized L-Ala-D/L-Glu epimerase from Bacillus subtilis. In particular, a protein from Thermotoga martima was predicted to have different substrate specificity, which suggests that it has a different, but as yet unknown, biological function. This prediction was experimentally confirmed, resulting in the assignment of epimerase activity for L-Ala-D/L-Phe, L-Ala-D/L-Tyr, and L-Ala-D/L-His, whereas the enzyme is annotated incorrectly in GenBank as muconate cycloisomerase. Subsequently, crystal structures of the enzyme were determined in complex with three substrates, showing close agreement with the computational models and revealing the structural basis for the observed substrate selectivity.

  2. Chemical Genetic Analysis and Functional Characterization of Staphylococcal Wall Teichoic Acid 2-Epimerases Reveals Unconventional Antibiotic Drug Targets.

    PubMed

    Mann, Paul A; Müller, Anna; Wolff, Kerstin A; Fischmann, Thierry; Wang, Hao; Reed, Patricia; Hou, Yan; Li, Wenjin; Müller, Christa E; Xiao, Jianying; Murgolo, Nicholas; Sher, Xinwei; Mayhood, Todd; Sheth, Payal R; Mirza, Asra; Labroli, Marc; Xiao, Li; McCoy, Mark; Gill, Charles J; Pinho, Mariana G; Schneider, Tanja; Roemer, Terry

    2016-05-01

    Here we describe a chemical biology strategy performed in Staphylococcus aureus and Staphylococcus epidermidis to identify MnaA, a 2-epimerase that we demonstrate interconverts UDP-GlcNAc and UDP-ManNAc to modulate substrate levels of TarO and TarA wall teichoic acid (WTA) biosynthesis enzymes. Genetic inactivation of mnaA results in complete loss of WTA and dramatic in vitro β-lactam hypersensitivity in methicillin-resistant S. aureus (MRSA) and S. epidermidis (MRSE). Likewise, the β-lactam antibiotic imipenem exhibits restored bactericidal activity against mnaA mutants in vitro and concomitant efficacy against 2-epimerase defective strains in a mouse thigh model of MRSA and MRSE infection. Interestingly, whereas MnaA serves as the sole 2-epimerase required for WTA biosynthesis in S. epidermidis, MnaA and Cap5P provide compensatory WTA functional roles in S. aureus. We also demonstrate that MnaA and other enzymes of WTA biosynthesis are required for biofilm formation in MRSA and MRSE. We further determine the 1.9Å crystal structure of S. aureus MnaA and identify critical residues for enzymatic dimerization, stability, and substrate binding. Finally, the natural product antibiotic tunicamycin is shown to physically bind MnaA and Cap5P and inhibit 2-epimerase activity, demonstrating that it inhibits a previously unanticipated step in WTA biosynthesis. In summary, MnaA serves as a new Staphylococcal antibiotic target with cognate inhibitors predicted to possess dual therapeutic benefit: as combination agents to restore β-lactam efficacy against MRSA and MRSE and as non-bioactive prophylactic agents to prevent Staphylococcal biofilm formation. PMID:27144276

  3. Chemical Genetic Analysis and Functional Characterization of Staphylococcal Wall Teichoic Acid 2-Epimerases Reveals Unconventional Antibiotic Drug Targets

    PubMed Central

    Mann, Paul A.; Müller, Anna; Wolff, Kerstin A.; Fischmann, Thierry; Wang, Hao; Reed, Patricia; Hou, Yan; Li, Wenjin; Müller, Christa E.; Xiao, Jianying; Murgolo, Nicholas; Sher, Xinwei; Mayhood, Todd; Sheth, Payal R.; Mirza, Asra; Labroli, Marc; Xiao, Li; McCoy, Mark; Gill, Charles J.; Pinho, Mariana G.; Schneider, Tanja; Roemer, Terry

    2016-01-01

    Here we describe a chemical biology strategy performed in Staphylococcus aureus and Staphylococcus epidermidis to identify MnaA, a 2-epimerase that we demonstrate interconverts UDP-GlcNAc and UDP-ManNAc to modulate substrate levels of TarO and TarA wall teichoic acid (WTA) biosynthesis enzymes. Genetic inactivation of mnaA results in complete loss of WTA and dramatic in vitro β-lactam hypersensitivity in methicillin-resistant S. aureus (MRSA) and S. epidermidis (MRSE). Likewise, the β-lactam antibiotic imipenem exhibits restored bactericidal activity against mnaA mutants in vitro and concomitant efficacy against 2-epimerase defective strains in a mouse thigh model of MRSA and MRSE infection. Interestingly, whereas MnaA serves as the sole 2-epimerase required for WTA biosynthesis in S. epidermidis, MnaA and Cap5P provide compensatory WTA functional roles in S. aureus. We also demonstrate that MnaA and other enzymes of WTA biosynthesis are required for biofilm formation in MRSA and MRSE. We further determine the 1.9Å crystal structure of S. aureus MnaA and identify critical residues for enzymatic dimerization, stability, and substrate binding. Finally, the natural product antibiotic tunicamycin is shown to physically bind MnaA and Cap5P and inhibit 2-epimerase activity, demonstrating that it inhibits a previously unanticipated step in WTA biosynthesis. In summary, MnaA serves as a new Staphylococcal antibiotic target with cognate inhibitors predicted to possess dual therapeutic benefit: as combination agents to restore β-lactam efficacy against MRSA and MRSE and as non-bioactive prophylactic agents to prevent Staphylococcal biofilm formation. PMID:27144276

  4. Functions, structures, and applications of cellobiose 2-epimerase and glycoside hydrolase family 130 mannoside phosphorylases.

    PubMed

    Saburi, Wataru

    2016-07-01

    Carbohydrate isomerases/epimerases are essential in carbohydrate metabolism, and have great potential in industrial carbohydrate conversion. Cellobiose 2-epimerase (CE) reversibly epimerizes the reducing end d-glucose residue of β-(1→4)-linked disaccharides to d-mannose residue. CE shares catalytic machinery with monosaccharide isomerases and epimerases having an (α/α)6-barrel catalytic domain. Two histidine residues act as general acid and base catalysts in the proton abstraction and addition mechanism. β-Mannoside hydrolase and 4-O-β-d-mannosyl-d-glucose phosphorylase (MGP) were found as neighboring genes of CE, meaning that CE is involved in β-mannan metabolism, where it epimerizes β-d-mannopyranosyl-(1→4)-d-mannose to β-d-mannopyranosyl-(1→4)-d-glucose for further phosphorolysis. MGPs form glycoside hydrolase family 130 (GH130) together with other β-mannoside phosphorylases and hydrolases. Structural analysis of GH130 enzymes revealed an unusual catalytic mechanism involving a proton relay and the molecular basis for substrate and reaction specificities. Epilactose, efficiently produced from lactose using CE, has superior physiological functions as a prebiotic oligosaccharide. PMID:27031293

  5. Structural and functional studies on a 3'-epimerase involved in the biosynthesis of dTDP-6-deoxy-D-allose.

    PubMed

    Kubiak, Rachel L; Phillips, Rebecca K; Zmudka, Matthew W; Ahn, Melissa R; Maka, E Malaika; Pyeatt, Gwen L; Roggensack, Sarah J; Holden, Hazel M

    2012-11-20

    Unusual deoxy sugars are often attached to natural products such as antibiotics, antifungals, and chemotherapeutic agents. One such sugar is mycinose, which has been found on the antibiotics chalcomycin and tylosin. An intermediate in the biosynthesis of mycinose is dTDP-6-deoxy-D-allose. Four enzymes are required for the production of dTDP-6-deoxy-D-allose in Streptomyces bikiniensis, a soil-dwelling microbe first isolated from the Bikini and Rongelap atolls. Here we describe a combined structural and functional study of the enzyme ChmJ, which reportedly catalyzes the third step in the pathway leading to dTDP-6-deoxy-D-allose formation. Specifically, it has been proposed that ChmJ is a 3'-epimerase that converts dTDP-4-keto-6-deoxyglucose to dTDP-4-keto-6-deoxyallose. This activity, however, has never been verified in vitro. As reported here, we demonstrate using (1)H nuclear magnetic resonance that ChmJ, indeed, functions as a 3'-epimerase. In addition, we determined the structure of ChmJ complexed with dTDP-quinovose to 2.0 Å resolution. The structure of ChmJ shows that it belongs to the well-characterized "cupin" superfamily. Two active site residues, His 60 and Tyr 130, were subsequently targeted for study via site-directed mutagenesis and kinetic analyses, and the three-dimensional architecture of the H60N/Y130F mutant protein was determined to 1.6 Å resolution. Finally, the structure of the apoenzyme was determined to 2.2 Å resolution. It has been previously suggested that the position of a conserved tyrosine, Tyr 130 in the case of ChmJ, determines whether an enzyme in this superfamily functions as a mono- or diepimerase. Our results indicate that the orientation of the tyrosine residue in ChmJ is a function of the ligand occupying the active site cleft. PMID:23116432

  6. Functional reassignment of Cellvibrio vulgaris EpiA to cellobiose 2-epimerase and an evaluation of the biochemical functions of the 4-O-β-D-mannosyl-D-glucose phosphorylase-like protein, UnkA.

    PubMed

    Saburi, Wataru; Tanaka, Yuka; Muto, Hirohiko; Inoue, Sota; Odaka, Rei; Nishimoto, Mamoru; Kitaoka, Motomitsu; Mori, Haruhide

    2015-01-01

    The aerobic soil bacterium Cellvibrio vulgaris has a β-mannan-degradation gene cluster, including unkA, epiA, man5A, and aga27A. Among these genes, epiA has been assigned to encode an epimerase for converting D-mannose to D-glucose, even though the amino acid sequence of EpiA is similar to that of cellobiose 2-epimerases (CEs). UnkA, whose function currently remains unknown, shows a high sequence identity to 4-O-β-D-mannosyl-D-glucose phosphorylase. In this study, we have investigated CE activity of EpiA and the general characteristics of UnkA using recombinant proteins from Escherichia coli. Recombinant EpiA catalyzed the epimerization of the 2-OH group of sugar residue at the reducing end of cellobiose, lactose, and β-(1→4)-mannobiose in a similar manner to other CEs. Furthermore, the reaction efficiency of EpiA for β-(1→4)-mannobiose was 5.5 × 10(4)-fold higher than it was for D-mannose. Recombinant UnkA phosphorolyzed β-D-mannosyl-(1→4)-D-glucose and specifically utilized D-glucose as an acceptor in the reverse reaction, which indicated that UnkA is a typical 4-O-β-D-mannosyl-D-glucose phosphorylase. PMID:25704402

  7. Structural and biochemical insights into nucleotide-rhamnose synthase/epimerase-reductase from Arabidopsis thaliana.

    PubMed

    Han, Xiaodong; Qian, Lei; Zhang, Lianwen; Liu, Xinqi

    2015-10-01

    L-Rhamnose (Rha) is synthesized via a similar enzymatic pathway in bacteria, plants and fungi. In plants, nucleotide-rhamnose synthase/epimerase-reductase (NRS/ER) catalyzes the final step in the conversion of dTDP/UDP-α-D-Glc to dTDP/UDP-β-L-Rha in an NAD(P)H dependent manner. Currently, only biochemical evidence for the function of NRS/ER has been described. In this study, a crystal structure for Arabidopsis thaliana NRS/ER was determined, which is the first report of a eukaryotic rhamnose synthase with both epimerase and reductase activities. NRS/ER functions as a metal ion independent homodimer that forms through hydrophobic interactions via a four-helix bundle. Each monomer exhibits α/β folding that can be divided into two regions, nucleotide cofactor binding domain and sugar substrate binding domain. The affinities of ligands with NRS/ER were measured using isothermal titration calorimetry, which showed that NRS/ER has a preference for dTDP over UDP, while the cofactor binding site has a similar affinity for NADH and NADPH. Structural analysis coupled to site-directed mutagenesis suggested C115 and K183 as the acid/base pair responsible for epimerization, while T113, Y144 and K148 are the conserved residues in reduction. These findings shed light on the molecular mechanism of NRS/ER and were helpful to explore other eukaryotic enzymes involved in L-Rha synthesis. PMID:26116145

  8. Structural and Functional Characterization of the R-modules in Alginate C-5 Epimerases AlgE4 and AlgE6 from Azotobacter vinelandii

    PubMed Central

    Buchinger, Edith; Knudsen, Daniel H.; Behrens, Manja A.; Pedersen, Jan Skov; Aarstad, Olav A.; Tøndervik, Anne; Valla, Svein; Skjåk-Bræk, Gudmund; Wimmer, Reinhard; Aachmann, Finn L.

    2014-01-01

    The bacterium Azotobacter vinelandii produces a family of seven secreted and calcium-dependent mannuronan C-5 epimerases (AlgE1–7). These epimerases are responsible for the epimerization of β-d-mannuronic acid (M) to α-l-guluronic acid (G) in alginate polymers. The epimerases display a modular structure composed of one or two catalytic A-modules and from one to seven R-modules having an activating effect on the A-module. In this study, we have determined the NMR structure of the three individual R-modules from AlgE6 (AR1R2R3) and the overall structure of both AlgE4 (AR) and AlgE6 using small angle x-ray scattering. Furthermore, the alginate binding ability of the R-modules of AlgE4 and AlgE6 has been studied with NMR and isothermal titration calorimetry. The AlgE6 R-modules fold into an elongated parallel β-roll with a shallow, positively charged groove across the module. Small angle x-ray scattering analyses of AlgE4 and AlgE6 show an overall elongated shape with some degree of flexibility between the modules for both enzymes. Titration of the R-modules with defined alginate oligomers shows strong interaction between AlgE4R and both oligo-M and MG, whereas no interaction was detected between these oligomers and the individual R-modules from AlgE6. A combination of all three R-modules from AlgE6 shows weak interaction with long M-oligomers. Exchanging the R-modules between AlgE4 and AlgE6 resulted in a novel epimerase called AlgE64 with increased G-block forming ability compared with AlgE6. PMID:25266718

  9. D-Ribulose 5-Phosphate 3-Epimerase: Functional and Structural Relationships to Members of the Ribulose-Phosphate Binding (beta/alpha)8-Barrel Superfamily

    SciTech Connect

    Akana,J.; Federov, A.; Federov, E.; Novak, W.; Babbitt, P.; Almo, S.; Gerlt, J.

    2006-01-01

    The 'ribulose phosphate binding' superfamily defined by the Structural Classification of Proteins (SCOP) database is considered the result of divergent evolution from a common ({beta}/{alpha}){sub 8}-barrel ancestor. The superfamily includes D-ribulose 5-phosphate 3-epimerase (RPE), orotidine 5'-monophosphate decarboxylase (OMPDC), and 3-keto-L-gulonate 6-phosphate decarboxylase (KGPDC), members of the OMPDC suprafamily, as well as enzymes involved in histidine and tryptophan biosynthesis that utilize phosphorylated metabolites as substrates. We now report studies of the functional and structural relationships of RPE to the members of the superfamily. As suggested by the results of crystallographic studies of the RPEs from rice and Plasmodium falciparum, the RPE from Streptococcus pyogenes is activated by Zn{sup 2+} which binds with a stoichiometry of one ion per polypeptide. Although wild type RPE has a high affinity for Zn{sup 2+} and inactive apoenzyme cannot be prepared, the affinity for Zn{sup 2+} is decreased by alanine substitutions for the two histidine residues that coordinate the Zn{sup 2+} ion (H34A and H67A); these mutant proteins can be prepared in an inactive, metal-free form and activated by exogenous Zn{sup 2+}. The crystal structure of the RPE was solved at 1.8 Angstroms resolution in the presence of D-xylitol 5-phosphate, an inert analogue of the D-xylulose 5-phosphate substrate. This structure suggests that the 2,3-enediolate intermediate in the 1,1-proton transfer reaction is stabilized by bidentate coordination to the Zn{sup 2+} that also is liganded to His 34, Asp 36, His 67, and Asp 176; the carboxylate groups of the Asp residues are positioned also to function as the acid/base catalysts. Although the conformation of the bound analogue resembles those of ligands bound in the active sites of OMPDC and KGPDC, the identities of the active site residues that coordinate the essential Zn{sup 2+} and participate as acid/base catalysts are not

  10. Improved operational stability of d-psicose 3-epimerase by a novel protein engineering strategy, and d-psicose production from fruit and vegetable residues.

    PubMed

    Patel, Satya Narayan; Sharma, Manisha; Lata, Kusum; Singh, Umesh; Kumar, Vinod; Sangwan, Rajender S; Singh, Sudhir P

    2016-09-01

    The aim of the present work was to improve stability of d-psicose 3-epimerase and biotransformation of fruit and vegetable residues for d-psicose production. The study established that N-terminal fusion of a yeast homolog of SUMO protein - Smt3 - can confer elevated optimal temperature and improved operational stability to d-psicose 3-epimerase. The Smt3-d-psicose 3-epimerase conjugate system exhibited relatively better catalytic efficiency, and improved productivity in terms of space-time yields of about 8.5kgL(-1)day(-1). It could serve as a promising catalytic tool for the pilot scale production of the functional sugar, d-psicose. Furthermore, a novel approach for economical production of d-psicose was developed by enzymatic and microbial bioprocessing of fruit and vegetable residues, aimed at epimerization of in situd-fructose to d-psicose. The bioprocessing led to achievement of d-psicose production to the extent of 25-35% conversion (w/w) of d-fructose contained in the sample. PMID:27235974

  11. Structural and Functional Characterization of the Clostridium perfringens N-Acetylmannosamine-6-phosphate 2-Epimerase Essential for the Sialic Acid Salvage Pathway*

    PubMed Central

    Pélissier, Marie-Cécile; Sebban-Kreuzer, Corinne; Guerlesquin, Françoise; Brannigan, James A.; Bourne, Yves; Vincent, Florence

    2014-01-01

    Pathogenic bacteria are endowed with an arsenal of specialized enzymes to convert nutrient compounds from their cell hosts. The essential N-acetylmannosamine-6-phosphate 2-epimerase (NanE) belongs to a convergent glycolytic pathway for utilization of the three amino sugars, GlcNAc, ManNAc, and sialic acid. The crystal structure of ligand-free NanE from Clostridium perfringens reveals a modified triose-phosphate isomerase (β/α)8 barrel in which a stable dimer is formed by exchanging the C-terminal helix. By retaining catalytic activity in the crystalline state, the structure of the enzyme bound to the GlcNAc-6P product identifies the topology of the active site pocket and points to invariant residues Lys66 as a putative single catalyst, supported by the structure of the catalytically inactive K66A mutant in complex with substrate ManNAc-6P. 1H NMR-based time course assays of native NanE and mutated variants demonstrate the essential role of Lys66 for the epimerization reaction with participation of neighboring Arg43, Asp126, and Glu180 residues. These findings unveil a one-base catalytic mechanism of C2 deprotonation/reprotonation via an enolate intermediate and provide the structural basis for the development of new antimicrobial agents against this family of bacterial 2-epimerases. PMID:25320079

  12. Rational design of functional and tunable oscillating enzymatic networks.

    PubMed

    Semenov, Sergey N; Wong, Albert S Y; van der Made, R Martijn; Postma, Sjoerd G J; Groen, Joost; van Roekel, Hendrik W H; de Greef, Tom F A; Huck, Wilhelm T S

    2015-02-01

    Life is sustained by complex systems operating far from equilibrium and consisting of a multitude of enzymatic reaction networks. The operating principles of biology's regulatory networks are known, but the in vitro assembly of out-of-equilibrium enzymatic reaction networks has proved challenging, limiting the development of synthetic systems showing autonomous behaviour. Here, we present a strategy for the rational design of programmable functional reaction networks that exhibit dynamic behaviour. We demonstrate that a network built around autoactivation and delayed negative feedback of the enzyme trypsin is capable of producing sustained oscillating concentrations of active trypsin for over 65 h. Other functions, such as amplification, analog-to-digital conversion and periodic control over equilibrium systems, are obtained by linking multiple network modules in microfluidic flow reactors. The methodology developed here provides a general framework to construct dissipative, tunable and robust (bio)chemical reaction networks. PMID:25615670

  13. Rational design of functional and tunable oscillating enzymatic networks

    NASA Astrophysics Data System (ADS)

    Semenov, Sergey N.; Wong, Albert S. Y.; van der Made, R. Martijn; Postma, Sjoerd G. J.; Groen, Joost; van Roekel, Hendrik W. H.; de Greef, Tom F. A.; Huck, Wilhelm T. S.

    2015-02-01

    Life is sustained by complex systems operating far from equilibrium and consisting of a multitude of enzymatic reaction networks. The operating principles of biology's regulatory networks are known, but the in vitro assembly of out-of-equilibrium enzymatic reaction networks has proved challenging, limiting the development of synthetic systems showing autonomous behaviour. Here, we present a strategy for the rational design of programmable functional reaction networks that exhibit dynamic behaviour. We demonstrate that a network built around autoactivation and delayed negative feedback of the enzyme trypsin is capable of producing sustained oscillating concentrations of active trypsin for over 65 h. Other functions, such as amplification, analog-to-digital conversion and periodic control over equilibrium systems, are obtained by linking multiple network modules in microfluidic flow reactors. The methodology developed here provides a general framework to construct dissipative, tunable and robust (bio)chemical reaction networks.

  14. Studies of the V94M-substituted human UDPgalactose-4-epimerase enzyme associated with generalized epimerase-deficiency galactosaemia.

    PubMed

    Wohlers, T M; Fridovich-Keil, J L

    2000-11-01

    Impairment of the human enzyme UDPgalactose 4-epimerase (hGALE) results in epimerase-deficiency galactosaemia, an inborn error of metabolism with variable biochemical presentation and clinical outcomes reported to range from benign to severe. Molecular studies of the hGALE loci from patients with epimerase deficiency reveal significant allelic heterogeneity, raising the possibility that variable genotypes may constitute at least one factor contributing to the biochemical and clinical heterogeneity observed. Previously we have identified a single substitution mutation, V94M, present in the homozygous state in all patients genotyped with the severe, generalized form of epimerase-deficiency galactosaemia. We report here further studies of the V94M-hGALE enzyme, overexpressed and purified from a null-background yeast expression system. Our results demonstrate that the mutant protein is impaired relative to the wild-type enzyme predominantly at the level of Vmax rather than of Km. Studies using UDP-N-acetylgalactosamine as a competitor of UDPgalactose further demonstrate that the Km values for these two substrates vary by less than a factor of 3 for both the wild-type and mutant proteins. Finally, we have explored the impact of the V94M substitution on susceptibility of yeast expressing human GALE to galactose toxicity, including changes in the levels of galactose 1-phosphate (gal-1-P) accumulated in these cells at different times following exposure to galactose. We have observed an inverse correlation between the level of GALE activity expressed in a given culture and the degree of galactose toxicity observed. We have further observed an inverse correlation between the level of GALE activity expressed in a culture and the concentration of gal-1-P accumulated in the cells. These data support the hypothesis that elevated levels of gal-1-P may underlie the observed toxicity. They further raise the intriguing possibility that yeast may provide a valuable model not only for

  15. A new robust kinetic assay for DAP epimerase activity.

    PubMed

    Hor, Lilian; Peverelli, Martin G; Perugini, Matthew A; Hutton, Craig A

    2013-10-01

    DAP epimerase is the penultimate enzyme in the lysine biosynthesis pathway. The most versatile assay for DAP epimerase catalytic activity employs a coupled DAP epimerase-DAP dehydrogenase enzyme system with a commercial mixture of DAP isomers as substrate. DAP dehydrogenase converts meso-DAP to THDP with concomitant reduction of NADP(+) to NADPH. We show that at high concentrations, accumulation of NADPH results in inhibition of DAPDH, resulting in spurious kinetic data. A new assay has been developed employing DAP decarboxylase that allows the reliable characterisation of DAP epimerase enzyme kinetics. PMID:23838343

  16. Enzymatic regulation of functional vascular networks using gelatin hydrogels

    PubMed Central

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M.; Chen, Ying-Chieh

    2015-01-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. PMID:25749296

  17. Intramolecular Epistasis and the Evolution of a New Enzymatic Function

    PubMed Central

    Noor, Sajid; Taylor, Matthew C.; Russell, Robyn J.; Jermiin, Lars S.; Jackson, Colin J.; Oakeshott, John G.; Scott, Colin

    2012-01-01

    Atrazine chlorohydrolase (AtzA) and its close relative melamine deaminase (TriA) differ by just nine amino acid substitutions but have distinct catalytic activities. Together, they offer an informative model system to study the molecular processes that underpin the emergence of new enzymatic function. Here we have constructed the potential evolutionary trajectories between AtzA and TriA, and characterized the catalytic activities and biophysical properties of the intermediates along those trajectories. The order in which the nine amino acid substitutions that separate the enzymes could be introduced to either enzyme, while maintaining significant catalytic activity, was dictated by epistatic interactions, principally between three amino acids within the active site: namely, S331C, N328D and F84L. The mechanistic basis for the epistatic relationships is consistent with a model for the catalytic mechanisms in which protonation is required for hydrolysis of melamine, but not atrazine. PMID:22768133

  18. 5-methylcytosine in RNA: detection, enzymatic formation and biological functions

    PubMed Central

    Motorin, Yuri; Lyko, Frank; Helm, Mark

    2010-01-01

    The nucleobase modification 5-methylcytosine (m5C) is widespread both in DNA and different cellular RNAs. The functions and enzymatic mechanisms of DNA m5C-methylation were extensively studied during the last decades. However, the location, the mechanism of formation and the cellular function(s) of the same modified nucleobase in RNA still remain to be elucidated. The recent development of a bisulfite sequencing approach for efficient m5C localization in various RNA molecules puts ribo-m5C in a highly privileged position as one of the few RNA modifications whose detection is amenable to PCR-based amplification and sequencing methods. Additional progress in the field also includes the characterization of several specific RNA methyltransferase enzymes in various organisms, and the discovery of a new and unexpected link between DNA and RNA m5C-methylation. Numerous putative RNA:m5C-MTases have now been identified and are awaiting characterization, including the identification of their RNA substrates and their related cellular functions. In order to bring these recent exciting developments into perspective, this review provides an ordered overview of the detection methods for RNA methylation, of the biochemistry, enzymology and molecular biology of the corresponding modification enzymes, and discusses perspectives for the emerging biological functions of these enzymes. PMID:20007150

  19. Redox control of enzymatic functions: The electronics of life's circuitry.

    PubMed

    Bonini, Marcelo G; Consolaro, Marcia E L; Hart, Peter C; Mao, Mao; de Abreu, Andre Luelsdorf Pimenta; Master, Alyssa M

    2014-03-26

    The field of redox biology has changed tremendously over the past 20 years. Formerly regarded as bi-products of the aerobic metabolism exclusively involved in tissue damage, reactive oxygen species (ROS) are now recognized as active participants of cell signaling events in health and in disease. In this sense, ROS and the more recently defined reactive nitrogen species (RNS) are, just like hormones and second messengers, acting as fundamental orchestrators of cell signaling pathways. The chemical modification of enzymes by ROS and RNS (that result in functional enzymatic alterations) accounts for a considerable fraction of the transient and persistent perturbations imposed by variations in oxidant levels. Upregulation of ROS and RNS in response to stress is a common cellular response that foments adaptation to a variety of physiologic alterations (hypoxia, hyperoxia, starvation, and cytokine production). Frequently, these are beneficial and increase the organisms' resistance against subsequent acute stress (preconditioning). Differently, the sustained ROS/RNS-dependent rerouting of signaling produces irreversible alterations in cellular functioning, often leading to pathogenic events. Thus, the duration and reversibility of protein oxidations define whether complex organisms remain "electronically" healthy. Among the 20 essential amino acids, four are particularly susceptible to oxidation: cysteine, methionine, tyrosine, and tryptophan. Here, we will critically review the mechanisms, implications, and repair systems involved in the redox modifications of these residues in proteins while analyzing well-characterized prototypic examples. Occasionally, we will discuss potential consequences of amino acid oxidation and speculate on the biologic necessity for such events in the context of adaptative redox signaling. © 2014 IUBMB Life, 2014. PMID:24668617

  20. UDP-hexose 4-epimerases: a view on structure, mechanism and substrate specificity.

    PubMed

    Beerens, Koen; Soetaert, Wim; Desmet, Tom

    2015-09-23

    UDP-sugar 4-epimerase (GalE) belongs to the short-chain dehydrogenase/reductase (SDR) superfamily of proteins and is one of enzymes in the Leloir pathway. They have been shown to be important virulence factors in a number of Gram-negative pathogens and to be involved in the biosynthesis of different polysaccharide structures. The metabolic disease type III galactosemia is caused by detrimental mutations in the human GalE. GalE and related enzymes display unusual enzymologic, chemical, and stereochemical properties; including irreversible binding of the cofactor NAD and uridine nucleotide-induced activation of this cofactor. These epimerases have been found active on UDP-hexoses, the N-acetylated and uronic acid forms thereof as well as UDP-pentoses. As they are involved in different pathways and functions, a deeper understanding of the enzymes, and their substrate promiscuity and/or selectivity, could lead to drug and vaccine design as well as antibiotic and probiotic development. This review summarizes the research performed on UDP-sugar 4-epimerases' structure, mechanism and substrate promiscuity. PMID:26162744

  1. A Structural Basis for the Allosteric Regulatin of Non-Hydrolysing UDP-G1cNAc 2-Epimerases

    SciTech Connect

    Velloso,L.; Bhaskaran, S.; Schuch, R.; Fischetti, V.; Stebbins, C.

    2008-01-01

    The non-hydrolysing bacterial UDP-N-acetylglucosamine 2-epimerase (UDP-GlcNAc 2-epimerase) catalyses the conversion of UDP-GlcNAc into UDP-N-acetylmannosamine, an intermediate in the biosynthesis of several cell-surface polysaccharides. This enzyme is allosterically regulated by its substrate UDP-GlcNAc. The structure of the ternary complex between the Bacillus anthracis UDP-GlcNAc 2-epimerase, its substrate UDP-GlcNAc and the reaction intermediate UDP, showed direct interactions between UDP and its substrate, and between the complex and highly conserved enzyme residues, identifying the allosteric site of the enzyme. The binding of UDP-GlcNAc is associated with conformational changes in the active site of the enzyme. Kinetic data and mutagenesis of the highly conserved UDP-GlcNAc-interacting residues confirm their importance in the substrate binding and catalysis of the enzyme. This constitutes the first example to our knowledge, of an enzymatic allosteric activation by direct interaction between the substrate and the allosteric activator.

  2. Epimerase-Deficiency Galactosemia Is Not a Binary Condition

    PubMed Central

    Openo, Kimberly K.; Schulz, Jenny M.; Vargas, Claudia A.; Orton, Corey S.; Epstein, Michael P.; Schnur, Rhonda E.; Scaglia, Fernando; Berry, Gerard T.; Gottesman, Gary S.; Ficicioglu, Can; Slonim, Alfred E.; Schroer, Richard J.; Yu, Chunli; Rangel, Vanessa E.; Keenan, Jennifer; Lamance, Kerri; Fridovich-Keil, Judith L.

    2006-01-01

    Epimerase-deficiency galactosemia results from the impairment of UDP-galactose 4′-epimerase (GALE), the third enzyme in the Leloir pathway of galactose metabolism. Originally identified as a clinically benign “peripheral” condition with enzyme impairment restricted to circulating blood cells, GALE deficiency was later demonstrated also to exist in a rare but clinically severe “generalized” form, with enzyme impairment affecting a range of tissues. Isolated cases of clinically and/or biochemically intermediate cases of epimerase deficiency have also been reported. We report here studies of 10 patients who, in the neonatal period, received the diagnosis of hemolysate epimerase deficiency. We have characterized these patients with regard to three parameters: (1) GALE activity in transformed lymphoblasts, representing a “nonperipheral” tissue, (2) metabolic sensitivity of those lymphoblasts to galactose challenge in culture, and (3) evidence of normal versus abnormal galactose metabolism in the patients themselves. Our results demonstrate two important points. First, whereas some of the patients studied exhibited near-normal levels of GALE activity in lymphoblasts, consistent with a diagnosis of peripheral epimerase deficiency, many did not. We detected a spectrum of GALE activity levels ranging from 15%–64% of control levels, demonstrating that epimerase deficiency is not a binary condition; it is a continuum disorder. Second, lymphoblasts demonstrating the most severe reduction in GALE activity also demonstrated abnormal metabolite levels in the presence of external galactose and, in some cases, also in the absence of galactose. These abnormalities included elevated galactose-1P, elevated UDP-galactose, and deficient UDP-glucose. Moreover, some of the patients themselves also demonstrated metabolic abnormalities, both on and off galactose-restricted diet. Long-term follow-up studies of these and other patients will be required to elucidate the

  3. Recent advances in the elucidation of enzymatic function in natural product biosynthesis

    PubMed Central

    Tan, Gao-Yi; Deng, Zixin; Liu, Tiangang

    2016-01-01

    With the successful production of artemisinic acid in yeast, the promising potential of synthetic biology for natural product biosynthesis is now being realized. The recent total biosynthesis of opioids in microbes is considered to be another landmark in this field. The importance and significance of enzymes in natural product biosynthetic pathways have been re-emphasized by these advancements. Therefore, the characterization and elucidation of enzymatic function in natural product biosynthesis are undoubtedly fundamental for the development of new drugs and the heterologous biosynthesis of active natural products. Here, discoveries regarding enzymatic function in natural product biosynthesis over the past year are briefly reviewed. PMID:26989472

  4. Catalytic Mechanism and Mode of Action of the Periplasmic Alginate Epimerase AlgG*

    PubMed Central

    Wolfram, Francis; Kitova, Elena N.; Robinson, Howard; Walvoort, Marthe T. C.; Codée, Jeroen D. C.; Klassen, John S.; Howell, P. Lynne

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that forms chronic biofilm infections in the lungs of cystic fibrosis patients. A major component of the biofilm during these infections is the exopolysaccharide alginate, which is synthesized at the inner membrane as a homopolymer of 1–4-linked β-d-mannuronate. As the polymer passages through the periplasm, 22–44% of the mannuronate residues are converted to α-l-guluronate by the C5-epimerase AlgG to produce a polymer of alternating β-d-mannuronate and α-l-guluronate blocks and stretches of polymannuronate. To understand the molecular basis of alginate epimerization, the structure of Pseudomonas syringae AlgG has been determined at 2.1-Å resolution, and the protein was functionally characterized. The structure reveals that AlgG is a long right-handed parallel β-helix with an elaborate lid structure. Functional analysis of AlgG mutants suggests that His319 acts as the catalytic base and that Arg345 neutralizes the acidic group during the epimerase reaction. Water is the likely catalytic acid. Electrostatic surface potential and residue conservation analyses in conjunction with activity and substrate docking studies suggest that a conserved electropositive groove facilitates polymannuronate binding and contains at least nine substrate binding subsites. These subsites likely align the polymer in the correct register for catalysis to occur. The presence of multiple subsites, the electropositive groove, and the non-random distribution of guluronate in the alginate polymer suggest that AlgG is a processive enzyme. Moreover, comparison of AlgG and the extracellular alginate epimerase AlgE4 of Azotobacter vinelandii provides a structural rationale for the differences in their Ca2+ dependence. PMID:24398681

  5. Catalytic mechanism and mode of action of the periplasmic alginate epimerase AlgG.

    PubMed

    Wolfram, Francis; Kitova, Elena N; Robinson, Howard; Walvoort, Marthe T C; Codée, Jeroen D C; Klassen, John S; Howell, P Lynne

    2014-02-28

    Pseudomonas aeruginosa is an opportunistic pathogen that forms chronic biofilm infections in the lungs of cystic fibrosis patients. A major component of the biofilm during these infections is the exopolysaccharide alginate, which is synthesized at the inner membrane as a homopolymer of 1-4-linked β-D-mannuronate. As the polymer passages through the periplasm, 22-44% of the mannuronate residues are converted to α-L-guluronate by the C5-epimerase AlgG to produce a polymer of alternating β-D-mannuronate and α-L-guluronate blocks and stretches of polymannuronate. To understand the molecular basis of alginate epimerization, the structure of Pseudomonas syringae AlgG has been determined at 2.1-Å resolution, and the protein was functionally characterized. The structure reveals that AlgG is a long right-handed parallel β-helix with an elaborate lid structure. Functional analysis of AlgG mutants suggests that His(319) acts as the catalytic base and that Arg(345) neutralizes the acidic group during the epimerase reaction. Water is the likely catalytic acid. Electrostatic surface potential and residue conservation analyses in conjunction with activity and substrate docking studies suggest that a conserved electropositive groove facilitates polymannuronate binding and contains at least nine substrate binding subsites. These subsites likely align the polymer in the correct register for catalysis to occur. The presence of multiple subsites, the electropositive groove, and the non-random distribution of guluronate in the alginate polymer suggest that AlgG is a processive enzyme. Moreover, comparison of AlgG and the extracellular alginate epimerase AlgE4 of Azotobacter vinelandii provides a structural rationale for the differences in their Ca(2+) dependence. PMID:24398681

  6. Enzymatic Functionalization of Carbon-Hydrogen Bonds1

    PubMed Central

    Lewis, Jared C.; Coelho, Pedro S.

    2010-01-01

    The development of new catalytic methods to functionalize carbon-hydrogen (C-H) bonds continues to progress at a rapid pace due to the significant economic and environmental benefits of these transformations over traditional synthetic methods. In nature, enzymes catalyze regio- and stereoselective C-H bond functionalization using transformations ranging from hydroxylation to hydroalkylation under ambient reaction conditions. The efficiency of these enzymes relative to analogous chemical processes has led to their increased use as biocatalysts in preparative and industrial applications. Furthermore, unlike small molecule catalysts, enzymes can be systematically optimized via directed evolution for a particular application and can be expressed in vivo to augment the biosynthetic capability of living organisms. While a variety of technical challenges must still be overcome for practical application of many enzymes for C-H bond functionalization, continued research on natural enzymes and on novel artificial metalloenzymes will lead to improved synthetic processes for efficient synthesis of complex molecules. In this critical review, we discuss the most prevalent mechanistic strategies used by enzymes to functionalize non-acidic C-H bonds, the application and evolution of these enzymes for chemical synthesis, and a number of potential biosynthetic capabilities uniquely enabled by these powerful catalysts. PMID:21079862

  7. Energy Landscape of Alginate-Epimerase Interactions Assessed by Optical Tweezers and Atomic Force Microscopy

    PubMed Central

    Håti, Armend Gazmeno; Aachmann, Finn Lillelund; Stokke, Bjørn Torger; Skjåk-Bræk, Gudmund; Sletmoen, Marit

    2015-01-01

    Mannuronan C-5 epimerases are a family of enzymes that catalyze epimerization of alginates at the polymer level. This group of enzymes thus enables the tailor-making of various alginate residue sequences to attain various functional properties, e.g. viscosity, gelation and ion binding. Here, the interactions between epimerases AlgE4 and AlgE6 and alginate substrates as well as epimerization products were determined. The interactions of the various epimerase–polysaccharide pairs were determined over an extended range of force loading rates by the combined use of optical tweezers and atomic force microscopy. When studying systems that in nature are not subjected to external forces the access to observations obtained at low loading rates, as provided by optical tweezers, is a great advantage since the low loading rate region for these systems reflect the properties of the rate limiting energy barrier. The AlgE epimerases have a modular structure comprising both A and R modules, and the role of each of these modules in the epimerization process were examined through studies of the A- module of AlgE6, AlgE6A. Dynamic strength spectra obtained through combination of atomic force microscopy and the optical tweezers revealed the existence of two energy barriers in the alginate-epimerase complexes, of which one was not revealed in previous AFM based studies of these complexes. Furthermore, based on these spectra estimates of the locations of energy transition states (xβ), lifetimes in the absence of external perturbation (τ0) and free energies (ΔG#) were determined for the different epimerase–alginate complexes. This is the first determination of ΔG# for these complexes. The values determined were up to 8 kBT for the outer barrier, and smaller values for the inner barriers. The size of the free energies determined are consistent with the interpretation that the enzyme and substrate are thus not tightly locked at all times but are able to relocate. Together with the

  8. Enzymatic Halogenases and Haloperoxidases: Computational Studies on Mechanism and Function.

    PubMed

    Timmins, Amy; de Visser, Sam P

    2015-01-01

    Despite the fact that halogenated compounds are rare in biology, a number of organisms have developed processes to utilize halogens and in recent years, a string of enzymes have been identified that selectively insert halogen atoms into, for instance, a CH aliphatic bond. Thus, a number of natural products, including antibiotics, contain halogenated functional groups. This unusual process has great relevance to the chemical industry for stereoselective and regiospecific synthesis of haloalkanes. Currently, however, industry utilizes few applications of biological haloperoxidases and halogenases, but efforts are being worked on to understand their catalytic mechanism, so that their catalytic function can be upscaled. In this review, we summarize experimental and computational studies on the catalytic mechanism of a range of haloperoxidases and halogenases with structurally very different catalytic features and cofactors. This chapter gives an overview of heme-dependent haloperoxidases, nonheme vanadium-dependent haloperoxidases, and flavin adenine dinucleotide-dependent haloperoxidases. In addition, we discuss the S-adenosyl-l-methionine fluoridase and nonheme iron/α-ketoglutarate-dependent halogenases. In particular, computational efforts have been applied extensively for several of these haloperoxidases and halogenases and have given insight into the essential structural features that enable these enzymes to perform the unusual halogen atom transfer to substrates. PMID:26415843

  9. Enzymatic synthesis of lignin-siloxane hybrid functional polymers.

    PubMed

    Prasetyo, Endry Nugroho; Kudanga, Tukayi; Fischer, Roman; Eichinger, Reinhard; Nyanhongo, Gibson S; Guebitz, Georg M

    2012-02-01

    This study combines the properties of siloxanes and lignin polymers to produce hybrid functional polymers that can be used as adhesives, coating materials, and/or multifunctionalized thin-coating films. Lignin-silica hybrid copolymers were synthesized by using a sol-gel process. Laccases from Trametes hirsuta were used to oxidize lignosulphonates to enhance their reactivity towards siloxanes and then were incorporated into siloxane precursors undergoing a sol-gel process. In vitro copolymerization studies using pure lignin monomers with aminosilanes or ethoxytrimethylsilane and analysis by ²⁹Si NMR spectroscopy revealed hybrid products. Except for kraft lignin, an increase in lignin concentration positively affected the tensile strength in all samples. Similarly, the viscosity generally increased in all samples with increasing lignin concentration and also affected the curing time. PMID:21751391

  10. Glucose level determination with a multi-enzymatic cascade reaction in a functionalized glass chip.

    PubMed

    Costantini, Francesca; Tiggelaar, Roald; Sennato, Simona; Mura, Francesco; Schlautmann, Stefan; Bordi, Federico; Gardeniers, Han; Manetti, Cesare

    2013-09-01

    In this work we show the functionalization of the interior of microfluidic glass chips with poly(2-hydroxyethyl methacrylate) polymer brushes as anchors for co-immobilization of the enzymes glucose-oxidase and horseradish peroxidase. The formation of the brush layer and subsequent immobilization of these enzymes have been characterized on flat surfaces by atomic force microscopy and Fourier transform infrared spectroscopy, and studied inside glass chips by field emission scanning microscopy. Enzyme-functionalized glass chips have been applied for performing a multi-enzymatic cascade reaction for the fast (20 s) determination of glucose in human blood samples and the result is in excellent agreement with values obtained from the conventional hospital laboratory. The limit of detection of this bi-enzymatic method is 60 μM. With the advantages of high selectivity and reproducibility, this functionalization method can be used for improving the efficiency of glucose sensors. PMID:23831561

  11. Overlapping and Distinct Roles of Aspergillus fumigatus UDP-glucose 4-Epimerases in Galactose Metabolism and the Synthesis of Galactose-containing Cell Wall Polysaccharides*

    PubMed Central

    Lee, Mark J.; Gravelat, Fabrice N.; Cerone, Robert P.; Baptista, Stefanie D.; Campoli, Paolo V.; Choe, Se-In; Kravtsov, Ilia; Vinogradov, Evgeny; Creuzenet, Carole; Liu, Hong; Berghuis, Albert M.; Latgé, Jean-Paul; Filler, Scott G.; Fontaine, Thierry; Sheppard, Donald C.

    2014-01-01

    The cell wall of Aspergillus fumigatus contains two galactose-containing polysaccharides, galactomannan and galactosaminogalactan, whose biosynthetic pathways are not well understood. The A. fumigatus genome contains three genes encoding putative UDP-glucose 4-epimerases, uge3, uge4, and uge5. We undertook this study to elucidate the function of these epimerases. We found that uge4 is minimally expressed and is not required for the synthesis of galactose-containing exopolysaccharides or galactose metabolism. Uge5 is the dominant UDP-glucose 4-epimerase in A. fumigatus and is essential for normal growth in galactose-based medium. Uge5 is required for synthesis of the galactofuranose (Galf) component of galactomannan and contributes galactose to the synthesis of galactosaminogalactan. Uge3 can mediate production of both UDP-galactose and UDP-N-acetylgalactosamine (GalNAc) and is required for the production of galactosaminogalactan but not galactomannan. In the absence of Uge5, Uge3 activity is sufficient for growth on galactose and the synthesis of galactosaminogalactan containing lower levels of galactose but not the synthesis of Galf. A double deletion of uge5 and uge3 blocked growth on galactose and synthesis of both Galf and galactosaminogalactan. This study is the first survey of glucose epimerases in A. fumigatus and contributes to our understanding of the role of these enzymes in metabolism and cell wall synthesis. PMID:24257745

  12. Physico-chemical characterization and enzymatic functionalization of Enteromorpha sp. cellulose.

    PubMed

    Jmel, Mohamed Amine; Ben Messaoud, Ghazi; Marzouki, M Nejib; Mathlouthi, Mohamed; Smaali, Issam

    2016-01-01

    Although green macro-algae represent a renewable and highly abundant biomass, they remain poorly exploited in terms of carbohydrate polymers compared to red and brown ones and other lignocellulosic materials. In this study, cellulose from the green macro-algae Enteromorpha sp. was isolated, physico-chemically characterized and enzymatically functionalized. The cellulose content was about 21.4% (w/w). FTIR analyses indicated an absence of acetyl or uronic esters confirming the absence of hemicellulose contamination. The 36% crystallinity index of the extracted cellulose revealed a high amorphous character as determined by X-ray diffraction. The moisture adsorption isotherms and specific surface measurements were respectively 42.87g/100g and 8.34m(2)/g. The Enteromorpha sp. cellulose was first enzymatically saccharified by a commercial cellulase preparation from Aspergillus niger with a hydrolysis yield of 70.4%. Besides, it was successfully functionalized based on the transglycosylation mechanism of the same enzymatic preparation, to produce highly added-value biosurfactants (butyl-glucoside) with a concentration of 8mM. PMID:26453878

  13. Hydrophobic surface functionalization of lignocellulosic jute fabrics by enzymatic grafting of octadecylamine.

    PubMed

    Dong, Aixue; Fan, Xuerong; Wang, Qiang; Yu, Yuanyuan; Cavaco-Paulo, Artur

    2015-08-01

    Enzymatic grafting of synthetic molecules onto lignins provides a mild and eco-friendly alternative for the functionalization of lignocellulosic materials. In this study, laccase-mediated grafting of octadecylamine (OA) onto lignin-rich jute fabrics was investigated for enhancing the surface hydrophobicity. First, the lignins in jute fabrics were isolated and analyzed in the macromolecular level by MALDI-TOF MS, (1)H NMR, (13)C NMR, and HSQC-NMR. Then, the surface of jute fabrics was characterized by FT-IR, XPS, and SEM. Subsequently, the nitrogen content of jute fabrics was determined by the micro-Kjeldahl method, and the grafting percentage (Gp) and grafting efficiency (GE) of the enzymatic reaction were calculated. Finally, the surface hydrophobicity of the jute fabrics was estimated by contact angle and wetting time measurements. The results indicate that the OA monomers were successfully grafted onto the lignin moieties on the jute fiber surface by laccase with Gp and GE values of 0.712% and 10.571%, respectively. Moreover, the modified jute fabrics via OA-grafting showed an increased wetting time of 18.5 min and a contact angle of 116.72°, indicating that the surface hydrophobicity of the jute fabrics increased after the enzymatic grafting modification with hydrophobic OA molecules. PMID:25987460

  14. Selection and validation of enzymatic activities as functional markers in wood biotechnology and fungal ecology.

    PubMed

    Mathieu, Yann; Gelhaye, Eric; Dumarçay, Stéphane; Gérardin, Philippe; Harvengt, Luc; Buée, Marc

    2013-02-15

    The dead wood and forest soils are sources of diversity and under-explored fungal strains with biotechnological potential, which require to be studied. Numerous enzymatic tests have been proposed to investigate the functional potential of the soil microbial communities or to test the functional abilities of fungal strains. Nevertheless, the diversity of these functional markers and their relevance in environmental studies or biotechnological screening does still have not been demonstrated. In this work, we assessed ten different extracellular enzymatic activities involved in the wood decaying process including β-etherase that specifically cleaves the β-aryl ether linkages in the lignin polymer. For this purpose, a collection of 26 fungal strains, distributed within three ecological groups (white, brown and soft rot fungi), has been used. Among the ten potential functional markers, the combinatorial use of only six of them allowed separation between the group of white and soft rot fungi from the brown rot fungi. Moreover, our results suggest that extracellular β-etherase is a rare and dispensable activity among the wood decay fungi. Finally, we propose that this set of markers could be useful for the analysis of fungal communities in functional and environmental studies, and for the selection of strains with biotechnological interests. PMID:23206919

  15. Identification and characterization of a mutation, in the human UDP-galactose-4-epimerase gene, associated with generalized epimerase-deficiency galactosemia.

    PubMed

    Wohlers, T M; Christacos, N C; Harreman, M T; Fridovich-Keil, J L

    1999-02-01

    Epimerase-deficiency galactosemia results from impairment of the human enzyme UDP-galactose-4-epimerase (hGALE). We and others have identified substitution mutations in the hGALE alleles of patients with the clinically mild, peripheral form of epimerase deficiency. We report here the first identification of an hGALE mutation in a patient with the clinically severe, generalized form of epimerase deficiency. The mutation, V94M, was found on both GALE alleles of this patient. This same mutation also was found in the homozygous state in two additional patients with generalized epimerase deficiency. The specific activity of the V94M-hGALE protein expressed in yeast was severely reduced with regard to UDP-galactose and partially reduced with regard to UDP-N-acetylgalactosamine. In contrast, two GALE-variant proteins associated with peripheral epimerase deficiency, L313M-hGALE and D103G-hGALE, demonstrated near-normal levels of activity with regard to both substrates, but a third allele, G90E-hGALE, demonstrated little, if any, detectable activity, despite near-normal abundance. G90E originally was identified in a heterozygous patient whose other allele remains uncharacterized. Thermal lability and protease-sensitivity studies demonstrated compromised stability in all of the partially active mutant enzymes. PMID:9973283

  16. Identification and characterization of a mutation, in the human UDP-galactose-4-epimerase gene, associated with generalized epimerase-deficiency galactosemia.

    PubMed Central

    Wohlers, T M; Christacos, N C; Harreman, M T; Fridovich-Keil, J L

    1999-01-01

    Epimerase-deficiency galactosemia results from impairment of the human enzyme UDP-galactose-4-epimerase (hGALE). We and others have identified substitution mutations in the hGALE alleles of patients with the clinically mild, peripheral form of epimerase deficiency. We report here the first identification of an hGALE mutation in a patient with the clinically severe, generalized form of epimerase deficiency. The mutation, V94M, was found on both GALE alleles of this patient. This same mutation also was found in the homozygous state in two additional patients with generalized epimerase deficiency. The specific activity of the V94M-hGALE protein expressed in yeast was severely reduced with regard to UDP-galactose and partially reduced with regard to UDP-N-acetylgalactosamine. In contrast, two GALE-variant proteins associated with peripheral epimerase deficiency, L313M-hGALE and D103G-hGALE, demonstrated near-normal levels of activity with regard to both substrates, but a third allele, G90E-hGALE, demonstrated little, if any, detectable activity, despite near-normal abundance. G90E originally was identified in a heterozygous patient whose other allele remains uncharacterized. Thermal lability and protease-sensitivity studies demonstrated compromised stability in all of the partially active mutant enzymes. PMID:9973283

  17. Enzymatic hydrolysis of recovered protein from frozen small croaker and functional properties of its hydrolysates.

    PubMed

    Choi, Yeung Joon; Hur, Sungik; Choi, Byeong-Dae; Konno, Kunihiko; Park, Jae W

    2009-01-01

    Fish protein isolate were recovered from frozen small croaker using pH shift. The partial enzymatic hydrolysates were fractionated as soluble and insoluble parts. They were dried using the drum dryer and their functional properties were examined. The total nitrogen content of the enzymatic hydrolysates ranged from 12.9% to 13.7%. The degree of hydrolysis of precipitates was 18.2% and 12.2% for croaker hydrolysates treated with Protamex 1.5 MG (Bacilllus protease complex) and Flavourzyme 500 MG (endoproteases and exoproteases, Aspergillus oryzae), respectively. The TCA supernatant, after centrifugation of hydrolysates, contained numerous peptides ranging from 100 to 4000 daltons. The solubility of the supernatants was higher than that of the precipitates at 0% to 3% NaCl and pH 2 to 10. The precipitate of Flavourzyme- and Protamex-treated hydrolysates showed a high emulsion activity index value compared to egg white and bovine plasma protein. In addition, the highest emulsion stability was observed for Protamex-treated precipitate hydrolysates. Emulsion stability of Protamex-treated precipitate hydrolysates was comparable to those of protein additives (egg white, bovine plasma protein, and soy protein concentrate). Water and fat binding capacity of precipitates were higher than those of supernatant. The results indicate that precipitate hydrolysate from undersized croaker can be used in processed muscle foods as a functional and nutritional ingredient. PMID:19200081

  18. Molecular and structural discrimination of proline racemase and hydroxyproline-2-epimerase from nosocomial and bacterial pathogens.

    PubMed

    Goytia, Maira; Chamond, Nathalie; Cosson, Alain; Coatnoan, Nicolas; Hermant, Daniel; Berneman, Armand; Minoprio, Paola

    2007-01-01

    The first eukaryotic proline racemase (PRAC), isolated from the human Trypanosoma cruzi pathogen, is a validated therapeutic target against Chagas' disease. This essential enzyme is implicated in parasite life cycle and infectivity and its ability to trigger host B-cell nonspecific hypergammaglobulinemia contributes to parasite evasion and persistence. Using previously identified PRAC signatures and data mining we present the identification and characterization of a novel PRAC and five hydroxyproline epimerases (HyPRE) from pathogenic bacteria. Single-mutation of key HyPRE catalytic cysteine abrogates enzymatic activity supporting the presence of two reaction centers per homodimer. Furthermore, evidences are provided that Brucella abortus PrpA [for 'proline racemase' virulence factor A] and homologous proteins from two Brucella spp are bona fide HyPREs and not 'one way' directional PRACs as described elsewhere. Although the mechanisms of aminoacid racemization and epimerization are conserved between PRAC and HyPRE, our studies demonstrate that substrate accessibility and specificity partly rely on constraints imposed by aromatic or aliphatic residues distinctively belonging to the catalytic pockets. Analysis of PRAC and HyPRE sequences along with reaction center structural data disclose additional valuable elements for in silico discrimination of the enzymes. Furthermore, similarly to PRAC, the lymphocyte mitogenicity displayed by HyPREs is discussed in the context of bacterial metabolism and pathogenesis. Considering tissue specificity and tropism of infectious pathogens, it would not be surprising if upon infection PRAC and HyPRE play important roles in the regulation of the intracellular and extracellular amino acid pool profiting the microrganism with precursors and enzymatic pathways of the host. PMID:17849014

  19. Molecular and Structural Discrimination of Proline Racemase and Hydroxyproline-2-Epimerase from Nosocomial and Bacterial Pathogens

    PubMed Central

    Goytia, Maira; Chamond, Nathalie; Cosson, Alain; Coatnoan, Nicolas; Hermant, Daniel; Berneman, Armand; Minoprio, Paola

    2007-01-01

    The first eukaryotic proline racemase (PRAC), isolated from the human Trypanosoma cruzi pathogen, is a validated therapeutic target against Chagas' disease. This essential enzyme is implicated in parasite life cycle and infectivity and its ability to trigger host B-cell nonspecific hypergammaglobulinemia contributes to parasite evasion and persistence. Using previously identified PRAC signatures and data mining we present the identification and characterization of a novel PRAC and five hydroxyproline epimerases (HyPRE) from pathogenic bacteria. Single-mutation of key HyPRE catalytic cysteine abrogates enzymatic activity supporting the presence of two reaction centers per homodimer. Furthermore, evidences are provided that Brucella abortus PrpA [for ‘proline racemase’ virulence factor A] and homologous proteins from two Brucella spp are bona fide HyPREs and not ‘one way’ directional PRACs as described elsewhere. Although the mechanisms of aminoacid racemization and epimerization are conserved between PRAC and HyPRE, our studies demonstrate that substrate accessibility and specificity partly rely on contraints imposed by aromatic or aliphatic residues distinctively belonging to the catalytic pockets. Analysis of PRAC and HyPRE sequences along with reaction center structural data disclose additional valuable elements for in silico discrimination of the enzymes. Furthermore, similarly to PRAC, the lymphocyte mitogenicity displayed by HyPREs is discussed in the context of bacterial metabolism and pathogenesis. Considering tissue specificity and tropism of infectious pathogens, it would not be surprising if upon infection PRAC and HyPRE play important roles in the regulation of the intracellular and extracellular amino acid pool profiting the microrganism with precursors and enzymatic pathways of the host. PMID:17849014

  20. Antioxidant activity and functional properties of enzymatic protein hydrolysates from common carp (Cyprinus carpio) roe (egg).

    PubMed

    Chalamaiah, M; Jyothirmayi, T; Diwan, Prakash V; Dinesh Kumar, B

    2015-09-01

    Previously, we have reported the composition, molecular mass distribution and in vivo immunomodulatory effects of common carp roe protein hydrolysates. In the current study, antioxidative activity and functional properties of common carp (Cyprinus carpio) roe (egg) protein hydrolysates, prepared by pepsin, trypsin and Alcalase, were evaluated. The three hydrolysates showed excellent antioxidant activities in a dose dependent manner in various in vitro models such as 2,2 diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2,2'-azino-bis(3-ethylbenzthiazoline-6)-sulfonic acid (ABTS(+)) radical scavenging activity, ferric reducing antioxidant power (FRAP) and ferrous ion (Fe(2+)) chelating ability. Enzymatic hydrolysis significantly increased protein solubility of the hydrolysates to above 62 % over a wide pH range (2-12). Carp roe hydrolysates exhibited good foaming and emulsification properties. The results suggest that bioactive carp roe protein hydrolysates (CRPHs) with good functional properties could be useful in health food/nutraceutical/pharmaceutical industry for various applications. PMID:26344996

  1. Effects of enzymatic hydrolysis on conformational and functional properties of chickpea protein isolate.

    PubMed

    Mokni Ghribi, Abir; Maklouf Gafsi, Ines; Sila, Assaâd; Blecker, Christophe; Danthine, Sabine; Attia, Hamadi; Bougatef, Ali; Besbes, Souhail

    2015-11-15

    The impact of enzymatic hydrolysis by Alcalase on the conformational and functional properties of chickpea protein isolate (CPI) was investigated. The physicochemical, interfacial tension and surface characteristics of CPI and their hydrolysates (CPH) according to the degree of hydrolysis (DH) were also determined. These parameters were then related to the changes in the emulsification activity (EAI) and stability (ESI). The enzymatic hydrolysis was found to improve protein recovery and solubility, leading to a reduction in the molecular weight bands with a concomitant increase in the intensity and appearance of protein bands having apparent molecular mass below 20 kDa. The interfacial tension decreased from ∼ 66.5 mN m(-1) for CPI to ∼ 59.1 m Nm(-1) for CPH. A similar trend was observed for the surface charge which declined from -27.55 mV to -16.4 mV for the CPI and CPH, respectively. These changes were found to have a detrimental effect on the EAI and ESI values. PMID:25977033

  2. Enzymatic Conversion of CO2 to Bicarbonate in Functionalized Mesoporous Silica

    SciTech Connect

    Yu, Yuehua; Chen, Baowei; Qi, Wen N.; Li, Xiaolin; Shin, Yongsoon; Lei, Chenghong; Liu, Jun

    2012-05-01

    We report here that carbonic anhydrase (CA), the fastest enzyme that can covert carbon dioxide to bicarbonate, can be spontaneously entrapped in functionalized mesoporous silica (FMS) with super-high loading density (up to 0.5 mg of protein/mg of FMS) due to the dominant electrostatic interaction. The binding of CA to HOOC-FMS can result in the protein’s conformational change comparing to the enzyme free in solution, but can be overcome with increased protein loading density. The higher the protein loading density, the less conformational change, hence the higher enzymatic activity and the higher enzyme immobilization efficiency. The electrostatically bound CA can be released by changing pH. The released enzyme still displayed the native conformational structure and the same high enzymatic activity as that prior to the enzyme entrapment. This work opens up a new approach converting carbon dioxide to biocarbonate in a biomimetic nanoconfiguration that can be integrated with the other part of biosynthesis process for the assimilation of carbon dioxide.

  3. Linking Microbial Enzymatic Activities and Functional Diversity of Soil around Earthworm Burrows and Casts

    PubMed Central

    Lipiec, Jerzy; Frąc, Magdalena; Brzezińska, Małgorzata; Turski, Marcin; Oszust, Karolina

    2016-01-01

    The aim of this work was to evaluate the effect of earthworms (Lumbricidae) on the enzymatic activity and microbial functional diversity in the burrow system [burrow wall (BW) 0–3 mm, transitional zone (TZ) 3–7 mm, bulk soil (BS) > 20 mm from the BW] and cast aggregates of a loess soil under a pear orchard. The dehydrogenase, β-glucosidase, protease, alkaline phosphomonoesterase, and acid phosphomonoesterase enzymes were assessed using standard methods. The functional diversity (catabolic potential) was assessed using the Average Well Color Development and Richness Index following the community level physiological profiling from Biolog Eco Plates. All measurements were done using soil from each compartment immediately after in situ sampling in spring. The enzymatic activites including dehydrogenase, protease, β-glucosidase and alkaline phosphomonoesterase were appreciably greater in the BW or casts than in BS and TZ. Conversely, acid phosphomonoesterase had the largest value in the BS. Average Well Color Development in both the TZ and the BS (0.98–0.94 A590 nm) were more than eight times higher than in the BWs and casts. The lowest richness index in the BS (15 utilized substrates) increased by 86–113% in all the other compartments. The PC1 in principal component analysis mainly differentiated the BWs and the TZ. Utilization of all substrate categories was the lowest in the BS. The PC2 differentiated the casts from the other compartments. The enhanced activity of a majority of the enzymes and increased microbial functional diversity in most earthworm-influenced compartments make the soils less vulnerable to degradation and thus increases the stability of ecologically relevant processes in the orchard ecosystem. PMID:27625645

  4. Linking Microbial Enzymatic Activities and Functional Diversity of Soil around Earthworm Burrows and Casts.

    PubMed

    Lipiec, Jerzy; Frąc, Magdalena; Brzezińska, Małgorzata; Turski, Marcin; Oszust, Karolina

    2016-01-01

    The aim of this work was to evaluate the effect of earthworms (Lumbricidae) on the enzymatic activity and microbial functional diversity in the burrow system [burrow wall (BW) 0-3 mm, transitional zone (TZ) 3-7 mm, bulk soil (BS) > 20 mm from the BW] and cast aggregates of a loess soil under a pear orchard. The dehydrogenase, β-glucosidase, protease, alkaline phosphomonoesterase, and acid phosphomonoesterase enzymes were assessed using standard methods. The functional diversity (catabolic potential) was assessed using the Average Well Color Development and Richness Index following the community level physiological profiling from Biolog Eco Plates. All measurements were done using soil from each compartment immediately after in situ sampling in spring. The enzymatic activites including dehydrogenase, protease, β-glucosidase and alkaline phosphomonoesterase were appreciably greater in the BW or casts than in BS and TZ. Conversely, acid phosphomonoesterase had the largest value in the BS. Average Well Color Development in both the TZ and the BS (0.98-0.94 A590 nm) were more than eight times higher than in the BWs and casts. The lowest richness index in the BS (15 utilized substrates) increased by 86-113% in all the other compartments. The PC1 in principal component analysis mainly differentiated the BWs and the TZ. Utilization of all substrate categories was the lowest in the BS. The PC2 differentiated the casts from the other compartments. The enhanced activity of a majority of the enzymes and increased microbial functional diversity in most earthworm-influenced compartments make the soils less vulnerable to degradation and thus increases the stability of ecologically relevant processes in the orchard ecosystem. PMID:27625645

  5. How the rice weevil breaks down the pectin network: Enzymatic synergism and sub-functionalization.

    PubMed

    Kirsch, Roy; Heckel, David G; Pauchet, Yannick

    2016-04-01

    Pectin is the most complex polysaccharide in nature and highly abundant in plant cell walls and middle lamellae, where it functions in plant growth and development. Phytopathogens utilize plant pectin as an energy source through enzyme-mediated degradation. These pectolytic enzymes include polygalacturonases (PGs) of the GH28 family and pectin methylesterases (PMEs) of the CE8 family. Recently, PGs were also identified in herbivorous insects of the distantly related plant bug, stick insect and Phytophaga beetle lineages. Unlike all other insects, weevils possess PMEs in addition to PGs. To investigate pectin digestion in insects and the role of PMEs in weevils, all PME and PG family members of the rice weevil Sitophilus oryzae were heterologously expressed and functionally characterized. Enzymatically active and inactive PG and PME family members were identified. The loss of activity can be explained by a lack of substrate binding correlating with substitutions of functionally important amino acid residues. We found subfunctionalization in both enzyme families, supported by expression pattern and substrate specificities as well as evidence for synergistic pectin breakdown. Our data suggest that the rice weevil might be able to use pectin as an energy source, and illustrates the potential of both PG and PME enzyme families to functionally diversify after horizontal gene transfer. PMID:26899322

  6. Generation of Functional RNAs from Inactive Oligonucleotide Complexes by Non-enzymatic Primer Extension

    PubMed Central

    2014-01-01

    The earliest genomic RNAs had to be short enough for efficient replication, while simultaneously serving as unfolded templates and effective ribozymes. A partial solution to this paradox may lie in the fact that many functional RNAs can self-assemble from multiple fragments. Therefore, in early evolution, genomic RNA fragments could have been significantly shorter than unimolecular functional RNAs. Here, we show that unstable, nonfunctional complexes assembled from even shorter 3′-truncated oligonucleotides can be stabilized and gain function via non-enzymatic primer extension. Such short RNAs could act as good templates due to their minimal length and complex-forming capacity, while their minimal length would facilitate replication by relatively inefficient polymerization reactions. These RNAs could also assemble into nascent functional RNAs and undergo conversion to catalytically active forms, by the same polymerization chemistry used for replication that generated the original short RNAs. Such phenomena could have substantially relaxed requirements for copying efficiency in early nonenzymatic replication systems. PMID:25521912

  7. Association of fecal microbial diversity and taxonomy with selected enzymatic functions.

    PubMed

    Flores, Roberto; Shi, Jianxin; Gail, Mitchell H; Gajer, Pawel; Ravel, Jacques; Goedert, James J

    2012-01-01

    Few microbial functions have been compared to a comprehensive survey of the human fecal microbiome. We evaluated determinants of fecal microbial β-glucuronidase and β-glucosidase activities, focusing especially on associations with microbial alpha and beta diversity and taxonomy. We enrolled 51 healthy volunteers (26 female, mean age 39) who provided questionnaire data and multiple aliquots of a stool, from which proteins were extracted to quantify β-glucuronidase and β-glucosidase activities, and DNA was extracted to amplify and pyrosequence 16S rRNA gene sequences to classify and quantify microbiome diversity and taxonomy. Fecal β-glucuronidase was elevated with weight loss of at least 5 lb. (P = 0.03), whereas β-glucosidase was marginally reduced in the four vegetarians (P = 0.06). Both enzymes were correlated directly with microbiome richness and alpha diversity measures, directly with the abundance of four Firmicutes Clostridia genera, and inversely with the abundance of two other genera (Firmicutes Lactobacillales Streptococcus and Bacteroidetes Rikenellaceae Alistipes) (all P = 0.05-0.0001). Beta diversity reflected the taxonomic associations. These observations suggest that these enzymatic functions are performed by particular taxa and that diversity indices may serve as surrogates of bacterial functions. Independent validation and deeper understanding of these associations are needed, particularly to characterize functions and pathways that may be amenable to manipulation. PMID:22761886

  8. Enzymatic Characterization and In Vivo Function of Five Terminal Oxidases in Pseudomonas aeruginosa

    PubMed Central

    Kawakami, Takuro; Osamura, Tatsuya; Hirai, Takehiro; Sakai, Yoshiaki; Ishii, Masaharu

    2014-01-01

    The ubiquitous opportunistic pathogen Pseudomonas aeruginosa has five aerobic terminal oxidases: bo3-type quinol oxidase (Cyo), cyanide-insensitive oxidase (CIO), aa3-type cytochrome c oxidase (aa3), and two cbb3-type cytochrome c oxidases (cbb3-1 and cbb3-2). These terminal oxidases are differentially regulated under various growth conditions and are thought to contribute to the survival of this microorganism in a wide variety of environmental niches. Here, we constructed multiple mutant strains of P. aeruginosa that express only one aerobic terminal oxidase to investigate the enzymatic characteristics and in vivo function of each enzyme. The Km values of Cyo, CIO, and aa3 for oxygen were similar and were 1 order of magnitude higher than those of cbb3-1 and cbb3-2, indicating that Cyo, CIO, and aa3 are low-affinity enzymes and that cbb3-1 and cbb3-2 are high-affinity enzymes. Although cbb3-1 and cbb3-2 exhibited different expression patterns in response to oxygen concentration, they had similar Km values for oxygen. Both cbb3-1 and cbb3-2 utilized cytochrome c4 as the main electron donor under normal growth conditions. The electron transport chains terminated by cbb3-1 and cbb3-2 generate a proton gradient across the cell membrane with similar efficiencies. The electron transport chain of aa3 had the highest proton translocation efficiency, whereas that of CIO had the lowest efficiency. The enzymatic properties of the terminal oxidases reported here are partially in agreement with their regulatory patterns and may explain the environmental adaptability and versatility of P. aeruginosa. PMID:25182500

  9. Protein engineering of a bacterial N-acyl-d-glucosamine 2-epimerase for improved stability under process conditions.

    PubMed

    Klermund, Ludwig; Riederer, Amelie; Hunger, Annique; Castiglione, Kathrin

    2016-06-01

    Enzymatic cascade reactions, i.e. the combination of several enzyme reactions in one pot without isolation of intermediates, have great potential for the establishment of sustainable chemical processes. However, many cascade reactions suffer from cross-inhibitions and enzyme inactivation by components of the reaction system. This study focuses on the two-step enzymatic synthesis of N-acetylneuraminic acid (Neu5Ac) using an N-acyl-d-glucosamine 2-epimerase from Anabaena variabilis ATCC 29413 (AvaAGE) in combination with an N-acetylneuraminate lyase (NAL) from Escherichia coli. AvaAGE epimerizes N-acetyl-d-glucosamine (GlcNAc) to N-acetyl-d-mannosamine (ManNAc), which then reacts with pyruvate in a NAL-catalyzed aldol condensation to form Neu5Ac. However, AvaAGE is inactivated by high pyruvate concentrations, which are used to push the NAL reaction toward the product side. A biphasic inactivation was observed in the presence of 50-800mM pyruvate resulting in activity losses of the AvaAGE of up to 60% within the first hour. Site-directed mutagenesis revealed that pyruvate modifies one of the four lysine residues in the ATP-binding site of AvaAGE. Because ATP is an allosteric activator of the epimerase and the binding of the nucleotide is crucial for its catalytic properties, saturation mutagenesis at position K160 was performed to identify the most compatible amino acid exchanges. The best variants, K160I, K160N and K160L, showed no inactivation by pyruvate, but significantly impaired kinetic parameters. For example, depending on the mutant, the turnover number kcat was reduced by 51-68% compared with the wild-type enzyme. A mechanistic model of the Neu5Ac synthesis was established, which can be used to select the AvaAGE variant that is most favorable for a given process condition. The results show that mechanistic models can greatly facilitate the choice of the right enzyme for an enzymatic cascade reaction with multiple cross-inhibitions and inactivation phenomena

  10. Characterization of functionalized multiwalled carbon nanotubes for use in an enzymatic sensor.

    PubMed

    Guadarrama-Fernández, Leonor; Chanona-Pérez, Jorge; Manzo-Robledo, Arturo; Calderón-Domínguez, Georgina; Martínez-Rivas, Adrián; Ortiz-López, Jaime; Vargas-García, Jorge Roberto

    2014-10-01

    Carbon nanotubes (CNT) have proven to be materials with great potential for the construction of biosensors. Development of fast, simple, and low cost biosensors to follow reactions in bioprocesses, or to detect food contaminants such as toxins, chemical compounds, and microorganisms, is presently an important research topic. This report includes microscopy and spectroscopy to characterize raw and chemically modified multiwall carbon nanotubes (MWCNTs) synthesized by chemical vapor deposition with the intention of using them as the active transducer in bioprocessing sensors. MWCNT were simultaneously purified and functionalized by an acid mixture involving HNO3-H2SO4 and amyloglucosidase attached onto the chemically modified MWCNT surface. A 49.0% decrease in its enzymatic activity was observed. Raw, purified, and enzyme-modified MWCNTs were analyzed by scanning and transmission electron microscopy and Raman and X-ray photoelectron spectroscopy. These studies confirmed purification and functionalization of the CNTs. Finally, cyclic voltammetry electrochemistry was used for electrical characterization of CNTs, which showed promising results that can be useful for construction of electrochemical biosensors applied to biological areas. PMID:25156941

  11. Optical Detection of Enzymatic Activity and Inhibitors on Non-Covalently Functionalized Fluorescent Graphene Oxide.

    PubMed

    Kang, Tae Woog; Jeon, Su-Ji; Kim, Hye-In; Park, Jung Hyun; Yim, DaBin; Lee, Hye-Rim; Ju, Jong-Min; Kim, Man-Jin; Kim, Jong-Ho

    2016-05-24

    It has been of great interest to measure the activity of acetylcholinesterase (AChE) and its inhibitor, as AChE is known to accelerate the aggregation of the amyloid beta peptides that underlie Alzheimer's disease. Herein, we report the development of graphene oxide (GO) fluorescence-based biosensors for the detection of AChE activity and AChE inhibitors. To this end, GO was non-covalently functionalized with phenoxy-modified dextran (PhO-dex-GO) through hydrophobic interaction; the resulting GO showed excellent colloidal stability and intense fluorescence in various aqueous solutions as compared to pristine GO and the GO covalently functionalized with dextran. The fluorescence of PhO-dex-GO remarkably increased as AChE catalyzed the hydrolysis of acetylthiocholine (ATCh) to give thiocholine and acetic acid. It was found that the turn-on fluorescence response of PhO-dex-GO to AChE activity was induced by protonation of carboxyl groups on it from the product of the enzymatic hydrolysis reaction, acetic acid. On the basis of its turn-on fluorescence response, PhO-dex-GO was able to report kinetic and thermodynamic parameters involving a maximum velocity, a Michaelis constant, and an inhibition dissociation constant for AChE activity and inhibition. These parameters enable us to determine the activity of AChE and the efficiency of the inhibitor. PMID:27136042

  12. Degradation kinetics and structural characteristics of pectin under simultaneous sonochemical-enzymatic functions.

    PubMed

    Ma, Xiaobin; Wang, Wenjun; Wang, Danli; Ding, Tian; Ye, Xingqian; Liu, Donghong

    2016-12-10

    This study investigated the degradation kinetics and structural properties of pectin with combining ultrasound and pectinase treatment. Ultrasound at an intensity of 4.5WmL(-1) and a time of 10min significantly enhanced the enzymatic degradation of pectin weight-average molecular weight (Mw). The degradation kinetics model of pectin followed 1/Mwt-1/Mw0=kt, suggesting the randomness of the degradation process. Synergistic effects of ultrasound and pectinase were observed at 20-60°C and were more effective at lower temperatures. Furthermore, the degree of methoxylation (DM) of sonoenzymolysis pectin significantly decreased whereas the degree of acetylation (DAc) remained unchanged compared to the original and enzymolysis pectin. Simultaneous functions of ultrasound and pectinase caused severe decomposition in pectin homogalacturonan (HG) regions without altering the monosaccharides types, configurations and glycoside linkages of the pectin samples. The complex polymeric structures of pectin transformed into smaller units with simpler branches and shorter chains after sonoenzymolysis reactions. PMID:27577908

  13. Enzymatic and nonenzymatic functions of viral RNA-dependent RNA polymerases within oligomeric arrays

    PubMed Central

    Spagnolo, Jeannie F.; Rossignol, Evan; Bullitt, Esther; Kirkegaard, Karla

    2010-01-01

    Few antivirals are effective against positive-strand RNA viruses, primarily because the high error rate during replication of these viruses leads to the rapid development of drug resistance. One of the favored current targets for the development of antiviral compounds is the active site of viral RNA-dependent RNA polymerases. However, like many subcellular processes, replication of the genomes of all positive-strand RNA viruses occurs in highly oligomeric complexes on the cytosolic surfaces of the intracellular membranes of infected host cells. In this study, catalytically inactive polymerases were shown to participate productively in functional oligomer formation and catalysis, as assayed by RNA template elongation. Direct protein transduction to introduce either active or inactive polymerases into cells infected with mutant virus confirmed the structural role for polymerase molecules during infection. Therefore, we suggest that targeting the active sites of polymerase molecules is not likely to be the best antiviral strategy, as inactivated polymerases do not inhibit replication of other viruses in the same cell and can, in fact, be useful in RNA replication complexes. On the other hand, polymerases that could not participate in functional RNA replication complexes were those that contained mutations in the amino terminus, leading to altered contacts in the folded polymerase and mutations in a known polymerase–polymerase interaction in the two-dimensional protein lattice. Thus, the functional nature of multimeric arrays of RNA-dependent RNA polymerase supplies a novel target for antiviral compounds and provides a new appreciation for enzymatic catalysis on membranous surfaces within cells. PMID:20051491

  14. Evolution of New Enzymatic Function by Structural Modulation of Cysteine Reactivity in Pseudomonas fluorescens Isocyanide Hydratase

    SciTech Connect

    Lakshminarasimhan, Mahadevan; Madzelan, Peter; Nan, Ruth; Milkovic, Nicole M.; Wilson, Mark A.

