Science.gov

Sample records for epitafial oxides progress

  1. Multi-component transparent conducting oxides: progress in materials modelling

    NASA Astrophysics Data System (ADS)

    Walsh, Aron; Da Silva, Juarez L. F.; Wei, Su-Huai

    2011-08-01

    Transparent conducting oxides (TCOs) play an essential role in modern optoelectronic devices through their combination of electrical conductivity and optical transparency. We review recent progress in our understanding of multi-component TCOs formed from solid solutions of ZnO, In2O3, Ga2O3 and Al2O3, with a particular emphasis on the contributions of materials modelling, primarily based on density functional theory. In particular, we highlight three major results from our work: (i) the fundamental principles governing the crystal structures of multi-component oxide structures including (In2O3)(ZnO)n and (In2O3)m(Ga2O3)l(ZnO)n; (ii) the relationship between elemental composition and optical and electrical behaviour, including valence band alignments; (iii) the high performance of amorphous oxide semiconductors. On the basis of these advances, the challenge of the rational design of novel electroceramic materials is discussed.

  2. Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere.

    PubMed

    Pogge von Strandmann, Philip A E; Stüeken, Eva E; Elliott, Tim; Poulton, Simon W; Dehler, Carol M; Canfield, Don E; Catling, David C

    2015-01-01

    Neoproterozoic (1,000-542 Myr ago) Earth experienced profound environmental change, including 'snowball' glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ(82/76)Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ(82/76)Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ(82/76)Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution. PMID:26679529

  3. Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere

    NASA Astrophysics Data System (ADS)

    Pogge von Strandmann, Philip A. E.; Stüeken, Eva E.; Elliott, Tim; Poulton, Simon W.; Dehler, Carol M.; Canfield, Don E.; Catling, David C.

    2015-12-01

    Neoproterozoic (1,000-542 Myr ago) Earth experienced profound environmental change, including `snowball' glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ82/76Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ82/76Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ82/76Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution.

  4. Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere

    PubMed Central

    Pogge von Strandmann, Philip A. E.; Stüeken, Eva E.; Elliott, Tim; Poulton, Simon W.; Dehler, Carol M.; Canfield, Don E.; Catling, David C.

    2015-01-01

    Neoproterozoic (1,000–542 Myr ago) Earth experienced profound environmental change, including ‘snowball' glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ82/76Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ82/76Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ82/76Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution. PMID:26679529

  5. Neurotrophins, cytokines, oxidative parameters and funcionality in Progressive Muscular Dystrophies.

    PubMed

    Comim, Clarissa M; Mathia, Gisiane B; Hoepers, Andreza; Tuon, Lisiane; Kapczinski, Flávio; Dal-Pizzol, Felipe; Quevedo, João; Rosa, Maria I

    2015-09-01

    We investigated the levels of brain derived-neurotrophic factor (BDNF), cytokines and oxidative parameters in serum and tried to correlate them with the age and functionality of patients with Progressive Muscle Dystrophies (PMD). The patients were separated into six groups (case and controls pared by age and gender), as follows: Duchenne Muscular Dystrophy (DMD); Steinert Myotonic Dystrophy (SMD); and Limb-girdle Muscular Dystrophy type-2A (LGMD2A). DMD patients (± 17.9 years old) had a decrease of functionality, an increase in the IL-1β and TNF-α levels and a decrease of IL-10 levels and superoxide dismutase activity in serum. SMD patients (± 25.8 years old) had a decrease of BDNF and IL-10 levels and superoxide dismutase activity and an increase of IL-1β levels in serum. LGMD2A patients (± 27.7 years old) had an decrease only in serum levels of IL-10. This research showed the first evidence of BDNF involvement in the SMD patients and a possible unbalance between pro-inflammatory and anti-inflammatory cytokine levels, along with decreased superoxide dismutase activity in serum of DMD and SMD patients. PMID:25910175

  6. [Research progress in microbial methane oxidation coupled to denitrification].

    PubMed

    Zhu, Jing; Yuan, Meng-Dong; Liu, Jing-Jing; Huang, Xiao-Xiao; Wu, Wei-Xiang

    2013-12-01

    Methane oxidation coupled to denitrification is an essential bond to connect carbon- and nitrogen cycling. To deeply research this process will improve our understanding on the biochemical cycling of global carbon and nitrogen. As an exogenous gaseous carbon source of denitrification, methane can both regulate the balance of atmospheric methane to effectively mitigate the greenhouse effect caused by methane, and reduce the cost of exogenous carbon source input in traditional wastewater denitrification treatment process. As a result, great attention has being paid to the mechanical study of the process. This paper mainly discussed the two types of methane oxidation coupled to denitrification, i. e., aerobic methane oxidation coupled to denitrification (AME-D) and anaerobic methane oxidation coupled to denitrification (ANME-D), with the focus on the microbiological coupling mechanisms and related affecting factors. The existing problems in the engineering application of methane oxidation coupled to denitrification were pointed out, and the application prospects were approached. PMID:24697087

  7. Enzymes of respiratory iron oxidation. Progress report, March 1990--November 1991

    SciTech Connect

    Blake, R. II

    1991-12-31

    This report focuses on the progress made in three areas of research concerned with enzymes involved in respiratory iron oxidation. The three areas are as follows: development of an improved procedure for the routine large scale culture of iron oxidizing chemolithotrophs based on the in-situ electrolysis of the soluble iron in the growth medium; to perform iron oxidation kinetic studies on whole cells using the oxygen electrode; and to identify, separate, purify, and characterize the individual cellular components.

  8. The Role of Nitric Oxide Synthase Uncoupling in Tumor Progression

    PubMed Central

    Rabender, Christopher S.; Alam, Asim; Sundaresan, Gobalakrishnan; Cardnell, Robert J.; Yakovlev, Vasily A.; Mukhopadhyay, Nitai D.; Graves, Paul; Zweit, Jamal; Mikkelsen, Ross B.

    2015-01-01

    Here evidence suggests that nitric oxide synthases (NOS) of tumor cells, in contrast to normal tissues, synthesize predominantly superoxide and peroxynitrite. Based on HPLC analysis, the underlying mechanism for this uncoupling is a reduced tetrahydrobiopterin: dihydrobiopterin ratio (BH4:BH2) found in breast, colorectal, epidermoid and head and neck tumors compared to normal tissues. Increasing BH4:BH2 and reconstitution of coupled NOS activity in breast cancer cells with the BH4 salvage pathway precursor, sepiapterin, causes significant shifts in downstream signaling including increased cGMP-dependent protein kinase (PKG) activity, decreased β-catenin expression and TCF4 promoter activity, and reduced NF-κB promoter activity. Sepiapterin inhibited breast tumor cell growth in vitro and in vivo as measured by clonogenic assay, Ki67 staining and 18F-deoxyglucose positron emission tomography (FDG-PET). In summary, using diverse tumor types, it is demonstrated that the BH4:BH2 ratio is lower in tumor tissues and as a consequence nitric oxide synthase activity generates more peroxynitrite and superoxide anion than nitric oxide resulting in important tumor growth promoting and anti-apoptotic signaling properties. Implications The synthetic BH4, Kuvan®, is used to elevate BH4:BH2 in some phenylketonuria patients and to treat diseases associated with endothelial dysfunction suggesting a novel, testable approach for correcting an abnormality of tumor metabolism to control tumor growth. PMID:25724429

  9. Astaxanthin blocks preeclampsia progression by suppressing oxidative stress and inflammation.

    PubMed

    Xuan, Rong-Rong; Niu, Ting-Ting; Chen, Hai-Min

    2016-09-01

    To investigate the antioxidative effect of astaxanthin on Nω-nitro-L-arginine methyl ester (L-NAME)-induced preeclamptic rats. Cell survival, the level of reactive oxygen species (ROS) and the changes in mitochondrial membrane potential (MMP) were examined in astaxanthin and H2O2-treated human umbilical vein endothelial cells (HUVECs). The preeclamptic Sprague-Dawley (SD) rat model was established by injection of L‑NAME and treatment with astaxanthin. The activities of malondialdehyde (MDA), superoxide dismutase (SOD) and nitric oxide synthase (NOS) in serum were analyzed. Pathological changes were examined by hematoxylin and eosin (H&E) staining. The expression of nuclear factor (NF)‑κB, Rho‑associated protein kinase II (ROCK II), heme oxygenase‑1 (HO‑1) and caspase 3 in preeclamptic placentas were examined by immunohistochemistry. Astaxanthin significantly reduced H2O2‑induced HUVEC cell death, decreased ROS and increased MMP. Astaxanthin significantly reduced blood pressure and the content of MDA, but significantly increased the activity of SOD in preeclamptic rats. The urinary protein and the level of NO and NOS were also decreased. H&E staining revealed that the thickness of the basilar membrane was increased, while the content of trophoblast cells and spiral arteries were reduced following astaxanthin treatment. Immunohistochemistry results showed that the expression of NF‑κB, ROCK II and caspase 3 in preeclamptic placentas was significantly decreased after astaxanthin treatment, while HO‑1 expression was increased. In conclusion, astaxanthin inhibited H2O2‑induced oxidative stress in HUVECs. Astaxanthin treatment significantly improved L‑NAME‑induced preeclamptic symptoms and reduced the oxidative stress and inflammatory damages in preeclamptic placentas. Astaxanthin treatment may effectively prevent and treat preeclampsia. PMID:27484589

  10. Enzymes of respiratory iron oxidation. Progress report, March 1990--June 1992

    SciTech Connect

    Blake, R. II

    1992-12-31

    This report describes experimental progress in characterizing and identifying redox proteins in a number of iron-oxidizing bacteria. Sections of the paper are entitled (1) In Situ electrolysis was explored to achieve enhanced yields of iron-oxidizing bacteria, (2)Structure/function studies were performed on redox-active biomolecules from Thiobacillus ferrooxidans, (3) Novel redox-active biomolecules were demonstrated in other iron autotrophs, and (4) New probes of metalloprotein electron-transfer reactions were synthesized and characterized.

  11. Recent progress in tubular solid oxide fuel cell technology

    SciTech Connect

    Singhal, S.C.

    1997-12-31

    The tubular design of solid oxide fuel cells (SOFCs) and the materials used therein have been validated by successful, continuous electrical testing over 69,000 h of early technology cells built on a calcia-stabilized zirconia porous support tube (PST). In the latest technology cells, the PST has been eliminated and replaced by a doped lanthanum manganite air electrode tube. These air electrode supported (AES) cells have shown a power density increase of about 33% with a significantly improved performance stability over the previously used PST type cells. These cells have also demonstrated the ability to thermally cycle over 100 times without any mechanical damage or performance loss. In addition, recent changes in processes used to fabricate these cells have resulted in significant cost reduction. This paper reviews the fabrication and performance of the state-of-the-art AES tubular cells. It also describes the materials and processing studies that are underway to further reduce the cell cost, and summarizes the recently built power generation systems that employed state-of-the-art AES cells.

  12. Catalytic oxidation of hydrocarbons by dinuclear iron complexes. Progress report

    SciTech Connect

    Caradonna, J.P.

    1992-12-31

    Our efforts during the past eight months were directed towards characterizing synthetic complexes that model the electronic and reactivity properties of the active site of methane monooxygenase (MMO), a metalloenzyme found in methanotrophic bacteria responsible for the biological oxidation of methane to methanol. We have investigated the structural/electronic and reactivity properties of a series of dinuclear model complexes that can function as oxygen atom transfer catalysts. In particular, our studies focused on [Fe{sup 2+}{sub 2}(H{sub 2}Hbab){sub 2}(N-MeIm){sub 2}], its DMF solvated form, [Fe{sup 2+}{sub 2}(H{sub 2}Hbab){sub 2}(DMF){sub 2}(MeIm)], and the mixed valent species [Fe{sup 2+}Fe{sup 3+}(H{sub 2}Hbab){sub 2}(DMF){sub 4}]{sup +}, (H{sub 4}Hbab = 1,2-bis(2-hydroxybenzamido) benzene). We have also examined [Fe{sup 3+}{sub 2}(H{sub 2}Hbab){sub 2}(DMF){sub 4}]{sup 2+}, [Fe{sup 3+}{sub 2}(H{sub 2}Hbab){sub 2}(OMe){sub 2}], and {mu}-oxo-[Fe{sup 3+}{sub 2}(H{sub 2}Hbab){sub 2}(DMF){sub 2]}, which are unable to act as oxygen atom transfer catalysts.

  13. Recent progress in magnetic iron oxide-semiconductor composite nanomaterials as promising photocatalysts

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Changzhong Jiang, Affc; Roy, Vellaisamy A. L.

    2014-11-01

    Photocatalytic degradation of toxic organic pollutants is a challenging tasks in ecological and environmental protection. Recent research shows that the magnetic iron oxide-semiconductor composite photocatalytic system can effectively break through the bottleneck of single-component semiconductor oxides with low activity under visible light and the challenging recycling of the photocatalyst from the final products. With high reactivity in visible light, magnetic iron oxide-semiconductors can be exploited as an important magnetic recovery photocatalyst (MRP) with a bright future. On this regard, various composite structures, the charge-transfer mechanism and outstanding properties of magnetic iron oxide-semiconductor composite nanomaterials are sketched. The latest synthesis methods and recent progress in the photocatalytic applications of magnetic iron oxide-semiconductor composite nanomaterials are reviewed. The problems and challenges still need to be resolved and development strategies are discussed.

  14. Absence of systemic oxidative stress and increased CSF prostaglandin F2α in progressive MS

    PubMed Central

    Lam, Magda A.; Maghzal, Ghassan J.; Khademi, Mohsen; Piehl, Fredik; Ratzer, Rikke; Romme Christensen, Jeppe; Sellebjerg, Finn Thorup; Olsson, Tomas

    2016-01-01

    Objective: We aimed to investigate the role of oxidative stress in the progression of multiple sclerosis (MS). Methods: We determined by liquid chromatography–tandem mass spectrometry nonenzymatic (F2-isoprostanes) and enzymatic oxidation products of arachidonic acid (prostaglandin F2α [PGF2α]) in plasma and CSF of 45 controls (other neurologic disease [OND] with no signs of inflammation) and 62 patients with MS. Oxidation products were correlated with disease severity and validated biomarkers of inflammation (chemokine ligand 13; matrix metalloproteinase-9; osteopontin) and axonal damage (neurofilament light protein). Results: Compared with OND controls, plasma concentrations of F2-isoprostanes and PGF2α were significantly lower in patients with progressive disease, and decreased with increasing disability score (Expanded Disability Status Scale). In contrast, CSF concentrations of PGF2α, but not F2-isoprostanes, were significantly higher in patients with progressive disease than OND controls (p < 0.01). The content of PGF2α in CSF increased with disease severity (p = 0.044) and patient age (p = 0.022), although this increase could not be explained by age. CSF PGF2α decreased with natalizumab and methylprednisolone treatment and was unaffected by the use of nonsteroidal anti-inflammatory drug in secondary progressive MS. CSF PGF2α did not associate with validated CSF markers of inflammation and axonal damage that themselves did not associate with the Expanded Disability Status Scale. Conclusions: Our data suggest that MS progression is associated with low systemic oxidative activity. This may contribute to immune dysregulation with CNS inflammation accompanied by increased local cyclooxygenase-dependent lipid oxidation. PMID:27386506

  15. Protein Oxidation in Aging: Does It Play a Role in Aging Progression?

    PubMed Central

    Reeg, Sandra

    2015-01-01

    Abstract Significance: A constant accumulation of oxidized proteins takes place during aging. Oxidation of proteins leads to a partial unfolding and, therefore, to aggregation. Protein aggregates impair the activity of cellular proteolytic systems (proteasomes, lysosomes), resulting in further accumulation of oxidized proteins. In addition, the accumulation of highly crosslinked protein aggregates leads to further oxidant formation, damage to macromolecules, and, finally, to apoptotic cell death. Furthermore, protein oxidation seems to play a role in the development of various age-related diseases, for example, neurodegenerative diseases. Recent Advances: The highly oxidized lipofuscin accumulates during aging. Lipofuscin formation might cause impaired lysosomal and proteasomal degradation, metal ion accumulation, increased reactive oxygen species formation, and apoptosis. Critical Issues: It is still unclear to which extent protein oxidation is involved in the progression of aging and in the development of some age-related diseases. Future Directions: An extensive knowledge of the effects of protein oxidation on the aging process and its contribution to the development of age-related diseases could enable further strategies to reduce age-related impairments. Strategies aimed at lowering aggregate formation might be a straightforward intervention to reduce age-related malfunctions of organs. Antioxid. Redox Signal. 23, 239–255. PMID:25178482

  16. Conditional Induction of Oxidative Stress in RPE: A Mouse Model of Progressive Retinal Degeneration.

    PubMed

    Biswal, Manas R; Ildefonso, Cristhian J; Mao, Haoyu; Seo, Soo Jung; Wang, Zhaoyang; Li, Hong; Le, Yun Z; Lewin, Alfred S

    2016-01-01

    An appropriate animal model is essential to screening drugs or designing a treatment strategy for geographic atrophy. Since oxidative stress contributes to the pathological changes of the retinal pigment epithelium (RPE), we are reporting a new mouse AMD model of retinal degeneration by inducing mitochondrial oxidative stress in RPE. Sod2 the gene for manganese superoxide dismutase (MnSOD) was deleted in RPE layer using conditional knockout strategy. Fundus microscopy, SD-OCT and electroretinography were used to monitor retinal structure and function in living animals and microscopy was used to assess pathology post mortem. Tissue specific deletion of Sod2 caused elevated signs of oxidative stress, RPE dysfunction and showed some key features of AMD. Due to induction of oxidative stress, the conditional knockout mice show progressive reduction in ERG responses and thinning of outer nuclear layer (ONL) compared to non-induced littermates. PMID:26427390

  17. Oxidative stress and antioxidant responses to progressive resistance exercise intensity in trained and untrained males

    PubMed Central

    Özdemir, F; Çolak, R

    2015-01-01

    The relationship between oxidative stress and some exercise components of resistance exercise (e.g. intensity, exercise volume) has not been clearly defined. Additionally, the oxidative stress markers may respond differently in various conditions. This study aims to determine the effects of progressive intensity of resistance exercise (RE) on oxidative stress and antioxidants in trained and untrained men, and also to investigate the possible threshold intensity required to evoke oxidative stress. RE trained (N=8) and untrained (N=8) men performed the leg extension RE at progressive intensities standardized for total volume: 1x17 reps at 50% of one-repetition maximum (1RM); 1x14 reps at 60% of 1RM; 1x12 reps at 70% of 1RM; 2x5 reps at 80% of 1RM; and 3x3 reps at 90% of 1RM. Blood samples were drawn before (PRE) and immediately after each intensity, and after 30 minutes, 60 minutes and 24 hours following the RE. Lipid-hydroperoxide (LHP) significantly increased during the test and then decreased during the recovery in both groups (p<0.05); the POST-24 h LHP level was lower than PRE-LHP. Protein carbonyl (PCO) and superoxide dismutase (SOD) significantly increased (p<0.05); however, 8-hydroxy-2’-deoxyguanosine (8-OHdG) and glutathione (GSH) were not affected by the RE (p > 0.05). The results indicated that there was no significant training status x intensity interaction for examined variables (p > 0.05). Standardized volume of RE increased oxidative stress responses. Our study suggests that lower intensity (50%) is enough to increase LHP, whereas higher intensity (more than 80%) is required to evoke protein oxidation. PMID:26681835

  18. Oxidative Stress and Lipid Peroxidation Products in Cancer Progression and Therapy

    PubMed Central

    Barrera, Giuseppina

    2012-01-01

    The generation of reactive oxygen species (ROS) and an altered redox status are common biochemical aspects in cancer cells. ROS can react with the polyunsaturated fatty acids of lipid membranes and induce lipid peroxidation. The end products of lipid peroxidation, 4-hydroxynonenal (HNE), have been considered to be a second messenger of oxidative stress. Beyond ROS involvement in carcinogenesis, increased ROS level can inhibit tumor cell growth. Indeed, in tumors in advanced stages, a further increase of oxidative stress, such as that occurs when using several anticancer drugs and radiation therapy, can overcome the antioxidant defenses of cancer cells and drive them to apoptosis. High concentrations of HNE can also induce apoptosis in cancer cells. However, some cells escape the apoptosis induced by chemical or radiation therapy through the adaptation to intrinsic oxidative stress which confers drug resistance. This paper is focused on recent advances in the studies of the relation between oxidative stress, lipid peroxidation products, and cancer progression with particular attention to the pro-oxidant anticancer agents and the drug-resistant mechanisms, which could be modulated to obtain a better response to cancer therapy. PMID:23119185

  19. Peroxisomal beta-oxidation defect with detectable peroxisomes: a case with neonatal onset and progressive course.

    PubMed

    Barth, P G; Wanders, R J; Schutgens, R B; Bleeker-Wagemakers, E M; van Heemstra, D

    1990-07-01

    A progressive demyelinating cerebral disorder is described in a normally-appearing female infant with neonatal seizures, progressive psychomotor deterioration, deafness, retinopathy, peripheral neuropathy and loss of myelin observed on magnetic resonance imaging (MRI) scanning. MRI also showed the absence of macroscopic neocortical dysplasia which is usually found in Zellweger syndrome (ZS). Adrenal cortical function was normal. The patient died at the age of 37 months. Extensive biochemical investigations of peroxisomal functions in the patient revealed an impairment of peroxisomal beta-oxidation resulting in elevated levels of very long (greater than C22) chain fatty acids in plasma and fibroblasts. Moreover, elevated plasma levels of intermediates of bile acid biosynthesis such as tri- and dihydroxycholestanoic acid were found. Other peroxisomal functions were normal. Immunoblotting of the peroxisomal beta-oxidation enzyme proteins in liver from the patient revealed normal responses with antisera against acyl-CoA oxidase, bifunctional protein and thiolase respectively. From these data we conclude that the patient had a deficiency of a single peroxisomal beta-oxidation enzyme at the level of either the bifunctional protein or peroxisomal thiolase with retained immunoreactivity against these enzymes. PMID:2209666

  20. Transforming Growth Factor-Beta and Oxidative Stress Interplay: Implications in Tumorigenesis and Cancer Progression

    PubMed Central

    Krstić, Jelena; Trivanović, Drenka; Mojsilović, Slavko; Santibanez, Juan F.

    2015-01-01

    Transforming growth factor-beta (TGF-β) and oxidative stress/Reactive Oxygen Species (ROS) both have pivotal roles in health and disease. In this review we are analyzing the interplay between TGF-β and ROS in tumorigenesis and cancer progression. They have contradictory roles in cancer progression since both can have antitumor effects, through the induction of cell death, senescence and cell cycle arrest, and protumor effects by contributing to cancer cell spreading, proliferation, survival, and metastasis. TGF-β can control ROS production directly or by downregulating antioxidative systems. Meanwhile, ROS can influence TGF-β signaling and increase its expression as well as its activation from the latent complex. This way, both are building a strong interplay which can be taken as an advantage by cancer cells in order to increment their malignancy. In addition, both TGF-β and ROS are able to induce cell senescence, which in one way protects damaged cells from neoplastic transformation but also may collaborate in cancer progression. The mutual collaboration of TGF-β and ROS in tumorigenesis is highly complex, and, due to their differential roles in tumor progression, careful consideration should be taken when thinking of combinatorial targeting in cancer therapies. PMID:26078812

  1. Recent progress on minor-actinide-bearing oxide fuel fabrication at CEA Marcoule

    NASA Astrophysics Data System (ADS)

    Lebreton, Florent; Prieur, Damien; Horlait, Denis; Delahaye, Thibaud; Jankowiak, Aurélien; Léorier, Caroline; Jorion, Frédéric; Gavilan, Elisabeth; Desmoulière, François

    2013-07-01

    Partitioning and transmutation (P&T) of minor actinides (MA: americium, neptunium and curium) in fast neutron reactors or accelerator-driven systems is a route envisaged to reduce nuclear waste inventory. Over the years, several modes of P&T were proposed, each being based on the use of dedicated fuels such as inert-matrix fuels, MA-bearing MOX or MA-bearing blankets. In this context, progress on the manufacturing of such fuels is a key-challenge in order to render P&T viable at the industrial scale. Here, MA-bearing oxide fuel fabrication and characterization conducted in the CEA Marcoule Atalante facility is reviewed. A particular attention is also given to the research conducted on uranium-americium mixed-oxides fuels, which are now considered the reference fuels for MA transmutation in France.

  2. Mechanisms and controlling characteristics of the oxidation of methane. Progress report

    SciTech Connect

    Klier, K.; Simmons, G.W.

    1985-02-13

    The research aims at the scientific foundations for processes dealing with selective oxidation of methane to methanol and formaldehyde. Progress has been achieved in two major areas: (a) Catalytic oxidation of methane to formaldehyde by molecular oxygen over molybdena-based catalysts at subatmospheric pressures; the catalysts have been characterized by laser Raman microprobe, electron microscopy, EPR, and ESCA/Auger spectroscopy; (b) Surface science of adsorbates in the palladium-oxygen-dichloromethane-methane system. A combined LEED/Auger/Mass Spectrometer apparatus dedicated to this project has been constructed and is in operation. The structures, energetics, and desorption patterns of oxygen and dichloromethane overlayers have been determined on the Pd(100) crystal surface. An interesting exclusion of dichloromethane chemisorption by preadsorbed oxygen and the occurrence of oxygen chemisorption into the dichloromethane overlayer indicate a reaction pattern that will be very sensitive to the gas phase oxygen-to-dichloromethane concentration ratio.

  3. The Potential Role of Nitric Oxide in Halting Cancer Progression Through Chemoprevention.

    PubMed

    Vahora, Huzefa; Khan, Munawwar Ali; Alalami, Usama; Hussain, Arif

    2016-03-01

    Nitric oxide (NO) in general plays a beneficial physiological role as a vasorelaxant and the role of NO is decided by its concentration present in physiological environments. NO either facilitates cancer-promoting characters or act as an anti-cancer agent. The dilemma in this regard still remains unanswered. This review summarizes the recent information on NO and its role in carcinogenesis and tumor progression, as well as dietary chemopreventive agents which have NO-modulating properties with safe cytotoxic profile. Understanding the molecular mechanisms and cross-talk modulating NO effect by these chemopreventive agents can allow us to develop better therapeutic strategies for cancer treatment. PMID:27051643

  4. The Potential Role of Nitric Oxide in Halting Cancer Progression Through Chemoprevention

    PubMed Central

    Vahora, Huzefa; Khan, Munawwar Ali; Alalami, Usama; Hussain, Arif

    2016-01-01

    Nitric oxide (NO) in general plays a beneficial physiological role as a vasorelaxant and the role of NO is decided by its concentration present in physiological environments. NO either facilitates cancer-promoting characters or act as an anti-cancer agent. The dilemma in this regard still remains unanswered. This review summarizes the recent information on NO and its role in carcinogenesis and tumor progression, as well as dietary chemopreventive agents which have NO-modulating properties with safe cytotoxic profile. Understanding the molecular mechanisms and cross-talk modulating NO effect by these chemopreventive agents can allow us to develop better therapeutic strategies for cancer treatment. PMID:27051643

  5. Nanochips of Tantalum Oxide Nanodots as artificial-microenvironments for monitoring Ovarian cancer progressiveness.

    PubMed

    Dhawan, Udesh; Wang, Ssu-Meng; Chu, Ying Hao; Huang, Guewha S; Lin, Yan Ren; Hung, Yao Ching; Chen, Wen Liang

    2016-01-01

    Nanotopography modulates cell characteristics and cell behavior. Nanotopological cues can be exploited to investigate the in-vivo modulation of cell characteristics by the cellular microenvironment. However, the studies explaining the modulation of tumor cell characteristics and identifying the transition step in cancer progressiveness are scarce. Here, we engineered nanochips comprising of Tantalum oxide nanodot arrays of 10, 50, 100 and 200 nm as artificial microenvironments to study the modulation of cancer cell behavior. Clinical samples of different types of Ovarian cancer at different stages were obtained, primary cultures were established and then seeded on different nanochips. Immunofluorescence (IF) was performed to compare the morphologies and cell characteristics. Indices corresponding to cell characteristics were defined. A statistical comparison of the cell characteristics in response to the nanochips was performed. The cells displayed differential growth parameters. Morphology, Viability, focal adhesions, microfilament bundles and cell area were modulated by the nanochips which can be used as a measure to study the cancer progressiveness. The ease of fabrication of nanochips ensures mass-production. The ability of the nanochips to act as artificial microenvironments and modulate cell behavior may lead to further prospects in the markerless monitoring of the progressiveness and ultimately, improving the prognosis of Ovarian cancer. PMID:27534915

  6. Nanochips of Tantalum Oxide Nanodots as artificial-microenvironments for monitoring Ovarian cancer progressiveness

    PubMed Central

    Dhawan, Udesh; Wang, Ssu-Meng; Chu, Ying Hao; Huang, Guewha S.; Lin, Yan Ren; Hung, Yao Ching; Chen, Wen Liang

    2016-01-01

    Nanotopography modulates cell characteristics and cell behavior. Nanotopological cues can be exploited to investigate the in-vivo modulation of cell characteristics by the cellular microenvironment. However, the studies explaining the modulation of tumor cell characteristics and identifying the transition step in cancer progressiveness are scarce. Here, we engineered nanochips comprising of Tantalum oxide nanodot arrays of 10, 50, 100 and 200 nm as artificial microenvironments to study the modulation of cancer cell behavior. Clinical samples of different types of Ovarian cancer at different stages were obtained, primary cultures were established and then seeded on different nanochips. Immunofluorescence (IF) was performed to compare the morphologies and cell characteristics. Indices corresponding to cell characteristics were defined. A statistical comparison of the cell characteristics in response to the nanochips was performed. The cells displayed differential growth parameters. Morphology, Viability, focal adhesions, microfilament bundles and cell area were modulated by the nanochips which can be used as a measure to study the cancer progressiveness. The ease of fabrication of nanochips ensures mass-production. The ability of the nanochips to act as artificial microenvironments and modulate cell behavior may lead to further prospects in the markerless monitoring of the progressiveness and ultimately, improving the prognosis of Ovarian cancer. PMID:27534915

  7. Surface properties of photo-oxidized bituminous coals. Technical progress report, January--March 1996

    SciTech Connect

    Mitchell, G.; Davis, A.; Chander, S.

    1996-12-31

    During this report period, a vitrinite concentrate from the mvb Splash Dam seam (DECS-30) was prepared and analyzed. Results show that the concentrate was 91 vol % vitrinite and that the sample has been adequately protected from oxidation under refrigerated storage in argon. The 9% level of contamination within the vitrinite resulted from the extreme friability of the coal and to the dispersion of fine grains of semifusinite and micrinite. Polished blocks containing vitrain bands that were prepared, irradiated in blue-light and employed in contact angle measurements were evaluated using specular reflectance-mode FT-IR for changes in functional group chemistry. Infrared spectra from unexposed areas of vitrinite and those irradiated for 1, 5 and 10 min for six coals ranging in rank from hvCb to mvb were obtained using a FTS 175 spectrometer with a Bio-Rad UMA 500 microscope accessory. Preliminary results demonstrate that photo-oxidation occurred during irradiation, becoming progressively more intense with increasing irradiation time; however, the magnitude of this change diminished with increasing rank. A relatively steady increase in the carbonyl region (1,800--1,650 cm{sup {minus}1}) and a decrease in the aliphatic region (2,950--2,850 cm{sup {minus}1}) of the spectra supports this observation and is similar to observations made in the past for natural weathering and laboratory oxidation of coals. A series of tests was initiated to photo-oxidize powdered vitrains using the BLAK-RAY ultraviolet lamp evaluated last quarter. Samples of four vitrinite concentrates were exposed to UV light for 10 mins per side. These and the corresponding whole-seam channel samples and raw vitrinite concentrates were submitted for initial microflotation tests which have not been completed at this time.

  8. Advanced experimental analysis of controls on microbial Fe(III) oxide reduction. First year progress report

    SciTech Connect

    Roden, E.E.; Urrutia, M.M.

    1997-07-01

    'The authors have made considerable progress toward a number of project objectives during the first several months of activity on the project. An exhaustive analysis was made of the growth rate and biomass yield (both derived from measurements of cell protein production) of two representative strains of Fe(III)-reducing bacteria (Shewanellaalga strain BrY and Geobactermetallireducens) growing with different forms of Fe(III) as an electron acceptor. These two fundamentally different types of Fe(III)-reducing bacteria (FeRB) showed comparable rates of Fe(III) reduction, cell growth, and biomass yield during reduction of soluble Fe(III)-citrate and solid-phase amorphous hydrous ferric oxide (HFO). Intrinsic growth rates of the two FeRB were strongly influenced by whether a soluble or a solid-phase source of Fe(III) was provided: growth rates on soluble Fe(III) were 10--20 times higher than those on solid-phase Fe(III) oxide. Intrinsic FeRB growth rates were comparable during reduction of HF0 and a synthetic crystalline Fe(III) oxide (goethite). A distinct lag phase for protein production was observed during the first several days of incubation in solid-phase Fe(III) oxide medium, even though Fe(III) reduction proceeded without any lag. No such lag between protein production and Fe(III) reduction was observed during growth with soluble Fe(III). This result suggested that protein synthesis coupled to solid-phase Fe(III) oxide reduction in batch culture requires an initial investment of energy (generated by Fe(III) reduction), which is probably needed for synthesis of materials (e.g. extracellular polysaccharides) required for attachment of the cells to oxide surfaces. This phenomenon may have important implications for modeling the growth of FeRB in subsurface sedimentary environments, where attachment and continued adhesion to solid-phase materials will be required for maintenance of Fe(III) reduction activity. Despite considerable differences in the rate and pattern

  9. Indium oxide (In2O3) nanoparticles induce progressive lung injury distinct from lung injuries by copper oxide (CuO) and nickel oxide (NiO) nanoparticles.

