Science.gov

Sample records for epitaxial orthorhombic ymno3

  1. Multiferroicity in half-Cr-doped YMnO3 epitaxial films with compressive strain

    NASA Astrophysics Data System (ADS)

    Hao, L.; Cai, H. B.; Xie, X. N.; Wang, H. R.; Lin, G. K.; Wang, X. P.; Zhu, H.

    2016-04-01

    We report on the growth and characterization of epitaxial (010)- and (100)-YMn0.5Cr0.5O3 films on the corresponding YAlO3 substrates. It is found that the magnetic transition temperature increases from 75 K for the bulk sample to 120 K for the compressive-strained films. Along the c- and a-axes, ferroelectric polarization develops below 120 K with the saturation values of 0.17 and 0.05 μC/cm2, respectively, while it remains zero along the b-axis. Furthermore, it is demonstrated that the ferroelectric polarization can be modulated by magnetic field. The displayed ferroelectricity is explainable by considering coexistence of the predominant bc-cycloidal and minor E-type antiferromagnetic orders.

  2. Orbital Reconstruction Enhanced Exchange Bias in La0.6Sr0.4MnO3/Orthorhombic YMnO3 Heterostructures

    PubMed Central

    Zheng, Dongxing; Jin, Chao; Li, Peng; Wang, Liyan; Feng, Liefeng; Mi, Wenbo; Bai, Haili

    2016-01-01

    The exchange bias in ferromagnetic/multiferroic heterostructures is usually considered to originate from interfacial coupling. In this work, an orbital reconstruction enhanced exchange bias was discovered. As La0.6Sr0.4MnO3 (LSMO) grown on YMnO3 (YMO) suffers a tensile strain (a > c), the doubly degenerate eg orbital splits into high energy 3z2 − r2 and low energy x2 − y2 orbitals, which makes electrons occupy the localized x2 − y2 orbital and leads to the formation of antiferromagnetic phase in LSMO. The orbital reconstruction induced antiferromagnetic phase enhances the exchange bias in the LSMO/YMO heterostructures, lightening an effective way for electric-field modulated magnetic moments in multiferroic magnetoelectric devices. PMID:27090614

  3. Orbital Reconstruction Enhanced Exchange Bias in La0.6Sr0.4MnO3/Orthorhombic YMnO3 Heterostructures

    NASA Astrophysics Data System (ADS)

    Zheng, Dongxing; Jin, Chao; Li, Peng; Wang, Liyan; Feng, Liefeng; Mi, Wenbo; Bai, Haili

    2016-04-01

    The exchange bias in ferromagnetic/multiferroic heterostructures is usually considered to originate from interfacial coupling. In this work, an orbital reconstruction enhanced exchange bias was discovered. As La0.6Sr0.4MnO3 (LSMO) grown on YMnO3 (YMO) suffers a tensile strain (a > c), the doubly degenerate eg orbital splits into high energy 3z2 ‑ r2 and low energy x2 ‑ y2 orbitals, which makes electrons occupy the localized x2 ‑ y2 orbital and leads to the formation of antiferromagnetic phase in LSMO. The orbital reconstruction induced antiferromagnetic phase enhances the exchange bias in the LSMO/YMO heterostructures, lightening an effective way for electric-field modulated magnetic moments in multiferroic magnetoelectric devices.

  4. Columnar epitaxy of hexagonal and orthorhombic silicides on Si(111)

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Nieh, C. W.; Xiao, Q. F.; Hashimoto, Shin

    1990-01-01

    Columnar grains of PtSi and CrSi2 surrounded by high-quality epitaxial silicon are obtained by ultrahigh vacuum codeposition of Si and metal in an approximately 10:1 ratio on Si(111) substrates heated to 610-840 C. This result is similar to that found previously for CoSi2 (a nearly-lattice-matched cubic-fluorite crystal) on Si(111), in spite of the respective orthorhombic and hexagonal structures of PtSi and CrSi2. The PtSi grains are epitaxial and have one of three variants of the relation defined by PtSi(010)/Si(111), with PtSi 001 line/Si 110 line type.

  5. Influence of Fe substitution on the Jahn-Teller distortion and orbital anisotropy in orthorhombic Y(Mn1-xFex)O3 epitaxial films.

    PubMed

    Haw, Shu-Chih; Lee, Jenn-Min; Chen, Shin-Ann; Lu, Kueih-Tzu; Lee, Ming-Tao; Pi, Tun-Wen; Lee, Chih-Hao; Hu, Zhiwei; Chen, Jin-Ming

    2016-08-01

    Multiferroic YMn1-xFexO3(020) (x = 0.125, 0.25, 0.50) epitaxial thin films with an orthorhombic structure (space group Pbnm) were prepared on a YAlO3(010) substrate by pulsed-laser deposition. Upon Fe substitution, the b-axis was clearly shortened, whereas the a- and c-axes were slightly lengthened based on XRD analysis. To understand the influence of orbital polarization and the Jahn-Teller effect of Mn(3+) on Fe substitution and also the local octahedral-site distortion of Fe(3+) in an environment of Jahn-Teller-active Mn(3+) ions in YMn1-xFexO3 films, we measured the polarization-dependent X-ray absorption spectra at the Mn-L2,3 and Fe-L2,3 edges, and also simulated the experimental spectra using configuration-interaction multiplet calculations. Although Δeg for the Mn(3+) ion decreased from 0.9 eV in pure YMnO3 to 0.6 eV in the half-Fe-substituted sample, a single eg electron was still strongly constrained to the d3y(2)-r(2) orbital for all the Fe concentrations tested. The largest Δeg, 0.5 eV, for the Fe(3+) ion was derived for a sample with 12.5% Fe substitution, and gradually decreased to 0.15 eV for the half-Fe-substituted sample. The local octahedral-site distortion of the Fe(3+) ion inside the YMnO3 lattice was similar to that of the Mn(3+) ion, whereas the Jahn-Teller distortion and GdFeO3-type distortion of the Mn(3+) ion were decreased by the spherical high-spin Fe(3+) ions. The combination of the experimental and theoretical data provides both profound insight into the variation of the Jahn-Teller distortion and orbital anisotropy and instructive information about the magnetic structures in these orthorhombic YMn1-xFexO3 thin films. PMID:27430045

  6. Resistive switching in polycrystalline YMnO3 thin films

    NASA Astrophysics Data System (ADS)

    Bogusz, A.; Müller, A. D.; Blaschke, D.; Skorupa, I.; Bürger, D.; Scholz, A.; Schmidt, O. G.; Schmidt, H.

    2014-10-01

    We report a unipolar, nonvolatile resistive switching in polycrystalline YMnO3 thin films grown by pulsed laser deposition and sandwiched between Au top and Ti/Pt bottom electrodes. The ratio of the resistance in the OFF and ON state is larger than 103. The observed phenomena can be attributed to the formation and rupture of conductive filaments within the multiferroic YMnO3 film. The generation of conductive paths under applied electric field is discussed in terms of the presence of grain boundaries and charged domain walls inherently formed in hexagonal YMnO3. Our findings suggest that engineering of the ferroelectric domains might be a promising route for designing and fabrication of novel resistive switching devices.

  7. Ferromagnetic interactions in chromium (III) doped YMnO3

    NASA Astrophysics Data System (ADS)

    Thakur, Rajesh K.; Thakur, Rasna; Kaurav, N.; Okram, G. S.; Gaur, N. K.

    2016-05-01

    Both of the reported compounds with compositions YMn1-xCrxO3 (x = 0.1 and 0.2) are synthesized by using the conventional solid state reaction method and their magnetic properties are analyzed vigilantly. The XRD pattern reveals the hexagonal structure of the reported compounds with space group P63cm (25-1079). The in-depth analysis of the magnetic measurements reveals the enhancement in the ferromagnetic character with Cr doping in YMnO3 compounds. The observed enhancement in the ferromagnetism is found to be due to the increased double exchange interactions among the Cr3+ and Mn3+ ions with Cr doping.

  8. Unusual ferromagnetic YMnO3 phase in YMnO3/La2 / 3Sr1 / 3MnO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Autieri, Carmine; Sanyal, Biplab

    2014-11-01

    By means of first-principles density functional calculations, we study the structural, magnetic and electronic properties of YMnO3/L{{a}2/3}S{{r}1/3}MnO3 heterostructures. Although in the bulk the ground state of YMnO3 is an antiferromagnet, the YMnO3/L{{a}2/3}S{{r}1/3}MnO3 heterostructure stabilizes the ferromagnetic (FM) phase in YMnO3 in the interface region over a wide range of Coulomb repulsion parameters. The hypothetical FM phase of bulk YMnO3 is dielectric and due to substantial differences between the lattice constants in the ab plane, a strong magnetocrystalline anisotropy is present. This anisotropy produces a high coercivity of the unusual FM YMnO3 that can explain the large vertical shift in the hysteresis loops observed in recent experiments (Paul et al 2014 J. Appl. Crystallogr. 47 1054). The correlation between weak exchange bias and the vertical shift is proposed, which calls for reinvestigation of various systems showing vertical shifts.

  9. The origin of ferroelectricity in magnetoelectric YMnO3.

    PubMed

    Van Aken, Bas B; Palstra, Thomas T M; Filippetti, Alessio; Spaldin, Nicola A

    2004-03-01

    Understanding the ferroelectrocity in magnetic ferroelectric oxides is of both fundamental and technological importance. Here, we identify the nature of the ferroelectric phase transition in the hexagonal manganite, YMnO(3), using a combination of single-crystal X-ray diffraction, thorough structure analysis and first-principles density-functional calculations. The ferroelectric phase is characterized by a buckling of the layered MnO(5) polyhedra, accompanied by displacements of the Y ions, which lead to a net electric polarization. Our calculations show that the mechanism is driven entirely by electrostatic and size effects, rather than the usual changes in chemical bonding associated with ferroelectric phase transitions in perovskite oxides. As a result, the usual indicators of structural instability, such as anomalies in Born effective charges on the active ions, do not hold. In contrast to the chemically stabilized ferroelectrics, this mechanism for ferroelectricity permits the coexistence of magnetism and ferroelectricity, and so suggests an avenue for designing novel magnetic ferroelectrics. PMID:14991018

  10. Growth of epitaxial orthorhombic YO{sub 1.5}-substituted HfO{sub 2} thin film

    SciTech Connect

    Shimizu, Takao; Katayama, Kiliha; Kiguchi, Takanori; Akama, Akihiro; Konno, Toyohiko J.; Funakubo, Hiroshi

    2015-07-20

    YO{sub 1.5}-substituted HfO{sub 2} thin films with various substitution amounts were grown on (100) YSZ substrates by the pulsed laser deposition method directly from the vapor phase. The epitaxial growth of film with different YO{sub 1.5} amounts was confirmed by the X-ray diffraction method. Wide-area reciprocal lattice mapping measurements were performed to clarify the crystal symmetry of films. The formed phases changed from low-symmetry monoclinic baddeleyite to high-symmetry tetragonal/cubic fluorite phases through an orthorhombic phase as the YO{sub 1.5} amount increased from 0 to 0.15. The additional annular bright-field scanning transmission electron microscopy indicates that the orthorhombic phase has polar structure. This means that the direct growth by vapor is of polar orthorhombic HfO{sub 2}-based film. Moreover, high-temperature X-ray diffraction measurements showed that the film with a YO{sub 1.5} amount of 0.07 with orthorhombic structure at room temperature only exhibited a structural phase transition to tetragonal phase above 450 °C. This temperature is much higher than the reported maximum temperature of 200 °C to obtain ferroelectricity as well as the expected temperature for real device application. The growth of epitaxial orthorhombic HfO{sub 2}-based film helps clarify the nature of ferroelectricity in HfO{sub 2}-based films (186 words/200 words)

  11. Orientation control and domain structure analysis of {100}-oriented epitaxial ferroelectric orthorhombic HfO2-based thin films

    NASA Astrophysics Data System (ADS)

    Katayama, Kiliha; Shimizu, Takao; Sakata, Osami; Shiraishi, Takahisa; Nakamura, Shogo; Kiguchi, Takanori; Akama, Akihiro; Konno, Toyohiko J.; Uchida, Hiroshi; Funakubo, Hiroshi

    2016-04-01

    Orientation control of {100}-oriented epitaxial orthorhombic 0.07YO1.5-0.93HfO2 films grown by pulsed laser deposition was investigated. To achieve in-plane lattice matching, indium tin oxide (ITO) and yttria-stabilized zirconia (YSZ) were selected as underlying layers. We obtained (100)- and (001)/(010)-oriented films on ITO and YSZ, respectively. Ferroelastic domain formation was confirmed for both films by X-ray diffraction using the superlattice diffraction that appeared only for the orthorhombic symmetry. The formation of ferroelastic domains is believed to be induced by the tetragonal-orthorhombic phase transition upon cooling the films after deposition. The present results demonstrate that the orientation of HfO2-based ferroelectric films can be controlled in the same manner as that of ferroelectric films composed of conventional perovskite-type material such as Pb(Zr, Ti)O3 and BiFeO3.

  12. The effect of strontium doping on the structural and magnetic transition of YMnO3

    NASA Astrophysics Data System (ADS)

    Thakur, Rajesh K.; Thakur, Rasna; Awasthi, A. M.; Ganesan, V.; Gaur, N. K.

    2012-06-01

    A systematic study on the effect of strontium (Sr) doping in YMnO3 has been undertaken. Polycrystalline samples with composition Y1-xSrxMnO3 (x=0, 0.01) were synthesized by using high temperature solid state reaction method. The structural and thermal properties of the prepared samples have been carried out in the wide range of temperature. Our XRD reveals the single phase formation of the reported compounds in hexagonal structure with space group P63cm (JCPDS: 25-1079). The observed pointed kinks in the specific heat study are symptomatic of the probable coupling in between the electric and magnetic orders. Our specific heat curves show that the AFM transition temperature (TN) shifts to higher value with minute Sr doping to Y-site. Further, low temperature study shows independence of specific heat on magnetic field at 8T and 12T.

  13. Electronic and crystal structure changes induced by in-plane oxygen vacancies in multiferroic YMnO3

    DOE PAGESBeta

    Cheng, Shaobo; Meng, Qingping; Li, Mengli; Duan, Wenhui; Zhao, Y. G.; Sun, X. F.; Zhu, Yimei; Zhu, Jing

    2016-02-08

    Here, the widely spread oxygen vacancies (VO) in multiferroic materials can strongly affect their physical properties. However, their exact influence has rarely been identified in hexagonal manganites. Here, with the combined use of transmission electron microscopy (TEM) and first-principles calculations, we have systematically studied the electronic and crystal structure modifications induced by VO located at the same Mn atomic plane (in-plane VO). Our TEM experiments reveal that the easily formed in-plane VO not only influence the electronic structure of YMnO3 but alter the in-plane Wyckoff positions of Mn ions, which may subsequently affect the intraplane and interplane exchange interaction ofmore » Mn ions. The ferroelectricity is also impaired due to the introduction of VO. Further calculations confirm these electronic and structural changes and modifications. Our results indicate that the electronic and crystal structure of YMnO3 can be manipulated by the creation of VO.« less

  14. Phase transition and magneto-electric coupling of BiFeO3-YMnO3 multiferroic nanoceramics

    NASA Astrophysics Data System (ADS)

    Narayan Tripathy, Satya; Mishra, K. K.; Sen, S.; Mishra, B. G.; Pradhan, Dhiren K.; Palai, R.; Pradhan, Dillip K.

    2013-10-01

    We report the crystal structure, dielectric, magnetic, and magneto-electric properties of (1-x) BiFeO3-xYMnO3 (0.00 ≤ x ≤ 0.2) multiferroic nanoceramics prepared by auto-combustion technique. YMnO3 substitution is found to induce a structural phase transition from R3c to R3c+Pbnm after x ≈ 0.1 using Rietveld refinement technique. Field emission scanning electron micrographs show decrease in grain size with increase in YMnO3 content. The dielectric permittivity and loss tangent are found to be increased with composition x. The anomalies noticed from the temperature dependent dielectric analysis reveal the signature of magneto-electric coupling in the system. A decrease in magnetic ordering temperature as a function of composition is found from dielectric study. At room temperature, the dielectric permittivity of all the YMnO3 modified samples decrease with increasing magnetic field. The maximum value of magneto-electric coupling coefficient (ɛ(H)-ɛ(0))/ɛ(0) is found to be ˜ -5.5% at H = 2 T for x = 0.2. The behaviour of the magnetic hysteresis loop observed at room temperature suggests the suppression of space modulated spin structure.

  15. Magnetic transition in Y-site doped multiferroic YMnO3

    NASA Astrophysics Data System (ADS)

    Thakur, Rajesh K.; Thakur, Rasna; Gaur, N. K.

    2016-05-01

    We have synthesized polycrystalline hexagonal Y1-xSrxMnO3 (x=0.02, 0.1) compounds by using conventional solid state reaction method. The detailed structural investigations are carried out by using XRD studies which reveals the single phase formation of the reported compounds with hexagonal structure and space group P63cm (JCPDS: 25-1079). Further the XRD data of reported compounds were analyzed by RIETVELD (FULLPROFF) method which shows the decrease in the lattice parameter with increasing concentration of divalent strontium to Y-site. The observed pointed kinks in the specific heat study are indicative of the probable coupling in between the electric and magnetic orders in this class of materials. The reported systematic specific heat studies shows that the antiferromagnetic (AFM) transition temperature (TN) shifts to higher value with increasing concentration of Sr2+ ion in the YMnO3 compound which is attributed to the enhanced lattice contribution to the specific heat in the this compound. The present compound shows the independence of specific heat and magnetic transition temperature with applied magnetic field of 8T and 12T.

  16. Grain size-dependent magnetic and electric properties in nanosized YMnO3 multiferroic ceramics

    PubMed Central

    2011-01-01

    Magnetic and electric properties are investigated for the nanosized YMnO3 samples with different grain sizes (25 nm to 200 nm) synthesized by a modified Pechini method. It shows that magnetic and electric properties are strongly dependent on the grain size. The magnetic characterization indicates that with increasing grain size, the antiferromagnetic (AFM) transition temperature increases from 52 to 74 K. A corresponding shift of the dielectric anomaly is observed, indicating a strong correlation between the electric polarization and the magnetic ordering. Further analysis suggests that the rising of AFM transition temperature with increasing grain size should be from the structural origin, in which the strength of AFM interaction as well as the electrical polarization is dependent on the in-plane lattice parameters. Furthermore, among all samples, the sample with grain size of 95 nm is found to have the smallest leakage current density (< 1 μA/cm2). PACS: 75.50.Tt, 75.50.Ee, 75.85.+t, 77.84.-s PMID:21711722

  17. Epitaxy of Orthorhombic BaSi2 with Preferential In-Plane Crystal Orientation on Si(001): Effects of Vicinal Substrate and Annealing Temperature

    NASA Astrophysics Data System (ADS)

    Toh, Katsuaki; Hara, Kosuke O.; Usami, Noritaka; Saito, Noriyuki; Yoshizawa, Noriko; Toko, Kaoru; Suemasu, Takashi

    2012-09-01

    We attempted to grow orthorhombic BaSi2 epitaxial films having preferential in-plane crystallographic orientation on both exact and vicinal Si(001) substrates with a miscut angle of 2° toward Si[bar 110] by reactive deposition epitaxy (RDE) and subsequent molecular beam epitaxy (MBE). On the vicinal Si(001) substrate, the initial BaSi2 nuclei formed by RDE tended to grow unidirectionally with the [010] direction parallel to Si[110] when the annealing temperature of the Si substrate before the growth was increased from 830 to 1000 °C. Transmission electron microscopy showed that the grain size of the BaSi2 films grown by MBE increased up to approximately 9 µm on the vicinal Si(001) substrate when the substrate annealing temperature was 1000 °C. This is the largest grain size ever obtained for BaSi2. Even in the case of the exact Si(001) substrate, the MBE-grown BaSi2 grains preferentially grew with the [010] direction along Si[110] when the annealing temperature was 1000 °C.

  18. Phase transition in multiferroic YMnO3 and its solid solution YMn(0.93)Fe(0.07)O3

    NASA Astrophysics Data System (ADS)

    Salazar-Kuri, U.; Mendoza, M. E.; Siqueiros, J. M.

    2012-09-01

    Ceramics of YMnO3 and its Fe substituted YMn(0.93)Fe(0.07)O3 solid solution were synthesized by solid state reaction of the oxides at 1200 °C. Hexagonal phase was identified in both cases by X-ray powder diffraction. Rietveld refinement of cell parameters showed an increase of the parameter values for the solid solution. Dielectric permittivity measurements versus temperature showed a phase transition at 655 °C for yttrium manganite, however, for the solid solution no phase transition was detected on heating up to 700 °C. Dielectric loss measurements showed higher slope changes and better defined local maxima for the solid solution than for the pure phase.

  19. Enhancing the orthorhombicity and antiferromagnetic-insulating state in epitaxial La0.67Ca0.33MnO3/NdGaO3(001) films by inserting a SmFeO3 buffer layer

    NASA Astrophysics Data System (ADS)

    Tan, Xuelian; Gao, Guanyin; Chen, Pingfan; Xu, Haoran; Zhi, Bowen; Jin, Feng; Chen, Feng; Wu, Wenbin

    2014-11-01

    Structural and magnetotransport properties of epitaxial La0.67Ca0.33MnO3(30 nm)/NdGaO3(001) [LCMO/NGO(001)] films are tuned by inserting an insulating SmFeO3 (SFO) buffer layer at various thicknesses (t). All the layers and the NGO substrates have the same Pbnm symmetry with the octahedra tilting about the b-axis, but different orthorhombicity (d). We found that as t increases, the fully strained (≤15 nm) or partially relaxed (30-60 nm) SFO layers can produce different d in the upper LCMO films. Correspondingly, the induced antiferromagnetic-insulating (AFI) state in LCMO is greatly enhanced with TAFI shifted from ˜250 K for t ≤ 15 nm to ˜263 K for t = 30-60 nm. We also show that the strain relaxation for t ≥ 30 nm is remarkably anisotropic, with a stable lattice constant a as that of the NGO substrates but increasing b of both SFO and LCMO layers. This indicates the octahedral coupling across the interfaces, leaving the strain along the a-axis accommodated by the octahedral tilts, while along the b-axis most probably by the octahedral deformations. The AFI state in the LCMO layer could be ascribed to the enhanced orthorhombicity with cooperatively increased Jahn-Teller-like distortions and tilting of the MnO6 octahedra. The results strongly suggest that the interfacial octahedral coupling plays a crucial role in epitaxial growth and in tuning functionalities of the perovskite oxide films.

  20. Preparation of monoclinic 0.9(BiFeO3)-0.1(BiCoO3) epitaxial films on orthorhombic YAlO3 (100) substrates by r.f. magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ichinose, T.; Naganuma, H.; Mukaiyama, K.; Oogane, M.; Ando, Y.

    2015-01-01

    0.9BiFeO3-0.1BiCoO3 (BFCO) films (t=100 nm) were prepared on orthorhombic YAlO3 (YAO) (100) substrates by r.f. magnetron sputtering. Film flatness, crystallinity, crystal symmetry, and secondary phase formation are strongly affected by the pressure of the sputtering gasses, Ar and O2. Phi-scan measurements showed that the films were epitaxially grown on the substrates, with the crystal relation [101]p(101)p BFCO||[101]p(101)p YAO. X-ray reciprocal space mapping revealed that the crystal symmetry of the BFCO films was a pseudo-cubic-like monoclinic structure, with MC phase, rather than the Cm symmetry of the bulk BFCO. Cross-sectional transmission electron microscopy analysis revealed that the film had, as a result of a lattice misfit of 7%, strong compressive strain less than 10 nm from the interface, which relaxed monotonically with increasing distance from the interface. Magnetic measurements show that strained monoclinic BFCO has smaller magnetization compared to rhombohedral BFCO.

  1. Spontaneous formation of circular and vortex ferroelectric domain structure in hexagonal YMnO3 and YMn0.9Fe0.1O3 prepared by low temperature solution synthesis

    NASA Astrophysics Data System (ADS)

    Harunsani, M. H.; Li, J.; Qin, Y. B.; Tian, H. T.; Li, J. Q.; Yang, H. X.; Walton, R. I.

    2015-08-01

    We report an experimental study of the domain structure of ferroelectric YMnO3 and YMn0.9Fe0.1O3 using polycrystalline samples prepared by direct hydrothermal crystallisation at 240 °C, well below their structural phase transition temperatures. Powder X-ray diffraction shows the expected P63cm space group for both samples with an increase in a and a small decrease in c with Fe incorporation, consistent with an adjustment of MnO5 tilting, while XANES spectra at the Mn and Fe K edges show the oxidation state of both metals are maintained at +3 in the doped sample. High resolution TEM shows that curved stripe, annular and vortex domains can all be observed in the YMnO3 crystals, proving that the structural phase transition is not the only driving force for the occurrence of the annular and vortex domains. Furthermore, the absence of the annular and vortex domains in YMn0.9Fe0.1O3 indicates that the tilting state of MnO5 bipyramids plays an important role in the domain formation. Atomic resolution STEM images confirm that the ferroelectric domain walls correspond to structural antiphase boundaries similar to the crystals made via high temperature solid-state reactions.

  2. Orthorhombic Zr2Co11 phase revisited

    SciTech Connect

    Li, X. -Z.; Zhang, W. Y.; Sellmyer, D. J.; Zhao, X.; Nguyen, M. C.; Wang, C. Z.; Ho, K. M.

    2014-10-01

    The structure of the orthorhombic Zr2Co11 phase was revisited in the present work. Selected-area electron diffraction (SAED) and high-resolution electron microscopy (HREM) techniques were used to investigate the structure. They show the orthorhombic Zr2Co11 phase has a 1-D incommensurate modulated structure. The structure can be approximately described as a B-centered orthorhombic lattice. The lattice parameters of the orthorhombic Zr2Co11 phase have been determined by a tilt series of SAED patterns. A hexagonal network with a modulation wave has been observed in the HREM image and the hexagonal motif is considered as the basic structural unit.

  3. Structural morphology of orthorhombic sulphur

    NASA Astrophysics Data System (ADS)

    Hartman, P.

    1984-10-01

    Using an interatomic potential function specific surface energies, attachment energies and slice energies have been calculated for 7 F faces and 18 S faces of orthorhombic sulphur. These energies are compared with statistical parameters ( P values) for the frequency of occurrence of these faces on natural sulphur. It is found that P values are not correlated with the specific surface energies, except for the most important F faces. There is a positive correlation ( r=0.881) with the surface energy per mol although this quantity has no physical meaning. It is supposed that an S face is due to alternating periods of dissolution (or evaporation) and growth, so that it occurs as a narrow face on the site of a previous edge. An excellent correlation ( r=0.951) is found between the P value of an S face and a quantity P 1 P 2ξ h, where P 1 and P 2 are the P values of neighbouring faces that constitute the S face, ξ is proportional to the slice energy and h a distance determined by the interfacial angles of the three faces. This process should hold for the morphological development of any mineral, provided that no face-specific adsorption of cosolutes occurs.

  4. Large anisotropy in the magnetodielectric effect of orthorhombic HoMnO3 thin films

    NASA Astrophysics Data System (ADS)

    Lee, S.-H.; Jung, M.-H.; Yang, C.-H.; Koo, T. Y.; Jeong, Y. H.

    2010-01-01

    Orthorhombic HoMnO3 thin films of thickness 80 nm were grown epitaxially on Nb-doped SrTiO3(111) substrates using pulsed laser deposition. Magnetization and dielectric constant measurements reveal that antiferromagnetic Mn3+ spin ordering occurs at approximately 40 K while Ho3+ ordering does at about 13 K. The films show sizable magnetodielectric effects (MDE) below 25 K and, in particular, they manifest a large directional anisotropy in the MDE, that is, the MDE depends sensitively on the relative direction of an external magnetic field with respect to the film normal.

  5. Stabilization of orthorhombic phase in single-crystal ZnSnN2 films

    NASA Astrophysics Data System (ADS)

    Senabulya, Nancy; Feldberg, Nathaniel; Makin, Robert. A.; Yang, Yongsoo; Shi, Guangsha; Jones, Christina M.; Kioupakis, Emmanouil; Mathis, James; Clarke, Roy; Durbin, Steven M.

    2016-07-01

    We report on the crystal structure of epitaxial ZnSnN2 films synthesized via plasma-assisted vapor deposition on (111) yttria stabilized zirconia (YSZ) and (001) lithium gallate (LiGaO2) substrates. X-ray diffraction measurements performed on ZnSnN2 films deposited on LiGaO2 substrates show evidence of single-crystal, phase-pure orthorhombic structure in the Pn21a symmetry [space group (33)], with lattice parameters in good agreement with theoretically predicted values. This Pn21a symmetry is imposed on the ZnSnN2 films by the LiGaO2 substrate, which also has orthorhombic symmetry. A structural change from the wurtzite phase to the orthorhombic phase in films grown at high substrate temperatures ˜550°C and low values of nitrogen flux ˜10-5 Torr is observed in ZnSnN2 films deposited on YSZ characterized by lattice contraction in the basal plane and a 5.7% expansion of the out-of-plane lattice parameter.

  6. Conversion acoustic resonances in orthorhombic crystals

    NASA Astrophysics Data System (ADS)

    Lyubimov, V. N.; Bessonov, D. A.; Alshits, V. I.

    2016-05-01

    A classification of acoustic-beam reflection resonances in orthorhombic crystals under conditions where a proximity to conversion is implemented in the vicinity of total internal reflection is proposed. In this case, the energy from the incident pump beam falls almost entirely into a narrow intense reflected beam propagating at a small angle with respect to the surface. The crystal boundary is parallel to one of the elastic symmetry planes, and the excited beam propagates near one of axes 2 in this plane. Depending on the relations between the elastic moduli and the chosen propagation geometry, 18 types of resonances may occur, but no more than three in each crystal. The developed theory combines an approximate analytical description and accurate computer analysis. The relations between the elastic moduli providing minimum energy loss over the parasite reflected wave are determined. Some crystals with resonant excitation very close to conversion are revealed.

  7. Observation of Anomalous Phonons in Orthorhombic Rare-earth Manganites

    SciTech Connect

    P Gao; H Chen; T Tyson; Z Liu; J Bai; L Wang; Y Chio; S Cheong

    2011-12-31

    We observe the appearance of a phonon near the lock-in temperature in orthorhombic REMnO{sub 3} (RE denotes rare earth) (RE: Lu and Ho) and anomalous phonon hardening in orthorhombic LuMnO{sub 3}. The anomalous phonon occurs at the onset of spontaneous polarization. No such changes were found in incommensurate orthorhombic DyMnO{sub 3}. These observations directly reveal different electric polarization mechanisms in the E-type and incommensurate-type orthorhombic REMnO{sub 3}.

  8. Niobia and tantala codoped orthorhombic zirconia ceramics

    SciTech Connect

    Hoeftberger, M.; Gritzner, G.

    1995-04-15

    During recent studies it was found that codoping of zirconia with niobia and tantala yielded very corrosion resistant, orthorhombic zirconia ceramics. The powders for those novel ceramics were made via the sol-gel technique by hydrolysis of the respective metal propoxides; a method which required dry-box techniques during the preparation of the alkoxides. In these studies the authors investigated the fabrication of precursor material from aqueous solutions. The preparation of aqueous solutions of salts of zirconium, niobium and tantalum is hampered by rapid hydrolysis. Premature hydrolysis of the chlorides and oxichlorides of niobium, tantalum and zirconium can be, however, prevented in aqueous solutions of oxalic acid. Thus the authors investigated the coprecipitation of hydroxides as precursors by reacting oxalic acid solutions of the respective cations with aqueous ammonia. In addition they studied the effects of calcination and of hydrothermal conversion of the hydroxides to oxides on the powder characteristics and on the mechanical properties of the niobia and tantala codoped zirconia ceramics.

  9. Tailoring magnetic frustration in strained epitaxial FeRh films

    NASA Astrophysics Data System (ADS)

    Witte, Ralf; Kruk, Robert; Gruner, Markus E.; Brand, Richard A.; Wang, Di; Schlabach, Sabine; Beck, Andre; Provenzano, Virgil; Pentcheva, Rossitza; Wende, Heiko; Hahn, Horst

    2016-03-01

    We report on a strain-induced martensitic transformation, accompanied by a suppression of magnetic order in epitaxial films of chemically disordered FeRh. X-ray diffraction, transmission electron microscopy, and electronic structure calculations reveal that the lowering of symmetry (from cubic to tetragonal) imposed by the epitaxial relation leads to a further, unexpected, tetragonal-to-orthorhombic transition, triggered by a band-Jahn-Teller-type lattice instability. The collapse of magnetic order is a direct consequence of this structural change, which upsets the subtle balance between ferromagnetic nearest-neighbor interactions arising from Fe-Rh hybridization and frustrated antiferromagnetic coupling among localized Fe moments at larger distances.

  10. Crystallization conditions and formation of orthorhombic paracetamol from ethanolic solution.

    PubMed

    Al-Zoubi, N; Nikolakakis, I; Malamataris, S

    2002-03-01

    Orthorhombic paracetamol exhibits far better tabletability than the monoclinic form and its bulk crystallization from solution attracts much interest. In this study, temperature changes in supersaturated ethanolic solution have been recorded after seeding with orthorhombic crystals under different cooling temperatures (Tc) and agitation rates (AR). Average cooling rate (CR), time for maximum temperature deviation (tmax) and area confined between curves of measured and reference temperature plots (AUC) were calculated and correlated with crystal yield (Y). The micromeritic (size and shape) and the compression properties, the density and the orthorhombic content of the crystalline product were evaluated and related to the main crystallization conditions applied (Tc and AR). Conditions for optimal crystal yield and orthorhombic content were elucidated. It was found that crystal yield (Y) increased with AR and decreased with Tc. The ratio tmax/CR provided good prediction of crystal yield (Y = 58.92-1.386 tmax/CR, r2 = 0.964 and P = 0.0001). Tc and AR linearly affected crystal size and the size distribution, probably due to alterations in supersaturation, but they did not affect the crystal shape significantly. Density and compression properties (yield pressure and elastic recovery) were determined by the content of the orthorhombic form, which increased linearly with AR (P = 0.009) and with Tc (P = 0.039) when agitation was between 300 and 500 rev min(-1), while tmax decreased. At 700 rev min(-1) orthorhombic content was maximized and became independent to Tc. Higher orthorhombic content and crystal yield was expected for lower Tc and for lower tmax, which corresponded to higher AR and might have also been affected by alteration of seeding and harvesting procedure. PMID:11902798

  11. EDITORIAL: Epitaxial graphene Epitaxial graphene

    NASA Astrophysics Data System (ADS)

    de Heer, Walt A.; Berger, Claire

    2012-04-01

    Graphene is widely regarded as an important new electronic material with interesting two-dimensional electron gas properties. Not only that, but graphene is widely considered to be an important new material for large-scale integrated electronic devices that may eventually even succeed silicon. In fact, there are countless publications that demonstrate the amazing applications potential of graphene. In order to realize graphene electronics, a platform is required that is compatible with large-scale electronics processing methods. It was clear from the outset that graphene grown epitaxially on silicon carbide substrates was exceptionally well suited as a platform for graphene-based electronics, not only because the graphene sheets are grown directly on electronics-grade silicon carbide (an important semiconductor in its own right), but also because these sheets are oriented with respect to the semiconductor. Moreover, the extremely high temperatures involved in production assure essentially defect-free and contamination-free materials with well-defined interfaces. Epitaxial graphene on silicon carbide is not a unique material, but actually a class of materials. It is a complex structure consisting of a reconstructed silicon carbide surface, which, for planar hexagonal silicon carbide, is either the silicon- or the carbon-terminated face, an interfacial carbon rich layer, followed by one or more graphene layers. Consequently, the structure of graphene films on silicon carbide turns out to be a rich surface-science puzzle that has been intensively studied and systematically unravelled with a wide variety of surface science probes. Moreover, the graphene films produced on the carbon-terminated face turn out to be rotationally stacked, resulting in unique and important structural and electronic properties. Finally, in contrast to essentially all other graphene production methods, epitaxial graphene can be grown on structured silicon carbide surfaces to produce graphene

  12. Growth of large single crystals of the orthorhombic paracetamol

    NASA Astrophysics Data System (ADS)

    Mikhailenko, M. A.

    2004-05-01

    A new procedure for the growth of large (cm-range) single crystals of the metastable orthorhombic (s.g. Pcab) polymorph of paracetamol is described. The crystals were grown by very slow cooling of hot water solutions under the conditions, when the multiple nucleation was prevented. The samples were characterized by DSC and X-ray diffraction.

  13. Epitaxial jumps

    NASA Astrophysics Data System (ADS)

    Stura, Enrico A.; Charbonnier, Jean-Baptiste; Taussig, Michael J.

    1999-01-01

    By a combination of seeding and changing the growth medium new crystal forms may be obtained. The procedure is called an epitaxial jump. The seeds used in the seeding are from crystals of the same or related protein. For example, seeding followed by an increase in precipitant concentration has given higher diffracting crystals of the complex between tissue factor, factor VIIa and the inhibitor 5L15. For both an anti-steroid antibody fragment and human placental alkaline phosphatase a polymorph was obtained by changing a low molecular weight polyethylene glycol (PEG) with one of a higher molecular weight. In the first case, in one direction and in the latter case, in the other direction. A change of conformation could also have contributed to this. A DsbA mutant illustrates how such changes, result in a different packing from that for the wild-type. Seeding from crystals of wild-type protein yields crystals which appear to be morphologically different from both the wild-type and mutant crystal forms.

  14. Multiferroic properties of uniaxially compressed orthorhombic HoMnO3 thin films

    NASA Astrophysics Data System (ADS)

    Shimamoto, K.; Windsor, Y. W.; Hu, Y.; Ramakrishnan, M.; Alberca, A.; Bothschafter, E. M.; Rettig, L.; Lippert, Th.; Staub, U.; Schneider, C. W.

    2016-03-01

    Multiferroic properties of orthorhombic HoMnO3 (Pbnm space group) are significantly modified by epitaxial compressive strain along the a-axis. We are able to focus on the effect of strain solely along the a-axis by using an YAlO3 (010) substrate, which has only a small lattice mismatch with HoMnO3 along the other in-plane direction (the c-axis). Multiferroic properties of strained and relaxed HoMnO3 thin films are compared with those reported for bulk, and are found to differ widely. A relaxed film exhibits bulk-like properties such as ferroelectricity below 25 K and an incommensurate antiferromagnetic order below 39 K, with an ordering wave vector of (0 qb 0) with qb ≈ 0.41 at ˜10 K. A strained film becomes ferroelectric already at 37.5 K and has an incommensurate magnetic order with qb ≈ 0.49 at ˜10 K.

  15. Auxeticity in nano/microtubes produced from orthorhombic crystals

    NASA Astrophysics Data System (ADS)

    Goldstein, Robert V.; Gorodtsov, Valentin A.; Lisovenko, Dmitry S.; Volkov, Mikhail A.

    2016-05-01

    A solution for the tension and torsion problems for the curvilinearly anisotropic nano/microtubes made of orthorhombic crystals in the framework of the Saint-Venant’s approach is given. We find that the number of partial auxetics among the tubes is twice as frequent among the rectilinearly anisotropic crystals, at the same time about one third of 136 orthorhombic crystals are auxetics. It is shown that the torsion causes extension of the nano/microtubes even in the absence of a longitudinal tensile force. This Poynting’s effect substantially depends on the chiral angle, and in particular, it disappears when the chiral angle vanishes. We also investigate an inverse Poynting’s effect when the extension of the nano/microtubes is accompanied by their twisting. It is shown that the signs of Poynting’s effect and Poisson’s ratio are changed several times with the change of the chiral angle.

  16. Specific features of nonvalent interactions in orthorhombic perovskites

    NASA Astrophysics Data System (ADS)

    Serezhkin, V. N.; Pushkin, D. V.; Serezhkina, L. B.

    2014-07-01

    It is established that isostructural orthorhombic perovskites ABO3 (sp. gr. Pnma in different systems, no. 62, Z = 4), depending on the specificity of nonvalent interactions (which determine the combinatorial-topological type of the Voronoi-Dirichlet polyhedra (VDPs) of four basis atoms), are divided into ten different stereotypes. It is shown by the example of 259 perovskites belonging to the DyCrO3 stereotype that VDP characteristics can be used to quantitatively estimate the distortion of BO6 octahedra, including that caused by the Jahn-Teller effect. It is found that one of the causes of the distortion of the coordination polyhedra of atoms in the structure of orthorhombic perovskites is heteroatomic metal-metal interactions, for which the interatomic distances are much shorter than the sum of the Slater radii of A and B atoms.

  17. Formation of (111) orientation-controlled ferroelectric orthorhombic HfO2 thin films from solid phase via annealing

    NASA Astrophysics Data System (ADS)

    Mimura, Takanori; Katayama, Kiliha; Shimizu, Takao; Uchida, Hiroshi; Kiguchi, Takanori; Akama, Akihiro; Konno, Toyohiko J.; Sakata, Osami; Funakubo, Hiroshi

    2016-08-01

    0.07YO1.5-0.93HfO2 (YHO7) films were prepared on various substrates by pulse laser deposition at room temperature and subsequent heat treatment to enable a solid phase reaction. (111)-oriented 10 wt. % Sn-doped In2O3(ITO)//(111) yttria-stabilized zirconia, (111)Pt/TiOx/SiO2/(001)Si substrates, and (111)ITO/(111)Pt/TiOx/SiO2/(001)Si substrates were employed for film growth. In this study, X-ray diffraction measurements including θ-2θ measurements, reciprocal space mappings, and pole figure measurements were used to study the films. The film on (111)ITO//(111)yttria-stabilized zirconia was an (111)-orientated epitaxial film with ferroelectric orthorhombic phase; the film on (111)ITO/(111)Pt/TiOx/SiO2/(001)Si was an (111)-oriented uniaxial textured film with ferroelectric orthorhombic phase; and no preferred orientation was observed for the film on the (111)Pt/TiOx/SiO2/(001)Si substrate, which does not contain ITO. Polarization-hysteresis measurements confirmed that the films on ITO covered substrates had saturated ferroelectric hysteresis loops. A remanent polarization (Pr) of 9.6 and 10.8 μC/cm2 and coercive fields (Ec) of 1.9 and 2.0 MV/cm were obtained for the (111)-oriented epitaxial and uniaxial textured YHO7 films, respectively. These results demonstrate that the (111)-oriented ITO bottom electrodes play a key role in controlling the orientation and ferroelectricity of the phase formation of the solid films deposited at room temperature.

  18. Electronic and magnetic properties of orthorhombic iron selenide

    NASA Astrophysics Data System (ADS)

    Lovesey, S. W.

    2016-02-01

    Iron orbitals in orthorhombic iron selenide (FeSe) can produce chargelike multipoles that are polar (parity-odd). Orbitals in question include Fe (3 d ), Fe (4 p ), and p -type ligands that participate in transport properties and bonding. The polar multipoles may contribute weak, space-group forbidden Bragg spots to diffraction patterns collected with x rays tuned in energy to a Fe atomic resonance (Templeton & Templeton scattering). Ordering of conventional, axial magnetic dipoles does not accompany the tetragonal-orthorhombic structural phase transition in FeSe, unlike other known iron-based superconductors. We initiate a new line of inquiry for this puzzling property of orthorhombic FeSe, using a hidden magnetic order that belongs to the m'm'm' magnetic crystal class. It is epitomized by the absence of ferromagnetism and axial magnetic dipoles and the appearance of magnetic monopoles and magnetoelectric quadrupoles. A similar magnetic order occurs in cuprate superconductors, yttrium barium copper oxide and Hg1201, where it was unveiled with the Kerr effect and in Bragg diffraction patterns revealed by polarized neutrons.

  19. Van vleck paramagnetism in orthorhombic TiO2 (Brookite)

    USGS Publications Warehouse

    Senftle, F.E.; Thorpe, A.N.

    1968-01-01

    The magnetic susceptibility of the orthorhombic form of titanium dioxide has been measured from 5 to 300??K. After deducting the temperature-dependent component, which is probably due to defects or impurities, and the free-ion diamagnetic component, the Van Vleck paramagnetism was estimated to be 33??10-6 emu/mole. Comparison is made between this value and the Van Vleck paramagnetism of strontium titanate and the two tetragonal forms of titanium dioxide: rutile and anatase. ?? 1968 The American Physical Society.

  20. An orthorhombic polymorph of 10,11-dihydrocarbamazepine.

    PubMed

    Harrison, William T A; Yathirajan, H S; Anilkumar, H G

    2006-05-01

    The title compound (systematic name: 10,11-dihydro-5H-dibenz[b,f]azepine-5-carboxamide), C15H14N2O, is shown to crystallize as an orthorhombic polymorph to complement the known monoclinic form. The molecular conformations of both forms are very similar, involving a bent conformation for the seven-membered azepine ring and an overall ;butterfly' shape. The molecules assemble into chains by way of N-H...O bonds and N-H...pi interactions in both crystal modifications. The two polymorphs appear to form due to different van der Waals interactions between the layer-like sheets of molecules. PMID:16679591

  1. Structure of the orthorhombic form of human inosine triphosphate pyrophosphatase

    SciTech Connect

    Porta, Jason; Kolar, Carol; Kozmin, Stanislav G.; Pavlov, Youri I.; Borgstahl, Gloria E. O.

    2006-11-01

    X-ray crystallographic analysis of human inosine triphosphate pyrophosphohydrolase provided the secondary structure and active-site structure at 1.6 Å resolution in an orthorhombic crystal form. The structure gives a framework for future structure–function studies employing site-directed mutagenesis and for the identification of substrate/product-binding sites. The structure of human inosine triphosphate pyrophosphohydrolase (ITPA) has been determined using diffraction data to 1.6 Å resolution. ITPA contributes to the accurate replication of DNA by cleansing cellular dNTP pools of mutagenic nucleotide purine analogs such as dITP or dXTP. A similar high-resolution unpublished structure has been deposited in the Protein Data Bank from a monoclinic and pseudo-merohedrally twinned crystal. Here, cocrystallization of ITPA with a molar ratio of XTP appears to have improved the crystals by eliminating twinning and resulted in an orthorhombic space group. However, there was no evidence for bound XTP in the structure. Comparison with substrate-bound NTPase from a thermophilic organism predicts the movement of residues within helix α1, the loop before α6 and helix α7 to cap off the active site when substrate is bound.

  2. Orthorhombic C32: a novel superhard sp3 carbon allotrope.

    PubMed

    Zhang, Miao; Liu, Hanyu; Du, Yonghui; Zhang, Xinxin; Wang, Yanchao; Li, Quan

    2013-09-01

    Using a recently developed 'Crystal structure AnaLYsis by Particle Swarm Optimization' (CALYPSO) algorithm on a structural search, we predicted a novel sp(3) carbon allotrope possessing an orthorhombic lattice with the space group Cmmm (oC32). The calculated elastic constants and the simulated hardness revealed that oC32 simultaneously possesses ultra-incompressible and superhard properties with a high bulk modulus of 457 GPa and a high Vickers hardness of 96.2 GPa. This oC32 phase is dynamically stable and energetically more preferable than the experientially observed cold-compressed carbon, thus oC32 is expected to be experimentally synthesizable under extreme conditions. These results further expand the list of meta-stable carbon allotropes and superhard materials under atmospheric and extreme conditions. PMID:23872724

  3. Synthesis and Structural Characterization of Orthorhombic Vanadium Oxide Nanorods

    NASA Astrophysics Data System (ADS)

    Garcia, L. M.; Chavira, E.; Santiago-Jacinto, P.; Rendon, L.; Marinero, E. E.; Tejada, A.; Fregoso-Israel, E.; Flores, C.

    2012-02-01

    Nanorod structures for Li storage are of interest for rechargeable battery applications. Vanadium pentoxide is a promising battery cathode material and in this work we report on the synthesis of V2O5 orthorhombic single crystal and polycrystalline nanorods by the sol-gel polymerizing acryl amide method via ethylenediamine tetra acetic acid EDTA assisted hydrothermal process. In order to determine the thermodynamic stability of nanostructured polymorphs vanadates, heat treatments were performed from 450 C to 500 ^oC with annealing times ranging from 48 to 72 h. The morphologies and structures of the nanorods were characterized by XRD, SEM and HRTEM. Thermo Gravimetric Analysis (TGA) was employed to monitor reaction mass losses during the course of the synthesis. Nanorod diameters ranging from 50 to 150 nm were observed. The lengths and diameter of the rods depended on the conditions of the preparation, such as concentration, and reaction time.

  4. Prediction of Weyl semimetal in orthorhombic MoTe2

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Wu, Shu-Chun; Ali, Mazhar N.; Felser, Claudia; Yan, Binghai

    2015-10-01

    We investigate the orthorhombic phase (Td) of the layered transition-metal dichalcogenide MoTe2 as a Weyl semimetal candidate. MoTe2 exhibits four pairs of Weyl points lying slightly above (˜6 meV ) the Fermi energy in the bulk band structure. Different from its cousin WTe2, which was recently predicted to be a type-II Weyl semimetal, the spacing between each pair of Weyl points is found to be as large as 4% of the reciprocal lattice in MoTe2 (six times larger than that of WTe2). When projected onto the surface, the Weyl points are connected by Fermi arcs, which can be easily accessed by angle-resolved photoemission spectroscopy due to the large Weyl point separation. In addition, we show that the correlation effect or strain can drive MoTe2 from a type-II to a type-I Weyl semimetal.

  5. Critical thickness of high structural quality SrTiO3 films grown on orthorhombic (101) DyScO3

    SciTech Connect

    Hawley, Marilyn E; Biegalski, Michael D; Schlom, Darrell G

    2008-01-01

    Strained epitaxial SrTiO{sub 3} films were grown on orthorhombic (101) DyScO{sub 3} substrates by reactive molecular-beam epitaxy. The epitaxy of this substrate/film combination is cube on cube with a pseudocubic out-of-plane (001) orientation. The strain state and structural perfection of films with thicknesses ranging from 50 to 1000 {angstrom} were examined using x-ray scattering. The critical thickness at which misfit dislocations was introduced was between 350 and 500 {angstrom}. These films have the narrowest rocking curves (full width at half maximum) ever reported for any heteroepitaxial oxide film (0.0018{sup o}). Only a modest amount of relaxation is seen in films exceeding the critical thicknesses even after postdeposition annealing at 700{sup o}C in 1 atm of oxygen. The dependence of strain relaxation on crystallographic direction is attributed to the anisotropy of the substrate. These SrTiO{sub 3} films show structural quality more typical of semiconductors such as GaAs and silicon than perovskite materials; their structural relaxation behavior also shows similarity to that of compound semiconductor films.

  6. Biquadratic and ring exchange interactions in orthorhombic perovskite manganites

    NASA Astrophysics Data System (ADS)

    Fedorova, Natalya; Ederer, Claude; Spaldin, Nicola; Scaramucci, Andrea

    We use ab initio electronic structure calculations within the GGA+U approximation to density functional theory (DFT) to determine the microscopic exchange interactions in the series of orthorhombic rare-earth manganites (o-RMnO3). Our motivation is to construct a model Hamiltonian (excluding effects due to spin-orbit coupling), which can provide an accurate description of the magnetism in these materials. First we map the exchange couplings for several representatives of o-RMnO3 series onto a Heisenberg Hamiltonian and find a clear deviation from the Heisenberg-like behavior. We demonstrate that this deviation can be explained only by the presence of relatively strong higher order exchange interactions (biquadratic and four-spin ring couplings) and show that they have the strongest effect in compounds, where nearest-neighbor exchange interactions are weakened due to the presence of large GdFeO3-type distortion. Finally we discuss how these higher order terms determine magnetic ground states, influence magnetic excitations and define the multiferroic properties of o-RMnO3.

  7. Biquadratic and ring exchange interactions in orthorhombic perovskite manganites

    NASA Astrophysics Data System (ADS)

    Fedorova, Natalya S.; Ederer, Claude; Spaldin, Nicola A.; Scaramucci, Andrea

    2015-04-01

    We use ab initio electronic structure calculations within the generalized gradient approximation (GGA+U) to density functional theory to determine the microscopic exchange interactions in the series of orthorhombic rare-earth manganites, o-R MnO3 . Our motivation is to construct a model Hamiltonian (excluding effects due to spin-orbit coupling), which can provide an accurate description of the magnetism in these materials. First, we consider TbMnO3, which exhibits a spiral magnetic order at low temperatures. We map the exchange couplings in this compound onto a Heisenberg Hamiltonian and observe a clear deviation from the Heisenberg-like behavior. We consider first the coupling between magnetic and orbital degrees of freedom as a potential source of non-Heisenberg behavior in TbMnO3, but conclude that it does not explain the observed deviation. We find that higher order magnetic interactions (biquadratic and four-spin ring couplings) should be taken into account for a proper treatment of the magnetism in TbMnO3 as well as in the other representatives of the o-R MnO3 series with small radii of the R cation.

  8. Orthorhombic Titanium Matrix Composite Subjected to Simulated Engine Mission Cycles

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.

    1997-01-01

    Titanium matrix composites (TMC's) are commonly made up of a titanium alloy matrix reinforced by silicon carbide fibers that are oriented parallel to the loading axis. These composites can provide high strength at lower densities than monolithic titanium alloys and superalloys in selected gas turbine engine applications. The use of TMC rings with unidirectional SiC fibers as reinforcing rings within compressor rotors could significantly reduce the weight of these components. In service, these TMC reinforcing rings would be subjected to complex service mission loading cycles, including fatigue and dwell excursions. Orthorhombic titanium aluminide alloys are of particular interest for such TMC applications because their tensile and creep strengths are high in comparison to those of other titanium alloys. The objective of this investigation was to assess, in simulated mission tests at the NASA Lewis Research Center, the durability of a SiC (SCS-6)/Ti-22Al-23Nb (at.%) TMC for compressor ring applications, in cooperation with the Allison Engine Company.

  9. Thermal Decomposition Characteristics of Orthorhombic Ammonium Perchlorate (o-AP)

    SciTech Connect

    Behrens, R.; Minier, L.

    1999-03-01

    Preliminary STMBMS and SEM results of the thermal decomposition of AP in the orthorhombic phase are presented. The overall decomposition is shown to be complex and controlled by both physical and chemical processes. The data show that the physical and chemical processes can be probed and characterized utilizing SEM and STMBMS. The overall decomposition is characterized by three distinguishing features: an induction period, and accelerator period and a deceleratory period. The major decomposition event occurs in the subsurface of the AP particles and propagates towards the center of the particle with time. The amount of total decomposition is dependent upon particle size and increases from 23% for {approximately}50{micro}m-diameter AP to 33% for {approximately}200{micro}m-diameter AP. A conceptual model of the physical processes is presented. Insight into the chemical processes is provided by the gas formation rates that are measured for the gaseous products. To our knowledge, this is the first presentation of data showing that the chemical and physical decomposition processes can be identified from one another, probed and characterized at the level that is required to better understand the thermal decomposition behavior of AP. Future work is planned with the goal of obtaining data that can be used to develop a mathematical description for the thermal decomposition of o-AP.

  10. Epitaxial solar cells fabrication

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Kressel, H.

    1975-01-01

    Silicon epitaxy has been studied for the fabrication of solar cell structures, with the intent of optimizing efficiency while maintaining suitability for space applications. SiH2CL2 yielded good quality layers and junctions with reproducible impurity profiles. Diode characteristics and lifetimes in the epitaxial layers were investigated as a function of epitaxial growth conditions and doping profile, as was the effect of substrates and epitaxial post-gettering on lifetime. The pyrolytic decomposition of SiH4 was also used in the epitaxial formation of highly doped junction layers on bulk Si wafers. The effects of junction layer thickness and bulk background doping level on cell performance, in particular, open-circuit voltage, were investigated. The most successful solar cells were fabricated with SiH2 CL2 to grow p/n layers on n(+) substrates. The best performance was obtained from a p(+)/p/n/n(+) structure grown with an exponential grade in the n-base layer.

  11. Magnetic properties of the orthorhombic NdPd

    NASA Astrophysics Data System (ADS)

    Dhar, Vijay; Provino, A.

    2016-09-01

    The equiatomic NdPd compound crystallizes in the orthorhombic CrB structure type (oS8, Cmcm, No. 63). The NdPd phase melts congruently at 1240 °C, as observed by differential thermal analysis; one further sharp thermal effect detected at 1040 °C is very likely due to a structural transition. We confirm the CrB prototype for the low-temperature form of NdPd. The lattice parameters of this compound are a=3.842(2) Å, b=10.776(7) Å, c=4.605(2) Å, as obtained from Guinier powder pattern; those for the corresponding iso-structural LaPd compound, prepared as non-magnetic reference, are a=3.947(2) Å, b=11.036(3) Å, c=4.663(2) Å. Despite the fact that NdPd has been known since long, its physical properties have not been investigated till date. Here we report the results of magnetization, heat capacity and electrical resistivity measurements performed on this compound. NdPd undergoes a single ferromagnetic transition close to 15 K, inferred from a sharp upturn in the magnetization at lower temperatures and from Arrott plots measured at selected temperatures between 1.9 and 18 K. The coercive field and remnant magnetization at 1.9 K are 320 Oe and 0.24 μB/f.u., which become negligible at 15 K. A sharp peak in the heat capacity at ≈15 K confirms the bulk magnetic transition. Isothermal magnetization at 2 K shows a tendency to saturation, reaching a value of 1.9 μB/f.u. at the maximum applied field of 70 kOe. The zero field resistivity shows an anomaly near 15 K, in correspondence with the magnetic and heat capacity data. A negative magnetoresistivity, typical of a ferromagnet, is observed in the magnetically ordered state in an applied magnetic field of 50 kOe. LaPd is a typical Pauli paramagnet with a Sommerfeld coefficient γ=3.9 mJ/mol K2.

  12. Atomic layer epitaxy

    NASA Astrophysics Data System (ADS)

    Goodman, Colin H. L.; Pessa, Markus V.

    1986-08-01

    Atomic layer epitaxy (ALE) is not so much a new technique for the preparation of thin films as a novel modification to existing methods of vapor-phase epitaxy, whether physical [e.g., evaporation, at one limit molecular-beam epitaxy (MBE)] or chemical [e.g., chloride epitaxy or metalorganic chemical vapor deposition (MOCVD)]. It is a self-regulatory process which, in its simplest form, produces one complete molecular layer of a compound per operational cycle, with a greater thickness being obtained by repeated cycling. There is no growth rate in ALE as in other crystal growth processes. So far ALE has been applied to rather few materials, but, in principle, it could have a quite general application. It has been used to prepare single-crystal overlayers of CdTe, (Cd,Mn)Te, GaAs and AlAs, a number of polycrystalline films and highly efficient electroluminescent thin-film displays based on ZnS:Mn. It could also offer particular advantages for the preparation of ultrathin films of precisely controlled thickness in the nanometer range and thus may have a special value for growing low-dimensional structures.

  13. Epitaxial thin films

    DOEpatents

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  14. Room temperature structure vibrational and dielectric properties of Ho modified YMnO3

    NASA Astrophysics Data System (ADS)

    Varshney, Dinesh; Sharma, Poorva; Kumar, Ashwini

    2015-07-01

    The structural, vibrational, and dielectric properties of bulk Ho-doped Y1-xHoxMnO3 (x = 0, 0.03, 0.05) solids prepared by standard solid-state reaction route were investigated. X-ray diffraction (XRD) patterns confirmed the hexagonal P63cm structure of Y1-xHoxMnO3 (x = 0.0, 0.03, 0.05) ceramics. Rietveld refinements of XRD data revealed that the doping ions led to unit cell contraction in three directions due to nearly equal ionic radii of Ho3+ ion (0.901 Å) substituted at the Y-site ion. The grain size of Ho-doped solids varied from 5 to 10 μm. For pristine h-YMnO3, the experimentally observed Raman scattering lines at around 151, 305, 460, and 682 cm-1 are of A1 symmetry, those at 410 cm-1 are of E1 symmetry, and the lines at 139 and 219 cm-1 are of E2 symmetry. Another interesting observation is the existence of an A1 line at 682 cm-1 and an E1 line at about 410 cm-1 which are much stronger than the remaining lines of A1 and E1 symmetries, respectively. The high value of dielectric constant and dielectric loss tangent at low frequency is explained by space charge polarization and the saturation in the high-frequency region is due to the electric dipoles not being in pace with the frequency of the applied electric field.

  15. Materials Data on YMnO3 (SG:194) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Investigation of structure and magnetic properties of Ru-doped YMnO3

    NASA Astrophysics Data System (ADS)

    Dai, Y.; Zhang, A. M.; Yang, L. P.; Gao, Z. R.; Wu, X. S.

    2016-07-01

    A series of polycrystalline YMn1-xRuxO3 (0 ≤ x ≤ 0.2) samples were prepared by traditional solid-state reaction method. Effects of doping on the microstructures and magnetic properties were investigated. Microstructural results reveal that samples crystallize in a single hexagonal structure with P63cm group for x ≤ 0.1. Lattice parameters a, c, and unit-cell volume of YMn1-xRuxO3 are found to increase with doping content, which are ascribed to the larger radius of Ru3+ than that of Mn3+. Weak ferromagnetism is found and is enhanced with increasing doping concentration x. The bond angles of Mn-O3-Mn and Mn-O4-Mn are changed in the opposite trends, which break the Mn-Mn exchange interaction, thus the antiferromagnetic ordering. The MnO5 bipyramid is found to be relieved and the trimerization of Mn ions is weakened. These structural modifications result in the increase of weak ferromagnetism ordering in samples.

  17. Materials Data on YMnO3 (SG:185) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-01-27

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Absence of low-temperature phase transitions in epitaxial BaTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Tenne, D. A.; Xi, X. X.; Li, Y. L.; Chen, L. Q.; Soukiassian, A.; Zhu, M. H.; James, A. R.; Lettieri, J.; Schlom, D. G.; Tian, W.; Pan, X. Q.

    2004-05-01

    We have studied phase transitions in epitaxial BaTiO3 thin films by Raman spectroscopy. The films are found to remain in a single ferroelectric phase over the temperature range from 5 to 325 K. The low-temperature phase transitions characteristic of bulk BaTiO3 (tetragonal-orthorhombic-rhombohedral) are absent in the films. X-ray diffraction shows that the BaTiO3 films are under tensile strain due to the thermal expansion mismatch with the buffer layer. A phase-field calculation of the phase diagram and domain structures in BaTiO3 thin films predicts, without any priori assumption, that an orthorhombic phase with in-plane polarization is the thermodynamically stable phase for such values of tensile strain and temperature, consistent with the experimental Raman results.

  19. Soft epitaxy of nanocrystal superlattices

    NASA Astrophysics Data System (ADS)

    Rupich, Sara M.; Castro, Fernando C.; Irvine, William T. M.; Talapin, Dmitri V.

    2014-12-01

    Epitaxial heterostructures with precise registry between crystal layers play a key role in electronics and optoelectronics. In a close analogy, performance of nanocrystal (NC) based devices depends on the perfection of interfaces formed between NC layers. Here we systematically study the epitaxial growth of NC layers for the first time to enable the fabrication of coherent NC layers. NC epitaxy reveals an exceptional strain tolerance. It follows a universal island size scaling behaviour and shows a strain-driven transition from layer-by-layer to Stranski-Krastanov growth with non-trivial island height statistics. Kinetic bottlenecks play an important role in NC epitaxy, especially in the transition from sub-monolayer to multilayer coverage and the epitaxy of NCs with anisotropic shape. These findings provide a foundation for the rational design of epitaxial structures in a fundamentally and practically important size regime between atomic and microscopic systems.

  20. Vacancies in epitaxial graphene

    SciTech Connect

    Davydov, S. Yu.

    2015-08-15

    The coherent-potential method is used to consider the problem of the influence of a finite concentration of randomly arranged vacancies on the density of states of epitaxial graphene. To describe the density of states of the substrate, simple models (the Anderson model, Haldane-Anderson model, and parabolic model) are used. The electronic spectrum of free single-sheet graphene is considered in the low-energy approximation. Charge transfer in the graphene-substrate system is discussed. It is shown that, in all cases, the density of states of epitaxial graphene decreases proportionally to the vacancy concentration. At the same time, the average charge transferred from graphene to the substrate increases.

  1. Germanium epitaxy on silicon

    NASA Astrophysics Data System (ADS)

    Ye, Hui; Yu, Jinzhong

    2014-04-01

    With the rapid development of on-chip optical interconnects and optical computing in the past decade, silicon-based integrated devices for monolithic and hybrid optoelectronic integration have attracted wide attention. Due to its narrow pseudo-direct gap behavior and compatibility with Si technology, epitaxial Ge-on-Si has become a significant material for optoelectronic device applications. In this paper, we describe recent research progress on heteroepitaxy of Ge flat films and self-assembled Ge quantum dots on Si. For film growth, methods of strain modification and lattice mismatch relief are summarized, while for dot growth, key process parameters and their effects on the dot density, dot morphology and dot position are reviewed. The results indicate that epitaxial Ge-on-Si materials will play a bigger role in silicon photonics.

  2. Preparation and properties of zinc blende and orthorhombic SnS films by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Gao, Chao; Shen, Honglie; Sun, Lei

    2011-05-01

    SnS (stannous sulfide) films were prepared by chemical bath deposition in which a novel chelating reagent ammonium citrate was used. The film has a zinc blende structure or an orthorhombic structure which is determined by the pH value and the temperature of the deposition solution. The reason for this result is considered to be that SnS films prepared under different conditions have different deposition mechanisms (ion-by-ion mechanism for the zinc blende structured SnS and hydroxide cluster mechanism for the orthorhombic structured SnS). The prepared SnS films are homogeneous and well adhered. SEM images show that the SnS films with different structures have different surface morphologies. Electrical test shows that the resistivity of the films is as low as 420 Ω cm and 3300 Ω cm for orthorhombic and zinc blende SnS films, respectively, which are much lower than the ever reported values. Persistent photoconductivity (PPC) phenomena are observed for both the films with zinc blende and orthorhombic structures by photo-current responses measurement. The optical bandgaps of the SnS films are determined to be 1.75 eV and 1.15 eV for zinc blende structure and orthorhombic structure, respectively.

  3. Superconductor-insulator phase transition in single-crystal La2-xSrxCuO4 films grown by the liquid-phase epitaxy method

    NASA Astrophysics Data System (ADS)

    Islam, A. T. M. Nazmul; Hitosugi, T.; Dudzik, E.; Hasegawa, T.; Ueda, S.; Takano, Y.; Islam, F. N.; Khan, M. K. R.; Islam, M. N.; Islam, A. K. M. A.; Watauchi, S.; Tanaka, I.

    2009-07-01

    We have studied epitaxial strain effect on superconductivity in single-crystal La2-xSrxCuO4 films grown by liquid-phase epitaxy method on (001) La2CuO4 substrates. Due to lattice mismatch the as-grown films suffer a compressive strain in the c axis and an orthorhombic tensile strain on the ab plane with almost no relaxation up to several micrometers thickness. Our results show that La2-xSrxCuO4 (0.10≤x≤0.15) , which is superconducting in the bulk at low temperatures, transforms to an insulating state under such strain.

  4. Dipole-field sums and Lorentz factors for orthorhombic lattices, and implications for polarizable molecules

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.; Taylor, P. L.

    1982-01-01

    A method for computing the Lorentz tensor components in single crystals via rapidly convergent sums of Bessels functions is developed using the relationship between dipole-field sums and the tensor components. The Lorentz factors for simple, body-centered, and base-centered orthorhombic lattices are computed using this method, and the derivative Lorentz factors for simple orthorhombic lattices are also determined. Both the Lorentz factors and their derivatives are shown to be very sensitive to a lattice structure. The equivalent of the Clausius-Mossotti relation for general orthorhombic lattices is derived using the Lorentz-factor formalism, and the permanent molecular dipole moment is related to crystal polarization for the case of a ferroelectric of polarizable point dipoles. It is concluded that the polarization enhancement due to self-polarization familiar from classical theory may actually be a reduction in consequences of negative Lorentz factors in one or two lattice directions for noncubic crystals.

  5. Crystallization of the Focal Adhesion Kinase Targeting (FAT) Domain in a Primitive Orthorhombic Space Group

    SciTech Connect

    Magis,A.; Bailey, K.; Kurenova, E.; Hernandez Prada, J.; Cance, W.; Ostrov, D.