    2010-09-13

    Isocyanide (formerly isonitrile) hydratase (EC 4.2.1.103) is an enzyme of the DJ-1 superfamily that hydrates isocyanides to yield the corresponding N-formamide. In order to understand the structural basis for isocyanide hydratase (ICH) catalysis, we determined the crystal structures of wild-type and several site-directed mutants of Pseudomonas fluorescens ICH at resolutions ranging from 1.0 to 1.9 {angstrom}. We also developed a simple UV-visible spectrophotometric assay for ICH activity using 2-naphthyl isocyanide as a substrate. ICH contains a highly conserved cysteine residue (Cys101) that is required for catalysis and interacts with Asp17, Thr102, and an ordered water molecule in the active site. Asp17 has carboxylic acid bond lengths that are consistent with protonation, and we propose that it activates the ordered water molecule to hydrate organic isocyanides. In contrast to Cys101 and Asp17, Thr102 is tolerant of mutagenesis, and the T102V mutation results in a substrate-inhibited enzyme. Although ICH is similar to human DJ-1 (1.6 {angstrom} C-{alpha} root mean square deviation), structural differences in the vicinity of Cys101 disfavor the facile oxidation of this residue that is functionally important in human DJ-1 but would be detrimental to ICH activity. The ICH active site region also exhibits surprising conformational plasticity and samples two distinct conformations in the crystal. ICH represents a previously uncharacterized clade of the DJ-1 superfamily that possesses a novel enzymatic activity, demonstrating that the DJ-1 core fold can evolve diverse functions by subtle modulation of the environment of a conserved, reactive cysteine residue.

  15. Crystal Structure of Human Senescence Marker Protein 30: Insights Linking Structural, Enzymatic, and Physiological Functions

    SciTech Connect

    Chakraborti, Subhendu; Bahnson, Brian J.

    2010-05-25

    Human senescence marker protein 30 (SMP30), which functions enzymatically as a lactonase, hydrolyzes various carbohydrate lactones. The penultimate step in vitamin-C biosynthesis is catalyzed by this enzyme in nonprimate mammals. It has also been implicated as an organophosphate hydrolase, with the ability to hydrolyze diisopropyl phosphofluoridate and other nerve agents. SMP30 was originally identified as an aging marker protein, whose expression decreased androgen independently in aging cells. SMP30 is also referred to as regucalcin and has been suggested to have functions in calcium homeostasis. The crystal structure of the human enzyme has been solved from X-ray diffraction data collected to a resolution of 1.4 {angstrom}. The protein has a 6-bladed {beta}-propeller fold, and it contains a single metal ion. Crystal structures have been solved with the metal site bound with either a Ca{sup 2+} or a Zn{sup 2+} atom. The catalytic role of the metal ion has been confirmed by mutagenesis of the metal coordinating residues. Kinetic studies using the substrate gluconolactone showed a k{sub cat} preference of divalent cations in the order Zn{sup 2+} > Mn{sup 2+} > Ca{sup 2+} > Mg{sup 2+}. Notably, the Ca{sup 2+} had a significantly higher value of K{sub d} compared to those of the other metal ions tested (566, 82, 7, and 0.6 {micro}m for Ca{sup 2+}, Mg{sup 2+}, Zn{sup 2+}, and Mn{sup 2+}, respectively), suggesting that the Ca{sup 2+}-bound form may be physiologically relevant for stressed cells with an elevated free calcium level.

  16. Structure of d-tagatose 3-epimerase-like protein from Methanocaldococcus jannaschii

    PubMed Central

    Uechi, Keiko; Takata, Goro; Yoneda, Kazunari; Ohshima, Toshihisa; Sakuraba, Haruhiko

    2014-01-01

    The crystal structure of a d-tagatose 3-epimerase-like protein (MJ1311p) encoded by a hypothetical open reading frame, MJ1311, in the genome of the hyperthermophilic archaeon Methanocaldococcus jannaschii was determined at a resolution of 2.64 Å. The asymmetric unit contained two homologous subunits, and the dimer was generated by twofold symmetry. The overall fold of the subunit proved to be similar to those of the d-tagatose 3-epimerase from Pseudomonas cichorii and the d-psicose 3-epimerases from Agrobacterium tumefaciens and Clostridium cellulolyticum. However, the situation at the subunit–subunit interface differed substantially from that in d-tagatose 3-epimerase family enzymes. In MJ1311p, Glu125, Leu126 and Trp127 from one subunit were found to be located over the metal-ion-binding site of the other subunit and appeared to contribute to the active site, narrowing the substrate-binding cleft. Moreover, the nine residues comprising a trinuclear zinc centre in endonuclease IV were found to be strictly conserved in MJ1311p, although a distinct groove involved in DNA binding was not present. These findings indicate that the active-site architecture of MJ1311p is quite unique and is substantially different from those of d-tagatose 3-epimerase family enzymes and endonuclease IV. PMID:25005083

  17. Enzymatic and Functional Analysis of a Protein Phosphatase, Pph3, from Myxococcus xanthus ▿

    PubMed Central

    Kimura, Yoshio; Mori, Yumi; Ina, Youhei; Takegawa, Kaoru

    2011-01-01

    A protein phosphatase, designated Pph3, from Myxococcus xanthus showed the enzymatic characteristics of PP2C-type serine/threonine protein phosphatases, which are metal ion-dependent, okadaic acid-insensitive protein phosphatases. The pph3 mutant under starvation conditions formed immature fruiting bodies and reduced sporulation. PMID:21398555

  18. Heavy metal concentrations and enzymatic activities in the functional zone sediments of Haizhou Bay, Lianyungang, Jiangsu, China.

    PubMed

    Li, Yu; Liu, Fu-cheng

    2015-11-01

    Surface sediments were collected at 31 sites covering five functional zones of Haizhou Bay, Lianyungang, Jiangsu, China. Heavy metal concentrations and enzymatic activity of phosphatase and urease were determined on a dry-weight basis of sediments. Metal concentrations in sediments were comparable to the Chinese National Standard of Marine Sediment Quality and were as follows: Cu, 8.60-55.8 mg kg(-1); Zn, 107-384 mg kg(-1); Pb, 33.6-200 mg kg(-1); Cd, 0.24-2.57 mg kg(-1); Cr, 30.3-92.1 mg kg(-1); As, 12.9-110 mg kg(-1); Ni, 15.8-49.6 mg kg(-1); Mn, 379-1272 mg kg(-1); and Fe, 13,790-38,240 mg kg(-1). A geoaccumulation index (I geo) was calculated to help researchers understand the status of pollutants in the sediments. I geo showed that Cd and As contamination existed in the study area. The mobility of the metals and the relationship between heavy metal concentrations of chemical fractions and enzymatic activities were also investigated. Results showed that Cd and Mn had higher mobility than other metals, and enzymatic activities may play an important role in controlling the bioavailability and transformation trend of heavy metals from one fraction to another in sediments. PMID:26431704

  19. Highly efficient production of rare sugars D-psicose and L-tagatose by two engineered D-tagatose epimerases.

    PubMed

    Bosshart, Andreas; Wagner, Nina; Lei, Lei; Panke, Sven; Bechtold, Matthias

    2016-02-01

    Rare sugars are monosaccharides that do not occur in nature in large amounts. However, many of them demonstrate high potential as low-calorie sweetener, chiral building blocks or active pharmaceutical ingredients. Their production by enzymatic means from broadly abundant epimers is an attractive alternative to synthesis by traditional organic chemical means, but often suffers from low space-time yields and high enzyme costs due to rapid enzyme degradation. Here we describe the detailed characterization of two variants of d-tagatose epimerase under operational conditions that were engineered for high stability and high catalytic activity towards the epimerization of d-fructose to d-psicose and l-sorbose to l-tagatose, respectively. A variant optimized for the production of d-psicose showed a very high total turnover number (TTN) of up to 10(8) catalytic events over a catalyst's lifetime, determined under operational conditions at high temperatures in an enzyme-membrane reactor (EMR). Maximum space-time yields as high as 10.6 kg L(-1) d(-1) were obtained with a small laboratory-scale EMR, indicating excellent performance. A variant optimized for the production of l-tagatose performed less stable in the same setting, but still showed a very good TTN of 5.8 × 10(5) and space-time yields of up to 478 g L(-1) d(-1) . Together, these results confirm that large-scale enzymatic access to rare sugars is feasible. PMID:25615556

  20. The structural basis of substrate promiscuity in UDP-hexose 4-epimerase from the hyperthermophilic Eubacterium Thermotoga maritima.

    PubMed

    Shin, Sun-Mi; Choi, Jin Myung; di Luccio, Eric; Lee, Yong-Jik; Lee, Sang-Jae; Lee, Sang Jun; Lee, Sung Haeng; Lee, Dong-Woo

    2015-11-01

    UDP-galactose 4-epimerase (GalE) catalyzes the interconversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal), which is a pivotal step in the Leloir pathway for d-galactose metabolism. Although GalE is widely distributed in prokaryotes and eukaryotes, little information is available regarding hyperthermophilic GalE. We overexpressed the TM0509 gene, encoding a putative GalE from Thermotoga maritima (TMGalE), in Escherichia coli and characterized the encoded protein. To further investigate the molecular basis of this enzyme's catalytic function, we determined the crystal structures of TMGalE and TMGalE bound to UDP-Glc at resolutions of 1.9 Å and 2.0 Å, respectively. The enzyme was determined to be a homodimer with a molecular mass of 70 kDa. The enzyme could reversibly catalyze the epimerization of UDP-GalNAc/UDP-GlcNAc as well as UDP-Gal/UDP-Glc at elevated temperatures, with an apparent optimal temperature and pH of 80 °C and 7.0, respectively. Our data showed that TM0509 is a UDP-galactosugar 4-epimerase involved in d-galactose metabolism; consequently, this study provides the first detailed characterization of a hyperthermophilic GalE. Moreover, the promiscuous substrate specificity of TMGalE, which is more similar to human GalE than E. coli GalE, supports the notion that TMGalE might exhibit the earliest form of sugar-epimerizing enzymes in the evolution of galactose metabolism. PMID:26344854

  1. Towards a better understanding of the substrate specificity of the UDP-N-acetylglucosamine C4 epimerase WbpP

    PubMed Central

    2005-01-01

    WbpP is the only genuine UDP-GlcNAc (UDP-N-acetylglucosamine) C4 epimerase for which both biochemical and structural data are available. This represents a golden opportunity to elucidate the molecular basis for its specificity for N-acetylated substrates. Based on the comparison of the substrate binding site of WbpP with that of other C4 epimerases that convert preferentially non-acetylated substrates, or that are able to convert both acetylated and non-acetylated substrates equally well, specific residues of WbpP were mutated, and the substrate specificity of the mutants was determined by direct biochemical assays and kinetic analyses. Most of the mutations tested were anticipated to trigger a significant switch in substrate specificity, mostly towards a preference for non-acetylated substrates. However, only one of the mutations (A209H) had the expected effect, and most others resulted in enhanced specificity of WbpP for N-acetylated substrates (Q201E, G102K, Q201E/G102K, A209N and S143A). One mutation (S144K) totally abolished enzyme activity. These data indicate that, although all residues targeted in the present study turned out to be important for catalysis, determinants of substrate specificity are not confined to the substrate-binding pocket and that longer range interactions are essential in allowing proper positioning of various ligands in the binding pocket. Hence prediction or engineering of substrate specificity solely based on sequence analysis, or even on modelling of the binding pocket, might lead to incorrect functional assignments. PMID:15752069

  2. Discovery of Novel Putative Inhibitors of UDP-GlcNAc 2-Epimerase as Potent Antibacterial Agents.

    PubMed

    Xu, Yong; Brenning, Benjamin; Clifford, Adrianne; Vollmer, David; Bearss, Jared; Jones, Carissa; McCarthy, Virgil; Shi, Chongtie; Wolfe, Bradley; Aavula, Bhasker; Warner, Steve; Bearss, David J; McCullar, Michael V; Schuch, Raymond; Pelzek, Adam; Bhaskaran, Shyam S; Stebbins, C Erec; Goldberg, Allan R; Fischetti, Vincent A; Vankayalapati, Hariprasad

    2013-12-12

    We present the discovery and optimization of a novel series of inhibitors of bacterial UDP-N-acetylglucosamine 2-epimerase (called 2-epimerase in this paper). Starting from virtual screening hits, the activity of various inhibitory molecules was optimized using a combination of structure-based and rational design approaches. We successfully designed and identified a 2-epimerase inhibitor (compound 12-ES-Na, that we named Epimerox) which blocked the growth of methicillin-resistant Staphylococcus aureus (MRSA) at 3.9 μM MIC (minimum inhibitory concentration) and showed potent broad-range activity against all Gram-positive bacteria that were tested. Additionally a microplate coupled assay was performed to further confirm that the 2-epimerase inhibition of Epimerox was through a target-specific mechanism. Furthermore, Epimerox demonstrated in vivo efficacy and had a pharmacokinetic profile that is consonant with it being developed into a promising new antibiotic agent for treatment of infections caused by Gram-positive bacteria. PMID:24443700

  3. Thermostability enhancement of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus by site-directed mutagenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellobiose 2-epimerase from the thermophile Caldicellulosiruptor saccharolyticus (CsCE) catalyzes the isomerization of lactose into lactulose, a non-digestible disaccharide widely used in food and pharmaceutical industries. Semi-rational approaches were applied to enhance the thermostability of CsCE...

  4. GneZ, a UDP-GlcNAc 2-Epimerase, Is Required for S-Layer Assembly and Vegetative Growth of Bacillus anthracis

    PubMed Central

    Wang, Ya-Ting; Missiakas, Dominique

    2014-01-01

    Bacillus anthracis, the causative agent of anthrax, forms an S-layer atop its peptidoglycan envelope and displays S-layer proteins and Bacillus S-layer-associated (BSL) proteins with specific functions to support cell separation of vegetative bacilli and growth in infected mammalian hosts. S-layer and BSL proteins bind via the S-layer homology (SLH) domain to the pyruvylated secondary cell wall polysaccharide (SCWP) with the repeat structure [→4)-β-ManNAc-(1→4)-β-GlcNAc-(1→6)-α-GlcNAc-(1→]n, where α-GlcNAc and β-GlcNAc are substituted with two and one galactosyl residues, respectively. B. anthracis gneY (BAS5048) and gneZ (BAS5117) encode nearly identical UDP-GlcNAc 2-epimerase enzymes that catalyze the reversible conversion of UDP-GlcNAc and UDP-ManNAc. UDP-GlcNAc 2-epimerase enzymes have been shown to be required for the attachment of the phage lysin PlyG with the bacterial envelope and for bacterial growth. Here, we asked whether gneY and gneZ are required for the synthesis of the pyruvylated SCWP and for S-layer assembly. We show that gneZ, but not gneY, is required for B. anthracis vegetative growth, rod cell shape, S-layer assembly, and synthesis of pyruvylated SCWP. Nevertheless, inducible expression of gneY alleviated all the defects associated with the gneZ mutant. In contrast to vegetative growth, neither germination of B. anthracis spores nor the formation of spores in mother cells required UDP-GlcNAc 2-epimerase activity. PMID:24914184

  5. Three-dimensional Structure and Enzymatic Function of Proapoptotic Human p53-inducible Quinone Oxidoreductase PIG3*

    PubMed Central

    Porté, Sergio; Valencia, Eva; Yakovtseva, Evgenia A.; Borràs, Emma; Shafqat, Naeem; Debreczeny, Judit É.; Pike, Ashley C. W.; Oppermann, Udo; Farrés, Jaume; Fita, Ignacio; Parés, Xavier

    2009-01-01

    Tumor suppressor p53 regulates the expression of p53-induced genes (PIG) that trigger apoptosis. PIG3 or TP53I3 is the only known member of the medium chain dehydrogenase/reductase superfamily induced by p53 and is used as a proapoptotic marker. Although the participation of PIG3 in the apoptotic pathway is proven, the protein and its mechanism of action were never characterized. We analyzed human PIG3 enzymatic function and found NADPH-dependent reductase activity with ortho-quinones, which is consistent with the classification of PIG3 in the quinone oxidoreductase family. However, the activity is much lower than that of ζ-crystallin, a better known quinone oxidoreductase. In addition, we report the crystallographic structure of PIG3, which allowed the identification of substrate- and cofactor-binding sites, with residues fully conserved from bacteria to human. Tyr-59 in ζ-crystallin (Tyr-51 in PIG3) was suggested to participate in the catalysis of quinone reduction. However, kinetics of Tyr/Phe and Tyr/Ala mutants of both enzymes demonstrated that the active site Tyr is not catalytic but may participate in substrate binding, consistent with a mechanism based on propinquity effects. It has been proposed that PIG3 contribution to apoptosis would be through oxidative stress generation. We found that in vitro activity and in vivo overexpression of PIG3 accumulate reactive oxygen species. Accordingly, an inactive PIG3 mutant (S151V) did not produce reactive oxygen species in cells, indicating that enzymatically active protein is necessary for this function. This supports that PIG3 action is through oxidative stress produced by its enzymatic activity and provides essential knowledge for eventual control of apoptosis. PMID:19349281

  6. Restoration of Gibberellin Production in Fusarium proliferatum by Functional Complementation of Enzymatic Blocks

    PubMed Central

    Malonek, S.; Rojas, M. C.; Hedden, P.; Hopkins, P.; Tudzynski, B.

    2005-01-01

    Nine biological species, or mating populations (MPs), denoted by letters A to I, and at least 29 anamorphic Fusarium species have been identified within the Gibberella fujikuroi species complex. Members of this species complex are the only species of the genus Fusarium that contain the gibberellin (GA) biosynthetic gene cluster or at least parts of it. However, the ability of fusaria to produce GAs is so far restricted to Fusarium fujikuroi, although at least six other MPs contain all the genes of the GA biosynthetic gene cluster. Members of Fusarium proliferatum, the closest related species, have lost the ability to produce GAs as a result of the accumulation of several mutations in the coding and 5′ noncoding regions of genes P450-4 and P450-1, both encoding cytochrome P450 monooxygenases, resulting in metabolic blocks at the early stages of GA biosynthesis. In this study, we have determined additional enzymatic blocks at the first specific steps in the GA biosynthesis pathway of F. proliferatum: the synthesis of geranylgeranyl diphosphate and the synthesis of ent-kaurene. Complementation of these enzymatic blocks by transferring the corresponding genes from GA-producing F. fujikuroi to F. proliferatum resulted in the restoration of GA production. We discuss the reasons for Fusarium species outside the G. fujikuroi species complex having no GA biosynthetic genes, whereas species distantly related to Fusarium, e.g., Sphaceloma spp. and Phaeosphaeria spp., produce GAs. PMID:16204516

  7. Antioxidant activities and functional properties of enzymatic protein hydrolysates from defatted Camellia oleifera seed cake.

    PubMed

    Li, Xu; Deng, Junlin; Shen, Shian; Li, Tian; Yuan, Ming; Yang, Ruiwu; Ding, Chunbang

    2015-09-01

    Seed cake protein (SCP) from Camellia oleifera was hydrolyzed by five commercial proteases (Flavorzyme, Trypsin, Neutrase, Papain, Alcalase). Amino acid composition, molecular weight distribution, antioxidant activity and functional property of the seed cake protein hydrolysates (SCPH) were investigated. Enzymatic hydrolysis improved protein solubility significantly but impaired the foaming and emulsifying property. Hydrolysate generated by alcalase had the highest hydrolysis degree (DH) and antioxidant activity, and displayed excellent protein solubility over wide range of pH, while hydrolysate prepared by flavorzyme showed better copper chelating capacity and emulsifying stability with low molecular weight distribution. Trypsin-treated SCPH showed better foaming property than original protein. The results indicated that enzyme type greatly influenced the molecular weight, functional property and antioxidant activity of SCPH. It was also found that electing appropriate protease and controlling the DH could be enhanced or reduced functional property according to actual applications. PMID:26344981

  8. Effects of different bulking agents on the maturity, enzymatic activity, and microbial community functional diversity of kitchen waste compost.

    PubMed

    Wang, Xiaojuan; Zhang, Wenwei; Gu, Jie; Gao, Hua; Qin, Qingjun

    2016-10-01

    Aerobic composting is an effective method for the disposal and utilization of kitchen waste. However, the addition of a bulking agent is necessary during kitchen waste composting because of its high moisture content and low C/N ratio. In order to select a suitable bulking agent, we investigated the influence of leaf litter (LL), sawdust (SD), and wheat straw (WS) on the enzymatic activity, microbial community functional diversity, and maturity indices during the kitchen waste composting process. The results showed that the addition of WS yielded the highest maturity (the C/N ratio decreased from 25 to 13, T value = 0.5, and germination index (GI) = 114.7%), whereas the compost containing SD as a bulking agent had the lowest maturity (GI = 32.4%). The maximum cellulase and urease activities were observed with the WS treatment on day 8, whereas the SD treatment had the lowest cellulase activity and the LL treatment had the lowest urease activity. The compost temperature and microbial activity (as the average well color development) showed that bulking the composts with SD prolonged the composting process. The diversity index based on the community-level physiological profile showed that the composts bulked with LL and WS had greater microbial community functional diversity compared with those bulked with SD. Thus, the maturity indexes and enzymatic activities suggest that WS is a suitable bulking agent for use in kitchen waste composting systems. PMID:26895274

  9. Purification, crystallization and preliminary X-ray diffraction studies of d-tagatose 3-epimerase from Pseudomonas cichorii

    SciTech Connect

    Yoshida, Hiromi; Yamada, Mitsugu; Nishitani, Takeyori; Takada, Goro; Izumori, Ken; Kamitori, Shigehiro

    2007-02-01

    Recombinant d-tagatose 3-epimerase from P. cichorii was purified and crystallized. Diffraction data were collected to 2.5 Å resolution. d-Tagatose 3-epimerase (D-TE) from Pseudomonas cichorii catalyzes the epimerization of various ketohexoses at the C3 position. The epimerization of d-psicose has not been reported with epimerases other than P. cichorii D-TE and d-psicose 3-epimerase from Agrobacterium tumefaciens. Recombinant P. cichorii D-TE has been purified and crystallized. Crystals of P. cichorii D-TE were obtained by the sitting-drop method at room temperature. The crystal belongs to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 76.80, b = 94.92, c = 91.73 Å, β = 102.82°. Diffraction data were collected to 2.5 Å resolution. The asymmetric unit is expected to contain four molecules.

  10. Functional dependency of structures of ionic liquids: do substituents govern the selectivity of enzymatic glycerolysis?

    PubMed

    Guo, Zheng; Chen, Biqiang; López Murillo, Rafael; Tan, Tianwei; Xu, Xuebing

    2006-07-21

    The concept of regulating the preference of a reversible multi-step reaction by adjusting the substituents of ionic liquids (ILs) has been successfully exemplified with a group of tetraammonium-based ionic liquids as medium for the enzymatic glycerolysis. Simultaneous existence of long chain hydrophobic substituents and hydrophilic ethoxyl or hydroxyl moieties is found, respectively, to be essential for triglycerides (TG) dissolving and equilibrium shifting. The reactions in the ILs with cations consisting of long chain and free hydroxyl groups gave markedly higher conversion of TG and better preference to monoglyceride formation. Interestingly the predicted results from COSMO-RS (a quantum chemical model programme) achieved a good agreement with the experimental data, mapping out the specific solvation from the ILs as well as demonstrating the interaction between ILs, substrates and products being the intrinsic causes that govern reaction evolution and direct equilibrium shifting. PMID:16826302

  11. Enzymatic process of rice bran: a stabilized functional food with nutraceuticals and nutrients.

    PubMed

    S Vallabha, Vishwanath; Indira, T N; Jyothi Lakshmi, A; Radha, C; Tiku, Purnima Kaul

    2015-12-01

    Rice bran (RB), a byproduct of rice milling industry, is a rich source of nutraceuticals and nutrients. However its utility is limited due to the presence of lipase and lipoxygenase which initiates rancidity on milling. The aim of this investigation is to prevent oxidation of free fatty acids by enzymatic approach for its effective utilization. The enzymatic treatment comprised of alcalase treatment for complete inactivation of lipase along with reduction in lipoxygenase (LOX) activity and endoglucanase for improving the soluble fiber content. The enzyme treated rice bran was drum dried for further use. The nutraceutical molecules like γ-oryzanol, α-tocopherol and polyphenols were retained in the range of 68 to 110 % and the total antioxidant activity was improved. By the action of endoglucanase the complex carbohydrate was converted into glucose (72.28 %), cellobiose (18.36 %) and cellotriose (9.36 %). The prebiotic effect of enzyme treated rice bran was evaluated by the action of lactobacillus which was measured through the release of the short chain free fatty acids (SCFAs) analyzed by HPLC. The SCFAs; acetic acid and propionic acid increased by 1.72 folds and 2.12 folds respectively. B-complex vitamins showed maximum retention with vitamins like B1 (66.3 %), B2 (68.3 %) and B3 (55.0 %) after enzyme treatment. At different humidity levels, storage studies showed no change in LOX activity and also retained ubiquinol-10 in reduced state in enzyme treated RB for a period of 3 months. A stabilized RB has been developed enriched with short chain prebiotics and antioxidant molecules. PMID:26604401

  12. Production and physicochemical properties of functional-butterfat through enzymatic interesterification in a continuous reactor.

    PubMed

    Shin, Jung-Ah; Akoh, Casimir C; Lee, Ki-Teak

    2009-02-11

    Modified-butterfat (MBF) was synthesized with four blends (8:6:6, 6:6:8, 6:6:9, and 4:6:10, by weight) of anhydrous butterfat (ABF), palm stearin (PS) and flaxseed oil (FSO) through enzymatic interesterification in a continuous packed-bed reactor. Flow rate effect of 3, 5, 8 and 10 mL/min on enzymatic interesterification was investigated. By increasing the enzyme contact time with substrates (decreased flow rates), not only did melting and crystallization points shift to lower temperature but also the equivalent carbon number, ECN 36-38 from FSO decreased. Further all reactions were performed at flow rate of 5 mL/min (contact time 140 min) in a continuous reactor packed with 150 g of Lipozyme RM IM. After short path distillation, alpha-linolenic acid composition (%) of 8:6:6, 6:6:8, 6:6:9, and 4:6:10 MBFs were 16, 21, 23 and 25%, respectively. The contents of ECN 36-38, and ECN 48-50 decreased in the blends and MBFs for each substrate ratio. ECN 42-46 in the newly produced TAG increased. Melting points of MBFs were 38 degrees C (8:6:6), 35.5 degrees C (6:6:8), 34 degrees C (6:6:9), and 32 degrees C (4:6:10). MBFs interesterified with FSO contained phytosterols (17-36 mg/100 g) and tocopherols (116-173 microg/g). The products of 8:6:6, 6:6:8, 6:6:9 and 4:6:10 MBFs were softer (69, 88, 80, and 92%, respectively) than pure butterfat at refrigeration temperature. The polymorphic form changed from beta form (blends) to desirable crystalline structure of beta' form (MBFs). Crystal morphology of MBFs also changed and was composed of small spherulites of varying density. PMID:19138078

  13. Co-expression of D-glucose isomerase and D-psicose 3-epimerase: development of an efficient one-step production of D-psicose.

    PubMed

    Men, Yan; Zhu, Yueming; Zeng, Yan; Izumori, Ken; Sun, Yuanxia; Ma, Yanhe

    2014-10-01

    D-Psicose has been attracting attention in recent years because of its alimentary activities and is used as an ingredient in a range of foods and dietary supplements. To develop a one-step enzymatic process of D-psicose production, thermoactive D-glucose isomerase and the D-psicose 3-epimerase obtained from Bacillus sp. and Ruminococcus sp., respectively, were successfully co-expressed in Escherichia coli BL21 strain. The substrate of one-step enzymatic process was D-glucose. The co-expression system exhibited maximum activity at 65 °C and pH 7.0. Mg(2+) could enhance the output of D-psicose by 2.32 fold to 1.6 g/L from 10 g/L of D-glucose. When using high-fructose corn syrup (HFCS) as substrate, 135 g/L D-psicose was produced under optimum conditions. The mass ratio of D-glucose, D-fructose, and D-psicose was almost 3.0:2.7:1.0, when the reaction reached equilibrium after an 8h incubation time. This co-expression system approaching to produce D-psicose has potential application in food and beverage products, especially softdrinks. PMID:25152409

  14. Inelastic X-ray scattering studies of the short-time collective vibrational motions in hydrated lysozyme powders and their possible relation to enzymatic function.

    PubMed

    Wang, Zhe; Bertrand, Christopher E; Chiang, Wei-Shan; Fratini, Emiliano; Baglioni, Piero; Alatas, Ahmet; Alp, E Ercan; Chen, Sow-Hsin

    2013-01-31

    High-resolution inelastic X-ray scattering was used to investigate the collective vibrational excitations in hydrated lysozyme powders as a function of hydration level and temperature. It is found that the samples with strong enzymatic function are "soft", in the sense that they exhibit low frequency and large amplitude intraprotein collective vibrational motions on certain length scales. This is not the case for samples with weak or no enzymatic activity. Thus, we identify a possible correlation between the short-time intraprotein collective vibrational motions and the establishment of enzymatic function in hydrated lysozyme powders, and bring new insight to notions of protein "conformational flexibility" and "softness" in terms of these motions. PMID:23301848

  15. New N-acyl-D-glucosamine 2-epimerases from cyanobacteria with high activity in the absence of ATP and low inhibition by pyruvate.

    PubMed

    Klermund, Ludwig; Groher, Anna; Castiglione, Kathrin

    2013-11-01

    N-Acetylneuraminic acid, an important component of glycoconjugates with various biological functions, can be produced from N-acetyl-D-glucosamine (GlcNAc) and pyruvate using a one-pot, two-enzyme system consisting of N-acyl-D-glucosamine 2-epimerase (AGE) and N-acetylneuraminate lyase (NAL). In this system, the epimerase catalyzes the conversion of GlcNAc into N-acetyl-D-mannosamine (ManNAc). However, all currently known AGEs have one or more disadvantages, such as a low specific activity, substantial inhibition by pyruvate and strong dependence on allosteric activation by ATP. Therefore, four novel AGEs from the cyanobacteria Acaryochloris marina MBIC 11017, Anabaena variabilis ATCC 29413, Nostoc sp. PCC 7120, and Nostoc punctiforme PCC 73102 were characterized. Among these enzymes, the AGE from the Anabaena strain showed the most beneficial characteristics. It had a high specific activity of 117±2 U mg(-1) at 37 °C (pH 7.5) and an up to 10-fold higher inhibition constant for pyruvate as compared to other AGEs indicating a much weaker inhibitory effect. The investigation of the influence of ATP revealed that the nucleotide has a more pronounced effect on the Km for the substrate than on the enzyme activity. At high substrate concentrations (≥200 mM) and without ATP, the enzyme reached up to 32% of the activity measured with ATP in excess. PMID:23850800

  16. Efficient chemo-enzymatic gluten detoxification: reducing toxic epitopes for celiac patients improving functional properties

    PubMed Central

    Ribeiro, Miguel; Nunes, Fernando M.; Guedes, Sofia; Domingues, Pedro; Silva, Amélia M.; Carrillo, Jose Maria; Rodriguez-Quijano, Marta; Branlard, Gérard; Igrejas, Gilberto

    2015-01-01

    Protein engineering of gluten, the exogenous effector in celiac disease, seeking its detoxification by selective chemical modification of toxic epitopes is a very attractive strategy and promising technology when compared to pharmacological treatment or genetic engineering of wheat. Here we present a simple and efficient chemo-enzymatic methodology that decreases celiac disease toxic epitopes of gluten proteins improving its technological value through microbial transglutaminase-mediated transamidation of glutamine with n-butylamine under reducing conditions. First, we found that using low concentrations of amine-nucleophile under non-reducing conditions, the decrease in toxic epitopes is mainly due to transglutaminase-mediated cross-linking. Second, using high amine nucleophile concentrations protein cross-linking is substantially reduced. Third, reducing conditions increase 7-fold the transamidation reaction further decreasing toxic epitopes amount. Fourth, using n-butylamine improves gluten hydrophobicity that strengthens the gluten network. These results open the possibility of tailoring gluten for producing hypoallergenic flours while still taking advantage of the unique viscoelastic properties of gluten. PMID:26691232

  17. Efficient chemo-enzymatic gluten detoxification: reducing toxic epitopes for celiac patients improving functional properties.

    PubMed

    Ribeiro, Miguel; Nunes, Fernando M; Guedes, Sofia; Domingues, Pedro; Silva, Amélia M; Carrillo, Jose Maria; Rodriguez-Quijano, Marta; Branlard, Gérard; Igrejas, Gilberto

    2015-01-01

    Protein engineering of gluten, the exogenous effector in celiac disease, seeking its detoxification by selective chemical modification of toxic epitopes is a very attractive strategy and promising technology when compared to pharmacological treatment or genetic engineering of wheat. Here we present a simple and efficient chemo-enzymatic methodology that decreases celiac disease toxic epitopes of gluten proteins improving its technological value through microbial transglutaminase-mediated transamidation of glutamine with n-butylamine under reducing conditions. First, we found that using low concentrations of amine-nucleophile under non-reducing conditions, the decrease in toxic epitopes is mainly due to transglutaminase-mediated cross-linking. Second, using high amine nucleophile concentrations protein cross-linking is substantially reduced. Third, reducing conditions increase 7-fold the transamidation reaction further decreasing toxic epitopes amount. Fourth, using n-butylamine improves gluten hydrophobicity that strengthens the gluten network. These results open the possibility of tailoring gluten for producing hypoallergenic flours while still taking advantage of the unique viscoelastic properties of gluten. PMID:26691232

  18. Reaction of uridine diphosphate galactose 4-epimerase with a suicide inactivator

    SciTech Connect

    Flentke, G.R.; Frey, P.A. )

    1990-03-06

    UDPgalactose 4-epimerase from Escherichia coli is rapidly inactivated by the compounds uridine 5{prime}-diphosphate chloroacetol (UDC) and uridine 5{prime}-diphosphate bromoacetol (UCB). Both UDC and UDB inactivate the enzyme in neutral solution concomitant with the appearance of chromophores absorbing maximally at 325 and 328 nm, respectively. The reaction of UDC with the enzyme follows saturation kinetics characterized by a K{sub D} of 0.110 mM and k{sub inact} of 0.84 min{sup {minus}1} at pH 8.5 and ionic strength 0.2 M. The inactivation by UDC is competitively inhibited by competitive inhibitors of UDPgalactose 4-epimerase, and it is accompanied by the tight but noncovalent binding of UDC to the enzyme in a stoichiometry of 1 mol of UDC/mol of enzyme dimer, corresponding to 1 mol of UDC/mol of enzyme-bound NAD{sup +}. The inactivation of epimerase by uridine 5{prime}-diphosphate ({sup 2}H{sub 2})chloroacetol proceeds with a primary kinetic isotope effect (k{sub H}/k{sub D}) of 1.4. The inactivation mechanism is proposed to involve a minimum of three steps: (a) reversible binding of UDC to the active site of UDPgalactose 4-epimerase; (b) enolization of the chloroacetol moiety of enzyme-bound UDC, catalyzed by an enzymic general base at the active site; (c) alkylation of the nicotinamide ring of NAD{sup +} at the active site by the chloroacetol enolate. The resulting adduct between UDC and NAD{sup +} is proposed to be the chromophore with {lambda}{sub max} at 325 nm. The enzymic general base required to facilitate proton transfer in redox catalysis by this enzyme may be the general base that facilitates enolization of the chloroacetol moiety of UDC in the inactivation reaction.

  19. Synthetic substrates specific to activated plasmin can monitor the enzymatic functional status in situ in breast cancer cells.

    PubMed

    Gohda, Keigo; Fujimori, Ko; Teno, Naoki; Wanaka, Keiko; Tsuda, Yuko

    2014-01-01

    We here strove to overcome the limitations of expression analyses such as PCR and IHC, based on molecular recognition between target and probe molecules, by designing synthetic substrates specific to the target molecules to directly estimate the enzymatic functionality in situ. The specific substrate contains a probing unit, which is an organic fragment for specific enzyme binding, and a reactive unit, which is a natural peptide subject to catalysis. In this study, the activation of plasminogen to plasmin was examined in MDA-MB231 breast cancer cells using the plasmin-specific synthetic substrates designed from their inhibitors. The localization and function of the activated plasmin were successfully visualized by fluorophore combined with the specific substrate concurrently. This would be the first time for activated plasmin at work in situ by direct observation. Our concept to directly monitor the functionality of target enzymes can be used straightforwardly for other proteases such as cathepsins or caspases. Also, this substrate concept as a 'tailor-made substrate' would be utilized as a novel functional molecular probe in vivo with appropriate detectable probes. PMID:24112688

  20. Solvent environments significantly affect the enzymatic function of Escherichia coli dihydrofolate reductase: comparison of wild-type protein and active-site mutant D27E.

    PubMed

    Ohmae, Eiji; Miyashita, Yurina; Tate, Shin-Ichi; Gekko, Kunihiko; Kitazawa, Soichiro; Kitahara, Ryo; Kuwajima, Kunihiro

    2013-12-01

    To investigate the contribution of solvent environments to the enzymatic function of Escherichia coli dihydrofolate reductase (DHFR), the salt-, pH-, and pressure-dependence of the enzymatic function of the wild-type protein were compared with those of the active-site mutant D27E in relation to their structure and stability. The salt concentration-dependence of enzymatic activity indicated that inorganic cations bound to and inhibited the activity of wild-type DHFR at neutral pH. The BaCl2 concentration-dependence of the (1)H-(15)N HSQC spectra of the wild-type DHFR-folate binary complex showed that the cation-binding site was located adjacent to the Met20 loop. The insensitivity of the D27E mutant to univalent cations, the decreased optimal pH for its enzymatic activity, and the increased Km and Kd values for its substrate dihydrofolate suggested that the substrate-binding cleft of the mutant was slightly opened to expose the active-site side chain to the solvent. The marginally increased fluorescence intensity and decreased volume change due to unfolding of the mutant also supported this structural change or the modified cavity and hydration. Surprisingly, the enzymatic activity of the mutant increased with pressurization up to 250MPa together with negative activation volumes of -4.0 or -4.8mL/mol, depending on the solvent system, while that of the wild-type was decreased and had positive activation volumes of 6.1 or 7.7mL/mol. These results clearly indicate that the insertion of a single methylene at the active site could substantially change the enzymatic reaction mechanism of DHFR, and solvent environments play important roles in the function of this enzyme. PMID:24140567

  1. Structure of a d-tagatose 3-epimerase-related protein from the hyperthermophilic bacterium Thermotoga maritima

    PubMed Central

    Sakuraba, Haruhiko; Yoneda, Kazunari; Satomura, Takenori; Kawakami, Ryushi; Ohshima, Toshihisa

    2009-01-01

    The crystal structure of a d-tagatose 3-epimerase-related protein (TM0416p) encoded by the hypothetical open reading frame TM0416 in the genome of the hyperthermophilic bacterium Thermotoga maritima was determined at a resolution of 2.2 Å. The asymmetric unit contained two homologous subunits and a dimer was generated by twofold symmetry. The main-chain coordinates of the enzyme monomer proved to be similar to those of d-tagatose 3-­epimerase from Pseudomonas cichorii and d-psicose 3-epimerase from Agrobacterium tumefaciens; however, TM0416p exhibited a unique solvent-accessible substrate-binding pocket that reflected the absence of an α-helix that covers the active-site cleft in the two aforementioned ketohexose 3-epimerases. In addition, the residues responsible for creating a hydrophobic environment around the substrate in TM0416p differ entirely from those in the other two enzymes. Collectively, these findings suggest that the substrate specificity of TM0416p is likely to differ substantially from those of other d-tagatose 3-­epimerase family enzymes. PMID:19255464

  2. Composition and enzymatic function of particle-associated and free-living bacteria: a coastal/offshore comparison

    PubMed Central

    D'Ambrosio, Lindsay; Ziervogel, Kai; MacGregor, Barbara; Teske, Andreas; Arnosti, Carol

    2014-01-01

    We compared the function and composition of free-living and particle-associated microbial communities at an inshore site in coastal North Carolina and across a depth profile on the Blake Ridge (offshore). Hydrolysis rates of six different polysaccharide substrates were compared for particle-associated (>3 μm) and free-living (<3 to 0.2 μm) microbial communities. The 16S rRNA- and rDNA-based clone libraries were produced from the same filters used to measure hydrolysis rates. Particle-associated and free-living communities resembled one another; they also showed similar enzymatic hydrolysis rates and substrate preferences. All six polysaccharides were hydrolyzed inshore. Offshore, only a subset was hydrolyzed in surface water and at depths of 146 and 505 m; just three polysaccharides were hydrolyzed at 505 m. The spectrum of bacterial taxa changed more subtly between inshore and offshore surface waters, but changed greatly with depth offshore. None of the OTUs occurred at all sites: 27 out of the 28 major OTUs defined in this study were found either exclusively in a surface or in a mid-depth/bottom water sample. This distinction was evident with both 16S rRNA and rDNA analyses. At the offshore site, despite the low community overlap, bacterial communities maintained a degree of functional redundancy on the whole bacterial community level with respect to hydrolysis of high-molecular-weight substrates. PMID:24763371

  3. Enzymatic hydrolysis of ovomucin and the functional and structural characteristics of peptides in the hydrolysates.

    PubMed

    Abeyrathne, E D N S; Lee, H Y; Jo, C; Suh, J W; Ahn, D U

    2016-02-01

    Ovomucin was hydrolyzed using enzymes or by heating under alkaline conditions (pH 12.0), and the functional, structural and compositional characteristics of the peptides in the hydrolysates were determined. Among the treatments, heating at 100 °C for 15 min under alkaline conditions (OM) produced peptides with the highest iron-binding and antioxidant capacities. Ovomucin hydrolyzed with papain (OMPa) or alcalase (OMAl) produced peptides with high ACE-inhibitory activity. The mass spectrometry analysis indicated that most of the peptides from OMPa were <2 kDa, but peptides from OMTr and OM were >2 kDa. OMAl hydrolyzed ovomucin almost completely and no peptides within 700-5000 Da were found in the hydrolasate. The results indicated that the number and size of peptides were closely related to the functionality of the hydrolysates. Considering the time, cost and activities of the hydrolysates, OM was the best treatment for hydrolyzing ovomucin to produce functional peptides. PMID:26304326

  4. The Molecular Dynamics of Trypanosoma brucei UDP-Galactose 4′-Epimerase: A Drug Target for African Sleeping Sickness

    PubMed Central

    Friedman, Aaron J; Durrant, Jacob D; Pierce, Levi C T; McCorvie, Thomas J; Timson, David J; McCammon, J Andrew

    2012-01-01

    During the past century, several epidemics of human African trypanosomiasis, a deadly disease caused by the protist Trypanosoma brucei, have afflicted sub-Saharan Africa. Over 10 000 new victims are reported each year, with hundreds of thousands more at risk. As current drug treatments are either highly toxic or ineffective, novel trypanocides are urgently needed. The T. brucei galactose synthesis pathway is one potential therapeutic target. Although galactose is essential for T. brucei survival, the parasite lacks the transporters required to intake galactose from the environment. UDP-galactose 4′-epimerase (TbGalE) is responsible for the epimerization of UDP-glucose to UDP-galactose and is therefore of great interest to medicinal chemists. Using molecular dynamics simulations, we investigate the atomistic motions of TbGalE in both the apo and holo states. The sampled conformations and protein dynamics depend not only on the presence of a UDP-sugar ligand, but also on the chirality of the UDP-sugar C4 atom. This dependence provides important insights into TbGalE function and may help guide future computer-aided drug discovery efforts targeting this protein. PMID:22487100

  5. The Closure of the Cycle: Enzymatic Synthesis and Functionalization of Bio-Based Polyesters.

    PubMed

    Pellis, Alessandro; Herrero Acero, Enrique; Ferrario, Valerio; Ribitsch, Doris; Guebitz, Georg M; Gardossi, Lucia

    2016-04-01

    The polymer industry is under pressure to mitigate the environmental cost of petrol-based plastics. Biotechnologies contribute to the gradual replacement of petrol-based chemistry and the development of new renewable products, leading to the closure of carbon circle. An array of bio-based building blocks is already available on an industrial scale and is boosting the development of new generations of sustainable and functionally competitive polymers, such as polylactic acid (PLA). Biocatalysts add higher value to bio-based polymers by catalyzing not only their selective modification, but also their synthesis under mild and controlled conditions. The ultimate aim is the introduction of chemical functionalities on the surface of the polymer while retaining its bulk properties, thus enlarging the spectrum of advanced applications. PMID:26806112

  6. Mapping the Mutual Information Network of Enzymatic Families in the Protein Structure to Unveil Functional Features

    PubMed Central

    Aguilar, Daniel; Oliva, Baldo; Marino Buslje, Cristina

    2012-01-01

    Amino acids committed to a particular function correlate tightly along evolution and tend to form clusters in the 3D structure of the protein. Consequently, a protein can be seen as a network of co-evolving clusters of residues. The goal of this work is two-fold: first, we have combined mutual information and structural data to describe the amino acid networks within a protein and their interactions. Second, we have investigated how this information can be used to improve methods of prediction of functional residues by reducing the search space. As a main result, we found that clusters of co-evolving residues related to the catalytic site of an enzyme have distinguishable topological properties in the network. We also observed that these clusters usually evolve independently, which could be related to a fail-safe mechanism. Finally, we discovered a significant enrichment of functional residues (e.g. metal binding, susceptibility to detrimental mutations) in the clusters, which could be the foundation of new prediction tools. PMID:22848494

  7. Mapping the mutual information network of enzymatic families in the protein structure to unveil functional features.

    PubMed

    Aguilar, Daniel; Oliva, Baldo; Marino Buslje, Cristina

    2012-01-01

    Amino acids committed to a particular function correlate tightly along evolution and tend to form clusters in the 3D structure of the protein. Consequently, a protein can be seen as a network of co-evolving clusters of residues. The goal of this work is two-fold: first, we have combined mutual information and structural data to describe the amino acid networks within a protein and their interactions. Second, we have investigated how this information can be used to improve methods of prediction of functional residues by reducing the search space. As a main result, we found that clusters of co-evolving residues related to the catalytic site of an enzyme have distinguishable topological properties in the network. We also observed that these clusters usually evolve independently, which could be related to a fail-safe mechanism. Finally, we discovered a significant enrichment of functional residues (e.g. metal binding, susceptibility to detrimental mutations) in the clusters, which could be the foundation of new prediction tools. PMID:22848494

  8. Enzymatic Oxidation of Cholesterol: Properties and Functional Effects of Cholestenone in Cell Membranes

    PubMed Central

    Neuvonen, Maarit; Manna, Moutusi; Mokkila, Sini; Javanainen, Matti; Rog, Tomasz; Liu, Zheng; Bittman, Robert; Vattulainen, Ilpo; Ikonen, Elina

    2014-01-01

    Bacterial cholesterol oxidase is commonly used as an experimental tool to reduce cellular cholesterol content. That the treatment also generates the poorly degradable metabolite 4-cholesten-3-one (cholestenone) has received less attention. Here, we investigated the membrane partitioning of cholestenone using simulations and cell biological experiments and assessed the functional effects of cholestenone in human cells. Atomistic simulations predicted that cholestenone reduces membrane order, undergoes faster flip-flop and desorbs more readily from membranes than cholesterol. In primary human fibroblasts, cholestenone was released from membranes to physiological extracellular acceptors more avidly than cholesterol, but without acceptors it remained in cells over a day. To address the functional effects of cholestenone, we studied fibroblast migration during wound healing. When cells were either cholesterol oxidase treated or part of cellular cholesterol was exchanged for cholestenone with cyclodextrin, cell migration during 22 h was markedly inhibited. Instead, when a similar fraction of cholesterol was removed using cyclodextrin, cells replenished their cholesterol content in 3 h and migrated similarly to control cells. Thus, cholesterol oxidation produces long-term functional effects in cells and these are in part due to the generated membrane active cholestenone. PMID:25157633

  9. Fold conservation and proteolysis in zebrafish IRBP structure: Clues to possible enzymatic function?

    PubMed

    Ghosh, Debashis; Haswell, Karen M; Sprada, Molly; Gonzalez-Fernandez, Federico

    2016-06-01

    Multiple functions for Interphotoreceptor Retinoid-Binding Protein (IRBP) may explain its localization in the retina, vitreous and pineal gland and association with retinitis pigmentosa and myopia. We have been engaged in uncovering the structure-function relationships of this interesting protein long thought to bind visual-cycle retinoids and fatty acids in the subretinal space. Although hydrophobic domains capable of binding such ligands have now been found, we ask what other structural domains might be present that could predict new functions? Interestingly, IRBP possesses a fold similar to C-terminal processing proteases (CTPases) but is missing the PDZ domain. Here we present structural evidence that this fold may have a role in a recently observed autoproteolytic activity of the two-module zebrafish (z) IRBP (Ghosh et al. Exp. Eye Res., 2015). When the structure of Scenedesmus obliquus D1 CTPase (D1P) is superimposed with the first module of zIRBP (z1), the PDZ domain of D1P occupies roughly the same position in the amino acid sequence as the inter-domain tether in z1, between residues P71 and P85. The catalytic triad K397, S372 and E375 of D1P is located at the inter-domain interfacial cleft, similarly as the tetrad K241, S243, D177 and T179 of z1 residues, presumed to have proteolytic function. Packing of two adjacent symmetry-related molecules within the z1 crystal show that the helix α8 penetrates the interfacial cleft underneath the inter-domain tether, forming a simple intermolecular "knot". The full-length zIRBP is cleaved at or immediately after T309, which is located at the end of α8 and is the ninth residue of the second module z2. We propose that the helix α8 within intact zIRBP bends at P301, away from the improbable knotted fold, and positions the cleavage site T309 near the putative catalytic tetrad of the neighboring zIRBP to be proteolytically cleaved. The conservation of this functional catalytic domain suggests that possible

  10. Enzymatic hydrolysis of ovomucoid and the functional properties of its hydrolysates.

    PubMed

    Abeyrathne, E D N S; Lee, H Y; Jo, C; Suh, J W; Ahn, D U

    2015-09-01

    Ovomucoid is well known as a "trypsin inhibitor" and is considered to be the main food allergen in egg. However, the negative functions of ovomucoid can be eliminated if the protein is cut into small peptides. The objectives of this study were to hydrolyze ovomucoid using various enzyme combinations, and compare the functional properties of the hydrolysates. Purified ovomucoid was dissolved in distilled water (20 mg/mL) and treated with 1% of pepsin, α-chymotrypsin, papain, and alcalase, singly or in combinations. Sodium sodium dodecyl sulfate-polyacrylamide (SDS-PAGE) results of the hydrolysates indicated that pepsin (OMP), alcalase (OMAl), alcalase+trypsin (OMAlTr), and alcalase+papain (OMAlPa) treatments best hydrolyzed the ovomucoid, and the 4 treatments were selected to determine their functional characteristics. Among the 4 enzyme treatments, hydrolysate from OMAlTr showed the highest iron-chelating and antioxidant activities, while OMP showed higher ACE-inhibitory activity, but lower Fe-chelating activity than the other treatments. However, no difference in the copper-chelating activity among the treatments was found. MS/MS analysis identified numerous peptides from the hydrolysates of OMAlPa and OMAlTr, and majority of the peptides produced were <2 kDa. Pepsin treatment (OMP), however, hydrolyzed ovomucoid almost completely and produced only amino acid monomers, di- and tri-peptides. The ACE-inhibitory, antioxidant and iron-chelating activities of the enzyme hydrolysates were not consistent with the number and size of peptides in the hydrolysates, but we do not have information about the quantity of each peptide present in the hydrolysates at this point. PMID:26195809

  11. Preparation of Yeast Hydrolysate Enriched in Cyclo-His-Pro (CHP) by Enzymatic Hydrolysis and Evaluation of Its Functionality

    PubMed Central

    Lee, Hyun Jung; Son, Heung Soo; Park, Chung; Suh, Hyung Joo

    2015-01-01

    In this study, we attempted to enrich cyclo-His-Pro (CHP) using enzymatic hydrolysis of yeast and to evaluate the functionality of yeast hydrolysate (YH)-enriched CHP. Flavourzyme offered a better performance in enhancing CHP content than other proteases. The CHP enrichment conditions were optimized as follows: addition of 1% Flavourzyme, 48-h incubation at 60°C, and pH 6.0. The CHP content significantly increased by 20-fold after ultra-filtration (UF). Maximal CHP translation was obtained after heating for 8 h at 50°C and pH 7.0. YH showed poor foaming capacity between pH 3.0 to 9.0. The emulsifying activities of YHs were slightly higher at near acidic pH. Increase in heating temperature and time resulted in decreased CHP content. The results indicate that YH is more heat stable after UF. Therefore, the CHP in YH after UF can be used as a food additive with physiological CHP activity and high heat stability. PMID:26770916

  12. Phosphomolybdic acid functionalized graphene loading copper nanoparticles modified electrodes for non-enzymatic electrochemical sensing of glucose.

    PubMed

    Xu, Jiaoyan; Cao, Xiyue; Xia, Jianfei; Gong, Shida; Wang, Zonghua; Lu, Lin

    2016-08-31

    A sensitive non-enzymatic glucose electrochemical biosensor (Cu/PMo12-GR/GCE) was developed based on the combination of copper nanoparticles (CuNPs) and phosphomolybdic acid functionalized graphene (PMo12-GR). PMo12-GR films were modified on the surface of glassy carbon electrode (GCE) through electrostatic self-assembly with the aid of poly diallyl dimethyl ammonium chloride (PDDA). Then CuNPs were successfully decorated onto the PMo12-GR modified GCE through electrodeposition. The morphology of Cu/PMo12-GR/GCE was characterized by scanning electron microscope (SEM). Cyclic voltammetry (CV) and chronoamperometry were used to investigate the electrochemical performances of the biosensor. The results indicated that the modified electrode displayed a synergistic effect of PMo12-GR sheets and CuNPs towards the electro-oxidation of glucose in the alkaline solution. At the optimal detection potential of 0.50 V, the response towards glucose presented a linear response ranging from 0.10 μM to 1.0 mM with a detection limit of 3.0 × 10(-2) μM (S/N = 3). In addition, Cu/PMo12-GR/GCE possessed a high selectivity, good reproducibility, excellent stability and acceptable recovery, which indicating the potential application in clinical field. PMID:27506342

  13. Characterization of the Methylthioadenosine Phosphorylase Polymorphism rs7023954 - Incidence and Effects on Enzymatic Function in Malignant Melanoma

    PubMed Central

    Limm, Katharina; Dettmer, Katja; Reinders, Jörg; Oefner, Peter J.; Bosserhoff, Anja-Katrin

    2016-01-01

    Deficiency of methylthioadenosine phosphorylase (MTAP) supports melanoma development and progression through accumulation of its substrate 5’-methylthioadenosine (MTA), which leads amongst others to a constitutive inhibition of protein arginine methyltransferases (PRMTs) and activation of the transcription factor AP-1 via the receptor ADORA2B. Genetic association studies have also suggested that genetic polymorphism in MTAP may modulate the risk of melanoma. Here, we investigated the only globally common non-synonymous single nucleotide polymorphism (SNP) reported to date for MTAP. The SNP rs7023954 is located in exon 3 (c.166G>A), and leads to the conservative substitution of one branched-chain amino acid residue (valine) for another (isoleucine) at position 56 (p.Val56Ile). Whereas genotype frequencies in normal and primary melanoma tissues or cell lines were in Hardy-Weinberg equilibrium based on cDNA amplicon sequencing, a marked (P = 0.00019) deviation was observed in metastatic melanoma tissues and cell lines due to a deficit of heterozygotes. Enzyme assays conducted on the co-dominantly expressed alleles revealed no difference in the conversion rate of MTA to adenine and 5-methylthioribose-1-phosphate, indicating that this known enzymatic activity does not modulate the tumor suppressive function of MTAP. PMID:27479139

  14. Enzymatic hydrolysis of blue whiting (Micromesistius poutassou); functional and bioactive properties.

    PubMed

    Geirsdottir, Margret; Sigurgisladottir, Sjofn; Hamaguchi, Patricia Y; Thorkelsson, Gudjon; Johannsson, Ragnar; Kristinsson, Hordur G; Kristjansson, Magnus M

    2011-01-01

    Functional and biochemical properties of fish protein hydrolysates (FPH) from blue whiting (BW) were studied. FPH (2.5%, 5%, 10%, and 15% degree of hydrolysis [DH]) were made from isolated proteins from headed and gutted BW with Alcalase 2.4 L. The properties of dried BW mince and protein isolate compared to 4 reference proteins (soy and milk protein) were studied: color, solubility, water-holding capacity (WHC), oil-binding capacity (OBC), emulsion capacity (EC), and emulsion stability (ES). The angiotensin I-converting enzyme (ACE) inhibitory activities of the soluble fraction of BW powders were also investigated. Furthermore, the products were characterized by analyzing their chemical composition. Chemical composition, solubility, OBC, and EC of the BW powders was significantly (P < 0.05) different with different DH, while color, ES, and WHC were not significantly (P > 0.05) different. Salt content of the FPH was high (4% to 19%) and increased with increased DH. Protein solubility varied from 10% to 70% and increased with increased DH. WHC of the FPH was around 97% and was higher than that of all the reference proteins tested. OBC decreased with increased DH (from 3.5 to 2.1 g oil/g protein) and was higher than OBC of the soy and milk proteins (1.6 to 1.9 g oil/g protein). EC of FPH was similar or lower than the reference proteins. ES of FPH (60% to 90%) was similar to or lower than soy and whey proteins (60% to 98%) but higher than casein (20%). ACE inhibition activity increased as DH was increased. Practical Application: The results from this study demonstrate that a functional bioactive hydrolysate can be produced from BW, which is an underutilized fish species, and may aid the industry in better utilizing this raw material. The novelty of this research was the use of BW as a raw material where the protein has been isolated with the pH shift method. Furthermore, it was novel that bioactivity and functionality was measured in the same samples. PMID:21535642

  15. Probing Mechanisms for Enzymatic Activity Enhancement of Organophosphorus Hydrolase in Functionalized Mesoporous Silica

    SciTech Connect

    Chen, Baowei; Lei, Chenghong; Shin, Yongsoon; Liu, Jun

    2009-12-25

    We have previously reported that organophosphorus hydrolase (OPH) can be spontaneously entrapped in functionalized mesoporous silica (FMS) with HOOC - as the functional groups and the entrapped OPH in HOOC-FMS showed enhanced enzyme specific activity. This work is to study the mechanisms that why OPH entrapped in FMS displayed the enhanced activity in views of OPH-FMS interactions using spectroscopic methods. The circular dichroism (CD) spectra show that, comparing to the secondary structure of OPH free in solution, OPH in HOOC-FMS displayed increased a-helix/b-strand transition of OPH with increased OPH loading density. The fluorescence emission spectra of Trp residues were used to assess the tertiary structural changes of the enzyme. There was a 42% increase in fluorescence. This is in agreement with the fact that the fluorescence intensity of OPH was increased accompanying with the increased OPH activity when decreasing urea concentrations in solution. The steady-state anisotropy was increased after OPH entrapping in HOOC-FMS comparing to the free OPH in solution, indicating that protein mobility was reduced upon entrapment. The solvent accessibility of Trp residues of OPH was probed by using acrylamide as a collisional quencher. Trp residues of OPH-FMS had less solvent exposure comparing with free OPH in solution due to its electrostatical binding to HOOC-FMS thereby displaying the increased fluorescence intensity. These results suggest the interactions of OPH with HOOC-FMS resulted in the protein immobilization and a favorable conformational change for OPH in the crowded confinement space and accordingly the enhanced activity.

  16. Bioconversion of D-glucose to D-psicose with immobilized D-xylose isomerase and D-psicose 3-epimerase on Saccharomyces cerevisiae spores.

    PubMed

    Li, Zijie; Li, Yi; Duan, Shenglin; Liu, Jia; Yuan, Peng; Nakanishi, Hideki; Gao, Xiao-Dong

    2015-08-01

    Saccharomyces cerevisiae spores are dormant cells, which can tolerate various types of environmental stress. In our previous work, we successfully developed biological and chemical methods for enzyme immobilization based on the structures of S. cerevisiae spore wall. In this study, we employed biological and chemical approaches for the immobilization of D-xylose isomerase (XI) from Thermus thermophilus and D-psicose 3-epimerase (DPEase) from Agrobacterium tumefaciens with yeast spores, respectively. The enzymatic properties of both immobilized XI and DPEase were characterized and the immobilized enzymes exhibit higher thermostability, broader pH tolerance, and good repeatability compared with free enzymes. Furthermore, we established a two-step approach for the bioconversion of D-glucose to D-psicose using immobilized enzymes. To improve the conversion yield, a multi-pot strategy was adopted for D-psicose production by repeating the two-step process continually. As a result, the yield of D-psicose was obviously improved and the highest yield reached about 12.0 %. PMID:26065389

  17. A non-enzymatic function of 17beta-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival.

    PubMed

    Rauschenberger, Katharina; Schöler, Katja; Sass, Jörn Oliver; Sauer, Sven; Djuric, Zdenka; Rumig, Cordula; Wolf, Nicole I; Okun, Jürgen G; Kölker, Stefan; Schwarz, Heinz; Fischer, Christine; Grziwa, Beate; Runz, Heiko; Nümann, Astrid; Shafqat, Naeem; Kavanagh, Kathryn L; Hämmerling, Günter; Wanders, Ronald J A; Shield, Julian P H; Wendel, Udo; Stern, David; Nawroth, Peter; Hoffmann, Georg F; Bartram, Claus R; Arnold, Bernd; Bierhaus, Angelika; Oppermann, Udo; Steinbeisser, Herbert; Zschocke, Johannes

    2010-02-01

    Deficiency of the mitochondrial enzyme 2-methyl-3-hydroxybutyryl-CoA dehydrogenase involved in isoleucine metabolism causes an organic aciduria with atypical neurodegenerative course. The disease-causing gene is HSD17B10 and encodes 17beta-hydroxysteroid dehydrogenase type 10 (HSD10), a protein also implicated in the pathogenesis of Alzheimer's disease. Here we show that clinical symptoms in patients are not correlated with residual enzymatic activity of mutated HSD10. Loss-of-function and rescue experiments in Xenopus embryos and cells derived from conditional Hsd17b10(-/-) mice demonstrate that a property of HSD10 independent of its enzymatic activity is essential for structural and functional integrity of mitochondria. Impairment of this function in neural cells causes apoptotic cell death whilst the enzymatic activity of HSD10 is not required for cell survival. This finding indicates that the symptoms in patients with mutations in the HSD17B10 gene are unrelated to accumulation of toxic metabolites in the isoleucine pathway and, rather, related to defects in general mitochondrial function. Therefore alternative therapeutic approaches to an isoleucine-restricted diet are required. PMID:20077426

  18. Rescue of Enzymatic Function for Disease-associated RPE65 Proteins Containing Various Missense Mutations in Non-active Sites*

    PubMed Central

    Li, Songhua; Izumi, Tadahide; Hu, Jane; Jin, Heather H.; Siddiqui, Ahmed-Abdul A.; Jacobson, Samuel G.; Bok, Dean; Jin, Minghao

    2014-01-01

    Over 70 different missense mutations, including a dominant mutation, in RPE65 retinoid isomerase are associated with distinct forms of retinal degeneration; however, the disease mechanisms for most of these mutations have not been studied. Although some mutations have been shown to abolish enzyme activity, the molecular mechanisms leading to the loss of enzymatic function and retinal degeneration remain poorly understood. Here we show that the 26 S proteasome non-ATPase regulatory subunit 13 (PSMD13), a newly identified negative regulator of RPE65, plays a critical role in regulating pathogenicity of three mutations (L22P, T101I, and L408P) by mediating rapid degradation of mutated RPE65s via a ubiquitination- and proteasome-dependent non-lysosomal pathway. These mutant RPE65s were misfolded and formed aggregates or high molecular complexes via disulfide bonds. Interaction of PSMD13 with mutant RPE65s promoted degradation of misfolded but not properly folded mutant RPE65s. Many mutations, including L22P, T101I, and L408P, were mapped on non-active sites. Although their activities were very low, these mutant RPE65s were catalytically active and could be significantly rescued at low temperature, whereas mutant RPE65s with a distinct active site mutation could not be rescued under the same conditions. Sodium 4-phenylbutyrate and glycerol displayed a significant synergistic effect on the low temperature rescue of the mutant RPE65s by promoting proper folding, reducing aggregation, and increasing membrane association. Our results suggest that a low temperature eye mask and sodium 4-phenylbutyrate, a United States Food and Drug Administration-approved oral medicine, may provide a promising “protein repair therapy” that can enhance the efficacy of gene therapy by reducing the cytotoxic effect of misfolded mutant RPE65s. PMID:24849605

  19. Advances in the enzymatic production of L-hexoses.

    PubMed

    Chen, Ziwei; Zhang, Wenli; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    2016-08-01

    Rare sugars have recently drawn attention because of their potential applications and huge market demands in the food and pharmaceutical industries. All L-hexoses are considered rare sugars, as they rarely occur in nature and are thus very expensive. L-Hexoses are important components of biologically relevant compounds as well as being used as precursors for certain pharmaceutical drugs and thus play an important role in the pharmaceutical industry. Many general strategies have been established for the synthesis of L-hexoses; however, the only one used in the biotechnology industry is the Izumoring strategy. In hexose Izumoring, four entrances link the D- to L-enantiomers, ketose 3-epimerases catalyze the C-3 epimerization of L-ketohexoses, and aldose isomerases catalyze the specific bioconversion of L-ketohexoses and the corresponding L-aldohexoses. In this article, recent studies on the enzymatic production of various L-hexoses are reviewed based on the Izumoring strategy. PMID:27344591

  20. Physico-chemical and functional properties of Resistant starch prepared from red kidney beans (Phaseolus vulgaris.L) starch by enzymatic method.

    PubMed

    Reddy, Chagam Koteswara; Suriya, M; Haripriya, Sundaramoorthy

    2013-06-01

    The objective of this study was to evaluate the production, physico-chemical and functional properties of Resistant starch (RS) from red kidney bean starch by enzymatic method. Native and gelatinized starch were subjected to enzymatic hydrolysis (pullulanase, 40 U/g/10 h), autoclaved (121 °C/30 min), stored under refrigeration (4 °C/24 h), and lyophilized. The enzymatic hydrolysis and thermal treatment of starch increased the formation of RS which showed an increase in water absorption and water solubility indexes and a decrease in swelling power due to hydrolytic and thermal process. The process for obtaining RS changed the crystallinity pattern from C to B and increased the crystallinity due to the retrogradation process. RS obtained from hydrolysis showed a reduction in viscosity, indicating the rupture of starch molecules. The viscosity was found to be inversely proportional to the RS content in the sample. The thermal properties of RS increased due to the retrogradation and recrystallization (P<0.05). PMID:23618263

  1. Enzymatically catalytic deposition of gold nanoparticles by glucose oxidase-functionalized gold nanoprobe for ultrasensitive electrochemical immunoassay.

    PubMed

    Cheng, Hui; Lai, Guosong; Fu, Li; Zhang, Haili; Yu, Aimin

    2015-09-15

    A novel ultrasensitive immunoassay method was developed by combination of the enzymatically catalytic gold deposition with the prepared gold nanoprobe and the gold stripping analysis at an electrochemical chip based immunosensor. The immunosensor was constructed through covalently immobilizing capture antibody at a carbon nanotube (CNT) modified screen-printed carbon electrode. The gold nanoprobe was prepared by loading signal antibody and high-content glucose oxidase (GOD) on the nanocarrier of gold nanorod (Au NR). After sandwich immunoreaction, the GOD-Au NR nanoprobe could be quantitatively captured onto the immunosensor surface and then induce the deposition of gold nanoparticles (Au NPs) via the enzymatically catalytic reaction. Based on the electrochemical stripping analysis of the Au NR nanocarriers and the enzymatically produced Au NPs, sensitive electrochemical signal was obtained for the immunoassay. Both the GOD-induced deposition of Au NPs by the nanoprobe and the sensitive electrochemical stripping analysis on the CNTs based sensing surface greatly amplified the signal response, leading to the ultrahigh sensitivity of this method. Using carcinoembryonic antigen as a model analyte, excellent analytical performance including a wide linear range from 0.01 to 100 ng/mL and a detection limit down to 4.2 pg/mL was obtained. In addition, this immunosensor showed high specificity and satisfactory reproducibility, stability and reliability. The relatively positive detection potential excluded the conventional interference from dissolved oxygen. Thus this electrochemical chip based immunosensing method provided great potentials for practical applications. PMID:25932794

  2. Unraveling the Enzymatic Basis of Wine "Flavorome": A Phylo-Functional Study of Wine Related Yeast Species.

    PubMed

    Belda, Ignacio; Ruiz, Javier; Alastruey-Izquierdo, Ana; Navascués, Eva; Marquina, Domingo; Santos, Antonio

    2016-01-01

    Non-Saccharomyces yeasts are a heterogeneous microbial group involved in the early stages of wine fermentation. The high enzymatic potential of these yeasts makes them a useful tool for increasing the final organoleptic characteristics of wines in spite of their low fermentative power. Their physiology and contribution to wine quality are still poorly understood, with most current knowledge being acquired empirically and in most cases based in single species and strains. This work analyzed the metabolic potential of 770 yeast isolates from different enological origins and representing 15 different species, by studying their production of enzymes of enological interest and linking phylogenetic and enzymatic data. The isolates were screened for glycosidase enzymes related to terpene aroma release, the β-lyase activity responsible for the release of volatile thiols, and sulfite reductase. Apart from these aroma-related activities, protease, polygalacturonase and cellulase activities were also studied in the entire yeast collection, being related to the improvement of different technological and sensorial features of wines. In this context, and in terms of abundance, two different groups were established, with α-L-arabinofuranosidase, polygalacturonase and cellulase being the less abundant activities. By contrast, β-glucosidase and protease activities were widespread in the yeast collection studied. A classical phylogenetic study involving the partial sequencing of 26S rDNA was conducted in conjunction with the enzymatic profiles of the 770 yeast isolates for further typing, complementing the phylogenetic relationships established by using 26S rDNA. This has rendered it possible to foresee the contribution different yeast species make to wine quality and their potential applicability as pure inocula, establishing species-specific behavior. These consistent results allowed us to design future targeted studies on the impact different non-Saccharomyces yeast species

  3. Unraveling the Enzymatic Basis of Wine “Flavorome”: A Phylo-Functional Study of Wine Related Yeast Species

    PubMed Central

    Belda, Ignacio; Ruiz, Javier; Alastruey-Izquierdo, Ana; Navascués, Eva; Marquina, Domingo; Santos, Antonio

    2016-01-01

    Non-Saccharomyces yeasts are a heterogeneous microbial group involved in the early stages of wine fermentation. The high enzymatic potential of these yeasts makes them a useful tool for increasing the final organoleptic characteristics of wines in spite of their low fermentative power. Their physiology and contribution to wine quality are still poorly understood, with most current knowledge being acquired empirically and in most cases based in single species and strains. This work analyzed the metabolic potential of 770 yeast isolates from different enological origins and representing 15 different species, by studying their production of enzymes of enological interest and linking phylogenetic and enzymatic data. The isolates were screened for glycosidase enzymes related to terpene aroma release, the β-lyase activity responsible for the release of volatile thiols, and sulfite reductase. Apart from these aroma-related activities, protease, polygalacturonase and cellulase activities were also studied in the entire yeast collection, being related to the improvement of different technological and sensorial features of wines. In this context, and in terms of abundance, two different groups were established, with α-L-arabinofuranosidase, polygalacturonase and cellulase being the less abundant activities. By contrast, β-glucosidase and protease activities were widespread in the yeast collection studied. A classical phylogenetic study involving the partial sequencing of 26S rDNA was conducted in conjunction with the enzymatic profiles of the 770 yeast isolates for further typing, complementing the phylogenetic relationships established by using 26S rDNA. This has rendered it possible to foresee the contribution different yeast species make to wine quality and their potential applicability as pure inocula, establishing species-specific behavior. These consistent results allowed us to design future targeted studies on the impact different non-Saccharomyces yeast species

  4. Suppression subtractive hybridization identifies genes induced in response to UV-B irradiation in apple skin: isolation of a putative UDP-glucose 4-epimerase.

    PubMed

    Ban, Yusuke; Honda, Chikako; Bessho, Hideo; Pang, Xiao-Ming; Moriguchi, Takaya

    2007-01-01

    Suppression subtractive hybridization (SSH) successfully identified 11 cDNAs in apple skin with highly induced expression as a result of ultraviolet (UV)-B irradiation. Apart from three putative flavonoid biosynthetic genes, chalcone synthase (CHS; A5C), flavanone-3-hydroxylase (F3H; B5F), and flavonol synthase (FLS; D1F), five clones (A1H, A10E, B11G, D5F, and D11H) were induced by low temperature (17 degrees C) as well, which is also known to induce anthocyanin accumulation in apple skin. Moreover, four clones (A1H, A10E, B11G, and D11H), showing higher expression levels in the skin, accumulated higher anthocyanin concentrations than their counterparts. Of the four clones, only A10E, a putative UDP-glucose 4-epimerase (UGE), was deemed to play an important role in anthocyanin accumulation in apple skin based on the facts that: (i) its transcription level was higher in the deep red cultivar, 'Jonathan', than in the pale red cultivar, 'Tsugaru'; and (ii) it could reversibly catalyse UDP-glucose to UDP-galactose, and the latter molecule is a major sugar donor for cyanidin-glycoside in apple. Therefore, the full-length cDNA of A10E was isolated by rapid amplification of cDNA ends (RACE) and designated as MdUGE1. Further analysis demonstrated that UGE enzymatic activity was positively correlated with anthocyanin accumulation in apple skin. Thus, MdUGE1 isolated by SSH could play an important role in anthocyanin biosynthesis in apple skin in concert with other flavonoid biosynthetic genes. PMID:17404384

  5. The cloning and sequencing of the UDP-galactose 4-epimerase gene (galE) from Avibacterium paragallinarum.

    PubMed

    Roodt, Yolande; Bragg, Robert; Albertyn, Jacobus

    2007-08-01

    The putative uridine diphosphate (UDP)-galactose 4-epimerase encoding gene, galE, was isolated from Avibacterium paragallinarum with the use of degenerate primers, colony hybridization and inverse PCR. The data revealed an open reading frame of 1017 bp encoding a protein of 338 amino acids with a molecular weight of 37 kDa and an isoelectric point of 5.5. High sequence homology was obtained with an 87, 91 and 89% sequence identity on protein level towards the galE genes from Actinobacillus pleuropneumoniae, Haemophilus influenza and Pasteurella multocida, respectively. To verify that the cloned galE gene encodes for a UDP-galactose 4-epimeras, this gene was cloned into the pYES-2 expression vector, followed by transformation in a Saccharomyces cerevisiae gal10 deletion strain. Complementation of the gal10 deletion mutant with the galE gene confirmed that this gene encodes a UDP-galactose 4-epimerase. PMID:17541831

  6. Functionalization of monolithic and porous three-dimensional graphene by one-step chitosan electrodeposition for enzymatic biosensor.

    PubMed

    Liu, Jiyang; Wang, Xiaohui; Wang, Tianshu; Li, Dan; Xi, Fengna; Wang, Jin; Wang, Erkang

    2014-11-26

    Biological modification of monolithic and porous 3D graphene is of great significance for extending its application in fabricating highly sensitive biosensors. The present work reports on the first biofunctionalization of monolithic and freestanding 3D graphene foam for one-step preparation of reagentless enzymatic biosensors by controllable chitosan (CS) electrodeposition technology. Using a homogeneous three-component electrodeposition solution containing a ferrocene (Fc) grafted CS hybrid (Fc-CS), glucose oxidase (GOD), and single-walled carbon nanotubes (SWNTs), a homogeneous biocomposite film of Fc-CS/SWNTs/GOD was immobilized on the surface of 3D graphene foam by one-step electrodeposition. The Fc groups grafted on chitosan can be stably immobilized on the 3D graphene surface and keep their original electrochemical activity. The SWNTs doped into the Fc-CS matrix act as a nanowire to facilitate electron transfer and improve the conductivity of the biocomposite film. Combined with the extraordinary properties of 3D graphene foam including large active surface area, high conductivity, and fast mass transport dynamics, the 3D graphene based enzymatic biosensor achieved a large linear range (5.0 μM to 19.8 mM), a low detection limit (1.2 μM), and rapid response (reaching the 95% steady-state response within 8 s) for reagentless detection of glucose in the phosphate buffer solution. PMID:25384251

  7. Mechanism and inhibition of human UDP-GlcNAc 2-epimerase, the key enzyme in sialic acid biosynthesis

    PubMed Central

    Chen, Sheng-Chia; Huang, Chi-Hung; Lai, Shu-Jung; Yang, Chia Shin; Hsiao, Tzu-Hung; Lin, Ching-Heng; Fu, Pin-Kuei; Ko, Tzu-Ping; Chen, Yeh

    2016-01-01

    The bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) plays a key role in sialic acid production. It is different from the non-hydrolyzing enzymes for bacterial cell wall biosynthesis, and it is feed-back inhibited by the downstream product CMP-Neu5Ac. Here the complex crystal structure of the N-terminal epimerase part of human GNE shows a tetramer in which UDP binds to the active site and CMP-Neu5Ac binds to the dimer-dimer interface. The enzyme is locked in a tightly closed conformation. By comparing the UDP-binding modes of the non-hydrolyzing and hydrolyzing UDP-GlcNAc epimerases, we propose a possible explanation for the mechanistic difference. While the epimerization reactions of both enzymes are similar, Arg113 and Ser302 of GNE are likely involved in product hydrolysis. On the other hand, the CMP-Neu5Ac binding mode clearly elucidates why mutations in Arg263 and Arg266 can cause sialuria. Moreover, full-length modelling suggests a channel for ManNAc trafficking within the bifunctional enzyme. PMID:26980148

  8. Structural Basis for Substrate Specificity in Phosphate Binding (beta/alpha)8-Barrels: D-Allulose 6-Phosphate 3-Epimerase from Escherichia coli K-12

    SciTech Connect

    Chan,K.; Fedorov, A.; Almo, S.; Gerlt, J.

