Science.gov

Sample records for epithelial cells prime

  1. IL-4 attenuates pulmonary epithelial cell-mediated suppression of T cell priming.

    PubMed

    Albrecht, Melanie; Arnhold, Markus; Lingner, Sandra; Mahapatra, Subhashree; Bruder, Dunja; Hansen, Gesine; Dittrich, Anna-Maria

    2012-01-01

    We have previously shown that Th2-polarized airway inflammation facilitates sensitization towards new, protein antigens. In this context, we could demonstrate that IL-4 needs to act on cells of the hematopoetic and the structural compartment in order to facilitate sensitization towards new antigens. We thus aimed to elucidate possible mechanisms of action of IL-4 on structural cells choosing to analyze pulmonary epithelial cells as an important part of the lung's structural system. We used a co-culture system of DC- or APC-dependent in vitro priming of T cells, co-cultivated on a layer of cells of a murine pulmonary epithelial cell line (LA-4) pretreated with or without IL-4. Effects on T cell priming were analyzed via CFSE-dilution and flow cytometric assessment of activation status. Pulmonary epithelial cells suppressed T cell proliferation in vitro but this effect was attenuated by pre-treatment of the epithelial cells with IL-4. Transwell experiments suggest that epithelial-mediated suppression of T cell activation is mostly cell-contact dependent and leads to attenuation in an early naive T cell phenotype. Secretion of soluble factors like TARC, TSLP, GM-CSF and CCL20 by epithelial cells did not change after IL-4 treatment. However, analysis of co-stimulatory expression on pulmonary epithelial cells revealed that pre-treatment of epithelial cells with IL-4 changed expression GITR-L, suggesting a possible mechanism for the effects observed. Our studies provide new insight into the role of IL-4 during the early phases of pulmonary sensitization: The inhibitory activity of pulmonary epithelial cells in homeostasis is reversed in the presence of IL-4, which is secreted in the context of Th2-dominated allergic airway inflammation. This mechanism might serve to explain facilitated sensitization in the clinical context of polysensitization where due to a pre-existing sensitization increased levels of IL-4 in the airways might facilitate T cell priming towards new

  2. Inflammasome priming increases retinal pigment epithelial cell susceptibility to lipofuscin phototoxicity by changing the cell death mechanism from apoptosis to pyroptosis.

    PubMed

    Brandstetter, Carolina; Patt, Joshua; Holz, Frank G; Krohne, Tim U

    2016-08-01

    Progressive death of retinal pigment epithelium (RPE) cells is a hallmark of age-related macular degeneration (AMD), the leading cause of blindness in all developed countries. Photooxidative damage and activation of the NLRP3 inflammasome have been suggested as contributing factors to this process. We investigated the effects of inflammasome activation on oxidative damage-induced RPE cell death. In primary human RPE cells and ARPE-19 cells, lipofuscin accumulated following incubation with oxidatively modified photoreceptor outer segments. Oxidative stress was induced by blue light irradiation (dominant wavelength: 448nm, irradiance: 0.8mW/cm(2), duration: 3 to 6h) of lipofuscin-loaded cells and resulted in cell death by apoptosis. Prior inflammasome priming by IL-1α or complement activation product C5a altered the cell death mechanism to pyroptosis and resulted in a significant increase of the phototoxic effect. Following IL-1α priming, viability 24h after irradiation was reduced in primary RPE cells and ARPE-19 cells from 65.3% and 56.7% to 22.6% (p=0.003) and 5.1% (p=0.0002), respectively. Inflammasome-mediated IL-1β release occurred only in association with pyroptotic cell lysis. Inflammasome priming by conditioned media of pyroptotic cells likewise increased cell death. Suppression of inflammasome activation by inhibition of caspase-1 or cathepsins B and L significantly reduced cell death in primed cells. In summary, inflammasome priming by IL-1α, C5a, or conditioned media of pyroptotic cells increases RPE cell susceptibility to photooxidative damage-mediated cell death and changes the mechanism of induced cell death from apoptosis to pyroptosis. This process may contribute to RPE degeneration in AMD and provide new targets for intervention. PMID:27240191

  3. Epithelial Cell Adhesion Molecule

    PubMed Central

    Trzpis, Monika; McLaughlin, Pamela M.J.; de Leij, Lou M.F.H.; Harmsen, Martin C.

    2007-01-01

    The epithelial cell adhesion molecule (EpCAM, CD326) is a glycoprotein of ∼40 kd that was originally identified as a marker for carcinoma, attributable to its high expression on rapidly proliferating tumors of epithelial origin. Normal epithelia express EpCAM at a variable but generally lower level than carcinoma cells. In early studies, EpCAM was proposed to be a cell-cell adhesion molecule. However, recent insights revealed a more versatile role for EpCAM that is not limited only to cell adhesion but includes diverse processes such as signaling, cell migration, proliferation, and differentiation. Cell surface expression of EpCAM may actually prevent cell-cell adhesion. Here, we provide a comprehensive review of the current knowledge on EpCAM biology in relation to other cell adhesion molecules. We discuss the implications of the newly identified functions of EpCAM in view of its prognostic relevance in carcinoma, inflammatory pathophysiology, and tissue development and regeneration as well as its role in normal epithelial homeostasis. PMID:17600130

  4. Epithelial stem cells.

    PubMed

    Draheim, Kyle M; Lyle, Stephen

    2011-01-01

    It is likely that adult epithelial stem cells will be useful in the treatment of diseases, such as ectodermal dysplasias, monilethrix, Netherton syndrome, Menkes disease, hereditary epidermolysis bullosa, and alopecias. Additionally, other skin problems such as burn wounds, chronic wounds, and ulcers will benefit from stem cell-related therapies. However, there are many questions that need to be answered before this goal can be realized. The most important of these questions is what regulates the adhesion of stem cells to the niche versus migration to the site of injury. We have started to identify the mechanisms involved in this decision-making process. PMID:21618097

  5. Integrins and epithelial cell polarity

    PubMed Central

    Lee, Jessica L.; Streuli, Charles H.

    2014-01-01

    ABSTRACT Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell–matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical–basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity. For further reading, please see related articles: ‘ERM proteins at a glance’ by Andrea McClatchey (J. Cell Sci. 127, 3199–3204). ‘Establishment of epithelial polarity – GEF who's minding the GAP?’ by Siu Ngok et al. (J. Cell Sci. 127, 3205–3215). PMID:24994933

  6. Ion Channels in Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Palmer, Lawrence G.

    Ion channels in epithelial cells serve to move ions, and in some cases fluid, between compartments of the body. This function of the transfer of material is fundamentally different from that of the transfer of information, which is the main job of most channels in excitable cells. Nevertheless the basic construction of the channels is similar in many respects in the two tissue types. This chapter reviews the nature of channels in epithelia and discusses how their functions have evolved to accomplish the basic tasks for which they are responsible. I will focus on three channel types: epithelial Na+ channels, inward-rectifier K+ channels, and CFTR Cl- channels.

  7. Epithelial Sodium Channels in Pulmonary Epithelial Progenitor and Stem Cells

    PubMed Central

    Liu, Yang; Jiang, Bi-Jie; Zhao, Run-Zhen; Ji, Hong-Long

    2016-01-01

    Regeneration of the epithelium of mammalian lungs is essential for restoring normal function following injury, and various cells and mechanisms contribute to this regeneration and repair. Club cells, bronchioalveolar stem cells (BASCs), and alveolar type II epithelial cells (ATII) are dominant stem/progenitor cells for maintaining epithelial turnover and repair. Epithelial Na+ channels (ENaC), a critical pathway for transapical salt and fluid transport, are expressed in lung epithelial progenitors, including club and ATII cells. Since ENaC activity and expression are development- and differentiation-dependent, apically located ENaC activity has therefore been used as a functional biomarker of lung injury repair. ENaC activity may be involved in the migration and differentiation of local and circulating stem/progenitor cells with diverse functions, eventually benefiting stem cells spreading to re-epithelialize injured lungs. This review summarizes the potential roles of ENaC expressed in native progenitor and stem cells in the development and regeneration of the respiratory epithelium. PMID:27570489

  8. Epithelial cells and Von Gierke's disease.

    PubMed

    Negishi, H; Benke, P J

    1977-08-01

    Epithelial cells and not fibroblasts from human liver and amniotic fluid contain inducible glucose-6-phosphatase (G-6-Pase) activity. The diagnosis of Von Gierke's disease has been made in a patient with hepatomegaly utilizing cultured epithelial cells grown from a liver biopsy. G-6-Pase activity in epithelial cells from this patient could not be induced by dibutyryl cyclic AMP and theophylline. This is the first use of epithelial cells for diagnosis of a metabolic disease. G-6-Pase activity in cloned epithelial cells from amniotic fluid increases 2- to 3-fold after 24-hr exposure to dibutyryl cyclic AMP and theophylline. The prenatal diagnosis of Von Gierke's disease may be possible in a laboratory experienced with these techniques if epithelial cell growth is obtained from amniotic fluid. PMID:196249

  9. Single cell dissection of early kidney development: multilineage priming.

    PubMed

    Brunskill, Eric W; Park, Joo-Seop; Chung, Eunah; Chen, Feng; Magella, Bliss; Potter, S Steven

    2014-08-01

    We used a single cell RNA-seq strategy to create an atlas of gene expression patterns in the developing kidney. At several stages of kidney development, histologically uniform populations of cells give rise to multiple distinct lineages. We performed single cell RNA-seq analysis of total mouse kidneys at E11.5 and E12.5, as well as the renal vesicles at P4. We define an early stage of progenitor cell induction driven primarily by gene repression. Surprising stochastic expression of marker genes associated with differentiated cell types was observed in E11.5 progenitors. We provide a global view of the polarized gene expression already present in the renal vesicle, the first epithelial precursor of the nephron. We show that Hox gene read-through transcripts can be spliced to produce intergenic homeobox swaps. We also identify a surprising number of genes with partially degraded noncoding RNA. Perhaps most interesting, at early developmental times single cells often expressed genes related to several developmental pathways. This provides powerful evidence that initial organogenesis involves a process of multilineage priming. This is followed by a combination of gene repression, which turns off the genes associated with most possible lineages, and the activation of increasing numbers of genes driving the chosen developmental direction. PMID:25053437

  10. Single cell dissection of early kidney development: multilineage priming

    PubMed Central

    Brunskill, Eric W.; Park, Joo-Seop; Chung, Eunah; Chen, Feng; Magella, Bliss; Potter, S. Steven

    2014-01-01

    We used a single cell RNA-seq strategy to create an atlas of gene expression patterns in the developing kidney. At several stages of kidney development, histologically uniform populations of cells give rise to multiple distinct lineages. We performed single cell RNA-seq analysis of total mouse kidneys at E11.5 and E12.5, as well as the renal vesicles at P4. We define an early stage of progenitor cell induction driven primarily by gene repression. Surprising stochastic expression of marker genes associated with differentiated cell types was observed in E11.5 progenitors. We provide a global view of the polarized gene expression already present in the renal vesicle, the first epithelial precursor of the nephron. We show that Hox gene read-through transcripts can be spliced to produce intergenic homeobox swaps. We also identify a surprising number of genes with partially degraded noncoding RNA. Perhaps most interesting, at early developmental times single cells often expressed genes related to several developmental pathways. This provides powerful evidence that initial organogenesis involves a process of multilineage priming. This is followed by a combination of gene repression, which turns off the genes associated with most possible lineages, and the activation of increasing numbers of genes driving the chosen developmental direction. PMID:25053437

  11. Epithelial organization, cell polarity and tumorigenesis.

    PubMed

    McCaffrey, Luke Martin; Macara, Ian G

    2011-12-01

    Epithelial cells comprise the foundation for the majority of organs in the mammalian body, and are the source of approximately 90% of all human cancers. Characteristically, epithelial cells form intercellular adhesions, exhibit apical/basal polarity, and orient their mitotic spindles in the plane of the epithelial sheet. Defects in these attributes result in the tissue disorganization associated with cancer. Epithelia undergo self-renewal from stem cells, which might in some cases be the cell of origin for cancers. The PAR polarity proteins are master regulators of epithelial organization, and are closely linked to signaling pathways such as Hippo, which orchestrate proliferation and apoptosis to control organ size. 3D ex vivo culture systems can now faithfully recapitulate epithelial organ morphogenesis, providing a powerful approach to study both normal development and the initiating events in carcinogenesis. PMID:21782440

  12. Epithelial TRPV1 signaling accelerates gingival epithelial cell proliferation.

    PubMed

    Takahashi, N; Matsuda, Y; Yamada, H; Tabeta, K; Nakajima, T; Murakami, S; Yamazaki, K

    2014-11-01

    Transient receptor potential cation channel subfamily V member 1 (TRPV1), a member of the calcium-permeable thermosensitive transient receptor potential superfamily, is a sensor of thermal and chemical stimuli. TRPV1 is activated by noxious heat (> 43°C), acidic conditions (pH < 6.6), capsaicin, and endovanilloids. This pain receptor was discovered on nociceptive fibers in the peripheral nervous system. TRPV1 was recently found to be expressed by non-neuronal cells, such as epithelial cells. The oral gingival epithelium is exposed to multiple noxious stimuli, including heat and acids derived from endogenous and exogenous substances; however, whether gingival epithelial cells (GECs) express TRPV1 is unknown. We show that both TRPV1 mRNA and protein are expressed by GECs. Capsaicin, a TRPV1 agonist, elevated intracellular Ca(2+) levels in the gingival epithelial cell line, epi 4. Moreover, TRPV1 activation in epi 4 cells accelerated proliferation. These responses to capsaicin were inhibited by a specific TRPV1 antagonist, SB-366791. We also observed GEC proliferation in capsaicin-treated mice in vivo. No effects were observed on GEC apoptosis by epithelial TRPV1 signaling. To examine the molecular mechanisms underlying this proliferative effect, we performed complementary (c)DNA microarray analysis of capsaicin-stimulated epi 4 cells. Compared with control conditions, 227 genes were up-regulated and 232 genes were down-regulated following capsaicin stimulation. Several proliferation-related genes were validated by independent experiments. Among them, fibroblast growth factor-17 and neuregulin 2 were significantly up-regulated in capsaicin-treated epi 4 cells. Our results suggest that functional TRPV1 is expressed by GECs and contributes to the regulation of cell proliferation. PMID:25266715

  13. Symmetry breaking mechanism for epithelial cell polarization

    NASA Astrophysics Data System (ADS)

    Veglio, A.; Gamba, A.; Nicodemi, M.; Bussolino, F.; Serini, G.

    2009-09-01

    In multicellular organisms, epithelial cells form layers separating compartments responsible for different physiological functions. At the early stage of epithelial layer formation, each cell of an aggregate defines an inner and an outer side by breaking the symmetry of its initial state, in a process known as epithelial polarization. By integrating recent biochemical and biophysical data with stochastic simulations of the relevant reaction-diffusion system, we provide evidence that epithelial cell polarization is a chemical phase-separation process induced by a local bistability in the signaling network at the level of the cell membrane. The early symmetry breaking event triggering phase separation is induced by adhesion-dependent mechanical forces localized in the point of convergence of cell surfaces when a threshold number of confluent cells is reached. The generality of the emerging phase-separation scenario is likely common to many processes of cell polarity formation.

  14. Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-β

    PubMed Central

    Zeuthen, Louise Hjerrild; Fink, Lisbeth Nielsen; Frokiaer, Hanne

    2008-01-01

    Humans and other mammals coexist with a diverse array of microbes colonizing the intestine, termed the microflora. The relationship is symbiotic, with the microbes benefiting from a stable environment and nutrient supply, and the host gaining competitive exclusion of pathogens and continuously maintenance of the gut immune homeostasis. Here we report novel crosstalk mechanisms between the human enterocyte cell line, Caco2, and underlying human monocyte-derived DC in a transwell model where Gram-positive (G+) commensals prevent Toll-like receptor-4 (TLR4)-dependent Escherichia coli-induced semimaturation in a TLR2-dependent fashion. These findings add to our understanding of the hypo-responsiveness of the gut epithelium towards the microflora. Gut DC posses a more tolerogenic phenotype than conventional DC. Here we show that Caco2 spent medium (SM) induces tolerogenic DC with lower expression of maturation markers, interleukin (IL)-12p70, and tumour necrosis factor-α when matured with G+ and Gram-negative (G–) commensals, while IL-10 production is enhanced in DC upon encountering G+ commensals and reduced upon encountering G– bacteria. The Caco2 SM-induced tolerogenic phenotype is also seen in DC priming of naive T cells with elevated levels of transforming growth factor-β (TGF-β) and markedly reduced levels of bacteria-induced interferon-γ production. Caco2 cell production of IL-8, thymic stromal lymphopoietin (TSLP) and TGF-β increases upon microbial stimulation in a strain dependent manner. TSLP and TGF-β co-operate in inducing the tolerogenic DC phenotype but other mediators might be involved. PMID:17655740

  15. Airway epithelial cell responses to ozone injury

    SciTech Connect

    Leikauf, G.D.; Simpson, L.G.; Zhao, Qiyu

    1995-03-01

    The airway epithelial cell is an important target in ozone injury. Once activated, the airway epithelium responds in three phases. The initial, or immediate phase, involves activation of constitutive cells, often through direct covalent interactions including the formation of secondary ozonolysis products-hydroxyhydroperoxides, aldehydes, and hydrogen peroxide. Recently, we found hydroxyhydroperoxides to be potent agonists; of bioactive eicosanoid formation by human airway epithelial cells in culture. Other probable immediate events include activation and inactivation of enzymes present on the epithelial surface (e.g., neutral endopeptidase). During the next 2 to 24 hr, or early phase, epithelial cells respond by synthesis and release of chemotactic factors, including chemokines-macrophage inflammatory protein-2, RANTES, and interleukin-8. Infiltrating leukocytes during this period also release elastase, an important agonist of epithelial cell mucus secretion and additional chemokine formation. The third (late) phase of ozone injury is characterized by eosinophil or monocyte infiltration. Cytokine expression leads to alteration of structural protein synthesis, with increases in fibronectin evident by in situ hybridization. Synthesis of epithelial antiproteases, e.g., secretary leukocyte protease inhibitor, may also increase locally 24 to 48 hr after elastase concentrations become excessive. Thus, the epithelium is not merely a passive barrier to ozone injury but has a dynamic role in directing the migration, activating, and then counteracting inflammatory cells. Through these complex interactions, epithelial cells can be viewed as the initiators (alpha) and the receptors (omega) of ozone-induced airway disease. 51 refs., 2 figs., 3 tabs.