    2008-01-01

    X-ray diffraction data from the targeting (FAT) domain of focal adhesion kinase (FAK) were collected from a single crystal that diffracted to 1.99 Angstroms resolution and reduced to the primitive orthorhombic lattice. A single molecule was predicted to be present in the asymmetric unit based on the Matthews coefficient. The data were phased using molecular-replacement methods using an existing model of the FAK FAT domain. All structures of human focal adhesion kinase FAT domains solved to date have been solved in a C-centered orthorhombic space group.

  6. High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds

    PubMed Central

    Ding, Guangqian; Gao, Guoying; Yao, Kailun

    2015-01-01

    Improving the thermoelectric efficiency is one of the greatest challenges in materials science. The recent discovery of excellent thermoelectric performance in simple orthorhombic SnSe crystal offers new promise in this prospect [Zhao et al. Nature 508, 373 (2014)]. By calculating the thermoelectric properties of orthorhombic IV-VI compounds GeS,GeSe,SnS, and SnSe based on the first-principles combined with the Boltzmann transport theory, we show that the Seebeck coefficient, electrical conductivity, and thermal conductivity of orthorhombic SnSe are in agreement with the recent experiment. Importantly, GeS, GeSe, and SnS exhibit comparative thermoelectric performance compared to SnSe. Especially, the Seebeck coefficients of GeS, GeSe, and SnS are even larger than that of SnSe under the studied carrier concentration and temperature region. We also use the Cahill's model to estimate the lattice thermal conductivities at the room temperature. The large Seebeck coefficients, high power factors, and low thermal conductivities make these four orthorhombic IV-VI compounds promising candidates for high-efficient thermoelectric materials. PMID:26045338

  7. Metamagnetic effects in epitaxial BaFe1.8Cr0.2As2 thin films

    NASA Astrophysics Data System (ADS)

    Engelmann, J.; Müller, K. H.; Nenkov, K.; Schultz, L.; Holzapfel, B.; Haindl, S.

    2012-12-01

    Epitaxial BaFe1.8Cr0.2As2 thin films with the tetragonal c- axis perpendicular to the thin film surface were grown on (LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT) single crystalline substrates using pulsed laser deposition (PLD). Resistive measurements indicate the existence of two transitions at temperatures of about 80 K and 40 K. The transition at 80 K is attributed to the structural transition from the high temperature tetragonal phase to the low temperature orthorhombic phase accompanied with the magnetic transition from a paramagnetic to an antiferromagnetic state as known for doped bulk systems. Below T ≈ 40 K the magnetization curves measured perpendicularly to the orthorhombic c- axis in fields up to 9 Tesla show two inflexion points indicating metamagnetic transitions.

  8. Orthorhombic faults system at the onset of the Late Mesozoic-Cenozoic Barents Sea rifting

    NASA Astrophysics Data System (ADS)

    Collanega, Luca; Breda, Anna; Massironi, Matteo

    2016-04-01

    The structures of the Late Mesozoic/Cenozoic Barents Sea rifting have been investigated with multichannel 3D seismics, covering an area of 7700 sqKm in the Hoop Fault Complex, a transitional area between the platform and the marginal basins. The main structural lineaments have been mapped in a time domain 3D surface and their activity ranges have been constrained through the sin-sedimentary thickness variations detected in time-thickness maps. Two main fault systems have been identified: an orthorhombic fault system consisting of two fault sets trending almost perpendicularly one to the other (WNW-ESE and NNE-SSW) and a graben/half-graben system, elongated approximately N-S in the central part of the study area. While the graben/half-graben system can be explained through the theory of Anderson, this landmark theory fails to explain the simultaneous activity of the two fault sets of the orthorhombic system. So far, the models that can better explain orthorhombic fault arrangements are the slip model by Reches (Reches, 1978; Reches, 1983; Reches and Dieterich, 1983) and the odd-axis model by Krantz (Krantz, 1988). However, these models are not definitive and a strong quest to better understand polymodal faulting is actual (Healy et al., 2015). In the study area, the presence of both a classical Andersonian and an orthorhombic system indicates that these models are not alternative but are both effective and necessary to explain faulting in different circumstances. Indeed, the Andersonian plain strain and the orthorhombic deformation have affected different part of the succession during different phases of the rifting. In particular, the orthorhombic system has affected only the Late Mesozoic-Cenozoic interval of the succession and it was the main active system during the initial phase of the rifting. On the other hand, the graben/half-graben system has affected the whole sedimentary succession, with an increasing activity during the development of the rifting. It has

  9. Photocatalytic water splitting for hydrogen generation on cubic, orthorhombic, and tetragonal KNbO3 microcubes

    NASA Astrophysics Data System (ADS)

    Zhang, Tingting; Zhao, Kun; Yu, Jiaguo; Jin, Jian; Qi, Yang; Li, Huiquan; Hou, Xinjuan; Liu, Gang

    2013-08-01

    Potassium niobate (KNbO3) microcubes with orthorhombic and tetragonal phases were hydrothermally prepared and characterized by powder X-ray diffraction, nitrogen adsorption-desorption, micro-Raman spectroscopy, Fourier transform infrared spectroscopy, diffuse reflectance UV-visible spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. The photoreactivity of the as-prepared KNbO3 samples was evaluated regarding the hydrogen evolution from aqueous methanol under UV, and the results were compared with that of cubic KNbO3 microcubes. The photocatalytic reactivity was shown to be phase-dependent, following the order cubic > orthorhombic > tetragonal. Insight into the phase-dependent photocatalytic properties was gained by first-principles density functional calculations. The best photocatalytic performance of cubic KNbO3 is ascribed to it having the highest symmetry in the bulk structure and associated unique electronic structure. Further, the surface electronic structure plays a key role leading to the discrepancy in photoreactivity between orthorhombic and tetragonal KNbO3. The results from this study are potentially applicable to a range of perovskite-type mixed metal oxides useful in water splitting as well as other areas of heterogeneous photocatalysis.Potassium niobate (KNbO3) microcubes with orthorhombic and tetragonal phases were hydrothermally prepared and characterized by powder X-ray diffraction, nitrogen adsorption-desorption, micro-Raman spectroscopy, Fourier transform infrared spectroscopy, diffuse reflectance UV-visible spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. The photoreactivity of the as-prepared KNbO3 samples was evaluated regarding the hydrogen evolution from aqueous methanol under UV, and the results were compared with that of cubic KNbO3 microcubes. The photocatalytic reactivity was

  10. Large rotating magnetocaloric effect in the orthorhombic DyMnO3 single crystal

    NASA Astrophysics Data System (ADS)

    Balli, M.; Mansouri, S.; Jandl, S.; Fournier, P.; Dimitrov, D. Z.

    2016-07-01

    A large magnetocaloric effect can be obtained around TN, Dy ̴8 K simply by spinning the orthorhombic DyMnO3 single crystal within the cb-plane in a constant magnetic field, instead of the standard magnetization-demagnetization process. Under 7 T, the maximum rotating entropy change (-ΔSR, cb) and the associated adiabatic temperature change (ΔTad, cb) are 16.3 J/kg K and 11 K, respectively. The corresponding refrigerant capacity is 440 J/kg, with no thermal and field hysteresis losses. Our findings show that the orthorhombic DyMnO3 could be used as a good refrigerant in more compact and efficient cryomagnetocaloric refrigerators.

  11. Spontaneous Ferroelectric Order in a Bent-Core Smectic Liquid Crystal of Fluid Orthorhombic Layers

    SciTech Connect

    R Reddy; C Zhu; R Shao; E Korblova; T Gong; Y Shen; M Glaser; J Maclennan; D Walba; N Clark

    2011-12-31

    Macroscopic polarization density, characteristic of ferroelectric phases, is stabilized by dipolar intermolecular interactions. These are weakened as materials become more fluid and of higher symmetry, limiting ferroelectricity to crystals and to smectic liquid crystal stackings of fluid layers. We report the SmAP{sub F}, the smectic of fluid polar orthorhombic layers that order into a three-dimensional ferroelectric state, the highest-symmetry layered ferroelectric possible and the highest-symmetry ferroelectric material found to date. Its bent-core molecular design employs a single flexible tail that stabilizes layers with untilted molecules and in-plane polar ordering, evident in monolayer-thick freely suspended films. Electro-optic response reveals the three-dimensional orthorhombic ferroelectric structure, stabilized by silane molecular terminations that promote parallel alignment of the molecular dipoles in adjacent layers.

  12. Superconductivity in MgPtSi: An orthorhombic variant of MgB2

    NASA Astrophysics Data System (ADS)

    Kudo, Kazutaka; Fujimura, Kazunori; Onari, Seiichiro; Ota, Hiromi; Nohara, Minoru

    2015-05-01

    A ternary compound, MgPtSi, was synthesized by solid-state reaction. An examination of the compound by powder x-ray diffraction revealed that it crystallizes in the orthorhombic TiNiSi-type structure with the P n m a space group. The structure comprises alternately stacked layers of Mg and PtSi honeycomb network, which is reminiscent of MgB2, and the buckling of the honeycomb network causes orthorhombic distortion. Electrical and magnetic studies revealed that MgPtSi exhibited superconductivity with a transition temperature of 2.5 K. However, its isostructural compounds, namely, MgRhSi and MgIrSi, were not found to exhibit superconductivity.

  13. The Solubility of Orthorhombic Lysozyme Crystals Obtained at High pH

    SciTech Connect

    Aldabaibeh, Naser; Jones, Matthew J.; Myerson, Allan S.; Ulrich, Joachim

    2009-07-06

    The high pH region of the phase diagram of lysozyme with NaCl as a precipitant was determined. In this region of the phase diagram, lysozyme crystallizes in one of two different orthorhombic modifications, the low and high temperature orthorhombic modifications. The solubility of two modifications was measured at different temperatures, pH values, and NaCl concentrations. Both modifications show a similar dependence on the solution conditions where solubility increases with temperature and decreases with pH and NaCl concentration. The transition temperature between the two modifications was determined from the solubility curves and was shown to increase with pH and NaCl concentration. At pH values close to the isoelectric point (pH 11), the transition temperature becomes independent of NaCl concentration.

  14. Monoclinic and orthorhombic polymorphs of paracetamol—solid state linear dichroic infrared spectral analysis

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka B.

    2005-03-01

    Solid-state linear dichroic infrared (IR-LD) spectral analysis of both monoclinic (form I) and orthorhombic (form II) polymorphs of paracetamol was carried out using an orientation technique as a nematic liquid crystal suspension. The so-called reducing-difference procedure for polarized spectra interpretation was applied and the obtained supramolecular stereo structural data of both modifications were compared with known crystallographic ones. A detailed vibration assignment of characteristic frequencies of forms I and II was also applied. A quantitative FT-IR spectral approach for monoclinic form determination in mixtures by the intensity ratio of 1610 cm -1 peak (characteristic for both forms) to 1666 cm -1 one (attributed to orthorhombic modification) was presented, as well.

  15. Lattice dynamics of proton conductor SrZrO{sub 3} in orthorhombic phase

    SciTech Connect

    Sharma, Anupam Deep; Sinha, M. M.

    2014-04-24

    In the this paper, we are presenting the results of our theoretical investigation on the zone centre phonon frequencies and phonon dispersion relation of SrZrO{sub 3} in its orthorhombic phase by using lattice dynamical simulation method based on short range force constant model to understand the role of phonon in this system. The calculations involves interatomic force constants upto third neighbour. The calculated zone centre phonon frequencies in Raman mode, agrees well with available existing results.

  16. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  17. High temperature far-infrared dynamics of orthorhombic NdMnO3: emissivity and reflectivity.

    PubMed

    Massa, Néstor E; del Campo, Leire; Meneses, Domingos De Sousa; Echegut, Patrick; Martínez-Lope, María Jesús; Alonso, José Antonio

    2013-06-12

    We report on near normal far- and mid-infrared emission and reflectivity of NdMnO3 perovskite from room temperature to sample decomposition above 1800 K. At 300 K the number of infrared active phonons is in close agreement with the 25 calculated for the orthorhombic D(2h)(16)-Pbnm (Z = 4) space group. Their number gradually decreases as we approach the temperature of orbital disorder at ~1023 K where the orthorhombic O' lower temperature cooperative phase coexists with the cubic orthorhombic O. At above ~1200 K, the three infrared active phonons coincide with that expected for cubic Pm-3m (Z = 1) in the high temperature insulating regime. Heating samples in dry air triggers double exchange conductivity by Mn(3+) and Mn(4+) ions and a small polaron mid-infrared band. Fits to the optical conductivity single out the octahedral antisymmetric and symmetric vibrational modes as the main phonons in the electron-phonon interactions at 875 K. For 1745 K, it is enough to consider the symmetric stretching internal mode. An overdamped defect induced Drude component is clearly outlined at the highest temperatures. We conclude that rare earth manganite eg electrons are prone to spin, charge, orbital, and lattice couplings in an intrinsic orbital distorted perovskite lattice, favoring embryonic low energy collective excitations. PMID:23676242

  18. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  19. Epitaxy: the motion picture

    NASA Astrophysics Data System (ADS)

    Finnie, Paul; Homma, Yoshikazu

    2002-03-01

    The engineering of many modern electronic devices demands control over a crystal down to the thickness of a single layer of atoms-and future demands will be even more challenging. Such control is achieved by the method of crystal growth known as epitaxy, and that makes this method the subject of intense study. More than that, recent advances are revolutionizing our knowledge of how surfaces grow. In fact, growing surfaces show a beautifully rich variety of phenomena, many of which are only now beginning to be uncovered. In the past few years many surface imaging techniques have been used to give us a close look at how crystals grow-while they are growing. The purpose of this article will be to illustrate some of the ways real surfaces grow and change as revealed by some of the latest in situ microscopic imaging technologies. It is often said that crystal growth is more of an art than a science. Here we will show that it is emphatically both.

  20. Polarization rotation associated critical phenomena in epitaxial PbTiO3 thin films near room temperature

    NASA Astrophysics Data System (ADS)

    Ma, Wenhui

    2016-04-01

    Strain-driven and temperature-driven monoclinic-orthorhombic phase transition in epitaxial PbTiO3 exhibit similar behavior under electric field, i.e., polarization discontinuity is reduced at the first-order ferroelectric-ferroelectric transition whose latent heat vanishes at a critical point. Due to critical phenomena the energy barrier for polarization rotation significantly diminishes, and hence thermodynamic response functions tend to diverge in the induced monoclinic states. Phenomenological calculations show that dielectric and piezoelectric properties are highly tunable by in-plane strain and electric field, and large electromechanical response may occur in epitaxial PbTiO3 thin films at room temperature. Phenomenological calculations show that large electrocaloric responsivity can also be expected at room temperature by manipulating the phase transition.

  1. High-Pressure Studies on Synthetic Orthorhombic Cubanite (CuFe{sub 2}S{sub 3})

    SciTech Connect

    Chandra, Usha; Singh, Nihal; Sharma, Pooja; Parthasarathy, G.

    2011-07-15

    We report here the successful synthesis of orthorhombic cubanite using microwave heating and characterization for its orthorhombic phase by powder X-ray diffraction, Micro-Raman, Thermal and high pressure electrical resistivity measurements. The unique physico-chemical conditions prevent successful synthesis under laboratory conditions, however the mineral occurs in nature in its orthorhombic form. A distinct endothermic dip in Differential Thermal Analysis (DTA) at 280 deg. C is in agreement with the DTA data reported for natural cubanite. An irreversible first order phase transformation from orthorhombic to NiAs structure is seen at 4 GPa/200 deg. C. High pressure electrical resistivity and micro-Raman spectroscopic measurements on the synthetic sample exhibit transformation to isocubanite.

  2. High-temperature scintillation properties of orthorhombic Gd2Si2O7 aiming at well logging

    NASA Astrophysics Data System (ADS)

    Tsubota, Youichi; Kaneko, Junichi H.; Higuchi, Mikio; Nishiyama, Shusuke; Ishibashi, Hiroyuki

    2015-06-01

    Scintillation and luminescence properties of orthorhombic Gd2Si2O7:Ce (GPS:Ce) single-crystal scintillators were investigated for temperatures ranging from room temperature (RT) to 573 K. Orthorhombic GPS crystals were grown by using a top-seeded solution growth (TSSG) method. The scintillation light yield of the orthorhombic GPS at RT was ∼2.9 times higher than that of Gd2SiO5:Ce (GSO). The light yield values of the orthorhombic GPS (Ce = 2.5%) were almost unchanged for temperatures ranging from RT to 523 K, and at 523 K, were higher than twice the light yield of GSO at RT. These GPS scintillators are expected to contribute to oil exploration at greater depths.

  3. Hysteresis in the rhombohedral-orthorhombic phase transition of KNbO3 under inhomogeneous strain

    NASA Astrophysics Data System (ADS)

    Baier-Saip, J. A.; Gutierrez, M. H.; Cabrera, A. L.; Baier, P. A.

    2013-01-01

    The influence of the heating rate on the low temperature phase transition (PT) of the piezoelectric crystal potassium niobate (KNO) was studied by micro-Raman spectroscopy. It is found that crystallographic defects are more important than the heating rate for the onset of the PT. If the strain shifts the transition temperature (TT) from the rhombohedral to the orthorhombic phase to lower values, then it also shifts the reverse PT to higher temperatures. The PT on heating is more sensitive to the rate than the PT on cooling.

  4. Temperature and Pressure Sensors Based on Spin-Allowed Broadband Luminescence of Doped Orthorhombic Perovskite Structures

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I. (Inventor); Chambers, Matthew D. (Inventor)

    2014-01-01

    Systems and methods that are capable of measuring pressure or temperature based on luminescence are discussed herein. These systems and methods are based on spin-allowed broadband luminescence of sensors with orthorhombic perovskite structures of rare earth aluminates doped with chromium or similar transition metals, such as chromium-doped gadolinium aluminate. Luminescence from these sensors can be measured to determine at least one of temperature or pressure, based on either the intense luminescence of these sensors, even at high temperatures, or low temperature techniques discussed herein.

  5. Observation of lattice defects in orthorhombic hen-egg white lysozyme crystals with laser scattering tomography

    NASA Astrophysics Data System (ADS)

    Sato, K.; Fukuba, Y.; Mitsuda, T.; Hirai, K.; Moriya, K.

    1992-08-01

    The effectivity of using laser scattering tomography (LST) as a nondestructive technique for finding lattice defects in protein crystals is demonstrated using an orthorhombic egg-white lysozyme crystal grown by a batch method. It was found that LST figures could be observed from the crystal portions where no defects were detectable by the naked eye or optical microscopy; the number of microdefects revealed in the LST patterns increased on approaching the crystal surface. Two types of defects were differentiated by polarization analysis: (1) point-type defects, assumed to be microdefects such as vacancies, precipitates, or impurities, and (2) bulk-type defects, assumed to correspond to inclusions.

  6. 93Nb Nuclear Quadrupole Resonance in Orthorhombic Phase of Niobium Pentabromide

    NASA Astrophysics Data System (ADS)

    Okubo, Noriaki; Abe, Yoshihito

    1982-05-01

    The 93Nb NQR has been investigated in one phase of NbBr5 which was identified to be orthorhombic by the X-ray analysis. The resonance frequencies have been measured between 4.2 K and 423 K, its melting point. The coupling constant showed a positive temperature dependence up to melting point. The temperature dependence of the coupling constant is compared between NbBr5 and NbCl5 from the view point of π-bond character.

  7. Calorimetry of epitaxial thin films.

    PubMed

    Cooke, David W; Hellman, F; Groves, J R; Clemens, B M; Moyerman, S; Fullerton, E E

    2011-02-01

    Thin film growth allows for the manipulation of material on the nanoscale, making possible the creation of metastable phases not seen in the bulk. Heat capacity provides a direct way of measuring thermodynamic properties of these new materials, but traditional bulk calorimetric techniques are inappropriate for such a small amount of material. Microcalorimetry and nanocalorimetry techniques exist for the measurements of thin films but rely on an amorphous membrane platform, limiting the types of films which can be measured. In the current work, ion-beam-assisted deposition is used to provide a biaxially oriented MgO template on a suspended membrane microcalorimeter in order to measure the specific heat of epitaxial thin films. Synchrotron x-ray diffraction showed the biaxial order of the MgO template. X-ray diffraction was also used to prove the high quality of epitaxy of a film grown onto this MgO template. The contribution of the MgO layer to the total heat capacity was measured to be just 6.5% of the total addenda contribution. The heat capacity of a Fe(.49)Rh(.51) film grown epitaxially onto the device was measured, comparing favorably to literature data on bulk crystals. This shows the viability of the MgO∕SiN(x)-membrane-based microcalorimeter as a way of measuring the thermodynamic properties of epitaxial thin films. PMID:21361612

  8. Metallic single-unit-cell orthorhombic cobalt diselenide atomic layers: robust water-electrolysis catalysts.

    PubMed

    Liang, Liang; Cheng, Hao; Lei, Fengcai; Han, Jun; Gao, Shan; Wang, Chengming; Sun, Yongfu; Qamar, Shaista; Wei, Shiqiang; Xie, Yi

    2015-10-01

    The bottleneck in water electrolysis lies in the kinetically sluggish oxygen evolution reaction (OER). Herein, conceptually new metallic non-metal atomic layers are proposed to overcome this drawback. Metallic single-unit-cell CoSe2 sheets with an orthorhombic phase are synthesized by thermally exfoliating a lamellar CoSe2 -DETA hybrid. The metallic character of orthorhombic CoSe2 atomic layers, verified by DFT calculations and temperature-dependent resistivities, allows fast oxygen evolution kinetics with a lowered overpotential of 0.27 V. The single-unit-cell thickness means 66.7 % of the Co(2+) ions are exposed on the surface and serve as the catalytically active sites. The lowered Co(2+) coordination number down to 1.3 and 2.6, gives a lower Tafel slope of 64 mV dec(-1) and higher turnover frequency of 745 h(-1) . Thus, the single-unit-cell CoSe2 sheets have around 2 and 4.5 times higher catalytic activity compared with the lamellar CoSe2 -DETA hybrid and bulk CoSe2 . PMID:26235276

  9. Surface morphology of orthorhombic Mo2C catalyst and high coverage hydrogen adsorption

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Tian, Xinxin; Yang, Yong; Li, Yong-Wang; Wang, Jianguo; Beller, Matthias; Jiao, Haijun

    2016-09-01

    High coverage hydrogen adsorption on twenty two terminations of orthorhombic Mo2C has been systematically studied by using density functional theory and ab initio thermodynamics. Hydrogen stable coverage on the surfaces highly depends on temperatures and H2 partial pressure. The estimated hydrogen desorption temperatures under ultra-high vacuum condition on Mo2C are in reasonable agreement with the available temperature-programmed desorption data. Obviously, hydrogen adsorption can affect the surface stability and therefore modify the surface morphology of Mo2C. Upon increasing the chemical potential of hydrogen which can be achieved by increasing the H2 partial pressure and/or decreasing the temperature, the proportions of the (001), (010), (011) and (100) surfaces increase, while those of the (101), (110) and (111) surfaces decrease. Among these surfaces, the (100) surface is most sensitive upon hydrogen adsorption and the (111) surface is most exposed under a wide range of conditions. Our study clearly reveals the role of hydrogen on the morphology of orthorhombic Mo2C catalyst in conjugation with hydro-treating activity.

  10. Method of depositing epitaxial layers on a substrate

    DOEpatents

    Goyal, Amit

    2003-12-30

    An epitaxial article and method for forming the same includes a substrate having a textured surface, and an electrochemically deposited substantially single orientation epitaxial layer disposed on and in contact with the textured surface. The epitaxial article can include an electromagnetically active layer and an epitaxial buffer layer. The electromagnetically active layer and epitaxial buffer layer can also be deposited electrochemically.

  11. Magnetotransport properties of Sr2IrO4 thin films modulated by epitaxial strain

    NASA Astrophysics Data System (ADS)

    Miao, Ludi; Kim, Dae Ho; Mao, Zhiqiang

    2013-03-01

    Sr2IrO4 (SIO) has attracted much attention due to its Jeff = 1/2 Mott state induced by relativistic spin-orbit coupling. In 3 d/4 d transition metal oxides, exotic phenomena, such as high-TC superconductivity and colossal magnetoresistance, occur when a Mott insulting state is suppressed by charge carrier doping or band width tuning. Whether the Mott state in SIO can be tuned to new exotic states is an interesting question under active investigation. We have grown epitaxial SIO films on the substrates of SrTiO3(STO) and NdGaO3 (NGO) using a pulsed laser deposition method and investigated the strain effect on the properties of SIO. The SIO/STO film exhibits a tetragonal structure, while the SIO/NGO film displays a orthorhombic structure due to the NGO's orthorhombic nature. Although both types of films show insulating properties, their magnetic properties appear to be distinct: the SIO/STO film shows negative magnetoresistance (MR) with negligible anisotropy, whereas the SIO/NGO film exhibits positive MR with two-fold anisotropy. Such differences in magnetotransport imply the strong coupling between the lattice, spin and orbital degrees of freedom in SIO.

  12. Epitaxial silicon growth for solar cells

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Richman, D.

    1979-01-01

    The epitaxial procedures, solar cell fabrication, and evaluation techniques are described. The development of baseline epitaxial solar cell structures grown on high quality conventional silicon substrates is discussed. Diagnostic layers and solar cells grown on four potentially low cost silicon substrates are considered. The crystallographic properties of such layers and the performance of epitaxially grown solar cells fabricated on these materials are described. An advanced epitaxial reactor, the rotary disc, is described along with the results of growing solar cell structures of the baseline type on low cost substrates. The add on cost for the epitaxial process is assessed and the economic advantages of the epitaxial process as they relate to silicon substrate selection are examined.

  13. Failure development around a borehole in an orthorhombic thermo-elastoplastic rock medium

    NASA Astrophysics Data System (ADS)

    Piłacik, Alicja; Dąbrowski, Marcin

    2016-04-01

    The elastic anisotropy of a rock medium is one of the main factors affecting stress distribution around the borehole. It governs the initiation and propagation of the technologically induced compressive and tensile failure zones, and reopening of natural mechanical discontinuities. We conducted a two-dimensional analysis of failure around a pressurized horizontal borehole in an orthorhombic elastic rock medium subject to variable far-field loads. The analytical solution to the thermoelastic problem was derived. An elastoplastic finite element method code was developed using MILAMIN platform (milamin.org) and implemented in MATLAB. Various yield functions were used, including von Mises, Mohr-Coulomb, Drucker-Prager and Hoek-Brown failure criteria. The analysis was augmented by introducing rock heterogeneities and discrete mechanical discontinuities in the vicinity of the borehole.

  14. Quasi-one-dimensional electronic structure in orthorhombic RbC[sub 60

    SciTech Connect

    Chauvet, O.; Oszlanyi, G.; Forro, L. ); Stephens, P.W. ); Tegze, M.; Faigel, G.; Janossy, A. )

    1994-04-25

    X-ray diffraction studies show that the stable phase of the alkali fullerene RbC[sub 60] is orthorhombic ([ital o]-RbC[sub 60]) below 350 K. C[sub 60] molecules form chains along [bold a] with an unusually short spacing of 9.12 A and magnetic properties suggest that [ital o]-RbC[sub 60] is a quasi-1D metal with a transition to a spin density wave ground state at 50 K. The high temperature fcc phase of RbC[sub 60] may be stabilized below 300 K by quenching from 500 K; it is paramagnetic above 300 K and transforms into a nonmagnetic ground state beween 300 and 250 K.

  15. Enhancement of the antimicrobial properties of orthorhombic molybdenum trioxide by thermal induced fracturing of the hydrates.

    PubMed

    Shafaei, Shahram; Van Opdenbosch, Daniel; Fey, Tobias; Koch, Marcus; Kraus, Tobias; Guggenbichler, Josef Peter; Zollfrank, Cordt

    2016-01-01

    The oxides of the transition metal molybdenum exhibit excellent antimicrobial properties. We present the preparation of molybdenum trioxide dihydrate (MoO3 × 2H2O) by an acidification method and demonstrate the thermal phase development and morphological evolution during and after calcination from 25 °C to 600 °C. The thermal dehydration of the material was found to proceed in two steps. Microbiological roll-on tests using Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were performed and exceptional antimicrobial activities were determined for anhydrous samples with orthorhombic lattice symmetry and a large specific surface area. The increase in the specific surface area is due to crack formation and to the loss of the hydrate water after calcination at 300 °C. The results support the proposed antimicrobial mechanism for transition metal oxides, which based on a local acidity increase as a consequence of the augmented specific surface area. PMID:26478404

  16. Body-Centered Orthorhombic C16 : A Novel Topological Node-Line Semimetal

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Tao; Weng, Hongming; Nie, Simin; Fang, Zhong; Kawazoe, Yoshiyuki; Chen, Changfeng

    2016-05-01

    We identify by ab initio calculations a novel topological semimetal carbon phase in all-s p2 bonding networks with a 16-atom body-centered orthorhombic unit cell, termed bco-C16. Total-energy calculations show that bco-C16 is comparable to solid fcc-C60 in energetic stability, and phonon and molecular dynamics simulations confirm its dynamical stability. This all-s p2 carbon allotrope can be regarded as a three-dimensional modification of graphite, and its simulated x-ray diffraction (XRD) pattern matches well a previously unexplained diffraction peak in measured XRD spectra of detonation and chimney soot, indicating its presence in the specimen. Electronic band structure calculations reveal that bco-C16 is a topological node-line semimetal with a single nodal ring. These findings establish a novel carbon phase with intriguing structural and electronic properties of fundamental significance and practical interest.

  17. Body-Centered Orthorhombic C_{16}: A Novel Topological Node-Line Semimetal.

    PubMed

    Wang, Jian-Tao; Weng, Hongming; Nie, Simin; Fang, Zhong; Kawazoe, Yoshiyuki; Chen, Changfeng

    2016-05-13

    We identify by ab initio calculations a novel topological semimetal carbon phase in all-sp^{2} bonding networks with a 16-atom body-centered orthorhombic unit cell, termed bco-C_{16}. Total-energy calculations show that bco-C_{16} is comparable to solid fcc-C_{60} in energetic stability, and phonon and molecular dynamics simulations confirm its dynamical stability. This all-sp^{2} carbon allotrope can be regarded as a three-dimensional modification of graphite, and its simulated x-ray diffraction (XRD) pattern matches well a previously unexplained diffraction peak in measured XRD spectra of detonation and chimney soot, indicating its presence in the specimen. Electronic band structure calculations reveal that bco-C_{16} is a topological node-line semimetal with a single nodal ring. These findings establish a novel carbon phase with intriguing structural and electronic properties of fundamental significance and practical interest. PMID:27232027

  18. Colloidal nanocrystals of orthorhombic Cu2ZnGeS4: phase-controlled synthesis, formation mechanism and photocatalytic behavior

    NASA Astrophysics Data System (ADS)

    Fan, Cong-Min; Regulacio, Michelle D.; Ye, Chen; Lim, Suo Hon; Lua, Shun Kuang; Xu, Qing-Hua; Dong, Zhili; Xu, An-Wu; Han, Ming-Yong

    2015-02-01

    The orthorhombic polymorph of Cu2ZnGeS4 (CZGS) is a metastable wurtzite-derived phase that can only be prepared in the bulk form by extensive heating at high temperatures (>=790 °C) when using the conventional solid-state reaction route. By employing a facile solution-based synthetic strategy, we were able to obtain phase-pure orthorhombic CZGS in nanocrystalline form at a much lower reaction temperature. Prior to this work, the colloidal synthesis of single-phase orthorhombic CZGS on the nanoscale has never been reported. We find that the use of an appropriate combination of coordinating solvents and precursors is crucial to the sole formation of this metastable phase in solution. A possible formation mechanism is proposed on the basis of our experimental results. Because CZGS consists of environmentally benign metal components, it is regarded as a promising alternative material to the technologically useful yet toxic cadmium-containing semiconductors. The orthorhombic CZGS nanocrystals display strong photon absorption in the visible spectrum and are photocatalytically active in dye degradation under visible-light illumination.The orthorhombic polymorph of Cu2ZnGeS4 (CZGS) is a metastable wurtzite-derived phase that can only be prepared in the bulk form by extensive heating at high temperatures (>=790 °C) when using the conventional solid-state reaction route. By employing a facile solution-based synthetic strategy, we were able to obtain phase-pure orthorhombic CZGS in nanocrystalline form at a much lower reaction temperature. Prior to this work, the colloidal synthesis of single-phase orthorhombic CZGS on the nanoscale has never been reported. We find that the use of an appropriate combination of coordinating solvents and precursors is crucial to the sole formation of this metastable phase in solution. A possible formation mechanism is proposed on the basis of our experimental results. Because CZGS consists of environmentally benign metal components, it is

  19. The scattering potential of partial derivative wavefields in 3D elastic orthorhombic media: An inversion prospective

    NASA Astrophysics Data System (ADS)

    Oh, Ju-Won; Alkhalifah, Tariq

    2016-07-01

    Multi-parameter full waveform inversion (FWI) applied to an elastic orthorhombic model description of the subsurface requires in theory a nine-parameter representation of each pixel of the model. Even with optimal acquisition on the Earth surface that includes large offsets, full azimuth, and multi component sensors, the potential for tradeoff between the elastic orthorhombic parameters are large. The first step to understanding such trade-off is analysing the scattering potential of each parameter, and specifically, its scattering radiation patterns. We investigate such radiation patterns for diffraction and for scattering from a horizontal reflector considering a background isotropic model. The radiation patterns show considerable potential for trade-off between the parameters and the potentially limited resolution in their recovery. The radiation patterns of C11, C22 and C33 are well separated so that we expect to recover these parameters with limited trade-offs. However, the resolution of their recovery represented by recovered range of model wavenumbers varies between these parameters. We can only invert for the short wavelength components (reflection) of C33 while we can mainly invert for the long wavelength components (transmission) of the elastic coefficients C11 and C22 if we have large enough offsets. The elastic coefficients C13, C23 and C12 suffer from strong trade-offs with C55, C44 and C66, respectively. The trade-offs between C13 and C55, as well as C23 and C44, can be partially mitigated if we acquire P-SV and SV-SV waves. However, to reduce the trade-offs between C12 and C66, we require credible SH-SH waves. The analytical radiation patterns of the elastic constants are supported by numerical gradients of these parameters.

  20. The scattering potential of partial derivative wavefields in 3-D elastic orthorhombic media: an inversion prospective

    NASA Astrophysics Data System (ADS)

    Oh, Ju-Won; Alkhalifah, Tariq

    2016-09-01

    Multiparameter full waveform inversion (FWI) applied to an elastic orthorhombic model description of the subsurface requires in theory a nine-parameter representation of each pixel of the model. Even with optimal acquisition on the Earth surface that includes large offsets, full azimuth, and multicomponent sensors, the potential for trade-off between the elastic orthorhombic parameters are large. The first step to understanding such trade-off is analysing the scattering potential of each parameter, and specifically, its scattering radiation patterns. We investigate such radiation patterns for diffraction and for scattering from a horizontal reflector considering a background isotropic model. The radiation patterns show considerable potential for trade-off between the parameters and the potentially limited resolution in their recovery. The radiation patterns of C11, C22, and C33 are well separated so that we expect to recover these parameters with limited trade-offs. However, the resolution of their recovery represented by recovered range of model wavenumbers varies between these parameters. We can only invert for the short wavelength components (reflection) of C33 while we can mainly invert for the long wavelength components (transmission) of the elastic coefficients C11 and C22 if we have large enough offsets. The elastic coefficients C13, C23, and C12 suffer from strong trade-offs with C55, C44, and C66, respectively. The trade-offs between C13 and C55, as well as C23 and C44, can be partially mitigated if we acquire P-SV and SV-SV waves. However, to reduce the trade-offs between C12 and C66, we require credible SH-SH waves. The analytical radiation patterns of the elastic constants are supported by numerical gradients of these parameters.

  1. Determination of crystallographic orientation of lead-free piezoelectric (K,Na)NbO3 epitaxial thin films grown on SrTiO3 (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yu, Qi; Zhu, Fang-Yuan; Cheng, Li-Qian; Wang, Ke; Li, Jing-Feng

    2014-03-01

    Crystallographic structure of sol-gel-processed lead-free (K,Na)NbO3 (KNN) epitaxial films on [100]-cut SrTiO3 single-crystalline substrates was investigated for a deeper understanding of its piezoelectric response. Lattice parameter measurement by high-resolution X-ray diffraction and transmission electron microscopy revealed that the orthorhombic KNN films on SrTiO3 (100) surfaces are [010] oriented (b-axis-oriented) rather than commonly identified c-axis orientation. Based on the crystallographic orientation and corresponding ferroelectric domain structure investigated by piezoresponse force microscopy, the superior piezoelectric property along b-axis of epitaxial KNN films than other orientations can be explained.

  2. Epitaxial growth of CZT(S,Se) on silicon

    DOEpatents

    Bojarczuk, Nestor A.; Gershon, Talia S.; Guha, Supratik; Shin, Byungha; Zhu, Yu

    2016-03-15

    Techniques for epitaxial growth of CZT(S,Se) materials on Si are provided. In one aspect, a method of forming an epitaxial kesterite material is provided which includes the steps of: selecting a Si substrate based on a crystallographic orientation of the Si substrate; forming an epitaxial oxide interlayer on the Si substrate to enhance wettability of the epitaxial kesterite material on the Si substrate, wherein the epitaxial oxide interlayer is formed from a material that is lattice-matched to Si; and forming the epitaxial kesterite material on a side of the epitaxial oxide interlayer opposite the Si substrate, wherein the epitaxial kesterite material includes Cu, Zn, Sn, and at least one of S and Se, and wherein a crystallographic orientation of the epitaxial kesterite material is based on the crystallographic orientation of the Si substrate. A method of forming an epitaxial kesterite-based photovoltaic device and an epitaxial kesterite-based device are also provided.

  3. Subcell-matched epitaxy of normal long chain compounds on polyethylene. I. on the (110) plane

    NASA Astrophysics Data System (ADS)

    Okihara, Takumi; Kawaguchi, Akiyoshi; Ohara, Masayoshi; Katayama, Ken-ichi

    1990-11-01

    Polyethylene films with surfaces bounded by {110} planes were prepared. On the film surfaces, various normal long chain compounds, such as normal paraffins (n-C nG 2 n+2 ) with n of 23 through 50, alcohols (n-C nH 2 n+1 OH) and carboxylic aci ds ( -C n-1 H 2 n-1 COOH) were epitaxially crystallized from solution, melt, and vapor phase. The molecular chains are lying down parallel to the chain axis of polyethylene when crystallized at low temperatures, exhibiting different crystalline modifications. Irrespective of the nature of the compound, the epitaxial relationships were explained in terms of a common lattice coincidence between orthorhombic subcells of the compounds and the unit cell of polyethylene: (110) sc∥(110) PE, [001] sc∥[001] PE, where sc a nd PE denote the subcells of the compounds and the polyethylene, respectively. By contrast, when crystallized at high temperatures from the vapor phase and the melt, the molecules stood normal on or tilted to the substrate, keeping the relations of (001) basal plane of the unit cell of the compounds parallel to (110) PE and the [110] direction parallel to the [001] direction of polyethylene.

  4. Growth, structural, dielectric and magnetic properties of epitaxial multiferroic NaMnF3 thin films

    NASA Astrophysics Data System (ADS)

    Kc, Amit; Borisov, Pavel; Lederman, David

    Epitaxial NaMnF3 thin films were grown on SrTiO3 (100) single crystal substrates via molecular beam epitaxy (MBE). The orthorhombically distorted perovskite fluoride NaMnF3 (Pnma space group) has been predicted to have a polar instability at low temperatures due to MnF6 octahedral tilts. Structural, magnetic and dielectric properties were studied. Thin film structural quality as a function of the substrate temperature and film thickness was investigated using X-ray diffraction (XRD), in-situ reflection high-energy electron diffraction (RHEED), and atomic force microscopy (AFM). The best films were smooth and single phase grown with four different twin domains. Magnetic characterization was performed using superconducting quantum interference device (SQUID) magnetometry. In-plane magnetization measurements revealed antiferromagnetic ordering with a Neel temperature TN = 66 K. For the dielectric studies, NaMnF3 films were grown on top of SrRuO3 (100) buffer layers grown via pulsed laser deposition that were used as bottom electrodes. Dielectric spectroscopy was performed at different temperatures between 11K and room temperature in a frequency range 100 Hz to 100 kHz. Significant temperature dependent dielectric properties were observed. This work was supported by the National Science Foundation.

  5. Large Elasto-Optic Effect in Epitaxial PbTiO3 Films

    NASA Astrophysics Data System (ADS)

    Chen, Lan; Yang, Yurong; Gui, Zhigang; Sando, D.; Bibes, M.; Meng, X. K.; Bellaiche, L.

    2015-12-01

    First-principles calculations are performed to investigate the elasto-optic properties of four different structural phases in (001) epitaxial PbTiO3 films under tensile strain: a tetragonal (T ) phase and an orthorhombic (O ) phase, which are the ground states for small and large strain, respectively, and two low-symmetry, monoclinic phases of C m and P m symmetries that have low total energy in the intermediate strain range. It is found that the refractive indices of the T and O phases respond differently to epitaxial strain, evidenced by a change of sign of their effective elasto-optic coefficients, and as a result of presently discovered correlations between refractive index, axial ratio, and magnitude of the ferroelectric polarization. The difference in refractive indices between T and O and the existence of such correlations naturally lead to large elasto-optic coefficients in the C m and P m states in the intermediate strain range, because C m structurally bridges the T and O phases (via polarization rotation and a rapid change of its axial ratio) and P m adopts a similar axial ratio and polarization magnitude to C m . The present results therefore broaden the palette of functionalities of ferroelectric materials, and suggest new routes to generate systems with unprecedentedly large elasto-optic conversion.

  6. Colloidal nanocrystals of orthorhombic Cu2ZnGeS4: phase-controlled synthesis, formation mechanism and photocatalytic behavior.

    PubMed

    Fan, Cong-Min; Regulacio, Michelle D; Ye, Chen; Lim, Suo Hon; Lua, Shun Kuang; Xu, Qing-Hua; Dong, Zhili; Xu, An-Wu; Han, Ming-Yong

    2015-02-21

    The orthorhombic polymorph of Cu2ZnGeS4 (CZGS) is a metastable wurtzite-derived phase that can only be prepared in the bulk form by extensive heating at high temperatures (≥790 °C) when using the conventional solid-state reaction route. By employing a facile solution-based synthetic strategy, we were able to obtain phase-pure orthorhombic CZGS in nanocrystalline form at a much lower reaction temperature. Prior to this work, the colloidal synthesis of single-phase orthorhombic CZGS on the nanoscale has never been reported. We find that the use of an appropriate combination of coordinating solvents and precursors is crucial to the sole formation of this metastable phase in solution. A possible formation mechanism is proposed on the basis of our experimental results. Because CZGS consists of environmentally benign metal components, it is regarded as a promising alternative material to the technologically useful yet toxic cadmium-containing semiconductors. The orthorhombic CZGS nanocrystals display strong photon absorption in the visible spectrum and are photocatalytically active in dye degradation under visible-light illumination. PMID:25619770

  7. Phase-controlled synthesis of orthorhombic and tetragonal AgGaSe2 nanocrystals with high quality.

    PubMed

    Bai, Tianyu; Xing, Shanghua; Li, Chunguang; Shi, Zhan; Feng, Shouhua

    2016-06-30

    High-quality AgGaSe2 nanocrystals with a novel orthorhombic structure have been successfully prepared via a facile colloidal synthesis method, and the crystalline phase can be tuned by adjusting the concentration of oleylamine and the reactant mole ratio of selenium. PMID:27320080

  8. Pressure-induced amorphization in orthorhombic Ta{sub 2}O{sub 5}: An intrinsic character of crystal

    SciTech Connect

    Li, Quanjun; Zhang, Huafang; Cheng, Benyuan; Liu, Ran; Liu, Bo; Zou, Bo; Cui, Tian; Liu, Bingbing; Liu, Jing; Chen, Zhiqiang

    2014-05-21

    The phase transition of orthorhombic Ta{sub 2}O{sub 5} was investigated by in situ synchrotron X-ray diffraction and Raman spectroscopy. The orthorhombic phase transforms into an amorphous form completely at 24.7 GPa. A bulk modulus B{sub 0} = 139 (9) GPa for the orthorhombic Ta{sub 2}O{sub 5} is derived from the P-V data. We suggest that the pressure-induced amorphization (PIA) in Ta{sub 2}O{sub 5} can be attributed to the unstability of the a axis under high pressure leads to the connections of polyhedral breaking down and even triggers disorder of the whole crystal frame. These results demonstrate that the PIA is an intrinsic character of Ta{sub 2}O{sub 5} which depends on its orthorhombic crystal structure rather than nanosize effects. This study provides a new kind of bulk material for investigating PIA in metal oxides.

  9. Strain tuning of electronic structure in Bi4Ti3O12-LaCoO3 epitaxial thin films

    DOE PAGESBeta

    Choi, Woo Seok; Lee, Ho Nyung

    2015-05-08

    In this study, we investigated the crystal and electronic structures of ferroelectric Bi4Ti3O12 single-crystalline thin films site-specifically substituted with LaCoO3 (LCO). The epitaxial films were grown by pulsed laser epitaxy on NdGaO3 and SrTiO3 substrates to vary the degree of strain. With increasing the LCO substitution, we observed a systematic increase in the c-axis lattice constant of the Aurivillius phase related with the modification of pseudo-orthorhombic unit cells. These compositional and structural changes resulted in a systematic decrease in the band gap, i.e., the optical transition energy between the oxygen 2p and transition-metal 3d states, based on a spectroscopic ellipsometrymore » study. In particular, the Co 3d state seems to largely overlap with the Ti t2g state, decreasing the band gap. Interestingly, the applied tensile strain facilitates the band-gap narrowing, demonstrating that epitaxial strain is a useful tool to tune the electronic structure of ferroelectric transition-metal oxides.« less

  10. Epitaxial growth of europium monoxide on diamond

    SciTech Connect

    Melville, A.; Heeg, T.; Mairoser, T.; Schmehl, A.; Fischer, M.; Gsell, S.; Schreck, M.; Awschalom, D. D.; Holländer, B.; Schubert, J.; Schlom, D. G.

    2013-11-25

    We report the epitaxial integration of phase-pure EuO on both single-crystal diamond and on epitaxial diamond films grown on silicon utilizing reactive molecular-beam epitaxy. The epitaxial orientation relationship is (001) EuO ‖ (001) diamond and [110] EuO ‖[100] diamond. The EuO layer is nominally unstrained and ferromagnetic with a transition temperature of 68 ± 2 K and a saturation magnetization of 5.5 ± 0.1 Bohr magnetons per europium ion on the single-crystal diamond, and a transition temperature of 67 ± 2 K and a saturation magnetization of 2.1 ± 0.1 Bohr magnetons per europium ion on the epitaxial diamond film.

  11. Laser Induced Surface Chemical Epitaxy

    NASA Astrophysics Data System (ADS)

    Stinespring, Charter D.; Freedman, Andrew

    1990-02-01

    Studies of the thermal and photon-induced surface chemistry of dimethyl cadmium (DMCd) and dimethyl tellurium (DMTe) on GaAs(100) substrates under ultrahigh vacuum conditions have been performed for substrate temperatures in the range of 123 K to 473 K. Results indicate that extremely efficient conversion of admixtures of DMTe and DMCd to CdTe can be obtained using low power (5 - 10 mJ cm-2) 193 nm laser pulses at substrate temperatures of 123 K. Subsequent annealing at 473 K produces an epitaxial film.

  12. Complexity of High-Pressure Orthorhombic Iron Oxides, the Characterization of Fe5O6

    NASA Astrophysics Data System (ADS)

    Lavina, B.; Meng, Y.

    2014-12-01

    Occurring as accessory minerals in most rocks and forming large deposits of considerable economical importance, iron oxides have a major petrological importance. Their role as oxygen buffers, in differentiation processes and as magnetic phases summarize the critical importance of iron oxides in most petrological contexts, independently of their abundance.The discovery of a new compound in the Fe-O system, Fe4O5[1], reshaped our assumptions on the behavior of iron oxides in the Earth's deep interior, where phases of FeO and Fe3O4 were considered the sole plausible players. Further studies found that Fe4O5 is stable in a wide compositional range[2] and can accept a wide extent of isomorphic substitutions[3].We used laser heating synthesis in diamond anvil cell and microdiffraction mapping with high brilliance synchrotron x-ray[4] to explore the complexity of the Fe-O system at high pressure and temperature. We found coexistence of two to three oxides in most of the samples we investigated. By means of a careful exploration of diffraction effects in the reciprocal space, we singled-out the diffraction peaks of a few grains in multiphase diffraction patterns. These allowed a reliable characterization of yet a new iron oxide, Fe5O6. This compound, synthesized between 10 and 20 GPa, is also orthorhombic and can be described with the same building blocks of the other known orthorhombic iron oxides. A comparison of compressibility and lattice parameters of the latest iron oxides will be presented. [1] Lavina, B. et al. Discovery of the recoverable high-pressure iron oxide Fe4O5. Proc Natl Acad Sci U S A 108, 17281-5 (2011).[2] Woodland, A. B., Frost, D. J., Trots, D. M., Klimm, K. & Mezouar, M. In situ observation of the breakdown of magnetite (Fe3O4) to Fe4O5 and hematite at high pressures and temperatures. Am Mineral 97, 1808-1811 (2012).[3] Woodland, A. B. et al. Fe4O5 and its solid solutions in several simple systems. Cotrib Mineral Petrol 166, 1677-1686 (2013

  13. First-principles study of the electronic and magnetic structures of the tetragonal and orthorhombic phases of Ca3Mn2O7

    NASA Astrophysics Data System (ADS)

    Matar, S. F.; Eyert, V.; Villesuzanne, A.; Whangbo, M.-H.

    2007-08-01

    On the basis of density functional theory electronic band structure calculations using the augmented spherical wave method, the electronic and magnetic properties of the orthorhombic and tetragonal phases of Ca3Mn2O7 were investigated and the spin exchange interactions of the orthorhombic phase were analyzed. Our calculations show that the magnetic insulating states are more stable than the nonmagnetic metallic state for both polymorphs of Ca3Mn2O7 , the orthorhombic phase is more stable than the tetragonal phase, and the ground state of the orthorhombic phase is antiferromagnetic. The total energies calculated for the three spin states of the orthorhombic phase of Ca3Mn2O7 led to estimates of the spin exchange interactions Jnn=-3.36meV and Jnnn=-0.06meV . The accuracy of these estimates was tested by calculating the Curie-Weiss temperature within the mean-field approximation.

  14. Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide.

    PubMed

    Farokhipoor, S; Magén, C; Venkatesan, S; Íñiguez, J; Daumont, C J M; Rubi, D; Snoeck, E; Mostovoy, M; de Graaf, C; Müller, A; Döblinger, M; Scheu, C; Noheda, B

    2014-11-20

    Progress in nanotechnology requires new approaches to materials synthesis that make it possible to control material functionality down to the smallest scales. An objective of materials research is to achieve enhanced control over the physical properties of materials such as ferromagnets, ferroelectrics and superconductors. In this context, complex oxides and inorganic perovskites are attractive because slight adjustments of their atomic structures can produce large physical responses and result in multiple functionalities. In addition, these materials often contain ferroelastic domains. The intrinsic symmetry breaking that takes place at the domain walls can induce properties absent from the domains themselves, such as magnetic or ferroelectric order and other functionalities, as well as coupling between them. Moreover, large domain wall densities create intense strain gradients, which can also affect the material's properties. Here we show that, owing to large local stresses, domain walls can promote the formation of unusual phases. In this sense, the domain walls can function as nanoscale chemical reactors. We synthesize a two-dimensional ferromagnetic phase at the domain walls of the orthorhombic perovskite terbium manganite (TbMnO3), which was grown in thin layers under epitaxial strain on strontium titanate (SrTiO3) substrates. This phase is yet to be created by standard chemical routes. The density of the two-dimensional sheets can be tuned by changing the film thickness or the substrate lattice parameter (that is, the epitaxial strain), and the distance between sheets can be made as small as 5 nanometres in ultrathin films, such that the new phase at domain walls represents up to 25 per cent of the film volume. The general concept of using domain walls of epitaxial oxides to promote the formation of unusual phases may be applicable to other materials systems, thus giving access to new classes of nanoscale materials for applications in nanoelectronics and

  15. Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide

    NASA Astrophysics Data System (ADS)

    Farokhipoor, S.; Magén, C.; Venkatesan, S.; Íñiguez, J.; Daumont, C. J. M.; Rubi, D.; Snoeck, E.; Mostovoy, M.; de Graaf, C.; Müller, A.; Döblinger, M.; Scheu, C.; Noheda, B.

    2014-11-01

    Progress in nanotechnology requires new approaches to materials synthesis that make it possible to control material functionality down to the smallest scales. An objective of materials research is to achieve enhanced control over the physical properties of materials such as ferromagnets, ferroelectrics and superconductors. In this context, complex oxides and inorganic perovskites are attractive because slight adjustments of their atomic structures can produce large physical responses and result in multiple functionalities. In addition, these materials often contain ferroelastic domains. The intrinsic symmetry breaking that takes place at the domain walls can induce properties absent from the domains themselves, such as magnetic or ferroelectric order and other functionalities, as well as coupling between them. Moreover, large domain wall densities create intense strain gradients, which can also affect the material's properties. Here we show that, owing to large local stresses, domain walls can promote the formation of unusual phases. In this sense, the domain walls can function as nanoscale chemical reactors. We synthesize a two-dimensional ferromagnetic phase at the domain walls of the orthorhombic perovskite terbium manganite (TbMnO3), which was grown in thin layers under epitaxial strain on strontium titanate (SrTiO3) substrates. This phase is yet to be created by standard chemical routes. The density of the two-dimensional sheets can be tuned by changing the film thickness or the substrate lattice parameter (that is, the epitaxial strain), and the distance between sheets can be made as small as 5 nanometres in ultrathin films, such that the new phase at domain walls represents up to 25 per cent of the film volume. The general concept of using domain walls of epitaxial oxides to promote the formation of unusual phases may be applicable to other materials systems, thus giving access to new classes of nanoscale materials for applications in nanoelectronics and

  16. Ferroelectric BaTiO3 phase of orthorhombic crystal structure contained in nanoparticles

    NASA Astrophysics Data System (ADS)

    Ram, S.; Jana, A.; Kundu, T. K.

    2007-09-01

    Ferroelectric BaTiO3 phase of a Pnma orthorhombic crystal structure is synthesized from a chemical method using a polymer complex of Ba2+ and Ti4+ with polyvinyl alcohol (PVA). After burning out the polymer at temperature as high as 550 °C in air for 2 h results in an average 15 nm crystallite BaTiO3 size, with lattice parameters a =0.6435 nm, b =0.5306 nm, c =0.8854 nm, and density 5.124 g/cm3. The relationship between dielectric constant ɛr and temperature showed a single Curie transition temperature TC=131 °C, with as large a ɛr value as 263 at TC. A low value of dissipation factor tan δ, as small as 0.033 at room temperature (frequency f =1 kHz), with good insulating properties made the sample promising for use in uncooled infrared detectors and thermal imaging applications. The ɛr value is nearly independent of f value up to 100 kHz. A spectrum of sharp EPR signals of g values 2.21 to 1.88 characterizes three major kinds of VBa-, VTi3-, and Ti3+-Vo2+ paramagnetic species present in the imperfections.

  17. High-Pressure Orthorhombic Ferromagnesite as a Potential Deep-Mantle Carbon Carrier

    PubMed Central

    Liu, Jin; Lin, Jung-Fu; Prakapenka, Vitali B.

    2015-01-01

    Knowledge of the physical and chemical properties of candidate deep-carbon carriers such as ferromagnesite [(Mg,Fe)CO3] at high pressure and temperature of the deep mantle is necessary for our understanding of deep-carbon storage as well as the global carbon cycle of the planet. Previous studies have reported very different scenarios for the (Mg,Fe)CO3 system at deep-mantle conditions including the chemical dissociation to (Mg,Fe)O+CO2, the occurrence of the tetrahedrally-coordinated carbonates based on CO4 structural units, and various high-pressure phase transitions. Here we have studied the phase stability and compressional behavior of (Mg,Fe)CO3 carbonates up to relevant lower-mantle conditions of approximately 120 GPa and 2400 K. Our experimental results show that the rhombohedral siderite (Phase I) transforms to an orthorhombic phase (Phase II with Pmm2 space group) at approximately 50 GPa and 1400 K. The structural transition is likely driven by the spin transition of iron accompanied by a volume collapse in the Fe-rich (Mg,Fe)CO3 phases; the spin transition stabilizes the high-pressure phase II at much lower pressure conditions than its Mg-rich counterpart. It is conceivable that the low-spin ferromagnesite phase II becomes a major deep-carbon carrier at the deeper parts of the lower mantle below 1900 km in depth. PMID:25560542

  18. Charge density waves in individual nanoribbons of orthorhombic-TaS₃.

    PubMed

    Farley, Katie E; Shi, Zhenzhong; Sambandamurthy, G; Banerjee, Sarbajit

    2015-07-28

    Orthorhombic-TaS3 is a quasi-1D material that undergoes a Peierls' transition to become a charge density wave conductor at low temperatures. Electrical transport measurements of individual single-crystalline TaS3 nanoribbons prepared by a novel bottom-up method from elemental precursors indicate a depression of the Peierls' ordering temperature to 205 K, broadening of the electric-field-induced depinning of the charge density wave below the Peierls' transition temperature, and a greatly increased threshold voltage for nucleation of charge density wave dislocations posited to be a result of surface confinement and finite size effects. Single-nanoribbon measurements of broad-band noise indicate discrete phase slip events near the depinning threshold. Three distinct regimes are identified with the normalized noise spectrum showing a distinctive maxima near the threshold voltage for depinning of the charge density wave, corresponding to sampling of different metastable states that balance ordered and sliding charge density waves. PMID:26104129

  19. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier

    DOE PAGESBeta

    Liu, Jin; Lin, Jung -Fu; Prakapenka, Vitali B.

    2015-01-06

    In this study, knowledge of the physical and chemical properties of candidate deep-carbon carriers such as ferromagnesite [(Mg,Fe)CO3] at high pressure and temperature of the deep mantle is necessary for our understanding of deep-carbon storage as well as the global carbon cycle of the planet. Previous studies have reported very different scenarios for the (Mg,Fe)CO3 system at deep-mantle conditions including the chemical dissociation to (Mg,Fe)O+CO2, the occurrence of the tetrahedrally-coordinated carbonates based on CO4 structural units, and various high-pressure phase transitions. Here we have studied the phase stability and compressional behavior of (Mg,Fe)CO3 carbonates up to relevant lower-mantle conditions ofmore » approximately 120 GPa and 2400 K. Our experimental results show that the rhombohedral siderite (Phase I) transforms to an orthorhombic phase (Phase II with Pmm2 space group) at approximately 50 GPa and 1400 K. The structural transition is likely driven by the spin transition of iron accompanied by a volume collapse in the Fe-rich (Mg,Fe)CO3 phases; the spin transition stabilizes the high-pressure phase II at much lower pressure conditions than its Mg-rich counterpart. It is conceivable that the low-spin ferromagnesite phase II becomes a major deep-carbon carrier at the deeper parts of the lower mantle below 1900 km in depth.« less

  20. Electronic structure and thermoelectric properties of orthorhombic SrLiAs

    SciTech Connect

    Guo, Li Bin; Wang, Yuan Xu Yan, Yu Li; Yang, Gui; Yang, Jue Ming; Feng, Zhen Zhen

    2014-07-21

    The electronic structure and the transport properties of orthorhombic SrLiAs were investigated using first-principles calculations and the semiclassical Boltzmann theory. It is found that the electrical conductivity along the y-direction is higher than those along other two directions, which is most likely originated from the covalent ladder-like structure formed by the Li and As atoms. Moreover, the transport properties of n-type SrLiAs are better than those of p-type one, due to the large band dispersion along the y-direction near the Fermi level. Further, the value of power factor with respect to relaxation time achieves 9.2 × 10{sup 11} W K{sup −2} m{sup −1} s{sup −1} for n-type SrLiAs along the y-direction at 1000 K with an optimal carrier concentration of 6.5 × 10{sup 20 }cm{sup −3}. The obtained minimum lattice thermal conductivity is comparable to those of other Zintl phase compounds.

  1. Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide

    NASA Astrophysics Data System (ADS)

    Brivio, Federico; Frost, Jarvist M.; Skelton, Jonathan M.; Jackson, Adam J.; Weber, Oliver J.; Weller, Mark T.; Goñi, Alejandro R.; Leguy, Aurélien M. A.; Barnes, Piers R. F.; Walsh, Aron

    2015-10-01

    The hybrid halide perovskite CH3NH3PbI3 exhibits a complex structural behavior, with successive transitions between orthorhombic, tetragonal, and cubic polymorphs around 165 and 327 K. Herein we report first-principles lattice dynamics (phonon spectrum) for each phase of CH3NH3PbI3 . The equilibrium structures compare well to solutions of temperature-dependent powder neutron diffraction. By following the normal modes, we calculate infrared and Raman intensities of the vibrations, and compare them to the measurement of a single crystal where the Raman laser is controlled to avoid degradation of the sample. Despite a clear separation in energy between low-frequency modes associated with the inorganic (PbI3-)n network and high-frequency modes of the organic CH3NH3+ cation, significant coupling between them is found, which emphasizes the interplay between molecular orientation and the corner-sharing octahedral networks in the structural transformations. Soft modes are found at the boundary of the Brillouin zone of the cubic phase, consistent with displacive instabilities and anharmonicity involving tilting of the PbI6 octahedra around room temperature.

  2. Search for half-metallic ferromagnetism in orthorhombic Ce(Fe/Cr)O3 perovskites

    NASA Astrophysics Data System (ADS)

    Abbad, A.; Benstaali, W.; Bentounes, H. A.; Bentata, S.; Benmalem, Y.

    2016-02-01

    The full-potential linearized augmented plane wave (FPLAPW) method based on the density functional theory within the GGA and GGA+U, is used to investigate the structural, magnetic and half-metallic properties of the Pnma orthorhombic Cerium orthoferrite (CeFeO3) and Cerium orthochromite (CeCrO3). The calculated densities of states presented in this study identify the metallic behavior CeFeO3 when we use the GGA scheme, whereas when we use the GGA+U, we see that its exhibits half-metallic character with an integer magnetic moment of 24 μB per formula unit at its equilibrium volume. CeCrO3 is half-metallic for both approaches and of n type conductivity for GGA but p type conductivity for GGA+U. It is found that the majority of the magnetic moments of both compounds originate from the cerium sites since the f states of Ce are spin polarized. From the band structure and the densities of states analysis, we find that CeCrO3 and CeFeO3 are strong candidates for spintronic applications.

  3. Defect processes in orthorhombic LnBaCo2O5.5 double perovskites.

    PubMed

    Seymour, I D; Chroneos, A; Kilner, J A; Grimes, R W

    2011-09-01

    Static atomistic simulations based on the Born model were used to investigate intrinsic defect processes in orthorhombic LnBaCo(2)O(5.5) (Ln = Y, La, Pr, Nd, Sm, Gd, Dy, Ho, Er, and Yb) double perovskites. It was found that Ln/Ba antisite disorder is the lowest energy defect reaction, with the large Ln cations giving rise to smaller antisite energies. On the oxygen sublattice the oxygen Frenkel disorder dominates and also decreases in energy with increasing Ln cation size. The lowest energy oxygen vacancy and interstitial positions are in the LnO(0.5) and CoO(2) layers respectively. Interestingly, the calculations indicate that oxygen vacancies cluster with Ba antisite defects (occupying Ln sites). This suggests that the transport of oxygen vacancies will be influenced not only by the oxygen Frenkel energy but also the antisite energy. We propose that PrBaCo(2)O(5.5) most efficiently balances these two competing effects as it has an oxygen Frenkel energy of just 0.24 eV per defect combined with a high antisite energy (0.94 eV), which ensures that the A cation sublattice will remain more ordered. PMID:21769361

  4. The compressibility of cubic white, orthorhombic black and rhombohedral black phosphorus

    SciTech Connect

    Clark, S; Zaug, J M

    2009-06-05

    The effect of pressure on the crystal structure of white phosphorus has been studied up to 22.4 GPa. The {alpha} phase was found to transform into the {alpha}' phase at 0.87 {+-} 0.04 GPa with a volume change of 0.1 {+-} 0.3 cc/mol. A fit of a second order Birch-Murghanan equation to the data gave Vo = 16.94 {+-} 0.08 cc/mol and K{sub o} = 6.7 {+-} 0.5 GPa for the {alpha} phase and Vo = 16.4 {+-} 0.1 cc/mol and K{sub o} = 9.1 {+-} 0.3 GPa for the {alpha}' phase. The {alpha}' phase was found to transform to the A17 phase of black phosphorus at 2.68 {+-} 0.34 GPa and then with increasing pressure to the A7 and then simple cubic phase of black phosphorus. A fit of a second order Birch-Murnaghan equation to our orthorhombic and rhombohedral black phosphorus data gave Vo = 11.43 {+-} 0.02 cc/mol and K{sub o} = 34.7 {+-} 0.5 GPa for the A17 phase and Vo = 9.62 {+-} 0.01 cc/mol and K{sub o} = 65.0 {+-} 0.6 GPa for the A7 phase.

  5. Thermal evolution of the crystal structure of the orthorhombic perovskite LaFeO{sub 3}

    SciTech Connect

    Dixon, Charlotte A.L.; Kavanagh, Christopher M.; Knight, Kevin S.; Kockelmann, Winfried; Morrison, Finlay D.; Lightfoot, Philip

    2015-10-15

    The thermal evolution of the crystal structure of the prototypical orthorhombic perovskite LaFeO{sub 3} has been studied in detail by powder neutron diffraction in the temperature range 25

  6. Ion implanted epitaxially grown ZnSe

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The epitaxial growth of ZnSe on (100) Ge using the close-spaced transport process is described. Substrate temperature of 575 C and source temperatures of 675 C yield 10 micron, single crystal layers in 10 hours. The Ge substrates provides a nonreplenishable chemical transport agent and the epitaxial layer thickness is limited to approximately 10 microns. Grown epitaxial layers show excellent photoluminescence structure at 77 K. Grown layers exhibit high resistivity, and annealing in Zn vapor at 575 C reduces the resistivity to 10-100 ohms-cm. Zinc vapor annealing quenches the visible photoluminescence.

  7. Epitaxial silicon devices for dosimetry applications

    SciTech Connect

    Bruzzi, M.; Bucciolini, M.; Casati, M.; Menichelli, D.; Talamonti, C.; Piemonte, C.; Svensson, B. G.

    2007-04-23

    A straightforward improvement of the efficiency and long term stability of silicon dosimeters has been obtained with a n{sup +}-p junction surrounded by a guard-ring structure implanted on an epitaxial p-type Si layer grown on a Czochralski substrate. The sensitivity of devices made on 50-{mu}m-thick epitaxial Si degrades by only 7% after an irradiation with 6 MeV electrons up to 1.5 kGy, and shows no significant further decay up to 10 kGy. These results prove the enhanced radiation tolerance and stability of epitaxial diodes as compared to present state-of-the-art Si devices.

  8. Electroless epitaxial etching for semiconductor applications

    DOEpatents

    McCarthy, Anthony M.

    2002-01-01

    A method for fabricating thin-film single-crystal silicon on insulator substrates using electroless etching for achieving efficient etch stopping on epitaxial silicon substrates. Microelectric circuits and devices are prepared on epitaxial silicon wafers in a standard fabrication facility. The wafers are bonded to a holding substrate. The silicon bulk is removed using electroless etching leaving the circuit contained within the epitaxial layer remaining on the holding substrate. A photolithographic operation is then performed to define streets and wire bond pad areas for electrical access to the circuit.

  9. High throughput vacuum chemical epitaxy

    NASA Astrophysics Data System (ADS)

    Fraas, L. M.; Malocsay, E.; Sundaram, V.; Baird, R. W.; Mao, B. Y.; Lee, G. Y.