    2008-01-01

    Enzymes that share the ({beta}/{alpha})8-barrel fold catalyze a diverse range of reactions. Many utilize phosphorylated substrates and share a conserved C-terminal ({beta}/a)2-quarter barrel subdomain that provides a binding motif for the dianionic phosphate group. We recently reported functional and structural studies of d-ribulose 5-phosphate 3-epimerase (RPE) from Streptococcus pyogenes that catalyzes the equilibration of the pentulose 5-phosphates d-ribulose 5-phosphate and d-xylulose 5-phosphate in the pentose phosphate pathway [J. Akana, A. A. Fedorov, E. Fedorov, W. R. P. Novack, P. C. Babbitt, S. C. Almo, and J. A. Gerlt (2006) Biochemistry 45, 2493-2503]. We now report functional and structural studies of d-allulose 6-phosphate 3-epimerase (ALSE) from Escherichia coli K-12 that catalyzes the equilibration of the hexulose 6-phosphates d-allulose 6-phosphate and d-fructose 6-phosphate in a catabolic pathway for d-allose. ALSE and RPE prefer their physiological substrates but are promiscuous for each other's substrate. The active sites (RPE complexed with d-xylitol 5-phosphate and ALSE complexed with d-glucitol 6-phosphate) are superimposable (as expected from their 39% sequence identity), with the exception of the phosphate binding motif. The loop following the eighth {beta}-strand in ALSE is one residue longer than the homologous loop in RPE, so the binding site for the hexulose 6-phosphate substrate/product in ALSE is elongated relative to that for the pentulose 5-phosphate substrate/product in RPE. We constructed three single-residue deletion mutants of the loop in ALSE, ?T196, ?S197 and ?G198, to investigate the structural bases for the differing substrate specificities; for each, the promiscuity is altered so that d-ribulose 5-phosphate is the preferred substrate. The changes in kcat/Km are dominated by changes in kcat, suggesting that substrate discrimination results from differential transition state stabilization. In both ALSE and RPE, the phosphate

  9. Structural Basis for Substrate Specificity in Phosphate Binding (β/α)8-Barrels: D-Allulose 6-Phosphate 3-Epimerase from Escherichia coli K-12†

    PubMed Central

    Chan, Kui K.; Fedorov, Alexander A.; Fedorov, Elena V.; Almo, Steven C.; Gerlt, John A.

    2008-01-01

    Enzymes that share the (β/α)8-barrel fold catalyze a diverse range of reactions. Many utilize phosphorylated substrates and share a conserved C-terminal (β/α)2-quarter barrel subdomain that provides a binding motif for the dianionic phosphate group. We recently reported functional and structural studies of D-ribulose 5-phosphate 3-epimerase (RPE) from Streptococcus pyogenes that catalyzes the equilibration of the pentulose 5-phosphates D-ribulose 5-phosphate and D-xylulose 5-phosphate in the pentose phosphate pathway [J. Akana, A. A. Fedorov, E. Fedorov, W. R. P. Novack, P. C. Babbitt, S. C. Almo, and J. A. Gerlt (2006) Biochemistry 45, 2493–2503]. We now report functional and structural studies of D-allulose 6-phosphate 3-epimerase (ALSE) from Escherichia coli K-12 that catalyzes the equilibration of the hexulose 6-phosphates D-allulose 6-phosphate and D-fructose 6-phosphate in a catabolic pathway for D-allose. ALSE and RPE prefer their physiological substrates but are promiscuous for each other’s substrate. The active sites (RPE complexed with D-xylitol 5-phosphate and ALSE complexed with D-glucitol 6-phosphate) are superimposable (as expected from their 39% sequence identity), with the exception of the phosphate binding motif. The loop following the eighth β-strand in ALSE is one residue longer than the homologous loop in RPE, so the binding site for the hexulose 6-phosphate substrate/product in ALSE is elongated relative to that for the pentulose 5-phosphate substrate/product in RPE. We constructed three single-residue deletion mutants of the loop in ALSE, ΔT196, ΔS197 and ΔG198, to investigate the structural bases for the differing substrate specificities; for each, the promiscuity is altered so that D-ribulose 5-phosphate is the preferred substrate. The changes in kcat/Km are dominated by changes in kcat, suggesting that substrate discrimination results from differential transition state stabilization. In both ALSE and RPE, the phosphate group

  10. D-ribulose-5-phosphate 3-epimerase: Cloning and heterologous expression of the spinach gene, and purification and characterization of the recombinant enzyme

    SciTech Connect

    Chen, Y.R.; Hartman, F.C.; Lu, T.Y.S.; Larimer, F.W.

    1998-09-01

    The authors have achieved, to their knowledge, the first high-level heterologous expression of the gene encoding D-ribulose-5-phosphate 3-epimerase from any source, thereby permitting isolation and characterization of the epimerase as found in photosynthetic organisms. The extremely labile recombinant spinach (Spinacia oleracea L.) enzyme was stabilized by DL-{alpha}-glycerophosphate or ethanol and destabilized by D-ribulose-5-phosphate or 2-mercaptoethanol. Despite this lability, the unprecedentedly high specific activity of the purified material indicates that the structural integrity of the enzyme is maintained throughout isolation. Ethylenediaminetetraacetate and divalent metal cations did not affect epimerase activity, thereby excluding a requirement for the latter in catalysis. As deduced from the sequence of the cloned spinach gene and the electrophoretic mobility under denaturing conditions of the purified recombinant enzyme, its 25-kD subunit size was about the same as that of the corresponding epimerases of yeast and mammals. However, in contrast to these other species, the recombinant spinach enzyme was octameric rather than dimeric, as assessed by gel filtration and polyacrylamide gel electrophoresis under nondenaturing conditions. Western-blot analyses with antibodies to the purified recombinant enzyme confirmed that the epimerase extracted from spinach leaves is also octameric.

  11. Rare case of homozygous epimerase deficiency and heterozygous of duarte 2 variant.

    PubMed

    Koliofoti, Eleana Georgia; Gkentzi, Despoina; Varvarigou, Anastasia; Trigka, Maria; Schulpis, Kleopatra

    2014-09-01

    We present a rare case of galactosemia identified by a positive screening test. A 20-day-old female infant was admitted with jaundice and bloody stained diarrhea. There was no history of fever, convulsions, abdominal distention, or bleeding from other sites. Laboratory findings indicated elevated total billirubin, alanine transaminase, aspartate aminotransferase, alkaline phosphatase, and gamma-glutamyl transferase. International normalized ratio (INR), prothrombin time (PT) and activated partial thromboplastin time (aPTT) were prolonged. Total vitamin D was low. Quantitative assay for GALT in hemolysates of RBC: 17 μmol/min/mg protein (normal values: 20-35) (compound heterozygous for D2/N: 16-19). GALE level in RBC hemolysate: 11.5 μmol/h/g Hb (normal values 19-35). Our patient was homozygous for the peripheral form of epimerase deficiency galactosemia, as well as heterozygous for GALT/(D2) deficiency. She was started on galactose restricted diet and vitamin supplementation. At the age of 10 months, the patient appeared normal with no signs of developmental delay or eye-cataract. PMID:24859500

  12. Enhancement of isomerization activity and lactulose production of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus.

    PubMed

    Shen, Qiuyun; Zhang, Yuzhu; Yang, Ruijin; Pan, Siyi; Dong, Juan; Fan, Yuting; Han, Liang

    2016-09-15

    Industrial application of Caldicellulosiruptor saccharolyticus cellobiose 2-epimerase (CsCE) for lactulose synthesis is limited by low enzyme activity and formation of epilactose as by-product. After four sequential rounds of random mutagenesis and screening, an optimal mutant G4-C5 was obtained. Compared with wild type (WT) enzyme, mutant G4-C5 demonstrated 2.8- and 3.0-fold increases in specific activity and kcat/Km for lactulose production, respectively, without compromising thermostability. DNA sequencing of mutant G4-C5 revealed five amino acid substitutions, namely, R5M, I52V, A12S, K328I and F231L, which were located on the protein surface, except for the mutation I52V. The yield of lactulose catalyzed by mutant G4-C5 increased to approximately 76% with no obvious epilactose detected, indicating that mutant G4-C5 was more suitable for lactulose production than the WT enzyme. PMID:27080880

  13. Chemical synthesis and enzymatic, stereoselective hydrolysis of a functionalized dihydropyrimidine for the synthesis of β-amino acids.

    PubMed

    Slomka, Christin; Zhong, Sabilla; Fellinger, Anna; Engel, Ulrike; Syldatk, Christoph; Bräse, Stefan; Rudat, Jens

    2015-12-01

    A novel substrate, 6-(4-nitrophenyl)dihydropyrimidine-2,4(1H,3H)-dione (pNO2PheDU), was chemically synthesized and analytically verified for the potential biocatalytic synthesis of enantiopure β-amino acids. The hydantoinase (EC 3.5.2.2) from Arthrobacter crystallopoietes DSM20117 was chosen to prove the enzymatic hydrolysis of this substrate, since previous investigations showed activities of this enzyme toward 6-monosubstituted dihydrouracils. Whole cell biotransformations with recombinant Escherichia coli expressing the hydantoinase showed degradation of pNO2PheDU. Additionally, the corresponding N-carbamoyl-β-amino acid (NCarbpNO2 βPhe) was chemically synthesized, an HPLC-method with chiral stationary phases for detection of this product was established and thus (S)-enantioselectivity toward pNO2PheDU has been shown. Consequently this novel substrate is a potential precursor for the enantiopure β-amino acid para-nitro-β-phenylalanine (pNO2 βPhe). PMID:26705241

  14. Marek's disease virus (MDV) ubiquitin-specific protease (USP) performs critical functions beyond its enzymatic activity during virus replication.

    PubMed

    Veiga, Inês B; Jarosinski, Keith W; Kaufer, Benedikt B; Osterrieder, Nikolaus

    2013-03-15

    Marek's disease virus (MDV) encodes an ubiquitin-specific protease (USP) within its UL36 gene. USP is highly conserved among herpesviruses and was shown to be important for MDV replication and pathogenesis in MDV's natural host, the chicken. To further investigate the role of MDV USP, several recombinant (r) MDVs were generated and their in vitro phenotypes were evaluated using plaque size and growth kinetics assays. We discovered that the N-terminus of pUL36 is essential for MDV replication and could not be complemented by ectopic expression of MDV USP. In addition, we demonstrated that the region located between the conserved glutamine (Q85) and leucine (L106) residues comprising the active site cysteine (C98) is also essential for MDV replication. Based on the analyses of the rMDVs generated here, we concluded that MDV USP likely contributes to the structure and/or stability of pUL36 and affects replication and oncogenesis of MDV beyond its enzymatic activity. PMID:23399034

  15. Study of oxidative, enzymatic mitochondrial respiratory chain function and apoptosis in perinatally HIV-infected pediatric patients.

    PubMed

    Morén, Constanza; Garrabou, Glòria; Noguera-Julian, Antoni; Rovira, Núria; Catalán, Marc; Hernández, Sandra; Tobías, Ester; Cardellach, Francesc; Fortuny, Clàudia; Miró, Òscar

    2013-10-01

    Mitochondrial toxicity in perinatally human immunodeficiency virus (HIV)-infected pediatric patients has been scarcely investigated. Limited data are available about HIV or antiretroviral (ARV)-mediated mitochondrial damage in this population group, specifically, regarding oxygen consumption and apoptosis approach. We aimed to elucidate whether a given mitochondrial DNA depletion is reflected at downstream levels, to gain insight on the pathology of HIV and highly active antiretroviral therapy (HAART) in perinatally HIV-infected pediatric patients. We studied 10 healthy control participants and 20 perinatally HIV-infected pediatric patients (10 under ARV treatment and 10 off treatment). We determined mitochondrial mass, subunits II and IV of complex IV, global and specific mitochondrial enzymatic and oxidative activities, and apoptosis from peripheral blood mononuclear cells. Global oxygen consumption was significantly compromised in HIV-infected untreated patients, compared to the control group (0.76 ± 0.01 versus 1.59 ± 0.15; P = 0.014). Apoptosis showed a trend to increase in untreated patients as well. The overall complex (C) CI-III-IV activity of the mitochondrial respiratory chain (MRC) was significantly decreased in HIV-infected treated patients with respect to the control group (1.52 ± 0.38 versus 6.38 ± 1.53; P = 0.02). No statistically significant differences were found between untreated and HAART-treated patients. These findings suggest the pathogenic role of both HIV and HAART in mitochondrial dysfunction in vertical infection. The abnormalities in mitochondrial genome may be downstream reflected through a global alteration of the MRC. Mitochondrial impairment associated with HIV and HAART was generalized, rather than localized, in this series of perinatally HIV-infected patients. PMID:23534415

  16. Enzymatic Synthesis and Functional Characterization of Bioactive Microcin C-Like Compounds with Altered Peptide Sequence and Length

    PubMed Central

    Bantysh, Olga; Serebryakova, Marina; Zukher, Inna; Kulikovsky, Alexey; Tsibulskaya, Darya; Dubiley, Svetlana

    2015-01-01

    ABSTRACT Escherichia coli microcin C (McC) consists of a ribosomally synthesized heptapeptide attached to a modified adenosine. McC is actively taken up by sensitive Escherichia coli strains through the YejABEF transporter. Inside the cell, McC is processed by aminopeptidases, which release nonhydrolyzable aminoacyl adenylate, an inhibitor of aspartyl-tRNA synthetase. McC is synthesized by the MccB enzyme, which terminally adenylates the MccA heptapeptide precursor MRTGNAN. Earlier, McC analogs with shortened peptide lengths were prepared by total chemical synthesis and were shown to have strongly reduced biological activity due to decreased uptake. Variants with longer peptides were difficult to synthesize, however. Here, we used recombinant MccB to prepare and characterize McC-like molecules with altered peptide moieties, including extended peptide lengths. We find that N-terminal extensions of E. coli MccA heptapeptide do not affect MccB-catalyzed adenylation and that some extended-peptide-length McC analogs show improved biological activity. When the peptide length reaches 20 amino acids, both YejABEF and SbmA can perform facilitated transport of toxic peptide adenylates inside the cell. A C-terminal fusion of the carrier maltose-binding protein (MBP) with the MccA peptide is also recognized by MccB in vivo and in vitro, allowing highly specific adenylation and/or radioactive labeling of cellular proteins. IMPORTANCE Enzymatic adenylation of chemically synthesized peptides allowed us to generate biologically active derivatives of the peptide-nucleotide antibiotic microcin C with improved bioactivity and altered entry routes into target cells, opening the way for development of various McC-based antibacterial compounds not found in nature. PMID:26195597

  17. UDP-GlcNAc2-epimerase regulates cell surface sialylation and ceramide-induced cell death in human malignant lymphoma.

    PubMed

    Suzuki, Osamu; Tasaki, Kazuhiro; Kusakabe, Takashi; Abe, Masafumi

    2008-09-01

    Stress signals induce ceramide (cer) through sphingomyelinase activation, and metabolites of cer such as sphingosine (Sph) and sphingosine-1-phoshate (S-1-P) play a significant role in many biological processes. This study aimed to elucidate the association between the alteration in cell surface sialylation and ceramide-induced cell death in the human Burkitt's lymphoma cell line, HBL-8. The highly sialylated 3G3 clone was less sensitive to C6-ceramide-induced cell death. On the other hand, the hyposialylated 3D2 clone was more sensitive to C6-ceramide-induced cell death. Neuraminidase treatment or knockdown by siRNA of uridine diphosphate-N-acetylglucosamine 2-epimerase (UDP-GlcNAc2-epimerase), which is a key enzyme of sialic acid biosynthesis, enhanced the amount of cell death induced by C6-ceramide in the highly sialylated 3G3 clone. Sialic acid metabolic complementation assays using several precursors of sialic acid showed that cell surface resialylation by N-acetyl-D-mannosamine (ManNAc) inhibited C6-ceramide-induced cell death. The amount of cell death by C6-ceramide was enhanced after pretreatment with phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002 in both clones. In addition, clone 3G3 was less sensitive to Sph than the 3D2 clone. In conclusion, in human malignant lymphoma, ceramide and its metabolite-induced cell death is regulated by the amount of sialic acid on the cell surface which in turn is regulated by mRNA expression of UDP-GlcNAc2-epimerase. PMID:18698493

  18. Vi Antigen Biosynthesis in Salmonella typhi: Characterization of UDP-N-acetylglucosamine C-6 Dehydrogenase (TviB) and UDP-N-acetylglucosaminuronic Acid C-4 Epimerase (TviC)†

    PubMed Central

    Zhang, Hua; Zhou, Ying; Bao, Hongbo; Liu, Hung-wen

    2008-01-01

    Vi antigen, the virulence factor of Salmonella typhi, has been used clinically as a molecular vaccine. TviB and TviC are two enzymes involved in the formation of Vi antigen, a linear polymer consisting of α-1,4-linked N-acetylgalactosaminuronate. Protein sequence analysis suggests that TviB is a dehydrogenase and TviC is an epimerase. Both enzymes are expected to be NAD+ dependent. In order to verify their functions, TviB and TviC were cloned, expressed in Escherichia coli, and characterized. The C-terminal His6-tagged TviB protein, purified from soluble cell fractions in the presence of 10 mM DTT, shows UDP-N-acetylglucosamine 6-dehydrogenase activity, and is capable of catalyzing the conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) to UDP-N-acetylglucosaminuronic acid (UDP-GlcNAcA) with a kcat value of 15.5 ± 1.0 min−1. The Km values of TviB for UDP-GlcNAc and NAD+ are 77 ± 9 μM and 276 ± 52 μM, respectively. TviC, purified as C-terminal hexahistidine-tagged protein, shows UDP-GlcNAcA 4-epimerase and UDP-N-acetylgalactosamine (UDP-GalNAc) 4-epimerase activities. The Km values of TviC for UDP-GlcNAcA and UDP-N-acetylgalactosaminuronic acid (UDP-GalNAcA) are 20 ± 1 μM and 42 ± 2 μM, respectively. The kcat value for the conversion of UDP-GlcNAcA to UDP-GalNAcA is 56.8 ± 0.5 min−1, while that for the reverse reaction is 39.1 ± 0.6 min−1. These results show that the biosynthesis of Vi antigen is initiated by the TviB-catalyzed oxidation of UDP-GlcNAc to UDP-GalNAc, followed by the TviC-catalyzed epimerization at C-4 to form UDP-GalNAcA, which serves as the building block for the formation of Vi polymer. These results set the stage for future in vitro biosynthesis of Vi antigen. These enzymes may also be drug targets to inhibit Vi antigen production. PMID:16800641

  19. Carbon felt-based biocatalytic enzymatic flow-through detectors: chemical modification of tyrosinase onto amino-functionalized carbon felt using various coupling reagents.

    PubMed

    Wang, Yue; Hasebe, Yasushi

    2009-09-15

    Tyrosinase (TYR) was covalently immobilized onto amino-functionalized carbon felt (CF) surface via eight different coupling reagents. Prior to the TYR-immobilization, primary amino group was introduced to the CF surface by the treatment with 3-aminopropyltriethoxysilane (APTES). The APTES modification of the CF surface was confirmed by XPS and SEM measurements. The terminal amino groups on the CF surface were cross-linked with protein lysine group (or cysteine group) using various coupling reagents. The resulting TYR-immobilized CF (TYR-CF) was utilized as a working electrode unit of a biocatalytic enzymatic flow-through detector. Catechol and 4-chlorophenol (4-CP) were used as model analytes for the evaluation of catecholase activity and phenolase activity, respectively, and flow injection peaks based on the electro-reduction of the enzymatically produced o-quinone species were monitored at -0.05 V vs. Ag/AgCl. Among eight coupling reagents, glutaraldehyde (GA) exhibited the best results on the sensitivity, the operational stability and the storage stability. The detection limits of catechol and 4-CP obtained by the GA-coupling method were found to be 6.0 x 10(-9)M and 1.5 x 10(-8)M, respectively with the sample through-put of 36 samples/h. No serious degradation of the peak current was observed over 30 consecutive samples injections on the GA-coupling method, while gradual decrease in the peak currents was observed on other seven coupling reagents. The GA-coupling method showed the best results on the storage stability, and 85% of original activity for catechol oxidation remained after 25 days storage. PMID:19615522

  20. Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-08-22

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  1. Optimization of extraction efficiency by shear emulsifying assisted enzymatic hydrolysis and functional properties of dietary fiber from deoiled cumin (Cuminum cyminum L.).

    PubMed

    Ma, Mengmei; Mu, Taihua; Sun, Hongnan; Zhang, Miao; Chen, Jingwang; Yan, Zhibin

    2015-07-15

    This study evaluated the optimal conditions for extracting dietary fiber (DF) from deoiled cumin by shear emulsifying assisted enzymatic hydrolysis (SEAEH) using the response surface methodology. Fat adsorption capacity (FAC), glucose adsorption capacity (GAC), and bile acid retardation index (BRI) were measured to evaluate the functional properties of the extracted DF. The results revealed that the optimal extraction conditions included an enzyme to substrate ratio of 4.5%, a reaction temperature of 57 °C, a pH value of 7.7, and a reaction time of 155 min. Under these conditions, DF extraction efficiency and total dietary fiber content were 95.12% and 84.18%, respectively. The major components of deoiled cumin DF were hemicellulose (37.25%) and cellulose (33.40%). FAC and GAC increased with decreasing DF particle size (51-100 μm), but decreased with DF particle sizes <26 μm; BRI increased with decreasing DF particle size. The results revealed that SEAEH is an effective method for extracting DF. DF with particle size 26-51 μm had improved functional properties. PMID:25722165

  2. High-level soluble expression of a bacterial N-acyl-d-glucosamine 2-epimerase in recombinant Escherichia coli.

    PubMed

    Klermund, Ludwig; Riederer, Amelie; Groher, Anna; Castiglione, Kathrin

    2015-07-01

    N-Acyl-d-glucosamine 2-epimerase (AGE) is an important enzyme for the biocatalytic synthesis of N-acetylneuraminic acid (Neu5Ac). Due to the wide range of biological applications of Neu5Ac and its derivatives, there has been great interest in its large-scale synthesis. Thus, suitable strategies for achieving high-level production of soluble AGE are needed. Several AGEs from various organisms have been recombinantly expressed in Escherichia coli. However, the soluble expression level was consistently low with an excessive formation of inclusion bodies. In this study, the effects of different solubility-enhancement tags, expression temperatures, chaperones and host strains on the soluble expression of the AGE from the freshwater cyanobacterium Anabaena variabilis ATCC 29413 (AvaAGE) were examined. The optimum combination of tag, expression temperature, co-expression of chaperones and host strain (His6-tag, 37°C, GroEL/GroES, E. coli BL21(DE3)) led to a 264-fold improvement of the volumetric epimerase activity, a measure of the soluble expression, compared to the starting conditions (His6-maltose-binding protein-tag, 20°C, without chaperones, E. coli BL21(DE3)). A maximum yield of 22.5mg isolated AvaAGE per liter shake flask culture was obtained. PMID:25804337

  3. Value Added Processing of Peanut Meal: Enzymatic Hydrolysis to Improve Functional and Nutritional Properties of Water Soluble Extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Value added applications are needed for peanut meal, which is the high protein byproduct of commercial peanut oil production. Peanut meal dispersions were hydrolyzed with alcalase, flavourzyme and pepsin in an effort to improve functional and nutritional properties of the resulting water soluble ex...

  4. Ex vivo Enzymatic Treatment of Aged CD4 T Cells Restores Cognate T-cell Helper Function and Enhances Antibody Production in Mice

    PubMed Central

    Perkey, Eric; Miller, Richard A.; Garcia, Gonzalo G.

    2012-01-01

    Previous in vitro studies have shown that CD4 T cells from old mice have defects in T cell receptor (TCR) signaling, immune synapse formation, activation, and proliferation. We have reported that removing a specific set of surface glycoproteins by ex vivo treatment with O-sialoglycoprotein endopeptidase (OSGE) can reverse many aspects of the age-related decline in CD4 T cell function. However, the specific mechanism by which this process occurs remains unclear, and it is unknown whether this enzymatic treatment can also restore important aspects of adaptive immunity in vivo. By using an in vivo model of the immune response based on adoptive transfer of CD4 T cells from pigeon cytochrome C (PCC)-specific transgenic H-2(k/k) TCR-Vα11Vβ3 CD4+ mice to syngeneic hosts, we now demonstrat that aging diminishes CD28 costimulatory signals in CD4 T cells. These age-associated defects include changes in phosphorylation of AKT and expression of glucose transporter type I, inducible T-cell costimulatory molecule, and CD40 ligand, suggesting that the lack of CD28 costimulation contributes to age-dependent loss of CD4 function. All of these deficits can be reversed by ex vivo OSGE treatment. Blocking B7-CD28 interactions on T cells prevents OSGE-mediated restoration of T cell function, suggesting that changes in surface glycosylation, including CD28, may be responsible for age-related costimulation decline. Finally, we showed that the age-related decline in CD4 cognate helper function for immunoglobin G production and long-term humoral immunity can also be restored by OSGE treatments of CD4 T cells prior to adoptive transfer. PMID:23136198

  5. Use of protein trans-splicing to produce active and segmentally 2H, 15N labeled mannuronan C5-epimerase AlgE4

    PubMed Central

    Buchinger, Edith; Aachmann, Finn L; Aranko, A Sesilja; Valla, Svein; Skjåk-BræK, Gudmund; Iwaï, Hideo; Wimmer, Reinhard

    2010-01-01

    Alginate epimerases are large multidomain proteins capable of epimerising C5 on β-d-mannuronic acid (M) turning it into α-l-guluronic acid (G) in a polymeric alginate. Azotobacter vinelandii secretes a family of seven epimerases, each of which is capable of producing alginates with characteristic G distribution patterns. All seven epimerases consist of two types of modules, denoted A and R, in varying numbers. Attempts to study these enzymes with solution-state NMR are hampered by their size—the smallest epimerase, AlgE4, consisting of one A- and one R-module, is 58 kDa, resulting in heavy signal overlap impairing the interpretation of NMR spectra. Thus we obtained segmentally 2H, 15N labeled AlgE4 isotopomeres (A-[2H, 15N]-R and [2H, 15N]-A-R) by protein trans-splicing using the naturally split intein of Nostoc punctiforme. The NMR spectra of native AlgE4 and the ligated versions coincide well proving the conservation of protein structure. The activity of the ligated AlgE4 was verified by two different enzyme activity assays, demonstrating that ligated AlgE4 displays the same catalytic activity as wild-type AlgE4. PMID:20552686

  6. Microbial conversion of L-arabinose to xylitol by coexpression of L-arabinose isomerase, D-tagatose 3-epimerase, and L-xylulose reductase in Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A microbial strain has been developed that can produce xylitol from L-arabinose at a high yield by transforming Escherichia coli with a new xylitol biosynthetic pathway consisting of L-arabinose isomerase, D-tagatose 3-epimerase, and L-xylulose reductase. An E. coli strain that heterologously expre...

  7. IMPORTANCE OF ENZYMATIC BIOTRANSFORMATION IN IMMUNOTOXICOLOGY

    EPA Science Inventory

    Many immunotoxic compounds, such as benzene and other organic solvents, pesticides, mycotoxins and polycyclic aromatic hydrocarbons, can alter immune function only after undergoing enzyme-mediated reactions within various tissues. In the review that follows, the role of enzymatic...

  8. L-amino acid ligase from Pseudomonas syringae producing tabtoxin can be used for enzymatic synthesis of various functional peptides.

    PubMed

    Arai, Toshinobu; Arimura, Yasuhiro; Ishikura, Shun; Kino, Kuniki

    2013-08-01

    Functional peptides are expected to be beneficial compounds that improve our quality of life. To address the growing need for functional peptides, we have examined peptide synthesis by using microbial enzymes. l-Amino acid ligase (Lal) catalyzes the condensation of unprotected amino acids in an ATP-dependent manner and is applicable to fermentative production. Hence, Lal is a promising enzyme to achieve cost-effective synthesis. To obtain a Lal with novel substrate specificity, we focused on the putative Lal involved in the biosynthesis of the dipeptidic phytotoxin designated tabtoxin. The tabS gene was cloned from Pseudomonas syringae NBRC14081 and overexpressed in Escherichia coli cells. The recombinant TabS protein produced showed the broadest substrate specificity of any known Lal; it detected 136 of 231 combinations of amino acid substrates when dipeptide synthesis was examined. In addition, some new substrate specificities were identified and unusual amino acids, e.g., l-pipecolic acid, hydroxy-l-proline, and β-alanine, were found to be acceptable substrates. Furthermore, kinetic analysis and monitoring of the reactions over a short time revealed that TabS showed distinct substrate selectivity at the N and C termini, which made it possible to specifically synthesize a peptide without by-products such as homopeptides and heteropeptides with the reverse sequence. TabS specifically synthesized the following functional peptides, including their precursors: l-arginyl-l-phenylalanine (antihypertensive effect; yield, 62%), l-leucyl-l-isoleucine (antidepressive effect; yield, 77%), l-glutaminyl-l-tryptophan (precursor of l-glutamyl-l-tryptophan, which has antiangiogenic activity; yield, 54%), l-leucyl-l-serine (enhances saltiness; yield, 83%), and l-glutaminyl-l-threonine (precursor of l-glutamyl-l-threonine, which enhances saltiness; yield, 96%). Furthermore, our results also provide new insights into tabtoxin biosynthesis. PMID:23770908

  9. Two tomato GDP-D-mannose epimerase isoforms involved in ascorbate biosynthesis play specific roles in cell wall biosynthesis and development

    PubMed Central

    Mounet-Gilbert, Louise; Dumont, Marie; Ferrand, Carine; Bournonville, Céline; Monier, Antoine; Jorly, Joana; Lemaire-Chamley, Martine; Mori, Kentaro; Atienza, Isabelle; Hernould, Michel; Stevens, Rebecca; Lehner, Arnaud; Mollet, Jean Claude; Rothan, Christophe; Lerouge, Patrice; Baldet, Pierre

    2016-01-01

    GDP-D-mannose epimerase (GME, EC 5.1.3.18) converts GDP-D-mannose to GDP-L-galactose, and is considered to be a central enzyme connecting the major ascorbate biosynthesis pathway to primary cell wall metabolism in higher plants. Our previous work demonstrated that GME is crucial for both ascorbate and cell wall biosynthesis in tomato. The aim of the present study was to investigate the respective role in ascorbate and cell wall biosynthesis of the two SlGME genes present in tomato by targeting each of them through an RNAi-silencing approach. Taken individually SlGME1 and SlGME2 allowed normal ascorbate accumulation in the leaf and fruits, thus suggesting the same function regarding ascorbate. However, SlGME1 and SlGME2 were shown to play distinct roles in cell wall biosynthesis, depending on the tissue considered. The RNAi-SlGME1 plants harbored small and poorly seeded fruits resulting from alterations of pollen development and of pollination process. In contrast, the RNAi-SlGME2 plants exhibited vegetative growth delay while fruits remained unaffected. Analysis of SlGME1- and SlGME2-silenced seeds and seedlings further showed that the dimerization state of pectin rhamnogalacturonan-II (RG-II) was altered only in the RNAi-SlGME2 lines. Taken together with the preferential expression of each SlGME gene in different tomato tissues, these results suggest sub-functionalization of SlGME1 and SlGME2 and their specialization for cell wall biosynthesis in specific tomato tissues. PMID:27382114

  10. Two tomato GDP-D-mannose epimerase isoforms involved in ascorbate biosynthesis play specific roles in cell wall biosynthesis and development.

    PubMed

    Mounet-Gilbert, Louise; Dumont, Marie; Ferrand, Carine; Bournonville, Céline; Monier, Antoine; Jorly, Joana; Lemaire-Chamley, Martine; Mori, Kentaro; Atienza, Isabelle; Hernould, Michel; Stevens, Rebecca; Lehner, Arnaud; Mollet, Jean Claude; Rothan, Christophe; Lerouge, Patrice; Baldet, Pierre

    2016-08-01

    GDP-D-mannose epimerase (GME, EC 5.1.3.18) converts GDP-D-mannose to GDP-L-galactose, and is considered to be a central enzyme connecting the major ascorbate biosynthesis pathway to primary cell wall metabolism in higher plants. Our previous work demonstrated that GME is crucial for both ascorbate and cell wall biosynthesis in tomato. The aim of the present study was to investigate the respective role in ascorbate and cell wall biosynthesis of the two SlGME genes present in tomato by targeting each of them through an RNAi-silencing approach. Taken individually SlGME1 and SlGME2 allowed normal ascorbate accumulation in the leaf and fruits, thus suggesting the same function regarding ascorbate. However, SlGME1 and SlGME2 were shown to play distinct roles in cell wall biosynthesis, depending on the tissue considered. The RNAi-SlGME1 plants harbored small and poorly seeded fruits resulting from alterations of pollen development and of pollination process. In contrast, the RNAi-SlGME2 plants exhibited vegetative growth delay while fruits remained unaffected. Analysis of SlGME1- and SlGME2-silenced seeds and seedlings further showed that the dimerization state of pectin rhamnogalacturonan-II (RG-II) was altered only in the RNAi-SlGME2 lines. Taken together with the preferential expression of each SlGME gene in different tomato tissues, these results suggest sub-functionalization of SlGME1 and SlGME2 and their specialization for cell wall biosynthesis in specific tomato tissues. PMID:27382114

  11. Preparation of interstitial lung cells by enzymatic digestion of tissue slices: preliminary characterization by morphology and performance in functional assays

    PubMed Central

    Holt, P. G.; Degebrodt, A.; Venaille, T.; O'Leary, C.; Krska, K.; Flexman, J.; Farrell, H.; Shellam, G.; Young, P.; Penhale, J.; Robertson, T.; Papadimitriou, J. M.

    1985-01-01

    A technique is reported here for the quantitative extraction of live cells from the lung interstitium; it involves the incubation of slices of perfused lung in a mixture containing optimal concentrations of collagenase, DNAse, and fetal calf serum, followed by the simultaneous recovery and fractionation of cells released from the tissue matrix on a six-step discontinuous percoll gradient. Yields in the order of 108 viable cells per gram of lung were routinely achieved with tissues from rat, mouse and guinea-pig. Preliminary characterization of these cells has been performed in the rat by histological techniques (Giemsa staining, transmission electron microscopy), cytochemistry (acid phosphatase, esterase, peroxidase), by the capacity to bind monoclonal antibodies directed at lymphocyte surface markers, and by a range of functional tests. The cells comprised, on average, 32% macrophages, 44% lymphocytes (T and B cells and large granular lymphocytes), with small numbers of eosinophils, mast cells and epithelial cells. Transmission electron microscopy revealed minimal ultrastructural damage to extracted cells, with such functions as phagocytosis, FcR activity, mitogen responsiveness, antigen presentation, and NK-cell activity, being readily demonstrable. In addition, these activities segregated into defined areas of the six-step density gradient. PMID:2982730

  12. A non enzymatic glucose biosensor based on an ultrasensitive calix[4]arene functionalized boronic acid gold nanoprobe for sensing in human blood serum.

    PubMed

    Pandya, Alok; Sutariya, Pinkesh G; Menon, Shobhana K

    2013-04-21

    We developed a new, advanced, simple and non enzymatic approach for the colorimetric detection of glucose based on calix[4]arene/phenyl boronic acid (CX-PBA)functionalized gold nanoparticles (AuNPs). This molecular receptor proficiently and selectively recognizes glucose due to its ability to reversibly bind diol-containing compounds. The assembly was characterized by transmission electron micrograph (TEM), dynamic light scattering (DLS), UV-Vis, FT-IR, ESI-MS and (1)H NMR spectrometry, which demonstrates the binding affinity for glucose via a boronic acid-diol interaction. The linear range for glucose was found to be 5-100 nM with phosphate buffer pH 10, with a lower detection limit of 4.3 nM. Interference by other saccharides was negligible. The biosensor has been successfully applied to estimate the glucose in human blood serum samples and the results compared well to an automatic analyzer. With the advantages of high sensitivity, selectivity and low sample volume, this method is potentially suitable for the on-site monitoring of glucose. PMID:23476922

  13. Enzymatically catalytic signal tracing by a glucose oxidase and ferrocene dually functionalized nanoporous gold nanoprobe for ultrasensitive electrochemical measurement of a tumor biomarker.

    PubMed

    Cheng, Hui; Xu, Lingling; Zhang, Haili; Yu, Aimin; Lai, Guosong

    2016-07-21

    A nanoporous gold nanosphere (pAu NS) was synthesized to load high-content glucose oxidase (GOx) and ferrocene (Fc) for the successful preparation of a new gold nanoprobe. After the specific recognition of the tumor biomarker of carcinoembryonic antigen (CEA) at a gold electrode based aptasensor, this GOx and Fc dually functionalized pAu NS nanoprobe was further used for sandwich immunoreaction and signal tracing. Based on the Fc-mediated GOx-catalytic reaction, the gold nanoprobes quantitatively captured onto the electrode surface produced a sensitive electrochemical signal corresponding to the protein recognition events, which led to the development of a new biosensing method for CEA measurement. Both the high loading of GOx and Fc on the pAu NS nanocarrier and the enzymatically catalytic reaction of the nanoprobe greatly amplify the electrochemical signal; meanwhile, the immobilization of the Fc mediator on this enzyme nanoprobe and the highly specific aptamer recognition drastically decrease the background current, resulting in the achievement of ultrahigh sensitivity of the method. Under optimum conditions, this method shows an excellent analytical performance including a wide linear relationship of five-order of magnitude and a low detection limit down to 0.45 pg mL(-1). Thus this pAu NS based gold nanoprobe and the proposed immunoassay method provide great potential for practical applications. PMID:27186605

  14. Functional significance of Asn-linked glycosylation of proteinase 3 for enzymatic activity, processing, targeting, and recognition by anti-neutrophil cytoplasmic antibodies.

    PubMed

    Specks, Ulrich; Fass, David N; Finkielman, Javier D; Hummel, Amber M; Viss, Margaret A; Litwiller, Robert D; McDonald, Cari J

    2007-01-01

    Proteinase 3 (PR3) is a neutral serine protease stored in neutrophil granules. It has substantial sequence homology with elastase, cathepsin G and azurocidin. PR3 is the target antigen for autoantibodies (ANCA) in Wegener's granulomatosis, a necrotizing vasculitis syndrome. ANCA have been implicated in the pathogenesis of this disease. PR3 has two potential Asn-linked glycosylation sites. This study was designed to determine the occupancy of these glycosylation sites, and to evaluate their effect on enzymatic function, intracellular processing, targeting to granules and recognition by ANCA. We found that glycosylation occurs at both sites in native neutrophil PR3 and in wild type recombinant PR3 (rPR3) expressed in HMC-1 cells. Using glycosylation deficient rPR3 mutants we found that glycosylation at Asn-147, but not at Asn-102, is critical for thermal stability, and for optimal hydrolytic activity of PR3. Efficient amino-terminal proteolytic processing of rPR3 is dependent on glycosylation at Asn-102. Targeting to granules is not dependent on glycosylation, but unglycosylated rPR3 gets secreted preferentially into media supernatants. Finally, a capture ELISA for ANCA detection, using rPR3 glycosylation variants as target antigens, reveals that in about 20% of patients, epitope recognition by ANCA is affected by the glycosylation status of PR3. PMID:17158864

  15. Green polymer chemistry VIII: synthesis of halo-ester-functionalized poly(ethylene glycol)s via enzymatic catalysis.

    PubMed

    Castano, Marcela; Seo, Kwang Su; Kim, Eun Hye; Becker, Matthew L; Puskas, Judit E

    2013-09-01

    Halo-ester-functionalized poly(ethylene glycol)s (PEGs) are successfully prepared by the transesterification of alkyl halo-esters with PEGs using Candida antarctica lipase B (CALB) as a biocatalyst under the solventless conditions. Transesterifications of chlorine, bromine, and iodine esters with tetraethylene glycol monobenzyl ether (BzTEG) are quantitative in less than 2.5 h. The transesterification of halo-esters with PEGs are complete in 4 h. (1) H and (13) C NMR spectroscopy with MALDI-ToF and ESI mass spectrometry confirm the structure and purity of the products. This method provides a convenient and "green" process to effectively produce halo-ester PEGs. PMID:23877930

  16. Macrophage migration inhibitory factor (MIF) is rendered enzymatically inactive by myeloperoxidase-derived oxidants but retains its immunomodulatory function.

    PubMed

    Dickerhof, Nina; Schindler, Lisa; Bernhagen, Jürgen; Kettle, Anthony J; Hampton, Mark B

    2015-12-01

    Macrophage migration inhibitory factor (MIF) is an important player in the regulation of the inflammatory response. Elevated plasma MIF is found in sepsis, arthritis, cystic fibrosis and atherosclerosis. Immunomodulatory activities of MIF include the ability to promote survival and recruitment of inflammatory cells and to amplify pro-inflammatory cytokine production. MIF has an unusual nucleophilic N-terminal proline with catalytic tautomerase activity. It remains unclear whether tautomerase activity is required for MIF function, but small molecules that inhibit tautomerase activity also inhibit the pro-inflammatory activities of MIF. A prominent feature of the acute inflammatory response is neutrophil activation and production of reactive oxygen species, including myeloperoxidase (MPO)-derived hypochlorous acid and hypothiocyanous acid. We hypothesized that MPO-derived oxidants would oxidize the N-terminal proline of MIF and alter its biological activity. MIF was exposed to hypochlorous acid and hypothiocyanous acid and the oxidative modifications on MIF were examined by LC-MS/MS. Imine formation and carbamylation was observed on the N-terminal proline in response to MPO-dependent generation of hypochlorous and hypothiocyanous acid, respectively. These modifications led to a complete loss of tautomerase activity. However, modified MIF still increased CXCL-8/IL-8 production by peripheral blood mononuclear cells (PBMCs) and blocked neutrophil apoptosis, indicating that tautomerase activity is not essential for these biological functions. Pre-treatment of MIF with hypochlorous acid protected the protein from covalent modification by the MIF inhibitor 4-iodo-6-phenylpyrimidine (4-IPP). Therefore, oxidant generation at inflammatory sites may protect MIF from inactivation by more disruptive electrophiles, including drugs designed to target the tautomerase activity of MIF. PMID:26453918

  17. Degradation-by-design: Surface modification with functional substrates that enhance the enzymatic degradation of carbon nanotubes.

    PubMed

    Sureshbabu, Adukamparai Rajukrishnan; Kurapati, Rajendra; Russier, Julie; Ménard-Moyon, Cécilia; Bartolini, Isacco; Meneghetti, Moreno; Kostarelos, Kostas; Bianco, Alberto

    2015-12-01

    Biodegradation of carbon-based nanomaterials has been pursued intensively in the last few years, as one of the most crucial issues for the design of safe, clinically relevant conjugates for biomedical applications. In this paper it is demonstrated that specific functional molecules can enhance the catalytic activity of horseradish peroxidase (HRP) and xanthine oxidase (XO) for the degradation of carbon nanotubes. Two different azido coumarins and one cathecol derivative are linked to multi-walled carbon nanotubes (MWCNTs). These molecules are good reducing substrates and strong redox mediators to enhance the catalytic activity of HRP. XO, known to metabolize various molecules mainly in the mammalian liver, including human, was instead used to test the biodegradability of MWCNTs modified with an azido purine. The products of the biodegradation process are characterized by transmission electron microscopy and Raman spectroscopy. The results indicate that coumarin and catechol moieties have enhanced the biodegradation of MWCNTs compared to oxidized nanotubes, likely due to the capacity of these substrates to better interact with and activate HRP. Although azido purine-MWCNTs are degraded less effectively by XO than oxidized nanotubes, the data uncover the importance of XO in the biodegradation of carbon-nanomaterials leading to their better surface engineering for biomedical applications. PMID:26342557

  18. Enzymatically Regulated Peptide Pairing and Catalysis for the Bioanalysis of Extracellular Prometastatic Activities of Functionally Linked Enzymes

    PubMed Central

    Li, Hao; Huang, Yue; Yu, Yue; Li, Tianqi; Li, Genxi; Anzai, Jun-ichi

    2016-01-01

    Diseases such as cancer arise from systematical reconfiguration of interactions of exceedingly large numbers of proteins in cell signaling. The study of such complicated molecular mechanisms requires multiplexed detection of the inter-connected activities of several proteins in a disease-associated context. However, the existing methods are generally not well-equipped for this kind of application. Here a method for analyzing functionally linked protein activities is developed based on enzyme controlled pairing between complementary peptide helix strands, which simultaneously enables elaborate regulation of catalytic activity of the paired peptides. This method has been used to detect three different types of protein modification enzymes that participate in the modification of extracellular matrix and the formation of invasion front in tumour. In detecting breast cancer tissue samples using this method, up-regulated activity can be observed for two of the assessed enzymes, while the third enzyme is found to have a subtle fluctuation of activity. These results may point to the application of this method in evaluating prometastatic activities of proteins in tumour. PMID:27140831

  19. Functional characterization of three Coffea arabica L. monoterpene synthases: insights into the enzymatic machinery of coffee aroma.

    PubMed

    Del Terra, Lorenzo; Lonzarich, Valentina; Asquini, Elisa; Navarini, Luciano; Graziosi, Giorgio; Suggi Liverani, Furio; Pallavicini, Alberto

    2013-05-01

    The chemical composition of the coffee beverage is extremely complex, being made up of hundreds of volatile and non-volatile compounds, many of which are generated in the thermal reactions that occur during the roasting process. However, in the raw coffee bean there are also compounds that survive roasting and are therefore extracted into the beverage. Monoterpenes are an example of this category, as their presence has been reported in the coffee flower, fruit, seed, roasted bean and in the beverage aroma. The present work describes the isolation, heterologous expression and functional characterization of three Coffea arabica cDNAs coding for monoterpene synthases. RNA was purified from C. arabica (cv. Catuai Red) flowers, seeds and fruits at 4 successive ripening stages. Degenerate primers were designed on the most conserved regions of the monoterpene synthase gene family, and then used to isolate monoterpene synthase-like sequences from the cDNA libraries. After 5'- and 3'-RACE, the complete transcripts of 4 putative C. arabica monoterpene synthases (CofarTPS) were obtained. Gene expression in different tissues and developmental stages was analysed. After heterologous expression in Escherichia coli, enzyme activity and substrate specificity were evaluated in vitro by incubation of the recombinant proteins with geranyl pyrophosphate (GPP), geranylgeranyl pyrophosphate (GGPP) and farnesyl pyrophosphate (FPP), precursors respectively of mono-, di- and sesquiterpenes. The reaction products were characterized by HS-SPME GC-MS. CofarTPS1 was classified as a limonene synthase gene, while CofarTPS2 and 3 showed lower activity with the production of linalool and β-myrcene. PMID:23398891

  20. What’s New in Enzymatic Halogenations

    PubMed Central

    Fujimori, Danica Galoniæ; Walsh, Christopher T.

    2007-01-01

    Summary The halogenation of thousands of natural products occurs during biosynthesis and often confers important functional properties. While haloperoxidases had been the default paradigm for enzymatic incorporation of halogens, via X+ equivalents into organic scaffolds, a combination of microbial genome sequencing, enzymatic studies and structural biology have provided deep new insights into enzymatic transfer of halide equivalents in three oxidation states. These are: (1) the halide ions (X−) abundant in nature, (2) halogen atoms (X•), and (3) the X+ equivalents. The mechanism of halogen incorporation is tailored to the electronic demands of specific substrates and involves enzymes with distinct redox coenzyme requirements. PMID:17881282

  1. Modulation of Enzymatic Activity and Biological Function of Listeria monocytogenes Broad-Range Phospholipase C by Amino Acid Substitutions and by Replacement with the Bacillus cereus Ortholog

    PubMed Central

    Zückert, Wolfram R.; Marquis, Hélène; Goldfine, Howard

    1998-01-01

    The secreted broad-range phosphatidylcholine (PC)-preferring phospholipase C (PC-PLC) of Listeria monocytogenes plays a role in the bacterium’s ability to escape from phagosomes and spread from cell to cell. Based on comparisons with two orthologs, Clostridium perfringens α-toxin and Bacillus cereus PLC (PLCBc), we generated PC-PLC mutants with altered enzymatic activities and substrate specificities and analyzed them for biological function in tissue culture and mouse models of infection. Two of the conserved active-site zinc-coordinating histidines were confirmed by single amino acid substitutions H69G and H118G, which resulted in proteins inactive in broth culture and unstable intracellularly. Substitutions D4E and H56Y remodeled the PC-PLC active site to more closely resemble the PLCBc active site, while a gene replacement resulted in L. monocytogenes secreting PLCBc. All of these mutants yielded similar amounts of active enzyme as wild-type PC-PLC both in broth culture and intracellularly. D4E increased activity on and specificity for PC, while H56Y and D4E H56Y showed higher activity on both PC and sphingomyelin, with reduced specificity for PC. As expected, PLCBc expressed by L. monocytogenes was highly specific for PC. During early intracellular growth in human epithelial cells, the D4E mutant and the PLCBc-expressing strain performed significantly better than the wild type, while the H56Y and D4E H56Y mutants showed a significant defect. In assays for cell-to-cell spread, the H56Y and D4E mutants had close to wild-type characteristics, while the spreading efficiency of PLCBc was significantly lower. These studies emphasize the species-specific features of PC-PLC important for growth in mammalian cells. PMID:9746585

  2. Identification and Characterization of Bifunctional Proline Racemase/Hydroxyproline Epimerase from Archaea: Discrimination of Substrates and Molecular Evolution

    PubMed Central

    Watanabe, Seiya; Tanimoto, Yoshiaki; Nishiwaki, Hisashi; Watanabe, Yasuo

    2015-01-01

    Proline racemase (ProR) is a member of the pyridoxal 5’-phosphate-independent racemase family, and is involved in the Stickland reaction (fermentation) in certain clostridia as well as the mechanisms underlying the escape of parasites from host immunity in eukaryotic Trypanosoma. Hydroxyproline epimerase (HypE), which is in the same protein family as ProR, catalyzes the first step of the trans-4-hydroxy-L-proline metabolism of bacteria. Their substrate specificities were previously considered to be very strict, in spite of similarities in their structures and catalytic mechanisms, and no racemase/epimerase from the ProR superfamily has been found in archaea. We here characterized the ProR-like protein (OCC_00372) from the hyperthermophilic archaeon, Thermococcus litoralis (TlProR). This protein could reversibly catalyze not only the racemization of proline, but also the epimerization of 4-hydroxyproline and 3-hydroxyproline with similar kinetic constants. Among the four (putative) ligand binding sites, one amino acid substitution was detected between TlProR (tryptophan at the position of 241) and natural ProR (phenylalanine). The W241F mutant showed a significant preference for proline over hydroxyproline, suggesting that this (hydrophobic and bulky) tryptophan residue played an importance role in the recognition of hydroxyproline (more hydrophilic and bulky than proline), and substrate specificity for hydroxyproline was evolutionarily acquired separately between natural HypE and ProR. A phylogenetic analysis indicated that such unique broad substrate specificity was derived from an ancestral enzyme of this superfamily. PMID:25786142

  3. Chemo-Enzymatic Synthesis of Oligoglycerol Derivatives.

    PubMed

    Singh, Abhishek K; Nguyen, Remi; Galy, Nicolas; Haag, Rainer; Sharma, Sunil K; Len, Christophe

    2016-01-01

    A cleaner and greener method has been developed and used to synthesize 14 different functionalized oligomer derivatives of glycerol in moderate 29%-39% yields over three steps. After successive regioselective enzymatic acylation of the primary hydroxyl groups, etherification or esterification of the secondary hydroxyl groups and chemoselective enzymatic saponification, the target compounds can efficiently be used as versatile building blocks in organic and supramolecular chemistry. PMID:27517886

  4. Enzymatic modification of schizophyllan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An enzymatic method was developed for the progressive modification of the polysaccharide schizophyllan. Fungal strains Hypocrea nigricans NRRL 62555, Penicillium crustosum NRRL 62558, and Penicillium simplicissimum NRRL 62550 were previously identified as novel sources of ß-endoglucanase with specif...

  5. Pretreatment and Enzymatic Hydrolysis

    SciTech Connect

    2006-06-01

    Activities in this project are aimed at overcoming barriers associated with high capital and operating costs and sub-optimal sugar yields resulting from pretreatment and subsequent enzymatic hydrolysis of biomass.

  6. Enzymatic desulfurization of coal

    SciTech Connect

    Marquis, J.K. . School of Medicine); Kitchell, J.P. )

    1988-10-07

    Our current efforts to develop clean coal technology, emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  7. Enzymatic desulfurization of coal

    SciTech Connect

    Marquis, J.K. . School of Medicine); Kitchell, J.P. )

    1988-12-15

    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  8. Enzymatic desulfurization of coal

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V. ); Marquis, J.K. . School of Medicine)

    1989-06-16

    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes as well as commercially available enzymes. Our work is focused on the treatment of model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  9. A Drug Delivery Strategy: Binding Enkephalin to Asialoglycoprotein Receptor by Enzymatic Galactosylation

    PubMed Central

    Christie, Michelle P.; Simerská, Pavla; Jen, Freda E.-C.; Hussein, Waleed M.; Rawi, Mohamad F. M.; Hartley-Tassell, Lauren E.; Day, Christopher J.; Jennings, Michael P.; Toth, Istvan

    2014-01-01

    Glycosylation of biopharmaceuticals can mediate cell specific delivery by targeting carbohydrate receptors. Additionally, glycosylation can improve the physico-chemical (drug-like) properties of peptide based drug candidates. The main purpose of this study was to examine if glycosylation of the peptide enkephalin could facilitate its binding to the carbohydrate receptor, asialoglycoprotein. Firstly, we described the one-pot enzymatic galactosylation of lactose modified enkephalin in the presence of uridine-5′-diphosphogalactose 4-epimerase and lipopolysaccharyl α-1,4-galactosyltransferase. Stability experiments using human plasma and Caco-2 cell homogenates showed that glycosylation considerably improved the stability of enkephalin (at least 60% remained stable after a 2 hr incubation at 37°C). In vitro permeability experiments using Caco-2 cells revealed that the permeability of mono- and trisaccharide conjugated enkephalins was 14 and 28 times higher, respectively, than that of enkephalin alone (Papp 3.1×10−8 cm/s). By the methods of surface plasmon resonance and molecular modeling, we demonstrated that the enzymatic glycosylation of enkephalin enabled binding the asialoglycoprotein receptor. The addition of a trisaccharide moiety to enkephalin improved the binding of enkephalin to the asialoglycoprotein receptor two fold (KD = 91 µM). The docking scores from molecular modeling showed that the binding modes and affinities of the glycosylated enkephalin derivatives to the asialoglycoprotein receptor complemented the results from the surface plasmon resonance experiments. PMID:24736570

  10. Food-Grade Expression of d-Psicose 3-Epimerase with Tandem Repeat Genes in Bacillus subtilis.

    PubMed

    He, Weiwei; Mu, Wanmeng; Jiang, Bo; Yan, Xin; Zhang, Tao

    2016-07-20

    An integrative food-grade expression system with tandem repeat target genes was constructed for the expression of d-psicose 3-epimerase (DPEase; EC 5.1.3.30). The DPEase gene fused with the P43 promoter constituted an independent monomeric expression cassette. Multimers of the expression cassette were constructed in vitro using the isocaudamer strategy. The recombinant integration plasmids pDG-nDPE (n = 1, 2, 3), which contained one, two, or three consecutive P43-DPEase tandem repeats, were integrated into the genome of B. subtilis. Then, the antibiotic resistance gene was deleted by the Cre/lox system, and the food-grade recombinant B. subtilis 1A751-nDPE (n = 1, 2, 3) with integrated tandem repeats of the P43-DPEase expression cassette were generated. The specific activity of the B. subtilis 1A751-3DPE was the highest among the recombinant strains and was ∼2.2-fold that of the 1A751-1DPE strain. Under the optimal conditions, 8 g/L of freeze-dried enzyme powder could convert 20% d-fructose (300 g/L) into d-allulose after 1 h. PMID:27358033

  11. Alteration of cell wall polysaccharides through transgenic expression of UDP-Glc 4-epimerase-encoding genes in potato tubers.

    PubMed

    Huang, Jie-Hong; Kortstee, Anne; Dees, Dianka C T; Trindade, Luisa M; Schols, Henk A; Gruppen, Harry

    2016-08-01

    Uridine diphosphate (UDP)-glucose 4-epimerase (UGE) catalyzes the conversion of UDP-glucose to UDP-galactose. Cell wall materials from the cv. Kardal (wild-type, background) and two UGE transgenic lines (UGE 45-1 and UGE 51-16) were isolated and fractionated. The galactose (Gal) content (mg/100g tuber) from UGE 45-1 transgenic line was 38% higher than that of wild-type, and resulted in longer pectin side chains. The Gal content present in UGE 51-16 was 17% lower than that of wild-type, although most pectin populations maintained the same level of Gal. Both UGE transgenic lines showed unexpectedly a decrease in acetylation and an increase in methyl-esterification of pectin. Both UGE transgenic lines showed similar proportions of homogalacturonan and rhamnogalacturonan I within pectin backbone as the wild-type, except for the calcium-bound pectin fraction exhibiting relatively less rhamnogalacturonan I. Next to pectin modification, xyloglucan populations from both transgenic lines were altered resulting in different XSGG and XXGG proportion in comparison to wild-type. PMID:27112882

  12. Enzymatic DNA molecules

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor); Breaker, Ronald R. (Inventor)

    1998-01-01

    The present invention discloses deoxyribonucleic acid enzymes--catalytic or enzymatic DNA molecules--capable of cleaving nucleic acid sequences or molecules, particularly RNA, in a site-specific manner, as well as compositions including same. Methods of making and using the disclosed enzymes and compositions are also disclosed.

  13. Enzymatic Modifications of Polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polysaccharides are often modified chemically in order to improve its properties or to impart specific characteristics. Indeed quite a few commercial products are based on modified polysaccharides. In this talk, I shall describe a new set of modified polysaccharides based on enzymatic reactions. ...

  14. Comparison of enzymatic and non-enzymatic nitroethane anion formation: thermodynamics and contribution of tunneling.

    PubMed

    Valley, Michael P; Fitzpatrick, Paul F

    2004-05-26

    In the reaction of nitroalkane oxidase (NAO), the oxidation of nitroalkanes to the corresponding aldehydes or ketones is initiated by the deprotonation of the neutral nitroalkane. The energetics of nitroethane ionization for both the enzymatic and non-enzymatic reactions have been determined by measuring rate constants as a function of temperature. At 25 degrees C, the rate constant for the acetate-catalyzed reaction is a billionfold smaller than the kcat/Km value for NAO. This corresponds to a difference of 12.3 kcal/mol in the free energy of activation that is largely due to a difference in the activation enthalpy. Analysis of the temperature dependence of the deuterium kinetic isotope effects on the reactions yields similar DeltaEa and AH/AD values for the acetate, phosphate, and NAO-catalyzed reactions that fall within the semiclassical limits, consistent with similar contributions of tunneling to the enzymatic and non-enzymatic reactions. PMID:15149217

  15. Review: Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-07-16

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  16. Graphene based enzymatic bioelectrodes and biofuel cells

    NASA Astrophysics Data System (ADS)

    Karimi, Anahita; Othman, Ali; Uzunoglu, Aytekin; Stanciu, Lia; Andreescu, Silvana

    2015-04-01

    The excellent electrical conductivity and ease of functionalization make graphene a promising material for use in enzymatic bioelectrodes and biofuel cells. Enzyme based biofuel cells have attracted substantial interest due to their potential to harvest energy from organic materials. This review provides an overview of the functional properties and applications of graphene in the construction of biofuel cells as alternative power sources. The review covers the current state-of-the-art research in graphene based nanomaterials (physicochemical properties and surface functionalities), the role of these parameters in enhancing electron transfer, the stability and activity of immobilized enzymes, and how enhanced power density can be achieved. Specific examples of enzyme immobilization methods, enzyme loading, stability and function on graphene, functionalized graphene and graphene based nanocomposite materials are discussed along with their advantages and limitations. Finally, a critical evaluation of the performance of graphene based enzymatic biofuel cells, the current status, challenges and future research needs are provided.

  17. Enzymatic desulfurization of coal

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  18. Enzymatic production of cyclodextrins.

    PubMed

    Biwer, A; Antranikian, G; Heinzle, E

    2002-09-01

    Cyclodextrins (CD) are enzymatically modified starches with a wide range of applications in food, pharmaceutical and chemical industries, agriculture and environmental engineering. They are produced from starch via enzymatic conversion using cyclodextrin glycosyl transferases (CGTases) and partly alpha-amylases. Due to its low solubility in water, separation and purification of beta-CD is relatively easy compared to alpha- and gamma-CD. In recent years more economic processes for gamma-CD and especially alpha-CD production have been developed using improved CGTases and downstream processing. New purification steps, e.g. affinity adsorption, may reduce the use of complexing agents. The implementation of thermostable CGTases can simplify the production process and increase the selectivity of the reaction. A tabular overview of alpha-CD production processes is presented. PMID:12226716

  19. DOTA-Functionalized Polylysine: A High Number of DOTA Chelates Positively Influences the Biodistribution of Enzymatic Conjugated Anti-Tumor Antibody chCE7agl

    PubMed Central

    Sarko, Dikran; Dennler, Patrick; Zimmermann, Kurt; Mier, Walter; Schibli, Roger

    2013-01-01

    Site-specific enzymatic reactions with microbial transglutaminase (mTGase) lead to a homogenous species of immunoconjugates with a defined ligand/antibody ratio. In the present study, we have investigated the influence of different numbers of 1,4,7,10-tetraazacyclododecane-N-N′-N′′-N′′′-tetraacetic acid (DOTA) chelats coupled to a decalysine backbone on the in vivo behavior of the chimeric monoclonal anti-L1CAM antibody chCE7agl. The enzymatic conjugation of (DOTA)1-decalysine, (DOTA)3-decalysine or (DOTA)5-decalysine to the antibody heavy chain (via Gln295/297) gave rise to immunoconjugates containing two, six or ten DOTA moieties respectively. Radiolabeling of the immunoconjugates with 177Lu yielded specific activities of approximately 70 MBq/mg, 400 MBq/mg and 700 MBq/mg with increasing numbers of DOTA chelates. Biodistribution experiments in SKOV3ip human ovarian cancer cell xenografts demonstrated a high and specific accumulation of radioactivity at the tumor site for all antibody derivatives with a maximal tumor accumulation of 43.6±4.3% ID/g at 24 h for chCE7agl-[(DOTA)-decalysine]2, 30.6±12.0% ID/g at 24 h for chCE7agl-[(DOTA)3-decalysine]2 and 49.9±3.1% ID/g at 48 h for chCE7agl-[(DOTA)5-decalysine)]2. The rapid elimination from the blood of chCE7agl-[(DOTA)-decalysine]2 (1.0±0.1% ID/g at 24 h) is associated with a high liver accumulation (23.2±4.6% ID/g at 24 h). This behavior changed depending on the numbers of DOTA moieties coupled to the decalysine peptide with a slower blood clearance (5.1±1.0 (DOTA)3 versus 11.7±1.4% ID/g (DOTA)5, p<0.005 at 24 h) and lower radioactivity levels in the liver (21.4±3.4 (DOTA)3 versus 5.8±0.7 (DOTA)5, p<0.005 at 24 h). We conclude that the site-specific and stoichiometric uniform conjugation of the highly DOTA-substituted decalysine ((DOTA)5-decalysine) to an anti-tumor antibody leads to the formation of immunoconjugates with high specific activity and excellent in vivo behavior and is a valuable

  20. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of N-acetylmannosamine-6-phosphate 2-epimerase from methicillin-resistant Staphylococcus aureus.

    PubMed

    North, Rachel A; Kessans, Sarah A; Griffin, Michael D W; Watson, Andrew J A; Fairbanks, Antony J; Dobson, Renwick C J

    2014-05-01

    Sialic acids are one of the most important carbohydrate classes in biology. Some bacterial pathogens can scavenge sialic acids from their surrounding environment and degrade them as a source of carbon, nitrogen and energy. This sequestration and subsequent catabolism of sialic acid require a cluster of genes known as the `Nan-Nag' cluster. The enzymes coded by these genes are important for pathogen colonization and persistence. Importantly, the Nan-Nag genes have proven to be essential for Staphylococcus aureus growth on sialic acids, suggesting that the pathway is a viable antibiotic drug target. The enzyme N-acetylmannosamine-6-phosphate 2-epimerase is involved in the catabolism of sialic acid; specifically, the enzyme converts N-acetylmannosamine-6-phosphate into N-acetylglucosamine-6-phosphate. The gene was cloned into an appropriate expression vector, and recombinant protein was expressed in Escherichia coli BL21 (DE3) cells and purified via a three-step procedure. Purified N-acetylmannosamine-6-phosphate 2-epimerase was screened for crystallization. The best crystal diffracted to a resolution of beyond 1.84 Å in space group P21212. Understanding the structural nature of this enzyme from methicillin-resistant S. aureus will provide us with the insights necessary for the development of future antibiotics. PMID:24817730

  1. Sizing up single-molecule enzymatic conformational dynamics.

    PubMed

    Lu, H Peter

    2014-02-21

    Enzymatic reactions and related protein conformational dynamics are complex and inhomogeneous, playing crucial roles in biological functions. The relationship between protein conformational dynamics and enzymatic reactions has been a fundamental focus in modern enzymology. It is extremely difficult to characterize and analyze such complex dynamics in an ensemble-averaged measurement, especially when the enzymes are associated with multiple-step, multiple-conformation complex chemical interactions and transformations. Beyond the conventional ensemble-averaged studies, real-time single-molecule approaches have been demonstrated to be powerful in dissecting the complex enzymatic reaction dynamics and related conformational dynamics. Single-molecule enzymology has come a long way since the early demonstrations of the single-molecule spectroscopy studies of enzymatic dynamics about two decades ago. The rapid development of this fundamental protein dynamics field is hand-in-hand with the new development of single-molecule imaging and spectroscopic technology and methodology, theoretical model analyses, and correlations with biological preparation and characterization of the enzyme protein systems. The complex enzymatic reactions can now be studied one molecule at a time under physiological conditions. Most exciting developments include active manipulation of enzymatic conformational changes and energy landscape to regulate and manipulate the enzymatic reactivity and associated conformational dynamics, and the new advancements have established a new stage for studying complex protein dynamics beyond by simply observing but by actively manipulating and observing the enzymatic dynamics at the single-molecule sensitivity temporally and spatially. PMID:24306450

  2. Enzymatic temperature change indicator

    DOEpatents

    Klibanov, Alexander M.; Dordick, Jonathan S.

    1989-01-21

    A temperature change indicator is described which is composed of an enzyme and a substrate for that enzyme suspended in a solid organic solvent or mixture of solvents as a support medium. The organic solvent or solvents are chosen so as to melt at a specific temperature or in a specific temperature range. When the temperature of the indicator is elevated above the chosen, or critical temperature, the solid organic solvent support will melt, and the enzymatic reaction will occur, producing a visually detectable product which is stable to further temperature variation.

  3. Enzymatic cascade bioreactor

    DOEpatents

    Simmons, Blake A.; Volponi, Joanne V.; Ingersoll, David; Walker, Andrew

    2007-09-04

    Disclosed is an apparatus and method for continuously converting sucrose to .beta.-D-glucose. The method comprises a three stage enzymatic reactor in which an aqueous solution of sucrose is first converted into a solution of fructose and .alpha.-D-glucose by passing it through a porous, packed column containing an inert media on which invertase is immobilized. This solution is then sent through a second packed column containing glucose isomerase and finally a third packed column containing mutarotase. Solution temperature and pH are adjusted to maximize glucose output.

  4. Investigation of enzymatic hydrolysis conditions on the properties of protein hydrolysate from fish muscle (Collichthys niveatus) and evaluation of its functional properties.

    PubMed

    Shen, Qing; Guo, Rui; Dai, Zhiyuan; Zhang, Yanping

    2012-05-23

    This study was carried out to investigate the enzymatic hydrolysis conditions on the properties of protein hydrolysate from fish muscle of the marine fish species Collichthys niveatus. About 160 fish samples were tested, and the analyzed fish species was found to be a lean fish with low fat (1.77 ± 0.01%) and high protein (16.76 ± 1.21%). Fish muscle of C. niveatus was carefully collected and hydrolyzed with four commercial enzymes: Alcalase, Neutrase, Protamex, and Flavourzyme under the conditions recommended by the manufacturers. Among the tested proteases, Neutrase catalyzed the hydrolysis process most effectively since the hydrolysate generated by Neutrase has the highest content of sweet and umami taste amino acids (SUA). The effect of hydrolysis conditions was further optimized using response surface methodology (RSM), and the optimum values for temperature, pH, and enzyme/substrate ratio (E/S ratio) were found to be 40.7 °C, 7.68, and 0.84%, respectively. Finally, the amino acid composition of the hydrolysate was analyzed by AccQ·Tag derivatization and HPLC-PDA determination. Major amino acids of the muscle of C. niveatus were threonine, glutamic acid, phenyalanine, tryptophan, and lysine, accounting for respectively 10.92%, 10.85%, 10.79%, 9.86%, and 9.76% of total amino acid content. The total content of essential amino acids was 970.7 ng·mL(-1), while that of nonessential amino acids was 709.1 ng·mL(-1). The results suggest that the fish muscle and its protein hydrolysate from C. niveatus provide a versatile supply of the benefits and can be incorporated as supplements in health-care foods. PMID:22530872

  5. Influence of Feeding Enzymatically Hydrolyzed Yeast Cell Wall on Growth Performance and Digestive Function of Feedlot Cattle during Periods of Elevated Ambient Temperature

    PubMed Central

    Salinas-Chavira, J.; Arzola, C.; González-Vizcarra, V.; Manríquez-Núñez, O. M.; Montaño-Gómez, M. F.; Navarrete-Reyes, J. D.; Raymundo, C.; Zinn, R. A.

    2015-01-01

    In experiment 1, eighty crossbred steers (239±15 kg) were used in a 229-d experiment to evaluate the effects of increasing levels of enzymatically hydrolyzed yeast (EHY) cell wall in diets on growth performance feedlot cattle during periods of elevated ambient temperature. Treatments consisted of steam-flaked corn-based diets supplemented to provide 0, 1, 2, or 3 g EHY/hd/d. There were no effects on growth performance during the initial 139-d period. However, from d 139 to harvest, when 24-h temperature humidity index averaged 80, EHY increased dry matter intake (DMI) (linear effect, p<0.01) and average daily gain (ADG) (linear effect, p = 0.01). There were no treatment effects (p>0.10) on carcass characteristics. In experiment 2, four Holstein steers (292±5 kg) with cannulas in the rumen and proximal duodenum were used in a 4×4 Latin Square design experiment to evaluate treatments effects on characteristics of ruminal and total tract digestion in steers. There were no treatment effects (p>0.10) on ruminal pH, total volatile fatty acid, molar proportions of acetate, butyrate, or estimated methane production. Supplemental EHY decreased ruminal molar proportion of acetate (p = 0.08), increased molar proportion of propionate (p = 0.09), and decreased acetate:propionate molar ratio (p = 0.07) and estimated ruminal methane production (p = 0.09). It is concluded that supplemental EHY may enhance DMI and ADG of feedlot steers during periods of high ambient temperature. Supplemental EHY may also enhance ruminal fiber digestion and decrease ruminal acetate:propionate molar ratios in feedlot steers fed steam-flaked corn-based finishing diets. PMID:26194225

  6. Glutathione S-transferase can be used as a C-terminal, enzymatically active dimerization module for a recombinant protease inhibitor, and functionally secreted into the periplasm of Escherichia coli.

    PubMed Central

    Tudyka, T.; Skerra, A.

    1997-01-01

    Glutathione S-transferase (GST) from Schistosoma japonicum, which is widely used for the production of fusion proteins in the cytoplasm of Escherichia coli, was employed as a functional fusion module that effects dimer formation of a recombinant protein and confers enzymatic reporter activity at the same time. For this purpose GST was linked via a flexible spacer to the C-terminus of the thiol-protease inhibitor cystatin, whose binding properties for papain were to be studied. The fusion protein was secreted into the bacterial periplasm by means of the OmpA signal peptide to ensure formation of the two disulfide bonds in cystatin. The formation of wrong crosslinks in the oxidizing milieu was prevented by replacing three of the four exposed cysteine residues in GST. Using the tetracycline promoter for tightly controlled gene expression the soluble fusion protein could be isolated from the periplasmic protein fraction. Purification to homogeneity was achieved in one step by means of an affinity column with glutathione agarose. Alternatively, the protein was isolated via streptavidin affinity chromatography after the Strep-tag had been appended to its C terminus. The GST moiety of the fusion protein was enzymatically active and the kinetic parameters were determined using glutathione and 1-chloro-2,4-dinitrobenzene as substrates. Furthermore, strong binding activity for papain was detected in an ELISA. The signal with the cystatin-GST fusion protein was much higher than with cystatin itself, demonstrating an avidity effect due to the dimer formation of GST. The quaternary structure was further confirmed by chemical crosslinking, which resulted in a specific reaction product with twice the molecular size. Thus, engineered GST is suitable as a moderately sized, secretion-competent fusion partner that can confer bivalency to a protein of interest and promote detection of binding interactions even in cases of low affinity. PMID:9336840

  7. Structural Basis for the Aldolase and Epimerase Activities of Staphylococcus aureus Dihydroneopterin Aldolase

    SciTech Connect

    Blaszczyk,J.; Li, Y.; Gan, J.; Yan, H.; Ji, X.

    2007-01-01

    Dihydroneopterin aldolase (DHNA) catalyzes the conversion of 7,8-dihydroneopterin (DHNP) to 6-hydroxymethyl-7,8-dihydropterin (HP) and also the epimerization of DHNP to 7,8-dihydromonopterin (DHMP). Although crystal structures of the enzyme from several microorganisms have been reported, no structural information is available about the critical interactions between DHNA and the trihydroxypropyl moiety of the substrate, which undergoes bond cleavage and formation. Here, we present the structures of Staphylococcus aureus DHNA (SaDHNA) in complex with neopterin (NP, an analog of DHNP) and with monapterin (MP, an analog of DHMP), filling the gap in the structural analysis of the enzyme. In combination with previously reported SaDHNA structures in its ligand-free form (PDB entry 1DHN) and in complex with HP (PDB entry 2DHN), four snapshots for the catalytic center assembly along the reaction pathway can be derived, advancing our knowledge about the molecular mechanism of SaDHNA-catalyzed reactions. An additional step appears to be necessary for the epimerization of DHMP to DHNP. Three active site residues (E22, K100, and Y54) function coordinately during catalysis: together, they organize the catalytic center assembly, and individually, each plays a central role at different stages of the catalytic cycle.

  8. Enzymatic modification of schizophyllan.

    PubMed

    Leathers, Timothy D; Sutivisedsak, Nongnuch; Nunnally, Melinda S; Price, Neil P J; Stanley, April M

    2015-03-01

    An enzymatic method was developed for the progressive modification of the polysaccharide schizophyllan. Fungal strains Hypocrea nigricans NRRL 62555, Penicillium crustosum NRRL 62558, and Penicillium simplicissimum NRRL 62550 were previously identified as novel sources of β-endoglucanase with specificity towards schizophyllan. Concentrated enzyme preparations from these strains showed specific activities of 1.7-4.3 U β-glucanase/mg protein. Using dilutions of these enzymes in time course digestions, schizophyllan was progressively modified to reduced molecular weight species. Glucose and oligosaccharides were found only in the more complete digestions, and thus modified schizophyllan can be produced quantitatively, without loss, to small molecules. Permethylation analysis confirmed that modified schizophyllan retains the fundamental linkage structure of native schizophyllan. Modified schizophyllan species showed progressively reduced viscosity profiles, and all exhibited pseudoplasticity in response to shear thinning. PMID:25335747

  9. Recent insights in enzymatic synthesis of fructooligosaccharides from inulin.

    PubMed

    Singh, Ram Sarup; Singh, Rupinder Pal; Kennedy, John F

    2016-04-01

    In the past few years, people are paying more attention to their dietary habits, and functional foods are playing a key role in maintaining the health of man. Prebiotics are considered as a main component of the functional foods which are usually composed of short chains of carbohydrates. Fructooligosaccharides (FOSs) are considered as one of the main group of prebiotics which have recognisable bifidogenic properties. FOSs are obtained either by extraction from various plant materials or by enzymatic synthesis from different substrates. Enzymatically, these can be obtained either from sucrose using fructosyltransferase or from inulin by endoinulinase. Inulin is a potent substrate for the enzymatic production of FOSs. This review article will provide an overview on the inulin as potent substrate, microbial sources of endoinulinases, enzymatic synthesis of FOSs from inulin, commercial status of FOSs, and their future perspectives. PMID:26791586

  10. Enzymatic Targets in Trypanosoma brucei.

    PubMed

    Scotti, Luciana; Mendonça, Francisco J B; da Silva, Marcelo S; Scotti, Marcus T

    2016-01-01

    One of the most neglected disease is the Sleeping sickness or Human African Trypanosomiasis (HAT), which is mostly restricted to poor regions of Africa. The disease is caused by parasitic infection with Trypanosoma brucei (T. brucei), and is acquired through the bite of the tsetse fly. In the first stage of the disease, the parasite is in the blood, but in stage 2, the infective form reaches the brain, causing great weakness and death. The few existing drugs against this infection, are highly toxic, and can cause the emergence of resistant forms of the parasite. Also, these drugs are not readily available. New drugs are needed. Many researchers are investigating new enzyme targets for the parasite, searching for more efficient and selective inhibitors that are capable to cause the parasite death with less toxicity to the host. Trypanothione reductase, farnesyl diphosphate synthase, 6-phospho-gluconate dehydrogenase, and UDP 4'-galactose epimerase are some of the enzymes involved in the studies reported on this review. In addition, we have applied ligandbased- virtual screening, using Random Forest associated with structure-based-virtual screening (docking), to a small dataset of 225 alkaloids from the Menispermaceae family (in-house data bank). The aim of this study is to select structures with potential inhibitory activity against trypanothione reductase from Trypanosoma brucei. The computer-aided drug design study selected certain alkaloids that might be worth further investigation. PMID:26983886

  11. miRNA-218 contributes to the regulation of D-glucuronyl C5-epimerase expression in normal and tumor breast tissues

    PubMed Central

    Prudnikova, Tatiana Y.; Mostovich, Luydmila A.; Kashuba, Vladimir I.; Ernberg, Ingemar; Zabarovsky, Eugene R.; Grigorieva, Elvira V.