  16. H-2 restriction as a consequence of intentional priming: T cells of fully allogeneic chimeric mice as well as of normal mice respond to foreign antigens in the context of H-2 determinants not encountered on thymic epithelial cells.

    PubMed

    Stockinger, H; Pfizenmaier, K; Hardt, C; Rodt, H; Röllinghoff, M; Wagner, H

    1980-12-01

    Fully allogeneic chimeras were able to develop in vitro alloantigen-specific, as well as H-2-restricted, Sendai virus-specific cytotoxic T-lymphocyte (CTL) response. Depending on the immunization regimen used, Sendai virus-specific CTL responses were restricted to the H-2 antigens of either the stem cell donor or the thymus. Similarly, unprimed splenic T cells of normal mice were found to contain CTL-precursor cells that specifically reacted against Sendai virus or trinitrophenyl derivatives in the context of allogeneic major histocompatibility complex determinants that had not been encountered during their thymic differentiation. A frequency analysis of allogeneically versus syngeneically restricted virus-specific CTL precursors present in splenic T cells showed a ratio of about 1 to 6. These results provide evidence that H-2 restriction of trinitrophenyl- or Sendai virus-specific T cells is dictated by the complex type of the antigen-presenting cell and thus appears to be independent of the type of thymus in which the T cells have undergone maturation. PMID:6261255

  17. Cell Division Drives Epithelial Cell Rearrangements during Gastrulation in Chick.

    PubMed

    Firmino, Joao; Rocancourt, Didier; Saadaoui, Mehdi; Moreau, Chloe; Gros, Jerome

    2016-02-01

    During early embryonic development, cells are organized as cohesive epithelial sheets that are continuously growing and remodeled without losing their integrity, giving rise to a wide array of tissue shapes. Here, using live imaging in chick embryo, we investigate how epithelial cells rearrange during gastrulation. We find that cell division is a major rearrangement driver that powers dramatic epithelial cell intercalation events. We show that these cell division-mediated intercalations, which represent the majority of epithelial rearrangements within the early embryo, are absolutely necessary for the spatial patterning of gastrulation movements. Furthermore, we demonstrate that these intercalation events result from overall low cortical actomyosin accumulation within the epithelial cells of the embryo, which enables dividing cells to remodel junctions in their vicinity. These findings uncover a role for cell division as coordinator of epithelial growth and remodeling that might underlie various developmental, homeostatic, or pathological processes in amniotes. PMID:26859350

  18. Odontogenic epithelial stem cells: hidden sources.

    PubMed

    Padma Priya, Sivan; Higuchi, Akon; Abu Fanas, Salem; Pooi Ling, Mok; Kumari Neela, Vasantha; Sunil, P M; Saraswathi, T R; Murugan, Kadarkarai; Alarfaj, Abdullah A; Munusamy, Murugan A; Kumar, Suresh

    2015-12-01

    The ultimate goal of dental stem cell research is to construct a bioengineered tooth. Tooth formation occurs based on the well-organized reciprocal interaction of epithelial and mesenchymal cells. The dental mesenchymal stem cells are the best explored, but because the human odontogenic epithelium is lost after the completion of enamel formation, studies on these cells are scarce. The successful creation of a bioengineered tooth is achievable only when the odontogenic epithelium is reconstructed to produce a replica of natural enamel. This article discusses the untapped sources of odontogenic epithelial stem cells in humans, such as those present in the active dental lamina in postnatal life, in remnants of dental lamina (the gubernaculum cord), in the epithelial cell rests of Malassez, and in reduced enamel epithelium. The possible uses of these stem cells in regenerative medicine, not just for enamel formation, are discussed. PMID:26367485

  19. Induced pluripotency of human prostatic epithelial cells.

    PubMed

    Zhao, Hongjuan; Sun, Ning; Young, Sarah R; Nolley, Rosalie; Santos, Jennifer; Wu, Joseph C; Peehl, Donna M

    2013-01-01

    Induced pluripotent stem (iPS) cells are a valuable resource for discovery of epigenetic changes critical to cell type-specific differentiation. Although iPS cells have been generated from other terminally differentiated cells, the reprogramming of normal adult human basal prostatic epithelial (E-PZ) cells to a pluripotent state has not been reported. Here, we attempted to reprogram E-PZ cells by forced expression of Oct4, Sox2, c-Myc, and Klf4 using lentiviral vectors and obtained embryonic stem cell (ESC)-like colonies at a frequency of 0.01%. These E-PZ-iPS-like cells with normal karyotype gained expression of pluripotent genes typical of iPS cells (Tra-1-81, SSEA-3, Nanog, Sox2, and Oct4) and lost gene expression characteristic of basal prostatic epithelial cells (CK5, CK14, and p63). E-PZ-iPS-like cells demonstrated pluripotency by differentiating into ectodermal, mesodermal, and endodermal cells in vitro, although lack of teratoma formation in vivo and incomplete demethylation of pluripotency genes suggested only partial reprogramming. Importantly, E-PZ-iPS-like cells re-expressed basal epithelial cell markers (CD44, p63, MAO-A) in response to prostate-specific medium in spheroid culture. Androgen induced expression of androgen receptor (AR), and co-culture with rat urogenital sinus further induced expression of prostate-specific antigen (PSA), a hallmark of secretory cells, suggesting that E-PZ-iPS-like cells have the capacity to differentiate into prostatic basal and secretory epithelial cells. Finally, when injected into mice, E-PZ-iPS-like cells expressed basal epithelial cell markers including CD44 and p63. When co-injected with rat urogenital mesenchyme, E-PZ-iPS-like cells expressed AR and expression of p63 and CD44 was repressed. DNA methylation profiling identified epigenetic changes in key pathways and genes involved in prostatic differentiation as E-PZ-iPS-like cells converted to differentiated AR- and PSA-expressing cells. Our results suggest that

  20. Epithelial Cell Shedding and Barrier Function

    PubMed Central

    Williams, J. M.; Duckworth, C. A.; Burkitt, M. D.; Watson, A. J. M.; Campbell, B. J.

    2015-01-01

    The intestinal epithelium is a critical component of the gut barrier. Composed of a single layer of intestinal epithelial cells (IECs) held together by tight junctions, this delicate structure prevents the transfer of harmful microorganisms, antigens, and toxins from the gut lumen into the circulation. The equilibrium between the rate of apoptosis and shedding of senescent epithelial cells at the villus tip, and the generation of new cells in the crypt, is key to maintaining tissue homeostasis. However, in both localized and systemic inflammation, this balance may be disturbed as a result of pathological IEC shedding. Shedding of IECs from the epithelial monolayer may cause transient gaps or microerosions in the epithelial barrier, resulting in increased intestinal permeability. Although pathological IEC shedding has been observed in mouse models of inflammation and human intestinal conditions such as inflammatory bowel disease, understanding of the underlying mechanisms remains limited. This process may also be an important contributor to systemic and intestinal inflammatory diseases and gut barrier dysfunction in domestic animal species. This review aims to summarize current knowledge about intestinal epithelial cell shedding, its significance in gut barrier dysfunction and host-microbial interactions, and where research in this field is directed. PMID:25428410

  1. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    EPA Science Inventory

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  2. Epithelial Cell Regulation of Allergic Diseases.

    PubMed

    Gour, Naina; Lajoie, Stephane

    2016-09-01

    Allergic diseases, which have escalated in prevalence in recent years, arise as a result of maladaptive immune responses to ubiquitous environmental stimuli. Why only certain individuals mount inappropriate type 2 immune responses to these otherwise harmless allergens has remained an unanswered question. Mounting evidence suggests that the epithelium, by sensing its environment, is the central regulator of allergic diseases. Once considered to be a passive barrier to allergens, epithelial cells at mucosal surfaces are now considered to be the cornerstone of the allergic diathesis. Beyond their function as maintaining barrier at mucosal surfaces, mucosal epithelial cells through the secretion of mediators like IL-25, IL-33, and TSLP control the fate of downstream allergic immune responses. In this review, we will discuss the advances in recent years regarding the process of allergen recognition and secretion of soluble mediators by epithelial cells that shape the development of the allergic response. PMID:27534656

  3. Innate lymphoid cells regulate intestinal epithelial cell glycosylation.

    PubMed

    Goto, Yoshiyuki; Obata, Takashi; Kunisawa, Jun; Sato, Shintaro; Ivanov, Ivaylo I; Lamichhane, Aayam; Takeyama, Natsumi; Kamioka, Mariko; Sakamoto, Mitsuo; Matsuki, Takahiro; Setoyama, Hiromi; Imaoka, Akemi; Uematsu, Satoshi; Akira, Shizuo; Domino, Steven E; Kulig, Paulina; Becher, Burkhard; Renauld, Jean-Christophe; Sasakawa, Chihiro; Umesaki, Yoshinori; Benno, Yoshimi; Kiyono, Hiroshi

    2014-09-12

    Fucosylation of intestinal epithelial cells, catalyzed by fucosyltransferase 2 (Fut2), is a major glycosylation mechanism of host-microbiota symbiosis. Commensal bacteria induce epithelial fucosylation, and epithelial fucose is used as a dietary carbohydrate by many of these bacteria. However, the molecular and cellular mechanisms that regulate the induction of epithelial fucosylation are unknown. Here, we show that type 3 innate lymphoid cells (ILC3) induced intestinal epithelial Fut2 expression and fucosylation in mice. This induction required the cytokines interleukin-22 and lymphotoxin in a commensal bacteria-dependent and -independent manner, respectively. Disruption of intestinal fucosylation led to increased susceptibility to infection by Salmonella typhimurium. Our data reveal a role for ILC3 in shaping the gut microenvironment through the regulation of epithelial glycosylation. PMID:25214634

  4. Epithelial immunization induces polyfunctional CD8+ T cells and optimal mousepox protection.

    PubMed

    Hersperger, Adam R; Siciliano, Nicholas A; DeHaven, Brian C; Snook, Adam E; Eisenlohr, Laurence C

    2014-08-01

    We assessed several routes of immunization with vaccinia virus (VACV) in protecting mice against ectromelia virus (ECTV). By a wide margin, skin scarification provided the greatest protection. Humoral immunity and resident-memory T cells notwithstanding, several approaches revealed that circulating, memory CD8(+) T cells primed via scarification were functionally superior and conferred enhanced virus control. Immunization via the epithelial route warrants further investigation, as it may also provide enhanced defense against other infectious agents. PMID:24899206

  5. Protons Sensitize Epithelial Cells to Mesenchymal Transition

    PubMed Central

    Wang, Minli; Hada, Megumi; Saha, Janapriya; Sridharan, Deepa M.; Pluth, Janice M.; Cucinotta, Francis A.

    2012-01-01

    Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1. PMID:22844446

  6. Respiratory epithelial cells orchestrate pulmonary innate immunity.

    PubMed

    Whitsett, Jeffrey A; Alenghat, Theresa

    2015-01-01

    The epithelial surfaces of the lungs are in direct contact with the environment and are subjected to dynamic physical forces as airway tubes and alveoli are stretched and compressed during ventilation. Mucociliary clearance in conducting airways, reduction of surface tension in the alveoli, and maintenance of near sterility have been accommodated by the evolution of a multi-tiered innate host-defense system. The biophysical nature of pulmonary host defenses are integrated with the ability of respiratory epithelial cells to respond to and 'instruct' the professional immune system to protect the lungs from infection and injury. PMID:25521682

  7. Esophageal epithelial cells acquire functional characteristics of activated myofibroblasts after undergoing an epithelial to mesenchymal transition

    PubMed Central

    Muir, Amanda B.; Dods, Kara; Noah, Yuli; Toltzis, Sarit; Chandramouleeswaran, Prasanna Modayur; Lee, Anna; Benitez, Alain; Bedenbaugh, Adam; Falk, Gary W.; Wells, Rebecca G.; Nakagawa, Hiroshi; Wang, Mei-Lun

    2015-01-01

    Background and Aims Eosinophilic esophagitis (EoE) is an allergic inflammatory disease that leads to esophageal fibrosis and stricture. We have recently shown that in EoE, esophageal epithelial cells undergo an epithelial to mesenchymal transition (EMT), characterized by gain of mesenchymal markers and loss of epithelial gene expression. Whether epithelial cells exposed to profibrotic cytokines can also acquire the functional characteristics of activated myofibroblasts, including migration, contraction, and extracellular matrix deposition, is relevant to our understanding and treatment of EoE-associated fibrogenesis. In the current study, we characterize cell migration, contraction, and collagen production by esophageal epithelial cells that have undergone cytokine-induced EMT in vitro. Methods and Results Stimulation of human non-transformed immortalized esophageal epithelial cells (EPC2-hTERT) with profibrotic cytokines TNFα, TGFβ, and IL1β for three weeks led to acquisition of mesenchymal αSMA and vimentin, and loss of epithelial E-cadherin expression. Upon removal of the profibrotic stimulus, epithelial characteristics were partially rescued. TGFβ stimulation had a robust effect upon epithelial collagen production. Surprisingly, TNFα stimulation had the most potent effect upon cell migration and contraction, exceeding the effects of the prototypical profibrotic cytokine TGFβ. IL1β stimulation alone had minimal effect upon esophageal epithelial migration, contraction, and collagen production. Conclusions Esophageal epithelial cells that have undergone EMT acquire functional characteristics of activated myofibroblasts in vitro. Profibrotic cytokines exert differential effects upon esophageal epithelial cells, underscoring complexities of fibrogenesis in EoE, and implicating esophageal epithelial cells as effector cells in EoE-associated fibrogenesis. PMID:25183431

  8. EDAC: Epithelial defence against cancer-cell competition between normal and transformed epithelial cells in mammals.

    PubMed

    Kajita, Mihoko; Fujita, Yasuyuki

    2015-07-01

    During embryonic development or under certain pathological conditions, viable but suboptimal cells are often eliminated from the cellular society through a process termed cell competition. Cell competition was originally identified in Drosophila where cells with different properties compete for survival; 'loser' cells are eliminated from tissues and consequently 'winner' cells become dominant. Recent studies have shown that cell competition also occurs in mammals. While apoptotic cell death is the major fate for losers in Drosophila, outcompeted cells show more variable phenotypes in mammals, such as cell death-independent apical extrusion and cellular senescence. Molecular mechanisms underlying these processes have been recently revealed. Especially, in epithelial tissues, normal cells sense and actively eliminate the neighbouring transformed cells via cytoskeletal proteins by the process named epithelial defence against cancer (EDAC). Here, we introduce this newly emerging research field: cell competition in mammals. PMID:25991731

  9. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    SciTech Connect

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  10. DNA typing of epithelial cells after strangulation.

    PubMed

    Wiegand, P; Kleiber, M

    1997-01-01

    DNA typing was carried out on epithelial cells which were transferred from the hands of the suspect onto the neck of the victim. In an experimental study 16 suspect-victim combinations were investigated for estimating the typing success. Alternatively to an attack against the neck, the upper arm was used for "strangulation". PCR typing was carried out using the short tandem repeat systems (STRs) HumCD4, HumVWF31A (VWA) and Hum-FIBRA (FGA) and the success rate was > 70% for all 3 systems. In most of the cases mixed patterns containing the phenotype of the suspect and the victim were obtained. In a case where strangulation was the cause of death, epithelial cells could be removed from the neck of the victim. The DNA pattern of the suspect could be successfully amplified using four STRs, demonstrating the applicability of this approach for practical casework. PMID:9274940

  11. Control of local immunity by airway epithelial cells.

    PubMed

    Weitnauer, M; Mijošek, V; Dalpke, A H

    2016-03-01

    The lung is ventilated by thousand liters of air per day. Inevitably, the respiratory system comes into contact with airborne microbial compounds, most of them harmless contaminants. Airway epithelial cells are known to have innate sensor functions, thus being able to detect microbial danger. To avoid chronic inflammation, the pulmonary system has developed specific means to control local immune responses. Even though airway epithelial cells can act as proinflammatory promoters, we propose that under homeostatic conditions airway epithelial cells are important modulators of immune responses in the lung. In this review, we discuss epithelial cell regulatory functions that control reactivity of professional immune cells within the microenvironment of the airways and how these mechanisms are altered in pulmonary diseases. Regulation by epithelial cells can be divided into two mechanisms: (1) mediators regulate epithelial cells' innate sensitivity in cis and (2) factors are produced that limit reactivity of immune cells in trans. PMID:26627458

  12. Generation of Mouse Lung Epithelial Cells

    PubMed Central

    Kasinski, Andrea L.; Slack, Frank J.

    2016-01-01

    Although in vivo models are excellent for assessing various facets of whole organism physiology, pathology, and overall response to treatments, evaluating basic cellular functions, and molecular events in mammalian model systems is challenging. It is therefore advantageous to perform these studies in a refined and less costly setting. One approach involves utilizing cells derived from the model under evaluation. The approach to generate such cells varies based on the cell of origin and often the genetics of the cell. Here we describe the steps involved in generating epithelial cells from the lungs of KrasLSL-G12D/+; p53LSL-R172/+ mice (Kasinski and Slack, 2012). These mice develop aggressive lung adenocarcinoma following cre-recombinase dependent removal of a stop cassette in the transgenes and subsequent expression of Kra-G12D and p53R172. While this protocol may be useful for the generation of epithelial lines from other genetic backgrounds, it should be noted that the Kras; p53 cell line generated here is capable of proliferating in culture without any additional genetic manipulation that is often needed for less aggressive backgrounds.

  13. Transcriptional Landscape of Glomerular Parietal Epithelial Cells

    PubMed Central

    Gharib, Sina A.; Pippin, Jeffrey W.; Ohse, Takamoto; Pickering, Scott G.; Krofft, Ronald D.; Shankland, Stuart J.

    2014-01-01

    Very little is known about the function of glomerular parietal epithelial cells (PECs). In this study, we performed genome-wide expression analysis on PEC-enriched capsulated vs. PEC-deprived decapsulated rat glomeruli to determine the transcriptional state of PECs under normal conditions. We identified hundreds of differentially expressed genes that mapped to distinct biologic modules including development, tight junction, ion transport, and metabolic processes. Since developmental programs were highly enriched in PECs, we characterized several of their candidate members at the protein level. Collectively, our findings confirm that PECs are multifaceted cells and help define their diverse functional repertoire. PMID:25127402

  14. Intestinal stem cells and epithelial-mesenchymal interactions in the crypt and stem cell niche

    PubMed Central

    Shaker, Anisa; Rubin, Deborah C.