    1990-10-01

    We have developed a vacuum chemical epitaxy (VCE) reactor which avoids the use of arsine and allows multiple wafers to be coated at one time. Our vacuum chemical epitaxy reactor closely resembles a molecular beam epitaxy system in that wafers are loaded into a stainless steel vacuum chamber through a load chamber. Also as in MBE, arsenic vapors are supplied as reactant by heating solid arsenic sources thereby avoiding the use of arsine. However, in our VCE reactor, a large number of wafers are coated at one time in a vacuum system by the substitution of Group III alkyl sources for the elemental metal sources traditionally used in MBE. Higher wafer throughput results because in VCE, the metal-alkyl sources for Ga, Al, and dopants can be mixed at room temperature and distributed uniformly though a large area injector to multiple substrates as a homogeneous array of mixed element molecular beams. The VCE reactor that we have built and that we shall describe here uniformly deposits films on 7 inch diameter substrate platters. Each platter contains seven two inch or three 3 inch diameter wafers. The load chamber contains up to nine platters. The vacuum chamber is equipped with two VCE growth zones and two arsenic ovens, one per growth zone. Finally, each oven has a 1 kg arsenic capacity. As of this writing, mirror smooth GaAs films have been grown at up to 4 μm/h growth rate on multiple wafers with good thickness uniformity. The background doping is p-type with a typical hole concentration and mobility of 1 × 10 16/cm 3 and 350 cm 2/V·s. This background doping level is low enough for the fabrication of MESFETs, solar cells, and photocathodes as well as other types of devices. We have fabricated MESFET devices using VCE-grown epi wafers with peak extrinsic transconductance as high as 210 mS/mm for a threshold voltage of - 3 V and a 0.6 μm gate length. We have also recently grown AlGaAs epi layers with up to 80% aluminum using TEAl as the aluminum alkyl source. The Al

  10. Effect of uniaxial strain on the structural, electronic and elastic properties of orthorhombic BiMnO3

    NASA Astrophysics Data System (ADS)

    Yang, Pei; Haibin, Wu

    2015-03-01

    We study the elastic constants and electronic properties of orthorhombic BiMnO3 under uniaxial strain along the c-axis using the first-principles method. It is found that, beyond the range -0.025 < ɛ < 0.055, the predicted stiffness constants cij cannot demand the Born stability criteria and the compliance constant s44 shows abrupt changes, which accompany phase transition. In addition, the results for magnetism moments and polycrystalline properties are also reported. Additionally, under compressive strain, a band gap transition from the indirect to the direct occurs within -0.019 < ɛ < -0.018. Furthermore, the response of the band gap of orthorhombic BiMnO3 to uniaxial strain is studied.

  11. Influence of downsizing of zeolite crystals on the orthorhombic ↔ monoclinic phase transition in pure silica MFI-type

    NASA Astrophysics Data System (ADS)

    Kabalan, Ihab; Michelin, Laure; Rigolet, Séverinne; Marichal, Claire; Daou, T. Jean; Lebeau, Bénédicte; Paillaud, Jean-Louis

    2016-08-01

    The impact of crystal size on the transition orthorhombic ↔ monoclinic phase in MFI-type purely silica zeolites is investigated between 293 and 473 K using 29Si MAS NMR and powder X-ray diffraction. Three silicalite-1 zeolites are synthesized: a material constituted of micron-sized crystals, pseudospherical nanometer-sized crystals and hierarchical porous zeolites with a mesoporous network created by the use of a gemini-type diquaternary ammonium surfactant giving nanosheet zeolites. Our results show for the first time that the orthorhombic ↔ monoclinic phase transition already known for micron-sized particles also occurs in nanometer-sized zeolite crystals whereas our data suggest that the extreme downsizing of the zeolite crystal to one unit cell in thickness leads to an extinction of the phase transition.

  12. The effect of aluminium on the formation of orthorhombic plates in the Nb-Ti-Al ternary system

    SciTech Connect

    Hoelzer, D.T.; Ebrahimi, F.

    1997-12-31

    Transmission electron microscopy (TEM) was used to study the phase transformation in an alloy containing 33Ti-27Nb-40Al (at.%). The results showed that the BCC {beta} phase was present at high temperatures, which ordered to the B 2 phase, and finally was martensitically transformed to a plate microstructure during quenching. The plates possessed an orthorhombic crystal structure and a substructure that consisted of both coarse and fine anti-phase domain boundaries (APDBs). These APDBs were consistent with three sublattices that were derived from the inherited site occupancy of the B2 matrix and a subsequent disorder to order transition. The CBED analysis of the plates showed that the site occupancy of this orthorhombic phase was consistent with the Al{sub 2}NbTi stoichiometry with Al occupying the 8g, Nb the 4cl, and Ti the 4c2 Wyckoff sites.

  13. Ultrafast structural dynamics of the orthorhombic distortion in the Fe-pnictide parent compound BaFe2As2

    PubMed Central

    Rettig, L.; Mariager, S. O.; Ferrer, A.; Grübel, S.; Johnson, J. A.; Rittmann, J.; Wolf, T.; Johnson, S. L.; Ingold, G.; Beaud, P.; Staub, U.

    2016-01-01

    Using femtosecond time-resolved hard x-ray diffraction, we investigate the structural dynamics of the orthorhombic distortion in the Fe-pnictide parent compound BaFe2As2. The orthorhombic distortion analyzed by the transient splitting of the (1 0 3) Bragg reflection is suppressed on an initial timescale of 35 ps, which is much slower than the suppression of magnetic and nematic order. This observation demonstrates a transient state with persistent structural distortion and suppressed magnetic/nematic order which are strongly linked in thermal equilibrium. We suggest a way of quantifying the coupling between structural and nematic degrees of freedom based on the dynamics of the respective order parameters. PMID:27158636

  14. Theoretical study on stability, mechanical properties and thermodynamic parameters of the orthorhombic-A2N2O (A=C, Si and Ge)

    NASA Astrophysics Data System (ADS)

    Ding, Yingchun

    2012-06-01

    The structural stability, mechanical properties and thermodynamic parameters such as Debye temperature, minimum thermal conductivities of orthorhombic-A2N2O (A=C, Si and Ge) are calculated by first principles calculations based on density functional theory. The calculated lattice parameters, elastic constants of Si2N2O and Ge2N2O using PBEsol function are consisted with the experimental data and other calculated values. The full set elastic constants of the orthorhombic-A2N2O (A=C, Si and Ge) are calculated by stress-strain method. The mechanical moduli (bulk modulus, shear modulus and Young's modulus) are evaluated by the Voigt-Reuss-Hill approach. The orthorhombic-C2N2O exhibits larger mechanical moduli than the other two structures. The hardness of orthorhombic-A2N2O (A=C, Si and Ge) is evaluated according to the intrinsic hardness calculation theory of covalent crystal relying on Mulliken overlap population. The results indicate that the orthorhombic-C2N2O is a super hard material. Furthermore, the mechanical anisotropy, Debye temperature and minimum thermal conductivity of the orthorhombic-A2N2O (A=C, Si and Ge) have been estimated by empirical methods. The orthorhombic-Ge2N2O shows the lowest thermal conductivity, which may have useful applications as gas turbine engines and diesel engines.

  15. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier

    SciTech Connect

    Liu, Jin; Lin, Jung -Fu; Prakapenka, Vitali B.

    2015-01-06

    In this study, knowledge of the physical and chemical properties of candidate deep-carbon carriers such as ferromagnesite [(Mg,Fe)CO3] at high pressure and temperature of the deep mantle is necessary for our understanding of deep-carbon storage as well as the global carbon cycle of the planet. Previous studies have reported very different scenarios for the (Mg,Fe)CO3 system at deep-mantle conditions including the chemical dissociation to (Mg,Fe)O+CO2, the occurrence of the tetrahedrally-coordinated carbonates based on CO4 structural units, and various high-pressure phase transitions. Here we have studied the phase stability and compressional behavior of (Mg,Fe)CO3 carbonates up to relevant lower-mantle conditions of approximately 120 GPa and 2400 K. Our experimental results show that the rhombohedral siderite (Phase I) transforms to an orthorhombic phase (Phase II with Pmm2 space group) at approximately 50 GPa and 1400 K. The structural transition is likely driven by the spin transition of iron accompanied by a volume collapse in the Fe-rich (Mg,Fe)CO3 phases; the spin transition stabilizes the high-pressure phase II at much lower pressure conditions than its Mg-rich counterpart. It is conceivable that the low-spin ferromagnesite phase II becomes a major deep-carbon carrier at the deeper parts of the lower mantle below 1900 km in depth.

  16. Structural and Ferromagnetic Properties of an Orthorhombic Phase of MnBi Stabilized with Rh Additions

    NASA Astrophysics Data System (ADS)

    Taufour, Valentin; Thimmaiah, Srinivasa; March, Stephen; Saunders, Scott; Sun, Kewei; Lamichhane, Tej Nath; Kramer, Matthew J.; Bud'ko, Sergey L.; Canfield, Paul C.

    2015-07-01

    The article addresses the possibility of alloy elements in MnBi which may modify the thermodynamic stability of the NiAs-type structure without significantly degrading the magnetic properties. The addition of small amounts of Rh and Mn provides an improvement in the thermal stability with some degradation of the magnetic properties. The small amounts of Rh and Mn additions in MnBi stabilize an orthorhombic phase whose structural and magnetic properties are closely related to the ones of the previously reported high-temperature phase of MnBi (HT MnBi). To date, the properties of the HT MnBi, which is stable between 613 and 719 K, have not been studied in detail because of its transformation to the stable low-temperature MnBi (LT MnBi), making measurements near and below its Curie temperature difficult. The Rh-stabilized MnBi with chemical formula Mn1.0625 -xRhx Bi [x =0.02 (1 ) ] adopts a new superstructure of the NiAs /Ni2In structure family. It is ferromagnetic below a Curie temperature of 416 K. The critical exponents of the ferromagnetic transition are not of the mean-field type but are closer to those associated with the Ising model in three dimensions. The magnetic anisotropy is uniaxial; the anisotropy energy is rather large, and it does not increase when raising the temperature, contrary to what happens in LT MnBi. The saturation magnetization is approximately 3 μB/f .u . at low temperatures. While this exact composition may not be application ready, it does show that alloying is a viable route to modifying the stability of this class of rare-earth-free magnet alloys.

  17. Structural and ferromagnetic properties of an orthorhombic phase of MnBi stabilized with Rh additions

    DOE PAGESBeta

    Taufour, Valentin; Thimmaiah, Srinivasa; March, Stephen; Saunders, Scott; Sun, Kewei; Lamichhane, Tej Nath; Kramer, Matthew J.; Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-28

    The article addresses the possibility of alloy elements in MnBi which may modify the thermodynamic stability of the NiAs-type structure without significantly degrading the magnetic properties. The addition of small amounts of Rh and Mn provides an improvement in the thermal stability with some degradation of the magnetic properties. The small amounts of Rh and Mn additions in MnBi stabilize an orthorhombic phase whose structural and magnetic properties are closely related to the ones of the previously reported high-temperature phase of MnBi (HT MnBi). The properties of the HT MnBi, which is stable between 613 and 719 K, have notmore » been studied in detail because of its transformation to the stable low-temperature MnBi (LT MnBi), making measurements near and below its Curie temperature difficult. The Rh-stabilized MnBi with chemical formula Mn1.0625–xRhxBi [x=0.02(1)] adopts a new superstructure of the NiAs/Ni2In structure family. It is ferromagnetic below a Curie temperature of 416 K. The critical exponents of the ferromagnetic transition are not of the mean-field type but are closer to those associated with the Ising model in three dimensions. The magnetic anisotropy is uniaxial; the anisotropy energy is rather large, and it does not increase when raising the temperature, contrary to what happens in LT MnBi. The saturation magnetization is approximately 3μB/f.u. at low temperatures. Thus, while this exact composition may not be application ready, it does show that alloying is a viable route to modifying the stability of this class of rare-earth-free magnet alloys.« less

  18. Structure and electronic properties of the orthorhombic MoRuP superconductor prepared at high pressure

    NASA Astrophysics Data System (ADS)

    Wong-Ng, W.; Ching, W. Y.; Xu, Yong-Nian; Kaduk, J. A.; Shirotani, I.; Swartzendruber, L.

    2003-04-01

    The orthorhombic superconductor MoRuP (o-MoRuP) was prepared under high pressure, and its structure was refined using the x-ray Rietveld technique. The grayish-black sample of o-MoRuP is a superconductor with Tc=15.5 K and having space group Pnma and lattice parameters a=6.03503(16) Å, b=3.85311(8) Å, and c=6.94355(17) Å, V=161.463(7) Å.3 The structure of o-MoRuP is characterized by layers (parallel to the ac plane) of Mo, Ru, and P atoms. Based on the accurately determined crystal structure, the band structure and the density of states (DOS) of o-MoRuP were calculated by a first-principles density-functional method and compared with those of the isostructural superconductor o-ZrRuP (Tc=4 K). It is shown that the high Tc in o-MoRuP is directly related to the higher level of the DOS at the Fermi level (EF) and is traced to be predominantly from the Mo 4d orbitals. The calculated values of the DOS at EF are 0.46 and 0.33 states/eV atom for the Mo and Zr analogs, respectively. The electronic bonding in these two crystals is analyzed in terms of the Mulliken effective charge and the bond order values. The bonding in o-MoRuP differs from that in o-ZrRuP in that there is a short (2.44 Å) Mo-P bond. The x-ray reference pattern of o-MoRuP prepared using a Rietveld decomposition technique has been submitted to the International Center for Diffraction Data to be included in the Powder Diffraction File.

  19. Structural and ferromagnetic properties of an orthorhombic phase of MnBi stabilized with Rh additions

    SciTech Connect

    Taufour, Valentin; Thimmaiah, Srinivasa; March, Stephen; Saunders, Scott; Sun, Kewei; Lamichhane, Tej Nath; Kramer, Matthew J.; Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-28

    The article addresses the possibility of alloy elements in MnBi which may modify the thermodynamic stability of the NiAs-type structure without significantly degrading the magnetic properties. The addition of small amounts of Rh and Mn provides an improvement in the thermal stability with some degradation of the magnetic properties. The small amounts of Rh and Mn additions in MnBi stabilize an orthorhombic phase whose structural and magnetic properties are closely related to the ones of the previously reported high-temperature phase of MnBi (HT MnBi). The properties of the HT MnBi, which is stable between 613 and 719 K, have not been studied in detail because of its transformation to the stable low-temperature MnBi (LT MnBi), making measurements near and below its Curie temperature difficult. The Rh-stabilized MnBi with chemical formula Mn1.0625–xRhxBi [x=0.02(1)] adopts a new superstructure of the NiAs/Ni2In structure family. It is ferromagnetic below a Curie temperature of 416 K. The critical exponents of the ferromagnetic transition are not of the mean-field type but are closer to those associated with the Ising model in three dimensions. The magnetic anisotropy is uniaxial; the anisotropy energy is rather large, and it does not increase when raising the temperature, contrary to what happens in LT MnBi. The saturation magnetization is approximately 3μB/f.u. at low temperatures. Thus, while this exact composition may not be application ready, it does show that alloying is a viable route to modifying the stability of this class of rare-earth-free magnet alloys.

  20. RBS study of epitaxially grown thin films of the double perovskite La 2NiMnO 6

    NASA Astrophysics Data System (ADS)

    Budak, S.; Muntele, C.; Muntele, I.; Guo, H.; Gupta, A.; Ila, D.

    2007-08-01

    Epitaxial thin films of La2NiMnO6, a ferromagnetic semiconductor, have been fabricated on different substrates by pulsed laser deposition (PLD) [H. Guo, J. Burgess, S. Street, A. Gupta, T.G. Calvarese, M.A. Subramanian, Appl. Phys. Lett. 89 (2006) 0225509]. X-ray diffraction and Raman scattering observations show that the films are single crystalline and have an orthorhombic structure. Rutherford backscattering spectrometry (RBS) measurements were done on four different samples using 2.1 MeV He+ ions. We used RUMP simulation on the RBS data to extract information about the thickness and stoichiometry of the layers. In this paper, we are discussing the differences of the various films investigated.

  1. One-step hydrothermal synthesis, characterization and magnetic properties of orthorhombic PrCrO{sub 3} cubic particles

    SciTech Connect

    Zhang, Youjin Yao, Chengpeng; Fan, Yun; Zhou, Maozhong

    2014-11-15

    Highlights: • Orthorhombic PrCrO{sub 3} cubic particles were prepared by a simple and facile one-step hydrothermal method. • The possible formation mechanism of PrCrO{sub 3} cubic particles was proposed. • The as-synthesized PrCrO{sub 3} exhibited behaviors of magnetic transition and negative magnetization. - Abstract: Orthorhombic PrCrO{sub 3} cubic particles were synthesized by a simple and facile one-step hydrothermal method of processing temperature 280 °C for 7 days. The products prepared in this paper have been characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FESEM). The magnetic properties of the final sample are also studied. The XRD pattern shows the pure orthorhombic phase for PrCrO{sub 3} particles, the XPS and FTIR results further demonstrate the purity and composition of the product. FESEM images show cubic morphology for the PrCrO{sub 3} particles. The possible growth mechanism for PrCrO{sub 3} cubic particles is proposed. Through the investigation of magnetic properties, it can be seen that the orthorhombic PrCrO{sub 3} cubic particles exhibit behaviors of magnetic transition and negative magnetization. The Néel temperature is about 232 K and the magnetic hysteresis loop under 4 K shows that the coercivity (H{sub C}) and remanence (M{sub r}) is about 1728 Oe and 4.88 emu/g, respectively.

  2. Amorphous/epitaxial superlattice for thermoelectric application

    NASA Astrophysics Data System (ADS)

    Ishida, Akihiro; Thao, Hoang Thi Xuan; Shibata, Mamoru; Nakashima, Seisuke; Tatsuoka, Hirokazu; Yamamoto, Hidenari; Kinoshita, Yohei; Ishikiriyama, Mamoru; Nakamura, Yoshiaki

    2016-08-01

    An amorphous/epitaxial superlattice system is proposed for application to thermoelectric devices, and the superlattice based on a PbGeTeS system was prepared by the alternate deposition of PbS and GeTe using a hot wall epitaxy technique. The structure was analyzed by high-resolution transmission electron microscopy (HRTEM) and X-ray analysis, and it was found that the superlattice consists of an epitaxial PbTe-based layer and a GeS-based amorphous layer by the reconstruction of the constituents. A reduction in thermal conductivity due to the amorphous/epitaxial system was confirmed by a 2ω method. Electrical and thermoelectric properties were measured for the samples.

  3. Epitaxial growth of silicon for layer transfer

    SciTech Connect

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  4. Orthorhombic 11C Pyrrhotite from Michałkowa, Góry Sowie Block, The Sudetes, Poland - Preliminary Report

    NASA Astrophysics Data System (ADS)

    Rybicki, Maciej; Krzykawski, Tomasz

    2014-09-01

    This study provides the preliminary report about first occurrence of orthorhombic 11C pyrrhotite (Fe(i-x)S) from the Sudetes, Poland. Samples of pyrrhotite-containing two-pyroxene gabbro were found in a classic pegmatite locality in Michałkowa near Walim in the Góry Sowie Block. Based on microscopic methods, pyrrhotite is associated with pentlandite, chalcopyrite, chromite, ilmenite, gersdorffite, magnetite, biotite, magnesiohornblende, clinochlore, lizardite and talc. X-Ray diffraction (XRD) indicate that pyrrhotite has orthorhombic 11C structure and it is characterized by: a = 3.433(9) Å, b = 5.99(2) Å, c = 5.7432(5) Å, ß = 90° and d 102 = 2.06906 Å. Mössbauer studies confirmed the XRD data. Pyrrhotite has three sextets with hyperfine parameter values 30.8 T for sextet A, 27.9 T and 25.8 T for sextets B and C respectively, indicating orthorhombic structure, the composition near Fe10S11 and x = 0.0909.

  5. Orthorhombic 11C pyrrhotite from Michałkowa, Góry Sowie Block, The Sudetes, Poland - preliminary report

    NASA Astrophysics Data System (ADS)

    Rybicki, Maciej; Krzykawski, Tomasz

    2014-09-01

    This study provides the preliminary report about first occurrence of orthorhombic 11C pyrrhotite (Fe(1-x)S) from the Sudetes, Poland. Samples of pyrrhotite-containing two-pyroxene gabbro were found in a classic pegmatite locality in Michałkowa near Walim in the Góry Sowie Block. Based on microscopic methods, pyrrhotite is associated with pentlandite, chalcopyrite, chromite, ilmenite, gersdorffite, magnetite, biotite, magnesiohornblende, clinochlore, lizardite and talc. X-Ray diffraction (XRD) indicate that pyrrhotite has orthorhombic 11C structure and it is characterized by: a = 3.433(9) Å, b = 5.99(2) Å, c = 5.7432(5) Å, β = 90º and d102 = 2.06906 Å. Mössbauer studies confirmed the XRD data. Pyrrhotite has three sextets with hyperfine parameter values 30.8 T for sextet A, 27.9 T and 25.8 T for sextets B and C respectively, indicating orthorhombic structure, the composition near Fe10S11 and x = 0.0909

  6. Photo-enhanced salt-water splitting using orthorhombic Ag8SnS6 photoelectrodes in photoelectrochemical cells

    NASA Astrophysics Data System (ADS)

    Cheng, Kong-Wei; Tsai, Wei-Tseng; Wu, Yu-Hsuan

    2016-06-01

    Orthorhombic Ag8SnS6 photoelectrodes are prepared on various substrates via reactive sulfurization using the radio-frequency magnetron sputtering of silver-tin metal precursors. Evaluations of the photoelectrochemical performances of Ag8SnS6 photoelectrodes with various levels of silver content are carried out in various aqueous solutions. X-ray diffraction patterns and Hall measurements of samples after a three-stage sulfurization process show that all samples are the pure orthorhombic Ag8SnS6 phase with n-type conductivity. The energy band gaps, carrier concentrations, and mobilities of samples on glass substrates are 1.31-1.33 eV, 7.07 × 1011-8.52 × 1012 cm-3, and 74.9-368 cm2 V-1 s-1, respectively, depending on the [Ag]/[Ag+Sn] molar ratio in samples. The highest photoelectrochemical performances of orthorhombic Ag8SnS6 photoelectrodes in aqueous 0.35 M Na2S + 0.25 M K2SO3 and 0.5 M NaCl solutions are respectively 2.09 and 2.5 mA cm-2 at an applied voltages of 0.9 and 1.23 V vs. a reversible hydrogen electrode under light irradiation with a light intensity of 100 mW cm-2 from a 300-W Xe lamp.

  7. Orthorhombic WO 3Formed via a Ti-Stabilized WO 3· {1}/{3}H 2O Phase

    NASA Astrophysics Data System (ADS)

    Pecquenard, B.; Lecacheux, H.; Livage, J.; Julien, C.

    1998-01-01

    Stable solutions of WO3precursors have been prepared via the dissolution of tungstic acid, H2WO4, in hydrogen peroxide. A crystalline peroxopolytungstic acid WO3·H2O2·nH2O (n≈0.1) is obtained upon drying. Peroxo groups decompose at 200°C, giving an amorphous tungsten oxide that crystallizes into the stable monoclinic WO3around 400°C. Completely different results are obtained when Ti(OPri)4is added to the precursor solution. The orthorhombic phase WO3·{1}/{3}H2O is first obtained. As is well known, this hydrated oxide leads to h-WO3and m-WO3upon heating. However, in the presence of TiIV, a new metastable orthorhombic tungsten oxide is formed around 400°C. It then transforms irreversibly upon further heating into the stable monoclinic WO3. The presence of TiIVseems to stabilize this new orthorhombic phase.

  8. Facile Route to the Controlled Synthesis of Tetragonal and Orthorhombic SnO2 Films by Mist Chemical Vapor Deposition.

    PubMed

    Bae, Jae-Yoon; Park, Jozeph; Kim, Hyun You; Kim, Hyun-Suk; Park, Jin-Seong

    2015-06-10

    Two types of tin dioxide (SnO2) films were grown by mist chemical vapor deposition (Mist-CVD), and their electrical properties were studied. A tetragonal phase is obtained when methanol is used as the solvent, while an orthorhombic structure is formed with acetone. The two phases of SnO2 exhibit different electrical properties. Tetragonal SnO2 behaves as a semiconductor, and thin-film transistors (TFTs) incorporating this material as the active layer exhibit n-type characteristics with typical field-effect mobility (μ(FE)) values of approximately 3-4 cm(2)/(V s). On the other hand, orthorhombic SnO2 is found to behave as a metal-like transparent conductive oxide. Density functional theory calculations reveal that orthorhombic SnO2 is more stable under oxygen-rich conditions, which correlates well with the experimentally observed solvent effects. The present study paves the way for the controlled synthesis of functional materials by atmospheric pressure growth techniques. PMID:25984757

  9. Epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultravacuum component of space for thin-film epitaxial growth. The unique LEO space environment is expected to yield 10-ftorr or better pressures, semiinfinite pumping speeds, and large ultravacuum volume (about 100 cu m) without walls. These space ultravacuum properties promise major improvement in the quality, unique nature, and throughput of epitaxially grown materials, including semiconductors, magnetic materials, and thin-film high-temperature superconductors.

  10. Epitaxial Deposition Of Germanium Doped With Gallium

    NASA Technical Reports Server (NTRS)

    Huffman, James E.

    1994-01-01

    Epitaxial layers of germanium doped with gallium made by chemical vapor deposition. Method involves combination of techniques and materials used in chemical vapor deposition with GeH4 or GeCl4 as source of germanium and GaCl3 as source of gallium. Resulting epitaxial layers of germanium doped with gallium expected to be highly pure, with high crystalline quality. High-quality material useful in infrared sensors.

  11. Silicon Holder For Molecular-Beam Epitaxy

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.

    1993-01-01

    Simple assembly of silicon wafers holds silicon-based charge-coupled device (CCD) during postprocessing in which silicon deposited by molecular-beam epitaxy. Attains temperatures similar to CCD, so hotspots suppressed. Coefficients of thermal expansion of holder and CCD equal, so thermal stresses caused by differential thermal expansion and contraction do not develop. Holder readily fabricated, by standard silicon processing techniques, to accommodate various CCD geometries. Silicon does not contaminate CCD or molecular-beam-epitaxy vacuum chamber.

  12. Nanoscale monoclinic domains in epitaxial SrRuO3 thin films deposited by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ghica, C.; Negrea, R. F.; Nistor, L. C.; Chirila, C. F.; Pintilie, L.

    2014-07-01

    In this paper, we analyze the structural distortions observed by transmission electron microscopy in thin epitaxial SrRuO3 layers used as bottom electrodes in multiferroic coatings onto SrTiO3 substrates for future multiferroic devices. Regardless of the nature and architecture of the multilayer oxides deposited on the top of the SrRuO3 thin films, selected area electron diffraction patterns systematically revealed the presence of faint diffraction spots appearing in forbidden positions for the SrRuO3 orthorhombic structure. High-resolution transmission electron microscopy (HRTEM) combined with Geometric Phase Analysis (GPA) evidenced the origin of these forbidden diffraction spots in the presence of structurally disordered nanometric domains in the SrRuO3 bottom layers, resulting from a strain-driven phase transformation. The local high compressive strain (-4% ÷ -5%) measured by GPA in the HRTEM images induces a local orthorhombic to monoclinic phase transition by a cooperative rotation of the RuO6 octahedra. A further confirmation of the origin of the forbidden diffraction spots comes from the simulated diffraction patterns obtained from a monoclinic disordered SrRuO3 structure.

  13. Galvanomagnetic properties and magnetic domain structure of epitaxial MnAs films on GaAs(001)

    NASA Astrophysics Data System (ADS)

    Park, M. C.; Park, Y.; Shin, T.; Rothberg, G. M.; Tanaka, M.; Harbison, J. P.

    1996-04-01

    Epitaxial MnAs films on GaAs(001) in the thickness range 20-200 nm were studied. Using ordinary and extraordinary Hall effect data to determine the field required for perpendicular saturation and saturation magnetizations reported elsewhere, we determined the shape anisotropy constant in the basal plane of the hexagonal structure to be 3.7(0.6)×105 erg/cm3 and the surface anisotropy constant to be -1.3(0.4) erg/cm2. The negative sign indicates thin enough films will be perpendicularly magnetized. By magnetic force microscopy of a 100 nm film we found stripe domains with 180° Bloch walls, thereby avoiding the hard c axis. The widths of the domains and the walls are 4.0(0.3) μm and 95(6) nm, respectively. In magnetoresistance, we observed behavior similar to other ferromagnets, namely peaks centered around the positive and negative coercive fields, and at fields beyond the coercive field a linear dependence on magnetic field. The electrical resistance showed rapid increase with temperature beginning about 5° below the Curie temperature (40 °C) caused by the change in crystal structure from hexagonal to orthorhombic. The resistivities are, respectively, 300(24) and 375(30) μΩ cm. Comparison with bulk values indicates the large lower temperature value is partly due to the presence of some orthorhombic phase observed in x-ray studies.

  14. Ferroelectric domain morphologies of (001) PbZr1-xTixO3 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Hu, S. Y.; Chen, L. Q.

    2005-02-01

    Ferroelectric domain morphologies in (001) PbZr1-xTixO3 epitaxial thin films were studied using the phase-field approach. The film is assumed to have a stress-free top surface and is subject to a biaxial substrate constraint. Both the electrostatic open-circuit and short-circuit boundary conditions on the film surfaces were considered. The phase-field simulations indicated that in addition to the known tetragonal and rhombohedral phases, an orthorhombic phase becomes stable in films under large tensile constraints. The orthorhombic domain structure contains (100) and (010) 90° domain walls and (110) and (1-10) 180° domain walls. For the rhombohedral phase in a thin film, the domain walls are found to be along {101}, (100), and (010) of the prototypical cubic cell. It is shown that the short-circuit boundary condition and compressive substrate constraint enhance the out-of-plane polarization component while the open-circuit boundary condition and tensile substrate constraint suppress it. It is also shown that the depolarization field promotes the formation of herringbonelike morphology for the rhombohedral phase.

  15. Degenerate rhombohedral and orthorhombic states in Ca-substituted Na0.5Bi0.5TiO3

    NASA Astrophysics Data System (ADS)

    Ranjan, Rajeev; Kothai, V.; Garg, Rohini; Agrawal, Anupriya; Senyshyn, Anatoliy; Boysen, Hans

    2009-07-01

    Neutron powder diffraction and temperature dependent dielectric studies were carried out on Ca-substituted Na0.5Bi0.5TiO3, i.e., (Na0.5Bi0.5)1-xCaxTiO3. Stabilization of an orthorhombic phase even at a low Ca concentration (0.05orthorhombic distortion. The orthorhombic and rhombohedral phases coexist for x =0.10, suggesting these phases to be nearly degenerate. The orthorhombic distortion favoring tendency of Ca assists in promoting the inherent instability with regard to this structure in pure NBT, which was reported recently.

  16. Effects of contamination on selective epitaxial growth

    NASA Astrophysics Data System (ADS)

    MacDonald, Brian J.; Paton, Eric; Adem, Ercan; En, Bill

    2004-06-01

    As MOSFET dimensions scale down in size, it has become increasingly difficult to maintain high drive current while suppressing the off-state leakage current. One method of avoiding short-channel effects is to scale the source/drain (S/D) junction depths proportionally with the gate length. Unfortunately, this increases the S/D resistance, which slows the circuit. To keep the S/D junction shallow without affecting the S/D resistance, a raised S/D (RSD) structure is required. Integrating RSD can be difficult. Selective epitaxial growth (SEG) is the process used to incorporate RSD. This process requires a relatively clean surface to initiate the growth. Insertion of SEG earlier in the process flow facilitates selective epitaxial growth. Insertion of SEG later in the process flow results in higher levels of contamination at the interface of the Si substrate and the RSD structure. In this paper, we identify some mechanisms that determine the quality of the selective epitaxial film. Results indicate that Si defects are not a dominant mechanism in SEG film quality. Instead, results suggest that higher levels of contamination increased the surface roughness of the epitaxial film. PMOS regions were found to have higher levels of contamination and rougher epitaxial films than NMOS regions. Hydrogen bake as high as 900 °C was required to lower the surface contamination and provide excellent epitaxial morphology. Unfortunately, this high temperature causes enhanced dopant diffusion and deactivation of the device. Previous work [H. van Meer, K. De Meyer, Symposium on VLSI Technology Digest of Technical Papers, 2002, p. 170.] identified an alternative integration that provides excellent quality selective epitaxy, without dopant diffusion and deactivation.

  17. Galvanomagnetic Properties and Magnetic Domain Structure of Epitaxial Manganese Arsenide Films on Gallium ARSENIDE(001)

    NASA Astrophysics Data System (ADS)

    Park, Moon Chan

    We have studied galvanomagnetic properties and magnetic domain structure of epitaxial ferromagnetic MnAs thin films on GaAs(001) substrates by molecular beam epitaxy in the thickness range 20-200nm. Using data reported here on ordinary and extraordinary Hall effect to determine the field required for perpendicular saturation and using saturation magnetizations reported elsewhere, we determined the shape anisotropy constant in the basal plane of the hexagonal structure to be 3.7(0.6)times10 ^5 erg/cm^3 and the surface anisotropy constant to be -1.3(0.4) erg/cm^2. The negative sign indicates thin enough films will be perpendicularly magnetized. By using magnetic force microscopy on a 100 nm type-B MnAs film we found stripe domains with 180^circ Bloch walls parallel to the easy direction, thereby avoiding the hard c-axis, which in type-B is tilted up 39^circ. out of the film plane. The widths of the domains and the walls are 4.0(0.3) μm and 95(6) nm, respectively. Similar MFM results were obtained for a 100 nm type-A MnAs thin film having hard c-axis in plane, with an average domain width of 11.7(1.2) mum. This domain width agrees with a calculated value using the effective anisotropy constant data. Magnetoresistance versus field shows a linear past beyond the coercive field H _{c} (VSM value +/-324Oe) due to s-d electron scattering as explained by N. F. Mott. Peaks occur at the transition region observed in the vicinity of H_ {c} in the VSM hysteresis loop and are centered at about H_{c}. The peaks are attributed to electron scattering from the domain walls. The electrical resistance showed a rapid increase with temperature beginning about 5 degrees below the Curie temperature (40^circ C) caused by the change in crystal structure from hexagonal to orthorhombic. The resistivities are, respectively, 300(24) and 375(30) muOmega -cm. Comparison with bulk values indicates the large lower temperature value is partly due to the presence of some orthorhombic phase observed

  18. Engineering epitaxial graphene with oxygen

    NASA Astrophysics Data System (ADS)

    Kimouche, Amina; Martin, Sylvain; Winkelmann, Clemens; Fruchart, Olivier; Courtois, Hervé; Coraux, Johann; Hybrid system at low dimension Team

    2013-03-01

    Almost free-standing graphene can be obtained on metals by decoupling graphene from its substrate, for instance by intercalation of atoms beneath graphene, as it was shown with oxygen atoms. We show that the interaction of oxygen with epitaxial graphene on iridium leads to the formation of an ultrathin crystalline oxide extending between graphene and the metallic substrate via the graphene wrinkles. Graphene studied in this work was prepared under ultra-high vacuum by CVD. The samples were studied by combining scanning probe microscopy (STM, AFM) and spatially resolved spectroscopy (Raman, STS). The ultrathin oxide forms a decoupling barrier layer between graphene and Ir, yielding truly free-standing graphene whose hybridization and charge transfers with the substrate have been quenched. Our work presents novel types of graphene-based nanostructures, and opens the route to the transfer-free preparation of graphene directly onto an insulating support contacted to the metallic substrate which could serve as a gate electrode. Work supported by the EU-NMP GRENADA project

  19. Spin transport in epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Tbd, -

    2014-03-01

    Spintronics is a paradigm focusing on spin as the information vector in fast and ultra-low-power non volatile devices such as the new STT-MRAM. Beyond its widely distributed application in data storage it aims at providing more complex architectures and a powerful beyond CMOS solution for information processing. The recent discovery of graphene has opened novel exciting opportunities in terms of functionalities and performances for spintronics devices. We will present experimental results allowing us to assess the potential of graphene for spintronics. We will show that unprecedented highly efficient spin information transport can occur in epitaxial graphene leading to large spin signals and macroscopic spin diffusion lengths (~ 100 microns), a key enabler for the advent of envisioned beyond-CMOS spin-based logic architectures. We will also show that how the device behavior is well explained within the framework of the Valet-Fert drift-diffusion equations. Furthermore, we will show that a thin graphene passivation layer can prevent the oxidation of a ferromagnet, enabling its use in novel humide/ambient low-cost processes for spintronics devices, while keeping its highly surface sensitive spin current polarizer/analyzer behavior and adding new enhanced spin filtering property. These different experiments unveil promising uses of graphene for spintronics.

  20. Determination of crystallographic orientation of lead-free piezoelectric (K,Na)NbO{sub 3} epitaxial thin films grown on SrTiO{sub 3} (100) surfaces

    SciTech Connect

    Yu, Qi; Zhu, Fang-Yuan; Cheng, Li-Qian; Wang, Ke; Li, Jing-Feng

    2014-03-10

    Crystallographic structure of sol-gel-processed lead-free (K,Na)NbO{sub 3} (KNN) epitaxial films on [100]-cut SrTiO{sub 3} single-crystalline substrates was investigated for a deeper understanding of its piezoelectric response. Lattice parameter measurement by high-resolution X-ray diffraction and transmission electron microscopy revealed that the orthorhombic KNN films on SrTiO{sub 3} (100) surfaces are [010] oriented (b-axis-oriented) rather than commonly identified c-axis orientation. Based on the crystallographic orientation and corresponding ferroelectric domain structure investigated by piezoresponse force microscopy, the superior piezoelectric property along b-axis of epitaxial KNN films than other orientations can be explained.

  1. Epitaxial strain effect on the Jeff = 1/2 moment orientation in Sr2IrO4 thin films

    NASA Astrophysics Data System (ADS)

    Miao, Ludi; Xu, Hong; Mao, Z. Q.

    2014-01-01

    We have grown Sr2IrO4 (SIO) epitaxial thin films on SrTiO3 (STO) and NdGaO3 (NGO) substrates by a pulsed laser deposition method and characterized their structures and magnetic properties. We find that SIO films grown on STO substrates display tetragonal structure with a tensile strain of 0.13%, while SIO films grown on NGO substrates exhibit slightly orthorhombic structure with anisotropic biaxial tensile strains of 0.39% and 0.51% along the in-plane crystallographic axes. Although both films display insulating properties as bulk SIO does, their magnetic properties are distinct from that of bulk SIO. The ferromagnetic (FM) component of the Jeff = 1/2 canted antiferromagnetic order, which emerges below ˜240 K in bulk SIO, is significantly weakened in both films, with a greater weakening appearing in the SIO/NGO film. From structural and magnetoresistance anisotropy analyses for both films, we reveal that the weak FM component in SIO films is dependent on the epitaxial strain. The greater tensile strain leads to a smaller octahedral rotation: The rotation angle is ˜9.7(1)° for the SIO/NGO film and ˜10.7(2)° for the SIO/STO film. These findings indicate that the Jeff = 1/2 moment orientation in SIO follows the IrO6 octahedral rotation due to strong spin-orbit interaction.

  2. Growth, Crystal Structure, and Properties of Epitaxial BiScO3 Thin Films By Pulsed Laser Deposition

    SciTech Connect

    Trolier-McKinstry, Susan; Biegalski, Michael D; Wang, Junling; Belik, Alexei; Levin, Igor

    2008-01-01

    Epitaxial BiScO3 thin films were grown on BiFeO3 buffered SrTiO3 substrates. The crystallinity of the films is reasonable, given the very large lattice mismatch, with full width at half maximum of 0.58 in  peak), 0.80 in  (222 peak) and 0.28 in . It was found that the epitaxial thin films of BiScO3 on SrTiO3 retain the principal structural features of bulk BiScO3 (i.e. octahedral tilting and the pattern of Bi displacements) that give rise to a pseudo-orthorhombic unit cell 22ac 2ac 4ac (ac≈4 refers to the lattice parameter of an ideal cubic perovskite). Films grown on (100) substrates adopt the bulk monoclinic structure whereas films on the (110) substrates exhibit a somewhat different symmetry. The dielectric permittivities were modest (~35) with low loss tangents; no maxima were observed over the temperature range of -200 and +350 C. There is no evidence of significant hysteresis (either ferroelectric or antiferroelectric) at room temperature up to the breakdown strength of the films.

  3. Strain effect on electronic structure and thermoelectric properties of orthorhombic SnSe: A first principles study

    NASA Astrophysics Data System (ADS)

    Cuong, Do Duc; Rhim, S. H.; Lee, Joo-Hyong; Hong, Soon Cheol

    2015-11-01

    Strain effect on thermoelectricity of orthorhombic SnSe is studied using density function theory. The Seebeck coefficients are obtained by solving Boltzmann Transport equation (BTE) with interpolated band energies. As expected from the crystal structure, calculated Seebeck coefficients are highly anisotropic, and agree well with experiment. Changes in the Seebeck coefficients are presented, when strain is applied along b and c direction with strength from -3% to +3%, where influence by band gaps and band dispersions are significant. Moreover, for compressive strains, the sign change of Seebeck coefficients at particular direction suggests that the bipolar transport is possible for SnSe.

  4. Strain effect on electronic structure and thermoelectric properties of orthorhombic SnSe: A first principles study

    SciTech Connect

    Cuong, Do Duc; Rhim, S. H. Hong, Soon Cheol; Lee, Joo-Hyong

    2015-11-15

    Strain effect on thermoelectricity of orthorhombic SnSe is studied using density function theory. The Seebeck coefficients are obtained by solving Boltzmann Transport equation (BTE) with interpolated band energies. As expected from the crystal structure, calculated Seebeck coefficients are highly anisotropic, and agree well with experiment. Changes in the Seebeck coefficients are presented, when strain is applied along b and c direction with strength from -3% to +3%, where influence by band gaps and band dispersions are significant. Moreover, for compressive strains, the sign change of Seebeck coefficients at particular direction suggests that the bipolar transport is possible for SnSe.

  5. Orthorhombic intermediate state in the zinc blende to rocksalt transformation path of SiC at high pressure.

    PubMed

    Catti, M

    2001-07-16

    The mechanism of the B3/B1 phase transition of SiC has been investigated by periodic LCAO-DFT least-enthalpy calculations. A new transformation pathway, based on a Pmm2 orthorhombic intermediate state with two SiC units per cell, is found to be energetically favored over the traditional R3m mechanism. The computed activation enthalpy is 0.75 eV/SiC unit at the predicted transition pressure of 92 GPa (B3LYP functional). Activation enthalpy and activation volume vs pressure are analyzed to characterize the kinetic aspects of the transformation. PMID:11461567

  6. Polarization-dependent x-ray absorption spectroscopy of hexagonal and orthorhombic TbMnO3 thin films

    NASA Astrophysics Data System (ADS)

    Wu, K. H.; Gou, I. C.; Luo, C. W.; Uen, T. M.; Lin, J.-Y.; Juang, J. Y.; Kobayashi, T.; Chen, C. K.; Lee, J. M.; Chen, J. M.

    2010-01-01

    Pure phase TbMnO3 manganite thin films with hexagonal (h-TMO) and orthorhombic (o- TMO) crystal structures were prepared by pulsed laser deposition. The distinctive orientation alignments between film and substrate obtained here have allowed us to perform the x-ray absorption near edge spectroscopy (XANES) measurements with the electric field applied along the three major crystallographic directions. The XANES results, as expected, display significantly different spectral features for the h-TMO and o-TMO films. In addition, the XANES spectra also exhibit strong polarization dependence at O K and Mn L edges for both samples.

  7. Anisotropic-strain-relaxation-induced crosshatch morphology in epitaxial SrTiO3/NdGaO3 thin films

    NASA Astrophysics Data System (ADS)

    Tan, X. L.; Chen, F.; Chen, P. F.; Xu, H. R.; Chen, B. B.; Jin, F.; Gao, G. Y.; Wu, W. B.

    2014-10-01

    We investigate the strain relaxation and surface morphology of epitaxial SrTiO3 (STO) films grown on (001)O and (110)O planes of orthorhombic NdGaO3 (NGO), and (001) plane of cubic (LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT) substrates. Although the average lattice mismatches are similar, strikingly regular crosshatched surface patterns can be found on STO/NGO(001)O[(110)O] films, contrary to the uniform surface of STO/LSAT(001). Based on the orientation and thickness dependent patterns and high-resolution x-ray diffractions, we ascribe the crosshatch morphology to the anisotropic strain relaxation with possibly the 60° misfit dislocation formation and lateral surface step flow in STO/NGO films, while an isotropic strain relaxation in STO/LSAT. Further, we show that the crosshatched STO/NGO(110)O surface could be utilized as a template to modify the magnetotransport properties of epitaxial La0.6Ca0.4MnO3 films. This study highlights the crucial role of symmetry mismatch in determining the surface morphology of the perovskite oxide films, in addition to their epitaxial strain states, and offers a different route for designing and fabricating functional perovskite-oxide devices.

  8. Anisotropic-strain-relaxation-induced crosshatch morphology in epitaxial SrTiO{sub 3}/NdGaO{sub 3} thin films

    SciTech Connect

    Tan, X. L.; Chen, F.; Chen, P. F.; Xu, H. R.; Chen, B. B.; Jin, F.; Gao, G. Y.; Wu, W. B.

    2014-10-15

    We investigate the strain relaxation and surface morphology of epitaxial SrTiO{sub 3} (STO) films grown on (001){sub O} and (110){sub O} planes of orthorhombic NdGaO{sub 3} (NGO), and (001) plane of cubic (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (LSAT) substrates. Although the average lattice mismatches are similar, strikingly regular crosshatched surface patterns can be found on STO/NGO(001){sub O}[(110){sub O}] films, contrary to the uniform surface of STO/LSAT(001). Based on the orientation and thickness dependent patterns and high-resolution x-ray diffractions, we ascribe the crosshatch morphology to the anisotropic strain relaxation with possibly the 60° misfit dislocation formation and lateral surface step flow in STO/NGO films, while an isotropic strain relaxation in STO/LSAT. Further, we show that the crosshatched STO/NGO(110){sub O} surface could be utilized as a template to modify the magnetotransport properties of epitaxial La{sub 0.6}Ca{sub 0.4}MnO{sub 3} films. This study highlights the crucial role of symmetry mismatch in determining the surface morphology of the perovskite oxide films, in addition to their epitaxial strain states, and offers a different route for designing and fabricating functional perovskite-oxide devices.

  9. Epitaxial growth of two-dimensional stanene

    NASA Astrophysics Data System (ADS)

    Zhu, Feng-Feng; Chen, Wei-Jiong; Xu, Yong; Gao, Chun-Lei; Guan, Dan-Dan; Liu, Can-Hua; Qian, Dong; Zhang, Shou-Cheng; Jia, Jin-Feng

    2015-10-01

    Following the first experimental realization of graphene, other ultrathin materials with unprecedented electronic properties have been explored, with particular attention given to the heavy group-IV elements Si, Ge and Sn. Two-dimensional buckled Si-based silicene has been recently realized by molecular beam epitaxy growth, whereas Ge-based germanene was obtained by molecular beam epitaxy and mechanical exfoliation. However, the synthesis of Sn-based stanene has proved challenging so far. Here, we report the successful fabrication of 2D stanene by molecular beam epitaxy, confirmed by atomic and electronic characterization using scanning tunnelling microscopy and angle-resolved photoemission spectroscopy, in combination with first-principles calculations. The synthesis of stanene and its derivatives will stimulate further experimental investigation of their theoretically predicted properties, such as a 2D topological insulating behaviour with a very large bandgap, and the capability to support enhanced thermoelectric performance, topological superconductivity and the near-room-temperature quantum anomalous Hall effect.

  10. Chemical vapor deposition of epitaxial silicon

    DOEpatents

    Berkman, Samuel

    1984-01-01

    A single chamber continuous chemical vapor deposition (CVD) reactor is described for depositing continuously on flat substrates, for example, epitaxial layers of semiconductor materials. The single chamber reactor is formed into three separate zones by baffles or tubes carrying chemical source material and a carrier gas in one gas stream and hydrogen gas in the other stream without interaction while the wafers are heated to deposition temperature. Diffusion of the two gas streams on heated wafers effects the epitaxial deposition in the intermediate zone and the wafers are cooled in the final zone by coolant gases. A CVD reactor for batch processing is also described embodying the deposition principles of the continuous reactor.

  11. Lattice dynamical investigation of force constants, Raman, and infrared wavenumbers in SrCeO3 orthorhombic perovskite.

    NASA Astrophysics Data System (ADS)

    Singh, Manoj Kumar; Gupta, H. C.; Tiwari, L. M.

    2003-03-01

    At room temperature SrCeO3 has a orthorhombic perovskite structure with space group ( Pbnm) . Further it exhibits a first order phase transition at different pressures. Such phase transition has been reported recently by S. Lorident et al. [J. Phys. Chem. Solids,63(2002) 1983] using Raman spectroscopy. Hence in this work, a short-range force constant model (SRFCM) and Wilson G.F. matrix method have been applied for the first time to investigate the phonons in SrCeO3 perovskite in the orthorhombic phase. Here, we consider two types of short-range forces. They are stretching forces and bending forces. Ten stretching and ten bending force constants are obtained by having a best fitting to the measured Raman frequencies. The stretching force constants Ce - O are dominated over Sr O. It was also observed that the bending force constants O-Ce-O are larger than O-Sr-O. The calculations with the nine stretching and five bending force constants (using iteration method) provide a good agreement for the observed Raman frequencies. All 24 Raman modes (7A_g, 5B_1g, 7B:2g, 5B_3g) and 25 infrared (9B_1u, 7B_2u, 9B_3u) frequencies have been calculated and assigned. The infrared frequencies have been calculated for the first time and assign in their specific mode of vibrations.

  12. Phase stability, mechanical and thermodynamic properties of orthorhombic and trigonal MgSiN2: an ab initio study

    NASA Astrophysics Data System (ADS)

    Arab, Fahima; Sahraoui, F. Ali; Haddadi, Khelifa; Bouhemadou, Abdelmadjid; Louail, Layachi

    2016-05-01

    Structural stability and mechanical and thermodynamic properties of the orthorhombic and trigonal MgSiN2 polymorphs (or-MgSiN2 and tr-MgSiN2) were investigated through density functional theory and quasi-harmonic Debye model (QHDM). Our calculations show that or-MgSiN2 is energetically the stable polymorph at low pressure, in agreement with previous experimental and theoretical study. Under pressure, a crystallographic transition from the orthorhombic structure to the trigonal one occurs around 25, 17.45 and 19.05 GPa as obtained from the generalized gradient approximation of Perdew-Wang (GGA-PW91), the generalized gradient approximation parameterized recently by Perdew et al (GGA-PBEsol) and the local density approximation developed by Ceperley and Alder and parameterized by Perdew and Zunger (LDA-CAPZ), respectively. Single-crystalline and polycrystalline elastic constants and related properties, namely Vickers hardness, acoustic Grüneisen parameter, minimum thermal conductivity, isotropic sound velocities and Debye temperature, were numerically estimated for both or-MgSiN2 and tr-MgSiN2. We have showed that the hardness of tr-MgSiN2 is comparable to that of the harder materials like c-BN and B6O. Temperature and pressure dependencies of volume, bulk modulus, thermal expansion, Grüneisen parameter, heat capacities and Debye temperature were investigated using QHDM.

  13. Theoretical investigation of optical and paramagnetic resonance spectra of [NiF6]4- clusters with orthorhombic symmetry

    NASA Astrophysics Data System (ADS)

    Fang, Wang; Shao, Chang-Sheng; Cheng, Wen-De; Tang, Hai-Yan; Zheng, Wen-Chen

    2013-11-01

    The ground state absorption spectra of [NiF6]4- clusters with orthorhombic symmetry (Ni2+ in NiF2 crystal and Ni2+-doped ZnF2 crystal, D2h point group) are theoretically calculated and assigned by diagonalization of 45 × 45 complete energy matrix for 3d8 configuration and the spin-Hamiltonian (SH) parameters (zero-field splitting D and E, and g factors gx, gy, gz) are studied by use of high-order perturbation method, in the frame of semi-empirical molecular orbital (MO) scheme based on strong crystal field framework. In those energy matrix, all the configuration interactions though the cubic crystal field (CF), the orthorhombic crystal field, the Coulomb interaction are taken into account. The calculated results are in good agreement with the experimental data. The local structure (bond length and bond angle) of [NiF6]4- clusters are determined, and the results shows that the structure data given by Stout are more plausible than those given by Baur.

  14. First-principles calculations of properties of orthorhombic iron carbide Fe7C3 at the Earth's core conditions

    NASA Astrophysics Data System (ADS)

    Raza, Zamaan; Shulumba, Nina; Caffrey, Nuala M.; Dubrovinsky, Leonid; Abrikosov, Igor A.

    2015-06-01

    A recently discovered phase of orthorhombic iron carbide o-Fe7C3 [Prescher et al., Nat. Geosci. 8, 220 (2015), 10.1038/ngeo2370] is assessed as a potentially important phase for interpretation of the properties of the Earth's core. In this paper, we carry out first-principles calculations on o-Fe7C3 , finding properties to be in broad agreement with recent experiments, including a high Poisson's ratio (0.38). Our enthalpy calculations suggest that o-Fe7C3 is more stable than Eckstrom-Adcock hexagonal iron carbide (h-Fe7C3 ) below approximately 100 GPa. However, at 150 GPa, the two phases are essentially degenerate in terms of Gibbs free energy, and further increasing the pressure towards Earth's core conditions stabilizes h-Fe7C3 with respect to the orthorhombic phase. Increasing the temperature tends to stabilize the hexagonal phase at 360 GPa, but this trend may change beyond the limit of the quasiharmonic approximation.

  15. Theoretical investigation of optical and paramagnetic resonance spectra of [NiF6](4-) clusters with orthorhombic symmetry.

    PubMed

    Fang, Wang; Shao, Chang-Sheng; Cheng, Wen-De; Tang, Hai-Yan; Zheng, Wen-Chen

    2013-11-01

    The ground state absorption spectra of [NiF6](4-) clusters with orthorhombic symmetry (Ni(2+) in NiF2 crystal and Ni(2+)-doped ZnF2 crystal, D2h point group) are theoretically calculated and assigned by diagonalization of 45×45 complete energy matrix for 3d(8) configuration and the spin-Hamiltonian (SH) parameters (zero-field splitting D and E, and g factors gx, gy, gz) are studied by use of high-order perturbation method, in the frame of semi-empirical molecular orbital (MO) scheme based on strong crystal field framework. In those energy matrix, all the configuration interactions though the cubic crystal field (CF), the orthorhombic crystal field, the Coulomb interaction are taken into account. The calculated results are in good agreement with the experimental data. The local structure (bond length and bond angle) of [NiF6](4-) clusters are determined, and the results shows that the structure data given by Stout are more plausible than those given by Baur. PMID:23871975

  16. Electronic and Elastic Properties of CrO2 in the Orthorhombic CaCl2-TYPE Structure

    NASA Astrophysics Data System (ADS)

    Wu, H. Y.; Chen, Y. H.; Deng, C. R.; Su, X. F.

    2012-07-01

    The structure, electronic and elastic properties of CrO2 in the high pressure orthorhombic CaCl2 (Pnnm) phase are investigated by first-principles calculations based on density functional theory (DFT). Our calculated crystal parameters are in good agreement with the available experimental data. The electronic band structure, density of state (DOS) and projected density of state (PDOS) at 14 GPa are studied within local spin density approximation (LSDA) and generalized gradient approximation (GGA) in details. The CaCl2 phase of CrO2 still has the half metal character, which is in accordance with previous theoretical predictions. The elastic constants, bulk modulus, shear modulus, Young's modulus and Poisson ratio under pressures are successfully obtained for the orthorhombic CaCl2 phase of CrO2. This structure is mechanically stable at our applied range of pressures. The calculated elastic anisotropic factors show that the CaCl2 phase of CrO2 is provided with high elastic anisotropy and the elastic anisotropy decreases with increasing pressures. The propagation speed of transverse, longitudinal elastic wave together with associated Debye temperatures are also estimated.

  17. Encapsulated solid phase epitaxy of a Ge quantum well embedded in an epitaxial rare earth oxide.

    PubMed

    Laha, Apurba; Bugiel, E; Jestremski, M; Ranjith, R; Fissel, A; Osten, H J

    2009-11-25

    An efficient method based on molecular beam epitaxy has been developed to integrate an epitaxial Ge quantum well buried into a single crystalline rare earth oxide. The monolithic heterostructure comprised of Gd2O3-Ge-Gd2O3 grown on an Si substrate exhibits excellent crystalline quality with atomically sharp interfaces. This heterostructure with unique structural quality could be used for novel nanoelectronic applications in quantum-effect devices such as nanoscale transistors with a high mobility channel, resonant tunneling diode/transistors, etc. A phenomenological model has been proposed to explain the epitaxial growth process of the Ge layer under oxide encapsulation using a solid source molecular beam epitaxy technique. PMID:19875877

  18. Elastic and magnetic properties of epitaxial MnAs layers on GaAs

    NASA Astrophysics Data System (ADS)

    Iikawa, F.; Santos, P. V.; Kästner, M.; Schippan, F.; Däweritz, L.

    2002-05-01

    We have investigated the elasto- and magneto-optical properties of MnAs layers epitaxially grown on (001) GaAs for temperatures around the structural (hexagonal/orthorhombic) and magnetic (ferromagnetic/paramagnetic) phase transition of MnAs at Tc~40 °C. The phase transition is accompanied by a large variation of the MnAs lattice parameter a of ~1%, which induces a strong and anisotropic strain field in the MnAs/GaAs heterostructures. The latter was measured by detecting the optical anisotropy induced on the GaAs substrate by means of polarization-sensitive light transmission measurements. The experimental results show clear evidence for the quasi-uniaxial strain induced on the GaAs substrate during the phase transition, which extends over a temperature range of ~30 °C in the MnAs/GaAs heterostructures. The strain levels are well reproduced by an elastic model for the heterostructures which assumes that the strain is transferred across the MnAs/GaAs interface without relaxation. The elastic properties during the phase transition were compared to the average magnetization probed using a SQUID magnetometer and to the magnetization near the front and the back surfaces of the MnAs films detected using the magneto-optical Kerr effect. The smaller temperature range of the phase transition observed in the magneto-optical Kerr effect measurements indicates a lower stability of the ferromagnetic phase near the surface of the MnAs layers.

  19. Interface control of a morphotropic phase boundary in epitaxial samarium modified bismuth ferrite superlattices

    NASA Astrophysics Data System (ADS)

    Maran, Ronald; Yasui, Shintaro; Eliseev, Eugene A.; Glinchuk, Maya D.; Morozovska, Anna N.; Funakubo, Hiroshi; Takeuchi, Ichiro; Nagarajan, Valanoor

    2014-12-01

    Interfacial control of a polar-(rhombohedral) to-non-polar (orthorhombic) phase transition in (001)-oriented epitaxial BiFe O3 / (B i1 -xS mx ) Fe O3 superlattices is presented. We demonstrate controlling the composition at which a polar phase transformation takes place by tuning the strength of the interlayer interactions while holding the average composition constant. It is shown that the thickness of the superlattice layers has a strong influence on the interlayer polar coupling, which in turn changes the phase transition. For the shortest periods studied (layers 5- and 10-nm thick) the onset of the phase transition is suppressed along with a significant broadening (as a function of S m3 + concentration) of an incommensurately modulated phase determined by two-dimensional x-ray diffraction mapping. Consequently, a ferroelectric character with robust polarization hysteresis and enhanced dielectric constant is observed even for substitution concentration of S m3 + which would otherwise lead to a leaky paraelectric in single-layer (B i1 -xS mx)Fe O3 films. The experimental results are fully consistent with a mean-field thermodynamic theory which reveals that the strength of the interlayer coupling is strongly affected by the polar-polar interaction across the interface.

  20. Multiferroic fluoride BaCoF4 Thin Films Grown Via Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Borisov, Pavel; Johnson, Trent; García-Castro, Camilo; Kc, Amit; Schrecongost, Dustin; Cen, Cheng; Romero, Aldo; Lederman, David

    Multiferroic materials exhibit exciting physics related to the simultaneous presence of multiple long-range orders, in many cases consisting of antiferromagnetic (AF) and ferroelectric (FE) orderings. In order to provide a new, promising route for fluoride-based multiferroic material engineering, we grew multiferroic fluoride BaCoF4 in thin film form on Al2O3 (0001) substrates by molecular beam epitaxy. The films grow with the orthorhombic b-axis out-of-plane and with three in-plane structural twin domains along the polar c-axis directions. The FE ordering in thin films was verified by FE remanent hysteresis loops measurements at T = 14 K and by room temperature piezoresponse force microscopy (PFM). An AF behavior was found below Neel temperature TN ~ 80 K, which is in agreement with the bulk properties. At lower temperatures two additional magnetic phase transitions at 19 K and 41 K were found. First-principles calculations demonstrated that the growth strain applied to the bulk BaCoF4 indeed favors two canted spin orders, along the b- and a-axes, respectively, in addition to the main AF spin order along the c-axis. Supported by FAME (Contract 2013-MA-2382), WV Research Challenge Grant (HEPC.dsr.12.29), and DMREF-NSF 1434897.

  1. Epitaxial growth of three dimensionally structured III-V photonic crystal via hydride vapor phase epitaxy

    SciTech Connect

    Zheng, Qiye; Kim, Honggyu; Zhang, Runyu; Zuo, Jianmin; Braun, Paul V.; Sardela, Mauro; Balaji, Manavaimaran; Lourdudoss, Sebastian; Sun, Yan-Ting

    2015-12-14

    Three-dimensional (3D) photonic crystals are one class of materials where epitaxy, and the resultant attractive electronic properties, would enable new functionalities for optoelectronic devices. Here we utilize self-assembled colloidal templates to fabricate epitaxially grown single crystal 3D mesostructured Ga{sub x}In{sub 1−x}P (GaInP) semiconductor photonic crystals using hydride vapor phase epitaxy (HVPE). The epitaxial relationship between the 3D GaInP and the substrate is preserved during the growth through the complex geometry of the template as confirmed by X-ray diffraction (XRD) and high resolution transmission electron microscopy. XRD reciprocal space mapping of the 3D epitaxial layer further demonstrates the film to be nearly fully relaxed with a negligible strain gradient. Fourier transform infrared spectroscopy reflection measurement indicates the optical properties of the photonic crystal which agree with finite difference time domain simulations. This work extends the scope of the very few known methods for the fabrication of epitaxial III-V 3D mesostructured materials to the well-developed HVPE technique.

  2. Epitaxial growth of three dimensionally structured III-V photonic crystal via hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Zheng, Qiye; Kim, Honggyu; Zhang, Runyu; Sardela, Mauro; Zuo, Jianmin; Balaji, Manavaimaran; Lourdudoss, Sebastian; Sun, Yan-Ting; Braun, Paul V.

    2015-12-01

    Three-dimensional (3D) photonic crystals are one class of materials where epitaxy, and the resultant attractive electronic properties, would enable new functionalities for optoelectronic devices. Here we utilize self-assembled colloidal templates to fabricate epitaxially grown single crystal 3D mesostructured GaxIn1-xP (GaInP) semiconductor photonic crystals using hydride vapor phase epitaxy (HVPE). The epitaxial relationship between the 3D GaInP and the substrate is preserved during the growth through the complex geometry of the template as confirmed by X-ray diffraction (XRD) and high resolution transmission electron microscopy. XRD reciprocal space mapping of the 3D epitaxial layer further demonstrates the film to be nearly fully relaxed with a negligible strain gradient. Fourier transform infrared spectroscopy reflection measurement indicates the optical properties of the photonic crystal which agree with finite difference time domain simulations. This work extends the scope of the very few known methods for the fabrication of epitaxial III-V 3D mesostructured materials to the well-developed HVPE technique.

  3. Epitaxial solar-cell fabrication, phase 2

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Kressel, H.

    1977-01-01

    Dichlorosilane (SiH2Cl2) was used as the silicon source material in all of the epitaxial growths. Both n/p/p(+) and p/n/n(+) structures were studied. Correlations were made between the measured profiles and the solar cell parameters, especially cell open-circuit voltage. It was found that in order to obtain consistently high open-circuit voltage, the epitaxial techniques used to grow the surface layer must be altered to obtain very abrupt doping profiles in the vicinity of the junction. With these techniques, it was possible to grow reproducibly both p/n/n(+) and n/p/p(+) solar cell structures having open-circuit voltages in the 610- to 630-mV range, with fill-factors in excess of 0.80 and AM-1 efficiencies of about 13%. Combinations and comparisons of epitaxial and diffused surface layers were also made. Using such surface layers, we found that the blue response of epitaxial cells could be improved, resulting in AM-1 short-circuit current densities of about 30 mA/cm sq. The best cells fabricated in this manner had AM-1 efficiency of 14.1%.

  4. Epitaxy of semiconductor-superconductor nanowires.

    PubMed

    Krogstrup, P; Ziino, N L B; Chang, W; Albrecht, S M; Madsen, M H; Johnson, E; Nygård, J; Marcus, C M; Jespersen, T S

    2015-04-01

    Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface plays a key role in determining the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and the design of devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al grown with epitaxially matched single-plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires are discussed. We formulate the grain growth kinetics of the metal phase in general terms of continuum parameters and bicrystal symmetries. The method realizes the ultimate limit of uniform interfaces and seems to solve the soft-gap problem in superconducting hybrid structures. PMID:25581626

  5. Electrocaloric properties of epitaxial strontium titanate films

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Misirlioglu, I. B.; Alpay, S. P.; Rossetti, G. A.

    2012-05-01

    The electrocaloric (EC) response of strontium titanate thin films is computed as a function of misfit strain, temperature, electric field strength, and electrode configuration using a nonlinear thermodynamic theory. For films in a capacitor configuration on compressive substrates, the transition between paraelectric and strain-induced ferroelectric tetragonal phases produces a large adiabatic temperature change, ΔT = 5 K, at room temperature for electric field changes ΔE = 1200 kV/cm. For films on tensile substrates, the transition between the paraelectric and strain-induced ferroelectric orthorhombic phases can also be accessed using inter-digitated electrodes (IDEs). The maximum EC response occurs for IDEs with a [110] orientation.

  6. Trends in orthorhombic crystal field parameters for trivalent rare-earth ions in high-Tc superconductors REBa₂Cu₃O₇-δ - correct interpretation based on standardization.

    PubMed

    Rudowicz, Czesław; Lewandowska, Monika

    2013-02-15

    Trends in orthorhombic crystal field parameters (CFPs) reported for RE(3+) ions in high-T(c) superconductors REBa(2)Cu(3)O(7-)(δ) are considered. The cases of trends based on the CFP sets belonging to different regions of CF parameter space are identified and clarified. The crucial feature of such correlated alternative CFP sets is their intrinsic incompatibility. This makes meaningless direct comparisons of such CFP sets and thus presentations of CFP trends involving a mixture of alternative CFP sets. The aim of this paper is to ascertain that correct interpretation of trends in orthorhombic CFPs must be based on standardization. Examples of graphs inappropriately representing trends in orthorhombic CFPs reported for REBa(2)Cu(3)O(7-)(δ) compounds are considered and the corrected graphs based on the standardized CFP sets are provided. PMID:23261624

  7. Preparation of orthorhombic Ba sub 2 YCu sub 3 O sub 7 powder by single-step calcining

    SciTech Connect

    Spann, J.R.; Kahn, M. ); Lloyd, I.K. . Engineering Materials Group); Chase, M.T. )

    1990-02-01

    A single calcination step, solid-state process that provides orthohombic Ba{sub 2}YCu{sub 3}O{sub 7} powder is described. BaCO{sub 3}, Y{sub 2}O{sub 3}, and CuO are used as precursor materials. The only phase identifiable by x-ray diffraction is the orthorhombic Ba{sub 2}YCu{sub 3}O{sub 7}. The use of a vacuum during the initial stages of the calcining process promotes complete decomposition of the carbonate, and no residual carbonate is observed. An oxygen atmosphere during the later stages of calcining ensures proper oxidation to Ba{sub 2}YCu{sub 3}O{sub 7}. The use of a similar combination vacuum-oxygen calcining schedule should also be beneficial in the preparation of chemically derived powders.