    PubMed

    Jeong, Jiyoung; Kim, Jeongeun; Seok, Seung Hyeok; Cho, Wan-Seob

    2016-04-01

    Indium is an essential element in the manufacture of liquid crystal displays and other electronic devices, and several forms of indium compounds have been developed, including nanopowders, films, nanowires, and indium metal complexes. Although there are several reports on lung injury caused by indium-containing compounds, the toxicity of nanoscale indium oxide (In2O3) particles has not been reported. Here, we compared lung injury induced by a single exposure to In2O3 nanoparticles (NPs) to that caused by benchmark high-toxicity nickel oxide (NiO) and copper oxide (CuO) NPs. In2O3 NPs at doses of 7.5, 30, and 90 cm(2)/rat (50, 200, and 600 µg/rat) were administered to 6-week-old female Wistar rats via pharyngeal aspiration, and lung inflammation was evaluated 1, 3, 14, and 28 days after treatment. Neutrophilic inflammation was observed on day 1 and worsened until day 28, and severe pulmonary alveolar proteinosis (PAP) was observed on post-aspiration days 14 and 28. In contrast, pharyngeal aspiration of NiO NPs showed severe neutrophilic inflammation on day 1 and lymphocytic inflammation with PAP on day 28. Pharyngeal aspiration of CuO NPs showed severe neutrophilic inflammation on day 1, but symptoms were completely resolved after 14 days and no PAP was observed. The dose of In2O3 NPs that produced progressive neutrophilic inflammation and PAP was much less than the doses of other toxic particles that produced this effect, including crystalline silica and NiO NPs. These results suggest that occupational exposure to In2O3 NPs can cause severe lung injury. PMID:25731971

  10. Short-term nitric oxide inhibition induces progressive nephropathy after regression of initial renal injury.

    PubMed

    Fujihara, Clarice K; Sena, Claudia R; Malheiros, Denise M A C; Mattar, Ana L; Zatz, Roberto

    2006-03-01

    Chronic nitric oxide (NO) inhibition and salt overload (HS) promote severe hypertension and renal injury, which regress quickly, although not completely, on treatment withdrawal. We investigated whether renal function and structure remain stable 6 mo after cessation of these treatments. Adult male Munich-Wistar rats were distributed among three groups: HS, receiving 3.1% Na diet; HS+N, receiving HS and the NO inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME; 30 mg.kg(-1).day(-1) orally); and HS+N+L, receiving HS+N and the ANG II blocker losartan (L; 50 mg.kg(-1).day(-1) orally). In studies performed after 20 days of treatment (protocol 1), HS+N rats exhibited severe glomerular and systemic hypertension, massive albuminuria, glomerular and interstitial injury, and infiltration by macrophages and cells expressing ANG II. These abnormalities were largely prevented in the HS+N+L group. A second cohort (protocol 2) received HS+N for 20 days, followed by a conventional (0.5% Na) diet and no l-NAME treatment during the subsequent 30 days. At this time, systemic and glomerular pressure, along with parameters of renal injury and inflammation, were still higher than in HS or HS+N+L rats, although differences were much smaller than in protocol 1. Six months after 20-day l-NAME/salt overload treatment was ceased (protocol 3), severe albuminuria, hypertension, and renal injury developed in HS+N rats. Again, losartan prevented most of these changes. We conclude 1) short-term HS+N treatment triggers the autonomous development of progressive glomerulosclerosis; 2) this process may involve activation of the AT(1) receptor; and 3) temporary HS+N treatment may represent a new model of slowly progressive chronic nephropathy. PMID:16204410

  11. Contribution of nitric oxide to brachial artery vasodilation during progressive handgrip exercise in the elderly

    PubMed Central

    Wray, D. Walter; Witman, Melissa A. H.; Layec, Gwenael; Barrett-O'Keefe, Zachary; Ives, Stephen J.; Conklin, Jamie D.; Reese, Van; Richardson, Russell S.

    2013-01-01

    The reduction in nitric oxide (NO)-mediated vascular function with age has largely been determined by flow-mediated dilation (FMD). However, in light of recent uncertainty surrounding the NO dependency of FMD and the recognition that brachial artery (BA) vasodilation during handgrip exercise is predominantly NO-mediated in the young, we sought to determine the contribution of NO to BA vasodilation in the elderly using the handgrip paradigm. BA vasodilation during progressive dynamic (1 Hz) handgrip exercise performed at 3, 6, 9, and 12 kg was assessed with and without NO synthase (NOS) inhibition [intra-arterial NG-monomethyl-l-arginine (l-NMMA)] in seven healthy older subjects (69 ± 2 yr). Handgrip exercise in the control condition evoked significant BA vasodilation at 6 (4.7 ± 1.4%), 9 (6.5 ± 2.2%), and 12 kg (9.5 ± 2.7%). NOS inhibition attenuated BA vasodilation, as the first measurable increase in BA diameter did not occur until 9 kg (4.0 ± 1.8%), and the change in BA diameter at 12 kg was reduced by ∼30% (5.1 ± 2.2%), with unaltered shear rate (Control: 407 ± 57, l-NMMA: 427 ± 67 s−1). Although shifted downward, the slope of the relationship between BA diameter and shear rate during handgrip exercise was unchanged (Control: 0.0013 ± 0.0004, l-NMMA: 0.0011 ± 0.007, P = 0.6) as a consequence of NOS inhibition. Thus, progressive handgrip exercise in the elderly evokes a robust BA vasodilation, the magnitude of which was only minimally attenuated following NOS inhibition. This modest contribution of NO to BA vasodilation in the elderly supports the use of the handgrip exercise paradigm to assess NO-dependent vasodilation across the life span. PMID:23948773

  12. Model catalytic oxidation studies using supported monometallic and heterobimetallic oxides. Progress report, August 1, 1991--January 31, 1992

    SciTech Connect

    Ekerdt, J.G.

    1992-02-03

    This research program is directed toward a more fundamental understanding of the effects of catalyst composition and structure on the catalytic properties of metal oxides. Metal oxide catalysts play an important role in many reactions bearing on the chemical aspects of energy processes. Metal oxides are the catalysts for water-gas shift reactions, methanol and higher alcohol synthesis, isosynthesis, selective catalytic reduction of nitric oxides, and oxidation of hydrocarbons. A key limitation to developing insight into how oxides function in catalytic reactions is in not having precise information of the surface composition under reaction conditions. To address this problem we have prepared oxide systems that can be used to study cation-cation effects and the role of bridging (-O-) and/or terminal (=O) surface oxygen anion ligands in a systematic fashion. Since many oxide catalyst systems involve mixtures of oxides, we selected a model system that would permit us to examine the role of each cation separately and in pairwise combinations. Organometallic molybdenum and tungsten complexes were proposed for use, to prepare model systems consisting of isolated monomeric cations, isolated monometallic dimers and isolated bimetallic dimers supported on silica and alumina. The monometallic and bimetallic dimers were to be used as models of more complex mixed- oxide catalysts. Our current program was to develop the systems and use them in model oxidation reactions.

  13. Endothelial nitric oxide synthase deficiency influences normal cell cycle progression and apoptosis in trabecular meshwork cells

    PubMed Central

    Liao, Qiong; Huang, Yan-Ming; Fan, Wei; Li, Chan; Yang, Hong

    2016-01-01

    AIM To clarify how the endothelial nitric oxide synthase (eNOS, NOS3) make effect on outflow facility through the trabecular meshwork (TM). METHODS Inhibition of NOS3 gene expression in human TM cells were conducted by three siRNAs. Then the mRNA and protein levels of NOS3 in siRNA-treated and negative control (NC) cells were determined, still were the collagen, type IV, alpha 1 (COL4A1) and fibronectin 1 by real-time PCR and Western blot analysis. In addition, NOS3 concentrations in culture supernatant fluids of TM cells were measured. Cell cycle and cell apoptosis analysis were performed using flow cytometry. RESULTS The mRNA level of NOS3 was decreased by three different siRNA interference, similar results were obtained not only of the relative levels of NOS3 protein, but also the expression levels of COL4A1 and fibronectin 1. The number of cells in S phase was decreased, while contrary result was obtained in G2 phase. The number of apoptotic cells in siRNA-treated groups were significant increased compared to the NC samples. CONCLUSION Abnormal NOS3 expression can make effects on the proteins levels of extracellular matrix component (e.g. fibronectin 1 and COL4A1). Reduced NOS3 restrains the TM cell cycle progression at the G2/M-phase transition and induced cell apoptosis. PMID:27366677

  14. Progress in complementary metal-oxide-semiconductor silicon photonics and optoelectronic integrated circuits

    NASA Astrophysics Data System (ADS)

    Hongda, Chen; Zan, Zhang; Beiju, Huang; Luhong, Mao; Zanyun, Zhang

    2015-12-01

    Silicon photonics is an emerging competitive solution for next-generation scalable data communications in different application areas as high-speed data communication is constrained by electrical interconnects. Optical interconnects based on silicon photonics can be used in intra/inter-chip interconnects, board-to-board interconnects, short-reach communications in datacenters, supercomputers and long-haul optical transmissions. In this paper, we present an overview of recent progress in silicon optoelectronic devices and optoelectronic integrated circuits (OEICs) based on a complementary metal-oxide-semiconductor-compatible process, and focus on our research contributions. The silicon optoelectronic devices and OEICs show good characteristics, which are expected to benefit several application domains, including communication, sensing, computing and nonlinear systems. Project supported by the National Basic Research Program of China (No. 2011CBA00608), the National Natural Science Foundation of China (Nos. 61178051, 61321063, 61335010, 61178048, 61275169), and the National High Technology Research and Development Program of China (Nos. 2013AA013602, 2013AA031903, 2013AA032204).

  15. Oxidative damage in the progression of chronic liver disease to hepatocellular carcinoma: an intricate pathway.

    PubMed

    Cardin, Romilda; Piciocchi, Marika; Bortolami, Marina; Kotsafti, Andromachi; Barzon, Luisa; Lavezzo, Enrico; Sinigaglia, Alessandro; Rodriguez-Castro, Kryssia Isabel; Rugge, Massimo; Farinati, Fabio

    2014-03-28

    The histo-pathologic and molecular mechanisms leading to initiation and progression of hepatocellular carcinoma (HCC) are still ill-defined; however, there is increasing evidence that the gradual accumulation of mutations, genetic and epigenetic changes which occur in preneoplastic hepatocytes results in the development of dysplastic foci, nodules, and finally, overt HCC. As well as many other neoplasias, liver cancer is considered an "inflammatory cancer", arising from a context of inflammation, and characterized by inflammation-related mechanisms that favor tumor cell survival, proliferation, and invasion. Molecular mechanisms that link inflammation and neoplasia have been widely investigated, and it has been well established that inflammatory cells recruited at these sites with ongoing inflammatory activity release chemokines that enhance the production of reactive oxygen species. The latter, in turn, probably have a major pathogenic role in the continuum starting from hepatitis followed by chronic inflammation, and ultimately leading to cancer. The relationship amongst chronic liver injury, free radical production, and development of HCC is explored in the present review, particularly in the light of the complex network that involves oxidative DNA damage, cytokine synthesis, telomere dysfunction, and microRNA regulation. PMID:24696595

  16. Reaction progress kinetic analysis of a copper-catalyzed aerobic oxidative coupling reaction with N-phenyl tetrahydroisoquinoline.

    PubMed

    Scott, Martin; Sud, Abhishek; Boess, Esther; Klussmann, Martin

    2014-12-19

    The results from a kinetic investigation of a Cu-catalyzed oxidative coupling reaction between N-phenyl tetrahydroisoquinoline and a silyl enol ether using elemental oxygen as oxidant are presented. By using reaction progress kinetic analysis as an evaluation method for the obtained data, we discovered information regarding the reaction order of the substrates and catalysts. Based on this information and some additional experiments, a refined model for the initial oxidative activation of the amine substrate and the activation of the nucleophile by the catalyst was developed. The mechanistic information also helped to understand why silyl nucleophiles have previously failed in a related Cu-catalyzed reaction using tert-butyl hydroperoxide as oxidant and how to overcome this limitation. PMID:25203932

  17. Controlling incipient oxidation of pyrite for improved rejection. Technical progress report for the ninth quarter, October 1--December 31, 1994

    SciTech Connect

    Yoon, R.H.; Richardson, P.E.

    1995-07-01

    The major objectives of this work are (1) to determine the Eh-pH conditions under which pyrite is stable, (2) to determine the mechanism of the initial stages of pyrite oxidation, and (3) to determine if the semi-conducting properties of pyrite effects its oxidation behavior. It is known that moderate oxidation of pyrite produces a hydrophobic surface product. This hydrophobic product makes it extremely difficult to depress pyrite in coal flotation circuits. The eventual objective of this work is to prevent pyrite oxidation in order to better depress pyrite in coal flotation circuits. It has been shown that by holding the potential of pyrite at its stable potential during fracture, pyrite undergoes neither oxidation nor reduction. It has also been found that fresh pyrite surfaces created by fracture in an electrochemical begin to oxidize at potentials that are about 200 mV more negative than the potentials reported in the literature for pyrite oxidation. This report period, electrochemical impedance spectroscopy (EIS) studies were continued. As discussed in the seventh quarterly progress report, the impedance of pyrite does not show the characteristics expected for either semi-conducting or metallic electrodes. Additional studies were conducted to confirm the anomalous impedance behavior. For this purpose, freshly fractured surfaces were progressively polished on 600 and 1,200 grit silicon carbide paper, and with 0.3 {micro} {alpha}-alumina and 0.05 {micro} {gamma}-alumina micropolish. Polishing is known to introduce defects in the lattice structure of semi-conducting electrodes and it was anticipated that the defects would effect the interfacial capacitance.

  18. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes

    PubMed Central

    2011-01-01

    Background Large production volumes of zinc oxide nanoparticles (ZnONP) might be anticipated to pose risks, of accidental inhalation in occupational and even in consumer settings. Herein, we further investigated the pathological changes induced by ZnONP and their possible mechanism of action. Methods Two doses of ZnONP (50 and 150 cm2/rat) were intratracheally instilled into the lungs of rats with assessments made at 24 h, 1 wk, and 4 wks after instillation to evaluate dose- and time-course responses. Assessments included bronchoalveolar lavage (BAL) fluid analysis, histological analysis, transmission electron microscopy, and IgE and IgA measurement in the serum and BAL fluid. To evaluate the mechanism, alternative ZnONP, ZnONP-free bronchoalveolar lavage exudate, and dissolved Zn2+ (92.5 μg/rat) were also instilled to rats. Acridine orange staining was utilized in macrophages in culture to evaluate the lysosomal membrane destabilization by NP. Results ZnONP induced eosinophilia, proliferation of airway epithelial cells, goblet cell hyperplasia, and pulmonary fibrosis. Bronchocentric interstitial pulmonary fibrosis at the chronic phase was associated with increased myofibroblast accumulation and transforming growth factor-β positivity. Serum IgE levels were up-regulated by ZnONP along with the eosinophilia whilst serum IgA levels were down-regulated by ZnONP. ZnONP are rapidly dissolved under acidic conditions (pH 4.5) whilst they remained intact around neutrality (pH 7.4). The instillation of dissolved Zn2+ into rat lungs showed similar pathologies (eg., eosinophilia, bronchocentric interstitial fibrosis) as were elicited by ZnONP. Lysosomal stability was decreased and cell death resulted following treatment of macrophages with ZnONP in vitro. Conclusions We hypothesise that rapid, pH-dependent dissolution of ZnONP inside of phagosomes is the main cause of ZnONP-induced diverse progressive severe lung injuries. PMID:21896169

  19. DNA damage signalling barrier, oxidative stress and treatment-relevant DNA repair factor alterations during progression of human prostate cancer.

    PubMed

    Kurfurstova, Daniela; Bartkova, Jirina; Vrtel, Radek; Mickova, Alena; Burdova, Alena; Majera, Dusana; Mistrik, Martin; Kral, Milan; Santer, Frederic R; Bouchal, Jan; Bartek, Jiri

    2016-06-01

    The DNA damage checkpoints provide an anti-cancer barrier in diverse tumour types, however this concept has remained unexplored in prostate cancer (CaP). Furthermore, targeting DNA repair defects by PARP1 inhibitors (PARPi) as a cancer treatment strategy is emerging yet requires suitable predictive biomarkers. To address these issues, we performed immunohistochemical analysis of multiple markers of DNA damage signalling, oxidative stress, DNA repair and cell cycle control pathways during progression of human prostate disease from benign hyperplasia, through intraepithelial neoplasia to CaP, complemented by genetic analyses of TMPRSS2-ERG rearrangement and NQO1, an anti-oxidant factor and p53 protector. The DNA damage checkpoint barrier (γH2AX, pATM, p53) mechanism was activated during CaP tumorigenesis, albeit less and with delayed culmination compared to other cancers, possibly reflecting lower replication stress (slow proliferation despite cases of Rb loss and cyclin D1 overexpression) and progressive loss of ATM activator NKX3.1. Oxidative stress (8-oxoguanine lesions) and NQO1 increased during disease progression. NQO1 genotypes of 390 men did not indicate predisposition to CaP, yet loss of NQO1 in CaP suggested potential progression-opposing tumour suppressor role. TMPRSS2-ERG rearrangement and PTEN loss, events sensitizing to PARPi, occurred frequently along with heterogeneous loss of DNA repair factors 53BP1, JMJD1C and Rev7 (all studied here for the first time in CaP) whose defects may cause resistance to PARPi. Overall, our results reveal an unorthodox DNA damage checkpoint barrier scenario in CaP tumorigenesis, and provide novel insights into oxidative stress and DNA repair, with implications for biomarker guidance of future targeted therapy of CaP. PMID:26987799

  20. Oxidative stress, progressive damage in the substantia nigra and plasma dopamine oxidation, in rats chronically exposed to ozone.

    PubMed

    Santiago-López, D; Bautista-Martínez, J A; Reyes-Hernandez, C I; Aguilar-Martínez, M; Rivas-Arancibia, S

    2010-09-01

    The purpose of our work was to determine the effects of oxidative stress on the neurodegeneration process in the substantia nigra, and to evaluate dopamine-oxidation metabolites in the plasma using a cyclic voltammetry (CV) technique. We have also studied the correlation between the increases in oxidized dopamine-species levels with the severity of lipid-peroxidation in the plasma. Sixty-four male Wistar rats were divided into four experimental groups and received air (Group I, control) or ozone (0.25 ppm) daily by inhalation for 4h for 15 (Group II), 30 (Group III), and 60 (Group IV) days. The brains were processed for immunohistochemical location of dopamine and p53 in the substantia nigra. Plasma collected from these animals was assayed for oxidized dopamine products using CV and lipid-peroxidation levels were measured. Our results indicate that chronic exposure to low O(3) doses causes that the number of dopaminergic neurons decreased, and p53-immunoreactive cells increases until 30 days; which was a function of the time of exposure to ozone. Oxidative stress produces a significant increase in the levels of the dopamine quinones (DAQs) that correlated well (r=0.962) with lipid peroxides in the plasma during the study period. These results suggest that DAQ could be a reliable, peripheral oxidative indicator of nigral dopaminergic damage in the brain. PMID:20541596

  1. Nitric oxide and reactive oxygen species production causes progressive damage in rats after cessation of silica inhalation.

    PubMed

    Porter, Dale W; Millecchia, Lyndell L; Willard, Patsy; Robinson, Victor A; Ramsey, Dawn; McLaurin, Jeffery; Khan, Amir; Brumbaugh, Kurt; Beighley, Christoper M; Teass, Alexander; Castranova, Vincent

    2006-03-01

    Our laboratory has previously reported results from a rat silica inhalation study which determined that, even after silica exposure ended, pulmonary inflammation and damage progressed with subsequent fibrosis development. In the present study, the relationship between silica exposure, nitric oxide (NO) and reactive oxygen species (ROS) production, and the resultant pulmonary damage is investigated in this model. Rats were exposed to silica (15 mg/m3, 6 h/day) for either 20, 40, or 60 days. A portion of the rats from each exposure were sacrificed at 0 days postexposure, while another portion was maintained without further exposure for 36 days to examine recovery or progression. The major findings of this study are: (1) silica-exposed rat lungs were in a state of oxidative stress, the severity of which increased during the postexposure period, (2) silica-exposed rats had significant increase in lung NO production which increased in magnitude during the postexposure period, and (3) the presence of silica particle(s) in an alveolar macrophage (AM) was highly associated with inducible nitric oxide synthase (iNOS) protein. These data indicate that, even after silica exposure has ended, and despite declining silica lung burden, silica-induced pulmonary NO and ROS production increases, thus producing a more severe oxidative stress. A quantitative association between silica and expression of iNOS protein in AMs was also determined, which adds to our previous observation that iNOS and NO-mediated damage are associated anatomically with silica-induced pathological lesions. Future studies will be needed to determine whether the progressive oxidative stress, and iNOS activation and NO production, is a direct result of silica lung burden or a consequence of silica-induced biochemical mediators. PMID:16339787

  2. Oxidation of phenolics in supercritical water. Combined quarterly technical progress report, December 1, 1995--May 31, 1996

    SciTech Connect

    1996-11-01

    Over the past two quarters, our work has focused on three main areas. The first area of interest involved a reexamination of the rate laws that were formed in past quarters. A possible error was discovered for the analytical methods used in the o-cresol oxidation study and the data were corrected, yielding a new rate equation. The data for hydroxybenzaldehydes were studied again, this time as a system of parallel oxidation and thermolysis reactions. The second area in which progress was made was the study of the thermolysis of nitrophenols and dihydroxybenzenes in supercritical water. These investigations were needed to determine the effect that pyrolysis or hydrolysis had on our previous supercritical water oxidation experiments. Thirdly, we have continued to investigate the use of molecular orbital theory in the determination reactivity indices. A reactivity index, such as the enthalpy of formation, may be used in a structure-reactivity relationship to summarize the kinetics for the oxidation of phenolics in supercritical water. Progress in each of these areas is summarized.

  3. Selective methane oxidation over promoted oxide catalysts. Quarterly technical progress report, September 8, 1992--November 30, 1992

    SciTech Connect

    Klier, K.; Herman, R.G.; Sun, Q.; Sarkany, J.

    1993-01-01

    Support effects on catalytic reactions, especially of highly exothermic oxidation reactions, can be very significant. Since we had shown that a MoO{sub 3}/SiO{sub 2} catalyst, especially when used in a double bed configuration with a Sr/La{sub 2}O{sub 3} catalyst, can selectively oxidize methane to formaldehyde, the role of the SiO{sub 2} support was investigated. Therefore, partial oxidation of methane by oxygen to form formaldehyde, carbon oxides, and C{sub 2} products (ethane and ethene) has been studied over silica catalyst supports (fumed Cabosil and Grace 636 silica gel) in the 630-780{degrees}C temperature range under ambient pressure. When relatively high gas hourly space velocities (GHSV) were utilized, the silica catalysts exhibit high space time yields (at low conversions) for methane partial oxidation to formaldehyde, and the C{sub 2} hydrocarbons were found to be parallel products with formaldehyde. In general, the selectivities toward CO were high while those toward CO{sub 2} were low. Based on the present results obtained by a double catalyst bed experiment, the observations of product composition dependence on the variation of GHSV (i.e. gas residence time), and differences in apparent activation energies of formation of C{sub 2}H{sub 6}, and CH{sub 2}O, a reaction mechanism is proposed for the activation of methane over the silica surface. This mechanism can explain the observed product distribution patterns (specifically the parallel formation of formaldehyde and C{sub 2} hydrocarbons).

  4. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report

    SciTech Connect

    Doyle, F.M.

    1995-05-31

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. Work during the nineteenth quarter has concluded studies of the surface functional groups produced on coal by severe thermal and chemical oxidation, and on investigating the partition of metal ions between such strongly oxidized coal samples and aqueous solutions. This partitioning behavior was being followed to obtain further information on the chemistry of the coal surfaces after different oxidation treatments. Adsorption isotherms for the uptake of Cd{sup 2+} on coal oxidized by different methods were obtained, and these and the Cu{sup 2+} adsorption isotherms reported in the last report have been scrutinized, and interpreted more exhaustively. The apparent discrepancies noted in the last report for the analysis of surface functional groups have been investigated further. The adsorption behavior has been related to the surface chemistry of Upper Freeport coal oxidized by different methods.

  5. Advanced experimental analysis of controls on microbial Fe(III) oxide reduction. 1998 annual progress report

    SciTech Connect

    Roden, E.E.; Urrutia, M.M.

    1998-06-01

    'Understanding factors which control the long-term survival and activity of Fe(III)-reducing bacteria (FeRB) in subsurface sedimentary environments is important for predicting their ability to serve as agents for bioremediation of organic and inorganic contaminants. This project seeks to refine the authors quantitative understanding of microbiological and geochemical controls on bacterial Fe(III) oxide reduction and growth of FeRB, using laboratory reactor systems which mimic to varying degrees the physical and chemical conditions of subsurface sedimentary environments. Methods for studying microbial Fe(III) oxide reduction and FeRB growth in experimental systems which incorporate advective aqueous phase flux are being developed for this purpose. These methodologies, together with an accumulating database on the kinetics of Fe(III) reduction and bacterial growth with various synthetic and natural Fe(III) oxide minerals, will be applicable to experimental and modeling studies of subsurface contaminant transformations directly coupled to or influenced by bacterial Fe(III) oxide reduction and FeRB activity. This report summarizes research accomplished after approximately 1.5 yr of a 3-yr project. A central hypothesis of the research is that advective elimination of the primary end-product of Fe(III) oxide reduction, Fe(II), will enhance the rate and extent of microbial Fe(III) oxide reduction in open experimental systems. This hypothesis is based on previous studies in the laboratory which demonstrated that association of evolved Fe(II) with oxide and FeRB cell surfaces (via adsorption or surface precipitation) is a primary cause for cessation of Fe(III) oxide reduction activity in batch culture experiments. Semicontinuous culturing was adopted as a first approach to test this basic hypothesis. Synthetic goethite or natural Fe(III) oxide-rich subsoils were used as Fe(III) sources, with the Fe(III)-reducing bacterium Shewanella alga as the test organism.'

  6. Progressive oxidation of pyrite in five bituminous coal samples: An As XANES and 57Fe Mössbauer spectroscopic study

    USGS Publications Warehouse

    Kolker, Allan; Huggins, Frank E.

    2007-01-01

    Naturally occurring pyrite commonly contains minor substituted metals and metalloids (As, Se, Hg, Cu, Ni, etc.) that can be released to the environment as a result of its weathering. Arsenic, often the most abundant minor constituent in pyrite, is a sensitive monitor of progressive pyrite oxidation in coal. To test the effect of pyrite composition and environmental parameters on the rate and extent of pyrite oxidation in coal, splits of five bituminous coal samples having differing amounts of pyrite and extents of As substitution in the pyrite, were exposed to a range of simulated weathering conditions over a period of 17 months. Samples investigated include a Springfield coal from Indiana (whole coal pyritic S = 2.13 wt.%; As in pyrite = detection limit (d.l.) to 0.06 wt.%), two Pittsburgh coal samples from West Virginia (pyritic S = 1.32–1.58 wt.%; As in pyrite = d.l. to 0.34 wt.%), and two samples from the Warrior Basin, Alabama (pyritic S = 0.26–0.27 wt.%; As in pyrite = d.l. to 2.72 wt.%). Samples were collected from active mine faces, and expected differences in the concentration of As in pyrite were confirmed by electron microprobe analysis. Experimental weathering conditions in test chambers were maintained as follows: (1) dry Ar atmosphere; (2) dry O2 atmosphere; (3) room atmosphere (relative humidity ∼20–60%); and (4) room atmosphere with samples wetted periodically with double-distilled water. Sample splits were removed after one month, nine months, and 17 months to monitor the extent of As and Fe oxidation using As X-ray absorption near-edge structure (XANES) spectroscopy and 57Fe Mössbauer spectroscopy, respectively. Arsenic XANES spectroscopy shows progressive oxidation of pyritic As to arsenate, with wetted samples showing the most rapid oxidation. 57Fe Mössbauer spectroscopy also shows a much greater proportion of Fe3+ forms (jarosite, Fe3+ sulfate, FeOOH) for samples stored under wet conditions, but much less

  7. PHOTOCHEMICAL OXIDANT AIR POLLUTION EFFECTS ON A MIXED CONIFER FOREST FOREST ECOSYSTEM - A PROGRESS REPORT

    EPA Science Inventory

    Since 1972, twelve scientists representing several research disciplines have collaborated in integrated studies to determine the chronic effects of photochemical oxidant air pollutants on a western mixed conifer forest ecosystem. An enormous amount of data has been collected, des...

  8. Oxidation of a potassium channel causes progressive sensory function loss during ageing

    PubMed Central

    Cai, Shi-Qing; Sesti, Federico

    2009-01-01

    A central question is whether potassium (K+) channels, which are key regulators of neuronal excitability, are targets of reactive oxygen species (ROS) and whether these interactions have a role in the mechanisms underlying neurodegeneration. Here, we show that oxidation of K+ channel KVS-1 during ageing causes sensory function loss in Caenorhabditis elegans, and that protection of this channel from oxidation preserves neuronal function. Chemotaxis, a function controlled by KVS-1, was significantly impaired in worms exposed to oxidizing agents, but only moderately affected in worms harboring an oxidation-resistant KVS-1 mutant (C113S). In ageing C113S transgenic worms, the effects of free radical accumulation were significantly attenuated compared to wild type. Electrophysiological analyses showed that both ROS accumulation during ageing, or acute exposure to oxidizing agents, acted primarily to alter the excitability of the neurons that mediate chemotaxis. Together, these findings establish a pivotal role for ROS-mediated oxidation of voltage-gated K+ channels in sensorial decline during ageing in invertebrates. PMID:19330004

  9. Oxidized high-density lipoprotein accelerates atherosclerosis progression by inducing the imbalance between treg and teff in LDLR knockout mice.

    PubMed

    Ru, Ding; Zhiqing, He; Lin, Zhu; Feng, Wu; Feng, Zhang; Jiayou, Zhang; Yusheng, Ren; Min, Fan; Chun, Liang; Zonggui, Wu

    2015-05-01

    High density lipoprotein (HDL) dysfunction has been widely reported in clinic, and oxidation of HDL (ox-HDL) was shown to be one of the most common modifications in vivo and participate in the progression of atherosclerosis. But the behind mechanisms are still elusive. In this study, we firstly analyzed and found strong relationship between serum ox-HDL levels and risk factors of coronary artery diseases in clinic, then the effects of ox-HDL in initiation and progression of atherosclerosis in LDLR knockout mice were investigated by infusion of ox-HDL dissolved in chitosan hydrogel before the formation of lesions in vivo. Several new evidence were shown: (i) the serum levels of ox-HDL peaked early before the formation of lesions in LDLR mice fed with high fat diet similar to oxidative low density lipoprotein, (ii) the formation of atherosclerotic lesions could be accelerated by infusion of ox-HDL, (iii) the pro-atherosclerotic effects of ox-HDL were accompanied by imbalanced levels of effector and regulatory T cells and relative gene expressions, which implied that imbalance of teff and treg might contribute to the pro-atherosclerosis effects of ox-HDL. PMID:25912129

  10. Oxidation of phenolics in supercritical water. Quarterly technical progress report, March 1, 1994--May 31, 1994

    SciTech Connect

    Savage, P.E.

    1994-09-01

    An environmental hazard associated with coal liquefaction and gasification is the generation of aqueous waste streams containing phenolics and carcinogenic organics such as polynuclear aromatics. Oxidation in supercritical water (SCW) is an emerging technology for the ultimate destruction of phenolics and other organics in waste water streams. SCW oxidation involves the oxidation of organics in an aqueous medium at temperatures between 400-650{degrees}C and pressures around 250 atm. These conditions exceed the thermodynamic critical point of water, hence the water is said to be supercritical. Wastes can be converted by SCWO to benign products: carbon is converted to CO{sub 2}, hydrogen to H{sub 2}O, and nitrogen to N{sub 2} or N{sub 2}O (but not NO{sub X}). SCWO possesses several attractive features. (1) The effluents from the SCWO process can be collected or held in a recycle loop so the process can be easily {open_quotes}bottled up{close_quotes} with no uncontrolled emissions should an upset occur. (2) The oxidation reaction is exothermic, so it is possible to operate the SCWO reactor in an autothermal mode. That is, the oxidation of the organic material in the aqueous stream liberates sufficient heat to maintain the elevated reactor temperature and also preheat the feed. Thus, after start-up, the process would not require an external energy source and could even be used to produce energy provided the organics content in the feed stream was sufficiently high. (3) Operating at supercritical conditions also provides a single, homogeneous fluid phase in the reactor. Indeed, water above its critical point has a high solubility for organics, and it is totally miscible with oxygen. (4) The temperature in SCWO is high enough to provide rapid reaction rates but not so high that alloys begin to lose their mechanical strength. Thus, the oxidation of organics goes essentially to completion in a very short time (a few seconds).

  11. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inflammation is a major mediator of CKD progression and is partly driven by altered gut microbiome and intestinal barrier disruption, events which are caused by: urea influx in the intestine resulting in dominance of urease-possessing bacteria; disruption of epithelial barrier by urea-derived ammoni...

  12. A resistant starch fiber diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease (CKD)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inflammation is a constant feature and a major mediator of CKD progression. It is, in part, driven by altered gut microbiome and disruption of intestinal epithelial barrier, events which are primarily caused by: 1- urea influx in the intestine resulting in dominance of urease-possessing bacteria; 2-...

  13. Creatine supplementation prevents hyperhomocysteinemia, oxidative stress and cancer-induced cachexia progression in Walker-256 tumor-bearing rats.

    PubMed

    Deminice, Rafael; Cella, Paola Sanches; Padilha, Camila S; Borges, Fernando H; da Silva, Lilian Eslaine Costa Mendes; Campos-Ferraz, Patrícia L; Jordao, Alceu Afonso; Robinson, Jason Lorne; Bertolo, Robert F; Cecchini, Rubens; Guarnier, Flávia Alessandra

    2016-08-01

    The purpose of this study was to investigate (1) the impact of tumor growth on homocysteine (Hcy) metabolism, liver oxidative stress and cancer cachexia and, (2) the potential benefits of creatine supplementation in Walker-256 tumor-bearing rats. Three experiments were conducted. First, rats were killed on days 5 (D5), 10 (D10) and 14 (D14) after tumor implantation. In experiment 2, rats were randomly assigned to three groups designated as control (C), tumor-bearing (T) and tumor-bearing supplemented with creatine (TCr). A life span experiment was conducted as the third experiment. Creatine was supplied in drinking water for 21 days (8 g/L) in all cases. Tumor implantation consisted of a suspension of Walker-256 cells (8.0 × 10(7) cells in 0.5 mL of PBS). The progressive increase (P < 0.05) in tumor mass coincided with a progressively lower body weight and higher hepatic oxidative stress; plasma Hcy concentration was 80 % higher (P < 0.05) by 10 days of tumor implantation. Impaired Hcy metabolism was evidenced by decreased hepatic betaine-homocysteine methyltransferase (Bhmt), glycine N-methyltransferase (Gnmt) and cystathionine beta synthase (CBS) gene expression. In contrast, creatine supplementation promoted a 28 % reduction of tumor weight (P < 0.05). Plasma Hcy (C 6.1 ± 0.6, T 10.3 ± 1.5, TCr 6.3 ± 0.9, µmol/L) and hepatic oxidative stress were lower in the TCr group compared to T. Creatine supplementation was unable to decrease Hcy concentration and to increase SAM/SAH ratio in tumor tissue. These data suggest that creatine effects on hepatic impaired Hcy metabolism promoted by tumor cell inoculation are responsible to decrease plasma Hcy in tumor-bearing rats. In conclusion, Walker-256 tumor growth is associated with progressive hyperhomocysteinemia, body weight loss and liver oxidative stress in rats. Creatine supplementation, however, prevented these tumor-associated perturbations. PMID:26781304

  14. Cuprous oxide photovoltaic cells. Third quarterly technical progress report, October 9, 1979 to January 8, 1980

    SciTech Connect

    Trivich, D.

    1980-01-08

    Previous work in this laboratory on cuprous oxide Schottky barrier photovoltaic cells showed that some potential improvements were limited by chemical degradations at the junction (1), e.g., in Al/Cu/sub 2/O cells, the aluminum reduced the surface of the Cu/sub 2/O to metallic Cu. The present project is being devoted to a study of methods to avoid this problem and also to the development of other methods of improving the efficiency of Cu/sub 2/O cells. The first quarterly report was devoted to a study of thin oxide interlayers between the metal and the Cu/sub 2/O which gives MIS structures. The most stable interlayers were obtained with SiO/sub 2/. The second quarterly report covered some initial work on heterojunctions with other oxides on Cu/sub 2/O. The most stable heterojunctions were obtained with CdO on Cu/sub 2/O. The present report presents some results on Auger studies of the oxide heterojunctions, the preparation of doped Cu/sub 2/O by introduction of impurities in the starting copper, the exploration of several method for the study of diffusion length, and some initial attempts on the laser annealing of Cu/sub 2/O.