    2010-01-01

    The intestinal epithelium contains a rapidly proliferating and perpetually differentiating epithelium. The principal functional unit of the small intestine is the crypt-villus axis. Stem cells located in the crypts of Lieberkühn give rise to proliferating progenitor or transit amplifying cells that differentiate into the four major epithelial cell types. The study of adult gastrointestinal tract stem cells has progressed rapidly with the recent discovery of a number of putative stem cell markers. Substantial evidence suggests that there are two populations of stem cells: long-term quiescent (reserved) and actively cycling (primed) stem cells. These are in adjoining locations and are presumably maintained by the secretion of specific proteins generated in a unique microenvironment or stem cell niche surrounding each population. The relationship between these two populations, and the cellular sources and composition of the surrounding environment remains to be defined, and is an active area of research. In this review we will outline progress in identifying stem cells and defining epithelial-mesenchymal interactions in the crypt. We will summarize early advances using stem cells for therapy of gastrointestinal disorders. PMID:20801415

  15. Formation of a Neurosensory Organ by Epithelial Cell Slithering.

    PubMed

    Kuo, Christin S; Krasnow, Mark A

    2015-10-01

    Epithelial cells are normally stably anchored, maintaining their relative positions and association with the basement membrane. Developmental rearrangements occur through cell intercalation, and cells can delaminate during epithelial-mesenchymal transitions and metastasis. We mapped the formation of lung neuroepithelial bodies (NEBs), innervated clusters of neuroendocrine/neurosensory cells within the bronchial epithelium, revealing a targeted mode of cell migration that we named "slithering," in which cells transiently lose epithelial character but remain associated with the membrane while traversing neighboring epithelial cells to reach cluster sites. Immunostaining, lineage tracing, clonal analysis, and live imaging showed that NEB progenitors, initially distributed randomly, downregulate adhesion and polarity proteins, crawling over and between neighboring cells to converge at diametrically opposed positions at bronchial branchpoints, where they reestablish epithelial structure and express neuroendocrine genes. There is little accompanying progenitor proliferation or apoptosis. Activation of the slithering program may explain why lung cancers arising from neuroendocrine cells are highly metastatic. PMID:26435104

  16. Ouabain modulates ciliogenesis in epithelial cells

    PubMed Central

    Larre, Isabel; Castillo, Aida; Flores-Maldonado, Catalina; Contreras, Ruben G.; Galvan, Ivan; Muñoz-Estrada, Jesus; Cereijido, Marcelino

    2011-01-01

    The exchange of substances between higher organisms and the environment occurs across transporting epithelia whose basic features are tight junctions (TJs) that seal the intercellular space, and polarity, which enables cells to transport substances vectorially. In a previous study, we demonstrated that 10 nM ouabain modulates TJs, and we now show that it controls polarity as well. We gauge polarity through the development of a cilium at the apical domain of Madin-Darby canine kidney cells (MDCK, epithelial dog kidney). Ouabain accelerates ciliogenesis in an ERK1/2-dependent manner. Claudin-2, a molecule responsible for the Na+ and H2O permeability of the TJs, is also present at the cilium, as it colocalizes and coprecipitates with acetylated α-tubulin. Ouabain modulates claudin-2 localization at the cilium through ERK1/2. Comparing wild-type and ouabain-resistant MDCK cells, we show that ouabain acts through Na+,K+-ATPase. Taken together, our previous and present results support the possibility that ouabain constitutes a hormone that modulates the transporting epithelial phenotype, thereby playing a crucial role in metazoan life. PMID:22143774

  17. Is the inflammasome relevant for epithelial cell function?

    PubMed

    Santana, Patricia T; Martel, Jan; Lai, Hsin-Chih; Perfettini, Jean-Luc; Kanellopoulos, Jean M; Young, John D; Coutinho-Silva, Robson; Ojcius, David M

    2016-02-01

    Inflammasomes are intracellular protein complexes that sense microbial components and damage of infected cells. Following activation by molecules released by pathogens or injured cells, inflammasomes activate caspase-1, allowing secretion of the pro-inflammatory cytokines IL-1β and IL-18 from innate immune cells. Inflammasomes are also expressed in epithelial cells, where their function has attracted less attention. Nonetheless, depending on the tissue, epithelial inflammasomes can mediate inflammation, wound healing, and pain sensitivity. We review here recent findings on inflammasomes found in epithelial tissues, highlighting the importance of these protein complexes in the response of epithelial tissues to microbial infections. PMID:26546965

  18. Differential deposition of fibronectin by asthmatic bronchial epithelial cells.

    PubMed

    Ge, Qi; Zeng, Qingxiang; Tjin, Gavin; Lau, Edmund; Black, Judith L; Oliver, Brian G G; Burgess, Janette K

    2015-11-15

    Altered ECM protein deposition is a feature in asthmatic airways. Fibronectin (Fn), an ECM protein produced by human bronchial epithelial cells (HBECs), is increased in asthmatic airways. This study investigated the regulation of Fn production in asthmatic or nonasthmatic HBECs and whether Fn modulated HBEC proliferation and inflammatory mediator secretion. The signaling pathways underlying transforming growth factor (TGF)-β1-regulated Fn production were examined using specific inhibitors for ERK, JNK, p38 MAPK, phosphatidylinositol 3 kinase, and activin-like kinase 5 (ALK5). Asthmatic HBECs deposited higher levels of Fn in the ECM than nonasthmatic cells under basal conditions, whereas cells from the two groups had similar levels of Fn mRNA and soluble Fn. TGF-β1 increased mRNA levels and ECM and soluble forms of Fn but decreased cell proliferation in both cells. The rate of increase in Fn mRNA was higher in nonasthmatic cells. However, the excessive amounts of ECM Fn deposited by asthmatic cells after TGF-β1 stimulation persisted compared with nonasthmatic cells. Inhibition of ALK5 completely prevented TGF-β1-induced Fn deposition. Importantly, ECM Fn increased HBEC proliferation and IL-6 release, decreased PGE2 secretion, but had no effect on VEGF release. Soluble Fn had no effect on cell proliferation and inflammatory mediator release. Asthmatic HBECs are intrinsically primed to produce more ECM Fn, which when deposited into the ECM, is capable of driving remodeling and inflammation. The increased airway Fn may be one of the key driving factors in the persistence of asthma and represents a novel, therapeutic target. PMID:26342086

  19. Coevolution of neoplastic epithelial cells and multilineage stroma via polyploid giant cells during immortalization and transformation of mullerian epithelial cells

    PubMed Central

    Zhang, Shiwu; Mercado-Uribe, Imelda; Sood, Anil; Bast, Robert C.; Liu, Jinsong

    2016-01-01

    Stromal cells are generally considered to be derived primarily from the host's normal mesenchymal stromal cells or bone marrow. However, the origins of stromal cells have been quite controversial. To determine the role of polyploidy in tumor development, we examined the fate of normal mullerian epithelial cells during the immortalization and transformation process by tracing the expression of SV40 large T antigen. Here we show that immortalized or HRAS-transformed mullerian epithelial cells contain a subpopulation of polyploid giant cells that grow as multicellular spheroids expressing hematopoietic markers in response to treatment with CoCl2. The immortalized or transformed epithelial cells can transdifferentiate into stromal cells when transplanted into nude mice. Immunofluorescent staining revealed expression of stem cell factors OCT4, Nanog, and SOX-2 in spheroid, whereas expression of embryonic stem cell marker SSEA1 was increased in HRAS-transformed cells compared with their immortalized isogenic counterparts. These results suggest that normal mullerian epithelial cells are intrinsically highly plastic, via the formation of polyploid giant cells and activation of embryonic stem-like program, which work together to promote the coevolution of neoplastic epithelial cells and multiple lineage stromal cells. PMID:27382431

  20. Establishment of Hertwig's epithelial root sheath/epithelial rests of Malassez cell line from human periodontium.

    PubMed

    Nam, Hyun; Kim, Ji-Hye; Kim, Jae-Won; Seo, Byoung-Moo; Park, Joo-Cheol; Kim, Jung-Wook; Lee, Gene

    2014-07-01

    Human Hertwig's epithelial root sheath/epithelial rests of Malassez (HERS/ERM) cells are epithelial remnants of teeth residing in the periodontium. Although the functional roles of HERS/ERM cells have yet to be elucidated, they are a unique epithelial cell population in adult teeth and are reported to have stem cell characteristics. Therefore, HERS/ERM cells might play a role as an epithelial component for the repair or regeneration of dental hard tissues; however, they are very rare population in periodontium and the primary isolation of them is considered to be difficult. To overcome these problems, we immortalized primary HERS/ERM cells isolated from human periodontium using SV40 large T antigen (SV40 LT) and performed a characterization of the immortalized cell line. Primary HERS/ERM cells could not be maintained for more than 6 passages; however, immortalized HERS/ERM cells were maintained for more than 20 passages. There were no differences in the morphological and immunophenotypic characteristics of HERS/ERM cells and immortalized HERS/ERM cells. The expression of epithelial stem cell and embryonic stem cell markers was maintained in immortalized HERS/ERM cells. Moreover, immortalized HERS/ERM cells could acquire mesenchymal phenotypes through the epithelial-mesenchymal transition via TGF-β1. In conclusion, we established an immortalized human HERS/ERM cell line with SV40 LT and expect this cell line to contribute to the understanding of the functional roles of HERS/ERM cells and the tissue engineering of teeth. PMID:25081036

  1. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    SciTech Connect

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  2. Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation

    PubMed Central

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2016-01-01

    Summary Cellular senescence suppresses cancer by arresting cells at risk of malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation and branching morphogenesis. Furthermore, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts – the ability to alter epithelial differentiation – that might also explain the loss of tissue function and organization that is a hallmark of aging. PMID:15657080

  3. Henipavirus Pathogenesis in Human Respiratory Epithelial Cells

    PubMed Central

    Escaffre, Olivier; Borisevich, Viktoriya; Carmical, J. Russ; Prusak, Deborah; Prescott, Joseph; Feldmann, Heinz

    2013-01-01

    Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection. PMID:23302882

  4. Henipavirus pathogenesis in human respiratory epithelial cells.

    PubMed

    Escaffre, Olivier; Borisevich, Viktoriya; Carmical, J Russ; Prusak, Deborah; Prescott, Joseph; Feldmann, Heinz; Rockx, Barry

    2013-03-01

    Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection. PMID:23302882

  5. Nuclear microscopy of rat colon epithelial cells

    NASA Astrophysics Data System (ADS)

    Ren, M.; Rajendran, Reshmi; Ng, Mary; Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank; Jenner, Andrew Michael

    2011-10-01

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  6. Regulation of intestinal epithelial cells transcriptome by enteric glial cells: impact on intestinal epithelial barrier functions

    PubMed Central

    2009-01-01

    Background Emerging evidences suggest that enteric glial cells (EGC), a major constituent of the enteric nervous system (ENS), are key regulators of intestinal epithelial barrier (IEB) functions. Indeed EGC inhibit intestinal epithelial cells (IEC) proliferation and increase IEB paracellular permeability. However, the role of EGC on other important barrier functions and the signalling pathways involved in their effects are currently unknown. To achieve this goal, we aimed at identifying the impact of EGC upon IEC transcriptome by performing microarray studies. Results EGC induced significant changes in gene expression profiling of proliferating IEC after 24 hours of co-culture. 116 genes were identified as differentially expressed (70 up-regulated and 46 down-regulated) in IEC cultured with EGC compared to IEC cultured alone. By performing functional analysis of the 116 identified genes using Ingenuity Pathway Analysis, we showed that EGC induced a significant regulation of genes favoring both cell-to-cell and cell-to-matrix adhesion as well as cell differentiation. Consistently, functional studies showed that EGC induced a significant increase in cell adhesion. EGC also regulated genes involved in cell motility towards an enhancement of cell motility. In addition, EGC profoundly modulated expression of genes involved in cell proliferation and cell survival, although no clear functional trend could be identified. Finally, important genes involved in lipid and protein metabolism of epithelial cells were shown to be differentially regulated by EGC. Conclusion This study reinforces the emerging concept that EGC have major protective effects upon the IEB. EGC have a profound impact upon IEC transcriptome and induce a shift in IEC phenotype towards increased cell adhesion and cell differentiation. This concept needs to be further validated under both physiological and pathophysiological conditions. PMID:19883504

  7. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells

    PubMed Central

    Celià-Terrassa, Toni; Meca-Cortés, Óscar; Mateo, Francesca; Martínez de Paz, Alexia; Rubio, Nuria; Arnal-Estapé, Anna; Ell, Brian J.; Bermudo, Raquel; Díaz, Alba; Guerra-Rebollo, Marta; Lozano, Juan José; Estarás, Conchi; Ulloa, Catalina; ρlvarez-Simón, Daniel; Milà, Jordi; Vilella, Ramón; Paciucci, Rosanna; Martínez-Balbás, Marian; García de Herreros, Antonio; Gomis, Roger R.; Kang, Yibin; Blanco, Jerónimo; Fernández, Pedro L.; Thomson, Timothy M.

    2012-01-01

    Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs. PMID:22505459

  8. Documentation of angiotensin II receptors in glomerular epithelial cells

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial

  9. Applications of mouse airway epithelial cell culture for asthma research.

    PubMed

    Horani, Amjad; Dickinson, John D; Brody, Steven L

    2013-01-01

    Primary airway epithelial cell culture provides a valuable tool for studying cell differentiation, cell-cell interactions, and the role of immune system factors in asthma pathogenesis. In this chapter, we discuss the application of mouse tracheal epithelial cell cultures for the study of asthma biology. A major advantage of this system is the ability to use airway epithelial cells from mice with defined genetic backgrounds. The in vitro proliferation and differentiation of mouse airway epithelial cells uses the air-liquid interface condition to generate well-differentiated epithelia with characteristics of native airways. Protocols are provided for manipulation of differentiation, induction of mucous cell metaplasia, genetic modification, and cell and pathogen coculture. Assays for the assessment of gene expression, responses of cells, and analysis of specific cell subpopulations within the airway epithelium are included. PMID:23943446

  10. Klebsiella pneumoniae Is Able to Trigger Epithelial-Mesenchymal Transition Process in Cultured Airway Epithelial Cells

    PubMed Central

    Leone, Laura; Mazzetta, Francesca; Martinelli, Daniela; Valente, Sabatino; Alimandi, Maurizio; Raffa, Salvatore; Santino, Iolanda

    2016-01-01

    The ability of some bacterial pathogens to activate Epithelial-Mesenchymal Transition normally is a consequence of the persistence of a local chronic inflammatory response or depends on a direct interaction of the pathogens with the host epithelial cells. In this study we monitored the abilities of the K. pneumoniae to activate the expression of genes related to EMT-like processes and the occurrence of phenotypic changes in airway epithelial cells during the early steps of cell infection. We describe changes in the production of intracellular reactive oxygen species and increased HIF-1α mRNA expression in cells exposed to K. pneumoniae infection. We also describe the upregulation of a set of transcription factors implicated in the EMT processes, such as Twist, Snail and ZEB, indicating that the morphological changes of epithelial cells already appreciable after few hours from the K. pneumoniae infection are tightly regulated by the activation of transcriptional pathways, driving epithelial cells to EMT. These effects appear to be effectively counteracted by resveratrol, an antioxidant that is able to exert a sustained scavenging of the intracellular ROS. This is the first report indicating that strains of K. pneumoniae may promote EMT-like programs through direct interaction with epithelial cells without the involvement of inflammatory cells. PMID:26812644

  11. Epithelial in vitro cell systems in carcinogenesis studies

    SciTech Connect

    Borek, C.

    1983-01-01

    The development of epithelial cells systems to study oncogenic transformation has presented a major challenge in the field of carcinogenesis. Because there exists in man a preponderance of carcinomas over sarcomas, the importance of studying oncogenic transformation in epithelial cells is of great relevance to human disease. The difficulty lies in the fact that different tissues contain epithelial cells with singular differentiated characteristics, which must be defined to assert the different nature of the cells being used. Liver cells in culture are a case in point. By careful maintenance and optimal culture conditions, one can maintain many of the differentiated characteristics of the cells for prolonged periods of time.

  12. Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling.

    PubMed

    Kamimoto, Kenji; Kaneko, Kota; Kok, Cindy Yuet-Yin; Okada, Hajime; Miyajima, Atsushi; Itoh, Tohru

    2016-01-01

    Dynamic remodeling of the intrahepatic biliary epithelial tissue plays key roles in liver regeneration, yet the cellular basis for this process remains unclear. We took an unbiased approach based on in vivo clonal labeling and tracking of biliary epithelial cells in the three-dimensional landscape, in combination with mathematical simulation, to understand their mode of proliferation in a mouse liver injury model where the nascent biliary structure formed in a tissue-intrinsic manner. An apparent heterogeneity among biliary epithelial cells was observed: whereas most of the responders that entered the cell cycle upon injury exhibited a limited and tapering growth potential, a select population continued to proliferate, making a major contribution in sustaining the biliary expansion. Our study has highlighted a unique mode of epithelial tissue dynamics, which depends not on a hierarchical system driven by fixated stem cells, but rather, on a stochastically maintained progenitor population with persistent proliferative activity. PMID:27431614

  13. Isolation of Cancer Epithelial Cells from Mouse Mammary Tumors

    PubMed Central

    Johnson, Sara; Chen, Hexin; Lo, Pang-Kuo

    2016-01-01

    The isolation of cancer epithelial cells from mouse mammary tumor is accomplished by digestion of the solid tumor. Red blood cells and other contaminates are removed using several washing techniques such that primary epithelial cells can further enriched. This procedure yields primary tumor cells that can be used for in vitro tissue culture, fluorescence-activated cell sorting (FACS) and a wide variety of other experiments (Lo et al., 2012).