  8. Cooperative effects of lattice and spin-orbit coupling on the electronic structure of orthorhombic SrIrO₃.

    PubMed

    Singh, Vijeta; Pulikkotil, J J

    2015-08-26

    Orthorhombic SrIrO3 subjected to strain shows tunable transport properties. With underlying symmetry remaining invariant, these properties are associated with IrO6 octahedral tilting. Adopting first-principles methods, the effects of crystal field, spin-orbit coupling (SOC), and Coulomb correlations, on comparable interaction length scales, are discussed. While tilting induces a t(2g) - e(g) crystal-field splitting and band narrowing, SOC induces a partial splitting of the J(eff) bands rendering SrIrO3 a semi-metallic ground state. The SOC enhanced hybridization of Ir-O orbitals serves as an explanation as to why the critical Hubbard correlation strength increases with increasing SOC strength in SrIrO3 to induce an insulating phase. PMID:26235235

  9. Theoretical investigations of the optical and EPR spectra for trivalent cerium and ytterbium ions in orthorhombic YF3 crystal

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Gang; Zheng, Wen-Chen

    2016-09-01

    The optical spectra and electron paramagnetic resonance (EPR) parameters (g factors and hyperfine structure constants A) for trivalent cerium and ytterbium ions in YF3 crystal with orthorhombic structure are investigated together by the complete diagonalization (of energy matrix) method (CDM). The obtained results are in reasonable agreement with the experimental ones. More importantly, two magnetically nonequivalent centers in YF3 crystal observed in EPR experiments are confirmed and ascribed to their specific positions in a unit cell by our calculations based on superposition model (SPM) analysis. Such identification of local sites with different magnetic properties would help us to understand not only the EPR spectra and magnetic susceptibility of other lanthanide ions doped in crystals with the same structure as YF3 but also the energy transfer scheme between two lanthanide ions occupying such two sites. All results are discussed carefully.

  10. Ferroelectricity and competing interactions in Ho-deficient non-stoichiometric orthorhombic HoMnO{sub 3}

    SciTech Connect

    Wang, J. X.; Yan, Z. B.; Xie, Y. L.; Zhou, X. H.; Liu, J.-M.

    2015-05-07

    We investigate the consequences of the Ho-deficient non-stoichiometry in orthorhombic HoMnO{sub 3} in terms of microscopic mechanisms for ferroelectricity modulation. It is suggested that the Ho-deficiency (then Mn excess) results in Ho-vacancies and then Mn occupation of the Ho-site with increasing non-stoichiometry. The Ho-deficiency enhances the Mn-Mn symmetric exchange striction by suppressing the independent Ho-Ho interaction, and thus benefits to the induced Ho spin ordering against the independent Ho spin ordering. The symmetric Ho-Mn exchange striction is thus enhanced by this induced Ho spin ordering, leading to remarkably enhanced ferroelectric polarization as observed. This work presents an alternative scheme to modulate the multiferroicity in rare-earth manganites of strong 4f-3d coupling.

  11. Scattering of an electromagnetic plane wave by a homogeneous sphere made of an orthorhombic dielectric-magnetic material.

    PubMed

    Ulfat Jafri, A D; Lakhtakia, Akhlesh

    2014-01-01

    An exact transition matrix was formulated for electromagnetic scattering by an orthorhombic dielectric-magnetic sphere whose permeability dyadic is a scalar multiple of its permittivity dyadic. Calculations were made for plane waves incident on the sphere. As the size parameter increases, the role of anisotropy evolves; multiple lobes appear in the plots of the differential scattering efficiency in any scattering plane; the total scattering, extinction, and forward-scattering efficiencies exhibit a prominent maximum each; and the absorption efficiency generally increases with weak undulations. Certain orientations of the sphere with respect to the directions of propagation and the electric field of the incident plane wave make it highly susceptible to detection in a monostatic configuration, whereas other orientations make it much less vulnerable to detection. Impedance match to the ambient free space decreases backscattering efficiency significantly, although anisotropy prevents null backscattering. PMID:24561944

  12. AFM observation of the surface morphology and impurity effects on orthorhombic hen egg-white lysozyme crystals

    NASA Astrophysics Data System (ADS)

    Matsuzuki, Y.; Kubota, T.; Liu, X. Y.; Ataka, M.; Takano, K. J.

    2002-07-01

    Cation-exchange high performance liquid chromatography at pH 6, developed originally to purify human lysozyme, was applied to hen egg-white lysozyme. We could remove at least three kinds of impurities from the commercial product. The impurities were considered to be modified lysozyme molecules, mostly based on N-terminal amino acid analyses. Atomic force microscopic observation was made on the crystals both from the purified and non-purified solutions. The (1 1 0) faces of the orthorhombic crystals grown at 40°C from the purified solution contained linear steps, while most of the linear edges became round and rugged on the crystals from non-purified solutions. A similar change in step morphology is known to occur on insulin crystals when two amino acids were mutated from the wild type. On the (0 1 0) face, elongated, round steps became rugged when crystals grew from non-purified solutions.

  13. Elastic Softening in HoFe2Al10 due to the Quadrupole Interaction under an Orthorhombic Crystal Electric Field

    NASA Astrophysics Data System (ADS)

    Kamikawa, Shuhei; Ishii, Isao; Noguchi, Yoshihito; Goto, Hiroki; Fujita, Takahiro K.; Nakagawa, Fumiya; Tanida, Hiroshi; Sera, Masafumi; Suzuki, Takashi

    2016-07-01

    To investigate 4f electronic states in HoFe2Al10 under an orthorhombic crystal electric field (CEF), we measured the specific heat, magnetic susceptibility, magnetization, and elastic modulus of single-crystalline samples. We found elastic softening of the transverse elastic moduli C55 and C66 below 20 and 130 K, respectively. With further decreasing temperature, C66 shows further elastic softening below 5 K. We observed two Schottky peaks in the specific heat at 2.2 and 20 K and small anisotropy of the magnetic susceptibility and magnetization in the paramagnetic region. By analyzing these experimental data, we obtained the CEF parameters of HoFe2Al10. From the analysis, we clarified that the softening of C55 and C66 originates from indirect quadrupole interactions of Ozx and Oxy, and propose that the overall CEF splitting is about 85 K.

  14. Synthesis, photoluminescence and Judd-Ofelt parameters of LiNa3P2O7:Eu3+ orthorhombic microstructures

    NASA Astrophysics Data System (ADS)

    Munirathnam, K.; Dillip, G. R.; Raju, B. Deva Prasad; Joo, S. W.; Dhoble, S. J.; Nagabhushana, B. M.; Hari Krishna, R.; Ramesh, K. P.; Varadharaj Perumal, S.; Prakashbabu, D.

    2015-09-01

    We report, for the first time, the photoluminescence properties of Eu3+-doped LiNa3P2O7 phosphor, synthesized by a facile solid-state reaction method in air atmosphere. The crystal structure and phase purity of the phosphors were analyzed by X-ray diffraction analysis. Orthorhombic structural morphology was identified by scanning electron microscopy. The phosphate groups in the phosphor were confirmed by Fourier transform infrared analysis. Bandgap of the phosphor was calculated from the diffuse reflectance spectra data using Kubelka-Munk function. Under 395-nm UV excitation, the phosphors show signs of emitting red color due to the 5D0 → 7F2 transition. In accordance with Judd-Ofelt theory, spectroscopic parameters such as oscillator intensity parameter Ω t ( t = 2), spontaneous emission probabilities, fluorescence branching ratios and radiative lifetimes were calculated and analyzed for the first time in this system.

  15. Elastic Moduli of detwinned orthorhombic optimally doped LSCO (La2-0.16 Sr 0.16 CuO4)

    NASA Astrophysics Data System (ADS)

    Fanelli, Victor; Betts, Jonathan; Migliori, Albert; Suzuki, Yoko; Yan, Jiaqiang

    2010-03-01

    Accurate elastic modulus characterization of the superconducting phase transition (SC) in La2-0.16 Sr 0.16 CuO4 is difficult because the discontinuities in moduli are much smaller than fluctuations from twin boundary motion. Thus detwinning is required for a useful measurement and was achieved using mechanical stress along the tetragonal [110] direction (or equivalently, along the orthorhombic [100] direction) below the orthorhombic phase transition that is well below ambient temperature. Using resonant ultrasound spectroscopy (RUS) on the detwinned monocrystal, the discontinuities and moduli around the SC transition were measured.

  16. Microstructure and plastic deformation of orthorhombic titanium aluminides Ti2AlNb. IV. Formation of the transformation twins upon the α2 → O phase transformation

    NASA Astrophysics Data System (ADS)

    Kazantseva, N. V.; Demakov, S. L.; Popov, A. A.

    2007-04-01

    X-ray diffraction transmission electron microscopy, and measurements of microhardness and resistivity were used to study the formation of the orthorhombic O phase upon the α2 → O phase transformation. It has been found that the orthorhombic O phase is formed by the diffusion mechanism in the form of thin lamellar precipitates (domains). Upon subsequent growth, these domains form packets of twins with a twinning plane {110}. It is shown that the (130) twinning plane is not realized directly, but it appears as a result of joining of twin packets. No formation of an intermediate metastable phase was observed upon this transformation.

  17. Photo-and pressure-induced transformations in the linear orthorhombic polymer of C{sub 60}

    SciTech Connect

    Meletov, K. P. Davydov, V. A.; Arvanitidis, J.; Christofilos, D.; Andrikopoulos, K. S.; Kourouklis, G. A.

    2008-10-15

    Stability of the linear orthorhombic polymer of C{sub 60} under pressure and laser irradiation is studied by Raman scattering and X-ray diffraction measurements. The Raman spectrum at ambient pressure remains unchanged, in the time scale of the experiment, up to an intensity of 3200 W/cm{sup 2} of the 514.5 nm line of an Ar{sup +} laser, but irreversible changes are observed at higher intensities. The Raman spectra recorded at increased pressure show similar irreversible changes even at the laser intensity as low as 470 W/cm{sup 2}. The X-ray diffraction and Raman measurements of the pressure-treated samples, performed after pressure release, show that the nonirradiated material does not exhibit any changes in the crystal structure and phonon spectra. This behavior indicates a pressure-enhanced photo-induced transformation to a new polymeric phase characterized by a Raman spectrum that differs from those of the other known polymeric phases of C{sub 60}. The Raman spectra of the phototransformed linear orthorhombic polymer of C{sub 60} were measured at a pressure of up to 29 GPa. The pressure dependence of the Raman mode frequencies show singularities near 4 GPa and 15 GPa, respectively, related to a reversible phase transition and an irreversible transformation to a metastable disordered phase. The diffuse Raman spectrum of the disordered phase does not exhibit substantial changes with an increase in pressure up to 29 GPa. The high-pressure phase transforms to a mixture of pristine and dimerized C{sub 60}, after pressure release and exposure to ambient conditions for 30 h.

  18. A new phase in the system lithium-aluminum: Characterization of orthorhombic Li{sub 2}Al

    SciTech Connect

    Puhakainen, Kati; Bostroem, Magnus; Groy, Thomas L.; Haeussermann, Ulrich

    2010-11-15

    Investigation of the Li rich part of the binary Li-Al system revealed the existence of a new phase, orthorhombic Li{sub 2}Al, which is isostructural to Li{sub 2}Ga and Li{sub 2}In. The crystal structure was determined from single crystal X-ray diffraction data (Cmcm, a=4.658(2) A, b=9.767(4) A, c=4.490(2) A, Z=4). Refinement of atomic position site occupancies yielded a composition Li{sub 1.92}Al{sub 1.08} (64 at% Li) indicating a small homogeneity range, Li{sub 2-x}Al{sub 1+x}. Li{sub 2}Al is the peritectic decomposition product of the stoichiometric compound Li{sub 9}Al{sub 4}, which is stable below 270{+-}2 {sup o}C. Li{sub 2}Al itself decomposes peritectically to Li{sub 3}Al{sub 2} and Li rich melt at 335{+-}2 {sup o}C. The discovery of Li{sub 2}Al (Li{sub 2-x}Al{sub 1+x}) settles a long standing inconsistency in the Li-Al phase diagram which was based on the assumption that Li{sub 9}Al{sub 4} possesses a high temperature modification. - Graphical abstract: A new phase, Li{sub 2}Al, has been discovered in the binary Li-Al system. The structure of orthorhombic Li{sub 2}Al is closely related to that of the established monoclinic phase Li{sub 9}Al{sub 4}.

  19. Structure, bonding and physical properties of tetragonal and orthorhombic SiS{sub 2} from (hybrid) DFT calculations

    SciTech Connect

    Zwijnenburg, Martijn A. Bell, Robert G.; Cora, Furio

    2008-09-15

    The energetics, structure and physical properties of tetragonal and orthorhombic SiS{sub 2} were calculated by periodic density functional theory (DFT) calculations, using both localized orbital and projected augmented wave basis-sets. All methods applied agree upon the relative energies of the different polymorphs but show differences in the predicted geometries, which are minimized upon improving the basis-set quality. The hybrid PBE0 functional was found to give the best match between experimental and calculated structures. When comparing SiS{sub 2} with its much better studied oxide analog silica, we observe that upon substituting sulphur for oxygen, the energy landscape changes dramatically. Other effects of changing S for O are found to be smaller Si-X-Si angles, a broader distribution of X-Si-X angles, a more flexible framework and a significantly reduced band gap. The latter is in line with the experimental observation of photoluminescence in related GaGeS{sub 2} compounds and suggests that SiS{sub 2} might find application in UV light emitting diodes. Finally, a comparison of the maximally localized Wannier functions demonstrates that the Si-S bonds in SiS{sub 2} have a considerably more covalent character than the Si-O bonds in silica. - Graphical abstract: Periodic DFT calculations were employed to study the (physical) properties of tetragonal and orthorhombic SiS{sub 2}. The results obtained were compared with those for SiS{sub 2} better studied oxide analog silica and demonstrate large changes in the materials' energy landscape, nature of bonding, flexibility and band gap, upon substitution of sulphur for oxygen.

  20. Epitaxial piezoelectric thick film heterostructures on silicon

    NASA Astrophysics Data System (ADS)

    Kim, Dong Min

    The significantly higher dielectric permittivity, piezoelectric coefficients and electromechanical coupling coefficients of single crystal relaxor ferroelectrics make them very attractive for medical ultrasound transducers and microelectromechanical systems (MEMS) applications. The potential impact of thin-film relaxor ferroelectrics in integrated actuators and sensor on silicon has stimulated research on the growth and characterization of epitaxial piezoelectric thin films. We have fabricated heterostructures by (1) synthesizing optimally-oriented, epitaxial thin films of Pb(Mg1/3Nb2/3)O3-PbTiO 3 (PMN-PT) on miscut (001) Si wafers with epitaxial (001) SrTiO 3 template layers, where the single crystal form is known to have the giant piezoelectric response, and (2) nano-structuring to reduce the constraint imposed by the underlying silicon substrate. Up to now, the longitudinal piezoelectric coefficient (d33) values of PMN and PMN-PT thin films range from 50 to 200 pC/N have been reported, which are far inferior to the properties of bulk single crystals value (d33 ˜ 2000 pC/N). These might be attributed to substrate constraints, pyrochlore phases and other effects. Here, we have realized the giant d33 values by fabricating epitaxial PMN-PT thick films on silicon. When the PMN-PT film was subdivided into ˜1 mum2 capacitors by focused ion beam processing, a 4 mum thick film shows a low-field d33 of 800 pm/V that increases to over 1200 pm/V under bias, which is the highest d33 value ever realized on silicon substrates. These high piezo-reponse PMN-PT epitaxial heterostructures can be used for multilayered MEMS devices which function with low driving voltage, high frequency ultrasound transducer arrays for medical imaging, and capacitors for charge and energy storage. Since these PMN-PT films are epitaxially integrated with the silicon, they can make use of the well-developed fabrication process for patterning and micromachining of this large-area, cost

  1. Wafer bonded epitaxial templates for silicon heterostructures

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A., Jr. (Inventor); Zahler, James M. (Inventor); Morral, Anna Fontcubera I (Inventor)

    2008-01-01

    A heterostructure device layer is epitaxially grown on a virtual substrate, such as an InP/InGaAs/InP double heterostructure. A device substrate and a handle substrate form the virtual substrate. The device substrate is bonded to the handle substrate and is composed of a material suitable for fabrication of optoelectronic devices. The handle substrate is composed of a material suitable for providing mechanical support. The mechanical strength of the device and handle substrates is improved and the device substrate is thinned to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. An upper portion of the device film exfoliated from the device substrate is removed to provide a smoother and less defect prone surface for an optoelectronic device. A heterostructure is epitaxially grown on the smoothed surface in which an optoelectronic device may be fabricated.

  2. Domain epitaxy for thin film growth

    DOEpatents

    Narayan, Jagdish

    2005-10-18

    A method of forming an epitaxial film on a substrate includes growing an initial layer of a film on a substrate at a temperature T.sub.growth, said initial layer having a thickness h and annealing the initial layer of the film at a temperature T.sub.anneal, thereby relaxing the initial layer, wherein said thickness h of the initial layer of the film is greater than a critical thickness h.sub.c. The method further includes growing additional layers of the epitaxial film on the initial layer subsequent to annealing. In some embodiments, the method further includes growing a layer of the film that includes at least one amorphous island.

  3. Ultrahigh efficiencies in vertical epitaxial heterostructure architectures

    NASA Astrophysics Data System (ADS)

    Fafard, S.; York, M. C. A.; Proulx, F.; Valdivia, C. E.; Wilkins, M. M.; Arès, R.; Aimez, V.; Hinzer, K.; Masson, D. P.

    2016-02-01

    Optical to electrical power converting semiconductor devices were achieved with breakthrough performance by designing a Vertical Epitaxial Heterostructure Architecture. The devices are featuring modeled and measured conversion efficiencies greater than 65%. The ultrahigh conversion efficiencies were obtained by monolithically integrating several thin GaAs photovoltaic junctions tailored with submicron absorption thicknesses and grown in a single crystal by epitaxy. The heterostructures that were engineered with a number N of such ultrathin junctions yielded an optimal external quantum efficiencies approaching 100%/N. The heterostructures are capable of output voltages that are multiple times larger than the corresponding photovoltage of the input light. The individual nanoscale junctions are each generating up to ˜1.2 V of output voltage when illuminated in the infrared. We compare the optoelectronic properties of phototransducers prepared with designs having 5 to 12 junctions and that are exhibiting voltage outputs between >5 V and >14 V.

  4. Hetero epitaxial graphene on various substrates

    NASA Astrophysics Data System (ADS)

    Harris, Gary; Kaut, Gurpreet; Taylor, Crawford

    2015-03-01

    Large-scale production of graphene is pivotal for the development of graphene-based electronics. These results focus on the synthesis and characterization of graphene layers. Two methods were used to grow graphene films. First, graphene films were epitaxially grown on silicon carbide substrates by thermal decomposition of SiC at high temperature and low pressure. In-house built reactor consisting of induction furnace was used to form epitaxial films for electronic applications. Second, chemical vapor deposition method was used for direct graphene synthesis on 3C-SiC with the use of copper as a catalyst. In thermal CVD process, hydrogen and methane gases were used as precursors. Methane acts as a carbon source and annealing and cooling were done hydrogen environment. Different polytypes of silicon carbide (6H-SiC and 3C-SiC) and their crystal orientations were exploited as substrates to form epitaxial graphene. Hetero epitaxial 3C-SiC epilayer was first deposited on Si substrate using chemical vapor deposition technique in cold wall, low pressure, and horizontal CVD reactor. The reactor temperature, argon pressure, flow rates and concentration of different gases (propane, silane, hydrogen and argon) was investigated to control the growth of 3C-SiC and silicon sublimation rate. The resulting graphene films were confirmed using Raman spectroscopy. Further, graphene films have been characterized with the tools of atomic force microscopy (AFM) and scanning electron microscopy (SEM). Mobility, electrical resistivity and carrier density measurements were taken using hall measurements. NSF_PRDM

  5. Optical Epitaxial Growth of Gold Nanoparticle Arrays.

    PubMed

    Huang, Ningfeng; Martínez, Luis Javier; Jaquay, Eric; Nakano, Aiichiro; Povinelli, Michelle L

    2015-09-01

    We use an optical analogue of epitaxial growth to assemble gold nanoparticles into 2D arrays. Particles are attracted to a growth template via optical forces and interact through optical binding. Competition between effects determines the final particle arrangements. We use a Monte Carlo model to design a template that favors growth of hexagonal particle arrays. We experimentally demonstrate growth of a highly stable array of 50 gold particles with 200 nm diameter, spaced by 1.1 μm. PMID:26230429

  6. An epitaxial ferroelectric tunnel junction on silicon.

    PubMed

    Li, Zhipeng; Guo, Xiao; Lu, Hui-Bin; Zhang, Zaoli; Song, Dongsheng; Cheng, Shaobo; Bosman, Michel; Zhu, Jing; Dong, Zhili; Zhu, Weiguang

    2014-11-12

    Epitaxially grown functional perovskites on silicon (001) and the ferroelectricity of a 3.2 nm thick BaTiO3 barrier layer are demonstrated. The polarization-switching-induced change in tunneling resistance is measured to be two orders of magnitude. The obtained results suggest the possibility of integrating ferroelectric tunnel junctions as binary data storage media in non-volatile memory cells on a silicon platform. PMID:25200550

  7. Method of deposition by molecular beam epitaxy

    DOEpatents

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-01-10

    A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time. 9 figures.

  8. Method of deposition by molecular beam epitaxy

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time.

  9. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

    SciTech Connect

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-07-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  10. Metalorganic vapor phase epitaxy of ternary rhombohedral (Bi1-xSbx) 2 Se3 solid solutions

    NASA Astrophysics Data System (ADS)

    Kuznetsov, P. I.; Yakushcheva, G. G.; Shchamkhalova, B. S.; Luzanov, V. A.; Temiryazev, A. G.; Jitov, V. A.

    2016-01-01

    We studied the metalorganic vapor phase epitaxy (MOVPE) of (Bi1-xSbx) 2Se3 solid solution films with a different Sb content on (001) Al2O3 substrates with thin ZnSe buffer layer in the range of temperatures 250-480 °C. As-grown films were studied by atom force and scanning electron microscopy (AFM and SEM), Raman spectroscopy and X-ray diffractometry (XRD) techniques. To determine the elemental composition of the grown films, we used an energy dispersive spectrometer (EDS). The dependencies of the crystal structure of films on the growth temperature and Sb content (0 ≤ x ≤ 1) were explored. At different growth temperatures we obtained the following bismuth compounds: the films grown at the temperature of 370 °C or lower consist of the pure Bi phase, whereas we got the Bi4Se3 phase at 380 °C, the phase BiSe at 430 °C and Bi2Se3 at the temperature of 460 °C or above. We found out that at the temperature of 480 °C the single-phase films of (Bi1-xSbx) 2Se3 with rhombohedral and orthorhombic lattices are realized when x is less than 0.25 and greater than 0.935, respectively. For 0.25 < x < 0.935 the grown films are composites of rhombohedral and orthorhombic phases. At the temperature of 440 °C we obtained films consisting of three rhombohedral phases (Bi1-xSbx) 4Se3, (Bi1-xSbx) Se and Bi. The room temperature transport properties of rhombohedral samples were characterized using the Van der Pauw technique.

  11. Selective epitaxy using the GILD process

    SciTech Connect

    Weiner, K.H.

    1990-12-31

    The present invention comprises a method of selective epitaxy on a semiconductor substrate. The present invention provides a method of selectively forming high quality, thin GeSi layers in a silicon circuit, and a method for fabricating smaller semiconductor chips with a greater yield (more error free chips) at a lower cost. The method comprises forming an upper layer over a substrate, and depositing a reflectivity mask which is then removed over selected sections. Using a laser to melt the unmasked sections of the upper layer, the semiconductor material in the upper layer is heated and diffused into the substrate semiconductor material. By varying the amount of laser radiation, the epitaxial layer is formed to a controlled depth which may be very thin. When cooled, a single crystal epitaxial layer is formed over the patterned substrate. The present invention provides the ability to selectively grow layers of mixed semiconductors over patterned substrates such as a layer of Ge{sub x}Si{sub 1-x} grown over silicon. Such a process may be used to manufacture small transistors that have a narrow base, heavy doping, and high gain. The narrowness allows a faster transistor, and the heavy doping reduces the resistance of the narrow layer. The process does not require high temperature annealing; therefore materials such as aluminum can be used. Furthermore, the process may be used to fabricate diodes that have a high reverse breakdown voltage and a low reverse leakage current.

  12. Selective epitaxy using the gild process

    DOEpatents

    Weiner, Kurt H.

    1992-01-01

    The present invention comprises a method of selective epitaxy on a semiconductor substrate. The present invention provides a method of selectively forming high quality, thin GeSi layers in a silicon circuit, and a method for fabricating smaller semiconductor chips with a greater yield (more error free chips) at a lower cost. The method comprises forming an upper layer over a substrate, and depositing a reflectivity mask which is then removed over selected sections. Using a laser to melt the unmasked sections of the upper layer, the semiconductor material in the upper layer is heated and diffused into the substrate semiconductor material. By varying the amount of laser radiation, the epitaxial layer is formed to a controlled depth which may be very thin. When cooled, a single crystal epitaxial layer is formed over the patterned substrate. The present invention provides the ability to selectively grow layers of mixed semiconductors over patterned substrates such as a layer of Ge.sub.x Si.sub.1-x grown over silicon. Such a process may be used to manufacture small transistors that have a narrow base, heavy doping, and high gain. The narrowness allows a faster transistor, and the heavy doping reduces the resistance of the narrow layer. The process does not require high temperature annealing; therefore materials such as aluminum can be used. Furthermore, the process may be used to fabricate diodes that have a high reverse breakdown voltage and a low reverse leakage current.

  13. Electron holography of devices with epitaxial layers

    SciTech Connect

    Gribelyuk, M. A. Ontalus, V.; Baumann, F. H.; Zhu, Z.; Holt, J. R.

    2014-11-07

    Applicability of electron holography to deep submicron Si devices with epitaxial layers is limited due to lack of the mean inner potential data and effects of the sample tilt. The mean inner potential V{sub 0} = 12.75 V of the intrinsic epitaxial SiGe was measured by electron holography in devices with Ge content C{sub Ge} = 18%. Nanobeam electron diffraction analysis performed on the same device structure showed that SiGe is strain-free in [220] direction. Our results showed good correlation with simulations of the mean inner potential of the strain-free SiGe using density function theory. A new method is proposed in this paper to correct electron holography data for the overlap of potentials of Si and the epitaxial layer, which is caused by the sample tilt. The method was applied to the analysis of the dopant diffusion in p-Field-effect Transistor devices with the identical gate length L = 30 nm, which had alternative SiGe geometry in the source and drain regions and was subjected to different thermal processing. Results have helped to understand electrical data acquired from the same devices in terms of dopant diffusion.

  14. Layered-structural monoclinic–orthorhombic perovskite La{sub 2}Ti{sub 2}O{sub 7} to orthorhombic LaTiO{sub 3} phase transition and their microstructure characterization

    SciTech Connect

    Herrera, G.; Jiménez-Mier, J.; Chavira, E.

    2014-03-01

    The layered-structural ceramics, such as lanthanum titanate (La{sub 2}Ti{sub 2}O{sub 7}), have been known for their good temperature and low dielectric loss at microwave frequencies that make them good candidate materials for high frequency applications. However, few studies have been conducted on the synthesis optimization by sol gel reaction, in particular by acrylamide polymerization route. The interest in La{sub 2}Ti{sub 2}O{sub 7} ceramic has been greatly increased recently due to the effect of oriented grains. This anisotropy of the microstructure leads to anisotropy in dielectric, electrical and mechanical properties. In this study, grain oriented lanthanum titanate was produced by the sol–gel acrylamide polymerization route. The characterizations of the samples were achieved by thermal analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). X-ray diffraction indicates that the formation of monoclinic perovskite La{sub 2}Ti{sub 2}O{sub 7} nanocrystals is a necessary first step to obtain orthorhombic LaTiO{sub 3} nanocomposites (with space group Pbnm). In this work we identified that the monoclinic perovskite La{sub 2}Ti{sub 2}O{sub 7} with space group P2{sub 1} transforms its structure into one with the orthorhombic space group Cmc2{sub 1} at approximately 1073 K. The microstructure associated consisted of flaky monoclinic La{sub 2}Ti{sub 2}O{sub 7} nanocomposites in comparison with round-shaped LaTiO{sub 3} nanocomposites. - Highlights: • The flaky-like La{sub 2}Ti{sub 2}O{sub 7} compound was synthesized by sol–gel acrylamide route. • Simultaneous monitoring of the DTA and XRD with temperature was performed. • Phase transformation characterization of La{sub 2}Ti{sub 2}O{sub 7} has been carried out. • The variation of the La{sub 2}Ti{sub 2}O{sub 7} and LaTiO{sub 3} grain morphology has been compared.

  15. Uniaxial contribution to the magnetic anisotropy of La 0.67Sr 0.33MnO 3 thin films induced by orthorhombic crystal structure

    NASA Astrophysics Data System (ADS)

    Boschker, Hans; Mathews, Mercy; Brinks, Peter; Houwman, Evert; Vailionis, Arturas; Koster, Gertjan; Blank, Dave H. A.; Rijnders, Guus

    2011-11-01

    La 0.67Sr 33MnO 3 (LSMO) thin films under compressive strain have an orthorhombic symmetry with (1 1¯ 0)o and (0 0 1)o in-plane orientations. (The subscript o denotes the orthorhombic symmetry.) Here, we grew LSMO on cubic (LaAlO 3) 0.3—(Sr 2AlTaO 6) 0.7 (LSAT) substrates and observed a uniaxial contribution to the magnetic anisotropy which is related to the orthorhombic crystal structure. Since the lattice mismatch is equal in the two directions, the general understanding of anisotropy in LSMO, which relates the uniaxial anisotropy to differences in strain, cannot explain the results. These findings suggest that the oxygen octahedra rotations associated with the orthorhombic structure result in a change in magnetic coupling between the [1 1¯ 0]o and [0 0 1] o directions, which determines the anisotropy. We expect these findings to lead to a better understanding of the microscopic origin of the magnetocrystalline anisotropy in LSMO.

  16. Epitaxial Approaches to Carbon Nanotube Organization

    NASA Astrophysics Data System (ADS)

    Ismach, Ariel

    Carbon nanotubes have unique electronic, mechanical, optical and thermal properties, which make them ideal candidates as building blocks in nano-electronic and electromechanical systems. However, their organization into well-defined geometries and arrays on surfaces remains a critical challenge for their integration into functional nanosystems. In my PhD, we developed a new approach for the organization of carbon nanotubes directed by crystal surfaces. The principle relies on the guided growth of single-wall carbon nanotubes (SWNTs) by atomic features presented on anisotropic substrates. We identified three different modes of surface-directed growth (or 'nanotube epitaxy'), in which the growth of carbon nanotubes is directed by crystal substrates: We first observed the nanotube unidirectional growth along atomic steps ('ledge-directed epitaxy') and nanofacets ('graphoepitaxy') on the surface of miscut C-plane sapphire and quartz. The orientation along crystallographic directions ('lattice-directed epitaxy') was subsequently observed by other groups on different crystals. We have proposed a "wake growth" mechanism for the nanotube alignment along atomic steps and nanofacets. In this mechanism, the catalyst nanoparticle slides along the step or facet, leaving the nanotube behind as a wake. In addition, we showed that the combination of surface-directed growth with external forces, such as electric-field and gas flow, can lead to the simultaneous formation of complex nanotube structures, such as grids and serpentines. The "wake growth" model, which explained the growth of aligned nanotubes, could not explain the formation of nanotube serpentines. For the latter, we proposed a "falling spaghetti" mechanism, in which the nanotube first grows by a free-standing process, aligned in the direction of the gas flow, then followed by absorption on the stepped surface in an oscillatory manner, due to the competition between the drag force caused by the gas flow on the suspended

  17. The effect of lattice mismatch on epitaxial La{sub 0.67}Ca{sub 0.33}MnO{sub 3} films.

    SciTech Connect

    Eastell, C. J.; Lin, Y.-K.; Miller, D. J.

    1999-05-06

    We present a study of the effect of lattice mismatch on the structure and magneto-transport properties of La{sub 0.67}Ca{sub 0.33}MnO{sub 3} (LCMO) epitaxial films. Pulsed laser deposition was used to synthesize epitaxial LCMO thin films on LaAlO{sub 3} (LAO), NdGaO{sub 3} (NGO), SrTiO{sub 3} (STO), and MgO substrates. Our results show that the nature of the lattice mismatch and the structure of the substrate governs the microstructure of the film. The microstructure consists of domains of two crystal structures, a pseudo-cubic phase and a monoclinic phase. The monoclinic phase forms as the film relaxes away from the interface, with an orientation dependent on whether the film is under a tensile or compressive in-plane strain. A special case is observed on NGO where the orthorhombic nature of the substrate results in the alignment of the monoclinic phase so that its long axis is in the plane. The observation of an in-plane anisotropy in the magnetoresistance data for LCMO on NGO suggests that the monoclinic phase is important in explaining the magneto-transport properties.

  18. Strain tuning of electronic structure in Bi4Ti3O12-LaCoO3 epitaxial thin films

    SciTech Connect

    Choi, Woo Seok; Lee, Ho Nyung

    2015-05-08

    In this study, we investigated the crystal and electronic structures of ferroelectric Bi4Ti3O12 single-crystalline thin films site-specifically substituted with LaCoO3 (LCO). The epitaxial films were grown by pulsed laser epitaxy on NdGaO3 and SrTiO3 substrates to vary the degree of strain. With increasing the LCO substitution, we observed a systematic increase in the c-axis lattice constant of the Aurivillius phase related with the modification of pseudo-orthorhombic unit cells. These compositional and structural changes resulted in a systematic decrease in the band gap, i.e., the optical transition energy between the oxygen 2p and transition-metal 3d states, based on a spectroscopic ellipsometry study. In particular, the Co 3d state seems to largely overlap with the Ti t2g state, decreasing the band gap. Interestingly, the applied tensile strain facilitates the band-gap narrowing, demonstrating that epitaxial strain is a useful tool to tune the electronic structure of ferroelectric transition-metal oxides.

  19. Density Functional Studies of Stoichiometric Surfaces of Orthorhombic Hybrid Perovskite CH3NH3PbI3

    SciTech Connect

    Wang, Yun; Huang, Jingsong; Sumpter, Bobby G.; Zhang, Haimin; Liu, Porun; Yang, Huagui; Zhao, Huijun

    2014-12-19

    Organic/inorganic hybrid perovskite materials are highly attractive for dye-sensitized solar cells as demonstrated by their rapid advances in energy conversion efficiency. In this work, the structures, energetics, and electronic properties for a range of stoichiometric surfaces of the orthorhombic perovskite CH3NH3PbI3 are theoretically studied using density functional theory. Various possible spatially and constitutionally isomeric surfaces are considered by diversifying the spatial orientations and connectivities of surface Pb-I bonds. The comparison of the surface energies for the most stable configurations identified for various surfaces shows that the stabilities of stoichiometric surfaces are mainly dictated by the coordination numbers of surface atoms, which are directly correlated with the numbers of broken bonds. Additionally, Coulombic interactions between I anions and organic countercations on the surface also contribute to the stabilization. Electronic properties are compared between the most stable (100) surface and the bulk phase, showing generally similar features except for the lifted band degeneracy and the enhanced bandgap energy for the surface. These studies on the stoichiometric surfaces serve as the first step toward gaining a fundamental understanding of the interfacial properties in the current structural design of perovskite based solar cells, in order to achieve further breakthroughs in solar conversion efficiencies.

  20. Density Functional Studies of Stoichiometric Surfaces of Orthorhombic Hybrid Perovskite CH3NH3PbI3

    DOE PAGESBeta

    Wang, Yun; Huang, Jingsong; Sumpter, Bobby G.; Zhang, Haimin; Liu, Porun; Yang, Huagui; Zhao, Huijun

    2014-12-19

    Organic/inorganic hybrid perovskite materials are highly attractive for dye-sensitized solar cells as demonstrated by their rapid advances in energy conversion efficiency. In this work, the structures, energetics, and electronic properties for a range of stoichiometric surfaces of the orthorhombic perovskite CH3NH3PbI3 are theoretically studied using density functional theory. Various possible spatially and constitutionally isomeric surfaces are considered by diversifying the spatial orientations and connectivities of surface Pb-I bonds. The comparison of the surface energies for the most stable configurations identified for various surfaces shows that the stabilities of stoichiometric surfaces are mainly dictated by the coordination numbers of surface atoms,more » which are directly correlated with the numbers of broken bonds. Additionally, Coulombic interactions between I anions and organic countercations on the surface also contribute to the stabilization. Electronic properties are compared between the most stable (100) surface and the bulk phase, showing generally similar features except for the lifted band degeneracy and the enhanced bandgap energy for the surface. These studies on the stoichiometric surfaces serve as the first step toward gaining a fundamental understanding of the interfacial properties in the current structural design of perovskite based solar cells, in order to achieve further breakthroughs in solar conversion efficiencies.« less

  1. Crystal structure and partial Ising-like magnetic ordering of orthorhombic D y2Ti O5

    NASA Astrophysics Data System (ADS)

    Shamblin, Jacob; Calder, Stuart; Dun, Zhiling; Lee, Minseong; Choi, Eun Sang; Neuefeind, Joerg; Zhou, Haidong; Lang, Maik

    2016-07-01

    The structure and magnetic properties of orthorhombic D y2Ti O5 have been investigated using x-ray diffraction, neutron diffraction, and alternating current (ac)/direct current (dc) magnetic susceptibility measurements. We report a continuous structural distortion below 100 K characterized by negative thermal expansion in the [0 1 0] direction. Neutron diffraction and magnetic susceptibility measurements revealed that two-dimensional (2D) magnetic ordering begins at 3.1 K, which is followed by a three-dimensional magnetic transition at 1.7 K. The magnetic structure has been solved through a representational analysis approach and can be indexed with the propagation vector k =[0 1 /2 0 ] . The spin structure corresponds to a coplanar model of interwoven 2D "sheets" extending in the [0 1 0] direction. The local crystal field is different for each D y3 + ion (Dy1 and Dy2), one of which possesses strong uniaxial symmetry indicative of Ising-like magnetic ordering. Consequently, two succeeding transitions under magnetic field are observed in the ac susceptibility, which are associated with flipping each D y3 + spin independently.

  2. Polymorphic CoSe2 with mixed orthorhombic and cubic phases for highly efficient hydrogen evolution reaction.

    PubMed

    Zhang, Hongxiu; Yang, Bin; Wu, Xiaolin; Li, Zhongjian; Lei, Lecheng; Zhang, Xingwang

    2015-01-28

    We report polymorphic CoSe2 (p-CoSe2) with mixed orthorhombic and cubic phases as a highly active electrocatalyst toward hydrogen evolution reaction (HER). The p-CoSe2 is obtained by calcining CoSex via electrodeposition at 300 °C. The results of X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) demonstrated the crystal structure of p-CoSe2. The p-CoSe2 exhibits excellent electrocatalytic activity for HER with a low onset overpotential of -70 mV and a small Tafel slope of ∼30 mV/decade, which are basically state-of-the-art performance of earth-abundant electrocatalysts. The HER performance of p-CoSe2 was much higher than that of amorphous CoSex, cubic CoSe2, and CoSe. This study offers a competitive electrocatalyst for HER and opens up a new strategy to the synthesis of catalysts for energy conversion. PMID:25562753

  3. Native defects and Pr impurities in orthorhombic CaTiO3 by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhu, Ailing; Wang, Jianchuan; Zhao, Dongdong; Du, Yong

    2011-07-01

    Formation energies of native defects and Pr impurities in orthorhombic CaTiO3 are explored using the first-principles calculations. The Ca vacancy (VCa), Ti vacancy (VTi) and Ca antisite (CaTi) are found to be energetically preferable. The Ti antisite (TiCa) and O vacancy (VO) are not energetically favorable in the wide range of Fermi level. In Pr-doped CaTiO3, Pr substituting for Ca (PrCa) is likely to form under condition A in which CaTiO3 is in equilibrium with CaO and O2. Under condition B (TiO2, CaTiO3 and O2 are in equilibrium), PrTi defect is energetically preferable depending on the Fermi levels. Several native defects and the two sites of Pr impurities in CaTiO3 are coincided with several different defects in Pr-doped CaTiO3 reported in the literature. Based on the present calculations, we can elucidate that the Ca deficiency design of the traditional formula Ca1-xVCa(x/2)PrxTiO3 is not the best for efficient red photoluminescence, which is realized via the experimental measurements.

  4. Crystal Field Splitting is Limiting the Stability and Strength of Ultra-incompressible Orthorhombic Transition Metal Tetraborides

    PubMed Central

    Zhang, R. F.; Wen, X. D.; Legut, D.; Fu, Z. H.; Veprek, S.; Zurek, E.; Mao, H. K.

    2016-01-01

    The lattice stability and mechanical strengths of the supposedly superhard transition metal tetraborides (TmB4, Tm = Cr, Mn and Fe) evoked recently much attention from the scientific community due to the potential applications of these materials, as well as because of general scientific interests. In the present study, we show that the surprising stabilization of these compounds from a high symmetry to a low symmetry structure is accomplished by an in-plane rotation of the boron network, which maximizes the in-plane hybridization by crystal field splitting between d orbitals of Tm and p orbitals of B. Studies of mechanical and electronic properties of TmB4 suggest that these tetraborides cannot be intrinsically superhard. The mechanical instability is facilitated by a unique in-plane or out-of-plane weakening of the three-dimensional covalent bond network of boron along different shear deformation paths. These results shed a novel view on the origin of the stability and strength of orthorhombic TmB4, highlighting the importance of combinational analysis of a variety of parameters related to plastic deformation of the crystalline materials when attempting to design new ultra-incompressible, and potentially strong and hard solids. PMID:26976479

  5. Deep inelastic neutron scattering from orthorhombic ordered HCl: Short-time proton dynamics and anomalous neutron cross sections

    SciTech Connect

    Senesi, R.; Colognesi, D.; Pietropaolo, A.; Abdul-Redah, T.

    2005-08-01

    Deep inelastic neutron scattering measurements from orthorhombic ordered HCl are presented and analyzed in order to clarify the problem of an anomalous deficit in the neutron-proton cross section found in previous experiments on various materials. A reliable model for the HCl short-time single-particle dynamics, including atomic vibrational anisotropies and deviations from the impulsive approximation, is set up. The model HCl response function is transformed into simulated time-of-flight spectra, taking carefully into account the effects of instrumental resolution and the filter absorption profile used for neutron energy analysis. Finally, the experimental values of the anomalous reduction factor for the neutron-proton cross section are extracted by comparing simulated and experimental data. Results show a 34% reduction of the H cross section, varying with the scattering angle in a range centered at 53 deg. In addition, the same approximate procedure used in earlier studies is also employed, providing results in reasonable agreement with the more rigorous ones, and confirming the substantial reliability of the past work on this subject.

  6. Stimulated Raman scattering spectroscopy and χ(3)-nonlinear lasing effects in single crystals of aragonite (orthorhombic CaCO3)

    NASA Astrophysics Data System (ADS)

    Kaminskii, A. A.; Rhee, H.; Lux, O.; Eichler, H. J.; Koltashev, V. V.; Kleinschrodt, R.; Bohatý, L.; Becker, P.

    2012-04-01

    The present work gives a brief review of the nonlinear χ(2)- and χ(3)-lasing properties of SRS-active natural crystals (minerals) known so far. This compilation complements new results of a detailed investigation of Raman induced χ(3)-effects in aragonite single crystals (orthorhombic CaCO3) under single- and dual-wavelength picosecond excitation in the UV, visible and near-IR spectral ranges. The studied effects at room and cryogenic temperatures comprise Stokes and anti-Stokes combs of almost two octaves bandwidth, THG, SFG, as well as cascaded and cross-cascaded χ(3) leftrightarrow χ(3) interactions. All recorded lasing χ(3)-components were identified and attributed to three observed SRS-promoting vibration modes ωSRS1 ≈ 1087 cm-1, ωSRS2 ≈ 152 cm-1, and ωSRS3 ≈ 205 cm-1 (at room temperature) of aragonite. Stimulated Raman scattering (SRS) investigations of minerals so far enrich the arsenal of SRS-active crystals, which can be applied to solve fundamental and applied tasks of modern laser physics and nonlinear optics.

  7. The anisotropy of dielectric properties in the orthorhombic and hexagonal structures of Anhydrite - an ab initio and hybrid DFT study

    NASA Astrophysics Data System (ADS)

    Mallia, Giuseppe; Dovesi, Roberto; Corà, Furio

    2006-10-01

    The effects of an electric field on the electronic properties of a typical ionic-covalent compound, Anhydrite (CaSO4), are investigated within the HF level of theory and two different formulations of hybrid DFT functionals (B3LYP [A. Becke, J. Chem. Phys. 98, 5648 (1993)] and F 0.6-BLYP [F. Corà et al., Structure and Bonding 113, 171-232 (2004)]). An external electric field is applied along each of the three periodic lattice vectors of the orthorhombic and hexagonal structures in order to detect the anisotropy of the response. The perturbation introduced by the field is analysed in terms of Mulliken charges and electron density maps. The largest response is due to a polarisation of the covalent SO bonds of the sulfate ions. The high frequency dielectric tensor, , is computed and compared with the experimental value; its anisotropy can be rationalised by the orientation of the sulfate ions relative to the three crystallographic directions. We find that the calculated value of decreases on increasing the percentage of HF exchange in the Hamiltonian; the best match with experiment is given by B3LYP, but a higher percentage of HF exchange is required to reproduce the anisotropy in , a feature that we attribute to the better representation of the equilibrium geometry and bond distances in the latter case.

  8. Analytical study of body waves in orthorhombic media and comparison with SKS-phase observations from selected stations

    NASA Astrophysics Data System (ADS)

    Löberich, Eric; Bokelmann, Götz

    2016-04-01

    Anisotropic effects of wave propagation, observed in the Earth, provide interesting applications in basic research and practice, e.g., in reservoir geophysics and other fields. Teleseismic waves often evidence upper mantle anisotropy, as created by aligned olivine grains. While each grain is associated with orthorhombic symmetry, the preferred alignment may lead to a transversely isotropic characteristic. Considering body waves passing through an anisotropic medium, a splitting of shear waves can usually be observed, since their transverse polarization leads to a separation of the two quasi-shear waves. The associated splitting-delay is generated if the related fast and slow seismic velocities differ. Most of the previous shear-wave splitting investigations were based on the common assumption of near-vertical incidence. However, the influence of increasing incidence angles, which may lead to angular dependent splitting-delay and fast polarization orientation, has been pointed out by Davis (2003). Our study investigates the occurrence of these postulated dependences on azimuth and incidence angle (distance), examining splitting observations in SKS-recordings at selected broadband stations (e.g., Djibouti and Red Lake, Ontario).

  9. Electric-field-dependent electronic structure of graphene bilayer: from the Bernal stacking to the unconventional orthorhombic stacking

    NASA Astrophysics Data System (ADS)

    Kim, Gunn; Park, Changwon; Yoon, Mina

    2014-03-01

    In this presentation, we report the electronic properties of bilayer graphene structures with various stackings, which can be formed, for instance, during the structural transition from graphite-to-diamond at high pressure, or at boundaries of stacking domains or at diamond surfaces. We performed ab initio calculations and the Wannier interpolations for accurate two-dimensional band structure with extremely dense (1600 ×1600) k-point grid. Using tight-binding parameters obtained from maximally localized Wanneir function analysis, we also constructed the effective Hamiltonian for the graphene bilayer with various stacking. The overall electronic structures can be described by the relative shift and the coupling of two Dirac cones, depending on their stacking geometry. Our results reveal that external electric field is another parameter to control the electronic properties of the bilayer-graphene. In particular, the external fields significantly enhance the coupling of two Dirac cones, which result in additional or new van Hove singularities near the Fermi level. We compared the electronic structure of the orthorhombic stacking with those of AA and AB stackings. Our study may provide a deeper understanding of sliding effects of multilayer graphene. This work was supported by the Priority Research Center Program (2011-0018395) and the Basic Science Research Program through MEST/NRF (2013R1A1A2009131). This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy.

  10. Crystal Field Splitting is Limiting the Stability and Strength of Ultra-incompressible Orthorhombic Transition Metal Tetraborides

    NASA Astrophysics Data System (ADS)

    Zhang, R. F.; Wen, X. D.; Legut, D.; Fu, Z. H.; Veprek, S.; Zurek, E.; Mao, H. K.

    2016-03-01

    The lattice stability and mechanical strengths of the supposedly superhard transition metal tetraborides (TmB4, Tm = Cr, Mn and Fe) evoked recently much attention from the scientific community due to the potential applications of these materials, as well as because of general scientific interests. In the present study, we show that the surprising stabilization of these compounds from a high symmetry to a low symmetry structure is accomplished by an in-plane rotation of the boron network, which maximizes the in-plane hybridization by crystal field splitting between d orbitals of Tm and p orbitals of B. Studies of mechanical and electronic properties of TmB4 suggest that these tetraborides cannot be intrinsically superhard. The mechanical instability is facilitated by a unique in-plane or out-of-plane weakening of the three-dimensional covalent bond network of boron along different shear deformation paths. These results shed a novel view on the origin of the stability and strength of orthorhombic TmB4, highlighting the importance of combinational analysis of a variety of parameters related to plastic deformation of the crystalline materials when attempting to design new ultra-incompressible, and potentially strong and hard solids.

  11. Crystal Field Splitting is Limiting the Stability and Strength of Ultra-incompressible Orthorhombic Transition Metal Tetraborides.

    PubMed

    Zhang, R F; Wen, X D; Legut, D; Fu, Z H; Veprek, S; Zurek, E; Mao, H K

    2016-01-01

    The lattice stability and mechanical strengths of the supposedly superhard transition metal tetraborides (TmB4, Tm = Cr, Mn and Fe) evoked recently much attention from the scientific community due to the potential applications of these materials, as well as because of general scientific interests. In the present study, we show that the surprising stabilization of these compounds from a high symmetry to a low symmetry structure is accomplished by an in-plane rotation of the boron network, which maximizes the in-plane hybridization by crystal field splitting between d orbitals of Tm and p orbitals of B. Studies of mechanical and electronic properties of TmB4 suggest that these tetraborides cannot be intrinsically superhard. The mechanical instability is facilitated by a unique in-plane or out-of-plane weakening of the three-dimensional covalent bond network of boron along different shear deformation paths. These results shed a novel view on the origin of the stability and strength of orthorhombic TmB4, highlighting the importance of combinational analysis of a variety of parameters related to plastic deformation of the crystalline materials when attempting to design new ultra-incompressible, and potentially strong and hard solids. PMID:26976479

  12. Hydrothermal epitaxy of perovskite thin films

    NASA Astrophysics Data System (ADS)

    Chien, Allen T.

    1998-12-01

    This work details the discovery and study of a new process for the growth of epitaxial single crystal thin films which we call hydrothermal epitaxy. Hydrothermal epitaxy is a low temperature solution route for producing heteroepitaxial thin films through the use of solution chemistry and structurally similar substrates. The application of this synthesis route has led to the growth of a variety of epitaxial perovskite (BaTiOsb3, SrTiOsb3, and Pb(Zr,Ti)Osb3 (PZT)) thin films which provides a simple processing pathway for the formation of other materials of technological interest. BaTiOsb3 and PZT heteroepitaxial thin films and powders were produced by the hydrothermal method at 90-200sp°C using various alkali bases. XRD and TEM analysis shows that, in each case, the films and powders form epitaxially with a composition nearly identical to that of the starting precursors. Sequential growth experiments show that film formation initiates by the nucleation of submicron faceted islands at the step edges of the SrTiOsb3 substrates followed by coalescence after longer growth periods. A Ba-rich interfacial layer between the BaTiOsb3 islands and the SrTiOsb3 surface is seen by cross-section TEM during early growth periods. Electrophoretic and Basp{2+} adsorption data provide a chemical basis for the existence of the interfacial layer. Homoepitaxial growth of SrTiOsb3 on SrTiOsb3 also occurs by island growth, suggesting that the growth mode may be a consequence of the aqueous surface chemistry inherent in the process. Film formation is shown to be affected by any number of factors including type of base, pH, temperature, and substrate pretreatments. Different cation bases (Na-, K-, Rb-, Cs-, TMA-OH) demonstrated pronounced changes in powder and film morphology. For example, smaller cation bases (e.g., NaOH, KOH and RbOH) resulted the formation of 1.5 mum \\{100\\} faceted perovskite PbTiOsb3 blocks while larger cation bases (e.g., CsOH and TMA-OH) produced 500 nm sized

  13. Sequential imposed layer epitaxy of cuprate films

    SciTech Connect

    Laguees, M.; Tebbji, H.; Mairet, V.; Hatterer, C.; Beuran, C.F.; Hass, N.; Xu, X.Z. ); Cavellin, C.D. )

    1994-02-01

    Layer-by-layer epitaxy has been used to grow cuprate films since the discovery of high-Tc compounds. This deposition technique is in principle suitable for the growth of layered crystalline structures. However, the sequential deposition of atomic layer by atomic layer of cuprate compounds has presently not been optimized. Nevertheless, this deposition process is the only one which allows one to build artificial cell structures such as Bi[sub 2]Sr[sub 2]Ca[sub (n[minus]1)]Cu[sub n]O[sub y] with n as large as 10. This process will also be the best one to grow films of the so-called infinite layer phase compounds belonging to the Sr[sub 1[minus]x]Ca[sub x]CuO[sub 2] family, in order to improve the transport properties and the morphological properties of the cuprate films. When performed at high substrate temperature (typically more than 600[degree]C), the layer-by-layer epitaxy of cuprates exhibits usually 3D aggregate nucleation. Then the growth of the film no longer obeys the layer-by-layer sequence imposed during the deposition. We present here two experimental situations of true 2D sequential imposed layer epitaxy; the growth at 500[degree]C under atomic oxygen pressure of Bi[sub 2]Sr[sub 2]CuO[sub 6] and of Sr[sub 1[minus]x]Ca[sub y]CuO[sub 2] phases. 20 refs., 2 figs.

  14. Large area epitaxial germanane for electronic devices

    NASA Astrophysics Data System (ADS)

    Amamou, Walid; Odenthal, Patrick M.; Bushong, Elizabeth J.; O'Hara, Dante J.; Luo, Yunqiu Kelly; van Baren, Jeremiah; Pinchuk, Igor; Wu, Yi; Ahmed, Adam S.; Katoch, Jyoti; Bockrath, Marc W.; Tom, Harry W. K.; Goldberger, Joshua E.; Kawakami, Roland K.

    2015-09-01

    We report the synthesis and transfer of epitaxial germanane (GeH) onto arbitrary substrates by electrochemical delamination and investigate its optoelectronic properties. GeH films with thickness ranging from 1 to 600 nm (2-1000 layers) and areas up to ˜1 cm2 have been reliably transferred and characterized by photoluminescence, x-ray diffraction, and energy-dispersive x-ray spectroscopy. Wavelength dependent photoconductivity measurements on few-layer GeH exhibit an absorption edge and provide a sensitive characterization tool for ultrathin germanane materials. The transfer process also enables the possibility of integrating germanane into vertically stacked heterostructures.

  15. Perspective: Oxide molecular-beam epitaxy rocks!

    SciTech Connect

    Schlom, Darrell G.

    2015-06-01

    Molecular-beam epitaxy (MBE) is the “gold standard” synthesis technique for preparing semiconductor heterostructures with high purity, high mobility, and exquisite control of layer thickness at the atomic-layer level. Its use for the growth of multicomponent oxides got off to a rocky start 30 yr ago, but in the ensuing decades, it has become the definitive method for the preparation of oxide heterostructures too, particularly when it is desired to explore their intrinsic properties. Examples illustrating the unparalleled achievements of oxide MBE are given; these motivate its expanding use for exploring the potentially revolutionary states of matter possessed by oxide systems.

  16. Epitaxial growth dynamics in gallium arsenide

    NASA Astrophysics Data System (ADS)

    Ballestad, Anders

    The problem of a complete theory describing the far-from-equilibrium statistical mechanics of epitaxial crystal growth remains unsolved. Besides its academic importance, this problem is also interesting from the point of view of device manufacturing. In order to improve on the quality and performance of lateral nanostructures at the lengthscales required by today's technology, a better understanding of the physical mechanisms at play during epitaxial growth and their influence on the evolution of the large-scale morphology is required. In this thesis, we present a study of the morphological evolution of GaAs (001) during molecular beam epitaxy by experimental investigation, theoretical considerations and computational modeling. Experimental observations show that initially rough substrates smooth during growth and annealing towards a steady-state interface roughness, as dictated by kinetic roughening theory. This smoothing indicates that there is no need for a destabilizing step-edge barrier in this material system. In fact, generic surface growth models display a much better agreement with experiments when a weak, negative barrier is used. We also observe that surface features grow laterally, as well as vertically during epitaxy. A growth equation that models smoothing combined with lateral growth is the nonlinear, stochastic Kardar-Parisi-Zhang (KPZ) equation. Simulation fits match the experimentally observed surface morphologies quite well, but we argue that this agreement is coincidental and possibly a result of limited dynamic range in our experimental measurements. In light of these findings, we proceed by developing a coupled growth equations (CGE) model that describes the full morphological evolution of both flat and patterned starting surfaces. The resulting fundamental model consists of two coupled, spatially dependent rate equations that describe the interaction between diffusing adatoms and the surface through physical processes such as adatom diffusion

  17. Local transport measurements on epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Baringhaus, J.; Edler, F.; Neumann, C.; Stampfer, C.; Forti, S.; Starke, U.; Tegenkamp, C.

    2013-09-01

    Growth of large-scale graphene is still accompanied by imperfections. By means of a four-tip scanning tunneling and electron microscope (4-tip STM/SEM), the local structure of graphene grown on SiC(0001) was correlated with scanning electron microscope images and spatially resolved transport measurements. The systematic variation of probe spacings and substrate temperature has clearly revealed two-dimensional transport regimes of Anderson localization as well as of diffusive transport. The detailed analysis of the temperature dependent data demonstrates that the local on-top nano-sized contacts do not induce significant strain to the epitaxial graphene films.

  18. Materials issues in molecular beam epitaxy

    SciTech Connect

    Tsao, J.Y.

    1993-12-31

    The technology of crystal growth has advanced enormously during the past two decades; among those advances, the development and refinement of molecular beam epitaxy (MBE) has been among the most important. Crystals grown by MBE are more precisely controlled than those grown by any other method, and today form the basis for many of the most advanced device structures in solid-state physics, electronics and optoelectronics. In addition to its numerous device applications, MBE is also an enormously rich and interesting area of materials science in and of itself. This paper, discusses a few examples of some of these materials issues, organized according to whether they involve bulk, thin films, or surfaces.

  19. Perspective: Oxide molecular-beam epitaxy rocks!

    NASA Astrophysics Data System (ADS)

    Schlom, Darrell G.

    2015-06-01

    Molecular-beam epitaxy (MBE) is the "gold standard" synthesis technique for preparing semiconductor heterostructures with high purity, high mobility, and exquisite control of layer thickness at the atomic-layer level. Its use for the growth of multicomponent oxides got off to a rocky start 30 yr ago, but in the ensuing decades, it has become the definitive method for the preparation of oxide heterostructures too, particularly when it is desired to explore their intrinsic properties. Examples illustrating the unparalleled achievements of oxide MBE are given; these motivate its expanding use for exploring the potentially revolutionary states of matter possessed by oxide systems.

  20. Modeling of epitaxial silicon carbide deposition

    NASA Astrophysics Data System (ADS)

    Veneroni, Alessandro; Omarini, Fabrizio; Moscatelli, Davide; Masi, Maurizio; Leone, Stefano; Mauceri, Marco; Pistone, Giuseppe; Abbondanza, Giuseppe

    2005-02-01

    The availability of reliable chemical kinetics data is still a key factor in designing epitaxial deposition reactors able to obtain electronic grade surface quality for SiC films. Here, a literature mechanism was considered for the gas phase while a new multi species surface one was introduced. That detailed mechanism was embedded in a series of reactor models of different complexity (1D-3D) to realize a multi hierarchy modeling approach. In the framework of horizontal hot wall reactor with multiwafer rotating susceptor, several process parameters were examined.

  1. Graphene nanoribbons epitaxy on boron nitride

    NASA Astrophysics Data System (ADS)

    Lu, Xiaobo; Yang, Wei; Wang, Shuopei; Wu, Shuang; Chen, Peng; Zhang, Jing; Zhao, Jing; Meng, Jianling; Xie, Guibai; Wang, Duoming; Wang, Guole; Zhang, Ting Ting; Watanabe, Kenji; Taniguchi, Takashi; Yang, Rong; Shi, Dongxia; Zhang, Guangyu

    2016-03-01

    In this letter, we report a pilot study on epitaxy of monolayer graphene nanoribbons (GNRs) on hexagonal boron nitride (h-BN). We found that GNRs grow preferentially from the atomic steps of h-BN, forming in-plane heterostructures. GNRs with well-defined widths ranging from ˜15 nm to ˜150 nm can be obtained reliably. As-grown GNRs on h-BN have high quality with a carrier mobility of ˜20 000 cm2 V-1 s-1 for ˜100-nm-wide GNRs at a temperature of 1.7 K. Besides, a moiré pattern induced quasi-one-dimensional superlattice with a periodicity of ˜15 nm for GNR/h-BN was also observed, indicating zero crystallographic twisting angle between GNRs and h-BN substrate. The superlattice induced band structure modification is confirmed by our transport results. These epitaxial GNRs/h-BN with clean surfaces/interfaces and tailored widths provide an ideal platform for high-performance GNR devices.

  2. Uniaxial strain-induced magnetic order transition from E-type to A-type in orthorhombic YMnO{sub 3} from first-principles

    SciTech Connect

    Lin, S. X.; Fang, X. G.; Zhang, A. H.; Lu, X. B.; Gao, J. W.; Gao, X. S.; Zeng, M.; Liu, J.-M.

    2014-10-28

    The spin ordering magnetic structures of orthorhombic YMnO{sub 3} subjected to uniaxial strain have been investigated using first-principles calculations based on density functional theory. On applying compressive uniaxial strain of −0.8% along the b orientation, the spin ordering magnetic structure is predicted to change from E-type to A-type antiferromagnetic orderings. The structure analysis also reveals that the uniaxial strain has a dramatic influence on the Mn-O bond lengths and Mn-O-Mn bond angles, allowing the gradual suppression of the alternation of the long and short Mn-O-Mn bonds in the ab plane. These changes present very interesting possibilities for engineering the spin ordering along with ferroelectric property in orthorhombic YMnO{sub 3}.

  3. Oxidation of orthorhombic titanium aluminide Tl-22AL-25NB in air between 650 and 1000 °C

    NASA Astrophysics Data System (ADS)

    Leyens, C.

    2001-04-01

    The oxidation behavior of orthorhombic titanium aluminide alloy Ti-22Al-25Nb was studied in air between 650 and 1000 °C by isothermal thermogravimetry and postoxidation scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray diffraction. Microhardness measurements were performed after exposure to gage hardening due to nitrogen and oxygen ingress. The parabolic rate constant of Ti-22Al-25Nb was of the same order as conventional titanium alloys and Ti3Al-based titanium aluminides at and below 750 °C. Between 800 and 1000 °C, the oxidation resistance of Ti-22Al-25Nb was as good as that of γ-TiAl based aluminides; however, the growth rate changed from parabolic to linear after several tens of hours at 900 and 1000 °C. The mixed oxide scale consisted of TiO2, AlNbO4, and Al2O3, with TiO2 being the dominant oxide phase. Underneath the oxide scale, a nitride-containing layer formed in the temperature range investigated, and at 1000 °C, internal oxidation was observed below this layer. In all cases, oxygen diffused deeply into the subsurface zone and caused severe embrittlement. Microhardness measurements revealed that Ti-22Al-25Nb was hardened in a zone as far as 300 µm below the oxide scale when exposed to air at 900 °C for 500 h. The peak hardness depended on exposure time and reached five times the average hardness of the bulk material under the above conditions.

  4. Impurity scattering effects on the superconducting properties and the tetragonal-to-orthorhombic phase transition in FeSe

    NASA Astrophysics Data System (ADS)

    Abdel-Hafiez, M.; Pu, Y. J.; Brisbois, J.; Peng, R.; Feng, D. L.; Chareev, D. A.; Silhanek, A. V.; Krellner, C.; Vasiliev, A. N.; Chen, Xiao-Jia

    2016-06-01

    A comprehensive study of the doping dependence of the phase diagram of FeSe-based superconductors is still required due to the lack of a clean and systematic means of doping control. Here, we report on the magneto-optical imaging, thermodynamic and transport properties, as well as in situ angle-resolved photoemission spectroscopy (ARPES) studies of impurity scattering in stoichiometric FeSe single crystals. Co doping at the Fe site is found to decrease the superconducting transition temperature (Tc). The upper critical field and specific heat all indicate a possible multiband superconductivity with strong coupling in the Co-doped system. A remarkable feature in FeSe is that its temperature dependent resistivity exhibits a wide hump at high temperatures, a signature of a crossover from a semiconductinglike behavior to metallic behavior. A structural tetragonal-to-orthorhombic phase transition (Ts) (a consequence of the electronic nematicity) is suppressed by either physical or chemical pressures. Due to the reconstruction of the Fermi surface at Ts, specific heat anomalies at Ts present Δ Cp/Ts≈γn , being γn the Sommerfield coefficient at low temperature. This reflect an additional electronic instability in the FeSe1 -xSx system. ARPES data between 180 and 282 K indicates the existence of a chemical potential shift with increasing thermal excitations, resulting in a change of the Fermi-surface topology and exhibiting a semimetal behavior. We found that the temperature-induced Lifshitz transition is much higher than the temperature for the nematic order.

  5. Orthorhombic crystals and three-dimensional structure of the potent toxin II from the scorpion Androctonus australis Hector.

    PubMed Central

    Fontecilla-Camps, J C; Habersetzer-Rochat, C; Rochat, H

    1988-01-01

    Orthorhombic crystals (space group P212121, a = 45.94 A, b = 40.68 A, c = 29.93 A) of the potent scorpion alpha-toxin II from Androctonus australis Hector were grown using sterile techniques. The structure was solved by a combination of heavy-atom and model phasing. Subsequently, it was refined at 1.8 A resolution by a fast-Fourier restrained least-squares procedure. The crystallographic R factor is 0.152 for data with 7.0 A greater than d greater than 1.8 A and F greater than 2.5 sigma (F) and 0.177 when all data are considered. Eighty-nine solvent molecules have been incorporated into the model. The dense core formed by the alpha-helical and antiparallel beta-sheet moieties and three of the four disulfide bridges is similar in variant 3, a toxin purified from the North American scorpion Centruroides sculpturatus, and in toxin II. However, the two molecules differ markedly in the orientation of loops protruding from the core. Toxin II seems to contain several highly ordered solvent molecules. Eight of them occupy a cavity consisting of the C-terminal region and a loop found only in scorpion alpha-toxins. The highly reactive and pharmacologically important Lys-58 is found at one of the extremes of this cavity, where it establishes a series of hydrogen bonds with protein and solvent atoms. The reactivities of the five lysine residues of toxin II are highly correlated with the formation of hydrogen bonds, hydrophobic interactions, and salt links. PMID:3174645

  6. Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses.

    PubMed

    Xia, Jing; Li, Xuan-Ze; Huang, Xing; Mao, Nannan; Zhu, Dan-Dan; Wang, Lei; Xu, Hua; Meng, Xiang-Min

    2016-01-28

    Anisotropic layered semiconductors have attracted significant interest due to the huge possibility of bringing new functionalities to thermoelectric, electronic and optoelectronic devices. Currently, most reports on anisotropy have concentrated on black phosphorus and ReS2, less effort has been contributed to other layered materials. In this work, two-dimensional (2D) orthorhombic SnS flakes on a large scale have been successfully synthesized via a simple physical vapor deposition method. Angle-dependent Raman spectroscopy indicated that the orthorhombic SnS flakes possess a strong anisotropic Raman response. Under a parallel-polarization configuration, the peak intensity of Ag (190.7 cm(-1)) Raman mode reaches the maximum when incident light polarization is parallel to the armchair direction of the 2D SnS flakes, which strongly suggests that the Ag (190.7 cm(-1)) mode can be used to determine the crystallographic orientation of the 2D SnS. In addition, temperature-dependent Raman characterization confirmed that the 2D SnS flakes have a higher sensitivity to temperature than graphene, MoS2 and black phosphorus. These results are useful for the future studies of the optical and thermal properties of 2D orthorhombic SnS. PMID:26698370

  7. Application of orthorhombic standardization in magnetic susceptibility studies of localized spin models with S=1, 3/2, 2, 5/2

    NASA Astrophysics Data System (ADS)

    Pełka, Robert; Rudowicz, Czesław

    2016-09-01

    The standardization idea is nowadays tacitly accepted in EMR area, however, its usefulness in magnetism studies has not been fully recognized as yet. This idea arises due to intrinsic features of orthorhombic Hamiltonians of any physical nature, including the crystal (ligand) field (CF/LF) Hamiltonians or the zero-field splitting (ZFS) ones. Standardization limits the ratio of the orthorhombic parameter to the axial one to a fixed range between 0 and a specific value that depends on the notation used. For the ZFS parameters expressed in the conventional spin Hamiltonian (SH) notation the ratio λ=E/D can always be limited to the range (0, ±1/3) by appropriate choice of coordinate system. Implications of standardization of orthorhombic spin Hamiltonians for interpretation of experimental magnetic susceptibility data are considered. Using a numerical example, we show the existence of alternative solutions for ZFS parameters potentially obtainable from fitting experimental magnetic data and discuss their importance. For the first time algebraic applications of the standardization to the expressions for magnetic susceptibility tensor derived earlier for localized spin models with S=1, 3/2, 2, 5/2 and with rhombic anisotropy are explored. The numerical and algebraic results allow us to formulate an 'invariance principle'. These considerations facilitate interpretation of experimental magnetic data and provide an additional check of correctness of analytical magnetic susceptibility expressions.