  15. Progress in spin-on metal oxide hardmask materials for filling applications

    NASA Astrophysics Data System (ADS)

    Yao, Huirong; Dioses, Alberto D.; Mullen, Salem; Wolfer, Elizabeth; McKenzie, Douglas; Rahman, Dalil; Cho, JoonYeon; Padmanaban, Munirathna; Petermann, Claire; Her, YoungJun; Cao, Yi

    2015-03-01

    It is well known that metal oxide films are useful as hard mask material in semiconductor industry for their excellent etch resistance against plasma etches. In the advanced lithography processes, in addition to good etch resistance, they also need to possess good wet removability, fill capability, in high aspect ratio contacts or trenches. Conventional metal containing materials can be applied by chemical vapor deposition (CVD) or atomic layer deposition (ALD). Films derived from these techniques have difficulty in controlling wet etch, have low throughput and need special equipment. This leads to high costs. Therefore it is desirable to develop simple spin-on coating materials to generate metal oxide hard masks that have good trench or via filling performances using spin track friendly processing conditions. In this report, novel spin-on type inorganic formulations providing Ti, W, Hf and Zr oxide hard masks will be described. The new materials have demonstrated high etch selectivity, good filling performances, wet removal capability, low trace metals and good shelf-life stability. These novel AZ® Spin-on metal hard mask formulations can be used in several new applications and can potentially replace any metal, metal oxide, metal nitride or silicon-containing hard mask films currently deposited using CVD process in the semiconductor manufacturing process.

  16. Imaging of oxidation-specific epitopes with targeted nanoparticles to detect high-risk atherosclerotic lesions: Progress and future directions

    PubMed Central

    Briley-Saebo, Karen; Yeang, Calvin; Witztum, Joseph L.; Tsimikas, Sotirios

    2014-01-01

    Oxidation-specific epitopes (OSE) within developing atherosclerotic lesions are key antigens that drive innate and adaptive immune responses in atherosclerosis, leading to chronic inflammation. Oxidized phospholipids and malondialdehyde-lysine epitopes are well-characterized OSE present in human atherosclerotic lesions, particularly in pathologically defined vulnerable plaques. Using murine and human OSE-specific antibodies as targeting agents, we have developed radionuclide and magnetic resonance based nanoparticles, containing gadolinium, manganese or lipid-coated ultrasmall superparamagnetic iron oxide, to noninvasively image OSE within experimental atherosclerotic lesions. These methods quantitate plaque burden, allow detection of lesion progression and regression, plaque stabilization, and accumulation of OSE within macrophage-rich areas of the artery wall, suggesting they detect the most active lesions. Future studies will focus on using “natural” antibodies, lipopeptides and mimotopes for imaging applications. These approaches should enhance the clinical translation of this technique to image, monitor, evaluate efficacy of novel therapeutic agents and guide optimal therapy of high-risk atherosclerotic lesions. PMID:25297940

  17. Imaging of oxidation-specific epitopes with targeted nanoparticles to detect high-risk atherosclerotic lesions: progress and future directions.

    PubMed

    Briley-Saebo, Karen; Yeang, Calvin; Witztum, Joseph L; Tsimikas, Sotirios

    2014-11-01

    Oxidation-specific epitopes (OSE) within developing atherosclerotic lesions are key antigens that drive innate and adaptive immune responses in atherosclerosis, leading to chronic inflammation. Oxidized phospholipids and malondialdehyde-lysine epitopes are well-characterized OSE present in human atherosclerotic lesions, particularly in pathologically defined vulnerable plaques. Using murine and human OSE-specific antibodies as targeting agents, we have developed radionuclide and magnetic resonance based nanoparticles, containing gadolinium, manganese or lipid-coated ultrasmall superparamagnetic iron oxide, to non-invasively image OSE within experimental atherosclerotic lesions. These methods quantitate plaque burden, allow detection of lesion progression and regression, plaque stabilization, and accumulation of OSE within macrophage-rich areas of the artery wall, suggesting they detect the most active lesions. Future studies will focus on using "natural" antibodies, lipopeptides, and mimotopes for imaging applications. These approaches should enhance the clinical translation of this technique to image, monitor, evaluate efficacy of novel therapeutic agents, and guide optimal therapy of high-risk atherosclerotic lesions. PMID:25297940

  18. Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors

    NASA Astrophysics Data System (ADS)

    Kwon, Jang Yeon; Kyeong Jeong, Jae

    2015-02-01

    This review gives an overview of the recent progress in vacuum-based n-type transition metal oxide (TMO) thin film transistors (TFTs). Several excellent review papers regarding metal oxide TFTs in terms of fundamental electron structure, device process and reliability have been published. In particular, the required field-effect mobility of TMO TFTs has been increasing rapidly to meet the demands of the ultra-high-resolution, large panel size and three dimensional visual effects as a megatrend of flat panel displays, such as liquid crystal displays, organic light emitting diodes and flexible displays. In this regard, the effects of the TMO composition on the performance of the resulting oxide TFTs has been reviewed, and classified into binary, ternary and quaternary composition systems. In addition, the new strategic approaches including zinc oxynitride materials, double channel structures, and composite structures have been proposed recently, and were not covered in detail in previous review papers. Special attention is given to the advanced device architecture of TMO TFTs, such as back-channel-etch and self-aligned coplanar structure, which is a key technology because of their advantages including low cost fabrication, high driving speed and unwanted visual artifact-free high quality imaging. The integration process and related issues, such as etching, post treatment, low ohmic contact and Cu interconnection, required for realizing these advanced architectures are also discussed.

  19. Surface properties of photo-oxidized bituminous coals. Technical progress report, October--December 1995

    SciTech Connect

    Mitchell, G.; Polat, H.; Davis, A.; Chander, S.

    1996-02-01

    During this report period, polished blocks of coal containing 3--4 mm wide vitrain bands were prepared for contact angle measurements of fresh and photo-oxidized surfaces using the advancing-drop technique. Contact angles were measured on two of the coals collected for this study, (the Ohio No. 4a (DECS-33) and Lower Kittanning (PSOC-1562) seams) and the results added to those presented in the last quarterly report. Although the new data give additional variation to the sample set, they are consistent with the original observations, i.e., that contact angle is influenced by irradiation time and coal rank. Using the maximum change in contact angle measured between fresh and photo-oxidized surfaces, a linear decrease is observed with increasing rank resulting from 5 and 10 minutes of irradiation. The magnitude of the decrease in contact angle diminishes with increasing rank. Also during this period, an ultraviolet spotlight was evaluated as a means of irradiating powdered vitrain. This 100 watt, long wavelength (366 nm) ultraviolet lamp is to be used in place of the optical microscope system to establish the influence of surface photo-oxidation on the flotation characteristics of vitrain concentrates. A series of experiments was designed to determine the magnitude of change in the luminescence intensity (at 600 nm measured in the optical microscope) with exposure to the ultraviolet light with time for vitrinite from different rank coals. The authors have established that there is a significant decrease in luminescence intensity with time of exposure which diminishes slightly as rank increases. The ultraviolet light appears to provide a level of photo-oxidation that is a factor of 10 lower than that obtained with their optical microscope system.

  20. A model of progressive photo-oxidative degeneration and inflammation in the pigmented C57BL/6J mouse retina.

    PubMed

    Natoli, Riccardo; Jiao, Haihan; Barnett, Nigel L; Fernando, Nilisha; Valter, Krisztina; Provis, Jan M; Rutar, Matt

    2016-06-01

    Light-induced degeneration in rodent retinas is an established model for of retinal degeneration, including the roles of oxidative stress and neuroinflammatory activity. In these models, photoreceptor death is elicited via photo-oxidative stress, and is exacerbated by recruitment of subretinal macrophages and activation of immune pathways including complement propagation. Existing light damage models have relied heavily on albino rodents, and mostly using acute light stimuli. These albino models have proven valuable in uncovering the pathogenic mechanisms of such pathways in the context of retinal disease. However, their inherent albinism hinders comparability to normal retinal physiology, and also makes gene technology analysis time-consuming due to the predominance of the pigmented mouse strains in these applications. In this study, we characterise a new light damage model utilising C57BL/6J mice over a 7 day period of chronic light exposure. We use high-efficiency LED technology to deliver a sustained intensity of 100 k lux with negligible modulation of ambient temperature. We show that in the C57BL/6J mouse, chronic light exposure elicits the cardinal features of light damage including photoreceptor degeneration, atrophy of the choriocapillaris, decreased retinal function and increases in oxidative stress markers 4-HNE and 8-OHG, which emerge progressively over the 7 day period of exposure. These changes are accompanied by robust recruitment of IBA1+ and F4/80 + microglia/macrophages to the ONL and subretinal space, followed the strong up-regulation of monocyte-chemoattractants Ccl2, Ccl3, and Ccl12, as well as increases in expression of complement component C3. These findings are in agreement with prior damage models conducted in albino rodents such as Balb/c mice, and support the use of this new model in further investigating the causative features of oxidative stress and inflammation in retinal disease. PMID:27155143

  1. Ionizing radiation induced catalysis on metal oxide particles. 1998 annual progress report

    SciTech Connect

    Fryberger, T.; Chambers, S.A.; Daschbach, J.L.; Henderson, M.A.; Peden, C.H.F.; Su, Y.; Wang, Y.

    1998-06-01

    'High-level radioactive waste storage tanks within DOE sites contain significant amounts of organic components (solid and liquid phases) in the form of solvents, extractants, complexing agents, process chemicals, cleaning agents and a variety of miscellaneous compounds. These organics pose several safety and pretreatment concerns, particularly for the Hanford tank waste. Remediation technologies are needed that significantly reduce the amounts of problem organics without resulting in toxic or flammable gas emissions, and without requiring thermal treatments. These restrictions pose serious technological barriers for current organic destruction methods which utilize oxidation achieved by thermal or chemical activation. This project focuses on using ionizing radiation (a,b,g) to catalytically destroy organics over oxide materials through reduction/oxidation (redox) chemistry resulting from electron-hole (e{sup -}/h{sup +}) pair generation. Conceptually this process is an extension of visible and near-UV photocatalytic processes known to occur at the interfaces of narrow bandgap semiconductors in both solution and gas phases. In these processes, an electron is excited across the energy gap between the filled and empty states in the semiconductor. The excited electron does reductive chemistry and the hole (where the electron was excited from) does oxidative chemistry. The energy separation between the hole and the excited electron reflects the redox capability of the e{sup -}/h{sup +} pair, and is dictated by the energy of the absorbed photon and the bandgap of the material. The use of ionizing radiation overcomes optical transparency limitations associated with visible and near-UV illumination (g-rays penetrate much farther into a solution than UV/Vis light), and permits the use of wider bandgap materials (such as ZrO{sub 2}) which possess potentially greater redox capabilities than those with narrow bandgap materials. Experiments have been aimed at understanding the

  2. Cuprous oxide photovoltaic cells. Second quarterly technical progress report, July 9-October 8, 1979

    SciTech Connect

    Trivich, D.; Papadimitriou, L.

    1980-01-01

    Research on the fabrication and characteristics of solar cells based on heterojunctions of Cu/sub 2/O with SnO/sub 2/, In/sub 2/O/sub 3/, CdO, and mixtures of CdO and SnO/sub 2/ is described. The Cu/sub 2/O samples were prepared by thermal oxidation of copper sheet and the other semiconductors were applied by ion sputtering. Current-voltage characteristics of the heterojunctions, Auger spectra of the top surfaces, and Auger depth profiles are presented graphically. (WHK)

  3. Oxidation of phenolics in supercritical water. Quarterly technical progress report, September 1, 1993--November 30, 1993

    SciTech Connect

    Savage, P.E.

    1993-12-31

    Oxidation reactions are accomplished in an isothermal, high-pressure, flow reactor designed specifically for operation at supercritical water conditions. The reactor feed stream is prepared by mixing two separate streams. One stream is an aqueous solution of the phenolic reactant and the second stream is water with dissolved oxygen. Controlling the flow rates of these two streams allows us to control the reactor residence time and the relative amounts of the phenol and oxygen fed to the reactor. The reactor effluent is cooled and depressorized and then collected for analysis. The gaseous products are analyzed by gas chromatography (GC). The liquid-phase products are analyzed by GC, high-performance liquid chromatography, and GC-mass spectrometry. Our work to date has focused on the oxidation of cresols in SCW. We have explored the effects of temperature, pressure, and the concentrations of o-cresol, oxygen, and water. Table I gives these experimental conditions and the resulting ocresol conversions. We reported a portion of this data in our previous quarterly report. New information is given in the last three columns where we report the molar yields of phenol, CO{sub 2}, and CO. Molar yields were calculated as the molar flow rate of a given product divided by the initial molar flow rate of o-cresol and normalized by the stoichiometric coefficient. Earlier, we used the o-cresol conversion data to determine the parameters in a global reaction rate law for o-cresol disappearance.

  4. Association of FMO3 Variants and Trimethylamine N-Oxide Concentration, Disease Progression, and Mortality in CKD Patients.

    PubMed

    Robinson-Cohen, Cassianne; Newitt, Richard; Shen, Danny D; Rettie, Allan E; Kestenbaum, Bryan R; Himmelfarb, Jonathan; Yeung, Catherine K

    2016-01-01

    Elevated levels of circulating pro-atherogenic uremic solutes, particularly trimethylamine N-oxide (TMAO), have been implicated in cardiovascular disease development in patients with chronic kidney disease (CKD). TMAO is generated from trimethylamine (TMA) via metabolism by hepatic flavin-containing monooxygenase isoform 3 (FMO3). We determined the functional effects of three common FMO3 variants at amino acids 158, 308, and 257 on TMAO concentrations in a prospective cohort study and evaluated associations of polymorphisms with CKD progression and mortality. Each additional minor allele at amino acid 158 was associated with a 0.38 μg/mL higher circulating TMAO (p = 0.01) and with faster rates of annualized relative eGFR decline. Participants with 0, 1 and 2 variant alleles averaged an eGFR loss of 8%, 12%, and 14% per year, respectively (p-for trend = 0.05). Compared to participants with the homozygous reference allele, heterozygous and homozygous variant participants had a 2.0-fold (95% CI: 0.85, 4.6) and 2.2-fold (95% CI: 0.89, 5.48) higher risk of mortality, respectively (p-for-trend = 0.04). No associations with clinical outcomes were observed for allelic variants at amino acids 257 or 308. Understanding the contribution of genetic variation of FMO3 to disease progression and all-cause mortality can guide recommendations for diet modification or pharmacotherapy in CKD patients at increased risk of adverse outcomes. PMID:27513517

  5. Association of FMO3 Variants and Trimethylamine N-Oxide Concentration, Disease Progression, and Mortality in CKD Patients

    PubMed Central

    Robinson-Cohen, Cassianne; Newitt, Richard; Shen, Danny D.; Rettie, Allan E.; Kestenbaum, Bryan R.; Himmelfarb, Jonathan; Yeung, Catherine K.

    2016-01-01

    Elevated levels of circulating pro-atherogenic uremic solutes, particularly trimethylamine N-oxide (TMAO), have been implicated in cardiovascular disease development in patients with chronic kidney disease (CKD). TMAO is generated from trimethylamine (TMA) via metabolism by hepatic flavin-containing monooxygenase isoform 3 (FMO3). We determined the functional effects of three common FMO3 variants at amino acids 158, 308, and 257 on TMAO concentrations in a prospective cohort study and evaluated associations of polymorphisms with CKD progression and mortality. Each additional minor allele at amino acid 158 was associated with a 0.38 μg/mL higher circulating TMAO (p = 0.01) and with faster rates of annualized relative eGFR decline. Participants with 0, 1 and 2 variant alleles averaged an eGFR loss of 8%, 12%, and 14% per year, respectively (p-for trend = 0.05). Compared to participants with the homozygous reference allele, heterozygous and homozygous variant participants had a 2.0-fold (95% CI: 0.85, 4.6) and 2.2-fold (95% CI: 0.89, 5.48) higher risk of mortality, respectively (p-for-trend = 0.04). No associations with clinical outcomes were observed for allelic variants at amino acids 257 or 308. Understanding the contribution of genetic variation of FMO3 to disease progression and all-cause mortality can guide recommendations for diet modification or pharmacotherapy in CKD patients at increased risk of adverse outcomes. PMID:27513517

  6. LDRD Progress Report: Radioimmunotherapy using oxide nanoparticles: Radionuclide contaiment and mitigation of normal tissue toxicity.

    SciTech Connect

    Rondinone, Adam Justin; Dai, Sheng; Mirzadeh, Saed; Kennel, Steve J

    2005-10-01

    Radionuclides with specific emission properties can be incorporated into metal-chalcogenide and metal-oxide nanoparticles. Coupled to antibodies, these conjugates could be injected into the bloodstream to target and destroy non-solid tumors or target organs for radioimaging. In the first year of this project, two types of radioactive nanoparticles, CdTe: {sup 125m}Te and Y{sub 2}O{sub 3}: {sup 170}Tm were synthesized and coupled to antibodies specific to murine epithelial lung tissue. The nanoparticles successfully target the lung tissue in vivo. Some leaching of the radioisotope was observed. The coming year will explore other types of nanoparticles (other crystal chemistries) in order to minimize leaching.

  7. Defect clustering in simple and complex oxides. Progress report, June 1, 1992--May 31, 1993

    SciTech Connect

    Cohen, J.B.; Ellis, D.E.; Mason, T.O.

    1992-10-01

    Vacancy:interstitial clusters in Fe{sub 1{minus}x}O were surveyed theoretically, and the 7:2 cluster is predicted to be the most stable, followed by 4:1. In Mn{sub 1{minus}x}O, the 2:1 cluster is predicted to be the most stable, followed by 6:2. The Co{sub 1{minus}x}O is still unresolved, although the 2:1 cluster should be the most stable. Work on complex oxides is also reported, including REAECuO (RE=rare earth, AE=alkaline earth), NdCeCuO, LaCuO-based cuprates, and doped sapphire.

  8. d-Propranolol protects against oxidative stress and progressive cardiac dysfunction in iron overloaded rats

    PubMed Central

    Kramer, Jay H.; Spurney, Christopher F.; Iantorno, Micaela; Tziros, Constantine; Chmielinska, Joanna J.; Mak, I. Tong; Weglicki, William B.

    2013-01-01

    d-Propranolol (d-Pro: 2–8 mg·(kg body mass)−1·day−1) protected against cardiac dysfunction and oxidative stress during 3–5 weeks of iron overload (2 mg Fe–dextran·(g body mass)−1·week−1) in Sprague–Dawley rats. At 3 weeks, hearts were perfused in working mode to obtain baseline function; red blood cell glutathione, plasma 8-isoprostane, neutrophil basal superoxide production, lysosomal-derived plasma N-acetyl-β-galactosaminidase (NAGA) activity, ventricular iron content, and cardiac iron deposition were assessed. Hearts from the Fe-treated group of rats exhibited lower cardiac work (26%) and output (CO, 24%); end-diastolic pressure rose 1.8-fold. Further, glutathione levels increased 2-fold, isoprostane levels increased 2.5-fold, neutrophil superoxide increased 3-fold, NAGA increased 4-fold, ventricular Fe increased 4.9-fold; and substantial atrial and ventricular Fe-deposition occurred. d-Pro (8 mg) restored heart function to the control levels, protected against oxidative stress, and decreased cardiac Fe levels. After 5 weeks of Fe treatment, echocardiography revealed that the following were depressed: percent fractional shortening (%FS, 31% lower); left ventricular (LV) ejection fraction (LVEF, 17%), CO (25%); and aortic pressure maximum (Pmax, 24%). Mitral valve E/A declined by 18%, indicating diastolic dysfunction. Cardiac CD11b+ infiltrates were elevated. Low d-Pro (2 mg) provided modest protection, whereas 4–8 mg greatly improved LVEF (54%–75%), %FS (51%–81%), CO (43%–78%), Pmax (56%–100%), and E/A >100%; 8 mg decreased cardiac inflammation. Since d-Pro is an antioxidant and reduces cardiac Fe uptake as well as inflammation, these properties may preserve cardiac function during Fe overload. PMID:22913465

  9. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation--part A.

    PubMed

    Vera, Mario; Schippers, Axel; Sand, Wolfgang

    2013-09-01

    Bioleaching of metal sulfides is performed by a diverse group of microorganisms. The dissolution chemistry of metal sulfides follows two pathways, which are determined by the mineralogy and the acid solubility of the metal sulfides: the thiosulfate and the polysulfide pathways. Bacterial cells can effect this metal sulfide dissolution via iron(II) ion and sulfur compound oxidation. Thereby, iron(III) ions and protons, the metal sulfide-attacking agents, are available. Cells can be active either in planktonic state or in forming biofilms on the mineral surface; however, the latter is much more efficient in terms of bioleaching kinetics. In the case of Acidithiobacillus ferrooxidans, bacterial exopolymers contain iron(III) ions, each complexed by two uronic acid residues. The resulting positive charge allows an electrostatic attachment to the negatively charged pyrite. Thus, the first function of complexed iron(III) ions is the mediation of cell attachment, while their second function is oxidative dissolution of the metal sulfide, similar to the role of free iron(III) ions in non-contact leaching. In both cases, the electrons extracted from the metal sulfide reduce molecular oxygen via a redox chain forming a supercomplex spanning the periplasmic space and connecting both outer and inner membranes. In this review, we summarize some recent discoveries relevant to leaching bacteria which contribute to a better understanding of these fascinating microorganisms. These include surface science, biochemistry of iron and sulfur metabolism, anaerobic metabolism, and biofilm formation. The study of microbial interactions among multispecies leaching consortia, including cell-to-cell communication mechanisms, must be considered in order to reveal more insights into the biology of bioleaching microorganisms and their potential biotechnological use. PMID:23720034

  10. Cavitational hydrothermal oxidation: A new remediation process. Annual progress report, September 1996--August 1997

    SciTech Connect

    Suslick, K.S.

    1997-11-21

    'During the past year, the authors have continued to make substantial scientific progress on the understanding of cavitation phenomena in aqueous media and applications of cavitation to remediation processes. The efforts have focused on three separate areas: sonoluminescence as a probe of conditions created during cavitational collapse in aqueous media, the use of cavitation for remediation of contaminated water, and an addition of the use of ultrasound in the synthesis of novel heterogeneous catalysts for hydrodehalogenation of halocarbons under mild conditions. In order to gain further understanding of the conditions present during cavitation, the author has continued his studies of sonoluminescence. He has made recent breakthroughs in the use of emission spectroscopy for temperature and pressure measurement of cavitation events, which he expects to publish shortly. He has been able to measure for the first time the temperature of cavitation in water during multi-bubble cavitation in the presence of aromatic hydrocarbons. The emission from excited states of C{sub 2} in water gives temperatures that are consistent with adiabatic compressional heating, with maximum temperatures of 4,300 K. Prior measurements of cavitation temperatures in low vapor pressure nonaqueous media gave somewhat higher temperatures of 5,000 K. This work lays permanently to rest exotic mechanisms for cavitational chemistry, at least for cavitation fields.'

  11. Pyrroloquinoline Quinone Slows Down the Progression of Osteoarthritis by Inhibiting Nitric Oxide Production and Metalloproteinase Synthesis.

    PubMed

    Tao, Ran; Wang, Shitao; Xia, Xiaopeng; Wang, Youhua; Cao, Yi; Huang, Yuejiao; Xu, Xinbao; Liu, Zhongbing; Liu, Peichao; Tang, Xiaohang; Liu, Chun; Shen, Gan; Zhang, Dongmei

    2015-08-01

    Osteoarthritis (OA) is the most common arthritis and also one of the major causes of joint pain in elderly people. The aim of this study was to investigate the effects of pyrroloquinoline quinone (PQQ) on degenerated-related changes in osteoarthritis (OA). SW1353 cells were stimulated with IL-1β to establish the chondrocyte injury model in vitro. PQQ was administrated into SW1353 cultures 1 h before IL-1β treatment. Amounts of MMP-1, MMP-13, P65, IκBα, ERK, p-ERK, P38, and p-P38 were measured via western blot. The production of NO was determined by Griess reaction assay and reflected by the iNOS level. Meniscal-ligamentous injury (MLI) was performed on 8-week-old rats to establish the OA rat model. PQQ was injected intraperitoneally 3 days before MLI and consecutively until harvest, and the arthritis cartilage degeneration level was assessed. The expressions of MMP-1 and MMP-13 were significantly downregulated after PQQ treatment compared with that in IL-1β alone group. NO production and iNOS expression were decreased by PQQ treatment compared with control group. Amounts of nucleus P65 were upregulated in SW1353 after stimulated with IL-1β, while PQQ significantly inhibited the translocation. In rat OA model, treatment with PQQ markedly decelerated the degeneration of articular cartilage. These findings suggested that PQQ could inhibit OA-related catabolic proteins MMPs expression, NO production, and thus, slow down the articular cartilage degeneration and OA progression. Owing to its beneficial effects, PQQ is expected to be a novel pharmacological application in OA clinical prevention and treatment in the near future. PMID:25687637

  12. Early organic diagenesis: The significance of progressive subsurface oxidation fronts in pelagic sediments

    NASA Astrophysics Data System (ADS)

    Wilson, T. R. S.; Thomson, J.; Colley, S.; Hydes, D. J.; Higgs, N. C.; Sørensen, J.

    1985-03-01

    Porewater and solid phase geochemical data at two contrasting NE Atlantic stations are reported. Station 10552, on the Cape Verde abyssal plain, is a site of slow pelagic accumulation ( ca. 0.4 cm kyr -1). Molecular oxygen is present in the sediment column to at least 2 m, and probably much deeper, labile organic-carbon is almost totally consumed in the upper few centimetres of the sediment. By contrast, at station 10554 on the Madeira abyssal plain, the pelagic sequence has been interrupted by the occasional deposition of organic-rich turbidites. Porewater oxygen and nitrate profiles show that subsurface organic metabolism of the organic-carbon associated with the uppermost turbidite layer is a significant fraction of the overall metabolism in the sediment column. This metabolism occurs at a relatively thin reaction front which progresses deeper into the turbidite with time. This phenomenon exerts a controlling influence on the present nutrient profile and redox succession. In a less extreme form, substrate distributions of this latter type are not uncommon in Atlantic sediments. A model has been developed which is controlled by both oxygen and nitrate data. This model permits a vertical profile of metabolic activity to be derived, and also gives estimates of the reaction rate constants and solid phase mixing rates at these two contrasting stations. About 30% of the total activity at station 10554 is located within the turbidite at the deepening reaction front; this is a non-steady-state condition. In fact, it is found that the integrated metabolic activity at the two stations is not dissimilar ( ca. 1-2 × 10 -13moles cm -2 sec -1). The striking differences in redox profile are therefore primarily attributable to differences in the distribution of metabolic activity within the column.

  13. Photocatalytic and chemical oxidation of organic compounds in supercritical carbon dioxide. Progress report for FY97

    SciTech Connect

    Blake, D.M.; Bryant, D.L.; Reinsch, V.

    1997-09-30

    and using makeup scCO{sub 2}. A chemical polishing operation can reduce the release of CO{sub 2} from the process. It can also reduce the consumption of reagents that may be used in the process to enhance extraction and cleaning. A polishing operation will also reduce or avoid formation of an additional waste stream. Photocatalytic and other photochemical oxidation chemistry have not been investigated in scCO{sub 2}. The large base of information for these reactions in water, organic solvents, or air suggest that the chemistry will work in carbon dioxide. There are compelling reasons to believe that the properties of scCO{sub 2} should increase the performance of photocatalytic chemistry over that found in more conventional fluid phases.'

  14. Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers.

    PubMed

    Willander, M; Nur, O; Zhao, Q X; Yang, L L; Lorenz, M; Cao, B Q; Zúñiga Pérez, J; Czekalla, C; Zimmermann, G; Grundmann, M; Bakin, A; Behrends, A; Al-Suleiman, M; El-Shaer, A; Che Mofor, A; Postels, B; Waag, A; Boukos, N; Travlos, A; Kwack, H S; Guinard, J; Le Si Dang, D

    2009-08-19

    Zinc oxide (ZnO), with its excellent luminescent properties and the ease of growth of its nanostructures, holds promise for the development of photonic devices. The recent advances in growth of ZnO nanorods are discussed. Results from both low temperature and high temperature growth approaches are presented. The techniques which are presented include metal-organic chemical vapour deposition (MOCVD), vapour phase epitaxy (VPE), pulse laser deposition (PLD), vapour-liquid-solid (VLS), aqueous chemical growth (ACG) and finally the electrodeposition technique as an example of a selective growth approach. Results from structural as well as optical properties of a variety of ZnO nanorods are shown and analysed using different techniques, including high resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), photoluminescence (PL) and cathodoluminescence (CL), for both room temperature and for low temperature performance. These results indicate that the grown ZnO nanorods possess reproducible and interesting optical properties. Results on obtaining p-type doping in ZnO micro- and nanorods are also demonstrated using PLD. Three independent indications were found for p-type conducting, phosphorus-doped ZnO nanorods: first, acceptor-related CL peaks, second, opposite transfer characteristics of back-gate field effect transistors using undoped and phosphorus doped wire channels, and finally, rectifying I-V characteristics of ZnO:P nanowire/ZnO:Ga p-n junctions. Then light emitting diodes (LEDs) based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed. The hybrid LEDs reviewed and discussed here are mainly presented for two groups: those based on n-ZnO nanorods and p-type crystalline substrates, and those based on n-ZnO nanorods and p-type amorphous substrates. Promising electroluminescence

  15. UP2 400 High Activity Oxide Legacy Waste Retrieval Project Scope and Progress-13048

    SciTech Connect

    Chabeuf, Jean-Michel; Varet, Thierry

    2013-07-01

    The High Activity Oxide facility (HAO) reprocessed sheared and dissolved 4500 metric tons of light water reactor fuel the fuel of the emerging light water reactor spent fuel between 1976 and 1998. Over the period, approximately 2200 tons of process waste, composed primarily of sheared hulls, was produced and stored in a vast silo in the first place, and in canisters stored in pools in subsequent years. Upon shutdown of the facility, AREVA D and D Division in La Hague launched a thorough investigation and characterization of the silos and pools content, which then served as input data for the definition of a legacy waste retrieval and reconditioning program. Basic design was conducted between 2005 and 2007, and was followed by an optimization phase which lead to the definition of a final scenario and budget, 12% under the initial estimates. The scenario planned for the construction of a retrieval and reconditioning cell to be built on top of the storage silo. The retrieved waste would then be rinsed and sorted, so that hulls could subsequently be sent to La Hague high activity compacting facility, while resins and sludge would be cemented within the retrieval cell. Detailed design was conducted successfully from 2008 until 2011, while a thorough research and development program was conducted in order to qualify each stage of the retrieval and reconditioning process, and assist in the elaboration of the final waste package specification. This R and D program was defined and conducted as a response and mitigation of the major project risks identified during the basic design process. Procurement and site preparatory works were then launched in 2011. By the end of 2012, R and D is nearly completed, the retrieval and reconditioning process have been secured, the final waste package specification is being completed, the first equipment for the retrieval cell is being delivered on site, while preparation works are allowing to free up space above and around the silo, to

  16. Oxidative Stress during the Progression of β-Amyloid Pathology in the Neocortex of the Tg2576 Mouse Model of Alzheimer's Disease

    PubMed Central

    Porcellotti, Sara; Fanelli, Francesca; Fracassi, Anna; Sepe, Sara; Cecconi, Francesco; Bernardi, Cinzia; Cimini, AnnaMaria; Cerù, Maria Paola; Moreno, Sandra

    2015-01-01

    Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive neurodegeneration. Pathogenetic mechanisms, triggered by β-amyloid (Aβ) accumulation, include oxidative stress, derived from energy homeostasis deregulation and involving mitochondria and peroxisomes. We here addressed the oxidative stress status and the elicited cellular response at the onset and during the progression of Aβ pathology, studying the neocortex of Tg2576 model of AD. Age-dependent changes of oxidative damage markers, antioxidant enzymes, and related transcription factors were analysed in relation to the distribution of Aβ peptide and oligomers, by a combined molecular/morphological approach. Nucleic acid oxidative damage, accompanied by defective antioxidant defences, and decreased PGC1α expression are already detected in 3-month-old Tg2576 neurons. Conversely, PPARα is increased in these cells, with its cytoplasmic localization suggesting nongenomic, anti-inflammatory actions. At 6 months, when intracellular Aβ accumulates, PMP70 is downregulated, indicating impairment of fatty acids peroxisomal translocation and their consequent harmful accumulation. In 9-month-old Tg2576 neocortex, Aβ oligomers and acrolein deposition correlate with GFAP, GPX1, and PMP70 increases, supporting a compensatory response, involving astroglial peroxisomes. At severe pathological stages, when senile plaques disrupt cortical cytoarchitecture, antioxidant capacity is gradually lost. Overall, our data suggest early therapeutic intervention in AD, also targeting peroxisomes. PMID:25973140

  17. Oxidative Stress during the Progression of β-Amyloid Pathology in the Neocortex of the Tg2576 Mouse Model of Alzheimer's Disease.

    PubMed

    Porcellotti, Sara; Fanelli, Francesca; Fracassi, Anna; Sepe, Sara; Cecconi, Francesco; Bernardi, Cinzia; Cimini, AnnaMaria; Cerù, Maria Paola; Moreno, Sandra

    2015-01-01

    Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive neurodegeneration. Pathogenetic mechanisms, triggered by β-amyloid (Aβ) accumulation, include oxidative stress, derived from energy homeostasis deregulation and involving mitochondria and peroxisomes. We here addressed the oxidative stress status and the elicited cellular response at the onset and during the progression of Aβ pathology, studying the neocortex of Tg2576 model of AD. Age-dependent changes of oxidative damage markers, antioxidant enzymes, and related transcription factors were analysed in relation to the distribution of Aβ peptide and oligomers, by a combined molecular/morphological approach. Nucleic acid oxidative damage, accompanied by defective antioxidant defences, and decreased PGC1α expression are already detected in 3-month-old Tg2576 neurons. Conversely, PPARα is increased in these cells, with its cytoplasmic localization suggesting nongenomic, anti-inflammatory actions. At 6 months, when intracellular Aβ accumulates, PMP70 is downregulated, indicating impairment of fatty acids peroxisomal translocation and their consequent harmful accumulation. In 9-month-old Tg2576 neocortex, Aβ oligomers and acrolein deposition correlate with GFAP, GPX1, and PMP70 increases, supporting a compensatory response, involving astroglial peroxisomes. At severe pathological stages, when senile plaques disrupt cortical cytoarchitecture, antioxidant capacity is gradually lost. Overall, our data suggest early therapeutic intervention in AD, also targeting peroxisomes. PMID:25973140

  18. Fundamental studies of stress distributions and stress relaxation in oxide scales on high temperature alloys. [Final progress report

    SciTech Connect

    Shores, D.A.; Stout, J.H.; Gerberich, W.W.