  14. Multi-functionality and plasticity characterize epithelial cells in Hydra

    PubMed Central

    Buzgariu, W; Al Haddad, S; Tomczyk, S; Wenger, Y; Galliot, B

    2015-01-01

    Epithelial sheets, a synapomorphy of all metazoans but porifers, are present as 2 layers in cnidarians, ectoderm and endoderm, joined at their basal side by an extra-cellular matrix named mesoglea. In the Hydra polyp, epithelial cells of the body column are unipotent stem cells that continuously self-renew and concomitantly express their epitheliomuscular features. These multifunctional contractile cells maintain homeostasis by providing a protective physical barrier, by digesting nutrients, by selecting a stable microbiota, and by rapidly closing wounds. In addition, epithelial cells are highly plastic, supporting the adaptation of Hydra to physiological and environmental changes, such as long starvation periods where survival relies on a highly dynamic autophagy flux. Epithelial cells also play key roles in developmental processes as evidenced by the organizer activity they develop to promote budding and regeneration. We propose here an integrative view of the homeostatic and developmental aspects of epithelial plasticity in Hydra. PMID:26716072

  15. Multi-functionality and plasticity characterize epithelial cells in Hydra.

    PubMed

    Buzgariu, W; Al Haddad, S; Tomczyk, S; Wenger, Y; Galliot, B

    2015-01-01

    Epithelial sheets, a synapomorphy of all metazoans but porifers, are present as 2 layers in cnidarians, ectoderm and endoderm, joined at their basal side by an extra-cellular matrix named mesoglea. In the Hydra polyp, epithelial cells of the body column are unipotent stem cells that continuously self-renew and concomitantly express their epitheliomuscular features. These multifunctional contractile cells maintain homeostasis by providing a protective physical barrier, by digesting nutrients, by selecting a stable microbiota, and by rapidly closing wounds. In addition, epithelial cells are highly plastic, supporting the adaptation of Hydra to physiological and environmental changes, such as long starvation periods where survival relies on a highly dynamic autophagy flux. Epithelial cells also play key roles in developmental processes as evidenced by the organizer activity they develop to promote budding and regeneration. We propose here an integrative view of the homeostatic and developmental aspects of epithelial plasticity in Hydra. PMID:26716072

  16. Sonic Hedgehog regulates thymic epithelial cell differentiation

    PubMed Central

    Saldaña, José Ignacio; Solanki, Anisha; Lau, Ching-In; Sahni, Hemant; Ross, Susan; Furmanski, Anna L.; Ono, Masahiro; Holländer, Georg; Crompton, Tessa

    2016-01-01

    Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus. PMID

  17. Sonic Hedgehog regulates thymic epithelial cell differentiation.

    PubMed

    Saldaña, José Ignacio; Solanki, Anisha; Lau, Ching-In; Sahni, Hemant; Ross, Susan; Furmanski, Anna L; Ono, Masahiro; Holländer, Georg; Crompton, Tessa

    2016-04-01

    Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus. PMID

  18. Collective Epithelial Migration and Cell Rearrangements Drive Mammary Branching Morphogenesis

    PubMed Central

    Ewald, Andrew J.; Brenot, Audrey; Duong, Myhanh; Chan, Bianca S.; Werb, Zena

    2009-01-01

    Summary Epithelial organs are built through the movement of groups of interconnected cells. We observed cells in elongating mammary ducts reorganize into a multilayered epithelium, migrate collectively, and rearrange dynamically, all without forming leading cellular extensions. Duct initiation required proliferation, Rac, and myosin light-chain kinase, whereas repolarization to a bilayer depended on Rho kinase. We observed that branching morphogenesis results from the active motility of both luminal and myoepithelial cells. Luminal epithelial cells advanced collectively, whereas myoepithelial cells appeared to restrain elongating ducts. Significantly, we observed that normal epithelium and neoplastic hyperplasias are organized similarly during morphogenesis, suggesting common mechanisms of epithelial growth. PMID:18410732

  19. Observing planar cell polarity in multiciliated mouse airway epithelial cells

    PubMed Central

    Vladar, Eszter K.; Lee, Yin Loon; Stearns, Tim; Axelrod, Jeffrey D.

    2015-01-01

    The concerted movement of cilia propels inhaled contaminants out of the lungs, safeguarding the respiratory system from toxins, pathogens, pollutants, and allergens. Motile cilia on the multiciliated cells (MCCs) of the airway epithelium are physically oriented along the tissue axis for directional motility, which depends on the planar cell polarity (PCP) signaling pathway. The MCCs of the mouse respiratory epithelium have emerged as an important model for the study of motile ciliogenesis and the PCP signaling mechanism. Unlike other motile ciliated or planar polarized tissues, airway epithelial cells are relatively easily accessible and primary cultures faithfully model many of the essential features of the in vivo tissue. There is growing interest in understanding how cells acquire and polarize motile cilia due to the impact of mucociliary clearance on respiratory health. Here, we present methods for observing and quantifying the planar polarized orientation of motile cilia both in vivo and in primary culture airway epithelial cells. We describe how to acquire and evaluate electron and light microscopy images of ciliary ultrastructural features that reveal planar polarized orientation. Furthermore, we describe the immunofluorescence localization of PCP pathway components as a simple readout for airway epithelial planar polarization and ciliary orientation. These methods can be adapted to observe ciliary orientation in other multi- and monociliated cells and to detect PCP pathway activity in any tissue or cell type. PMID:25837385

  20. Technical note: Isolation and characterization of porcine mammary epithelial cells.

    PubMed

    Dahanayaka, S; Rezaei, R; Porter, W W; Johnson, G A; Burghardt, R C; Bazer, F W; Hou, Y Q; Wu, Z L; Wu, G

    2015-11-01

    Within the mammary gland, functional synthesis of milk is performed by its epithelial (alveolar) cells. The availability of a stable mammary epithelial cell line is essential for biochemical studies to elucidate cellular and molecular mechanisms responsible for nutritional regulation of lactation. Therefore, porcine mammary epithelial cells (PMEC) were isolated from mammary glands of a 9-mo-old nonpregnant and nonlactating gilt and cultured to establish a nonimmortalized cell line. These cells were characterized by expression of cytokeratin-18 (an intermediate filament specific for epithelial cells), β-casein (a specific marker for mammary epithelial cells), and α-lactalbumin. In culture, the PMEC doubled in number every 24 h and maintained a cobblestone morphology, typical for cultured epithelial cells, for at least 15 passages. Addition of 0.2 to 2 μg/mL prolactin to culture medium for 3 d induced the production of β-casein and α-lactalbumin by PMEC in a dose-dependent manner. Thus, we have successfully developed a useful PMEC line for future studies of cellular and molecular regulation of milk synthesis by mammary epithelial cells of the sow. PMID:26641038

  1. Mesenchymal-epithelial interactions during digestive tract development and epithelial stem cell regeneration.

    PubMed

    Le Guen, Ludovic; Marchal, Stéphane; Faure, Sandrine; de Santa Barbara, Pascal

    2015-10-01

    The gastrointestinal tract develops from a simple and uniform tube into a complex organ with specific differentiation patterns along the anterior-posterior and dorso-ventral axes of asymmetry. It is derived from all three germ layers and their cross-talk is important for the regulated development of fetal and adult gastrointestinal structures and organs. Signals from the adjacent mesoderm are essential for the morphogenesis of the overlying epithelium. These mesenchymal-epithelial interactions govern the development and regionalization of the different gastrointestinal epithelia and involve most of the key morphogens and signaling pathways, such as the Hedgehog, BMPs, Notch, WNT, HOX, SOX and FOXF cascades. Moreover, the mechanisms underlying mesenchyme differentiation into smooth muscle cells influence the regionalization of the gastrointestinal epithelium through interactions with the enteric nervous system. In the neonatal and adult gastrointestinal tract, mesenchymal-epithelial interactions are essential for the maintenance of the epithelial regionalization and digestive epithelial homeostasis. Disruption of these interactions is also associated with bowel dysfunction potentially leading to epithelial tumor development. In this review, we will discuss various aspects of the mesenchymal-epithelial interactions observed during digestive epithelium development and differentiation and also during epithelial stem cell regeneration. PMID:26126787

  2. Pulmonary Epithelial Cell-Derived Cytokine TGF-β1 Is a Critical Cofactor for Enhanced Innate Lymphoid Cell Function

    PubMed Central

    Denney, Laura; Byrne, Adam J.; Shea, Thomas J.; Buckley, James S.; Pease, James E.; Herledan, Gaelle M.F.; Walker, Simone A.; Gregory, Lisa G.; Lloyd, Clare M.

    2015-01-01

    Summary Epithelial cells orchestrate pulmonary homeostasis and pathogen defense and play a crucial role in the initiation of allergic immune responses. Maintaining the balance between homeostasis and inappropriate immune activation and associated pathology is particularly complex at mucosal sites that are exposed to billions of potentially antigenic particles daily. We demonstrated that epithelial cell-derived cytokine TGF-β had a central role in the generation of the pulmonary immune response. Mice that specifically lacked epithelial cell-derived TGF-β1 displayed a reduction in type 2 innate lymphoid cells (ILCs), resulting in suppression of interleukin-13 and hallmark features of the allergic response including airway hyperreactivity. ILCs in the airway lumen were primed to respond to TGF-β by expressing the receptor TGF-βRII and ILC chemoactivity was enhanced by TGF-β. These data demonstrate that resident epithelial cells instruct immune cells, highlighting the central role of the local environmental niche in defining the nature and magnitude of immune reactions. PMID:26588780

  3. Cell Chirality Induces Collective Cell Migration in Epithelial Sheets

    NASA Astrophysics Data System (ADS)

    Sato, Katsuhiko; Hiraiwa, Tetsuya; Shibata, Tatsuo

    2015-10-01

    During early development, epithelial cells form a monolayer sheet and migrate in a uniform direction. Here, we address how this collective migration can occur without breaking the cell-to-cell attachments. Repeated contraction and expansion of the cell-to-cell interfaces enables the cells to rearrange their positions autonomously within the sheet. We show that when the interface tension is strengthened in a direction that is tilted from the body axis, cell rearrangements occur in such a way that unidirectional movement is induced. We use a vertex model to demonstrate that such anisotropic tension can generate the unidirectional motion of cell sheets. Our results suggest that cell chirality facilitates collective cell migration during tissue morphogenesis.

  4. Fungal glycan interactions with epithelial cells in allergic airway disease

    PubMed Central

    Roy, René M.; Klein, Bruce S.

    2014-01-01

    Human exposure to fungi results in a wide range of health outcomes, from invasive disease or allergy to immune tolerance. Inhaled fungi contact airway epithelial cells as an early event, and this host:fungal interaction can shape the eventual immunological outcome. Emerging evidence points to exposure to fungal cell wall carbohydrates in the development of allergic airway disease. Herein, we describe determinants of fungal allergenicity, and review the responses of airway epithelial cells to fungal carbohydrates. A greater understanding of the recognition of and response to fungal carbohydrates by airway epithelial cells may lead to the development of targeted therapies that ameliorate allergic airway disease. PMID:23602359

  5. Quantitative Assessment of Cytosolic Salmonella in Epithelial Cells

    PubMed Central

    Knodler, Leigh A.; Nair, Vinod; Steele-Mortimer, Olivia

    2014-01-01

    Within mammalian cells, Salmonella enterica serovar Typhimurium (S. Typhimurium) inhabits a membrane-bound vacuole known as the Salmonella-containing vacuole (SCV). We have recently shown that wild type S. Typhimurium also colonizes the cytosol of epithelial cells. Here we sought to quantify the contribution of cytosolic Salmonella to the total population over a time course of infection in different epithelial cell lines and under conditions of altered vacuolar escape. We found that the lysosomotropic agent, chloroquine, acts on vacuolar, but not cytosolic, Salmonella. After chloroquine treatment, vacuolar bacteria are not transcriptionally active or replicative and appear degraded. Using a chloroquine resistance assay, in addition to digitonin permeabilization, we found that S. Typhimurium lyses its nascent vacuole in numerous epithelial cell lines, albeit with different frequencies, and hyper-replication in the cytosol is also widespread. At later times post-infection, cytosolic bacteria account for half of the total population in some epithelial cell lines, namely HeLa and Caco-2 C2Bbe1. Both techniques accurately measured increased vacuole lysis in epithelial cells upon treatment with wortmannin. By chloroquine resistance assay, we also determined that Salmonella pathogenicity island-1 (SPI-1), but not SPI-2, the virulence plasmid nor the flagellar apparatus, was required for vacuolar escape and cytosolic replication in epithelial cells. Together, digitonin permeabilization and the chloroquine resistance assay will be useful, complementary tools for deciphering the mechanisms of SCV lysis and Salmonella replication in the epithelial cell cytosol. PMID:24400108

  6. Lung epithelial cells modulate the inflammatory response of alveolar macrophages.

    PubMed

    Rubovitch, Vardit; Gershnabel, Shoham; Kalina, Moshe

    2007-12-01

    The goal of this study was to examine the effect of alveolar epithelial cells on inflammatory responses in macrophages. Lung epithelial cells (either rat RLE-6TN or human A549 cells) reduced LPS-induced NO production in alveolar macrophages (AM) in a contact-independent mechanism. The inhibitory effect of the epithelial cells was present already at the transcriptional level: LPS-induced inducible NO synthase (iNOS) expression was significantly smaller. Surfactant protein A (SP-A)-induced NO production by alveolar macrophages was also reduced in the presence of A549 cells, though, by a different kinetics. LPS-induced interleukin-6 (IL-6) production (another inflammatory pathway) by alveolar macrophages was also reduced in the presence of RLE-6TN cells. These data suggest a role for lung epithelial cells in the complicated modulation of inflammatory processes, and provide an insight into the mechanism underlying. PMID:17851743

  7. Epithelial cells as alternative human biomatrices for comet assay

    PubMed Central

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases. PMID:25506353

  8. Intrinsic epithelial cells repair the kidney after injury.

    PubMed

    Humphreys, Benjamin D; Valerius, M Todd; Kobayashi, Akio; Mugford, Joshua W; Soeung, Savuth; Duffield, Jeremy S; McMahon, Andrew P; Bonventre, Joseph V

    2008-03-01

    Understanding the mechanisms of nephron repair is critical for the design of new therapeutic approaches to treat kidney disease. The kidney can repair after even a severe insult, but whether adult stem or progenitor cells contribute to epithelial renewal after injury and the cellular origin of regenerating cells remain controversial. Using genetic fate-mapping techniques, we generated transgenic mice in which 94%-95% of tubular epithelial cells, but no interstitial cells, were labeled with either beta-galactosidase (lacZ) or red fluorescent protein (RFP). Two days after ischemia-reperfusion injury (IRI), 50.5% of outer medullary epithelial cells coexpress Ki67 and RFP, indicating that differentiated epithelial cells that survived injury undergo proliferative expansion. After repair was complete, 66.9% of epithelial cells had incorporated BrdU, compared to only 3.5% of cells in the uninjured kidney. Despite this extensive cell proliferation, no dilution of either cell-fate marker was observed after repair. These results indicate that regeneration by surviving tubular epithelial cells is the predominant mechanism of repair after ischemic tubular injury in the adult mammalian kidney. PMID:18371453

  9. Clinical implications of epithelial cell plasticity in cancer progression.

    PubMed

    Aparicio, Luis A; Blanco, Moisés; Castosa, Raquel; Concha, Ángel; Valladares, Manuel; Calvo, Lourdes; Figueroa, Angélica

    2015-09-28

    In the last few years, the role of epithelial cell plasticity in cancer biology research has gained increasing attention. This concept refers to the ability of the epithelial cells to dynamically switch between different phenotypic cellular states. This programme is particularly relevant during the epithelial-to-mesenchymal transition (EMT) in cancer progression. During colonization, epithelial cells first activate the EMT programme to disseminate from a primary tumour to reach a distant tissue site. During this process, cells are transported into the circulation and are able to escape the immune system of the host. Then, a reverse process called mesenchymal-to-epithelial transition (MET) occurs on cells that settle in the distant organs. Although epithelial cell plasticity has an important impact on tumour biology, the clinical relevance of this concept remains to be recapitulated. In this review, we will update the current state of epithelial cell plasticity in cancer progression and its clinical implications for the design of therapeutic strategies, the acquisition of multidrug resistance, and future perspectives for the management of cancer patients. PMID:26099173

  10. Liver epithelial cells inhibit proliferation and invasiveness of hepatoma cells.

    PubMed

    Jeng, Kuo-Shyang; Jeng, Chi-Juei; Jeng, Wen-Juei; Sheen, I-Shyan; Li, Shih-Yun; Hung, Zih-Hang; Hsiau, Hsin-I; Yu, Ming-Che; Chang, Chiung-Fang

    2016-03-01

    Hepatocellular carcinoma (HCC) is a worldwide malignancy with poor prognosis. Liver progenitors or stem cells could be a potential therapy for HCC treatment since they migrate toward tumors. Rat liver epithelial (RLE) cells have both progenitor and stem cell-like properties. Therefore, our study elucidated the therapeutic effect of RLE cells in rat hepatoma cells. RLE cells were isolated from 10-day old rats and characterized for stem cell marker expression. RLE cells and rat hepatoma cells (H4-IIE-C3 cells) were co-cultured and divided into four groups with different ratios of RLE and hepatoma cells. Group A had only rat hepatoma cells as a control group. The ratios of rat hepatoma and RLE cells in group B, C and D were 5:1, 1:1 and 1:5, respectively. Effective inhibition of cell proliferation and migration was found in group D when compared to group A. There was a significant decrease in Bcl2 expression and increase in late apoptosis of rat hepatoma cells when adding more RLE cells. RLE cells reduced cell proliferation and migration of rat hepatoma cells. These results suggested that RLE cells could be used as a potential cell therapy. PMID:26647726

  11. Rapid Detection of an ABT-737-Sensitive Primed for Death State in Cells Using Microplate-Based Respirometry

    PubMed Central

    Clerc, Pascaline; Carey, Gregory B.; Mehrabian, Zara; Wei, Michael; Hwang, Hyehyun; Girnun, Geoffrey D.; Chen, Hegang; Martin, Stuart S.; Polster, Brian M.