    2012-01-01

    microRNAs (miRNAs) are key posttranscriptional regulators of gene expression. In the present study, regulation of tumor-suppressor gene D-glucuronyl C5-epimerase (GLCE) by miRNA-218 was investigated. Significant downregulation of miRNA-218 expression was shown in primary breast tumors. Exogenous miRNA-218/anti-miRNA-218 did not affect GLCE mRNA but regulated GLCE protein level in MCF7 breast carcinoma cells in vitro. Comparative analysis showed a positive correlation between miRNA-218 and GLCE mRNA, and negative correlation between miRNA-218 and GLCE protein levels in breast tissues and primary tumors in vivo, supporting a direct involvement of miRNA-218 in posttranscriptional regulation of GLCE in human breast tissue. A common scheme for the regulation of GLCE expression in normal and tumor breast tissues is suggested. PMID:22968430

  12. Computer-Aided Identification of Trypanosoma brucei Uridine Diphosphate Galactose 4′-Epimerase Inhibitors: Toward the Development of Novel Therapies for African Sleeping Sickness

    PubMed Central

    2010-01-01

    Trypanosoma brucei, the causative agent of human African trypanosomiasis, affects tens of thousands of sub-Saharan Africans. As current therapeutics are inadequate due to toxic side effects, drug resistance, and limited effectiveness, novel therapies are urgently needed. UDP-galactose 4′-epimerase (TbGalE), an enzyme of the Leloir pathway of galactose metabolism, is one promising T. brucei drug target. We here use the relaxed complex scheme, an advanced computer-docking methodology that accounts for full protein flexibility, to identify inhibitors of TbGalE. An initial hit rate of 62% was obtained at 100 μM, ultimately leading to the identification of 14 low-micromolar inhibitors. Thirteen of these inhibitors belong to a distinct series with a conserved binding motif that may prove useful in future drug design and optimization. PMID:20527952

  13. A D-psicose 3-epimerase with neutral pH optimum from Clostridium bolteae for D-psicose production: cloning, expression, purification, and characterization.

    PubMed

    Jia, Min; Mu, Wanmeng; Chu, Feifei; Zhang, Xiaoming; Jiang, Bo; Zhou, Liuming Leon; Zhang, Tao

    2014-01-01

    D-Tagatose 3-epimerase family enzymes can efficiently catalyze the epimerization of free keto-sugars, which could be used for D-psicose production from D-fructose. In previous studies, all optimum pH values of these enzymes were found to be alkaline. In this study, a D-psicose 3-epimerase (DPEase) with neutral pH optimum from Clostridium bolteae (ATCC BAA-613) was identified and characterized. The gene encoding the recombinant DPEase was cloned and expressed in Escherichia coli. In order to characterize the catalytic properties, the recombinant DPEase was purified to electrophoretic homogeneity using nickel-affinity chromatography. Ethylenediaminetetraacetic acid was shown to inhibit the enzyme activity completely; therefore, the enzyme was identified as a metalloprotein that exhibited the highest activity in the presence of Co²⁺. Although the DPEase demonstrated the most activity at a pH ranging from 6.5 to 7.5, it exhibited optimal activity at pH 7.0. The optimal temperature for the recombinant DPEase was 55 °C, and the half-life was 156 min at 55 °C. Using D-psicose as the substrate, the apparent K(m), k(cat), and catalytic efficiency (k(cat)/K(m)) were 27.4 mM, 49 s⁻¹, and 1.78 s⁻¹ mM⁻¹, respectively. Under the optimal conditions, the equilibrium ratio of D-fructose to D-psicose was 69:31. For high production of D-psicose, 216 g/L D-psicose could be produced with 28.8 % turnover yield at pH 6.5 and 55 °C. The recombinant DPEase exhibited weak-acid stability and thermostability and had a high affinity and turnover for the substrate D-fructose, indicating that the enzyme was a potential D-psicose producer for industrial production. PMID:23644747

  14. Localization of UDP-GlcNAc 2-epimerase/ManAc kinase (GNE) in the Golgi complex and the nucleus of mammalian cells

    SciTech Connect

    Krause, Sabine; Hinderlich, Stephan; Amsili, Shira; Horstkorte, Ruediger; Wiendl, Heinz; Argov, Zohar; Mitrani-Rosenbaum, Stella; Lochmueller, Hanns . E-mail: hanns@lmb.uni-muenchen.de

    2005-04-01

    The bifunctional enzyme UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) is essential for early embryonic development and catalyzes the rate limiting step in sialic acid biosynthesis. Although epimerase and kinase activities have been attributed to GNE, little is known about the regulation, differential expression, and subcellular localization of GNE in vivo. Mutations in GNE cause a rare inherited muscle disorder in humans called hereditary inclusion body myopathy (HIBM). However, the role of GNE in HIBM pathogenesis has not been defined yet. Here, we show that the GNE protein is expressed in various mammalian cells and tissues with highest levels found in cancer cells and liver. In human skeletal muscle, GNE protein is developmentally regulated: high levels are found in immature myoblasts but low levels in mature skeletal muscle. The GNE protein colocalizes with resident proteins of the Golgi compartment in a variety of human cells including muscle. Drug-induced disruption of the Golgi and subsequent recovery reveals co-distribution of GNE along with Golgi-targeted proteins. This subcellular localization of GNE is in good agreement with its established role as the key enzyme of sialic acid biosynthesis, since the sialylation of glycoconjugates takes place in the Golgi complex. Surprisingly, GNE is also detected in the nucleus. Upon nocodazole treatment, GNE redistributes to the cytoplasm suggesting that GNE may act as a nucleocytoplasmic shuttling protein. A regulatory role for GNE shifting between the nuclear and the Golgi compartment is proposed. Further insight into GNE regulation may promote the understanding of HIBM pathogenesis.

  15. Enzymatically active ultrathin pepsin membranes.

    PubMed

    Raaijmakers, Michiel J T; Schmidt, Thomas; Barth, Monika; Tutus, Murat; Benes, Nieck E; Wessling, Matthias

    2015-05-11

    Enzymatically active proteins enable efficient and specific cleavage reactions of peptide bonds. Covalent coupling of the enzymes permits immobilization, which in turn reduces autolysis-induced deactivation. Ultrathin pepsin membranes were prepared by facile interfacial polycondensation of pepsin and trimesoyl chloride. The pepsin membrane allows for simultaneous enzymatic conversion and selective removal of digestion products. The large water fluxes through the membrane expedite the transport of large molecules through the pepsin layers. The presented method enables the large-scale production of ultrathin, cross-linked, enzymatically active membranes. PMID:25779668

  16. Enzymatic intracrine regulation of white adipose tissue.

    PubMed

    DiSilvestro, David; Petrosino, Jennifer; Aldoori, Ayat; Melgar-Bermudez, Emiliano; Wells, Alexandra; Ziouzenkova, Ouliana

    2014-07-01

    Abdominal fat formation has become a permanent risk factor for metabolic syndrome and various cancers in one-third of the world's population of obese and even lean patients. Formation of abdominal fat involves additional mechanisms beyond an imbalance in energy intake and expenditure, which explains systemic obesity. In this review, we briefly summarized autonomous regulatory circuits that locally produce hormones from inactive precursors or nutrients for intra-/auto-/paracrine signaling in white adipose depots. Enzymatic pathways activating steroid and thyroid hormones in adipose depots were compared with enzymatic production of retinoic acid from vitamin A. We discussed the role of intracrine circuits in fat-depot functions and strategies to reduce abdominal adiposity through thermogenic adipocytes with interrupted generation of retinoic acid. PMID:25390015

  17. Enzymatic intracrine regulation of white adipose tissue

    PubMed Central

    DiSilvestro, David; Petrosino, Jennifer; Aldoori, Ayat; Melgar-Bermudez, Emiliano; Wells, Alexandra; Ziouzenkova, Ouliana

    2015-01-01

    Abdominal fat formation has become a permanent risk factor for metabolic syndrome and various cancers in one-third of the world's population of obese and even lean patients. Formation of abdominal fat involves additional mechanisms beyond an imbalance in energy intake and expenditure, which explains systemic obesity. In this review, we briefly summarized autonomous regulatory circuits that locally produce hormones from inactive precursors or nutrients for intra-/auto-/paracrine signaling in white adipose depots. Enzymatic pathways activating steroid and thyroid hormones in adipose depots were compared with enzymatic production of retinoic acid from vitamin A. We discussed the role of intracrine circuits in fat-depot functions and strategies to reduce abdominal adiposity through thermogenic adipocytes with interrupted generation of retinoic acid. PMID:25390015

  18. Enzymatic conjugation of a bioactive peptide into an injectable hyaluronic acid-tyramine hydrogel system to promote the formation of functional vasculature.

    PubMed

    Wang, Li-Shan; Lee, Fan; Lim, Jaehong; Du, Chan; Wan, Andrew C A; Lee, Su Seong; Kurisawa, Motoichi

    2014-06-01

    In this study, one-step enzyme-mediated preparation of a multi-functional injectable hyaluronic-acid-based hydrogel system is reported. Hydrogel was formed through the in situ coupling of phenol moieties by horseradish peroxidase (HRP) and hydrogen peroxide (H2O2), and bioactive peptides were simultaneously conjugated into the hydrogel during the gel formation process. The preparation of this multi-functional hydrogel was made possible by synthesizing peptides containing phenols which could couple with the phenol moieties of hyaluronic-acid-tyramine (HA-Tyr) during the HRP-mediated crosslinking reaction. Preliminary studies demonstrated that two phenol moieties per molecule resulted in a consistently high degree of conjugation into the HA-Tyr hydrogel network, unlike the one modified with one phenol moiety per molecule. Therefore, an Arg-Gly-Asp (RGD) peptide bearing two phenol moieties (phenol2-poly(ethylene glycol)-RGD) was designed for conjugation to endow the HA-Tyr hydrogel with adhesion signals and enhance its bioactivities. Human umbilical vein endothelial cells (HUVECs) cultured on or within the RGD-modified hydrogels showed significantly different adhesion behavior, from non-adherence on the HA-Tyr hydrogel to strong adhesion on hydrogels modified with phenol2-poly(ethylene glycol)-RGD. This altered cell adhesion behavior led to improved cell proliferation, migration and formation of capillary-like network in the hydrogel in vitro. More importantly, when HUVECs and human fibroblasts (HFF1) were encapsulated together in the RGD-modified HA-Tyr hydrogel, functional vasculature was observed inside the cell-laden gel after 2weeks in the subcutaneous tissue. Taken together, the in situ conjugation of phenol2-poly(ethylene glycol)-RGD into HA-Tyr hydrogel system, coupled with the ease of incorporating cells, offers a simple and effective means to introduce biological signals for preparation of multi-functional injectable hydrogels for tissue engineering

  19. Enzymatic reactions in confined environments

    NASA Astrophysics Data System (ADS)

    Küchler, Andreas; Yoshimoto, Makoto; Luginbühl, Sandra; Mavelli, Fabio; Walde, Peter

    2016-05-01

    Within each biological cell, surface- and volume-confined enzymes control a highly complex network of chemical reactions. These reactions are efficient, timely, and spatially defined. Efforts to transfer such appealing features to in vitro systems have led to several successful examples of chemical reactions catalysed by isolated and immobilized enzymes. In most cases, these enzymes are either bound or adsorbed to an insoluble support, physically trapped in a macromolecular network, or encapsulated within compartments. Advanced applications of enzymatic cascade reactions with immobilized enzymes include enzymatic fuel cells and enzymatic nanoreactors, both for in vitro and possible in vivo applications. In this Review, we discuss some of the general principles of enzymatic reactions confined on surfaces, at interfaces, and inside small volumes. We also highlight the similarities and differences between the in vivo and in vitro cases and attempt to critically evaluate some of the necessary future steps to improve our fundamental understanding of these systems.

  20. Homogeneous, Heterogeneous, and Enzymatic Catalysis.

    ERIC Educational Resources Information Center

    Oyama, S. Ted; Somorjai, Gabor A.

    1988-01-01

    Discusses three areas of catalysis: homegeneous, heterogeneous, and enzymatic. Explains fundamentals and economic impact of catalysis. Lists and discusses common industrial catalysts. Provides a list of 107 references. (MVL)

  1. Fluorous enzymatic synthesis of phosphatidylinositides.

    PubMed

    Huang, Weigang; Proctor, Angela; Sims, Christopher E; Allbritton, Nancy L; Zhang, Qisheng

    2014-03-18

    A fluorous tagging strategy coupled with enzymatic synthesis is introduced to efficiently synthesize multiple phosphatidylinositides, which are then directly immobilized on a fluorous polytetrafluoroethylene (PTFE) membrane to probe protein-lipid interactions. PMID:24496473

  2. Enzymatic reactions in confined environments.

    PubMed

    Küchler, Andreas; Yoshimoto, Makoto; Luginbühl, Sandra; Mavelli, Fabio; Walde, Peter

    2016-05-01

    Within each biological cell, surface- and volume-confined enzymes control a highly complex network of chemical reactions. These reactions are efficient, timely, and spatially defined. Efforts to transfer such appealing features to in vitro systems have led to several successful examples of chemical reactions catalysed by isolated and immobilized enzymes. In most cases, these enzymes are either bound or adsorbed to an insoluble support, physically trapped in a macromolecular network, or encapsulated within compartments. Advanced applications of enzymatic cascade reactions with immobilized enzymes include enzymatic fuel cells and enzymatic nanoreactors, both for in vitro and possible in vivo applications. In this Review, we discuss some of the general principles of enzymatic reactions confined on surfaces, at interfaces, and inside small volumes. We also highlight the similarities and differences between the in vivo and in vitro cases and attempt to critically evaluate some of the necessary future steps to improve our fundamental understanding of these systems. PMID:27146955

  3. Molecular crowding and protein enzymatic dynamics.

    PubMed

    Echeverria, Carlos; Kapral, Raymond

    2012-05-21

    The effects of molecular crowding on the enzymatic conformational dynamics and transport properties of adenylate kinase are investigated. This tridomain protein undergoes large scale hinge motions in the course of its enzymatic cycle and serves as prototype for the study of crowding effects on the cyclic conformational dynamics of proteins. The study is carried out at a mesoscopic level where both the protein and the solvent in which it is dissolved are treated in a coarse grained fashion. The amino acid residues in the protein are represented by a network of beads and the solvent dynamics is described by multiparticle collision dynamics that includes effects due to hydrodynamic interactions. The system is crowded by a stationary random array of hard spherical objects. Protein enzymatic dynamics is investigated as a function of the obstacle volume fraction and size. In addition, for comparison, results are presented for a modification of the dynamics that suppresses hydrodynamic interactions. Consistent with expectations, simulations of the dynamics show that the protein prefers a closed conformation for high volume fractions. This effect becomes more pronounced as the obstacle radius decreases for a given volume fraction since the average void size in the obstacle array is smaller for smaller radii. At high volume fractions for small obstacle radii, the average enzymatic cycle time and characteristic times of internal conformational motions of the protein deviate substantially from their values in solution or in systems with small density of obstacles. The transport properties of the protein are strongly affected by molecular crowding. Diffusive motion adopts a subdiffusive character and the effective diffusion coefficients can change by more than an order of magnitude. The orientational relaxation time of the protein is also significantly altered by crowding. PMID:22476233

  4. The high-resolution crystal structure of periplasmic Haemophilus influenzae NAD nucleotidase reveals a novel enzymatic function of human CD73 related to NAD metabolism.

    PubMed

    Garavaglia, Silvia; Bruzzone, Santina; Cassani, Camilla; Canella, Laura; Allegrone, Gianna; Sturla, Laura; Mannino, Elena; Millo, Enrico; De Flora, Antonio; Rizzi, Menico

    2012-01-01

    Haemophilus influenzae is a major pathogen of the respiratory tract in humans that has developed the capability to exploit host NAD(P) for its nicotinamide dinucleotide requirement. This strategy is organized around a periplasmic enzyme termed NadN (NAD nucleotidase), which plays a central role by degrading NAD into adenosine and NR (nicotinamide riboside), the latter being subsequently internalized by a specific permease. We performed a biochemical and structural investigation on H. influenzae NadN which determined that the enzyme is a Zn2+-dependent 5'-nucleotidase also endowed with NAD(P) pyrophosphatase activity. A 1.3 Å resolution structural analysis revealed a remarkable conformational change that occurs during catalysis between the open and closed forms of the enzyme. NadN showed a broad substrate specificity, recognizing either mono- or di-nucleotide nicotinamides and different adenosine phosphates with a maximal activity on 5'-adenosine monophosphate. Sequence and structural analysis of H. influenzae NadN led us to discover that human CD73 is capable of processing both NAD and NMN, therefore disclosing a possible novel function of human CD73 in systemic NAD metabolism. Our data may prove to be useful for inhibitor design and disclosed unanticipated fascinating evolutionary relationships. PMID:21933152

  5. Structure of L-Xylulose-5-Phosphate 3-Epimerase (UlaE) from the Anaerobic L-Ascorbate Utilization Pathway of Escherichia coli: Identification of a Novel Phosphate Binding Motif within a TIM Barrel Fold

    SciTech Connect

    Shi, Rong; Pineda, Marco; Ajamian, Eunice; Cui, Qizhi; Matte, Allan; Cygler, Miroslaw

    2009-01-15

    Three catabolic enzymes, UlaD, UlaE, and UlaF, are involved in a pathway leading to fermentation of L-ascorbate under anaerobic conditions. UlaD catalyzes a {beta}-keto acid decarboxylation reaction to produce L-xylulose-5-phosphate, which undergoes successive epimerization reactions with UlaE (L-xylulose-5-phosphate 3-epimerase) and UlaF (L-ribulose-5-phosphate 4-epimerase), yielding D-xylulose-5-phosphate, an intermediate in the pentose phosphate pathway. We describe here crystallographic studies of UlaE from Escherichia coli O157:H7 that complete the structural characterization of this pathway. UlaE has a triosephosphate isomerase (TIM) barrel fold and forms dimers. The active site is located at the C-terminal ends of the parallel {beta}-strands. The enzyme binds Zn{sup 2+}, which is coordinated by Glu155, Asp185, His211, and Glu251. We identified a phosphate-binding site formed by residues from the {beta}1/{alpha}1 loop and {alpha}3' helix in the N-terminal region. This site differs from the well-characterized phosphate-binding motif found in several TIM barrel superfamilies that is located at strands {beta}7 and {beta}8. The intrinsic flexibility of the active site region is reflected by two different conformations of loops forming part of the substrate-binding site. Based on computational docking of the L-xylulose 5-phosphate substrate to UlaE and structural similarities of the active site of this enzyme to the active sites of other epimerases, a metal-dependent epimerization mechanism for UlaE is proposed, and Glu155 and Glu251 are implicated as catalytic residues. Mutation and activity measurements for structurally equivalent residues in related epimerases supported this mechanistic proposal.

  6. Structure of l-Xylulose-5-Phosphate 3-Epimerase (UlaE) from the Anaerobic l-Ascorbate Utilization Pathway of Escherichia coli: Identification of a Novel Phosphate Binding Motif within a TIM Barrel Fold▿

    PubMed Central

    Shi, Rong; Pineda, Marco; Ajamian, Eunice; Cui, Qizhi; Matte, Allan; Cygler, Miroslaw

    2008-01-01

    Three catabolic enzymes, UlaD, UlaE, and UlaF, are involved in a pathway leading to fermentation of l-ascorbate under anaerobic conditions. UlaD catalyzes a β-keto acid decarboxylation reaction to produce l-xylulose-5-phosphate, which undergoes successive epimerization reactions with UlaE (l-xylulose-5-phosphate 3-epimerase) and UlaF (l-ribulose-5-phosphate 4-epimerase), yielding d-xylulose-5-phosphate, an intermediate in the pentose phosphate pathway. We describe here crystallographic studies of UlaE from Escherichia coli O157:H7 that complete the structural characterization of this pathway. UlaE has a triosephosphate isomerase (TIM) barrel fold and forms dimers. The active site is located at the C-terminal ends of the parallel β-strands. The enzyme binds Zn2+, which is coordinated by Glu155, Asp185, His211, and Glu251. We identified a phosphate-binding site formed by residues from the β1/α1 loop and α3′ helix in the N-terminal region. This site differs from the well-characterized phosphate-binding motif found in several TIM barrel superfamilies that is located at strands β7 and β8. The intrinsic flexibility of the active site region is reflected by two different conformations of loops forming part of the substrate-binding site. Based on computational docking of the l-xylulose 5-phosphate substrate to UlaE and structural similarities of the active site of this enzyme to the active sites of other epimerases, a metal-dependent epimerization mechanism for UlaE is proposed, and Glu155 and Glu251 are implicated as catalytic residues. Mutation and activity measurements for structurally equivalent residues in related epimerases supported this mechanistic proposal. PMID:18849419

  7. A rare variant in human fibroblast activation protein associated with ER stress, loss of enzymatic function and loss of cell surface localisation.

    PubMed

    Osborne, Brenna; Yao, Tsun-Wen; Wang, Xin Maggie; Chen, Yiqian; Kotan, L Damla; Nadvi, Naveed A; Herdem, Mustafa; McCaughan, Geoffrey W; Allen, John D; Yu, Denise M T; Topaloglu, A Kemal; Gorrell, Mark D

    2014-07-01

    Fibroblast activation protein (FAP) is a focus of interest as a potential cancer therapy target. This membrane bound protease possesses the unique catalytic activity of hydrolysis of the post-proline bond two or more residues from the N-terminus of substrates. FAP is highly expressed in activated fibroblastic cells in tumours, arthritis and fibrosis. A rare, novel, human polymorphism, C1088T, encoding Ser363 to Leu, occurring in the sixth blade of the β propeller domain, was identified in a family. Both in primary human fibroblasts and in Ser363LeuFAP transfected cells, we showed that this single substitution ablates FAP dimerisation and causes loss of enzyme activity. Ser363LeuFAP was detectable only in endoplasmic reticulum (ER), in contrast to the distribution of wild-type FAP on the cell surface. The variant FAP showed decreased conformational antibody binding, consistent with an altered tertiary structure. Ser363LeuFAP expression was associated with upregulation of the ER chaperone BiP/GRP78, ER stress sensor ATF6, and the ER stress response target phospho-eIF2α, all indicators of ER stress. Proteasomal inhibition resulted in accumulation of Ser363LeuFAP, indicating the involvement of ER associated degradation (ERAD). Neither CHOP expression nor apoptosis was elevated, so ERAD is probably important for protecting Ser363LeuFAP expressing cells. These data on the first loss of function human FAP gene variant indicates that although the protein is vulnerable to an amino acid substitution in the β-propeller domain, inactive, unfolded FAP can be tolerated by cells. PMID:24717288

  8. Using Non-Enzymatic Chemistry to Influence Microbial Metabolism

    PubMed Central

    Wallace, Stephen; Schultz, Erica E.; Balskus, Emily P.

    2015-01-01

    The structural manipulation of small molecule metabolites occurs in all organisms and plays a fundamental role in essentially all biological processes. Despite an increasing interest in developing new, non-enzymatic chemical reactions capable of functioning in the presence of living organisms, the ability of such transformations to interface with cellular metabolism and influence biological function is a comparatively underexplored area of research. This review will discuss efforts to combine non-enzymatic chemistry with microbial metabolism. We will highlight recent and historical uses of non-biological reactions to study microbial growth and function, the use of non-enzymatic transformations to rescue auxotrophic microorganisms, and the combination of engineered microbial metabolism and biocompatible chemical reactions for organic synthesis. PMID:25579453

  9. Enzymatic processing of protein-based fibers.

    PubMed

    Fu, Jiajia; Su, Jing; Wang, Ping; Yu, Yuanyuan; Wang, Qiang; Cavaco-Paulo, Artur

    2015-12-01

    Wool and silk are major protein fiber materials used by the textile industry. Fiber protein structure-function relationships are briefly described here, and the major enzymatic processing routes for textiles and other novel applications are deeply reviewed. Fiber biomodification is described here with various classes of enzymes such as protease, transglutaminase, tyrosinase, and laccase. It is expected that the reader will get a perspective on the research done as a basis for new applications in other areas such as cosmetics and pharma. PMID:26428240

  10. Engineering aspects of enzymatic signal transduction: photoreceptors in the retina.

    PubMed Central

    Detwiler, P B; Ramanathan, S; Sengupta, A; Shraiman, B I

    2000-01-01

    Identifying the basic module of enzymatic amplification as an irreversible cycle of messenger activation/deactivation by a "push-pull" pair of opposing enzymes, we analyze it in terms of gain, bandwidth, noise, and power consumption. The enzymatic signal transduction cascade is viewed as an information channel, the design of which is governed by the statistical properties of the input and the noise and dynamic range constraints of the output. With the example of vertebrate phototransduction cascade we demonstrate that all of the relevant engineering parameters are controlled by enzyme concentrations and, from functional considerations, derive bounds on the required protein numbers. Conversely, the ability of enzymatic networks to change their response characteristics by varying only the abundance of different enzymes illustrates how functional diversity may be built from nearly conserved molecular components. PMID:11106590

  11. Enzymatic hydrolysis of organic phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Orthophosphate-releasing enzymatic hydrolysis is an alternative means for characterizing organic phosphorus (Po) in animal manure. The approach is not only simple and fast, but can also provide information difficult to obtain by other methods. Currently, commercially available phosphatases are mainl...

  12. Bioluminescence methods for enzymatic determinations

    SciTech Connect

    Bostick, W.D.; Denton, M.S.; Dinsmore, S.R.

    1982-11-02

    An enzymatic method for continuous, on-line and rapid detection of diagnostically useful biomarkers, which are symptomatic of disease or trauma-related tissue damage, is disclosed. The method is characterized by operability on authentic samples of complex biological fluids which contain the biomarkers.

  13. Bioluminescence methods for enzymatic determinations

    SciTech Connect

    Bostick, William D.; Denton, Mark S.; Dinsmore, Stanley R.

    1982-01-01

    An enzymatic method for continuous, on-line and rapid detection of diagnostically useful biomarkers, which are symptomatic of disease or trauma-related tissue damage, is disclosed. The method is characterized by operability on authentic samples of complex biological fluids which contain the biomarkers.

  14. D-Allulose Production from D-Fructose by Permeabilized Recombinant Cells of Corynebacterium glutamicum Cells Expressing D-Allulose 3-Epimerase Flavonifractor plautii

    PubMed Central

    Park, Chul-Soon; Kim, Taeyong; Hong, Seung-Hye; Shin, Kyung-Chul; Kim, Kyoung-Rok; Oh, Deok-Kun

    2016-01-01

    A d-allulose 3-epimerase from Flavonifractor plautii was cloned and expressed in Escherichia coli and Corynebacterium glutamicum. The maximum activity of the enzyme purified from recombinant E. coli cells was observed at pH 7.0, 65°C, and 1 mM Co2+ with a half-life of 40 min at 65°C, Km of 162 mM, and kcat of 25280 1/s. For increased d-allulose production, recombinant C. glutamicum cells were permeabilized via combined treatments with 20 mg/L penicillin and 10% (v/v) toluene. Under optimized conditions, 10 g/L permeabilized cells produced 235 g/L d-allulose from 750 g/L d-fructose after 40 min, with a conversion rate of 31% (w/w) and volumetric productivity of 353 g/L/h, which were 1.4- and 2.1-fold higher than those obtained for nonpermeabilized cells, respectively. PMID:27467527

  15. Correlation of Activities of the Enzymes α-Phosphoglucomutase, UDP-Galactose 4-Epimerase, and UDP-Glucose Pyrophosphorylase with Exopolysaccharide Biosynthesis by Streptococcus thermophilus LY03

    PubMed Central

    Degeest, Bart; De Vuyst, Luc

    2000-01-01

    The effects of different carbohydrates or mixtures of carbohydrates as substrates on bacterial growth and exopolysaccharide (EPS) production were studied for the yoghurt starter culture Streptococcus thermophilus LY03. This strain produces two heteropolysaccharides with the same monomeric composition (galactose and glucose in the ratio 4:1) but with different molecular masses. Lactose and glucose were fermented by S. thermophilus LY03 only when they were used as sole energy and carbohydrate sources. Fructose was also fermented when it was applied in combination with lactose or glucose. Both the amount of EPS produced and the carbohydrate source consumption rates were clearly influenced by the type of energy and carbohydrate source used, while the EPS monomeric composition remained constant (galactose-glucose, 4:1) under all circumstances. A combination of lactose and glucose resulted in the largest amounts of EPS. Measurements of the activities of enzymes involved in EPS biosynthesis, and of those involved in sugar nucleotide biosynthesis and the Embden-Meyerhof-Parnas pathway, demonstrated that the levels of activity of α-phosphoglucomutase, UDP-galactose 4-epimerase, and UDP-glucose pyrophosphorylase are highly correlated with the amount of EPS produced. Furthermore, a weaker relationship or no relationship between the amounts of EPS and the enzymes involved in either the rhamnose nucleotide synthetic branch of the EPS biosynthesis or the pathway leading to glycolysis was observed for S. thermophilus LY03. PMID:10919816

  16. Characterization of a radical S-adenosyl-L-methionine epimerase, NeoN, in the last step of neomycin B biosynthesis.

    PubMed

    Kudo, Fumitaka; Hoshi, Shota; Kawashima, Taiki; Kamachi, Toshiaki; Eguchi, Tadashi

    2014-10-01

    The last step of neomycin biosynthesis is the epimerization at C-5‴ of neomycin C to give neomycin B. A candidate enzyme responsible for the epimerization was a putative radical S-adenosyl-L-methionine (SAM) enzyme, NeoN, which is uniquely encoded in the neomycin biosynthetic gene cluster and remained an unassigned protein in the neomycin biosynthesis. The reconstituted and reduced NeoN showed the expected epimerization activity in the presence of SAM. In the epimerization, 1 equiv of SAM was consumed to convert neomycin C into neomycin B. The site of neomycin C reactive toward epimerization was clearly confirmed to be C-5‴ by detecting the incorporation of a deuterium atom from the deuterium oxide-based buffer solution. Further, alanine scanning of the NeoN cysteine residues revealed that C249 is a critical amino acid residue that provides a hydrogen atom to complete the epimerization. Furthermore, electron paramagnetic resonance analysis of the C249A variant in the presence of SAM and neomycin C revealed that a radical intermediate is generated at the C-5‴ of neomycin C. Therefore, the present study clearly illustrates that the epimerization of neomycin C to neomycin B is catalyzed by a unique radical SAM epimerase NeoN with a radical reaction mechanism. PMID:25230155

  17. High cell density cultivation of recombinant Escherichia coli strains expressing 2-O-sulfotransferase and C5-epimerase for the production of bioengineered heparin.

    PubMed

    Zhang, Jianhua; Suflita, Matt; Li, Guoyun; Zhong, Weihong; Li, Lingyun; Dordick, Jonathan S; Linhardt, Robert J; Zhang, Fuming

    2015-03-01

    Bioengineered heparin is being investigated as a potential substitute for the animal-sourced anticoagulant drug. One step in the current process to prepare bioengineered heparin involves the conversion of N-sulfo heparosan, rich in → 4)GlcNS(1 → 4) GlcA(1 → sequences (where S is sulfo, GlcN is α-D-glucosamine, and GlcA is β-D-glucuronic acid), to a critical intermediate, rich in → 4)GlcNS(1 → 4) IdoA2S(1 → sequences (where S is sulfo and IdoA is α-L-iduronic acid), using 2-O-sulfotransferase (2-OST) and C5 epimerase (C5-epi). Until now, these heparan sulfate biosynthetic enzymes have been expressed in Escherichia coli grown in shake flask culture as fusion proteins. The current study is focused on the high cell density fed-batch cultivation of recombinant E. coli strains expressing both enzymes. We report the high productivity expression of active 2-OST and C5-epi enzymes of 6.0 and 2.2 mg/g dry cell weight, respectively. PMID:25586487

  18. The metastability of human UDP-galactose 4'-epimerase (GALE) is increased by variants associated with type III galactosemia but decreased by substrate and cofactor binding.

    PubMed

    Pey, Angel L; Padín-Gonzalez, Esperanza; Mesa-Torres, Noel; Timson, David J

    2014-11-15

    Type III galactosemia is an inherited disease caused by mutations which affect the activity of UDP-galactose 4'-epimerase (GALE). We evaluated the impact of four disease-associated variants (p.N34S, p.G90E, p.V94M and p.K161N) on the conformational stability and dynamics of GALE. Thermal denaturation studies showed that wild-type GALE denatures at temperatures close to physiological, and disease-associated mutations often reduce GALE's thermal stability. This denaturation is under kinetic control and results partly from dimer dissociation. The natural ligands, NAD(+) and UDP-glucose, stabilize GALE. Proteolysis studies showed that the natural ligands and disease-associated variations affect local dynamics in the N-terminal region of GALE. Proteolysis kinetics followed a two-step irreversible model in which the intact protein is cleaved at Ala38 forming a long-lived intermediate in the first step. NAD(+) reduces the rate of the first step, increasing the amount of undigested protein whereas UDP-glucose reduces the rate of the second step, increasing accumulation of the intermediate. Disease-associated variants affect these rates and the amounts of protein in each state. Our results also suggest communication between domains in GALE. We hypothesize that, in vivo, concentrations of natural ligands modulate GALE stability and that it should be possible to discover compounds which mimic the stabilising effects of the natural ligands overcoming mutation-induced destabilization. PMID:25150110

  19. Enzymatic conversion of carbon dioxide.

    PubMed

    Shi, Jiafu; Jiang, Yanjun; Jiang, Zhongyi; Wang, Xueyan; Wang, Xiaoli; Zhang, Shaohua; Han, Pingping; Yang, Chen

    2015-10-01

    With the continuous increase in fossil fuels consumption and the rapid growth of atmospheric CO2 concentration, the harmonious state between human and nature faces severe challenges. Exploring green and sustainable energy resources and devising efficient methods for CO2 capture, sequestration and utilization are urgently required. Converting CO2 into fuels/chemicals/materials as an indispensable element for CO2 capture, sequestration and utilization may offer a win-win strategy to both decrease the CO2 concentration and achieve the efficient exploitation of carbon resources. Among the current major methods (including chemical, photochemical, electrochemical and enzymatic methods), the enzymatic method, which is inspired by the CO2 metabolic process in cells, offers a green and potent alternative for efficient CO2 conversion due to its superior stereo-specificity and region/chemo-selectivity. Thus, in this tutorial review, we firstly provide a brief background about enzymatic conversion for CO2 capture, sequestration and utilization. Next, we depict six major routes of the CO2 metabolic process in cells, which are taken as the inspiration source for the construction of enzymatic systems in vitro. Next, we focus on the state-of-the-art routes for the catalytic conversion of CO2 by a single enzyme system and by a multienzyme system. Some emerging approaches and materials utilized for constructing single-enzyme/multienzyme systems to enhance the catalytic activity/stability will be highlighted. Finally, a summary about the current advances and the future perspectives of the enzymatic conversion of CO2 will be presented. PMID:26055659

  20. NMR Binding and Functional Assays for Detecting Inhibitors of S. aureus MnaA.

    PubMed

    Hou, Yan; Mayhood, Todd; Sheth, Payal; Tan, Christopher M; Labroli, Marc; Su, Jing; Wyss, Daniel F; Roemer, Terry; McCoy, Mark A

    2016-07-01

    Nonessential enzymes in the staphylococcal wall teichoic acid (WTA) pathway serve as highly validated β-lactam potentiation targets. MnaA (UDP-GlcNAc 2-epimerase) plays an important role in an early step of WTA biosynthesis by providing an activated form of ManNAc. Identification of a selective MnaA inhibitor would provide a tool to interrogate the contribution of the MnaA enzyme in the WTA pathway as well as serve as an adjuvant to restore β-lactam activity against methicillin-resistant Staphylococcus aureus (MRSA). However, development of an epimerase functional assay can be challenging since both MnaA substrate and product (UDP-GlcNAc/UDP-ManNAc) share an identical molecular weight. Herein, we developed a nuclear magnetic resonance (NMR) functional assay that can be combined with other NMR approaches to triage putative MnaA inhibitors from phenotypic cell-based screening campaigns. In addition, we determined that tunicamycin, a potent WTA pathway inhibitor, inhibits both S. aureus MnaA and a functionally redundant epimerase, Cap5P. PMID:27028606

  1. Enzymatic desulfurization of coal

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1990-03-23

    Our experimental approach focuses on the use of enzymes which catalyze the addition of oxygen to organic compounds. In tailoring the application of these enzymes to coal processing, we are particularly interested in ensuring that oxidation occurs at sulfur and not at carbon-carbon bonds. Previous studies with DBT have shown that the reaction most frequently observed in microbial oxidative pathways is one in which DBT is oxidized at ring carbons. These reactions, as we have said, are accompanied by a considerable decrease in the energy content of the compound. In addition, microbial pathways have been identified in which the sulfur atom is sequentially oxidized to sulfoxide, to sulfone, to sulfonate, and finally to sulfuric acid. In this case, the fuel value of the desulfurized compounds is largely retained. We are evaluating the potential of commercially available enzymes to perform this function.

  2. Enzymatic desulfurization of coal

    SciTech Connect

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1989-12-14

    Our experimental approach focuses on the use of enzymes which catalyze the addition of oxygen to organic compounds., In tailoring the application of these enzymes to coal processing, we are particularly interested in ensuring that oxidation occurs at sulfur and not at carbon-carbon bonds. Previous studies with DBT have shown that the reaction most frequently observed in microbial oxidative pathways is one in which DBT is oxidized at ring carbons. These reactions, as we have said, are accompanied by a considerable decrease in the energy content of the compound. In addition, microbial pathways have been identified in which the sulfur atom is sequentially oxidized to sulfoxide, to sulfone, to sulfonate, and finally to sulfuric acid. In this case, the fuel value of the desulfurized compounds is largely retained. We are evaluating the potential of commercially available enzymes to perform this function.

  3. Biosynthesis of dermatan sulphate. Defructosylated Escherichia coli K4 capsular polysaccharide as a substrate for the D-glucuronyl C-5 epimerase, and an indication of a two-base reaction mechanism.

    PubMed Central

    Hannesson, H H; Hagner-McWhirter, A; Tiedemann, K; Lindahl, U; Malmström, A

    1996-01-01

    The capsular polysaccharide from Escherichia coli K4 consists of a chondroitin ([GlcA(beta 1-->3)GalNAc(beta 1-->4)]n) backbone, to which beta-fructofuranose units are linked to C-3 of D-glucuronic acid (GlcA) residues. Removal of the fructose units by mild acid hydrolysis provided a substrate for the GlcA C-5 epimerase, which is involved in the generation of L-iduronic acid (IdoA) units during dermatan sulphate biosynthesis. Incubation of this substrate with solubilized fibroblast microsomal enzyme in the presence of 3H2O resulted in the incorporation of tritium at C-5 of hexuronyl units. A Km of 67 x 10(-6) M hexuronic acid (equivalent to disaccharide units) was determined, which is similar to that (80 x 10(-6) M) obtained for dermatan (desulphated dermatan sulphate). Vmax was about 4 times higher with dermatan than with the K4 substrate. A defructosylated K4 polysaccharide isolated after incubation of bacteria with D-[5-3H]glucose released 3H2O on reaction with the epimerase, and thus could be used to assay the enzyme. Incubation of a K4 substrate with solubilized microsomal epimerase for 6 h in the presence of 3H2O resulted in the formation of about 5% IdoA and approximately equal amounts of 3H in GlcA and IdoA. A corresponding incubation of dermatan yielded approx. 22% GlcA, which contained virtually all the 3H label. These results are tentatively explained in terms of a two-base reaction mechanism, involving a monoprotic L-ido-specific base and a polyprotic D-gluco-specific base. Most of the IdoA residues generated by the enzyme occurred singly, although some formation of two or three consecutive IdoA-containing disaccharide units was observed. PMID:8573097

  4. Photon-Regulated DNA-Enzymatic Nanostructures by Molecular Assembly

    PubMed Central

    You, Mingxu; Wang, Ruo-Wen; Zhang, Xiaobing; Chen, Yan; Wang, Kelong; Peng, Lu; Tan, Weihong

    2011-01-01

    Future smart nanostructures will have to rely on molecular assembly for unique or advanced desired functions. For example, the evolved ribosome in nature is one example of functional self-assembly of nucleic acids and proteins employed in nature to perform specific tasks. Artificial self-assembled nanodevices have also been developed to mimic key biofunctions, and various nucleic acid- and protein-based functional nanoassemblies have been reported. However, functionally regulating these nanostructures is still a major challenge. Here we report a general approach to fine-tune the catalytic function of DNA-enzymatic nanosized assemblies by taking advantage of the trans-cis isomerization of azobenzene molecules. To the best of our knowledge, this is the first study to precisely modulate the structures and functions of an enzymatic assembly based on light-induced DNA scaffold switching. Via photocontrolled DNA conformational switching, the proximity of multiple enzyme catalytic centers can be adjusted, as well as the catalytic efficiency of cofactor-mediated DNAzymes. We expect that this approach will lead to the advancement of DNA-enzymatic functional nanostructures in future biomedical and analytical applications. PMID:22098552

  5. Abrogation of fibroblast activation protein enzymatic activity attenuates tumor growth.

    PubMed

    Cheng, Jonathan D; Valianou, Matthildi; Canutescu, Adrian A; Jaffe, Eileen K; Lee, Hyung-Ok; Wang, Hao; Lai, Jack H; Bachovchin, William W; Weiner, Louis M

    2005-03-01

    Tumor-associated fibroblasts are functionally and phenotypically distinct from normal fibroblasts that are not in the tumor microenvironment. Fibroblast activation protein is a 95 kDa cell surface glycoprotein expressed by tumor stromal fibroblasts, and has been shown to have dipeptidyl peptidase and collagenase activity. Site-directed mutagenesis at the catalytic site of fibroblast activation protein, Ser624 --> Ala624, resulted in an approximately 100,000-fold loss of fibroblast activation protein dipeptidyl peptidase (DPP) activity. HEK293 cells transfected with wild-type fibroblast activation protein, enzymatic mutant (S624A) fibroblast activation protein, or vector alone, were inoculated subcutaneously into immunodeficient mouse to assess the contribution of fibroblast activation protein enzymatic activity to tumor growth. Overexpression of wild-type fibroblast activation protein showed growth potentiation and enhanced tumorigenicity compared with both fibroblast activation protein S624A and vector-transfected HEK293 xenografts. HEK293 cells transfected with fibroblast activation protein S624A showed tumor growth rates and tumorigenicity potential similar only to vector-transfected HEK293. In vivo assessment of fibroblast activation protein DPP activity of these tumors showed enhanced enzymatic activity of wild-type fibroblast activation protein, with only baseline levels of fibroblast activation protein DPP activity in either fibroblast activation protein S624A or vector-only xenografts. These results indicate that the enzymatic activity of fibroblast activation protein is necessary for fibroblast activation protein-driven tumor growth in the HEK293 xenograft model system. This establishes the proof-of-principle that the enzymatic activity of fibroblast activation protein plays an important role in the promotion of tumor growth, and provides an attractive target for therapeutics designed to alter fibroblast activation protein-induced tumor growth by targeting

  6. Neocartilage integration in temporomandibular joint discs: physical and enzymatic methods

    PubMed Central

    Murphy, Meghan K.; Arzi, Boaz; Prouty, Shannon M.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2015-01-01

    Integration of engineered musculoskeletal tissues with adjacent native tissues presents a significant challenge to the field. Specifically, the avascularity and low cellularity of cartilage elicit the need for additional efforts in improving integration of neocartilage within native cartilage. Self-assembled neocartilage holds significant potential in replacing degenerated cartilage, though its stabilization and integration in native cartilage require further efforts. Physical and enzymatic stabilization methods were investigated in an in vitro model for temporomandibular joint (TMJ) disc degeneration. First, in phase 1, suture, glue and press-fit constructs were compared in TMJ disc intermediate zone defects. In phase 1, suturing enhanced interfacial shear stiffness and strength immediately; after four weeks, a 15-fold increase in stiffness and a ninefold increase in strength persisted over press-fit. Neither suture nor glue significantly altered neocartilage properties. In phase 2, the effects of the enzymatic stabilization regimen composed of lysyl oxidase, CuSO4 and hydroxylysine were investigated. A full factorial design was employed, carrying forward the best physical method from phase 1, suturing. Enzymatic stabilization significantly increased interfacial shear stiffness after eight weeks. Combined enzymatic stabilization and suturing led to a fourfold increase in shear stiffness and threefold increase in strength over press-fit. Histological analysis confirmed the presence of a collagen-rich interface. Enzymatic treatment additionally enhanced neocartilage mechanical properties, yielding a tensile modulus over 6 MPa and compressive instantaneous modulus over 1200 kPa at eight weeks. Suturing enhances stabilization of neocartilage, and enzymatic treatment enhances functional properties and integration of neocartilage in the TMJ disc. Methods developed here are applicable to other orthopaedic soft tissues, including knee meniscus and hyaline articular

  7. The TCF4/β-catenin pathway and chromatin structure cooperate to regulate D-glucuronyl C5-epimerase expression in breast cancer

    PubMed Central

    Mostovich, Luydmila A.; Prudnikova, Tatiana Y.; Kondratov, Aleksandr G.; Gubanova, Natalya V.; Kharchenko, Olga A.; Kutsenko, Olesya S.; Vavilov, Pavel V.; Haraldson, Klas; Kashuba, Vladimir I.; Ernberg, Ingemar; Zabarovsky, Eugene R.; Grigorieva, Elvira V.

    2012-01-01

    D-glucuronyl C5-epimerase (GLCE) is a potential tumor-suppressor gene involved in heparan sulfate biosynthesis. GLCE expression is significantly decreased in breast tumors; however, the underlying molecular mechanisms remain unclear. This study examined the possible epigenetic mechanisms for GLCE inactivation in breast cancer. Very little methylation of the GLCE promoter region was detected in breast tumors in vivo and in breast cancer cells (MCF7 and T47D) in vitro and GLCE expression in breast cancer cells was not altered by 5-deoxyazacytidine (5-aza-dC) treatment, suggesting that promoter methylation is not involved in regulating GLCE expression. Chromatin activation by Trichostatin A (TSA) or 5-aza-dC/TSA treatment increased GLCE expression by two to 3-fold due to an increased interaction between the GLCE promoter and the TCF4/β-catenin transactivation complex, or H3K9ac and H3K4Me3 histone modifications. However, ectopic expression of TCF4/β-catenin was not sufficient to activate GLCE expression in MCF7 cells, suggesting that chromatin structure plays a key role in GLCE regulation. Although TSA treatment significantly repressed canonical WNT signaling in MCF7 cells, it did not influence endogenous TCF4/β-catenin mRNA levels and activated TCF4/β-catenin-driven transcription from the GLCE promoter, indicating GLCE as a novel target for TCF4/β-catenin complex in breast cancer cells. A correlation was observed between GLCE, TCF4 and β-catenin expression in breast cancer cells and primary tumors, suggesting an important role for TCF4/β-catenin in regulating GLCE expression both in vitro and in vivo. Taken together, the results indicate that GLCE expression in breast cancer is regulated by a combination of chromatin structure and TCF4/β-catenin complex activity. PMID:22805760

  8. Decaprenylphosphoryl-β-D-Ribose 2′-Epimerase, the Target of Benzothiazinones and Dinitrobenzamides, Is an Essential Enzyme in Mycobacterium smegmatis

    PubMed Central

    Crellin, Paul K.; Brammananth, Rajini; Coppel, Ross L.

    2011-01-01

    Background The unique cell wall of bacteria of the suborder Corynebacterineae is essential for the growth and survival of significant human pathogens including Mycobacterium tuberculosis and Mycobacterium leprae. Drug resistance in mycobacteria is an increasingly common development, making identification of new antimicrobials a priority. Recent studies have revealed potent anti-mycobacterial compounds, the benzothiazinones and dinitrobenzamides, active against DprE1, a subunit of decaprenylphosphoribose 2′ epimerase which forms decaprenylphosphoryl arabinose, the arabinose donor for mycobacterial cell wall biosynthesis. Despite the exploitation of Mycobacterium smegmatis in the identification of DprE1 as the target of these new antimicrobials and its use in the exploration of mechanisms of resistance, the essentiality of DprE1 in this species has never been examined. Indeed, direct experimental evidence of the essentiality of DprE1 has not been obtained in any species of mycobacterium. Methodology/Principal Findings In this study we constructed a conditional gene knockout strain targeting the ortholog of dprE1 in M. smegmatis, MSMEG_6382. Disruption of the chromosomal copy of MSMEG_6382 was only possible in the presence of a plasmid-encoded copy of MSMEG_6382. Curing of this “rescue” plasmid from the bacterial population resulted in a cessation of growth, demonstrating gene essentiality. Conclusions/Significance This study provides the first direct experimental evidence for the essentiality of DprE1 in mycobacteria. The essentiality of DprE1 in M. smegmatis, combined with its conservation in all sequenced mycobacterial genomes, suggests that decaprenylphosphoryl arabinose synthesis is essential in all mycobacteria. Our findings indicate a lack of redundancy in decaprenylphosphoryl arabinose synthesis in M. smegmatis, despite the relatively large coding capacity of this species, and suggest that no alternative arabinose donors for cell wall biosynthesis exist

  9. Crystal Structure of Binary and Ternary Complexes of Archaeal UDP-galactose 4-Epimerase-like l-Threonine Dehydrogenase from Thermoplasma volcanium*

    PubMed Central

    Yoneda, Kazunari; Sakuraba, Haruhiko; Araki, Tomohiro; Ohshima, Toshihisa

    2012-01-01

    A gene from the thermophilic archaeon Thermoplasma volcanium encoding an l-threonine dehydrogenase (l-ThrDH) with a predicted amino acid sequence that was remarkably similar to the sequence of UDP-galactose 4-epimerase (GalE) was overexpressed in Escherichia coli, and its product was purified and characterized. The expressed enzyme was moderately thermostable, retaining more than 90% of its activity after incubation for 10 min at up to 70 °C. The catalytic residue was assessed using site-directed mutagenesis, and Tyr137 was found to be essential for catalysis. To clarify the structural basis of the catalytic mechanism, four different crystal structures were determined using the molecular replacement method: l-ThrDH-NAD+, l-ThrDH in complex with NAD+ and pyruvate, Y137F mutant in complex with NAD+ and l-threonine, and Y137F in complex with NAD+ and l-3-hydroxynorvaline. Each monomer consisted of a Rossmann-fold domain and a C-terminal catalytic domain, and the fold of the catalytic domain showed notable similarity to that of the GalE-like l-ThrDH from the psychrophilic bacterium Flavobacterium frigidimaris KUC-1. The substrate binding model suggests that the reaction proceeds through abstraction of the β-hydroxyl hydrogen of l-threonine via direct proton transfer driven by Tyr137. The factors contributing to the thermostability of T. volcanium l-ThrDH were analyzed by comparing its structure to that of F. frigidimaris l-ThrDH. This comparison showed that the presence of extensive inter- and intrasubunit ion pair networks are likely responsible for the thermostability of T. volcanium l-ThrDH. This is the first description of the molecular basis for the substrate recognition and thermostability of a GalE-like l-ThrDH. PMID:22374996

  10. The widespread role of non-enzymatic reactions in cellular metabolism

    PubMed Central

    Keller, Markus A; Piedrafita, Gabriel; Ralser, Markus

    2015-01-01

    Enzymes shape cellular metabolism, are regulated, fast, and for most cases specific. Enzymes do not however prevent the parallel occurrence of non-enzymatic reactions. Non-enzymatic reactions were important for the evolution of metabolic pathways, but are retained as part of the modern metabolic network. They divide into unspecific chemical reactivity and specific reactions that occur either exclusively non-enzymatically as part of the metabolic network, or in parallel to existing enzyme functions. Non-enzymatic reactions resemble catalytic mechanisms as found in all major enzyme classes and occur spontaneously, small molecule (e.g. metal-) catalyzed or light-induced. The frequent occurrence of non-enzymatic reactions impacts on stability and metabolic network structure, and has thus to be considered in the context of metabolic disease, network modeling, biotechnology and drug design. PMID:25617827

  11. Structural Perspective on Enzymatic Halogenation

    PubMed Central

    2008-01-01

    Simple halogen substituents frequently afford key structural features that account for the potency and selectivity of natural products, including antibiotics and hormones. For example, when a single chlorine atom on the antibiotic vancomycin is replaced by hydrogen, the resulting antibacterial activity decreases by up to 70% (HarrisC. M.; KannanR.; KopeckaH.; HarrisT. M.J. Am. Chem. Soc.1985, 107, 6652−6658). This Account analyzes how structure underlies mechanism in halogenases, the molecular machines designed by nature to incorporate halogens into diverse substrates. Traditional synthetic methods of integrating halogens into complex molecules are often complicated by a lack of specificity and regioselectivity. Nature, however, has developed a variety of elegant mechanisms for halogenating specific substrates with both regio- and stereoselectivity. An improved understanding of the biological routes toward halogenation could lead to the development of novel synthetic methods for the creation of new compounds with enhanced functions. Already, researchers have co-opted a fluorinase from the microorganism Streptomyces cattleya to produce 18F-labeled molecules for use in positron emission tomography (PET) (DengH.; CobbS. L.; GeeA. D.; LockhartA.; MartarelloL.; McGlincheyR. P.; O’HaganD.; OnegaM.Chem. Commun.2006, 652−654). Therefore, the discovery and characterization of naturally occurring enzymatic halogenation mechanisms has become an active area of research. The catalogue of known halogenating enzymes has expanded from the familiar haloperoxidases to include oxygen-dependent enzymes and fluorinases. Recently, the discovery of a nucleophilic halogenase that catalyzes chlorinations has expanded the repertoire of biological halogenation chemistry (DongC.; HuangF.; DengH.; SchaffrathC.; SpencerJ. B.; O’HaganD.; NaismithJ. H.Nature2004, 427, 561−56514765200). Structural characterization has provided a basis toward a mechanistic understanding of the specificity

  12. The unique enzymatic and mechanistic properties of plant myosins.

    PubMed

    Henn, Arnon; Sadot, Einat

    2014-12-01

    Myosins are molecular motors that move along actin-filament tracks. Plants express two main classes of myosins, myosin VIII and myosin XI. Along with their relatively conserved sequence and functions, plant myosins have acquired some unique features. Myosin VIII has the enzymatic characteristics of a tension sensor and/or a tension generator, similar to functions found in other eukaryotes. Interestingly, class XI plant myosins have gained a novel function that consists of propelling the exceptionally rapid cytoplasmic streaming. This specific class includes the fastest known translocating molecular motors, which can reach an extremely high velocity of about 60μms(-1). However, the enzymatic properties and mechanistic basis for these remarkable manifestations are not yet fully understood. Here we review recent progress in understanding the uniqueness of plant myosins, while emphasizing the unanswered questions. PMID:25435181

  13. Thermal-induced conformational changes in the product release area drive the enzymatic activity of xylanases 10B: Crystal structure, conformational stability and functional characterization of the xylanase 10B from Thermotoga petrophila RKU-1

    SciTech Connect

    Santos, Camila Ramos; Meza, Andreia Navarro; Hoffmam, Zaira Bruna; Silva, Junio Cota; Alvarez, Thabata Maria; Ruller, Roberto; Giesel, Guilherme Menegon; Verli, Hugo; Squina, Fabio Marcio; Prade, Rolf Alexander; Murakami, Mario Tyago

    2010-12-10

    Research highlights: {yields} The hyperthermostable xylanase 10B from Thermotoga petrophila RKU-1 produces exclusively xylobiose at the optimum temperature. {yields} Circular dichroism spectroscopy suggests a coupling effect of temperature-induced structural changes with its enzymatic behavior. {yields} Crystallographic and molecular dynamics studies indicate that conformational changes in the product release area modulate the enzyme action mode. -- Abstract: Endo-xylanases play a key role in the depolymerization of xylan and recently, they have attracted much attention owing to their potential applications on biofuels and paper industries. In this work, we have investigated the molecular basis for the action mode of xylanases 10B at high temperatures using biochemical, biophysical and crystallographic methods. The crystal structure of xylanase 10B from hyperthermophilic bacterium Thermotoga petrophila RKU-1 (TpXyl10B) has been solved in the native state and in complex with xylobiose. The complex crystal structure showed a classical binding mode shared among other xylanases, which encompasses the -1 and -2 subsites. Interestingly, TpXyl10B displayed a temperature-dependent action mode producing xylobiose and xylotriose at 20 {sup o}C, and exclusively xylobiose at 90 {sup o}C as assessed by capillary zone electrophoresis. Moreover, circular dichroism spectroscopy suggested a coupling effect of temperature-induced structural changes with this particular enzymatic behavior. Molecular dynamics simulations supported the CD analysis suggesting that an open conformational state adopted by the catalytic loop (Trp297-Lys326) provokes significant modifications in the product release area (+1,+2 and +3 subsites), which drives the enzymatic activity to the specific release of xylobiose at high temperatures.

  14. Macrophage Migration Inhibitory Factor (MIF) Enzymatic Activity and Lung Cancer

    PubMed Central

    Mawhinney, Leona; Armstrong, Michelle E; O’ Reilly, Ciaran; Bucala, Richard; Leng, Lin; Fingerle-Rowson, Gunter; Fayne, Darren; Keane, Michael P; Tynan, Aisling; Maher, Lewena; Cooke, Gordon; Lloyd, David; Conroy, Helen; Donnelly, Seamas C

    2014-01-01

    The cytokine macrophage migration inhibitory factor (MIF) possesses unique tautomerase enzymatic activity, which contributes to the biological functional activity of MIF. In this study, we investigated the effects of blocking the hydrophobic active site of the tautomerase activity of MIF in the pathogenesis of lung cancer. To address this, we initially established a Lewis lung carcinoma (LLC) murine model in Mif-KO and wild-type (WT) mice and compared tumor growth in a knock-in mouse model expressing a mutant MIF lacking enzymatic activity (Mif P1G). Primary tumor growth was significantly attenuated in both Mif-KO and Mif P1G mice compared with WT mice. We subsequently undertook a structure-based, virtual screen to identify putative small molecular weight inhibitors specific for the tautomerase enzymatic active site of MIF. From primary and secondary screens, the inhibitor SCD-19 was identified, which significantly attenuated the tautomerase enzymatic activity of MIF in vitro and in biological functional screens. In the LLC murine model, SCD-19, given intraperitoneally at the time of tumor inoculation, was found to significantly reduce primary tumor volume by 90% (p < 0.001) compared with the control treatment. To better replicate the human disease scenario, SCD-19 was given when the tumor was palpable (at d 7 after tumor inoculation) and, again, treatment was found to significantly reduce tumor volume by 81% (p < 0.001) compared with the control treatment. In this report, we identify a novel inhibitor that blocks the hydrophobic pocket of MIF, which houses its specific tautomerase enzymatic activity, and demonstrate that targeting this unique active site significantly attenuates lung cancer growth in in vitro and in vivo systems. PMID:25826675

  15. Enzymatic Synthesis of Magnetic Nanoparticles

    PubMed Central

    Kolhatkar, Arati G.; Dannongoda, Chamath; Kourentzi, Katerina; Jamison, Andrew C.; Nekrashevich, Ivan; Kar, Archana; Cacao, Eliedonna; Strych, Ulrich; Rusakova, Irene; Martirosyan, Karen S.; Litvinov, Dmitri; Lee, T. Randall; Willson, Richard C.

    2015-01-01

    We report the first in vitro enzymatic synthesis of paramagnetic and antiferromagnetic nanoparticles toward magnetic ELISA reporting. With our procedure, alkaline phosphatase catalyzes the dephosphorylation of l-ascorbic-2-phosphate, which then serves as a reducing agent for salts of iron, gadolinium, and holmium, forming magnetic precipitates of Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5. The nanoparticles were found to be paramagnetic at 300 K and antiferromagnetic under 25 K. Although weakly magnetic at 300 K, the room-temperature magnetization of the nanoparticles found here is considerably greater than that of analogous chemically-synthesized LnxFeyOz (Ln = Gd, Ho) samples reported previously. At 5 K, the nanoparticles showed a significantly higher saturation magnetization of 45 and 30 emu/g for Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5, respectively. Our approach of enzymatically synthesizing magnetic labels reduces the cost and avoids diffusional mass-transfer limitations associated with pre-synthesized magnetic reporter particles, while retaining the advantages of magnetic sensing. PMID:25854425

  16. Multiple Peroxisomal Enzymatic Deficiency Disorders

    PubMed Central

    Vamecq, Joseph; Draye, Jean-Pierre; Van Hoof, François; Misson, Jean-Paul; Evrard, Philippe; Verellen, Gaston; Eyssen, Hendrik J.; Van Eldere, Johan; Schutgens, Ruud B. H.; Wanders, Ronald J. A.; Roels, Frank; Goldfischer, Sidney L.

    1986-01-01

    Biologic, morphologic, and biochemical investigations performed in 2 patients demonstrate multiple peroxisomal deficiencies in the cerebrohepatorenal syndrome of Zellweger (CHRS) and neonatal adrenoleukodystrophy (NALD). Very long chain fatty acids, abnormal bile acids, including bile acid precursors (di- and trihydroxycoprostanoic acids), and C29-dicarboxylic acid accumulated in plasma in both patients. Generalized hyperaminoaciduria was also present. Peroxisomes could not be detected in CHRS liver and kidney; however, in the NALD patient, small and sparse cytoplasmic bodies resembling altered peroxisomes were found in hepatocytes. Hepatocellular and Kupffer cell lysosomes were engorged with ferritin and contained clefts and trilaminar structures believed to represent very long chain fatty acids. Enzymatic deficiencies reflected the peroxisomal defects. Hepatic glycolate oxidase and palmitoyl-CoA oxidase activities were deficient. No particle-bound catalase was found in cultured fibroblasts, and ether glycerolipid (plasmalogen) biosynthesis was markedly reduced. Administration of phenobarbital and clofibrate, an agent that induces peroxisomal proliferation and enzymatic activities, to the NALD patient did not bring about any changes in plasma metabolites, liver peroxisome population, or oxidizing activities. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5 PMID:2879480

  17. Economics of enzymatic hydrolysis processes

    SciTech Connect

    Wright, J.D.

    1988-02-01

    Enzymatic hydrolysis processes have the ability to produce high yields of sugars for fermentation to fuel ethanol from lignocellulosic biomass. However, these systems have been plagued with yields, product concentrations, and reactions rates far below those that are theoretically possible. Engineering and economic analyses are presented on several fungal enzyme hydrolysis processes to illustrate the effects of the important process parameters, to quantify the progress that has been made to date, and to estimate the cost reductions that can be made through research improvements. All enzymatic hydrolysis processes require pretreatment, hydrolysis, fermentation, and enzyme production. The key effect of pretreatment is to allow access of the enzymes to the substrate. Pretreatments have been devised that make the biomass completely digestible that increase the xylose yield and concentration, and that integrate pretreatment with lignin utilization. Major improvements in enzyme activity and use of simultaneous saccharification and fermentation (SSF) have greatly reduced the inhibition of the enzymes. It now appears that ethanol inhibition of the yeast is the limiting factor. Enzyme production costs have been dramatically reduced because use of SSF has reduced enzyme loading. However, further improvements may be possible by using soluble carbon sources for production. Over the past decade, the predicted cost of ethanol from such processes has dropped from more than $4.00/gallon to approximately $1.60. Research is currently under way in the United States and has the potential to reduce the projected cost to less than $1.00/gallon. 65 refs., 16 figs., 1 tab.

  18. Enzymatic synthesis of magnetic nanoparticles.

    PubMed

    Kolhatkar, Arati G; Dannongoda, Chamath; Kourentzi, Katerina; Jamison, Andrew C; Nekrashevich, Ivan; Kar, Archana; Cacao, Eliedonna; Strych, Ulrich; Rusakova, Irene; Martirosyan, Karen S; Litvinov, Dmitri; Lee, T Randall; Willson, Richard C

    2015-01-01

    We report the first in vitro enzymatic synthesis of paramagnetic and antiferromagnetic nanoparticles toward magnetic ELISA reporting. With our procedure, alkaline phosphatase catalyzes the dephosphorylation of l-ascorbic-2-phosphate, which then serves as a reducing agent for salts of iron, gadolinium, and holmium, forming magnetic precipitates of Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5. The nanoparticles were found to be paramagnetic at 300 K and antiferromagnetic under 25 K. Although weakly magnetic at 300 K, the room-temperature magnetization of the nanoparticles found here is considerably greater than that of analogous chemically-synthesized LnxFeyOz (Ln = Gd, Ho) samples reported previously. At 5 K, the nanoparticles showed a significantly higher saturation magnetization of 45 and 30 emu/g for Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5, respectively. Our approach of enzymatically synthesizing magnetic labels reduces the cost and avoids diffusional mass-transfer limitations associated with pre-synthesized magnetic reporter particles, while retaining the advantages of magnetic sensing. PMID:25854425

  19. Enzymatic approach to biodiesel production.

    PubMed

    Akoh, Casimir C; Chang, Shu-Wei; Lee, Guan-Chiun; Shaw, Jei-Fu

    2007-10-31

    The need for alternative energy sources that combine environmental friendliness with biodegradability, low toxicity, renewability, and less dependence on petroleum products has never been greater. One such energy source is referred to as biodiesel. This can be produced from vegetable oils, animal fats, microalgal oils, waste products of vegetable oil refinery or animal rendering, and used frying oils. Chemically, they are known as monoalkyl esters of fatty acids. The conventional method for producing biodiesel involves acid and base catalysts to form fatty acid alkyl esters. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods and alternative substrates. Enzymatic reactions involving lipases can be an excellent alternative to produce biodiesel through a process commonly referred to alcoholysis, a form of transesterification reaction, or through an interesterification (ester interchange) reaction. Protein engineering can be useful in improving the catalytic efficiency of lipases as biocatalysts for biodiesel production. The use of recombinant DNA technology to produce large quantities of lipases, and the use of immobilized lipases and immobilized whole cells, may lower the overall cost, while presenting less downstream processing problems, to biodiesel production. In addition, the enzymatic approach is environmentally friendly, considered a "green reaction", and needs to be explored for industrial production of biodiesel. PMID:17902621

  20. Enzymatic reactivity of glucose oxidase confined in nanochannels.

    PubMed

    Yu, Jiachao; Zhang, Yuanjian; Liu, Songqin

    2014-05-15

    The construction of nanodevices coupled with an integrated real-time detection system for evaluation of the function of biomolecules in biological processes, and enzymatic reaction kinetics occurring at the confined space or interface is a significant challenge. In this work, a nanochannel-enzyme system in which the enzymatic reaction could be investigated with an electrochemical method was constructed. The model system was established by covalently linking glucose oxidase (GOD) onto the inner wall of the nanochannels of the porous anodic alumina (PAA) membrane. An Au disc was attached at the end of the nanochannels of the PAA membrane as the working electrode for detection of H2O2 product of enzymatic reaction. The effects of ionic strength, amount of immobilized enzyme and pore diameter of the nanochannels on the enzymatic reaction kinetics were illustrated. The GOD confined in nanochannels showed high stability and reactivity. Upon addition of glucose to the nanochannel-enzyme system, the current response had a calibration range span from 0.005 to 2 mM of glucose concentration. The apparent Michaelis-Menten constant (K(m)(app)) of GOD confined in nanochannel was 0.4 mM. The presented work provided a platform for real-time monitoring of the enzyme reaction kinetics confined in nanospaces. Such a nanochannel-enzyme system could also help design future biosensors and enzyme reactors with high sensitivity and efficiency. PMID:24412427

  1. New developments of polysaccharide synthesis via enzymatic polymerization

    PubMed Central

    Kobayashi, Shiro

    2007-01-01

    This review focuses on the in vitro synthesis of polysaccharides, the method of which is “enzymatic polymerization” mainly developed by our group. Polysaccharides are formed by repeated glycosylation reactions between a glycosyl donor and a glycosyl acceptor. A hydrolysis enzyme was found very efficient as catalyst, where the monomer is designed based on the new concept of a “transition-state analogue substrate” (TSAS); sugar fluoride monomers for polycondensation and sugar oxazoline monomers for ring-opening polyaddition. Enzymatic polymerization enabled the first in vitro synthesis of natural polysaccharides such as cellulose, xylan, chitin, hyaluronan and chondroitin, and also of unnatural polysaccharides such as a cellulose–chitin hybrid, a hyaluronan–chondroitin hybrid, and others. Supercatalysis of hyaluronidase was disclosed as unusual enzymatic multi-catalyst functions. Mutant enzymes were very useful for synthetic and mechanistic studies. In situ observations of enzymatic polymerization by SEM, TEM, and combined SAS methods revealed mechanisms of the polymerization and of the self-assembling of high-order molecular structure formed by elongating polysaccharide molecules. PMID:24367148

  2. beta. -Sulfopyruvate: chemical and enzymatic syntheses and enzymatic assay

    SciTech Connect

    Weinstein, C.L.; Griffith, O.W.

    1986-01-01

    BETA-Sulfopyruvic acid (2-carboxy-2-oxoethanesulfonic acid) is prepared in greater than 90% yield by reaction of bromopyruvic acid with sodium sulfite. ..beta..-(/sup 35/S)Sulfopyruvate is prepared by transamination between (/sup 35/)cysteinesulfonate (cysteate) and ..cap alpha..-ketoglutarate using mitochondrial aspartate aminotransferase isolated from rat liver. Following either chemical or enzymatic synthesis the crude reaction product is conveniently purified by chromatography on Dowex 1; ..beta..-sulfopyruvate is isolated as the stable, water-soluble dilithium salt. ..beta..-Sulfopyruvate is shown to be an alternative substrate of mitochondrial malate dehydrogenase; in the presence of 0.25 mM NADH, ..beta..-sulfopyruvate is reduced with an apparent K/sub m/ of 6.3 mM and a V/sub max/ equal to about 40% of that observed with oxaloacetate. This finding forms the basis of a convenient spectrophotometric assay of ..beta..-sulfopyruvate.

  3. Autoantibodies with Enzymatic Properties in Human Autoimmune Diseases

    PubMed Central

    Wootla, Bharath; Lacroix-Desmazes, Sébastien; Warrington, Arthur E.; Bieber, Allan J.; Kaveri, Srini V.; Rodriguez, Moses

    2011-01-01

    Immunoglobulins (Ig) or antibodies are heavy plasma proteins, with sugar chains added to amino acid residues by N-linked glycosylation and occasionally by O-linked glycosylation. The versatility of antibodies is demonstrated by the various functions that they mediate such as neutralization, agglutination, fixation with activation of complement and activation of effector cells. In addition to this plethora of functions, some antibodies express enzymatic activity. Antibodies endowed with enzymatic properties have been described in human autoimmune manifestations for more than a decade in a variety of disorders such as autoimmune thyroiditis, systemic erythematosus (SLE), scleroderma, rheumatoid arthritis (RA), multiple sclerosis (MS) and acquired hemophilia (AH). Antibodies isolated from these conditions were able to specifically hydrolyze thyroglobulin, DNA, RNA, myelin basic protein (MBP), and factor VIII (FVIII) or factor IX (FIX), respectively. The therapeutic relevance of these findings is discussed. PMID:21624820

  4. Enzymatic regeneration of adenosine triphosphate cofactor

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1974-01-01

    Regenerating adenosine triphosphate (ATP) from adenosine diphosphate (ADP) by enzymatic process which utilizes carbamyl phosphate as phosphoryl donor is technique used to regenerate expensive cofactors. Process allows complex enzymatic reactions to be considered as candidates for large-scale continuous processes.

  5. Force-Manipulation Single-Molecule Spectroscopy Studies of Enzymatic Dynamics

    NASA Astrophysics Data System (ADS)

    Lu, H. Peter; He, Yufan; Lu, Maolin; Cao, Jin; Guo, Qing

    2014-03-01

    Subtle conformational changes play a crucial role in protein functions, especially in enzymatic reactions involving complex substrate-enzyme interactions and chemical reactions. We applied AFM-enhanced and magnetic tweezers-correlated single-molecule spectroscopy to study the mechanisms and dynamics of enzymatic reactions involved with kinase and lysozyme proteins. Enzymatic reaction turnovers and the associated structure changes of individual protein molecules were observed simultaneously in real-time by single-molecule FRET detections. Our single-molecule spectroscopy measurements of enzymatic conformational dynamics have revealed time bunching effect and intermittent coherence in conformational state change dynamics involving in enzymatic reaction cycles. The coherent conformational state dynamics suggests that the enzymatic catalysis involves a multi-step conformational motion along the coordinates of substrate-enzyme complex formation and product releasing. Our results support a multiple-conformational state model, being consistent with a complementary conformation selection and induced-fit enzymatic loop-gated conformational change mechanism in substrate-enzyme active complex formation.

  6. Computational Investigations on Enzymatic Catalysis and Inhibition

    NASA Astrophysics Data System (ADS)

    Simard, Daniel

    Enzymes are the bimolecular "workhorses" of the cell due to their range of functions and their requirement for cellular success. The atomistic details of how they function can provide key insights into the fundamentals of catalysis and in turn, provide a blueprint for biotechnological advances. A wide range of contemporary computational techniques has been applied with the aim to characterize recently discovered intermediates or to provide insights into enzymatic mechanisms and inhibition. More specifically, an assessment of methods was conducted to evaluate the presence of the growing number 3-- and 4--coordinated sulfur intermediates in proteins/enzymes. Furthermore, two mechanisms have been investigated, the mu-OH mechanism of the hydrolysis of dimethylphosphate in Glycerophosphodiesterase (GpdQ) using five different homonuclear metal combinations Zn(II)/Zn(II), Co(II)/Co(II), Mn(II)/Mn(II), Cd(II)/Cd(II) and Ca(II)/Ca(II) as well as a preliminary study into the effectivness of boron as an inhibitor in the serine protease reaction of class A TEM-1 beta-lactamases.

  7. Both myo-inositol to chiro-inositol epimerase activities and chiro-inositol to myo-inositol ratios are decreased in tissues of GK type 2 diabetic rats compared to Wistar controls.