  8. Epitaxial growth of fcc Cr on Au(100)

    SciTech Connect

    Durbin, S.M.; Berman, L.E.; Batterman, B.W.; Brodsky, M.B.; Hamaker, H.C.

    1988-04-15

    Synchrotron x-ray diffraction and anomalous dispersion measurements of 25A Cr layers epitaxially grown on (100) Au surfaces indicate the presence of fcc Cr domains, while extended x-ray absorption fine-structure spectra are consistent with the usual bcc phase of Cr. Together these data suggest that the fcc phase is a major fraction of the larger epitaxial Cr domains, but that most Cr atoms are in a bcc environment with much smaller domain sizes. This unusual, epitaxially stabilized fcc Cr structure may be related to previously reported low-temperature resistance anomalies.

  9. A proposal for epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultravacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10 to the -14th torr or better pressures, semiinfinite pumping speeds, and large ultravacuum volume without walls. These space ultravacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials. Advanced thin film materials to be epitaxially grown in space include semiconductors, magnetic materials, and thin film high temperature superconductors.

  10. Epitaxial EuO thin films on GaAs

    SciTech Connect

    Swartz, A. G.; Ciraldo, J.; Wong, J. J. I.; Li Yan; Han Wei; Lin Tao; Shi, J.; Kawakami, R. K.; Mack, S.; Awschalom, D. D.

    2010-09-13

    We demonstrate the epitaxial growth of EuO on GaAs by reactive molecular beam epitaxy. Thin films are grown in an adsorption-controlled regime with the aid of an MgO diffusion barrier. Despite the large lattice mismatch, it is shown that EuO grows well on MgO(001) with excellent magnetic properties. Epitaxy on GaAs is cube-on-cube and longitudinal magneto-optic Kerr effect measurements demonstrate a large Kerr rotation of 0.57 deg., a significant remanent magnetization, and a Curie temperature of 69 K.

  11. Point defect balance in epitaxial GaSb

    SciTech Connect

    Segercrantz, N. Slotte, J.; Makkonen, I.; Kujala, J.; Tuomisto, F.; Song, Y.; Wang, S.

    2014-08-25

    Positron annihilation spectroscopy in both conventional and coincidence Doppler broadening mode is used for studying the effect of growth conditions on the point defect balance in GaSb:Bi epitaxial layers grown by molecular beam epitaxy. Positron annihilation characteristics in GaSb are also calculated using density functional theory and compared to experimental results. We conclude that while the main positron trapping defect in bulk samples is the Ga antisite, the Ga vacancy is the most prominent trap in the samples grown by molecular beam epitaxy. The results suggest that the p–type conductivity is caused by different defects in GaSb grown with different methods.

  12. Multifunctional epitaxial systems on silicon substrates

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srinivasa Rao; Prater, John Thomas; Narayan, Jagdish

    2016-09-01

    Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO3, SrTiO3 (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such as threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called "domain matching epitaxy," is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%-25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation "smart" devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin-film heterostructure systems that span a

  13. Low energy dislocation structures in epitaxy

    NASA Technical Reports Server (NTRS)

    Van Der Merwe, Jan H.; Woltersdorf, J.; Jesser, W. A.

    1986-01-01

    The principle of minimum energy was applied to epitaxial interfaces to show the interrelationship beteen misfit, overgrowth thickness and misfit dislocation spacing. The low energy dislocation configurations were presented for selected interfacial geometries. A review of the interfacial energy calculations was made and a critical assessment of the agreement between theory and experiment was presented. Modes of misfit accommodation were presented with emphasis on the distinction between kinetic effects and equilibrium conditions. Two-dimensional and three-dimensional overgrowths were treated together with interdiffusion-modified interfaces, and several models of interfacial structure were treated including the classical and the current models. The paper is concluded by indicating areas of needed investigation into interfacial structure.

  14. Transport properties of epitaxial lift off films

    NASA Technical Reports Server (NTRS)

    Mena, R. A.; Schacham, S. E.; Young, P. G.; Haugland, E. J.; Alterovitz, S. A.

    1993-01-01

    Transport properties of epitaxially lifted-off (ELO) films were characterized using conductivity, Hall, and Shubnikov-de Haas measurements. A 10-15 percent increase in the 2D electron gas concentration was observed in these films as compared with adjacent conventional samples. We believe this result to be caused by a backgating effect produced by a charge build up at the interface of the ELO film and the quartz substrate. This increase results in a substantial decrease in the quantum lifetime in the ELO samples, by 17-30 percent, but without a degradation in carrier mobility. Under persistent photoconductivity, only one subband was populated in the conventional structure, while in the ELO films the population of the second subband was clearly visible. However, the increase of the second subband concentration with increasing excitation is substantially smaller than anticipated due to screening of the backgating effect.

  15. Mechanistic study of organometallic vapor phase epitaxy

    SciTech Connect

    Stringfellow, G.B.

    1990-12-31

    Only AsH{sub 3} and PH{sub 3} have been used as the group V source molecules for organometallic vapor phase epitaxy (OMVPE) of III/V semiconductors until recently, since they have been the only precursors yielding device quality materials. This paper reviews recent work on the pyrolysis of individual organometallic molecules, with emphasis on the group V sources, including: (1) the methylarsines, di- and tri-methylarsine, (2) the ethylarsines, mono-, di-, and tri-ethylarsine, and (3) the singly substituted tertiarybutyl arsine and phosphine molecules. The pyrolysis and growth reactions occurring when both group III and group V precursors are present simultaneously, i.e., the reactions occuring during OMVPE growth of several III/V semiconductors, are also briefly reviewed.

  16. Mechanistic study of organometallic vapor phase epitaxy

    SciTech Connect

    Stringfellow, G.B.

    1990-01-01

    Only AsH{sub 3} and PH{sub 3} have been used as the group V source molecules for organometallic vapor phase epitaxy (OMVPE) of III/V semiconductors until recently, since they have been the only precursors yielding device quality materials. This paper reviews recent work on the pyrolysis of individual organometallic molecules, with emphasis on the group V sources, including: (1) the methylarsines, di- and tri-methylarsine, (2) the ethylarsines, mono-, di-, and tri-ethylarsine, and (3) the singly substituted tertiarybutyl arsine and phosphine molecules. The pyrolysis and growth reactions occurring when both group III and group V precursors are present simultaneously, i.e., the reactions occuring during OMVPE growth of several III/V semiconductors, are also briefly reviewed.

  17. Shaping metal nanocrystals through epitaxial seeded growth

    SciTech Connect

    Habas, Susan E.; Lee, Hyunjoo; Radmilovic, Velimir; Somorjai,Gabor A.; Yang, Peidong

    2008-02-17

    Morphological control of nanocrystals has becomeincreasingly important, as many of their physical and chemical propertiesare highly shape-dependent. Nanocrystal shape control for both single andmultiple material systems, however, remains fairly empirical andchallenging. New methods need to be explored for the rational syntheticdesign of heterostructures with controlled morphology. Overgrowth of adifferent material on well-faceted seeds, for example, allows for the useof the defined seed morphology to control nucleation and growth of thesecondary structure. Here, we have used highly faceted cubic Pt seeds todirect the epitaxial overgrowth of a secondary metal. We demonstrate thisconcept with lattice matched Pd to produce conformal shape-controlledcore-shell particles, and then extend it to lattice mismatched Au to giveanisotropic growth. Seeding with faceted nanocrystals may havesignificant potential towards the development of shape-controlledheterostructures with defined interfaces.

  18. Magnetic properties of novel epitaxial films

    SciTech Connect

    Bader, S.D.; Moog, E.R.

    1986-09-01

    The surface magneto-optic Kerr effect (SMOKE) is used to explore the magnetism of ultra-thin Fe Films extending into the monolayer regime. Both bcc ..cap alpha..-Fe and fcc ..gamma..-Fe single-crystalline, multilayer films are prepared on the bulk-terminated (1 x 1) structures of Au(100) and Cu(100), respectively. The characterizations of epitaxy and growth mode are performed using low energy electron diffraction and Auger electron spectroscopy. Monolayer-range Fe/Au(100) is ferromagnetic with a lower Curie temperature than bulk ..cap alpha..-Fe. The controversial ..gamma..-Fe/Cu(100) system exhibits a striking, metastable, surface magnetic phase at temperatures above room temperature, but does not exhibit bulk ferromagnetism.

  19. Transient regimes and crossover for epitaxial surfaces.

    PubMed

    Haselwandter, Christoph A; Vvedensky, Dimitri D

    2010-02-01

    We apply a formalism for deriving stochastic continuum equations associated with lattice models to obtain equations governing the transient regimes of epitaxial growth for various experimental scenarios and growth conditions. The first step of our methodology is the systematic transformation of the lattice model into a regularized stochastic equation of motion that provides initial conditions for differential renormalization-group (RG) equations for the coefficients in the regularized equation. The solutions of the RG equations then yield trajectories that describe the original model from the transient regimes, which are of primary experimental interest, to the eventual crossover to the asymptotically stable fixed point. We first consider regimes defined by the relative magnitude of deposition noise and diffusion noise. If the diffusion noise dominates, then the early stages of growth are described by the Mullins-Herring (MH) equation with conservative noise. This is the classic regime of molecular-beam epitaxy. If the diffusion and deposition noise are of comparable magnitude, the transient equation is the MH equation with nonconservative noise. This behavior has been observed in a recent report on the growth of aluminum on silicone oil surfaces [Z.-N. Fang, Thin Solid Films 517, 3408 (2009)]. Finally, the regime where deposition noise dominates over diffusion noise has been observed in computer simulations, but does not appear to have any direct experimental relevance. For initial conditions that consist of a flat surface, the Villain-Lai-Das Sarma (VLDS) equation with nonconservative noise is not appropriate for any transient regime. If, however, the initial surface is corrugated, the relative magnitudes of terms can be altered to the point where the VLDS equation with conservative noise does indeed describe transient growth. This is consistent with the experimental analysis of growth on patterned surfaces [H.-C. Kan, Phys. Rev. Lett. 92, 146101 (2004); T

  20. Twenty years of molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Cho, A. Y.

    1995-05-01

    The term "molecular beam epitaxy" (MBE) was first used in one of our crystal growth papers in 1970, after having conducted extensive surface physics studies in the late 1960's of the interaction of atomic and molecular beams with solid surfaces. The unique feature of MBE is the ability to prepare single crystal layers with atomic dimensional precision. MBE sets the standard for epitaxial growth and has made possible semiconductor structures that could not be fabricated with either naturally existing materials or by other crystal growth techniques. MBE led the crystal growth technologies when it prepared the first semiconductor quantum well and superlattice structures that gave unexpected and exciting electrical and optical properties. For example, the discovery of the fractional quantized Hall effect. It brought experimental quantum physics to the classroom, and practically all major universities throughout the world are now equipped with MBE systems. The fundamental principles demonstrated by the MBE growth of III-V compound semiconductors have also been applied to the growth of group IV, II-VI, metal, and insulating materials. For manufacturing, the most important criteria are uniformity, precise control of the device structure, and reproducibility. MBE has produced more lasers (3 to 5 million per month for compact disc application) than any other crystal growth technique in the world. New directions for MBE are to incorporate in-situ, real-time monitoring capabilities so that complex structures can be precisely "engineered". In the future, as environmental concerns increase, the use of toxic arsine and phosphine may be limited. Successful use of valved cracker cells for solid arsenic and phosphorus has already produced InP based injection lasers.

  1. Critical issues of complex, epitaxial oxide growth and integration with silicon by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lettieri, James

    Molecular beam epitaxy was used to grow epitaxial oxides on silicon substrates. The growth of BaO, SrO, EuO, and SrTiO3 are discussed with a focus on the general theme of integration of functional, epitaxial oxides into a silicon environment. Oxidation studies of various metal systems relevant for oxide on silicon epitaxy and integration are reported. Results demonstrate the catalytic nature of an alkaline earth metal at small concentrations to enable the oxidation of the poorly oxidizing metals at pressures lower than during deposition of the pure metal alone. Results from the deposition of various elements are presented. The aspects of the growth of alkaline earth oxides on silicon are explained. The transition from the silicon to the alkaline earth oxide as described through reflection high energy electron diffraction (RHEED) is presented and used to understand issues related to each stage of the growth. High quality, commensurate alkaline earth oxides are grown on silicon at room temperature and P O2 background ˜ 3 x 10-8 Torr. The growth of alkaline earth and rare earth oxide solid solutions and rare earth oxides (EuO) are described. The first reported epitaxial EuO on silicon is reported, enabled by the use of a thin buffer layer (13 A) of SrO. Using a strategy of transition from simple structures to the more complex, the growth of a perovskite (SrTiO3) on silicon is demonstrated. Growth of a structurally optimized perovskite structure entails the transformation of a thin interfacial alkaline earth oxide layer into the initial perovskite cells. SrTiO3 and La-doped SrTiO3 on silicon are used to integrate a piezoelectric relevant for microelectromechanical systems (MEMS) applications and a ferroelectric relevant for a ferroelectric random access memory (FRAM) architecture. A d33 value of over 400 pm/V under bias is measured for the piezoelectric (Pb(Mn1/3Nb 2/3)O3 -PbTiO3) and a remanent polarization of 25 muC/cm2 and fatigue free behavior (>1012 cycles) for a

  2. Relation between critical current densities and epitaxy of YBa2Cu3O7 thin films on MgO(100) and SrTiO3(100)

    NASA Astrophysics Data System (ADS)

    Kromann, R.; Bilde-Sorensen, J. B.; de Reus, R.; Andersen, N. H.; Vase, P.; Freltoft, T.

    1992-04-01

    Thin films of YBa2Cu3O7 with a thickness of about 250 nm were grown on single-crystal MgO(100) and SrTO3(100) substrates by laser ablation, under identical conditions, and their orientations were investigated using XRD and TEM techniques. The films were found to have ideal 1:2:3 composition, and no impurity phases were observed. All films were epitaxial with the c axis oriented perpendicular to the substrate, although minor traces of a-axis-oriented material were observed. Larger current densities were observed in films on SrTiO3 than on MgO. The difference is attributed to the larger in-plane mosaicity of the films deposited on MgO, which was found to be comparable to the orthorhombic splitting. The lattice mismatch between the film and the substrate caused no measurable strain in the films.

  3. Formation Of Ohmic Gold Contacts On Epitaxial GaAs

    NASA Technical Reports Server (NTRS)

    Hecht, Michael H.; Bell, L. Doug; Kaiser, William J.

    1991-01-01

    New low-temperature procedure used to deposit ohmic gold contacts on gallium arsenide epitaxial films, forming ohmic electrical contacts. Keeping wafer in vacuum until metallization prevents formation of rectifying contacts.

  4. Epitaxial CoSi2 on MOS devices

    DOEpatents

    Lim, Chong Wee; Shin, Chan Soo; Petrov, Ivan Georgiev; Greene, Joseph E.

    2005-01-25

    An Si.sub.x N.sub.y or SiO.sub.x N.sub.y liner is formed on a MOS device. Cobalt is then deposited and reacts to form an epitaxial CoSi.sub.2 layer underneath the liner. The CoSi.sub.2 layer may be formed through a solid phase epitaxy or reactive deposition epitaxy salicide process. In addition to high quality epitaxial CoSi.sub.2 layers, the liner formed during the invention can protect device portions during etching processes used to form device contacts. The liner can act as an etch stop layer to prevent excessive removal of the shallow trench isolation, and protect against excessive loss of the CoSi.sub.2 layer.

  5. Epitaxial nickel disilicide with low resistivity and excellent reliability

    NASA Astrophysics Data System (ADS)

    Hsin, Cheng-Lun; Deng, Shiu-Sheng

    2016-02-01

    Ultra-thin epitaxial NiSi2 was formed, and its structure was examined by electron microscopy and x-ray diffraction. Compared with previous reports, the measured resistivity of the epitaxial NiSi2 was unprecedentedly low, reaching 7 μΩ cm in the experimental results and up to 14.93 μΩ cm after modification. The reliability, which was investigated under different temperatures and current densities to understand its electronic characteristics, was 1.5 times better than that of the conventional polycrystalline counterpart. Black’s equation and the measured mean-time-to-failure (MTTF) were used to obtain the reliability characteristics of epitaxial and poly-NiSi2. Confidence intervals at 95% for each MTTF confirmed the single failure mode. The electromigration phenomenon was observed to be the failure mechanism. Our results provide evidence that epitaxial NiSi2 is a promising contact material for future electronics.

  6. Optical properties of epitaxial YAG:Yb films

    NASA Astrophysics Data System (ADS)

    Ubizskii, S. B.; Matkovskii, A. O.; Melnyk, S. S.; Syvorotka, I. M.; Müller, V.; Peters, V.; Petermann, K.; Beyertt, A.; Giesen, A.

    2004-03-01

    This work deals with the investigation of the optical properties of epitaxial YAG:Yb films and their suitability as gain media for thin disk lasers. Epitaxial films of YAG:Yb were grown by the liquid phase epitaxy method in air on the (111)-oriented YAG substrates. The thickness of the grown layers was from 30 to 260 m. The melt composition was varied to obtain the desired doping level from 10 to 15% and to optimize the optical properties. The best epitaxial films were colourless and had an Yb3+ luminescence lifetime of more than 950 s, which is very close to the intrinsic lifetime of the Yb ions in the bulk YAG single crystals. These films were tested in a thin disk laser setup with 24 absorption passes of the 940 nm pumping beam. The maximum output power at 1.03 m wavelength in CW operation reached more than 60 W and the optical efficiency was close to 30%.

  7. Epitaxy of GaN Nanowires on Graphene.

    PubMed

    Kumaresan, Vishnuvarthan; Largeau, Ludovic; Madouri, Ali; Glas, Frank; Zhang, Hezhi; Oehler, Fabrice; Cavanna, Antonella; Babichev, Andrey; Travers, Laurent; Gogneau, Noelle; Tchernycheva, Maria; Harmand, Jean-Christophe

    2016-08-10

    Epitaxial growth of GaN nanowires on graphene is demonstrated using molecular beam epitaxy without any catalyst or intermediate layer. Growth is highly selective with respect to silica on which the graphene flakes, grown by chemical vapor deposition, are transferred. The nanowires grow vertically along their c-axis and we observe a unique epitaxial relationship with the ⟨21̅1̅0⟩ directions of the wurtzite GaN lattice parallel to the directions of the carbon zigzag chains. Remarkably, the nanowire density and height decrease with increasing number of graphene layers underneath. We attribute this effect to strain and we propose a model for the nanowire density variation. The GaN nanowires are defect-free and they present good optical properties. This demonstrates that graphene layers transferred on amorphous carrier substrates is a promising alternative to bulk crystalline substrates for the epitaxial growth of high quality GaN nanostructures. PMID:27414518

  8. Epitaxial growth of Si deposited on (100) Si

    NASA Astrophysics Data System (ADS)

    Hung, L. S.; Lau, S. S.; von Allmen, M.; Mayer, J. W.; Ullrich, B. M.; Baker, J. E.; Williams, P.; Tseng, W. F.

    1980-11-01

    Epitaxial growth of deposited amorphous Si on chemically cleaned (100) Si has been found and layer-by-layer growth occurred at rates comparable to those in self-ion-implanted-amorphous Si. There is no evidence for appreciable oxygen penetration into the deposited layer during storage in air. The critical factors in achieving epitaxial growth are fast (˜50 Å/sec) deposition of Si onto a surface cleaned with a HF dip as a last rinse before loading into the vacuum system. Channeling and transmission electron microscopy measurements indicated that the epitaxial layers are essentially defect free. Secondary-ion mass spectroscopic analysis showed about 1014 oxygen/cm2 at the amorphous/crystal interface. With either higher interfacial oxygen coverage or slow (˜2 Å/sec) deposition, epitaxial growth rates are significantly slower.

  9. Coincident-site lattice matching during van der Waals epitaxy

    PubMed Central

    Boschker, Jos E.; Galves, Lauren A.; Flissikowski, Timur; Lopes, Joao Marcelo J.; Riechert, Henning; Calarco, Raffaella

    2015-01-01

    Van der Waals (vdW) epitaxy is an attractive method for the fabrication of vdW heterostructures. Here Sb2Te3 films grown on three different kind of graphene substrates (monolayer epitaxial graphene, quasi freestanding bilayer graphene and the SiC (6√3 × 6√3)R30° buffer layer) are used to study the vdW epitaxy between two 2-dimensionally (2D) bonded materials. It is shown that the Sb2Te3 /graphene interface is stable and that coincidence lattices are formed between the epilayers and substrate that depend on the size of the surface unit cell. This demonstrates that there is a significant, although relatively weak, interfacial interaction between the two materials. Lattice matching is thus relevant for vdW epitaxy with two 2D bonded materials and a fundamental design parameter for vdW heterostructures. PMID:26658715

  10. Improved process for epitaxial deposition of silicon on prediffused substrates

    NASA Technical Reports Server (NTRS)

    Clarke, M. G.; Halsor, J. L.; Word, J. C.

    1968-01-01

    Process for fabricating integrated circuits uniformly deposits silicon epitaxially on prediffused substrates without affecting the sublayer diffusion pattern. Two silicon deposits from different sources, and deposited at different temperatures, protect the sublayer pattern from the silicon tetrachloride reaction.

  11. Free Carriers versus Excitons in CH3NH3PbI3 Perovskite Thin Films at Low Temperatures: Charge Transfer from the Orthorhombic Phase to the Tetragonal Phase.

    PubMed

    Phuong, Le Quang; Yamada, Yasuhiro; Nagai, Masaya; Maruyama, Naoki; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2016-07-01

    We have investigated the dynamic optical properties of CH3NH3PbI3 (MAPbI3) perovskite thin films at low temperatures using time-resolved photoluminescence, optical transient absorption (TA), and THz TA spectroscopy. Optical spectroscopic results indicate that the high-temperature tetragonal phase still remains in the MAPbI3 thin films at low temperatures in addition to the major orthorhombic phase. The fast charge transfer from the orthorhombic phase to the tetragonal phase is likely to suppress the formation of excitons in the orthorhombic phase. Consequently, the near-band-edge optical responses of the photocarriers in both the tetragonal and orthorhombic phases of the MAPbI3 thin films are more accurately described by a free-carrier model, rather than an excitonic model even at low temperatures. PMID:27269590

  12. Growth of epitaxial thin films by pulsed laser ablation

    SciTech Connect

    Lowndes, D.H.

    1992-01-01

    High-quality, high-temperature superconductor (HTSc) films can be grown by the pulsed laser ablation (PLA) process. This article provides a detailed introduction to the advantages and curent limitations of PLA for epitaxial film growth. Emphasis is placed on experimental methods and on exploitation of PLA to control epitaxial growth at either the unit cell or the atomic-layer level. Examples are taken from recent HTSc film growth. 33 figs, 127 refs. (DLC)

  13. Growth of epitaxial thin films by pulsed laser ablation

    SciTech Connect

    Lowndes, D.H.

    1992-10-01

    High-quality, high-temperature superconductor (HTSc) films can be grown by the pulsed laser ablation (PLA) process. This article provides a detailed introduction to the advantages and curent limitations of PLA for epitaxial film growth. Emphasis is placed on experimental methods and on exploitation of PLA to control epitaxial growth at either the unit cell or the atomic-layer level. Examples are taken from recent HTSc film growth. 33 figs, 127 refs. (DLC)

  14. Microstructure and Mechanics of Superconductor Epitaxy via the Chemical Solution Deposition Method

    SciTech Connect

    Frederick F. Lange

    2006-11-30

    funding was intermittent to say the least, and funding to support the student and the research expenses has to be supplemented by Lange’s gift funds. During the first part of the second year, strontium zirconate was identified as an alternative to lanthanum manganite as a buffer layer for use on the IBAD MgO superconducting wire. A lattice parameter of 4.101 Angstroms offers a reduced lattice mismatch between the MgO and SrZrO3. Studies were focused on investigating hybrid precursor routes, combining Sr acetate with a number of different Zr alkoxides. Initial results from heat treating precursors to form powders are positive with the formation of orthorhombic SrZrO3 at temperatures between 800°C and 1100°C under a reducing atmosphere of Ar – 5% H2. Buffer layer research on RABiTS substrates were centered on GdAlO3 (3.71 Å) and YAlO3 (3.68 Å) buffer layer materials. Powder experiments in YAlO3 have shown the perovskite phase to be metastable at processing temperatures below 1500 °C. Experiments involving spin coating of YAlO3 precursors have found significant problems involved with wettability of the YAlO3 precursor (Yttrium acetate, Aluminum tri-sec butoxide, DI water and Formic Acid) on RABiTS substrates; this, and the demise of the funds precluded further research using YAlO3. The diminished funds for the second year, and the small, tricked funds during the third year lead to a redirection of the student to another research area., and a stop to any experimental achievements that were much too ambition relative to the available funds. The only positive results obtained during this latter period was the understanding why two dissimilar structures could result in an epitaxial relation. It was shown that two rules of crystal chemistry, cation/anion coordination and charge balance, could be applied to understand the epitaxy of SrTiO3 on Ni c(2 X 2)S, TiO2 (anatase) on LaAlO3, TiO2 (rutile) on r-plane Al2O3, and Zr1-x(Yx)O2 on (0001) Al2O3. This new understanding of

  15. Epitaxial patterning of thin-films: conventional lithographies and beyond

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Krishnan, Kannan M.

    2014-09-01

    Thin-film based novel magnetic and electronic devices have entered a new era in which the film crystallography, structural coherence, and epitaxy play important roles in determining their functional properties. The capabilities of controlling such structural and functional properties are being continuously developed by various physical deposition technologies. Epitaxial patterning strategies further allow the miniaturization of such novel devices, which incorporates thin-film components into nanoscale architectures while keeping their functional properties unmodified from their ideal single-crystal values. In the past decade, epitaxial patterning methods on the laboratory scale have been reported to meet distinct scientific inquires, in which the techniques and processes used differ from one to the other. In this review we summarize many of these pioneering endeavors in epitaxial patterning of thin-film devices that use both conventional and novel lithography techniques. These methods demonstrate epitaxial patterning for a broad range of materials (metals, oxides, and semiconductors) and cover common device length scales from micrometer to sub-hundred nanometer. Whilst we have been motivated by magnetic materials and devices, we present our outlook on developing systematic-strategies for epitaxial patterning of functional materials which will pave the road for the design, discovery and industrialization of next-generation advanced magnetic and electronic nano-devices.

  16. Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses

    NASA Astrophysics Data System (ADS)

    Xia, Jing; Li, Xuan-Ze; Huang, Xing; Mao, Nannan; Zhu, Dan-Dan; Wang, Lei; Xu, Hua; Meng, Xiang-Min

    2016-01-01

    Anisotropic layered semiconductors have attracted significant interest due to the huge possibility of bringing new functionalities to thermoelectric, electronic and optoelectronic devices. Currently, most reports on anisotropy have concentrated on black phosphorus and ReS2, less effort has been contributed to other layered materials. In this work, two-dimensional (2D) orthorhombic SnS flakes on a large scale have been successfully synthesized via a simple physical vapor deposition method. Angle-dependent Raman spectroscopy indicated that the orthorhombic SnS flakes possess a strong anisotropic Raman response. Under a parallel-polarization configuration, the peak intensity of Ag (190.7 cm-1) Raman mode reaches the maximum when incident light polarization is parallel to the armchair direction of the 2D SnS flakes, which strongly suggests that the Ag (190.7 cm-1) mode can be used to determine the crystallographic orientation of the 2D SnS. In addition, temperature-dependent Raman characterization confirmed that the 2D SnS flakes have a higher sensitivity to temperature than graphene, MoS2 and black phosphorus. These results are useful for the future studies of the optical and thermal properties of 2D orthorhombic SnS.Anisotropic layered semiconductors have attracted significant interest due to the huge possibility of bringing new functionalities to thermoelectric, electronic and optoelectronic devices. Currently, most reports on anisotropy have concentrated on black phosphorus and ReS2, less effort has been contributed to other layered materials. In this work, two-dimensional (2D) orthorhombic SnS flakes on a large scale have been successfully synthesized via a simple physical vapor deposition method. Angle-dependent Raman spectroscopy indicated that the orthorhombic SnS flakes possess a strong anisotropic Raman response. Under a parallel-polarization configuration, the peak intensity of Ag (190.7 cm-1) Raman mode reaches the maximum when incident light polarization

  17. The Controller Synthesis of Metastable Oxides Utilizing Epitaxy and Epitaxial Stabilization

    SciTech Connect

    Schlom, Darrell

    2003-12-02

    Molecular beam epitaxy (MBE) has achieved unparalleled control in the integration of semiconductors at the nanometer. These advances were made through the use of epitaxy, epitaxial stabilization, and a combination of composition-control techniques including adsorption-controlled growth and RHEED-based composition control that we have developed, understood, and utilized for the growth of oxides. Also key was extensive characterization (utilizing RHEED, four-circle x-ray diffraction, AFM, TEM, and electrical characterization techniques) in order to study growth modes, optimize growth conditions, and probe the structural, dielectric, and ferroelectric properties of the materials grown. The materials that we have successfully engineered include titanates (PbTiO3, Bi4Ti3O12), tantalates (SrBi2Ta2O9), and niobates (SrBi2Nb2O9); layered combinations of these perovskite-related materials (Bi4Ti3O12-SrTiO3 and Bi4Ti3O12-PbTiO3 Aurivillius phases and metastable PbTiO3/SrTiO3 and BaTiO3/SrTiO3 superlattices), and new metastable phases (Srn+1TinO3n+1 Ruddlesden-Popper phases). The films were grown by reactive MBE and pulsed laser deposition (PLD). Many of these materials are either new or have been synthesized with the highest perfection ever reported. The controlled synthesis of such layered oxide heterostructures offers great potential for tailoring the superconducting, ferroelectric, and dielectric properties of these materials. These properties are important for energy technologies.

  18. Lattice dynamics and spin-phonon coupling in orthorhombic Eu1-xHoxMnO3 (x ≤0.3 ) studied by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Elsässer, S.; Geurts, J.; Mukhin, A. A.; Balbashov, A. M.

    2016-02-01

    Eu1-xHoxMnO3 with x <0.5 has an orthorhombic perovskite structure, where the partial substitution of europium by holmium increases the orthorhombic distortion and changes the low-temperature magnetic structure from canted antiferromagnetic to the multiferroic ground state with cycloidal spin arrangement for x >0.2 . We employ polarized, temperature-dependent Raman spectroscopy to study the lattice dynamics and spin-phonon coupling (SPC) effects for the two representative compositions x =0.1 and x =0.3 . We observe an enhancement of phonon frequencies by Ho3+ substitution and we use the Ag(4 ) mode as a measure to evaluate the orthorhombic distortion angle θ . SPC manifests itself as mode-specific softening for T <100 K, induced by the magnetic ordering of Mn3+ spins. Furthermore, we present evidence that the hitherto elusive Raman peak at ≈650 cm-1 is a phonon of B3 g symmetry and ascribe it to the B3 g(1 ) out-of-phase MnO6-breathing mode. We show that this mode has the strongest SPC effect of all observed phonon modes, a fact which we explain by the participation of the apical O(1) ions, modulating the Mn-O(1)-Mn bond whose SPC contribution was hitherto not accessible. Finally, we present a quantitative evaluation of the SPC contribution by the antiferromagnetic plane-to-plane coupling through the Mn-O(1)-Mn bonds and discriminate if from the in-plane ferromagnetic Mn-O(2)-Mn part.

  19. Renormalization of stochastic lattice models: epitaxial surfaces.

    PubMed

    Haselwandter, Christoph A; Vvedensky, Dimitri D

    2008-06-01

    We present the application of a method [C. A. Haselwandter and D. D. Vvedensky, Phys. Rev. E 76, 041115 (2007)] for deriving stochastic partial differential equations from atomistic processes to the morphological evolution of epitaxial surfaces driven by the deposition of new material. Although formally identical to the one-dimensional (1D) systems considered previously, our methodology presents substantial additional technical issues when applied to two-dimensional (2D) surfaces. Once these are addressed, subsequent coarse-graining is accomplished as before by calculating renormalization-group (RG) trajectories from initial conditions determined by the regularized atomistic models. Our applications are to the Edwards-Wilkinson (EW) model [S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London, Ser. A 381, 17 (1982)], the Wolf-Villain (WV) model [D. E. Wolf and J. Villain, Europhys. Lett. 13, 389 (1990)], and a model with concurrent random deposition and surface diffusion. With our rules for the EW model no appreciable crossover is obtained for either 1D or 2D substrates. For the 1D WV model, discussed previously, our analysis reproduces the crossover sequence known from kinetic Monte Carlo (KMC) simulations, but for the 2D WV model, we find a transition from smooth to unstable growth under repeated coarse-graining. Concurrent surface diffusion does not change this behavior, but can lead to extended transient regimes with kinetic roughening. This provides an explanation of recent experiments on Ge(001) with the intriguing conclusion that the same relaxation mechanism responsible for ordered structures during the early stages of growth also produces an instability at longer times that leads to epitaxial breakdown. The RG trajectories calculated for concurrent random deposition and surface diffusion reproduce the crossover sequences observed with KMC simulations for all values of the model parameters, and asymptotically always approach the fixed point corresponding

  20. Renormalization of stochastic lattice models: Epitaxial surfaces

    NASA Astrophysics Data System (ADS)

    Haselwandter, Christoph A.; Vvedensky, Dimitri D.

    2008-06-01

    We present the application of a method [C. A. Haselwandter and D. D. Vvedensky, Phys. Rev. E 76, 041115 (2007)] for deriving stochastic partial differential equations from atomistic processes to the morphological evolution of epitaxial surfaces driven by the deposition of new material. Although formally identical to the one-dimensional (1D) systems considered previously, our methodology presents substantial additional technical issues when applied to two-dimensional (2D) surfaces. Once these are addressed, subsequent coarse-graining is accomplished as before by calculating renormalization-group (RG) trajectories from initial conditions determined by the regularized atomistic models. Our applications are to the Edwards-Wilkinson (EW) model [S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London, Ser. A 381, 17 (1982)], the Wolf-Villain (WV) model [D. E. Wolf and J. Villain, Europhys. Lett. 13, 389 (1990)], and a model with concurrent random deposition and surface diffusion. With our rules for the EW model no appreciable crossover is obtained for either 1D or 2D substrates. For the 1D WV model, discussed previously, our analysis reproduces the crossover sequence known from kinetic Monte Carlo (KMC) simulations, but for the 2D WV model, we find a transition from smooth to unstable growth under repeated coarse-graining. Concurrent surface diffusion does not change this behavior, but can lead to extended transient regimes with kinetic roughening. This provides an explanation of recent experiments on Ge(001) with the intriguing conclusion that the same relaxation mechanism responsible for ordered structures during the early stages of growth also produces an instability at longer times that leads to epitaxial breakdown. The RG trajectories calculated for concurrent random deposition and surface diffusion reproduce the crossover sequences observed with KMC simulations for all values of the model parameters, and asymptotically always approach the fixed point corresponding

  1. Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy

    SciTech Connect

    Zhang, Zhi; Xu, Hong-Yi; Guo, Ya-Nan; Liao, Zhi-Ming; Lu, Zhen-Yu; Chen, Ping-Ping; Shi, Sui-Xing; Lu, Wei; Zou, Jin

    2013-08-12

    In this study, the structural quality of Au-catalyzed InAs nanowires grown by molecular beam epitaxy is investigated. Through detailed electron microscopy characterizations and analysis of binary Au-In phase diagram, it is found that defect-free InAs nanowires can be induced by smaller catalysts with a high In concentration, while comparatively larger catalysts containing less In induce defected InAs nanowires. This study indicates that the structural quality of InAs nanowires can be controlled by the size of Au catalysts when other growth conditions remain as constants.

  2. Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi; Lu, Zhen-Yu; Chen, Ping-Ping; Xu, Hong-Yi; Guo, Ya-Nan; Liao, Zhi-Ming; Shi, Sui-Xing; Lu, Wei; Zou, Jin

    2013-08-01

    In this study, the structural quality of Au-catalyzed InAs nanowires grown by molecular beam epitaxy is investigated. Through detailed electron microscopy characterizations and analysis of binary Au-In phase diagram, it is found that defect-free InAs nanowires can be induced by smaller catalysts with a high In concentration, while comparatively larger catalysts containing less In induce defected InAs nanowires. This study indicates that the structural quality of InAs nanowires can be controlled by the size of Au catalysts when other growth conditions remain as constants.

  3. Orthorhombic-tetragonal phase coexistence and enhanced piezo-response at room temperature in Zr, Sn, and Hf modified BaTiO{sub 3}

    SciTech Connect

    Kalyani, Ajay Kumar; Brajesh, Kumar; Ranjan, Rajeev; Senyshyn, Anatoliy

    2014-06-23

    The effect of Zr, Hf, and Sn in BaTiO{sub 3} has been investigated at close composition intervals in the dilute concentration limit. Detailed structural analysis by x-ray and neutron powder diffraction revealed that merely 2 mol. % of Zr, Sn, and Hf stabilizes a coexistence of orthorhombic (Amm2) and tetragonal (P4mm) phases at room temperature. As a consequence, all the three systems show substantial enhancement in the longitudinal piezoelectric coefficient (d{sub 33}), with Sn modification exhibiting the highest value ∼425 pC/N.

  4. Coincidence site lattice misorientations of crystals in orthorhombic systems, with application to YBa sub 2 Cu sub 3 O sub 7

    SciTech Connect

    Gertsman, V.Y. )

    1992-08-01

    In recent years many new materials have been involved in grain boundary studies. Many of them, have rather complex crystal lattices with low symmetry. For experimental studies and computer simulations of grain boundaries some theoretical tools are necessary. The main tool is the Coincidence Site Lattice (CSL) model, which has been successfully used for structural characterization of grain boundaries in materials with relatively simple crystal structures, mostly cubic systems. In this paper, a method for determining coincidence rotations in orthorhombic systems is given. This method is based on the vector-quaternion algorithm which is very close to the quadruple algorithm developed by Grimmer and used.

  5. Thermal Conductance of Nanoscale VOx Epitaxial Layers

    NASA Astrophysics Data System (ADS)

    Oh, Dong-Wook; Petrov, Ivan; Cahill, David

    2010-03-01

    We use time-domain thermoreflectance to measure the thermal conductance of VOx layers in epitaxial Pt/VOx/Pt structures. In particular, the metal-insulator-transition of VO2 at 70^oC allows us to systematically explore channels for heat transport between metals and correlated-electron systems. Pt/VOx/Pt layers are deposited on a sapphire substrates by reactive DC sputtering with O2 partial pressure varied from 0% to 13%. The thermal conductance has a strong dependence on thickness, 3-50 nm, and oxygen content, pure V to V2O5. The thermal conductance of ˜10 nm thick layers of V in series with the two Pt/V interfaces is 1 GW/m^2-K, comparable to what is expected based on the diffuse-mismatch model for electron transport at interfaces. The conductance of ˜10 nm thick layers of VO2 at room temperatures is remarkably high, 0.5 GW/m^2-K, for the series conductance of two metal-dielectric interfaces. At the metal-insulator-transition, the conductance of VO2 layers increases by only 10%, indicating that electrons in Pt and electrons in metallic VO2 are not strongly coupled.

  6. Thickness-Dependent Hydrophobicity of Epitaxial Graphene.

    PubMed

    Munz, Martin; Giusca, Cristina E; Myers-Ward, Rachael L; Gaskill, D Kurt; Kazakova, Olga

    2015-08-25

    This article addresses the much debated question whether the degree of hydrophobicity of single-layer graphene (1LG) is different from that of double-layer graphene (2LG). Knowledge of the water affinity of graphene and its spatial variations is critically important as it can affect the graphene properties as well as the performance of graphene devices exposed to humidity. By employing chemical force microscopy with a probe rendered hydrophobic by functionalization with octadecyltrichlorosilane (OTS), the adhesion force between the probe and epitaxial graphene on SiC has been measured in deionized water. Owing to the hydrophobic attraction, a larger adhesion force was measured on 2LG Bernal-stacked domains of graphene surfaces, thus showing that 2LG is more hydrophobic than 1LG. Identification of 1LG and 2LG domains was achieved through Kelvin probe force microscopy and Raman spectral mapping. Approximate values of the adhesion force per OTS molecule have been calculated through contact area analysis. Furthermore, the contrast of friction force images measured in contact mode was reversed to the 1LG/2LG adhesion contrast, and its origin was discussed in terms of the likely water depletion over hydrophobic domains as well as deformation in the contact area between the atomic force microscope tip and 1LG. PMID:26218503

  7. Epitaxial SrCoOx oxygen sponge

    NASA Astrophysics Data System (ADS)

    Lee, H. N.; Jeen, H.; Choi, W. S.; Biegalski, M. D.; Shin, D.; Chisholm, M. F.; Folkman, C. M.; Fong, D. D.; Freeland, J. W.; Tung, I.-C.; Ohta, H.

    2014-03-01

    Perovskite-based transition metal oxides have been actively developed as the replacements of noble metal-based electrodes in energy and environmental devices due to their high catalytic activity and ionic conductivity. However, the high thermodynamic barrier and the robust cation's oxidation state have limited the realization of fast catalysis and bulk diffusion at low temperature, which can reduce thermomechanical degradation in such devices. Here, we report a low-temperature reversible redox reaction in SrCoOx grown directly by pulsed laser epitaxy as one of two distinct crystalline phases, either the perovskite SrCoO3-δ or the brownmillerite SrCoO2.5.[2] Based on real-time temperature dependent x-ray diffraction, we found that the distinct valence state in each phase can be reversibly switched at a remarkably reduced temperature (200 ~ 300 °C) in a considerably short time (<1 min) without destroying the parent framework. Therefore, our results on low temperature reversible redox reactions provide valuable insight not only in understanding the structure-physical property relationship in multivalent oxides, but also for developing new strategies to avoid thermomechanical degradation in high temperature electrochemical devices, such as solid oxide fuel cells. The work was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.

  8. Epitaxial Growth of Two-Dimensional Stanene

    NASA Astrophysics Data System (ADS)

    Jia, Jinfeng

    Ultrathin semiconductors present various novel electronic properties. The first experimental realized two-dimensional (2D) material is graphene. Searching 2D materials with heavy elements bring the attention to Si, Ge and Sn. 2D buckled Si-based silicene was realized by molecular beam epitaxy (MBE) growth. Ge-based germanene was realized by mechanical exfoliation. Sn-based stanene has its unique properties. Stanene and its derivatives can be 2D topological insulators (TI) with a very large band gap as proposed by first-principles calculations, or can support enhanced thermoelectric performance, topological superconductivity and the near-room-temperature quantum anomalous Hall (QAH) effect. For the first time, in this work, we report a successful fabrication of 2D stanene by MBE. The atomic and electronic structures were determined by scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES) in combination with first-principles calculations. This work will stimulate the experimental study and exploring the future application of stanene. In cooperation with Fengfeng Zhu, Wei-jiong Chen, Yong Xu, Chun-lei Gao, Dan-dan Guan, Canhua Liu, Dong Qian, Shou-Cheng Zhang.

  9. Epitaxial Overgrowth of Platinum on Palladium Nanocrystals

    SciTech Connect

    Jiang, M.; Zhu, Y.; Lim, B.; Tao, J.; Camargo, P.H.C.; Ma, C.; Xia, Y.

    2010-11-01

    This paper describes a systematic study on the epitaxial overgrowth of Pt on well-defined Pdnanocrystals with different shapes (and exposed facets), including regular octahedrons, truncated octahedrons, and cubes. Two different reducing agents, i.e., citric acid and L-ascorbic acid, were evaluated and compared for the reduction of K{sub 2}PtCl{sub 4} in an aqueous solution in the presence of Pdnanocrystal seeds. When citric acid was used as a reducing agent, conformal overgrowth of octahedral Pt shells on regular and truncated octahedrons of Pd led to the formation of Pd-Pt core-shell octahedrons, while non-conformal overgrowth of Pt on cubic Pd seeds resulted in the formation of an incomplete octahedral Pt shell. On the contrary, localized overgrowth of Pt branches was observed when L-ascorbic acid was used as a reducing agent regardless of the facets expressed on the surface of Pdnanocrystal seeds. This work shows that both the binding affinity of a reducing agent to the Pt surface and the reduction kinetics for a Pt precursor play important roles in determining the mode of Pt overgrowth on Pdnanocrystal surface.

  10. Formation and ordering of epitaxial quantum dots

    NASA Astrophysics Data System (ADS)

    Atkinson, Paola; Schmidt, Oliver G.; Bremner, Stephen P.; Ritchie, David A.

    2008-10-01

    Single quantum dots (QDs) have great potential as building blocks for quantum information processing devices. However, one of the major difficulties in the fabrication of such devices is the placement of a single dot at a pre-determined position in the device structure, for example, in the centre of a photonic cavity. In this article we review some recent investigations in the site-controlled growth of InAs QDs on GaAs by molecular beam epitaxy. The method we use is ex-situ patterning of the GaAs substrate by electron beam lithography and conventional wet or dry etching techniques to form shallow pits in the surface which then determine the nucleation site of an InAs dot. This method is easily scalable and can be incorporated with marker structures to enable simple post-growth lithographic alignment of devices to each site-controlled dot. We demonstrate good site-control for arrays with up to 10 micron spacing between patterned sites, with no dots nucleating between the sites. We discuss the mechanism and the effect of pattern size, InAs deposition amount and growth conditions on this site-control method. Finally we discuss the photoluminescence from these dots and highlight the remaining challenges for this technique. To cite this article: P. Atkinson et al., C. R. Physique 9 (2008).

  11. Magnetic anisotropy of strained epitaxial manganite films

    SciTech Connect

    Demidov, V. V. Borisenko, I. V.; Klimov, A. A.; Ovsyannikov, G. A.; Petrzhik, A. M.; Nikitov, S. A.

    2011-05-15

    The in-plane magnetic anisotropy of epitaxial La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) films is studied at room temperature by the following three independent techniques: magnetooptical Kerr effect, ferromagnetic resonance at a frequency of 9.61 GHz, and recording of absorption spectra of electromagnetic radiation at a frequency of 290.6 MHz. The films are deposited onto NdGaO{sub 3} (NGO) substrates in which the (110)NGO plane is tilted at an angle of 0-25.7 Degree-Sign to the substrate plane. The uniaxial magnetic anisotropy induced by the strain of the film is found to increase with the tilt angle of the (110)NGO plane. A model is proposed to describe the change in the magnetic anisotropy energy with the tilt angle. A sharp increase in the radio-frequency absorption in a narrow angular range of a dc magnetic field near a hard magnetization axis is detected The anisotropy parameters of the LSMO films grown on (110)NGO, (001)SrTiO{sub 3}, and (001)[(LaAlO{sub 3}){sub 0.3} + (Sr{sub 2}AlTaO{sub 6}){sub 0.7}] substrates are compared.

  12. Proximity induced Superconductivity in Epitaxial Graphene

    NASA Astrophysics Data System (ADS)

    Natterer, Fabian D.; Ha, Jeonghoon; Baek, Hongwoo; Zhang, Duming; Cullen, William; Zhitenev, Nikolai B.; Kuk, Young; Stroscio, Joseph A.

    The intimate electrical contact of a superconductor with a normal metal leads to an exchange of carriers through their boundary. Cooper pairs leak into the normal metal via Andreev reflection and enable the normal metal to acquire superconducting-like properties. The electron-hole conversion process in graphene is prominent due to relativistic quantum mechanics governing low energy chiral carriers in a multi-valley system. In the present experiment, we reveal spatial measurements of the proximity effect in graphene from a graphene-superconductor interface. Superconducting aluminum films were grown on epitaxial graphene on SiC. The aluminum films were discontinuous with networks of trenches in the film morphology reaching down to the substrate to exposed graphene terraces. Scanning tunneling spectra measured on the graphene terraces show a clear decay of the superconducting gap width with increasing separation from the graphene-aluminum edges. The decay length for the superconducting energy gap extends beyond 400 nm. Subtle deviations in the exponentially decaying energy gap were also observed on a much smaller length scale of tens of nanometers. Funding from SNSF (project 158468), NIST/CNST Grant 70NANB10H193, and KRF-2010-00349.

  13. Growth of epitaxial ZnO films on sapphire substrates by plasma assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hyndman, Adam R.; Allen, Martin W.; Reeves, Roger J.

    2014-03-01

    Epitaxial layers of ZnO have been grown on c-plane, (0001) sapphire substrates by plasma assisted molecular beam epitaxy. The oxygen:zinc flux ratio was found to be crucial in obtaining a film with a smooth surface and good crystallinity. When increasing film thickness from ~80 to 220 nm we observed an increase in the streakiness of RHEED images, and XRD revealed a reduction in crystal strain and increase in crystal alignment. A film with surface roughness of 0.5 nm and a XRD rocking curve FWHM of 0.1 for the main ZnO peak (0002) was achieved by depositing a low temperature ZnO buffer layer at 450 °C and then growing for 120 minutes at 700 °C with a Zn-cell temperature of 320 °C and an oxygen partial pressure of 7e-7 Torr. We found novel structures on two samples grown outside of our ideal oxygen:zinc flux ratio. SEM images of a sample believed to have been grown in a Zn-rich environment showed flower like structures up to 150 um in diameter which appear to have formed during growth. Another sample believed to have been deposited in a Zn-deficient environment had rings approximately 1.5 um in diameter scattered on its surface.

  14. Growth of very large InN microcrystals by molecular beam epitaxy using epitaxial lateral overgrowth

    SciTech Connect

    Kamimura, J.; Kishino, K.; Kikuchi, A.

    2015-02-28

    Very thick InN (∼40 μm) was grown by molecular beam epitaxy using the epitaxial lateral overgrowth (ELO) technique. In some regions, the ELO of InN was observed as expected, indicating an important step toward fabricating quasi-bulk InN substrates. Interestingly, most parts of the sample consist of large flat-topped microcrystals and well-faceted microstructures. This is likely due to local growth condition variations during ELO, which is supported by an experiment where ELO of InN was performed on a substrate with various stripe mask patterns. TEM characterization of a flat top InN microcrystal revealed few stacking faults and only related threading dislocations. Defect-free small faceted microcrystals were also observed. The thick InN crystals show a narrow photoluminescence spectrum with a peak at 0.679 eV and linewidth of 16.8 meV at 4 K.

  15. Epitaxial Cd3As2 Thin Films Synthesized by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Schumann, Timo; Goyal, Manik; Stemmer, Susanne

    Cd3As2 is a three-dimensional (3D) Dirac semimetal, i.e. it possesses Dirac cones in a 3D bulk state where the band dispersion relation is linear near the Fermi energy. Cd3As2 is has raised considerable interest due to its high electron mobilities in bulk crystals and for novel quantum phenomena, such as chiral anomalies. However, few studies have been performed using thin films of Cd3As2. In this presentation, we report on the synthesis of Cd3As2 thin films by molecular beam epitaxy (MBE). Single phase, epitaxial films were grown on undoped GaSb(111)B substrates with the (112) facet of Cd3As2 parallel to the GaSb(111) surface. We report on the structural quality and orientation variants in the films. Electrical transport properties indicate electron mobilities exceeding 6000 cm2V-1s-1. We discuss the impact of the MBE growth parameters and substrate preparation on the structural and electrical properties of the films.

  16. Difference in the luminescence properties of orthorhombic and monoclinic forms of Y{sub 2}GeO{sub 5}:Ln (Ln = Tb{sup 3+} and Dy{sup 3+})

    SciTech Connect

    Tyagi, Adish; Shah, Alpa; Sudarsan, V. Vatsa, R.K.; Jain, V.K.

    2015-04-15

    Highlights: • Improved emission colour purity with orthorhombic form of Y{sub 2}GeO{sub 5}. • Non-stationary quenching exists in orthorhombic and monoclinic forms of Y{sub 2}GeO{sub 5}:Tb. • Ion pair formation and cross relaxation quenching operating for Y{sub 2}GeO{sub 5}:Dy samples. - Abstract: The luminescence properties of Tb{sup 3+} and Dy{sup 3+} doped orthorhombic and monoclinic forms of Y{sub 2}GeO{sub 5} are significantly different. Orthorhombic Y{sub 2}GeO{sub 5} doped with Tb{sup 3+} and Dy{sup 3+} ions gives bright green and blue emission upon UV light excitation with CIE coordinates (0.25, 0.46) and (0.25, 0.24), respectively. The monoclinic Y{sub 2}GeO{sub 5} doped with these ions exhibits light green and yellowish white emissions, respectively. This has been attributed to the differences in crystallographic environments around Y{sup 3+} ions in orthorhombic and monoclinic forms of Y{sub 2}GeO{sub 5}. Quantum yield of emission for orthorhombic Y{sub 2}GeO{sub 5}:Tb (∼29%) is significantly higher than that of the monoclinic Y{sub 2}GeO{sub 5}:Tb (∼14%). Lifetime values corresponding to {sup 4}F{sub 9/2} level of Dy{sup 3+} ions in both monoclinic and orthorhombic forms of Y{sub 2}GeO{sub 5} follow an opposite trend with respect to {sup 5}D{sub 4} level of Tb{sup 3+} ions. This is attributed to difference in the concentration quenching mechanism operating for Tb{sup 3+} and Dy{sup 3+} ions.

  17. Applying CLIPS to control of molecular beam epitaxy processing

    NASA Technical Reports Server (NTRS)

    Rabeau, Arthur A.; Bensaoula, Abdelhak; Jamison, Keith D.; Horton, Charles; Ignatiev, Alex; Glover, John R.

    1990-01-01

    A key element of U.S. industrial competitiveness in the 1990's will be the exploitation of advanced technologies which involve low-volume, high-profit manufacturing. The demands of such manufacture limit participation to a few major entities in the U.S. and elsewhere, and offset the lower manufacturing costs of other countries which have, for example, captured much of the consumer electronics market. One such technology is thin-film epitaxy, a technology which encompasses several techniques such as Molecular Beam Epitaxy (MBE), Chemical Beam Epitaxy (CBE), and Vapor-Phase Epitaxy (VPE). Molecular Beam Epitaxy (MBE) is a technology for creating a variety of electronic and electro-optical materials. Compared to standard microelectronic production techniques (including gaseous diffusion, ion implantation, and chemical vapor deposition), MBE is much more exact, though much slower. Although newer than the standard technologies, MBE is the technology of choice for fabrication of ultraprecise materials for cutting-edge microelectronic devices and for research into the properties of new materials.

  18. Correlated vortex pinning in slightly orthorhombic twinned Ba(Fe1-xCox)2As2 single crystals: Possible shift of the vortex-glass/liquid transition

    SciTech Connect

    Bermudez, M. Marziali; Pasquini, G.; Budko, Sergey L.; Canfield, Paul C.

    2013-02-28

    The interest in twin-boundary (TB) planes as a source of vortex pinning has been recently renewed with the discovery of the new iron-arsenide pnictide superconductors. In the family of compounds Ba(Fe1-xCox)2As2 a structural transition from a tetragonal to orthorhombic lattice takes place for compounds with xxcr) there is no twinning and we find good agreement with the expected scaling function under uncorrelated disorder, with small anisotropy values similar to those reported in the literature. We show that in the orthorhombic samples (x

  19. Correlated vortex pinning in slightly orthorhombic twinned Ba(Fe1-xCox)2As2 single crystals: Possible shift of the vortex-glass/liquid transition

    NASA Astrophysics Data System (ADS)

    Marziali Bermúdez, M.; Pasquini, G.; Bud'ko, S. L.; Canfield, P. C.

    2013-02-01

    The interest in twin-boundary (TB) planes as a source of vortex pinning has been recently renewed with the discovery of the new iron-arsenide pnictide superconductors. In the family of compounds Ba(Fe1-xCox)2As2 a structural transition from a tetragonal to orthorhombic lattice takes place for compounds with xxcr) there is no twinning and we find good agreement with the expected scaling function under uncorrelated disorder, with small anisotropy values similar to those reported in the literature. We show that in the orthorhombic samples (x

  20. Structural studies of the rhombohedral and orthorhombic monouranates: CaUO4, α-SrUO4, β-SrUO4 and BaUO4

    NASA Astrophysics Data System (ADS)

    Murphy, Gabriel; Kennedy, Brendan J.; Johannessen, Bernt; Kimpton, Justin A.; Avdeev, Maxim; Griffith, Christopher S.; Thorogood, Gordon J.; Zhang, Zhaoming

    2016-05-01

    The structures of some AUO4 (A=Ca, Sr, or Ba) oxides have been determined using a combination of neutron and synchrotron X-ray diffraction, supported by X-ray absorption spectroscopic measurements at the U L3-edge. The smaller Ca cation favours a rhombohedral AUO4 structure with 8-coordinate UO8 moieties whilst an orthorhombic structure based on UO6 groups is found for BaUO4. Both the rhombohedral and orthorhombic structures can be stabilised for SrUO4. The structural studies suggest that the bonding requirements of the A site cation play a significant role in determining which structure is favoured. In the rhombohedral structure, Bond Valence Sums demonstrate the A site is invariably overbonded, which, in the case of rhombohedral α-SrUO4, is compensated for by the formation of vacancies in the oxygen sub-lattice. The uranium cation, with its flexible oxidation state, is able to accommodate this by inducing vacancies along its equatorial coordination site as demonstrated by neutron powder diffraction.

  1. Effect of rhombohedral to orthorhombic transition on magnetic and dielectric properties of La and Ti co-substituted BiFeO3

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Panda, Chandrakanta; Kar, Manoranjan

    2015-04-01

    Polycrystalline Bi1-xLaxFe1-xTixO3 (x = 0.000-0.250) ceramics were synthesized by the tartaric acid modified sol-gel technique. It was observed that the co-substitution of La and Ti at Bi and Fe sites in BiFeO3 suppresses the impurity phase formation which is a common problem in the bismuth ferrite ceramics. The quantitative crystallographic phase analysis of x-ray diffraction pattern by employing Rietveld technique was performed with the help of FULLPROF program which suggests the existence of compositional driven crystal structure transition from rhombohedral (space group R3c) to the orthorhombic (space group Pbnm) symmetry. The oxygen octahedral tilt angle was found to be ˜13.82° for BiFeO3 (space group R3c) and decreases with the increase in co-substitution percentage. The structural transition breaks the spin cycloid structure in co-substituted BiFeO3 nanocrystallites and leads to canting of the antiferromagnetic spin structure. Hence, the remnant magnetization increases up to 10% of co-substitution and becomes 22 times that of BiFeO3. However, it decreases for higher co-substitution percentage due to significant contribution from the collinear antiferromagnetic ordering in the orthorhombic crystal symmetry. The dielectric constant attains a maximum for 10% of co-substitution.

  2. Anomalous thermal expansion in orthorhombic perovskite SrIrO3: Interplay between spin-orbit coupling and the crystal lattice

    NASA Astrophysics Data System (ADS)

    Blanchard, Peter E. R.; Reynolds, Emily; Kennedy, Brendan J.; Kimpton, Justin A.; Avdeev, Maxim; Belik, Alexei A.

    2014-06-01

    The structure of the orthorhombic (Pbnm) polytype of SrIrO3 has been investigated between 3 and 1100 K using a combination of synchrotron and neutron diffraction methods. The orthorhombic structure persists to 1100 K, the highest temperature available in this work. This is a consequence of the larger than expected octahedral tilting estimated from the neutron diffraction studies. We postulate that the strong spin-orbit coupling of the Ir4+ cation, which splits the t2g band, introduces additional strain on the lattice. This introduces unusual thermal expansion of the cell. SrIrO3 was characterized by resistivity, magnetization, and specific heat measurements. Metallic conductivity was observed between 2 and 300 K without indication of the previously reported metal-insulator transition. The Sommerfeld constant γ was 3.12(2) mJ mol-1 K-2, and a Fermi-liquid behavior was observed between 2 and 30 K with positive magnetoresistence of up to 2% (at 70 kOe and between 2 and 50 K).

  3. Annealing assisted substrate coherency and high-temperature antiferromagnetic insulating transition in epitaxial La0.67Ca0.33MnO3/NdGaO3(001) films

    NASA Astrophysics Data System (ADS)

    Wang, L. F.; Tan, X. L.; Chen, P. F.; Zhi, B. W.; Chen, B. B.; Huang, Z.; Gao, G. Y.; Wu, W. B.

    2013-05-01

    Bulk La0.67Ca0.33MnO3 (LCMO) and NdGaO3 (NGO) have the same Pbnm symmetry but different orthorhombic lattice distortions, yielding an anisotropic strain state in the LCMO epitaxial film grown on the NGO(001) substrate. The films are optimally doped in a ferromagnetic-metal ground state, after being ex-situ annealed in oxygen atmosphere, however, they show strikingly an antiferromagnetic-insulating (AFI) transition near 250 K, leading to a phase separation state with tunable phase instability at the temperatures below. To explain this drastic strain effect, the films with various thicknesses were ex-situ annealed under various annealing parameters. We demonstrate that the ex-situ annealing can surprisingly improve the epitaxial quality, resulting in the films with true substrate coherency and the AFI ground state. And the close linkage between the film morphology and electronic phase evolution implies that the strain-mediated octahedral deformation and rotation could be assisted by ex-situ annealing, and moreover, play a key role in controlling the properties of oxide heterostructures.

  4. Structural study and ferroelectricity of epitaxial BaTiO3 films on silicon grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Mazet, L.; Bachelet, R.; Louahadj, L.; Albertini, D.; Gautier, B.; Cours, R.; Schamm-Chardon, S.; Saint-Girons, G.; Dubourdieu, C.

    2014-12-01

    Integration of epitaxial complex ferroelectric oxides such as BaTiO3 on semiconductor substrates depends on the ability to finely control their structure and properties, which are strongly correlated. The epitaxial growth of thin BaTiO3 films with high interfacial quality still remains scarcely investigated on semiconductors; a systematic investigation of processing conditions is missing although they determine the cationic composition, the oxygen content, and the microstructure, which, in turn, play a major role on the ferroelectric properties. We report here the study of various relevant deposition parameters in molecular beam epitaxy for the growth of epitaxial tetragonal BaTiO3 thin films on silicon substrates. The films were grown using a 4 nm-thick epitaxial SrTiO3 buffer layer. We show that the tetragonality of the BaTiO3 films, the crystalline domain orientations, and SiO2 interfacial layer regrowth strongly depend on the oxygen partial pressure and temperature during the growth and on the post-deposition anneal. The ferroelectricity of the films, probed using piezoresponse force microscopy, is obtained in controlled temperature and oxygen pressure conditions with a polarization perpendicular to the surface.

  5. Epitaxial thin films for hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Fullager, D.; Alisafaee, H.; Tsu, R.; Fiddy, M. A.

    2014-02-01

    Recent progress in the area of hyperbolic metamaterials (HMMs) has sparked interest in transparent conducting oxides (TCOs) that behave as plasmonic media in the near-IR and at optical frequencies for imaging and sensing applications. It has been shown that by depositing alternating layers of negative-epsilon/positive-epsilon materials, a medium can be created with unusual index values such as near zero. HMMs support high-k waves corresponding to a diverging photonic density of states (PDOS), the quantity determining phenomena such as spontaneous and thermal emission. Also, modeling such structures allows evanescent fields containing sub-wavelength information to be coupled to propagating radiation. We investigate the optical, electronic, and physical properties of radio frequency plasma-assisted molecular beam epitaxial (RF-MBE) growth of alternating layers of ZnO and TCO of uniform thickness for HMM applications. Preliminary work creating HMMs with ZnO and Al-doped ZnO (AZO) has shown a negative real part of the permittivity at near-IR whose modulus is proportional to the number density of Al dopant. However, increasing the Al content of the AZO increases the transmission losses to unacceptable levels for device applications at industry standard wavelengths. A TCO with conductivity and physical structure superior to that of AZO is gallium-doped ZnO (GZO). Uniformly grown GZO has been demonstrated to possess improved crystal quality over AZO due to the higher diffusivity of Al in the ZnO. AZO and GZO HMM structures grown by RF-MBE are characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Hall effect, four-point probing, deeplevel transient spectroscopy (DLTS), ellipsometry, visible and ultraviolet spectroscopy (UV-VIS) and in-situ reflection high energy electron diffraction (RHEED).

  6. Localized States Influence Spin Transport in Epitaxial Graphene

    NASA Astrophysics Data System (ADS)

    Maassen, T.; van den Berg, J. J.; Huisman, E. H.; Dijkstra, H.; Fromm, F.; Seyller, T.; van Wees, B. J.

    2013-02-01

    We developed a spin transport model for a diffusive channel with coupled localized states that result in an effective increase of spin precession frequencies and a reduction of spin relaxation times in the system. We apply this model to Hanle spin precession measurements obtained on monolayer epitaxial graphene on SiC(0001). Combined with newly performed measurements on quasi-free-standing monolayer epitaxial graphene on SiC(0001) our analysis shows that the different values for the diffusion coefficient measured in charge and spin transport measurements on monolayer epitaxial graphene on SiC(0001) and the high values for the spin relaxation time can be explained by the influence of localized states arising from the buffer layer at the interface between the graphene and the SiC surface.

  7. Commercial aspects of epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultra vacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10 to the -14th torr or better pressures, semiinfinite pumping speeds and large ultra vacuum volume (about 100 cu m) without walls. These space ultra vacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials especially in the area of semiconductors for microelectronics use. For such thin film materials there is expected a very large value added from space ultra vacuum processing, and as a result the application of the epitaxial thin film growth technology to space could lead to major commercial efforts in space.

  8. Angle-resolved photoemission spectroscopy of strontium lanthanum copper oxide thin films grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Harter, John Wallace

    Among the multitude of known cuprate material families and associated structures, the archetype is "infinite-layer" ACuO2, where perfectly square and flat CuO2 planes are separated by layers of alkaline earth atoms. The infinite-layer structure is free of magnetic rare earth ions, oxygen chains, orthorhombic distortions, incommensurate superstructures, ordered vacancies, and other complications that abound among the other material families. Furthermore, it is the only cuprate that can be made superconducting by both electron and hole doping, making it a potential platform for decoding the complex many-body interactions responsible for high-temperature superconductivity. Research on the infinite-layer compound has been severely hindered by the inability to synthesize bulk single crystals, but recent progress has led to high-quality superconducting thin film samples. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially-stabilized Sr1-chiLa chiCuO2 thin films grown by molecular-beam epitaxy. At low doping, the material exhibits a dispersive lower Hubbard band typical of other cuprate parent compounds. As carriers are added to the system, a continuous evolution from Mott insulator to superconducting metal is observed as a coherent low-energy band develops on top of a concomitant remnant lower Hubbard band, gradually filling in the Mott gap. For chi = 0.10, our results reveal a strong coupling between electrons and (pi,pi) anti-ferromagnetism, inducing a Fermi surface reconstruction that pushes the nodal states below the Fermi level and realizing nodeless superconductivity. Electron diffraction measurements indicate the presence of a surface reconstruction that is consistent with the polar nature of Sr1-chiLachiCuO2. Most knowledge about the electron-doped side of the cuprate phase diagram has been deduced by generalizing from a single material family, Re2-chi CechiCuO4, where robust antiferromagnetism has been observed past chi

  9. Ion implantation processing of GaN epitaxial layers

    SciTech Connect

    Tan, H.H.; Williams, J.S.; Zou, J.; Cockayne, D.J.H.; Pearton, S.J.; Yuan, C.