    2012-01-01

    Cells that exhibit an absolute dependence on the anti-apoptotic BCL-2 protein for survival are termed “primed for death” and are killed by the BCL-2 antagonist ABT-737. Many cancers exhibit a primed phenotype, including some that are resistant to conventional chemotherapy due to high BCL-2 expression. We show here that 1) stable BCL-2 overexpression alone can induce a primed for death state and 2) that an ABT-737-induced loss of functional cytochrome c from the electron transport chain causes a reduction in maximal respiration that is readily detectable by microplate-based respirometry. Stable BCL-2 overexpression sensitized non-tumorigenic MCF10A mammary epithelial cells to ABT-737-induced caspase-dependent apoptosis. Mitochondria within permeabilized BCL-2 overexpressing cells were selectively vulnerable to ABT-737-induced cytochrome c release compared to those from control-transfected cells, consistent with a primed state. ABT-737 treatment caused a dose-dependent impairment of maximal O2 consumption in MCF10A BCL-2 overexpressing cells but not in control-transfected cells or in immortalized mouse embryonic fibroblasts lacking both BAX and BAK. This impairment was rescued by delivering exogenous cytochrome c to mitochondria via saponin-mediated plasma membrane permeabilization. An ABT-737-induced reduction in maximal O2 consumption was also detectable in SP53, JeKo-1, and WEHI-231 B-cell lymphoma cell lines, with sensitivity correlating with BCL-2:MCL-1 ratio and with susceptibility (SP53 and JeKo-1) or resistance (WEHI-231) to ABT-737-induced apoptosis. Multiplexing respirometry assays to ELISA-based determination of cytochrome c redistribution confirmed that respiratory inhibition was associated with cytochrome c release. In summary, cell-based respiration assays were able to rapidly identify a primed for death state in cells with either artificially overexpressed or high endogenous BCL-2. Rapid detection of a primed for death state in individual cancers

  12. Sodium selectivity of Reissner's membrane epithelial cells

    PubMed Central

    2011-01-01

    Background Sodium absorption by Reissner's membrane is thought to contribute to the homeostasis of the volume of cochlear endolymph. It was previously shown that the absorptive transepithelial current was blocked by amiloride and benzamil. The most commonly-observed target of these drugs is the epithelial sodium channel (ENaC), which is composed of the three subunits α-,β- and γ-ENaC. However, other less-selective cation channels have also been observed to be sensitive to benzamil and amiloride. The aim of this study was to determine whether Reissner's membrane epithelial cells could support parasensory K+ absorption via amiloride- and benzamil-sensitive electrogenic pathways. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6196), RT-PCR, and whole-cell patch clamp. Transcript expression analysis of Reissner's membrane detected no amiloride-sensitive acid-sensing ion channels (ASIC1a, ASIC2a, ASIC2b) nor amiloride-sensitive cyclic-nucleotide gated channels (CNGA1, CNGA2, CNGA4, CNGB3). By contrast, α-,β- and γ-ENaC were all previously reported as present in Reissner's membrane. The selectivity of the benzamil-sensitive cation currents was observed in whole-cell patch clamp recordings under Cl--free conditions where cations were the only permeant species. The currents were carried by Na+ but not K+, and the permeability of Li+ was greater than that of Na+ in Reissner's membrane. Complete replacement of bath Na+ with the inpermeable cation NMDG+ led to the same inward current as with benzamil in a Na+ bath. Conclusions These results are consistent with the amiloride/benzamil-sensitive absorptive flux of Reissner's membrane mediated by a highly Na+-selective channel that has several key characteristics in common with αβγ-ENaC. The amiloride-sensitive pathway therefore absorbs only Na+ in this epithelium and does not provide a parasensory K+ efflux route from scala media. PMID:21284860

  13. Andrographolide suppresses epithelial mesenchymal transition by inhibition of MAPK signalling pathway in lens epithelial cells.

    PubMed

    Kayastha, Forum; Johar, Kaid; Gajjar, Devarshi; Arora, Anshul; Madhu, Hardik; Ganatra, Darshini; Vasavada, Abhay

    2015-06-01

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown. The purpose of this study is to evaluate the effect of andrographolide on EMT induced by growth factors in the fetal human lens epithelial cell line (FHL 124). Initially the LECs were treated with growth factors (TGF-beta 2 and bFGF) to induce EMT. Subsequently these EMT-induced cells were treated with andrographolide at 100 and 500 nM concentrations for 24 h. Our results showed that FHL 124 cells treated with growth factors had a significant decrease in protein and m-RNA levels of epithelial markers pax6 and E-Cadherin. After administering andrographolide, these levels significantly increased. It was noticed that EMT markers alpha-SMA, fibronectin and collagen IV significantly decreased after treatment with andrographolide when compared to the other group. Treatment with andrographolide significantly inhibited phosphorylation of ERK and JNK. Cell cycle analysis showed that andrographolide did not arrest cells at G0/G1 or G2/M at tested concentrations. Our findings suggest that andrographolide helps sustain epithelial characteristics by modulating EMT markers and inhibiting the mitogen-activated protein kinase (MAPK) signalling pathway in LECs. Hence it can prove to be useful in curbing EMT-mediated PCO. PMID:25963259

  14. Serum-Induced Differentiation of Human Meibomian Gland Epithelial Cells

    PubMed Central

    Sullivan, David A.; Liu, Yang; Kam, Wendy R.; Ding, Juan; Green, Karin M.; Shaffer, Scott A.; Hatton, Mark P.; Liu, Shaohui

    2014-01-01

    Purpose. We hypothesize that culturing immortalized human meibomian gland epithelial cells in serum-containing medium will induce their differentiation. The purpose of this investigation was to begin to test our hypothesis, and explore the impact of serum on gene expression and lipid accumulation in human meibomian gland epithelial cells. Methods. Immortalized and primary human meibomian gland epithelial cells were cultured in the presence or absence of serum. Cells were evaluated for lysosome and lipid accumulation, polar and neutral lipid profiles, and gene expression. Results. Our results support our hypothesis that serum stimulates the differentiation of human meibomian gland epithelial cells. This serum-induced effect is associated with a significant increase in the expression of genes linked to cell differentiation, epithelium development, the endoplasmic reticulum, Golgi apparatus, vesicles, and lysosomes, and a significant decrease in gene activity related to the cell cycle, mitochondria, ribosomes, and translation. These cellular responses are accompanied by an accumulation of lipids within lysosomes, as well as alterations in the fatty acid content of polar and nonpolar lipids. Of particular importance, our results show that the molecular and biochemical changes of immortalized human meibomian gland epithelial cells during differentiation are analogous to those of primary cells. Conclusions. Overall, our findings indicate that immortalized human meibomian gland epithelial cells may serve as an ideal preclinical model to identify factors that control cellular differentiation in the meibomian gland. PMID:24867579

  15. Sepsis-associated AKI: epithelial cell dysfunction.

    PubMed

    Emlet, David R; Shaw, Andrew D; Kellum, John A

    2015-01-01

    Acute kidney injury (AKI) occurs frequently in critically ill patients with sepsis, in whom it doubles the mortality rate and half of the survivors suffer permanent kidney damage or chronic kidney disease. Failure in the development of viable therapies has prompted studies to better elucidate the cellular and molecular etiologies of AKI, which have generated novel theories and paradigms for the mechanisms of this disease. These studies have shown multifaceted origins and elements of AKI that, in addition to/in lieu of ischemia, include the generation of damage-associated molecular patterns and pathogen-associated molecular patterns, the inflammatory response, humoral and cellular immune activation, perturbation of microvascular flow and oxidative stress, bioenergetic alterations, cell-cycle alterations, and cellular de-differentiation/re-differentiation. It is becoming clear that a major etiologic effector of all these inputs is the renal tubule epithelial cell (RTEC). This review discusses these elements and their effects on RTECs, and reviews the current hypotheses of how these effects may determine the fate of RTECs during sepsis-induced AKI. PMID:25795502

  16. Genetics and epithelial cell dysfunction in cystic fibrosis

    SciTech Connect

    Riordan, J.R.; Buchwald, M.

    1987-01-01

    This book examines the advances being made in the study of the physiology, cell biology, and molecular genetics of cystic fibrosis. Emphasis is placed on various areas of research that involve epithelial cells (e.g., the CF-specific phenotypes exhibited by epithelial cells, abnormalities in epithelium ion transport, chloride channel regulation in CF epithelial.) Coverage is presented on the current status of CF, including data on the incidence of the disease, its mode of inheritance, chromosomal localization, genetic heterogeneity, and screening and management.

  17. Alignment of cell division axes in directed epithelial cell migration

    NASA Astrophysics Data System (ADS)

    Marel, Anna-Kristina; Podewitz, Nils; Zorn, Matthias; Oskar Rädler, Joachim; Elgeti, Jens

    2014-11-01

    Cell division is an essential dynamic event in tissue remodeling during wound healing, cancer and embryogenesis. In collective migration, tensile stresses affect cell shape and polarity, hence, the orientation of the cell division axis is expected to depend on cellular flow patterns. Here, we study the degree of orientation of cell division axes in migrating and resting epithelial cell sheets. We use microstructured channels to create a defined scenario of directed cell invasion and compare this situation to resting but proliferating cell monolayers. In experiments, we find a strong alignment of the axis due to directed flow while resting sheets show very weak global order, but local flow gradients still correlate strongly with the cell division axis. We compare experimental results with a previously published mesoscopic particle based simulation model. Most of the observed effects are reproduced by the simulations.

  18. Microfluidic approaches for epithelial cell layer culture and characterisation

    PubMed Central

    Thuenauer, Roland; Rodriguez-Boulan, Enrique; Römer, Winfried

    2014-01-01

    In higher eukaryotes, epithelial cell layers line most body cavities and form selective barriers that regulate the exchange of solutes between compartments. In order to fulfil these functions, the cells assume a polarised architecture and maintain two distinct plasma membrane domains, the apical domain facing the lumen and the basolateral domain facing other cells and the extracellular matrix. Microfluidic biochips offer the unique opportunity to establish novel in vitro models of epithelia in which the in vivo microenvironment of epithelial cells is precisely reconstituted. In addition, analytical tools to monitor biologically relevant parameters can be directly integrated on-chip. In this review we summarise recently developed biochip designs for culturing epithelial cell layers. Since endothelial cell layers, which line blood vessels, have similar barrier functions and polar organisation as epithelial cell layers, we also discuss biochips for culturing endothelial cell layers. Furthermore, we review approaches to integrate tools to analyse and manipulate epithelia and endothelia in microfluidic biochips, including methods to perform electrical impedance spectroscopy, methods to detect substances undergoing trans-epithelial transport via fluorescence, spectrophotometry, and mass spectrometry, techniques to mechanically stimulate cells via stretching and fluid flow-induced shear stress, and methods to carry out high-resolution imaging of vesicular trafficking with light microscopy. Taken together, this versatile microfluidic toolbox enables novel experimental approaches to characterise epithelial monolayers. PMID:24668405

  19. Microfluidic approaches for epithelial cell layer culture and characterisation.

    PubMed

    Thuenauer, Roland; Rodriguez-Boulan, Enrique; Römer, Winfried

    2014-07-01

    In higher eukaryotes, epithelial cell layers line most body cavities and form selective barriers that regulate the exchange of solutes between compartments. In order to fulfil these functions, the cells assume a polarised architecture and maintain two distinct plasma membrane domains, the apical domain facing the lumen and the basolateral domain facing other cells and the extracellular matrix. Microfluidic biochips offer the unique opportunity to establish novel in vitro models of epithelia in which the in vivo microenvironment of epithelial cells is precisely reconstituted. In addition, analytical tools to monitor biologically relevant parameters can be directly integrated on-chip. In this review we summarise recently developed biochip designs for culturing epithelial cell layers. Since endothelial cell layers, which line blood vessels, have similar barrier functions and polar organisation as epithelial cell layers, we also discuss biochips for culturing endothelial cell layers. Furthermore, we review approaches to integrate tools to analyse and manipulate epithelia and endothelia in microfluidic biochips; including methods to perform electrical impedance spectroscopy; methods to detect substances undergoing trans-epithelial transport via fluorescence, spectrophotometry, and mass spectrometry; techniques to mechanically stimulate cells via stretching and fluid flow-induced shear stress; and methods to carry out high-resolution imaging of vesicular trafficking using light microscopy. Taken together, this versatile microfluidic toolbox enables novel experimental approaches to characterise epithelial monolayers. PMID:24668405

  20. Molecular responses of rat tracheal epithelial cells to transmembrane pressure.

    PubMed

    Ressler, B; Lee, R T; Randell, S H; Drazen, J M; Kamm, R D

    2000-06-01

    Smooth muscle constriction in asthma causes the airway to buckle into a rosette pattern, folding the epithelium into deep crevasses. The epithelial cells in these folds are pushed up against each other and thereby experience compressive stresses. To study the epithelial cell response to compressive stress, we subjected primary cultures of rat tracheal epithelial cells to constant elevated pressures on their apical surface (i.e., a transmembrane pressure) and examined changes in the expression of genes that are important for extracellular matrix production and maintenance of smooth muscle activation. Northern blot analysis of RNA extracted from cells subjected to transmembrane pressure showed induction of early growth response-1 (Egr-1), endothelin-1, and transforming growth factor-beta1 in a pressure-dependent and time-dependent manner. Increases in Egr-1 protein were detected by immunohistochemistry. Our results demonstrate that airway epithelial cells respond rapidly to compressive stresses. Potential transduction mechanisms of transmembrane pressure were also investigated. PMID:10835333

  1. Alveolar Epithelial Cells Undergo Epithelial-to-Mesenchymal Transition in Response to Endoplasmic Reticulum Stress*

    PubMed Central

    Tanjore, Harikrishna; Cheng, Dong-Sheng; Degryse, Amber L.; Zoz, Donald F.; Abdolrasulnia, Rasul; Lawson, William E.; Blackwell, Timothy S.

    2011-01-01

    Expression of mutant surfactant protein C (SFTPC) results in endoplasmic reticulum (ER) stress in type II alveolar epithelial cells (AECs). AECs have been implicated as a source of lung fibroblasts via epithelial-to-mesenchymal transition (EMT); therefore, we investigated whether ER stress contributes to EMT as a possible mechanism for fibrotic remodeling. ER stress was induced by tunicamyin administration or stable expression of mutant (L188Q) SFTPC in type II AEC lines. Both tunicamycin treatment and mutant SFTPC expression induced ER stress and the unfolded protein response. With tunicamycin or mutant SFTPC expression, phase contrast imaging revealed a change to a fibroblast-like appearance. During ER stress, expression of epithelial markers E-cadherin and Zonula occludens-1 decreased while expression of mesenchymal markers S100A4 and α-smooth muscle actin increased. Following induction of ER stress, we found activation of a number of pathways, including MAPK, Smad, β-catenin, and Src kinase. Using specific inhibitors, the combination of a Smad2/3 inhibitor (SB431542) and a Src kinase inhibitor (PP2) blocked EMT with maintenance of epithelial appearance and epithelial marker expression. Similar results were noted with siRNA targeting Smad2 and Src kinase. Together, these studies reveal that induction of ER stress leads to EMT in lung epithelial cells, suggesting possible cross-talk between Smad and Src kinase pathways. Dissecting pathways involved in ER stress-induced EMT may lead to new treatment strategies to limit fibrosis. PMID:21757695

  2. Response of corneal epithelial cells to Staphylococcus aureus

    PubMed Central

    2010-01-01

    Staphylococcus aureus is a leading cause of invasive infection. It also infects wet mucosal tissues including the cornea and conjunctiva. Conflicting evidence exists on the expression of Toll-like receptors by human corneal epithelial cells. It was therefore of interest to determine how epithelial cells from this immune privileged tissue respond to S. aureus. Further, it was of interest to determine whether cytolytic toxins, with the potential to cause ion flux or potentially permit effector molecule movement across the target cell membrane, alter the response. Microarrays were used to globally assess the response of human corneal epithelial cells to S. aureus. A large increase in abundance of transcripts encoding the antimicrobial dendritic cell chemokine, CCL20, was observed. CCL20 release into the medium was detected, and this response was found to be largely TLR2 and NOD2 independent. Corneal epithelial cells also respond to S. aureus by increasing the intracellular abundance of mRNA for inflammatory mediators, transcription factors, and genes related to MAP kinase pathways, in ways similar to other cell types. The corneal epithelial cell response was surprisingly unaffected by toxin exposure. Toxin exposure did, however, induce a stress response. Although model toxigenic and non-toxigenic strains of S. aureus were employed in the present study, the results obtained were strikingly similar to those reported for stimulation of vaginal epithelial cells by clinical toxic shock toxin expressing isolates, demonstrating that the initial epithelial cellular responses to S. aureus are largely independent of strain as well as epithelial cell tissue source. PMID:21178447

  3. Flow Cytometry Analysis of Thymic Epithelial Cells and Their Subpopulations.

    PubMed

    Ohigashi, Izumi; Takahama, Yousuke

    2016-01-01

    The parenchyma of the thymus is compartmentalized into the cortex and the medulla, which are constructed by cortical thymic epithelial cells (cortical TECs, cTECs) and medullary thymic epithelial cells (mTECs), respectively. cTECs and mTECs essentially and differentially regulate the development and repertoire selection of T cells. Consequently, the biology of T cell development and selection includes the study of TECs in addition to the study of developing T cells and other hematopoietic cells including dendritic cells. In this chapter, we describe the methods for flow cytometric analysis and sorting of TECs and their subpopulations, including cTECs and mTECs. PMID:26294398

  4. Diversity of epithelial stem cell types in adult lung.

    PubMed

    Li, Feng; He, Jinxi; Wei, Jun; Cho, William C; Liu, Xiaoming

    2015-01-01

    Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer. PMID:25810726

  5. Diversity of Epithelial Stem Cell Types in Adult Lung

    PubMed Central

    Li, Feng; He, Jinxi; Wei, Jun; Cho, William C.; Liu, Xiaoming

    2015-01-01

    Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer. PMID:25810726

  6. HIV is inactivated after transepithelial migration via adult oral epithelial cells but not fetal epithelial cells

    PubMed Central

    Tugizov, Sharof M.; Herrera, Rossana; Veluppillai, Piri; Greenspan, Deborah; Soros, Vanessa; Greene, Warner C.; Levy, Jay A.; Palefsky, Joel M.

    2010-01-01

    Oral transmission of human immunodeficiency virus (HIV) in adult populations is rare. However, HIV spread across fetal/neonatal oropharyngeal epithelia could be important in mother-to-child transmission. Analysis of HIV transmission across polarized adult and fetal oral epithelial cells revealed that HIV transmigrates through both adult and fetal cells. However, only virions that passed through the fetal cells – and not those that passed through the adult cells – remained infectious. Analysis of expression of anti-HIV innate proteins beta-defensins 2 and 3, and secretory leukocyte protease inhibitor in adult, fetal, and infant oral epithelia showed that their expression is predominantly in the adult oral epithelium. Retention of HIV infectivity after transmigration correlated inversely with the expression of these innate proteins. Inactivation of innate proteins in adult oral keratinocytes restored HIV infectivity. These data suggest that high-level innate protein expression may contribute to the resistance of the adult oral epithelium to HIV transmission. PMID:21056450

  7. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    SciTech Connect

    Malizia, Andrea P.; Lacey, Noreen; Walls, Dermot; Egan, Jim J.; Doran, Peter P.