    PubMed

    Sun, Tie-hua; Heimark, Douglas B; Nguygen, Thang; Nadler, Jerry L; Larner, Joseph

    2002-05-10

    Previous data from our and other labs demonstrated a decreased chiro-inositol content in urine and tissues of human subjects and animals with type 2 diabetes. In urine this decrease in chiro-inositol was accompanied by an increase in myo-inositol content. Decreased urine levels of chiro-inositol in monkeys were next correlated with the severity of underlying insulin resistance determined by five separate assays. To investigate the decreased chiro-inositol and the accompanying increased myo-inositol excretions in urine in humans and monkeys, we postulated a defect in the epimerization of myo-inositol to chiro-inositol. [(3)H]Myo-inositol was then shown to be converted to [(3)H]chiro-inositol in rats in vivo and in fibroblasts in vitro in a process stimulated by insulin. We next demonstrated that the conversion of [(3)H]myo-inositol to [(3)H]chiro-inositol in vivo was markedly decreased in GK type 2 diabetic rats compared to Wistar controls in liver, muscle, and fat, insulin sensitive tissues. Decreases of 20-25% conversion to baseline levels of under 5% conversion were observed. In the present work, we initially compared the total contents of myo-inositol and chiro-inositol in GK type 2 diabetic rat kidney, liver, and muscle compared to Wistar controls. We demonstrated a consistent decreased total chiro-inositol to myo-inositol ratio in kidney, liver, and muscle compared to controls. We next established the presence of a myo-inositol to chiro-inositol epimerase activity in rat liver cytosol. Enzyme activity was shown to be time and enzyme concentration dependent with a broad pH optimum. It required NADH and NADPH for full activity, which is compatible with its action via an oxido-reductive mechanism. Lastly, we demonstrated that the epimerase enzyme bioactivity was significantly decreased in muscle, liver, and fat cytosolic extracts of GK type 2 diabetic rats versus Wistar controls. Decreased myo-inositol to chiro-inositol epimerase activity may therefore play a

  8. Enzymatic synthesis of oligo- and polysaccharide fatty acid esters.

    PubMed

    van den Broek, Lambertus A M; Boeriu, Carmen G

    2013-03-01

    Amphiphilic oligo- and polysaccharides (e.g. polysaccharide alkyl or alkyl-aryl esters) form a new class of polymers with exceptional properties. They function as polymeric surfactants, whilst maintaining most of the properties of the starting polymeric material such as emulsifying, gelling, and film forming properties combined with partial water solubility or permeability. At present carbohydrate fatty acid esters are generally obtained by chemical methods using toxic solvents and organic and inorganic catalysts that leave residual traces in the final products. Enzymatic reactions offer an attractive alternative route for the synthesis of polysaccharide esters. In this review the state of the art of enzymatic synthesis of oligo- and polysaccharides fatty esters has been described. PMID:23465902

  9. Light-driven Enzymatic Decarboxylation

    PubMed Central

    Köninger, Katharina; Grote, Marius; Zachos, Ioannis; Hollmann, Frank; Kourist, Robert

    2016-01-01

    Oxidoreductases belong to the most-applied industrial enzymes. Nevertheless, they need external electrons whose supply is often costly and challenging. Recycling of the electron donors NADH or NADPH requires the use of additional enzymes and sacrificial substrates. Interestingly, several oxidoreductases accept hydrogen peroxide as electron donor. While being inexpensive, this reagent often reduces the stability of enzymes. A solution to this problem is the in situ generation of the cofactor. The continuous supply of the cofactor at low concentration drives the reaction without impairing enzyme stability. This paper demonstrates a method for the light-catalyzed in situ generation of hydrogen peroxide with the example of the heme-dependent fatty acid decarboxylase OleTJE. The fatty acid decarboxylase OleTJE was discovered due to its unique ability to produce long-chain 1-alkenes from fatty acids, a hitherto unknown enzymatic reaction. 1-alkenes are widely used additives for plasticizers and lubricants. OleTJE has been shown to accept electrons from hydrogen peroxide for the oxidative decarboxylation. While addition of hydrogen peroxide damages the enzyme and results in low yields, in situ generation of the cofactor circumvents this problem. The photobiocatalytic system shows clear advantages regarding enzyme activity and yield, resulting in a simple and efficient system for fatty acid decarboxylation. PMID:27286035

  10. Light-driven Enzymatic Decarboxylation.

    PubMed

    Köninger, Katharina; Grote, Marius; Zachos, Ioannis; Hollmann, Frank; Kourist, Robert

    2016-01-01

    Oxidoreductases belong to the most-applied industrial enzymes. Nevertheless, they need external electrons whose supply is often costly and challenging. Recycling of the electron donors NADH or NADPH requires the use of additional enzymes and sacrificial substrates. Interestingly, several oxidoreductases accept hydrogen peroxide as electron donor. While being inexpensive, this reagent often reduces the stability of enzymes. A solution to this problem is the in situ generation of the cofactor. The continuous supply of the cofactor at low concentration drives the reaction without impairing enzyme stability. This paper demonstrates a method for the light-catalyzed in situ generation of hydrogen peroxide with the example of the heme-dependent fatty acid decarboxylase OleTJE. The fatty acid decarboxylase OleTJE was discovered due to its unique ability to produce long-chain 1-alkenes from fatty acids, a hitherto unknown enzymatic reaction. 1-alkenes are widely used additives for plasticizers and lubricants. OleTJE has been shown to accept electrons from hydrogen peroxide for the oxidative decarboxylation. While addition of hydrogen peroxide damages the enzyme and results in low yields, in situ generation of the cofactor circumvents this problem. The photobiocatalytic system shows clear advantages regarding enzyme activity and yield, resulting in a simple and efficient system for fatty acid decarboxylation. PMID:27286035

  11. Enzymatic Vitrectomy and Pharmacologic Vitreodynamics.

    PubMed

    Shah, Ankoor R; Trese, Michael T

    2016-01-01

    The field of vitreoretinal surgery has evolved substantially over the last several decades. Scientific advances have improved our understanding of disease pathophysiology, and new surgical adjuncts and techniques have decreased surgical time and improved patient outcomes. Pharmacologic agents have recently been developed for intraocular use in order to enhance vitreous removal and even as a nonsurgical treatment for pathology due to an abnormal vitreoretinal interface. Plasmin can successfully cause vitreous liquefaction and induce a posterior vitreous detachment. Additionally, ocriplasmin has been approved for symptomatic vitreomacular adhesion and others appear to be promising for pharmacologic manipulation of the vitreous. The ability to induce vitreous liquefaction and a complete posterior vitreous detachment (PVD) with a single intravitreal injection has potential implications for the management of multiple vitreoretinopathies. Enzymatic vitrectomy may help to reduce vitreous viscosity, thereby facilitating removal during vitrectomy and reducing surgical time, especially when using smaller-gauge vitrectomy instruments. The induction of a PVD also has the potential to reduce intraoperative complications. As we improve our understanding of the molecular flux in the vitreous cavity, pharmacologic vitreodynamics will likely become more important as it may allow for improved manipulation of intravitreal molecules. PMID:26501959

  12. Two-Photon Small Molecule Enzymatic Probes.

    PubMed

    Qian, Linghui; Li, Lin; Yao, Shao Q

    2016-04-19

    Enzymes are essential for life, especially in the development of disease and on drug effects, but as we cannot yet directly observe the inside interactions and only partially observe biochemical outcomes, tools "translating" these processes into readable information are essential for better understanding of enzymes as well as for developing effective tools to fight against diseases. Therefore, sensitive small molecule probes suitable for direct in vivo monitoring of enzyme activities are ultimately desirable. For fulfilling this desire, two-photon small molecule enzymatic probes (TSMEPs) producing amplified fluorescent signals based on enzymatic conversion with better photophysical properties and deeper penetration in intact tissues and whole animals have been developed and demonstrated to be powerful in addressing the issues described above. Nonetheless, currently available TSMEPs only cover a small portion of enzymes despite the distinct advantages of two-photon fluorescence microscopy. In this Account, we would like to share design principles for TSMEPs as potential indicators of certain pathology-related biomarkers together with their applications in disease models to inspire more elegant work to be done in this area. Highlights will be addressed on how to equip two-photon fluorescent probes with features amenable for direct assessment of enzyme activities in complex pathological environments. We give three recent examples from our laboratory and collaborations in which TSMEPs are applied to visualize the distribution and activity of enzymes at cellular and organism levels. The first example shows that we could distinguish endogenous phosphatase activity in different organelles; the second illustrates that TSMEP is suitable for specific and sensitive detection of a potential Parkinson's disease marker (monoamine oxidase B) in a variety of biological systems from cells to patient samples, and the third identifies that TSMEPs can be applied to other enzyme

  13. Enzymatic Activity of Xyloglucan Xylosyltransferase 51[OPEN

    PubMed Central

    Culbertson, Alan T.; Chou, Yi-Hsiang; Smith, Adrienne L.; Young, Zachary T.; Tietze, Alesia A.; Cottaz, Sylvain

    2016-01-01

    Xyloglucan, the most abundant hemicellulosic component of the primary cell wall of flowering plants, is composed of a β-(1,4)-glucan backbone decorated with d-xylosyl residues. Three xyloglucan xylosyltransferases (XXTs) participate in xyloglucan biosynthesis in Arabidopsis (Arabidopsis thaliana). Two of these, XXT1 and XXT2, have been shown to be active in vitro, whereas the catalytic activity of XXT5 has yet to be demonstrated. By optimizing XXT2 expression in a prokaryotic system and in vitro activity assay conditions, we demonstrate that nonglycosylated XXT2 lacking its cytosolic amino-terminal and transmembrane domain displays high catalytic activity. Using this optimized procedure for the expression of XXT5, we report, to our knowledge for the first time, that recombinant XXT5 shows enzymatic activity in vitro, although at a significantly slower rate than XXT1 and XXT2. Kinetic analysis showed that XXT5 has a 7-fold higher Km and 9-fold lower kcat compared with XXT1 and XXT2. Activity assays using XXT5 in combination with XXT1 or XXT2 indicate that XXT5 is not specific for their products. In addition, mutagenesis experiments showed that the in vivo function and in vitro catalytic activity of XXT5 require the aspartate-serine-aspartate motif. These results demonstrate that XXT5 is a catalytically active xylosyltransferase involved in xylosylation of the xyloglucan backbone. PMID:27208276

  14. Enzymatic Activity of Xyloglucan Xylosyltransferase 5.

    PubMed

    Culbertson, Alan T; Chou, Yi-Hsiang; Smith, Adrienne L; Young, Zachary T; Tietze, Alesia A; Cottaz, Sylvain; Fauré, Régis; Zabotina, Olga A

    2016-07-01

    Xyloglucan, the most abundant hemicellulosic component of the primary cell wall of flowering plants, is composed of a β-(1,4)-glucan backbone decorated with d-xylosyl residues. Three xyloglucan xylosyltransferases (XXTs) participate in xyloglucan biosynthesis in Arabidopsis (Arabidopsis thaliana). Two of these, XXT1 and XXT2, have been shown to be active in vitro, whereas the catalytic activity of XXT5 has yet to be demonstrated. By optimizing XXT2 expression in a prokaryotic system and in vitro activity assay conditions, we demonstrate that nonglycosylated XXT2 lacking its cytosolic amino-terminal and transmembrane domain displays high catalytic activity. Using this optimized procedure for the expression of XXT5, we report, to our knowledge for the first time, that recombinant XXT5 shows enzymatic activity in vitro, although at a significantly slower rate than XXT1 and XXT2. Kinetic analysis showed that XXT5 has a 7-fold higher Km and 9-fold lower kcat compared with XXT1 and XXT2. Activity assays using XXT5 in combination with XXT1 or XXT2 indicate that XXT5 is not specific for their products. In addition, mutagenesis experiments showed that the in vivo function and in vitro catalytic activity of XXT5 require the aspartate-serine-aspartate motif. These results demonstrate that XXT5 is a catalytically active xylosyltransferase involved in xylosylation of the xyloglucan backbone. PMID:27208276

  15. Nanocrystal Bioassembly: Asymmetry, Proximity, and Enzymatic Manipulation

    SciTech Connect

    Claridge, Shelley A.

    2008-05-01

    Research at the interface between biomolecules and inorganic nanocrystals has resulted in a great number of new discoveries. In part this arises from the synergistic duality of the system: biomolecules may act as self-assembly agents for organizing inorganic nanocrystals into functional materials; alternatively, nanocrystals may act as microscopic or spectroscopic labels for elucidating the behavior of complex biomolecular systems. However, success in either of these functions relies heavily uponthe ability to control the conjugation and assembly processes.In the work presented here, we first design a branched DNA scaffold which allows hybridization of DNA-nanocrystal monoconjugates to form discrete assemblies. Importantly, the asymmetry of the branched scaffold allows the formation of asymmetric2assemblies of nanocrystals. In the context of a self-assembled device, this can be considered a step toward the ability to engineer functionally distinct inputs and outputs.Next we develop an anion-exchange high performance liquid chromatography purification method which allows large gold nanocrystals attached to single strands of very short DNA to be purified. When two such complementary conjugates are hybridized, the large nanocrystals are brought into close proximity, allowing their plasmon resonances to couple. Such plasmon-coupled constructs are of interest both as optical interconnects for nanoscale devices and as `plasmon ruler? biomolecular probes.We then present an enzymatic ligation strategy for creating multi-nanoparticle building blocks for self-assembly. In constructing a nanoscale device, such a strategy would allow pre-assembly and purification of components; these constructs can also act as multi-label probes of single-stranded DNA conformational dynamics. Finally we demonstrate a simple proof-of-concept of a nanoparticle analog of the polymerase chain reaction.

  16. Elucidation of Factors Effecting Enzymatic Saccharification using Transgenic Hardwoods

    NASA Astrophysics Data System (ADS)

    Min, Douyong

    Three groups of transgenic wood samples were used as starting materials to elucidate the recalcitrance of enzymatic saccharification with/without pretreatments. The first group of transgenic wood samples is low lignin P. trichocarpa. The second group is low xylan P. trichocarpa. The third one is 12 hybrid poplars which have different levels of S/V ratio and lignin content. Four pretreatments were carried out in this research including dilute sulfuric acid, green liquor, auto hydrolysis and ozone delignification. The behavior among pretreatments as a function of removal of lignin appears to be different. Lignin is the major factor of recalcitrance of the lignocellulosic material to ethanol conversion process. Xylan also plays key role in this process. In addition, the crude milled wood lignin was isolated from these three groups of transgenic samples. Lignin carbohydrate complexes was characterized by 1H-13C HMQC and 13C NMR. Thus the effect of LCCs on enzymatic saccharification was elucidated. High S/V ratio propels the lignin removal during pretreatments however; high S/V ratio retards the enzymatic saccharification on the lignocellulosic material without pretreatments. The level of LCCs linkages accounts for additional recalcitrance of the lignocellulosic material to ethanol conversion process. The amount of LCCs linkages is affected by xylan content, lignin content and S/V ratio.

  17. Self-evolving microstructured systems upon enzymatic catalysis.

    PubMed

    Chopineau, J; Lesieur, S; Carion-Taravella, B; Ollivon, M

    1998-01-01

    The consequences of cell microstructuration on enzyme functions is discussed in the framework of self-evolving microstructured systems. Molecular assemblies of amphiphiles or lipids are spontaneously formed by self-organisation. Among these different structures, reversed micelles, liquid crystalline mesophases and vesicles are hosts for enzymatic reaction studies. Inside a living cell, phospholipid metabolism is responsible for membrane structural modifications; the catalytic behaviour of lipolytic enzymes, mainly phospholipase (PL) A2, is described in relation with structural aspects of biological membranes. The implication in cellular regulation events of PLC and PLD is discussed in relation with the role of their reaction products as second messengers in membrane fusion processes. The in vitro synthesis of dialkyl phosphatidylcholines, via the enzymatic 'salvage pathway' which leads to the formation of vesicles upon phospholipid formation, is considered in relation with autopoiesis. More recent studies on self-evolving systems based on enzyme-surfactants reactions are detailed. The interactions between amphiphilic aggregates and enzymes allow to explore the OG/octanol/water phase diagram. Enzymatic formation of dipalmitoylphosphatidylcholine (DPPC) liposomes and non-ionic surfactant vesicles (NSV), starting from mixed micelles or open structures, finally sets an example of a biomimetic self-evolving system. PMID:9782383

  18. Controlling enzymatic activity and kinetics in swollen mesophases by physical nano-confinement

    NASA Astrophysics Data System (ADS)

    Sun, Wenjie; Vallooran, Jijo J.; Zabara, Alexandru; Mezzenga, Raffaele

    2014-05-01

    Bicontinuous lipid cubic mesophases are widely investigated as hosting matrices for functional enzymes to build biosensors and bio-devices due to their unique structural characteristics. However, the enzymatic activity within standard mesophases (in-meso) is severely hindered by the relatively small diameter of the mesophase aqueous channels, which provide only limited space for enzymes, and restrict them into a highly confined environment. We show that the enzymatic activity of a model enzyme, horseradish peroxidase (HRP), can be accurately controlled by relaxing its confinement within the cubic phases' water channels, when the aqueous channel diameters are systematically swollen with varying amount of hydration-enhancing sugar ester. The in-meso activity and kinetics of HRP are then systematically investigated by UV-vis spectroscopy, as a function of the size of the aqueous mesophase channels. The enzymatic activity of HRP increases with the swelling of the water channels. In swollen mesophases with water channel diameter larger than the HRP size, the enzymatic activity is more than double that measured in standard mesophases, approaching again the enzymatic activity of free HRP in bulk water. We also show that the physically-entrapped enzymes in the mesophases exhibit a restricted-diffusion-induced initial lag period and report the first observation of in-meso enzymatic kinetics significantly deviating from the normal Michaelis-Menten behaviour observed in free solutions, with deviations vanishing when enzyme confinement is released by swelling the mesophase.Bicontinuous lipid cubic mesophases are widely investigated as hosting matrices for functional enzymes to build biosensors and bio-devices due to their unique structural characteristics. However, the enzymatic activity within standard mesophases (in-meso) is severely hindered by the relatively small diameter of the mesophase aqueous channels, which provide only limited space for enzymes, and restrict them

  19. Enzymatic Enantioselective Decarboxylative Protonation of Heteroaryl Malonates

    PubMed Central

    Lewin, Ross; Goodall, Mark; Thompson, Mark L; Leigh, James; Breuer, Michael; Baldenius, Kai; Micklefield, Jason

    2015-01-01

    The enzyme aryl/alkenyl malonate decarboxylase (AMDase) catalyses the enantioselective decarboxylative protonation (EDP) of a range of disubstituted malonic acids to give homochiral carboxylic acids that are valuable synthetic intermediates. AMDase exhibits a number of advantages over the non-enzymatic EDP methods developed to date including higher enantioselectivity and more environmentally benign reaction conditions. In this report, AMDase and engineered variants have been used to produce a range of enantioenriched heteroaromatic α-hydroxycarboxylic acids, including pharmaceutical precursors, from readily accessible α-hydroxymalonates. The enzymatic method described here represents an improvement upon existing synthetic chemistry methods that have been used to produce similar compounds. The relationship between the structural features of these new substrates and the kinetics associated with their enzymatic decarboxylation is explored, which offers further insight into the mechanism of AMDase. PMID:25766433

  20. Enzymatic desulfurization of coal: Third quarterly report

    SciTech Connect

    Marquis, J.K.; Kitchell, J.P.

    1989-03-14

    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of ''model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix. In this quarter we obtained important results both with the development of our understanding of the enzyme reaction systems and also with the microbial work at Woods Hole. 12 figs., 11 tabs.

  1. Reaction graph kernels predict EC numbers of unknown enzymatic reactions in plant secondary metabolism

    PubMed Central

    2010-01-01

    Background Understanding of secondary metabolic pathway in plant is essential for finding druggable candidate enzymes. However, there are many enzymes whose functions are not yet discovered in organism-specific metabolic pathways. Towards identifying the functions of those enzymes, assignment of EC numbers to the enzymatic reactions they catalyze plays a key role, since EC numbers represent the categorization of enzymes on one hand, and the categorization of enzymatic reactions on the other hand. Results We propose reaction graph kernels for automatically assigning EC numbers to unknown enzymatic reactions in a metabolic network. Reaction graph kernels compute similarity between two chemical reactions considering the similarity of chemical compounds in reaction and their relationships. In computational experiments based on the KEGG/REACTION database, our method successfully predicted the first three digits of the EC number with 83% accuracy. We also exhaustively predicted missing EC numbers in plant's secondary metabolism pathway. The prediction results of reaction graph kernels on 36 unknown enzymatic reactions are compared with an expert's knowledge. Using the same data for evaluation, we compared our method with E-zyme, and showed its ability to assign more number of accurate EC numbers. Conclusion Reaction graph kernels are a new metric for comparing enzymatic reactions. PMID:20122204

  2. Ultrasonic acceleration of enzymatic processing of cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzymatic bio-processing of cotton generates significantly less hazardous wastewater effluents, which are readily biodegradable, but it also has several critical shortcomings that impede its acceptance by industries: expensive processing costs and slow reaction rates. It has been found that the intr...

  3. Inhibition of enzymatic cellulolysis by phenolic compounds.

    PubMed

    Tejirian, Ani; Xu, Feng

    2011-03-01

    Phenolics derived from lignin and other plant components can pose significant inhibition on enzymatic conversion of cellulosic biomass materials to useful chemicals. Understanding the mechanism of such inhibition is of importance for the development of viable biomass conversion technologies. In native plant cell wall, most of the phenolics and derivatives are found in polymeric lignin. When biomass feedstocks are pretreated (prior to enzymatic hydrolysis), simple or oligomeric phenolics and derivatives are often generated from lignin modification/degradation, which can inhibit biomass-converting enzymes. To further understand how such phenolic substances may affect cellulase reaction, we carried out a comparative study on a series of simple and oligomeric phenolics representing or mimicking the composition of lignin or its degradation products. Consistent to previous studies, we observed that oligomeric phenolics could exert more inhibition on enzymatic cellulolysis than simple phenolics. Oligomeric phenolics could inactivate cellulases by reversibly complexing them. Simple and oligomeric phenolics could also inhibit enzymatic cellulolysis by adsorbing onto cellulose. Individual cellulases showed different susceptibility toward these inhibitions. Polyethylene glycol and tannase could respectively bind and degrade the studied oligomeric phenolics, and by doing so mitigate the oligomeric phenolic's inhibition on cellulolysis. PMID:22112906

  4. Frank Westheimer's Early Demonstration of Enzymatic Specificity

    ERIC Educational Resources Information Center

    Ault, Addison

    2008-01-01

    In this article I review one of the most significant accomplishments of Frank H. Westheimer, one of the most respected chemists of the 20th century. This accomplishment was a series of stereospecific enzymatic oxidation and reduction experiments that led chemists to recognize what we now call the enantiotopic and diastereotopic relationships of…

  5. pH & Rate of Enzymatic Reactions.

    ERIC Educational Resources Information Center

    Clariana, Roy B.

    1991-01-01

    A quantitative and inexpensive way to measure the rate of enzymatic reaction is provided. The effects of different pH levels on the reaction rate of an enzyme from yeast are investigated and the results graphed. Background information, a list of needed materials, directions for preparing solutions, procedure, and results and discussion are…

  6. Starch: chemistry, microstructure, processing and enzymatic degradation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch is recognized as one of the most abundant and important commodities containing value added attributes for a vast number of industrial applications. Its chemistry, structure, property and susceptibility to various chemical, physical and enzymatic modifications offer a high technological value ...

  7. Multi-parametric MRI characterization of enzymatically degraded articular cartilage.

    PubMed

    Nissi, Mikko J; Salo, Elli-Noora; Tiitu, Virpi; Liimatainen, Timo; Michaeli, Shalom; Mangia, Silvia; Ellermann, Jutta; Nieminen, Miika T

    2016-07-01

    Several laboratory and rotating frame quantitative MRI parameters were evaluated and compared for detection of changes in articular cartilage following selective enzymatic digestion. Bovine osteochondral specimens were subjected to 44 h incubation in control medium or in collagenase or chondroitinase ABC to induce superficial collagen or proteoglycan (glycosaminoglycan) alterations. The samples were scanned at 9.4 T for T1 , T1 Gd (dGEMRIC), T2 , adiabatic T1 ρ , adiabatic T2 ρ , continuous-wave T1 ρ , TRAFF2 , and T1 sat relaxation times and for magnetization transfer ratio (MTR). For reference, glycosaminoglycan content, collagen fibril orientation and biomechanical properties were determined. Changes primarily in the superficial cartilage were noted after enzymatic degradation. Most of the studied parameters were sensitive to the destruction of collagen network, whereas glycosaminoglycan depletion was detected only by native T1 and T1 Gd relaxation time constants throughout the tissue and by MTR superficially. T1 , adiabatic T1 ρ , adiabatic T2 ρ , continuous-wave T1 ρ , and T1 sat correlated significantly with the biomechanical properties while T1 Gd correlated with glycosaminoglycan staining. The findings indicated that most of the studied MRI parameters were sensitive to both glycosaminoglycan content and collagen network integrity, with changes due to enzymatic treatment detected primarily in the superficial tissue. Strong correlation of T1 , adiabatic T1ρ , adiabatic T2 ρ , continuous-wave T1 ρ , and T1 sat with the altered biomechanical properties, reflects that these parameters were sensitive to critical functional properties of cartilage. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1111-1120, 2016. PMID:26662555

  8. Modeling Enzymatic Reactions in Proteins.

    NASA Astrophysics Data System (ADS)

    Friesner, Richard

    2007-03-01

    We will discuss application of our density functional (DFT)-based QM/MM methodology to modeling a variety of protein active sites, including methane monooxygenase, myoglobin, and cytochrome P450. In addition to the calculation of intermediates, transition states, and rate constants, we will discuss modeling of reactions requiring protein conformational changes. Our methodology reliably achieves small errors as a result of imposition of the QM/MM boundary. However, the accuracy of DFT methods can vary significantly with the type of system under study. We will discuss a novel approach to the reduction of errors in gradient corrected and hybrid DFT functionals, using empirical localized orbital corrections (DFT-LOC), which addresses this problem effectively. For example, the mean unsigned error in atomization energies for the G3 data set using the B3LYP-LOC model is 0.8 kcal/mole, as compared with 4.8 kcal/mole for B3LYP and 1.0 kcal/mole for G3 theory.

  9. Aromatic–Aromatic Interactions Enhance Interfiber Contacts for Enzymatic Formation of a Spontaneously Aligned Supramolecular Hydrogel

    PubMed Central

    2015-01-01

    Anisotropy or alignment is a critical feature of functional soft materials in living organisms, but it remains a challenge for spontaneously generating anisotropic gel materials. Here we report a molecular design that increases intermolecular aromatic–aromatic interactions of hydrogelators during enzymatic hydrogelation for spontaneously forming an anisotropic hydrogel. This process, relying on both aromatic–aromatic interactions and enzyme catalysis, results in spontaneously aligned supramolecular nanofibers as the matrices of a monodomain hydrogel that exhibits significant birefringence. This work, as the first example of monodomain hydrogels formed via an enzymatic reaction, illustrates a new biomimetic approach for generating aligned anisotropic soft materials. PMID:24512553

  10. Enzymatic passaging of human embryonic stem cells alters central carbon metabolism and glycan abundance

    PubMed Central

    Badur, Mehmet G.; Zhang, Hui; Metallo, Christian M.

    2016-01-01

    To realize the potential of human embryonic stem cells (hESCs) in regenerative medicine and drug discovery applications, large numbers of cells that accurately recapitulate cell and tissue function must be robustly produced. Previous studies have suggested that genetic instability and epigenetic changes occur as a consequence of enzymatic passaging. However, the potential impacts of such passaging methods on the metabolism of hESCs have not been described. Using stable isotope tracing and mass spectrometry-based metabolomics, we have explored how different passaging reagents impact hESC metabolism. Enzymatic passaging caused significant decreases in glucose utilization throughout central carbon metabolism along with attenuated de novo lipogenesis. In addition, we developed and validated a method for rapidly quantifying glycan abundance and isotopic labeling in hydrolyzed biomass. Enzymatic passaging reagents significantly altered levels of glycans immediately after digestion but surprisingly glucose contribution to glycans was not affected. These results demonstrate that there is an immediate effect on hESC metabolism after enzymatic passaging in both central carbon metabolism and biosynthesis. HESCs subjected to enzymatic passaging are routinely placed in a state requiring re-synthesis of biomass components, subtly influencing their metabolic needs in a manner that may impact cell performance in regenerative medicine applications. PMID:26289220

  11. Redox polymer mediation for enzymatic biofuel cells

    NASA Astrophysics Data System (ADS)

    Gallaway, Joshua

    Mediated biocatalytic cathodes prepared from the oxygen-reducing enzyme laccase and redox-conducting osmium hydrogels were characterized for use as cathodes in enzymatic biofuel cells. A series of osmium-based redox polymers was synthesized with redox potentials spanning the range from 0.11 V to 0.85 V (SHE), and the resulting biocatalytic electrodes were modeled to determine reaction kinetic constants using the current response, measured osmium concentration, and measured apparent electron diffusion. As in solution-phase systems, the bimolecular rate constant for mediation was found to vary greatly with mediator potential---from 250 s-1M-1 when mediator and enzyme were close in potential to 9.4 x 10 4 s-1M-1 when this overpotential was large. Optimum mediator potential for a cell operating with a non-limiting platinum anode and having no mass transport limitation from bulk solution was found to be 0.66 V (SHE). Redox polymers were synthesized under different concentrations, producing osmium variation. An increase from 6.6% to 7.2% osmium increased current response from 1.2 to 2.1 mA/cm2 for a planar film in 40°C oxygen-saturated pH 4 buffer, rotating at 900 rpm. These results translated to high surface area electrodes, nearly doubling current density to 13 mA/cm2, the highest to date for such an electrode. The typical fungal laccase from Trametes versicolor was replaced by a bacterially-expressed small laccase from Streptomyces coelicolor, resulting in biocatalytic films that reduced oxygen at increased pH, with full functionality at pH 7, producing 1.5 mA/cm 2 in planar configuration. Current response was biphasic with pH, matching the activity profile of the free enzyme in solution. The mediated enzyme electrode system was modeled with respect to apparent electron diffusion, mediator concentration, and transport of oxygen from bulk solution, all of which are to some extent controlled by design. Each factor was found to limit performance in certain circumstances

  12. Enzymatic induction of supramolecular order and bioactivity

    NASA Astrophysics Data System (ADS)

    Yang, Chengbiao; Ren, Xinrui; Ding, Dan; Wang, Ling; Yang, Zhimou

    2016-05-01

    We showed in this study that enzymatic triggering is a totally different pathway for the preparation of self-assembling nanomaterials to the heating-cooling process. Because the molecules were under lower energy levels and the molecular conformation was more ordered during the enzymatic triggeration under mild conditions, nanomaterials with higher supramolecular order could be obtained through biocatalytic control. In this study, nanoparticles were obtained by an enzymatic reaction and nanofibers were observed through the heating-cooling process. We observed a distinct trough at 318 nm from the CD spectrum of a particle sample but not a fiber sample, suggesting the long range arrangement of molecules and helicity in the nanoparticles. The nanoparticles with higher supramolecular order possessed much better potency as a protein vaccine adjuvant because it accelerated the DC maturation and elicited stronger T-cells cytokine production than the nanofibers. Our study demonstrated that biocatalytic triggering is a useful method for preparing supramolecular nanomaterials with higher supramolecular order and probably better bioactivity.We showed in this study that enzymatic triggering is a totally different pathway for the preparation of self-assembling nanomaterials to the heating-cooling process. Because the molecules were under lower energy levels and the molecular conformation was more ordered during the enzymatic triggeration under mild conditions, nanomaterials with higher supramolecular order could be obtained through biocatalytic control. In this study, nanoparticles were obtained by an enzymatic reaction and nanofibers were observed through the heating-cooling process. We observed a distinct trough at 318 nm from the CD spectrum of a particle sample but not a fiber sample, suggesting the long range arrangement of molecules and helicity in the nanoparticles. The nanoparticles with higher supramolecular order possessed much better potency as a protein vaccine

  13. Membrane-Binding and Enzymatic Properties of RPE65

    PubMed Central

    Kiser, Philip D.; Palczewski, Krzysztof

    2010-01-01

    Regeneration of visual pigments is essential for sustained visual function. Although the requirement for non-photochemical regeneration of the visual chromophore, 11-cis-retinal, was recognized early on, it was only recently that the trans to cis retinoid isomerase activity required for this process was assigned to a specific protein, a microsomal membrane enzyme called RPE65. In this review, we outline progress that has been made in the functional characterization of RPE65. We then discuss general concepts related to protein-membrane interactions and the mechanism of the retinoid isomerization reaction and describe some of the important biochemical and structural features of RPE65 with respect to its membrane-binding and enzymatic properties. PMID:20304090

  14. PARP1 Val762Ala polymorphism reduces enzymatic activity

    SciTech Connect

    Wang Xiaogan; Wang Zhaoqi; Tong Weimin . E-mail: tong@iarc.fr; Shen Yan

    2007-03-02

    Poly(ADP-ribose) polymerase 1 (PARP1) modifies a variety of nuclear proteins by poly(ADP-ribosyl)ation, and plays diverse roles in molecular and cellular processes. A common PARP1 single nucleotide polymorphism (SNP) at codon 762, resulting in the substitution of alanine (Ala) for valine (Val) in the catalytic domain has been implicated in susceptibility to cancer. To characterize the functional effect of this polymorphism on PARP1, we performed in vitro enzymatic analysis on PARP1-Ala762 and PARP1-Val762. We found that PARP1-Ala762 displayed 57.2% of the activity of PARP1-Val762 for auto-poly(ADP-ribosyl)ation and 61.9% of the activity of PARP1-Val762 for trans-poly(ADP-ribosyl)ation of histone H1. The kinetic characterization revealed that the K {sub m} of PARP1-Ala762 was increased to a 1.2-fold of the K {sub m} of PARP1-Val762 for trans-poly(ADP-ribosyl)ation. Thus, the PARP1 Val762Ala polymorphism reduces the enzymatic activity of PARP1 by increasing K {sub m}. This finding suggests that different levels of poly(ADP-ribosyl)ation by PARP1 might aid in understanding Cancer risk of carriers of the PARP1 Val762Ala polymorphism.

  15. Synergism and Mutualism in Non-Enzymatic RNA Polymerization

    PubMed Central

    Kaddour, Hussein; Sahai, Nita

    2014-01-01

    The link between non-enzymatic RNA polymerization and RNA self-replication is a key step towards the “RNA world” and still far from being solved, despite extensive research. Clay minerals, lipids and, more recently, peptides were found to catalyze the non-enzymatic synthesis of RNA oligomers. Herein, a review of the main models for the formation of the first RNA polymers is presented in such a way as to emphasize the cooperation between life’s building blocks in their emergence and evolution. A logical outcome of the previous results is a combination of these models, in which RNA polymerization might have been catalyzed cooperatively by clays, lipids and peptides in one multi-component prebiotic soup. The resulting RNAs and oligopeptides might have mutualistically evolved towards functional RNAs and catalytic peptides, preceding the first RNA replication, thus supporting an RNA-peptide world. The investigation of such a system is a formidable challenge, given its complexity deriving from a tremendously large number of reactants and innumerable products. A rudimentary experimental design is outlined, which could be used in an initial attempt to study a quaternary component system. PMID:25370531

  16. New approaches to enzymatic glycoside synthesis through directed evolution.

    PubMed

    Kittl, Roman; Withers, Stephen G

    2010-07-01

    The expanding field of glycobiology requires tools for the synthesis of structurally defined oligosaccharides and glycoconjugates, while any potential therapeutic applications of sugar-based derivates would require access to substantial quantities of such compounds. Classical chemical approaches are not well suited for such large-scale syntheses, thus enzymatic approaches are sought. Traditional routes to the enzymatic assembly of oligosaccharides have involved the use of either Nature's own biosynthetic enzymes, the glycosyl transferases, or glycosidases run in transglycosylation mode. However, each approach has drawbacks that have limited its application. Glycosynthases are mutant glycosidases in which the catalytic nucleophile has been replaced by mutation, inactivating them as hydrolases. When used in conjunction with glycosyl fluorides of the opposite anomeric configuration to that of the substrate, these enzymes function as highly efficient transferases, frequently giving stoichiometric yields of products. Further improvements can be obtained through directed evolution of the gene encoding the enzyme in question, but this requires the ability to screen very large libraries of catalysts. In this review we survey new screening methods for the formation of glycosidic linkages using high-throughput techniques, such as FACS, chemical complementation, and robot-assisted ELISA assays. Enzymes were evolved to have higher catalytic activity with their natural substrates, to show altered substrate specificities or to be promiscuous for efficient application in oligosaccharide, glycolipid, and glycoprotein synthesis. PMID:20427037

  17. Expedient and generic synthesis of imidazole nucleosides by enzymatic transglycosylation.

    PubMed

    Vichier-Guerre, S; Dugué, L; Bonhomme, F; Pochet, S

    2016-04-14

    A straightforward route to original imidazole-based nucleosides that makes use of an enzymatic N-transglycosylation step is reported in both the ribo- and deoxyribo-series. To illustrate the scope of this approach, a diverse set of 4-aryl and 4-heteroaryl-1H-imidazoles featuring variable sizes and hydrogen-bonding patterns was prepared using a microwave-assisted Suzuki-Miyaura cross-coupling reaction. These imidazole derivatives were examined as possible substrates for the nucleoside 2'-deoxyribosyltransferase from L. leichmannii and the purine nucleoside phosphorylase from E. coli. The optimum transglycosylation conditions, including the use of co-adjuvants to address solubility issues, were defined. Enzymatic conversion of 4-(hetero)arylimidazoles to 2'-deoxyribo- or ribo-nucleosides proceeded in good to high conversion yields, except bulky hydrophobic imidazole derivatives. Nucleoside deoxyribosyltransferase of class II was found to convert the widest range of functionalized imidazoles into 2'-deoxyribonucleosides and was even capable of bis-glycosylating certain heterocyclic substrates. Our findings should enable chemoenzymatic access to a large diversity of flexible nucleoside analogues as molecular probes, drug candidates and original building blocks for synthetic biology. PMID:26986701

  18. Biofunctional Properties of Enzymatic Squid Meat Hydrolysate

    PubMed Central

    Choi, Joon Hyuk; Kim, Kyung-Tae; Kim, Sang Moo

    2015-01-01

    Squid is one of the most important commercial fishes in the world and is mainly utilized or consumed as sliced raw fish or as processed products. The biofunctional activities of enzymatic squid meat hydrolysate were determined to develop value-added products. Enzymatic squid hydrolysate manufactured by Alcalase effectively quenched 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, and hydrogen peroxide radical with IC50 values of 311, 3,410, and 111.5 μg/mL, respectively. Angiotensin I-converting enzyme inhibitory activity of squid hydrolysate was strong with an IC50 value of 145.1 μg/mL, while tyrosinase inhibitory activity with an IC50 value of 4.72 mg/mL was moderately low. Overall, squid meat hydrolysate can be used in food or cosmetic industries as a bioactive ingredient and possibly be used in the manufacture of seasoning, bread, noodle, or cosmetics. PMID:25866752

  19. Production of MAG via enzymatic glycerolysis

    NASA Astrophysics Data System (ADS)

    Jamlus, Norul Naziraa Ahmad; Derawi, Darfizzi; Salimon, Jumat

    2015-09-01

    Enzymatic glycerolysis of a medium chain methyl ester, methyl laurate was performed using lipase Candida antarctica (Novozyme 435) for 6 hours at 55°C. The percentage of components mixture of product were determined by using gas chromatography technique. The enzymatic reaction was successfully produced monolaurin (45.9 %), dilaurin (47.1 %) and trilaurin (7.0 %) respectively. Thin layer chromatography (TLC) plate also showed a good separation of component spots. Fourier transformation infra-red (FTIR) spectrum showed the presence of ester carbonyl at wavenumber 1739.99 cm-1 and hydrogen bonded O-H at 3512.03 cm-1. The product is potentially to be used as emulsifier and additive in food industry, pharmaceutical, as well as antibacterial.

  20. A Networks Approach to Modeling Enzymatic Reactions.

    PubMed

    Imhof, P

    2016-01-01

    Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes. PMID:27497170

  1. Enzymatic degradation of polycaprolactone-gelatin blend

    NASA Astrophysics Data System (ADS)

    Banerjee, Aditi; Chatterjee, Kaushik; Madras, Giridhar

    2015-04-01

    Blends of polycaprolactone (PCL), a synthetic polymer and gelatin, natural polymer offer a optimal combination of strength, water wettability and cytocompatibility for use as a resorbable biomaterial. The enzymatic degradation of PCL, gelatin and PCL-gelatin blended films was studied in the presence of lipase (Novozym 435, immobilized) and lysozyme. Novozym 435 degraded the PCL films whereas lysozyme degraded the gelatin. Though Novozym 435 and lysozyme individually could degrade PCL-gelatin blended films, the combination of these enzymes showed the highest degradation of these blended films. Moreover, the enzymatic degradation was much faster when fresh enzymes were added at regular intervals. The changes in physico-chemical properties of polymer films due to degradation were studied by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. These results have important implications for designing resorbable biomedical implants.

  2. Criticality and Adaptivity in Enzymatic Networks.

    PubMed

    Steiner, Paul J; Williams, Ruth J; Hasty, Jeff; Tsimring, Lev S

    2016-09-01

    The contrast between the stochasticity of biochemical networks and the regularity of cellular behavior suggests that biological networks generate robust behavior from noisy constituents. Identifying the mechanisms that confer this ability on biological networks is essential to understanding cells. Here we show that queueing for a limited shared resource in broad classes of enzymatic networks in certain conditions leads to a critical state characterized by strong and long-ranged correlations between molecular species. An enzymatic network reaches this critical state when the input flux of its substrate is balanced by the maximum processing capacity of the network. We then consider enzymatic networks with adaptation, when the limiting resource (enzyme or cofactor) is produced in proportion to the demand for it. We show that the critical state becomes an attractor for these networks, which points toward the onset of self-organized criticality. We suggest that the adaptive queueing motif that leads to significant correlations between multiple species may be widespread in biological systems. PMID:27602735

  3. Enzymatic transformation of nonfood biomass to starch

    PubMed Central

    You, Chun; Chen, Hongge; Myung, Suwan; Sathitsuksanoh, Noppadon; Ma, Hui; Zhang, Xiao-Zhou; Li, Jianyong; Zhang, Y.-H. Percival

    2013-01-01

    The global demand for food could double in another 40 y owing to growth in the population and food consumption per capita. To meet the world’s future food and sustainability needs for biofuels and renewable materials, the production of starch-rich cereals and cellulose-rich bioenergy plants must grow substantially while minimizing agriculture’s environmental footprint and conserving biodiversity. Here we demonstrate one-pot enzymatic conversion of pretreated biomass to starch through a nonnatural synthetic enzymatic pathway composed of endoglucanase, cellobiohydrolyase, cellobiose phosphorylase, and alpha-glucan phosphorylase originating from bacterial, fungal, and plant sources. A special polypeptide cap in potato alpha-glucan phosphorylase was essential to push a partially hydrolyzed intermediate of cellulose forward to the synthesis of amylose. Up to 30% of the anhydroglucose units in cellulose were converted to starch; the remaining cellulose was hydrolyzed to glucose suitable for ethanol production by yeast in the same bioreactor. Next-generation biorefineries based on simultaneous enzymatic biotransformation and microbial fermentation could address the food, biofuels, and environment trilemma. PMID:23589840

  4. Enzymatic induction of supramolecular order and bioactivity.

    PubMed

    Yang, Chengbiao; Ren, Xinrui; Ding, Dan; Wang, Ling; Yang, Zhimou

    2016-05-19

    We showed in this study that enzymatic triggering is a totally different pathway for the preparation of self-assembling nanomaterials to the heating-cooling process. Because the molecules were under lower energy levels and the molecular conformation was more ordered during the enzymatic triggeration under mild conditions, nanomaterials with higher supramolecular order could be obtained through biocatalytic control. In this study, nanoparticles were obtained by an enzymatic reaction and nanofibers were observed through the heating-cooling process. We observed a distinct trough at 318 nm from the CD spectrum of a particle sample but not a fiber sample, suggesting the long range arrangement of molecules and helicity in the nanoparticles. The nanoparticles with higher supramolecular order possessed much better potency as a protein vaccine adjuvant because it accelerated the DC maturation and elicited stronger T-cells cytokine production than the nanofibers. Our study demonstrated that biocatalytic triggering is a useful method for preparing supramolecular nanomaterials with higher supramolecular order and probably better bioactivity. PMID:27161242

  5. Enzymatic glycoprotein synthesis: Preparation of ribonuclease glycoforms via enzymatic glycopeptide condensation and glycosylation

    SciTech Connect

    Witte, K.; Sears, P.; Martin, R.; Wong, C.H.

    1997-03-05

    In order to study the effects carbohydrates have on glycoprotein structure and funciton, it is imperative to be able to synthesize the appropriate natural and non-natural glycoprotein variants in a single form. Because the available in vivo techniques provide only heterogeneous mixtures of different glycoforms, enzymatic in vitro methodologies have been pursued. Using the N-glycoprotein RNase B as a model system, the oligosaccharide was removed leaving only the N-acetylglucosamine as a `tag` to the site of glycosylation. Glycosyltransferases were then used to build a unique carbohydrate moiety. A new RNase glycoform containing the branched oligosccharide, sialyl Lewis X or the Hg derivative, was synthesized enzymatically to demonstrate the feasibility of the method. In addition, the monoglycosylated protein was digested into several smaller pieces by subtilisin BPN`. These fragments were religated by subtilisin 8397 to the full length RNase by addition glycerol; this method points to a new chemical-enzymatic process for the synthesis of glycoproteins using synthetic peptides and glycopeptides as substrates for enzymatic ligation followed by further enzymatic glycosylations. 29 refs., 6 figs.

  6. Enzymatic hydrolysis of oleuropein from Olea europea (olive) leaf extract and antioxidant activities.

    PubMed

    Yuan, Jiao-Jiao; Wang, Cheng-Zhang; Ye, Jian-Zhong; Tao, Ran; Zhang, Yu-Si

    2015-01-01

    Oleuropein (OE), the main polyphenol in olive leaf extract, is likely to decompose into hydroxytyrosol (HT) and elenolic acid under the action of light, acid, base, high temperature. In the enzymatic process, the content of OE in olive leaf extract and enzyme are key factors that affect the yield of HT. A selective enzyme was screened from among 10 enzymes with a high OE degradation rate. A single factor (pH, temperature, time, enzyme quantity) optimization process and a Box-Behnken design were studied for the enzymatic hydrolysis of 81.04% OE olive leaf extract. Additionally, enzymatic hydrolysis results with different substrates (38.6% and 81.04% OE) were compared and the DPPH antioxidant properties were also evaluated. The result showed that the performance of hydrolysis treatments was best using hemicellulase as a bio-catalyst, and the high purity of OE in olive extract was beneficial to biotransform OE into HT. The optimal enzymatic conditions for achieving a maximal yield of HT content obtained by the regression were as follows: pH 5, temperature 55 °C and enzyme quantity 55 mg. The experimental result was 11.31% ± 0.15%, and the degradation rate of OE was 98.54%. From the present investigation of the antioxidant activity determined by the DPPH method, the phenol content and radical scavenging effect were both decreased after enzymatic hydrolysis by hemicellulase. However, a high antioxidant activity of the ethyl acetate extract enzymatic hydrolysate (IC50 = 41.82 μg/mL) was demonstated. The results presented in this work suggested that hemicellulase has promising and attractive properties for industrial production of HT, and indicated that HT might be a valuable biological component for use in pharmaceutical products and functional foods. PMID:25679050

  7. Biologically Active Oxylipins from Enzymatic and Nonenzymatic Routes in Macroalgae

    PubMed Central

    Barbosa, Mariana; Valentão, Patrícia; Andrade, Paula B.

    2016-01-01

    Marine algae are rich and heterogeneous sources of great chemical diversity, among which oxylipins are a well-recognized class of natural products. Algal oxylipins comprise an assortment of oxygenated, halogenated, and unsaturated functional groups and also several carbocycles, varying in ring size and position in lipid chain. Besides the discovery of structurally diverse oxylipins in macroalgae, research has recently deciphered the role of some of these metabolites in the defense and innate immunity of photosynthetic marine organisms. This review is an attempt to comprehensively cover the available literature on the chemistry, biosynthesis, ecology, and potential bioactivity of oxylipins from marine macroalgae. For a better understanding, enzymatic and nonenzymatic routes were separated; however, both processes often occur concomitantly and may influence each other, even producing structurally related molecules. PMID:26805855

  8. Continuous enzymatic liquefaction of starch for saccharification

    SciTech Connect

    Carr, M.E.; Black, L.T.; Bagby, M.O.

    1982-01-01

    A process was explored for continuous enzymatic liquefaction of corn starch at high concentration and subsequent saccharification to glucose. The process appears to be quite efficient for conversion of starch to glucose and enzymatic liquefaction and should be readily adaptable to industrial fermentation processes. Preliminary work indicated that milled corn or other cereal grains also can be suitably converted by such a process. Essentially, the process involved incorporation of a thermostable, bacterial alpha-amylase for liquefaction and, subsequently, of a glucoamylase into the continuous mixer under conditions conductive to rapid enzymatic hydrolyses. Also studied was the effect on substrate liquefaction of variables such as starch concentration (40-70%), level of alpha-amylase (0.14-0.4%, dry starch basis), temperature (70-100 degrees C), pH (5.8-7.1), and residence time (6 and 12 minutes). The degree of liquefaction was assessed by determining 1) the Brookfield viscosity, 2) the amount of reducing groups, and 3) the rate and extent of glucose formed after glucoamylase treatment. Best liquefaction processing conditions were achieved by using 50-60% starch concentration, at 95 degrees C, with 0.4% alpha-amylase, and a 6 minute residence period in the mixer. Under these conditions, rates and extents of glucose obtained after glucoamylase treatment approached those obtained in longer laboratory batch liquefactions. The amount of glucose formed in 24 hours with the use of 0.4% glucoamylase was 86% of theory after a 6-min continuous liquefaction, compared to 90% for a 30-min laboratory batch liquefaction (95 degrees C, 0.4% alpha-amylase). (Refs. 15).

  9. Microwave-mediated enzymatic modifications of DNA.

    PubMed

    Das, Rakha Hari; Ahirwar, Rajesh; Kumar, Saroj; Nahar, Pradip

    2015-02-15

    Here we report microwave-induced specific cleavage, ligation, dephosphorylation, and phosphorylation of nucleic acids catalyzed by restriction endonucleases, T4 DNA ligase, T4 polynucleotide kinase, and calf intestinal alkaline phosphatase. The microwave-mediated method has dramatically reduced the reaction time to 20 to 50s. In control experiments, the same reactions failed to give the desired reaction products when carried out in the same time periods but without microwave irradiation. Because the microwave method is rapid, it could be a useful alternative to the time-consuming conventional procedure for enzymatic modification of DNA. PMID:25447491

  10. Enzymatic Biofuel Cells on Porous Nanostructures.

    PubMed

    Wen, Dan; Eychmüller, Alexander

    2016-09-01

    Biofuel cells (BFCs) that utilize enzymes as catalysts represent a new sustainable and renewable energy technology. Numerous efforts have been directed to improve the performance of the enzymatic BFCs (EBFCs) with respect to power output and operational stability for further applications in portable power sources, self-powered electrochemical sensing, implantable medical devices, etc. The latest advances in EBFCs based on porous nanoarchitectures over the past 5 years are detailed here. Porous matrices from carbon, noble metals, and polymers promote the development of EBFCs through the electron transfer and mass transport benefits. Some key issues regarding how these nanostructured porous media improve the performance of EBFCs are also discussed. PMID:27377976

  11. Enzymatic surface modification of acrylonitrile fibers

    NASA Astrophysics Data System (ADS)

    Battistel, Ezio; Morra, Marco; Marinetti, Massimo

    2001-06-01

    The surface of polyacrylonitrile polymer (containing 10% acetate groups) as fibers and finely ground powder have been modified by enzymatic treatment. The enzyme used was a nitrile hydratase, member of the class of nitrile converting enzymes, present in the microorganisms Brevibacterium imperiale and Corynebacterium nitrilophilus. The pendant nitrile groups were selectively converted into the corresponding amides as assessed by XPS analysis. As indicated by the increase of the O/C atomic ratio, the fiber surface showed a significant increase in hydrophilicity. The newly formed amide groups were then able to react with the acid dyes typically used to stain natural fibers, conferring the coloring properties to the otherwise inert polymer surface.

  12. Enzymatic Catalytic Beds For Oxidation Of Alcohols

    NASA Technical Reports Server (NTRS)

    Jolly, Clifford D.; Schussel, Leonard J.

    1993-01-01

    Modules containing beds of enzymatic material catalyzing oxidation of primary alcohols and some other organic compounds developed for use in wastewater-treatment systems of future spacecraft. Designed to be placed downstream of multifiltration modules, which contain filters and sorbent beds removing most of non-alcoholic contaminants but fail to remove significant amounts of low-molecular-weight, polar, nonionic compounds like alcohols. Catalytic modules also used on Earth to oxidize primary alcohols and other compounds in wastewater streams and industrial process streams.

  13. Computational strategies for the design of new enzymatic functions.

    PubMed

    Świderek, K; Tuñón, I; Moliner, V; Bertran, J

    2015-09-15

    In this contribution, recent developments in the design of biocatalysts are reviewed with particular emphasis in the de novo strategy. Studies based on three different reactions, Kemp elimination, Diels-Alder and Retro-Aldolase, are used to illustrate different success achieved during the last years. Finally, a section is devoted to the particular case of designed metalloenzymes. As a general conclusion, the interplay between new and more sophisticated engineering protocols and computational methods, based on molecular dynamics simulations with Quantum Mechanics/Molecular Mechanics potentials and fully flexible models, seems to constitute the bed rock for present and future successful design strategies. PMID:25797438

  14. Structural insights into the epimerization of β-1,4-linked oligosaccharides catalyzed by cellobiose 2-epimerase, the sole enzyme epimerizing non-anomeric hydroxyl groups of unmodified sugars.

    PubMed

    Fujiwara, Takaaki; Saburi, Wataru; Matsui, Hirokazu; Mori, Haruhide; Yao, Min

    2014-02-01

    Cellobiose 2-epimerase (CE) reversibly converts d-glucose residues into d-mannose residues at the reducing end of unmodified β1,4-linked oligosaccharides, including β-1,4-mannobiose, cellobiose, and lactose. CE is responsible for conversion of β1,4-mannobiose to 4-O-β-d-mannosyl-d-glucose in mannan metabolism. However, the detailed catalytic mechanism of CE is unclear due to the lack of structural data in complex with ligands. We determined the crystal structures of halothermophile Rhodothermus marinus CE (RmCE) in complex with substrates/products or intermediate analogs, and its apo form. The structures in complex with the substrates/products indicated that the residues in the β5-β6 loop as well as those in the inner six helices form the catalytic site. Trp-322 and Trp-385 interact with reducing and non-reducing end parts of these ligands, respectively, by stacking interactions. The architecture of the catalytic site also provided insights into the mechanism of reversible epimerization. His-259 abstracts the H2 proton of the d-mannose residue at the reducing end, and consistently forms the cis-enediol intermediate by facilitated depolarization of the 2-OH group mediated by hydrogen bonding interaction with His-200. His-390 subsequently donates the proton to the C2 atom of the intermediate to form a d-glucose residue. The reverse reaction is mediated by these three histidines with the inverse roles of acid/base catalysts. The conformation of cellobiitol demonstrated that the deprotonation/reprotonation step is coupled with rotation of the C2-C3 bond of the open form of the ligand. Moreover, it is postulated that His-390 is closely related to ring opening/closure by transferring a proton between the O5 and O1 atoms of the ligand. PMID:24362032

  15. Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry

    PubMed Central

    2015-01-01

    Amyloid fibrils represent a generic class of protein structure associated with both pathological states and with naturally occurring functional materials. This class of protein nanostructure has recently also emerged as an excellent foundation for sophisticated functional biocompatible materials including scaffolds and carriers for biologically active molecules. Protein-based materials offer the potential advantage that additional functions can be directly incorporated via gene fusion producing a single chimeric polypeptide that will both self-assemble and display the desired activity. To succeed, a chimeric protein system must self-assemble without the need for harsh triggering conditions which would damage the appended functional protein molecule. However, the micrometer to nanoscale patterning and morphological control of protein-based nanomaterials has remained challenging. This study demonstrates a general approach for overcoming these limitations through the microfluidic generation of enzymatically active microgels that are stabilized by amyloid nanofibrils. The use of scaffolds formed from biomaterials that self-assemble under mild conditions enables the formation of catalytic microgels while maintaining the integrity of the encapsulated enzyme. The enzymatically active microgel particles show robust material properties and their porous architecture allows diffusion in and out of reactants and products. In combination with microfluidic droplet trapping approaches, enzymatically active microgels illustrate the potential of self-assembling materials for enzyme immobilization and recycling, and for biological flow-chemistry. These design principles can be adopted to create countless other bioactive amyloid-based materials with diverse functions. PMID:26030507

  16. Recycling of cellulosic fibers by enzymatic process.

    PubMed

    Shojaei, K M; Dadashian, F; Montazer, M

    2012-02-01

    In this research, enzymatic treatment as an environmental friendly process has been used for recycling process of old cellulosic wastes such as cotton, viscose, and lyocell. Cellulase hydrolyses cellulosic chains and shortens cellulosic fibers. This study investigates to detect the optimum enzyme concentration and time of treatments for suitable changes of length and weight loss. The main purposes of this article are shortening of cellulosic fibers and evaluating of enzymatic treatment in different kind of cellulosic fibers. According to the data of experiments, with the increase of enzyme concentration and the treatment time, the length and weight loss percentage of the cellulosic fibers has been decreased. The length and weight loss percentage of treated viscose is more than that of lyocell and cotton fibers. Optimized condition, reaction time, and enzyme concentration have been determined by mean length of treated cellulosic samples. Suitable longitudinal distribution of fiber for papermaking industries is in the range of 0 to 4 mm. Optimum enzyme concentration and treatment time for recycling cotton, lyocell, and viscose fibers are 2% and 48 h for cotton and lyocell and 0.5% and 48 h for viscose, respectively. According to the data of experiment, the length of treated fibers is appropriate for its usage as a raw material in papermaking industries. PMID:22161212

  17. Fluorometric enzymatic assay of l-arginine.

    PubMed

    Stasyuk, Nataliya; Gayda, Galina; Yepremyan, Hasmik; Stepien, Agnieszka; Gonchar, Mykhailo

    2017-01-01

    The enzymes of l-arginine (further - Arg) metabolism are promising tools for elaboration of selective methods for quantitative Arg analysis. In our study we propose an enzymatic method for Arg assay based on fluorometric monitoring of ammonia, a final product of Arg splitting by human liver arginase I (further - arginase), isolated from the recombinant yeast strain, and commercial urease. The selective analysis of ammonia (at 415nm under excitation at 360nm) is based on reaction with o-phthalaldehyde (OPA) in the presence of sulfite in alkali medium: these conditions permit to avoid the reaction of OPA with any amino acid. A linearity range of the fluorometric arginase-urease-OPA method is from 100nM to 6μМ with a limit of detection of 34nM Arg. The method was used for the quantitative determination of Arg in the pooled sample of blood serum. The obtained results proved to be in a good correlation with the reference enzymatic method and literature data. The proposed arginase-urease-OPA method being sensitive, economical, selective and suitable for both routine and micro-volume formats, can be used in clinical diagnostics for the simultaneous determination of Arg as well as urea and ammonia in serum samples. PMID:27450117

  18. Mapping the Reaction Coordinates of Enzymatic Defluorination

    SciTech Connect

    Chan, Peter W.Y.; Yakunin, Alexander F.; Edwards, Elizabeth A.; Pai, Emil F.

    2011-09-28

    The carbon-fluorine bond is the strongest covalent bond in organic chemistry, yet fluoroacetate dehalogenases can readily hydrolyze this bond under mild physiological conditions. Elucidating the molecular basis of this rare biocatalytic activity will provide the fundamental chemical insights into how this formidable feat is achieved. Here, we present a series of high-resolution (1.15-1.80 {angstrom}) crystal structures of a fluoroacetate dehalogenase, capturing snapshots along the defluorination reaction: the free enzyme, enzyme-fluoroacetate Michaelis complex, glycolyl-enzyme covalent intermediate, and enzyme-product complex. We demonstrate that enzymatic defluorination requires a halide pocket that not only supplies three hydrogen bonds to stabilize the fluoride ion but also is finely tailored for the smaller fluorine halogen atom to establish selectivity toward fluorinated substrates. We have further uncovered dynamics near the active site which may play pivotal roles in enzymatic defluorination. These findings may ultimately lead to the development of novel defluorinases that will enable the biotransformation of more complex fluorinated organic compounds, which in turn will assist the synthesis, detoxification, biodegradation, disposal, recycling, and regulatory strategies for the growing markets of organofluorines across major industrial sectors.

  19. Enzymatic and bacterial conversions during sourdough fermentation.

    PubMed

    Gänzle, Michael G

    2014-02-01

    Enzymatic and microbial conversion of flour components during bread making determines bread quality. Metabolism of sourdough microbiota and the activity of cereal enzymes are interdependent. Acidification, oxygen consumption, and thiols accumulation by microbial metabolism modulate the activity of cereal enzymes. In turn, cereal enzymes provide substrates for bacterial growth. This review highlights the role of cereal enzymes and the metabolism of lactic acid bacteria in conversion of carbohydrates, proteins, phenolic compounds and lipids. Heterofermentative lactic acid bacteria prevailing in wheat and rye sourdoughs preferentially metabolise sucrose and maltose; the latter is released by cereal enzymes during fermentation. Sucrose supports formation of acetate by heterofermentative lactobacilli, and the formation of exopolysaccharides. The release of maltose and glucose by cereal enzymes during fermentation determines the exopolysaccharide yield in sourdough fermentations. Proteolysis is dependent on cereal proteases. Peptidase activities of sourdough lactic acid bacteria determine the accumulation of (bioactive) peptides, amino acids, and amino acid metabolites in dough and bread. Enzymatic conversion and microbial metabolism of phenolic compounds is relevant in sorghum and millet containing high levels of phenolic compounds. The presence of phenolic compounds with antimicrobial activity in sorghum selects for fermentation microbiota that are resistant to the phenolic compounds. PMID:24230468

  20. Mapping the Reaction Coordinates of Enzymatic Defluorination

    PubMed Central

    Chan, Peter W. Y.; Yakunin, Alexander F.; Edwards, Elizabeth A.; Pai, Emil F.

    2011-01-01

    The carbon-fluorine bond is the strongest covalent bond in organic chemistry, yet fluoroacetate dehalogenases can readily hydrolyze this bond under mild physiological conditions. Elucidating the molecular basis of this rare biocatalytic activity will provide the fundamental chemical insights of how this formidable feat is achieved. Here, we present a series of high-resolution (1.15–1.80 Å) crystal structures of a fluoroacetate dehalogenase, capturing snapshots along the defluorination reaction: the free enzyme, enzyme-fluoroacetate Michaelis complex, glycolyl-enzyme covalent intermediate and enzyme-product complex. We demonstrate that enzymatic defluorination requires a halide pocket that not only supplies three hydrogen bonds to stabilize the fluoride ion, but is also finely tailored for the smaller fluorine halogen atom to establish selectivity towards fluorinated substrates. We have further uncovered dynamics near the active site which may play pivotal roles in enzymatic defluorination. These findings may ultimately lead to the development of novel defluorinases that will enable the biotransformation of more complex fluorinated organic compounds, which in turn will assist the synthesis, detoxification, biodegradation, disposal, recycling and regulatory strategies for the growing markets of organofluorines across major industrial sectors. PMID:21510690

  1. Palm Date Fibers: Analysis and Enzymatic Hydrolysis

    PubMed Central

    Shafiei, Marzieh; Karimi, Keikhosro; Taherzadeh, Mohammad J.

    2010-01-01

    Waste palm dates were subjected to analysis for composition and enzymatic hydrolysis of their flesh fibers. The fruit contained 32% glucose and 30% fructose, while the water-insoluble fibers of its flesh consisted of 49.9% lignin and 20.9% polysaccharides. Water-insoluble fibers were settled to 55% of its initial volume in 12 h. The presence of skin and flesh colloidal fibers results in high viscosity and clogging problems during industrial processes. The settling velocity of the fibers was improved by enzymatic hydrolysis. Hydrolysis resulted in 84.3% conversion of the cellulosic part of the fibers as well as reducing the settling time to 10 minutes and the final settled volume to 4% of the initial volume. It implies easier separation of the fibers and facilitates fermentation processes in the corresponding industries. Two kinds of high- and low-lignin fibers were identified from the water-insoluble fibers. The high-lignin fibers (75% lignin) settled easily, while the low-lignin fibers (41.4% lignin) formed a slurry suspension which settled very slowly. The hydrophilicity of these low-lignin fibers is the major challenge of the industrial processes. PMID:21151438

  2. Dual Enzymatic Detection by Bulk Electrogenerated Chemiluminescence.

    PubMed

    de Poulpiquet, Anne; Diez-Buitrago, Beatriz; Dumont Milutinovic, Milena; Sentic, Milica; Arbault, Stéphane; Bouffier, Laurent; Kuhn, Alexander; Sojic, Neso

    2016-06-21

    The combination of enzymes, as recognition elements for specific analytes, and of electrogenerated chemiluminescence (ECL) as a readout method has proven to be a valuable strategy for sensitive and specific analytical detection. However, ECL is intrinsically a 2D process which could potentially limit the analysis of inhomogeneous samples. Here, we show how a bulk ECL signal, generated by thousands of carbon microbeads remotely addressed via bipolar electrochemistry, are implemented as a powerful tool for the concomitant ECL sensing and imaging of two enzymatic substrates. We selected two enzymes (glucose dehydrogenase and choline oxidase) that react with their respective model substrates and produce in situ chemical species (β-nicotinamide adenine dinucleotide (NADH) and H2O2) acting as coreactants for the ECL emission of different luminophores ([Ru(bpy)3](2+) at λ = 620 nm and luminol at λ = 425 nm, respectively). Both enzymes are spatially separated in the same capillary. We demonstrate thus the simultaneous quantitative determination of both glucose and choline over a wide concentration range. The originality of this remote approach is to provide a global chemical view through one single ECL image of inhomogeneous samples such as a biochemical concentration gradient in a capillary configuration. Finally, we report the first proof-of-concept of dual biosensing based on this bulk ECL method for the simultaneous imaging of both enzymatic analytes at distinct wavelengths. PMID:27213503

  3. Enzymatic deconstruction of xylan for biofuel production

    PubMed Central

    DODD, DYLAN; CANN, ISAAC K. O.

    2010-01-01

    The combustion of fossil-derived fuels has a significant impact on atmospheric carbon dioxide (CO2) levels and correspondingly is an important contributor to anthropogenic global climate change. Plants have evolved photosynthetic mechanisms in which solar energy is used to fix CO2 into carbohydrates. Thus, combustion of biofuels, derived from plant biomass, can be considered a potentially carbon neutral process. One of the major limitations for efficient conversion of plant biomass to biofuels is the recalcitrant nature of the plant cell wall, which is composed mostly of lignocellulosic materials (lignin, cellulose, and hemicellulose). The heteropolymer xylan represents the most abundant hemicellulosic polysaccharide and is composed primarily of xylose, arabinose, and glucuronic acid. Microbes have evolved a plethora of enzymatic strategies for hydrolyzing xylan into its constituent sugars for subsequent fermentation to biofuels. Therefore, microorganisms are considered an important source of biocatalysts in the emerging biofuel industry. To produce an optimized enzymatic cocktail for xylan deconstruction, it will be valuable to gain insight at the molecular level of the chemical linkages and the mechanisms by which these enzymes recognize their substrates and catalyze their reactions. Recent advances in genomics, proteomics, and structural biology have revolutionized our understanding of the microbial xylanolytic enzymes. This review focuses on current understanding of the molecular basis for substrate specificity and catalysis by enzymes involved in xylan deconstruction. PMID:20431716

  4. Enzymatically Controlled Vacancies in Nanoparticle Crystals.

    PubMed

    Barnaby, Stacey N; Ross, Michael B; Thaner, Ryan V; Lee, Byeongdu; Schatz, George C; Mirkin, Chad A

    2016-08-10

    In atomic systems, the mixing of metals results in distinct phase behavior that depends on the identity and bonding characteristics of the atoms. In nanoscale systems, the use of oligonucleotides as programmable "bonds" that link nanoparticle "atoms" into superlattices allows for the decoupling of atom identity and bonding. While much research in atomic systems is dedicated to understanding different phase behavior of mixed metals, it is not well understood on the nanoscale how changes in the nanoscale "bond" affect the phase behavior of nanoparticle crystals. In this work, the identity of the atom is kept the same, but the chemical nature of the bond is altered, which is not possible in atomic systems, through the use of DNA and RNA bonding elements. These building blocks assemble into single crystal nanoparticle superlattices with mixed DNA and RNA bonding elements throughout. The nanoparticle crystals can be dynamically changed through the selective and enzymatic hydrolysis of the RNA bonding elements, resulting in superlattices that retain their crystalline structure and habit, while incorporating up to 35% random vacancies generated from the nanoparticles removed. Therefore, the bonding elements of nanoparticle crystals can be enzymatically and selectively addressed without affecting the nature of the atom. PMID:27428463

  5. Multi-Scale Computational Enzymology: Enhancing Our Understanding of Enzymatic Catalysis

    PubMed Central

    Gherib, Rami; Dokainish, Hisham M.; Gauld, James W.

    2014-01-01

    Elucidating the origin of enzymatic catalysis stands as one the great challenges of contemporary biochemistry and biophysics. The recent emergence of computational enzymology has enhanced our atomistic-level description of biocatalysis as well the kinetic and thermodynamic properties of their mechanisms. There exists a diversity of computational methods allowing the investigation of specific enzymatic properties. Small or large density functional theory models allow the comparison of a plethora of mechanistic reactive species and divergent catalytic pathways. Molecular docking can model different substrate conformations embedded within enzyme active sites and determine those with optimal binding affinities. Molecular dynamics simulations provide insights into the dynamics and roles of active site components as well as the interactions between substrate and enzymes. Hybrid quantum mechanical/molecular mechanical (QM/MM) can model reactions in active sites while considering steric and electrostatic contributions provided by the surrounding environment. Using previous studies done within our group, on OvoA, EgtB, ThrRS, LuxS and MsrA enzymatic systems, we will review how these methods can be used either independently or cooperatively to get insights into enzymatic catalysis. PMID:24384841

  6. Enzyme orientation for direct electron transfer in an enzymatic fuel cell with alcohol oxidase and laccase electrodes.

    PubMed

    Arrocha, Andrés A; Cano-Castillo, Ulises; Aguila, Sergio A; Vazquez-Duhalt, Rafael

    2014-11-15

    A new full enzymatic fuel cell was built and characterized. Both enzymatic electrodes were molecularly oriented to enhance the direct electron transfer between the enzyme active site and the electrode surface. The anode consisted in immobilized alcohol oxidase on functionalized carbon nanotubes with 4-azidoaniline, which acts as active-site ligand to orientate the enzyme molecule. The cathode consisted of immobilized laccase on functionalized graphite electrode with 4-(2-aminoethyl) benzoic acid. The enzymatic fuel cell reaches 0.5 V at open circuit voltage with both, ethanol and methanol, while in short circuit the highest current intensity of 250 μA cm(-2) was obtained with methanol. Concerning the power density, the methanol was the best substrate reaching 60 μW cm(-2), while with ethanol 40 μW cm(-2) was obtained. PMID:24953844

  7. Stochastic ensembles, conformationally adaptive teamwork, and enzymatic detoxification.

    PubMed

    Atkins, William M; Qian, Hong

    2011-05-17

    It has been appreciated for a long time that enzymes exist as conformational ensembles throughout multiple stages of the reactions they catalyze, but there is renewed interest in the functional implications. The energy landscape that results from conformationlly diverse poteins is a complex surface with an energetic topography in multiple dimensions, even at the transition state(s) leading to product formation, and this represents a new paradigm. At the same time there has been renewed interest in conformational ensembles, a new paradigm concerning enzyme function has emerged, wherein catalytic promiscuity has clear biological advantages in some cases. "Useful", or biologically functional, promiscuity or the related behavior of "multifunctionality" can be found in the immune system, enzymatic detoxification, signal transduction, and the evolution of new function from an existing pool of folded protein scaffolds. Experimental evidence supports the widely held assumption that conformational heterogeneity promotes functional promiscuity. The common link between these coevolving paradigms is the inherent structural plasticity and conformational dynamics of proteins that, on one hand, lead to complex but evolutionarily selected energy landscapes and, on the other hand, promote functional promiscuity. Here we consider a logical extension of the overlap between these two nascent paradigms: functionally promiscuous and multifunctional enzymes such as detoxification enzymes are expected to have an ensemble landscape with more states accessible on multiple time scales than substrate specific enzymes. Two attributes of detoxification enzymes become important in the context of conformational ensembles: these enzymes metabolize multiple substrates, often in substrate mixtures, and they can form multiple products from a single substrate. These properties, combined with complex conformational landscapes, lead to the possibility of interesting time-dependent, or emergent

  8. Pretreatment and enzymatic hydrolysis of lignocellulosic biomass

    NASA Astrophysics Data System (ADS)

    Corredor, Deisy Y.

    The performance of soybean hulls and forage sorghum as feedstocks for ethanol production was studied. The main goal of this research was to increase fermentable sugars' yield through high-efficiency pretreatment technology. Soybean hulls are a potential feedstock for production of bio-ethanol due to their high carbohydrate content (≈50%) of nearly 37% cellulose. Soybean hulls could be the ideal feedstock for fuel ethanol production, because they are abundant and require no special harvesting and additional transportation costs as they are already in the plant. Dilute acid and modified steam-explosion were used as pretreatment technologies to increase fermentable sugars yields. Effects of reaction time, temperature, acid concentration and type of acid on hydrolysis of hemicellulose in soybean hulls and total sugar yields were studied. Optimum pretreatment parameters and enzymatic hydrolysis conditions for converting soybean hulls into fermentable sugars were identified. The combination of acid (H2SO4, 2% w/v) and steam (140°C, 30 min) efficiently solubilized the hemicellulose, giving a pentose yield of 96%. Sorghum is a tropical grass grown primarily in semiarid and dry parts of the world, especially in areas too dry for corn. The production of sorghum results in about 30 million tons of byproducts mainly composed of cellulose, hemicellulose, and lignin. Forage sorghum such as brown midrib (BMR) sorghum for ethanol production has generated much interest since this trait is characterized genetically by lower lignin concentrations in the plant compared with conventional types. Three varieties of forage sorghum and one variety of regular sorghum were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-Ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and enzymatic hydrolysis

  9. Non-enzymatic protein acetylation detected by NAPPA protein arrays*

    PubMed Central

    Olia, Adam S.; Barker, Kristi; McCullough, Cheryl E.; Tang, Hsin-Yao; Speicher, David W.; Qiu, Ji; LaBaer, Joshua; Marmorstein, Ronen

    2015-01-01

    Acetylation is a post-translational modification that occurs on thousands of proteins located in many cellular organelles. This process mediates many protein functions and modulates diverse biological processes. In mammalian cells, where acetyl-CoA is the primary acetyl donor, acetylation in the mitochondria is thought to occur by chemical means due to the relatively high concentration of acetyl-CoA located in this organelle. In contrast, acetylation outside of the mitochondria is thought to be mediated predominantly by acetyltransferase enzymes. Here we address the possibility that non-enzymatic chemical acetylation outside of the mitochondria may be more common than previously appreciated. We employed the Nucleic Acid Programmable Protein Array platform to perform an unbiased screen for human proteins that undergo chemical acetylation, which resulted in the identification of a multitude of proteins with diverse functions and cellular localization. Mass spectrometry analysis revealed that basic residues typically precede the acetylated lysine in the −7 to −3 position, and we show by mutagenesis that these basic residues contribute to chemical acetylation capacity. We propose that these basic residues lower the pKa of the substrate lysine for efficient chemical acetylation. Many of the identified proteins reside outside of the mitochondria, and have been previously demonstrated to be acetylated in vivo. As such, our studies demonstrate that chemical acetylation occurs more broadly throughout the eukaryotic cell than previously appreciated, and suggests that this post-translational protein modification may have more diverse roles in protein function and pathway regulation. PMID:26083674

  10. Artificial cytoskeletal structures within enzymatically active bio-inorganic protocells.

    PubMed

    Kumar, Ravinash Krishna; Li, Mei; Olof, Sam N; Patil, Avinash J; Mann, Stephen

    2013-02-11

    The fabrication of enzymatically active, semi-permeable bio-inorganic protocells capable of self-assembling a cytoskeletal-like interior and undergoing small-molecule dephosphorylation reactions is described. Reversible disassembly of an amino acid-derived supramolecular hydrogel within the internalized reaction space is used to tune the enzymatic activity of the nanoparticle-bounded inorganic compartments. PMID:23027575

  11. Enzymatic browning and its control in fresh-cut produce

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzymatic browning of damaged tissues of fruits and vegetables during postharvest handling and processing degrades the sensory properties and nutritional value and discourages the consumer purchase of fresh-cut products. Consequently, enzymatic browning results in significant economic losses for the...

  12. Enzymatic Products from Modified Soybean Oil Containing Hydrazinoester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We use soybean oil to produce new, non-petroleum based products. The starting material is the ene reaction product of soybean oil and diethyl azodicarboxylate (DEAD), which can then be hydrolyzed chemically and enzymatically. Chemical hydrolysis gives hydrazino-fatty acids, whereas enzymatic hydro...

  13. Members of the Chloride Intracellular Ion Channel Protein Family Demonstrate Glutaredoxin-Like Enzymatic Activity

    PubMed Central

    Al Khamici, Heba; Brown, Louise J.; Hossain, Khondker R.; Hudson, Amanda L.; Sinclair-Burton, Alxcia A.; Ng, Jane Phui Mun; Daniel, Elizabeth L.; Hare, Joanna E.; Cornell, Bruce A.; Curmi, Paul M. G.; Davey, Mary W.; Valenzuela, Stella M.

    2015-01-01

    The Chloride Intracellular Ion Channel (CLIC) family consists of six evolutionarily conserved proteins in humans. Members of this family are unusual, existing as both monomeric soluble proteins and as integral membrane proteins where they function as chloride selective ion channels, however no function has previously been assigned to their soluble form. Structural studies have shown that in the soluble form, CLIC proteins adopt a glutathione S-transferase (GST) fold, however, they have an active site with a conserved glutaredoxin monothiol motif, similar to the omega class GSTs. We demonstrate that CLIC proteins have glutaredoxin-like glutathione-dependent oxidoreductase enzymatic activity. CLICs 1, 2 and 4 demonstrate typical glutaredoxin-like activity using 2-hydroxyethyl disulfide as a substrate. Mutagenesis experiments identify cysteine 24 as the catalytic cysteine residue in CLIC1, which is consistent with its structure. CLIC1 was shown to reduce sodium selenite and dehydroascorbate in a glutathione-dependent manner. Previous electrophysiological studies have shown that the drugs IAA-94 and A9C specifically block CLIC channel activity. These same compounds inhibit CLIC1 oxidoreductase activity. This work for the first time assigns a functional activity to the soluble form of the CLIC proteins. Our results demonstrate that the soluble form of the CLIC proteins has an enzymatic activity that is distinct from the channel activity of their integral membrane form. This CLIC enzymatic activity may be important for protecting the intracellular environment against oxidation. It is also likely that this enzymatic activity regulates the CLIC ion channel function. PMID:25581026

  14. Association genetics in Solanum tuberosum provides new insights into potato tuber bruising and enzymatic tissue discoloration

    PubMed Central

    2011-01-01

    Background Most agronomic plant traits result from complex molecular networks involving multiple genes and from environmental factors. One such trait is the enzymatic discoloration of fruit and tuber tissues initiated by mechanical impact (bruising). Tuber susceptibility to bruising is a complex trait of the cultivated potato (Solanum tuberosum) that is crucial for crop quality. As phenotypic evaluation of bruising is cumbersome, the application of diagnostic molecular markers would empower the selection of low bruising potato varieties. The genetic factors and molecular networks underlying enzymatic tissue discoloration are sparsely known. Hitherto there is no association study dealing with tuber bruising and diagnostic markers for enzymatic discoloration are rare. Results The natural genetic diversity for bruising susceptibility was evaluated in elite middle European potato germplasm in order to elucidate its molecular basis. Association genetics using a candidate gene approach identified allelic variants in genes that function in tuber bruising and enzymatic browning. Two hundred and five tetraploid potato varieties and breeding clones related by descent were evaluated for two years in six environments for tuber bruising susceptibility, specific gravity, yield, shape and plant maturity. Correlations were found between different traits. In total 362 polymorphic DNA fragments, derived from 33 candidate genes and 29 SSR loci, were scored in the population and tested for association with the traits using a mixed model approach, which takes into account population structure and kinship. Twenty one highly significant (p < 0.001) and robust marker-trait associations were identified. Conclusions The observed trait correlations and associated marker fragments provide new insight in the molecular basis of bruising susceptibility and its natural variation. The markers diagnostic for increased or decreased bruising susceptibility will facilitate the combination of superior

  15. Structural basis of enzymatic benzene ring reduction.

    PubMed

    Weinert, Tobias; Huwiler, Simona G; Kung, Johannes W; Weidenweber, Sina; Hellwig, Petra; Stärk, Hans-Joachim; Biskup, Till; Weber, Stefan; Cotelesage, Julien J H; George, Graham N; Ermler, Ulrich; Boll, Matthias

    2015-08-01

    In chemical synthesis, the widely used Birch reduction of aromatic compounds to cyclic dienes requires alkali metals in ammonia as extremely low-potential electron donors. An analogous reaction is catalyzed by benzoyl-coenzyme A reductases (BCRs) that have a key role in the globally important bacterial degradation of aromatic compounds at anoxic sites. Because of the lack of structural information, the catalytic mechanism of enzymatic benzene ring reduction remained obscure. Here, we present the structural characterization of a dearomatizing BCR containing an unprecedented tungsten cofactor that transfers electrons to the benzene ring in an aprotic cavity. Substrate binding induces proton transfer from the bulk solvent to the active site by expelling a Zn(2+) that is crucial for active site encapsulation. Our results shed light on the structural basis of an electron transfer process at the negative redox potential limit in biology. They open the door for biological or biomimetic alternatives to a basic chemical synthetic tool. PMID:26120796

  16. Zinc oxide inverse opal enzymatic biosensor

    NASA Astrophysics Data System (ADS)

    You, Xueqiu; Pikul, James H.; King, William P.; Pak, James J.

    2013-06-01

    We report ZnO inverse opal- and nanowire (NW)-based enzymatic glucose biosensors with extended linear detection ranges. The ZnO inverse opal sensors have 0.01-18 mM linear detection range, which is 2.5 times greater than that of ZnO NW sensors and 1.5 times greater than that of other reported ZnO sensors. This larger range is because of reduced glucose diffusivity through the inverse opal geometry. The ZnO inverse opal sensors have an average sensitivity of 22.5 μA/(mM cm2), which diminished by 10% after 35 days, are more stable than ZnO NW sensors whose sensitivity decreased by 10% after 7 days.

  17. Enzymatic Hydrogen Production from Starch and Water

    SciTech Connect

    Zhang, Y.-H. Percival; Evans, Barbara R; Mielenz, Jonathan R; Hopkins, Robert C.; Adams, Michael W. W.