    1996-12-31

    Ion implantation induced-damage build up in epitaxial GaN layers grown on sapphire has been analyzed by ion channeling and electron microscopy techniques. The epitaxial layers are extremely resistant to ion beam damage in that substantial dynamic annealing of implantation disorder occurs even at liquid nitrogen temperatures. Amorphous layers can be formed in some cases if the implantation dose is high enough. However, the damage (amorphous or complex extended defects) that is formed is also extremely difficult to remove during annealing and required temperatures in excess of 1,100 C.

  10. Seed layer technique for high quality epitaxial manganite films

    NASA Astrophysics Data System (ADS)

    Graziosi, P.; Gambardella, A.; Calbucci, M.; O'Shea, K.; MacLaren, D. A.; Riminucci, A.; Bergenti, I.; Fugattini, S.; Prezioso, M.; Homonnay, N.; Schmidt, G.; Pullini, D.; Busquets-Mataix, D.; Dediu, V.

    2016-08-01

    We introduce an innovative approach to the simultaneous control of growth mode and magnetotransport properties of manganite thin films, based on an easy-to-implement film/substrate interface engineering. The deposition of a manganite seed layer and the optimization of the substrate temperature allows a persistent bi-dimensional epitaxy and robust ferromagnetic properties at the same time. Structural measurements confirm that in such interface-engineered films, the optimal properties are related to improved epitaxy. A new growth scenario is envisaged, compatible with a shift from heteroepitaxy towards pseudo-homoepitaxy. Relevant growth parameters such as formation energy, roughening temperature, strain profile and chemical states are derived.

  11. Alignment-Induced Epitaxial Transition in Organic-Organic Heteroepitaxy

    SciTech Connect

    Guo Dong; Sakamoto, Kenji; Miki, Kazushi; Ikeda, Susumu; Saiki, Koichiro

    2008-12-05

    We report the epitaxial growth of thin films of a small organic molecule (pentacene) on polymer substrates with controllable photoalignment over a wide range. The pentacene molecular plane exhibited a distinct orientational change from parallel to perpendicular relative to the polymer chain with increasing substrate polymer alignment. Each orientation consists of twinlike domains. Such characteristics reveal a unique alignment-induced epitaxial transition controlled by the subtle balance of weak interactions, showing a promising approach for tuning the characteristics of organic semiconductor based electronic devices.

  12. Optical Probing of metamagnetic phases in epitaxial EuSe

    SciTech Connect

    Galgano, G. D.; Henriques, A. B.; Bauer, G.; Springholz, G.

    2011-12-23

    EuSe is a wide gap magnetic semiconductors with a potential for applications in proof-of-concept spintronic devices. When the temperature is lowered, EuSe goes through sharp transitions between a variety of magnetic phases and is thus described as metamagnetic. The purpose of the present investigation is to correlate the magnetic order to the sharp dichroic doublet, discovered recently in high quality thin epitaxial layers of EuSe, grown by molecular beam epitaxy. We report detailed measurements of the doublet positions and intensities as a function of magnetic field in low temperatures, covering several magnetic phases.

  13. Electron irradiation effects in epitaxial InP solar cells

    NASA Technical Reports Server (NTRS)

    Pearsall, N. M.; Robson, N.; Sambell, A. J.; Anspaugh, B.; Cross, T. A.

    1991-01-01

    Performance data for InP-based solar cells after irradiation with 1-MeV electrons up to a fluence of 1 x 1016 e/cm2 are presented. Three InP cell structures are considered. Two of these have epitaxially grown active regions, these being a homojunction design and in ITO/InP structure. These are compared with ITO/InP cells without the epitaxial base region. The cell parameter variations, the influence of illumination during irradiation, and the effect on cell spectral response and capacitance measurements are discussed. Substantial performance recovery after thermal annealing at 90 C is reported.

  14. Au-free epitaxial growth of InAs nanowires.

    PubMed

    Mandl, Bernhard; Stangl, Julian; Mårtensson, Thomas; Mikkelsen, Anders; Eriksson, Jessica; Karlsson, Lisa S; Bauer, G Uuml Nther; Samuelson, Lars; Seifert, Werner

    2006-08-01

    III-V nanowires have been fabricated by metal-organic vapor-phase epitaxy without using Au or other metal particles as a catalyst. Instead, prior to growth, a thin SiOx layer is deposited on the substrates. Wires form on various III-V substrates as well as on Si. They are nontapered in thickness and exhibit a hexagonal cross-section. From high-resolution X-ray diffraction, the epitaxial relation between wires and substrates is demonstrated and their crystal structure is determined. PMID:16895379

  15. Process for growing epitaxial gallium nitride and composite wafers

    DOEpatents

    Weber, Eicke R.; Subramanya, Sudhir G.; Kim, Yihwan; Kruger, Joachim

    2003-05-13

    A novel growth procedure to grow epitaxial Group III metal nitride thin films on lattice-mismatched substrates is proposed. Demonstrated are the quality improvement of epitaxial GaN layers using a pure metallic Ga buffer layer on c-plane sapphire substrate. X-ray rocking curve results indicate that the layers had excellent structural properties. The electron Hall mobility increases to an outstandingly high value of .mu.>400 cm.sup.2 /Vs for an electron background concentration of 4.times.10.sup.17 cm.sup.-3.

  16. Epitaxial graphene nanoribbon array fabrication using BCP-assisted nanolithography.

    PubMed

    Liu, Guanxiong; Wu, Yanqing; Lin, Yu-Ming; Farmer, Damon B; Ott, John A; Bruley, John; Grill, Alfred; Avouris, Phaedon; Pfeiffer, Dirk; Balandin, Alexander A; Dimitrakopoulos, Christos

    2012-08-28

    A process for fabricating dense graphene nanoribbon arrays using self-assembled patterns of block copolymers on graphene grown epitaxially on SiC on the wafer scale has been developed. Etching masks comprising long and straight nanoribbon array structures with linewidths as narrow as 10 nm were fabricated, and the patterns were transferred to graphene. Our process combines both top-down and self-assembly steps to fabricate long graphene nanoribbon arrays with low defect counts. These are the narrowest nanoribbon arrays of epitaxial graphene on SiC fabricated to date. PMID:22780305

  17. Formation of large-grain-sized BaSi2 epitaxial layers grown on Si(111) by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Baba, M.; Toh, K.; Toko, K.; Hara, K. O.; Usami, N.; Saito, N.; Yoshizawa, N.; Suemasu, T.

    2013-09-01

    BaSi2 epitaxial films were grown on Si(111) substrates by a two-step growth method including reactive deposition epitaxy (RDE) and molecular beam epitaxy (MBE). To enlarge the grain size of BaSi2, the Ba deposition rate and duration were varied from 0.25 to 1.0 nm/min and from 5 to 120 min during RDE, respectively. The effect of post-annealing was also investigated at 760 °C for 10 min. Plan-view transmission electron micrographs indicated that the grain size in the MBE-grown BaSi2 was significantly increased up to approximately 4.0 μm, which is much larger than 0.2 μm, reported previously.

  18. A study on the epitaxial Bi2Se3 thin film grown by vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Cheng; Chen, Yu-Sung; Lee, Chao-Chun; Wu, Jen-Kai; Lee, Hsin-Yen; Liang, Chi-Te; Chang, Yuan Huei

    2016-06-01

    We report the growth of high quality Bi2Se3 thin films on Al2O3 substrates by using chemical vapor deposition. From the atomic force microscope, x-ray diffraction and transmission electron microscope measurements we found that the films are of good crystalline quality, have two distinct domains and can be grown epitaxially on the Al2O3 substrate. Carrier concentration in the sample is found to be 1.1 × 1019 cm-3 between T = 2 K to T = 300 K, and electron mobility can reach 954 cm2/V s at T = 2 K. Weak anti-localization effect is observed in the low temperature magneto-transport measurement for the sample which indicates that the thin film has topological surface state.

  19. Epitaxial growth of AlN films via plasma-assisted atomic layer epitaxy

    SciTech Connect

    Nepal, N.; Qadri, S. B.; Hite, J. K.; Mahadik, N. A.; Mastro, M. A.; Eddy, C. R. Jr.

    2013-08-19

    Thin AlN layers were grown at 200–650 °C by plasma assisted atomic layer epitaxy (PA-ALE) simultaneously on Si(111), sapphire (1120), and GaN/sapphire substrates. The AlN growth on Si(111) is self-limited for trimethyaluminum (TMA) pulse of length > 0.04 s, using a 10 s purge. However, the AlN nucleation on GaN/sapphire is non-uniform and has a bimodal island size distribution for TMA pulse of ≤0.03 s. The growth rate (GR) remains almost constant for T{sub g} between 300 and 400 °C indicating ALE mode at those temperatures. The GR is increased by 20% at T{sub g} = 500 °C. Spectroscopic ellipsometry (SE) measurement shows that the ALE AlN layers grown at T{sub g} ≤ 400 °C have no clear band edge related features, however, the theoretically estimated band gap of 6.2 eV was measured for AlN grown at T{sub g} ≥ 500 °C. X-ray diffraction measurements on 37 nm thick AlN films grown at optimized growth conditions (T{sub g} = 500 °C, 10 s purge, 0.06 s TMA pulse) reveal that the ALE AlN on GaN/sapphire is (0002) oriented with rocking curve full width at the half maximum (FWHM) of 670 arc sec. Epitaxial growth of crystalline AlN layers by PA-ALE at low temperatures broadens application of the material in the technologies that require large area conformal growth at low temperatures with thickness control at the atomic scale.

  20. Intrinsically incompatible crystal (ligand) field parameter sets for transition ions at orthorhombic and lower symmetry sites in crystals and their implications

    NASA Astrophysics Data System (ADS)

    Rudowicz, C.; Gnutek, P.

    2010-01-01

    Central quantities in spectroscopy and magnetism of transition ions in crystals are crystal (ligand) field parameters (CFPs). For orthorhombic, monoclinic, and triclinic site symmetry CF analysis is prone to misinterpretations due to large number of CFPs and existence of correlated sets of alternative CFPs. In this review, we elucidate the intrinsic features of orthorhombic and lower symmetry CFPs and their implications. The alternative CFP sets, which yield identical energy levels, belong to different regions of CF parameter space and hence are intrinsically incompatible. Only their ‘images’ representing CFP sets expressed in the same region of CF parameter space may be directly compared. Implications of these features for fitting procedures and meaning of fitted CFPs are categorized into negative: pitfalls and positive: blessings. As a case study, the CFP sets for Tm 3+ ions in KLu(WO 4) 2 are analysed and shown to be intrinsically incompatible. Inadvertent, so meaningless, comparisons of incompatible CFP sets result in various pitfalls, e.g., controversial claims about the values of CFPs obtained by other researchers as well as incorrect structural conclusions or faulty systematics of CF parameters across rare-earth ion series based on relative magnitudes of incompatible CFPs. Such pitfalls bear on interpretation of, e.g., optical spectroscopy, inelastic neutron scattering, and magnetic susceptibility data. An extensive survey of pertinent literature was carried out to assess recognition of compatibility problems. Great portion of available orthorhombic and lower symmetry CFP sets are found intrinsically incompatible, yet these problems and their implications appear barely recognized. The considerable extent and consequences of pitfalls revealed by our survey call for concerted remedial actions of researchers. A general approach based on the rhombicity ratio standardization may solve compatibility problems. Wider utilization of alternative CFP sets in the

  1. Computing the melting point and thermodynamic stability of the orthorhombic and monoclinic crystalline polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride

    NASA Astrophysics Data System (ADS)

    Jayaraman, Saivenkataraman; Maginn, Edward J.

    2007-12-01

    The melting point, enthalpy of fusion, and thermodynamic stability of two crystal polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride are calculated using a thermodynamic integration-based atomistic simulation method. The computed melting point of the orthorhombic phase ranges from 365 to 369 K, depending on the classical force field used. This compares reasonably well with the experimental values, which range from 337 to 339 K. The computed enthalpy of fusion ranges from 19 to 29 kJ/mol, compared to the experimental values of 18.5-21.5 kJ/mol. Only one of the two force fields evaluated in this work yielded a stable monoclinic phase, despite the fact that both give accurate liquid state densities. The computed melting point of the monoclinic polymorph was found to be 373 K, which is somewhat higher than the experimental range of 318-340 K. The computed enthalpy of fusion was 23 kJ/mol, which is also higher than the experimental value of 9.3-14.5 kJ/mol. The simulations predict that the monoclinic form is more stable than the orthorhombic form at low temperature, in agreement with one set of experiments but in conflict with another. The difference in free energy between the two polymorphs is very small, due to the fact that a single trans-gauche conformational difference in an alkyl sidechain distinguishes the two structures. As a result, it is very difficult to construct simple classical force fields that are accurate enough to definitively predict which polymorph is most stable. A liquid phase analysis of the probability distribution of the dihedral angles in the alkyl chain indicates that less than half of the dihedral angles are in the gauche-trans configuration that is adopted in the orthorhombic crystal. The low melting point and glass forming tendency of this ionic liquid is likely due to the energy barrier for conversion of the remaining dihedral angles into the gauche-trans state. The simulation procedure used to perform the melting point

  2. Numerical adiabatic potentials of orthorhombic Jahn-Teller effects retrieved from ultrasound attenuation experiments. Application to the SrF2:Cr crystal

    NASA Astrophysics Data System (ADS)

    Zhevstovskikh, I. V.; Bersuker, I. B.; Gudkov, V. V.; Averkiev, N. S.; Sarychev, M. N.; Zherlitsyn, S.; Yasin, S.; Shakurov, G. S.; Ulanov, V. A.; Surikov, V. T.

    2016-06-01

    A methodology is worked out to retrieve the numerical values of all the main parameters of the six-dimensional adiabatic potential energy surface (APES) of a polyatomic system with a quadratic T-term Jahn-Teller effect (JTE) from the ultrasound experiments. The method is based on a verified assumption that ultrasound attenuation and speed encounter anomalies when the direction of propagation and polarization of its wave of strain coincides with the characteristic directions of symmetry breaking in the JTE. For the SrF2:Cr crystal, employed as a basic example, we observed anomaly peaks in the temperature dependence of attenuation of ultrasound at frequencies of 50-160 MHz in the temperature interval of 40-60 K for the wave propagating along the [110] direction, for both the longitudinal and the shear modes, the latter with two polarizations along the [001] and [1 1 ¯ 0 ] axes, respectively. We show that these anomalies are due to the ultrasound relaxation by the system of non-interacting Cr2+ JT centers with orthorhombic local distortions. The interpretation of the experimental findings is based on the T2 g⊗(eg+t2 g) JTE problem including the linear and the quadratic terms of vibronic interactions in the Hamiltonian and the same-symmetry modes reduced to one interaction mode. Combining the experimental results with a theoretical analysis, we show that on the complicated six-dimensional APES of this system with three tetragonal, four trigonal, and six orthorhombic extrema points, the latter are global minima, while the former are saddle points, and we estimate numerically all the main parameters of this surface, including the linear and quadratic vibronic coupling constants, the primary force constants, the coordinates of all the extrema points and their energies, the energy barrier between the orthorhombic minima, and the tunneling splitting of the ground vibrational states. To our knowledge, such a based-on-experimental-data numerical reconstruction of the APES

  3. Trends in orthorhombic crystal field parameters for trivalent rare-earth ions in high-Tc superconductors REBa2Cu3O7-δ - Correct interpretation based on standardization

    NASA Astrophysics Data System (ADS)

    Rudowicz, Czesław; Lewandowska, Monika

    2013-02-01

    Trends in orthorhombic crystal field parameters (CFPs) reported for RE3+ ions in high-Tc superconductors REBa2Cu3O7-δ are considered. The cases of trends based on the CFP sets belonging to different regions of CF parameter space are identified and clarified. The crucial feature of such correlated alternative CFP sets is their intrinsic incompatibility. This makes meaningless direct comparisons of such CFP sets and thus presentations of CFP trends involving a mixture of alternative CFP sets. The aim of this paper is to ascertain that correct interpretation of trends in orthorhombic CFPs must be based on standardization. Examples of graphs inappropriately representing trends in orthorhombic CFPs reported for REBa2Cu3O7-δ compounds are considered and the corrected graphs based on the standardized CFP sets are provided.

  4. Probing orbital ordering in LaVO3 epitaxial films by Raman scattering

    NASA Astrophysics Data System (ADS)

    Vrejoiu, I.; Himcinschi, C.; Jin, L.; Jia, C.-L.; Raab, N.; Engelmayer, J.; Waser, R.; Dittmann, R.; van Loosdrecht, P. H. M.

    2016-04-01

    Single crystals of Mott-Hubbard insulator LaVO3 exhibit spin and orbital ordering along with a structural change below ≈140 K. The occurrence of orbital ordering in epitaxial LaVO3 films has, however, been little investigated. By temperature-dependent Raman scattering spectroscopy, we probed and evidenced the transition to orbital ordering in epitaxial LaVO3 film samples fabricated by pulsed-laser deposition. This opens up the possibility to explore the influence of different epitaxial strain (compressive vs. tensile) and of epitaxy-induced distortions of oxygen octahedra on the orbital ordering, in epitaxial perovskite vanadate films.

  5. In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy

    PubMed Central

    Zuo, Zheng; Xu, Zhongguang; Zheng, Renjing; Khanaki, Alireza; Zheng, Jian-Guo; Liu, Jianlin

    2015-01-01

    Van der Waals materials have received a great deal of attention for their exceptional layered structures and exotic properties, which can open up various device applications in nanoelectronics. However, in situ epitaxial growth of dissimilar van der Waals materials remains challenging. Here we demonstrate a solution for fabricating van der Waals heterostructures. Graphene/hexagonal boron nitride (h-BN) heterostructures were synthesized on cobalt substrates by using molecular beam epitaxy. Various characterizations were carried out to evaluate the heterostructures. Wafer-scale heterostructures consisting of single-layer/bilayer graphene and multilayer h-BN were achieved. The mismatch angle between graphene and h-BN is below 1°. PMID:26442629

  6. Au impact on GaAs epitaxial growth on GaAs (111)B substrates in molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Liao, Zhi-Ming; Chen, Zhi-Gang; Lu, Zhen-Yu; Xu, Hong-Yi; Guo, Ya-Nan; Sun, Wen; Zhang, Zhi; Yang, Lei; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2013-02-01

    GaAs growth behaviour under the presence of Au nanoparticles on GaAs {111}B substrate is investigated using electron microscopy. It has been found that, during annealing, enhanced Ga surface diffusion towards Au nanoparticles leads to the GaAs epitaxial growth into {113}B faceted triangular pyramids under Au nanoparticles, governed by the thermodynamic growth, while during conventional GaAs growth, growth kinetics dominates, resulting in the flatted triangular pyramids at high temperature and the epitaxial nanowires growth at relatively low temperature. This study provides an insight of Au nanoparticle impact on GaAs growth, which is critical for understanding the formation mechanisms of semiconductor nanowires.

  7. Negative thermal expansion correlated with polyhedral movements and distortions in orthorhombic Y{sub 2}Mo{sub 3}O{sub 12}

    SciTech Connect

    Wang, Lei; Wang, Fei; Yuan, Peng-Fei; Sun, Qiang; Liang, Er-Jun; Jia, Yu; Guo, Zheng-Xiao

    2013-07-15

    Graphical abstract: Our work confirms the negative thermal expansion (NTE) behavior of the orthorhombic Y{sub 2}Mo{sub 3}O{sub 12} in this range 0–1000 K. The orthorhombic Y{sub 2}Mo{sub 3}O{sub 12} has an open framework structure where MoO{sub 4} tetrahedra and YO{sub 6} octahedra are connected by oxygen atoms. The previous mechanisms for the NTE behavior of orthorhombic Y{sub 2}Mo{sub 3}O{sub 12} are that the translational mode (see (b)) of the O bridge atoms in Y-O-Mo linkages will cause the linkages to be bent, reducing the space between polyhedra and making the volumetric shrinkage. Furthermore, the internal polyhedral distortions have been reported experimentally. It is necessary to reveal the relationship between NTE and polyhedral movements, distortions. From the vibrational properties, we get that the different vibrational eigenvectors of oxygen atoms relative to Y or Mo atoms can lead internal polyhedra to distort unevenly (see (c)). Herein, an extended 3D model of the connected unit YO{sub 6}-MoO{sub 4} based on the Y-O-Mo linkage is proposed (see (a)). It presents a simultaneous dynamic process, i.e. the YO{sub 6} octahedra and MoO{sub 4} tetrahedra distort unevenly, along with both polyhedra being closer which makes the volumetric contraction. This model is helpful to improve the mechanisms of NTE and may be applied in the whole A{sub 2}M{sub 3}O{sub 12} family. - Highlights: • The NTE properties of Y{sub 2}Mo{sub 3}O{sub 12} are confirmed using a first-principles calculation. • The optical branch with the lowest frequency is most responsible for the NTE. • The relationship between NTE and polyhedral movements, distortions is elucidated. • An extended 3D model of the connected unit YO{sub 6}-MoO{sub 4} is proposed. - Abstract: The internal polyhedral distortions have been reported experimentally in orthorhombic Y{sub 2}Mo{sub 3}O{sub 12} as a negative thermal expansion (NTE) material. To reveal the relationship between NTE and polyhedral

  8. Direct Measurements of Island Growth and Step-Edge Barriers in Colloidal Epitaxy

    NASA Astrophysics Data System (ADS)

    Ganapathy, Rajesh; Buckley, Mark R.; Gerbode, Sharon J.; Cohen, Itai

    2010-01-01

    Epitaxial growth, a bottom-up self-assembly process for creating surface nano- and microstructures, has been extensively studied in the context of atoms. This process, however, is also a promising route to self-assembly of nanometer- and micrometer-scale particles into microstructures that have numerous technological applications. To determine whether atomic epitaxial growth laws are applicable to the epitaxy of larger particles with attractive interactions, we investigated the nucleation and growth dynamics of colloidal crystal films with single-particle resolution. We show quantitatively that colloidal epitaxy obeys the same two-dimensional island nucleation and growth laws that govern atomic epitaxy. However, we found that in colloidal epitaxy, step-edge and corner barriers that are responsible for film morphology have a diffusive origin. This diffusive mechanism suggests new routes toward controlling film morphology during epitaxy.

  9. Anisotropic in-plane misfit strains dependence of phase diagrams and dielectric behavior in epitaxial Pb(Zr1-xTix)O3 thin films

    NASA Astrophysics Data System (ADS)

    Qiu, J. H.; Jiang, Q.

    2007-10-01

    A phenomenological Landau Devonshire thermodynamic theory is used to describe the effects of anisotropic in-plane misfit strains on equilibrium polarization states and dielectric properties of single domain epitaxial Pb(Zr1-xTix)O3 thin films grown on dissimilar orthorhombic substrates. Compared with the “isotropic in-plane misfit strains-temperature” phase diagrams, the characteristic features of “misfit strain-misfit strain” and “misfit strain-temperature” phase diagrams under the circumstance of strain anisotropy are the presence of four different phases (a, a, ac, and ac) and the direct 90° polarization switching between c phase and a phase (or a phase), between a phase and a phase. The misfit strain dependence of polarization components, the small-signal dielectric responses and the tunabilities at room temperature are also calculated. We find that the phase diagrams and dielectric properties largely depend on anisotropic in-plane misfit strains as well. Moreover, the strain anisotropy will lead to the polarization and dielectric anisotropy.

  10. Growth and crystallographic characterization of molecular beam epitaxial WO3 and MoO3/WO3 thin films on sapphire substrates

    NASA Astrophysics Data System (ADS)

    Yano, Mitsuaki; Koike, Kazuto; Matsuo, Masayuki; Murayama, Takayuki; Harada, Yoshiyuki; Inaba, Katsuhiko

    2016-09-01

    Molecular beam epitaxy of tungsten trioxide (WO3) on (01 1 bar 2)-oriented (r-plane) sapphire substrates and molybdenum trioxide (MoO3) on the WO3 was studied by focusing on their crystallogrhaphic properties. Although polycrystalline monoclinic (γ-phase) WO3 films were grown at 500 °C and they became single-crystalline (0 0 1)-oriented γ-phase at 700 °C, the latter films were oxygen-deficient from stoichiometry and contained dense and deep thermal etchpits. By using a two-step growth method where only the initial 15 nm was grown at 700 °C and the rest part was grown at 500 °C, (0 0 1)-oriented γ-phase single-crystalline WO3 films with stoichiometric composition and smooth surface were obtained. On top of the 15-nm-thick WO3 initiation layer, (1 1 0)-oriented orthorhombic (α-phase) MoO3 films with smooth surface were obtained.

  11. Magnetic properties of orthorhombic fluorite-related oxides Ln{sub 3}SbO{sub 7} (Ln=rare earths)

    SciTech Connect

    Hinatsu, Yukio; Ebisawa, Haruka; Doi, Yoshihiro

    2009-07-15

    Ternary rare earth antimonates Ln{sub 3}SbO{sub 7} (Ln=rare earths) were prepared and their structures were determined by X-ray diffraction measurements. They crystallize in an orthorhombic superstructure of cubic fluorite (space group Cmcm for Ln=La, Pr, Nd; C222{sub 1} for Ln=Nd-Lu), in which Ln{sup 3+} ions occupy two different crystallographic sites (the 8-coordinated and 7-coordinated sites). Their magnetic properties were characterized by magnetic susceptibility and specific heat measurements from 1.8 to 400 K. The Ln{sub 3}SbO{sub 7} (Ln=Nd, Gd-Ho) compounds show an antiferromagnetic transition at 2.2-3.2 K. Sm{sub 3}SbO{sub 7} and Eu{sub 3}SbO{sub 7} show van Vleck paramagnetism. Measurements of the specific heat down to 0.4 K for Gd{sub 3}SbO{sub 7} and the analysis of the magnetic specific heat indicate that the antiferromagnetic ordering of the 8-coordinated Gd ions occur at 2.6 K, and the 7-coordinated Gd ions order at a furthermore low temperature. - Graphical Abstract: Ternary rare earth antimonates Ln{sub 3}SbO{sub 7} (Ln=rare earths) crystallize in an orthorhombic superstructure of cubic fluorite (space group Cmcm for Ln=La, Pr, Nd; C222{sub 1} for Ln=Nd-Lu), in which Ln{sup 3+} ions occupy two different crystallographic sites (the 8-coordinated and 7-coordinated sites). Any of these compounds Ln{sub 3}SbO{sub 7} (Ln=Nd, Gd-Ho) shows an antiferromagnetic transition at 2.2-3.2 K.

  12. Simultaneous metal-insulator and antiferromagnetic transitions in orthorhombic perovskite iridate S r0.94I r0.78O2.68 single crystals

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Terzic, J.; Ye, Feng; Wan, X. G.; Wang, D.; Wang, Jinchen; Wang, Xiaoping; Schlottmann, P.; Yuan, S. J.; Cao, G.

    2016-06-01

    The orthorhombic perovskite SrIr O3 is a semimetal, an intriguing exception in iridates where the strong spin-orbit interaction coupled with electron correlations tends to impose an insulating state. We report results of our investigation of bulk single-crystal S r0.94I r0.78O2.68 or Ir-deficient, orthorhombic perovskite SrIr O3 . It retains the same crystal structure as stoichiometric SrIr O3 but exhibits a sharp, simultaneous antiferromagnetic (AFM) and metal-insulator (MI) transition occurring in the basal-plane resistivity at 185 K. Above it, the basal-plane resistivity features an extended regime of almost linear temperature dependence up to 800 K but the strong electronic anisotropy renders an insulating behavior in the out-of-plane resistivity. The Hall resistivity undergoes an abrupt sign change and grows below 40 K, which along with the Sommerfeld constant of 20 mJ /mol K2 suggests a multiband effect. All results including our first-principles calculations underscore a delicacy of the paramagnetic, metallic state in SrIr O3 that is in close proximity to an AFM insulating state. The contrasting ground states in isostructural S r0.94I r0.78O2.68 and SrIr O3 illustrate a critical role of lattice distortions and Ir deficiency in rebalancing the ground state in the iridates. Finally, the concurrent AFM and MI transitions reveal a direct correlation between the magnetic transition and formation of an activation gap in the iridate, which is conspicuously absent in S r2Ir O4 .

  13. Robust conductive mesoporous carbon-silica composite films with highly ordered and oriented orthorhombic structures from triblock-copolymer template co-assembly

    SciTech Connect

    Song, Lingyan; Feng, Dan; Campbell, Casey G; Gu, Dong; Forster, Aaron M; Yager, Kevin G; Fredin, Nathaniel; Lee, Hae-Jeong; Jones, Ronald L; Zhao, Dongyuan; Vogt, Bryan D

    2012-07-11

    In this work, we describe a facile approach to improve the robustness of conductive mesoporous carbon-based thin films by the addition of silica to the matrix through the triconstituent organic-inorganic-organic co-assembly of resol (carbon precursor) and tetraethylorthosilicate (silica precursor) with triblock-copolymer Pluronic F127. The pyrolysis of the resol-silica-pluronic F127 film yields a porous composite thin film with well-defined mesostructure. X-Ray diffraction (XRD), grazing incidence small angle X-ray scattering (GISAXS), and electron microscopy measurements indicate that the obtained carbon-based thin films have a highly ordered orthorhombic mesostructure (Fmmm) with uniform large pore size (~3 nm). The orthorhombic mesostructure is oriented and the (010) plane is parallel to the silicon wafer substrate. The addition of silica to the matrix impacts the pore size, surface area, porosity, modulus and conductivity. For composite films with approximately 40 wt% silica, the conductivity is decreased by approximately an order of magnitude in comparison to a pure carbon mesoporous film, but the conductivity is comparable to typical printed carbon inks used in electrochemical sensing, {approx}10 S cm-1. The mechanical properties of these mesoporous silica-carbon hybrid films are similar to the pure carbon analogs with a Young's modulus between 10 GPa and 15 GPa, but the material is significantly more porous. Moreover, the addition of silica to the matrix appears to improve the adhesion of the mesoporous film to a silicon wafer. These mesoporous silica-carbon composite films have appropriate characteristics for use in sensing applications.

  14. Thermodynamic study of orthorhombic T{sup x} and tetragonal T′ lanthanum cuprate, La{sub 2}CuO{sub 4}

    SciTech Connect

    Lilova, K.I.; Hord, R.; Alff, L.; Albert, B.; Navrotsky, A.

    2013-08-15

    The enthalpies of transition among the T{sup x}, T′, and T–La{sub 2}CuO{sub 4} phases are obtained from a combination of differential scanning calorimetry, high temperature oxide melt solution calorimetry, and transposed temperature drop calorimetry. The enthalpy of transformation of T{sup x} to T is 2.32±0.07 kJ/mol and the corresponding entropy of transition is 4.38±0.13 J/(mol K). The T′ modification, with an average of 1.40 kJ/mol, is less stable in enthalpy than T{sup x} but at 0.96 kJ/mol, more stable in enthalpy than T. Although we cannot rule out a small stability field at temperatures near the T{sup x}–T transition at 530 K, T′ is most likely metastable at all temperatures. - Graphical abstract: Crystal structure of T{sup x} (orthorhombic), T′ and T (tetragonal) modifications of La{sub 2}CuO{sub 4} (left to right). The space group for orthorhombic T{sup x} is Cmce and I4/mmm for both T′ and T structures; copper cations are presented as small purple, lanthanum as large blue and oxygen as large green circles. Highlights: • The enthalpies of transition among the T{sup x} , T′, and T-La{sub 2}CuO{sub 4} phases are obtained. • The T{sup x} phase is the lowest in energy, the T′ higher and the T highest. • T′ phase is metastable at all temperatures.

  15. Multiperiod quantum-cascade nanoheterostructures: Epitaxy and diagnostics

    SciTech Connect

    Egorov, A. Yu. Brunkov, P. N.; Nikitina, E. V.; Pirogov, E. V.; Sobolev, M. S.; Lazarenko, A. A.; Baidakova, M. V.; Kirilenko, D. A.; Konnikov, S. G.

    2014-12-15

    Advances in the production technology of multiperiod nanoheterostructures of quantum-cascade lasers with 60 cascades by molecular-beam epitaxy (MBE) on an industrial multiple-substrate MBE machine are discussed. The results obtained in studying the nanoheterostructures of quantum-cascade lasers by transmission electron microscopy, high-resolution X-ray diffraction analysis, and photoluminescence mapping are presented.

  16. Depositing spacing layers on magnetic film with liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Moody, J. W.; Shaw, R. W.; Sanfort, R. M.

    1975-01-01

    Liquid phase epitaxy spacing layer is compatible with systems which are hard-bubble proofed by use of second magnetic garnet film as capping layer. Composite is superior in that: circuit fabrication time is reduced; adherence is superior; visibility is better; and, good match of thermal expansion coefficients is provided.

  17. Strained-layer epitaxy of germanium-silicon alloys.

    PubMed

    Bean, J C

    1985-10-11

    Despite the dominant position of silicon in semiconductor electronics, its use is ultimately limited by its incompatibility with other semiconducting materials. Strained-layer epitaxy overcomes problems of crystallographic compatibility and produces high-quality heterostructures of germanium-silicon layers on silicon. This opens the door to a range of electronic and photonic devices that are based on bandstructure physics. PMID:17842673

  18. Spatially Correlated Disorder in Epitaxial van der Waals Heterostructures

    NASA Astrophysics Data System (ADS)

    Laanait, Nouamane; Zhang, Zhan; Schleputz, Christian; Liu, Ying; Wojcik, Michael; Myers-Ward, Rachael; Gaskill, D. Kurt; Fenter, Paul; Li, Lian

    The structural cohesion of van der Waals (vdW) heterostructures relies upon a cooperative balance between strong intra-layer bonded interactions and weak inter-layer coupling. The confinement of extended defects to within a single vdW layer and competing interactions introduced by epitaxial constraints could generate fundamentally new structural disorders. Here we report on the presence of spatially correlated and localized disorder states that coexist with the near perfect crystallographic order along the growth direction of epitaxial vdW heterostructure of Bi2Se3/graphene/SiC grown by molecular beam epitaxy. With the depth penetration of hard X-ray diffraction microscopy and high-resolution surface scattering, we imaged local structural configurations from the atomic to mesoscopic length scales, and found that these disorder states result as a confluence of atomic scale modulations in the strength of vdW layer-layer interactions and nanoscale boundary conditions imposed by the substrate. These findings reveal a vast landscape of novel disorder states that can be manifested in epitaxial vdW heterostructures. Supported by the Wigner Fellowship program at Oak Ridge Nat'l Lab.

  19. Hard proximity induced superconducting gap in semiconductor - superconductor epitaxial hybrids

    NASA Astrophysics Data System (ADS)

    Jespersen, Thomas; Krogstrup, Peter; Ziino, Nino; Albrecht, Sven; Chang, Willy; Madsen, Morten; Johnson, Erik; Kuemmeth, Ferdinand; Nygård, Jesper; Marcus, Charles

    2015-03-01

    We present molecular beam epitaxy grown InAs semiconductor nanowires capped with a shell of aluminum (superconductor). The hybrid wires are grown without breaking vacuum, resulting in an epitaxial interface between the two materials as demonstrated by detailed transmission electron microscopy and simulations. The domain matching at the interface is discussed. Incorporating the epitaxial nanowire hybrids in electrical devices we performed detailed tunneling spectroscopy of the proximity induced superconducting gap in the InAs core at 20 mK. We find the sub-gap conductance being at least a factor 200 smaller than the normal state value (gap hardness). This is a significant improvement compared to devices fabricated by conventional lithographic methods and metal evaporation showing no more than a factor of ~ 5 . The epitaxial hybrids seem to solve the soft gap problem associated with the use of nanowire hybrids for future applications in topological quantum information based on Majorana zero modes. Research supported by Microsoft Station Q, Danish National Research Foundation, Villum Foundation, Lundbeck Foundation, and the European Commission.

  20. Growth of Epitaxial Oxide Thin Films on Graphene.

    PubMed

    Zou, Bin; Walker, Clementine; Wang, Kai; Tileli, Vasiliki; Shaforost, Olena; Harrison, Nicholas M; Klein, Norbert; Alford, Neil M; Petrov, Peter K

    2016-01-01

    The transfer process of graphene onto the surface of oxide substrates is well known. However, for many devices, we require high quality oxide thin films on the surface of graphene. This step is not understood. It is not clear why the oxide should adopt the epitaxy of the underlying oxide layer when it is deposited on graphene where there is no lattice match. To date there has been no explanation or suggestion of mechanisms which clarify this step. Here we show a mechanism, supported by first principles simulation and structural characterisation results, for the growth of oxide thin films on graphene. We describe the growth of epitaxial SrTiO3 (STO) thin films on a graphene and show that local defects in the graphene layer (e.g. grain boundaries) act as bridge-pillar spots that enable the epitaxial growth of STO thin films on the surface of the graphene layer. This study, and in particular the suggestion of a mechanism for epitaxial growth of oxides on graphene, offers new directions to exploit the development of oxide/graphene multilayer structures and devices. PMID:27515496

  1. Growth of Epitaxial Oxide Thin Films on Graphene

    PubMed Central

    Zou, Bin; Walker, Clementine; Wang, Kai; Tileli, Vasiliki; Shaforost, Olena; Harrison, Nicholas M.; Klein, Norbert; Alford, Neil M.; Petrov, Peter K.

    2016-01-01

    The transfer process of graphene onto the surface of oxide substrates is well known. However, for many devices, we require high quality oxide thin films on the surface of graphene. This step is not understood. It is not clear why the oxide should adopt the epitaxy of the underlying oxide layer when it is deposited on graphene where there is no lattice match. To date there has been no explanation or suggestion of mechanisms which clarify this step. Here we show a mechanism, supported by first principles simulation and structural characterisation results, for the growth of oxide thin films on graphene. We describe the growth of epitaxial SrTiO3 (STO) thin films on a graphene and show that local defects in the graphene layer (e.g. grain boundaries) act as bridge-pillar spots that enable the epitaxial growth of STO thin films on the surface of the graphene layer. This study, and in particular the suggestion of a mechanism for epitaxial growth of oxides on graphene, offers new directions to exploit the development of oxide/graphene multilayer structures and devices. PMID:27515496

  2. Improved epitaxial process for fabricating silicon carbide semiconductor devices

    NASA Technical Reports Server (NTRS)

    Will, H. A.; Powell, J. A.

    1974-01-01

    Process of growing expitaxial silicon carbide (SiC) layers on SiC substrates so that epitaxial growth is perpendicular to c-axis by chemical vapor deposition process at temperatures of 1590 to 1660 K minimizes variations in stacking sequence and problems associated with high temperatures.

  3. Crystallization engineering as a route to epitaxial strain control

    SciTech Connect

    Akbashev, Andrew R.; Plokhikh, Aleksandr V.; Barbash, Dmitri; Lofland, Samuel E.; Spanier, Jonathan E.

    2015-10-01

    The controlled synthesis of epitaxial thin films offers opportunities for tuning their functional properties via enabling or suppressing strain relaxation. Examining differences in the epitaxial crystallization of amorphous oxide films, we report on an alternate, low-temperature route for strain engineering. Thin films of amorphous Bi–Fe–O were grown on (001)SrTiO{sub 3} and (001)LaAlO{sub 3} substrates via atomic layer deposition. In situ X-ray diffraction and X-ray photoelectron spectroscopy studies of the crystallization of the amorphous films into the epitaxial (001)BiFeO{sub 3} phase reveal distinct evolution profiles of crystallinity with temperature. While growth on (001)SrTiO{sub 3} results in a coherently strained film, the same films obtained on (001)LaAlO{sub 3} showed an unstrained, dislocation-rich interface, with an even lower temperature onset of the perovskite phase crystallization than in the case of (001)SrTiO{sub 3}. Our results demonstrate how the strain control in an epitaxial film can be accomplished via its crystallization from the amorphous state.

  4. On the density of states of disordered epitaxial graphene

    SciTech Connect

    Davydov, S. Yu.

    2015-05-15

    The study is concerned with two types of disordered epitaxial graphene: (i) graphene with randomly located carbon vacancies and (ii) structurally amorphous graphene. The former type is considered in the coherent potential approximation, and for the latter type, a model of the density of states is proposed. The effects of two types of substrates, specifically, metal and semiconductor substrates are taken into account. The specific features of the density of states of epitaxial graphene at the Dirac point and the edges of the continuous spectrum are analyzed. It is shown that vacancies in epitaxial graphene formed on the metal substrate bring about logarithmic nulling of the density of states of graphene at the Dirac point and the edges of the continuous spectrum. If the Dirac point corresponds to the middle of the band gap of the semiconductor substrate, the linear trend of the density of states to zero in the vicinity of the Dirac point in defect-free graphene transforms into a logarithmic decrease in the presence of vacancies. In both cases, the graphene-substrate interaction is assumed to be weak (quasi-free graphene). In the study of amorphous epitaxial graphene, a simple model of free amorphous graphene is proposed as the initial model, in which account is taken of the nonzero density of states at the Dirac point, and then the interaction of the graphene sheet with the substrate is taken into consideration. It is shown that, near the Dirac point, the quadratic behavior of the density of states of free amorphous graphene transforms into a linear dependence for amorphous epitaxial graphene. In the study, the density of states of free graphene corresponds to the low-energy approximation of the electron spectrum.

  5. Cosine (Cobalt Silicide Growth Through Nitrogen-Induced Epitaxy) Process For Epitaxial Cobalt Silicide Formation For High Performance Sha

    DOEpatents

    Lim, Chong Wee; Shin, Chan Soo; Gall, Daniel; Petrov, Ivan Georgiev; Greene, Joseph E.

    2004-09-28

    A method for forming an epitaxial cobalt silicide layer on a MOS device includes sputter depositing cobalt in an ambient to form a first layer of cobalt suicide on a gate and source/drain regions of the MOS device. Subsequently, cobalt is sputter deposited again in an ambient of argon to increase the thickness of the cobalt silicide layer to a second thickness.

  6. Methods of preparing flexible photovoltaic devices using epitaxial liftoff, and preserving the integrity of growth substrates used in epitaxial growth

    DOEpatents

    Forrest, Stephen R; Zimmerman, Jeramy; Lee, Kyusang; Shiu, Kuen-Ting

    2013-02-19

    There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.

  7. Methods of preparing flexible photovoltaic devices using epitaxial liftoff, and preserving the integrity of growth substrates used in epitaxial growth

    DOEpatents

    Forrest, Stephen R; Zimmerman, Jeramy; Lee, Kyusang; Shiu, Kuen-Ting

    2015-01-06

    There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.

  8. Efficient Interlayer Relaxation and Transition of Excitons in Epitaxial and Non-epitaxial MoS2/WS2 Heterostructures

    DOE PAGESBeta

    Yu, Yifei; Hu, Shi; Su, Liqin; Huang, Lujun; Liu, Yi; Jin, Zhenghe; Puretzky, Alexander A.; Geohegan, David B.; Kim, Ki Wook; Zhang, Yong; et al

    2014-12-03

    Semiconductor heterostructurs provide a powerful platform for the engineering of excitons. Here we report on the excitonic properties of two-dimensional (2D) heterostructures that consist of monolayer MoS2 and WS2 stacked epitaxially or non-epitaxially in the vertical direction. We find similarly efficient interlayer relaxation and transition of excitons in both the epitaxial and non-epitaxial heterostructures. This is manifested by a two orders of magnitude decrease in the photoluminescence and an extra absorption peak at low energy region of both heterostructures. The MoS2/WS2 heterostructures show weak interlayer coupling and essentially act as an atomic-scale heterojunction with the intrinsic band structures of themore » two monolayers largely preserved. They are particularly promising for the applications that request efficient dissociation of excitons and strong light absorption, including photovoltaics, solar fuels, photodetectors, and optical modulators. Our results also indicate that 2D heterostructures promise to provide capabilities to engineer excitons from the atomic level without concerns of interfacial imperfection.« less

  9. Efficient Interlayer Relaxation and Transition of Excitons in Epitaxial and Non-epitaxial MoS2/WS2 Heterostructures

    SciTech Connect

    Yu, Yifei; Hu, Shi; Su, Liqin; Huang, Lujun; Liu, Yi; Jin, Zhenghe; Puretzky, Alexander A.; Geohegan, David B.; Kim, Ki Wook; Zhang, Yong; Cao, Linyou

    2014-12-03

    Semiconductor heterostructurs provide a powerful platform for the engineering of excitons. Here we report on the excitonic properties of two-dimensional (2D) heterostructures that consist of monolayer MoS2 and WS2 stacked epitaxially or non-epitaxially in the vertical direction. We find similarly efficient interlayer relaxation and transition of excitons in both the epitaxial and non-epitaxial heterostructures. This is manifested by a two orders of magnitude decrease in the photoluminescence and an extra absorption peak at low energy region of both heterostructures. The MoS2/WS2 heterostructures show weak interlayer coupling and essentially act as an atomic-scale heterojunction with the intrinsic band structures of the two monolayers largely preserved. They are particularly promising for the applications that request efficient dissociation of excitons and strong light absorption, including photovoltaics, solar fuels, photodetectors, and optical modulators. Our results also indicate that 2D heterostructures promise to provide capabilities to engineer excitons from the atomic level without concerns of interfacial imperfection.

  10. Effects of high source flow and high pumping speed on gas source molecular beam epitaxy / chemical beam epitaxy

    NASA Astrophysics Data System (ADS)

    McCollum, M. J.; Jackson, S. L.; Szafranek, I.; Stillman, G. E.

    1990-10-01

    We report the growth of GaAs by molecular beam epitaxy (MBE), gas source molecular beam epitaxy (GSMBE), and chemical beam epitaxy (CBE) in an epitaxial III-V reactor which features high pumping speed. The system is comprised of a modified Perkin-Elmer 430P molecular beam epitaxy system and a custom gas source panel from Emcore. The growth chamber is pumped with a 7000 1/s (He) diffusion pump (Varian VHS-10 with Monsanto Santovac 5 oil). The gas source panel includes pressure based flow controllers (MKS 1150) allowing triethylaluminum (TEA), triethylgallium (TEG), and trimethylindium (TMI) to be supplied without the use of hydrogen. All source lines, including arsine and phosphine, are maintained below atmospheric pressure. The high pumping speed allows total system flow rates as high as 100 SCCM and V/III ratios as high as 100. The purity of GaAs grown by MBE in this system increases with pumping speed. GaAs layers grown by GSMBE with arsine flows of 10 and 20 SCCM have electron concentrations of 1 × 10 15 cm -3 (μ 77=48,000 cm 2/V·) and 2 × 10 14 cm -3 (μ 77=78,000 cm 2/V·s) respectively. El ectron concentration varies with hydride injector temperature such that the minimum in electron concentration occurs for less than complete cracking. The effect of V/III ratio and the use of a metal eutectic bubbler on residual carrier concentration in GaAs grown by CBE is presented. Intentional Si and Be doping of CBE grown GaAs is demonstrated at a high growth rate of 5.4 μm/h.

  11. Local epitaxial growth of ZrO2 on Ge (100) substrates by atomic layer epitaxy

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungsub; Chui, Chi On; Saraswat, Krishna C.; McIntyre, Paul C.

    2003-09-01

    High-k dielectric deposition processes for gate dielectric preparation on Si surfaces usually result in the unavoidable and uncontrolled formation of a thin interfacial oxide layer. Atomic layer deposition of ˜55-Å ZrO2 film on a Ge (100) substrate using ZrCl4 and H2O at 300 °C was found to produce local epitaxial growth [(001) Ge//(001) ZrO2 and [100] Ge//[100] ZrO2] without a distinct interfacial layer, unlike the situation observed when ZrO2 is deposited using the same method on Si. Relatively large lattice mismatch (˜10%) between ZrO2 and Ge produced a high areal density of interfacial misfit dislocations. Large hysteresis (>200 mV) and high frequency dispersion were observed in capacitance-voltage measurements due to the high density of interface states. However, a low leakage current density, comparable to values obtained on Si substrates, was observed with the same capacitance density regardless of the high defect density.

  12. Surface morphological evolution of epitaxial CrN(001) layers

    SciTech Connect

    Frederick, J.R.; Gall, D.

    2005-09-01

    CrN layers, 57 and 230 nm thick, were grown on MgO(001) at T{sub s}=600-800 deg. C by ultrahigh-vacuum magnetron sputter deposition in pure N{sub 2} discharges from an oblique deposition angle {alpha}=80 deg. . Layers grown at 600 deg. C nucleate as single crystals with a cube-on-cube epitaxial relationship with the substrate. However, rough surfaces with cauliflower-type morphologies cause the nucleation of misoriented CrN grains that develop into cone-shaped grains that protrude out of the epitaxial matrix to form triangular faceted surface mounds. The surface morphology of epitaxial CrN(001) grown at 700 deg. C is characterized by dendritic ridge patterns extending along the orthogonal <110> directions superposed by square-shaped super mounds with <100> edges. The ridge patterns are attributed to a Bales-Zangwill instability while the supermounds form due to atomic shadowing which leads to the formation of epitaxial inverted pyramids that are separated from the surrounding layer by tilted nanovoids. Growth at 800 deg. C yields complete single crystals with smooth surfaces. The root-mean-square surface roughness for 230-nm-thick layers decreases from 18.8 to 9.3 to 1.1 nm as T{sub s} is raised from 600 to 700 to 800 deg. C. This steep decrease is due to a transition in the roughening mechanism from atomic shadowing to kinetic roughening. Atomic shadowing is dominant at 600 and 700 deg. C, where misoriented grains and supermounds, respectively, capture a larger fraction of the oblique deposition flux in comparison to the surrounding epitaxial matrix, resulting in a high roughening rate that is described by a power law with an exponent {beta}>0.5. In contrast, kinetic roughening controls the surface morphology for T{sub s}=800 deg. C, as well as the epitaxial fraction of the layers grown at 600 and 700 deg. C, yielding relatively smooth surfaces and {beta}{<=}0.27.

  13. Orthorhombic superstructures within the rare earth strontium-doped cobaltate perovskites: Ln1-xSr xCoO 3-δ ( Ln=Y 3+, Dy 3+-Yb 3+; 0.750⩽ x⩽0.875)

    NASA Astrophysics Data System (ADS)

    James, Michael; Avdeev, Maxim; Barnes, Paris; Morales, Liliana; Wallwork, Kia; Withers, Ray

    2007-08-01

    A combination of electron, synchrotron X-ray and neutron powder diffraction reveals a new orthorhombic structure type within the Sr-doped rare earth perovskite cobaltates Ln1-xSr xCoO 3-δ ( Ln=Y 3+, Dy 3+, Ho 3+, Er 3+, Tm 3+and Yb 3+). Electron diffraction shows a C-centred cell based on a 2√2 ap×4 ap×4√2 ap superstructure of the basic perovskite unit. Not all of these very weak satellite reflections are evident in the synchrotron X-ray and neutron powder diffraction data and the average structure of each member of this series could only be refined based on Cmma symmetry and a 2√2 ap×4 ap×2√2 ap cell. The nature of structural and magnetic ordering in these phases relies on both oxygen vacancy and cation distribution. A small range of solid solution exists where this orthorhombic structure type is observed, centred roughly around the compositions Ln0.2Sr 0.8CoO 3-δ. In the case of Yb 3+ the pure orthorhombic phase was only observed for 0.850⩽ x⩽0.875. Tetragonal ( I4 /mmm; 2 ap×2 ap×4 ap) superstructures were observed for compositions having higher or lower Sr-doping levels, or for compounds with rare earth ions larger than Dy 3+. These orthorhombic phases show mixed valence (3+/4+) cobalt oxidation states between 3.2+ and 3.3+. DC magnetic susceptibility measurements show an additional magnetic transition for these orthorhombic phases compared to the associated tetragonal compounds with critical temperatures > 330 K.

  14. Impact of hydrogen surfactant on crystallinity of Ge1-xSnx epitaxial layers

    NASA Astrophysics Data System (ADS)

    Asano, Takanori; Taoka, Noriyuki; Hozaki, Koya; Takeuchi, Wakana; Sakashita, Mitsuo; Nakatsuka, Osamu; Zaima, Shigeaki

    2015-04-01

    The effect of a hydrogen surfactant on the crystallinity of a Ge1-xSnx epitaxial layer was investigated. The improvement of crystallinity on the in-plane uniformity of Ge1-xSnx epitaxial layer was observed by X-ray diffuse scattering and transmission electron microscopy. We also observed the decrease in the surface roughness of the Ge1-xSnx epitaxial layer. This indicates the suppression of the three-dimensional growth mode of Ge1-xSnx epitaxial layer due to a compressive strain. In addition, we observed the reduction in acceptor-like defect density in an undoped-Ge1-xSnx epitaxial layer from the capacitance-voltage characteristics of a metal-oxide-semiconductor capacitor. Consequently, introducing hydrogen during the growth leads to the improvement of the crystalline quality of the Ge1-xSnx epitaxial layer.

  15. Crystal chemistry of the orthorhombic Ln{sub 2}TiO{sub 5} compounds with Ln=La, Pr, Nd, Sm, Gd, Tb and Dy

    SciTech Connect

    Aughterson, Robert D.; Lumpkin, Gregory R.; Thorogood, Gordon J.; Zhang, Zhaoming; Gault, Baptiste; Cairney, Julie M.

    2015-07-15

    The crystal structures of seven samples of orthorhombic (Pnma) Ln{sub 2}TiO{sub 5} compounds with Ln=La, Pr, Nd, Sm, Gd, Tb and Dy were refined by Rietveld analysis of synchrotron X-ray powder diffraction (S-XRD) data. With increasing size of the lanthanide cation, the lattice parameters increase systematically: c by only ~1.5% whereas both a and b by ~6% from Dy{sub 2}TiO{sub 5} to La{sub 2}TiO{sub 5}. The mean Ti–O bond length only increases by ~1% with increasing radius of the Ln cation from Gd to La, primarily due to expansion of the pair of Ti–O{sub 3} bonds to opposite corners of the Ti–O{sub 5} square based pyramid polyhedra. For Dy{sub 2}TiO{sub 5} and Tb{sub 2}TiO{sub 5}, a significant variation in Ti–O{sub 1} and Ti–O{sub 4} bond lengths results in an increased deformation of the Ti–O{sub 5} base. The particular configuration consists of large rhombic shaped tunnels and smaller triangular tunnels along the b axis, which have implications for defect formation and migration caused by radiation damage or the ionic conductivity. - Graphical abstract: Figure: The crystallographic study of a systematic series of compounds with nominal stoichiometry Ln{sub 2}TiO{sub 5} (with Ln representing La, Pr, Nd, Sm, Gd, Tb and Dy) and orthorhombic, Pnma, symmetry shows changes in cell parameters which fit a linear trend. However, bond lengths are shown to deviate from trend with compounds containing the smaller, heavier lanthanides. - Highlights: • First fabrication and crystallographic refinement of compound Pr{sub 2}TiO{sub 5}. • First systematic study of the crystallography, using S-XRD, for Ln{sub 2}TiO{sub 5} series. • Cation to anion bonding trends and valence states are investigated. • The densities and band-gaps of the series are experimentally determined.

  16. Growth-induced electronic properties of epitaxial graphene

    NASA Astrophysics Data System (ADS)

    First, Phillip

    2012-02-01

    The growth of epitaxial graphene on silicon carbide is challenging to understand and control, yet rife with scientific and technological opportunities. This is due in part to different growth-induced structures such as the ``moire'' alignment of graphene layers in multilayer epitaxial graphene on SiC(0001) and the formation of sidewall ribbons at natural and lithographically-defined SiC(0001) step-bunches (nanofacets). We apply scanning tunneling microscopy (STM) and spectroscopy (STS) to probe the local energy bands of such growth-induced structures. STS at cryogenic temperatures and large magnetic fields creates a comb of discrete Landau level energies that we use to quantitatively characterize the local electronic properties.

  17. Carrier Transport in Epitaxial Multi-layer Graphene

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Ming; Dimitrakopoulos, Christos; Farmer, Damon; Han, Shu-Jen; Wu, Yanqing; Zhu, Wenjuan; Gaskill, D. Kurt; Tedesco, Joseph; Myers-Ward, Rachael; Eddy, Charles, Jr.; Grill, Alfred; Avouris, Phaedon; Ibm Team; Nrl Team

    2011-03-01

    Significant attention has been focused recently on the electrical properties of graphene grown epitaxially on SiC substrates, because it offers an ideal platform for carbon-based electronics using conventional top-down lithography techniques. The transport properties of graphene are usually studied via Hall effect measurements, which provide information on the carrier mobility and density. Hall measurements performed at a single magnetic field yield a weighted average of carrier mobility and density, and are strictly applicable to homogeneous samples. In this study, we performed variable-field Hall and resistivity measurements on epitaxial graphene, and the results were analyzed with a multi-carrier model. Good agreements were obtained between experimental data and the model, providing further evidence of multi-carrier transport in the C-face grown MLG. This work is supported by DARPA under contract FA8650-08-C-7838 through the CERA program and by the Office of Naval Research.

  18. Nanoscale electrical properties of epitaxial Cu3Ge film

    PubMed Central

    Wu, Fan; Cai, Wei; Gao, Jia; Loo, Yueh-Lin; Yao, Nan

    2016-01-01

    Cu3Ge has been pursued as next-generation interconnection/contact material due to its high thermal stability, low bulk resistivity and diffusion barrier property. Improvements in electrical performance and structure of Cu3Ge have attracted great attention in the past decades. Despite the remarkable progress in Cu3Ge fabrication on various substrates by different deposition methods, polycrystalline films with excess Ge were frequently obtained. Moreover, the characterization of nanoscale electrical properties remains challenging. Here we show the fabrication of epitaxial Cu3Ge thin film and its nanoscale electrical properties, which are directly correlated with localized film microstructures and supported by HRTEM observations. The average resistivity and work function of epitaxial Cu3Ge thin film are measured to be 6 ± 1 μΩ cm and ~4.47 ± 0.02 eV respectively, qualifying it as a good alternative to Cu. PMID:27363582

  19. Phase-field model of island growth in epitaxy

    NASA Astrophysics Data System (ADS)

    Yu, Yan-Mei; Liu, Bang-Gui

    2004-02-01

    Nucleation and growth of islands in epitaxy is simulated using a continuum phase-field model. In addition to local density of adatoms, a local phase-field variable, varying in the real space, is introduced to describe the epitaxial islands. Evolution of this phase field is determined by a time-dependent Ginzburg-Landau-like equation coupled to a diffusive transport equation of adatoms. When applied to nucleation and growth of islands in the submonolayer regime, this model reproduces both the scaling laws of island density and experimental size and spatial distributions of islands. For island growth in the multilayer regime, this phase-field model reproduces mound structures consistent with experimental images concerned. Accurate coarsening and roughening exponents of the mounds are obtained in this model. Compared with atomic models and mean-field models, this model can provide a fine visualized morphology of islands at large space and time scales of practical engineering interests.

  20. Phase-field model of island growth in epitaxy.

    PubMed

    Yu, Yan-Mei; Liu, Bang-Gui

    2004-02-01

    Nucleation and growth of islands in epitaxy is simulated using a continuum phase-field model. In addition to local density of adatoms, a local phase-field variable, varying in the real space, is introduced to describe the epitaxial islands. Evolution of this phase field is determined by a time-dependent Ginzburg-Landau-like equation coupled to a diffusive transport equation of adatoms. When applied to nucleation and growth of islands in the submonolayer regime, this model reproduces both the scaling laws of island density and experimental size and spatial distributions of islands. For island growth in the multilayer regime, this phase-field model reproduces mound structures consistent with experimental images concerned. Accurate coarsening and roughening exponents of the mounds are obtained in this model. Compared with atomic models and mean-field models, this model can provide a fine visualized morphology of islands at large space and time scales of practical engineering interests. PMID:14995452

  1. Oxidized Monolayers of Epitaxial Silicene on Ag(111)

    PubMed Central

    Johnson, Neil W.; Muir, David I.; Moewes, Alexander

    2016-01-01

    The properties of epitaxial silicene monolayers on Ag(111) at various levels of oxidation are determined through complementary density functional theory calculations and soft X-ray spectroscopy experiments. Our calculations indicate that moderate levels of oxidation do not cause a significant bandgap opening in the epitaxial silicene monolayer, suggesting that oxygen functionalization is not a viable mechanism for bandgap tuning while the silicene monolayer remains on its metallic substrate. In addition, moderate oxidation is calculated to strongly distort the hexagonal Si lattice, causing it to cluster in regions of highest oxygen adatom concentration but retain its 2D sheet structure. However, our experiments reveal that beam-induced oxidation is consistent with the formation of islands of bulk-like SiO2. Complete exposure of the monolayer to ambient conditions results in a fully oxidized sample that closely resembles bulk SiO2, of which a significant portion is completely detached from the substrate. PMID:26936144

  2. Growth and properties of epitaxial GdN

    SciTech Connect

    Ludbrook, B. M.; Kuebel, M.; Ruck, B. J.; Preston, A. R. H.; Trodahl, H. J.; Farrell, I. L.; Reeves, R. J.; Durbin, S. M.; Ranno, L.

    2009-09-15

    Epitaxial gadolinium nitride films with well-oriented crystallites of up to 30 nm have been grown on yttria-stabilized zirconia substrates using a plasma-assisted pulsed laser deposition technique. We observe that the epitaxial GdN growth proceeds on top of a gadolinium oxide buffer layer that forms via reaction between deposited Gd and mobile oxygen from the substrate. Hall effect measurements show the films are electron doped to degeneracy, with carrier concentrations of 4x10{sup 20} cm{sup -3}. Magnetic measurements establish a T{sub C} of 70 K with a coercive field that can be tuned from 200 Oe to as low as 10 Oe.

  3. Nanoengineering of Ruddlesden-Popper phases using molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Haeni, Jeffrey Hewlett

    Epitaxial films including superlattices of the A n+1BnO3 n+1 Ruddlesden-Popper homologous series with A=Sr and Ba and B=Ti and Ru have been grown by reactive molecular beam epitaxy (MBE) on (LaAlO3)0.3--(SrAl0.5Ta 0.5O3)0.7 (LSAT), SrTiO3, DyScO 3 and Si substrates. The strict composition control necessary for the synthesis of these phases was achieved through the use of reflection high-energy electron diffraction (RHEED) intensity oscillations. The first five members of the Srn+1 TinO3n+1 and the Sr n+1RunO3 n+1 Ruddlesden-Popper homologous series, i.e., Sr 2TiO4, Sr3Ti2O7, Sr 4Ti3O10, Sr5Ti4O13 , and Sr6Ti5O16, and Sr2RuO 4, Sr3Ru2O7, Sr4Ru 3O10, Sr5Ru4O13, and Sr 6Ru5O16, respectively, were grown with layer-by-layer deposition. Dielectric measurements indicate that the dielectric constant tensor coefficient epsilon33 of the Srn +1TinO3n +1 series increases from a minimum of 44 +/- 4 in the n = 1 (Sr2TiO4) film to a maximum of 263 +/- 2 in the n = infinity (SrTiO3) film. XPS measurements on Sr2TiO4/SrTiO3 heterostructures indicate a type II interface between the two materials, with a valence band offset of -0.40 +/- 0.1 eV, and a conduction band offset of -0.2 +/- 0.1 eV. Epitaxial SrTiO3 thin films grown on DyScO3 and LSAT substrates show dramatically different dielectric properties, as measured with interdigitated electrodes. The film on DyScO3 is under biaxial tensile strain and shows significant room temperature tunability and a sharp Curie-Weiss peak at 293 K. Under biaxial compressive strain, the SrTiO 3 exhibits negligible room temperature tunability. Epitaxial SrTiO3/BaTiO3 short period superlattices were grown with nearly atomically-abrupt interfaces that are maintained even after annealing to high temperature. In addition, cross-sectional TEM reveals that all superlattice periods grown are coherently strained to the underlying (001) SrTiO3 and (001) LSAT substrates. Epitaxial SrRuO3 layers were grown on Si (100) on which a thin epitaxial (Ba,Sr)O/SrSi2

  4. Investigation of optical properties of epitaxial yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Paranin, V. D.

    2016-04-01

    In work we investigated yttrium iron garnet epitaxial films with a thickness of 10 µm and 55 µm which were grown on the surface of garnet substrate. Using the polarizing microscopy method the branching domain structure of films was shown with the period of domains 21.5 µm and 42.5 µm. Disappearance of domains at presence of an external magnetic field up to 100 Oe was noted. The optical transmission of films for the polarized beam of HeNe laser is investigated and zero diffraction order and odd diffraction rings orders were shown. Interconnection of the period of chaotically oriented domains with angles of axially symmetric diffraction rings orders was shown. Diffraction patterns at various longitudinal magnetic fields are investigated. Disappearance of odd diffraction orders and increasing in intensity of zero diffraction order were fixed. Optical transmission of epitaxial films was measured in range of 500 - 900 nm.

  5. Nanoscale electrical properties of epitaxial Cu3Ge film

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Cai, Wei; Gao, Jia; Loo, Yueh-Lin; Yao, Nan

    2016-07-01

    Cu3Ge has been pursued as next-generation interconnection/contact material due to its high thermal stability, low bulk resistivity and diffusion barrier property. Improvements in electrical performance and structure of Cu3Ge have attracted great attention in the past decades. Despite the remarkable progress in Cu3Ge fabrication on various substrates by different deposition methods, polycrystalline films with excess Ge were frequently obtained. Moreover, the characterization of nanoscale electrical properties remains challenging. Here we show the fabrication of epitaxial Cu3Ge thin film and its nanoscale electrical properties, which are directly correlated with localized film microstructures and supported by HRTEM observations. The average resistivity and work function of epitaxial Cu3Ge thin film are measured to be 6 ± 1 μΩ cm and ~4.47 ± 0.02 eV respectively, qualifying it as a good alternative to Cu.

  6. Nanoscale electrical properties of epitaxial Cu3Ge film.

    PubMed

    Wu, Fan; Cai, Wei; Gao, Jia; Loo, Yueh-Lin; Yao, Nan

    2016-01-01

    Cu3Ge has been pursued as next-generation interconnection/contact material due to its high thermal stability, low bulk resistivity and diffusion barrier property. Improvements in electrical performance and structure of Cu3Ge have attracted great attention in the past decades. Despite the remarkable progress in Cu3Ge fabrication on various substrates by different deposition methods, polycrystalline films with excess Ge were frequently obtained. Moreover, the characterization of nanoscale electrical properties remains challenging. Here we show the fabrication of epitaxial Cu3Ge thin film and its nanoscale electrical properties, which are directly correlated with localized film microstructures and supported by HRTEM observations. The average resistivity and work function of epitaxial Cu3Ge thin film are measured to be 6 ± 1 μΩ cm and ~4.47 ± 0.02 eV respectively, qualifying it as a good alternative to Cu. PMID:27363582

  7. Growth and characterization of YAG:Cr4+epitaxial films

    NASA Astrophysics Data System (ADS)

    Ubizskii, Sergii B.; Syvorotka, Igor M.; Melnyk, Sergii S.; Matkovskii, Andrej O.; Kopczynski, Krzysztof; Mierczyk, Zygmunt; Frukacz, Zygmunt

    1999-03-01

    Epitaxial films with thickness of 10 - 250 micrometers of yttrium aluminum garnet (YAG) doped with Cr were grown by liquid phase epitaxy technique on YAG:Nd substrates. Co-doping with Mg2+ is used to force the Cr4+ valent state formation. Dependence of absorption spectra of obtained films on melt-solution composition, growth conditions and thermal treatment in reducing and oxidizing atmospheres is studied. A very intensive absorption band in UV region with maximum at 275 nm was found both in co-doped and YAG:Mg2+ epifilms caused probably by oxygen vacancies compensating the excess charge of Mg2+. Its intensity correlates with Cr4+ content in the film in that way: it decreases with Cr4+ entering in the film. The absorption being characteristic for YAG:Cr4+ crystals is found in co-doped films grown at higher temperatures (1000 - 1100 degree(s)C). The processes occurring during annealing are discussed.

  8. On the kinetic barriers of graphene homo-epitaxy

    SciTech Connect

    Zhang, Wei; Yu, Xinke; Xie, Ya-Hong; Cahyadi, Erica; Ratsch, Christian

    2014-12-01

    The diffusion processes and kinetic barriers of individual carbon adatoms and clusters on graphene surfaces are investigated to provide fundamental understanding of the physics governing epitaxial growth of multilayer graphene. It is found that individual carbon adatoms form bonds with the underlying graphene whereas the interaction between graphene and carbon clusters, consisting of 6 atoms or more, is very weak being van der Waals in nature. Therefore, small carbon clusters are quite mobile on the graphene surfaces and the diffusion barrier is negligibly small (∼6 meV). This suggests the feasibility of high-quality graphene epitaxial growth at very low growth temperatures with small carbon clusters (e.g., hexagons) as carbon source. We propose that the growth mode is totally different from 3-dimensional bulk materials with the surface mobility of carbon hexagons being the highest over graphene surfaces that gradually decreases with further increase in cluster size.