    2009-07-01

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGF{beta}1-mediated lytic phase. EBV lytic reactivation by TGF{beta}1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM{sub 1}81552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

  8. Parvalbumin in cortical epithelial cells of the pigeon thymus

    PubMed Central

    ATOJI, YASURO; YAMAMOTO, YOSHIO; SUZUKI, YOSHITAKA

    2000-01-01

    We examined the distribution of parvalbumin in the pigeon thymus by light and electron microscopic immunohistochemistry. Tissues were also examined by conventional electron microscopy to determine the ultrastructure of immunoreactive cells. Parvalbumin immunoreaction was located in epithelial cells of the cortex, which formed dense mesh-like structures. Parvalbumin-positive epithelial cells were classified into 2 types. The first comprised elongated cells. In these, the nucleus was spindle-shaped, oval, or triangular, with a slightly irregular contour and contained rich heterochromatin peripherally. The cytoplasm was pale and processes extended laterally or ramified among the surrounding thymocytes. This type of cell formed the majority of immunoreactive cells. The other cell type consisted of polygonal epithelial cells. The nucleus was oval with deep indentations. Euchromatin occupied a large part of the nucleus. The cytoplasm contained numerous cell organelles compared with the elongated type, in particular, electron-dense vacuoles of various sizes and often bundles of tonofilaments. Both types of epithelial cell were interconnected by desmosomes. No secretory granules were found in the cytoplasm of elongated or polygonal cells. These results indicate the presence of heterogeneous group of parvalbumin-immunoreactive epithelial cells and suggest the likelihood of different functional roles for parvalbumin in the pigeon thymus. PMID:10853953

  9. Stochastic Terminal Dynamics in Epithelial Cell Intercalation

    NASA Astrophysics Data System (ADS)

    Eule, Stephan; Metzger, Jakob; Reichl, Lars; Kong, Deqing; Zhang, Yujun; Grosshans, Joerg; Wolf, Fred

    2015-03-01

    We found that the constriction of epithelial cell contacts during intercalation in germ band extension in Drosophila embryos follows intriguingly simple quantitative laws. The mean contact length < L > follows < L > (t) ~(T - t) α , where T is the finite collapse time; the time dependent variance of contact length is proportional to the square of the mean; finally the time dependent probability density of the contact lengths remains close to Gaussian during the entire process. These observations suggest that the dynamics of contact collapse can be captured by a stochastic differential equation analytically tractable in small noise approximation. Here, we present such a model, providing an effective description of the non-equilibrium statistical mechanics of contact collapse. All model parameters are fixed by measurements of time dependent mean and variance of contact lengths. The model predicts the contact length covariance function that we obtain in closed form. The contact length covariance function closely matches experimental observations suggesting that the model well captures the dynamics of contact collapse.

  10. Characteristics and EGFP expression of porcine mammary gland epithelial cells.

    PubMed

    Zheng, Yue-Mao; He, Xiao-Ying

    2010-12-01

    The aims of this study were to establish a porcine mammary gland epithelial (PMGE) cell line, and to determine if these PMGE cells could be maintained long-term in culture by continuous subculturing following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Primary culture of PMGE cells was achieved by outgrowth of migrating cells from the fragments of the mammary gland tissue of a lactating pig. The passage sixteen PMGE cells were transfected with EGFP gene using lipofection. The expression of Cell keratins of epithelial cells in PMGE cells was tested by immunofluorescence. Βeta-Casein gene mRNA was tested for PMGE cells by RT-PCR. The results showed that PMGE cells could form dome-like structure which looked like nipple, and the cells contained different cell types. The expression of Cell keratins demonstrated the property of epithelial cells, and the PMGE cells could express transcript encoding a Βeta-Casein protein. EGFP gene was successfully transferred into the PMGE cells, and the transfected cells could be maintained long-term in culture by continuous subculturing. In conclusion, we have established a EGFP gene transfected porcine mammary gland epithelial (ET-PMGE) cell line. PMID:20400167

  11. Cell volume regulation in epithelial physiology and cancer

    PubMed Central

    Pedersen, Stine F.; Hoffmann, Else K.; Novak, Ivana

    2013-01-01

    The physiological function of epithelia is transport of ions, nutrients, and fluid either in secretory or absorptive direction. All of these processes are closely related to cell volume changes, which are thus an integrated part of epithelial function. Transepithelial transport and cell volume regulation both rely on the spatially and temporally coordinated function of ion channels and transporters. In healthy epithelia, specific ion channels/transporters localize to the luminal and basolateral membranes, contributing to functional epithelial polarity. In pathophysiological processes such as cancer, transepithelial and cell volume regulatory ion transport are dys-regulated. Furthermore, epithelial architecture and coordinated ion transport function are lost, cell survival/death balance is altered, and new interactions with the stroma arise, all contributing to drug resistance. Since altered expression of ion transporters and channels is now recognized as one of the hallmarks of cancer, it is timely to consider this especially for epithelia. Epithelial cells are highly proliferative and epithelial cancers, carcinomas, account for about 90% of all cancers. In this review we will focus on ion transporters and channels with key physiological functions in epithelia and known roles in the development of cancer in these tissues. Their roles in cell survival, cell cycle progression, and development of drug resistance in epithelial cancers will be discussed. PMID:24009588

  12. MFGE8 regulates TGF-β-induced epithelial mesenchymal transition in endometrial epithelial cells in vitro.

    PubMed

    Yu, Liang; Hu, Rong; Sullivan, Claretta; Swanson, R James; Oehninger, Sergio; Sun, Ying-Pu; Bocca, Silvina

    2016-09-01

    This study investigated the role of milk fat globule-epidermal growth factor-factor 8 (MFGE8) in TGF-β-induced epithelial-mesenchymal transition (EMT) of endometrial epithelial cells. These were in vitro studies using human endometrial epithelial cells and mouse blastocysts. We investigated the ability of TGF-β to induce EMT in endometrial epithelial cells (HEC-1A) by assessment of cytological phenotype (by light and atomic force microscopy), changes in expression of the markers of cell adhesion/differentiation E- and N-cadherin, and of the transcription factor Snail (by immunofluorescence and immunoblotting), and competence to support embryo attachment in a mouse blastocyst outgrowth assay. We also studied the effects of E-cadherin expression in cells transfected by retroviral shRNA vectors specifically silencing MFGE8. Results demonstrated that TGF-β induced EMT as demonstrated by phenotypic cell changes, by a switch of cadherin expression as well as by upregulation of the expression of the mesenchymal markers Snail and Vimentin. Upon MFGE8 knockdown, these processes were interfered with, suggesting that MFGE8 and TGF-β together may participate in regulation of EMT. This study demonstrated for the first time that endometrial MFGE8 modulates TGF-β-induced EMT in human endometrium cells. PMID:27340235

  13. Morphological appearances of human lens epithelial cells in culture.

    PubMed

    Power, W; Neylan, D; Collum, L

    1993-01-01

    A system for culturing human lens epithelial cells in the laboratory was developed. The morphological appearances of the cells was studied using phase contrast, scanning and transmission electron microscopy. Cell marker studies using monoclonal antibodies to cytokeratin, vimentin and epithelial membrane antigen were also performed. There was a marked increase in cell size as a function of time in culture. After 3 to 4 weeks cells showed early signs of ageing. By 6 to 8 weeks the majority of the cells had become very irregular in shape and demonstrated irregularities of the plasma membrane and intra-cytoplasmic vacuole formation. The cells stained strongly for vimentin and epithelial membrane antigen. Staining with cytokeratin was somewhat weaker. This culture technique provides us with a suitable model for studying the growth behavior of these cells. PMID:7512459

  14. Regulated Mucin Secretion from Airway Epithelial Cells

    PubMed Central

    Adler, Kenneth B.; Tuvim, Michael J.; Dickey, Burton F.

    2013-01-01

    Secretory epithelial cells of the proximal airways synthesize and secrete gel-forming polymeric mucins. The secreted mucins adsorb water to form mucus that is propelled by neighboring ciliated cells, providing a mobile barrier which removes inhaled particles and pathogens from the lungs. Several features of the intracellular trafficking of mucins make the airway secretory cell an interesting comparator for the cell biology of regulated exocytosis. Polymeric mucins are exceedingly large molecules (up to 3 × 106 Da per monomer) whose folding and initial polymerization in the ER requires the protein disulfide isomerase Agr2. In the Golgi, mucins further polymerize to form chains and possibly branched networks comprising more than 20 monomers. The large size of mucin polymers imposes constraints on their packaging into transport vesicles along the secretory pathway. Sugar side chains account for >70% of the mass of mucins, and their attachment to the protein core by O-glycosylation occurs in the Golgi. Mature polymeric mucins are stored in large secretory granules ∼1 μm in diameter. These are translocated to the apical membrane to be positioned for exocytosis by cooperative interactions among myristoylated alanine-rich C kinase substrate, cysteine string protein, heat shock protein 70, and the cytoskeleton. Mucin granules undergo exocytic fusion with the plasma membrane at a low basal rate and a high stimulated rate. Both rates are mediated by a regulated exocytic mechanism as indicated by phenotypes in both basal and stimulated secretion in mice lacking Munc13-2, a sensor of the second messengers calcium and diacylglycerol (DAG). Basal secretion is induced by low levels of activation of P2Y2 purinergic and A3 adenosine receptors by extracellular ATP released in paracrine fashion and its metabolite adenosine. Stimulated secretion is induced by high levels of the same ligands, and possibly by inflammatory mediators as well. Activated receptors are coupled to

  15. Effect of freezing on lens epithelial cell growth.

    PubMed

    Fukaya, Y; Hara, T; Hara, T; Iwata, S

    1988-05-01

    The effect of freezing on the growth of rat lens epithelial cells was studied in vitro. We found that 80% of the lens epithelial cells died after freezing at -45 degrees C for two hours and that the surviving cells could grow with the addition of growth factors or when placed on a sheet of type 4 collagen, but not when placed on a plain plastic culture dish. These results suggest that the surviving cells are at the Go phase of the cell cycle and that type 4 collagen or growth factors can initiate cell division. PMID:3294380

  16. Peptidases released by necrotic cells control CD8+ T cell cross-priming

    PubMed Central

    Gamrekelashvili, Jaba; Kapanadze, Tamar; Han, Miaojun; Wissing, Josef; Ma, Chi; Jaensch, Lothar; Manns, Michael P.; Armstrong, Todd; Jaffee, Elizabeth; White, Ayla O.; Citrin, Deborah E.; Korangy, Firouzeh; Greten, Tim F.

    2013-01-01

    Cross-priming of CD8+ T cells and generation of effector immune responses is pivotal for tumor immunity as well as for successful anticancer vaccination and therapy. Dead and dying cells produce signals that can influence Ag processing and presentation; however, there is conflicting evidence regarding the immunogenicity of necrotic cell death. We used a mouse model of sterile necrosis, in which mice were injected with sterile primary necrotic cells, to investigate a role of these cells in priming of CD8+ T cells. We discovered a molecular mechanism operating in Ag donor cells that regulates cross-priming of CD8+ T cells during primary sterile necrosis and thereby controls adaptive immune responses. We found that the cellular peptidases dipeptidyl peptidase 3 (DPP-3) and thimet oligopeptidase 1 (TOP-1), both of which are present in nonimmunogenic necrotic cells, eliminated proteasomal degradation products and blocked Ag cross-presentation. While sterile necrotic tumor cells failed to induce CD8+ T cell responses, their nonimmunogenicity could be reversed in vitro and in vivo by inactivation of DPP-3 and TOP-1. These results indicate that control of cross-priming and thereby immunogenicity of primary sterile necrosis relies on proteasome-dependent oligopeptide generation and functional status of peptidases in Ag donor cells. PMID:24216478

  17. Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon.

    PubMed

    Le Bon, Agnes; Etchart, Nathalie; Rossmann, Cornelia; Ashton, Miranda; Hou, Sam; Gewert, Dirk; Borrow, Persephone; Tough, David F

    2003-10-01

    CD8+ T cell responses can be generated against antigens that are not expressed directly within antigen-presenting cells (APCs), through a process known as cross-priming. To initiate cross-priming, APCs must both capture extracellular antigen and receive specific activation signals. We have investigated the nature of APC activation signals associated with virus infection that stimulate cross-priming. We show that infection with lymphocytic choriomeningitis virus induces cross-priming by a mechanism dependent on type I interferon (IFN-alpha/beta). Activation of cross-priming by IFN-alpha/beta was independent of CD4+ T cell help or interaction of CD40 and CD40 ligand, and involved direct stimulation of dendritic cells. These data identify expression of IFN-alpha/beta as a mechanism for the induction of cross-priming during virus infections. PMID:14502286

  18. ONCOGENE ALTERNATIONS IN IN VITRO TRANSFORMED RAT TRACHEAL EPITHELIAL CELLS

    EPA Science Inventory

    Ten derivations of rat tracheal epithelial (RTE) cells, including normal cells, normal primary cultures, 7 tumorigenic cell lines and 1 non-tumorigenic cell line transformed by treatment with 7,12-dimethylbenz(a)anthracene (DMBA), benzo(a)pyrene (BP) and/or 12-0-tetradecanoylphor...

  19. Left-right asymmetric cell intercalation drives directional collective cell movement in epithelial morphogenesis

    NASA Astrophysics Data System (ADS)

    Sato, Katsuhiko; Hiraiwa, Tetsuya; Maekawa, Emi; Isomura, Ayako; Shibata, Tatsuo; Kuranaga, Erina

    2015-12-01

    Morphogenetic epithelial movement occurs during embryogenesis and drives complex tissue formation. However, how epithelial cells coordinate their unidirectional movement while maintaining epithelial integrity is unclear. Here we propose a novel mechanism for collective epithelial cell movement based on Drosophila genitalia rotation, in which epithelial tissue rotates clockwise around the genitalia. We found that this cell movement occurs autonomously and requires myosin II. The moving cells exhibit repeated left-right-biased junction remodelling, while maintaining adhesion with their neighbours, in association with a polarized myosin II distribution. Reducing myosinID, known to cause counter-clockwise epithelial-tissue movement, reverses the myosin II distribution. Numerical simulations revealed that a left-right asymmetry in cell intercalation is sufficient to induce unidirectional cellular movement. The cellular movement direction is also associated with planar cell-shape chirality. These findings support a model in which left-right asymmetric cell intercalation within an epithelial sheet drives collective cellular movement in the same direction.

  20. Control of Francisella tularensis Intracellular Growth by Pulmonary Epithelial Cells

    PubMed Central

    Maggio, Savannah; Takeda, Kazuyo; Stark, Felicity; Meierovics, Anda I.; Yabe, Idalia; Cowley, Siobhan C.

    2015-01-01

    The virulence of F. tularensis is often associated with its ability to grow in macrophages, although recent studies show that Francisella proliferates in multiple host cell types, including pulmonary epithelial cells. Thus far little is known about the requirements for killing of F. tularensis in the non-macrophage host cell types that support replication of this organism. Here we sought to address this question through the use of a murine lung epithelial cell line (TC-1 cells). Our data show that combinations of the cytokines IFN-γ, TNF, and IL-17A activated murine pulmonary epithelial cells to inhibit the intracellular growth of the F. tularensis Live Vaccine Strain (LVS) and the highly virulent F. tularensis Schu S4 strain. Although paired combinations of IFN-γ, TNF, and IL-17A all significantly controlled LVS growth, simultaneous treatment with all three cytokines had the greatest effect on LVS growth inhibition. In contrast, Schu S4 was more resistant to cytokine-induced growth effects, exhibiting significant growth inhibition only in response to all three cytokines. Since one of the main antimicrobial mechanisms of activated macrophages is the release of reactive nitrogen intermediates (RNI) via the activity of iNOS, we investigated the role of RNI and iNOS in Francisella growth control by pulmonary epithelial cells. NOS2 gene expression was significantly up-regulated in infected, cytokine-treated pulmonary epithelial cells in a manner that correlated with LVS and Schu S4 growth control. Treatment of LVS-infected cells with an iNOS inhibitor significantly reversed LVS killing in cytokine-treated cultures. Further, we found that mouse pulmonary epithelial cells produced iNOS during in vivo respiratory LVS infection. Overall, these data demonstrate that lung epithelial cells produce iNOS both in vitro and in vivo, and can inhibit Francisella intracellular growth via reactive nitrogen intermediates. PMID:26379269

  1. Epimorphin Functions as a Key Morphoregulator for Mammary Epithelial Cells

    SciTech Connect

    Hirai, H.; Lochter, A.; Galosy, S.; Koshida, S.; Niwa, S.; Bissell, M.J.

    1997-10-13

    Hepatocyte growth factor (HGF) and EGF have been reported to promote branching morphogenesis of mammary epithelial cells. We now show that it is epimorphin that is primarily responsible for this phenomenon. In vivo, epimorphin was detected in the stromal compartment but not in lumenal epithelial cells of the mammary gland; in culture, however, a subpopulation of mammary epithelial cells produced significant amounts of epimorphin. When epimorphin-expressing epithelial cell clones were cultured in collagen gels they displayed branching morphogenesis in the presence of HGF, EGF, keratinocyte growth factor, or fibroblast growth factor, a process that was inhibited by anti-epimorphin but not anti-HGF antibodies. The branch length, however, was roughly proportional to the ability of the factors to induce growth. Accordingly, epimorphin-negative epithelial cells simply grew in a cluster in response to the growth factors and failed to branch. When recombinant epimorphin was added to these collagen gels, epimorphin-negative cells underwent branching morphogenesis. The mode of action of epimorphin on morphogenesis of the gland, however, was dependent on how it was presented to the mammary cells. If epimorphin was overexpressed in epimorphin-negative epithelial cells under regulation of an inducible promoter or was allowed to coat the surface of each epithelial cell in a nonpolar fashion, the cells formed globular, alveoli-like structures with a large central lumen instead of branching ducts. This process was enhanced also by addition of HGF, EGF, or other growth factors and was inhibited by epimorphin antibodies. These results suggest that epimorphin is the primary morphogen in the mammary gland but that growth factors are necessary to achieve the appropriate cell numbers for the resulting morphogenesis to be visualized.