    1993-06-01

    This report summarizes a three-year study of stresses arising in the oxide scale and underlying metal during high temperature oxidation and of scale cracking. In-situ XRD was developed to measure strains during oxidation over 1000{degrees}C on pure metals. Acoustic emission was used to observe scale fracture during isothermal oxidation and cooling, and statistical analysis was used to infer mechanical aspects of cracking. A microscratch technique was used to measure the fracture toughness of scale/metal interface. A theoretical model was evaluated for the development and relaxation of stresses in scale and metal substrate during oxidation.

  19. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. [Quarterly] technical progress report, April--June 1993

    SciTech Connect

    Doyle, F.M.

    1993-06-30

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eleventh quarter, dry thermal oxidation tests were done on coal samples from the Pennsylvania State Coal Bank. As-received and oxidized coal samples were studied by ion-exchange methods to determine the carboxylate and phenolic group concentrations. Film flotation tests were done to characterize the flotability of as-received and oxidized coals. In addition, electrokinetic tests were done on different coals, to obtain information pertinent to the selection of flotation reagents. DRIFT analysis was done to characterize the structure of coals.

  20. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, [March--May 1992

    SciTech Connect

    Doyle, F.M.

    1992-06-30

    during the seventh quarter, electrokinetic, humic acid extraction and film flotation tests were done on oxidized samples of Upper Freeport coal from the Troutville {number_sign} 2 Mine, Clearfield County, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis was done to characterize the morphology and composition of the surface of as-received coal, oxidized coal, oxidized coal after extraction of humic acids and humic acid extracted from oxidized coal. In addition, electrochemical studies were done on electrodes prepared from coal pyrite samples.

  1. Epoetin beta pegol alleviates oxidative stress and exacerbation of renal damage from iron deposition, thereby delaying CKD progression in progressive glomerulonephritis rats.

    PubMed

    Hirata, Michinori; Tashiro, Yoshihito; Aizawa, Ken; Kawasaki, Ryohei; Shimonaka, Yasushi; Endo, Koichi

    2015-12-01

    The increased deposition of iron in the kidneys that occurs with glomerulopathy hinders the functional and structural recovery of the tubules and promotes progression of chronic kidney disease (CKD). Here, we evaluated whether epoetin beta pegol (continuous erythropoietin receptor activator: CERA), which has a long half-life in blood and strongly suppresses hepcidin-25, exerts renoprotection in a rat model of chronic progressive glomerulonephritis (cGN). cGN rats showed elevated urinary total protein excretion (uTP) and plasma urea nitrogen (UN) from day 14 after the induction of kidney disease (day 0) and finally declined into end-stage kidney disease (ESKD), showing reduced creatinine clearance with glomerulosclerosis, tubular dilation, and tubulointerstitial fibrosis. A single dose of CERA given on day 1, but not on day 16, alleviated increasing uTP and UN, thereby delaying ESKD. In the initial disease phase, CERA significantly suppressed urinary 8-OHdG and liver-type fatty acid-binding protein (L-FABP), a tubular damage marker. CERA also inhibited elevated plasma hepcidin-25 levels and alleviated subsequent iron accumulation in kidneys in association with elevated urinary iron excretion and resulted in alleviation of growth of Ki67-positive tubular and glomerular cells. In addition, at day 28 when the exacerbation of uTP occurs, a significant correlation was observed between iron deposition in the kidney and urinary L-FABP. In our study, CERA mitigated increasing kidney damage, thereby delaying CKD progression in this glomerulonephritis rat model. Alleviation by CERA of the exacerbation of kidney damage could be attributable to mitigation of tubular damage that might occur with lowered iron deposition in tubules. PMID:26634903

  2. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report 10, July 1, 1995--September 31, 1995

    SciTech Connect

    McCormick, R.L.

    1995-12-07

    This document is the tenth quarterly technical progress report under Contract No. DE-AC22-92PC92110 {open_quotes}Development of Vanadium-Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane{close_quotes}. Activities focused on testing of additional modified and promoted catalysts and characterization of these materials. Attempts at improving the sensitivity of our GC based analytical systems were also made with some success. Methanol oxidation studies were initiated. These results are reported. Specific accomplishments include: (1) Methane oxidation testing of a suite of catalysts promoted with most of the first row transition metals was completed. Several of these materials produced low, difficult to quantify yields of formaldehyde. (2) Characterization of these materials by XRD and FTIR was performed with the goal of correlating activity and selectivity with catalyst properties. (3) We began to characterize catalysts prepared via modified synthesis methods designed to enhance acidity using TGA measurements of acetonitrile chemisorption and methanol dehydration to dimethyl ether as a test reaction. (4) A catalyst prepared in the presence of naphthalene methanol as a structural disrupter was tested for activity in methane oxidation. It was found that this material produced low yields of formaldehyde which were difficult to quantify. (5) Preparation of catalysts with no Bronsted acid sites. This was accomplished by replacement of exchangeable protons with potassium, and (6) Methanol oxidation studies were initiated to provide an indication of catalyst activity for decomposition of this desired product and as a method of characterizing the catalyst surface.

  3. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report No. 13, April 1996--June 1996

    SciTech Connect

    McCormick, R.L.; Alptekin, G.O.

    1996-07-30

    This document is the thirteenth quarterly technical progress report under Contract No. DE-AC22-92PC92110 {open_quotes}Development of Vanadium-Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane{close_quotes} and covers the period April-June 1996. The basic premise of this project is that vanadyl pyrophosphate (VPO), a catalyst used commercially in the selective oxidation of butane to maleic anhydride, can be developed as a catalyst for selective methane oxidation. Data supporting this idea include published reports indicating moderate to high selectivity in oxidation of ethane, propane, and pentane, as well as butane. Methane oxidation is a much more difficult reaction to catalyze than that of other alkanes and it is expected that considerable modification of vanadyl pyrophosphate will be required for this application. It is well known that VPO can be modified extensively with a large number of different promoters and in particular that promoters can enhance selectivity and lower the temperature required for butane conversion.

  4. Differential expression of oxidation-specific epitopes and apolipoprotein(a) in progressing and ruptured human coronary and carotid atherosclerotic lesions.

    PubMed

    van Dijk, Rogier A; Kolodgie, Frank; Ravandi, Amir; Leibundgut, Gregor; Hu, Patrick P; Prasad, Anand; Mahmud, Ehtisham; Dennis, Edward; Curtiss, Linda K; Witztum, Joseph L; Wasserman, Bruce A; Otsuka, Fumiyuki; Virmani, Renu; Tsimikas, Sotirios

    2012-12-01

    The relationships between oxidation-specific epitopes (OSE) and lipoprotein (a) [Lp(a)] and progressive atherosclerosis and plaque rupture have not been determined. Coronary artery sections from sudden death victims and carotid endarterectomy specimens were immunostained for apoB-100, oxidized phospholipids (OxPL), apo(a), malondialdehyde-lysine (MDA), and MDA-related epitopes detected by antibody IK17 and macrophage markers. The presence of OxPL captured in carotid and saphenous vein graft distal protection devices was determined with LC-MS/MS. In coronary arteries, OSE and apo(a) were absent in normal coronary arteries and minimally present in early lesions. As lesions progressed, apoB and MDA epitopes did not increase, whereas macrophage, apo(a), OxPL, and IK17 epitopes increased proportionally, but they differed according to plaque type and plaque components. Apo(a) epitopes were present throughout early and late lesions, especially in macrophages and the necrotic core. IK17 and OxPL epitopes were strongest in late lesions in macrophage-rich areas, lipid pools, and the necrotic core, and they were most specifically associated with unstable and ruptured plaques. Specific OxPL were present in distal protection devices. Human atherosclerotic lesions manifest a differential expression of OSEs and apo(a) as they progress, rupture, and become clinically symptomatic. These findings provide a rationale for targeting OSE for biotheranostic applications in humans. PMID:22969153

  5. Controlling of incipient oxidation of pyrite for improved rejection. Sixth quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Yoon, R.H.; Richardson, P.E.

    1994-07-01

    The major objectives of this work are (1) to determine the Eh-pH conditions under which pyrite is stable, (2) to determine the mechanism of the initial stages of pyrite oxidation, and (3) to determine if the semiconducting properties of pyrite affect its oxidation behavior. It is known that moderate oxidation of pyrite produces a hydrophobic surface product. This hydrophobic product makes it extremely difficult to depress pyrite in coal flotation circuits. The eventual objective of this work is to prevent pyrite oxidation in order to better depress pyrite in coal flotation circuits. In this work clean, unoxidized pyrite surfaces are being produced by fracturing pyrite electrodes in an electrochemical cell. It has been shown that by holding the potential at different values during fracture and measuring the current passed at fracture, pyrite oxidation or reduction can be precisely controlled, or prevented. It has also been found that fresh pyrite surfaces, created by fracture in an electrochemical cell, begin to oxidize at potentials that are about 200 mV more negative than the potentials reported in the literature for pyrite oxidation. This is attributed to the fact that most work on pyrite has employed polished electrodes that have preexisting oxidation products on the surface. Electrochemical reduction and oxidation of these preexisting products essentially mask the oxidation of pyrite itselL In addition, photocurrent measurements show that freshly-fractured pyrite surfaces are charged negatively. This negative charge is believed to result from an intrinsic, acceptor-like surface state. This report period, voltammetric and photocurrent studies have been carried out as a function of pH and the photoresponse of pyrites from different sources have been determined.

  6. Interleukin 6 Is Required for Pancreatic Cancer Progression by Promoting MAPK Signaling Activation and Oxidative Stress Resistance

    PubMed Central

    Zhang, Yaqing; Yan, Wei; Collins, Meredith A.; Bednar, Filip; Rakshit, Sabita; Zetter, Bruce R.; Stanger, Ben Z.; Chung, Ivy; Rhim, Andrew D.; di Magliano, Marina Pasca

    2013-01-01

    Pancreatic cancer, one of the deadliest human malignancies, is almost invariably associated with the presence of an oncogenic form of Kras. Mice expressing oncogenic Kras in the pancreas recapitulate the step-wise progression of the human disease. The inflammatory cytokine interleukin 6 (IL6) is often expressed by multiple cell types within the tumor microenvironment. Here, we show that IL6 is required for the maintenance and progression of pancreatic cancer precursor lesions. In fact, the lack of IL6 completely ablates cancer progression even in presence of oncogenic Kras. Mechanistically, we show that IL6 synergizes with oncogenic Kras to activate the reactive oxygen species (ROS) detoxification program downstream of the MAPK/ERK signaling cascade. In addition, IL6 regulates the inflammatory microenvironment of pancreatic cancer throughout its progression, providing several signals that are essential for carcinogenesis. Thus, IL6 emerges as a key player at all stages of pancreatic carcinogenesis, and a potential therapeutic target. PMID:24097820

  7. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, May 31, 1995

    SciTech Connect

    Doyle, F.M.

    1995-12-31

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. Work during the nineteenth quarter has concluded studies of the surface functional groups produced on coal by severe thermal and chemical oxidation, and on investigating the partition of metal ions between such strongly oxidized coal samples and aqueous solutions. This partitioning behavior was being followed to obtain further information on the chemistry of the coal surfaces after different oxidation treatments. Adsorption isotherms for the uptake of Cd{sup 2+} on coal oxidized by different methods were obtained, and these and the Cu{sup 2+} adsorption isotherms reported in the last report have been scrutinized, and interpreted more exhaustively. The apparent discrepancies noted in the last report for the analysis of surface functional groups have been investigated further. The adsorption behavior has been related to the surface chemistry of Upper Freeport coal oxidized by different methods.

  8. Iron Fischer-Tropsch catalysis: Properties of an ultrafine iron oxide catalyst. Quarterly progress report, July--September 1992

    SciTech Connect

    Xu, Liguang; Bao, Shiqi; O`Brien, R.; Houpt, D.; Davis, B.H.

    1992-12-31

    A commercial Fe oxide with a particle size of 3 nm is now available. The FT requires considerable time on stream before steady state conditions are attained. Since it is desirable to obtain FT data for the smaller ultrafine Fe oxide catalysts at larger times on steam, data for operation up to 6 months were collected using slurry phase. Results show that the ultrafine Fe oxide maintain catalytic activity for a 150-day operating period. Addition of 0.5% K increased the activity; after 56 days, the activity had declined to and below that of unpromoted catalyst. Neither the unpromoted nor K-promoted catalyst exhibited good selectivity for alkenes.

  9. A broad spectrum catalytic system for removal of toxic organics from water by deep oxidation. 1998 annual progress report

    SciTech Connect

    Sen, A.

    1998-06-01

    'Toxic organics and polymers pose a serious threat to the environment, especially when they are present in aquatic systems. The objective of the research is the design of practical procedures for the removal and/or recycling of such pollutants by oxidation. This report summarizes the work performed in the first one and half years of a three year project. The authors had earlier described a catalytic system for the deep oxidation of toxic organics, such as benzene, phenol and substituted phenols, aliphatic and aromatic halogenated compounds, organophosphorus, and organosulfur compounds [1]. In this system, metallic palladium was found to catalyze the oxidation of the substrate by dioxygen in aqueous medium at 80--100 C in the presence of carbon monoxide. For all the substrates examined, deep oxidation to carbon monoxide, carbon dioxide, and water occurred in high yields, resulting in up to several hundred turnovers over a 24 h period. Because of a pressing need for new procedures for the destruction of chemical warfare agents, the authors have examined in detail the deep oxidation of appropriate model compounds containing phosphorus-carbon and sulfur-carbon bonds using the same catalytic system. The result is the first observation of the efficient catalytic oxidative cleavage of phosphorus-carbon and sulfur-carbon bonds under mild conditions, using dioxygen as the oxidant [2]. In addition to the achievements described above, they have unpublished results in several other areas. For example, they have investigated the possibility of using dihydrogen rather than carbon monoxide as a coreductant in the catalytic deep oxidation of substrates. Even more attractive from a practical standpoint is the possibility of using a mixture of carbon monoxide and dihydrogen (synthesis gas). Indeed, experiments indicated that it is possible to substitute carbon monoxide by dihydrogen or synthesis gas. Significantly, in the case of nitro compounds, the deep oxidation in fact proceeded

  10. Neuromuscular electrical stimulation and dietary interventions to reduce oxidative stress in a secondary progressive multiple sclerosis patient leads to marked gains in function: a case report.

    PubMed

    Reese, David; Shivapour, Ezzatolah T; Wahls, Terry L; Dudley-Javoroski, Shauna D; Shields, Richard

    2009-01-01

    Neuromuscular electrical stimulation has been used to aid musculoskeletal recovery. Excessive oxidative stress and excitoxicity are implicated in secondary progressive multiple sclerosis. A 52-year-old white female with SPMS had been scooter- and cane-dependent for 4 years. She requested and received a trial of neuromuscular electrical stimulation. Two months after initiating NMES the patient adopted several nutritional interventions to lower oxidative stress and excito-toxicity. During the first 2 months of neuromuscular electrical stimulation, the therapist observed modest gait improvements. Following the addition of nutritional interventions, more rapids gains in strength and endurance, including muscle groups not receiving neuromuscular electrical stimulation were observed by both the therapist and the patient. After 8 months of neuromuscular electrical stimulation (6 months of nutritional intervention) the patient's function had improved sufficiently that she no longer used a scooter or cane and rode her bicycle routinely 8 miles, including hills. PMID:19918474

  11. Progressive Hyperglycemia across the Glucose Tolerance Continuum in Older Obese Adults Is Related to Skeletal Muscle Capillarization and Nitric Oxide Bioavailability

    PubMed Central

    Solomon, Thomas P. J.; Haus, Jacob M.; Li, Yanjun

    2011-01-01

    Context: Reduced tissue nutrient exposure may aid in the progression of glucose intolerance. Objective: The aim of the study was to examine peripheral tissue glucose disposal in relation to muscle capillarization and plasma nitric oxide bioavailability. Design: Participants were carefully matched for age, adiposity, and lipid status and stratified into normal (n = 20), impaired (n = 20), and type 2 diabetic (n = 20) glucose-tolerant groups. Setting: The study was conducted in an outpatient setting at a Clinical Research Unit. Participants: Older, obese men and women (n = 60; age, 65 ± 1 yr; body mass index, 32.7 ± 0.5 kg/m2) participated in the study. Intervention: We performed a cross-sectional study. Main Outcome Measures: Body composition, energy metabolism, aerobic fitness (maximum oxygen consumption), insulin sensitivity (glucose clamp), vastus lateralis muscle morphology, and plasma nitric oxide were assessed. Results: Although subjects were identical with respect to age, body composition, energy expenditure, and lipid status, insulin-stimulated glucose disposal and maximum oxygen consumption showed progressive decline with increasing glucose intolerance. Muscle fiber type composition and mitochondrial density were not different between groups. However, capillary density markedly declined with advancing glucose intolerance (1.86 ± 0.31, 1.70 ± 0.28, 1.42 ± 0.24 capillary/fiber; P < 0.05), a trend that was mirrored by fasting plasma nitric oxide concentrations (26.3 ± 3.6, 19.8 ± 2.3, 15.2 ± 2.1 μmol/liter; P < 0.05). Furthermore, skeletal muscle capillary density correlated with insulin sensitivity (r = 0.65; P < 0.001). Conclusions: Impaired muscle capillarization and reduced nutrient exposure to the metabolizing tissue may play a major role in the progression of insulin resistance across the glucose tolerance continuum, independent of age, adiposity, lipid status, and resting energy metabolism. These data also highlight plasma nitric oxide as a

  12. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane: Quarterly technical progress report 15, October 1-December 31, 1996

    SciTech Connect

    McCormick, R.L., Alptekin, G.O.

    1997-04-02

    This document is the fifteenth quarterly technical progress report under Contract No. DE-AC22-92PC921 `Development of Vanadium- Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane` and covers the period October-December, 1996. Vanadium phosphate, vanadyl pyrophosphate specifically, is used commercially to oxidize butane to maleic anhydride and is one of the few examples of an active and selective oxidation catalyst for alkanes. In this project we are examining this catalyst for the methane oxidation reaction. Initial process variable and kinetic studies indicated that vanadyl pyrophosphate is a reasonably active catalyst below 5000{degrees}C but produces CO as the primary product, no formaldehyde or methanol were observed. A number of approaches for modification of the phosphate catalyst to improve selectivity have been tried during this project. During this quarter we have obtained surface areas of catalysts prepared with modified surface acidity. The results confirm the enhanced activity of two of the modified preparations in methanol conversion (a test reaction for surface acid sites). In previous work we noted no improvement in methane oxidation selectivity for these catalysts. Surface areas, surface analysis by XPS, and bulk analysis by ICP-AA have been obtained for vanadyl pyrophosphate promoted by Cr, Cu, and Fe. These data indicate that roughly one tenth of the surface metal atoms are promoter. A similar analysis was obtained for the bulk. Preliminary examination of binding energies suggests a slightly more reduced surface for the Cr and Fe promoted catalysts which exhibit a significant selectivity to formaldehyde in methane oxidation. A more detailed kinetic model has also been developed to aid in comparing the promoted catalysts and is discussed. Plans for the coming months are outlined.

  13. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, September 30, 1992

    SciTech Connect

    Doyle, F.M.

    1992-12-31

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eighth quarter, wet chemical and dry oxidation tests were done on Upper Freeport coal from the Troutville {number_sign}2 Mine, Clearfield County, Pennsylvania. In addition electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania.

  14. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, June 1995--August 1995

    SciTech Connect

    Doyle, F.M.

    1996-03-01

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The action of coal and pyrite as reducing agents and as waste processing sorptive material for wastes outside the industry are also discussed.

  15. Controlling incipient oxidation of pyrite for improved rejection. Eighth quarterly technical progress report, July 1, 1994--September 30, 1994

    SciTech Connect

    Yoon, R.H.; Richardson, P.E.

    1994-12-31

    The major objectives of this work are (1) to determine the Eh-pH conditions under which pyrite is stable, (2) to determine the mechanism of the initial stages of pyrite oxidation and (3) to determine if the semi-conducting properties of pyrite effects its oxidation behavior. It is known that moderate oxidation of pyrite produces a hydrophobic surface product. This hydrophobic product makes it extremely difficult to depress pyrite in coal flotation circuits. The eventual objective of this work is to prevent pyrite oxidation in order to better depress pyrite in coal flotation circuits. In this work clean, unoxidized pyrite surfaces are being produced by fracturing pyrite electrodes in an electrochemical cell. It has been shown that pyrite assumes a unique potential referred to as the ``stable potential`` at the instance it is fractured and that this potential is several hundred millivolts more negative than the steady state mixed potential of pyrite. It has also been shown that by holding the potential of pyrite at its stable potential during fracture, pyrite undergoes neither oxidation nor reduction. It has also been found that fresh pyrite surfaces created by fracture in an electrochemical begin to oxidize at potentials that are about 200 mV more negative than the potentials reported in the literature for pyrite oxidation. This is attributed to the fact that most work on pyrite has employed polished electrodes that have pre-existing oxidation products on the surface. The existence of a pH dependent stable potential for freshly fractured pyrite electrodes was based on studies conducted mainly on pyrite from Peru.

  16. Coal-gasification and tar-conversion reactions over calcium oxide. Annual progress report, August 1, 1981-October 31, 1982

    SciTech Connect

    Longwell, J.P.; Chang, C.S.; Peters, W.A.

    1983-01-01

    This research focusses on low temperature (723-1123 K) effects of calcium oxide on coal gasification and coal pyrolysis. The general objective of the present research is to investigate the chemistry and global kinetics of thermal reactions of freshly-formed tars in the presence of calcium oxide, and thereby assess the potential application for achieving improved overall gas yields and product quality in practical processes. Construction and debugging of the experimental system, designed to achieve this goal, have been completed. Preliminary runs showed that the system can be operated satisfactorily according to the design specifications. The extent of fresh tar cracking can be controlled by independently adjusting the major operating variables, such as reactor temperature, contact time (with active calcium oxide), and system pressure. The collection systems and the analytical techniques employed for characterizing the pyrolysis products have been identified. A standard procedure for reproducibly generating packed beds of active calcium oxide that exhibited minimal variation in stone surface area along their axis is under development. A 2-step calcination protocol shows promise for achieving this goal for well-defined experiments. Preliminary results of coal volatile generation and cracking experiments indicate that calcium oxide can drastically reduce the absolute yield of tars and significantly increase the production and yields of methane and ethylene gases. Overall material balances also appear to be satisfactory.

  17. Impact of nitrogen flushing and oil choice on the progression of lipid oxidation in unwashed fried sliced potato crisps.

    PubMed

    Marasca, E; Greetham, D; Herring, S D; Fisk, I D

    2016-05-15

    Unwashed, sliced, batch-fried potato crisps have a unique texture and are growing in popularity in the UK/EU premium snack food market. In this study, the storage stability of unwashed sliced (high surface starch) potatoes (crisps) fried in regular sunflower oil (SO) or in high oleic sunflower oil (HOSO) was compared over accelerated shelf life testing (45°C, 6 weeks); with and without nitrogen gas flushing. Primary oxidation products (lipid hydroperoxides) were measured with a ferrous oxidation-xylenol orange (FOX) assay and volatile secondary oxidation products (hexanal) were quantified by using solid phase micro-extraction gas chromatography mass spectrometry (HS-SPME-GC/MS). Results revealed that crisps fried in SO were the least stable. Flushing the stored crisps with nitrogen gas proved to be effective in slowing down the oxidation rate after frying with sunflower oil, significantly stabilizing the crisps. However, crisps fried in HOSO were the most stable, with the lowest rate of development of oxidation markers, and this has previously not been shown for crisps with a high free starch content. PMID:26775947

  18. Impact of nitrogen flushing and oil choice on the progression of lipid oxidation in unwashed fried sliced potato crisps

    PubMed Central

    Marasca, E.; Greetham, D.; Herring, S.D.; Fisk, I.D.

    2016-01-01

    Unwashed, sliced, batch-fried potato crisps have a unique texture and are growing in popularity in the UK/EU premium snack food market. In this study, the storage stability of unwashed sliced (high surface starch) potatoes (crisps) fried in regular sunflower oil (SO) or in high oleic sunflower oil (HOSO) was compared over accelerated shelf life testing (45 °C, 6 weeks); with and without nitrogen gas flushing. Primary oxidation products (lipid hydroperoxides) were measured with a ferrous oxidation-xylenol orange (FOX) assay and volatile secondary oxidation products (hexanal) were quantified by using solid phase micro-extraction gas chromatography mass spectrometry (HS-SPME-GC/MS). Results revealed that crisps fried in SO were the least stable. Flushing the stored crisps with nitrogen gas proved to be effective in slowing down the oxidation rate after frying with sunflower oil, significantly stabilizing the crisps. However, crisps fried in HOSO were the most stable, with the lowest rate of development of oxidation markers, and this has previously not been shown for crisps with a high free starch content. PMID:26775947

  19. Relationship between the Increased Haemostatic Properties of Blood Platelets and Oxidative Stress Level in Multiple Sclerosis Patients with the Secondary Progressive Stage

    PubMed Central

    Bijak, Michał; Miller, Elżbieta; Miller, Sergiusz

    2015-01-01

    Multiple sclerosis (MS) is the autoimmune disease of the central nervous system with complex pathogenesis, different clinical courses and recurrent neurological relapses and/or progression. Despite various scientific papers that focused on early stage of MS, our study targets selective group of late stage secondary progressive MS patients. The presented work is concerned with the reactivity of blood platelets in primary hemostasis in SP MS patients. 50 SP MS patients and 50 healthy volunteers (never diagnosed with MS or other chronic diseases) were examined to evaluate the biological activity of blood platelets (adhesion, aggregation), especially their response to the most important physiological agonists (thrombin, ADP, and collagen) and the effect of oxidative stress on platelet activity. We found that the blood platelets from SP MS patients were significantly more sensitive to all used agonists in comparison with control group. Moreover, the platelet hemostatic function was advanced in patients suffering from SP MS and positively correlated with increased production of O2−∙ in these cells, as well as with Expanded Disability Status Scale. We postulate that the increased oxidative stress in blood platelets in SP MS may be primarily responsible for the altered haemostatic properties of blood platelets. PMID:26064417

  20. The adsorption and reaction of halogenated volatile organic compounds (VOC's) on metal oxides. 1998 annual progress report

    SciTech Connect

    Lunsford, J.; Goodman, D.W.; Haw, J.F.

    1998-06-01

    'The goal of the research is to elucidate the properties of the materials responsible for the activation of halocarbons and the nature of the intermediates formed in the dissociative adsorption of this class of compounds. This information is essential for interpreting and predicting stoichiometric and catalytic pathways for the safe destruction of halocarbon pollutants. The specific objectives are: (1) to study the adsorption and reactivity of chloromethanes and chloroethanes on metal oxides; (2) to identify the reaction intermediates using spectroscopic methods; and (3) to develop kinetic models for the reaction of these halocarbons with oxide surfaces. This report summarizes work after 20 months of a 36-month project. Emphasis has been placed understanding the surfaces phases, as well as the bulk phases that are present during the reactions of chlorinated hydrocarbons with strongly basic metal oxides. Most of the research has been carried out with carbon tetrachloride.'

  1. Studies of incipient oxidation of pyrite for improved rejection. Fifth quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Yoon, R.H.; Richardson, P.E.

    1993-12-31

    Oxidation of fresh surfaces of coal- and mineral-pyrite has been studied using electrochemical and photoelectrochemical techniques. This work was undertaken to better understand the oxidation processes that cause self-induced flotation of pyrite. Fresh surfaces were created by fracturing pyrite in situ, i.e., in solution. Chronoamperometry was used to determine the potential at which a newly created surface does not show oxidation or reduction currents. The ``stable`` potentials for pyrite are {minus}0.28 V (SHE) at pH 9.2 and 0 V at pH 4.6. Subsequent cyclic voltammograms show the incipient oxidation mechanism that involves the formation of sulfur products, which are believed to be hydrophobic. It is shown that the lower flotation edge of pyrite coincides with its incipient oxidation potential. The photocurrent generated at fractured pyrite surfaces by chopped illumination was used to determine the semiconducting characteristics of the electrodes. The results indicate that a spontaneous depletion layer is formed on the fresh surfaces of n-type pyrite. The depletion layer is attributed to an intrinsic, acceptor-like surface state. Charge storage in this surface state pins the band edges over a wide potential range, accounting for the metallic-like electrochemical behavior that has been reported for pyrite. The existence of an intrinsic surface state is consistent with XPS studies on pyrite surfaces prepared in vacuum, which reveal an FeS-like species in the surface region. During this report period, all of the data previously obtained has been analyzed in an attempt to better understand the mechanism of pyrite flotation with respect to its oxidation. The results of this analysis are included in this quarterly report. In addition, samples of pyrite from seven different sources were obtained. In situ fracture, photoelectrochemical and cyclic voltammetry studies have been conducted on electrodes made from these pyrites.

  2. The adsorption and reaction of halogenated volatile organic compounds (VOC's) on metal oxides. Annual progress report, September 1996--October 1997

    SciTech Connect

    Lunsford, J.H.; Haw, J.F.; Goodman, D.W.

    1997-10-01

    'The interactions of carbon tetrachloride with strongly basic oxides and hydroxides have been studied by several techniques in order to understand the surface reactions and the subsequent bulk reactions that result in the destruction of the chlorinated hydrocarbon. Emphasis has been placed on understanding the surface phases, as well as the bulk phases, that are present during these transformations. As a result of the study with barium oxide, a reaction cycle has been demonstrated that may have practical significance in the removal of chlorinated hydrocarbons.'

  3. Modeling and experimental studies of oxide covered metal surfaces: TiO{sub 2}/Ti a model system. Progress report

    SciTech Connect

    Smyrl, W.H.

    1991-12-31

    Prior work in our laboratories at the Corrosion Research Center has shown that thin, anodic TiO{sub 2} films formed by the Slow Growth Mode (SGM) on polycrystalline titanium and microcrystalline with a texture that varies from one metal grain to another. Furthermore, the underlying metal grains are mapped by the photoelectrochemical response of the oxide. The same characteristics have also been demonstrated in our laboratory for ZnO grown on Zn. The TiO{sub 2}/Ti system has been chosen for study both because of its importance in energy systems, and because it can serve as a model system for other metal-metal oxide couples. The investigations of anodic TiO{sub 2} films on Ti have shown that the properties of thin films are consistent with the rutile form of the oxide. Both experimental data and theoretical calculations show the close resemblance to results on single crystal TiO{sub 2}. Furthermore, the modeling studies reveal that the optical transitions near the bandedge arise from the bulk band structure. The photoelectrochemical properties of anodic TiO{sub 2} films have now been shown to obey the simple Gaertner-Butler model for the semiconductor-electrolyte interface, with a few modifications. The most important deviation has now been shown to be a result of multiple internal reflections in the oxide film.

  4. Oxidation of phenolics in supercritical water. Quarterly technical progress report, 1 December 1993--28 February 1994

    SciTech Connect

    Not Available

    1994-05-01

    An environmental hazard associated with coal liquefaction and gasification is the generation of aqueous waste streams containing phenolics and carcinogenic organics such as polynuclear aromatics. Oxidation in supercritical water (SCW) is an emerging technology for the ultimate destruction of phenolics and other organics in waste water streams. SCW oxidation involves the oxidation of organics in an aqueous medium at temperatures between 400--650 C and pressures around 250 atm. These conditions exceed the thermodynamic critical point of water, hence the water is said to be supercritical. Wastes can be converted by SCWO to benign products: carbon is converted to CO{sub 2}, hydrogen to H{sub 2}O, and nitrogen to N{sub 2} or N{sub 2}O (but not NO{sub x}). The objective of this project is to oxidize selected phenolics in SCW and then determine the reaction kinetics (rate constants, reaction orders, activation energies) and the reaction pathways. These reaction fundamentals can then be used to evaluate, design, optimize, and control coal-conversion waste water treatment processes based on SCWO.

  5. Surface properties of photo-oxidized bituminous coals. Technical progress report for the period July--September 1996

    SciTech Connect

    Mitchell, G.; Werner, D.; Davis, A.; Chander, S.

    1996-11-01

    During this report period, irradiation (photo-oxidation) of all six vitrain concentrates for three different time periods (10, 50 and 100 min) using the BLAK-RAY ultraviolet lamp was completed along with film flotation and surface luminescence measurements for each condition. Flotation results from photo-oxidized powdered vitrains appear to be contrary to earlier results obtained from contact angle measurements on polished surfaces. Some of the more strongly photo-oxidized powders, particularly for hvAb and mvb coals, exhibit greater hydrophobicity. The changes in hydrophobicity as well as a measured decrease in surface luminescence with increasing irradiation time, clearly shows that UV irradiation has had an influence on surface properties. There is some possibility that increasing exposure to the UV source may cause mobilization of aliphatic compounds (oils) from the fresh fracture surfaces of vitrain. These compounds, once exuded onto the surface could act like a natural flotation collector that would both increase particle hydrophobicity and may obscure the surface from further oxidation. Because most aliphatic compounds do not luminesce, their presence on the surface would reduce measured luminescence. A second possible explanation is that the types of oxygen functional groups which form during UV irradiation may inhibit or promote hydrophobicity depending upon their concentration. In an attempt to resolve these issues several analytical tests will be undertaken. Pyrolysis GC/MS will be used to investigate whether photo-oxidation of bulk vitrains was sufficiently severe with increasing UV irradiation. Reflectance-mode FTIR will be used to measure changes in surface chemistry for some of the irradiated powdered vitrains.

  6. Advanced alternate planar geometry solid oxide fuel cells. Interim quarterly technical progress report, November 1, 1988--January 31, 1989

    SciTech Connect

    Prouse, D.; Elangovan, S.; Khandkar, A.; Donelson, R.; Marianowski, L.

    1989-12-31

    During this quarter, progress was made at Ceramatec in seal development and conductivity measurements of YIG compositions. A creep test was completed on the porous/dense/porous triilayer. IGT provided a discussion on possible interconnect materials. The following tasks are reported on: cell design analysis, program liaison and test facility preparation, cell component fabrication/development, out-of-cell tests. 9 figs, 2 tabs.

  7. Cost-effectiveness of anti-oxidant vitamins plus zinc treatment to prevent the progression of intermediate age-related macular degeneration. A Singapore perspective

    PubMed Central

    Saxena, Nakul; George, Pradeep Paul; Heng, Bee Hoon; Lim, Tock Han; Yong, Shao Onn

    2015-01-01

    Purpose: To determine if providing high dose anti-oxidant vitamins and zinc treatment age-related eye disease study (AREDS formulation) to patients with intermediate age-related macular degeneration (AMD) aged 40–79 years from Singapore is cost-effective in preventing progression to wet AMD. Methods: A hypothetical cohort of category 3 and 4 AMD patients from Singapore was followed for 5 calendar years to determine the number of patients who would progress to wet AMD given the following treatment scenarios: (a) AREDS formulation or placebo followed by ranibizumab (as needed) for wet AMD. (b) AREDS formulation or placebo followed by bevacizumab (monthly) for wet AMD. (c) AREDS formulation or placebo followed by aflibercept (VIEW I and II trial treatment regimen). Costs were estimated for the above scenarios from the providers’ perspective, and cost-effectiveness was measured by cost per disability-adjusted life year (DALY) averted with a disability weight of 0.22 for wet AMD. The costs were discounted at an annual rate of 3%. Results: Over 5400 patients could be prevented from progressing to wet AMD cumulatively if AREDS formulation were prescribed. AREDS formulation followed by ranibizumab was cost-effective compared to placebo-ranibizumab or placebo-aflibercept combinations (cost per DALY averted: SGD$23,662.3 and SGD$21,138.8, respectively). However, bevacizumab (monthly injections) alone was more cost-effective compared to AREDS formulation followed by bevacizumab. Conclusion: Prophylactic treatment with AREDS formulation for intermediate AMD patients followed by ranibizumab or for patients who progressed to wet AMD was found to be cost-effective. These findings have implications for intermediate AMD screening, treatment and healthcare planning in Singapore. PMID:26265643

  8. Free radicals in breast carcinogenesis, breast cancer progression and cancer stem cells. Biological bases to develop oxidative-based therapies.