    2007-01-01

    A novel enzymatic reaction was conducted for producing hydrogen from starch and water at 30oC. The overall reaction comprised of 13 enzymes, 1 cofactor (NADP+), and phosphate was driven by energy stored in carbohydrate starch according to the overall stoichiometry stoichiometric reaction of C6H10O5 (l) + 7 H2O (l) --> 12 H2 (g) + 6 CO2 (g). It is spontaneous and unidirectional because of negative Gibbs free energy and the removal of gaseous products from the aqueous reaction solution. With technology improvement and integration with fuel cells, this technology would be suitable for mobile applications and also solve the challenges associated with hydrogen storage, distribution, and infrastructure in a hydrogen economy.

  18. Enzymatic bioremediation: from enzyme discovery to applications.

    PubMed

    Sutherland, T D; Horne, I; Weir, K M; Coppin, C W; Williams, M R; Selleck, M; Russell, R J; Oakeshott, J G

    2004-11-01

    1. Enzymatic bioremediation is potentially a rapid method of removing environmental pesticide residues. Applications include the treatment of residues resulting from agricultural production and processing industries, such as the treatment of irrigation waters, surface-contaminated fruit and vegetables and spent dip liquors. 2. A specific application for some organophosphate-degrading enzymes involves detoxification of nerve agent stockpiles. Effective and affordable remediation requires highly specialized enzymes, so protein engineering techniques are being used to improve properties of various source enzymes to enhance catalytic rates, stability and substrate range. 3. Trials with an optimized organophosphate-degrading enzyme have shown the feasibility of such technology in various applications. 4. The enzymes developed for environmental remediation for specific pesticide classes also have applications as antidotes for high-dose pesticide poisonings and as prophylaxis for people at risk of high pesticide doses. PMID:15566400

  19. Pretreatment and enzymatic hydrolysis of corn fiber

    SciTech Connect

    Grohmann, K.; Bothast, R.J.

    1996-10-01

    Corn fiber is a co-product of the corn wet milling industry which is usually marketed as a low value animal feed ingredient. Approximately 1.2 x 10{sup 6} dry tons of this material are produced annually in the United States. The fiber is composed of kernel cell wall fractions and a residual starch which can all be potentially hydrolyzed to a mixture of glucose, xylose, arabinose and galactose. We have investigated a sequential saccharification of polysaccharides in corn fiber by a treatment with dilute sulfuric acid at 100 to 160{degrees}C followed by partial neutralization and enzymatic hydrolysis with mixed cellulose and amyloglucosidase enzymes at 45{degrees}C. The sequential treatment achieved a high (approximately 85%) conversion of all polysaccharides in the corn fiber to monomeric sugars, which were in most cases fermentable to ethanol by the recombinant bacterium Escherichia coli KOll.

  20. Cascade enzymatic reactions for efficient carbon sequestration.

    PubMed

    Xia, Shunxiang; Zhao, Xueyan; Frigo-Vaz, Benjamin; Zheng, Wenyun; Kim, Jungbae; Wang, Ping

    2015-04-01

    Thermochemical processes developed for carbon capture and storage (CCS) offer high carbon capture capacities, but are generally hampered by low energy efficiency. Reversible cascade enzyme reactions are examined in this work for energy-efficient carbon sequestration. By integrating the reactions of two key enzymes of RTCA cycle, isocitrate dehydrogenase and aconitase, we demonstrate that intensified carbon capture can be realized through such cascade enzymatic reactions. Experiments show that enhanced thermodynamic driving force for carbon conversion can be attained via pH control under ambient conditions, and that the cascade reactions have the potential to capture 0.5 mol carbon at pH 6 for each mole of substrate applied. Overall it manifests that the carbon capture capacity of biocatalytic reactions, in addition to be energy efficient, can also be ultimately intensified to approach those realized with chemical absorbents such as MEA. PMID:25708541

  1. Fungal biodegradation and enzymatic modification of lignin

    PubMed Central

    Dashtban, Mehdi; Schraft, Heidi; Syed, Tarannum A.; Qin, Wensheng

    2010-01-01

    Lignin, the most abundant aromatic biopolymer on Earth, is extremely recalcitrant to degradation. By linking to both hemicellulose and cellulose, it creates a barrier to any solutions or enzymes and prevents the penetration of lignocellulolytic enzymes into the interior lignocellulosic structure. Some basidiomycetes white-rot fungi are able to degrade lignin efficiently using a combination of extracellular ligninolytic enzymes, organic acids, mediators and accessory enzymes. This review describes ligninolytic enzyme families produced by these fungi that are involved in wood decay processes, their molecular structures, biochemical properties and the mechanisms of action which render them attractive candidates in biotechnological applications. These enzymes include phenol oxidase (laccase) and heme peroxidases [lignin peroxidase (LiP), manganese peroxidase (MnP) and versatile peroxidase (VP)]. Accessory enzymes such as H2O2-generating oxidases and degradation mechanisms of plant cell-wall components in a non-enzymatic manner by production of free hydroxyl radicals (·OH) are also discussed. PMID:21968746

  2. Effective enzymatic caffeoylation of natural glucopyranosides.

    PubMed

    Chyba, Andrej; Mastihuba, Vladimír; Mastihubová, Mária

    2016-03-15

    Reaction system was developed for enzymatic caffeoylation of model saccharidic acceptor methyl β-d-glucopyranoside to obtain exclusively methyl 6-O-caffeoyl-β-D-glucopyranoside. Reaction with starting concentration of acceptor 0.2 M provided 73% yield of purified product within 17 days. Reactions with low acceptor concentrations (0.04 and 0.08 M) run to the completion within 7 days. Such highly effective and regioselective reaction was promoted by Lipozyme TL IM in tert-butanol, using vinyl caffeate as acylation donor. The optimized reaction conditions were used in preparative caffeoylation of natural substances-arbutin and salidroside, giving 75% of 6-O-caffeoylated arbutin (robustaside B) and 74% of 6-O-caffeoylated salidroside as the only products after 12 and 16 days, respectively. PMID:26896186

  3. Enzymatic pretreatment for preparing starch nanocrystals.

    PubMed

    LeCorre, Déborah; Vahanian, Elina; Dufresne, Alain; Bras, Julien

    2012-01-01

    Starch nanocrystals (SNCs) are crystalline platelets resulting from the acid hydrolysis of starch. A limiting factor for their more widespread use is their preparation duration. Therefore, this study investigates the possibility of developing an enzymatic pretreatment of starch to reduce the acid hydrolysis duration. A screening of three types of enzymes, namely, α-amylase, β-amylase, and glucoamylase, is proposed, and the latter was selected for a pretreatment. Compared with the regular kinetics of hydrolysis for preparing SNC, that of pretreated starch was much faster. The extent of hydrolysis normally reached in 24 h was obtained after only 6 h, and the regular final yield (15% after 5 days) was reached in 45 h. AFM and X-ray diffraction measurements confirmed that the obtained nanoparticles were indeed SNC. PMID:22133316

  4. The Enzymatic Oxidation of Graphene Oxide

    PubMed Central

    Kotchey, Gregg P.; Allen, Brett L.; Vedala, Harindra; Yanamala, Naveena; Kapralov, Alexander A.; Tyurina, Yulia Y.; Klein-Seetharaman, Judith; Kagan, Valerian E.; Star, Alexander

    2011-01-01

    Two-dimensional graphitic carbon is a new material with many emerging applications, and studying its chemical properties is an important goal. Here, we reported a new phenomenon – the enzymatic oxidation of a single layer of graphitic carbon by horseradish peroxidase (HRP). In the presence of low concentrations of hydrogen peroxide (~40 µM), HRP catalyzed the oxidation of graphene oxide, which resulted in the formation of holes on its basal plane. During the same period of analysis, HRP failed to oxidize chemically reduced graphene oxide (RGO). The enzymatic oxidation was characterized by Raman, UV-Vis, EPR and FT-IR spectroscopy, TEM, AFM, SDS-PAGE, and GC-MS. Computational docking studies indicated that HRP was preferentially bound to the basal plane rather than the edge for both graphene oxide and RGO. Due to the more dynamic nature of HRP on graphene oxide, the heme active site of HRP was in closer proximity to graphene oxide compared to RGO, thereby facilitating the oxidation of the basal plane of graphene oxide. We also studied the electronic properties of the reduced intermediate product, holey reduced graphene oxide (hRGO), using field-effect transistor (FET) measurements. While RGO exhibited a V-shaped transfer characteristic similar to a single layer of graphene that was attributed to its zero band gap, hRGO demonstrated a p-type semiconducting behavior with a positive shift in the Dirac points. This p-type behavior rendered hRGO, which can be conceptualized as interconnected graphene nanoribbons, as a potentially attractive material for FET sensors. PMID:21344859

  5. Pseudo-enzymatic S-acylation of a myristoylated yes protein tyrosine kinase peptide in vitro may reflect non-enzymatic S-acylation in vivo.

    PubMed Central

    Bañó, M C; Jackson, C S; Magee, A I

    1998-01-01

    Covalent attachment of a variety of lipid groups to proteins is now recognized as a major group of post-translational modifications. S-acylation of proteins at cysteine residues is the only modification considered dynamic and thus has the potential for regulating protein function and/or localization. The activities that catalyse reversible S-acylation have not been well characterized and it is not clear whether both the acylation and the deacylation steps are regulated, since in principle it would be sufficient to control only one of them. Both apparently enzymatic and non-enzymatic S-acylation of proteins have previously been reported. Here we show that a synthetic myristoylated c-Yes protein tyrosine kinase undecapeptide undergoes spontaneous S-acylation in vitro when using a long chain acyl-CoA as acyl donor in the absence of any protein. The S-acylation was dependent on myristoylation of the substrate, the length of the incubation period, temperature and substrate concentration. When COS cell fractions were added to the S-acylation reaction no additional peptide:S-acyltransferase activity was detected. These results are consistent with the possibility that membrane-associated proteins may undergo S-acylation in vivo by non-enzymatic transfer of acyl groups from acyl-CoA. In this case, the S-acylation-deacylation process could be controlled by a regulated depalmitoylation mechanism. PMID:9480882

  6. Enzymatic activity preservation through entrapment within degradable hydrogel networks

    NASA Astrophysics Data System (ADS)

    Mariani, Angela Marie

    This dissertation aimed to design and develop a "biogel;" a reproducible, abiotic, and biocompatible polymer hydrogel matrix, that prolongs enzymatic stability allowing for rapid production of biomolecules. The researched entrapment method preserves enzyme activity within an amicable environment while resisting activity reduction in the presence of increased pH environmental challenges. These biogels can be used in a number of applications including repeated production of small molecules and in biosensors. Five main objectives were accomplished: 1) Biogels capable of maintaining enzymatic functionality post-entrapment procedures were fabricated; 2) Biogel activity dependence on crosslinker type and crosslink density was determined; 3) Biogel composition effects on sustained activity after storage were compared; 4) Biogel activity dependence on charged monomer moieties was evaluated, and 5) Combined optimization knowledge gained from the first four objectives was utilized to determine the protection of enzymes within hydrogels when challenged with an increased pH above 8. Biogels were fabricated by entrapping β-galactosidase (lactase) enzyme within acrylamide (ACR) gels crosslinked with poly(ethylene glycol) diacrylate (PEGDA, degradable through hydrolysis) or N,N'-methylenebisacrylamide (BIS, non-degradable). Initial hydrogel entrapment reduced activity to 40% in ACR/PEGDA gels, compared to a 75% reduction in initial activity of ACR/BIS biogels. Once entrapped, these enzymes resist activity reduction in the presence of environmental challenges, such as altering the pH from 7 to above 8. When biogels were challenged at a pH of 8, activity retention positively correlated to PEGDA crosslinker density; increasing from 48% to 91% retention in 30 to 40 mole % PEGDA biogels as compared to solution based control which retained only 23%. Retention of activity when perturbed from pH 7 is advantageous for biogel applications including the repeated production of desired small

  7. Enzymatic Assays for the Diagnosis of Bradykinin-Dependent Angioedema

    PubMed Central

    Defendi, Federica; Charignon, Delphine; Ghannam, Arije; Baroso, Remi; Csopaki, Françoise; Allegret-Cadet, Marion; Ponard, Denise; Favier, Bertrand; Cichon, Sven; Nicolie, Brigitte; Fain, Olivier

    2013-01-01

    Background The kinins (primarily bradykinin, BK) represent the mediators responsible for local increase of vascular permeability in hereditary angioedema (HAE), HAE I-II associated with alterations of the SERPING1 gene and HAE with normal C1-Inhibitor function (HAE-nC1INH). Besides C1-Inhibitor function and concentration, no biological assay of kinin metabolism is actually available to help physicians for the diagnosis of angioedema (AE). We describe enzymatic tests on the plasma for diagnosis of BK-dependent AE. Methods The plasma amidase assays are performed using the Pro-Phe-Arg-p-nitroanilide peptide substrate to evaluate the spontaneous amidase activity and the proenzyme activation. We analyzed data of 872 patients presenting with BK-dependent AE or BK-unrelated diseases, compared to 303 controls. Anti-high MW kininogen (HK) immunoblot was achieved to confirm HK cleavage in exemplary samples. Reproducibility, repeatability, limit of blank, limit of detection, precision, linearity and receiver operating characteristics (ROC) were used to calculate the diagnostic performance of the assays. Results Spontaneous amidase activity was significantly increased in all BK-dependent AE, associated with the acute phase of disease in HAE-nC1INH, but preserved in BK-unrelated disorders. The increase of the amidase activity was associated to HK proteolysis, indicating its relevance to identify kininogenase activity. The oestrogens, known for precipitating AE episodes, were found as triggers of enzymatic activity. Calculations from ROC curves gave the optimum diagnostic cut-off for women (9.3 nmol⋅min−1⋅mL−1, area under curve [AUC] 92.1%, sensitivity 80.0%, and specificity 90.1%) and for men (6.6 nmol·min−1⋅mL−1, AUC 91.0%, sensitivity 87.0% and specificity 81.2%). Conclusion The amidase assay represents a diagnostic tool to help physicians in the decision to distinguish between BK-related and –unrelated AE. PMID:23940538

  8. Fusion-Triggered Switching of Enzymatic Activity on an Artificial Cell Membrane

    PubMed Central

    Mukai, Masaru; Sasaki, Yoshihiro; Kikuchi, Jun-ichi

    2012-01-01

    A nanosensory membrane device was constructed for detecting liposome fusion through changes in an enzymatic activity. Inspired by a biological signal transduction system, the device design involved functionalized liposomal membranes prepared by self-assembly of the following molecular components: a synthetic peptide lipid and a phospholipid as matrix membrane components, a Schiff's base of pyridoxal 5′-phosphate with phosphatidylethanolamine as a thermo-responsive artificial receptor, NADH-dependent L-lactate dehydrogenase as a signal amplifier, and Cu2+ ion as a signal mediator between the receptor and enzyme. The enzymatic activity of the membrane device was adjustable by changing the matrix lipid composition, reflecting the thermotropic phase transition behavior of the lipid membranes, which in turn controlled receptor binding affinity toward the enzyme-inhibiting mediator species. When an effective fusogen anionic polymer was added to these cationic liposomes, membrane fusion occurred, and the functionalized liposomal membranes responded with changes in enzymatic activity, thus serving as an effective nanosensory device for liposome fusion detection. PMID:22778625

  9. Enzymatic modification of polysaccharides: Mechanisms, properties, and potential applications: A review.

    PubMed

    Karaki, Nadine; Aljawish, Abdulhadi; Humeau, Catherine; Muniglia, Lionel; Jasniewski, Jordane

    2016-08-01

    Polysaccharides are natural biopolymers found in almost all living organisms. They are used extensively in various industrial applications, such as food, adhesives, pharmaceuticals, and cosmetics. In many cases, their practical use is limited because of their weak solubility in neutral pH, their unsuitable hydrophilic/hydrophobic balance. In this context, chemical or enzymatic modification of their structure appears as a relevant way, to improve their properties, and thus to enlarge the field of their potential applications. Taking into account the reduction of the input energy and the environmental impact, and due to high specificity and selectivity properties, enzymatic bioprocesses have been investigated as attractive alternatives to toxic and non-specific chemical approaches. This review discusses the methods of enzymatic functionalization of four well-known polysaccharides, chitosan, cellulose, pectin and starch. Particular emphasis was placed on the methods, the reaction types and the enzymes implicated in the modification such as laccases, peroxidases lipases, tyrosinases, and transglutaminases. The impact of functionalization on the properties and the applications of polysaccharide derivatives were described. PMID:27241287

  10. Enzymatic cocktails produced by Fusarium graminearum under submerged fermentation using different lignocellulosic biomasses.

    PubMed

    Debeire, Philippe; Delalande, Francois; Habrylo, Olivier; Jeltsch, Jean-Marc; Van Dorsselaer, Alain; Phalip, Vincent

    2014-06-01

    Fusarium graminearum was grown on four lignocellulosic substrates (corn cobs, wheat bran, hop cell walls, and birchwood) and glucose as the sole carbon source. Proteomic studies performed on the resulting enzymatic cocktails highlighted a great diversity in the number and type of proteins secreted. The cell wall-degrading enzymes (CWDE) proportion varied greatly from 20% to 69%. Only one of the 57 CWDEs detected in this study was common to the five proteomes. In contrast, 35 CWDEs were specific to one proteome only. The polysaccharide-degradation activities were different depending on the cocktail and the polysaccharide used. F. graminearum strongly modifies the enzymatic cocktail it secretes as a function of the biomass used for growth. PMID:24828340

  11. Activation of polymeric materials towards enzymatic postgrafting and cross-linking.

    PubMed

    Fatarella, E; Ciabatti, I; Cortez, J

    2012-10-10

    A methodology to activate inert polymeric materials to enzymatic functionalisation is described herein. Plasma irradiation can be used to graft compounds containing a moiety that is reactive towards an enzyme of interest. Subsequently, such enzyme can be used to either postgraft functional compounds or cross-link the polymeric materials. Argon plasma was utilised to graft 2-aminoethyl methacrylate onto cotton and wool fibres, introducing surface alkylamine groups to impart reactivity towards transglutaminase and tyrosinase. The efficiency of plasma grafting was verified by ATR-FTIR. Enzyme postgrafting of fluorescent peptides coupled with confocal microscopy was used to demonstrate transglutaminase activity towards cotton, a material typically inert to this enzyme. The grafting of alkylamines onto wool resulted in additional cross-linking by both enzymes, leading to significantly increased yarn breaking load and elongation at break. This technology permits the activation of inert materials towards enzymatic postgrafting, with applications in fields as diverse as textiles and biomaterials. PMID:22975121

  12. Immobilization of proteins onto microbeads using a DNA binding tag for enzymatic assays.

    PubMed

    Kojima, Takaaki; Mizoguchi, Takuro; Ota, Eri; Hata, Jumpei; Homma, Keisuke; Zhu, Bo; Hitomi, Kiyotaka; Nakano, Hideo

    2016-02-01

    A novel DNA-binding protein tag, scCro-tag, which is a single-chain derivative of the bacteriophage lambda Cro repressor, has been developed to immobilize proteins of interest (POI) on a solid support through binding OR consensus DNA (ORC) that is tightly bound by the scCro protein. The scCro-tag successfully bound a transglutaminase 2 (TGase 2) substrate and manganese peroxidase (MnP) to microbeads via scaffolding DNA. The resulting protein-coated microbeads can be utilized for functional analysis of the enzymatic activity using flow cytometry. The quantity of bead-bound proteins can be enhanced by increasing the number of ORCs. In addition, proteins with the scCro-tag that were synthesized using a cell-free protein synthesis system were also immobilized onto the beads, thus indicating that this bead-based system would be applicable to high-throughput analysis of various enzymatic activities. PMID:26522987

  13. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    PubMed

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis. PMID:26915095

  14. Effects of agitation on particle-size distribution and enzymatic hydrolysis of pretreated spruce and giant reed

    PubMed Central

    2014-01-01

    Background Mixing is an energy demanding process which has been previously shown to affect enzymatic hydrolysis. Concentrated biomass slurries are associated with high and non-Newtonian viscosities and mixing in these systems is a complex task. Poor mixing can lead to mass and/or heat transfer problems as well as inhomogeneous enzyme distribution, both of which can cause possible yield reduction. Furthermore the stirring energy dissipation may impact the particle size which in turn may affect the enzymatic hydrolysis. The objective of the current work was to specifically quantify the effects of mixing on particle-size distribution (PSD) and relate this to changes in the enzymatic hydrolysis. Two rather different materials were investigated, namely pretreated Norway spruce and giant reed. Results Changes in glucan hydrolysis and PSD were measured as a function of agitation during enzymatic hydrolysis at fiber loadings of 7 or 13% water-insoluble solids (WIS). Enzymatic conversion of pretreated spruce was strongly affected by agitation rates at the higher WIS content. However, at low WIS content the agitation had almost no effect on hydrolysis. There was some effect of agitation on the hydrolysis of giant reed at high WIS loading, but it was smaller than that for spruce, and there was no measurable effect at low WIS loading. In the case of spruce, intense agitation clearly affected the PSD and resulted in a reduced mean particle size, whereas for giant reed the decrease in particle size was mainly driven by enzymatic action. However, the rate of enzymatic hydrolysis was not increased after size reduction by agitation. Conclusions The impact of agitation on the enzymatic hydrolysis clearly depends not only on feedstock but also on the solids loading. Agitation was found to affect the PSD differently for the examined pretreated materials spruce and giant reed. The fact that the reduced mean particle diameter could not explain the enhanced hydrolysis rates found for

  15. Enzymatic hydrolysis of biomass from wood.

    PubMed

    Álvarez, Consolación; Reyes-Sosa, Francisco Manuel; Díez, Bruno

    2016-03-01

    Current research and development in cellulosic ethanol production has been focused mainly on agricultural residues and dedicated energy crops such as corn stover and switchgrass; however, woody biomass remains a very important feedstock for ethanol production. The precise composition of hemicellulose in the wood is strongly dependent on the plant species, therefore different types of enzymes are needed based on hemicellulose complexity and type of pretreatment. In general, hardwood species have much lower recalcitrance to enzymes than softwood. For hardwood, xylanases, beta-xylosidases and xyloglucanases are the main hemicellulases involved in degradation of the hemicellulose backbone, while for softwood the effect of mannanases and beta-mannosidases is more relevant. Furthermore, there are different key accessory enzymes involved in removing the hemicellulosic fraction and increasing accessibility of cellulases to the cellulose fibres improving the hydrolysis process. A diversity of enzymatic cocktails has been tested using from low to high densities of biomass (2-20% total solids) and a broad range of results has been obtained. The performance of recently developed commercial cocktails on hardwoods and softwoods will enable a further step for the commercialization of fuel ethanol from wood. PMID:26833542

  16. Non-eluting Enzymatic Antibiofilm Coatings

    PubMed Central

    Pavlukhina, Svetlana V.; Kaplan, Jeffrey B.; Xu, Li; Chang, Wei; Yu, Xiaojun; Madhyastha, Srinivasa; Yakandawala, Nandadeva; Mentbayeva, Almagul; Khan, Babar; Sukhishvili, Svetlana A.

    2012-01-01

    We developed a highly efficient, biocompatible surface coating that disperses bacterial biofilms through enzymatic cleavage of the extracellular biofilm matrix. The coating was fabricated by binding the naturally existing enzyme dispersin B (DspB) to surface-attached polymer matrices constructed via a layer-by-layer (LbL) deposition technique. LbL matrices were assembled through electrostatic interactions of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMAA), followed by chemical crosslinking with glutaraldehyde and pH triggered removal of PMAA, producing a stable PAH hydrogel matrix used for DspB loading. The amount of DspB loaded increased linearly with the number of PAH layers in surface hydrogels. DspB was retained within these coatings in the pH range from 4 to 7.5. DspB-loaded coatings inhibited biofilm formation by two clinical strains of Staphylococcus epidermidis. Biofilm inhibition was ≥ 98% compared to mock-loaded coatings as determined by CFU enumeration. In addition, DspB-loaded coatings did not inhibit attachment or growth of cultured human osteoblast cells. We suggest that the use of DspB-loaded multilayer coatings presents a promising method for creating biocompatible surfaces with high antibiofilm efficiency, especially when combined with conventional antimicrobial treatment of dispersed bacteria. PMID:22909396

  17. Natural Product Sugar Biosynthesis and Enzymatic Glycodiversification**

    PubMed Central

    Thibodeaux, Christopher J.; Melançon, Charles E.; Liu, Hung-wen

    2009-01-01

    Many biologically active small molecule natural products produced by microorganisms derive their activities from sugar substituents. Changing the structures of these sugars can have a profound impact on the biological properties of the parent compounds. This realization has inspired attempts to derivatize the sugar moieties of these natural products through exploitation of the sugar biosynthetic machinery. This approach requires an understanding of the biosynthetic pathway of each target sugar and detailed mechanistic knowledge of the key enzymes. Scientists have begun to unravel the biosynthetic logic behind the assembly of many glycosylated natural products, and have found that a core set of enzyme activities is mixed and matched to synthesize the diverse sugar structures observed in nature. Remarkably, many of these sugar biosynthetic enzymes and glycosyltransferases also exhibit relaxed substrate specificity. The promiscuity of these enzymes has prompted efforts to modify the sugar structures and/or alter the glycosylation patterns of natural products via metabolic pathway engineering and/or enzymatic glycodiversification. In applied biomedical research, these studies will enable the development of new glycosylation tools and generate novel glycoforms of secondary metabolites with useful biological activity. PMID:19058170

  18. Aqueous enzymatic extraction of Moringa oleifera oil.

    PubMed

    Mat Yusoff, Masni; Gordon, Michael H; Ezeh, Onyinye; Niranjan, Keshavan

    2016-11-15

    This paper reports on the extraction of Moringa oleifera (MO) oil by using aqueous enzymatic extraction (AEE) method. The effect of different process parameters on the oil recovery was discovered by using statistical optimization, besides the effect of selected parameters on the formation of its oil-in-water cream emulsions. Within the pre-determined ranges, the use of pH 4.5, moisture/kernel ratio of 8:1 (w/w), and 300stroke/min shaking speed at 40°C for 1h incubation time resulted in highest oil recovery of approximately 70% (goil/g solvent-extracted oil). These optimized parameters also result in a very thin emulsion layer, indicating minute amount of emulsion formed. Zero oil recovery with thick emulsion were observed when the used aqueous phase was re-utilized for another AEE process. The findings suggest that the critical selection of AEE parameters is key to high oil recovery with minimum emulsion formation thereby lowering the load on the de-emulsification step. PMID:27283648

  19. The enzymatic synthesis of rubber polymer

    SciTech Connect

    Venkatachalam, K.V.; Wooten, L.; Benedict, C.R. )

    1990-05-01

    Washed rubber particles (WRP) isolated from stem homogenates of Parthenium argentatum by ultracentrifugation and gel filtration on columns of LKB Ultrogel AcA34 contain a tightly bound rubber transferase which catalyzes the polymerization of IPP into rubber polymer. The polymerization reaction requires Mg{sup 2+}, IPP and an allylic-PP. The Km values for Mg{sup 2+}, IPP and DMAPP are 5.2{times}10{sup {minus}4}M, 8.3{times}10{sup {minus}5} M and 9.6{times}10{sup {minus}5}M respectively. Gel permeation chromatography of the enzymatic polymer product on 3 linear columns of 1{times}10{sup 6} to 500 {angstrom} Ultrastyragel shows that the in vitro formed polymer has a similar mol wt to natural rubber. Over 90% of the in vitro formation of the rubber polymer was a de novo polymerization reaction from DMAPP initiator and IPP monomers. The bound rubber polymerase substantially differs from cytosolic rubber transferase which catalyzes only chain lengthening reactions. Treatment of the WRP with Chaps solubilized the bound rubber transferase which was further purified by DEAE-cellulose chromatography. The purified preparation primarily consists of a 52 kD polypeptide which binds to a photolabile substrate analog. The soluble rubber transferase catalyzes the synthesis of a 1{times}10{sup 5} mol wt rubber polymer from Mg{sup 2+}, DMAPP, IPP and detergent.

  20. Method for the enzymatic production of hydrogen

    DOEpatents

    Woodward, Jonathan; Mattingly, Susan M.

    1999-01-01

    The present invention is an enzymatic method for producing hydrogen comprising the steps of: a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch. The reaction mixture further comprises an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and c) detecting the hydrogen produced from the reaction mixture.

  1. Method for the enzymatic production of hydrogen

    DOEpatents

    Woodward, J.; Mattingly, S.M.

    1999-08-24

    The present invention is an enzymatic method for producing hydrogen comprising the steps of: (a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch; the reaction mixture also comprising an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; (b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and (c) detecting the hydrogen produced from the reaction mixture. 8 figs.

  2. Enzymatic production of hydrogen from glucose

    SciTech Connect

    Woodward, J.; Mattingly, S.M.

    1995-06-01

    The objective of this research is to optimize conditions for the enzymatic production of hydrogen gas from biomass-derived glucose. This new project is funded at 0.5 PY level of effort for FY 1995. The rationale for the work is that cellulose is, potentially, a vast source of hydrogen and that enzymes offer a specific and efficient method for its extraction with minimal environmental impact. This work is related to the overall hydrogen program goal of technology development and validation. The approach is based on knowledge that glucose is oxidized by the NADP{sup +} requiring enzyme glucose dehydrogenase (GDH) and that the resulting NADPH can donate its electrons to hydrogenase (H{sub 2}ase) which catalyzes the evolution of H{sub 2}. Thus hydrogen production from glucose was achieved using calf liver GDH and Pyrococcus furiosus H{sub 2}ase yielding 17% of theoretical maximum expected. The cofactor NADP{sup +} for this reaction was regenerated and recycled. Current and future work includes understanding the rate limiting steps of this process and the stabilization/immobilization of the enzymes for long term hydrogen production. Cooperative interactions with the Universities of Georgia and Bath for obtaining thermally stable enzymes are underway.

  3. Enzymatic production of hydrogen from glucose

    NASA Astrophysics Data System (ADS)

    Woodward, J.; Mattingly, S. M.

    The objective of this research is to optimize conditions for the enzymatic production of hydrogen gas from biomass-derived glucose. This new project is funded at 0.5 PY level of effort for FY 1995. The rationale for the work is that cellulose is, potentially, a vast source of hydrogen and that enzymes offer a specific and efficient method for its extraction with minimal environmental impact. This work is related to the overall hydrogen program goal of technology development and validation. The approach is based on knowledge that glucose is oxidized by the NADP(sup +) requiring enzyme glucose dehydrogenase (GDH) and that the resulting NADPH can donate its electrons to hydrogenase (H2ase) which catalyzes the evolution of H2. Thus hydrogen production from glucose was achieved using calf liver GDH and Pyrococcus furiosus H2ase yielding 17% of theoretical maximum expected. The cofactor NADP(sup +) for this reaction was regenerated and recycled. Current and future work includes understanding the rate limiting steps of this process and the stabilization/immobilization of the enzymes for long term hydrogen production. Cooperative interactions with the Universities of Georgia and Bath for obtaining thermally sta

  4. Nanoparticle Mediated Remote Control of Enzymatic Activity

    PubMed Central

    Knecht, Leslie D.; Ali, Nur; Wei, Yinan; Hilt, J. Zach; Daunert, Sylvia

    2012-01-01

    Nanomaterials have found numerous applications as tunable, remotely controlled platforms for drug delivery, hyperthermia cancer treatment, and various other biomedical applications. The basis for the interest lies in their unique properties achieved at the nanoscale that can be accessed via remote stimuli. These properties could then be exploited to simultaneously activate secondary systems that are not remotely actuatable. In this work, iron oxide nanoparticles are encapsulated in a bisacrylamide-crosslinked polyacrylamide hydrogel network along with a model dehalogenase enzyme, L-2-HADST. This thermophilic enzyme is activated at elevated temperatures and has been shown to have optimal activity at 70 °C. By exposing the Fe3O4 nanoparticles to a remote stimulus, an alternating magnetic field (AMF), enhanced system heating can be achieved, thus remotely activating the enzyme. The internal heating of the nanocomposite hydrogel network in the AMF results in a 2-fold increase in enzymatic activity as compared to the same hydrogel heated externally in a water bath, suggesting that the internal heating of the nanoparticles is more efficient than the diffusion limited heating of the water bath. This system may prove useful for remote actuation of biomedical and environmentally relevant enzymes and find applications in a variety of fields. PMID:22989219

  5. Enzymatic hydrolysis and recrystallization behavior of initially amorphous cellulose.

    PubMed

    Bertran, M S; Dale, B E

    1985-02-01

    Cellulose samples from cotton and wood pulps with varying low degrees of crystallinity (mechanically decrystallized) were studied. The influence of initial cellulose crystallinity on sugar yield after enzymatic hydrolysis was determined by two different methods. As expected, samples with low crystallinity were much more accessible to enzymatic attack and glucose yields were higher than were samples of high initial crystallinity. Hydrolysis of cellulose seems more dependent on cellulose crystallinity than on the source of cellulose. It is known that decrystallized or amorphous cellulose can recrystallize under proper conditions, e.g., during acid hydrolysis. The data reported here also reveal some recrystallization during enzymatic hydrolysis which probably occurs simulataneously with a selective enzymatic attack on the amorphous regions of cellulose. In all cases, the amorphous celluloses recrystallized in the original lattice form, that of native cellulose. PMID:18553653

  6. Characteristics of esterified rice bran oil converted by enzymatic esterification.

    PubMed

    Choi, Jae-Suk; Roh, Myong-Kyun; Kim, Tae-Uk; Cheon, Eun Jin; Moon, Woi-Sook; Kim, Mi-Ryung

    2015-11-01

    In the present study, esterified rice bran oil (ERBO) was characterized using enzymatic esterification to improve stability, prevent acidification, enhance health-promoting biological activity and generate ω-3 PUFA-rich rice bran oil (RBO). Esterification reactions using RBO and ethanol were performed at 50°C under 200 bar with 3% lipozyme TL-IM (Thermomuces lanuginosa immobilized on silica gel) or RM-IM (Rhizomucor miehei immobilized on ion exchange resin) for 3 hr under supercritical CO2. The molar ratios of ethanol to RBO were 3, 6, 9 and 12, respectively. Total lipid contents and acid values decreased (maximum 83.75%),but γ-oryzanol content increased (maximum 41.33%) in esterified RBO (ERBO) prepared using TL-IM or RM-IM. In addition, DPPH radical scavenging activity of ERBO prepared by RM-IM atan ethanol to RBO molar ratio of 3 was 0.02 µg µl(-1), which was 63-fold higher than that of α-tocopherol (IC50 =1.25 µg µl(-1)). The anti-inflammatory effect of RM-IM 1:3 hydrolysate of RBO was verified showing its suppressive effect towards iNOS and Cox-2mRNA expression in a dose-dependent manner. Therefore, ERBO is a promising source of functional food, cosmetics and pharmaceuticals. PMID:26688957

  7. Improvement of efficiency in the enzymatic synthesis of lactulose palmitate.

    PubMed

    Bernal, Claudia; Illanes, Andres; Wilson, Lorena

    2015-04-15

    Sugar esters are considered as surfactants due to its amphiphilic balance that can lower the surface tension in oil/water mixtures. Enzymatic syntheses of these compounds are interesting both from economic and environmental considerations. A study was carried out to evaluate the effect of four solvents, temperature, substrate molar ratio, biocatalyst source, and immobilization methodology on the yield and specific productivity of lactulose palmitate monoester synthesis. Lipases from Pseudomonas stutzeri (PsL) and Alcaligenes sp. (AsL), immobilized in porous silica functionalized with octyl groups (adsorption immobilization, OS) and with glyoxyl-octyl groups (both adsorption and covalent immobilization, OGS), were used. The highest lactulose palmitate yields were obtained at 47 °C in acetone, for all biocatalysts, while the best lactulose:palmitic acid molar ratio differed according to the immobilization methodology, being 1:1 for AsL-OGS biocatalyst (20.7 ± 3%) and 1:3 for the others (30-50%). PMID:25797166

  8. Enzymatic hydrolysis of defatted mackerel protein with low bitter taste

    NASA Astrophysics Data System (ADS)

    Hou, Hu; Li, Bafang; Zhao, Xue

    2011-03-01

    Ultrasound-assisted solvent extraction was confirmed as a novel, effective method for separating lipid from mackerel protein, resulting in a degreasing rate (DR) of 95% and a nitrogen recovery (NR) of 88.6%. To obtain protein hydrolysates with high nitrogen recovery and low bitter taste, enzymatic hydrolysis was performed using eight commercially available proteases. It turned out that the optimum enzyme was the `Mixed enzymes for animal proteolysis'. An enzyme dosage of 4%, a temperature of 50°, and a hydrolysis time of 300 min were found to be the optimum conditions to obtain high NR (84.28%) and degree of hydrolysis (DH, 16.18%) by orthogonal experiments. Glutamic acid was the most abundant amino acid of MDP (defatted mackerel protein) and MDPH (defatted mackerel protein hydrolysates). Compared with the FAO/WHO reference protein, the essential amino acid chemical scores (CS) were greater than 1.0 (1.0-1.7) in MDPH, which is reflective of high nutritional value. This, coupled with the light color and slight fishy odor, indicates that MDPH would potentially have a wide range of applications such as nutritional additives, functional ingredients, and so on.

  9. Enzymatic Glucose Sensor Compensation for Variations in Ambient Oxygen Concentration

    PubMed Central

    Collier, Bradley B.; McShane, Michael J.

    2014-01-01

    Due to the increasing prevalence of diabetes, research toward painless glucose sensing continues. Oxygen sensitive phosphors with glucose oxidase (GOx) can be used to determine glucose levels indirectly by monitoring oxygen consumption. This is an attractive combination because of its speed and specificity. Packaging these molecules together in “smart materials” for implantation will enable non-invasive glucose monitoring. As glucose levels increase, oxygen levels decrease; consequently, the luminescence intensity and lifetime of the phosphor increase. Although the response of the sensor is dependent on glucose concentration, the ambient oxygen concentration also plays a key role. This could lead to inaccurate glucose readings and increase the risk of hyper- or hypoglycemia. To mitigate this risk, the dependence of hydrogel glucose sensor response on oxygen levels was investigated and compensation methods explored. Sensors were calibrated at different oxygen concentrations using a single generic logistic equation, such that trends in oxygen-dependence were determined as varying parameters in the equation. Each parameter was found to be a function of oxygen concentration, such that the correct glucose calibration equation can be calculated if the oxygen level is known. Accuracy of compensation will be determined by developing an overall calibration, using both glucose and oxygen sensors in parallel, correcting for oxygen fluctuations in real time by intentionally varying oxygen, and calculating the error in actual and predicted glucose levels. While this method was developed for compensation of enzymatic glucose sensors, in principle it can also be implemented with other kinds of sensors utilizing oxidases. PMID:26257458

  10. Enzymatically induced motion at nano- and micro-scales.

    PubMed

    Gáspár, Szilveszter

    2014-07-21

    In contrast to adenosine triphosphate (ATP)-dependent motor enzymes, other enzymes are little-known as "motors" or "pumps", that is, for their ability to induce motion. The enhanced diffusive movement of enzyme molecules, the self-propulsion of enzyme-based nanomotors, and liquid pumping with enzymatic micropumps were indeed only recently reported. Enzymatically induced motion can be achieved in mild conditions and without the use of external fields. It is thus better suited for use in living systems (from single-cell to whole-body) than most other ways to achieve motion at small scales. Enzymatically induced motion is thus not only new but also important. Therefore, the present work reviews the most significant discoveries in enzymatically induced motion. As we will learn, freely diffusing enzymes enhance their diffusive movement by nonreciprocal conformational changes which parallel their catalytic cycles. Meanwhile, enzyme-modified nano- and micro-objects turn chemical energy into kinetic energy through mechanisms such as bubble recoil propulsion, self-electrophoresis, and self-diffusiophoresis. Enzymatically induced motion of small objects ranges from enhanced diffusive movement to directed motion at speeds as high as 1 cm s(-1). In spite of the progress made in understanding how the energy of enzyme reactions is turned into motion, most enzymatically powered devices remain inefficient and need improvements before we will witness their application in real world environments. PMID:24931666

  11. Enzymatically induced motion at nano- and micro-scales

    NASA Astrophysics Data System (ADS)

    Gáspár, Szilveszter

    2014-06-01

    In contrast to adenosine triphosphate (ATP)-dependent motor enzymes, other enzymes are little-known as ``motors'' or ``pumps'', that is, for their ability to induce motion. The enhanced diffusive movement of enzyme molecules, the self-propulsion of enzyme-based nanomotors, and liquid pumping with enzymatic micropumps were indeed only recently reported. Enzymatically induced motion can be achieved in mild conditions and without the use of external fields. It is thus better suited for use in living systems (from single-cell to whole-body) than most other ways to achieve motion at small scales. Enzymatically induced motion is thus not only new but also important. Therefore, the present work reviews the most significant discoveries in enzymatically induced motion. As we will learn, freely diffusing enzymes enhance their diffusive movement by nonreciprocal conformational changes which parallel their catalytic cycles. Meanwhile, enzyme-modified nano- and micro-objects turn chemical energy into kinetic energy through mechanisms such as bubble recoil propulsion, self-electrophoresis, and self-diffusiophoresis. Enzymatically induced motion of small objects ranges from enhanced diffusive movement to directed motion at speeds as high as 1 cm s-1. In spite of the progress made in understanding how the energy of enzyme reactions is turned into motion, most enzymatically powered devices remain inefficient and need improvements before we will witness their application in real world environments.

  12. Enzymatic reduction of azo and indigoid compounds.

    PubMed

    Pricelius, S; Held, C; Murkovic, M; Bozic, M; Kokol, V; Cavaco-Paulo, A; Guebitz, G M

    2007-11-01

    A customer- and environment-friendly method for the decolorization azo dyes was developed. Azoreductases could be used both to bleach hair dyed with azo dyes and to reduce dyes in vat dyeing of textiles. A new reduced nicotinamide adenine dinucleotide-dependent azoreductase of Bacillus cereus, which showed high potential for reduction of these dyes, was purified using a combination of ammonium sulfate precipitation and chromatography and had a molecular mass of 21.5 kDa. The optimum pH of the azoreductase depended on the substrate and was within the range of pH 6 to 7, while the maximum temperature was reached at 40 degrees C. Oxygen was shown to be an alternative electron acceptor to azo compounds and must therefore be excluded during enzymatic dye reduction. Biotransformation of the azo dyes Flame Orange and Ruby Red was studied in more detail using UV-visible spectroscopy, high-performance liquid chromatography, and mass spectrometry (MS). Reduction of the azo bonds leads to cleavage of the dyes resulting in the cleavage product 2-amino-1,3 dimethylimidazolium and N approximately 1 approximately ,N approximately 1 approximately -dimethyl-1,4-benzenediamine for Ruby Red, while only the first was detected for Flame Orange because of MS instability of the expected 1,4-benzenediamine. The azoreductase was also found to reduce vat dyes like Indigo Carmine (C.I. Acid Blue 74). Hydrogen peroxide (H(2)O(2)) as an oxidizing agent was used to reoxidize the dye into the initial form. The reduction and oxidation mechanism of Indigo Carmine was studied using UV-visible spectroscopy. PMID:17891390

  13. Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress.

    PubMed

    Ozden, Ozkan; Park, Seong-Hoon; Kim, Hyun-Seok; Jiang, Haiyan; Coleman, Mitchell C; Spitz, Douglas R; Gius, David

    2011-02-01

    A fundamental observation in biology is that mitochondrial function, as measured by increased reactive oxygen species (ROS), changes significantly with age, suggesting a potential mechanistic link between the cellular processes governing longevity and mitochondrial metabolism homeostasis. In addition, it is well established that altered ROS levels are observed in multiple age-related illnesses including carcinogenesis, neurodegenerative, fatty liver, insulin resistance, and cardiac disease, to name just a few. Manganese superoxide dismutase (MnSOD) is the primary mitochondrial ROS scavenging enzyme that converts superoxide to hydrogen peroxide, which is subsequently converted to water by catalase and other peroxidases. It has recently been shown that MnSOD enzymatic activity is regulated by the reversible acetylation of specific, evolutionarily conserved lysine(s) in the protein. These results, suggest for the first time, that the mitochondria contain bidirectional post-translational signaling networks, similar to that observed in the cytoplasm and nucleus, and that changes in lysine acetylation alter MnSOD enzymatic activity. In addition, these new results demonstrate that the mitochondrial anti-aging or fidelity / sensing protein, SIRT3, responds to changes in mitochondrial nutrient and/or redox status to alter the enzymatic activity of specific downstream targets, including MnSOD that adjusts and/or maintains ROS levels as well as metabolic homeostatic poise. PMID:21386137

  14. CMOS focal-plane-array for analysis of enzymatic reaction in system-on-chip spectrophotometer

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ha, Chanki; Park, Chan B.; Joo, Youngjoong

    2004-06-01

    A CMOS focal-plane-array is designed for the high-throughput analysis of enzymatic reaction in on-chip spectrophotometer system. One of potential applications of the presented prototype system is to perform enzymatic analysis of biocompounds contained in blood. This function normally requires an expensive diode-array spectrophotometer, but it is possible to perform high throughput analysis with low budget if the spectrophotometer system is scaled down to a chip. The CMOS active pixel sensor array can cover a layer of polydimethylsiloxane (PDMS) forming the microfluidic channels and the substrate solution for enzymatic reaction can be injected into the channels by capillary force. Under room light, the underneath CMOS active pixel sensor with 40 x 40 pixels detect the gray levels of the fluid"s color. Inside the image sensor chip (size: 3mm x 3mm), the pixels of the same column share the same sample and hold circuits. The analog signals from 40 columns are multiplexed into one input feeding an on-chip 8 bits dual-slope analog to digital converter. The color change can be displayed on the external monitor by using a data acquisition card and personal computer.

  15. Metabolic, enzymatic and gene involvement in cerebral glucose dysmetabolism after traumatic brain injury.

    PubMed

    Amorini, Angela Maria; Lazzarino, Giacomo; Di Pietro, Valentina; Signoretti, Stefano; Lazzarino, Giuseppe; Belli, Antonio; Tavazzi, Barbara

    2016-04-01

    In this study, the metabolic, enzymatic and gene changes causing cerebral glucose dysmetabolism following graded diffuse traumatic brain injury (TBI) were evaluated. TBI was induced in rats by dropping 450g from 1 (mild TBI; mTBI) or 2m height (severe TBI; sTBI). After 6, 12, 24, 48, and 120h gene expressions and enzymatic activities of glycolysis and pentose phosphate pathway (PPP) enzymes, and levels of lactate, ATP, ADP, ATP/ADP (indexing mitochondrial phosphorylating capacity), NADP(+), NADPH and GSH were determined in whole brain extracts (n=9 rats at each time for both TBI levels). Sham-operated animals (n=9) were used as controls. Results demonstrated that mTBI caused a late increase (48-120h post injury) of glycolytic gene expression and enzymatic activities, concomitantly with mitochondrial functional recovery (ATP and ATP/ADP normalization). No changes in lactate and PPP genes and enzymes, were accompanied by transient decrease in GSH, NADP(+), NADPH and NADPH/NADP(+). Animals following sTBI showed early increase (6-24h post injury) of glycolytic gene expression and enzymatic activities, occurring during mitochondrial malfunctioning (50% decrease in ATP and ATP/ADP). Higher lactate and lower GSH, NADP(+), NADPH, NADPH/NADP(+) than controls were recorded at anytime post injury (p<0.01). Both TBI levels caused metabolic and gene changes affecting glucose metabolism. Following mTBI, increased glucose flux through glycolysis is coupled to mitochondrial glucose oxidation. "True" hyperglycolysis occurs only after sTBI, where metabolic changes, caused by depressed mitochondrial phosphorylating capacity, act on genes causing net glycolytic flux increase uncoupled from mitochondrial glucose oxidation. PMID:26844378

  16. Kinetic study of enzymatic hydrolysis of acid-pretreated coconut coir

    NASA Astrophysics Data System (ADS)

    Fatmawati, Akbarningrum; Agustriyanto, Rudy

    2015-12-01

    Biomass waste utilization for biofuel production such as bioethanol, has become more prominent currently. Coconut coir is one of lignocellulosic food wastes, which is abundant in Indonesia. Bioethanol production from such materials consists of more than one step. Pretreatment and enzymatic hydrolysis is crucial steps to produce sugar which can then be fermented into bioethanol. In this research, ground coconut coir was pretreated using dilute sulfuric acid at 121°C. This pretreatment had increased the cellulose content and decreased the lignin content of coconut coir. The pretreated coconut coir was hydrolyzed using a mix of two commercial cellulase enzymes at pH of 4.8 and temperature of 50°C. The enzymatic hydrolysis was conducted at several initial coconut coir slurry concentrations (0.1-2 g/100 mL) and reaction times (2-72 hours). The reducing sugar concentration profiles had been produced and can be used to obtain reaction rates. The highest reducing sugar concentration obtained was 1,152.567 mg/L, which was produced at initial slurry concentration of 2 g/100 mL and 72 hours reaction time. In this paper, the reducing sugar concentrations were empirically modeled as a function of reaction time using power equations. Michaelis-Menten kinetic model for enzymatic hydrolysis reaction is adopted. The kinetic parameters of that model for sulfuric acid-pretreated coconut coir enzymatic hydrolysis had been obtained which are Vm of 3.587×104 mg/L.h, and KM of 130.6 mg/L.

  17. Enzymatic detection and quantification assay of isatin, a putative stress biomarker in blood.

    PubMed

    Sommer, Theis; Bjerregaard-Andersen, Kaare; Simensen, Stine Marie; Jensen, Jan K; Jochimsen, Bjarne; Riss, Patrick J; Etzerodt, Michael; Morth, J Preben

    2015-08-19

    Isatin is an endogenous inhibitor of monoamine oxidase B and is found in human blood and tissue. Increased levels of isatin have been linked to stress and anxiety in rodents and humans; however, the metabolism of isatin in humans is largely unknown. We have developed a fluorescence-based enzymatic assay that can quantify isatin in blood samples. A phase extraction of isatin followed by a second phase extraction combined with an enzymatic reaction performed by an isatin hydrolase is used to extract and quantify isatin in whole blood samples. This results in a purity of more than 95% estimated from RP-HPLC. The hydrophobic molecule isatin is in equilibrium between an organic and aqueous phase; however, conversion by isatin hydrolase to the hydrophilic product isatinate traps it in the aqueous phase, making this step highly specific for isatin. The described protocol also offers a novel method for fast and efficient removal of isatin from any type of sample. The isolated isatinate is converted chemically to anthranilate that allows fluorescent detection and quantification. Pig plasma isatin levels are quantified to a mean of 458 nM ± 91 nM. Biophysical characterization of the isatin hydrolase shows enzymatic functionality between pH 6 and 9 and at temperatures up to 50 °C. Isatin hydrolase is highly selective for manganese ions with a dissociation constant determined to be 9.5 μM. We deliver proof-of-concept for the enzymatic quantification of isatin in blood and provide a straightforward method for further investigation of isatin as a biomarker in human health. PMID:25891478

  18. Effect of non-enzymatic proteins on enzymatic hydrolysis and simultaneous saccharification and fermentation of different lignocellulosic materials.

    PubMed

    Wang, Hui; Kobayashi, Shinichi; Mochidzuki, Kazuhiro

    2015-08-01

    Non-enzymatic proteins were added during hydrolysis of cellulose and simultaneous saccharification and fermentation (SSF) of different biomass materials. Bovine serum albumin (BSA), a model non-enzymatic protein, increased cellulose and xylose conversion efficiency and also enhanced the ethanol yield during SSF of rice straw subjected to varied pretreatments. Corn steep liquor, yeast extract, and peptone also exerted a similar effect as BSA and enhanced the enzymatic hydrolysis of rice straw. Compared to the glucose yields obtained after enzymatic hydrolysis of rice straw in the absence of additives, the glucose yields after 72h of hydrolysis increased by 12.7%, 13.5%, and 13.7% after addition of the corn steep liquor, yeast extract, and peptone, respectively. This study indicated the use of BSA as an alternative to intensive pretreatment of lignocellulosic materials for enhancing enzymatic digestibility. The utilization of non-enzymatic protein additives is promising for application in glucose and ethanol production from lignocellulosic materials. PMID:25974351

  19. The enzymatic nature of an anonymous protein sequence cannot reliably be inferred from superfamily level structural information alone.

    PubMed

    Roche, Daniel Barry; Brüls, Thomas

    2015-05-01

    As the largest fraction of any proteome does not carry out enzymatic functions, and in order to leverage 3D structural data for the annotation of increasingly higher volumes of sequence data, we wanted to assess the strength of the link between coarse grained structural data (i.e., homologous superfamily level) and the enzymatic versus non-enzymatic nature of protein sequences. To probe this relationship, we took advantage of 41 phylogenetically diverse (encompassing 11 distinct phyla) genomes recently sequenced within the GEBA initiative, for which we integrated structural information, as defined by CATH, with enzyme level information, as defined by Enzyme Commission (EC) numbers. This analysis revealed that only a very small fraction (about 1%) of domain sequences occurring in the analyzed genomes was found to be associated with homologous superfamilies strongly indicative of enzymatic function. Resorting to less stringent criteria to define enzyme versus non-enzyme biased structural classes or excluding highly prevalent folds from the analysis had only modest effect on this proportion. Thus, the low genomic coverage by structurally anchored protein domains strongly associated to catalytic activities indicates that, on its own, the power of coarse grained structural information to infer the general property of being an enzyme is rather limited. PMID:25559918

  20. Membrane Phospholipid Augments Cytochrome P4501a Enzymatic Activity by Modulating Structural Conformation during Detoxification of Xenobiotics

    PubMed Central

    Ghosh, Manik C.; Ray, Arun K.

    2013-01-01

    Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD) in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment. PMID:23469105

  1. Enzymatic modification of a model homogalacturonan with the thermally tolerant pectin methylesterase from citrus: I. Nanostructural characterization, enzyme mode of action and effect of pH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl ester distribution in pectin homogalacturonan has a major influence on functionality. Enzymatic engineering of pectin nanostructure for tailoring functionality can expand pectin’s role as a food formulating agent and its in situ modification in prepared foods. We report on the mode of action ...

  2. Bubble electrodeposition of gold porous nanocorals for the enzymatic and non-enzymatic detection of glucose.

    PubMed

    Sanzó, Gabriella; Taurino, Irene; Antiochia, Riccarda; Gorton, Lo; Favero, Gabriele; Mazzei, Franco; De Micheli, Giovanni; Carrara, Sandro

    2016-12-01

    Au nanocorals are grown on gold screen-printed electrodes (SPEs) by using a novel and simple one-step electrodeposition process. Scanning electron microscopy was used for the morphological characterization. The devices were assembled on a three-electrode SPE system, which is flexible and mass producible. The electroactive surface area, determined by cyclic voltammetry in sulphuric acid, was found to be 0.07±0.01cm(2) and 35.3±2.7cm(2) for bare Au and nanocoral Au, respectively. The nanocoral modified SPEs were used to develop an enzymatic glucose biosensor based on H2O2 detection. Au nanocoral electrodes showed a higher sensitivity of 48.3±0.9μA/(mMcm(2)) at +0.45V vs Ag|AgCl compared to a value of 24.6±1.3μA/(mMcm(2)) at +0.70V vs Ag|AgCl obtained with bare Au electrodes. However, the modified electrodes have indeed proven to be extremely powerful for the direct detection of glucose with a non-enzymatic approach. The results confirmed a clear peak observed by using nanocoral Au electrode even in the presence of chloride ions at physiological concentration. Amperometric study carried out at +0.15V vs Ag|AgCl in the presence of 0.12M NaCl showed a linear range for glucose between 0.1 and 13mM. PMID:27008973

  3. Effects of organic carbon sequestration strategies on soil enzymatic activities

    NASA Astrophysics Data System (ADS)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  4. Enzymatic Hydrolysis of Hydrotropic Pulps at Different Substrate Loadings.

    PubMed

    Denisova, Marina N; Makarova, Ekaterina I; Pavlov, Igor N; Budaeva, Vera V; Sakovich, Gennady V

    2016-03-01

    Enzymatic hydrolysis of cellulosic raw materials to produce nutrient broths for microbiological synthesis of ethanol and other valuable products is an important field of modern biotechnology. Biotechnological processing implies the selection of an effective pretreatment technique for raw materials. In this study, the hydrotropic treatment increased the reactivity of the obtained substrates toward enzymatic hydrolysis by 7.1 times for Miscanthus and by 7.3 times for oat hulls. The hydrotropic pulp from oat hulls was more reactive toward enzymatic hydrolysis compared to that from Miscanthus, despite that the substrates had similar compositions. As the initial substrate loadings were raised during enzymatic hydrolysis of the hydrotropic Miscanthus and oat hull pulps, the concentration of reducing sugars increased by 34 g/dm(3) and the yield of reducing sugars decreased by 31 %. The findings allow us to predict the efficiency of enzymatic hydrolysis of hydrotropic pulps from Miscanthus and oat hulls when scaling up the process by volume. PMID:26634840

  5. Enzymatic Kinetic Resolution of 2-Piperidineethanol for the Enantioselective Targeted and Diversity Oriented Synthesis †

    PubMed Central

    Perdicchia, Dario; Christodoulou, Michael S.; Fumagalli, Gaia; Calogero, Francesco; Marucci, Cristina; Passarella, Daniele

    2015-01-01

    2-Piperidineethanol (1) and its corresponding N-protected aldehyde (2) were used for the synthesis of several natural and synthetic compounds. The existence of a stereocenter at position 2 of the piperidine skeleton and the presence of an easily-functionalized group, such as the alcohol, set 1 as a valuable starting material for enantioselective synthesis. Herein, are presented both synthetic and enzymatic methods for the resolution of the racemic 1, as well as an overview of synthesized natural products starting from the enantiopure 1. PMID:26712740

  6. Enzymatic and immunochemical determination of plasminogen and plasmin in different physiological and pathological states

    PubMed Central

    Mannucci, P. M.; Stabilini, R.; Bragotti, R.; Marasini, Bianca; Agostoni, A.

    1971-01-01

    Plasminogen and plasmin have been determined in the same plasma samples in normal subjects and in various physiological and pathological conditions (pregnancy, liver cirrhosis, untreated cancer, and myocardial infarction during treatment with streptokinase) by means of two different methods. These were an enzymatic assay and a new immunochemical assay based on radial immunodiffusion employing cellulose acetate strips. A significant correlation was found in normal subjects. However, in the other conditions marked discrepancies were observed in the results by the two methods. These findings might be related to variations in the functional activity of plasminogen and plasmin in disease. Images PMID:4252395

  7. Enzymatic- and temperature-sensitive controlled release of ultrasmall superparamagnetic iron oxides (USPIOs)

    PubMed Central

    2011-01-01

    Background Drug and contrast agent delivery systems that achieve controlled release in the presence of enzymatic activity are becoming increasingly important, as enzymatic activity is a hallmark of a wide array of diseases, including cancer and atherosclerosis. Here, we have synthesized clusters of ultrasmall superparamagnetic iron oxides (USPIOs) that sense enzymatic activity for applications in magnetic resonance imaging (MRI). To achieve this goal, we utilize amphiphilic poly(propylene sulfide)-bl-poly(ethylene glycol) (PPS-b-PEG) copolymers, which are known to have excellent properties for smart delivery of drug and siRNA. Results Monodisperse PPS polymers were synthesized by anionic ring opening polymerization of propylene sulfide, and were sequentially reacted with commercially available heterobifunctional PEG reagents and then ssDNA sequences to fashion biofunctional PPS-bl-PEG copolymers. They were then combined with hydrophobic 12 nm USPIO cores in the thin-film hydration method to produce ssDNA-displaying USPIO micelles. Micelle populations displaying complementary ssDNA sequences were mixed to induce crosslinking of the USPIO micelles. By design, these crosslinking sequences contained an EcoRV cleavage site. Treatment of the clusters with EcoRV results in a loss of R2 negative contrast in the system. Further, the USPIO clusters demonstrate temperature sensitivity as evidenced by their reversible dispersion at ~75°C and re-clustering following return to room temperature. Conclusions This work demonstrates proof of concept of an enzymatically-actuatable and thermoresponsive system for dynamic biosensing applications. The platform exhibits controlled release of nanoparticles leading to changes in magnetic relaxation, enabling detection of enzymatic activity. Further, the presented functionalization scheme extends the scope of potential applications for PPS-b-PEG. Combined with previous findings using this polymer platform that demonstrate controlled drug

  8. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor

    NASA Astrophysics Data System (ADS)

    Zhu, Zhigang; Song, Wenhui; Burugapalli, Krishna; Moussy, Francis; Li, Ya-Li; Zhong, Xiao-Hua

    2010-04-01

    A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 µm in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure. Cyclic voltammetry study revealed a superior electrocatalytic activity for CNT fiber compared to the traditional Pt-Ir coil electrode. The electrode end tip of the CNT fiber was freeze-fractured to obtain a unique brush-like nano-structure resembling a scale-down electrical 'flex', where glucose oxidase (GOx) enzyme was immobilized using glutaraldehyde crosslinking in the presence of bovine serum albumin (BSA). An outer epoxy-polyurethane (EPU) layer was used as semi-permeable membrane. The sensor function was tested against a standard reference electrode. The sensitivities, linear detection range and linearity for detecting glucose for the miniature CNT fiber electrode were better than that reported for a Pt-Ir coil electrode. Thermal annealing of the CNT fiber at 250 °C for 30 min prior to fabrication of the sensor resulted in a 7.5 fold increase in glucose sensitivity. The as-spun CNT fiber based glucose biosensor was shown to be stable for up to 70 days. In addition, gold coating of the electrode connecting end of the CNT fiber resulted in extending the glucose detection limit to 25 µM. To conclude, superior efficiency of CNT fiber for glucose biosensing was demonstrated compared to a traditional Pt-Ir sensor.

  9. Enrichment of amaranth oil with ethyl palmitate at the sn-2 position by chemical and enzymatic synthesis.

    PubMed

    Pina-Rodriguez, Ashanty M; Akoh, Casimir C

    2009-06-10

    Amaranth oil is rich in linoleic, oleic, and palmitic acids. Structured lipids (SLs) with specific functional and nutritional characteristics can be prepared through chemical or enzymatic interesterification. The aim of this study was to increase the palmitic acid content at the sn-2 position in amaranth oil triacylglycerols (TAG) for possible use in infant formula. Chemical and enzymatic interesterification techniques were assessed before selecting the latter for further optimization modeling. Enzymatic interesterification of ethyl palmitate and amaranth oil significantly increased the total content of palmitic acid, reduced linoleic acid content, and increased the amount of palmitic acid at the sn-2 position of the SL product. Even though amaranth oil content of palmitic acid (18.3%) was originally similar to that in breast milk (18.3-25.9%), the structural changes induced through enzymatic modification resulted in a SL closely resembling breast milk fat and hence its possible application as a fat substitute for infant nutrition. A second-order polynomial model was developed to predict the amount of total palmitic acid incorporated when reaction time and substrate level were manipulated, and to optimize the combination of parameters to achieve specific palmitic acid contents in amaranth oil. The resulting model is useful to develop an SL from amaranth oil enriched with palmitic acid specifically at the sn-2 position for possible application in infant formulas. PMID:19413361

  10. Micro-electro-mechanical systems (MEMS) for enzymatic detection

    NASA Astrophysics Data System (ADS)

    Jeetender, Amritsar; Packirisamy, Muthukumaran; Stiharu, Ion G.; Balagopal, Ganesharam

    2004-08-01

    Early enzymatic identification and confirmation is essential for diagnosis and prevention as in the case of Acute Myocardial Infarction (AMI). Biochemical markers continue to be an important clinical tool for the enzymatic detection. The advent of MEMS devices can enable the use of various microstructures for the detection of enzymes. In this study, the concept of MEMS is applied for the detection of enzyme reaction, in which microcantilevers undergo changes in mechanical behavior that can be optically detected when enzyme molecules adsorb on their surface. This paper presents the static behavior of microcantilevers under Horse Radish Peroxide (HRP) enzyme reaction. The reported experimental results provide valuable information that will be useful in the development of MEMS sensors for enzymatic detection. The surface stress produced due to enzyme reactions results in the bending of cantilevers as similar to the influencing of thermal stress in the cantilevers. This paper also reports the influence of thermal gradient on the microcantilevers.

  11. Effect of some process parameters in enzymatic dyeing of wool.

    PubMed

    Tzanov, Tzanko; Silva, Carla Joana; Zille, Andrea; Oliveira, Jovita; Cavaco-Paulo, Artur

    2003-10-01

    This article reports on the dyeing of wool using an enzymatic system comprising laccase; dye precursor, 2,5-diaminobenzenesulfonic acid; and dye modifiers, catechol and resorcinol. Enzymatic dyeing was performed as a batchwise process at the temperature and pH of maximum enzyme activity. The effects of the process variables reaction time, enzyme, and modifier concentration on fabric color were studied, according to an appropriate experimental design. Different hues and depths of shades could be achieved by varying the concentration of the modifiers and the time of laccase treatment. The duration of the enzymatic reaction appeared to be the most important factor in the dyeing process. Thus, the dyeing process, performed at low temperature and mild pH, was advantageous in terms of reduced enzyme and chemical dosage. PMID:14566065

  12. Enzymatic saccharification of brown seaweed for production of fermentable sugars.

    PubMed

    Sharma, Sandeep; Horn, Svein Jarle

    2016-08-01

    This study shows that high drying temperatures negatively affect the enzymatic saccharification yield of the brown seaweed Saccharina latissima. The optimal drying temperature of the seaweed in terms of enzymatic sugar release was found to be 30°C. The enzymatic saccharification process was optimized by investigating factors such as kinetics of sugar release, enzyme dose, solid loading and different blend ratios of cellulases and an alginate lyase. It was found that the seaweed biomass could be efficiently hydrolysed to fermentable sugars using a commercial cellulase cocktail. The inclusion of a mono-component alginate lyase was shown to improve the performance of the enzyme blend, in particular at high solid loadings. At 25% dry matter loading a combined glucose and mannitol concentration of 74g/L was achieved. PMID:26961713

  13. Non-enzymatic post-translational protein modifications and proteostasis network deregulation in carcinogenesis.

    PubMed

    Trougakos, Ioannis P; Sesti, Fabiola; Tsakiri, Eleni; Gorgoulis, Vassilis G

    2013-10-30

    Organisms are constantly challenged by stressors and thus the maintenance of biomolecules functionality is essential for the assurance of cellular homeostasis. Proteins carry out the vast majority of cellular functions by mostly participating in multimeric protein assemblies that operate as protein machines. Cells have evolved a complex proteome quality control network for the rescue, when possible, or the degradation of damaged polypeptides. Nevertheless, despite these proteostasis ensuring mechanisms, new protein synthesis, and the replication-mediated dilution of proteome damage in mitotic cells, the gradual accumulation of stressors during aging (or due to lifestyle) results in increasingly damaged proteome. Non-enzymatic post-translational protein modifications mostly arise by unbalanced redox homeostasis and/or high glucose levels and may cause disruption of proteostasis as they can alter protein function. This outcome may then increase genomic instability due to reduced fidelity in processes like DNA replication or repair. Herein, we present a synopsis of the major non-enzymatic post-translation protein modifications and of the proteostasis network deregulation in carcinogenesis. We propose that activation of the proteostasis ensuring mechanisms in premalignant cells has tumor-preventive effects, whereas considering that over-activation of these mechanisms represents a hallmark of advanced tumors, their inhibition provides a strategy for the development of anti-tumor therapies. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine. PMID:23500136

  14. Two-Input Enzymatic Logic Gates Made Sigmoid by Modifications of the Biocatalytic Reaction Cascades

    SciTech Connect

    Zavalov, Oleksandr; Bocharova, Vera; Halamek, Jan; Halamkova, Lenka; Korkmaz, Sevim; Arugula, Mary; Chinnapareddy, Soujanya; Katz, Evgeny; Privman, Vladimir

    2012-01-01

    Computing based on biochemical processes is a newest rapidly developing field of unconventional information and signal processing. In this paper we present results of our research in the field of biochemical computing and summarize the obtained numerical and experimental data for implementations of the standard two-input OR and AND gates with double-sigmoid shape of the output signal. This form of response was obtained as a function of the two inputs in each of the realized biochemical systems. The enzymatic gate processes in the first system were activated with two chemical inputs and resulted in optically detected chromogen oxidation, which happens when either one or both of the inputs are present. In this case, the biochemical system is functioning as the OR gate. We demonstrate that the addition of a filtering biocatalytic process leads to a considerable reduction of the noise transmission factor and the resulting gate response has sigmoid shape in both inputs. The second system was developed for functioning as an AND gate, where the output signal was activated only by a simultaneous action of two enzymatic biomarkers. This response can be used as an indicator of liver damage, but only if both of these of the inputs are present at their elevated, pathophysiological values of concentrations. A kinetic numerical model was developed and used to estimate the range of parameters for which the experimentally realized logic gate is close to optimal. We also analyzed the system to evaluate its noise-handling properties.

  15. Exploiting Enzymatic Dynamic Reductive Kinetic Resolution (DYRKR) in Stereocontrolled Synthesis

    PubMed Central

    Applegate, Gregory A.; Berkowitz, David B.

    2015-01-01

    Over the past two decades, the domains of both frontline synthetic organic chemistry and process chemistry and have seen an increase in crosstalk between asymmetric organic/organometallic approaches and enzymatic approaches to stereocontrolled synthesis. This review highlights the particularly auspicious role for dehydrogenase enzymes in this endeavor, with a focus on dynamic reductive kinetic resolutions (DYRKR) to “deracemize” building blocks, often setting two stereocenters in so doing. The scope and limitations of such dehydrogenase-mediated processes are overviewed, as are future possibilities for the evolution of enzymatic DYRKR. PMID:26622223

  16. Adhesion improvement of lignocellulosic products by enzymatic pre-treatment.

    PubMed

    Widsten, Petri; Kandelbauer, Andreas

    2008-01-01

    Enzymatic bonding methods, based on laccase or peroxidase enzymes, for lignocellulosic products such as medium-density fiberboard and particleboard are discussed with reference to the increasing costs of presently used petroleum-based adhesives and the health concerns associated with formaldehyde emissions from current composite products. One approach is to improve the self-bonding properties of the particles by oxidation of their surface lignin before they are fabricated into boards. Another method involves using enzymatically pre-treated lignins as adhesives for boards and laminates. The application of this technology to achieve wet strength characteristics in paper is also reviewed. PMID:18502077

  17. Study on beta-galactosidase enzymatic activity of herbal yogurt.

    PubMed

    Chowdhury, Banani Ray; Chakraborty, Runu; Raychaudhuri, Utpal

    2008-03-01

    Different types of herbal yogurts were developed by mixing standardized milk with pretreated herbs, namely tulsi leaf (Ocimum sanctum), pudina leaf (Mentha arvensis) and coriander leaf (Coriandrum sativum), with leaves separately and a 1:1 (v/v) mixture of the strains of lactic starter cultures---Lactobacillus acidophilus (NCIM 2903) and Lactobacillus plantarum (NCIM 2083)-followed by incubation at 40 degrees C for 6 h. The beta-galactosidase enzymatic activity of the abovementioned herbal yogurts was determined and interestingly noted to exhibit higher enzymatic activity compared with the control yogurt (without any herbs). Among all herbal yogurts, tulsi yogurt had the maximum beta-galactosidase activity. PMID:17852503

  18. Enzymatic biofuel cells: 30 years of critical advancements.

    PubMed

    Rasmussen, Michelle; Abdellaoui, Sofiene; Minteer, Shelley D

    2016-02-15

    Enzymatic biofuel cells are bioelectronic devices that utilize oxidoreductase enzymes to catalyze the conversion of chemical energy into electrical energy. This review details the advancements in the field of enzymatic biofuel cells over the last 30 years. These advancements include strategies for improving operational stability and electrochemical performance, as well as device fabrication for a variety of applications, including implantable biofuel cells and self-powered sensors. It also discusses the current scientific and engineering challenges in the field that will need to be addressed in the future for commercial viability of the technology. PMID:26163747

  19. Improved enzymatic production of phenolated acylglycerols through alkyl phenolate intermediates.

    PubMed

    Yang, Zhiyong; Feddern, Vivian; Glasius, Marianne; Guo, Zheng; Xu, Xuebing

    2011-04-01

    A novel approach is reported for the synthesis of dihydrocaffoylated glycerols that consists of two steps: enzymatic synthesis of octyl dihydrocaffeate (as a synthetic intermediate) from octanol and dihydrocaffeic acid, and enzymatic interesterification of triacylglycerols with octyl dihydrocaffeate. Due to the good compatibility of the intermediate with triacylglycerols, an improved volumetric productivity [147 mol h(-1)(kg Novozym 435)(-1)] and high enzyme specific activity [up to 9.6 μmol(-1) min(-1)(g Novozym 435)(-1)] have been obtained. PMID:21120584

  20. Enzymatic Processing of Bioactive Glycosides from Natural Sources

    NASA Astrophysics Data System (ADS)

    Weignerová, Lenka; Křen, Vladimír

    A number of biologically active natural products are glycosides. Often, the glycosidic residue is crucial for their activity. In other cases, glycosylation only improves their pharmacokinetic parameters. Enzymatic modification of these glycosides - both extension of the glycoside moiety and its selective trimming - is advantageous due to their selectivity and mildness of the reaction conditions in the presence of reactive and sensitive complex aglycones. Enzymatic reactions enable the resulting products to be used as "natural products", e.g., in nutraceuticals. This chapter concentrates on naturally occurring glycosides used in medicine but also in the food and flavor industry (e.g., sweeteners). Both "classical" and modern methods will be discussed.

  1. Saliva microbiota carry caries-specific functional gene signatures.

    PubMed

    Yang, Fang; Ning, Kang; Chang, Xingzhi; Yuan, Xiao; Tu, Qichao; Yuan, Tong; Deng, Ye; Hemme, Christopher L; Van Nostrand, Joy; Cui, Xinping; He, Zhili; Chen, Zhenggang; Guo, Dawei; Yu, Jiangbo; Zhang, Yue; Zhou, Jizhong; Xu, Jian

    2014-01-01

    Human saliva microbiota is phylogenetically divergent among host individuals yet their roles in health and disease are poorly appreciated. We employed a microbial functional gene microarray, HuMiChip 1.0, to reconstruct the global functional profiles of human saliva microbiota from ten healthy and ten caries-active adults. Saliva microbiota in the pilot population featured a vast diversity of functional genes. No significant distinction in gene number or diversity indices was observed between healthy and caries-active microbiota. However, co-presence network analysis of functional genes revealed that caries-active microbiota was more divergent in non-core genes than healthy microbiota, despite both groups exhibited a similar degree of conservation at their respective core genes. Furthermore, functional gene structure of saliva microbiota could potentially distinguish caries-active patients from healthy hosts. Microbial functions such as Diaminopimelate epimerase, Prephenate dehydrogenase, Pyruvate-formate lyase and N-acetylmuramoyl-L-alanine amidase were significantly linked to caries. Therefore, saliva microbiota carried disease-associated functional signatures, which could be potentially exploited for caries diagnosis. PMID:24533043

  2. Saliva Microbiota Carry Caries-Specific Functional Gene Signatures

    PubMed Central

    Chang, Xingzhi; Yuan, Xiao; Tu, Qichao; Yuan, Tong; Deng, Ye; Hemme, Christopher L.; Van Nostrand, Joy; Cui, Xinping; He, Zhili; Chen, Zhenggang; Guo, Dawei; Yu, Jiangbo; Zhang, Yue; Zhou, Jizhong; Xu, Jian

    2014-01-01

    Human saliva microbiota is phylogenetically divergent among host individuals yet their roles in health and disease are poorly appreciated. We employed a microbial functional gene microarray, HuMiChip 1.0, to reconstruct the global functional profiles of human saliva microbiota from ten healthy and ten caries-active adults. Saliva microbiota in the pilot population featured a vast diversity of functional genes. No significant distinction in gene number or diversity indices was observed between healthy and caries-active microbiota. However, co-presence network analysis of functional genes revealed that caries-active microbiota was more divergent in non-core genes than healthy microbiota, despite both groups exhibited a similar degree of conservation at their respective core genes. Furthermore, functional gene structure of saliva microbiota could potentially distinguish caries-active patients from healthy hosts. Microbial functions such as Diaminopimelate epimerase, Prephenate dehydrogenase, Pyruvate-formate lyase and N-acetylmuramoyl-L-alanine amidase were significantly linked to caries. Therefore, saliva microbiota carried disease-associated functional signatures, which could be potentially exploited for caries diagnosis. PMID:24533043

  3. An enzymatic approach to bifunctional chelating agents.

    PubMed

    Minazzi, Paolo; Lattuada, Luciano; Menegotto, Ivan G; Giovenzana, Giovanni B

    2014-09-21

    Bifunctional chelating agents (BFCAs) combine the complexing properties of a multidentate ligand with the presence of a free reactive functional group, mainly devoted to conjugation purposes. Indeed, products obtained by conjugation of a BFCA to a biomolecule and coordination of a suitable metal ion are widely applied in medicine nowadays as diagnostic and therapeutic agents. BFCAs are generally prepared through multi-step syntheses and with extensive application of protection-deprotection strategies, due to the large number of functional groups involved. Hydrolytic enzymes, with their unique chemoselectivity, provided the best results in the preparation of three different BFCAs based on very useful and well known ligand platforms. PMID:25060174

  4. Nanostructural characterization of enzymatically modified pectin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pectin methylesterase (PME) hydrolyzes C6 methyl esters of galacturonic acid (GA) residues in pectin homogalacturonan regions. Both the degree of esterification (DE) and ester spatial distribution affect pectin functionality. We have created a demethylated pectin series with a unique, thermally tole...

  5. Enzymatic degradation of (ligno)cellulose.

    PubMed

    Bornscheuer, Uwe; Buchholz, Klaus; Seibel, Jürgen

    2014-10-01

    Glycoside-degrading enzymes play a dominant role in the biochemical conversion of cellulosic biomass into low-price biofuels and high-value-added chemicals. New insight into protein functions and substrate structures, the kinetics of recognition, and degradation events has resulted in a substantial improvement of our understanding of cellulose degradation. PMID:25136976

  6. Allergenic Properties of Enzymatically Hydrolyzed Peanut Flour Extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut flour is a high protein, low oil, powdered material prepared from roasted 21 peanut seed. In addition to being a well-established food ingredient, peanut flour is also the 22 active ingredient in peanut oral immunotherapy trials. Enzymatic hydrolysis was evaluated as a 23 processing strategy ...