  2. Interferons Mediate Terminal Differentiation of Human Cortical Thymic Epithelial Cells

    PubMed Central

    Vidalain, Pierre-Olivier; Laine, David; Zaffran, Yona; Azocar, Olga; Servet-Delprat, Christine; Wild, T. Fabian; Rabourdin-Combe, Chantal; Valentin, Hélène

    2002-01-01

    In the thymus, epithelial cells comprise a heterogeneous population required for the generation of functional T lymphocytes, suggesting that thymic epithelium disruption by viruses may compromise T-cell lymphopoiesis in this organ. In a previous report, we demonstrated that in vitro, measles virus induced differentiation of cortical thymic epithelial cells as characterized by (i) cell growth arrest, (ii) morphological and phenotypic changes, and (iii) apoptotis as a final step of this process. In the present report, we have analyzed the mechanisms involved. First, measles virus-induced differentiation of thymic epithelial cells is shown to be strictly dependent on beta interferon (IFN-β) secretion. In addition, transfection with double-stranded RNA, a common intermediate of replication for a broad spectrum of viruses, is reported to similarly mediate thymic epithelial cell differentiation through IFN-β induction. Finally, we demonstrated that recombinant IFN-α, IFN-β, or IFN-γ was sufficient to induce differentiation and apoptosis of uninfected thymic epithelial cells. These observations suggested that interferon secretion by either infected cells or activated leukocytes, such as plasmacytoid dendritic cells or lymphocytes, may induce thymic epithelium disruption in a pathological context. Thus, we have identified a new mechanism that may contribute to thymic atrophy and altered T-cell lymphopoiesis associated with many infections. PMID:12050353

  3. Inhibition of corneal epithelial cell migration by cadmium and mercury

    SciTech Connect

    Ubels, J.L.; Osgood, T.B. Medical Coll. of Wisconsin, Milwaukee )

    1991-02-01

    In a previous comparative study of corneal healing in fish, the authors observed that corneal epithelial healing occurs very rapidly in vivo in the marine teleost Myoxocephalus octodecimspinosus (longhorn sculpin) with a 6-mm diameter wound on the mammalian cornea. This rapid healing which permits prompt restoration of the epithelial barrier is apparently an adaptation to the large ionic and osmotic gradients between the environment and the intraocular fluids of the fish. These observations suggested that epithelial healing in the sculpin cornea might be useful model in aquatic biomedical toxicology if an in vitro method for measurement of healing rates could be developed. In this report the authors demonstrate that sculpin eyes maintained in short-term organ culture have a rapid corneal epithelial healing response and that this model can be used to demonstrate the toxic effects of heavy metals on epithelial cell migration.

  4. Role of autophagy in the regulation of epithelial cell junctions.

    PubMed

    Nighot, Prashant; Ma, Thomas

    2016-01-01

    Autophagy is a cell survival mechanism by which bulk cytoplasmic material, including soluble macromolecules and organelles, is targeted for lysosomal degradation. The role of autophagy in diverse cellular processes such as metabolic stress, neurodegeneration, cancer, aging, immunity, and inflammatory diseases is being increasingly recognized. Epithelial cell junctions play an integral role in the cell homeostasis via physical binding, regulating paracellular pathways, integrating extracellular cues into intracellular signaling, and cell-cell communication. Recent data indicates that cell junction composition is very dynamic. The junctional protein complexes are actively regulated in response to various intra- and extra-cellular clues by intracellular trafficking and degradation pathways. This review discusses the recent and emerging information on how autophagy regulates various epithelial cell junctions. The knowledge of autophagy regulation of epithelial junctions will provide further rationale for targeting autophagy in a wide variety of human disease conditions. PMID:27583189

  5. Characteristics and EGFP expression of goat mammary gland epithelial cells.

    PubMed

    Zheng, Y-M; He, X-Y; Zhang, Y

    2010-12-01

    The aims of this study were (i) to establish a goat mammary gland epithelial (GMGE) cell line, and (ii) to determine if these GMGE cells could be maintained long-term in culture by continuous subculturing following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Primary culture of GMGE cells was achieved by outgrowth of migrating cells from the fragments of the mammary gland tissue of a lactating goat. The passage 16 GMGE cells were transfected with EGFP gene using lipofection. The expression of Cell keratins of epithelial cells in GMGE cells was test by immunofluorescence. Βeta-Casein gene mRNA was test for GMGE cells by RT-PCR. The results showed that when grown at low density on a plastic substratum, the GMGE cells formed islands, and when grown to confluency, the cells formed a monolayer and aggregated with the characteristic cobble-stone morphology of epithelial cells. GMGE cells could form dome-like structure which looked like nipple, and the lumen-like structures formed among the cells. Several blister-like structures appeared in the appearance of the cells. The GMGE cells contained different cell types, majority of the cells were short shuttle-like or polygon which were beehive-like. A part of cells were round and flat, a small number of cells were elongated. Some of the GMGE cells contained milk drops. The cell nuclei were round which had 2-4 obvious cores. The expression of Cell keratins demonstrated the property of epithelial cells in GMGE cells by immunofluorescence. The GMGE cells could express transcript encoding a Βeta-Casein protein. EGFP gene was successfully transferred into the GMGE cells, and the transfected cells could be maintained long-term in culture by continuous subculturing. In conclusion, we have established a EGFP gene transfected GMGE (ET-GMGE) cell line and maintained it long-term in culture by continuous subculturing. PMID:20113446

  6. The Epithelial Cell in Lung Health and Emphysema Pathogenesis

    PubMed Central

    Mercer, Becky A.; Lemaître, Vincent; Powell, Charles A.; D’Armiento, Jeanine

    2009-01-01

    Cigarette smoking is the primary cause of the irreversible lung disease emphysema. Historically, inflammatory cells such as macrophages and neutrophils have been studied for their role in emphysema pathology. However, recent studies indicate that the lung epithelium is an active participant in emphysema pathogenesis and plays a critical role in the lung’s response to cigarette smoke. Tobacco smoke increases protease production and alters cytokine expression in isolated epithelial cells, suggesting that these cells respond potently even in the absence of a complete inflammatory program. Tobacco smoke also acts as an immunosuppressant, reducing the defense function of airway epithelial cells and enhancing colonization of the lower airways. Thus, the paradigm that emphysema is strictly an inflammatory-cell based disease is shifting to consider the involvement of resident epithelial cells. Here we review the role of epithelial cells in lung development and emphysema. To better understand tobacco-epithelial interactions we performed microarray analyses of RNA from human airway epithelial cells exposed to smoke extract for 24 hours. These studies identified differential regulation of 425 genes involved in diverse biological processes, such as apoptosis, immune function, cell cycle, signal transduction, proliferation, and antioxidants. Some of these genes, including VEGF, glutathione peroxidase, IL-13 receptor, and cytochrome P450, have been previously reported to be altered in the lungs of smokers. Others, such as pirin, cathepsin L, STAT1, and BMP2, are shown here for the first time to have a potential role in smoke-associated injury. These data broaden our understanding of the importance of epithelial cells in lung health and cigarette smoke-induced emphysema. PMID:19662102

  7. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties

    PubMed Central

    Gudjonsson, Thorarinn; Villadsen, René; Nielsen, Helga Lind; Rønnov-Jessen, Lone; Bissell, Mina J.; Petersen, Ole William

    2002-01-01

    The epithelial compartment of the human breast comprises two distinct lineages: the luminal epithelial and the myoepithelial lineage. We have shown previously that a subset of the luminal epithelial cells could convert to myoepithelial cells in culture signifying the possible existence of a progenitor cell. We therefore set out to identify and isolate the putative precursor in the luminal epithelial compartment. Using cell surface markers and immunomagnetic sorting, we isolated two luminal epithelial cell populations from primary cultures of reduction mammoplasties. The major population coexpresses sialomucin (MUC+) and epithelial-specific antigen (ESA+) whereas the minor population has a suprabasal position and expresses epithelial specific antigen but no sialomucin (MUC−/ESA+). Two cell lines were further established by transduction of the E6/E7 genes from human papilloma virus type 16. Both cell lines maintained a luminal epithelial phenotype as evidenced by expression of the tight junction proteins, claudin-1 and occludin, and by generation of a high transepithelial electrical resistance on semipermeable filters. Whereas in clonal cultures, the MUC+/ESA+ epithelial cell line was luminal epithelial restricted in its differentiation repertoire, the suprabasal-derived MUC−/ESA+ epithelial cell line was able to generate itself as well as MUC+/ESA+ epithelial cells and Thy-1+/α-smooth muscle actin+ (ASMA+) myoepithelial cells. The MUC−/ESA+ epithelial cell line further differed from the MUC+/ESA+ epithelial cell line by the expression of keratin K19, a feature of a subpopulation of epithelial cells in terminal duct lobular units in vivo. Within a reconstituted basement membrane, the MUC+/ESA+ epithelial cell line formed acinus-like spheres. In contrast, the MUC−/ESA+ epithelial cell line formed elaborate branching structures resembling uncultured terminal duct lobular units both by morphology and marker expression. Similar structures were obtained by

  8. Evidence for the multistep nature of in vitro human epithelial cell carcinogenesis

    SciTech Connect

    Rhim, J.S.; Yoo, J.H.; Park, J.H.; Thraves, P.; Salehi, Z.; Dritschilo, A. )

    1990-09-01

    In keeping with the multistep development of human cancer in vivo, a stepwise approach to neoplastic transformation in vitro presents a reasonable strategy. We have recently developed an in vitro multistep model suitable for the study of human epithelial cell carcinogenesis. Upon infection with the adenovirus 12-simian virus 40 hybrid virus, primary human epidermal keratinocytes acquired an indefinite life span in culture but did not undergo malignant conversion. Subsequent addition of Kirsten murine sarcoma virus and human ras oncogene or chemical carcinogens (N-methyl-N{prime}-nitro-N-nitrosoguanidine or 4-nitroquinoline 1-oxide) to these cells induced morphological alterations and the acquisition of neoplastic properties. Subsequently it was found that this line could be transformed neoplastically by a variety of retrovirus-containing H-ras, bas, fes, fms, erbB, and src oncogenes. In addition, we found that the immortalized human epidermal keratinocyte (RHEK-1) line can be transformed neoplastically by exposure to ionizing radiation. Thus, this in vitro system may be useful in studying the interaction of a variety of carcinogenic agents and human epithelial cells. These findings demonstrate the malignant transformation of human primary epithelial cells in culture by the combined action of viruses, oncogenes, chemical carcinogens, or X-ray irradiation and support a multistep process for neoplastic conversion.

  9. Phototoxic aptamers selectively enter and kill epithelial cancer cells

    PubMed Central

    Ferreira, Cátia S. M.; Cheung, Melissa C.; Missailidis, Sotiris; Bisland, Stuart; Gariépy, Jean

    2009-01-01

    The majority of cancers arise from malignant epithelial cells. We report the design of synthetic oligonucleotides (aptamers) that are only internalized by epithelial cancer cells and can be precisely activated by light to kill such cells. Specifically, phototoxic DNA aptamers were selected to bind to unique short O-glycan-peptide signatures on the surface of breast, colon, lung, ovarian and pancreatic cancer cells. These surface antigens are not present on normal epithelial cells but are internalized and routed through endosomal and Golgi compartments by cancer cells, thus providing a focused mechanism for their intracellular delivery. When modified at their 5′ end with the photodynamic therapy agent chlorin e6 and delivered to epithelial cancer cells, these aptamers exhibited a remarkable enhancement (>500-fold increase) in toxicity upon light activation, compared to the drug alone and were not cytotoxic towards cell types lacking such O-glycan-peptide markers. Our findings suggest that these synthetic oligonucleotide aptamers can serve as delivery vehicles in precisely routing cytotoxic cargoes to and into epithelial cancer cells. PMID:19103663

  10. Probiotics promote endocytic allergen degradation in gut epithelial cells

    SciTech Connect

    Song, Chun-Hua; Liu, Zhi-Qiang; Huang, Shelly; Zheng, Peng-Yuan; Yang, Ping-Chang

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  11. Single-Cell Transcript Profiles Reveal Multilineage Priming in Early Progenitors Derived from Lgr5(+) Intestinal Stem Cells.

    PubMed

    Kim, Tae-Hee; Saadatpour, Assieh; Guo, Guoji; Saxena, Madhurima; Cavazza, Alessia; Desai, Niyati; Jadhav, Unmesh; Jiang, Lan; Rivera, Miguel N; Orkin, Stuart H; Yuan, Guo-Cheng; Shivdasani, Ramesh A

    2016-08-23

    Lgr5(+) intestinal stem cells (ISCs) drive epithelial self-renewal, and their immediate progeny-intestinal bipotential progenitors-produce absorptive and secretory lineages via lateral inhibition. To define features of early transit from the ISC compartment, we used a microfluidics approach to measure selected stem- and lineage-specific transcripts in single Lgr5(+) cells. We identified two distinct cell populations, one that expresses known ISC markers and a second, abundant population that simultaneously expresses markers of stem and mature absorptive and secretory cells. Single-molecule mRNA in situ hybridization and immunofluorescence verified expression of lineage-restricted genes in a subset of Lgr5(+) cells in vivo. Transcriptional network analysis revealed that one group of Lgr5(+) cells arises from the other and displays characteristics expected of bipotential progenitors, including activation of Notch ligand and cell-cycle-inhibitor genes. These findings define the earliest steps in ISC differentiation and reveal multilineage gene priming as a fundamental property of the process. PMID:27524622

  12. CD4+ T Cell Priming as Biomarker to Study Immune Response to Preventive Vaccines

    PubMed Central

    Ciabattini, Annalisa; Pettini, Elena; Medaglini, Donata

    2013-01-01

    T cell priming is a critical event in the initiation of the immune response to vaccination since it deeply influences both the magnitude and the quality of the immune response induced. CD4+ T cell priming, required for the induction of high-affinity antibodies and immune memory, represents a key target for improving and modulating vaccine immunogenicity. A major challenge in the study of in vivo T cell priming is due to the low frequency of antigen-specific T cells. This review discusses the current knowledge on antigen-specific CD4+ T cell priming in the context of vaccination, as well as the most advanced tools for the characterization of the in vivo T cell priming and the opportunities offered by the application of systems biology. PMID:24363656

  13. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers.

    PubMed

    Bergstralh, Dan T; Lovegrove, Holly E; St Johnston, Daniel

    2015-11-01

    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium. Here we test this assumption in three types of Drosophila epithelium; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells seems to be driven by lateral adhesion, which pulls cells born outside the epithelial layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions. PMID:26414404

  14. Lingual Epithelial Stem Cells and Organoid Culture of Them

    PubMed Central

    Hisha, Hiroko; Tanaka, Toshihiro; Ueno, Hiroo

    2016-01-01

    As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP), were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine. PMID:26828484

  15. Effects of ethanol on an intestinal epithelial cell line

    SciTech Connect

    Nano, J.L.; Cefai, D.; Rampal, P. )

    1990-02-01

    The effect of exposure of an intestinal epithelial cell line to various concentrations of ethanol (217 mM (1%) to 652 mM (3%)) during 24, 48, and 72 hr was investigated in vitro using a rat intestinal epithelial cell line (IRD 98). Incubation of these cells in the presence of ethanol significantly decreased cell growth. This inhibition was accompanied by a strong increase in cellular protein. Stimulation of specific disaccharidases, gamma-glutamyl transferase, and aminopeptidase activities by ethanol was dose- and time-dependent. Ethanol induces a change in the relative proportions of the different lipid classes synthesized; triglycerides, fatty acids, and cholesterol esters were preferentially synthethysed. Our findings show that cell lines are good models for investigation of the effects of ethanol, and that alcohol considerably modifies the functions of intestinal epithelial cells.

  16. Development of human epithelial cell systems for radiation risk assessment

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Craise, L. M.

    1994-01-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-Linear Energy Transfer (LET) radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic tranformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  17. Medullary thymic epithelial stem cells: role in thymic epithelial cell maintenance and thymic involution.

    PubMed

    Hamazaki, Yoko; Sekai, Miho; Minato, Nagahiro

    2016-05-01

    The thymus consists of two distinct anatomical regions, the cortex and the medulla; medullary thymic epithelial cells (mTECs) play a crucial role in establishing central T-cell tolerance for self-antigens. Although the understanding of mTEC development in thymic organogenesis as well as the regulation of their differentiation and maturation has improved, the mechanisms of postnatal maintenance remain poorly understood. This issue has a central importance in immune homeostasis and physiological thymic involution as well as autoimmune disorders in various clinicopathological settings. Recently, several reports have demonstrated the existence of TEC stem or progenitor cells in the postnatal thymus, which are either bipotent or unipotent. We identified stem cells specified for mTEC-lineage that are generated in the thymic ontogeny and may sustain mTEC regeneration and lifelong central T-cell self-tolerance. This finding suggested that the thymic medulla is maintained autonomously by its own stem cells. Although several issues, including the relationship with other putative TEC stem/progenitors, remain unclear, further examination of mTEC stem cells (mTECSCs) and their regulatory mechanisms may contribute to the understanding of postnatal immune homeostasis. Possible relationships between decline of mTECSC activity and early thymic involution as well as various autoimmune disorders are discussed. PMID:27088906

  18. Dysregulation of cell polarity proteins synergize with oncogenes or the microenvironment to induce invasive behavior in epithelial cells.