  9. a Study of Epitaxial Growth of Calcium Fluoride on Silicon

    NASA Astrophysics Data System (ADS)

    Howard, L. K.

    Available from UMI in association with The British Library. The alkaline earth fluorides are good insulators at room temperature and have received significant attention as epitaxial dielectrics on semiconductors, their crystal structure and lattice parameters resembling those of common semiconductors. Such dielectrics enable passivation of semiconductors lacking stable oxides, isolation of devices on one substrate, and fabrication of 3-dimensional epitaxial heterostructures. The CaF_2/Si system was the structure investigated since the room temperature lattice mismatch is only 0.6%. A vacuum system was therefore developed for the deposition of CaF_2 onto silicon, and an RBS system, incorporating detector cooling, developed to establish the dependence of epitaxy on substrate temperature using channeling of 340 keV protons (giving an enhanced depth resolution and improved sensitivity to light elements compared to 2 MeV He^{+ } analysis). Epitaxial growth was obtained on n-type Si(111) and Si(100) substrates at 400-750 ^circC and 575-675^ circC respectively. A reaction between the CaF_2 and silicon occurred at higher temperatures producing non-uniform films. The epitaxy was also dependent on film thickness, the optimum de-channelled fractions obtained in the film of 8.25% and 15.2% for Si(111) and Si(100) substrates respectively were unobtainable for films under 1200 A. The insulator surface morphology was examined using Scanning Electron Microscopy. Epitaxial films on Si(111) were generally smooth, while preferential growth along <110> directions was observed for epitaxial insulators on Si(100), possibly due to slip along the (111) fluorite cleavage planes resulting from differences in the thermal expansion coefficients of CaF_2 and silicon and an increase in lattice mismatch with substrate temperature, although no cracking of the insulator was observed. The insulation and electrical properties of the films were investigated. Film resistivities upto 5E8 Omegacm and

  10. Highly ordered growth of PTCDA on epitaxial bilayer graphene

    NASA Astrophysics Data System (ADS)

    Meissner, Matthias; Gruenewald, Marco; Sojka, Falko; Udhardt, Christian; Forker, Roman; Fritz, Torsten

    2012-11-01

    For using the unique electronic properties of graphene in future nanoelectronic devices, control of the band structure is essential. While it has been shown already in the literature that this can be achieved by the deposition of organic molecules, little attention has been paid so far to the precise structural characterization of the interface. Here, we report on the epitaxial growth of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) layers on graphene, epitaxially grown on silicon carbide (SiC). The description of low energy electron diffraction (LEED) patterns of graphene on SiC by multiscattering is revisited. By means of a home-made algorithm used to correct radial distortions of the LEED images we are able to provide precise structural data of the PTCDA layers. By that, two different point-on-line types of PTCDA could be identified, one of which has neither been reported on graphite nor on graphene before.

  11. Anti-damping spin transfer torque through epitaxial nickel oxide

    SciTech Connect

    Moriyama, Takahiro; Nagata, Masaki; Yoshimura, Yoko; Matsuzaki, Noriko; Ono, Teruo; Takei, So; Tserkovnyak, Yaroslav; Terashima, Takahito

    2015-04-20

    We prepare the high quality epitaxial MgO(001)[100]/Pt(001)[100]/NiO(001)[100]/FeNi/SiO{sub 2} films to investigate the spin transport in the NiO antiferromagnetic insulator. The ferromagnetic resonance measurements of the FeNi under a spin current injection from the Pt by the spin Hall effect revealed the change of the ferromagnetic resonance linewidth depending on the amount of the spin current injection. The results can be interpreted that there is an angular momentum transfer through the NiO. A high efficient angular momentum transfer we observed in the epitaxial NiO can be attributed to the well-defined orientation of the antiferromagnetic moments and the spin quantization axis of the injected spin current.

  12. Epitaxial growth of VO{sub 2} by periodic annealing

    SciTech Connect

    Tashman, J. W.; Paik, H.; Merz, T. A.; Lee, J. H.; Moyer, J. A.; Schiffer, P.; Misra, R.; Mundy, J. A.; Spila, T.; Schubert, J.; Muller, D. A.; Schlom, D. G.

    2014-02-10

    We report the growth of ultrathin VO{sub 2} films on rutile TiO{sub 2} (001) substrates via reactive molecular-beam epitaxy. The films were formed by the cyclical deposition of amorphous vanadium and its subsequent oxidation and transformation to VO{sub 2} via solid-phase epitaxy. Significant metal-insulator transitions were observed in films as thin as 2.3 nm, where a resistance change ΔR/R of 25 was measured. Low angle annular dark field scanning transmission electron microscopy was used in conjunction with electron energy loss spectroscopy to study the film/substrate interface and revealed the vanadium to be tetravalent and the titanium interdiffusion to be limited to 1.6 nm.

  13. Molecular Beam Epitaxy Growth of Iron Phthalocyanine Nanostructures

    SciTech Connect

    Debnath, A. K.; Samanta, S.; Singh, Ajay; Aswal, D. K.; Gupta, S. K.; Yakhmi, J. V.

    2009-06-29

    FePc films of different thickness have been deposited by molecular beam epitaxy (MBE) as a function of substrate temperature (25-300 deg. C) and deposition rate (0.02-0.07 nm/s). The morphology of a 60 nm alpha-phase film has been tuned from nanobrush (nearly parallel nanorods aligned normal to the substrate plane) to nanoweb (nanowires forming a web-like structure in the plane of the substrate) by changing the deposition rate from 0.02 to 0.07 nm/s. We propose growth mechanisms of nanoweb and nanobrush morphology based on the van der Waals (vdW) epitaxy. For air exposed FePc films I-V hysteresis was observed at 300 K and it is attributed to surface traps created by chemisorbed oxygen.

  14. Oxidized Monolayers of Epitaxial Silicene on Ag(111)

    NASA Astrophysics Data System (ADS)

    Johnson, Neil W.; Muir, David I.; Moewes, Alexander

    2016-03-01

    The properties of epitaxial silicene monolayers on Ag(111) at various levels of oxidation are determined through complementary density functional theory calculations and soft X-ray spectroscopy experiments. Our calculations indicate that moderate levels of oxidation do not cause a significant bandgap opening in the epitaxial silicene monolayer, suggesting that oxygen functionalization is not a viable mechanism for bandgap tuning while the silicene monolayer remains on its metallic substrate. In addition, moderate oxidation is calculated to strongly distort the hexagonal Si lattice, causing it to cluster in regions of highest oxygen adatom concentration but retain its 2D sheet structure. However, our experiments reveal that beam-induced oxidation is consistent with the formation of islands of bulk-like SiO2. Complete exposure of the monolayer to ambient conditions results in a fully oxidized sample that closely resembles bulk SiO2, of which a significant portion is completely detached from the substrate.

  15. Scanning Tunneling Spectroscopy of Proximity Superconductivity in Epitaxial Multilayer Graphene

    PubMed Central

    Natterer, Fabian D.; Ha, Jeonghoon; Baek, Hongwoo; Zhang, Duming; Cullen, William; Zhitenev, Nikolai B.; Kuk, Young; Stroscio, Joseph A.

    2016-01-01

    We report on spatial measurements of the superconducting proximity effect in epitaxial graphene induced by a graphene-superconductor interface. Superconducting aluminum films were grown on epitaxial multilayer graphene on SiC. The aluminum films were discontinuous with networks of trenches in the film morphology reaching down to exposed graphene terraces. Scanning tunneling spectra measured on the graphene terraces show a clear decay of the superconducting energy gap with increasing separation from the graphene-aluminum edges. The spectra were well described by Bardeen-Cooper-Schrieffer (BCS) theory. The decay length for the superconducting energy gap in graphene was determined to be greater than 400 nm. Deviations in the exponentially decaying energy gap were also observed on a much smaller length scale of tens of nanometers. PMID:27088134

  16. Microwave studies of weak localization and antilocalization in epitaxial graphene

    SciTech Connect

    Drabińska, Aneta; Kamińska, Maria; Wołoś, Agnieszka; Baranowski, J. M.

    2013-12-04

    A microwave detection method was applied to study weak localization and antilocalization in epitaxial graphene sheets grown on both polarities of SiC substrates. Both coherence and scattering length values were obtained. The scattering lengths were found to be smaller for graphene grown on C-face of SiC. The decoherence rate was found to depend linearly on temperature, showing the electron-electron scattering mechanism.

  17. Various phase-field approximations for Epitaxial Growth

    NASA Astrophysics Data System (ADS)

    Rätz, Andreas; Voigt, Axel

    2004-05-01

    We present diffuse interface approximations for a step flow model in epitaxial growth. In this model, the motion of step edges of discrete atomic layers is determined by the time evolution of an introduced phase-field variable. In order to incorporate the attachment-detachment kinetics at step edges into the phase-field model a degenerate mobility-function is established. The model is used to simulate the evolution of a step train.

  18. Preferentially Etched Epitaxial Liftoff of InP Material

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G. (Inventor); Wilt, David M. (Inventor); DeAngelo, Frank L. (Inventor)

    1997-01-01

    The present invention is directed toward a method of removing epitaxial substrates from host substrates. A sacrificial release layer of ternary material is placed on the substrate. A layer of InP is then placed on the ternary material. Afterward a layer of wax is applied to the InP layer to apply compressive force and an etchant material is used to remove the sacrificial release layer.

  19. Robust surface states in epitaxial Bi(111) thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Kai; Jin, Xiaofeng

    Bulk Bi a prototype semimetal with trivial electronic band topology. Unanticipatedly, we show the Altshuler-Aronov-Spivak and Aharonov-Bohm effects in epitaxial Bi(111) thin films. Meanwhile, we clearly identify the interaction of the top and bottom surface states via quantum tunneling by the electrical conductance and weak anti-localization measurements. These results have significantly enriched our understanding about the electronic structure of Bi, which might be helpful for clearing up some of its longstanding subtle issues.

  20. Heterogeneous integration of epitaxial nanostructures: strategies and application drivers

    NASA Astrophysics Data System (ADS)

    Chui, Chi On; Shin, Kyeong-Sik; Kina, Jorge; Shih, Kun-Huan; Narayanan, Pritish; Moritz, C. Andras

    2012-10-01

    In order to sustain the historic progress in information processing, transmission, and storage, concurrent integration of heterogeneous functionality and materials with fine granularity is clearly imperative for the best connectivity, system performance, and density metrics. In this paper, we review recent developments in heterogeneous integration of epitaxial nanostructures for their applications toward our envisioned device-level heterogeneity using computing nanofabrics. We first identify the unmet need for heterogeneous integration in modern nanoelectronics and review state-of-the-art assembly approaches for nanoscale computing fabrics. We also discuss the novel circuit application driver, known as Nanoscale Application Specific Integrated Circuits (NASICs), which promises an overall performance-power-density advantage over CMOS and embeds built-in defect and parameter variation resilience. At the device-level, we propose an innovative cross-nanowire field-effect transistor (xnwFET) structure that simultaneously offers high performance, low parasitics, good electrostatic control, ease-of-manufacturability, and resilience to process variation. In addition, we specify technology requirements for heterogeneous integration and present two wafer-scale strategies. The first strategy is based on ex situ assembly and stamping transfer of pre-synthesized epitaxial nanostructures that allows tight control over key nanofabric parameters. The second strategy is based on lithographic definition of epitaxial nanostructures on native substrates followed by their stamping transfer using VLSI foundry processes. Finally, we demonstrate the successful concurrent heterogeneous co-integration of silicon and III-V compound semiconductor epitaxial nanowire arrays onto the same hosting substrate over large area, at multiple locations, with fine granularity, close proximity and high yield.

  1. Electronic Band Engineering of Epitaxial Graphene by Atomic Intercalation

    NASA Astrophysics Data System (ADS)

    Jayasekera, Thushari; Sandin, Andreas; Xu, Shu; Wheeler, Virginia; Gaskill, D. K.; Rowe, J. E.; Kim, K. W.; Dougherty, Daniel B.; Buongiorno Nardelli, M.

    2012-02-01

    Using calculations from first principles, we have investigated possible ways of engineering the electronic band structure of epitaxial graphene on SiC. In particular, intercalation of different atomic species, such as Hydrogen, Fluorine, Sodium, Germanium, Carbon and Silicon is shown to modify and tune the interface electronic properties and band alignments. Our results suggest that intercalation in graphene is quite different from that in graphite, and could provide a fundamentally new way to achieve electronic control in graphene electronics.

  2. Epitaxial growth and heterostructure synthesis by ion beam deposition (IBD)

    SciTech Connect

    Herbots, N.; Appleton, B.R.; Noggle, T.S.; Pennycook, S.J.; Zuhr, R.A.; Zehner, D.M.

    1986-01-01

    The synthesis of heterostructures and the possibility of low-temperature epitaxy by direct ion beam deposition at low energies (10 to 200 eV) were investigated both theoretically and experimentally. Monte-Carlo simulations of ion-solid interactions were used to study collision processes during IBD and have led to a qualitative understanding of the physical parameters involved in the deposition process. /sup 30/Si and /sup 74/Ge were deposited on Si(100) and Ge(100) directly from mass- and energy-analyzed ion beams. Ge/Si multilayers with interfaces as sharp as 0.35 nm were formed by IBD at 65 eV. Reactive ion etching with 20 eV /sup 37/Cl was used to clean Si surfaces in-situ at 625 and 870/sup 0/K. IBD epitaxy was then observed between 625 and 870/sup 0/K with ion energies ranging from 10 to 65 eV. /sup 30/Si films on Si(100) grown at 700/sup 0/K exhibited an ion channeling minimum yield of 4.8%. The dopant species in the substrate affected the occurrence of silicon epitaxy below 870/sup 0/K. Cross-section transmission electron microscopy (TEM) showed that dislocation loops were formed within the substrate during heated deposition, at a depth larger than 40 nm below the bombarded region. A uniaxial lattice expansion normal to the surface was measured in IBD crystals by x-ray Bragg reflection profiling and ion channeling. It is concluded that epitaxial layers and heterostructures can be formed at low temperature by IBD.

  3. Faceted ceramic fibers, tapes or ribbons and epitaxial devices therefrom

    SciTech Connect

    Goyal, Amit

    2013-07-09

    A crystalline article includes a single-crystal ceramic fiber, tape or ribbon. The fiber, tape or ribbon has at least one crystallographic facet along its length, which is generally at least one meter long. In the case of sapphire, the facets are R-plane, M-plane, C-plane or A-plane facets. Epitaxial articles, including superconducting articles, can be formed on the fiber, tape or ribbon.

  4. Faceted ceramic fibers, tapes or ribbons and epitaxial devices therefrom

    SciTech Connect

    Goyal, Amit

    2012-07-24

    A crystalline article includes a single-crystal ceramic fiber, tape or ribbon. The fiber, tape or ribbon has at least one crystallographic facet along its length, which is generally at least one meter long. In the case of sapphire, the facets are R-plane, M-plane, C-plane or A-plane facets. Epitaxial articles, including superconducting articles, can be formed on the fiber, tape or ribbon.

  5. Induced base transistor fabricated by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chang, C.-Y.; Liu, W. C.; Jame, M. S.; Wang, Y. H.; Luryi, S.

    1986-09-01

    A novel three-terminal hot-electron device, the induced base transistor (IBT), has been fabricated by molecular beam epitaxy. Two-dimensional electron gas induced by the applied collector field in an undoped GaAs quantum well is used as the base of the IBT. The common-base current gain alpha has been achieved as high as 0.96 under a collector bias of 2.5 V and an emitter current of 3 mA.

  6. Magnetic and magnetotransport properties of erbium silicide epitaxial films

    NASA Astrophysics Data System (ADS)

    Chroboczek, J. A.; Briggs, A.; Joss, W.; Auffret, S.; Pierre, J.

    1991-02-01

    Hexagonal Er3Si5 films epitaxially grown on Si show strong anisotropies in magnetization and magnetotransport below the ordering temperature. The magnetoresistance has a cusplike positive anomaly or is negative and featureless for a magnetic field applied, respectively, along or perpendicular to the [0001] axis. A noncollinear structure, composed of an antiferromagnetic and a ferromagnetic component accounts for the magnetization data. The latter used in conjunction with the Yamada-Takada theory of magnetotransport accounts for the magnetoresistance data.

  7. Epitaxial Fe on free-standing GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Yang, Mingze; Darbandi, Ali; Majumder, Sarmita; Watkins, Simon; Kavanagh, Karen

    2016-07-01

    Epitaxial Fe contacts have been fabricated onto the top half of free-standing, Te-doped GaAs nanowires (NWs) via electrodeposition. Electrical isolation from the substrate via a polymeric layer enabled the measurement of electrical transport through individual wires. Using a fixed probe within a scanning electron microscope, an average metal-semiconductor diode barrier height of 0.69 ± 0.03 eV (ideality factor 1.48 ± 0.02) was found.

  8. Epitaxial Templating of C60 with a Molecular Monolayer.

    PubMed

    Rochford, L A; Jones, T S; Nielsen, C B

    2016-09-01

    Commensurate epitaxial monolayers of truxenone on Cu (111) were employed to template the growth of monolayer and bilayer C60. Through the combination of STM imaging and LEED analysis we have demonstrated that C60 forms a commensurate 8 × 8 overlayer on truxenone/Cu (111). Bilayers of C60 retain the 8 × 8 periodicity of templated monolayers and although Kagome lattice arrangements are observed these are explained with combinations of 8 × 8 symmetry. PMID:27540868

  9. Evolving surface cusps during strained-layer epitaxy

    SciTech Connect

    Jesson, D.E.; Pennycook, S.J.; Baribeau, J.M.; Houghton, D.C.

    1993-04-01

    We have combined Z-contrast imaging and Ge marker layer experiments to study the evolving surface morphology of Si{sub x}Ge{sub 1-x} alloys grown by molecular beam epitaxy (MBE). Surface cusps are seen to arise as the intersection lines between coherent islands. The potential implications of stress concentrations associated with cusps are considered with a view to strain relaxation in the film via dislocation nucleation.

  10. Martensite transformation of epitaxial Ni-Ti films

    SciTech Connect

    Buschbeck, J.; Kozhanov, A.; Kawasaki, J. K.; James, R. D.; Palmstroem, C. J.

    2011-05-09

    The structure and phase transformations of thin Ni-Ti shape memory alloy films grown by molecular beam epitaxy are investigated for compositions from 43 to 56 at. % Ti. Despite the substrate constraint, temperature dependent x-ray diffraction and resistivity measurements reveal reversible, martensitic phase transformations. The results suggest that these occur by an in-plane shear which does not disturb the lattice coherence at interfaces.

  11. Terahertz and mid-infrared reflectance of epitaxial graphene.

    PubMed

    Santos, Cristiane N; Joucken, Frédéric; De Sousa Meneses, Domingos; Echegut, Patrick; Campos-Delgado, Jessica; Louette, Pierre; Raskin, Jean-Pierre; Hackens, Benoit

    2016-01-01

    Graphene has emerged as a promising material for infrared (IR) photodetectors and plasmonics. In this context, wafer scale epitaxial graphene on SiC is of great interest in a variety of applications in optics and nanoelectronics. Here we present IR reflectance spectroscopy of graphene grown epitaxially on the C-face of 6H-SiC over a broad optical range, from terahertz (THz) to mid-infrared (MIR). Contrary to the transmittance, reflectance measurements are not hampered by the transmission window of the substrate, and in particular by the SiC Reststrahlen band in the MIR. This allows us to present IR reflectance data exhibiting a continuous evolution from the regime of intraband to interband charge carrier transitions. A consistent and simultaneous analysis of the contributions from both transitions to the optical response yields precise information on the carrier dynamics and the number of layers. The properties of the graphene layers derived from IR reflection spectroscopy are corroborated by other techniques (micro-Raman and X-ray photoelectron spectroscopies, transport measurements). Moreover, we also present MIR microscopy mapping, showing that spatially-resolved information can be gathered, giving indications on the sample homogeneity. Our work paves the way for a still scarcely explored field of epitaxial graphene-based THz and MIR optical devices. PMID:27102827

  12. Terahertz and mid-infrared reflectance of epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Santos, Cristiane N.; Joucken, Frédéric; de Sousa Meneses, Domingos; Echegut, Patrick; Campos-Delgado, Jessica; Louette, Pierre; Raskin, Jean-Pierre; Hackens, Benoit

    2016-04-01

    Graphene has emerged as a promising material for infrared (IR) photodetectors and plasmonics. In this context, wafer scale epitaxial graphene on SiC is of great interest in a variety of applications in optics and nanoelectronics. Here we present IR reflectance spectroscopy of graphene grown epitaxially on the C-face of 6H-SiC over a broad optical range, from terahertz (THz) to mid-infrared (MIR). Contrary to the transmittance, reflectance measurements are not hampered by the transmission window of the substrate, and in particular by the SiC Reststrahlen band in the MIR. This allows us to present IR reflectance data exhibiting a continuous evolution from the regime of intraband to interband charge carrier transitions. A consistent and simultaneous analysis of the contributions from both transitions to the optical response yields precise information on the carrier dynamics and the number of layers. The properties of the graphene layers derived from IR reflection spectroscopy are corroborated by other techniques (micro-Raman and X-ray photoelectron spectroscopies, transport measurements). Moreover, we also present MIR microscopy mapping, showing that spatially-resolved information can be gathered, giving indications on the sample homogeneity. Our work paves the way for a still scarcely explored field of epitaxial graphene-based THz and MIR optical devices.

  13. Terahertz and mid-infrared reflectance of epitaxial graphene

    PubMed Central

    Santos, Cristiane N.; Joucken, Frédéric; De Sousa Meneses, Domingos; Echegut, Patrick; Campos-Delgado, Jessica; Louette, Pierre; Raskin, Jean-Pierre; Hackens, Benoit

    2016-01-01

    Graphene has emerged as a promising material for infrared (IR) photodetectors and plasmonics. In this context, wafer scale epitaxial graphene on SiC is of great interest in a variety of applications in optics and nanoelectronics. Here we present IR reflectance spectroscopy of graphene grown epitaxially on the C-face of 6H-SiC over a broad optical range, from terahertz (THz) to mid-infrared (MIR). Contrary to the transmittance, reflectance measurements are not hampered by the transmission window of the substrate, and in particular by the SiC Reststrahlen band in the MIR. This allows us to present IR reflectance data exhibiting a continuous evolution from the regime of intraband to interband charge carrier transitions. A consistent and simultaneous analysis of the contributions from both transitions to the optical response yields precise information on the carrier dynamics and the number of layers. The properties of the graphene layers derived from IR reflection spectroscopy are corroborated by other techniques (micro-Raman and X-ray photoelectron spectroscopies, transport measurements). Moreover, we also present MIR microscopy mapping, showing that spatially-resolved information can be gathered, giving indications on the sample homogeneity. Our work paves the way for a still scarcely explored field of epitaxial graphene-based THz and MIR optical devices. PMID:27102827

  14. Epitaxial interactions between molecular overlayers and ordered substrates

    NASA Astrophysics Data System (ADS)

    Hillier, Andrew C.; Ward, Michael D.

    1996-11-01

    A framework for evaluating the epitaxy of crystalline organic overlayers of generic symmetry on ordered substrates is described, which combines a computationally efficient analytical method for explicit determination of the type of epitaxy (i.e., commensurism, coincidence, or incommensurism) and overlayer azimuthal orientation with an analysis of the elastic properties of the overlayer and the overlayer-substrate interface. The azimuthal orientations predicted by the analytical method agree with values predicted by semiempirical potential-energy calculations and observed experimentally for previously reported organic overlayers which are demonstrated here to be coincident. Calculations based on this analytical approach are much less computationally intensive than potential-energy calculations, as the number of computational operations is independent of the overlayer size chosen for analysis. This enables analyses to be performed for the large overlayer basis sets common for molecular overlayers. Furthermore, this facilitates the analysis of coincident overlayers, for which the overlayer size needs to be large enough to establish a phasing relationship between a substrate and a large nonprimitive overlayer supercell so that the global minimum with respect to azimuthal angle can be determined. The computational efficiency of this method also enables a convenient examination of numerous possible reconstructed overlayer configurations in which the lattice parameters are bracketed around those of the native overlayer, thereby allowing examination of possible epitaxy-driven overlayer reconstructions. When combined with calculated intralayer- and overlayer-substrate elastic constants, this method provides a strategy for the design of heteroepitaxial molecular films.

  15. Epitaxial Ni/VO2 heterostructures on Si (001)

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srinivasa Rao; Foley, Gabrielle; Prater, John; Narayan, Jay

    VO2 is a strongly correlated oxide, undergoes a first order metal-insulator (MIT) well above the room temperature 340K. Previous works have shown that the stress associated with structural changes across MIT, VO2 can produce significant changes in magnetic properties of over layer ferromagnetic films such as Ni. This control of the magnetic properties could be very important to many technological applications. However, the current use of r-sapphire as substrate can be restrictive in the microelectronics industry. The previous works focused their studies on polycrystalline Ni and VO2 films, which do not allow the precise controlling of the associated properties due to poor reproducibility of polycrystalline films. We have investigated the magnetic and electronic properties of Ni/VO2 films when epitaxially integrated on Si (001) by pulsed laser deposition using domain matching epitaxy paradigm. Ni was grown both in nanoscale islands and layered form. The XRD results showed that the Ni, VO2and YSZ layers were grown epitaxially in single out of plane orientations. We found that the hysteresis in resistance vs. temperature curves in VO2 thin films was retained even when it is in close proximity with the Ni layer which helped confirm that VO2 layer preserves its characteristic features, revealed the fingerprint magnetic features of Ni layer. We will present and discuss our comprehensive experimental findings.

  16. X-ray measurement of magnetoelastic strain in epitaxial Er

    NASA Astrophysics Data System (ADS)

    Durfee, C. S.; Conover, M. J.; Flynn, C. P.

    1997-03-01

    Magnetic transitions are frequently accompanied by magnetoelastic distortions of the crystal lattice. In the case of epitaxially-grown thin magnetic films, however, distortions of the unit cell are potentially restricted by the clamping of the film to the substrate. In thicker epitaxial films (≈ 0.5 μ m), we expect that a film will not be rigidly clamped but will allow dislocations to absorb the lattice mismatch with the substrate. A thick epitaxial magnetic film in this limit offers a system to study dislocation formation and motion in the presence of a tunable field-induced mismatch between film and substrate. For this study, we have prepared strain-free Er films on sapphire by well-known MBE techniques, and have investigated magnetoelastic distortions using x-ray diffraction. X-ray measurements were performed using specially-constructed 40 kOe magnet dewar with x-ray windows. In-plane and perpendicular lattice parameters were measured at several applied magnetic fields, which allow the degree of clamping in the constrained direction to be directly measured. These strains will be discussed in the context of dislocation motion to accommodate lattice mismatch.

  17. Ultrafast transient reflectance of epitaxial semiconducting perovskite thin films

    SciTech Connect

    Smolin, S. Y.; Guglietta, G. W.; Baxter, J. B. E-mail: smay@coe.drexel.edu; Scafetta, M. D.; May, S. J. E-mail: smay@coe.drexel.edu

    2014-07-14

    Ultrafast pump-probe transient reflectance (TR) spectroscopy was used to study carrier dynamics in an epitaxial perovskite oxide thin film of LaFeO{sub 3} (LFO) with a thickness of 40 unit cells (16 nm) grown by molecular beam epitaxy on (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (LSAT). TR spectroscopy shows two negative transients in reflectance with local maxima at ∼2.5 eV and ∼3.5 eV which correspond to two optical transitions in LFO as determined by ellipsometry. The kinetics at these transients were best fit with an exponential decay model with fast (5–40 ps), medium (∼200 ps), and slow (∼ 3 ns) components that we attribute mainly to recombination of photoexcited carriers. Moreover, these reflectance transients did not completely decay within the observable time window, indicating that ∼10% of photoexcited carriers exist for at least 3 ns. This work illustrates that TR spectroscopy can be performed on thin (<20 nm) epitaxial oxide films to provide a quantitative understanding of recombination lifetimes, which are important parameters for the potential utilization of perovskite films in photovoltaic and photocatalytic applications.

  18. Epitaxial growth of three-dimensionally architectured optoelectronic devices

    SciTech Connect

    Nelson, Erik C.; Dias, Neville L.; Bassett, Kevin P.; Dunham, Simon N.; Verma, Varun; Miyake, Masao; Wiltzius, Pierre; Rogers, John A.; Coleman, James J.; Li, Xiuling; Braun, Paul V.

    2011-07-24

    Optoelectronic devices have long benefited from structuring in multiple dimensions on microscopic length scales. However, preserving crystal epitaxy, a general necessity for good optoelectronic properties, while imparting a complex three-dimensional structure remains a significant challenge. Three-dimensional (3D) photonic crystals are one class of materials where epitaxy of 3D structures would enable new functionalities. Many 3D photonic crystal devices have been proposed, including zero-threshold lasers, low-loss waveguides, high-efficiency light-emitting diodes (LEDs) and solar cells, but have generally not been realized because of material limitations. Exciting concepts in metamaterials, including negative refraction and cloaking, could be made practical using 3D structures that incorporate electrically pumped gain elements to balance the inherent optical loss of such devices. Here we demonstrate the 3D-template-directed epitaxy of group III–V materials, which enables formation of 3D structured optoelectronic devices. We illustrate the power of this technique by fabricating an electrically driven 3D photonic crystal LED.

  19. Stability and Rupture of Alloyed Atomic Terraces on Epitaxial Interfaces

    NASA Astrophysics Data System (ADS)

    Michailov, Michail

    The detailed knowledge of the fine atomic structure of epitaxial interface is of fundamental importance for design and fabrication of electronic devices with exotic physical properties. Recently, it has been shown that accounting for diffusion energy barriers at specific sites on the epitaxial interface (atomic terraces, steps, kinks and imperfections), allows fine tuning of the adatom thermal energy which opens up a way for specific nanoscale surface design. Hence, through simple temperature variation, the surface migration of foreign atoms and clusters leads to formation of a variety of alloyed or pure terraces, alloyed islands and alloyed atomic stripes thus forming nanoscale surface patterns. A key role in this scenario plays the density of steps and kinks at the epitaxial interface. On that physical background, in the present paper we discuss the structure, stability and rupture of alloyed terraces as a first step towards the formation of alloyed two-dimensional islands on pure, non-alloyed substrate. The atomistic simulational model reveals a temperature-dependent critical terrace width for rupture and specifies criteria for thermodynamic stability. In the case of incomplete alloying we analyze the competition and overlapping of the elastic strain fields generated by opposite terrace edges. The specific atomic ordering in alloyed islands is also discussed. The simulation results frame the limits of incomplete surface-confined intermixing and point to a path to nanoscale surface design.

  20. Epitaxial 3-5 semiconductors for integrated electro-optics

    NASA Astrophysics Data System (ADS)

    Anderson, Wayne A.; Beachley, O. T., Jr.; Kwok, H. S.; Liu, P. L.; Wie, C. R.

    1988-06-01

    Research has been conducted on the synthesis and evaluation of new organometallics (OM), growth of epitaxial layers by OMCVD and laser chemical vapor deposition (LCVD), laser interaction with materials, structural and chemical evaluation of epitaxial layers, electrical evaluation of epitaxial layers and radiation effects in semiconductors and insulators. New OM precursors were developed and used in OMCVD. New OM sources are considered for lower toxicity and more efficient reaction. For the first time, InSb was grown in CdTe by OMCVD. A quadrupole mass analyzer and low temperature luminescence were installed for in situ diagnostics. Laser interaction studies reveal the importance of tunneling ionization for carrier generation in low bandgap materials. Ion emission has been measured from a metal surface due to laser irradiation. Ions were observed at low laser fluence and at a frequency corresponding to an energy less than the material work function. Rocking curve studies of MBE-grown strained GaInAs on GaAs is the most reliable technique for strains less than 0.3 percent. LO-TO splitting in ion damaged GaAs has been explained by the effective ionic charge of the ion beam-induced point defects. Deep level transient spectroscopy studies of irradiated p-InP has revealed trap levels and annealing effects of importance in extraterrestrial applications. A Yb/p-InP device has shown good linearity and improved stability as a temperature sensor from 100 to 400K.

  1. Ultrafast transient reflectance of epitaxial semiconducting perovskite thin films

    NASA Astrophysics Data System (ADS)

    Smolin, S. Y.; Scafetta, M. D.; Guglietta, G. W.; Baxter, J. B.; May, S. J.

    2014-07-01

    Ultrafast pump-probe transient reflectance (TR) spectroscopy was used to study carrier dynamics in an epitaxial perovskite oxide thin film of LaFeO3 (LFO) with a thickness of 40 unit cells (16 nm) grown by molecular beam epitaxy on (LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT). TR spectroscopy shows two negative transients in reflectance with local maxima at ˜2.5 eV and ˜3.5 eV which correspond to two optical transitions in LFO as determined by ellipsometry. The kinetics at these transients were best fit with an exponential decay model with fast (5-40 ps), medium (˜200 ps), and slow (˜ 3 ns) components that we attribute mainly to recombination of photoexcited carriers. Moreover, these reflectance transients did not completely decay within the observable time window, indicating that ˜10% of photoexcited carriers exist for at least 3 ns. This work illustrates that TR spectroscopy can be performed on thin (<20 nm) epitaxial oxide films to provide a quantitative understanding of recombination lifetimes, which are important parameters for the potential utilization of perovskite films in photovoltaic and photocatalytic applications.

  2. Compliant substrate epitaxy: Au on MoS2

    NASA Astrophysics Data System (ADS)

    Zhou, Yuzhi; Kiriya, Daisuke; Haller, E. E.; Ager, Joel W.; Javey, Ali; Chrzan, D. C.

    2016-02-01

    A theory for the epitaxial growth of Au on MoS2 is developed and analyzed. The theory combines continuum linear elasticity theory with density functional theory to analyze epitaxial growth in this system. It is demonstrated that if one accounts for interfacial energies and strains, the presence of misfit dislocations, and the compliance of the MoS2 substrate, the experimentally observed growth orientation is favored despite the fact that it represents a larger elastic mismatch than two competing structures. The stability of the experimentally preferred orientation is attributed to the formation of a large number of strong Au-S bonds, and it is noted that this strong bond may serve as a means to exfoliate and transfer large single layers sheets of MoS2, as well as to engineer strain within single layers of MoS2. The potential for using a van der Waals-bonded layered material as a compliant substrate for applications in 2D electronic devices and epitaxial thin film growth is discussed.

  3. Processing and characterization of epitaxial GaAs radiation detectors

    NASA Astrophysics Data System (ADS)

    Wu, X.; Peltola, T.; Arsenovich, T.; Gädda, A.; Härkönen, J.; Junkes, A.; Karadzhinova, A.; Kostamo, P.; Lipsanen, H.; Luukka, P.; Mattila, M.; Nenonen, S.; Riekkinen, T.; Tuominen, E.; Winkler, A.

    2015-10-01

    GaAs devices have relatively high atomic numbers (Z=31, 33) and thus extend the X-ray absorption edge beyond that of Si (Z=14) devices. In this study, radiation detectors were processed on GaAs substrates with 110 - 130 μm thick epitaxial absorption volume. Thick undoped and heavily doped p+ epitaxial layers were grown using a custom-made horizontal Chloride Vapor Phase Epitaxy (CVPE) reactor, the growth rate of which was about 10 μm / h. The GaAs p+/i/n+ detectors were characterized by Capacitance Voltage (CV), Current Voltage (IV), Transient Current Technique (TCT) and Deep Level Transient Spectroscopy (DLTS) measurements. The full depletion voltage (Vfd) of the detectors with 110 μm epi-layer thickness is in the range of 8-15 V and the leakage current density is about 10 nA/cm2. The signal transit time determined by TCT is about 5 ns when the bias voltage is well above the value that produces the peak saturation drift velocity of electrons in GaAs at a given thickness. Numerical simulations with an appropriate defect model agree with the experimental results.

  4. Process for depositing an oxide epitaxially onto a silicon substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1993-01-01

    A process and structure involving a silicon substrate utilizes an ultra high vacuum and molecular beam epitaxy (MBE) methods to grow an epitaxial oxide film upon a surface of the substrate. As the film is grown, the lattice of the compound formed at the silicon interface becomes stabilized, and a base layer comprised of an oxide having a sodium chloride-type lattice structure grows epitaxially upon the compound so as to cover the substrate surface. A perovskite may then be grown epitaxially upon the base layer to render a product which incorporates silicon, with its electronic capabilities, with a perovskite having technologically-significant properties of its own.

  5. Bismuth nano-droplets for group-V based molecular-beam droplet epitaxy

    NASA Astrophysics Data System (ADS)

    Li, C.; Zeng, Z. Q.; Fan, D. S.; Hirono, Y.; Wu, J.; Morgan, T. A.; Hu, X.; Yu, S. Q.; Wang, Zh. M.; Salamo, G. J.

    2011-12-01

    Self-assembly of bismuth droplets at nanoscale on GaAs(100) surface using molecular beam epitaxy was demonstrated. Fine control of density and size was achieved by varying growth temperature and total bismuth deposition. Droplet density was tuned by roughly 3 orders of magnitude, and the density-temperature dependence was found to be consistent with classical nucleation theory. These results may extend the flexibility of droplet epitaxy by serving as templates for group V based droplet epitaxy, which is in contrast to conventional group III based droplet epitaxy and may encourage nanostructure formation of bismuth-containing materials.

  6. High quality GaN-based LED epitaxial layers grown in a homemade MOCVD system

    NASA Astrophysics Data System (ADS)

    Haibo, Yin; Xiaoliang, Wang; Junxue, Ran; Guoxin, Hu; Lu, Zhang; Hongling, Xiao; Jing, Li; Jinmin, Li

    2011-03-01

    A homemade 7 × 2 inch MOCVD system is presented. With this system, high quality GaN epitaxial layers, InGaN/GaN multi-quantum wells and blue LED structural epitaxial layers have been successfully grown. The non-uniformity of undoped GaN epitaxial layers is as low as 2.86%. Using the LED structural epitaxial layers, blue LED chips with area of 350 × 350 μm2 were fabricated. Under 20 mA injection current, the optical output power of the blue LED is 8.62 mW.

  7. Epitaxial growth of SrTiO{sub 3} thin film on Si by laser molecular beam epitaxy

    SciTech Connect

    Zhou, X. Y.; Miao, J.; Dai, J. Y.; Chan, H. L. W.; Choy, C. L.; Wang, Y.; Li, Q.

    2007-01-01

    SrTiO{sub 3} thin films have been deposited on Si (001) wafers by laser molecular beam epitaxy using an ultrathin Sr layer as the template. X-ray diffraction measurements indicated that SrTiO{sub 3} was well crystallized and epitaxially aligned with Si. Cross-sectional observations in a transmission electron microscope revealed that the SrTiO{sub 3}/Si interface was sharp, smooth, and fully crystallized. The thickness of the Sr template was found to be a critical factor that influenced the quality of SrTiO{sub 3} and the interfacial structure. Electrical measurements revealed that the SrTiO{sub 3} film was highly resistive.

  8. Au impact on GaAs epitaxial growth on GaAs (111){sub B} substrates in molecular beam epitaxy

    SciTech Connect

    Liao, Zhi-Ming; Chen, Zhi-Gang; Xu, Hong-Yi; Guo, Ya-Nan; Sun, Wen; Zhang, Zhi; Yang, Lei; Lu, Zhen-Yu; Chen, Ping-Ping; Lu, Wei; Zou, Jin; Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland 4072

    2013-02-11

    GaAs growth behaviour under the presence of Au nanoparticles on GaAs {l_brace}111{r_brace}{sub B} substrate is investigated using electron microscopy. It has been found that, during annealing, enhanced Ga surface diffusion towards Au nanoparticles leads to the GaAs epitaxial growth into {l_brace}113{r_brace}{sub B} faceted triangular pyramids under Au nanoparticles, governed by the thermodynamic growth, while during conventional GaAs growth, growth kinetics dominates, resulting in the flatted triangular pyramids at high temperature and the epitaxial nanowires growth at relatively low temperature. This study provides an insight of Au nanoparticle impact on GaAs growth, which is critical for understanding the formation mechanisms of semiconductor nanowires.

  9. On the ground-state splitting, fine structure of multiplets and EPR spectrum of Ni2+ doped in MgF2 crystal with orthorhombic site symmetry

    NASA Astrophysics Data System (ADS)

    Fang, Wang; Xiang, Xun; Chen, Heng-Jie; Zheng, Wen-Chen; Tang, Hai-Yan

    2014-04-01

    The 45×45 complete energy matrix for 3d8 ion at D2h site symmetry is used to calculate and assign the ground-state splitting and the fine structure of the multiplets of Ni2+(3d8) doped in MgF2 crystal with rutile type structure by the complete diagonalizaton method (CDM) in the frame of semi-empirical molecular orbital (MO) scheme in the strong crystal field (CF) approximation. In the calculation, all the configuration interactions though the cubic CF part, low-symmetry component (tetragonal and orthorhombic parts), Coulomb interaction and the spin-orbit coupling (SOC) interaction (both of the central ion and the liangds) are taken into account completely. The calculated results are in good agreement with the experimental data. In addition, the ground-state splitting is also calculated by the high-order perturbation method (PTM), together with the electron paramagnetic resonance (EPR) parameters D, E and g-factors (gx, gy and gz). The results of the spin-orbit splitting of the ground state calculated by CDM and PTM are not only close to each other, but also in good agreement with the observed data. The relationship between crystalline parameters and the fine structure of multiplets and EPR spectrum is established and the local defect structure is determined.

  10. Superconductivity in the orthorhombic phase of thermoelectric CsPbxBi4-xTe6 with 0.3≤x≤1.0

    NASA Astrophysics Data System (ADS)

    Zhang, R. X.; Yang, H. X.; Tian, H. F.; Chen, G. F.; Wu, S. L.; Wei, L. L.; Li, J. Q.

    2015-12-01

    Experimental measurements clearly reveal the presence of bulk superconductivity in the CsPbxBi4-xTe6 (0.3≤x≤1.0) materials, i.e. the first member of the thermoelectric series of Cs[PbmBi3Te5+m], these materials have the layered orthorhombic structure containing infinite anionic [PbBi3Te6]- slabs separated with Cs+ cations. Temperature dependences of electrical resistivity, magnetic susceptibility, and specific heat have consistently demonstrated that the superconducting transition in Cs0.96Pb0.25Bi3.75Te6.04 occurs at Tc=3.1 K, with a superconducting volume fraction close to 100% at 1.8 K. Structural study using aberration-corrected STEM/TEM reveals a rich variety of microstructural phenomena in correlation with the Pb-ordering and chemical inhomogeneity. The superconducting material Cs0.96Pb0.25Bi3.75Te6.04 with the highest Tc shows a clear ordered structure with a modulation wave vector of q≈a*/2+c*/1.35 on the a-c plane. Our study evidently demonstrates that superconductivity deriving upon doping of narrow-gap semiconductor is a viable approach for exploration of novel superconductors.

  11. Phase transition process and luminescent properties of undoped and Dy3+ ion doped orthorhombic PbF2 prepared by a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Liu, Guanghui; Zhou, Zhenzhen; Fei, Fan; Wei, Qinhua; Yang, Hua; Liu, Qian

    2015-01-01

    Orthorhombic (α) SSPbF2 microcrystal was synthesized by a normal hydrothermal method. The influence of F/Pb ratio and hydrothermal reaction time on the crystal phase of the acquired PbF2 samples were discussed, and a β to α phase transition was found according to the XRD results. The undoped α-PbF2 powder showed a broad but weak emission band around 450-570 nm, which was due to (Pb2)3+ nearest neighbor pair centers. Dy3+ ion doped α-PbF2 samples showed main emission bands at 480 nm and 574 nm, which were assigned to the transitions from 4F9/2 to 6H15/2 and 6H13/2 of Dy3+, respectively. Furthermore, the morphology and crystalline properties of the undoped and Dy3+ doped α-PbF2 microcrystal powder were also discussed carefully. The decay time results combined with the X-ray excitation results suggested that Dy3+ ion doped α-PbF2 is a useful scintillating material for high energy physics applications, such as X-ray scintillating panel, etc.

  12. Structural, elastic and thermodynamic properties of tetragonal and orthorhombic polymorphs of Sr2GeN2: an ab initio investigation

    NASA Astrophysics Data System (ADS)

    Bedjaoui, A.; Bouhemadou, A.; Bin-Omran, S.

    2016-04-01

    The structural, elastic and thermodynamic properties of the α (tetragonal) and β (orthorhombic) polymorphs of the Sr2GeN2 compound have been examined in detail using ab initio density functional theory pseudopotential plane-wave calculations. Apart the structural properties at the ambient conditions, all present reported results are predicted for the first time. The calculated equilibrium lattice parameters and inter-atomic bond-lengths of the considered polymorphs are in good agreement with the available experimental data. It is found that α-Sr2GeN2 is energetically more stable than β-Sr2GeN2. The two examined polymorphs are very similar in their crystal structures and have almost identical local environments. The single-crystal and polycrystalline elastic parameters and related properties - including elastic constants, bulk, shear and Young's moduli, Poisson's ratio, anisotropy indexes, Pugh's criterion, elastic wave velocities and Debye temperature - have been predicted. Temperature and pressure dependence of some macroscopic properties - including the unit-cell volume, bulk modulus, volume thermal expansion coefficient, heat capacity and Debye temperature - have been evaluated using ab initio calculations combined with the quasi-harmonic Debye model.

  13. Specific heat analysis of the low temperature anomalies in orthorhombic PrBa2Cu3O6+ x (x = 1; x = 0.95) compounds

    NASA Astrophysics Data System (ADS)

    Lahoubi, M.

    2016-03-01

    The specific heat Cp(T) and entropy S(T) properties of the orthorhombic PrBa2Cu3O6+x compounds in two states of oxygen concentration x, an over doped (OV) with x = 1 and an optimally doped (OP) with x = 0.95 are reanalyzed below the Néel temperature of the antiferromagnetic ordering of the Pr sublattice T N = 17.5 and 14 K, respectively. Two simultaneous anomalies for both states are observed. The first one occurs near the previous spin reorientation phase transition temperature T 2 ∼ 11.5 and ∼ 9-10 K, respectively whereas the second one remains close to the so called low-critical temperature Tcr ∼ 4-5 K for the OV state as it has been reported before for the OP state. By fitting the C p(T)/T data to A{T 2}-3/2 + γ + C{T 2}1 + D{T1}2 for T < T cr the four coefficients obtained with the best adjusted A-squared values are compared with previous findings. Reduced values for y are confirmed in this work. The results which are well described by the contribution of the DT 5 term to Cp(T) can be connected with the previous Pr-Cu(2) magnetic coupling that is sufficiently enough to cause a modest spin reorientation phase transition at T2 and a critical magnetic behaviour below Tcr .

  14. Ion-irradiation resistance of the orthorhombic Ln2TiO5 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb and Dy) series

    NASA Astrophysics Data System (ADS)

    Aughterson, Robert D.; Lumpkin, Gregory R.; Ionescu, Mihail; Reyes, Massey de los; Gault, Baptiste; Whittle, Karl R.; Smith, Katherine L.; Cairney, Julie M.

    2015-12-01

    The response of Ln2TiO5 (where Ln is a lanthanide) compounds exposed to high-energy ions was used to test their suitability for nuclear-based applications, under two different but complementary conditions. Eight samples with nominal stoichiometry Ln2TiO5 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb and Dy), of orthorhombic (Pnma) structure were irradiated, at various temperatures, with 1 MeV Kr2+ ions in-situ within a transmission electron microscope. In each case, the fluence was increased until a phase transition from crystalline to amorphous was observed, termed critical dose Dc. At certain elevated temperatures, the crystallinity was maintained irrespective of fluence. The critical temperature for maintaining crystallinity, Tc, varied non-uniformly across the series. The Tc was consistently high for La, Pr, Nd and Sm2TiO5 before sequential improvement from Eu to Dy2TiO5 with Tc's dropping from 974 K to 712 K. In addition, bulk Dy2TiO5 was irradiated with 12 MeV Au+ ions at 300 K, 723 K and 823 K and monitored via grazing-incidence X-ray diffraction (GIXRD). At 300 K, only amorphisation is observed, with no transition to other structures, whilst at higher temperatures, specimens retained their original structure. The improved radiation tolerance of compounds containing smaller lanthanides has previously been attributed to their ability to form radiation-induced phase transitions. No such transitions were observed here.

  15. Interfacial reactions and oxidation behavior of Al 2O 3 and Al 2O 3/Al coatings on an orthorhombic Ti 2AlNb alloy

    NASA Astrophysics Data System (ADS)

    Li, H. Q.; Wang, Q. M.; Gong, J.; Sun, C.

    2011-02-01

    The uniform and dense Al2O3 and Al2O3/Al coatings were deposited on an orthorhombic Ti2AlNb alloy by filtered arc ion plating. The interfacial reactions of the Al2O3/Ti2AlNb and Al2O3/Al/Ti2AlNb specimens after vacuum annealing at 750 °C were studied. In the Al2O3/Ti2AlNb specimens, the Al2O3 coating decomposed significantly due to reaction between the Al2O3 coating and the O-Ti2AlNb substrate. In the Al2O3/Al/Ti2AlNb specimens, a γ-TiAl layer and an Nb-rich zone came into being by interdiffusion between the Al layer and the O-Ti2AlNb substrate. The γ-TiAl layer is chemically compatible with Al2O3, with no decomposition of Al2O3 being detected. No internal oxidation or oxygen and nitrogen dissolution zone was observed in the O-Ti2AlNb alloy. The Al2O3/Al/Ti2AlNb specimens exhibited excellent oxidation resistance at 750 °C.

  16. Luminescence of Bi3+ in the orthorhombic perovskites CaB4+O3 (B4+=Zr, sn): Crossover from localized to D-state emission

    NASA Astrophysics Data System (ADS)

    Srivastava, Alok M.

    2016-08-01

    The optical properties of Bi3+ in the orthorhombic perovskites CaZrO3 and CaSnO3 are investigated. The Stokes shift of Bi3+ emission in CaZrO3 is small (∼0.80 eV) with the peak wavelength of the emission band occurring in the ultraviolet. This emission is attributed to the localized 3P0,1 → 1S0 optical transition. In contrast, the Stokes shift of the Bi3+ emission in CaSnO3 is large (>1 eV) with the emission band peaking in the visible. The emission band is also considerably broadened in CaSnO3. It is claimed that Bi3+ luminescence in CaSnO3 corresponds with the Bi3+ (6s2) -Sn4+ (5s°) charge transfer emission (D-state emission). The energy of the 1S0→3P1 (A-band) excitation band in both perovskites are very nearly the same. Physical reasoning is advanced for the occurrence and lack thereof of the D-state emission in these perovskites.

  17. Density functional theory insights into the structural stability and Li diffusion properties of monoclinic and orthorhombic Li2FeSiO4 cathodes

    NASA Astrophysics Data System (ADS)

    Lu, Xia; Chiu, Hsien-Chieh; Bevan, Kirk H.; Jiang, De-Tong; Zaghib, Karim; Demopoulos, George P.

    2016-06-01

    Lithium iron orthosilicate (Li2FeSiO4) is an important alternative cathode for next generation Li-ion batteries due to its high theoretical capacity (330 mA h/g). However, its development has faced great challenges arising from significant structural complexity, including the disordered arrangement/orientation of Fe/Si tetrahedra, polytypes and its poorly understood Li storage and transport properties. In this context, ab-initio calculations are employed to investigate the phase stability and Li diffusion profiles of both monoclinic (P21) and orthorhombic (Pmn21) Li2FeSiO4 orthosilicates. The calculations demonstrate that formation of Lisbnd Fe antisites can induce a metastability competition between both phases, with neither dominating across nearly the entire discharging profile from Li2FeSiO4 through to LiFeSiO4. Furthermore, structural instability is shown to be a serious concern at discharge concentrations below LiFeSiO4 (1 Li extraction) due to the shared occupation of Li donated electrons with oxygen 2p orbitals - rather than the hypothesized transition to a tetravalent Fe4+ state. This finding is further supported by diffusion calculations that have determined a high activation energy barrier towards fast charging and rapid phase transitions. In summary, these theoretical results provide critical and timely insight into the structural dynamics of lithium iron orthosilicate, in pursuit of high energy density cathodes.

  18. Ferroelectric ordering and magnetoelectric effect of pristine and Ho-doped orthorhombic DyMnO{sub 3} by dielectric studies

    SciTech Connect

    Magesh, J.; Murugavel, P.; Mangalam, R. V. K.; Singh, K.; Simon, Ch.; Prellier, W.

    2015-08-21

    In this paper, the magnetoelectric coupling and ferroelectric ordering of the orthorhombic Dy{sub 1-x}Ho{sub x}MnO{sub 3} (x = 0 and 0.1) are studied from the magnetodielectric response of the polycrystalline samples. The dielectric study on the DyMnO{sub 3} reveals ferroelectric transition at 18 K along with an addition transition at 12 K. We suggest that the transition at 12 K could have originated from the polarization flop rather than being the rare earth magnetic ordering. The magnetodielectric study reveals a magnetoelectric coupling strength of 10%, which is stronger by two orders of magnitude in comparison to the hexagonal manganites. Surprisingly, the Ho{sup 3+} substitution in DyMnO{sub 3} suppresses the magnetoelectric coupling strength via the suppression of the spiral magnetic ordering. In addition, it also reduces the antiferromagnetic ordering and ferroelectric ordering temperatures. Overall, the studies show that the rare earth plays an important role in the magnetoelectric coupling strength through the modulation of spiral magnetic structure.

  19. Investigations on the local structures and spin Hamiltonian parameters for the orthorhombic Rh2+ centers R4 and R5 in AgCl microcrystals

    NASA Astrophysics Data System (ADS)

    Hu, Xian-Fen; Wu, Shao-Yi; Li, Guo-Liang; Ding, Chang-Chun; Zhang, Li-Juan

    2016-06-01

    The local structures and spin Hamiltonian parameters (SHPs, g factors, hyperfine structure constants and superhyperfine parameters) are theoretically investigated for the two orthorhombic Rh2+centers R4 and R5 in AgCl microcrystals. Center R4 is ascribed to the impurity Rh2+substituted for Ag+ with two H2O molecules substituted for the nearest neighbor ligands Cl- along the [100] and [010] axes, each with one next nearest neighbor Ag+ vacancy (VAg) due to charge compensation. The impurity Rh2+is found to experience a small off-center displacement 0.006 Å along the [ 1 bar 1 bar 0 ] axis because of the electrostatic interactions of the substitutes and the VAg. Center R5 is attributed to the impurity Rh2+substituted for Ag+ associated with one H2O molecule substituted for the nearest neighbor ligand Cl- along the [100] axis and one next nearest VAg along the [010] axis. Due to the effective positive charge of the substitute, Rh2+ is repulsed away from the substitute by about 0.008 Å along the [ 1 bar 00 ] axis, while the intervening ligand Cl- in Rh2+and VAg suffers a small inward displacement 0.010 Å towards the center of octahedron. The calculated SHPs based on the above local structures show good agreement with the experimental data for both centers.

  20. Effect of growth temperature on defects in epitaxial GaN film grown by plasma assisted molecular beam epitaxy

    SciTech Connect

    Kushvaha, S. S. Pal, P.; Shukla, A. K.; Joshi, Amish G.; Gupta, Govind; Kumar, M.; Singh, S.; Gupta, Bipin K.; Haranath, D.

    2014-02-15

    We report the effect of growth temperature on defect states of GaN epitaxial layers grown on 3.5 μm thick GaN epi-layer on sapphire (0001) substrates using plasma assisted molecular beam epitaxy. The GaN samples grown at three different substrate temperatures at 730, 740 and 750 °C were characterized using atomic force microscopy and photoluminescence spectroscopy. The atomic force microscopy images of these samples show the presence of small surface and large hexagonal pits on the GaN film surfaces. The surface defect density of high temperature grown sample is smaller (4.0 × 10{sup 8} cm{sup −2} at 750 °C) than that of the low temperature grown sample (1.1 × 10{sup 9} cm{sup −2} at 730 °C). A correlation between growth temperature and concentration of deep centre defect states from photoluminescence spectra is also presented. The GaN film grown at 750 °C exhibits the lowest defect concentration which confirms that the growth temperature strongly influences the surface morphology and affects the optical properties of the GaN epitaxial films.

  1. Dislocations limited electronic transport in hydride vapour phase epitaxy grown GaN templates: A word of caution for the epitaxial growers

    SciTech Connect

    Chatterjee, Abhishek Khamari, Shailesh K.; Kumar, R.; Dixit, V. K.; Oak, S. M.; Sharma, T. K.

    2015-01-12

    GaN templates grown by hydride vapour phase epitaxy (HVPE) and metal organic vapour phase epitaxy (MOVPE) techniques are compared through electronic transport measurements. Carrier concentration measured by Hall technique is about two orders larger than the values estimated by capacitance voltage method for HVPE templates. It is learnt that there exists a critical thickness of HVPE templates below which the transport properties of epitaxial layers grown on top of them are going to be severely limited by the density of charged dislocations lying at layer-substrate interface. On the contrary MOVPE grown templates are found to be free from such limitations.

  2. Conducting (Si-doped) aluminum nitride epitaxial films grown by molecular beam epitaxy

    SciTech Connect

    Kim, J.G.; Moorthy, M.; Park, R.M.

    1999-07-01

    As a member of the III-V nitride semiconductor family, AlN, which has a direct energy-gap of 6.2eV, has received much attention as a promising material for many applications. However, despite the promising attributes of AlN for various semiconductor devices, research on AlN has been limited and n-type conducting AlN has not been reported. The objective of this research was to understand the factors impacting the conductivity of AlN and to control the conductivity of this material through intentional doping. Prior to the intentional doping study, growth of undoped AlN epilayers was investigated. Through careful selection of substrate preparation methods and growth parameters, relatively low-temperature molecular beam epitaxial growth of AlN films was established which resulted in insulating material. Intentional Si doping during epilayer growth was found to result in conducting films under specific growth conditions. Above a growth temperature of 900 C, AlN films were insulating, however, below a growth temperature of 900 C, the AlN films were conducting. The magnitude of the conductivity and the growth temperature range over which conducting AlN films could be grown were strongly influenced by the presence of a Ga flux during growth. For instance, conducting, Si-doped, AlN films were grown at a growth temperature of 940 C in the presence of a Ga flux while the films were insulating when grown in the absence of a Ga flux at this particular growth temperature. Also, by appropriate selection of the growth parameters, epilayers with n-type conductivity values as large as 0.2 {Omega}{sup {minus}1} cm{sup {minus}1} for AlN and 17 {Omega}{sup {minus}1} cm{sup {minus}1} for Al{sub 0.75}Ga{sub 0.25}N were grown in this work for the first time.

  3. Electrochemical characterization of monoclinic and orthorhombic Li3CrF6 as positive electrodes in lithium-ion batteries synthesized by a sol-gel process with environmentally benign chemicals

    NASA Astrophysics Data System (ADS)

    Lieser, Georg; Winkler, Volker; Geßwein, Holger; de Biasi, Lea; Glatthaar, Sven; Hoffmann, M. J.; Ehrenberg, Helmut; Binder, Joachim R.

    2015-10-01

    Lithium transition metal fluorides (Li3MF6; M = Fe, V) with cryolite structure are investigated as positive electrode materials for lithium-ion batteries. A novel sol-gel process with trifluoroacetic acid as fluorine source was used to synthesize monoclinic and orthorhombic Li3CrF6. A ball milling process with Li3CrF6, binder, and conductive agent was applied to form a Li3CrF6 composite, which was electrochemically characterized against lithium metal for the first time. The electrochemical properties of two different modifications are quite similar, with a reversible specific capacity of 111 mAhg-1 for monoclinic Li3CrF6 and 106 mAhg-1 for orthorhombic Li3CrF6 (1 eq. Li ≙ 143 mAhg-1). The electrochemically active redox couple CrIII/CrII was confirmed by X-ray photoelectron spectroscopy.

  4. Raman spectra of polycrystalline orthorhombic YF/sub 3/, SmF/sub 3/, HoF/sub 3/, YbF/sub 3/, and single crystal TbF/sub 3/

    SciTech Connect

    Wilmarth, W.R.; Begun, G.M.; Nave, S.E.; Peterson, J.R.

    1988-07-15

    The Raman spectra of the orthorhombic form of polycrystalline YF/sub 3/, SmF/sub 3/, TbF/sub 3/, HoF/sub 3/, and YbF/sub 3/ have been recorded. Room-temperature, polarized Raman spectra of a single crystal of orthorhombic TbF/sub 3/ have also been obtained. Based on these polarized Raman spectra, symmetry assignments have been made for 23 of the expected 24 Raman active phonon vibrations in TbF/sub 3/. By analogy to the results from single crystal TbF/sub 3/, tentative symmetry assignments of the observed phonon vibrations were also made for the other compounds included in this work.

  5. Evaluation and verification of epitaxial process sequence for silicon solar cell production

    NASA Technical Reports Server (NTRS)

    Redfield, D.

    1981-01-01

    The applicability of solar cell and module processing sequences, to be used on lower cost epitaxial silicon wafers was evaluated. The extent to which the process sequences perform effectively when applied to film solar cells formed by epitaxial deposition of Si on potentially inexpensive substrates of upgraded metallurgical grade Si is examined. It is concluded that these substrates are satisfactory in their cell performance.

  6. Epitaxy and fiber texture of Pb films on mica and glass.

    NASA Technical Reports Server (NTRS)

    Wyatt, P. W.; Yelon, A.

    1972-01-01

    We report the production of (111) epitaxial Pb films on mica and (111) textured Pb films on mica and glass. Film structure is studied by reflection electron diffraction and by etching and optical microscopy. Thin (about 1000 A) epitaxial films are found to be doubly positioned. Reorientation during growth of thicker films leads to single positioning in areas several tenths of a millimeter across.

  7. Epitaxial ternary nitride thin films prepared by a chemical solution method

    SciTech Connect

    Luo, Hongmei; Feldmann, David M; Wang, Haiyan; Bi, Zhenxing

    2008-01-01

    It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN2 films. Epitaxial tetragonal SrTiN2 films have been successfully prepared by a chemical solution approach, polymer-assisted deposition. The structural, electrical, and optical properties of the films are also investigated.

  8. Atomic Scale Study of Interfaces Involved in Epitaxial Fe/MgO/Fe Magnetic Tunnel Junctions

    SciTech Connect

    Andrieu, S.; Serra, R.; Bonell, F.; Tiusan, C.; Calmels, L.; Snoeck, E.; Varela del Arco, Maria; Pennycook, Stephen J; Walls, M.; Colliex, C.

    2009-01-01

    Epitaxial Fe/MgO/Fe(001) magnetic tunnel junctions grown by Molecular Beam Epitaxy have been studied by using spatially resolved Electron Energy Loss Spectroscopy (EELS). The structure, the chemical composition as well as the bonding variations across the interfaces were investigated up to the atomic scale.

  9. Defect structure of semiconducting and insulating epitaxial oxides. Progress report, May 1, 1993--April 30, 1994

    SciTech Connect

    Wessels, B.W.

    1994-03-01

    The investigation has focused on epitaxial growth of BaSrTiO{sub 3} over the entire solid solution range, point defects in epitaxial BaTiO{sub 3} using temperature-dependent conductivity and deep-level optical spectroscopy, and their nonlinear optical properties.

  10. Rapid low-temperature epitaxial growth using a hot-element assisted chemical vapor deposition process

    DOEpatents

    Iwancizko, Eugene; Jones, Kim M.; Crandall, Richard S.; Nelson, Brent P.; Mahan, Archie Harvin

    2001-01-01

    The invention provides a process for depositing an epitaxial layer on a crystalline substrate, comprising the steps of providing a chamber having an element capable of heating, introducing the substrate into the chamber, heating the element at a temperature sufficient to decompose a source gas, passing the source gas in contact with the element; and forming an epitaxial layer on the substrate.

  11. Microstructure dynamics in orthorhombic perovskites

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiying; Koppensteiner, Johannes; Schranz, Wilfried; Betts, Jonathan B.; Migliori, Albert; Carpenter, Michael A.

    2010-07-01

    Anelastic loss mechanisms associated with phase transitions in BaCeO3 have been investigated at relatively high frequency ˜1MHz and low stress by resonant ultrasound spectroscopy (RUS), and at relatively low frequency ˜1Hz and high stress by dynamic mechanical analysis (DMA). Changes in the elastic moduli and dissipation behavior clearly indicate phase transitions due to octahedral tilting: Pnma↔Imma↔R3¯c↔Pm3¯m structures at 551 K, 670 K, and 1168 K, and strain analysis shows that they are tricritical, first-order, and second-order phase transitions, respectively. Structures with intermediate tilt states ( R3¯c and Imma structures) show substantial anelastic softening and dissipation associated with the mobility of twin walls under applied stress. The Pnma structure shows elastic stiffening which may be due to the simultaneous operation of two discrete order parameters with different symmetries. In contrast with studies of other perovskites, BaCeO3 shows strong dissipation at both DMA and RUS frequencies in the stability field of the Pnma structure. This is evidence that ferroelastic twin walls might become mobile in Pnma perovskites and suggests that shearing of the octahedra may be a significant factor.

  12. Single crystal growth and the electronic structure of orthorhombic Tl3PbBr5: A novel material for non-linear optics

    NASA Astrophysics Data System (ADS)

    Khyzhun, O. Y.; Bekenev, V. L.; Parasyuk, O. V.; Danylchuk, S. P.; Denysyuk, N. M.; Fedorchuk, A. O.; AlZayed, N.; Kityk, I. V.

    2013-03-01

    The X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces of a Tl3PbBr5 single crystal grown by the Bridgman-Stockbarger method have been measured. The present X-ray photoelectron spectroscopy (XPS) results reveal high chemical stability of Tl3PbBr5 single crystal surface. Total and partial densities of states of constituent atoms of low-temperature (LT) orthorhombic Tl3PbBr5 phase (space group P21212) have been calculated using the full potential linearized augmented plane wave (FP-LAPW) method. The FP-LAPW data reveal that contributions of the Br 4p-like states dominate in the valence band of LT-Tl3PbBr5; they contribute mainly into the top and the central portion of the valence band with also significant contributions throughout the whole valence-band region. The bottom of the valence band of LT-Tl3PbBr5 is composed mainly of the Tl 6s-like states, whilst the unoccupied Pb 6p- and Tl 6p-like states dominate at the bottom of the conduction band. We have explored the crystallochemistry and origin of the chemical bonds in Tl3PbBr5 with respect to the use as mid-IR non-linear optical crystals. Comparison of the spectral dependence to the second order susceptibilities for the titled crystals is performed with respect to the 3.39 μm illuminated crystals. Possibility of the use of Tl3PbBr5 crystals as IR operated non-linear optical crystals is discussed.

  13. First-Principles Investigations of the Structure, Electronic, and Optical Properties of Mullite-Type Orthorhombic Bi2M4O9 (M = Al(3+), Ga(3+)).