  7. Enzymatic monitoring of lignin and lignin derivatives biooxidation.

    PubMed

    Ibrahim, Victor; Mamo, Gashaw

    2016-01-01

    Lignin oxidation was enzymatically monitored by measuring methanol released during the reaction. The methanol was oxidized to formaldehyde and hydrogen peroxide, and the latter used to oxidize ABTS to a product measured spectrophotometrically. The efficiency was comparable to the commonly used gas chromatography method. The assay was fast and inexpensive. PMID:26632344

  8. Ultrasound Enhancement of Enzymatic Hydrolysis of Cellulose Plant Matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The work reported here is based on acceleration of enzymatic hydrolysis of plant biomass substrate by introduction of low intensity, uniform ultrasound field into a reaction chamber (bio-reactor). This method may serve as improvement of rates in the hydrolysis of cellulosic materials to sugars, whi...

  9. Enzymatic treatment of peanut kernels to reduce allergen levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the use of enzymatic treatment to reduce peanut allergens in peanut kernel by processing conditions, such as, pretreatment with heat and proteolysis at different enzyme concentrations and treatment times. Two major peanut allergens, Ara h 1 and Ara h 2, were used as indicator...

  10. The Preparation and Enzymatic Hydrolysis of a Library of Esters

    ERIC Educational Resources Information Center

    Sanford, Elizabeth M.; Smith, Traci L.

    2008-01-01

    An investigative case study involving the preparation of a library of esters using Fischer esterification and alcoholysis of acid chlorides and their subsequent enzymatic hydrolysis by pig liver esterase and orange peel esterase is described. Students work collaboratively to prepare and characterize the library of esters and complete and evaluate…

  11. Enzymatic corn wet milling: engineering process and cost model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzymatic Corn Wet Milling (E-Milling) is a proposed alternative process to conventional wet milling for the recovery and purification of starch and coproducts using proteases to eliminate the need for sulfites and to decrease the steeping time. In 2005, the total starch production in USA by conven...

  12. MICROCHIP ENZYMATIC ASSAY OF ORGANOPHOSPHATE NERVE AGENTS. (R830900)

    EPA Science Inventory

    An on-chip enzymatic assay for screening organophosphate (OP) nerve agents, based on a pre-column reaction of organophosphorus hydrolase (OPH), electrophoretic separation of the phosphonic acid products, and their contactless-conductivity detection, is described. Factors affec...

  13. Lime pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse.

    PubMed

    Rabelo, Sarita C; Maciel Filho, Rubens; Costa, Aline C

    2013-03-01

    Sugarcane bagasse was subjected to lime (calcium hydroxide) pretreatment and enzymatic hydrolysis for second-generation ethanol production. A central composite factorial design was performed to determine the best combination of pretreatment time, temperature, and lime loading, as well as to evaluate the influence of enzymatic loadings on hydrolysis conversion. The influence of increasing solids loading in the pretreatment and enzymatic hydrolysis stages was also determined. The hydrolysate was fermented using Saccharomyces cerevisiae in batch and continuous mode. In the continuous fermentation, the hydrolysates were concentrated with molasses. Lime pretreatment significantly increased the enzymatic digestibility of sugarcane bagasse without the need for prior particle size reduction. In the optimal pretreatment conditions (90 h, 90 °C, 0.47 glime/g bagasse) and industrially realistic conditions of hydrolysis (12.7 FPU/g of cellulase and 7.3 CBU/g of β-glucosidase), 139.6 kglignin/ton raw bagasse and 126.0 kg hemicellulose in the pretreatment liquor per ton raw bagasse were obtained. The hydrolysate from lime pretreated sugarcane bagasse presented low amounts of inhibitors, leading to ethanol yield of 164.1 kgethanol/ton raw bagasse. PMID:23334836

  14. Elimination of xanthan microgels by new enzymatic treatments

    SciTech Connect

    Kohler, N.; Milas, M.; Rinaudo, M.

    1983-02-01

    Polysaccharase and particularly combined polysaccharase/protease treatments offer new alternatives for clarifying aqueous xanthan gum dispersions. Each enzyme has its specific action--the proteases on the insoluble residual bacterial cells, and the polysaccharases primarily on the microgels. Preliminary tests of these enzymatic treatments for scheduled field applications show promising improvements in filterability, especially for solutions prepared from xanthan powders.

  15. Elimination of xanthan microgels by new enzymatic treatments

    SciTech Connect

    Kohler, N.; Milas, M.; Rinaudo, M.

    1983-02-01

    Polysaccharase and particularly combined polysaccharase/protease treatments offer new alternatives for clarifying aqueous xanthan gum dispersions. Each enzyme has its specific action-the proteases on the insoluble residual bacterial cells, and the polysaccharases primarily on the microgels. Preliminary tests of these enzymatic treatments for scheduled field applications show promising improvements in filterability, especially for solutions prepared from xanthan powders.

  16. Label-Free Electrical Detection of Enzymatic Reactions in Nanochannels.

    PubMed

    Duan, Chuanhua; Alibakhshi, Mohammad Amin; Kim, Dong-Kwon; Brown, Christopher M; Craik, Charles S; Majumdar, Arun

    2016-08-23

    We report label-free electrical detection of enzymatic reactions using 2-D nanofluidic channels and investigate reaction kinetics of enzymatic reactions on immobilized substrates in nanoscale-confined spaces. Trypsin proteolysis is chosen for demonstration of the detection scheme. When trypsin cleaves poly-l-lysine coated on the surface of silica nanochannels, the resulting change of surface charge density can be detected by monitoring the ionic conductance of the nanochannels. Our results show that detection of such surface enzymatic reactions is faster than detection of surface binding reactions in nanochannels for low-concentration analytes. Furthermore, the nanochannel sensor has a sensitivity down to 5 ng/mL, which statistically corresponds to a single enzyme per nanochannel. Our results also suggest that enzyme kinetics in nanochannels is fundamentally different from that in bulk solutions or plain surfaces. Such enzymatic reactions form two clear self-propagating reaction fronts inside the nanochannels, and the reaction fronts follow square-root time dependences at high enzyme concentrations due to significant nonspecific adsorption. However, at low enzyme concentrations when nonspecific adsorption is negligible, the reaction fronts propagate linearly with time, and the corresponding propagation speed is related to the channel geometry, enzyme concentration, catalytic reaction constant, diffusion coefficient, and substrate surface density. Optimization of this nanochannel sensor could lead to a quick-response, highly sensitive, and label-free sensor for enzyme assay and kinetic studies. PMID:27472431

  17. Synthesis of poly(aminoamides)via enzymatic means

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poly(aminoamides) constitute a subclass of polyamides that are water-soluble and useful for several applications. Commercially they are made via chemical reaction pathways. A review is made in this work of the enzymatic approaches towards their syntheses. Lipases and esterases have been found to ...

  18. Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Particle size reduction is a crucial factor in transportation logistics as well as cellulosic conversion. The effect of particle size on enzymatic hydrolysis of pretreated Miscanthus x giganteus was determined. Miscanthus was ground using a hammer mill equipped with screens having 0.08, 2.0 or 6.0...

  19. Antagonists' impact on enzymatic response in wilt infected cotton plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of PR-proteins possess enzymatic activity. As such, these proteins maybe indicators of defensive response of plants. Thus, we have conducted a comparative analysis of beta-1,3-glucanase, peroxidase and xylanase activity in cotton plants to determine how these enzymes are affected by the pat...

  20. Enzymatic activity of rodents acclimated to cold and long scotophase

    NASA Astrophysics Data System (ADS)

    Fourie, F. Le R.; Haim, A.

    1980-09-01

    Rodents representative of a diurnal species ( Rhabdomys pumilio) as well as a nocturnal species ( Praomys natalensis) were acclimated to cold (Ta = 8°C) at a photoperiod of LD 12:12 and a long scotophase (LD 8; 16) at a temperature of 25° C(Ta). Control groups were kept for both species at Ta = 25° C and LD 12:12 and winter acclimated individuals were obtained during July and August to serve as further reference. Blood samples obtained from the tail were analysed for enzymes representative of three major biochemical pathways. The enzymatic activity of LDH (glycolytic pathway), MDH (Krebs cycle) and G6PDH (hexose monophosphate shunt, as an indicator of gonadal activity) were monitored to represent metabolic activity of the respective cycles. Cold acclimated as well as winter acclimatized mice revealed similar enzymatic patterns for both species and significant increases in LDH and MDH were recorded with a concurrent decrease in G6PDH activity. Specimens exposed to long scotophase exhibited similar enzymatic patterns for both species studied, but enzymatic activity was higher than those of cold acclimated individuals. From these results it is concluded that cold as well as long scotophase induce metabolic adaptations through biochemical activity in the experimental animals. The effect of long scotophase is assumed to be an important factor in the induction of winter acclimatization.

  1. Coupled chemo(enzymatic) reactions in continuous flow

    PubMed Central

    Yuryev, Ruslan; Strompen, Simon

    2011-01-01

    Summary This review highlights the state of the art in the field of coupled chemo(enzymatic) reactions in continuous flow. Three different approaches to such reaction systems are presented herein and discussed in view of their advantages and disadvantages as well as trends for their future development. PMID:22238518

  2. A survey of synthetic nicotinamide cofactors in enzymatic processes.

    PubMed

    Paul, Caroline E; Hollmann, Frank

    2016-06-01

    Synthetic nicotinamide cofactors are analogues of the natural cofactors used by oxidoreductases as redox intermediates. Their ability to be fine-tuned makes these biomimetics an attractive alternative to the natural cofactors in terms of stability, reactivity, and cost. The following mini-review focuses on the current state of the art of those biomimetics in enzymatic processes. PMID:27094184

  3. Enzymatic reaction paths as determined by transition path sampling

    NASA Astrophysics Data System (ADS)

    Masterson, Jean Emily

    Enzymes are biological catalysts capable of enhancing the rates of chemical reactions by many orders of magnitude as compared to solution chemistry. Since the catalytic power of enzymes routinely exceeds that of the best artificial catalysts available, there is much interest in understanding the complete nature of chemical barrier crossing in enzymatic reactions. Two specific questions pertaining to the source of enzymatic rate enhancements are investigated in this work. The first is the issue of how fast protein motions of an enzyme contribute to chemical barrier crossing. Our group has previously identified sub-picosecond protein motions, termed promoting vibrations (PVs), that dynamically modulate chemical transformation in several enzymes. In the case of human heart lactate dehydrogenase (hhLDH), prior studies have shown that a specific axis of residues undergoes a compressional fluctuation towards the active site, decreasing a hydride and a proton donor--acceptor distance on a sub-picosecond timescale to promote particle transfer. To more thoroughly understand the contribution of this dynamic motion to the enzymatic reaction coordinate of hhLDH, we conducted transition path sampling (TPS) using four versions of the enzymatic system: a wild type enzyme with natural isotopic abundance; a heavy enzyme where all the carbons, nitrogens, and non-exchangeable hydrogens were replaced with heavy isotopes; and two versions of the enzyme with mutations in the axis of PV residues. We generated four separate ensembles of reaction paths and analyzed each in terms of the reaction mechanism, time of barrier crossing, dynamics of the PV, and residues involved in the enzymatic reaction coordinate. We found that heavy isotopic substitution of hhLDH altered the sub-picosecond dynamics of the PV, changed the favored reaction mechanism, dramatically increased the time of barrier crossing, but did not have an effect on the specific residues involved in the PV. In the mutant systems

  4. A semipermeable enzymatic nanoreactor as an efficient modulator for reversible pH regulation

    NASA Astrophysics Data System (ADS)

    Huang, Yanyan; Lin, Youhui; Ran, Xiang; Ren, Jinsong; Qu, Xiaogang

    2014-09-01

    Here we propose a new concept for the fabrication of a semipermeable enzymatic nanoreactor as an efficient modulator to reversibly switch the pH of an aqueous environment. We used amino-functionalized, expanded mesoporous silica nanoparticles (EMSN) as a model nanocarrier to load enzymes. In order to protect enzymes from the interference of a complicated environment, polyelectrolyte multilayers (PEMs) were coated on the surface of the EMSN through layer by layer (LbL) assembly. These PEMs can serve as semipermeable membranes, allowing small molecules to diffuse in and out freely while trapping the enzymes in the nanoreactors. Compared with traditional electrochemical stimulation or optical control methods, our enzymatic regulation platform is easy to operate without complicated instruments. In addition, this system can cover a wide range of pH values and conveniently regulate pH values by simply controlling the concentrations of catalysts or reactants. Meanwhile, this strategy could be generalized to other enzymes or nanocarriers to achieve reversible pH regulation for different purposes. The switched pH values can be implemented for the modulation of the conformational changes of nucleic acids and activation of the charge conversion in drug delivery applications.Here we propose a new concept for the fabrication of a semipermeable enzymatic nanoreactor as an efficient modulator to reversibly switch the pH of an aqueous environment. We used amino-functionalized, expanded mesoporous silica nanoparticles (EMSN) as a model nanocarrier to load enzymes. In order to protect enzymes from the interference of a complicated environment, polyelectrolyte multilayers (PEMs) were coated on the surface of the EMSN through layer by layer (LbL) assembly. These PEMs can serve as semipermeable membranes, allowing small molecules to diffuse in and out freely while trapping the enzymes in the nanoreactors. Compared with traditional electrochemical stimulation or optical control methods

  5. Confined multiple enzymatic (cascade) reactions within poly(dopamine)-based capsosomes.

    PubMed

    Hosta-Rigau, Leticia; York-Duran, Maria J; Zhang, Yan; Goldie, Kenneth N; Städler, Brigitte

    2014-08-13

    The design of compartmentalized carriers as artificial cells is envisioned to be an efficient tool with potential applications in the biomedical field. The advent of this area has witnessed the assembly of functional, bioinspired systems attempting to tackle challenges in cell mimicry by encapsulating multiple compartments and performing controlled encapsulated enzymatic catalysis. Although capsosomes, which consist of liposomes embedded within a polymeric carrier capsule, are among the most advanced systems, they are still amazingly simple in their functionality and cumbersome in their assembly. We report on capsosomes by embedding liposomes within a poly(dopamine) (PDA) carrier shell created in a solution-based single-step procedure. We demonstrate for the first time the potential of PDA-based capsosomes to act as artificial cell mimics by performing a two-enzyme coupled reaction in parallel with a single-enzyme conversion by encapsulating three different enzymes into separated liposomal compartments. In the former case, the enzyme uricase converts uric acid into hydrogen peroxide, CO2 and allantoin, followed by the reaction of hydrogen peroxide with the reagent Amplex Ultra Red in the presence of the enzyme horseradish peroxidase to generate the fluorescent product resorufin. The parallel enzymatic catalysis employs the enzyme ascorbate oxidase to convert ascorbic acid into 2-L-dehydroascorbic acid. PMID:24968314

  6. Enzymatic Hydrolysis Does Not Reduce the Biological Reactivity of Soybean Proteins for All Allergic Subjects.

    PubMed

    Panda, Rakhi; Tetteh, Afua O; Pramod, Siddanakoppalu N; Goodman, Richard E

    2015-11-01

    Many soybean protein products are processed by enzymatic hydrolysis to attain desirable functional food properties or in some cases to reduce allergenicity. However, few studies have investigated the effects of enzymatic hydrolysis on the allergenicity of soybean products. In this study the allergenicity of soybean protein isolates (SPI) hydrolyzed by Alcalase, trypsin, chymotrypsin, bromelain, or papain was evaluated by IgE immunoblots using eight soybean-allergic patient sera. The biological relevance of IgE binding was evaluated by a functional assay using a humanized rat basophilic leukemia (hRBL) cell line and serum from one subject. Results indicated that hydrolysis of SPI by the enzymes did not reduce the allergenicity, and hydrolysis by chymotrypsin or bromelain has the potential to increase the allergenicity of SPI. Two-dimensional (2D) immunoblot and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of the chymotrypsin-hydrolyzed samples indicated fragments of β-conglycinin protein are responsible for the apparent higher allergenic potential of digested SPI. PMID:26447491

  7. Integration of molecular and enzymatic catalysts on graphene for biomimetic generation of antithrombotic species

    NASA Astrophysics Data System (ADS)

    Xue, Teng; Peng, Bo; Xue, Min; Zhong, Xing; Chiu, Chin-Yi; Yang, Si; Qu, Yongquan; Ruan, Lingyan; Jiang, Shan; Dubin, Sergey; Kaner, Richard B.; Zink, Jeffrey I.; Meyerhoff, Mark E.; Duan, Xiangfeng; Huang, Yu

    2014-02-01

    The integration of multiple synergistic catalytic systems can enable the creation of biocompatible enzymatic mimics for cascading reactions under physiologically relevant conditions. Here we report the design of a graphene-haemin-glucose oxidase conjugate as a tandem catalyst, in which graphene functions as a unique support to integrate molecular catalyst haemin and enzymatic catalyst glucose oxidase for biomimetic generation of antithrombotic species. Monomeric haemin can be conjugated with graphene through π-π interactions to function as an effective catalyst for the oxidation of endogenous L-arginine by hydrogen peroxide. Furthermore, glucose oxidase can be covalently linked onto graphene for local generation of hydrogen peroxide through the oxidation of blood glucose. Thus, the integrated graphene-haemin-glucose oxidase catalysts can readily enable the continuous generation of nitroxyl, an antithrombotic species, from physiologically abundant glucose and L-arginine. Finally, we demonstrate that the conjugates can be embedded within polyurethane to create a long-lasting antithrombotic coating for blood-contacting biomedical devices.

  8. Probing the Biology of Giardia intestinalis Mitosomes Using In Vivo Enzymatic Tagging.

    PubMed

    Martincová, Eva; Voleman, Luboš; Pyrih, Jan; Žárský, Vojtěch; Vondráčková, Pavlína; Kolísko, Martin; Tachezy, Jan; Doležal, Pavel

    2015-08-01

    Giardia intestinalis parasites contain mitosomes, one of the simplest mitochondrion-related organelles. Strategies to identify the functions of mitosomes have been limited mainly to homology detection, which is not suitable for identifying species-specific proteins and their functions. An in vivo enzymatic tagging technique based on the Escherichia coli biotin ligase (BirA) has been introduced to G. intestinalis; this method allows for the compartment-specific biotinylation of a protein of interest. Known proteins involved in the mitosomal protein import were in vivo tagged, cross-linked, and used to copurify complexes from the outer and inner mitosomal membranes in a single step. New proteins were then identified by mass spectrometry. This approach enabled the identification of highly diverged mitosomal Tim44 (GiTim44), the first known component of the mitosomal inner membrane translocase (TIM). In addition, our subsequent bioinformatics searches returned novel diverged Tim44 paralogs, which mediate the translation and mitosomal insertion of mitochondrially encoded proteins in other eukaryotes. However, most of the identified proteins are specific to G. intestinalis and even absent from the related diplomonad parasite Spironucleus salmonicida, thus reflecting the unique character of the mitosomal metabolism. The in vivo enzymatic tagging also showed that proteins enter the mitosome posttranslationally in an unfolded state and without vesicular transport. PMID:26055323

  9. Probing the Biology of Giardia intestinalis Mitosomes Using In Vivo Enzymatic Tagging

    PubMed Central

    Martincová, Eva; Voleman, Luboš; Pyrih, Jan; Žárský, Vojtěch; Vondráčková, Pavlína; Kolísko, Martin; Tachezy, Jan

    2015-01-01

    Giardia intestinalis parasites contain mitosomes, one of the simplest mitochondrion-related organelles. Strategies to identify the functions of mitosomes have been limited mainly to homology detection, which is not suitable for identifying species-specific proteins and their functions. An in vivo enzymatic tagging technique based on the Escherichia coli biotin ligase (BirA) has been introduced to G. intestinalis; this method allows for the compartment-specific biotinylation of a protein of interest. Known proteins involved in the mitosomal protein import were in vivo tagged, cross-linked, and used to copurify complexes from the outer and inner mitosomal membranes in a single step. New proteins were then identified by mass spectrometry. This approach enabled the identification of highly diverged mitosomal Tim44 (GiTim44), the first known component of the mitosomal inner membrane translocase (TIM). In addition, our subsequent bioinformatics searches returned novel diverged Tim44 paralogs, which mediate the translation and mitosomal insertion of mitochondrially encoded proteins in other eukaryotes. However, most of the identified proteins are specific to G. intestinalis and even absent from the related diplomonad parasite Spironucleus salmonicida, thus reflecting the unique character of the mitosomal metabolism. The in vivo enzymatic tagging also showed that proteins enter the mitosome posttranslationally in an unfolded state and without vesicular transport. PMID:26055323

  10. Intensification of Enzymatic Bio-Processing of Cotton by Low Intensity Uniform Ultrasound Field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of enzymatic processing in textile applications is becoming increasingly popular, primarily because of rapid introduction of a new variety of highly efficient enzymes. In general, enzymatic bio-processing generates less toxic and readily biodegradable wastewater effluents. However, enzymatic bio...

  11. Characterization of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties.

    PubMed

    Mertsalov, Ilya B; Novikov, Boris N; Scott, Hilary; Dangott, Lawrence; Panin, Vladislav M

    2016-07-01

    CMP-sialic acid synthetase (CSAS) is a key enzyme of the sialylation pathway. CSAS produces the activated sugar donor, CMP-sialic acid, which serves as a substrate for sialyltransferases to modify glycan termini with sialic acid. Unlike other animal CSASs that normally localize in the nucleus, Drosophila melanogaster CSAS (DmCSAS) localizes in the cell secretory compartment, predominantly in the Golgi, which suggests that this enzyme has properties distinct from those of its vertebrate counterparts. To test this hypothesis, we purified recombinant DmCSAS and characterized its activity in vitro Our experiments revealed several unique features of this enzyme. DmCSAS displays specificity for N-acetylneuraminic acid as a substrate, shows preference for lower pH and can function with a broad range of metal cofactors. When tested at a pH corresponding to the Golgi compartment, the enzyme showed significant activity with several metal cations, including Zn(2+), Fe(2+), Co(2+) and Mn(2+), whereas the activity with Mg(2+) was found to be low. Protein sequence analysis and site-specific mutagenesis identified an aspartic acid residue that is necessary for enzymatic activity and predicted to be involved in co-ordinating a metal cofactor. DmCSAS enzymatic activity was found to be essential in vivo for rescuing the phenotype of DmCSAS mutants. Finally, our experiments revealed a steep dependence of the enzymatic activity on temperature. Taken together, our results indicate that DmCSAS underwent evolutionary adaptation to pH and ionic environment different from that of counterpart synthetases in vertebrates. Our data also suggest that environmental temperatures can regulate Drosophila sialylation, thus modulating neural transmission. PMID:27114558

  12. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss

    USGS Publications Warehouse

    Sinsabaugh, R. L.; Carreiro, M.M.; Repert, D.A.

    2002-01-01

    Decomposition of plant material is a complex process that requires interaction among a diversity of microorganisms whose presence and activity is subject to regulation by a wide range of environmental factors. Analysis of extracellular enzyme activity (EEA) provides a way to relate the functional organization of microdecomposer communities to environmental variables. In this study, we examined EEA in relation to litter composition and nitrogen deposition. Mesh bags containing senescent leaves of Quercus borealis (red oak), Acer rubrum (red maple) and Cornus florida (flowering dogwood) were placed on forest floor plots in southeastern New York. One-third of the plots were sprayed monthly with distilled water. The other plots were sprayed monthly with NH4NO3 solution at dose rates equivalent to 2 or 8 g N m-2 y-1. Mass loss, litter composition, fungal mass, and the activities of eight enzymes were measured on 13 dates for each litter type. Dogwood was followed for one year, maple for two, oak for three, For each litter type and treatment, enzymatic turnover activities were calculated from regressions of LN (%mass remaining) vs. cumulative activity. The decomposition of dogwood litter was more efficient than that of maple and oak. Maple litter had the lowest fungal mass and required the most enzymatic work to decompose, even though its mass loss rate was twice that of oak. Across litter types, N amendment reduced apparent enzymatic efficiencies and shifted EEA away from N acquisition and toward P acquisition, and away from polyphenol oxidation and toward polysaccharide hydrolysis. The effect of these shifts on decomposition rate varied with litter composition: dogwood was stimulated, oak was inhibited and maple showed mixed effects. The results show that relatively small shifts in the activity of one or two critical enzymes can significantly alter decomposition rates.

  13. Aiming for the complete utilization of sugar-beet pulp: Examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion

    PubMed Central

    2011-01-01

    Background Biomass use for the production of bioethanol or platform chemicals requires efficient breakdown of biomass to fermentable monosaccharides. Lignocellulosic feedstocks often require physicochemical pretreatment before enzymatic hydrolysis can begin. The optimal pretreatment can be different for different feedstocks, and should not lead to biomass destruction or formation of toxic products. Methods We examined the influence of six mild sulfuric acid or water pretreatments at different temperatures on the enzymatic degradability of sugar-beet pulp (SBP). Results We found that optimal pretreatment at 140°C of 15 minutes in water was able to solubilize 60% w/w of the total carbohydrates present, mainly pectins. More severe treatments led to the destruction of the solubilized sugars, and the subsequent production of the sugar-degradation products furfural, hydroxymethylfurfural, acetic acid and formic acid. The pretreated samples were successfully degraded enzymatically with an experimental cellulase preparation. Conclusions In this study, we found that pretreatment of SBP greatly facilitated the subsequent enzymatic degradation within economically feasible time ranges and enzyme levels. In addition, pretreatment of SBP can be useful to fractionate functional ingredients such as arabinans and pectins from cellulose. We found that the optimal combined severity factor to enhance the enzymatic degradation of SBP was between log R'0 = -2.0 and log R'0 = -1.5. The optimal pretreatment and enzyme treatment solubilized up to 80% of all sugars present in the SBP, including ≥90% of the cellulose. PMID:21627804

  14. Hydrogel coated monoliths for enzymatic hydrolysis of penicillin G

    PubMed Central

    Smeltink, M. W.; Straathof, A. J. J.; Paasman, M. A.; van de Sandt, E. J. A. X.; Kapteijn, F.; Moulijn, J. A.

    2008-01-01

    The objective of this work was to develop a hydrogel-coated monolith for the entrapment of penicillin G acylase (E. coli, PGA). After screening of different hydrogels, chitosan was chosen as the carrier material for the preparation of monolithic biocatalysts. This protocol leads to active immobilized biocatalysts for the enzymatic hydrolysis of penicillin G (PenG). The monolithic biocatalyst was tested in a monolith loop reactor (MLR) and compared with conventional reactor systems using free PGA, and a commercially available immobilized PGA. The optimal immobilization protocol was found to be 5 g l−1 PGA, 1% chitosan, 1.1% glutaraldehyde and pH 7. Final PGA loading on glass plates was 29 mg ml−1 gel. For 400 cpsi monoliths, the final PGA loading on functionalized monoliths was 36 mg ml−1 gel. The observed volumetric reaction rate in the MLR was 0.79 mol s−1 m−3monolith. Apart from an initial drop in activity due to wash out of PGA at higher ionic strength, no decrease in activity was observed after five subsequent activity test runs. The storage stability of the biocatalysts is at least a month without loss of activity. Although the monolithic biocatalyst as used in the MLR is still outperformed by the current industrial catalyst (immobilized preparation of PGA, 4.5 mol s−1 m−3catalyst), the rate per gel volume is slightly higher for monolithic catalysts. Good activity and improved mechanical strength make the monolithic bioreactor an interesting alternative that deserves further investigation for this application. Although moderate internal diffusion limitations have been observed inside the gel beads and in the gel layer on the monolith channel, this is not the main reason for the large differences in reactor performance that were observed. The pH drop over the reactor as a result of the chosen method for pH control results in a decreased performance of both the MLR and the packed bed reactor compared to the batch system. A different

  15. Plasmodium falciparum SERA5 plays a non-enzymatic role in the malarial asexual blood-stage lifecycle

    PubMed Central

    Stallmach, Robert; Kavishwar, Manoli; Withers-Martinez, Chrislaine; Hackett, Fiona; Collins, Christine R; Howell, Steven A; Yeoh, Sharon; Knuepfer, Ellen; Atid, Avshalom J; Holder, Anthony A; Blackman, Michael J

    2015-01-01

    The malaria parasite Plasmodium falciparum replicates in an intraerythrocytic parasitophorous vacuole (PV). The most abundant P. falciparum PV protein, called SERA5, is essential in blood stages and possesses a papain-like domain, prompting speculation that it functions as a proteolytic enzyme. Unusually however, SERA5 possesses a Ser residue (Ser596) at the position of the canonical catalytic Cys of papain-like proteases, and the function of SERA5 or whether it performs an enzymatic role is unknown. In this study, we failed to detect proteolytic activity associated with the Ser596-containing parasite-derived or recombinant protein. However, substitution of Ser596 with a Cys residue produced an active recombinant enzyme with characteristics of a cysteine protease, demonstrating that SERA5 can bind peptides. Using targeted homologous recombination in P. falciparum, we substituted Ser596 with Ala with no phenotypic consequences, proving that SERA5 does not perform an essential enzymatic role in the parasite. We could also replace an internal segment of SERA5 with an affinity-purification tag. In contrast, using almost identical targeting constructs, we could not truncate or C-terminally tag the SERA5 gene, or replace Ser596 with a bulky Arg residue. Our findings show that SERA5 plays an indispensable but non-enzymatic role in the P. falciparum blood-stage life cycle. PMID:25599609

  16. Non-enzymatic glycation of α-crystallin as an in vitro model for aging, diabetes and degenerative diseases.

    PubMed

    Karumanchi, Devi Kalyan; Karunaratne, Nuwan; Lurio, Laurence; Dillon, James P; Gaillard, Elizabeth R

    2015-12-01

    Alpha crystallin, a small heat-shock protein, has been studied extensively for its chaperone function. Alpha crystallin subunits are expressed in stress conditions and have been found to prevent apoptosis by inhibiting the activation of caspase pathway. Non-enzymatic glycation of protein leads to the formation of advanced glycation end-products (AGEs). These AGEs bind to receptors and lead to blocking the signaling pathways or cause protein precipitation as observed in aggregation-related diseases. Methylglyoxal (MGO) is one of the major glycating agents expressed in pathological conditions due to defective glycolysis pathway. MGO reacts rapidly with proteins, forms AGEs and finally leads to aggregation. The goal of this study was to understand the non-enzymatic glycation-induced structural damage in alpha crystallin using biophysical and spectroscopic characterization. This will help to develop better disease models for understanding the biochemical pathways and also in drug discovery. PMID:26215735

  17. Enzymatic formation of carbohydrate rings catalyzed by single-walled carbon nanotubes.

    PubMed

    Hyun, Moon Seop; Park, Jong Pil; Seo, Dongkyun; Chang, Sung-Jin; Lee, Seok Jae; Lee, Sang Yup; Kwak, Kyungwon; Park, Tae Jung

    2016-05-01

    Macrocyclic carbohydrate rings were formed via enzymatic reactions around single-walled carbon nanotubes (SWNTs) as a catalyst. Cyclodextrin glucanotransferase, starch substrate and SWNTs were reacted in buffer solution to yield cyclodextrin (CD) rings wrapped around individual SWNTs. Atomic force microscopy showed the resulting complexes to be rings of 12-50 nm in diameter, which were highly soluble and dispersed in aqueous solution. They were further characterized by Raman and Fourier transform infrared spectroscopy and molecular simulation using density functional theory calculation. In the absence of SWNT, hydrogen bonding between glucose units determines the structure of maltose (the precursor of CD) and produces the curvature along the glucose chain. Wrapping SWNT along the short axis was preferred with curvature in the presence of SWNTs and with the hydrophobic interactions between the SWNTs and CD molecules. This synthetic approach may be useful for the functionalization of carbon nanotubes for development of nanostructures. PMID:26946491

  18. Mimicking enzymatic active sites on surfaces for energy conversion chemistry.

    PubMed

    Gutzler, Rico; Stepanow, Sebastian; Grumelli, Doris; Lingenfelder, Magalí; Kern, Klaus

    2015-07-21

    Metal-organic supramolecular chemistry on surfaces has matured to a point where its underlying growth mechanisms are well understood and structures of defined coordination environments of metal atoms can be synthesized in a controlled and reproducible procedure. With surface-confined molecular self-assembly, scientists have a tool box at hand which can be used to prepare structures with desired properties, as for example a defined oxidation number and spin state of the transition metal atoms within the organic matrix. From a structural point of view, these coordination sites in the supramolecular structure resemble the catalytically active sites of metallo-enzymes, both characterized by metal centers coordinated to organic ligands. Several chemical reactions take place at these embedded metal ions in enzymes and the question arises whether these reactions also take place using metal-organic networks as catalysts. Mimicking the active site of metal atoms and organic ligands of enzymes in artificial systems is the key to understanding the selectivity and efficiency of enzymatic reactions. Their catalytic activity depends on various parameters including the charge and spin configuration in the metal ion, but also on the organic environment, which can stabilize intermediate reaction products, inhibits catalytic deactivation, and serves mostly as a transport channel for the reactants and products and therefore ensures the selectivity of the enzyme. Charge and spin on the transition metal in enzymes depend on the one hand on the specific metal element, and on the other hand on its organic coordination environment. These two parameters can carefully be adjusted in surface confined metal-organic networks, which can be synthesized by virtue of combinatorial mixing of building synthons. Different organic ligands with varying functional groups can be combined with several transition metals and spontaneously assemble into ordered networks. The catalytically active metal

  19. Amperometric Non-Enzymatic Hydrogen Peroxide Sensor Based on Aligned Zinc Oxide Nanorods

    PubMed Central

    Al-Hardan, Naif H.; Abdul Hamid, Muhammad Azmi; Shamsudin, Roslinda; Othman, Norinsan Kamil; Kar Keng, Lim

    2016-01-01

    Zinc oxide (ZnO) nanorods (NRs) have been synthesized via the hydrothermal process. The NRs were grown over a conductive glass substrate. A non-enzymatic electrochemical sensor for hydrogen peroxide (H2O2), based on the prepared ZnO NRs, was examined through the use of current-voltage measurements. The measured currents, as a function of H2O2 concentrations ranging from 10 μM to 700 μM, revealed two distinct behaviours and good performance, with a lower detection limit (LOD) of 42 μM for the low range of H2O2 concentrations (first region), and a LOD of 143.5 μM for the higher range of H2O2 concentrations (second region). The prepared ZnO NRs show excellent electrocatalytic activity. This enables a measurable and stable output current. The results were correlated with the oxidation process of the H2O2 and revealed a good performance for the ZnO NR non-enzymatic H2O2 sensor. PMID:27367693

  20. Enzymatic transesterification of palm stearin and olein blends to produce zero-trans margarine fat

    PubMed Central

    2012-01-01

    Background Food industries aim to replace trans fat in their products by formulations having equivalent functionality and economic viability. Enzymatic transesterification can be a technological option to produce trans free fats targeting commercial applications. Results Palm stearin and palm olein blends in different ratios were enzymatically transesterified in a solvent free system using a Rhizopus oryzae lipase immobilised onto CaCO3 to produce a suitable fat for margarine formulation. Slip melting points and triacylglycerols profiles were evaluated upon transesterification. Results indicated that all transesterified blends had lower slip melting points than their non transesterified counterparts. Furthermore, the triacylglycerols profile showed a decrease in the concentration of the high melting point triacylglycerols. The rheological analysis showed that margarine prepared with the transesterified blend showed a better spreadability than that of a control margarine prepared with non transesterified fat. Adding powder of dry bark orange to margarine preparation improved its colour and fairly affected its spreadability and rheological behaviour. The margarine prepared with transesterified fat displayed a rheological behaviour that was comparable to that of commercial sample. Conclusions This study is an ecofriendly approach to the utilization of relatively low value bioresources like palm stearin and palm olein for making margarine free of trans fatty acids that are now implicated as risk factor for heart diseases. PMID:22889174

  1. Artificial Golgi apparatus: globular protein-like dendrimer facilitates fully automated enzymatic glycan synthesis.

    PubMed

    Matsushita, Takahiko; Nagashima, Izuru; Fumoto, Masataka; Ohta, Takashi; Yamada, Kuriko; Shimizu, Hiroki; Hinou, Hiroshi; Naruchi, Kentaro; Ito, Takaomi; Kondo, Hirosato; Nishimura, Shin-Ichiro

    2010-11-24

    Despite the growing importance of synthetic glycans as tools for biological studies and drug discovery, a lack of common methods for the routine synthesis remains a major obstacle. We have developed a new method for automated glycan synthesis that employs the enzymatic approach and a dendrimer as an ideal support within the chemical process. Recovery tests using a hollow fiber ultrafiltration module have revealed that monodisperse G6 (MW = 58 kDa) and G7 (MW = 116 kDa) poly(amidoamine) dendrimers exhibit a similar profile to BSA (MW = 66 kDa). Characteristics of the globular protein-like G7 dendrimer with high solubility and low viscosity in water greatly enhanced throughput and efficiency in automated synthesis while random polyacrylamide-based supports entail significant loss during the repetitive reaction/separation step. The present protocol allowed for the fully automated enzymatic synthesis of sialyl Lewis X tetrasaccharide derivatives over a period of 4 days in 16% overall yield from a simple N-acetyl-d-glucosamine linked to an aminooxy-functionalized G7 dendrimer. PMID:21033706

  2. Effect of sulfuric and phosphoric acid pretreatments on enzymatic hydrolysis of corn stover.

    PubMed

    Um, Byung-Hwan; Karim, M; Henk, Linda

    2003-01-01

    The pretreatment of corn stover with H2SO4 and H3PO4 was investigated. Pretreatments were carried out from 30 to 120 min in a batch reactor at 121 degrees C, with acid concentrations ranging from 0 to 2% (w/v) at a solid concentration of 5% (w/v). Pretreated corn stover was washed with distilled water until the filtrate was adjusted to pH 7.0, followed by surfactant swelling of the cellulosic fraction in a 0-10% (w/v) solution of Tween-80 at room temperature for 12 h. The dilute acid treatment proved to be a very effective method in terms of hemicellulose recovery and cellulose digestibility. Hemicellulose recovery was 62-90%, and enzymatic digestibility of the cellulose that remained in the solid was >80% with 2% (w/v) acid. In all cases studied, the performance of H2SO4 pretreatment (hemicellulose recovery and cellulose digestibility) was significantly better than obtained with H3PO4. Enzymatic hydrolysis was more effective using surfactant than without it, producing 10-20% more sugar. Furthermore, digestibility was investigated as a function of hemicellulose removal. It was found that digestibility was more directly related to hemicellulose removal than to delignification. PMID:12721479

  3. A model for the recovery kinetics of rod phototransduction, based on the enzymatic deactivation of rhodopsin.

    PubMed Central

    Laitko, U; Hofmann, K P

    1998-01-01

    We propose a model for the recovery of the retinal rod photoresponse after a short stimulus. The approach describes the enzymatic deactivation of the photoactivated receptor, rhodopsin, by simple enzyme kinetics. An important feature of this description is that the R* deactivation obeys different time laws, depending on the numbers of R* formed per disc membrane and available enzyme molecules. If the enzyme works below substrate saturation, the rate of deactivation depends linearly on the number of R*, whereas for substrate saturation a hyperbolic relation--the well-known Michaelis-Menten equation--applies. This dichotomy is used to explain experimental finding that the relation between the saturation time of the photoresponse after short illumination and the flash strength has two sharply separated branches for low and high flash intensities (up to approximately 10% bleaching). By relating both branches to properties of the enzymatic rhodopsin deactivation, the new model transcends the classical notion of a constant characteristic lifetime of activated rhodopsin. With parameters that are plausible in the light of the available data and the additional information that the deactivating enzyme, rhodopsin kinase, and the signaling G-protein, transducin, compete for the active receptor, the slopes of the saturation function are correctly reproduced. PMID:9533693

  4. Enzymatic pH control for biomimetic deposition of calcium phosphate coatings.

    PubMed

    Nijhuis, Arnold W G; Nejadnik, M Reza; Nudelman, Fabio; Walboomers, X Frank; te Riet, Joost; Habibovic, Pamela; Tahmasebi Birgani, Zeinab; Li, Yubao; Bomans, Paul H H; Jansen, John A; Sommerdijk, Nico A J M; Leeuwenburgh, Sander C G

    2014-02-01

    The current study examines the enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of calcium phosphate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium concentration and conductivity of the aqueous solutions as a function of time, urease concentration and initial concentrations of calcium and phosphate ions. Cryogenic transmission electron microscopy was used to study the process of homogeneous CaP precipitation in solution, whereas CaP deposition on conventional acid-etched titanium and micropatterned polystyrene (PS) surfaces was studied using scanning electron microscopy. The data presented in this study confirm that the substrate-enzyme combination urea-urease offers strong control over the rate of pH increase by varying the concentrations of precursor salts and urease. Formation of biomimetic CaP coatings was shown to proceed via formation of ionic polymeric assemblies of prenucleation complexes. The process of deposition and corresponding coating morphology was strongly dependent on the concentration of calcium, phosphate and urease. Finally, it was shown that the substrate-enzyme combination urea-urease allowed for spatial distribution of CaP crystals along the grooves of micropatterned PS surfaces at low concentrations of calcium, phosphate and urease, stressing the sensitivity of the presented method. PMID:24095783

  5. Impact of biochar amendment on enzymatic resilience properties of mine spoils.

    PubMed

    Jain, Shilpi; Mishra, Disha; Khare, Puja; Yadav, Vineet; Deshmukh, Y; Meena, Abha

    2016-02-15

    Soil enzymes are crucial for soil nutrient cycling function. Understanding of the factors that control their response to major disturbances such as dumping of environmentally toxic acidic waste remains limited. We evaluated the effect of dumping of overburden (OB) and their amendments using biochar, on the resistance and resilience of soil enzyme activities involved in phosphorus, nitrogen, sulphur and carbon cycling (acid & alkaline phosphatase, urease, arylsulphatase, dehydrogenase, phenol oxidases, cellulase and β-glucosidase). For investigation the soils treated with OB and with the mixture of OB and biochar were used for the cultivation of bacopa were used. We assessed 0 day, 45 day and 90 days activities of the target soil enzymes, available phosphorus, nitrogen, sulphur, soil organic carbon and microbial identification. The resilience and resistance index of all the treatments were calculated. We found that phyto-remediated OB-contaminated soil has its own resilience power. However, biochar addition enhanced the enzyme resistance and resilience of OB contaminated soil. In silico study indicates that biochar-Fe complex play a significant role in enzymatic activities. Overall, the results indicate a significant influence of phytoremediation and biochar addition on soil enzymatic activity that is extremely resistant to OB. This study provides insight on how biochar addition modulates soil biochemical and microbiological response to OB affected soils. PMID:26657386

  6. Enzymatic synthesis of model substrates recognized by glucuronoyl esterases from Podospora anserina and Myceliophthora thermophila.

    PubMed

    Katsimpouras, Constantinos; Bénarouche, Anaïs; Navarro, David; Karpusas, Michael; Dimarogona, Maria; Berrin, Jean-Guy; Christakopoulos, Paul; Topakas, Evangelos

    2014-06-01

    Glucuronoyl esterases (GEs) are recently discovered enzymes that are suggested to cleave the ester bond between lignin alcohols and xylan-bound 4-O-methyl-D-glucuronic acid. Although their potential use for enhanced enzymatic biomass degradation and synthesis of valuable chemicals renders them attractive research targets for biotechnological applications, the difficulty to purify natural fractions of lignin-carbohydrate complexes hampers the characterization of fungal GEs. In this work, we report the synthesis of three aryl alkyl or alkenyl D-glucuronate esters using lipase B from Candida antarctica (CALB) and their use to determine the kinetic parameters of two GEs, StGE2 from the thermophilic fungus Myceliophthora thermophila (syn. Sporotrichum thermophile) and PaGE1 from the coprophilous fungus Podospora anserina. PaGE1 was functionally expressed in the methylotrophic yeast Pichia pastoris under the transcriptional control of the alcohol oxidase (AOX1) promoter and purified to its homogeneity (63 kDa). The three D-glucuronate esters contain an aromatic UV-absorbing phenol group that facilitates the quantification of their enzymatic hydrolysis by HPLC. Both enzymes were able to hydrolyze the synthetic esters with a pronounced preference towards the cinnamyl-D-glucuronate ester. The experimental results were corroborated by computational docking of the synthesized substrate analogues. We show that the nature of the alcohol portion of the hydrolyzed ester influences the catalytic efficiency of the two GEs. PMID:24531271

  7. Enzymatic polymerisation involving 2'-amino-LNA nucleotides.

    PubMed

    Johannsen, Marie W; Veedu, Rakesh N; Madsen, Andreas Stahl; Wengel, Jesper

    2012-05-15

    The triphosphate of the thymine derivative of 2'-amino-LNA (2'-amino-LNA-TTP) was synthesised and found to be a good substrate for Phusion® HF DNA polymerase, allowing enzymatic synthesis of modified DNA encoded by an unmodified template. To complement this, 2'-amino-LNA-T phosphoramidites were incorporated into DNA oligonucleotides which were used as templates for enzymatic synthesis of unmodified DNA using either KOD, KOD XL or Phusion polymerases. 2'-Amino-LNA-T in the template and 2'-amino-LNA-TTP as a substrate both decreased reaction rate and yield compared to unmodified DNA, especially for sequences with multiple 2'-amino-LNA-T nucleotides. PMID:22503454

  8. Mechanism of lignin inhibition of enzymatic biomass deconstruction

    SciTech Connect

    Vermaas, Josh V.; Petridis, Loukas; Qi, Xianghong; Schulz, Roland; Lindner, Benjamin; Smith, Jeremy. C.

    2015-12-01

    The conversion of plant biomass to ethanol via enzymatic cellulose hydrolysis offers a potentially sustainable route to biofuel production. However, the inhibition of enzymatic activity in pretreated biomass by lignin severely limits the efficiency of this process. By performing atomic-detail molecular dynamics simulation of a biomass model containing cellulose, lignin, and cellulases (TrCel7A), we elucidate detailed lignin inhibition mechanisms. We find that lignin binds preferentially both to the elements of cellulose to which the cellulases also preferentially bind (the hydrophobic faces) and also to the specific residues on the cellulose-binding module of the cellulase that are critical for cellulose binding of TrCel7A (Y466, Y492, and Y493). In conclusion, lignin thus binds exactly where for industrial purposes it is least desired, providing a simple explanation of why hydrolysis yields increase with lignin removal.

  9. Thermal and enzymatic recovering of proteins from untanned leather waste.

    PubMed

    Bajza, Z; Vrucek, V

    2001-01-01

    The laboratory trials of a process to treat untanned leather waste to isolate valuable protein products are presented. In this comparative study, both thermal and enzymatic treatments of leather waste were performed. The enzymatic method utilizes commercially available alkaline protease at moderate temperatures and for short periods of time. The concentration of the enzyme was 500 units per gram of leather waste which makes the method cost-effective. Amino acid composition in the hydrolysate obtained by the enzyme hydrolysis of untanned leather waste is determined. Chemical and physical properties of protein powder products from untanned leather waste were evaluated by spectrophotometric and chromatographic methods and by use of electron microscope. The results of microbiological assays confirm that these products agree to food safety standards. This relatively simple treatment of untanned leather waste may provide a practical and economical solution to the disposal of potentially dangerous waste. PMID:11150136

  10. Mechanism of lignin inhibition of enzymatic biomass deconstruction

    DOE PAGESBeta

    Vermaas, Josh V.; Petridis, Loukas; Qi, Xianghong; Schulz, Roland; Lindner, Benjamin; Smith, Jeremy. C.

    2015-12-01

    The conversion of plant biomass to ethanol via enzymatic cellulose hydrolysis offers a potentially sustainable route to biofuel production. However, the inhibition of enzymatic activity in pretreated biomass by lignin severely limits the efficiency of this process. By performing atomic-detail molecular dynamics simulation of a biomass model containing cellulose, lignin, and cellulases (TrCel7A), we elucidate detailed lignin inhibition mechanisms. We find that lignin binds preferentially both to the elements of cellulose to which the cellulases also preferentially bind (the hydrophobic faces) and also to the specific residues on the cellulose-binding module of the cellulase that are critical for cellulose bindingmore » of TrCel7A (Y466, Y492, and Y493). In conclusion, lignin thus binds exactly where for industrial purposes it is least desired, providing a simple explanation of why hydrolysis yields increase with lignin removal.« less

  11. Process simulation and economical evaluation of enzymatic biodiesel production plant.

    PubMed

    Sotoft, Lene Fjerbaek; Rong, Ben-Guang; Christensen, Knud V; Norddahl, Birgir

    2010-07-01

    Process simulation and economical evaluation of an enzymatic biodiesel production plant has been carried out. Enzymatic biodiesel production from high quality rapeseed oil and methanol has been investigated for solvent free and cosolvent production processes. Several scenarios have been investigated with different production scales (8 and 200 mio. kg biodiesel/year) and enzyme price. The cosolvent production process is found to be most expensive and is not a viable choice, while the solvent free process is viable for the larger scale production of 200 mio. kg biodiesel/year with the current enzyme price. With the suggested enzyme price of the future, both the small and large scale solvent free production proved viable. The product price was estimated to be 0.73-1.49 euro/kg biodiesel with the current enzyme price and 0.05-0.75 euro/kg with the enzyme price of the future for solvent free process. PMID:20171880

  12. Pretreatment of Agave americana stalk for enzymatic saccharification.

    PubMed

    Yang, Qiang; Pan, Xuejun

    2012-12-01

    Agave americana is one of commonly grown agave species but currently less valuable because its large flower stalk cannot be used for producing alcoholic beverage. In the present study, the stalk was pretreated with dilute acid (DA), sulfite (SPORL), and sodium hydroxide (NaOH) to preliminarily assess its potential as feedstock for bioethanol production. The changes of cell wall components during the pretreatments, enzymatic digestibility of the pretreated stalks, and the adsorption of cellulases on the substrates were investigated. Results indicated that the pretreatments significantly improved the enzymatic digestibility of the agave stalk. SPORL pretreatment gave higher substrate and sugar yields, while NaOH pretreated stalk had better digestibility under the investigated conditions. The better hydrolysability of NaOH-pretreated stalk was attributed to low lignin and hemicellulose content and high affinity to cellulases. PMID:23122484

  13. Electro-enzymatic degradation of chlorpyrifos by immobilized hemoglobin.

    PubMed

    Tang, Tiantian; Dong, Jing; Ai, Shiyun; Qiu, Yanyan; Han, Ruixia

    2011-04-15

    Electro-enzymatic processes, which are enzyme catalysis combined with electrochemical reactions, have been used in the degradation of many environment pollutants. For some pollutants, the catalytic mechanisms of the electrochemical-enzyme reaction are still poorly understood. In this paper, the degradation of chlorpyrifos by a combination of immobilized hemoglobin and in situ generated hydrogen peroxide is reported for the first time. Hemoglobin was immobilized on graphite felts to catalyze the removal of chlorpyrifos in an electrochemical-enzyme system. Under the optimal conditions, more than 98% of the chlorpyrifos was degraded. Furthermore, the degradation products of chlorpyrifos were also studied and identified using liquid chromatography-mass spectrometry analysis. The results suggest a possible degradation mechanism for chlorpyrifos with low power and high efficiency, reveal the feasibility of hemoglobin as a substitute for some expensive natural enzymes, and demonstrate the application of an electro-enzymatic process in the treatment of organophosphorus compounds in wastewater. PMID:21316849

  14. Enzymatic hydrolysis and fermentation of agricultural residues to ethanol

    SciTech Connect

    Mes-Hartree, M.; Hogan, C.M.; Saddler, J.N.

    1984-01-01

    A combined enzymatic hydrolysis and fermentation process was used to convert steam-treated wheat and barley straw to ethanol. Maximum conversion efficiencies were obtained when the substrates were steamed for 90 s. These substrates could yield over 0.4 g ethanol/g cellulose following a combined enzymatic hydrolysis and fermentation process procedure using culture filtrates derived from Trichoderma harzianum E58. When culture filtrates from Trichoderma reesei C30 and T. reesei QM9414 were used, the ethanol yields obtained were 0.32 and 0.12 g ethanol/g cellulose utilized, respectively. The lower ethanol yields obtained with these strains were attributed to the lower amounts of ..beta..-glucosidase detected in the T. reesei culture filtrates.

  15. Loosening xyloglucan accelerates the enzymatic degradation of cellulose in wood.

    PubMed

    Kaida, Rumi; Kaku, Tomomi; Baba, Kei'ichi; Oyadomari, Masafumi; Watanabe, Takashi; Nishida, Koji; Kanaya, Toshiji; Shani, Ziv; Shoseyov, Oded; Hayashi, Takahisa

    2009-09-01

    In order to create trees in which cellulose, the most abundant component in biomass, can be enzymatically hydrolyzed highly for the production of bioethanol, we examined the saccharification of xylem from several transgenic poplars, each overexpressing either xyloglucanase, cellulase, xylanase, or galactanase. The level of cellulose degradation achieved by a cellulase preparation was markedly greater in the xylem overexpressing xyloglucanase and much greater in the xylems overexpressing xylanase and cellulase than in the xylem of the wild-type plant. Although a high degree of degradation occurred in all xylems at all loci, the crystalline region of the cellulose microfibrils was highly degraded in the xylem overexpressing xyloglucanase. Since the complex between microfibrils and xyloglucans could be one region that is particularly resistant to cellulose degradation, loosening xyloglucan could facilitate the enzymatic hydrolysis of cellulose in wood. PMID:19825667

  16. Enzymatic hydrolysis of steryl glycosides for their analysis in foods.

    PubMed

    Münger, Linda H; Nyström, Laura

    2014-11-15

    Steryl glycosides (SG) contribute significantly to the total intake of phytosterols. The standard analytical procedure involving acid hydrolysis fails to reflect the correct sterol profile of SG due to isomerization of some of the labile sterols. Therefore, various glycosylases were evaluated for their ability to hydrolyse SG under milder conditions. Using a pure SG mixture in aqueous solution, the highest glycolytic activity, as demonstrated by the decrease in SG and increase in free sterols was achieved using inulinase preparations (decrease of >95%). High glycolytic activity was also demonstrated using hemicellulase (63%). The applicability of enzymatic hydrolysis using inulinase preparations was further verified on SG extracted from foods. For example in potato peel Δ(5)-avenasteryl glucoside, a labile SG, was well preserved and contributed 26.9% of the total SG. Therefore, enzymatic hydrolysis is suitable for replacing acid hydrolysis of SG in food lipid extracts to accurately determine the sterol profile of SG. PMID:24912717

  17. Enzymatic network for production of ether amines from alcohols.

    PubMed

    Palacio, Cyntia M; Crismaru, Ciprian G; Bartsch, Sebastian; Navickas, Vaidotas; Ditrich, Klaus; Breuer, Michael; Abu, Rohana; Woodley, John M; Baldenius, Kai; Wu, Bian; Janssen, Dick B

    2016-09-01

    We constructed an enzymatic network composed of three different enzymes for the synthesis of valuable ether amines. The enzymatic reactions are interconnected to catalyze the oxidation and subsequent transamination of the substrate and to provide cofactor recycling. This allows production of the desired ether amines from the corresponding ether alcohols with inorganic ammonium as the only additional substrate. To examine conversion, individual and overall reaction equilibria were established. Using these data, it was found that the experimentally observed conversions of up to 60% observed for reactions containing 10 mM alcohol and up to 280 mM ammonia corresponded well to predicted conversions. The results indicate that efficient amination can be driven by high concentrations of ammonia and may require improving enzyme robustness for scale-up. Biotechnol. Bioeng. 2016;113: 1853-1861. © 2016 Wiley Periodicals, Inc. PMID:26915048

  18. Bioremediation of uranium contamination with enzymatic uranium reduction

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.

    1992-01-01

    Enzymatic uranium reduction by Desulfovibrio desulfuricans readily removed uranium from solution in a batch system or when D. desulfuricans was separated from the bulk of the uranium-containing water by a semipermeable membrane. Uranium reduction continued at concentrations as high as 24 mM. Of a variety of potentially inhibiting anions and metals evaluated, only high concentrations of copper inhibited uranium reduction. Freeze-dried cells, stored aerobically, reduced uranium as fast as fresh cells. D. desulfuricans reduced uranium in pH 4 and pH 7.4 mine drainage waters and in uraniumcontaining groundwaters from a contaminated Department of Energy site. Enzymatic uranium reduction has several potential advantages over other bioprocessing techniques for uranium removal, the most important of which are as follows: the ability to precipitate uranium that is in the form of a uranyl carbonate complex; high capacity for uranium removal per cell; the formation of a compact, relatively pure, uranium precipitate.

  19. Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation.

    PubMed

    Falkeborg, Mia; Cheong, Ling-Zhi; Gianfico, Carlo; Sztukiel, Katarzyna Magdalena; Kristensen, Kasper; Glasius, Marianne; Xu, Xuebing; Guo, Zheng

    2014-12-01

    Alginate oligosaccharides (AOs) prepared from alginate, by alginate lyase-mediated depolymerization, were structurally characterized by mass spectrometry, infrared spectrometry and thin layer chromatography. Studies of their antioxidant activities revealed that AOs were able to completely (100%) inhibit lipid oxidation in emulsions, superiorly to ascorbic acid (89% inhibition). AOs showed radical scavenging activity towards ABTṠ, hydroxyl, and superoxide radicals, which might explain their excellent antioxidant activity. The radical scavenging activity is suggested to originate mainly from the presence of the conjugated alkene acid structure formed during enzymatic depolymerization. According to the resonance hybrid theory, the parent radicals of AOs are delocalized through allylic rearrangement, and as a consequence, the reactive intermediates are stabilized. AOs were weak ferrous ion chelators. This work demonstrated that AOs obtained from a facile enzymatic treatment of abundant alginate is an excellent natural antioxidant, which may find applications in the food industry. PMID:24996323

  20. The Dynamical Nature of Enzymatic Catalysis

    PubMed Central

    2015-01-01

    is clearly directed by the forces that the protein can bring to bear, very much akin to the folding process to form native protein in the first place. In fact, the conformational subspace of reactive conformations of the Michaelis complex can be described as a “collapse” of reactive substates compared with that found in solution, toward a much smaller and much more reactive set. These studies reveal how dynamic disorder in the protein structure can modulate the on-enzyme reactivity. It is very difficult to account for how the dynamical nature of the ground state of the Michaelis complex modulates function by transition state concepts since dynamical disorder is not a starting feature of the theory. We find that dynamical disorder may well play a larger or similar sized role in the measured Gibbs free energy of a reaction compared with the actual energy barrier involved in the chemical event. Our findings are broadly compatible with qualitative concepts of evolutionary adaptation of function such as adaptation to varying thermal environments. Our work suggests a methodology to determine the important dynamics of the Michaelis complex. PMID:25539144

  1. The dynamical nature of enzymatic catalysis.

    PubMed

    Callender, Robert; Dyer, R Brian

    2015-02-17

    is clearly directed by the forces that the protein can bring to bear, very much akin to the folding process to form native protein in the first place. In fact, the conformational subspace of reactive conformations of the Michaelis complex can be described as a "collapse" of reactive substates compared with that found in solution, toward a much smaller and much more reactive set. These studies reveal how dynamic disorder in the protein structure can modulate the on-enzyme reactivity. It is very difficult to account for how the dynamical nature of the ground state of the Michaelis complex modulates function by transition state concepts since dynamical disorder is not a starting feature of the theory. We find that dynamical disorder may well play a larger or similar sized role in the measured Gibbs free energy of a reaction compared with the actual energy barrier involved in the chemical event. Our findings are broadly compatible with qualitative concepts of evolutionary adaptation of function such as adaptation to varying thermal environments. Our work suggests a methodology to determine the important dynamics of the Michaelis complex. PMID:25539144

  2. Solvent viscosity dependence for enzymatic reactions

    NASA Astrophysics Data System (ADS)

    Sitnitsky, A. E.

    2008-09-01

    A mechanism for relationship of solvent viscosity with reaction rate constant at enzyme action is suggested. It is based on fluctuations of electric field in enzyme active site produced by thermally equilibrium rocking (crankshaft motion) of the rigid plane (in which the dipole moment ≈3.6 D lies) of a favourably located and oriented peptide group (or may be a few of them). Thus the rocking of the plane leads to fluctuations of the electric field of the dipole moment. These fluctuations can interact with the reaction coordinate because the latter in its turn has transition dipole moment due to separation of charges at movement of the reacting system along it. The rocking of the plane of the peptide group is sensitive to the microviscosity of its environment in protein interior and the latter is a function of the solvent viscosity. Thus we obtain an additional factor of interrelationship for these characteristics with the reaction rate constant. We argue that due to the properties of the crankshaft motion the frequency spectrum of the electric field fluctuations has a sharp resonance peak at some frequency and the corresponding Fourier mode can be approximated as oscillations. We employ a known result from the theory of thermally activated escape with periodic driving to obtain the reaction rate constant and argue that it yields reliable description of the pre-exponent where the dependence on solvent viscosity manifests itself. The suggested mechanism is shown to grasp the main feature of this dependence known from the experiment and satisfactorily yields the upper limit of the fractional index of a power in it.

  3. Fast Enzymatic Saccharification of Switchgrass After Pretreatment with Ionic Liquids

    SciTech Connect

    Zhou, Hua; Baker, Gary A; Cowins, Janet V.

    2010-01-01

    The pretreatment of cellulose using ionic liquids (ILs) has been shown to be an effective method for improving the enzymatic hydrolysis of cellulose; this technique affords a fast and complete saccharification of cellulose into reducing sugars (Dadi et al., Biotechnol Bioeng. 2006; 95:904 910; Liu and Chen, Chinese Sci Bull. 2006; 51:2432 2436; Zhao et al., J Biotechnol. 2009; 139:47 54). Motivated by these advances, this study examines the effect of IL-pretreatment on the enzymatic hydrolysis of purified xylan (as a model system of hemicellulose) and switchgrass (as a real lignocellulose). The IL-pretreatment resulted in no improvement in the hydrolysis of xylan. The likely reason is that pure xylan has a low degree of polymerization (DP), and is readily biodegraded even without any pretreatment. However, in real cellulosic materials (such as switchgrass), xylan is entrapped within the cellulosic matrix, and cannot be conveniently accessed by enzymes. Our data demonstrate that the IL-pretreatment of switchgrass significantly improved the enzymatic saccharification of both cellulose (96% D-glucose yield in 24 h) and xylan (63% D-xylose yield in 24 h). The compositional analysis of switchgrass suggests a lower lignin content after IL-pretreatment. In addition, the infrared spectrum of regenerated switchgrass indicates a lower substrate crystallinity, whereas the enzyme adsorption isotherm further implies that the regenerated substrate is more accessible to enzymes. This study has further confirmed that ILpretreatment is an effective tool in enhancing the enzymatic hydrolysis of cellulosic biomass, and allowing a more complete saccharification.

  4. Enzymatic browning reactions in apple and apple products.

    PubMed

    Nicolas, J J; Richard-Forget, F C; Goupy, P M; Amiot, M J; Aubert, S Y

    1994-01-01

    This review examines the parameters of enzymatic browning in apple and apple products that is, phenolic compounds, polyphenoloxidases, and other factors (ascorbic acid and peroxidases), both qualitatively and quantitatively. Then the relationships between intensity of browning and the browning parameters are discussed, including a paragraph on the methods used for browning evaluation. Finally, the different methods for the control of browning are presented. PMID:8011143

  5. Physicochemical and topological correlates of the enzymatic acetyltransfer reaction.

    PubMed

    Basak, S C; Gieschen, D P; Harriss, D K; Magnuson, V R

    1983-08-01

    The relative potencies of a series of substituted anilines as acetyl acceptors in the enzymatic N-acetylation reaction have been correlated using physiochemical substituent constants (pi, sigma-), molecular connectivity indices (1 chi, 1 chi v), and newly formulated information-theoretic topological indices (IC, SIC). Results indicate a predominant role of the topological steric parameters in determining the rates of the N-acetyltransferase reaction. PMID:6620151

  6. Ultrasound-enhanced enzymatic hydrolysis of poly(ethylene terephthalate).

    PubMed

    Pellis, Alessandro; Gamerith, Caroline; Ghazaryan, Gagik; Ortner, Andreas; Herrero Acero, Enrique; Guebitz, Georg M

    2016-10-01

    The application of ultrasound was found to enhance enzymatic hydrolysis of poly(ethylene terephthalate) (PET). After a short activation phase up to 6.6times increase in the amount of released products was found. PET powder with lower crystallinity of 8% was hydrolyzed faster when compared to PET with 28% crystallinity. Ultrasound activation was found to be around three times more effective on powders vs. films most likely due to a larger surface area accessible to the enzyme. PMID:27481467

  7. Enzymatic hydrolysis of fractionated products from oil thermally oxidated

    SciTech Connect

    Yashida, H.; Alexander, J.C.

    1983-01-01

    Enzymatic hydrolysis of the acylglycerol products obtained from thermally oxidized vegetable oils was studied. Corn, sunflower and soybean oils were heated in the laboratory at 180/sup 0/C for 50, 70 and 100 hr with aeration and directly fractionated by silicic acid column chromatography. By successive elution with 20%, then 60% isopropyl ether in n-hexane, and diethyl ether, the thermally oxidized oils were separated into three fractions: the nonpolar fraction (monomeric compounds), slightly polar fraction (dimeric compounds), and polar fraction comprising oligomeric compounds. Enzymatic hydrolysis with pancreatic lipase showed that the monomers were hydrolyzed as rapidly as the corresponding unheated oils, the dimers much more slowly, and the oligomeric compounds barely at all. Overall, the hydrolysis of the dimers was less than 23% of that for the monomers, with small differences among the oils. Longer heating periods resulted in greater reductions in hydrolysis of the dimeric compounds. These results suggest that the degree of enzymatic hydrolysis of the fractionated acylglycerol compounds is related to differences in the thermal oxidative deterioration, and amounts of polar compounds in the products. (33 Refs.)

  8. Are enzymatic tests good indicators of coronary reperfusion?

    PubMed Central

    Bosker, H A; van der Laarse, A; Cats, V M; Bruschke, A V

    1992-01-01

    OBJECTIVE--To assess the accuracy of four enzymatic tests, including early release rates of creatine kinase and alpha-hydroxybutyrate dehydrogenase, in assessing coronary reperfusion after thrombolytic therapy. DESIGN--A prospective clinical trial identifying patients with a successful thrombolytic treatment. PATIENTS--Eighty nine patients with acute myocardial infarction were studied. Arteriography showed a closed infarct related artery in all of them. Reperfusion due to thrombolysis occurred in 74 patients and there was no reperfusion in 15 patients. RESULTS--The 74 patients showing coronary reperfusion had a significantly shorter time to peak creatine kinase activity, higher early release rates for creatine kinase and alpha-hydroxybutyrate dehydrogenase, and a more rapid release of alpha-hydroxybutyrate dehydrogenase (ratio of cumulative release of alpha-hydroxybutyrate dehydrogenase during the first 24 hours to that 72 hours after infarction). All these differences were statistically significant (p less than 0.001). Optimum cut off levels were determined with decision level plots and the accuracy of the four enzymatic tests was calculated. Accuracy was low for all four tests (73%, 70%, 70%, and 82%). CONCLUSION--None of the four enzymatic tests accurately predicted the perfusion state of the infarct related coronary artery after thrombolysis. These tests cannot be used reliably in routine clinical practice as non-angiographic markers of coronary reperfusion. PMID:1540435

  9. Enzymatic technologies for remediation of hydrophobic organic pollutants in soil.

    PubMed

    Eibes, G; Arca-Ramos, A; Feijoo, G; Lema, J M; Moreira, M T

    2015-11-01

    Worldwide there are numerous contaminated sites as a result of the widespread production and use of chemicals in industrial and military activities as well as poor schemes of waste disposal and accidental spillages. The implementation of strategies for decontamination and restoration of polluted sites has become a priority, being bioremediation with biological agents a promising alternative. Enzyme-based technologies offer several advantages over the use of microbial cells, provided that the biocatalyst meets specific requirements: efficiency to remove the target pollutant/s, non-dependency on expensive coenzymes or cofactors, enzyme stability, and an affordable production system. In this mini-review, the direct application of enzymes for in situ soil bioremediation is explored, and also novel ex situ enzymatic technologies are presented. This new perspective provides a valuable insight into the different enzymatic alternatives for decontamination of soils. Examples of recent applications are reported, including pilot-scale treatments and patented technologies, and the principles of operation and the main requirements associated are described. Furthermore, the main challenges regarding the applicability of enzymatic technologies for remediation of hydrophobic organic pollutants from soil are discussed. PMID:26293336

  10. [Enhanced enzymatic hydrolysis of excess sludge by surfactant].

    PubMed

    Yu, Jing; Luo, Kun; Yang, Qi; Li, Xiao-Ming; Xie, Bing-Xin; Yang, Guo-Jing; Mo, Chuang-Rong

    2011-08-01

    In order to enhance the efficiency of enzymatic hydrolysis of excess sludge, sodium dodecyl sulfate (SDS) was added to the system to explore the feasibility of promotion the enzyme hydrolysis. The results showed that the enzymatic hydrolysis of excess sludge could be greatly improved by SDS, and the mixed enzymes system was more effective than that by single enzyme system. SCOD releasing increased linearly with the increase of SDS dosage at the mixed enzymes concentration of 0.06 g/g. SCOD/TCOD increased from 1.3% to 54.3% and VSS reduction achieved to 43.2% at the SDS dosage of 0.20 g/g. Further studies indicated that SDS could improve the activity of external enzymes. At SDS dosage of 0.10 g/g, the protease activity of SDS + protease showed a 2. 3-time increase and the amylase activity of SDS + amylase showed a 1.2-time increase compared with enzymatic treatment. After 4 h hydrolysis, the concentration of protein, NH4+ -N and soluble sugar in SDS + mixed enzymes system were improved by 85.4%, 92.5% and 64.0%, respectively. Correspondingly, sludge hydrolysis within prior 4 h was consistent with first-order reaction dynamics. The reaction rate constant (K) of soluble sugar increased from 0.23 to 0.41, which indicated that the reaction rate of hydrolysis increased significantly. PMID:22619958

  11. Angling for Uniqueness in Enzymatic Preparation of Glycosides

    PubMed Central

    Trincone, Antonio

    2013-01-01

    In the early days of biocatalysis, limitations of an enzyme modeled the enzymatic applications; nowadays the enzyme can be engineered to be suitable for the process requirements. This is a general bird’s-eye view and as such cannot be specific for articulated situations found in different classes of enzymes or for selected enzymatic processes. As far as the enzymatic preparation of glycosides is concerned, recent scientific literature is awash with examples of uniqueness related to the features of the biocatalyst (yield, substrate specificity, regioselectivity, and resistance to a particular reaction condition). The invention of glycosynthases is just one of the aspects that has thrust forward the research in this field. Protein engineering, metagenomics and reaction engineering have led to the discovery of an expanding number of novel enzymes and to the setting up of new bio-based processes for the preparation of glycosides. In this review, new examples from the last decade are compiled with attention both to cases in which naturally present, as well as genetically inserted, characteristics of the catalysts make them attractive for biocatalysis. PMID:24970171

  12. Recent Research Trends on the Enzymatic Synthesis of Structured Lipids.

    PubMed

    Kim, Byung Hee; Akoh, Casimir C

    2015-08-01

    Structured lipids (SLs) are lipids that have been chemically or enzymatically modified from their natural biosynthetic form. Because SLs are made to possess desired nutritional, physicochemical, or textural properties for various applications in the food industry, many research activities have been aimed at their commercialization. The production of SLs by enzymatic procedures has a great potential in the future market because of the specificity of lipases and phospholipases used as the biocatalysts. The aim of this review is to provide concise information on the recent research trends on the enzymatic synthesis of SLs of commercial interest, such as medium- and long-chain triacylglycerols, human milk fat substitutes, cocoa butter equivalents, trans-free or low-trans plastic fats (such as margarines and shortenings), low-calorie fats/oils, health-beneficial fatty acid-rich fats/oils, mono- or diacylglycerols, and structurally modified phospholipids. This limited review covers 108 research articles published between 2010 and 2014 which were searched in Web of Science. PMID:26189491

  13. Development of ESI-MS-based continuous enzymatic assay for real-time monitoring of enzymatic reactions of acetylcholinesterase.

    PubMed

    Fu, Qiang; Tang, Jun; Cui, Meng; Zheng, Zhong; Liu, Zhiqiang; Liu, Shuying

    2015-05-15

    The continuous enzymatic assay based on ESI-MS was developed to real-time monitoring of enzymatic reactions of acetylcholinesterase (AChE). The changes of product concentrations were continuously measured. Calibration curves were established for quantitative calculation. By this method, the Michaelis constant (Km) of acetylcholinesterase was determined to be 70.60±0.93μM and Huperzine A as an effective inhibitor of acetylcholinesterase displayed a mixed inhibition with competitive and noncompetitive inhibition behaviors. The half maximal inhibitory concentration (IC50) and inhibition constant (Ki) value of Huperzine A were also calculated as 48.51±1.16nM and 26.73±0.27nM, respectively. This method provides the rapid and accurate ways to monitor enzyme reactions. PMID:25875590

  14. Self-Assembled DNA Hydrogel Based on Enzymatically Polymerized DNA for Protein Encapsulation and Enzyme/DNAzyme Hybrid Cascade Reaction.

    PubMed

    Xiang, Binbin; He, Kaiyu; Zhu, Rong; Liu, Zhuoliang; Zeng, Shu; Huang, Yan; Nie, Zhou; Yao, Shouzhuo

    2016-09-01

    DNA hydrogel is a promising biomaterial for biological and medical applications due to its native biocompatibility and biodegradability. Herein, we provide a novel, versatile, and cost-effective approach for self-assembly of DNA hydrogel using the enzymatically polymerized DNA building blocks. The X-shaped DNA motif was elongated by terminal deoxynucleotidyl transferase (TdT) to form the building blocks, and hybridization between dual building blocks via their complementary TdT-polymerized DNA tails led to gel formation. TdT polymerization dramatically reduced the required amount of original DNA motifs, and the hybridization-mediated cross-linking of building blocks endows the gel with high mechanical strength. The DNA hydrogel can be applied for encapsulation and controllable release of protein cargos (for instance, green fluorescent protein) due to its enzymatic responsive properties. Moreover, this versatile strategy was extended to construct a functional DNAzyme hydrogel by integrating the peroxidase-mimicking DNAzyme into DNA motifs. Furthermore, a hybrid cascade enzymatic reaction system was constructed by coencapsulating glucose oxidase and β-galactosidase into DNAzyme hydrogel. This efficient cascade reaction provides not only a potential method for glucose/lactose detection by naked eye but also a promising modular platform for constructing a multiple enzyme or enzyme/DNAzyme hybrid system. PMID:27526861

  15. Use of a cyanine dye probe to estimate the composition of the vitreous body after enzymatic treatment

    NASA Astrophysics Data System (ADS)

    Panova, Ina G.; Tatikolov, Alexander S.; Sharova, Natalia P.

    2010-02-01

    The aim of this work was to study the effect of enzymes such as proteinase K, trypsin, collagenase with hyaluronidase, as well as a mixture of all these enzymes, on albumin and collagens incorporated in the vitreous body, using a cyanine dye as a spectral-fluorescent probe. We studied the vitreous body of the eyes of 19/20-week human fetuses, in which, as we showed earlier, the concentration of albumin in the vitreous body is sufficiently high. Proteinase K steeply decreased the albumin content in the vitreous body, whereas trypsin and hyaluronidase with collagenase had no effect on the albumin content. Collagen was not subjected to proteinase K. Enzymatic digestion of collagen occurred under the action of collagenase with hyaluronidase. The content of albumin and collagen sharply decreased in the system after treatment of the vitreous body with mixture of all enzymes. Hence, the results obtained showed that, even being in the mixture, these enzymes have a selective effect on albumin and collagens. The possibility to study the dose-dependent character of enzymatic vitreolysis using a cyanine dye probe has been shown. The spectral-fluorescent probe for albumin and collagens proved to be useful for experimental approaches at screening the enzymatic mixtures possessing the selective action. The study performed is considered as a preclinical trial, and the method presented as promising for the further research in this field. The effect of the enzymes used for therapeutic purposes on the functional conditions of the vitreous body should be studied.

  16. Optimization of starch isolation from taro using combination of enzymes and comparison of properties of starches isolated by enzymatic and conventional methods.

    PubMed

    Sit, Nandan; Deka, Sankar Chandra; Misra, Sudip

    2015-07-01

    The optimization of enzymatic starch isolation process from taro tubers using cellulase and xylanase was carried out. The functional properties of starch isolated by optimized enzymatic process were compared with starch isolated by conventional method without the use of enzymes. A central composite rotatable design (CCRD) with four numerical factors was employed to design the experiments. The numerical factors were cellulase concentration (0-100 U/100 g tuber), xylanase concentration (0-100 U/100 g tuber), temperature of incubation (30-50 °C) and incubation time (1-5 h). Statistical analysis showed that the main effects of all the factors were significant on starch yield and effect of cellulase was more significant compared to xylanase. The effectiveness of xylanase in increasing the yield of starch from taro tubers confirmed that xylan is an important component of the cell walls of taro tubers. The optimized condition with maximum starch yield (17.22 %) was obtained when cellulase and xylanase concentration were 299.86 and 300 U/100 g tuber, temperature was 35 °C and incubation time was 2 h. The swelling of the starch granules increased whereas solubility decreased for enzymatic method. The clarity of the starch paste isolated by enzymatic method was found to be better compared to the clarity of starch paste isolated by conventional method. The pasting temperature of the starch paste was slightly higher and viscosity was lower for the starch isolated by enzymatic method. Freeze-thaw stability of the starch paste was also found to be better for the enzymatically isolated starch. PMID:26139897

  17. Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase.