    PubMed

    Vera-Ramirez, Laura; Sanchez-Rovira, Pedro; Ramirez-Tortosa, M Carmen; Ramirez-Tortosa, Cesar L; Granados-Principal, Sergio; Lorente, Jose A; Quiles, Jose L

    2011-12-01

    Oxidative stress leads to lipid, carbohydrate, protein and DNA damage in biological systems and affects cell structure and function. Breast cancer cells are subjected to a high level of oxidative stress, both intracellular and extracellular. To survive, cancer cells must acquire adaptive mechanisms that counteract the toxic effects of free radicals exposure. These mechanisms may involve the activation of redox-sensitive transcription factors, increased expression of antioxidant enzymes and antiapoptotic proteins. Moreover, recent data maintain that different breast cancer cell types, show different intracellular antioxidant capacities that may determine their ability to resist radio and chemotherapy. The resistant cell type has been shown to correspond with tumor initiating cells, also known as cancer stem cells (CSCs), which are thought to be responsible for tumor initiation and metastasis. Abrogation of the above-mentioned adaptive mechanisms by redox regulation in cancer cells opens a promising research line that could have significant therapeutic applications. PMID:21288735

  9. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, December 31, 1992

    SciTech Connect

    Doyle, F.M.

    1992-12-31

    During the ninth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis were done to characterize the morphology and composition of the surface of as-received coal, oxidized coal and coal pyrite. In addition, electrokinetic tests were done on Upper Freeport coal pyrite.

  10. Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress

    NASA Astrophysics Data System (ADS)

    Huang, Zhen-Feng; Pan, Lun; Zou, Ji-Jun; Zhang, Xiangwen; Wang, Li

    2014-11-01

    Water oxidation is the key step for both photocatalytic water splitting and CO2 reduction, but its efficiency is very low compared with the photocatalytic reduction of water. Bismuth vanadate (BiVO4) is the most promising photocatalyst for water oxidation and has become a hot topic for current research. However, the efficiency achieved with this material to date is far away from the theoretical solar-to-hydrogen conversion efficiency, mainly due to the poor photo-induced electron transportation and the slow kinetics of oxygen evolution. Fortunately, great breakthroughs have been made in the past five years in both improving the efficiency and understanding the related mechanism. This review is aimed at summarizing the recent experimental and computational breakthroughs in single crystals modified by element doping, facet engineering, and morphology control, as well as macro/mesoporous structure construction, and composites fabricated by homo/hetero-junction construction and co-catalyst loading. We aim to provide guidelines for the rational design and fabrication of highly efficient BiVO4-based materials for water oxidation.

  11. Surface properties of photo-oxidized bituminous coals. Technical progress report for the period April to June, 1996

    SciTech Connect

    Mitchell, G.; Werner, D.; Davis, A.; Chander, S.

    1996-08-01

    During this report period, two vitrinite concentrates were prepared and analyzed from the hvBb Ohio No. 4a and hvAb Lower Kittanning seams. Results show that concentrates of 97 and 96 vol% vitrinite were achieved for the respective samples. Both samples have relatively high concentrations of sulfate sulfur which is the only sign of deterioration. However, in the case of the Lower Kittanning sample the sulfate may have been part of the original sample. Irradiation (photo-oxidation) of all six vitrinite concentrates for three different time periods (10, 50 and 100 min) using a ultraviolet lamp was continued during this report period. Evaluation showed that these irradiation times provided a level of photo-oxidation that corresponded to the blue-light flux used in the optical microscope system for 1, 5 and 10 min irradiations, respectively. From evaluation of the surface luminescence of vitrain surfaces following exposure to UV light the authors have determined the intensity decreases with increasing irradiation time. Film flotation results, although incomplete, show that there is some variability in flotation yield as a function of rank and of photo-oxidation time. As observed from contact angle and FTIR spectral measurements on polished surfaces, the hvCb Illinois No. 6 powdered vitrain shows a significant loss in flotation yield with increasing irradiation time following 10 and 50 min of exposure to UV light. Also, a relative minor change in flotation yield was observed for the mvb Splash Dam vitrain powder after 10 and 50 min irradiation. The Splash Dam vitrain gave a slight increase in flotation yield suggesting that the surface became somewhat more hydrophobic. Results from the hvAb Lower Kittanning sample appear intermediate. A significant increase in flotation yield occurs after 10 min irradiation marked by a relatively large decrease after 50 min.

  12. Genetics of bacteria that oxidize one-carbon compounds. Progress report, March 1, 1991--June 30, 1993

    SciTech Connect

    Hanson, R.S.

    1993-12-31

    In the past several years researchers have identified at least 20 genes whose products were required for the oxidation of methanol to formaldehyde in three different facultative methylotrophic bacteria. These genes include structural genes for a cytochrome c{sub L} (mox G) and is a specific electron acceptor for methanol dehydrogenase (MDH), and the two structural genes that encode the large subunit (mox F) and smaller subunit (mox I) of MDH. Other genes are required for the synthesis of the prosthetic group of MDH, Pyrroloquinoline quinone (PQQ), and proteins required for assembly of the active MDH in the periplasm. Three genes are believed to be required for incorporation of calcium into the MDH tetramer. The principal investigator`s group has studied the regulation of methanol oxidation in the pink-pigmented-facultative methylotroph Methylobacterium organophilum XX. The authors have mapped several genes and have sequenced the mox F gene and sequences upstream of mox F. The authors had tentatively identified several genes required for the transcription of the MDH structural genes in three methylotrophs. In the previous proposal, the P.I. proposed to establish an in-vitro transcription/translation system to study the function of the regulatory gene products. Further studies demonstrated that the regulation of transcription of these genes was far more complex than imagined at that time and the research plan was modified to determine the number and function of the regulatory genes using genetic approaches.

  13. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report No. 6, July--September 1994

    SciTech Connect

    McCormick, R.L.

    1995-01-10

    This is the eighth quarterly technical progress report. During this quarter the project was initiated, after transfer via a novation agreement, at the Colorado School of Mines. Project initiation activities have included: set up of catalyst synthesis apparatus; training on x-ray diffraction and FTIR apparatus; set up of catalyst testing reactor; set up of reactor product analytical systems; and set up of method development for measuring catalyst acidity via FTIR. At the end of this quarter significant progress had been made towards completion of these initiation activities. Several catalyst syntheses have been performed and the catalysts characterized by x-ray diffraction and FTIR. The catalyst testing reactor system is operational. Reactor product analysis system is nearing completion. Initiation of this system was delayed by the unavailability of a Valco valve which has just recently arrived. Set up of the in-situ FTIR cell for catalyst acidity studies has begun. In this report the results of several catalyst syntheses are reported along with characterization results. In particular, impregnation of vanadyl pyrophosphate with potassim nitrate dramatically reduced the number of surface hydroxyl groups. Such groups may be important in the non-selective, total oxidation of hydrocarbons. Also, preliminary experimental results on FTIR spectra of adsorbed pyridine are presented. It is shown that pyridine adsorbed on the catalyst surface can be easily observed by the diffuse reflectance IR technique. We plan to apply this technique to measurement of the acid site strength of surfaces modified with promoters.

  14. DL-3-n-butylphthalide delays the onset and progression of diabetic cataract by inhibiting oxidative stress in rat diabetic model.

    PubMed

    Wang, Fuxu; Ma, Jia; Han, Fei; Guo, Xiujin; Meng, Li; Sun, Yufeng; Jin, Cheng; Duan, Huijun; Li, Hang; Peng, Ying

    2016-01-01

    DL-3-n-butylphthalide (NBP) is a therapeutic drug used for ischemic stroke treatment. Here, we investigated the impact of NBP on the development of rat diabetic cataract induced by intraperitoneal injection of streptozotocin (STZ). NBP was then administrated by oral gavage for nine weeks. Cataract development was monitored through ophthalmoscope inspections. The levels of blood glucose and serum reactive oxygen species (ROS), malondialdehyde (MDA) and 8-Hydroxydeovexyguanosine (8-OHdG) were measured. Total and soluble protein and oxidative stress parameters, such as 2, 4- dinitrophenylhydrazone (DNP), 4-hydroxynonenal (4-HNE) and MDA in the lenses were determined by Western blot and thiobarbituric acid analyses. The expressions of NF-E2-related factor 2 (Nrf2) and its downstream antioxidant enzymes, thioredoxin (TRX), Catalase and nuclear accumulation of Nrf2 were determined by Western blot and immunohistochemistry analyses. We showed that NBP treatment significantly improved the cataract scores, the levels of DNP, 4-HNE, and MDA in the lens compared to the non-treated groups. NBP also enhanced the expressions of Nrf2, TRX and catalase in the lens of diabetic rats. In addition, NBP treatment also decreased levels of blood glucose, serum MDA and 8-OHdG. These results suggested that NBP treatment significantly delayed the onset and progression of diabetic cataract by inhibiting the oxidative stresses. PMID:26759189

  15. DL-3-n-butylphthalide delays the onset and progression of diabetic cataract by inhibiting oxidative stress in rat diabetic model

    PubMed Central

    Wang, Fuxu; Ma, Jia; Han, Fei; Guo, Xiujin; Meng, Li; Sun, Yufeng; Jin, Cheng; Duan, Huijun; Li, Hang; Peng, Ying

    2016-01-01

    DL-3-n-butylphthalide (NBP) is a therapeutic drug used for ischemic stroke treatment. Here, we investigated the impact of NBP on the development of rat diabetic cataract induced by intraperitoneal injection of streptozotocin (STZ). NBP was then administrated by oral gavage for nine weeks. Cataract development was monitored through ophthalmoscope inspections. The levels of blood glucose and serum reactive oxygen species (ROS), malondialdehyde (MDA) and 8-Hydroxydeovexyguanosine (8-OHdG) were measured. Total and soluble protein and oxidative stress parameters, such as 2, 4- dinitrophenylhydrazone (DNP), 4-hydroxynonenal (4-HNE) and MDA in the lenses were determined by Western blot and thiobarbituric acid analyses. The expressions of NF-E2-related factor 2 (Nrf2) and its downstream antioxidant enzymes, thioredoxin (TRX), Catalase and nuclear accumulation of Nrf2 were determined by Western blot and immunohistochemistry analyses. We showed that NBP treatment significantly improved the cataract scores, the levels of DNP, 4-HNE, and MDA in the lens compared to the non-treated groups. NBP also enhanced the expressions of Nrf2, TRX and catalase in the lens of diabetic rats. In addition, NBP treatment also decreased levels of blood glucose, serum MDA and 8-OHdG. These results suggested that NBP treatment significantly delayed the onset and progression of diabetic cataract by inhibiting the oxidative stresses. PMID:26759189

  16. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report 3, April--June 1993

    SciTech Connect

    McCormick, R.L.; Jha, M.C.; Streuber, R.D.

    1993-08-20

    This document is the third quarterly technical progress report under Contract No. AC22-92PC92110, ``Development of Vanadium-Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane.`` During this quarter, we have continued to develop methods for catalyst activation by investigating activation in wet gas environments. This procedure leads to the formation of highly crystalline (VO){sub 2}P{sub 2}O{sub 7}, while activation under identical conditions, but with no moisture, leads to a poorly crystalline sample. Published data indicate that the highly crystalline form is representative of commercial butane oxidation catalysts. The main focus of our work during this quarter has been in the area of catalyst testing in the microreactor system. In order to confirm that our microreactor system was providing reliable data, we tested a V{sub 2}O{sub 5}/SiO{sub 2} catalyst at atmospheric pressure and temperatures from 500 to 600{degree}C using 90 to 95 percent CH{sub 4}/O{sub 2}. Several studies of methane oxidation using this catalyst have been published with reasonably good agreement between different research groups. We were not able to reproduce the literature data using steel reactors. However, when the steel reactor was lined with quartz and the postcatalyst reactor volume was minimized by packing with quartz chips, we obtained results which agree closely with those previously published. Using the same quartz reactor and test conditions, we also tested a highly crystalline (wet activated) VPO catalyst.

  17. Hot gas desulfurization with sorbents containing oxides of zinc, iron, vanadium and copper. Quarterly technical progress report

    SciTech Connect

    Akyurtlu, A.

    1991-10-01

    The main objective of this research is to evaluate the desulfurization performance of novel sorbents consisting of different combinations of zinc, iron, vanadium and copper oxides; and to develop a sorbent which can reduce H{sub 2}S levels to less than 1 ppmv, which can stabilize zinc, making operations above 650{degrees}C possible, and which can produce economically recoverable amounts of elemental sulfur during regeneration. This objective will be accomplished by evaluating the sorbent performance using fixed-bed and TGA experiments supported by sorbent characterization at various reaction extents. The work done in the fourth quarter can be summarized as follows: (1) Calibration of the gas chromatograph for low and high H{sub 2}S and SO{sub 2} is completed. (2) The determination of surface areas and densities of the promoted sorbents is completed. (3) Preliminary screening of the promoted sorbents in the packed bed reactor has started.

  18. [Fundamental studies in oxidation-reduction in relation to water photolysis]. Progress report, November 1, 1990--October 25, 1991

    SciTech Connect

    Hurst, J.K.

    1991-12-31

    Our research has been directed at understanding three elementary processes that are central to developing membrane-based integrated chemical systems for water photolysis. These are: (1) the role of interfaces in charge separation/recombination reactions, (2) pathways for transmembrane charge separation, and (3) mechanisms of water oxidation catalyzed by transition metal coordination complexes. Historically, the chemical dynamics of each of these processes has been poorly understood, with numerous unresolved issues and conflicting viewpoints appearing in the literature. Our experimental systems comprise primarily unilamellar vesicles that have been doped with amphiphilic viologens which function as transmembrane charge relays. These systems are experimentally highly tractable and versatile, are conceptually simple, and have been widely used in a variety of organized microphase media and prototypic devices. As such, they are ideal for identifying basic principles governing reactivity.

  19. Progressive activation of degradation processes in solid oxide fuel cell stacks: Part II: Spatial distribution of the degradation

    NASA Astrophysics Data System (ADS)

    Nakajo, Arata; Mueller, Fabian; Brouwer, Jacob; Van herle, Jan; Favrat, Daniel

    2012-10-01

    Solid oxide fuel cell (SOFC) stack design must yield the highest performance, reliability and durability to achieve the lowest cost of electricity delivered to end-users. Existing modelling tools can cope with the first aim, but cannot yet provide sufficient quantitative guidance in the two others. Repeating unit models, with as degradation processes the decrease in ionic conductivity of the electrolyte, metallic interconnect corrosion, anode nickel particles coarsening and cathode chromium contamination are used to investigate their distribution, evolution and interactions in a stack. The spatial distribution of the degradation is studied for the operating conditions optimised in Part I for the highest system electrical efficiency during long-term operation under constant system power output. Current-voltage characterisations performed at different times underestimate the degradation. In the present conditions, the degradation of the cathode dominates. The lower and more uniform cathode overpotential in counter-flow configuration, combined with the beneficial effect of internal reforming on reducing the air-fuel ratio yields the highest lifetime, because it alleviates chromium contamination and interactions between the degradation processes. Increasing the operating temperature alleviates cathode chromium contamination. The beneficial decreases of the cathode overpotential exceed the detrimental higher release rate of chromium species from the metallic interconnect.

  20. Nucleation, Growth, Annealing, and Coagulation of Refractory Oxides and Metals: Recent Experimental Progress and Applications to Astrophysical Systems

    NASA Technical Reports Server (NTRS)

    Nuth, J. A.; Rietmeijer, F. J. M.; Hallenbeck, S. L.; Withey, P. A.

    1999-01-01

    Starting with cooling, refractory vapors diluted in significant quantities of H and He there are four processes that most natural systems will undergo: nucleation, growth, annealing, and coagulation. Nucleation is the processes by which the first stable refractory nuclei form in the vapor. These are the seeds onto which the remaining vapors will condense during the growth stage. Solids of any composition will try to arrange themselves into the least energetic configuration, provided that there is sufficient energy available to support such processes as diffusion and the breaking of chemical bonds. There is a significant activation energy associated with the annealing process in refractory solids due to the relatively high energy of the chemical bonds in solids. The grains formed in most cosmochemical systems are extremely small and often tightly coupled to the gas. Because of their small physical cross sections coagulation may be a very slow process unless there is another driving force involved in addition to normal Brownian motion. In what follows we will briefly cover each of these four stages for refractory oxide and metal grains, although in inverse order.

  1. Role of char during reburning of nitrogen oxides. Seventh quarterly progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Wei-Yin Chen; Te-Chang Lu; Fan, L.T.; Yashima, M.

    1995-08-11

    The progress in this quarter includes four parts. In the first segment, the implications of our data reported in the List quarter are discussed further. BET N{sub 2} surface area does not seems to be the only contributing factor to the remarkable activity of lignite char during reburning, and chars of different origins probably have different controlling steps in the overall surface reaction mechanisms. Unlike NO reduction in the gas phase, oxygen inhibits the heterogeneous mechanisms. The second part of this report justifies the use of our laminar flow reactor system for the measurement of reaction rate. Dispersion model is used in the analysis. An expression relating the rate constant with the experimentally obtainable NO conversion for our flow reactor have been derived. Rates of NO/char reaction for six series of experiments have been measured over the temperature range 800 to 1100{degrees}C. These six series of experiments have been conducted with two different chars, one bituminous coal char and one lignite char, and three different levels of feed NO concentrations, 200, 400 and 1000 ppm. Results from the comparison of char activities suggest that, in the absence of O{sub 2} and CO{sub 2}, the origin of char is not a significant factor for NO reduction. The CO/CO{sub 2} ratio in the products is higher than one under all test conditions, but the ratio increases with increasing feed NO concentrations. Recoveries of oxygen form the lignite char at temperatures above 1050{degrees}C is higher than 1 indicating gasification of organic oxygen in the char. Surface areas of selected chars after devolatilization and after reburning have been analyzed by BET in N{sub 2}. Results indicated char surface area changes after reburning, which is caused either by the higher temperature of reburning or by surface reaction.

  2. TOPICAL REVIEW: Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers

    NASA Astrophysics Data System (ADS)

    Willander, M.; Nur, O.; Zhao, Q. X.; Yang, L. L.; Lorenz, M.; Cao, B. Q.; Zúñiga Pérez, J.; Czekalla, C.; Zimmermann, G.; Grundmann, M.; Bakin, A.; Behrends, A.; Al-Suleiman, M.; El-Shaer, A.; Che Mofor, A.; Postels, B.; Waag, A.; Boukos, N.; Travlos, A.; Kwack, H. S.; Guinard, J.; LeSi Dang, D.

    2009-08-01

    Zinc oxide (ZnO), with its excellent luminescent properties and the ease of growth of its nanostructures, holds promise for the development of photonic devices. The recent advances in growth of ZnO nanorods are discussed. Results from both low temperature and high temperature growth approaches are presented. The techniques which are presented include metal-organic chemical vapour deposition (MOCVD), vapour phase epitaxy (VPE), pulse laser deposition (PLD), vapour-liquid-solid (VLS), aqueous chemical growth (ACG) and finally the electrodeposition technique as an example of a selective growth approach. Results from structural as well as optical properties of a variety of ZnO nanorods are shown and analysed using different techniques, including high resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), photoluminescence (PL) and cathodoluminescence (CL), for both room temperature and for low temperature performance. These results indicate that the grown ZnO nanorods possess reproducible and interesting optical properties. Results on obtaining p-type doping in ZnO micro- and nanorods are also demonstrated using PLD. Three independent indications were found for p-type conducting, phosphorus-doped ZnO nanorods: first, acceptor-related CL peaks, second, opposite transfer characteristics of back-gate field effect transistors using undoped and phosphorus doped wire channels, and finally, rectifying I-V characteristics of ZnO:P nanowire/ZnO:Ga p-n junctions. Then light emitting diodes (LEDs) based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed. The hybrid LEDs reviewed and discussed here are mainly presented for two groups: those based on n-ZnO nanorods and p-type crystalline substrates, and those based on n-ZnO nanorods and p-type amorphous substrates. Promising electroluminescence

  3. Chronic Running Exercise Alleviates Early Progression of Nephropathy with Upregulation of Nitric Oxide Synthases and Suppression of Glycation in Zucker Diabetic Rats

    PubMed Central

    Ito, Daisuke; Cao, Pengyu; Kakihana, Takaaki; Sato, Emiko; Suda, Chihiro; Muroya, Yoshikazu; Ogawa, Yoshiko; Hu, Gaizun; Ishii, Tadashi; Ito, Osamu; Kohzuki, Masahiro; Kiyomoto, Hideyasu

    2015-01-01

    Exercise training is known to exert multiple beneficial effects including renal protection in type 2 diabetes mellitus and obesity. However, the mechanisms regulating these actions remain unclear. The present study evaluated the effects of chronic running exercise on the early stage of diabetic nephropathy, focusing on nitric oxide synthase (NOS), oxidative stress and glycation in the kidneys of Zucker diabetic fatty (ZDF) rats. Male ZDF rats (6 weeks old) underwent forced treadmill exercise for 8 weeks (Ex-ZDF). Sedentary ZDF (Sed-ZDF) and Zucker lean (Sed-ZL) rats served as controls. Exercise attenuated hyperglycemia (plasma glucose; 242 ± 43 mg/dL in Sed-ZDF and 115 ± 5 mg/dL in Ex-ZDF) with increased insulin secretion (plasma insulin; 2.3 ± 0.7 and 5.3 ± 0.9 ng/mL), reduced albumin excretion (urine albumin; 492 ± 70 and 176 ± 11 mg/g creatinine) and normalized creatinine clearance (9.7 ± 1.4 and 4.5 ± 0.8 mL/min per body weight) in ZDF rats. Endothelial (e) and neuronal (n) NOS expression in kidneys of Sed-ZDF rats were lower compared with Sed-ZL rats (p<0.01), while both eNOS and nNOS expression were upregulated by exercise (p<0.01). Furthermore, exercise decreased NADPH oxidase activity, p47phox expression (p<0.01) and α-oxoaldehydes (the precursors for advanced glycation end products) (p<0.01) in the kidneys of ZDF rats. Additionally, morphometric evidence indicated renal damage was reduced in response to exercise. These data suggest that upregulation of NOS expression, suppression of NADPH oxidase and α-oxoaldehydes in the kidneys may, at least in part, contribute to the renal protective effects of exercise in the early progression of diabetic nephropathy in ZDF rats. Moreover, this study supports the theory that chronic aerobic exercise could be recommended as an effective non-pharmacological therapy for renoprotection in the early stages of type 2 diabetes mellitus and obesity. PMID:26379244

  4. Progression of genotype-specific oral cancer leads to senescence of cancer-associated fibroblasts and is mediated by oxidative stress and TGF-β.

    PubMed

    Hassona, Yazan; Cirillo, Nicola; Lim, Kue Peng; Herman, Andrew; Mellone, Max; Thomas, Gareth J; Pitiyage, Gayani N; Parkinson, E Ken; Prime, Stephen S

    2013-06-01

    Keratinocyte senescence acts as a barrier to tumor progression but appears to be lost in late pre-malignancy to yield genetically unstable oral squamous cell carcinomas (GU-OSCC); a subset of OSCC possessing wild-type p53 and are genetically stable (GS-OSCC). In this study, fibroblasts from GU-OSCC were senescent relative to fibroblasts from GS-OSCC, epithelial dysplastic tissues or normal oral mucosa, as demonstrated by increased senescence-associated β-galactosidase (SA β-Gal) activity and overexpression of p16(INK4A). Keratinocytes from GU-OSCC produced high levels of reactive oxygen species (ROS) and this was associated with an increase in the production of transforming growth factor-β1 (TGF-β1) and TGF-β2 in stromal fibroblasts. Treatment of normal fibroblasts with keratinocyte conditioned media (CM) from GU-OSCC, but not GS-OSCC or dysplastic keratinocytes with dysfunctional p53, induced fibroblast senescence. This phenomenon was inhibited by antioxidants and anti-TGF-β antibodies. Fibroblast activation by TGF-β1 preceded cellular senescence and was associated with increased ROS levels; antioxidants inhibited this reaction. Senescent fibroblasts derived from GU-OSCC or normal fibroblasts treated with CM from GU-OSCC or hydrogen peroxide, but not non-senescent fibroblasts derived from GS-OSCC, promoted invasion of keratinocytes in vitro. Epithelial invasion was stimulated by fibroblast activation and amplified further by fibroblast senescence. The data demonstrate that malignant keratinocytes from GU-OSCC, but not their pre-malignant counterparts, produce high levels of ROS, which, in turn, increase TGF-β1 expression and induce fibroblast activation and senescence in a p5-independent manner. Fibroblasts from GU-OSCC were particularly susceptible to oxidative DNA damage because of high levels of ROS production, downregulation of antioxidant genes and upregulation of pro-oxidant genes. The results demonstrate the functional diversity of cancer

  5. IFN-γ and TNF-α are involved during Alzheimer disease progression and correlate with nitric oxide production: a study in Algerian patients.

    PubMed

    Belkhelfa, Mourad; Rafa, Hayet; Medjeber, Oussama; Arroul-Lammali, Amina; Behairi, Nassima; Abada-Bendib, Myriam; Makrelouf, Mohamed; Belarbi, Soreya; Masmoudi, Ahmed Nacer; Tazir, Meriem; Touil-Boukoffa, Chafia

    2014-11-01

    Alzheimer's disease (AD) is a neurodegenerative disease leading to a progressive and irreversible loss of mental functions. It is characterized by 3 stages according to the evolution and the severity of the symptoms. This disease is associated with an immune disorder, which appears with significant rise in the inflammatory cytokines and increased production of free radicals such as nitric oxide (NO). Our study aims to investigate interferon (IFN)-γ and tumor necrosis factor-α (TNF-α) involvement in NO production, in vivo and ex vivo, in peripheral blood mononuclear cells from Algerian patients (n=25), according to the different stages of the disease (mild Alzheimer's, moderate Alzheimer's, and severe Alzheimer's) in comparison to mild cognitive impairment (MCI) patients. Interestingly, we observed that in vivo IFN-γ and TNF-α levels assessed in patients with AD in mild and severe stages, respectively, are higher than those observed in patients with moderate stage and MCI. Our in vivo and ex vivo results show that NO production is related to the increased levels of IFN-γ and TNF-α, in mild and severe stages of AD. Remarkably, significant IFN-γ level is only detected in mild stage of AD. Our study suggests that NO production is IFN-γ dependent both in MCI and mild Alzheimer's patients. Further, high levels of NO are associated with an elevation of TNF-α levels in severe stage of AD. Collectively, our data indicate that the proinflammatory cytokine production seems, in part, to be involved in neurological deleterious effects observed during the development of AD through NO pathway. PMID:24831467

  6. Investigation on durability and reactivity of promising metal oxide sorbents during sulifidation and regeneration: Technical progress report for July 1--September 30, 1996

    SciTech Connect

    Kwon, K.C.

    1996-11-01

    The main objectives of this research project during this quarter are to formulate metal oxide sorbents using various ingredients as well as formulation conditions, and test reactivity of formulated metal oxide sorbents with hydrogen sulfide for 120 seconds at 550{degrees}C, and develop a formula of a sorbent suitable for the removal of hydrogen sulfide from hot coal gases. Metal oxide sorbents were formulated with zinc oxide as an active sorbent ingredient, and titanium oxide as a supporting metal oxide. Various additives such as Al, Ce, Zr, Cu, Co, Ni, Mn, Cr and Ca were utilized to enhance sulfur-removal capacity of formulated metal oxide sorbents. The additives Cu and Co appear to enhance reactivity of sorbents in the reaction with wet hot hydrogen sulfide at 550{degrees}C. Durability of formulated sorbents appears to improve with kaolin binder in comparison with bentonite binder. Durability of formulated sorbents appears to improve with increased calcination durations. Reactivity of sorbents formulated with Co additive appears to decrease with increased calcination durations at the calcination temperature of 860{degrees}C. Reactivity of sorbents formulated with Cu additive appears to increase with calcination durations. Reactivity of sorbents formulated without additive appears to be independent of calcination durations.

  7. Spent-fuel special-studies progress report: probable mechanisms for oxidation and dissolution of single-crystal UO/sub 2/ surfaces

    SciTech Connect

    Wang, R.

    1981-03-01

    Due to the complexity of the structural, microstructural and compositional characteristics of spent fuel, basic leaching and dissolution mechanisms were studied with UO/sub 2/ matrix material, specifically with single-crystal UO/sub 2/, to isolate individual contributory factors. The effects of oxidation and oxidation-dissolution were investigated in different oxidation conditions, such as in air, oxygenated solutions and deionized water containing H/sub 2/O/sub 2/. In addition, the effects of temperature on dissolution of UO/sub 2/ were studied in autoclaves at 75 and 150/sup 0/C. Also, oxidation and dissolution measurements were investigated via electrochemical methods to determine if those techniques could be applied to the characterization of leaching and dissolution of spent fuel in a hot cell. Finally, the effects of radiation were explored since the radiolysis of water may create a localized oxidizing condition at or near the spent fuel-solution interface, even in neutral or reducing conditions as commonly found in deep geological environments. The oxidation and oxidation-dissolution mechanisms for UO/sub 2/ are proposed as follows: The UO/sub 2/ surface is first oxidized in solution to form a UO/sub 2+x/ surface layer several angstroms thick. This oxidized surface has a high dissolution rate since the UO/sub 2+x/ reacts with the dissolved O/sub 2/, or H/sub 2/O/sub 2/, to form uranyl complex ions in a U(VI) state. As the uranyl ions exceed the solubility limits in solution, they become hydrolyzed to form solid deposits and suspended particles of UO/sub 3/ hydrates. The thickness and porosity of the deposited UO/sub 3/ hydrate surface-film is dependent on temperature, pH and deposition time. A long-term dissolution rate is then determined by the nature of the surface film, such as porosity, solubility and mechanical properties.

  8. Recent progress in development of infrared laser based instruments for real-time ambient measurements of isotopologues of carbon dioxide, water, methane, nitrous oxide and carbon monoxide

    NASA Astrophysics Data System (ADS)

    Nelson, David; McManus, Barry; Shorter, Joanne; Zahniser, Mark; Ono, Shuhei

    2014-05-01

    The capacity for real time precise in situ measurements of isotopic ratios of a variety of trace gases at ambient concentrations continues to create new opportunities for the study of the exchanges and fluxes of gases in the environment. Aerodyne Research has made rapid progress in laser based instruments since our introduction in 2007 of the first truly field worthy instrument for real time measurements of isotopologues of carbon dioxide. We have focused on two instrument design platforms, with either one or two lasers. Absorption cells with more than 200 meters path length allow precise measurements of trace gases with low ambient concentrations. Most of our systems employ mid infrared quantum cascade lasers. However, recently available 3 micron antimonide based diode lasers are also proving useful for isotopic measurements. By substituting different lasers and detectors, we can simultaneously measure the isotopic composition of a variety of gases, including: H2O, CO2, CH4, N2O and CO. Our newest instrument for true simultaneous measurement of isotopologues of CO2 (12CO2, 13CO2, 12C18O16O) has (1 s) precision better than 0.1 per mil for both ratios. The availability of 10 Hz measurements allows measurement of isotopic fluxes via eddy correlation. The single laser instrument fits in a 19 inch rack and is only 25 cm tall. A two laser instrument is larger, but with that instrument we can also measure clumped isotopes of CO2, with 1 second precisions of: 2.3 per mil for 13C18O16O, and 6.7 per mil for 13C17O16O. The sample size for such a measurement corresponds to 0.2 micromole of pure CO2. Another variation on the two laser instrument simultaneously measures isotopologues of CO2 (12CO2, 13CO2, 12C18O16O) and H2O (H216O, H218O, HD16O). Preliminary results for water ratio precisions (in 1s) are 0.1 per mil for H218O and 0.3 per mil for HD16O, simultaneous (1 s) precisions for isotopologues of CO2 of ~0.1 per mil. Methane, nitrous oxide and carbon monoxide have such

  9. Oxidative/Nitrative Stress and Inflammation Drive Progression of Doxorubicin-Induced Renal Fibrosis in Rats as Revealed by Comparing a Normal and a Fibrosis-Resistant Rat Strain.