    PubMed

    Zahedi, Ehsan; Xiao, Bing; Shayestefar, Mohadese

    2016-05-16

    The structure, electronic band structure, density of state, projected wave function, and optical properties of mullite-type orthorhombic Bi2M4O9 (M = Al(3+), Ga(3+)) crystals have been studied by applying density functional theory based on the Vanderbilt ultrasoft pseudopotential in the frame of the generalized gradient approximation as an exchange-correlation function. Satisfactory agreement between experimental and theoretical results indicates that the used method and conditions are suitable. M-O bonds in tetrahedral MO4 environments are stronger and more covalent with respect to octahedral MO6; also Bi-O bonds in both studied structures are almost ionic in nature. The photocatalytic activity of Bi2Al4O9 and Bi2Ga4O9 is enhanced due to unequal values of Mulliken charges on the O atoms in MO4, MO6, and BiO6E groups. Bi2Al4O9 and Bi2Ga4O9 are direct and indirect band gap semiconductors with band gaps of 2.71 and 2.86 eV, respectively. Higher photocatalytic activity of Bi2Al4O9 is inferable from the lower effective masses of photogenerated carriers around the conduction band minimum and valence band maximum, in comparison with Bi2Ga4O9. The presence of M and O orbitals in the valence and conduction bands reveals that symmetry breaking in the MO4 and MO6 units has an important role in separating charges and increasing photocatalytic activity. Photocatalytic activities of Bi2Al4O9 and Bi2Ga4O9 for decomposition of organic pollutants and generation of hydrogen from water splitting are confirmed from band edge potentials. PMID:27139249

  14. Magnetic properties and structural transitions of orthorhombic fluorite-related compounds Ln3MO 7 ( Ln=rare earths, M=transition metals)

    NASA Astrophysics Data System (ADS)

    Wakeshima, Makoto; Hinatsu, Yukio

    2010-11-01

    Magnetic properties and structural transitions of ternary rare-earth transition-metal oxides Ln3MO 7 ( Ln=rare earths, M=transition metals) were investigated. In this study, we prepared a series of molybdates Ln3MoO 7 ( Ln=La-Gd). They crystallize in an orthorhombic superstructure of cubic fluorite with space group P2 12 12 1, in which Ln3+ ions occupy two different crystallographic sites (the 8-coordinated and 7-coordinated sites). All of these compounds show a phase transition from the space group P2 12 12 1 to Pnma in the temperature range between 370 and 710 K. Their magnetic properties were characterized by magnetic susceptibility measurements from 1.8 to 400 K and specific heat measurements from 0.4 to 400 K. Gd 3MoO 7 shows an antiferromagnetic transition at 1.9 K. Measurements of the specific heat for Sm 3MoO 7 and the analysis of the magnetic specific heat indicate a "two-step" antiferromagnetic transition due to the ordering of Sm magnetic moments in different crystallographic sites, i.e., with decreasing temperature, the antiferromagnetic ordering of the 7-coordinated Sm ions occur at 2.5 K, and then the 8-coordinated Sm ions order at 0.8 K. The results of Ln3MoO 7 were compared with the magnetic properties and structural transitions of Ln3MO 7 ( M=Nb, Ru, Sb, Ta, Re, Os, or Ir).

  15. Gradual Localization of 5f States in Orthorhombic UTX Ferromagnets:Polarized Neutron Diffraction Study of Ru Substituted UCoGe

    NASA Astrophysics Data System (ADS)

    Vališka, Michal; Pospíšil, Jiří; Stunault, Anne; Takeda, Yukiharu; Gillon, Béatrice; Haga, Yoshinori; Prokeš, Karel; Abd-Elmeguid, Mohsen M.; Nénert, Gwilherm; Okane, Tetsuo; Yamagami, Hiroshi; Chapon, Laurent; Gukasov, Arsene; Cousson, Alain; Yamamoto, Etsuji; Sechovský, Vladimír

    2015-08-01

    We report on a microscopic study of the evolution of ferromagnetism in the Ru substituted ferromagnetic superconductor (FM SC) UCoGe crystallizing in the orthorhombic TiNiSi-type structure. For that purpose, two single crystals with composition UCo0.97Ru0.03Ge and UCo0.88Ru0.12Ge have been prepared and characterized by magnetization, AC susceptibility, specific heat and electrical resistivity measurements. Both compounds have been found to order ferromagnetically below TC = 6.5 and 7.5 K, respectively, which is considerably higher than the TC = 3 K of the parent compound UCoGe. The higher values of TC are accompanied by enhanced values of the spontaneous moment μspont = 0.11 μB/f.u. and μspont = 0.21 μB/f.u., respectively in comparison to the tiny spontaneous moment of UCoGe (about 0.07 μB/f.u.). No sign of superconductivity was detected in either compound. The magnetic moments of the samples were investigated on the microscopic scale using polarized neutron diffraction (PND) and for UCo0.88Ru0.12Ge also by soft X-ray magnetic circular dichroism (XMCD). The analysis of the PND results indicates that the observed enhancement of ferromagnetism is mainly due to the growth of the orbital part of the uranium 5f moment μ LU, reflecting a gradual localization of the 5f electrons with Ru substitution. In addition, the parallel orientation of the U and Co moments has been established in both substituted compounds. The results are discussed and compared with related isostructural ferromagnetic UTX compounds (T: transition metals, X: Si, Ge) in the context of a varying degree of the 5f-ligand hybridization.

  16. Metastable monoclinic and orthorhombic phases and electric field induced irreversible phase transformation at room temperature in the lead-free classical ferroelectric BaTiO3

    NASA Astrophysics Data System (ADS)

    Kalyani, Ajay Kumar; Khatua, Dipak Kumar; Loukya, B.; Datta, Ranjan; Fitch, Andy N.; Senyshyn, Anatoliy; Ranjan, Rajeev

    2015-03-01

    For decades it has been a well-known fact that among the few ferroelectric compounds in the perovskite family, namely, BaTiO3, KNbO3, PbTiO3, and Na1 /2Bi1 /2TiO3 , the dielectric and piezoelectric properties of BaTiO3 are considerably higher than the others in polycrystalline form at room temperature. Further, similar to ferroelectric alloys exhibiting morphotropic phase boundary, single crystals of BaTiO3 exhibit anomalously large piezoelectric response when poled away from the direction of spontaneous polarization at room temperature. These anomalous features in BaTiO3 remained unexplained so far from the structural standpoint. In this work, we have used high-resolution synchrotron x-ray powder diffraction, atomic resolution aberration-corrected transmission electron microscopy, in conjunction with a powder poling technique, to reveal that at 300 K (i) the equilibrium state of BaTiO3 is characterized by coexistence of metastable monoclinic Pm and orthorhombic (Amm2) phases along with the tetragonal phase, and (ii) strong electric field switches the polarization direction from the [001] direction towards the [101] direction. These results suggest that BaTiO3 at room temperature is within an instability regime, and that this instability is the fundamental factor responsible for the anomalous dielectric and piezoelectric properties of BaTiO3 as compared to the other homologous ferroelectric perovskite compounds at room temperature. Pure BaTiO3 at room temperature is therefore more akin to lead-based ferroelectric alloys close to the morphotropic phase boundary where polarization rotation and field induced ferroelectric-ferroelectric phase transformations play a fundamental role in influencing the dielectric and piezoelectric behavior.

  17. Neutron-diffraction study of structural transition and magnetic order in orthorhombic and rhombohedral La(7/8)Sr(1/8)Mn(1-γ)O(3+δ).

    PubMed

    Li, H F; Su, Y; Persson, J; Meuffels, P; Walter, J M; Skowronek, R; Brückel, Th

    2007-04-30

    We report on a systematic neutron powder diffraction (NPD) study of polycrystalline La(7/8)Sr(1/8)Mn(1-γ)O(3+δ) compounds. We investigated the structural and magnetic phases and transitions in the temperature range between 10 and 900 K for two different samples: an Ar-annealed sample with an orthorhombic Pbnm (Z = 4; O) structure at room temperature and an air-sintered sample with a rhombohedral [Formula: see text] (Z = 2;R) structure at room temperature. At higher temperatures, above 400 K, both samples exhibit a rhombohedral structure. For the Ar-annealed sample, a Jahn-Teller (JT) transition occurs in the orthorhombic phase at about 298 K with very large variations in the Mn-O2' and Mn-O2 bond lengths and Mn-O1-Mn bond angle on cooling from 298 to 180 K. For this sample the ferromagnetic moment at 10 K in the magnetic space group Pb'n'm amounts to 3.22(5) μ(B)/Mn. In contrast, the air-sintered sample undergoes on cooling a structural transition from rhombohedral (R) to orthorhombic (O) with a mixed phase of nearly equal R and O repartition at 120 K. Ferromagnetic order develops in this sample at about 240 K with a low-temperature moment of 3.35(4) μ(B)/Mn at 10 K. The coherent JT distortion in its orthorhombic phase occurs below some 170 K. In addition, we have determined the coherent JT distortion parameter Δ, the tolerance factor t and the one-electron bandwidth W of the e(g)-band. PMID:21690971

  18. Chemical beam epitaxy for high efficiency photovoltaic devices

    SciTech Connect

    Bensaoula, A.; Freundlich, A.; Vilela, M. F.; Medelci, N.; Renaud, P.

    1994-09-01

    InP-based multijunction tandem solar cells show great promise for the conversion efficiency (eta) and high radiation resistance. InP and its related ternary and quanternary compound semiconductors such as InGaAs and InGaAsP offer desirable combinations for energy bandgap values which are very suitable for multijunction tandem solar cell applications. The monolithically integrated InP/In(0.53)Ga(0.47)As tandem solar cells are expected to reach efficiencies above 30 percent. Wanlass, et.al., have reported AMO efficiencies as high as 20.1% for two terminal cells fabricated using atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). The main limitations in their technique are first related to the degradation of the intercell ohmic contact (IOC), in this case the In(0.53)Ga(0.47)As tunnel junction during the growth of the top InP subcell structure, and second to the current matching, often limited by the In(0.53)Ga(0.47)As bottom subcell. Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450 C - 530 C). In a recent report it was shown that cost-wise CBE is a breakthrough technology for photovoltaic (PV) solar energy progress in the energy conversion efficiency of InP-based solar cells fabricated using chemical beam epitaxy. This communication summarizes recent results on PV devices and demonstrates the strength of this new technology.

  19. Chemical beam epitaxy for high efficiency photovoltaic devices

    NASA Technical Reports Server (NTRS)

    Bensaoula, A.; Freundlich, A.; Vilela, M. F.; Medelci, N.; Renaud, P.

    1994-01-01

    InP-based multijunction tandem solar cells show great promise for the conversion efficiency (eta) and high radiation resistance. InP and its related ternary and quanternary compound semiconductors such as InGaAs and InGaAsP offer desirable combinations for energy bandgap values which are very suitable for multijunction tandem solar cell applications. The monolithically integrated InP/In(0.53)Ga(0.47)As tandem solar cells are expected to reach efficiencies above 30 percent. Wanlass, et.al., have reported AMO efficiencies as high as 20.1% for two terminal cells fabricated using atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). The main limitations in their technique are first related to the degradation of the intercell ohmic contact (IOC), in this case the In(0.53)Ga(0.47)As tunnel junction during the growth of the top InP subcell structure, and second to the current matching, often limited by the In(0.53)Ga(0.47)As bottom subcell. Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450 C - 530 C). In a recent report it was shown that cost-wise CBE is a breakthrough technology for photovoltaic (PV) solar energy progress in the energy conversion efficiency of InP-based solar cells fabricated using chemical beam epitaxy. This communication summarizes our recent results on PV devices and demonstrates the strength of this new technology.

  20. Low-temperature plasma-deposited silicon epitaxial films: Growth and properties

    SciTech Connect

    Demaurex, Bénédicte Bartlome, Richard; Seif, Johannes P.; Geissbühler, Jonas; Ballif, Christophe; De Wolf, Stefaan; Alexander, Duncan T. L.; Jeangros, Quentin

    2014-08-07

    Low-temperature (≤200 °C) epitaxial growth yields precise thickness, doping, and thermal-budget control, which enables advanced-design semiconductor devices. In this paper, we use plasma-enhanced chemical vapor deposition to grow homo-epitaxial layers and study the different growth modes on crystalline silicon substrates. In particular, we determine the conditions leading to epitaxial growth in light of a model that depends only on the silane concentration in the plasma and the mean free path length of surface adatoms. For such growth, we show that the presence of a persistent defective interface layer between the crystalline silicon substrate and the epitaxial layer stems not only from the growth conditions but also from unintentional contamination of the reactor. Based on our findings, we determine the plasma conditions to grow high-quality bulk epitaxial films and propose a two-step growth process to obtain device-grade material.

  1. Low-temperature plasma-deposited silicon epitaxial films: Growth and properties

    SciTech Connect

    Demaurex, Bénédicte; Bartlome, Richard; Seif, Johannes P.; Geissbühler, Jonas; Alexander, Duncan T. L.; Jeangros, Quentin; Ballif, Christophe; De Wolf, Stefaan

    2014-08-05

    Low-temperature (≤ 180 °C) epitaxial growth yields precise thickness, doping, and thermal-budget control, which enables advanced-design semiconductor devices. In this paper, we use plasma-ehanced chemical vapor deposition to grow homo-epitaxial layers and study the different growth modes on crystalline silicon substrates. In particular, we determine the conditions leading to epitaxial growth in light of a model that depends only on the silane concentration in the plasma and the mean free path length of surface adatoms. For such growth, we show that the presence of a persistent defective interface layer between the crystalline silicon substrate and the epitaxial layer stems not only from the growth conditions but also from unintentional contamination of the reactor. As a result of our findings, we determine the plasma conditions to grow high-quality bulk epitaxial films and propose a two-step growth process to obtain device-grade material.

  2. Distribution of the surface potential of epitaxial HgCdTe

    SciTech Connect

    Novikov, V. A. Grigoryev, D. V.; Bezrodnyy, D. A.; Dvoretsky, S. A.

    2014-09-08

    We studied the distribution of surface potential of the Hg{sub 1−x}Cd{sub x}Te epitaxial films grown by molecular beam epitaxy. The studies showed that the variation of the spatial distribution of surface potential in the region of the V-defect can be related to the variation of the material composition of epitaxial film. The V-defect is characterized by increased of Hg content with respect to the composition of the solid solution of Hg{sub 1−x}Cd{sub x}Te epitaxial film. In this paper, it was demonstrated that the unformed V-defects can be observed together with the macroscopic V-defects on the epitaxial film surface. These unformed V-defects can allow the creation of a complex surface potential distribution profile due to the redistribution of the solid solution composition.

  3. Dynamic nonlinearity in epitaxial BaTi O3 films

    NASA Astrophysics Data System (ADS)

    Tyunina, M.; Savinov, M.

    2016-08-01

    Dynamic dielectric and piezoelectric constants of ferroelectrics increase proportionally to the amplitude of alternating electric field as a result of hysteretic Rayleigh-type motion of domain walls. Here a hysteresis-free quadratic field dependence of the dynamic dielectric response is experimentally demonstrated in the absence of domain walls in epitaxial BaTi O3 films. This extraordinary behavior is related to polar entities, whose presence is confirmed by the Vogel-Fulcher relaxation. The polar entities are ascribed to polarization fluctuations associated with lattice inhomogeneity.

  4. Self-doping effects in epitaxially grown graphene

    SciTech Connect

    Siegel, David A.; Zhou, Shuyun Y.; El Gabaly, Farid; Fedorov, Alexei V.; Schmid, Andreas K.; Lanzara, Alessandra

    2008-09-19

    Self-doping in graphene has been studied by examining single-layer epitaxially grown graphene samples with differing characteristic lateral terrace widths. Low energy electron microscopy was used to gain real-space information about the graphene surface morphology, which was compared with data obtained by angle-resolved photoemission spectroscopy to study the effect of the monolayer graphene terrace width on the low energy dispersions. By altering the graphene terrace width, we report significant changes in the electronic structure and quasiparticle relaxation time of the material, in addition to a terrace width-dependent doping effect.

  5. Low contact resistance in epitaxial graphene devices for quantum metrology

    SciTech Connect

    Yager, Tom E-mail: ywpark@snu.ac.kr; Lartsev, Arseniy; Lara-Avila, Samuel; Kubatkin, Sergey; Cedergren, Karin; Yakimova, Rositsa; Panchal, Vishal; Kazakova, Olga; Tzalenchuk, Alexander; Kim, Kyung Ho; Park, Yung Woo E-mail: ywpark@snu.ac.kr

    2015-08-15

    We investigate Ti/Au contacts to monolayer epitaxial graphene on SiC (0001) for applications in quantum resistance metrology. Using three-terminal measurements in the quantum Hall regime we observed variations in contact resistances ranging from a minimal value of 0.6 Ω up to 11 kΩ. We identify a major source of high-resistance contacts to be due bilayer graphene interruptions to the quantum Hall current, whilst discarding the effects of interface cleanliness and contact geometry for our fabricated devices. Moreover, we experimentally demonstrate methods to improve the reproducibility of low resistance contacts (<10 Ω) suitable for high precision quantum resistance metrology.

  6. In situ growth of epitaxial cerium tungstate (100) thin films.

    PubMed

    Skála, Tomáš; Tsud, Nataliya; Orti, Miguel Ángel Niño; Menteş, Tevfik Onur; Locatelli, Andrea; Prince, Kevin Charles; Matolín, Vladimír

    2011-04-21

    The deposition of ceria on a preoxidized W(110) crystal at 870 K has been studied in situ by photoelectron spectroscopy and low-energy electron diffraction. Formation of an epitaxial layer of crystalline cerium tungstate Ce(6)WO(12)(100), with the metals in the Ce(3+) and W(6+) chemical states, has been observed. The interface between the tungsten substrate and the tungstate film consists of WO suboxide. At thicknesses above 0.89 nm, cerium dioxide grows on the surface of Ce(6)WO(12), favoured by the limited diffusion of tungsten from the substrate. PMID:21399780

  7. Epitaxial growth of high quality WO3 thin films

    NASA Astrophysics Data System (ADS)

    Leng, X.; Pereiro, J.; Strle, J.; Bollinger, A. T.; Božović, I.

    2015-09-01

    We have grown epitaxial WO3 films on various single-crystal substrates using radio frequency magnetron sputtering. While pronounced surface roughness is observed in films grown on LaSrAlO4 substrates, films grown on Y AlO3 substrates show atomically flat surfaces, as demonstrated by atomic force microscopy and X-ray diffraction (XRD) measurements. The crystalline structure has been confirmed to be monoclinic by symmetric and skew-symmetric XRD. The dependence of the growth modes and the surface morphology on the lattice mismatch are discussed.

  8. Electronic states in epitaxial graphene fabricated on silicon carbide

    SciTech Connect

    Davydov, S. Yu.

    2011-08-15

    An analytical expression for the density of states of a graphene monolayer interacting with a silicon carbide surface (epitaxial graphene) is derived. The density of states of silicon carbide is described within the Haldane-Anderson model. It is shown that the graphene-substrate interaction results in a narrow gap of {approx}0.01-0.06 eV in the density of states of graphene. The graphene atom charge is estimated; it is shown that the charge transfer from the substrate is {approx}10{sup -3}-10{sup -2}e per graphene atom.

  9. Van der Waals Epitaxy of Functional Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Chu, Ying-Hao

    In the diligent pursuit of low-power consumption, multifunctional, and environmentally friendly electronics, more sophisticated requirements on functional materials are on demand. Recently, the discovery of 2D layered materials has created a revolution to this field. Pioneered by graphene, these new 2D materials exhibit abundant unusual physical phenomena that is undiscovered in bulk forms. These materials are characterized with their layer form and almost pure 2D electronic behavior. The confinement of charge and heat transport at such ultrathin planes offers possibilities to overcome the bottleneck of present device development in thickness limitation, and thus push the technologies into next generation. Van der Waals epitaxy, an epitaxial growth method to combine 2D and 3D materials, is one of current reliable manufacturing processes to fabricate 2D materials by growing these 2D materials epitaxially on 3D materials. Then, transferring the 2D materials to the substrates for practical applications. In the mean time, van der Waals epitaxy has also been used to create free-standing 3D materials by growing 3D materials on 2D materials and then removing them from 2D materials since the interfacial boding between 2D and 3D materials should be weak van der Waals bonds. In this study, we intend to take the same concept, but to integrate a family of functional materials in order to open new avenue to flexible electronics. Due to the interplay of lattice, charge, orbital, and spin degrees of freedom, correlated electrons in oxides generate a rich spectrum of competing phases and physical properties. Recently, lots of studies have suggested that oxide heterostructures provide a powerful route to create and manipulate the degrees of freedom and offer new possibilities for next generation devices, thus create a new playground for researchers to investigate novel physics and the emergence of fascinating states of condensed matter. In this talk, we use a 2D layered material as

  10. Stable Algorithms for Modeling Thin-Film Epitaxial Growth

    NASA Astrophysics Data System (ADS)

    Seyfarth, Greg; Vollmayr-Lee, Benjamin

    2013-03-01

    We search for stable time-stepping schemes for a phase-field model of thin film epitaxial growth. In particular, we consider a class of linear semi-implicit schemes which ensure the free energy decreases with time, a property called gradient stability. System dynamics slow at late times, so gradient stable schemes which allow adaptive time stepping are highly desirable. We perform a linear stability analysis and support it with numerical testing, revealing a region in parameter space of gradient stable semi-implicit schemes. Funded by NSF REU Grant #PHY-1156964.

  11. Self-assembly of Epitaxial Monolayers for Vacuum Wafer Bonding.

    NASA Astrophysics Data System (ADS)

    Altfeder, Igor; Huang, Biqin; Appelbaum, Ian; Walker, Barry

    2007-03-01

    Self-assembled epitaxial metal monolayers can be used for hetero-integration of mismatched semiconductors, leading to simultaneously low interfacial resistance and high optical transparency. Lattice-mismatched wafers of Si(100) and Si(111) were bonded at room temperature in situ after vacuum deposition of a single atomic layer of Ag on them. The interfacial resistance was measured to be 3.9x 10-4 ohm. cm^ 2 and the optical transmission of the interface at 2500 nm is approximately 98%. We discuss the important role of electron confinement in ultrathin Ag layers as a possible contributor to the bonding energy.

  12. Self-assembly of epitaxial monolayers for vacuum wafer bonding

    NASA Astrophysics Data System (ADS)

    Altfeder, Igor; Huang, Biqin; Appelbaum, Ian; Walker, B. C.

    2006-11-01

    Self-assembled epitaxial metal monolayers can be used for heterointegration of mismatched semiconductors, leading to simultaneously low interfacial resistance and high optical transparency. Lattice-mismatched wafers of Si(100) and Si(111) were bonded at room temperature in situ after vacuum deposition of a single atomic layer of Ag. The interfacial resistance was measured to be 3.9×10-4Ωcm2 and the optical transmission of the interface at 2500nm is approximately 98%. Electron confinement in ultrathin Ag layers as a possible contributor to the bonding energy.

  13. Microscopic origin of the π states in epitaxial silicene

    SciTech Connect

    Fleurence, A. Lee, C.-C.; Yamada-Takamura, Y.; Yoshida, Y.; Hasegawa, Y.; Ozaki, T.

    2014-01-13

    We investigated the electronic properties of epitaxial silicene on ZrB{sub 2}(0001) thin film grown on Si(111) by means of low-temperature scanning tunneling spectroscopy and density functional theory calculations. The position of silicon atoms and thus, the localization of the valence and conduction states were deducted from the comparison of the spectra and the computed local density of states. We point out the strong contribution of p{sub z} orbitals of specific atoms to those states which indicates the π character of the conduction and valence bands. A clear correlation between hybridization of the orbitals of the Si atoms and the buckling was evidenced.

  14. Diffusion mass transport in liquid phase epitaxial growth of semiconductors

    SciTech Connect

    Dost, S.; Qin, Z.; Kimura, M.

    1996-12-01

    A numerical simulation model for the mass transport occurring during the liquid phase epitaxial growth of AlGaAs is presented. The mass transport equations in the liquid and solid phases, and the relationships between concentrations and temperature obtained from the phase diagram constitute the governing equations. These equations together with appropriate interface and boundary conditions were solved numerically by the Finite Element Method. Numerical results show the importance of diffusion into the solid phase, affecting the composition of grown layers. Simulation results agree with experiments.

  15. Atomic layer-by-layer epitaxy of cuprate superconductors

    SciTech Connect

    Bozovic, I.; Eckstein, J.N.; Virshup, G.F.

    1994-03-01

    A technique for atomic layer-by-layer epitaxy of cuprate superconductors and other complex oxides has been developed at Varian. The samples are engineered by stacking molecular layers of different compounds to assemble multilayers and superlattices, by adding or omitting atomic monolayers to create novel compounds, and by doping within specified atomic monolayers. Apart form manufacturing trilayer Josephson junctions with I{sub c}R{sub n}>5 mV, this technique enables one to address fundamental issues such as the dimensionality of HTSC state, existence of long-range proximity effects, occurrence of resonant tunneling etc., as well as to synthesize novel metastable HTSC compounds. 4 refs., 2 figs.

  16. Single-Nucleus Polycrystallization in Thin Film Epitaxial Growth

    SciTech Connect

    Sadowski, J. T.; Nishikata, S.; Al-Mahboob, A.; Fujikawa, Y.; Nakajima, K.; Sakurai, T.; Sazaki, G.; Tromp, R. M.

    2007-01-26

    We have observed, by use of low-energy electron microscopy, the first direct evidence of self-driven polycrystallization evolved from a single nucleus in the case of epitaxial pentacene growth on the Si(111)-H terminated surface. In this Letter we demonstrate that such polycrystallization can develop in anisotropic systems (in terms of crystal structure and/or the intermolecular interactions) when kinetic growth conditions force the alignment of the intrinsic preferential growth directions along the density gradient of diffusing molecules. This finding gives new insight into the crystallization of complex molecular systems, elucidating the importance of nanoscale control of the growth conditions.

  17. Single-domain epitaxial silicene on diboride thin films

    NASA Astrophysics Data System (ADS)

    Fleurence, A.; Gill, T. G.; Friedlein, R.; Sadowski, J. T.; Aoyagi, K.; Copel, M.; Tromp, R. M.; Hirjibehedin, C. F.; Yamada-Takamura, Y.

    2016-04-01

    Epitaxial silicene, which forms spontaneously on ZrB2(0001) thin films grown on Si(111) wafers, has a periodic stripe domain structure. By adsorbing additional Si atoms on this surface, we find that the domain boundaries vanish, and a single-domain silicene sheet can be prepared without altering its buckled honeycomb structure. The amount of Si required to induce this change suggests that the domain boundaries are made of a local distortion of the silicene honeycomb lattice. The realization of a single domain sheet with structural and electronic properties close to those of the original striped state demonstrates the high structural flexibility of silicene.

  18. Modeling of Gallium Nitride Hydride Vapor Phase Epitaxy

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    A reactor model for the hydride vapor phase epitaxy of GaN is presented. The governing flow, energy, and species conservation equations are solved in two dimensions to examine the growth characteristics as a function of process variables and reactor geometry. The growth rate varies with GaCl composition but independent of NH3 and H2 flow rates. A change in carrier gas for Ga source from H2 to N2 affects the growth rate and uniformity for a fixed reactor configuration. The model predictions are in general agreement with observed experimental behavior.

  19. Heat-treatment effects in neutron transmutation doped epitaxial silicon

    SciTech Connect

    Cleland, J.W.

    1983-01-01

    Chemical vapor deposition (CVD) of silicon from a gaseous silicon compound onto a heated silicon substrate may be used to deposit an epitaxial SI layer and to obtain an electrical p-n junction. The dopant concentration in the epi-Si layer is a function of the gaseous dopant ion content, flow rate, temperature gradient, and any migration of impurities (autodoping) from the heated substrate. This technical note describes some results of carrier concentration, mobility, and resistivity measurements on small (0.5 cm/sup 2/) epi-Si samples using the van der Pauw (vdP) technique.

  20. The effect of adsorption on static conductivity of epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Davydov, S. Yu.

    2014-12-01

    An analytical expression for adsorption-induced changes in the static conductivity of the adlayer-single-sheet-graphene-substrate system has been obtained using the Kubo-Greenwood formalism with allowance for the dipole-dipole repulsion in the adlayer. The cases of both metal and semiconductor substrates have been considered. The results are applied to description of the hydrogen monolayer-single-sheet-graphene-tungsten substrate system. Numerical estimations show that the magnitude of the effect of the adsorbed hydrogen monolayer on the static conductivity σeg of epitaxial graphene on tungsten is on the order of the σeg value.

  1. Antiphase boundaries in epitaxially grown beta-SiC

    NASA Technical Reports Server (NTRS)

    Pirouz, P.; Chorey, C. M.; Powell, J. A.

    1987-01-01

    When the surface of beta-SiC, grown epitaxially on (001) silicon by chemical vapor deposition, is chemically etched, boundaries appear which may be observed by optical or scanning electron microscopy. Examination by plan-view and cross-sectional transmission electron microscopy shows boundaries in the film which exhibit line or fringe contrast. Convergent beam electron diffraction has been used to show that these boundaries separate domains that are in an antiphase relationship to each other. A model is presented which discusses the formation of these domains from independent nucleation on a stepped substrate surface.

  2. Delayed Shutters For Dual-Beam Molecular Epitaxy

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J.; Liu, John L.; Hancock, Bruce

    1989-01-01

    System of shutters for dual-molecular-beam epitaxy apparatus delays start of one beam with respect to another. Used in pulsed-beam equipment for deposition of low-dislocation layers of InAs on GaAs substrates, system delays application of arsenic beam with respect to indium beam to assure proper stoichiometric proportions on newly forming InAs surface. Reflectance high-energy electron diffraction (RHEED) instrument used to monitor condition of evolving surface of deposit. RHEED signal used to time pulsing of molecular beams in way that minimizes density of defects and holds lattice constant of InAs to that of GaAs substrate.

  3. Epitaxial growth of high quality WO3 thin films

    DOE PAGESBeta

    Leng, X.; Pereiro, J.; Strle, J.; Bollinger, A. T.; Bozovic, I.

    2015-09-09

    We have grown epitaxial WO3 films on various single-crystal substrates using radio-frequency (RF) magnetron sputtering. While pronounced surface roughness is observed in films grown on LaSrAlO4 substrates, films grown on YAlO3 substrates show atomically flat surfaces, as demonstrated by atomic force microscopy (AFM) and X-ray diffraction (XRD) measurements. The crystalline structure has been confirmed to be monoclinic by symmetric and skew-symmetric XRD. Furthermore, the dependence of the growth modes and the surface morphology on the lattice mismatch is discussed.

  4. Microstructure and twinning in epitaxial NiMnGa films

    SciTech Connect

    Mahnke, Guido J.; Mayr, S. G.; Seibt, M.

    2008-07-01

    Although magnetic shape memory alloys have attracted large scientific interest, miniaturization as single-crystalline thin films is still a greatly unresolved issue. In the present work we investigate the microstructure of epitaxial NiMnGa thin films which are fabricated by sputter deposition on magnesium oxide substrates at elevated temperatures. Transmission and scanning electron microscopy as well as atomic force microscopy studies are employed to relate surface topography to twin formation in 7 M martensitic NiMnGa films. Additional findings include pore formation in substrate proximity as well as minor precipitation with reduced nickel and gallium contents.

  5. Guided VLS growth of epitaxial lateral Si nanowires.

    PubMed

    Rathi, Somilkumar J; Smith, David J; Drucker, Jeff

    2013-08-14

    Using the Au-seeded vapor-liquid-solid technique, epitaxial single-crystal Si nanowires (NWs) can be grown laterally along Si(111) substrates that have been miscut toward [112¯]. The ratio of lateral-to-vertical NWs increases as the miscut angle increases and as disilane pressure and substrate temperature decrease. By exploiting these trends, conditions can be identified whereby all of the deposited Au seeds form lateral NWs. Growth is guided along the nanofaceted substrate via a mechanism that involves pinning of the trijunction at the liquid/solid interface of the growing nanowire. PMID:23899006

  6. MOS structures based on epitaxial HgCdTe layers

    SciTech Connect

    Antonov, V.V.; Belashov, Y.G.; Kazak, E.P.; Mezentseva, M.P.; Voitsekhovskii, A.V.

    1985-08-01

    The authors present the results of a study of the dependence of the surface photoelectromotive force at wavelengths of 3.39 and 10.6 micrometers on the field electrode for MOS structures prepared from epitaxial Hg /SUB 1-x/ Cd /SUB x/ Te layers (x=0.20-0.25). They analyze the nature of the inhomogeneities in the region near the surface of semiconducting samples prepared under various heat treatment conditions and present their findings in a series of three charts.

  7. Surface morphology during multilayer epitaxial growth of Ge(001)

    SciTech Connect

    Van Nostrand, J.E.; Chey, S.J.; Hasan, M.; Cahill, D.G.; Greene, J.E. )

    1995-02-13

    The surface morphology of Ge(001) films grown by molecular beam epitaxy on a Ge(001) substrate is measured using scanning tunneling microscopy. Growth mounds are observed for single crystal films deposited at temperatures of 60--230 [degree]C and film thicknesses of 5 nm to 1 [mu]m. With increasing growth temperature, the average separation between mounds becomes increasingly well defined, increasing from less than 10 nm at 60 [degree]C to nearly 200 nm at 230 [degree]C. This regular arrangement of growth mounds is inconsistent with the self-affine growth morphology predicted by most kinetic roughening models.

  8. Anisotropic strain relaxation in (Ba{sub 0.6}Sr{sub 0.4})TiO{sub 3} epitaxial thin films

    SciTech Connect

    Simon, W.K.; Akdogan, E.K.; Safari, A.

    2005-05-15

    We have studied the evolution of anisotropic epitaxial strains in <110>-oriented (Ba{sub 0.60}Sr{sub 0.40})TiO{sub 3} paraelectric (m3m) thin films grown on orthorhombic (mm2) <100>-oriented NdGaO{sub 3} by high-resolution x-ray diffractometry. All the six independent components of the three-dimensional strain tensor were measured in films with 25-1200-nm thickness, from which the principal stresses and strains were obtained. Pole figure analysis indicated that the epitaxial relations are [001]{sub m3m} parallel [001]{sub mm2} and [110]{sub m3m} parallel [010]{sub mm2} in the plane of the film, and [110]{sub m3m} parallel [100]{sub mm2} along the growth direction. The dislocation system responsible for strain relief along [001] has been determined to be vertical bar b vertical bar{sup (001)}=3/4 vertical bar b vertical bar. Strain relief along the [110] direction, on the other hand, has been determined to be due to a coupled mechanism given by vertical bar b vertical bar{sup (110)}=vertical bar b vertical bar and vertical bar b vertical bar{sup (110)}={radical}(3)/4vertical bar b vertical bar. Critical thicknesses, as determined from nonlinear regression using the Matthews-Blakeslee equation, for misfit dislocation formation along [001] and [110] direction were found to be 5 and 7 nm, respectively. The residual strain energy density was calculated as {approx}2.9x10{sup 6} J/m{sup 3} at 25 nm, which was found to relax an order of magnitude by 200 nm. At 200 nm, the linear dislocation density along [001] and [110] are {approx}6.5x10{sup 5} and {approx}6x10{sup 5} cm{sup -1}, respectively. For films thicker than 600 nm, additional strain relief occurred through surface undulations, indicating that this secondary strain-relief mechanism is a volume effect that sets in upon cooling from the growth temperature.

  9. Growth of amorphous and epitaxial alternative gate dielectrics on silicon by molecular-beam epitaxy and their characterization

    NASA Astrophysics Data System (ADS)

    Edge, Lisa Friedman

    The continued scaling of SiO2 in metal-oxide-semiconductor field-effect transistors (MOSFETs) is approaching its fundamental limit and in the next few years will have to be replaced with an alternative gate dielectric if Moore's law is to continue. In a search for suitable alternative dielectrics, I have investigated the growth of amorphous and epitaxial LaAlO3, LaScO3, La2O3, and Sc2O3 thin films by molecular-beam epitaxy (MBE) on silicon. A major challenge in the growth of alternative gate dielectrics on silicon is the formation of SiO2 at the interface between silicon and the high- K gate dielectric. In this dissertation, I have established deposition conditions that yielded abrupt interfaces (< 0.1 A of SiO2) between amorphous LaAlO3 or LaScO3 thin films and silicon. These results demonstrate the thinnest gate dielectrics ever produced that are free of interfacial SiO2, despite exposure to air. The thermal stability between silicon and the abrupt amorphous LaAlO 3 and LaScO3 thin films was established for the first time. By 900°C, crystallization is clearly observed, but the LaAlO3/Si interface remains sharp with no detectable interfacial SiO2. The thermal stability results establish key processing windows for the integration of amorphous LaAlO3 and LaScO3 thin films into silicon-based MOSFETs. In this work, the following critical physical properties of amorphous LaAlO3 thin films deposited on silicon have been determined: dielectric constant (K = 16 +/- 2), bandgap (Eg = 6.2 +/- 0.1 eV), and band alignment (DeltaEc = 1.8 +/- 0.2 for electrons and DeltaEv = 3.2 +/- 0.1 eV for holes). The following critical physical properties of amorphous LaScO3 thin films deposited on silicon have been determined: bandgap (Eg = 5.7 +/- 0.1 eV) and band alignment (DeltaEc = 2.0 +/- 0.1 eV for electrons and DeltaEv = 3.1 +/- 0.1 eV for holes). In this dissertation, epitaxial (0001) La2O3 thin films with the hexagonal crystal structure were grown on (111) Si for the first time

  10. Epitaxial growth and optical properties of Al- and N-polar AlN films by laser molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chen, X. W.; Jia, C. H.; Chen, Y. H.; Wang, H. T.; Zhang, W. F.

    2014-03-01

    Epitaxial aluminum nitride (AlN) films with c-axis orientation were grown on both (1 1 1) MgO and c-sapphire substrates by laser molecular beam epitaxy. The in-plane epitaxial relationships were determined to be [1 1 \\bar{{2}} 0]AlN‖[0 \\bar{{1}} 1]MgO and [1 \\bar{{1}} 0 0]AlN‖[1 1 \\bar{{2}} 0]sapphire, and the lattice mismatch was 4.2% and 13.2% for AlN films on MgO and sapphire, respectively. The AlN films were shown to be Al- and N-polar on MgO and sapphire, respectively. The former is assumed to be caused by the centre of inversion symmetry of (1 1 1) MgO substrate, while the latter is due to the O polarity of sapphire. The full-width at half-maximum of the ω-scanning spectrum for AlN film on (1 1 1) MgO substrate is smaller than that on the c-sapphire substrate. The optical band-gap energies for AlN films grown on MgO and sapphire were found to be 5.93 and 5.84 eV, close to the standard band gap of 6.2 eV, and the calculated Urbach energies were 0.27 eV and 0.53 eV, respectively. These results indicate a lower amorphous content and/or less defects/impurities in Al-polar than N-polar AlN.

  11. Van der Waals Epitaxy of Ultrathin Halide Perovkistes

    NASA Astrophysics Data System (ADS)

    Wang, Yiping; Shi, Yunfeng; Shi, Jian

    We present our understanding, with CH3NH3PbX3 as a model system, on the 2D van der Waals growth and kinetics of 3D parent materials. We show the successful synthesis of ultrathin (sub-10 nm), large scale (a few tens of μm) single crystalline 2D perovskite thin films on layered mica substrate by van der Waals (VDW) epitaxy. Classical nucleation and growth model explaining conventional epitaxy has been modified to interpret the unique 2D results under VDW mechanism. The generalization of our model shows that a 3D crystal with low cohesive energy tends to favor the 2D growth while the one with strong cohesive energy has less kinetic window. With Monte Carlo simulations, we show that the fractal 2D morphology in perovskite precisely manifests the kinetic competition between VDW diffusivity and thermodynamic driving force, a unique phenomenon to VDW growth, suggesting a fundamental limit on the morphology stability of the 2D form of a 3D material. On the other hand, our single crystal thin film growth results and subsequent cryogenic study in the iodide perovskite provide a perfect resource for the exploration of its complex optical and electronic properties and unveiling the origins of its popularity in the energy conversion field.

  12. Titanium Nitride Epitaxy on Tungsten (100) by Sublimation Crystal Growth

    SciTech Connect

    Mercurio, Lisa; Du, Li; Edgar, J H; Kenik, Edward A

    2007-01-01

    Titanium nitride crystals were grown from titanium nitride powder on tungsten by the sublimation-recondensation technique. The bright golden TiN crystals displayed a variety of shapes including cubes, truncated tetrahedrons, truncated octahedrons, and tetrahedrons bounded by (111) and (100) crystal planes. The TiN crystals formed regular, repeated patterns within individual W grains that suggested epitaxy. X-ray diffraction and electron backscattering diffraction revealed that the tungsten foil was highly textured with a preferred foil normal of (100) and confirmed that the TiN particles deposited epitaxially with the orientation TiN(100)/W(100) and TiN[100]/W[110], that is, the unit cells of the TiN crystals were rotated 45{sup o} with respect to the tungsten. Because of its larger coefficient of thermal expansion compared to W, upon cooling from the growth temperature, the TiN crystals were under in-plane tensile strain, causing many of the TiN crystals to crack.

  13. Epitaxial stabilization and phase instability of VO2 polymorphs

    DOE PAGESBeta

    Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung

    2016-01-20

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. Bymore » investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. In conclusion, our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices.« less

  14. Growth and Features of Epitaxial Graphene on SiC

    NASA Astrophysics Data System (ADS)

    Kusunoki, Michiko; Norimatsu, Wataru; Bao, Jianfeng; Morita, Koichi; Starke, Ulrich

    2015-12-01

    Recent progress of epitaxial graphene on SiC was reviewed, focusing on its growth and structural and electronic features. Homogeneous graphene can be grown on SiC(0001) on a wafer scale, however on SiC(000bar{1}) multilayer but rotationally stacked graphene with monolayer like electronic property grows. HRTEM revealed the formation mechanism and structural features of graphene on the both surfaces. The high structural and electronic quality of the grown graphene is monitored by Raman spectroscopy and magneto-transport characterization. High-resolution ARPES measurements of the electronic dispersion around the bar{text{K}}-point retrieved the ABA and ABC stacked trilayer graphene. The measurements also directly revealed that electronic structures of graphene were manipulated by transfer doping and atomic intercalation. In particular, p- and n-doped regions on a meso-scale and the p-n junctions prepared on SiC via controlling intercalation of Ge exhibited ballistic transport and Klein tunneling, which predicted novel potentials on to epitaxial graphene on SiC.

  15. A phase-field model of island growth in epitaxy

    NASA Astrophysics Data System (ADS)

    Liu, Bang-Gui

    2004-03-01

    A phase-field model was proposed to simulate nucleation and growth of islands in epitaxy. In addition to local density of adatoms, a local phase-field variable, varying in the real space, is introduced to describe the epitaxial islands. Evolution of this phase field is determined by a time-dependent Ginzburg-Landau-like equation coupled to a diffusive transport equation of adatoms. When applied to nucleation and growth of islands in the submonolayer regime, this model reproduces both the scaling laws of island density and experimental size and spatial distributions of islands. For island growth in the multilayer regime, this phase-field model reproduces mound structures consistent with experimental images concerned. Accurate coarsening and roughening exponents of the mounds are obtained in this model. Compared with atomic models and mean-field models, this model can provide a fine visualized morphology of islands at large space and time scales of practical engineering interests. Reference: Yan-Mei Yu and Bang-Gui Liu, Phys Rev E (accepted Dec 2003).

  16. REVIEW ARTICLE: Random lasers based on organic epitaxial nanofibers

    NASA Astrophysics Data System (ADS)

    Quochi, Francesco

    2010-02-01

    We present a review on random lasing in organic nanofibers made of oligophenyl nanocrystals grown by molecular epitaxy on polar substrates. The nanofibers have sub-wavelength cross-sectional dimensions and can extend in length up to the millimeter scale. We report on random lasing properties of nanofibers, under subpicosecond photopumping, both in the coherent and incoherent regimes. With the aid of both optical and morphological studies on individual fibers, we get insight into one-dimensional coherent feedback taking place along the nanofibers' axes. Model calculations of light propagation in disordered media allow us to give a semiquantitative description of one-dimensional coherent random lasing near the lasing threshold. We also report on amplified simulated emission in individual nanofibers and demonstrate that nanoscale linear optical amplifiers can be obtained by molecular self-assembly at surfaces. Photophysical studies of nanofibers resorting to subpicosecond luminescence and pump-probe spectroscopy give us valuable information on temperature-dependent, excited-state nonlinear processes, such as exciton-exciton annihilation and photoinduced absorption. Excited-state effects strongly influence lasing thresholds under quasi-continuous-wave photoexcitation conditions, as demonstrated in photoexcitation experiments performed with nanosecond pulses. Last, we briefly discuss the potential of organic epitaxial nanofibers featuring low-threshold random lasing for photonic sensing applications.

  17. Magnetism and deformation of epitaxial Pd and Rh thin films

    NASA Astrophysics Data System (ADS)

    KáÅa, Tomáš; Hüger, Erwin; Legut, Dominik; Čák, Miroslav; Šob, Mojmír

    2016-04-01

    By means of ab initio calculations, we investigated structural and magnetic properties of Pd and Rh thin films, determining their lattice parameters and epitaxial stresses when they are grown on various substrates, and provided a comparison with available experimental data. Further, we studied in detail the magnetic properties of Pd in the higher-energy hcp structure and of Rh in the higher-energy bcc structure. The results predict that the hcp (11 2 ¯0 ) Pd films [grown by epitaxy on the Nb(001) substrate] should not be ferromagnetically ordered. Concerning the hcp Pd, we mainly investigated the influence of the hcp c /a ratio on the hcp film stability and on the ferromagnetic order. It turns out that the c /a ratio has to be below 1.622 to induce the ferromagnetic order in hcp Pd. We proposed a technological route for obtaining ferromagnetic hcp (11 2 ¯0 ) Pd films and explained the experimentally observed ferromagnetism in twinned Pd nanoparticles induced by strain. We also found that bcc Rh is ferromagnetically ordered, but it cannot be stabilized in the form of thin films. Therefore, we investigated the dependence of ferromagnetic order in bct Rh on the tetragonal c /a ratio and compared our results with experiments performed on Rh/Fe(001) multilayers.

  18. Crystallinity improvements of Ge waveguides fabricated by epitaxial lateral overgrowth

    NASA Astrophysics Data System (ADS)

    Oda, Katsuya; Okumura, Tadashi; Kasai, Junichi; Kako, Satoshi; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2016-04-01

    Ge waveguides (WGs) were successfully fabricated on an SiO2 layer by combining epitaxial lateral overgrowth, chemical mechanical polishing (CMP), and reactive ion etching (RIE) of a Ge layer selectively grown on SiO2 patterns using low-pressure chemical vapor deposition. Selectivity was promoted by increasing the growth temperature; the length of the epitaxial lateral overgrown Ge layer reached 5 µm on the SiO2 layer under conditions of optimal selective growth at a temperature of 750 °C. The Ge layers were planarized using CMP down to a thickness of 1 µm, and then Ge WGs as active regions for light emitting devices were formed by using RIE on the planarized Ge layers. After defective regions around the Ge/Si interface were removed, 4-times-higher photoluminescence was obtained from the Ge WGs compared with one that contained the Ge/Si interface. These results indicate that this combined technique efficiently improved the performance of Ge light-emitting devices.

  19. Substrate Preparations in Epitaxial ZnO Film Growth

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C.-H.; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; George, M. A.

    2000-01-01

    Epitaxial ZnO films were grown on the two polar surfaces (O-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. Annealing-temperature dependence of ZnO substrates was studied. ZnO films grown on sapphire substrates have also been investigated for comparison purposes and the annealing temperature of A1203 substrates is 1000 C. Substrates and films were characterized using photoluminescence (PL) spectrum, x-ray diffraction, atomic force microscope, energy dispersive spectrum, and electric transport measurements. It has been found that the ZnO film properties were different when films were grown on the two polarity surfaces of ZnO substrates and the A1203 substrates. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite surface. The measurements of homoepitaxial ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth.

  20. Apparatus for externally controlled closed-loop feedback digital epitaxy

    DOEpatents

    Eres, D.; Sharp, J.W.

    1996-07-30

    A method and apparatus for digital epitaxy are disclosed. The apparatus includes a pulsed gas delivery assembly that supplies gaseous material to a substrate to form an adsorption layer of the gaseous material on the substrate. Structure is provided for measuring the isothermal desorption spectrum of the growth surface to monitor the active sites which are available for adsorption. The vacuum chamber housing the substrate facilitates evacuation of the gaseous material from the area adjacent the substrate following exposure. In use, digital epitaxy is achieved by exposing a substrate to a pulse of gaseous material to form an adsorption layer of the material on the substrate. The active sites on the substrate are monitored during the formation of the adsorption layer to determine if all the active sites have been filled. Once the active sites have been filled on the growth surface of the substrate, the pulse of gaseous material is terminated. The unreacted portion of the gas pulse is evacuated by continuous pumping. Subsequently, a second pulse is applied when availability of active sites is determined by studying the isothermal desorption spectrum. These steps are repeated until a thin film of sufficient thickness is produced. 5 figs.

  1. Apparatus for externally controlled closed-loop feedback digital epitaxy

    DOEpatents

    Eres, Djula; Sharp, Jeffrey W.

    1996-01-01

    A method and apparatus for digital epitaxy. The apparatus includes a pulsed gas delivery assembly that supplies gaseous material to a substrate to form an adsorption layer of the gaseous material on the substrate. Structure is provided for measuring the isothermal desorption spectrum of the growth surface to monitor the active sites which are available for adsorption. The vacuum chamber housing the substrate facilitates evacuation of the gaseous material from the area adjacent the substrate following exposure. In use, digital epitaxy is achieved by exposing a substrate to a pulse of gaseous material to form an adsorption layer of the material on the substrate. The active sites on the substrate are monitored during the formation of the adsorption layer to determine if all the active sites have been filled. Once the active sites have been filled on the growth surface of the substrate, the pulse of gaseous material is terminated. The unreacted portion of the gas pulse is evacuated by continuous pumping. Subsequently, a second pulse is applied when availability of active sites is determined by studying the isothermal desorption spectrum. These steps are repeated until a thin film of sufficient thickness is produced.

  2. Point defects in epitaxial silicene on Ag(111) surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Hongsheng; Feng, Haifeng; Du, Yi; Chen, Jian; Wu, Kehui; Zhao, Jijun

    2016-06-01

    Silicene, a counterpart of graphene, has achieved rapid development due to its exotic electronic properties and excellent compatibility with the mature silicon-based semiconductor technology. Its low room-temperature mobility of ∼100 cm2 V‑1 s‑1, however, inhibits device applications such as in field-effect transistors. Generally, defects and grain boundaries would act as scattering centers and thus reduce the carrier mobility. In this paper, the morphologies of various point defects in epitaxial silicene on Ag(111) surfaces have been systematically investigated using first-principles calculations combined with experimental scanning tunneling microscope (STM) observations. The STM signatures for various defects in epitaxial silicene on Ag(111) surface are identified. In particular, the formation energies of point defects in Ag(111)-supported silicene sheets show an interesting dependence on the superstructures, which, in turn, may have implications for controlling the defect density during the synthesis of silicene. Through estimating the concentrations of various point defects in different silicene superstructures, the mystery of the defective appearance of \\sqrt{13}× \\sqrt{13} and 2\\sqrt{3}× 2\\sqrt{3} silicene in experiments is revealed, and 4 × 4 silicene sheet is thought to be the most suitable structure for future device applications.

  3. Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection.

    PubMed

    Ding, Hong; Dwaraknath, Shyam S; Garten, Lauren; Ndione, Paul; Ginley, David; Persson, Kristin A

    2016-05-25

    With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO2 compounds which provides a rich chemical and structural polymorph space. We find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO2 substrates, where the VO2 brookite phase would be preferentially grown on the a-c TiO2 brookite plane while the columbite and anatase structures favor the a-b plane on the respective TiO2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. These criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available. PMID:27145398

  4. Optimal doping control of magnetic semiconductors via subsurfactant epitaxy

    SciTech Connect

    Zeng, Changgan; Zhang, Zhenyu; van Benthem, Klaus; Chisholm, Matthew F; Weitering, Harm H

    2008-02-01

    Dilute magnetic semiconductors (DMS) with high ferromagnetic ordering temperatures (T{sub c}) have vast potential for advancing spin-based electronics or 'spintronics'. To date, achieving high-T{sub c} DMS typically required doping levels of order 5%. Such high doping levels inevitably compromise the structural homogeneity and carrier mobility of the DMS. Here, we establish 'subsurfactant epitaxy' as a novel kinetic pathway for synthesizing Mn-doped germanium with T{sub c} much higher than room temperature, at dramatically reduced doping levels. This is accomplished by optimal control of the diffusion kinetics of the dopant atoms near the growth front in two separate deposition steps. The first involves a submonolayer dose of Mn on Ge(100) at low temperature, which populates subsurface interstitial sites with Mn while suppressing lateral Mn diffusion and clustering. The second step involves epitaxial growth of Ge at elevated temperature, taking advantage of the strong floating ability of the interstitial Mn dopants towards the newly defined subsurface sites at the growth front. Most remarkably, the Mn dopants trapped inside the film are uniformly distributed at substitutional sites, and the resulting film exhibits ferromagnetism above 400 K at the nominal doping level of only 0.2%.

  5. A safety system for gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Biswas, Dhrubes; Morkoç, Hadis

    1991-08-01

    Gas source molecular beam epitaxy (GSMBE) is one of the newest developments in epitaxial growth technology wherein the group V sources such as arsine and phosphine are gaseous and in the form of hydrides, while the Group III sources such as indium, aluminum, gallium are all solids. However, the gases involved are very hazardous, extremely toxic, highly inflammable and explosive at elevated temperatures. Adequate care must be taken for the safe use of these gases so that this attractive technique can be properly utilized. This paper discusses the salient safety features of one such GSMBE system (installed in the Epicenter at the University of Illinois) consisting of a gas delivery system with its robust piping assembly, gas manifold and a scrubber. The system is integrated with a Multiple Point Toxic Gas Monitor (MPTGM) acting as the central alarm command system based on the concept of fail safe total safety. This alarm system is equipped with audio-visual alarms for a variety of monitored conditions and interlocks for automatic shutdown. A well-designed air flow pattern has been incorporated to provide good air quality in the laboratory and in the gas storage facility. Additionally a set of good laboratory practices ensured by administrative and personal control are instituted to reduce the hazards to an acceptable risk level.

  6. Epitaxial stabilization and phase instability of VO2 polymorphs

    NASA Astrophysics Data System (ADS)

    Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung

    2016-01-01

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices.

  7. Process-Induced Morphological Defects in Epitaxial CVD Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Powell, J. A.; Larkin, D. J.

    1997-01-01

    Silicon carbide (SiC) semiconductor technology has been advancing rapidly, but there are numerous crystal growth problems that need to be solved before SiC can reach its full potential. Among these problems is a need for an improvement in the surface morphology of epitaxial films that are grown to produce device structures. Various processes before and during epilayer growth lead to the formation of morphological defects observed in SiC epilayers grown on SiC substrates. In studies of both 6H and 4H-SiC epilayers, atomic force microscopy (AFM) and other techniques have been used to characterize SiC epilayer surface morphology. In addition to the well-known micropipe defect, SiC epilayers contain growth pits, triangular features (primarily) in 4H-SiC, and macro step due to step bunching. In work at NASA Lewis, it has been found that factors contributing to the formation of some morphological defects include: defects in the substrate bulk, defects in the substrate surface caused by cutting and polishing the wafer, the tilt angle of the wafer surface relative to the basal plane, and growth conditions. Some of these findings confirm results of other research groups. This paper presents a review of published and unpublished investigations into processes that are relevant to epitaxial film morphology.

  8. Process-Induced Morphological Defects in Epitaxial CVD Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Powell, J. A.; Larkin, D. J.

    1997-07-01

    Silicon carbide (SiC) semiconductor technology has been advancing rapidly, but there are numerous crystal growth problems that need to be solved before SiC can reach its full potential. Among these problems is a need for an improvement in the surface morphology of epitaxial films that are grown to produce device structures. Various processes before and during epilayer growth lead to the formation of morphological defects observed in SiC epilayers grown on SiC substrates. In studies of both 6H and 4H-SiC epilayers, atomic force microscopy (AFM) and other techniques have been used to characterize SiC epilayer surface morphology. In addition to the well-known micropipe defect, SiC epilayers contain growth pits, triangular features (primarily) in 4H-SiC, and macro step due to step bunching. In work at NASA Lewis, it has been found that factors contributing to the formation of some morphological defects include: defects in the substrate bulk, defects in the substrate surface caused by cutting and polishing the wafer, the tilt angle of the wafer surface relative to the basal plane, and growth conditions. Some of these findings confirm results of other research groups. This paper presents a review of published and unpublished investigations into processes that are relevant to epitaxial film morphology.

  9. Optimization of epitaxial layer design for high brightness tapered lasers

    NASA Astrophysics Data System (ADS)

    Tijero, J. M. G.; Rodriguez, D.; Borruel, L.; Sujecki, S.; Larkins, E. C.; Esquivias, I.

    2005-04-01

    A comparative simulation study of the optical output characteristics of tapered lasers with different epitaxial structure was performed. The simulation model self-consistently solves the steady state electrical and optical equations for the flared unstable resonator and was previously backed by experiments on one of the simulated structures. Three different epitaxial designs emitting at 975 nm were analyzed: a standard single quantum well symmetrically located in the confinement region (s-SQW), a double quantum well also symmetrically located (s-DQW) and an asymmetrically located double quantum well (a-DQW). The symmetric structures have different confinement factor but a similar ratio between the active layer thickness and the confinement factor, dQW/Γ, while the a-DQW has similar confinement factor than the s-SQW, but double dQW/Γ. A better performance is predicted for the a-DQW design, reaching considerably higher output power with good beam quality. The results are interpreted in terms of a lower density of power in the QW in the case of the a-DQW design, thus delaying to higher output power the onset of the non-linear effects that degrade the beam quality. The role of dQW/Γ as a figure of merit for high brightness tapered lasers is emphasized.

  10. Epitaxy and Microstructure Evolution in Metal Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Basak, Amrita; Das, Suman

    2016-07-01

    Metal additive manufacturing (AM) works on the principle of incremental layer-by-layer material consolidation, facilitating the fabrication of objects of arbitrary complexity through the controlled melting and resolidification of feedstock materials by using high-power energy sources. The focus of metal AM is to produce complex-shaped components made of metals and alloys to meet demands from various industrial sectors such as defense, aerospace, automotive, and biomedicine. Metal AM involves a complex interplay between multiple modes of energy and mass transfer, fluid flow, phase change, and microstructural evolution. Understanding the fundamental physics of these phenomena is a key requirement for metal AM process development and optimization. The effects of material characteristics and processing conditions on the resulting epitaxy and microstructure are of critical interest in metal AM. This article reviews various metal AM processes in the context of fabricating metal and alloy parts through epitaxial solidification, with material systems ranging from pure-metal and prealloyed to multicomponent materials. The aim is to cover the relationships between various AM processes and the resulting microstructures in these material systems.

  11. Development of Crystal Al MKIDs by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Naruse, M.; Sekimoto, Y.; Noguchi, T.; Miyachi, A.; Nitta, T.; Uzawa, Y.

    2011-11-01

    We report here the effect of film qualities in superconductors on the properties of Microwave Kinetic Inductance Detectors (MKIDs). The sensitivity of MKIDs between crystal aluminum films and amorphous aluminum films is compared. The good quality and crystallized aluminum films have been prepared by using molecular beam epitaxy. We have confirmed that epitaxial Al(111) films were grown on Si(111) substrates with X-ray diffraction and in-situ reflection high-energy electron diffraction measurements. The amorphous aluminum films on the Si(111) wafers have been deposited by electron beam evaporation. We have measured transmission losses of MKIDs, noise spectrum and relaxation time against optical pulses, changing MKIDs' bath temperature from 0.11 K to 0.55 K in a dilution refrigerator. Despite of the improvement in normal resistivity, the quasiparticle decay time of both films are equivalent and 450 μs at 0.11 K. The electrical noise equivalent power of the both MKIDs are also comparable and around 10^{-17} W/sqrt{Hz}. Fabrication details and performance data of both films are presented.

  12. Epitaxial stabilization and phase instability of VO2 polymorphs

    PubMed Central

    Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung

    2016-01-01

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices. PMID:26787259

  13. Epitaxial stabilization and phase instability of VO2 polymorphs.

    PubMed

    Lee, Shinbuhm; Ivanov, Ilia N; Keum, Jong K; Lee, Ho Nyung

    2016-01-01

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices. PMID:26787259

  14. Crystal nucleation and near-epitaxial growth in nacre.

    PubMed

    Olson, Ian C; Blonsky, Adam Z; Tamura, Nobumichi; Kunz, Martin; Pokroy, Boaz; Romao, Carl P; White, Mary Anne; Gilbert, Pupa U P A

    2013-12-01

    Nacre is the iridescent inner lining of many mollusk shells, with a unique lamellar structure at the sub-micron scale, and remarkable resistance to fracture. Despite extensive studies, nacre formation mechanisms remain incompletely understood. Here we present 20-nm, 2°-resolution polarization-dependent imaging contrast (PIC) images of shells from 15 mollusk species, mapping nacre tablets and their orientation patterns. These data show where new crystal orientations appear and how similar orientations propagate as nacre grows. In all shells we found stacks of co-oriented aragonite (CaCO₃) tablets arranged into vertical columns or staggered diagonally. Near the nacre-prismatic (NP) boundary highly disordered spherulitic aragonite is nucleated. Overgrowing nacre tablet crystals are most frequently co-oriented with the underlying aragonite spherulites, or with another tablet. Away from the NP-boundary all tablets are nearly co-oriented in all species, with crystal lattice tilting, abrupt or gradual, always observed and always small (plus or minus 10°). Therefore aragonite crystal growth in nacre is near-epitaxial. Based on these data, we propose that there is one mineral bridge per tablet, and that "bridge tilting" may occur without fracturing the bridge, hence providing the seed from which the next tablet grows near-epitaxially. PMID:24121160

  15. Epitaxial growth mechanisms of graphene and effects of substrates

    NASA Astrophysics Data System (ADS)

    Özçelik, V. Ongun; Cahangirov, S.; Ciraci, S.

    2012-06-01

    The growth process of single layer graphene with and without substrate is investigated using ab initio, finite temperature molecular dynamic calculations within density functional theory. An understanding of the epitaxial graphene growth mechanisms in the atomic level is provided by exploring the transient stages which occur at the growing edges of graphene. These stages are formation and collapse of large carbon rings together with the formation and healing of Stone-Wales like pentagon-heptagon defects. The activation barriers for the healing of these growth induced defects on various substrates are calculated using the climbing image nudge elastic band method and compared with that of the Stone-Wales defect. It is found that the healing of pentagon-heptagon defects occurring near the edge in the course of growth is much easier than that of Stone-Wales defect. The role of the substrate in the epitaxial growth and in the healing of defects are also investigated in detail, along with the effects of using carbon dimers as the building blocks of graphene growth.

  16. Structure and transport of topological insulators on epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Kally, James; Reifsnyder Hickey, Danielle; Lin, Yu-Chuan; Richardella, Anthony; Lee, Joon Sue; Robinson, Joshua; Mkhoyan, K. Andre; Samarth, Nitin

    Recent advancements in spintronics have shown that a class of materials, topological insulators (TI), can be used as a spin-current generator or detector. Topological insulators have protected surface states with the electron's spin locked to its momentum. To access these surface states, (Bi, Sb)2Te3 can be grown by molecular beam epitaxy to have the Fermi energy near the Dirac point so that transport occurs only through the spin-dependent surface states. Graphene is another 2D material of great interest for spintronics because of its very long spin diffusion length. This is an ideal material to act as a spin channel in devices. The van der Waals nature of the growth exhibited by 2D materials such as (Bi, Sb)2Te3 and graphene allows heterostructures to be formed despite the large lattice mismatch. We explore the structure and transport of (Bi, Sb)2Te3 grown on epitaxial graphene on 6H-SiC substrates for spintronic applications. This work was supported in part by C-SPIN and LEAST, two of the six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  17. Charged nano-domes and bubbles in epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Ben Gouider Trabelsi, A.; Kusmartsev, F. V.; Robinson, B. J.; Ouerghi, A.; Kusmartseva, O. E.; Kolosov, O. V.; Mazzocco, R.; Gaifullin, Marat B.; Oueslati, M.

    2014-04-01

    For the first time, new epitaxial graphene nano-structures resembling charged ‘bubbles’ and ‘domes’ are reported. A strong influence, arising from the change in morphology, on the graphene layer’s electronic, mechanical and optical properties has been shown. The morphological properties of these structures have been studied with atomic force microscopy (AFM), ultrasonic force microscopy (UFM) and Raman spectroscopy. After initial optical microscopy observation of the graphene, a detailed description of the surface morphology, via AFM and nanomechanical UFM measurements, was obtained. Here, graphene nano-structures, domes and bubbles, ranging from a few tens of nanometres (150-200 nm) to a few μm in size have been identified. The AFM topographical and UFM stiffness data implied the freestanding nature of the graphene layer within the domes and bubbles, with heights on the order of 5-12 nm. Raman spectroscopy mappings of G and 2D bands and their ratio confirm not only the graphene composition of these structures but also the existence of step bunching, defect variations and the carrier density distribution. In particular, inside the bubbles and substrate there arises complex charge redistribution; in fact, the graphene bubble-substrate interface forms a charged capacitance. We have determined the strength of the electric field inside the bubble-substrate interface, which may lead to a minigap of the order of 5 meV opening for epitaxial graphene grown on 4H-SiC face-terminated carbon.

  18. Charged nano-domes and bubbles in epitaxial graphene.

    PubMed

    Trabelsi, A Ben Gouider; Kusmartsev, F V; Robinson, B J; Ouerghi, A; Kusmartseva, O E; Kolosov, O V; Mazzocco, R; Gaifullin, Marat B; Oueslati, M

    2014-04-25

    For the first time, new epitaxial graphene nano-structures resembling charged 'bubbles' and 'domes' are reported. A strong influence, arising from the change in morphology, on the graphene layer's electronic, mechanical and optical properties has been shown. The morphological properties of these structures have been studied with atomic force microscopy (AFM), ultrasonic force microscopy (UFM) and Raman spectroscopy. After initial optical microscopy observation of the graphene, a detailed description of the surface morphology, via AFM and nanomechanical UFM measurements, was obtained. Here, graphene nano-structures, domes and bubbles, ranging from a few tens of nanometres (150–200 nm) to a few μm in size have been identified. The AFM topographical and UFM stiffness data implied the freestanding nature of the graphene layer within the domes and bubbles, with heights on the order of 5–12 nm. Raman spectroscopy mappings of G and 2D bands and their ratio confirm not only the graphene composition of these structures but also the existence of step bunching, defect variations and the carrier density distribution. In particular, inside the bubbles and substrate there arises complex charge redistribution; in fact, the graphene bubble–substrate interface forms a charged capacitance. We have determined the strength of the electric field inside the bubble–substrate interface, which may lead to a minigap of the order of 5 meV opening for epitaxial graphene grown on 4H-SiC face-terminated carbon. PMID:24675237

  19. Dewetting of Epitaxial Silver Film on Silicon by Thermal Annealing

    NASA Astrophysics Data System (ADS)

    Sanders, Charlotte E.; Kellogg, Gary L.; Shih, C.-K.

    2013-03-01

    It has been shown that noble metals can grow epitaxially on semiconducting and insulating substrates, despite being a non-wetting system: low temperature deposition followed by room temperature annealing leads to atomically flat film morphology. However, the resulting metastable films are vulnerable to dewetting, which has limited their utility for applications under ambient conditions. The physics of this dewetting is of great interest but little explored. We report on an investigation of the dewetting of epitaxial Ag(111) films on Si(111) and (100). Low energy electron microscopy (LEEM) shows intriguing evolution in film morphology and crystallinity, even at temperatures below 100oC. On the basis of these findings, we can begin to draw compelling inferences about film-substrate interaction and the kinetics of dewetting. Financial support is from NSF, DGE-0549417 and DMR-0906025. This work was performed, in part, at the Center for Integrated Nanotechnologies, User Facility operated for the U.S. DOE Office of Science. Sandia National Lab is managed and operated by Sandia Corp., a subsidiary of Lockheed Martin Corp., for the U.S. DOE's National Nuclear Security Administration under DE-AC04-94AL85000.

  20. Molecular Beam Epitaxy of Layered Material Superlattices and Heterostructures

    NASA Astrophysics Data System (ADS)

    Vishwanath, Suresh; Liu, Xinyu; Rouvimov, Sergei; Furdyna, Jacek K.; Jena, Debdeep; Xing, Huili Grace

    2014-03-01

    Stacking of various layered materials is being pursued widely to realize various devices and observe novel physics. Mostly, these have been limited to exfoliation and stacking either manually or in solution, where control on rotational alignment or order of stacking is lost. We have demonstrated molecular beam epitaxy (MBE) growth of Bi2Se3/MoSe2 superlatticeand Bi2Se3/MoSe2/SnSe2 heterostructure on sapphire. We have achieved a better control on the order of stacking and number of layers as compared to the solution technique. We have characterized these structures using RHEED, Raman spectroscopy, XPS, AFM, X-ray reflectometry, cross-section (cs) and in-plane (ip) TEM. The rotational alignment is dictated by thermodynamics and is understood using ip-TEM diffraction patterns. Layered growth and long range order is evident from the streaky RHEED pattern. Abrupt change in RHEED pattern, clear demarcation of boundary between layers seen using cs-TEM and observation of Raman peaks corresponding to all the layers suggest van-der-waals epitaxy. In our knowledge this is a first demonstration of as grown superlattices and heterostuctures involving transition metal dichalcogenides and is an important step towards the goal of stacking of 2D crystals like lego blocks.