    PubMed

    Kim, In Jung; Lee, Hee Jin; Choi, In-Geol; Kim, Kyoung Heon

    2014-10-01

    Reducing the enzyme loadings for enzymatic saccharification of lignocellulose is required for economically feasible production of biofuels and biochemicals. One strategy is addition of small amounts of synergistic proteins to cellulase mixtures. Synergistic proteins increase the activity of cellulase without causing significant hydrolysis of cellulose. Synergistic proteins exert their activity by inducing structural modifications in cellulose. Recently, synergistic proteins from various biological sources, including bacteria, fungi, and plants, were identified based on genomic data, and their synergistic activities were investigated. Currently, an up-to-date overview of several aspects of synergistic proteins, such as their functions, action mechanisms and synergistic activity, are important for future industrial application. In this review, we summarize the current state of research on four synergistic proteins: carbohydrate-binding modules, plant expansins, expansin-like proteins, and Auxiliary Activity family 9 (formerly GH61) proteins. This review provides critical information to aid in promoting research on the development of efficient and industrially feasible synergistic proteins. PMID:25129610

  18. Exonic splicing signals impose constraints upon the evolution of enzymatic activity.

    PubMed

    Falanga, Alessia; Stojanović, Ozren; Kiffer-Moreira, Tina; Pinto, Sofia; Millán, José Luis; Vlahoviček, Kristian; Baralle, Marco

    2014-05-01

    Exon splicing enhancers (ESEs) overlap with amino acid coding sequences implying a dual evolutionary selective pressure. In this study, we map ESEs in the placental alkaline phosphatase gene (ALPP), absent in the corresponding exon of the ancestral tissue-non-specific alkaline phosphatase gene (ALPL). The ESEs are associated with amino acid differences between the transcripts in an area otherwise conserved. We switched out the ALPP ESEs sequences with the sequence from the related ALPL, introducing the associated amino acid changes. The resulting enzymes, produced by cDNA expression, showed different kinetic characteristics than ALPL and ALPP. In the organism, this enzyme will never be subjected to selection because gene splicing analysis shows exon skipping due to loss of the ESE. Our data prove that ESEs restrict the evolution of enzymatic activity. Thus, suboptimal proteins may exist in scenarios when coding nucleotide changes and consequent amino acid variation cannot be reconciled with the splicing function. PMID:24692663

  19. Integrated catalysis opens new arylation pathways via regiodivergent enzymatic C-H activation.

    PubMed

    Latham, Jonathan; Henry, Jean-Marc; Sharif, Humera H; Menon, Binuraj R K; Shepherd, Sarah A; Greaney, Michael F; Micklefield, Jason

    2016-01-01

    Despite major recent advances in C-H activation, discrimination between two similar, unactivated C-H positions is beyond the scope of current chemocatalytic methods. Here we demonstrate that integration of regioselective halogenase enzymes with Pd-catalysed cross-coupling chemistry, in one-pot reactions, successfully addresses this problem for the indole heterocycle. The resultant 'chemobio-transformation' delivers a range of functionally diverse arylated products that are impossible to access using separate enzymatic or chemocatalytic C-H activation, under mild, aqueous conditions. This use of different biocatalysts to select different C-H positions contrasts with the prevailing substrate-control approach to the area, and presents opportunities for new pathways in C-H activation chemistry. The issues of enzyme and transition metal compatibility are overcome through membrane compartmentalization, with the optimized process requiring no intermediate work-up or purification steps. PMID:27283121

  20. Integrated catalysis opens new arylation pathways via regiodivergent enzymatic C–H activation

    PubMed Central

    Latham, Jonathan; Henry, Jean-Marc; Sharif, Humera H.; Menon, Binuraj R. K.; Shepherd, Sarah A.; Greaney, Michael F.; Micklefield, Jason

    2016-01-01

    Despite major recent advances in C–H activation, discrimination between two similar, unactivated C–H positions is beyond the scope of current chemocatalytic methods. Here we demonstrate that integration of regioselective halogenase enzymes with Pd-catalysed cross-coupling chemistry, in one-pot reactions, successfully addresses this problem for the indole heterocycle. The resultant ‘chemobio-transformation' delivers a range of functionally diverse arylated products that are impossible to access using separate enzymatic or chemocatalytic C–H activation, under mild, aqueous conditions. This use of different biocatalysts to select different C–H positions contrasts with the prevailing substrate-control approach to the area, and presents opportunities for new pathways in C–H activation chemistry. The issues of enzyme and transition metal compatibility are overcome through membrane compartmentalization, with the optimized process requiring no intermediate work-up or purification steps. PMID:27283121

  1. A Selective Glutathione Probe based on AIE Fluorogen and its Application in Enzymatic Activity Assay

    NASA Astrophysics Data System (ADS)

    Lou, Xiaoding; Hong, Yuning; Chen, Sijie; Leung, Chris Wai Tung; Zhao, Na; Situ, Bo; Lam, Jacky Wing Yip; Tang, Ben Zhong

    2014-03-01

    In this work, we design and synthesize a malonitrile-functionalized TPE derivative (TPE-DCV), which can react with thiol group through thiol-ene click reaction, leading to the fluorescence change of the system. Combined with the unique AIE property, TPE-DCV can selectively detect glutathione (GSH) but not cysteine or homocysteine. As the cleavage of GSSG with the aid of glutathione reductase produces GSH, which turns on the fluorescence of TPE-DCV, the ensemble of TPE-DCV and GSSG can thus serve as a label-free sensor for enzymatic activity assay of glutathione reductase. We also apply TPE-DCV for the detection of intracellular GSH in living cells.

  2. Enhanced enzymatic saccharification of pretreated biomass using glycerol thermal processing (GTP).

    PubMed

    Zhang, Wei; Sathitsuksanoh, Noppadon; Barone, Justin R; Renneckar, Scott

    2016-01-01

    Biomass was heated (200-240°C) in the presence of glycerol, for 4-12 min, under shear to disrupt the native cell wall architecture. The impact of this method, named glycerol thermal processing (GTP), on saccharification efficiency of the hardwood Liquidambar styraciflua, and a control cellulose sample was studied as a function of treatment severity. Furthermore, the enzymatic conversion of samples with varying compositions was studied after extraction of the structural polymers. Interestingly, the sweet gum processed materials crystallinity index increased by 10% of the initial value. The experiments revealed that the residual lignin was not a barrier to limiting the digestibility of cellulose after pretreatment yielding up to 70% glucose based on the starting wood material. Further xylan removal greatly improved the cellulose hydrolysis rate, converting nearly 70% of the cellulose into glucose within 24h, and reaching 78% of ultimate glucan digestibility after 72 h. PMID:26384086

  3. Non-enzymatic protein acylation as a carbon stress regulated by sirtuin deacylases

    PubMed Central

    Wagner, Gregory R.; Hirschey, Matthew D.

    2014-01-01

    Cellular proteins are decorated with a wide range of acetyl and other acyl modifications. Many studies have demonstrated regulation of site-specific acetylation by acetyltransferases and deacetylases. Acylation is emerging as a new type of lysine modification, but less is known about its overall regulatory role. Furthermore, the mechanisms of lysine acylation, its overlap with protein acetylation, and how it influences cellular function are major unanswered questions in the field. In this review, we discuss the known roles of acetyltransferases and deacetylases, and the sirtuins as a conserved family of NAD+-dependent protein deacylases that are important for response to cellular stress and homeostasis. We also consider the evidence for an emerging idea of non-enzymatic protein acylation. Finally, we put forward the hypothesis that protein acylation is a form of protein “carbon stress”, that the deacylases evolved to remove as a part of a global protein quality control network. PMID:24725594

  4. A Selective Glutathione Probe based on AIE Fluorogen and its Application in Enzymatic Activity Assay

    PubMed Central

    Lou, Xiaoding; Hong, Yuning; Chen, Sijie; Leung, Chris Wai Tung; Zhao, Na; Situ, Bo; Lam, Jacky Wing Yip; Tang, Ben Zhong

    2014-01-01

    In this work, we design and synthesize a malonitrile-functionalized TPE derivative (TPE-DCV), which can react with thiol group through thiol-ene click reaction, leading to the fluorescence change of the system. Combined with the unique AIE property, TPE-DCV can selectively detect glutathione (GSH) but not cysteine or homocysteine. As the cleavage of GSSG with the aid of glutathione reductase produces GSH, which turns on the fluorescence of TPE-DCV, the ensemble of TPE-DCV and GSSG can thus serve as a label-free sensor for enzymatic activity assay of glutathione reductase. We also apply TPE-DCV for the detection of intracellular GSH in living cells. PMID:24603274

  5. A reagentless enzymatic amperometric biosensor using vertically aligned carbon nanofibers (VACNF)

    SciTech Connect

    Weeks, Martha L; Rahman, Touhidur; Frymier, Paul Dexter; Islam, Syed K; McKnight, Timothy E

    2008-01-01

    A reagentless amperometric enzymatic biosensor is constructed on a carbon substrate for detection of ethanol. Yeast alcohol dehydrogenase (YADH), an oxidoreductase, and its cofactor nicotinamide adenine dinucleotide (NAD+) are immobilized by adsorption and covalent attachment to the carbon substrate. Carbon nanofibers grown by plasma enhanced chemical vapor deposition (PECVD) are chosen as the electrode material due to their excellent structural and electrical properties. Electrochemical techniques are employed to test the functionality and performance of the biosensor using reduced form of nicotinamide adenine dinucleotide (NADH) which also determines the oxidation peak potential of NADH. Subsequently, amperometric measurements are conducted for detection of ethanol to determine the electrical current response due to the increase in analyte concentration. The detection range, storage stability, reusability, and response time of the biosensor are also examined.

  6. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer

    PubMed Central

    Westereng, Bjørge; Cannella, David; Wittrup Agger, Jane; Jørgensen, Henning; Larsen Andersen, Mogens; Eijsink, Vincent G.H.; Felby, Claus

    2015-01-01

    Enzymatic oxidation of cell wall polysaccharides by lytic polysaccharide monooxygenases (LPMOs) plays a pivotal role in the degradation of plant biomass. While experiments have shown that LPMOs are copper dependent enzymes requiring an electron donor, the mechanism and origin of the electron supply in biological systems are only partly understood. We show here that insoluble high molecular weight lignin functions as a reservoir of electrons facilitating LPMO activity. The electrons are donated to the enzyme by long-range electron transfer involving soluble low molecular weight lignins present in plant cell walls. Electron transfer was confirmed by electron paramagnetic resonance spectroscopy showing that LPMO activity on cellulose changes the level of unpaired electrons in the lignin. The discovery of a long-range electron transfer mechanism links the biodegradation of cellulose and lignin and sheds new light on how oxidative enzymes present in plant degraders may act in concert. PMID:26686263

  7. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification

    PubMed Central

    2013-01-01

    Background Previous research on alkaline pretreatment has mainly focused on optimization of the process parameters to improve substrate digestibility. To achieve satisfactory sugar yield, extremely high chemical loading and enzyme dosages were typically used. Relatively little attention has been paid to reduction of chemical consumption and process waste management, which has proven to be an indispensable component of the bio-refineries. To indicate alkali strength, both alkali concentration in pretreatment solution (g alkali/g pretreatment liquor or g alkali/L pretreatment liquor) and alkali loading based on biomass solids (g alkali/g dry biomass) have been widely used. The dual approaches make it difficult to compare the chemical consumption in different process scenarios while evaluating the cost effectiveness of this pretreatment technology. The current work addresses these issues through pretreatment of corn stover at various combinations of pretreatment conditions. Enzymatic hydrolysis with different enzyme blends was subsequently performed to identify the effects of pretreatment parameters on substrate digestibility as well as process operational and capital costs. Results The results showed that sodium hydroxide loading is the most dominant variable for enzymatic digestibility. To reach 70% glucan conversion while avoiding extensive degradation of hemicellulose, approximately 0.08 g NaOH/g corn stover was required. It was also concluded that alkali loading based on total solids (g NaOH/g dry biomass) governs the pretreatment efficiency. Supplementing cellulase with accessory enzymes such as α-arabinofuranosidase and β-xylosidase significantly improved the conversion of the hemicellulose by 6–17%. Conclusions The current work presents the impact of alkaline pretreatment parameters on the enzymatic hydrolysis of corn stover as well as the process operational and capital investment costs. The high chemical consumption for alkaline pretreatment technology

  8. Validation of doubled haploid plants by enzymatic mismatch cleavage

    PubMed Central

    2013-01-01

    Background Doubled haploidy is a fundamental tool in plant breeding as it provides the fastest way to generate populations of meiotic recombinants in a genetically fixed state. A wide range of methods has been developed to produce doubled haploid (DH) plants and recent advances promise efficient DH production in otherwise recalcitrant species. Since the cellular origin of the plants produced is not always certain, rapid screening techniques are needed to validate that the produced individuals are indeed homozygous and genetically distinct from each other. Ideal methods are easily implemented across species and in crops where whole genome sequence and marker resources are limited. Results We have adapted enzymatic mismatch cleavage techniques commonly used for TILLING (Targeting Induced Local Lesions IN Genomes) for the evaluation of heterozygosity in parental, F1 and putative DH plants. We used barley as a model crop and tested 26 amplicons previously developed for TILLING. Experiments were performed using self-extracted single-strand-specific nuclease and standard native agarose gels. Eleven of the twenty-six tested primers allowed unambiguous assignment of heterozygosity in material from F1 crosses and loss of heterozygosity in the DH plants. Through parallel testing of previously developed Simple Sequence Repeat (SSR) markers, we show that 3/32 SSR markers were suitable for screening. This suggests that enzymatic mismatch cleavage approaches can be more efficient than SSR based screening, even in species with well-developed markers. Conclusions Enzymatic mismatch cleavage has been applied for mutation discovery in many plant species, including those with little or no available genomic DNA sequence information. Here, we show that the same methods provide an efficient system to screen for the production of DH material without the need of specialized equipment. This gene target based approach further allows discovery of novel nucleotide polymorphisms in candidate

  9. Robustness Analysis and Behavior Discrimination in Enzymatic Reaction Networks

    PubMed Central

    Donzé, Alexandre; Fanchon, Eric; Gattepaille, Lucie Martine; Maler, Oded; Tracqui, Philippe

    2011-01-01

    Characterizing the behavior and robustness of enzymatic networks with numerous variables and unknown parameter values is a major challenge in biology, especially when some enzymes have counter-intuitive properties or switch-like behavior between activation and inhibition. In this paper, we propose new methodological and tool-supported contributions, based on the intuitive formalism of temporal logic, to express in a rigorous manner arbitrarily complex dynamical properties. Our multi-step analysis allows efficient sampling of the parameter space in order to define feasible regions in which the model exhibits imposed or experimentally observed behaviors. In a first step, an algorithmic methodology involving sensitivity analysis is conducted to determine bifurcation thresholds for a limited number of model parameters or initial conditions. In a second step, this boundary detection is supplemented by a global robustness analysis, based on quasi-Monte Carlo approach that takes into account all model parameters. We apply this method to a well-documented enzymatic reaction network describing collagen proteolysis by matrix metalloproteinase MMP2 and membrane type 1 metalloproteinase (MT1-MMP) in the presence of tissue inhibitor of metalloproteinase TIMP2. For this model, our method provides an extended analysis and quantification of network robustness toward paradoxical TIMP2 switching activity between activation or inhibition of MMP2 production. Further implication of our approach is illustrated by demonstrating and analyzing the possible existence of oscillatory behaviors when considering an extended open configuration of the enzymatic network. Notably, we construct bifurcation diagrams that specify key parameters values controlling the co-existence of stable steady and non-steady oscillatory proteolytic dynamics. PMID:21980344

  10. Robustness analysis and behavior discrimination in enzymatic reaction networks.

    PubMed

    Donzé, Alexandre; Fanchon, Eric; Gattepaille, Lucie Martine; Maler, Oded; Tracqui, Philippe

    2011-01-01

    Characterizing the behavior and robustness of enzymatic networks with numerous variables and unknown parameter values is a major challenge in biology, especially when some enzymes have counter-intuitive properties or switch-like behavior between activation and inhibition. In this paper, we propose new methodological and tool-supported contributions, based on the intuitive formalism of temporal logic, to express in a rigorous manner arbitrarily complex dynamical properties. Our multi-step analysis allows efficient sampling of the parameter space in order to define feasible regions in which the model exhibits imposed or experimentally observed behaviors. In a first step, an algorithmic methodology involving sensitivity analysis is conducted to determine bifurcation thresholds for a limited number of model parameters or initial conditions. In a second step, this boundary detection is supplemented by a global robustness analysis, based on quasi-Monte Carlo approach that takes into account all model parameters. We apply this method to a well-documented enzymatic reaction network describing collagen proteolysis by matrix metalloproteinase MMP2 and membrane type 1 metalloproteinase (MT1-MMP) in the presence of tissue inhibitor of metalloproteinase TIMP2. For this model, our method provides an extended analysis and quantification of network robustness toward paradoxical TIMP2 switching activity between activation or inhibition of MMP2 production. Further implication of our approach is illustrated by demonstrating and analyzing the possible existence of oscillatory behaviors when considering an extended open configuration of the enzymatic network. Notably, we construct bifurcation diagrams that specify key parameters values controlling the co-existence of stable steady and non-steady oscillatory proteolytic dynamics. PMID:21980344

  11. Non-contact measurement technique for enzymatic reaction of glucokinase

    NASA Astrophysics Data System (ADS)

    Staforelli, Juan P.; Gallardo, María. J.; Meza, Pablo; Torres, Sergio; Mella, Héctor; Reyes, Claudio

    2014-03-01

    A non-contact infrared imaging-based measurement technique is applied to quantify the enzymatic reaction of glucokinase. The method is implemented by a long-wave (8-12 [μm]) infrared microbolometer imaging array and a germanium-based infrared optical vision system adjusted to the size of a small biological sample. The enzymatic reaction is carried out by the glucokinase enzyme, which is representative of the internal dynamics of the cell. Such reactions produce a spontaneous exothermal release of energy detected by the infrared imaging system as a non-contact measurement technique. It is shown by stoichiometry computations and infrared thermal resolution metrics that the infrared imaging system can detect the energy release at the [mK] range. This allows to quantify the spontaneity of the enzymatic reaction in a three dimensional (surface and time) single and noncontact real- time measurement. The camera is characterized for disclosing its sensibility, and the fixed pattern noise is compensated by a two point calibration method. On the other hand, the glucokinase enzyme is isolated from Pyrococcus furiosus. Therefore, the experiment is carried out by manual injection with graduated micropipettes using 40 [μl] of glucokinase at the surface of the substrate contained in an eppendorf tube. For recording, the infrared camera is adjusted in-focus at 25.4 [mm] from the superficial level of the substrate. The obtained values of energy release are 139 +/- 22 [mK] at room temperature and 274 +/- 22 [mK] for a bath temperature of 334 [K].

  12. Effect of melanin on enzymatic hydrolysis of cellulosic waste.

    PubMed

    Ray, R M; Desai, J D

    1984-07-01

    Wood waste powder from Tectona grandis containing melanin was less susceptible to enzymatic hydrolysis than powder without melanin. About a 53% increase in saccharification was noted when melanin was removed. Melanin caused inhibition to all cellulolytic enzymes, but in different degrees. Endo-beta-1,4-glucanase and beta-glucosidase were markedly inhibited when melanin was preincubated with enzyme, while exo-beta-1,4-glucanase was severely inhibited when melanin was preincubated with substrate. The latter was found to be dependent on the contact time. The activities of endo-beta-1,4-glucanase and beta-glucosidase were noncompetitively inhibited by melanin. PMID:18553434

  13. Study on sterilization and storage of enzymatic preparations by irradiation

    NASA Astrophysics Data System (ADS)

    Dengyi, Xu; Guangzheng, Liu; Yunsen, Long; Xiaoping, Liu; Fengxin, Yi; Xiaqdong, Zhao

    1993-10-01

    Effects of irradiation with cobalt-60 γ-rays on sterilization, storage and enzymes activity of four kinds of biological enzymatic preparations, namely trypsin, pepsin, amylase and liquid carbohydrase, were investigated. The results showed that these enzymes have different sensitivity to irradiation, amylase being the most sensitive. The enzyme activity and enzyme effect of amylase were lowered with irradiation dose higher than 7 KGY. With irradiation doses between 7-10 KGY, enzyme activity of trypsin and pepsin were stable. Liquid carbohydrase can be stored more than half a year under a natural temperature with a stable enzyme activity without molding.

  14. Peptide hydrogelation triggered by enzymatic induced pH switch

    NASA Astrophysics Data System (ADS)

    Cheng, Wei; Li, Ying

    2016-07-01

    It remains challenging to develop methods that can precisely control the self-assembling kinetics and thermodynamics of peptide hydrogelators to achieve hydrogels with optimal properties. Here we report the hydrogelation of peptide hydrogelators by an enzymatically induced pH switch, which involves the combination of glucose oxidase and catalase with D-glucose as the substrate, in which both the gelation kinetics and thermodynamics can be controlled by the concentrations of D-glucose. This novel hydrogelation method could result in hydrogels with higher mechanical stability and lower hydrogelation concentrations. We further illustrate the application of this hydrogelation method to differentiate different D-glucose levels.

  15. Highly regioselective enzymatic synthesis of polymerizable derivatives of methyl shikimate.

    PubMed

    Li, Chao; Wang, Hai-Yang; Wang, Na; Fang, Yu-Guo; Chen, Xi; Yu, Xiao-Qi

    2007-12-15

    Regiocontrollable selectivity of enzymatic method for synthesis of polymerizable derivatives of methyl shikimate was described. Lipase acrylic resin from Candida antarctica (CAL-B) and immobilized lipase from Mucor miehei (MML) showed high regioselectivity toward the secondary hydroxyl of methyl shikimate, which presents three hydroxyl groups with similar reactivity. Catalysis by MML in acetone facilitated the single step synthesis of 5-O-acyl methyl shikimate derivatives in high yields, while the use of CAL-B in acetone afforded 4-O-acyl methyl shikimate derivatives. The obtained series of methyl shikimate derivatives would be important monomers for potential useful analogues of shikimic acid. PMID:17976984

  16. Dual enzymatic detergents: a safer way to decontaminate.

    PubMed

    Dernbach, C M

    1989-09-01

    1. Although the technology of mechanical equipment has advanced, manual cleaning of contaminated items has not been eliminated in the initial decontamination phase. 2. Proteolytic enzymes dissolve and lift the protein contaminate while detergents remove the dissolved organic particulate from the surface of the item. 3. A dual proteolytic enzyme detergent can be used over a wide range of pH levels and temperatures. 4. Dual enzymatic detergents reduce employee exposure through manual cleaning and assure the complete removal of gross organic debris during the initial decontamination phase. PMID:2675392

  17. The Mechanisms of Plant Cell Wall Deconstruction during Enzymatic Hydrolysis

    PubMed Central

    Thygesen, Lisbeth G.; Thybring, Emil E.; Johansen, Katja S.; Felby, Claus

    2014-01-01

    Mechanical agitation during enzymatic hydrolysis of insoluble plant biomass at high dry matter contents is indispensable for the initial liquefaction step in biorefining. It is known that particle size reduction is an important part of liquefaction, but the mechanisms involved are poorly understood. Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic bonds. This study illustrates that basic material science insights are relevant also within biochemistry, particularly when it comes to up-scaling of processes based on insoluble feed stocks. PMID:25232741

  18. Detecting platform for phenolic compounds-characteristic of enzymatic electrode

    NASA Astrophysics Data System (ADS)

    Cabaj, Joanna; Chyla, Antoni; Jędrychowska, Agnieszka; Olech, Kamila; Sołoducho, Jadwiga

    2012-08-01

    We report here on simple and universal method for the highly efficient, electrolytic immobilization of tyrosinase (from Agaricus bisporus), for amperometric biosensing purposes. Tyrosinase has been successfully deposited on the surface of thin, ordered films of copolymerized derivative of thiophene (3-methylthiophene/3-thiopheneacetic acid/bis(ethylenedioxythiophene)diphenylamine). The tyrosinase retains well its activity well within the fabricated copolymer matrix. Reduction peaks, observed in cyclic voltammetry at 0.125 to +0.07 V, were attributed to the reduction of enzymatically liberated quinone species. Considering the fact, that immobilization strategy showed high efficiency, obtained results suggest that the method for phenoloxidase immobilization has a great potential for fabrication of bioelectronics' devices.

  19. Rheological Properties of Enzymatically Isolated Tomato Fruit Cuticle.

    PubMed Central

    Petracek, P. D.; Bukovac, M. J.

    1995-01-01

    Rheological properties were determined for cuticular membranes (CMs) enzymatically isolated from mature tomato (Lycopersicon esculentum Mill. cv Pik Red) fruit. The cuticle responded as a viscoelastic polymer in stress-strain studies. Both CM and dewaxed CM expanded and became more elastic and susceptible to fracture when hydrated, suggesting that water plasticized the cuticle. Dewaxing of the CM caused similar changes in elasticity and fracturing, indicating that wax may serve as a supporting filler in the cutin matrix. Exposure of the cuticle to the surfactant Triton X-100 did not significantly affect its rheological properties. PMID:12228622

  20. Stereochemistry of enzymatic water addition to C=C bonds.

    PubMed

    Chen, Bi-Shuang; Otten, Linda G; Hanefeld, Ulf

    2015-01-01

    Water addition to carbon-carbon double bonds using hydratases is attracting great interest in biochemistry. Most of the known hydratases are involved in primary metabolism and to a lesser extent in secondary metabolism. New hydratases have recently been added to the toolbox, both from natural sources or artificial metalloenzymes. In order to comprehensively understand how the hydratases are able to catalyse the water addition to carbon-carbon double bonds, this review will highlight the mechanistic and stereochemical studies of the enzymatic water addition to carbon-carbon double bonds, focusing on the syn/anti-addition and stereochemistry of the reaction. PMID:25640045

  1. Evaluation of pretreatments for enzymatic conversion of agricultural residues

    SciTech Connect

    Fan, L.T.; Gharpuray, M.M.; Lee, Y.H.

    1981-01-01

    The effectiveness of various physical and chemical pretreatments on the enzymatic digestibility of wheat straw was evaluated. Structural features, including crystallinity and lignin content, were measured after pretreatments. Several promising pretreatments were identified. In general, chemical pretreatments were more effective than physical pretreatments. Although the hydrolysis rate was dependent appreciably on the crystallinity index, lignin content of the substrate appeared predominant. The hydrolysis rate increased with an increase in the degree of delignification only up to 50%; it remained unchanged thereafter. Scanning electron microscopic observations were used to facilitate further insight into structural modification of the substrate. A preliminary cost analysis was conducted.

  2. Enzymatic and non-enzymatic antioxidant potentials of Chlorella vulgaris grown in effluent of a confectionery industry.

    PubMed

    Kumar, R Ranjith; Rao, P Hanumantha; Subramanian, V V; Sivasubramanian, V

    2014-02-01

    Enzymatic and non-enzymatic antioxidant potentials of Chlorella vulgaris have gained considerable importance in recent decades. C. vulgaris strain highly tolerant to extreme pH variations was isolated and mass-cultivated in the wastewater from a confectionery industry. C.vulgaris showed better growth in wastewater than in improvised CFTRI medium. The microalgal biomass was then screened for the following antioxidants: peroxidase, superoxide dismutase, polyphenol oxidase, glutathione peroxidase, chlorophyll a, ascorbic acid, α-tocopherol and reduced glutathione. The total polyphenol content of the strain was also studied. The strain showed a high degree of enzymatic antioxidant activity (0.195 × 10(-5) ± 0.0072 units/cell peroxidase, 0.04125 × 10(-5) ± 0.001 units/cell superoxide dismutase, 0.2625 × 10(-5) ± 0.003 units/cell polyphenol oxidase and 0.025 × 10(-5) ± 0.003 glutathione peroxidase). The microalgal biomass also showed, per milligram weight, 0.2182 ± 0.005 μg of ascorbic acid, 0.00264 ± 0.001 μg of α-tocopherol and 0.07916 ± 0.004 μg of reduced glutathione. These results represent the possibility of using C. vulgaris grown in confectionery industry wastewater as a source of nutritious supplement, which is highly promising in terms of both economic and nutritional point of view. PMID:24493890

  3. Protein cluster formation during enzymatic cross-linking of globular proteins.

    PubMed

    Saricay, Yunus; Dhayal, Surender Kumar; Wierenga, Peter Alexander; de Vries, Renko

    2012-01-01

    Work on enzymatic cross-linking of globular food proteins has mainly focused on food functional effects such as improvements of gelation and enhanced stabilization of emulsions and foams, and on the detailed biochemical characterization of the cross-linking chemistry. What is still lacking is a physical characterization of cluster formation and gelation, as has been done for example, for cluster formation and gelation during heat-induced protein aggregation. Here we present preliminary results along these lines. We propose that enzymatic cross-linking of apo-alpha-lactalbumin is a good model system for studying the problem of cluster formation and gelation during enzymatic cross-linking of globular proteins. We present initial results on cluster sizes produced when crosslinking dilute solutions of apo-alpha-lactalbumin with a range of cross-linking enzymes: microbial transglutaminase, horseradish peroxidase, and mushroom tyrosinase. These results are used to highlight similarities and differences between different enzymes, when acting on the same substrate. Next we consider cluster growth and gelation in somewhat more detail for the specific case of cross-linking by horseradish peroxidase, under the periodic addition of H2O2. Upon increasing the initial concentration of apo-alpha-lactalbumin, at a fixed enzyme-to-substrate ratio and fixed reaction time, the size of the clusters at the end of the reaction increases rapidly, and above a critical concentration, gelation occurs. For the conditions that we have used, gelation occurred at very low initial apo-alpha-lactalbumin concentrations of 34% (w/v), indicating a very dilute cross-linked protein network, with a low average number of cross-links per protein. It is found that reactive protein monomers are first rapidly (1-2 h) incorporated into small covalent clusters. This is followed by a much slower phase (up to about 12 h) in which the small clusters are coupled together to form much larger covalent protein

  4. Bias between enzymatic methods and the reference method for cholesterol.

    PubMed

    Kroll, M H; Lindsey, H; Greene, J; Sliva, C; Hainline, A; Elin, R J

    1988-01-01

    Assaying 312 serum samples, we compared four enzymatic methods for serum cholesterol with the Reference Method (modified Abell-Kendall) of the Centers for Disease Control (CDC). The means for the aca, TDx, and SMAC methods (2.27, 2.27, and 2.24 g/L, respectively) were significantly higher (P less than 0.05) than those of the Reference Method and the RA-1000 method (2.19 and 2.18 g/L, respectively). The biased methods had positive proportional and (or) systematic biases. Results with these methods were 2.6% to 4.9% higher than with the Reference Method. The assigned concentrations of cholesterol in the calibration materials for the SMAC and aca agreed with those obtained by the Reference Method, but were lower for the TDx and higher for the RA-1000. These findings document positive biases for cholesterol with three enzymatic methods and suggest that misassignment of calibrators is not primarily responsible for the biases found with the aca and SMAC. It may, however, to be a significant factor for the TDx. PMID:3338142

  5. Enzymatic treatment of peanut kernels to reduce allergen levels.

    PubMed

    Yu, Jianmei; Ahmedna, Mohamed; Goktepe, Ipek; Cheng, Hsiaopo; Maleki, Soheila

    2011-08-01

    This study investigated the use of enzymatic treatment to reduce peanut allergens in peanut kernels as affected by processing conditions. Two major peanut allergens, Ara h 1 and Ara h 2, were used as indicators of process effectiveness. Enzymatic treatment effectively reduced Ara h 1 and Ara h 2 in roasted peanut kernels by up to 100% under optimal conditions. For instance, treatment of roasted peanut kernels with α-chymotrypsin and trypsin for 1-3h significantly increased the solubility of peanut protein while reducing Ara h 1 and Ara h 2 in peanut kernel extracts by 100% and 98%, respectively, based on ELISA readings. Ara h 1 and Ara h 2 levels in peanut protein extracts were inversely correlated with protein solubility in roasted peanut. Blanching of kernels enhanced the effectiveness of enzyme treatment in roasted peanuts but not in raw peanuts. The optimal concentration of enzyme was determined by response surface to be in the range of 0.1-0.2%. No consistent results were obtained for raw peanut kernels since Ara h 1 and Ara h 2 increased in peanut protein extracts under some treatment conditions and decreased in others. PMID:25214091

  6. Mechanistic constraints from the substrate concentration dependence of enzymatic fluctuations

    PubMed Central

    Moffitt, Jeffrey R.; Chemla, Yann R.; Bustamante, Carlos

    2010-01-01

    The time it takes an enzyme to complete its reaction is a stochastic quantity governed by thermal fluctuations. With the advent of high-resolution methods of single-molecule manipulation and detection, it is now possible to observe directly this natural variation in the enzymatic cycle completion time and extract kinetic information from the statistics of its fluctuations. To this end, the inverse of the squared coefficient of variation, which we term nmin, is a useful measure of fluctuations because it places a strict lower limit on the number of kinetic states in the enzymatic mechanism. Here we show that there is a single general expression for the substrate dependence of nmin for a wide range of kinetic models. This expression is governed by three kinetic parameters, which we term NL, NS, and α. These parameters have simple geometric interpretations and provide clear constraints on possible kinetic mechanisms. As a demonstration of this analysis, we fit the fluctuations in the dwell times of the packaging motor of the bacteriophage φ29, revealing additional features of the nucleotide loading process in this motor. Because a diverse set of kinetic models display the same substrate dependence for their fluctuations, the expression for this general dependence may prove of use in the characterization and study of the dynamics of a wide range of enzymes. PMID:20729471

  7. Enzymatic degradation of oligosaccharides in pinto bean flour.

    PubMed

    Song, Danfeng; Chang, Sam K C

    2006-02-22

    The use of dry edible beans is limited due to the presence of flatulence factors, the raffinose oligosaccharides. Our objective was to investigate the process for the removal of oligosaccharides from pinto bean using enzymatic treatment and to compare it to removal by soaking and cooking methods. Crude enzyme preparation was produced by six fungal species on wheat bran- and okara-based substrates with soy tofu whey. The loss of raffinose oligosaccharides after soaking pinto beans for 16 h at the room temperature was 10%, after cooking for 90 min was 52%, and after autoclaving for 30 min was 58%. On the other hand, the treatment using crude alpha-galactosidase (60 U mL(-1)) produced by Aspergillus awamori NRRL 4869 from wheat bran-based substrate with soy tofu whey on pinto bean flour for 2 h completely hydrolyzed raffinose oligosaccharides. These results supported that the enzymatic treatment was the most effective among various processing methods tested for removing the raffinose oligosaccharides, and hence, crude alpha-galactosidases from fungi have potential use in the food industry. PMID:16478251

  8. Enzymatic hydrolysis of fructans in the tequila production process.

    PubMed

    Avila-Fernández, Angela; Rendón-Poujol, Xóchitl; Olvera, Clarita; González, Fernando; Capella, Santiago; Peña-Alvarez, Araceli; López-Munguía, Agustín

    2009-06-24

    In contrast to the hydrolysis of reserve carbohydrates in most plant-derived alcoholic beverage processes carried out with enzymes, agave fructans in tequila production have traditionally been transformed to fermentable sugars through acid thermal hydrolysis. Experiments at the bench scale demonstrated that the extraction and hydrolysis of agave fructans can be carried out continuously using commercial inulinases in a countercurrent extraction process with shredded agave fibers. Difficulties in the temperature control of large extraction diffusers did not allow the scaling up of this procedure. Nevertheless, batch enzymatic hydrolysis of agave extracts obtained in diffusers operating at 60 and 90 degrees C was studied at the laboratory and industrial levels. The effects of the enzymatic process on some tequila congeners were studied, demonstrating that although a short thermal treatment is essential for the development of tequila's organoleptic characteristics, the fructan hydrolysis can be performed with enzymes without major modifications in the flavor or aroma, as determined by a plant sensory panel and corroborated by the analysis of tequila congeners. PMID:19473003

  9. Evolutionary selection of enzymatically synthesized semiconductors from biomimetic mineralization vesicles

    SciTech Connect

    Bawazer, Lukmaan A.; Izumi, Michi; Kolodin, Dmitriy; Neilson, James R.; Schwenzer, Birgit; Morse, Daniel E.

    2012-10-29

    The way nature evolves and sculpts materials using proteins inspires new approaches to materials engineering but is still not completely understood. Here, we present a cell-free synthetic biological platform to advance studies of biologically synthesized solid-state materials. This platform is capable of simultaneously exerting many of the hierarchical levels of control found in natural biomineralization, including genetic, chemical, spatial, structural, and morphological control, while supporting the evolutionary selection of new mineralizing proteins and the corresponding genetically encoded materials that they produce. DNA-directed protein expression and enzymatic mineralization occur on polystyrene microbeads in water-in-oil emulsions, yielding synthetic surrogates of biomineralizing cells that are then screened by flow sorting, with light-scattering signals used to sort the resulting mineralized composites differentially. We demonstrate the utility of this platform by evolutionarily selecting newly identified silicateins, biomineralizing enzymes previously identified from the silica skeleton of a marine sponge, for enzyme variants capable of synthesizing silicon dioxide (silica) or titanium dioxide (titania) composites. Mineral composites of intermediate strength are preferentially selected to remain intact for identification during cell sorting, and then to collapse postsorting to expose the encoding genes for enzymatic DNA amplification. Some of the newly selected silicatein variants catalyze the formation of crystalline silicates, whereas the parent silicateins lack this ability. The demonstrated bioengineered route to previously undescribed materials introduces in vitro enzyme selection as a viable strategy for mimicking genetic evolution of materials as it occurs in nature.

  10. Enzymatic analysis of α-ketoglutaramate—A biomarker for hyperammonemia

    PubMed Central

    Halámková, Lenka; Mailloux, Shay; Halámek, Jan; Cooper, Arthur J.L.; Katz, Evgeny

    2012-01-01

    Two enzymatic assays were developed for the analysis of α-ketoglutaramate (KGM)—an important biomarker of hepatic encephalopathy and other hyperammonemic diseases. In both procedures, KGM is first converted to α-ketoglutarate (KTG) via a reaction catalyzed by ω-amidase (AMD). In the first procedure, KTG generated in the AMD reaction initiates a biocatalytic cascade in which the concerted action of alanine transaminase and lactate dehydrogenase results in the oxidation of NADH. In the second procedure, KTG generated from KGM is reductively aminated, with the concomitant oxidation of NADH, in a reaction catalyzed by L-glutamic dehydrogenase. In both assays, the decrease in optical absorbance (λ=340 nm) corresponding to NADH oxidation is used to quantify concentrations of KGM. The two analytical procedures were applied to 50% (v/v) human serum diluted with aqueous solutions containing the assay components and spiked with concentrations of KGM estimated to be present in normal human plasma and in plasma from hyperammonemic patients. Since KTG is the product of AMD-catalyzed hydrolysis of KGM, in a separate study, this compound was used as a surrogate for KGM. Statistical analyses of samples mimicking the concentration of KGM assumed to be present in normal and pathological concentration ranges were performed. Both enzymatic assays for KGM were confirmed to discriminate between the predicted normal and pathophysiological concentrations of the analyte. The present study is the first step toward the development of a clinically useful probe for KGM analysis in biological fluids. PMID:23141304

  11. Structure and solution properties of enzymatically synthesized glycogen.

    PubMed

    Kajiura, Hideki; Takata, Hiroki; Kuriki, Takashi; Kitamura, Shinichi

    2010-04-19

    Recently, a new enzymatic process for glycogen production was developed. In this process, short-chain amylose is used as a substrate for branching enzymes (BE, EC 2.4.1.18). The molecular weight of the enzymatically synthesized glycogen (ESG) depends on the size and concentration of the substrate. Structural and physicochemical properties of ESG were compared to those of natural source glycogen (NSG). The average chain length, interior chain length, and exterior chain length of ESG were 8.2-11.6, 2.0-3.3, and 4.2-7.6, respectively. These values were within the range of variation of NSG. The appearances of both ESG and NSG in solution were opalescent (milky white and slightly bluish). Furthermore, transmission electron microscopy and atomic force microscopy showed that ESG molecules formed spherical particles, and that there were no differences between ESG and NSG. Viscometric analyses also showed the spherical nature of both glycogens. When ESG and NSG were treated with pullulanase, a glucan-hydrolyzing enzyme known to degrade glycogen only on its surface portion, both glycogens were similarly degraded. These analyses revealed that ESG shares similar molecular shapes and surface properties with NSG. PMID:20153852

  12. Solvent-free enzymatic production of high quality cetyl esters.

    PubMed

    Serrano-Arnaldos, Mar; Máximo-Martín, María Fuensanta; Montiel-Morte, María Claudia; Ortega-Requena, Salvadora; Gómez-Gómez, Elisa; Bastida-Rodríguez, Josefa

    2016-04-01

    A solvent-free biocatalytic process for the synthesis of high quality cetyl laurate, myristate, palmitate and stearate has been optimized. This enzymatic procedure follows the fundamental principles of the Green Chemistry and lead to sustainable products, which can be labeled as natural and conform to the principal requirements for its use in high value-added goods. The four esters selected are the main components of spermaceti, a mixture of waxes very appreciated in cosmetic and pharmacy because of its physical properties and emolliency, which was formerly extracted from the head of the sperm whales. In this paper, the influence of the amount of biocatalyst, the commercially available Novozym(®) 435, and the temperature were studied in an open-air batch reactor before carrying out the synthesis in a high performance vacuum reactor with dry nitrogen input to shift the equilibrium towards product formation. Under optimal conditions, conversion was higher than 98.5 %. The characterization of the enzymatic cetyl esters puts in evidence that these are ultra-pure compounds, which have similar properties to the ones obtained through the conventional industrial processes with the extra benefit of being environmentally friendly. PMID:26801670

  13. Studying enzymatic bioreactions in a millisecond microfluidic flow mixer

    PubMed Central

    Buchegger, Wolfgang; Haller, Anna; van den Driesche, Sander; Kraft, Martin; Lendl, Bernhard; Vellekoop, Michael

    2012-01-01

    In this study, the pre-steady state development of enzymatic bioreactions using a microfluidic mixer is presented. To follow such reactions fast mixing of reagents (enzyme and substrate) is crucial. By using a highly efficient passive micromixer based on multilaminar flow, mixing times in the low millisecond range are reached. Four lamination layers in a shallow channel reduce the diffusion lengths to a few micrometers only, enabling very fast mixing. This was proven by confocal fluorescence measurements in the channel’s cross sectional area. Adjusting the overall flow rate in the 200 μm wide and 900 μm long mixing and observation channel makes it possible to investigate enzyme reactions over several seconds. Further, the device enables changing the enzyme/substrate ratio from 1:1 up to 3:1, while still providing high mixing efficiency, as shown for the enzymatic hydrolysis using β-galactosidase. This way, the early kinetics of the enzyme reaction at multiple enzyme/substrate concentrations can be collected in a very short time (minutes). The fast and easy handling of the mixing device makes it a very powerful and convenient instrument for millisecond temporal analysis of bioreactions. PMID:22662071

  14. [Overexpression of Aspergillus candidus lactase and analysis of enzymatic properties].

    PubMed

    Zhang, Wei; Fan, Yun-liu; Yao, Bin

    2005-04-01

    The lactase gene lacb' from Aspergillus candidus was fused behind alpha-factor signal sequence in the Pichia pastoris expression vector pPIC9, then integrated into the genome of P. pastoris by recombination events. The P. pastoris recombinants for lactase overexpression were screened by enzyme activity analysis and SDS-PAGE. The lactase expressed in P. pastoris was glycosylated protein with an apparent molecular weight of 130 kD, while the deglycosylated lactase treated with Endo H had an apparent molecular weight of about 110 kD. The expression level of secreted lactase protein in recombinant P. pastoris was 6 mg/mL with enzymatic activity of 3600 U/mL in the 5 L fermenter, which was the highest among that of all kinds of recombinant strains reported now. The optimal pH and optimal temperature of the lactase are 5.2 and 60 degrees C. The Vmax, Km, and specific activity of the lactase are 3.3 micromol/min, 1.7 mmol/L and 706.5 +/- 2.6 U/mg, respectively. Compare to the lactase from Aspergillus oryzae ATCC 20423, the expressed lactase from A. candidus have better enzymatic properties including the high thermostability, high specific activity and wide pH range for enzyme reaction. PMID:15989270

  15. New pathways of betanidin and betanin enzymatic oxidation.

    PubMed

    Wybraniec, Sławomir; Michałowski, Tadeusz

    2011-09-14

    Betanidin is a basic betacyanin with a 5,6-dihydroxyl moiety which causes its high antioxidant activity. For the purpose of structural study, the enzymatic oxidation of betanidin and betanin (5-O-glucosylated betanidin), followed by chromatographic separation of the oxidation products with spectrophotometric and mass spectrometric detection (LC-DAD-MS/MS) was performed. Within the pH 4-8 range, two main oxidation peaks of betanidin were observed, betanidin quinonoid (possibly betanidin o-quinone) and 2-decarboxy-2,3-dehydrobetanidin, whereas at pH 3 only dehydrogenated and decarboxylated derivatives were detected, suggesting different stabilities of the products at different pH values. The presence of two prominent oxidation products, 2-decarboxy-2,3-dehydrobetanidin and 2,17-bidecarboxy-2,3-dehydrobetanidin, at pH 3 indicates their generation via two possible reaction routes with two different quinonoid intermediates: dopachrome derivative and quinone methide. Both reaction paths lead to the decarboxylative dehydrogenation of betanidin. Subsequent oxidation and rearrangement of the conjugated chromophoric system results in the formation of 14,15-dehydrogenated derivatives. Betanin is oxidized with generation of a quinone methide intermediate, which rearranges to 2,3-dehydro- or neoderivatives. The products of enzymatic oxidation of betacyanins thus formed are derivatives of 5,6-dihydroxyindole and related structures known as the key intermediates in melanogenesis. PMID:21806060

  16. Recoverable hybrid enzymatic biofuel cell with molecular oxygen-independence.

    PubMed

    Yu, You; Xu, Miao; Bai, Lu; Han, Lei; Dong, Shaojun

    2016-01-15

    Enzymatic biofuel cells (EBFCs) have drawn great attentions because of its potential in energy conversion. However, designing of highly efficient EBFCs which can adapt to the anaerobic system is still a great challenge. In this study, we propose a novel hybrid enzymatic biofuel cell (HEBFC) which was fabricated by a glucose dehydrogenase modified bioanode and a solid-state silver oxide/silver (Ag2O/Ag) cathode. The as-assembled HEBFC exhibited an open circuit potential of 0.59V and a maximum power output of 0.281mWcm(-2) at 0.34V in air saturated buffer. Especially, due to the introduction of Ag2O/Ag, our HEBFC could also operate under anaerobic condition, while the maximum power output would reach to 0.275mWcm(-2) at 0.34V. Furthermore, our HEBFC had stable cycle operation and could keep high power output for a certain time as the result of the regeneration of Ag2O. Our work provides a new concept to develop EBFCs for efficient energy conversion in the future. PMID:26283586

  17. Enzymatic production of pectic oligosaccharides from onion skins.

    PubMed

    Babbar, Neha; Baldassarre, Stefania; Maesen, Miranda; Prandi, Barbara; Dejonghe, Winnie; Sforza, Stefano; Elst, Kathy

    2016-08-01

    Onion skins are evaluated as a new raw material for the enzymatic production of pectic oligosaccharides (POS) with a targeted degree of polymerization (DP). The process is based on a two-stage process consisting of a chelator-based crude pectin extraction followed by a controlled enzymatic hydrolysis. Treatment of the extracted crude onion skin's pectin with various enzymes (EPG-M2, Viscozyme and Pectinase) shows that EPG-M2 is the most appropriate enzyme for tailored POS production. The experiments reveal that the highest amount of DP2 and DP3 is obtained at a time scale of 75-90min with an EPG-M2 concentration of 26IU/mL. At these conditions the production amounts 2.5-3.0% (w/w) d.m for DP2 and 5.5-5.6% (w/w) d.m for DP3 respectively. In contrast, maximum DP4 production of 5.2-5.5% (w/w) d.m. is obtained with 5.2IU/mL at a time scale of 15-30min. Detailed LC-MS analysis reveals the presence of more methylated oligomers compared to acetylated forms in the digests. PMID:27112872

  18. Queueing up for enzymatic processing: correlated signaling through coupled degradation.

    PubMed

    Cookson, Natalie A; Mather, William H; Danino, Tal; Mondragón-Palomino, Octavio; Williams, Ruth J; Tsimring, Lev S; Hasty, Jeff

    2011-01-01

    High-throughput technologies have led to the generation of complex wiring diagrams as a post-sequencing paradigm for depicting the interactions between vast and diverse cellular species. While these diagrams are useful for analyzing biological systems on a large scale, a detailed understanding of the molecular mechanisms that underlie the observed network connections is critical for the further development of systems and synthetic biology. Here, we use queueing theory to investigate how 'waiting lines' can lead to correlations between protein 'customers' that are coupled solely through a downstream set of enzymatic 'servers'. Using the E. coli ClpXP degradation machine as a model processing system, we observe significant cross-talk between two networks that are indirectly coupled through a common set of processors. We further illustrate the implications of enzymatic queueing using a synthetic biology application, in which two independent synthetic networks demonstrate synchronized behavior when common ClpXP machinery is overburdened. Our results demonstrate that such post-translational processes can lead to dynamic connections in cellular networks and may provide a mechanistic understanding of existing but currently inexplicable links. PMID:22186735

  19. Semisynthesis and Enzymatic Preparation of Post-translationally Modified α-Synuclein.

    PubMed

    Fauvet, Bruno; Lashuel, Hilal A

    2016-01-01

    Posttranslational modifications (PTMs) serve as molecular switches for regulating protein folding, function, and interactome and have been implicated in the misfolding and amyloid formation by several proteins linked to neurodegenerative diseases, including Alzheimer's and Parkinson's disease. Understanding the role of individual PTMs in protein misfolding and aggregation requires the preparation of site-specifically modified proteins, as well as the identification of the enzymes involved in regulating these PTMs. Recently, our group has pioneered the development of enzymatic, synthetic, and semisynthetic strategies that allow site-specific introduction of PTMs at single or multiple sites and generation of modified proteins in milligram quantities. In this chapter, we provide detailed description of enzymatic and semisynthetic strategies for the generation of the phosphorylated α-Synuclein (α-Syn) at S129, (pS129), which has been identified as a pathological hallmark of Parkinson's disease. The semisynthetic method described for generation of α-Syn-pS129 requires expertise with protein chemical ligation, but can be used to incorporate other PTMs (single or multiple) within the α-Syn C-terminus if desired. On the other hand, the in vitro kinase-mediated phosphorylation strategy does not require any special setup and is rather easy to apply, but its application is restricted to the generation of α-Syn_pS129. These methods have the potential to increase the availability of pure and homogenous modified α-Syn reagents, which may be used as standards in numerous applications, including the search for potential biomarkers of synucleinopathies. PMID:26453202

  20. Enzymatic pathways in the pathogenesis of hereditary angioedema: the role of C1 inhibitor therapy.

    PubMed

    Kaplan, Allen P

    2010-11-01

    A functional abnormality of C1 inhibitor (C1INH) is present in types I and II hereditary angioedema (HAE), and normal C1INH may be rendered ineffective in the newly described type III HAE. C1INH inhibits factor XIIa, factor XII fragment (XIIf), kallikrein, and plasmin. Thus, in its absence, there is marked activation of the bradykinin-forming cascade resulting in severe angioedema. Factor XII may autoactivate on binding to endothelial cell surface gC1qR (receptor for the globular heads of C1q) thus initiating the cascade. Alternatively, stimuli that activate endothelial cells may liberate (or express at the cell surface) heat shock protein 90 or the enzyme prolylcarboxypeptidase, either of which can interact with the prekallikrein-high-molecular-weight kininogen complex to convert prekallikrein to kallikrein stoichiometrically. The kallikrein produced can cleave high-molecular-weight kininogen to produce bradykinin and also recruit factor XII by enzymatically activating it. Patients with type I or II HAE have mutant C1INH so that control of C1 activation is lost. Autoactivation of C1r in the absence of C1INH leads to C1s activation followed by C4 cleavage and depletion. An attack of swelling is accompanied by conversion of factor XIIa to factor XIIf and further enzymatic activation of C1r so that C4 levels drop further and C2 is depleted. New therapies for HAE focus on the bradykinin-forming cascade and include a kallikrein inhibitor and a bradykinin B-2 receptor antagonist in addition to administration of purified C1INH. PMID:20889195

  1. Enhancing cellular uptake of activable cell-penetrating peptide-doxorubicin conjugate by enzymatic cleavage.

    PubMed

    Shi, Nian-Qiu; Gao, Wei; Xiang, Bai; Qi, Xian-Rong

    2012-01-01

    The use of activable cell-penetrating peptides (ACPPs) as molecular imaging probes is a promising new approach for the visualization of enzymes. The cell-penetrating function of a polycationic cell-penetrating peptide (CPP) is efficiently blocked by intramolecular electrostatic interactions with a polyanionic peptide. Proteolysis of a proteinase-sensitive substrate present between the CPP and polyanionic peptide affords dissociation of both domains and enables the activated CPP to enter cells. This ACPP strategy could also be used to modify antitumor agents for tumor-targeting therapy. Here, we aimed to develop a conjugate of ACPP with antitumor drug doxorubicin (DOX) sensitive to matrix metalloproteinase-2 and -9 (MMP-2/9) for tumor-targeting therapy purposes. The ACPP-DOX conjugate was successfully synthesized. Enzymatic cleavage of ACPP-DOX conjugate by matrix metalloproteinase (MMP)-2/9 indicated that the activation of ACPP-DOX occurred in an enzyme concentration-dependent manner. Flow cytometry and laser confocal microscope studies revealed that the cellular uptake of ACPP-DOX was enhanced after enzymatic-triggered activation and was higher in HT-1080 cells (overexpressed MMPs) than in MCF-7 cells (under-expressed MMPs). The antiproliferative assay showed that ACPP had little toxicity and that ACPP-DOX effectively inhibited HT-1080 cell proliferation. These experiments revealed that the ACPP-DOX conjugate could be triggered by MMP-2/9, which enabled the activated CPP-DOX to enter cells. ACPP-DOX conjugate may be a potential prodrug delivery system used to carry antitumor drugs for MMP-related tumor therapy. PMID:22619516

  2. Divergence in Enzymatic Activities in the Soybean GST Supergene Family Provides New Insight into the Evolutionary Dynamics of Whole-Genome Duplicates

    PubMed Central

    Liu, Hai-Jing; Tang, Zhen-Xin; Han, Xue-Min; Yang, Zhi-Ling; Zhang, Fu-Min; Yang, Hai-Ling; Liu, Yan-Jing; Zeng, Qing-Yin

    2015-01-01

    Whole-genome duplication (WGD), or polyploidy, is a major force in plant genome evolution. A duplicate of all genes is present in the genome immediately following a WGD event. However, the evolutionary mechanisms responsible for the loss of, or retention and subsequent functional divergence of polyploidy-derived duplicates remain largely unknown. In this study we reconstructed the evolutionary history of the glutathione S-transferase (GST) gene family from the soybean genome, and identified 72 GST duplicated gene pairs formed by a recent Glycine-specific WGD event occurring approximately 13 Ma. We found that 72% of duplicated GST gene pairs experienced gene losses or pseudogenization, whereas 28% of GST gene pairs have been retained in the soybean genome. The GST pseudogenes were under relaxed selective constraints, whereas functional GSTs were subject to strong purifying selection. Plant GST genes play important roles in stress tolerance and detoxification metabolism. By examining the gene expression responses to abiotic stresses and enzymatic properties of the ancestral and current proteins, we found that polyploidy-derived GST duplicates show the divergence in enzymatic activities. Through site-directed mutagenesis of ancestral proteins, this study revealed that nonsynonymous substitutions of key amino acid sites play an important role in the divergence of enzymatic functions of polyploidy-derived GST duplicates. These findings provide new insights into the evolutionary and functional dynamics of polyploidy-derived duplicate genes. PMID:26219583

  3. Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: current state of the art.

    PubMed

    Oberbauer, Eleni; Steffenhagen, Carolin; Wurzer, Christoph; Gabriel, Christian; Redl, Heinz; Wolbank, Susanne

    2015-01-01

    In the past decade, adipose tissue became a highly interesting source of adult stem cells for plastic surgery and regenerative medicine. The isolated stromal vascular fraction (SVF) is a heterogeneous cell population including the adipose-derived stromal/stem cells (ASC), which showed regenerative potential in several clinical studies and trials. SVF should be provided in a safe and reproducible manner in accordance with current good manufacturing practices (cGMP). To ensure highest possible safety for patients, a precisely defined procedure with a high-quality control is required. Hence, an increasing number of adipose tissue-derived cell isolation systems have been developed. These systems aim for a closed, sterile, and safe isolation process limiting donor variations, risk for contaminations, and unpredictability of the cell material. To isolate SVF from adipose tissue, enzymes such as collagenase are used. Alternatively, in order to avoid enzymes, isolation systems using physical forces are available. Here, we provide an overview of known existing enzymatic and non-enzymatic adipose tissue-derived cell isolation systems, which are patented, published, or already on the market. PMID:26435835

  4. Alkaline-sulfite pretreatment and use of surfactants during enzymatic hydrolysis to enhance ethanol production from sugarcane bagasse.

    PubMed

    Mesquita, Jéssica Faria; Ferraz, André; Aguiar, André

    2016-03-01

    Sugarcane bagasse is a by-product from the sugar and ethanol industry which contains approximately 70 % of its dry mass composed by polysaccharides. To convert these polysaccharides into fuel ethanol it is necessary a pretreatment step to increase the enzymatic digestibility of the recalcitrant raw material. In this work, sugarcane bagasse was pretreated by an alkaline-sulfite chemithermomechanical process for increasing its enzymatic digestibility. Na2SO3 and NaOH ratios were fixed at 2:1, and three increasing chemical loads, varying from 4 to 8 % m/m Na2SO3, were used to prepare the pretreated materials. The increase in the alkaline-sulfite load decreased the lignin content in the pretreated material up to 35.5 % at the highest chemical load. The pretreated samples presented enhanced glucose yields during enzymatic hydrolysis as a function of the pretreatment severity. The maximum glucose yield (64 %) was observed for the samples pretreated with the highest chemical load. The use of 2.5 g l(-1) Tween 20 in the hydrolysis step further increased the glucose yield to 75 %. Semi-simultaneous hydrolysis and fermentation of the pretreated materials indicated that the ethanol yield was also enhanced as a function of the pretreatment severity. The maximum ethanol yield was 56 ± 2 % for the sample pretreated with the highest chemical load. For the sample pretreated with the lowest chemical load (2 % m/m NaOH and 4 % m/m Na2SO3), adding Tween 20 during the hydrolysis process increased the ethanol yield from 25 ± 3 to 39.5 ± 1 %. PMID:26718203

  5. Enzymatic corn wet milling: engineering process and cost model

    PubMed Central

    Ramírez, Edna C; Johnston, David B; McAloon, Andrew J; Singh, Vijay

    2009-01-01

    Background Enzymatic corn wet milling (E-milling) is a process derived from conventional wet milling for the recovery and purification of starch and co-products using proteases to eliminate the need for sulfites and decrease the steeping time. In 2006, the total starch production in USA by conventional wet milling equaled 23 billion kilograms, including modified starches and starches used for sweeteners and ethanol production [1]. Process engineering and cost models for an E-milling process have been developed for a processing plant with a capacity of 2.54 million kg of corn per day (100,000 bu/day). These models are based on the previously published models for a traditional wet milling plant with the same capacity. The E-milling process includes grain cleaning, pretreatment, enzymatic treatment, germ separation and recovery, fiber separation and recovery, gluten separation and recovery and starch separation. Information for the development of the conventional models was obtained from a variety of technical sources including commercial wet milling companies, industry experts and equipment suppliers. Additional information for the present models was obtained from our own experience with the development of the E-milling process and trials in the laboratory and at the pilot plant scale. The models were developed using process and cost simulation software (SuperPro Designer®) and include processing information such as composition and flow rates of the various process streams, descriptions of the various unit operations and detailed breakdowns of the operating and capital cost of the facility. Results Based on the information from the model, we can estimate the cost of production per kilogram of starch using the input prices for corn, enzyme and other wet milling co-products. The work presented here describes the E-milling process and compares the process, the operation and costs with the conventional process. Conclusion The E-milling process was found to be cost

  6. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis

    SciTech Connect

    Zhao, Hua; Jones, Cecil L; Baker, Gary A; Xia, Shuqian; Olubajo, Olarongbe; Person, Vernecia

    2009-01-01

    The efficient conversion of lignocellulosic materials into fuel ethanol has become a research priority in producing affordable and renewable energy. The pretreatment of lignocelluloses is known to be key to the fast enzymatic hydrolysis of cellulose. Recently, certain ionic liquids (ILs)were found capable of dissolving more than 10 wt% cellulose. Preliminary investigations [Dadi, A.P., Varanasi, S., Schall, C.A., 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904 910; Liu, L., Chen, H., 2006. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin. Sci. Bull. 51, 2432 2436; Dadi, A.P., Schall, C.A., Varanasi, S., 2007. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl. Biochem. Biotechnol. 137 140, 407 421] suggest that celluloses regenerated from IL solutions are subject to faster saccharification than untreated substrates. These encouraging results offer the possibility of using ILs as alternative and nonvolatile solvents for cellulose pretreatment. However, these studies are limited to two chloride-based ILs: (a) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), which is a corrosive, toxic and extremely hygroscopic solid (m.p. 70 C), and (b) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl), which is viscous and has a reactive side-chain. Therefore, more in-depth research involving other ILs is much needed to explore this promising pretreatment route. For this reason, we studied a number of chloride- and acetate-based ILs for cellulose regeneration, including several ILs newly developed in our laboratory. This will enable us to select inexpensive, efficient and environmentally benign solvents for processing cellulosic biomass. Our data confirm that all regenerated celluloses are less crystalline (58 75% lower) and more accessible to cellulase (>2 times) than untreated substrates. As a result, regenerated Avicel

  7. Nano-Gold Corking and Enzymatic Uncorking of Carbon Nanotube Cups

    PubMed Central

    2015-01-01

    Because of their unique stacked, cup-shaped, hollow compartments, nitrogen-doped carbon nanotube cups (NCNCs) have promising potential as nanoscale containers. Individual NCNCs are isolated from their stacked structure through acid oxidation and subsequent probe-tip sonication. The NCNCs are then effectively corked with gold nanoparticles (GNPs) by sodium citrate reduction with chloroauric acid, forming graphitic nanocapsules with significant surface-enhanced Raman signature. Mechanistically, the growth of the GNP corks starts from the nucleation and welding of gold seeds on the open rims of NCNCs enriched with nitrogen functionalities, as confirmed by density functional theory calculations. A potent oxidizing enzyme of neutrophils, myeloperoxidase (MPO), can effectively open the corked NCNCs through GNP detachment, with subsequent complete enzymatic degradation of the graphitic shells. This controlled opening and degradation was further carried out in vitro with human neutrophils. Furthermore, the GNP-corked NCNCs were demonstrated to function as novel drug delivery carriers, capable of effective (i) delivery of paclitaxel to tumor-associated myeloid-derived suppressor cells (MDSC), (ii) MPO-regulated release, and (iii) blockade of MDSC immunosuppressive potential. PMID:25530234

  8. Free-standing and flexible graphene papers as disposable non-enzymatic electrochemical sensors.

    PubMed

    Zhang, Minwei; Halder, Arnab; Hou, Chengyi; Ulstrup, Jens; Chi, Qijin

    2016-06-01

    We have explored AuNPs (13nm) both as a catalyst and as a core for synthesizing water-dispersible and highly stable core-shell structural gold@Prussian blue (Au@PB) nanoparticles (NPs). Systematic characterization by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) disclosed AuNPs coated uniformly by a 5nm thick PB layer. Au@PB NPs were attached to single-layer graphene oxide (GO) to form Au@PB decorated GO sheets. The resulting hybrid material was filtered layer-by-layer into flexible and free-standing GO paper, which was further converted into conductive reduced GO (RGO)/Au@PB paper via hydrazine vapour reduction. High-resolution TEM images suggested that RGO papers are multiply sandwich-like structures functionalized with core-shell NPs. Resulting sandwich functionalized graphene papers have high conductivity, sufficient flexibility, and robust mechanical strength, which can be cut into free-standing electrodes. Such electrodes, used as non-enzymatic electrochemical sensors, were tested systematically for electrocatalytic sensing of hydrogen peroxide. The high performance was indicated by some of the key parameters, for example the linear H2O2 concentration response range (1-30μM), the detection limit (100nM), and the high amperometric sensitivity (5Acm(-2)M(-1)). With the advantages of low cost and scalable production capacity, such graphene supported functional papers are of particular interest in the use as flexible disposable sensors. PMID:26916736

  9. Enzymatic Process for High-Yield Turanose Production and Its Potential Property as an Adipogenesis Regulator.

    PubMed

    Park, Min-Oh; Lee, Byung-Hoo; Lim, Eunjin; Lim, Ji Ye; Kim, Yuri; Park, Cheon-Seok; Lee, Hyeon Gyu; Kang, Hee-Kwon; Yoo, Sang-Ho

    2016-06-15

    Turanose is a sucrose isomer naturally existing in honey and a promising functional sweetener due to its low glycemic response. In this study, the extrinsic fructose effect on turanose productivity was examined in Neisseria amylosucrase reaction. Turanose was produced, by increasing the amount of extrinsic fructose as a reaction modulator, with high concentration of sucrose substrate, which resulted in 73.7% of production yield. In physiological functionality test, lipid accumulation in 3T3-L1 preadipocytes in the presence of high amounts of pure glucose was attenuated by turanose substitution in a dose-dependent manner. Turanose treatments at concentrations representing 50%, 75%, and 100% of total glucose concentration in cell media significantly reduced lipid accumulation by 18%, 35%, and 72%, respectively, as compared to controls. This result suggested that turanose had a positive role in controlling adipogenesis, and enzymatic process of turanose production has a potential to develop a functional food ingredient for controlling obesity and related chronic diseases. PMID:27253611

  10. Nano-gold corking and enzymatic uncorking of carbon nanotube cups

    DOE PAGESBeta

    Zhao, Yong; Burkert, Seth C.; Tang, Yifan; Sorescu, Dan C.; Kapralov, Alexandr A.; Shurin, Galina V.; Shurin, Michael R.; Kagan, Valerian E.; Star, Alexander

    2014-12-21

    Because of their unique stacked, cup-shaped, hollow compartments, nitrogen-doped carbon nanotube cups (NCNCs) have promising potential as nanoscale containers. Individual NCNCs are isolated from their stacked structure through acid oxidation and subsequent probe-tip sonication. The NCNCs are then effectively corked with gold nanoparticles (GNPs) by sodium citrate reduction with chloroauric acid, forming graphitic nanocapsules with significant surface-enhanced Raman signature. Mechanistically, the growth of the GNP corks starts from the nucleation and welding of gold seeds on the open rims of NCNCs enriched with nitrogen functionalities, as confirmed by density functional theory calculations. A potent oxidizing enzyme of neutrophils, myeloperoxidase (MPO),more » can effectively open the corked NCNCs through GNP detachment, with subsequent complete enzymatic degradation of the graphitic shells. Lastly, this controlled opening and degradation was further carried out in vitro with human neutrophils. In addition, the GNP-corked NCNCs were demonstrated to function as novel drug delivery carriers, capable of effective (i) delivery of paclitaxel to tumor-associated myeloid-derived suppressor cells (MDSC), (ii) MPO-regulated release, and (iii) blockade of MDSC immunosuppressive potential.« less

  11. Nano-gold corking and enzymatic uncorking of carbon nanotube cups

    SciTech Connect

    Zhao, Yong; Burkert, Seth C.; Tang, Yifan; Sorescu, Dan C.; Kapralov, Alexandr A.; Shurin, Galina V.; Shurin, Michael R.; Kagan, Valerian E.; Star, Alexander

    2014-12-21

    Because of their unique stacked, cup-shaped, hollow compartments, nitrogen-doped carbon nanotube cups (NCNCs) have promising potential as nanoscale containers. Individual NCNCs are isolated from their stacked structure through acid oxidation and subsequent probe-tip sonication. The NCNCs are then effectively corked with gold nanoparticles (GNPs) by sodium citrate reduction with chloroauric acid, forming graphitic nanocapsules with significant surface-enhanced Raman signature. Mechanistically, the growth of the GNP corks starts from the nucleation and welding of gold seeds on the open rims of NCNCs enriched with nitrogen functionalities, as confirmed by density functional theory calculations. A potent oxidizing enzyme of neutrophils, myeloperoxidase (MPO), can effectively open the corked NCNCs through GNP detachment, with subsequent complete enzymatic degradation of the graphitic shells. Lastly, this controlled opening and degradation was further carried out in vitro with human neutrophils. In addition, the GNP-corked NCNCs were demonstrated to function as novel drug delivery carriers, capable of effective (i) delivery of paclitaxel to tumor-associated myeloid-derived suppressor cells (MDSC), (ii) MPO-regulated release, and (iii) blockade of MDSC immunosuppressive potential.

  12. Nano-gold corking and enzymatic uncorking of carbon nanotube cups.

    PubMed

    Zhao, Yong; Burkert, Seth C; Tang, Yifan; Sorescu, Dan C; Kapralov, Alexandr A; Shurin, Galina V; Shurin, Michael R; Kagan, Valerian E; Star, Alexander

    2015-01-21

    Because of their unique stacked, cup-shaped, hollow compartments, nitrogen-doped carbon nanotube cups (NCNCs) have promising potential as nanoscale containers. Individual NCNCs are isolated from their stacked structure through acid oxidation and subsequent probe-tip sonication. The NCNCs are then effectively corked with gold nanoparticles (GNPs) by sodium citrate reduction with chloroauric acid, forming graphitic nanocapsules with significant surface-enhanced Raman signature. Mechanistically, the growth of the GNP corks starts from the nucleation and welding of gold seeds on the open rims of NCNCs enriched with nitrogen functionalities, as confirmed by density functional theory calculations. A potent oxidizing enzyme of neutrophils, myeloperoxidase (MPO), can effectively open the corked NCNCs through GNP detachment, with subsequent complete enzymatic degradation of the graphitic shells. This controlled opening and degradation was further carried out in vitro with human neutrophils. Furthermore, the GNP-corked NCNCs were demonstrated to function as novel drug delivery carriers, capable of effective (i) delivery of paclitaxel to tumor-associated myeloid-derived suppressor cells (MDSC), (ii) MPO-regulated release, and (iii) blockade of MDSC immunosuppressive potential. PMID:25530234

  13. Enzymatic Resolution and Separation of Secondary Alcohols Based on Fatty Esters as Acylating Agents

    ERIC Educational Resources Information Center

    Monteiro, Carlos M.; Afonso, Carlos A. M.; Lourenco, Nuno M. T.

    2010-01-01

    The enzymatic resolution of "rac"-1-phenylethanol using ethyl myristate as acylating agent and solvent and "Candida antarctica" lipase B (CAL-B) as biocatalyst was demonstrated with catalyst and medium reuse. Both enantiomers of 1-phenylethanol were isolated by sequential enzymatic reactions and product distillations. From the first enzymatic…

  14. Enzymatic hydrolysis and characterization of waste lignocellulosic biomass produced after dye bioremediation under solid state fermentation.

    PubMed

    Waghmare, Pankajkumar R; Kadam, Avinash A; Saratale, Ganesh D; Govindwar, Sanjay P

    2014-09-01

    Sugarcane bagasse (SCB) adsorbes 60% Reactive Blue172 (RB172). Providensia staurti EbtSPG able to decolorize SCB adsorbed RB172 up to 99% under solid state fermentation (SSF). The enzymatic saccharification efficiency of waste biomass after bioremediation of RB172 process (ddSCB) has been evaluated. The cellulolyitc crude enzyme produced by Phanerochaete chrysosporium used for enzymatic hydrolysis of native SCB and ddSCB which produces 0.08 and 0.3 g/L of reducing sugars respectively after 48 h of incubation. The production of hexose and pentose sugars during hydrolysis was confirmed by HPTLC. The effect of enzymatic hydrolysis on SCB and ddSCB has been evaluated by FTIR, XRD and SEM analysis. Thus, during dye biodegradation under SSF causes biological pretreatment of SCB which significantly enhanced its enzymatic saccharification. Adsorption of dye on SCB, its bioremediation under SSF produces wastes biomass and which further utilized for enzymatic saccharification for biofuel production. PMID:24656486

  15. Mechanistic investigation in ultrasound induced enhancement of enzymatic hydrolysis of invasive biomass species.

    PubMed

    Borah, Arup Jyoti; Agarwal, Mayank; Poudyal, Manisha; Goyal, Arun; Moholkar, Vijayanand S

    2016-08-01

    This study has assessed four invasive weeds, viz. Saccharum spontaneum (SS), Mikania micrantha (MM), Lantana camara (LC) and Eichhornia crassipes (EC) for enzymatic hydrolysis prior to bioalcohol fermentation. Enzymatic hydrolysis of pretreated biomasses of weeds has been conducted with mechanical agitation and sonication under constant (non-optimum) conditions. Profiles of total reducible sugar release have been fitted to HCH-1 model of enzymatic hydrolysis using Genetic Algorithm. Trends in parameters of this model reveal physical mechanism of ultrasound-induced enhancement of enzymatic hydrolysis. Sonication accelerates hydrolysis kinetics by ∼10-fold. This effect is contributed by several causes, attributed to intense micro-convection generated during sonication: (1) increase in reaction velocity, (2) increase in enzyme-substrate affinity, (3) reduction in product inhibition, and (4) enhancement of enzyme activity due to conformational changes in its secondary structure. Enhancement effect of sonication is revealed to be independent of conditions of enzymatic hydrolysis - whether optimum or non-optimum. PMID:26898160

  16. Periodic peristalsis releasing constrained water in high solids enzymatic hydrolysis of steam exploded corn stover.

    PubMed

    Liu, Zhi-Hua; Chen, Hong-Zhang

    2016-04-01

    Periodic peristalsis was used to release water constraint and increase high solids enzymatic hydrolysis efficiency. Glucan and xylan conversion in periodic peristalsis enzymatic hydrolysis (PPEH) at 21% solid loading increased by 5.2-6.4% and 6.8-8.8% compared with that in incubator shaker enzymatic hydrolysis (ISEH), respectively. Hydrolysis kinetics suggested that sugars conversion significantly increased within 24h in PPEH compared with ISEH. The peak height of main water pool increased by 7.7-43.1% within 24h in PPEH compared with ISEH. The increases in peak height of main water pool were consistent with the increases in glucan conversion. Submicroscopic particulates and macro granule residues contributed greatly to water constraint compared with glucose, xylose, ethanol, and Tween 80. Smaller particle size and longer residence time resulted in lower water constraint and facilitated the enzymatic hydrolysis performance. Periodic peristalsis was an effective method to reduce water constraint and increase high solids enzymatic hydrolysis efficiency. PMID:26826953

  17. Effects of fibrillation on the wood fibers' enzymatic hydrolysis enhanced by mechanical refining.

    PubMed

    Liu, Wei; Wang, Bing; Hou, Qingxi; Chen, Wei; Wu, Ming

    2016-04-01

    The hardwood bleached kraft pulp (HBKP) fibers were pretreated by PFI mill to obtain the substrates, the effects of fibrillation on HBKP fibers' enzymatic hydrolysis was studied. The results showed that the enzymatic hydrolysis efficiency was enhanced obviously by mechanical refining. The mechanical refining alterated the fibers' characteristics such as fibrillation degree, specific surface area, swelling ability, crystallinity, fiber length and fines content. All these factors correlating to the enzymatic hydrolysis were evaluated through mathematical analysis. Among these factors, the fibrillation degree has the profoundest impact on the enzymatic hydrolysis of wood fibers. Consequently, the mechanical refining aiming for a high fibrillation degree was feasible to enhance the enzymatic hydrolysis of lignocellulosic biomass. PMID:26851576

  18. GroE chaperonins assisted functional expression of bacterial enzymes in Saccharomyces cerevisiae.

    PubMed

    Xia, Peng-Fei; Zhang, Guo-Chang; Liu, Jing-Jing; Kwak, Suryang; Tsai, Ching-Sung; Kong, In Iok; Sung, Bong Hyun; Sohn, Jung-Hoon; Wang, Shu-Guang; Jin, Yong-Su

    2016-10-01

    Rapid advances in the capabilities of reading and writing DNA along with increasing understanding of microbial metabolism at the systems-level have paved an incredible path for metabolic engineering. Despite these advances, post-translational tools facilitating functional expression of heterologous enzymes in model hosts have not been developed well. Some bacterial enzymes, such as Escherichia coli xylose isomerase (XI) and arabinose isomerase (AI) which are essential for utilizing cellulosic sugars, cannot be functionally expressed in Saccharomyces cerevisiae. We hypothesized and demonstrated that the mismatching of the HSP60 chaperone systems between bacterial and eukaryotic cells might be the reason these bacterial enzymes cannot be functionally expressed in yeast. The results showed that the co-expression of E. coli GroE can facilitate the functional expression of E. coli XI and AI, as well as the Agrobacterium tumefaciens D-psicose epimerase in S. cerevisiae. The co-expression of bacterial chaperonins in S. cerevisiae is a promising post-translational strategy for the functional expression of bacterial enzymes in yeast. Biotechnol. Bioeng. 2016;113: 2149-2155. © 2016 Wiley Periodicals, Inc. PMID:27003667

  19. Anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue in lipopolysaccharide-stimulated RAW 264.7 macrophages and in vivo zebrafish model

    PubMed Central

    Ko, Seok-Chun

    2015-01-01

    BACKGROUND/OBJECTIVES In this study, potential anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue was assessed via nitric oxide (NO) production in lipopolysaccahride (LPS) induced RAW 264.7 macrophages and in vivo zebrafish model. MATERIALS/METHODS We investigated the ability of enzymatic hydrolysates from Styela clava flesh tissue to inhibit LPS-induced expression of pro-inflammatory mediators in RAW 264.7 macrophages, and the molecular mechanism through which this inhibition occurred. In addition, we evaluated anti-inflammatory effect of enzymatic hydrolysates against a LPS-exposed in in vivo zebrafish model. RESULTS Among the enzymatic hydrolysates, Protamex-proteolytic hydrolysate exhibited the highest NO inhibitory effect and was fractionated into three ranges of molecular weight by using ultrafiltration (UF) membranes (MWCO 5 kDa and 10 kDa). The above 10 kDa fraction down-regulated LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), thereby reducing production of NO and prostaglandin E2 (PGE2) in LPS-activated RAW 264.7 macrophages. The above 10 kDa fraction suppressed LPS-induced production of pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. In addition, the above 10 kDa fraction inhibited LPS-induced phosphorylation of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK), and p38. Furthermore, NO production in live zebrafish induced by LPS was reduced by addition of the above 10 kDa fraction from S. clava enzymatic hydrolysate. CONCLUSION The results of this study suggested that hydrolysates derived from S. clava flesh tissue would be new anti-inflammation materials in functional resources. PMID:26060532

  20. Optimization of enzymatic clarification of sapodilla juice: a statistical perspective.

    PubMed

    Jacob, Nicemol; Sukumaran, R K; Prema, P

    2008-12-01

    Response surface methodology (RSM) was employed to establish optimum conditions for enzymatic clarification of sapodilla juice. Polygalacturonase obtained from Streptomyces lydicus had been purified to homogeneity and was used for the treatment. The independent variables were temperature (30-45 degrees C), enzyme concentration (0.5-1.5 U), and treatment time (30-90 min), whose effects on viscosity and clarity of the juice were evaluated using a Box-Behnken design. Significant regression models describing the changes of viscosity and clarity with respect to the independent variables were obtained, with the coefficient of determination, R (2) , greater than 0.8. Based on response surfaces and contour plots, the optimum conditions for clarifying sapodilla juice were enzyme concentration 1.15 U, incubation temperature 34 degrees C, and incubation time 70 min. PMID:18670739