    PubMed

    Szalay, Csaba Imre; Erdélyi, Katalin; Kökény, Gábor; Lajtár, Enikő; Godó, Mária; Révész, Csaba; Kaucsár, Tamás; Kiss, Norbert; Sárközy, Márta; Csont, Tamás; Krenács, Tibor; Szénási, Gábor; Pacher, Pál; Hamar, Péter

    2015-01-01

    Chronic renal fibrosis is the final common pathway of end stage renal disease caused by glomerular or tubular pathologies. Genetic background has a strong influence on the progression of chronic renal fibrosis. We recently found that Rowett black hooded rats were resistant to renal fibrosis. We aimed to investigate the role of sustained inflammation and oxidative/nitrative stress in renal fibrosis progression using this new model. Our previous data suggested the involvement of podocytes, thus we investigated renal fibrosis initiated by doxorubicin-induced (5 mg/kg) podocyte damage. Doxorubicin induced progressive glomerular sclerosis followed by increasing proteinuria and reduced bodyweight gain in fibrosis-sensitive, Charles Dawley rats during an 8-week long observation period. In comparison, the fibrosis-resistant, Rowett black hooded rats had longer survival, milder proteinuria and reduced tubular damage as assessed by neutrophil gelatinase-associated lipocalin (NGAL) excretion, reduced loss of the slit diaphragm protein, nephrin, less glomerulosclerosis, tubulointerstitial fibrosis and matrix deposition assessed by periodic acid-Schiff, Picro-Sirius-red staining and fibronectin immunostaining. Less fibrosis was associated with reduced profibrotic transforming growth factor-beta, (TGF-β1) connective tissue growth factor (CTGF), and collagen type I alpha 1 (COL-1a1) mRNA levels. Milder inflammation demonstrated by histology was confirmed by less monocyte chemotactic protein 1 (MCP-1) mRNA. As a consequence of less inflammation, less oxidative and nitrative stress was obvious by less neutrophil cytosolic factor 1 (p47phox) and NADPH oxidase-2 (p91phox) mRNA. Reduced oxidative enzyme expression was accompanied by less lipid peroxidation as demonstrated by 4-hydroxynonenal (HNE) and less protein nitrosylation demonstrated by nitrotyrosine (NT) immunohistochemistry and quantified by Western blot. Our results demonstrate that mediators of fibrosis, inflammation and

  10. Oxidative/Nitrative Stress and Inflammation Drive Progression of Doxorubicin-Induced Renal Fibrosis in Rats as Revealed by Comparing a Normal and a Fibrosis-Resistant Rat Strain

    PubMed Central

    Szalay, Csaba Imre; Erdélyi, Katalin; Kökény, Gábor; Lajtár, Enikő; Godó, Mária; Révész, Csaba; Kaucsár, Tamás; Kiss, Norbert; Sárközy, Márta; Csont, Tamás; Krenács, Tibor; Szénási, Gábor

    2015-01-01

    Chronic renal fibrosis is the final common pathway of end stage renal disease caused by glomerular or tubular pathologies. Genetic background has a strong influence on the progression of chronic renal fibrosis. We recently found that Rowett black hooded rats were resistant to renal fibrosis. We aimed to investigate the role of sustained inflammation and oxidative/nitrative stress in renal fibrosis progression using this new model. Our previous data suggested the involvement of podocytes, thus we investigated renal fibrosis initiated by doxorubicin-induced (5 mg/kg) podocyte damage. Doxorubicin induced progressive glomerular sclerosis followed by increasing proteinuria and reduced bodyweight gain in fibrosis-sensitive, Charles Dawley rats during an 8-week long observation period. In comparison, the fibrosis-resistant, Rowett black hooded rats had longer survival, milder proteinuria and reduced tubular damage as assessed by neutrophil gelatinase-associated lipocalin (NGAL) excretion, reduced loss of the slit diaphragm protein, nephrin, less glomerulosclerosis, tubulointerstitial fibrosis and matrix deposition assessed by periodic acid–Schiff, Picro-Sirius-red staining and fibronectin immunostaining. Less fibrosis was associated with reduced profibrotic transforming growth factor-beta, (TGF-β1) connective tissue growth factor (CTGF), and collagen type I alpha 1 (COL-1a1) mRNA levels. Milder inflammation demonstrated by histology was confirmed by less monocyte chemotactic protein 1 (MCP-1) mRNA. As a consequence of less inflammation, less oxidative and nitrative stress was obvious by less neutrophil cytosolic factor 1 (p47phox) and NADPH oxidase-2 (p91phox) mRNA. Reduced oxidative enzyme expression was accompanied by less lipid peroxidation as demonstrated by 4-hydroxynonenal (HNE) and less protein nitrosylation demonstrated by nitrotyrosine (NT) immunohistochemistry and quantified by Western blot. Our results demonstrate that mediators of fibrosis, inflammation and

  11. Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint U.S./Russian Progress Report for Fiscal Year 1997 Volume 2-Calculations Performed in the United States

    SciTech Connect

    Primm III, RT

    2002-05-29

    This volume of the progress report provides documentation of reactor physics and criticality safety studies conducted in the US during fiscal year 1997 and sponsored by the Fissile Materials Disposition Program of the US Department of Energy. Descriptions of computational and experimental benchmarks for the verification and validation of computer programs for neutron physics analyses are included. All benchmarks include either plutonium, uranium, or mixed uranium and plutonium fuels. Calculated physics parameters are reported for all of the computational benchmarks and for those experimental benchmarks that the US and Russia mutually agreed in November 1996 were applicable to mixed-oxide fuel cycles for light-water reactors.

  12. A broad spectrum catalytic system for removal of toxic organics from water by deep oxidation. Annual progress report, September 15, 1996--September 14, 1997

    SciTech Connect

    Sen, A.

    1997-09-01

    'During the first year, the palladium-catalyzed deep oxidation of toxic organics by dioxygen in aqueous solution was examined in some detail. The research performed has established the viability of the catalytic system to effect the deep (and complete) oxidation of a very wide range of organic substrates under mild conditions. One significant observation was that chemical warfare agent models containing phosphorus-carbon and sulfur-carbon bonds could be eliminated by using this procedure.'

  13. Differences between the oxidation behaviour of A3 fuel element matrix graphites in air and in steam and its relevance on accident progress in HTRs

    SciTech Connect

    Kuehn, K.; Hinssen, H-K.; Moormann, R.

    2004-07-01

    The fuel element matrix graphites A3-3 and A3-27 were used in High Temperature Reactor fuel pebbles for many years. However, these materials show as other graphites a limited oxidation resistance in contact to oxidising gases (air and steam), which even decreases with increasing temperatures: In HTRs, having in normal operation a non-oxidising environment, an ingress of air or steam leads to corrosion of graphite with the potential of enhanced fission product release Matrix graphites differ by its coked binder content from standard nuclear graphites (e.g. V483T, ASR-1RG, IG110, H-451), where both filler and binder are completely graphitized. The influence of this coked binder content on the oxidation behaviour will be discussed in this paper. Experimental investigations with A3-3 and A3-27 were done in oxygen (air) at temperatures between 673 - 1023 K and in steam between 1173 - 1253 K. These experiments took place under isothermal conditions in the chemical regime, where the chemical reaction itself is the rate limiting step and a homogeneous oxidation inside of the sample occurs. The experiments reveal different oxidation behaviour as well between binder and filler component as between oxidation behaviour in oxygen (air) and steam. In air at low temperatures two rate maxima are observed: The first maximum attend in all experiments at {approx} 5 % burn off, a second one at higher burn off values (35 - 45 % burn off). These rate maxima can be explained by a selective binder-filler oxidation: The first peak at 5 % burn off is due to the oxidation of the binder, the second peak at higher burn off values is caused by the oxidation of the remaining filler. At higher temperatures in air the filler peak becomes more pronounced and the binder peak vanishes, which is due to the lower activation energy of binder oxidation compared to the filler. In steam this behaviour appears contrary: A maximum at 5 % burn off, which is probably also connected to the binder, is observed

  14. Abundance of a chlorophyll a precursor and the oxidation product hydroxychlorophyll a during seasonal phytoplankton community progression in the Western English Channel

    NASA Astrophysics Data System (ADS)

    Steele, Deborah J.; Tarran, Glen A.; Widdicombe, Claire E.; Woodward, E. Malcolm S.; Kimmance, Susan A.; Franklin, Daniel J.; Airs, Ruth L.

    2015-09-01

    This study presents the first in-situ measurements of the chlorophyll a oxidation product, hydroxychlorophyll a as well as the chlorophyll a precursor, chlorophyll aP276 conducted over an annual cycle. Chlorophyll a oxidation products, such as hydroxychlorophyll a may be associated with the decline of algal populations and can act as an initial step in the degradation of chlorophyll a into products which can be found in the geochemical record, important for studying past climate change events. Here, hydroxychlorophyll a and chlorophyll aP276 were measured at the long-term monitoring station L4, Western Channel Observatory (UK, http://www.westernchannelobservatory.org)

  15. Recent progress in oxide thermoelectric materials: p-type Ca3Co4O9 and n-type SrTiO3(-).

    PubMed

    Ohta, Hiromichi; Sugiura, Kenji; Koumoto, Kunihito

    2008-10-01

    Thermoelectric energy conversion technology to convert waste heat into electricity has received much attention. In addition, metal oxides have recently been considered as thermoelectric power generation materials that can operate at high temperatures on the basis of their potential advantages over heavy metallic alloys in chemical and thermal robustness. We have fabricated high-quality epitaxial films composed of oxide thermoelectric materials that are suitable for clarifying the intrinsic "real" properties. This review focuses on the thermoelectric properties of two representative oxide epitaxial films, p-type Ca 3Co 4O 9 and n-type SrTiO 3, which exhibit the best thermoelectric figures of merit, ZT (= S (2)sigma Tkappa (-1), S = Seebeck coefficient, sigma = electrical conductivity, kappa = thermal conductivity, and T = absolute temperature) among oxide thermoelectric materials reported to date. In addition, we introduce the recently discovered giant S of two-dimensional electrons confined within a unit cell layer thickness ( approximately 0.4 nm) of SrTiO 3. PMID:18821809

  16. Studies of incipient oxidation of coal-pyrite for improved pyrite rejection. First quarterly technical progress report, October 1, 1992--December 31, 1992

    SciTech Connect

    Yoon, R.H.; Richardson, P.E.

    1992-12-31

    In order to foster the development of advanced coal cleaning technologies fundamental studies.of the initial stages of pyrite oxidation have been.initiated. This work is being done on pyrite surfaces that are freshly fractured in an electrolyte solution. This procedure produces surfaces that are initially unoxidized, allowing the subsequent oxidation processes to be studied in detail. It is shown that freshly fractured pyrite electrodes instantaneously (at fracture) assume a rest potential several hundred millivolts more negative than the usual open-circuit potential. A finite, anodic photocurrent, is also observed on the fractured electrodes. Following cleavage, the rest potential increases, indicating an oxidation reaction occurring on the electrodes. The photocurrent is relatively insensitive to this oxidation process, and to moderate anodic and cathodic polarization. However, strong cathodic polarization to about -0.76 V (SHE) at pH 9.2 causes the photocurrent to decrease to zero. No reversal in the sign of the photocurrent is observed and it is believed that the flat band potential occurs near -0.76 V, i.e., where the photocurrent goes to zero. Voltammetry indicates that pyrite also undergoes cathodic decomposition at -0.76 V. This establishes that pyrite must be cathodically decomposed to reach the flat band potential.

  17. A silica/fly ash-based technology for controlling pyrite oxidation. Semi-annual technical progress report, September 1, 1995--February 29, 1996

    SciTech Connect

    Evangelou, V.P.

    1996-03-28

    The overall objective is to develop methodologies by which sodium metasilicate or fly ash may produce an effective coating on pyrite surfaces for inhibiting pyrite oxidation. Accomplishments are described for the following tasks: Pyrite surface reactivity; Micro column leaching experiments; and Large column leaching experiments.

  18. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report No. 1, October--December 1992

    SciTech Connect

    McCormick, R.L.; Jha, M.C.

    1993-03-04

    Amax R&D will perform laboratory scale development of a promising, practical catalyst for the selective oxidation of methane to methanol. The primary component of this catalyst is vanadium-phosphate (VPO) which has shown good activity and selectivity in the partial oxidation of n-butane and propane but has not been studied in detail for methane oxidation. The goal of the project is to develop a catalyst which allows methane oxidation to methanol to be conducted at high conversion and selectivity. A low CH{sub 4}/O{sub 2} ratio will be employed with air as the source of oxygen. Temperatures below 600{degrees}C and pressures up to 20 atm are to be investigated. The use of steam in the feed gas will also be investigated. The catalyst development strategy will be to utilize promoters and supports to improve the activity and selectivity of the unmodified VPO catalyst. The catalyst testing reactor system was used to perform blank (empty) reactor runs over a wide range of temperatures, pressure, and flow rates. No methane conversion was observed at temperatures of 500{degrees}C or lower in any of the tests. At higher temperatures, significant methane conversion to carbon dioxide was observed. At 550{degrees}C, 300 psig, and the highest flow rate studied, reactor ignition was observed. Based on the results of these blank runs, we conclude that catalyst testing should be performed at temperatures not to exceed 500{degrees}C.

  19. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report 8, January--March, 1995

    SciTech Connect

    McCormick, R.L.

    1995-05-25

    Activities during this quarter focused on fine tuning of catalyst characterization and synthesis techniques. Improvements in catalyst activity test methods were also implemented but more remains to be done. Specific accomplishments include: improved characterization of vanadyl pyrophosphate (VPO) and Si promoted VPO by FTIR and FTIR of chemisorbed bases; several minor improvements in catalyst preparation technique resulting in enhanced catalyst yield, better control of catalyst composition, and generation of less waste; preliminary pulsed reaction data on methane oxidation were also acquired. Preliminary activity measurements for methane conversion (without oxygen) in a pulsed reactor over VPO indicate that the primary reaction product is CO. Carbon dioxide is also formed but selectivity to CO{sub 2} decreases with number of pulses. These results suggest that selectivity to partially oxidized products improves with catalyst reduction and suggest that some surface modification will be required to obtain oxidized hydrocarbon products. Note that catalyst activation (conversion from the precursor to VPO) has been carried out using air. For butane oxidation catalysts VPO is activated in a 1% butane/air mixture which produces a slightly reduced catalyst.

  20. Oral Administration of Aloe vera (L.) Burm. f. (Xanthorrhoeaceae) and Honey Improves the Host Body Composition and Modulates Proteolysis Through Reduction of Tumor Progression and Oxidative Stress in Rats.

    PubMed

    Tomasin, Rebeka; de Andrade, Rafael Siqueira; Gomes-Marcondes, Maria Cristina Cintra

    2015-10-01

    Oxidative stress has a dual role in cancer; it is linked with tumorigenic events and host wasting, as well as senescence and apoptosis. Researchers have demonstrated the importance of coadjuvant therapies in cancer treatment, and Aloe vera and honey have immunomodulatory, anticancer, and antioxidant properties. The preventive and therapeutic effects of Aloe vera (L.) Burm. f. (Xanthorrhoeaceae) and honey in tumor progression and host wasting were analyzed in Walker 256 carcinoma-bearing rats. The animals were distributed into the following groups: C=control-untreated, W=tumor-untreated, WA=treated after tumor induction, A=control-treated, AW=treated before tumor induction, and AWA=treated before and after tumor induction. Proteolysis and oxidative stress were analyzed in the tumor, liver, muscle, and myocardial tissues. The results suggest that the Aloe vera and honey treatment affect the tumor and host by different mechanisms; the treatment-modulated host wasting and cachexia, whereas it promoted oxidative stress and damage in tumor tissues, particularly in a therapeutic context (WA). PMID:25856497

  1. Effect of Heavy metals on the iron oxidizing ability of Thiobacillus ferrooxidans: Part 1, Effect of silver. Technical progress report, July 1992--September 1992

    SciTech Connect

    De, G.C.; Pesic, B.

    1992-12-01

    The effect of silver ions on the iron oxidizing ability of Thiobacillus ferrooxidans was studied using electrochemical and other physics-chemical techniques. Electrochemical investigation was conducted using a method based on redox potential change. Experiments were performed by adding an aliquot of separately prepared concentrate of the bacteria into the solution of ferrous ion and monitoring the redox potential for at least one hour. Pyrite was used as the indicator electrode. Parameters examined were pH, microbial cell density, ferrous, ferric and silver ion concentration, temperature and preconditioning period of the bacteria with silver ions, etc. Results obtained demonstrate that the rate of ferrous ion oxidation is dependent on pH (optimum pH range is 1.5--2.0) and the substrate (i.e. Fe(II)) to microbial cell concentration ratio. The mechanism of the bacteria mediated oxidation of ferrous iron is remarkably sensitive to temperature changes. At the vicinity of the optimum temperature (i.e. 25{degree}C), the reaction is likely to be controlled by the diffusion of Fe (II) ions through the cell wall of the bacteria, whereas below the range 18--25{degree}C, reaction kinetics may be the rate controlling factor. In the presence of 10 mg/L silver, the reaction may be kinetically controlled over the temperature range 5.5--25{degree}C. Inhibition of microbial FE(II) oxidation in the presence of silver may take place via a mixed mechanism in which silver may bind with both the enzyme and the enzyme-substrate complex.

  2. Immobilization of toxic metals and radionuclides in porous and fractured media: Optimizing biogeochemical reduction versus geochemical oxidation. 1997 annual progress report

    SciTech Connect

    Jardine, P.M.; Brooks, S.C.; Saiers, J.E.; Phelps, T.J.; Zachara, J.; Fendorf, S.E.

    1997-09-01

    'The purpose of the authors research is to provide an improved understanding and predictive capability of the mechanisms that allow metal-reducing bacteria to be effective in the bioremediation of subsurface environments contaminated with toxic metals and radionuclides. The research findings of the work plan will (1) provide new insights into the previously unexplored areas of competing geochemical and microbiological oxidation/reduction reactions that govern the fate and transport of redox sensitive contaminants in subsurface environments and (2) provide basic knowledge to define the optimum conditions for the microbial reduction and concomitant immobilization of toxic metals and radionuclides in the subsurface. Strategies that use in situ contaminant immobilization can be efficient and cost-effective remediation options. This project will focus on the following specific objectives. Develop an improved understanding of the rates and mechanisms of competing geochemical and microbiological oxidation/reduction reactions that govern the fate and transport of uranium (U), chromium (Cr), and cobalt-EDTA (Co-EDTA) in the subsurface. Quantify the conditions that optimize the microbial reduction of toxic metals and radionuclides for the purpose of contaminant containment and remediation in heterogeneous systems that have competing geochemical oxidation, sorption, and organic ligands.'

  3. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, second quarter 1994, April 1994--June 1994

    SciTech Connect

    1995-09-01

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NOx combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NOx burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters. Results are described.

  4. Hemoglobin induced lung vascular oxidation, inflammation, and remodeling contributes to the progression of hypoxic pulmonary hypertension and is attenuated in rats with repeat dose haptoglobin administration

    PubMed Central

    Baek, Jin Hyen; Hassell, Kathryn; Nuss, Rachelle; Eigenberger, Paul; Lisk, Christina; Loomis, Zoe; Maltzahn, Joanne; Stenmark, Kurt R; Nozik-Grayck, Eva

    2015-01-01

    Objective Haptoglobin (Hp) is an approved treatment in Japan with indications for trauma, burns and massive transfusion related hemolysis. Additional case reports suggest uses in other acute hemolytic events that lead to acute kidney injury. However, Hp's protective effects on the pulmonary vasculature have not been evaluated within the context of mitigating the consequences of chronic hemoglobin (Hb) exposure in the progression of pulmonary hypertension (PH) secondary to hemolytic diseases. This study was performed to assess the utility of chronic Hp therapy in a preclinical model of Hb and hypoxia mediated PH. Approach and results Rats were simultaneously exposed to chronic Hb-infusion (35 mg per day) and hypobaric hypoxia for five weeks in the presence or absence of Hp treatment (90 mg/kg twice a week). Hp inhibited the Hb plus hypoxia-mediated non-heme iron accumulation in lung and heart tissue, pulmonary vascular inflammation and resistance, and right ventricular hypertrophy, which suggest a positive impact on impeding the progression of PH. In addition, Hp therapy was associated with a reduction in critical mediators of PH, including lung adventitial macrophage population and endothelial ICAM-1 expression. Conclusions By preventing Hb-mediated pathology, Hp infusions: (1) demonstrate a critical role for Hb in vascular remodeling associated with hypoxia; and (2) suggest a novel therapy for chronic hemolysis associated PH. PMID:25656991

  5. Hemoglobin-induced lung vascular oxidation, inflammation, and remodeling contribute to the progression of hypoxic pulmonary hypertension and is attenuated in rats with repeated-dose haptoglobin administration.

    PubMed

    Irwin, David C; Baek, Jin Hyen; Hassell, Kathryn; Nuss, Rachelle; Eigenberger, Paul; Lisk, Christina; Loomis, Zoe; Maltzahn, Joanne; Stenmark, Kurt R; Nozik-Grayck, Eva; Buehler, Paul W

    2015-05-01

    Haptoglobin (Hp) is an approved treatment in Japan for trauma, burns, and massive transfusion-related hemolysis. Additional case reports suggest uses in other acute hemolytic events that lead to acute kidney injury. However, Hp's protective effects on the pulmonary vasculature have not been evaluated within the context of mitigating the consequences of chronic hemoglobin (Hb) exposure in the progression of pulmonary hypertension (PH) secondary to hemolytic diseases. This study was performed to assess the utility of chronic Hp therapy in a preclinical model of Hb and hypoxia-mediated PH. Rats were simultaneously exposed to chronic Hb infusion (35 mg per day) and hypobaric hypoxia for 5 weeks in the presence or absence of Hp treatment (90 mg/kg twice a week). Hp inhibited the Hb plus hypoxia-mediated nonheme iron accumulation in lung and heart tissue, pulmonary vascular inflammation and resistance, and right-ventricular hypertrophy, which suggests a positive impact on impeding the progression of PH. In addition, Hp therapy was associated with a reduction in critical mediators of PH, including lung adventitial macrophage population and endothelial ICAM-1 expression. By preventing Hb-mediated pathology, Hp infusions: (1) demonstrate a critical role for Hb in vascular remodeling associated with hypoxia and (2) suggest a novel therapy for chronic hemolysis-associated PH. PMID:25656991

  6. Comparison of lime and iron oxide for high temperature sulfur removal. Technical progress report No. 6, March 1, 1991--May 31, 1991

    SciTech Connect

    Reid, K.J.

    1991-12-31

    Slagging combustors with injected lime or limestone are being considered as replacements for conventional coal burners. They have advantage in that they can be staged to reduce NO{sub x} and SO{sub x} emissions. Lime or limestone are the currently preferred sorbent materials but iron oxide, as an alternative to lime or limestone, may be effective not only as a desulfurizing agent, but, under the right conditions of oxygen potential, it can act as a flux to produce a glassy slag. This glassy slag should be dense and environmentally inert.

  7. Demonstration of omnivorous non-thermal mixed waste treatment: Direct chemical oxidation using peroxydisulfate. Progress report SF2-3-MW-35, October--December 1995

    SciTech Connect

    Cooper, J.F.; Wang, F.; Krueger, R.; King, K.; Shell, T.; Farmer, J.C.; Adamson, M.

    1996-01-27

    Direct Chemical Oxidation is an emerging ``omnivorous`` waste destruction technique which uses one of the strongest known oxidants (ammonium peroxydisulfate) to convert organic solids or liquids to carbon dioxide and their mineral constituents. The process operates at ambient pressure and at moderate temperatures (80--100 C) where organic destruction is rapid without catalysts. The byproduct (ammonium sulfate) is benign and may be recycled using commercial electrolysis equipment. The authors have constructed and initially tested a bench-scale facility (batch prereactor and plug-flow reactor) which allows treatability tests on any solid or liquid organic waste surrogate, with off-gas analysis by mass spectroscopy. Shake-down tests of the plug flow reactor on model chemical ethylene glycol confirmed earlier predictive models. Pre-reactor tests on water-immiscible substances confirmed destruction of cotton rags (cellulose), kerosene, tributyl phosphate and triethylamine. The process is intended to provide an all-aqueous, ambient pressure destruction technique for difficult materials not suitable or fully accepted for conventional incineration. Such wastes include solid and liquid mixed wastes containing incinerator chars, halogenated and nitrogenated wastes, oils and greases, and chemical or biological warfare agents.

  8. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, second quarter 1995

    SciTech Connect

    1995-12-31

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. The project provides a stepwise evaluation of the following NO{sub x} reduction technologies: advanced overfire air (AOFA), low NO{sub x} burners (LNB), LNB with AOFA, and advanced digital controls and optimization strategies. The project has completed the baseline, AOFA, LNB, and LNB + AOFA test segments, fulfilling all testing originally proposed to DOE. Phase 4 of the project, demonstration of advanced control/optimization methodologies for NO{sub x} abatement, is now in progress. The methodology selected for demonstration at Hammond Unit 4 is the Generic NO{sub x} Control Intelligent System (GNOCIS), which is being developed by a consortium consisting of the Electric Power Research institute, PowerGen, Southern Company, Radian Corporation, U.K. Department of Trade and Industry, and US DOE. GNOCIS is a methodology that can result in improved boiler efficiency and reduced NO{sub x} emissions from fossil fuel fired boilers. Using a numerical model of the combustion process, GNOCIS applies an optimizing procedure to identify the best set points for the plant on a continuous basis. GNOCIS is designed to operate in either advisory or supervisory modes. Prototype testing of GNOCIS is in progress at Alabama Power`s Gaston Unit 4 and PowerGen`s Kingsnorth Unit 1.

  9. Adsorption and decomposition of organophosphorus compounds on nanoscale metal oxide particle. In situ GC-MS studies of pulsed microreactions over magnesium oxide. (Reannouncement with new availability information). Progress report, 31 December 1991-30 June 1992

    SciTech Connect

    Li, Y.X.; Koper, O.; Atteya, M.; Klabunde, K.J.

    1992-12-31

    Using an in situ reactor GC-MS system, the thermal decomposition of organophosphorus compound (as models of nerve agents) has been compared with their destructive adsorption on high surface area magnesium oxide. Dramatically lower temperatures are required when MgO is present. Volatile products evolved were formic acid, water, alcohols, and alkenes. At higher temperatures CO, CH4, and water predominated. Phosphorus residues remained completed immobilized. Addition of water enhanced the facility of MgO to destroy these compounds, and in fact, water pulses were found to partially regenerate a spent MgO bed. Using 18O labeling some aspects of the reaction mechanisms were clarified and in particular showed that oxygen scrambling occurred. Surface OH and MgO groups transferred oxygen in the formation of formic acid, and surface mobility and reactivity of adsorbed groups was very high. The substantial capacity of high surface area MgO for destruction and immobilization of such toxic substance makes it attractive for air purification schemes as well as solid reagents for destruction and immobilization of bulk quantities of hazardous phosphorus compounds or organohalides. Organophosphorus, ultrafine powder, destructive adsorption, magnesium oxide, immobilization, nanoscale powder.

  10. Progressive activation of degradation processes in solid oxide fuel cells stacks: Part I: Lifetime extension by optimisation of the operating conditions

    NASA Astrophysics Data System (ADS)

    Nakajo, Arata; Mueller, Fabian; Brouwer, Jacob; Van herle, Jan; Favrat, Daniel

    2012-10-01

    The degradation of solid oxide fuel cells (SOFC) depends on stack and system design and operation. A methodology to evaluate synergistically these aspects to achieve the lowest production cost of electricity has not yet been developed. A repeating unit model, with as degradation processes the decrease in ionic conductivity of the electrolyte, metallic interconnect corrosion, anode nickel particles coarsening and cathode chromium contamination, is used to investigate the impact of the operating conditions on the lifetime of an SOFC system. It predicts acceleration of the degradation due to the sequential activation of multiple processes. The requirements for the highest system efficiency at start and at long-term differ. Among the selected degradation processes, those on the cathode side here dominate. Simulations suggest that operation at lower system specific power and higher stack temperature can extend the lifetime by a factor up to 10, because the beneficial decrease in cathode overpotential prevails over the higher release of volatile chromium species, faster metallic interconnect corrosion and higher thermodynamic risks of zirconate formation, for maximum SRU temperature below 1150 K. The counter-flow configuration, combined with the beneficial effect of internal reforming on lowering the parasitic air blower consumption, similarly yields longer lifetime than co-flow.

  11. Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint U.S./Russian Progress Report for Fiscal Year 1997

    SciTech Connect

    Akkurt, H

    2001-01-11

    In 1967, a series of critical experiments were conducted at the Westinghouse Reactor Evaluation Center (WREC) using mixed-oxide (MOX) PuO{sub 2}-UO{sub 2} and/or UO{sub 2} fuels in various lattices and configurations . These experiments were performed under the joint sponsorship of the Empire State Atomic Development Associates (ESADA) plutonium program and Westinghouse . The purpose of these experiments was to develop experimental data to validate analytical methods used in the design of a plutonium-bearing replacement fuel for water reactors. Three different fuels were used during the experimental program: two MOX fuels and a low-enriched UO{sub 2} fuel. The MOX fuels were distinguished by their {sup 240}Pu content: 8 wt% {sup 240}Pu and 24 wt% {sup 240}Pu. Both MOX fuels contained 2.0 wt % PuO{sub 2} in natural UO{sub 2} . The UO{sub 2} fuel with 2.72 wt % enrichment was used for comparison with the plutonium data and for use in multiregion experiments.

  12. Comparative study of the reactions of metal oxides with H{sub 2}S and SO{sub 2}. Technical progress report, July--September 1991

    SciTech Connect

    Sotirchos, S.V.

    1991-10-01

    The primary objective of this project is the investigation of the effects of pore structure on the capacity of porous metal oxides for removal of gaseous pollutants from flue gases of power plants (SO{sub 2}) and hot coal gas (primarily H{sub 2}S). Specifically, we intend to appropriately exploit the differences of the sulfidation and sulfation reactions (for instance, different molar volumes of solid products) to elucidate the dependence of the sorptive capacity of a porous sorbent on its physical microstructure. The following tasks have been identified in the proposed project: (1) Literature survey and identification of solids to be used in experimental studies. (2) Experimental study of the reaction of the chosen solids with SO{sub 2} and/or H{sub 2}S. (3) Experimental study of the evolution of the structure of the solids during reaction with SO{sub 2} and/or H{sub 2}S using pore structure analysis and effective diffusivity measurements. (4) Model testing and validation using the obtained experimental data.

  13. Progress in the R and D Project on Oxide Dispersion Strengthened and Precipitation Hardened Ferritic Steels for Sodium Cooled Fast Breeder Reactor Fuels

    SciTech Connect

    Kaito, Takeji; Ohtsuka, Satoshi; Inoue, Masaki

    2007-07-01

    High burnup capability of sodium cooled fast breeder reactor (SFR) fuels depends significantly on irradiation performance of their component materials. Japan Atomic Energy Agency (JAEA) has been developing oxide dispersion strengthened (ODS) ferritic steels and a precipitation hardened (PH) ferritic steel as the most prospective materials for fuel pin cladding and duct tubes, respectively. Technology for small-scale manufacturing is already established, and several hundreds of ODS steel cladding tubes and dozens of PH steel duct tubes were successfully produced. We will step forward to develop manufacturing technology for mass production to supply these steels for future SFR fuels. Mechanical properties of the products were examined by out-of-pile and in-pile tests including material irradiation tests in the experimental fast reactor JOYO and foreign fast reactors. The material strength standards (MSSs) were tentatively compiled in 2005 for ODS steels and in 1993 for PH steel. In order to upgrade the MSSs and to demonstrate high burnup capability of the materials, we will perform a series of irradiation tests in BOR-60 and JOYO until 2015 and contribute to design study for a demonstration SFR of which operation is expected after 2025. (authors)

  14. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report No.2, January--March 1993

    SciTech Connect

    McCormick, R.L.; Jha, M.C.

    1993-05-11

    During the second quarter, we initiated Task 2 (Process and Catalyst Variable Study). This task involves an investigation of methods for vanadium phosphate (VPO) catalyst synthesis and activation as well as detailed testing of the catalysts produced for activity and selectivity in methane selective oxidation. As we initiated work on Task 2, three problem areas were identified: Preparation of catalysts with P:V ratio greater than 1. Activation of the precursor to produce the B-phase described in the patent literature. Achieving high (>95 percent) carbon balances in the bench-scale test unit. Each of these problems has been addressed and overcome during this quarter. Several catalysts with P:V ratios ranging from 0.95 to 1.1 have been prepared. Activation procedures are continuing to be investigated. We have found several procedures which yield catalysts having the desired X-ray diffraction pattern. The reactor system was modified and analytical procedures improved so that in a 7-day run using V{sub 2}O{sub 5} as the catalyst, carbon balances ranged from 95 to 105 percent.

  15. Neuroinflammatory Gene Regulation, Mitochondrial Function, Oxidative Stress, and Brain Lipid Modifications With Disease Progression in Tau P301S Transgenic Mice as a Model of Frontotemporal Lobar Degeneration-Tau.

    PubMed

    López-González, Irene; Aso, Ester; Carmona, Margarita; Armand-Ugon, Mercedes; Blanco, Rosi; Naudí, Alba; Cabré, Rosanna; Portero-Otin, Manuel; Pamplona, Reinald; Ferrer, Isidre

    2015-10-01

    Tau P301S transgenic mice (PS19 line) are used as a model of frontotemporal lobar degeneration (FTLD)-tau. Behavioral alterations in these mice begin at approximately 4 months of age. We analyzed molecular changes related to disease progression in these mice. Hyperphosphorylated 4Rtau increased in neurons from 1 month of age in entorhinal and piriform cortices to the neocortex and other regions. A small percentage of neurons developed an abnormal tau conformation, tau truncation, and ubiquitination only at 9/10 months of age. Astrocytosis, microgliosis, and increased inflammatory cytokine and immune mediator expression also occurred at this late stage; hippocampi were the most markedly affected. Altered mitochondrial function, increased reactive oxygen species production, and limited protein oxidative damage were observed in advanced disease. Tau oligomers were only present in P301S mice, they were found in somatosensory cortex and hippocampi at the age of 3 months, and they increased across time in the somatosensory cortex and were higher and sustained in hippocampi. Age-related modifications in lipid composition occurred in both P301S and wild-type mice with regional and phenotypic differences; however, changes of total lipids did not seem to have pathogenic implications. Apoptosis only occurred in restricted regions in late disease. The complex tau pathology, mitochondrial alterations, oxidative stress damage, glial reactions, neuroinflammation, and cell death in P301S mice likely parallel those in FTLD-tau. Thus, therapies should focus first on abnormal tau rather than secondary events that appear late in the course of FTLD-tau. PMID:26360374

  16. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, fourth quarter 1995

    SciTech Connect

    1995-12-31

    This document discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 (500 MW) near Rome, Georgia. Specifically, the objectives of the projects are: (1) demonstrate in a logical stepwise fashion the short-term NO{sub x} reduction capabilities of the following advanced low NO{sub x} combustion technologies: advanced overfire air (AOFA); low NO{sub x} burners (LNB); LNB with AOFA; and advanced digital controls and optimization strategies; (2) determine the dynamic, long-term emissions characteristics of each of these combustion NO{sub x} reduction methods using sophisticated statistical techniques; (3) evaluate the cost effectiveness of the low NO{sub x} combustion techniques tested; and (4) determine the effects on other combustion parameters (e.g., CO production, carbon carryover, particulate characteristics) of applying the above NO{sub x} reduction methods.

  17. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, Second quarter 1992

    SciTech Connect

    Not Available

    1992-08-24

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (No{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

  18. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, Fourth quarter 1992

    SciTech Connect

    Not Available

    1992-12-31

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x } reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB tong-term data collected show the full load NO{sub x} emission levels to be approximately 0.65 lb/MBtu. Flyash LOI values for the LNB configuration are approximately 8 percent at full load. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. Abbreviated diagnostic tests for the LNB+AOFA configuration indicate that at 500 MWe, NO{sub x} emissions are approximately 0.55 lb/MBtu with corresponding flyash LOI values of approximately 11 percent. For comparison, the long-term, full load, baseline NO{sub x} emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB+AOFA configuration will be performed when the stack particulate emissions issue is resolved.

  19. Oxidation in a temperature gradient

    SciTech Connect

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Russell, James H.

    2001-01-01

    The effects of a temperature gradient and heat flux on point defect diffusion in protective oxide scales were examined. Irreversible thermodynamics were used to expand Fick's first law of diffusion to include a heat flux term--a Soret effect. Oxidation kinetics were developed for the oxidation of cobalt and for nickel doped with chromium. Research in progress is described to verify the effects of a heat flux by oxidizing pure cobalt in a temperature gradient above 800 C, and comparing the kinetics to isothermal oxidation. The tests are being carried out in the new high temperature gaseous corrosion and corrosion/erosion facility at the Albany Research Center.

  20. Enzymes of respiratory iron oxidation

    SciTech Connect

    Blake, R. II.

    1991-01-01

    This report focuses on the progress made in three areas of research concerned with enzymes involved in respiratory iron oxidation. The three areas are as follows: development of an improved procedure for the routine large scale culture of iron oxidizing chemolithotrophs based on the in-situ electrolysis of the soluble iron in the growth medium; to perform iron oxidation kinetic studies on whole cells using the oxygen electrode; and to identify, separate, purify, and characterize the individual cellular components.

  1. EDITORIAL: Catalysing progress Catalysing progress

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-01-01

    Examples of the merits of blue-sky research in the history of science are legion. The invention of the laser, celebrating its 50th anniversary this year, is an excellent example. When it was invented it was considered to be 'a solution waiting for a problem', and yet the level to which it has now infiltrated our day-to-day technological landscape speaks volumes. At the same time it is also true to say that the direction of research is also at times rightly influenced by the needs and concerns of the general public. Over recent years, growing concerns about the environment have had a noticeable effect on research in nanotechnology, motivating work on a range of topics from green nanomaterial synthesis [1] to high-efficiency solar cells [2] and hydrogen storage [3]. The impact of the world's energy consumption on the welfare of the planet is now an enduring and well founded concern. In the face of an instinctive reluctance to curtail habits of comfort and convenience and the appendages of culture and consumerism, research into renewable and more efficient energy sources seem an encouraging approach to alleviating an impending energy crisis. Fuel cells present one alternative to traditional combustion cells that have huge benefits in terms of the efficiency of energy conversion and the limited harmful emissions. In last week's issue of Nanotechnology, Chuan-Jian Zhong and colleagues at the State University of New York at Binghamton in the USA presented an overview of research on nanostructured catalysts in fuel cells [4]. The topical review includes insights into the interactions between nanoparticles and between nanoparticles and their substrate as well as control over the composition and nanostructure of catalysts. The review also serves to highlight how the flourishing of nanotechnology research has heralded great progress in the exploitation of catalysts with nanostructures ingeniously controlled to maximize surface area and optimize energetics for synthesis

  2. EDITORIAL: Catalysing progress Catalysing progress

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-01-01

    Examples of the merits of blue-sky research in the history of science are legion. The invention of the laser, celebrating its 50th anniversary this year, is an excellent example. When it was invented it was considered to be 'a solution waiting for a problem', and yet the level to which it has now infiltrated our day-to-day technological landscape speaks volumes. At the same time it is also true to say that the direction of research is also at times rightly influenced by the needs and concerns of the general public. Over recent years, growing concerns about the environment have had a noticeable effect on research in nanotechnology, motivating work on a range of topics from green nanomaterial synthesis [1] to high-efficiency solar cells [2] and hydrogen storage [3]. The impact of the world's energy consumption on the welfare of the planet is now an enduring and well founded concern. In the face of an instinctive reluctance to curtail habits of comfort and convenience and the appendages of culture and consumerism, research into renewable and more efficient energy sources seem an encouraging approach to alleviating an impending energy crisis. Fuel cells present one alternative to traditional combustion cells that have huge benefits in terms of the efficiency of energy conversion and the limited harmful emissions. In last week's issue of Nanotechnology, Chuan-Jian Zhong and colleagues at the State University of New York at Binghamton in the USA presented an overview of research on nanostructured catalysts in fuel cells [4]. The topical review includes insights into the interactions between nanoparticles and between nanoparticles and their substrate as well as control over the composition and nanostructure of catalysts. The review also serves to highlight how the flourishing of nanotechnology research has heralded great progress in the exploitation of catalysts with nanostructures ingeniously controlled to maximize surface area and optimize energetics for synthesis

  3. Selective Oxidizer For Removal Of Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Trocciola, John C.; Schroll, Craig R.; Lesieur, Roger R.

    1996-01-01

    Catalytic apparatus selectively oxidizes most of carbon monoxide (without oxidizing hydrogen) in stream of reformed fuel gas fed to low-temperature fuel cell. Multiple catalytic stages at progressively lower temperatures operate without becoming poisoned. Catalysts used to oxidize CO selectively include platinum on alumina and commercial catalyst known as "Selectoxo."

  4. Oxidative stress in Alzheimer disease

    PubMed Central

    Durany, Nuria

    2009-01-01

    Alzheimer disease (AD) is a progressive dementia affecting a large proportion of the aging population. The histopathological changes in AD include neuronal cell death, formation of amyloid plaques and neurofibrillary tangles. There is also evidence that brain tissue in patients with AD is exposed to oxidative stress (e.g., protein oxidation, lipid oxidation, DNA oxidation and glycoxidation) during the course of the disease. Advanced glycation endproducts (AGEs) are present in amyloid plaques in AD, and its extracellular accumulation may be caused by an accelerated oxidation of glycated proteins. AGEs participate in neuronal death causing direct (chemical) and indirect (cellular) free radical production and consequently increase oxidative stress. The development of drugs for the treatment of AD that breaks the vicious cycles of oxidative stress and neurodegeneration offer new opportunities. These approaches include AGE-inhibitors, antioxidants and anti-inflammatory substances, which prevent free radical production. PMID:19372765

  5. PREFACE: Semiconducting oxides Semiconducting oxides

    NASA Astrophysics Data System (ADS)

    Catlow, Richard; Walsh, Aron

    2011-08-01

    their help in producing this special section. We hope that it conveys some of the excitement and significance of the field. Semiconducting oxides contents Chemical bonding in copper-based transparent conducting oxides: CuMO2 (M = In, Ga, Sc) K G Godinho, B J Morgan, J P Allen, D O Scanlon and G W Watson Electrical properties of (Ba, Sr)TiO3 thin films with Pt and ITO electrodes: dielectric and rectifying behaviourShunyi Li, Cosmina Ghinea, Thorsten J M Bayer, Markus Motzko, Robert Schafranek and Andreas Klein Orientation dependent ionization potential of In2O3: a natural source for inhomogeneous barrier formation at electrode interfaces in organic electronicsMareike V Hohmann, Péter Ágoston, André Wachau, Thorsten J M Bayer, Joachim Brötz, Karsten Albe and Andreas Klein Cathodoluminescence studies of electron irradiation effects in n-type ZnOCasey Schwarz, Yuqing Lin, Max Shathkin, Elena Flitsiyan and Leonid Chernyak Resonant Raman scattering in ZnO:Mn and ZnO:Mn:Al thin films grown by RF sputteringM F Cerqueira, M I Vasilevskiy, F Oliveira, A G Rolo, T Viseu, J Ayres de Campos, E Alves and R Correia Structure and electrical properties of nanoparticulate tungsten oxide prepared by microwave plasma synthesisM Sagmeister, M Postl, U Brossmann, E J W List, A Klug, I Letofsky-Papst, D V Szabó and R Würschum Charge compensation in trivalent cation doped bulk rutile TiO2Anna Iwaszuk and Michael Nolan Deep level transient spectroscopy studies of n-type ZnO single crystals grown by different techniquesL Scheffler, Vl Kolkovsky, E V Lavrov and J Weber Microstructural and conductivity changes induced by annealing of ZnO:B thin films deposited by chemical vapour depositionC David, T Girardeau, F Paumier, D Eyidi, B Lacroix, N Papathanasiou, B P Tinkham, P Guérin and M Marteau Multi-component transparent conducting oxides: progress in materials modellingAron Walsh, Juarez L F Da Silva and Su-Huai Wei Thickness dependence of the strain, band gap and transport properties of

  6. Biomimetic Water-Oxidation Catalysts: Manganese Oxides.

    PubMed

    Kurz, Philipp

    2016-01-01

    The catalytic oxidation of water to molecular oxygen is a key process for the production of solar fuels. Inspired by the biological manganese-based active site for this reaction in the enzyme Photosystem II, researchers have made impressive progress in the last decades regarding the development of synthetic manganese catalysts for water oxidation. For this, it has been especially fruitful to explore the many different types of known manganese oxides MnOx. This chapter first offers an overview of the structural, thermodynamic, and mechanistic aspects of water-oxidation catalysis by MnOx. The different test systems used for catalytic studies are then presented together with general reactivity trends. As a result, it has been possible to identify layered, mixed Mn (III/IV)-oxides as an especially promising class of bio-inspired catalysts and an attempt is made to give structure-based reasons for the good performances of these materials. In the outlook, the challenges of catalyst screenings (and hence the identification of a "best MnOx catalyst") are discussed. There is a great variety of reaction conditions which might be relevant for the application of manganese oxide catalysts in technological solar fuel-producing devices, and thus catalyst improvements are currently still addressing a very large parameter space. Nonetheless, detailed knowledge about the biological catalyst and a solid experimental basis concerning the syntheses and water-oxidation reactivities of MnOx materials have been established in the last decade and thus this research field is well positioned to make important contributions to solar fuel research in the future. PMID:25980320

  7. Enzymes of respiratory iron oxidation

    SciTech Connect

    Blake, R. II.

    1992-01-01

    This report describes experimental progress in characterizing and identifying redox proteins in a number of iron-oxidizing bacteria. Sections of the paper are entitled (1) In Situ electrolysis was explored to achieve enhanced yields of iron-oxidizing bacteria, (2)Structure/function studies were performed on redox-active biomolecules from Thiobacillus ferrooxidans, (3) Novel redox-active biomolecules were demonstrated in other iron autotrophs, and (4) New probes of metalloprotein electron-transfer reactions were synthesized and characterized.

  8. Progressive supranuclear palsy

    MedlinePlus

    Dementia-nuchal dystonia; Richardson-Steele-Olszewski syndrome; Palsy - progressive supranuclear ... Progressive supranuclear palsy is a condition that causes symptoms similar to those of Parkinson disease . It involves damage to many cells ...

  9. Progressive Pigmentary Purpura

    MedlinePlus

    ... Category: Share: Yes No, Keep Private Progressive Pigmentary Purpura Share | Progressive pigmentary purpura (we will call it PPP) is a group ... conditions ( Schamberg's disease , Lichenoid dermatitis of Gourgerot-Blum, purpura annularis telangiectodes of Majocchi and Lichen aureus). Schamberg's ...

  10. Low thermal conductivity oxides

    SciTech Connect

    Pan, Wei; Phillpot, Simon R.; Wan, Chunlei; Chernatynskiy, Aleksandr; Qu, Zhixue

    2012-10-09

    Oxides hold great promise as new and improved materials for thermal-barrier coating applications. The rich variety of structures and compositions of the materials in this class, and the ease with which they can be doped, allow the exploration of various mechanisms for lowering thermal conductivity. In this article, we review recent progress in identifying specific oxides with low thermal conductivity from both theoretical and experimental perspectives. We explore the mechanisms of lowering thermal conductivity, such as introducing structural/chemical disorder, increasing material density, increasing the number of atoms in the primitive cell, and exploiting the structural anisotropy. We conclude that further systematic exploration of oxide crystal structures and chemistries are likely to result in even further improved thermal-barrier coatings.

  11. Secondary Student Progress Plan.

    ERIC Educational Resources Information Center

    District of Columbia Public Schools, Washington, DC.

    The Secondary Student Progress Plan aims to provide uniform educational expectations for successful course completion and progress toward graduation beginning with grade 7 in school year 1984-85. Arranged in outline form, the plan shows the course of study for grades 7-12, guidelines for evaluating and reporting student progress, promotion…

  12. Reconstructing Progressive Education

    ERIC Educational Resources Information Center

    Kaplan, Andy

    2013-01-01

    The work of Colonel Francis W. Parker, the man whom Dewey called "the father of progressive education," provides a starting point for reconstructing the loose ambiguities of progressive education into a coherent social and educational philosophy. Although progressives have claimed their approach is more humane and sensitive to children, we need…

  13. PREFACE: Semiconducting oxides Semiconducting oxides

    NASA Astrophysics Data System (ADS)

    Catlow, Richard; Walsh, Aron

    2011-08-01

    their help in producing this special section. We hope that it conveys some of the excitement and significance of the field. Semiconducting oxides contents Chemical bonding in copper-based transparent conducting oxides: CuMO2 (M = In, Ga, Sc) K G Godinho, B J Morgan, J P Allen, D O Scanlon and G W Watson Electrical properties of (Ba, Sr)TiO3 thin films with Pt and ITO electrodes: dielectric and rectifying behaviourShunyi Li, Cosmina Ghinea, Thorsten J M Bayer, Markus Motzko, Robert Schafranek and Andreas Klein Orientation dependent ionization potential of In2O3: a natural source for inhomogeneous barrier formation at electrode interfaces in organic electronicsMareike V Hohmann, Péter Ágoston, André Wachau, Thorsten J M Bayer, Joachim Brötz, Karsten Albe and Andreas Klein Cathodoluminescence studies of electron irradiation effects in n-type ZnOCasey Schwarz, Yuqing Lin, Max Shathkin, Elena Flitsiyan and Leonid Chernyak Resonant Raman scattering in ZnO:Mn and ZnO:Mn:Al thin films grown by RF sputteringM F Cerqueira, M I Vasilevskiy, F Oliveira, A G Rolo, T Viseu, J Ayres de Campos, E Alves and R Correia Structure and electrical properties of nanoparticulate tungsten oxide prepared by microwave plasma synthesisM Sagmeister, M Postl, U Brossmann, E J W List, A Klug, I Letofsky-Papst, D V Szabó and R Würschum Charge compensation in trivalent cation doped bulk rutile TiO2Anna Iwaszuk and Michael Nolan Deep level transient spectroscopy studies of n-type ZnO single crystals grown by different techniquesL Scheffler, Vl Kolkovsky, E V Lavrov and J Weber Microstructural and conductivity changes induced by annealing of ZnO:B thin films deposited by chemical vapour depositionC David, T Girardeau, F Paumier, D Eyidi, B Lacroix, N Papathanasiou, B P Tinkham, P Guérin and M Marteau Multi-component transparent conducting oxides: progress in materials modellingAron Walsh, Juarez L F Da Silva and Su-Huai Wei Thickness dependence of the strain, band gap and transport properties of

  14. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of Nitrogen Oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1995

    SciTech Connect

    1996-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  15. Progress in understanding and development of Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Ran, Ran; Shao, Zongping

    Solid-oxide fuel cells (SOFCs) convert chemical energy directly into electric power in a highly efficient way. Lowering the operating temperature of SOFCs to around 500-800 °C is one of the main goals in current SOFC research. The associated benefits include reducing the difficulties associated with sealing and thermal degradation, allowing the use of low-cost metallic interconnectors and suppressing reactions between the cell components. However, the electrochemical activity of the cathode deteriorates dramatically with decreasing temperature for the typical La 0.8Sr 0.2MnO 3-based electrodes. The cathode becomes the limiting factor in determining the overall cell performance. Therefore, the development of new electrodes with high electrocatalytic activity for oxygen reduction becomes a critical issue for intermediate-temperature (IT)-SOFCs. Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ (BSCF) perovskite oxide was first reported as a potential IT-SOFC cathode material in 2004 by Shao and Haile. After that, the BSCF cathode has attracted considerable attention. This paper reviews the current research activities on BSCF-based cathodes for IT-SOFCs. Emphasis will be placed on the understanding and optimization of BSCF-based materials. The issues raised by the BSCF cathode are also presented and analyzed to provide some guidelines in the search for the new generation of cathode materials for IT-SOFCs.

  16. Nitric Oxide, Oxidative Stress and Inflammation in Pulmonary Arterial Hypertension

    PubMed Central

    Crosswhite, Patrick; Sun, Zhongjie

    2010-01-01

    Pulmonary arterial hypertension (PAH) is a chronic and progressive disease characterized by a persistent elevation of pulmonary artery pressure accompanied by right ventricular hypertrophy (RVH). The current treatment for pulmonary hypertension is limited and only provides symptomatic relief due to unknown etiology and pathogenesis of the disease. Both vasoconstriction and structural remodeling (enhanced proliferation of VSMC) of the pulmonary arteries contribute to the progressive course of PAH, irrespective of different underlying causes. The exact molecular mechanism of PAH, however, is not fully understood. The purpose of this review is to provide recent advances in the mechanistic investigation of PAH. Specifically, this review focuses on nitric oxide (NO), oxidative stress and inflammation and how these factors contribute to the development and progression of PAH. This review also discusses recent and potential therapeutic advancements for the treatment of PAH. PMID:20051913

  17. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report: First quarter 1993

    SciTech Connect

    Not Available

    1993-12-31

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. During this quarter, long-term testing of the LNB + AOFA configuration continued and no parametric testing was performed. Further full-load optimization of the LNB + AOFA system began on March 30, 1993. Following completion of this optimization, comprehensive testing in this configuration will be performed including diagnostic, performance, verification, long-term, and chemical emissions testing. These tests are scheduled to start in May 1993 and continue through August 1993. Preliminary engineering and procurement are progressing on the Advanced Low NOx Digital Controls scope addition to the wall-fired project. The primary activities during this quarter include (1) refinement of the input/output lists, (2) procurement of the distributed digital control system, (3) configuration training, and (4) revision of schedule to accommodate project approval cycle and change in unit outage dates.

  18. Role of mitochondrial dysfunction in cancer progression.

    PubMed

    Hsu, Chia-Chi; Tseng, Ling-Ming; Lee, Hsin-Chen

    2016-06-01

    Deregulated cellular energetics was one of the cancer hallmarks. Several underlying mechanisms of deregulated cellular energetics are associated with mitochondrial dysfunction caused by mitochondrial DNA mutations, mitochondrial enzyme defects, or altered oncogenes/tumor suppressors. In this review, we summarize the current understanding about the role of mitochondrial dysfunction in cancer progression. Point mutations and copy number changes are the two most common mitochondrial DNA alterations in cancers, and mitochondrial dysfunction induced by chemical depletion of mitochondrial DNA or impairment of mitochondrial respiratory chain in cancer cells promotes cancer progression to a chemoresistance or invasive phenotype. Moreover, defects in mitochondrial enzymes, such as succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase, are associated with both familial and sporadic forms of cancer. Deregulated mitochondrial deacetylase sirtuin 3 might modulate cancer progression by regulating cellular metabolism and oxidative stress. These mitochondrial defects during oncogenesis and tumor progression activate cytosolic signaling pathways that ultimately alter nuclear gene expression, a process called retrograde signaling. Changes in the intracellular level of reactive oxygen species, Ca(2+), or oncometabolites are important in the mitochondrial retrograde signaling for neoplastic transformation and cancer progression. In addition, altered oncogenes/tumor suppressors including hypoxia-inducible factor 1 and tumor suppressor p53 regulate mitochondrial respiration and cellular metabolism by modulating the expression of their target genes. We thus suggest that mitochondrial dysfunction plays a critical role in cancer progression and that targeting mitochondrial alterations and mitochondrial retrograde signaling might be a promising strategy for the development of selective anticancer therapy. PMID:27022139

  19. Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Fourth quarterly progress report

    SciTech Connect

    1992-12-31

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

  20. Neutronic Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint U.S./Russian Progress Report for Fiscal Year 1997 - Volume 4, Part 2--Saxton Plutonium Program Critical Experiments

    SciTech Connect

    Abdurrahman, NM

    2000-10-12

    Critical experiments with water-moderated, single-region PuO{sub 2}-UO{sub 2} or UO{sub 2}, and multiple-region PuO{sub 2}-UO{sub 2}- and UO{sub 2}-fueled cores were performed at the CRX reactor critical facility at the Westinghouse Reactor Evaluation Center (WREC) at Waltz Mill, Pennsylvania in 1965 [1]. These critical experiments were part of the Saxton Plutonium Program. The mixed oxide (MOX) fuel used in these critical experiments and then loaded in the Saxton reactor contained 6.6 wt% PuO{sub 2} in a mixture of PuO{sub 2} and natural UO{sub 2}. The Pu metal had the following isotopic mass percentages: 90.50% {sup 239}Pu; 8.57% {sup 239}Pu; 0.89% {sup 240}Pu; and 0.04% {sup 241}Pu. The purpose of these critical experiments was to verify the nuclear design of Saxton partial plutonium cores while obtaining parameters of fundamental significance such as buckling, control rod worth, soluble poison worth, flux, power peaking, relative pin power, and power sharing factors of MOX and UO{sub 2} lattices. For comparison purposes, the core was also loaded with uranium dioxide fuel rods only. This series is covered by experiments beginning with the designation SX.

  1. Progression in Measuring.

    ERIC Educational Resources Information Center

    Brown, Margaret; And Others

    1995-01-01

    Describes a study by British researchers that attempted to describe progression in learning in terms of a common framework for all students. Elementary school students completed periodic interviews while being taught measurement skills. Results found a wide spread of attainment in measurement in each age range but less clear progression between…

  2. THE CANCER PROGRESS REPORT

    EPA Science Inventory

    The Cancer Progress Report 2001 is about our Nation's progress against cancer. The information was gathered through a collaborative effort with other key agencies and groups, such as the Centers for Disease Control and Prevention and the American Cancer Society. Data on this site...

  3. Progress in BazookaSPECT

    PubMed Central

    Miller, Brian W.; Barber, H. Bradford; Furenlid, Lars R.; Moore, Stephen K.; Barrett, Harrison H.

    2010-01-01

    Recent progress on a high-resolution, photon-counting gamma-ray and x-ray imager called BazookaSPECT is presented. BazookaSPECT is an example of a new class of scintillation detectors based on integrating detectors such as CCD(charge-coupled device) or CMOS(complementary metal-oxide semiconductor) sensors. BazookaSPECT is unique in that it makes use of a scintillator in close proximity to a microchannel plate-based image intensifier for up-front optical amplification of scintillation light. We discuss progress made in bringing about compact BazookaSPECT modules and in real-time processing of event data using graphics processing units (GPUs). These advances are being implemented in the design of a high-resolution rodent brain imager called FastSPECT III. A key benefit of up-front optical gain is that any CCD/CMOS sensor can now be utilized for photon counting. We discuss the benefits and feasibility of using CMOS sensors as photon-counting detectors for digital radiography, with application in mammography and computed tomography (CT). We present as an appendix a formal method for comparing various photon-counting integrating detectors using objective statistical criteria. PMID:21297897

  4. Enzymatic Oxidation of Methane

    SciTech Connect

    Sirajuddin, S; Rosenzweig, AC

    2015-04-14

    Methane monooxygenases (MMOs) are enzymes that catalyze the oxidation of methane to methanol in methanotrophic bacteria. As potential targets for new gas-to-liquid methane bioconversion processes, MMOs have attracted intense attention in recent years. There are two distinct types of MMO, a soluble, cytoplasmic MMO (sMMO) and a membrane-bound, particulate MMO (pMMO). Both oxidize methane at metal centers within a complex, multisubunit scaffold, but the structures, active sites, and chemical mechanisms are completely different. This Current Topic review article focuses on the overall architectures, active site structures, substrate reactivities, proteinprotein interactions, and chemical mechanisms of both MMOs, with an emphasis on fundamental aspects. In addition, recent advances, including new details of interactions between the sMMO components, characterization of sMMO intermediates, and progress toward understanding the pMMO metal centers are highlighted. The work summarized here provides a guide for those interested in exploiting MMOs for biotechnological applications.

  5. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, October 1993--December 1993

    SciTech Connect

    1995-06-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal.

  6. Changes of soluble CD40 ligand in the progression of acute myocardial infarction associate to endothelial nitric oxide synthase polymorphisms and vascular endothelial growth factor but not to platelet CD62P expression.

    PubMed

    Napoleão, Patrícia; Monteiro, Maria do Céu; Cabral, Luís B P; Criado, Maria Begoña; Ramos, Catarina; Selas, Mafalda; Viegas-Crespo, Ana Maria; Saldanha, Carlota; Carmo, Miguel Mota; Ferreira, Rui Cruz; Pinheiro, Teresa

    2015-12-01

    Reported in vitro data implicated soluble CD40 ligand (sCD40L) in endothelial dysfunction and angiogenesis. However, whether sCD40L could exert that influence in endothelial dysfunction and angiogenesis after injury in acute myocardial infarction (AMI) patients remains unclear. In the present study, we evaluated the association of sCD40L with markers of platelet activation, endothelial, and vascular function during a recovery period early after AMI. To achieve this goal, the time changes of soluble, platelet-bound, and microparticle-bound CD40L levels over 1 month were assessed in AMI patients and correlated with endothelial nitric oxide synthase (eNOS) polymorphisms, vascular endothelial growth factor (VEGF) concentrations, and platelet expression of P-selectin (CD62P). The association of soluble form, platelet-bound, and microparticle-bound CD40L with CD62P expression on platelets, a marker of platelet activation, was also assessed to evaluate the role of CD40L in the thrombosis, whereas the association with eNOS and VEGF was to evaluate the role of CD40L in vascular dysfunction. This work shows for the first time that time changes of sCD40L over 1 month after myocardial infarct onset were associated with G894T eNOS polymorphism and with the VEGF concentrations, but not to the platelet CD62P expression. These results indicate that, in terms of AMI pathophysiology, the sCD40L cannot be consider just as being involved in thrombosis and inflammation but also as having a relevant role in vascular and endothelial dysfunction. PMID:26279254

  7. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction technology for the control of nitrogen oxide emissions from high-sulfur coal-fired boilers. First and second quarterly technical progress reports, [January--June 1995]. Final report

    SciTech Connect

    1995-12-31

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia (NH{sub 3}) into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor containing a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW nameplate capacity) near Pensacola, Florida. The project is funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

  8. Rapidly Progressive Dementia

    PubMed Central

    Geschwind, Michael D.; Shu, Huidy; Haman, Aissa; Sejvar, James J.; Miller, Bruce L.

    2009-01-01

    In contrast with more common dementing conditions that typically develop over years, rapidly progressive dementias can develop subacutely over months, weeks, or even days and be quickly fatal. Because many rapidly progressive dementias are treatable, it is paramount to evaluate and diagnose these patients quickly. This review summarizes recent advances in the understanding of the major categories of RPD and outlines efficient approaches to the diagnosis of the various neurodegenerative, toxic-metabolic, infectious, autoimmune, neoplastic, and other conditions that may progress rapidly. PMID:18668637

  9. Progress and promise.

    PubMed

    Kamphaus, Randy W

    2012-12-01

    This editorial introduces the current issue of the journal School Psychology Quarterly (SPQ).There has been an impressive and promising progress of school psychology science has been reflected in every issue of SPQ, including the current one. PMID:23294232

  10. Orion Progress - Spring 2010

    NASA Video Gallery

    NASA and contractor teams are designing, building and testing the next generation human spacecraft Orion. Progress on Orion is highlighted by employees working on the project, along with video of t...

  11. Progress for the Paralyzed

    MedlinePlus

    ... this page please turn Javascript on. Feature: NIBIB Robotics Progress for the Paralyzed Past Issues / Spring 2013 ... Paralyzed —The expanding options for paralyzed individuals include: robotic arms spinal cord stimulation improved prosthetic limbs restored ...

  12. CHEMICALS IN PROGRESS BULLETIN

    EPA Science Inventory

    Chemicals in Progress Bulletin is a quarterly newsletter which highlights regulatory and program activities of the Office of Pollution Prevention and Toxics. Regular features and news items include the existing chemicals program, new chemicals program, pollution prevention activi...

  13. Oxidative Stress in Atopic Dermatitis

    PubMed Central

    Ji, Hongxiu; Li, Xiao-Kang

    2016-01-01

    Atopic dermatitis (AD) is a chronic pruritic skin disorder affecting many people especially young children. It is a disease caused by the combination of genetic predisposition, immune dysregulation, and skin barrier defect. In recent years, emerging evidence suggests oxidative stress may play an important role in many skin diseases and skin aging, possibly including AD. In this review, we give an update on scientific progress linking oxidative stress to AD and discuss future treatment strategies for better disease control and improved quality of life for AD patients. PMID:27006746

  14. Magnesium Oxide

    MedlinePlus

    ... repeatedly. Magnesium oxide also is used as a dietary supplement when the amount of magnesium in the diet ... any products such as vitamins, minerals, or other dietary supplements. You should bring this list with you each ...

  15. Yttrium oxide stabilized zirconium oxide

    SciTech Connect

    Ritsko, J.E.; Houck, D.L.; Acla, H.L.R.

    1987-09-22

    This patent describes a process comprising: (a) forming a solution by mixing yttrium hydroxide and a sufficient amount of an aqueous solution of acetic acid to dissolve the yttrium hydroxide. The solution has a concentration of yttrium ion of about 5% to about 20% by weight of the solution, (b) adding from about 80% to about 95% by weight of zirconium oxide having a particle size range from about 1 to about 5 microns to yield a Zr to Y weight ratio of from about 4:1 to about 19:1 and thereby forming a slurry, (c) spray drying the slurry to form spherical agglomerates consisting essentially of zirconium oxide and a relatively uniform distribution of yttrium acetate whereby the agglomerates have a size from about 20 to about 200 micrometers, (d) heating the agglomerates to about 600/sup 0/C to about 700/sup 0/C in a neutral or oxidizing atmosphere to convert yttrium acetate to yttrium oxide to thereby form zirconium oxide yttrium oxide agglomerates with about 5% to about 20% by weight of yttrium oxide.

  16. Melanocytes as instigators and victims of oxidative stress.

    PubMed

    Denat, Laurence; Kadekaro, Ana L; Marrot, Laurent; Leachman, Sancy A; Abdel-Malek, Zalfa A

    2014-06-01

    Epidermal melanocytes are particularly vulnerable to oxidative stress owing to the pro-oxidant state generated during melanin synthesis, and to the intrinsic antioxidant defenses that are compromised in pathologic conditions. Melanoma is thought to be oxidative stress driven, and melanocyte death in vitiligo is thought to be instigated by a highly pro-oxidant state in the epidermis. We review the current knowledge about melanin and the redox state of melanocytes, how paracrine factors help counteract oxidative stress, the role of oxidative stress in melanoma initiation and progression and in melanocyte death in vitiligo, and how this knowledge can be harnessed for melanoma and vitiligo treatment. PMID:24573173

  17. Oxidative stress in prostate cancer.

    PubMed

    Khandrika, Lakshmipathi; Kumar, Binod; Koul, Sweaty; Maroni, Paul; Koul, Hari K

    2009-09-18

    As prostate cancer and aberrant changes in reactive oxygen species (ROS) become more common with aging, ROS signaling may play an important role in the development and progression of this malignancy. Increased ROS, otherwise known as oxidative stress, is a result of either increased ROS generation or a loss of antioxidant defense mechanisms. Oxidative stress is associated with several pathological conditions including inflammation and infection. ROS are products of normal cellular metabolism and play vital roles in stimulation of signaling pathways in response to changing intra- and extracellular environmental conditions. Chronic increases in ROS over time are known to induce somatic mutations and neoplastic transformation. In this review we summarize the causes for increased ROS generation and its potential role in etiology and progression of prostate cancer. PMID:19185987

  18. [Various pathways leading to the progression of chronic liver diseases].

    PubMed

    Egresi, Anna; Lengyel, Gabriella; Somogyi, Anikó; Blázovics, Anna; Hagymási, Krisztina

    2016-02-21

    As the result of various effects (viruses, metabolic diseases, nutritional factors, toxic agents, autoimmune processes) abnormal liver function, liver steatosis and connective tissue remodeling may develop. Progression of this process is complex including various pathways and a number of factors. The authors summarize the factors involved in the progression of chronic liver disease. They describe the role of cells and the produced inflammatory mediators and cytokines, as well as the relationship between the disease and the intestinal flora. They emphasize the role of oxidative stress, mitochondrial dysfunction and cell death in disease progression. Insulin resistance and micro-elements (iron, copper) in relation to liver damage are also discussed, and genetic and epigenetic aspects underlying disease progression are summarized. Discovery of novel treatment options, assessment of the effectiveness of treatment, as well as the success and proper timing of liver transplantation may depend on a better understanding of the process of disease progression. PMID:26876265

  19. Progressive cone dystrophies.

    PubMed

    François, J; De Rouck, A; De Laey, J J

    1976-01-01

    Patients with progressive generalized cone dystrophy often present nystagmus (or strabism) and complain of photophobia, decrease in visual acuity or disturbances in colour perception. The most classic fundus abnormality is the bull's eye maculopathy or a pallor of the optic disc. Minimal macular changes are sometimes seen, which may progress to a bull's eye type of macular degeneration. The photopic ERG is always very affected, whereas at first the scotopic ERG seems normal. Progressive deterioration of the visual functions is accompanied by increasing fundus lesions and rod involvement, as suggested by the modifications of the dark adaptation curve and the scotopic ERG. However, the progression of typical generalized cone dysfunction is very slow. On the contrary, in some cases of so-called Stargardt's disease with peripheral participation, a very rapid progression has been observed. In such cases a normal ERG does not necessarily mean that the disease will remain localized to the macular area. No definite prognosis can be made on one single ERG. In 3 cases with sector pigmentary retinopathy the photopic ERG was more affected than the scotopic ERG. However, these cases are probably primary cone-rod dystrophies. Although there is no electrophysiological control, our clinical impression is that the evolution, if possible, is very slow. PMID:1066593

  20. Progressive multiple sclerosis

    PubMed Central

    Ontaneda, Daniel; Fox, Robert J.

    2015-01-01

    Purpose to Review To highlight the pathological features and clinical aspects of progressive multiple sclerosis (PMS). To highlight results of clinical trial experience to date and review ongoing clinical trials and perspective new treatment options. Explain the challenges of clinical trial design in PMS. Recent Findings MS has been identified as a chronic immune mediated disease, and the progressive phase of the disease appears to have significant neurodegenerative mechanisms. The classification of the course of PMS has been re-organized into categories of active vs. inactive inflammatory disease and the presence vs. absence of gradual disease progression. This differentiation allows clearer conceptualization of PMS and possibly even more efficient recruitment of PMS subjects into clinical trials. Clinical trial experience to date in PMS has been negative with anti-inflammatory medications used in relapsing MS. Simvastatin was recently tested in a phase II trial and showed a 43% reduction on annualized atrophy progression in secondary progressive MS. Ongoing PMS trials are currently being conducted with the phosphodiesterase inhibitor ibudilast, S1P modulator siponimod, and anti-B-cell therapy ocrelizumab. Several efforts for development of outcome measures in PMS are ongoing. Summary PMS represents a significant challenge, as the pathogenesis of the disease is not well understood, no validated outcome metrics have been established, and clinical trial experience to date has been disappointing. Advances in the understanding of the disease and lessons learned in previous clinical trials are paving the way for successful development of disease modifying agents for this disease. PMID:25887766

  1. Progress towards diesel combustion modeling

    SciTech Connect

    Rutland, C.J.; Ayoub, N.; Han, Z.

    1995-12-31

    Progress on the development and validation of a CFD model for diesel engine combustion and flow is described. A modified version of the KIVA code is used for the computations, with improved submodels for liquid breakup, drop distortion and drag, spray/wall impingement with rebounding, sliding and breaking-up drops, wall heat transfer with unsteadiness and compressibility, multistep kinetics ignition and laminar-turbulent characteristic time combustion models, Zeldovich NOx formation, and soot formation with Nagle Strickland-Constable oxidation. The code also considers piston-cylinder-liner crevice flows and allows computations of the intake flow process in the realistic engine geometry with two moving intake valves. Significant progress has been made using a modified RNG {kappa}-{var_epsilon} turbulence model, and a multicomponent fuel vaporization model and a flamelet combustion model have been implemented. Model validation experiments have been performed using a single-cylinder heavy duty truck engine that features state-of-the-art high pressure electronic fuel injection and emissions instrumentation. In addition to cylinder pressure, heat release, and emissions measurements, new combustion visualization experiments have also been performed using an endoscope system that takes the place of one of the exhaust valves. Modifications to the engine geometry for optical access were minimal, thus ensuring that the results represent the actual engine. The intake flow CFD modeling results show that the details of the intake flow process influence the engine performance. Comparisons with the measured engine cylinder pressure, heat release, soot and NOx emission data, and the combustion visualization flame images show that the CFD model results are generally in good agreement with the experiments. In particular, the model is able to correctly predict the soot-NOx trade-off trend as a function of injection timing. 44 refs., 21 figs., 6 tabs.

  2. Progressive supranuclear palsy: progression and survival.

    PubMed

    Arena, Julieta E; Weigand, Stephen D; Whitwell, Jennifer L; Hassan, Anhar; Eggers, Scott D; Höglinger, Günter U; Litvan, Irene; Josephs, Keith A

    2016-02-01

    Progressive supranuclear palsy (PSP) is a progressive neurodegenerative disorder characterized by postural instability and falls, vertical supranuclear gaze palsy, parkinsonism with poor levodopa response, pseudobulbar palsy, and frontal release signs. The natural history of the disease has been previously described. However, the time frame of appearance of clinical milestones and how these symptoms may relate to survival in PSP are unknown. The primary objective was to determine the prevalence of symptoms at different stages of PSP and to estimate the time of appearance of clinical symptoms characteristic of the disease. Second, we determined the association between clinical symptoms and survival. We prospectively studied 35 PSP patients during assessments scheduled every 6 months for up to 2 years. We estimated symptoms prevalence and the association between symptoms and survival. The median age of onset was 65.9 years (IQR 60.6-70.0), and the median time from onset to first assessment was 3.0 years (IQR 2.4-3.9). The most commonly reported symptoms at baseline were: motor (100%) followed by cognitive/behavioral (89%), systemic and bulbar (80%), and sleep disturbances (60%). Slowness of movement, falls, neck stiffness and difficulty looking up/down had high prevalence from baseline, while balance and gait impairment were less common at baseline but increased in prevalence over time. The presence of sleep disturbances, and possibly hallucinations, was associated with increased death risk. Improved recognition of the clinical spectrum and milestones of PSP advances knowledge of the disease, helps earlier diagnosis, and allows prognostic predictions. PMID:26705121

  3. Analysis of Oxidative Stress in Zebrafish Embryos

    PubMed Central

    Mugoni, Vera; Camporeale, Annalisa; Santoro, Massimo M.

    2014-01-01

    High levels of reactive oxygen species (ROS) may cause a change of cellular redox state towards oxidative stress condition. This situation causes oxidation of molecules (lipid, DNA, protein) and leads to cell death. Oxidative stress also impacts the progression of several pathological conditions such as diabetes, retinopathies, neurodegeneration, and cancer. Thus, it is important to define tools to investigate oxidative stress conditions not only at the level of single cells but also in the context of whole organisms. Here, we consider the zebrafish embryo as a useful in vivo system to perform such studies and present a protocol to measure in vivo oxidative stress. Taking advantage of fluorescent ROS probes and zebrafish transgenic fluorescent lines, we develop two different methods to measure oxidative stress in vivo: i) a “whole embryo ROS-detection method” for qualitative measurement of oxidative stress and ii) a “single-cell ROS detection method” for quantitative measurements of oxidative stress. Herein, we demonstrate the efficacy of these procedures by increasing oxidative stress in tissues by oxidant agents and physiological or genetic methods. This protocol is amenable for forward genetic screens and it will help address cause-effect relationships of ROS in animal models of oxidative stress-related pathologies such as neurological disorders and cancer. PMID:25046434

  4. Progressive External Ophthalmoplegia.

    PubMed

    McClelland, Collin; Manousakis, Georgios; Lee, Michael S

    2016-06-01

    Progressive external ophthalmoplegia (PEO), marked by progressive bilateral ptosis and diffuse reduction in ocular motility, represents a finding of mitochondrial myopathy rather than a true diagnosis. PEO often occurs with other systemic features of mitochondrial dysfunction that can cause significant morbidity and mortality. Accurate and early recognition of PEO is paramount for the optimal care of these patients. We present an evidence-based review of the presenting neuro-ophthalmic features, differential diagnosis, diagnostic tools, systemic implications, and treatment options for isolated PEO and other PEO-associated mitochondrial syndromes. PMID:27072953

  5. Slowing progression of chronic kidney disease.

    PubMed

    Drawz, Paul E; Rosenberg, Mark E

    2013-12-01

    Early identification of chronic kidney disease (CKD) provides an opportunity to implement therapies to improve kidney function and slow progression. The goal of this article is to review established and developing clinical therapies directed at slowing progression. The importance of controlling blood pressure will be discussed along with the target blood pressure that should be achieved in CKD patients. Therapy directed at inhibiting the renin-angiotensin-aldosterone system remains the mainstay of treatment with single-agent inhibition of this system being as good as dual blockade with fewer adverse effects. Other therapies that may be used include correction of metabolic acidosis, dietary protein restriction, and new models for delivering care to patients with CKD. Emerging therapies targeting endothelin, uric acid, kidney fibrosis, and oxidant stress hold promise for the future. PMID:25019022

  6. Recent Progress in the DEOX Process

    SciTech Connect

    B.R. Westphal; K.J. Bateman; R.P. Lind; D.L. Wahlquist

    2006-06-01

    Recent Progress in the DEOX Process B.R. Westphal, K.J. Bateman, R.P. Lind, and D.L. Wahlquist Idaho National Laboratory: P.O. Box 1625, Idaho Falls, ID, 83415, and brian.westphal@inl.gov INTRODUCTION A head-end processing step is being developed for the treatment of spent oxide fuel by either aqueous or pyrochemical technologies. The head-end step, termed DEOX for its emphasis on decladding via oxidation, employs high temperatures to promote the oxidation of UO2 to U3O8 via an oxygen carrier gas. During oxidation, the spent fuel experiences a 30% increase in lattice structure volume resulting in the separation of fuel from cladding. An added benefit of the head-end step is the removal of fission products, either via direct release from the broken fuel structure or via oxidation and volatilization by the high temperature process. The DEOX program at the Idaho National Laboratory has progressed from an initial exploratory phase, where the objective was the optimization of particle size and fuel-clad separation [1], to a phase more applicable to current flowsheet development, i.e. the removal and collection of targeted fission products [2]. The behavior of fission products has been investigated via testing with irradiated spent fuel to determine the effects of temperature, pressure, oxidative gas, and cladding on the removal efficiencies of targeted fission products. In addition, a preliminary design for the retention of fission products in an off-gas treatment system has been initiated as part of a collaborative effort with Korea Atomic Energy Research Institute through an International Nuclear Energy Research Initiative (I-NERI). RECENT PROGRESS Using a set low temperature oxidation cycle near 500oC, additional conditions have been applied to distinguish their effects on the removal of targeted fission products. Both oxygen and air have been utilized during the oxidation portion followed by vacuum conditions to temperatures as high as 1050oC. In addition, the

  7. Zinc in +III oxidation state

    NASA Astrophysics Data System (ADS)

    Samanta, Devleena; Jena, Puru

    2012-02-01

    The possibility of Group 12 elements, such as Zn, Cd, and Hg existing in an oxidation state of +III or higher has fascinated chemists for decades. Significant efforts have been made in the past to achieve higher oxidation states for the heavier congener mercury (since the 3^rd ionization potential of the elements decrease as we go down the periodic table). It took nearly 20 years before experiment could confirm the theoretical prediction that Hg indeed can exist in an oxidation state of +IV. While this unusual property of Hg is attributed to the relativistic effects, Zn being much lighter than Hg has not been expected to have an oxidation state higher than +II. Using density functional theory we show that an oxidation state of +III for Zn can be realized by choosing specific ligands with large electron affinities i.e. superhalogens. We demonstrate this by a systematic study of the interaction of Zn with F, BO2, and AuF6 ligands whose electron affinities are progressively higher, namely, 3.4 eV, 4.4 eV, and 8.4 eV, respectively. Discovery of higher oxidation states of elements can help in the formulation of new reactions and hence in the development of new chemistry.

  8. Oxidation catalyst

    DOEpatents

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  9. Oxide Thermoelectrics

    SciTech Connect

    Singh, David J

    2008-01-01

    Thermoelectricity in oxides, especially NaxCoO2 and related materials, is discussed from the point of view of first principles calculations and Boltzmann transport theory. The electronic structure of this material is exceptional in that it has a combination of very narrow bands and strong hybridization between metal d states and ligand p states. As shown within the framework of conventional Boltzmann transport theory, this leads to high Seebeck coefficients even at metallic carrier densities. This suggests a strategy of searching for other narrow band oxides that can be doped metallic with mobile carriers. Some possible avenues for finding such materials are suggested.

  10. [Progressive hearing loss].

    PubMed

    Reiss, M; Reiss, G

    2000-01-01

    Progressive sensorineural hearing loss (SNHL) is defined as hearing loss of unknown etiology with fairly high-speed progression. Its diagnostic criteria consist of the following: that it is 1) progressive, 2) with bilateral involvement, and 3) of unknown etiology. Due to recent advances in diagnostics, imaging and management, SNHL has gained much interest from otologists in the last few years. They provide new insight into the physiology and pathophysiology of hearing. SNHL which is sudden in onset, fluctuating, and/or progressive complicates medical management, hearing aid selection, and individualized educational planning for a hearing-impaired patient. Existing hypotheses on the etiology of SNHL are judged on experimental, clinical, laboratory and radiological evidence. Cardiovascular and rheologic diseases, hereditary disorders, immunological phenomena, infections, environmental causes like noise, ototoxic drugs and industrial substances and systemic maladies must be included in the diagnostic reflections. Potential concepts of treatment include rheologic medications and corticosteroids. Hearing aids and timely cochlear implant operation are further possible forms of treatment. PMID:10893764

  11. Progressive Myoclonus Epilepsies.

    PubMed

    Kälviäinen, Reetta

    2015-06-01

    The progressive myoclonus epilepsies (PMEs) comprise a group of rare and heterogeneous disorders defined by the combination of action myoclonus, epileptic seizures, and progressive neurologic deterioration. Neurologic deterioration may include progressive cognitive decline, ataxia, neuropathy, and myopathy. The gene defects for the most common forms of PME (Unverricht-Lundborg disease, Lafora disease, several forms of neuronal ceroid lipofuscinoses, myoclonus epilepsy with ragged-red fibers [MERRF], and type 1 and 2 sialidoses) have been identified. The prognosis of a PME depends on the specific disease. Lafora disease, the neuronal ceroid lipofuscinoses, and the neuronopathic form of Gaucher disease have an invariably fatal course. In contrast, Unverricht-Lundborg disease has a much slower progression, and with adequate care many patients have a normal life span. The specific diseases that cause PME are diagnosed by recognition of their age of onset, the associated clinical symptoms, the clinical course, the pattern of inheritance, and by special investigations such as enzyme measurement, skin/muscle biopsy, or gene testing. PMID:26060909

  12. Basic Measures of Progress.

    ERIC Educational Resources Information Center

    Calkins, Julia; Ling, Thomson; Moore, Eric; Halle, Tamara; Hair, Beth; Moore, Kris; Zaslow, Marty

    This document provides a compilation of measures of progress toward school readiness and three contributing conditions as used in several local, state, and national surveys. The report begins with a legend listing the surveys examined, their acronyms, and contact information. The remainder of the report, in tabular format, lists measures of…

  13. Mystery in Progress.

    ERIC Educational Resources Information Center

    Hall, Kristen

    1989-01-01

    Describes "Mystery in Progress," a traveling exhibit which traces the development of Predynastic Egypt. The exhibit provides a time line for Predynastic Egypt, depicts the history of the Hierakonpolis expedition, documents the formation of Egypt's first centralized nation state, and summarizes the emergence of a unified Egypt. (LS)

  14. MCNP Progress & Performance Improvements

    SciTech Connect

    Brown, Forrest B.; Bull, Jeffrey S.; Rising, Michael Evan

    2015-04-14

    Twenty-eight slides give information about the work of the US DOE/NNSA Nuclear Criticality Safety Program on MCNP6 under the following headings: MCNP6.1.1 Release, with ENDF/B-VII.1; Verification/Validation; User Support & Training; Performance Improvements; and Work in Progress. Whisper methodology will be incorporated into the code, and run speed should be increased.

  15. MEASURING POLLUTION PREVENTION PROGRESS

    EPA Science Inventory

    The workshop, "Measuring Pollution Prevention Progress," was held in Salem, MA, March 31 - April 2, 1993. he purpose of this workshop was to present the latest significant research and practical findings related to pollution prevention measurement from ongoing and recently comple...

  16. Learning Progressions & Climate Change

    ERIC Educational Resources Information Center

    Parker, Joyce M.; de los Santos, Elizabeth X.; Anderson, Charles W.

    2015-01-01

    Our society is currently having serious debates about sources of energy and global climate change. But do students (and the public) have the requisite knowledge to engage these issues as informed citizenry? The learning-progression research summarized here indicates that only 10% of high school students typically have a level of understanding…

  17. Assessing Pupils' Progress

    ERIC Educational Resources Information Center

    Ollerton, Mike

    2010-01-01

    In this article, the author explores what Assessing Pupils' Progress (APP) is about. He contends that the predilection for testing is a catastrophe as far as the teaching and learning of mathematics is concerned; it is an outcome of the drive for collecting so-called "data" on pupils. What those people, who should know better, either choose to…

  18. 1992 PVUSA progress report

    SciTech Connect

    Ellyn, W.

    1992-12-31

    Photovoltaics for Utility Scale Applications (PVUSA) is a national public-private partnership that is assessing and demonstrating the viability of utility-scale photovoltaic (PV) electric generating systems. This report updates the progress of the PVUSA project, reviews the status and performance of the various PV installations during 1992, and summarizes key accomplishments and conclusions from work to date.

  19. Progressive Response Surfaces

    NASA Technical Reports Server (NTRS)

    Romero, V. J.; Swiler, L. P.

    2004-01-01

    Response surface functions are often used as simple and inexpensive replacements for computationally expensive computer models that simulate the behavior of a complex system over some parameter space. Progressive response surfaces are ones that are built up progressively as global information is added from new sample points in the parameter space. As the response surfaces are globally upgraded based on new information, heuristic indications of the convergence of the response surface approximation to the exact (fitted) function can be inferred. Sampling points can be incrementally added in a structured fashion, or in an unstructured fashion. Whatever the approach, at least in early stages of sampling it is usually desirable to sample the entire parameter space uniformly. At later stages of sampling, depending on the nature of the quantity being resolved, it may be desirable to continue sampling uniformly over the entire parameter space (Progressive response surfaces), or to switch to a focusing/economizing strategy of preferentially sampling certain regions of the parameter space based on information gained in early stages of sampling (Adaptive response surfaces). Here we consider Progressive response surfaces where a balanced indication of global response over the parameter space is desired.We use a variant of Moving Least Squares to fit and interpolate structured and unstructured point sets over the parameter space. On a 2-D test problem we compare response surface accuracy for three incremental sampling methods: Progressive Lattice Sampling; Simple-Random Monte Carlo; and Halton Quasi-Monte-Carlo sequences. We are ultimately after a system for constructing efficiently upgradable response surface approximations with reliable error estimates.

  20. ALTERNATIVE OXIDANTS

    EPA Science Inventory

    This chapter reports on the efforts of the USEPA to study chloramines, chlorine dioxide and ozone as alternative oxidants/disinfectants to chlorine for the control of disinfection by-rpdocuts (DBPs) in drinking water. It examines the control of DBPs like trihalomethanes and haloa...

  1. Merphos oxide

    Integrated Risk Information System (IRIS)

    Merphos oxide ; CASRN 78 - 48 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effe

  2. Propylene oxide

    Integrated Risk Information System (IRIS)

    Propylene oxide ; CASRN 75 - 56 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  3. Thallium oxide

    Integrated Risk Information System (IRIS)

    Thallium oxide ; CASRN 1314 - 32 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  4. Nitric oxide

    Integrated Risk Information System (IRIS)

    Nitric oxide ; CASRN 10102 - 43 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  5. Characteristics of oxide scale formed on Cu-bearing austenitic stainless steel during early stages of high temperature oxidation

    NASA Astrophysics Data System (ADS)

    Swaminathan, Srinivasan; Krishna, Nanda Gopala; Kim, Dong-Ik

    2015-10-01

    Oxide scale evolution on Cu-bearing austenitic stainless steel 304H at 650 °C, in ambient air, for exposure times 100, 300, 500 and 1000 h, has been investigated. Surface morphology and chemistry of the oxide scale grown were examined using SEM/EDX and XPS. The oxidation kinetics was determined by measuring the weight change using an electronic balance. At the initial stage, up to 500 h of exposure time, the oxidation rate was rapid due to surface reactions governed primarily by oxygen ingress, and then, dropped to a low rate after prolonged oxidation for 1000 h. The diffusion of reactants through the initially formed oxide scale limits the oxidation rate at longer times, thus, the progress of reaction followed the parabolic kinetics. The formed oxide scale was enriched significantly with segregation and subsequent oxidation of Nb, and finely dispersed metallic Cu particles. Within the time frame of oxidation, the oxide scale was mainly composed of mixed oxides such as FeCr2O4 and MnCr2O4 along with the binary oxides of Fe, Cr and Mn. Moreover, the precipitation fraction of Cu-rich particles on the oxide scale increased markedly with increase of exposure times. The chemical heterogeneity of oxide scale suggests that the oxidation occurred in a non-selective manner.

  6. Progressive compressive imager

    NASA Astrophysics Data System (ADS)

    Evladov, Sergei; Levi, Ofer; Stern, Adrian

    2012-06-01

    We have designed and built a working automatic progressive sampling imaging system based on the vector sensor concept, which utilizes a unique sampling scheme of Radon projections. This sampling scheme makes it possible to progressively add information resulting in tradeoff between compression and the quality of reconstruction. The uniqueness of our sampling is that in any moment of the acquisition process the reconstruction can produce a reasonable version of the image. The advantage of the gradual addition of the samples is seen when the sparsity rate of the object is unknown, and thus the number of needed measurements. We have developed the iterative algorithm OSO (Ordered Sets Optimization) which employs our sampling scheme for creation of nearly uniform distributed sets of samples, which allows the reconstruction of Mega-Pixel images. We present the good quality reconstruction from compressed data ratios of 1:20.

  7. Photovoltaic concentrator research progress

    SciTech Connect

    Arvizu, D.E.

    1985-01-01

    This paper provides a review of progress in the DOE sponsored, Sandia managed Photovoltaic Concentrator Research Project. Research status, project goals and a discussion of concentrator economics is presented. Recent research accomplishments that will be discussed include 21% efficient baseline silicon cells by Applied Solar Energy Corporation and Sandia, 26% efficient GaAs cells by Varian Associates, and near 25% mechanically stacked multijunction GaAs/Si cells by Hughes Research, Applied Solar, and Sandia. In addition, improvements in breadboard module units (i.e. single lens/cell combination) such as a 19% GaAs unit by Varian and a near 17% silicon unit by ENTECH will be reviewed. This paper concludes that the photovoltaic concentrator option is making excellent progress toward competitive cost-effectiveness and provides a strong photovoltaic alternative.

  8. COSMIC monthly progress report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of January 1994. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are discussed. Marketing and customer service activities in this period are presented as is the progress report of NASTRAN maintenance and support. Tables of disseminations and budget summary conclude the report.

  9. Progress In Holographic Cinematography

    NASA Astrophysics Data System (ADS)

    Smigielski, P.; Fagot, H.; Albe, F.

    1986-06-01

    Two important progresses were achieved for the first time: 1) recording of single exposure cineholograms of living bodies on a 126-mm film, at a frequency of 25 holograms per second. Limitations of 3-D movies by holography are described. 2) recording of double-exposure cineholograms of reflecting objects, a loudspeaker membrane and the vertex cranii of a bald-headed man. These experiments show the interest of interferometric cineholography for industrial applications.

  10. ISABELLE: a progress report

    SciTech Connect

    Hahn, H

    1980-01-01

    This paper discusses the ISABELLE project, which has the objective of constructing a high-energy proton colliding beam facility at Brookhaven National Laboratory. The major technical features of the intersecting storage accelerators with their projected performance are described. Application of over 1000 superconducting magnets in the two rings represents the salient characteristic of the machine. The status of the entire project, the technical progress made so far, and difficulties encountered are reviewed.

  11. Progression of myopia.

    PubMed Central

    Kennedy, R H

    1995-01-01

    BACKGROUND: Myopia is an important public health problem because it is common and is associated with increased risk for chorioretinal degeneration, retinal detachment, and other vision-threatening abnormalities. In animals, ocular elongation and myopia progression can be lessened with atropine treatment. This study provides information about progression of myopia and atropine therapy for myopia in humans. METHODS: A total of 214 residents of Olmsted County, Minnesota (118 girls and 96 boys; median age, 11 years; range, 6 to 15 years) received atropine for myopia from 1967 through 1974. Control subjects were matched by age, sex, refractive error, and date of baseline examination to 194 of those receiving atropine. Duration of treatment with atropine ranged from 18 weeks to 11.5 years (median 3.5 years). RESULTS: Median follow-up from initial to last refraction in the atropine group (11.7 years) was similar to that in the control group (12.4 years). Photophobia and blurred vision were frequently reported, but no serious adverse effects were associated with atropine therapy. Mean myopia progression during atropine treatment adjusted for age and refractive error (0.05 diopters per year) was significantly less than that among control subjects (0.36 diopters per year) (P < .001). Final refractions standardized to the age of 20 years showed a greater mean level of myopia in the control group (3.78 diopters) than in the atropine group (2.79 diopters) (P < .001). CONCLUSIONS: The data support the view that atropine therapy is associated with decreased progression of myopia and that beneficial effects remain after treatment has been discontinued. PMID:8719698

  12. Progress in Scientific Visualization

    SciTech Connect

    Max, N

    2004-11-15

    Visualization of observed data or simulation output is important to science and engineering. I have been particularly interested in visualizing 3-D structures, and report here my personal impressions on progress in the last 20 years in visualizing molecules, scalar fields, and vector fields and their associated flows. I have tried to keep the survey and list of references manageable, so apologize to those authors whose techniques I have not mentioned, or have described without a reference citation.

  13. Heterogeneous photocatalytic oxidation of atmospheric trace contaminants

    NASA Technical Reports Server (NTRS)

    Ollis, David F.

    1993-01-01

    The progress report on heterogeneous photocatalytic oxidation of atmospheric trace contaminants covering the period from 1 May - 31 Oct. 1992 is presented. The two topics discussed are photoreactor monolith fundamental studies and monolith reactor operation: batch recirculation system. Concentration profiles are shown.

  14. Thin-Film Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex

    2009-01-01

    The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.

  15. Research Performance Progress Report

    SciTech Connect

    Theopold, Klaus H.

    2015-11-30

    The focus of this project was catalysis by ‘proton coupled electron transfer’ (PCET) to metal bound fragments derived from the most abundant small molecules (i. e. O2 and N2). There are many important chemical challenges that are tied to this fundamental reaction type. Among these are: metal catalyzed oxidations of organic molecules utilizing O2 as the oxidant; reduction of O2 to water close to the thermodynamic potential – in other words, the cathode of any fuel cell based on reactions with O 2; transfer of reduced nitrogen species to organic substrates; fixation of nitrogen at modest temperatures and pressures. Any one of these problems has obvious implications for the generation and/or utilization of energy on a large scale.

  16. Stop chronic kidney disease progression: Time is approaching.

    PubMed

    Sharaf El Din, Usama Abdel Azim; Salem, Mona Mansour; Abdulazim, Dina Ossama

    2016-05-01

    Progression of chronic kidney disease (CKD) is inevitable. However, the last decade has witnessed tremendous achievements in this field. Today we are optimistic; the dream of withholding this progression is about to be realistic. The recent discoveries in the field of CKD management involved most of the individual diseases leading the patients to end-stage renal disease. Most of these advances involved patients suffering diabetic kidney disease, chronic glomerulonephritis, polycystic kidney disease, renal amyloidosis and chronic tubulointerstitial disease. The chronic systemic inflammatory status and increased oxidative stress were also investigated. This inflammatory status influences the anti-senescence Klotho gene expression. The role of Klotho in CKD progression together with its therapeutic value are explored. The role of gut as a major source of inflammation, the pathogenesis of intestinal mucosal barrier damage, the role of intestinal alkaline phosphatase and the dietary and therapeutic implications add a novel therapeutic tool to delay CKD progression. PMID:27152262

  17. Stop chronic kidney disease progression: Time is approaching

    PubMed Central

    Sharaf El Din, Usama Abdel Azim; Salem, Mona Mansour; Abdulazim, Dina Ossama

    2016-01-01

    Progression of chronic kidney disease (CKD) is inevitable. However, the last decade has witnessed tremendous achievements in this field. Today we are optimistic; the dream of withholding this progression is about to be realistic. The recent discoveries in the field of CKD management involved most of the individual diseases leading the patients to end-stage renal disease. Most of these advances involved patients suffering diabetic kidney disease, chronic glomerulonephritis, polycystic kidney disease, renal amyloidosis and chronic tubulointerstitial disease. The chronic systemic inflammatory status and increased oxidative stress were also investigated. This inflammatory status influences the anti-senescence Klotho gene expression. The role of Klotho in CKD progression together with its therapeutic value are explored. The role of gut as a major source of inflammation, the pathogenesis of intestinal mucosal barrier damage, the role of intestinal alkaline phosphatase and the dietary and therapeutic implications add a novel therapeutic tool to delay CKD progression. PMID:27152262

  18. Solid oxide electrochemical reactor science.

    SciTech Connect

    Sullivan, Neal P.; Stechel, Ellen Beth; Moyer, Connor J.; Ambrosini, Andrea; Key, Robert J.

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  19. Final Technical Progress Report

    SciTech Connect

    J.Y. Hwang; R.C. Greenlund

    2002-12-31

    Michigan Technological University has demonstrated major inroads in establishing the viability of utilizing aluminum smelting by-product waste materials in lightweight concrete product applications. The research identified key elements of producing various forms of lightweight concrete products through utilizing various procedures and mixture components with the by-product materials. A process was developed through pilot plant testing that results in additional aluminum recovery at finer sizes, a clean returnable salt product through spray drying technology, and a low-salt-content oxide product with enough aluminum metal content that it can be used to form lightweight cementitious mixtures. Having three distinct products aids in generating favorable process economics. Revenue projections from aluminum recovery and salt recovery are enough to cover processing costs and create a cost-free oxide product to market for lightweight concrete applications. This supply side commercialization strategy offers aluminum by-product recyclers a potentially no cost product, which has been demonstrated through this project to create desirable and marketable lightweight concrete products of various forms. Environmental benefits to the public are tremendous. At best, all dross and salt cake materials have the potential to be completely recycled and utilized. At worst, disposal sites would see a reduced amount of material: a post processed oxide product with little salt and no hydrogen sulfide or ammonia gas generating capability, which, if isolated from high alkali conditions, would pose no reactivity concerns. The US aluminum industry has historically, along with the steel industry, been a leader in recycling metal. The findings from this project, increased metal recovery, improved salt recycling, and demonstrated end uses for oxide residues, will go a long way in helping the aluminum industry obtain 100% material utilization and zero discharge.

  20. Primary-Progressive MS (PPMS)

    MedlinePlus

    ... MS? Types of MS Primary progressive MS (PPMS) Primary progressive MS (PPMS) Share Smaller Text Larger Text Print In this article Overview PPMS is characterized by worsening neurologic function ( ...

  1. Enzymatic oxidation of methane.

    PubMed

    Sirajuddin, Sarah; Rosenzweig, Amy C

    2015-04-14

    Methane monooxygenases (MMOs) are enzymes that catalyze the oxidation of methane to methanol in methanotrophic bacteria. As potential targets for new gas-to-liquid methane bioconversion processes, MMOs have attracted intense attention in recent years. There are two distinct types of MMO, a soluble, cytoplasmic MMO (sMMO) and a membrane-bound, particulate MMO (pMMO). Both oxidize methane at metal centers within a complex, multisubunit scaffold, but the structures, active sites, and chemical mechanisms are completely different. This Current Topic review article focuses on the overall architectures, active site structures, substrate reactivities, protein-protein interactions, and chemical mechanisms of both MMOs, with an emphasis on fundamental aspects. In addition, recent advances, including new details of interactions between the sMMO components, characterization of sMMO intermediates, and progress toward understanding the pMMO metal centers are highlighted. The work summarized here provides a guide for those interested in exploiting MMOs for biotechnological applications. PMID:25806595

  2. High-temperature oxidation and corrosion of materials program

    SciTech Connect

    Whittle, D.P.

    1980-03-01

    Research progress is reported in the behavior of metals and alloys in gas mixtures at high temperature, corrosion mechanisms in complex environments of low oxidizing potential, hot corrosion of nickel-base alloys at intermediate temperatures, corrosion of solid sulfate deposits, adherence of Al/sub 2/O/sub 3/ oxide films, oxidation behavior of a two-phase alloy Fe-44% Cu, and formation of subscales of varying composition. (FS)

  3. PROGRESS ON STELLA EXPERIMENT.

    SciTech Connect

    KIMURA,W.D.; CAMPBELL,L.P.; GOTTSCHALK,S.C.; QUIMBY,D.C.; ROBINSON,K.E.; STEINHAUER,L.C.; BABZIEN,M.; BEN-ZVI,I.; GALLARDO,J.C.; KUSCHE,K.P.; POGORELSKY,I.V.; SKARITKA,J.; VAN STEENBERGEN,A.; YAKIMENKO,V.; CLINE,D.B.; HE,P.; LIU,Y.; FIORITO,R.B.; PANTELL,R.H.; RULE,D.W.; SANDWEISS,J.

    1999-03-01

    Progress is reported on the Staged Electron Laser Acceleration (STELLA) experiment, which has been assembled on the BNL Accelerator Test Facility (ATF). The primary goal of STELLA is to demonstrate staging of the laser acceleration process by using the BNL inverse free electron laser (IFEL) as a prebuncher, which generates {approx} 1-{micro}m long microbunches, and accelerating these microbunches using an inverse Cerenkov acceleration (ICA) stage. Experimental runs are underway to recommission the IFEL and ICA systems separately, and reestablish the: microbunching process. Staging will then be examined by running both the IFEL and ICA systems together.

  4. MEIC Design Progress

    SciTech Connect

    Zhang, Y; Douglas, D; Hutton, A; Krafft, G A; Li, R; Lin, F; Morozov, V S; Nissen, E W; Pilat, F C; Satogata, T; Tennant, C; Terzic, B; Yunn, C; Barber, D P; Filatov, Y; Hyde, C; Kondratenko, A M; Manikonda, S L; Ostroumov, P N; Sullivan, M K

    2012-07-01

    This paper will report the recent progress in the conceptual design of MEIC, a high luminosity medium energy polarized ring-ring electron-ion collider at Jefferson lab. The topics and achievements that will be covered are design of the ion large booster and the ERL-circulator-ring-based electron cooling facility, optimization of chromatic corrections and dynamic aperture studies, schemes and tracking simulations of lepton and ion polarization in the figure-8 collider ring, and the beam-beam and electron cooling simulations. A proposal of a test facility for the MEIC electron cooler will also be discussed.

  5. Rapidly Progressing Chagas Cardiomyopathy.

    PubMed

    Hollowed, John; McCullough, Matthew; Sanchez, Daniel; Traina, Mahmoud; Hernandez, Salvador; Murillo, Efrain

    2016-04-01

    Chagas disease, caused by the parasiteTrypanosoma cruzi, can cause a potentially life-threatening cardiomyopathy in approximately 10-40% of afflicted individuals. The decline in cardiac function characteristically progresses over the course of many years. We report a case of Chagas disease in which the patient experienced an atypical rapid deterioration to severe cardiomyopathy over the course of 16 months. This case argues the need for increased routine surveillance for patients with confirmedT. cruziinfection, who are determined to be at high-risk for worsening cardiomyopathy. PMID:26856912

  6. HSX progress report

    SciTech Connect

    Not Available

    1994-05-01

    Brief statements on the progress of the design and construction of the HSX experiment are reported. Topics covered include the modular and auxiliary coil systems, the coil support structure, vacuum vessel, the ECH system, the magnet power supply and site. The proposed budget for Year 2 (August 1, 1994 through July 31, 1995) is presented. The effects of a flat funding profile (based on Year 2 budget level of $1137K) on out-years and the HSX project schedule are discussed. The stretching out of the program to accommodate the reduced funding profile should result in only a slight delay in HSX operations.

  7. Post Kalman progress

    NASA Technical Reports Server (NTRS)

    Sonnabend, David

    1995-01-01

    In a paper here last year, an idea was put forward that much greater performance could be obtained from an observer, relative to a Kalman filter if more general performance indices were adopted, and the full power spectra of all the noises were employed. The considerable progress since then is reported here. Included are an extension of the theory to regulators, direct calculation of the theory's fundamental quantities - the noise effect integrals - for several theoretical spectra, and direct derivations of the Riccati equations of LQG (Linear-Quadratic-Gaussian) and Kalman theory yielding new insights.

  8. Conceptions of Progress: How Is Progress Perceived? Mainstream versus Alternative Conceptions of Progress

    ERIC Educational Resources Information Center

    Itay, Anat

    2009-01-01

    Progress is a powerful political concept, encompassing different and sometimes contradictory conceptions. This paper examines the results of a survey on progress conducted at the OECD World Forum entitled "Measuring and Fostering the Progress of Societies" held in Istanbul in June 2007. First, a distinction is drawn between the two approaches to…

  9. Progressive myoclonus epilepsy.

    PubMed

    Girard, Jean-Marie; Turnbull, Julie; Ramachandran, Nivetha; Minassian, Berge A

    2013-01-01

    The progressive myoclonus epilepsies (PMEs) consist of a group of diseases with myoclonic seizures and progressive neurodegeneration, with onset in childhood and/or adolescence. Lafora disease is a neuronal glycogenosis in which normal glycogen is transformed into starch-like polyglucosans that accumulate in the neuronal somatodendritic compartment. It is caused by defects of two genes of yet unknown function, one encoding a glycogen phosphatase (laforin) and the other an ubiquitin E3 ligase (malin). Early cognitive deterioration, visual seizures affecting over half, and slowing down of EEG basic activity are three major diagnostic clues. Unverricht-Lundborg disease is presently thought to be due to damage to neurons by lysosomal cathepsins and reactive oxygen species due to absence of cystatin B, a small protein that inactivates cathepsins and, by ways yet unknown, quenches damaging redox compounds. Preserved cognition and background EEG activity, action myoclonus early morning and vertex spikes in REM sleep are the diagnostic clues. Sialidosis, with cherry-red spot, neuronopathic Gaucher disease, with paralysis of verticality, and ataxia-PME, with ataxia at onset in the middle of the first decade, are also lysosomal diseases. How the lysosomal defect culminates in myoclonus and epilepsy in these conditions remains unknown. PMID:23622396

  10. Cataract progression in India

    PubMed Central

    Srinivasan, M; Rahmathullah, R.; Blair, C.; Murphy, A.; Beck, R.; Wilkins, J.; Whitcher, J.; Smolin, G.

    1997-01-01

    AIMS—The study was undertaken to test the feasibility of using the LOCS III cataract grading scale in the field and to determine the rate of cataract progression over a 1 year period of time.
METHODS—For 150 subjects between the ages of 33 and 55 who attended the refraction clinic at Aravind Eye Hospital in Madurai, India, lens abnormalities were graded at the slit lamp using the LOCS III scale. One year later, 99 of the subjects were re-evaluated by the same methodology to assess the amount of lens change.
RESULTS—Interrater reliability was high. A change of 0.5 or more in lens colour, cortical, nuclear, or posterior subcapsular cataract was observed in at least one eye of 54% of the subjects.
CONCLUSION—The LOCS III grading scale is a feasible method for measuring lens changes in the field with the slit lamp. Cataract progression in India is rapid enough to permit intervention studies to be performed with relatively small numbers of subjects over a short period of time (that is, 600 subjects for 2 years).

 PMID:9486033