    PubMed

    Chatterjee, Samit; Seifried, Laurie; Feigin, Michael E; Gibbons, Don L; Scuoppo, Claudio; Lin, Wei; Rizvi, Zain H; Lind, Evan; Dissanayake, Dilan; Kurie, Jonathan; Ohashi, Pam; Muthuswamy, Senthil K

    2012-01-01

    Changes in expression and localization of proteins that regulate cell and tissue polarity are frequently observed in carcinoma. However, the mechanisms by which changes in cell polarity proteins regulate carcinoma progression are not well understood. Here, we report that loss of polarity protein expression in epithelial cells primes them for cooperation with oncogenes or changes in tissue microenvironment to promote invasive behavior. Activation of ErbB2 in cells lacking the polarity regulators Scribble, Dlg1 or AF-6, induced invasive properties. This cooperation required the ability of ErbB2 to regulate the Par6/aPKC polarity complex. Inhibition of the ErbB2-Par6 pathway was sufficient to block ErbB2-induced invasion suggesting that two polarity hits may be needed for ErbB2 to promote invasion. Interestingly, in the absence of ErbB2 activation, either a combined loss of two polarity proteins, or exposure of cells lacking one polarity protein to cytokines IL-6 or TNFα induced invasive behavior in epithelial cells. We observed the invasive behavior only when cells were plated on a stiff matrix (Matrigel/Collagen-1) and not when plated on a soft matrix (Matrigel alone). Cells lacking two polarity proteins upregulated expression of EGFR and activated Akt. Inhibition of Akt activity blocked the invasive behavior identifying a mechanism by which loss of polarity promotes invasion of epithelial cells. Thus, we demonstrate that loss of polarity proteins confers phenotypic plasticity to epithelial cells such that they display normal behavior under normal culture conditions but display aggressive behavior in response to activation of oncogenes or exposure to cytokines. PMID:22529912

  19. Induction of apoptosis in oral epithelial cells by Candida albicans.

    PubMed

    Villar, C Cunha; Chukwuedum Aniemeke, J; Zhao, X-R; Huynh-Ba, G

    2012-12-01

    During infection, interactions between Candida albicans and oral epithelial cells result in oral epithelial cell death. This is clinically manifested by the development of oral mucosal ulcerations generally associated with discomfort. In vitro studies have shown that C. albicans induces early apoptotic alterations in oral epithelial cells; however, these studies have also shown that treatment of infected cells with caspase inhibitors does not prevent their death. The reasons for these contradictory results are unknown and it is still not clear if C. albicans stimulates oral epithelial signaling pathways that promote apoptotic cell death. Activation of specific death pathways in response to microbial organisms plays an essential role in modulating the pathogenesis of a variety of infectious diseases. The aim of this study was to (i) characterize C. albicans-induced apoptotic morphological alterations in oral epithelial cells, and (ii) investigate the activation of apoptotic signaling pathways and expression of apoptotic genes during infection. Candida albicans induced early apoptotic changes in over 50% of oral epithelial cells. However, only 15% of those showed mid-late apoptotic alterations. At the molecular level, C. albicans caused a loss of the mitochondrial transmembrane potential and translocation of mitochondrial cytochrome c. Caspase-3/9 activities increased only during the first hours of infection. Moreover, poly[ADP ribose] polymerase 1 was cleaved into apoptotic and necrotic-like fragments. Finally, five anti-apoptotic genes were significantly upregulated and two pro-apoptotic genes were downregulated during infection. Altogether, these findings indicate that epithelial apoptotic pathways are activated in response to C. albicans, but fail to progress and promote apoptotic cell death. PMID:23134609

  20. Fabrication of transplantable corneal epithelial and oral mucosal epithelial cell sheets using a novel temperature-responsive closed culture device.

    PubMed

    Nakajima, Ryota; Kobayashi, Toyoshige; Kikuchi, Tetsutaro; Kitano, Yuriko; Watanabe, Hiroya; Mizutani, Manabu; Nozaki, Takayuki; Senda, Naoko; Saitoh, Kazuo; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-05-01

    Temperature-responsive culture surfaces make it possible to harvest transplantable carrier-free cell sheets. Here, we applied temperature-responsive polymer for polycarbonate surfaces with previously developed closed culture devices for an automated culture system in order to fabricate transplantable stratified epithelial cell sheets. Histological and immunohistochemical analyses and colony-forming assays revealed that corneal epithelial and oral mucosal epithelial cell sheets could be harvested with the temperature-responsive closed culture devices. The results were similar to those obtained using temperature-responsive culture inserts. These results indicate that the novel temperature-responsive closed culture device is useful for fabricating transplantable stratified epithelial cell sheets. PMID:23475606

  1. Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling

    PubMed Central

    Kamimoto, Kenji; Kaneko, Kota; Kok, Cindy Yuet-Yin; Okada, Hajime; Miyajima, Atsushi; Itoh, Tohru

    2016-01-01

    Dynamic remodeling of the intrahepatic biliary epithelial tissue plays key roles in liver regeneration, yet the cellular basis for this process remains unclear. We took an unbiased approach based on in vivo clonal labeling and tracking of biliary epithelial cells in the three-dimensional landscape, in combination with mathematical simulation, to understand their mode of proliferation in a mouse liver injury model where the nascent biliary structure formed in a tissue-intrinsic manner. An apparent heterogeneity among biliary epithelial cells was observed: whereas most of the responders that entered the cell cycle upon injury exhibited a limited and tapering growth potential, a select population continued to proliferate, making a major contribution in sustaining the biliary expansion. Our study has highlighted a unique mode of epithelial tissue dynamics, which depends not on a hierarchical system driven by fixated stem cells, but rather, on a stochastically maintained progenitor population with persistent proliferative activity. DOI: http://dx.doi.org/10.7554/eLife.15034.001 PMID:27431614

  2. CHARACTERIZATION OF ALVEOLAR EPITHELIAL CELLS CULTURED IN SEMIPERMEABLE HOLLOW FIBERS

    PubMed Central

    Grek, Christina L.; Newton, Danforth A.; Qiu, Yonhzhi; Wen, Xuejun; Spyropoulos, Demetri D.; Baatz, John E.

    2012-01-01

    Cell culture methods commonly used to represent alveolar epithelial cells in vivo have lacked airflow, a 3-dimensional air-liquid interface, and dynamic stretching characteristics of native lung tissue—physiological parameters critical for normal phenotypic gene expression and cellular function. Here the authors report the development of a selectively semipermeable hollow fiber culture system that more accurately mimics the in vivo microenvironment experienced by mammalian distal airway cells than in conventional or standard air-liquid interface culture. Murine lung epithelial cells (MLE-15) were cultured within semipermeable polyurethane hollow fibers and introduced to controlled airflow through the microfiber interior. Under these conditions, MLE-15 cells formed confluent monolayers, demonstrated a cuboidal morphology, formed tight junctions, and produced and secreted surfactant proteins. Numerous lamellar bodies and microvilli were present in MLE-15 cells grown in hollow fiber culture. Conversely, these alveolar type II cell characteristics were reduced in MLE-15 cells cultured in conventional 2D static culture systems. These data support the hypothesis that MLE-15 cells grown within our microfiber culture system in the presence of airflow maintain the phenotypic characteristics of type II cells to a higher degree than those grown in standard in vitro cell culture models. Application of our novel model system may prove advantageous for future studies of specific gene and protein expression involving alveolar epithelial or bronchiolar epithelial cells. PMID:19263283

  3. Apoptotic epithelial cells control the abundance of Treg cells at barrier surfaces.

    PubMed

    Nakahashi-Oda, Chigusa; Udayanga, Kankanam Gamage Sanath; Nakamura, Yoshiyuki; Nakazawa, Yuta; Totsuka, Naoya; Miki, Haruka; Iino, Shuichi; Tahara-Hanaoka, Satoko; Honda, Shin-ichiro; Shibuya, Kazuko; Shibuya, Akira

    2016-04-01

    Epithelial tissues continually undergo apoptosis. Commensal organisms that inhabit the epithelium influence tissue homeostasis, in which regulatory T cells (Treg cells) have a central role. However, the physiological importance of epithelial cell apoptosis and how the number of Treg cells is regulated are both incompletely understood. Here we found that apoptotic epithelial cells negatively regulated the commensal-stimulated proliferation of Treg cells. Gut commensals stimulated CX3CR1(+)CD103(-)CD11b(+) dendritic cells (DCs) to produce interferon-β (IFN-β), which augmented the proliferation of Treg cells in the intestine. Conversely, phosphatidylserine exposed on apoptotic epithelial cells suppressed IFN-β production by the DCs via inhibitory signaling mediated by the cell-surface glycoprotein CD300a and thus suppressed Treg cell proliferation. Our findings reveal a regulatory role for apoptotic epithelial cells in maintaining the number of Treg cell and tissue homeostasis. PMID:26855029

  4. Mechanobiology in Lung Epithelial Cells: Measurements, Perturbations, and Responses

    PubMed Central

    Waters, Christopher M.; Roan, Esra; Navajas, Daniel

    2015-01-01

    Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis. PMID:23728969

  5. Hyperglycemic Conditions Prime Cells for RIP1-dependent Necroptosis.

    PubMed

    LaRocca, Timothy J; Sosunov, Sergey A; Shakerley, Nicole L; Ten, Vadim S; Ratner, Adam J

    2016-06-24

    Necroptosis is a RIP1-dependent programmed cell death (PCD) pathway that is distinct from apoptosis. Downstream effector pathways of necroptosis include formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS), both of which depend on glycolysis. This suggests that increased cellular glucose may prime necroptosis. Here we show that exposure to hyperglycemic levels of glucose enhances necroptosis in primary red blood cells (RBCs), Jurkat T cells, and U937 monocytes. Pharmacologic or siRNA inhibition of RIP1 prevented the enhanced death, confirming it as RIP1-dependent necroptosis. Hyperglycemic enhancement of necroptosis depends upon glycolysis with AGEs and ROS playing a role. Total levels of RIP1, RIP3, and mixed lineage kinase domain-like (MLKL) proteins were increased following treatment with high levels of glucose in Jurkat and U937 cells and was not due to transcriptional regulation. The observed increase in RIP1, RIP3, and MLKL protein levels suggests a potential positive feedback mechanism in nucleated cell types. Enhanced PCD due to hyperglycemia was specific to necroptosis as extrinsic apoptosis was inhibited by exposure to high levels of glucose. Hyperglycemia resulted in increased infarct size in a mouse model of brain hypoxia-ischemia injury. The increased infarct size was prevented by treatment with nec-1s, strongly suggesting that increased necroptosis accounts for exacerbation of this injury in conditions of hyperglycemia. This work reveals that hyperglycemia represents a condition in which cells are extraordinarily susceptible to necroptosis, that local glucose levels alter the balance of PCD pathways, and that clinically relevant outcomes may depend on glucose-mediated effects on PCD. PMID:27129772

  6. Lymphotoxin beta receptor signaling limits mucosal damage through driving IL-23 production by epithelial cells.

    PubMed

    Macho-Fernandez, E; Koroleva, E P; Spencer, C M; Tighe, M; Torrado, E; Cooper, A M; Fu, Y-X; Tumanov, A V

    2015-03-01

    The immune mechanisms regulating epithelial cell repair after injury remain poorly defined. We demonstrate here that lymphotoxin beta receptor (LTβR) signaling in intestinal epithelial cells promotes self-repair after mucosal damage. Using a conditional gene-targeted approach, we demonstrate that LTβR signaling in intestinal epithelial cells is essential for epithelial interleukin-23 (IL-23) production and protection against epithelial injury. We further show that epithelial-derived IL-23 promotes mucosal wound healing by inducing the IL-22-mediated proliferation and survival of epithelial cells and mucus production. Additionally, we identified CD4(-)CCR6(+)T-bet(-) RAR-related orphan receptor gamma t (RORγt)(+) lymphoid tissue inducer cells as the main producers of protective IL-22 after epithelial damage. Thus, our results reveal a novel role for LTβR signaling in epithelial cells in the regulation of intestinal epithelial cell homeostasis to limit mucosal damage. PMID:25183367

  7. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells

    SciTech Connect

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2008-06-26

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a 'cuboidal' epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-{beta}-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.

  8. Porphyromonas gingivalis invades oral epithelial cells in vitro.

    PubMed

    Sandros, J; Papapanou, P; Dahlén, G

    1993-05-01

    The aim of the present study was to analyze the adhesive and invasive potential of a number of P. gingivalis strains, in an in vitro system utilizing cultures of human oral epithelial cells (KB cell line, ATCC CCL 17). P. gingivalis strains W50 and FDC 381 (laboratory strains) and OMGS 1738, 1743 and 1439 (clinical isolates) as well as E. coli strain HB 101 (non-adhering, non-invasive control) were used. Adherence was assessed by means of scintillation counting and light microscopy, after incubation of radiolabelled bacteria with epithelial cells. In the invasion assay, monolayers were infected with the P. gingivalis and E. coli strains and further incubated with an antibiotic mixture (metronidazole 0.1 mg/ml and gentamicin 0.5 mg/ml). Invasion was evaluated by (i) assessing presence of bacteria surviving the antibiotic treatment, and (ii) electron microscopy. All P. gingivalis strains adhered to and entered into the oral epithelial cells. After 3 hours of incubation, bacteria were frequently identified intracellularly by means of electron microscopy. The cellular membranes, encapsulating the microorganisms in early stages of the invasive process, appeared later to disintegrate. The presence of coated pits on the epithelial cell surfaces suggested that internalization of P. gingivalis was associated with receptor-mediated endocytosis (RME). Formation of outer membrane vesicles (blebs) by intracellular bacteria indicated that internalized P. gingivalis was able to retain its viability. E. coli strain HB 101 neither adhered to nor invaded epithelial cells. PMID:8388449

  9. Porphyromonas gingivalis Fimbriae Bind to Cytokeratin of Epithelial Cells

    PubMed Central

    Sojar, Hakimuddin T.; Sharma, Ashu; Genco, Robert J.

    2002-01-01

    The adherence of Porphyromonas gingivalis to host cells is likely a prerequisite step in the pathogenesis of P. gingivalis-induced periodontal disease. P. gingivalis binds to and invades epithelial cells, and fimbriae are shown to be involved in this process. Little is known regarding epithelial receptor(s) involved in binding of P. gingivalis fimbriae. Using an overlay assay with purified P. gingivalis fimbriae as a probe, two major epithelial cell proteins with masses of 50 and 40 kDa were identified by immunoblotting with fimbria-specific antibodies. Iodinated purified fimbriae also bound to the same two epithelial cell proteins. An affinity chromatography technique was utilized to isolate and purify the epithelial components to which P. gingivalis fimbriae bind. Purified fimbriae were coupled to CNBr-activated Sepharose-4B, and the solubilized epithelial cell extract proteins bound to the immobilized fimbriae were isolated from the column. A major 50-kDa component and a minor 40-kDa component were purified and could be digested with trypsin, suggesting that they were proteins. These affinity-eluted 50- and 40-kDa proteins were then subjected to amino-terminal sequencing, and no sequence could be determined, suggesting that these proteins have blocked amino-terminal residues. CNBr digestion of the 50-kDa component resulted in an internal sequence homologous to that of Keratin I molecules. Further evidence that P. gingivalis fimbriae bind to cytokeratin molecule(s) comes from studies showing that multicytokeratin rabbit polyclonal antibodies cross-react with the affinity-purified 50-kDa epithelial cell surface component. Also, binding of purified P. gingivalis fimbriae to epithelial components can be inhibited in an overlay assay by multicytokeratin rabbit polyclonal antibodies. Furthermore, we showed that biotinylated purified fimbriae bind to purified human epidermal keratin in an overlay assay. These studies suggest that the surface-accessible epithelial

  10. Differentiation of porcine mesenchymal stem cells into epithelial cells as a potential therapeutic application to facilitate epithelial regeneration.

    PubMed

    Kokubun, Kelsey; Pankajakshan, Divya; Kim, Min-Jung; Agrawal, Devendra K

    2016-02-01

    Epithelial denudation is one of the characteristics of chronic asthma. To restore its functions, the airway epithelium has to rapidly repair the injuries and regenerate its structure and integrity. Mesenchymal stem cells (MSCs) have the ability to differentiate into many cell lineages. However, the differentiation of MSCs into epithelial cells has not been fully studied. Here, we examined the differentiation of MSCs into epithelial cells using three different media compositions with various growth supplementations. The MSCs were isolated from porcine bone marrow by density gradient centrifugation. The isolated MSCs were CD11(-) CD34(-) CD45(-) CD44(+) CD90(+) and CD105(+) by immunostaining and flow cytometry. MSCs were stimulated with EpiGRO (Millipore), BEpiCM (ScienCell) and AECGM (PromoCell) media for 5 and 10 days, and epithelial differentiation was assessed by qPCR (keratin 14, 18 and EpCAM), fluorometry (cytokeratin 7-8, cytokeratin 14-15-16-19 and EpCAM), western blot analysis (pancytokeratin, EpCAM) and flow cytometry (cytokeratin 7-8, cytokeratin 14-15-16-19 and EpCAM). The functional marker MUC1 was also assessed after 10 days of air-liquid interface (ALI) culture in optimized media. Cells cultured in BEpiCM containing fibroblast growth factor and prostaglandin E2 showed the highest expression of the epithelial markers: CK7-8 (85.90%); CK-14-15-16-19 (10.14%); and EpCAM (64.61%). The cells also expressed functional marker MUC1 after ALI culture. The differentiated MSCs when cultured in BEpiCM medium ex vivo in a bioreactor on a decellularized trachea for 10 days retained the epithelial-like phenotype. In conclusion, porcine bone marrow-derived MSCs demonstrate commitment to the epithelial lineage and might be a potential therapy for facilitating the repair of denuded airway epithelium. PMID:23696537

  11. Amniotic epithelial cells promote wound healing in mice through high epithelialization and engraftment.

    PubMed

    Jin, Enze; Kim, Tae-Hee; Han, Seongho; Kim, Sung-Whan

    2016-07-01

    Although human amniotic epithelial cells (AMEs) are an attractive source of stem cells, their therapeutic potential in wound healing has not been fully investigated. We evaluated the therapeutic potential of AMEs for wound healing. Real-time PCR showed that the epithelialization growth factors epidermal growth factor (EGF), platelet-derived growth factor (PDGF)-B and chemotactic factors interleukin-8 (IL-8 or CXCL8) and neutrophil-activating protein-2 (NAP-2 or CXCL7) were upregulated in AMEs compared with adipose-derived mesenchymal stem cells (ADMs). In vitro scratch wound assays revealed that AME-derived conditioned medium substantially accelerated wound closure. Wounds in NOD/SCID mice were created by skin excision, followed by AME transplantation. AMEs implantation significantly accelerated wound healing and increased cellularity and re-epithelialization. Transplanted AMEs exhibited high engraftment rates and expressed keratinocyte-specific proteins and cytokeratin in the wound area, suggesting direct benefits for cutaneous closure. Taken together, these data indicate that AMEs possess therapeutic capability for wound healing through the secretion of epithelialization growth factors and enhanced engraftment properties. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26174407

  12. Guadecitabine (SGI-110) priming sensitizes hepatocellular carcinoma cells to oxaliplatin.

    PubMed

    Kuang, Yuting; El-Khoueiry, Anthony; Taverna, Pietro; Ljungman, Mats; Neamati, Nouri

    2015-11-01

    Promoter DNA hypermethylation is an important biomarker of hepatocellular carcinoma (HCC), supporting the potential utility of demethylating agents in this disease. Guadecitabine (SGI-110) is a second-generation hypomethylating agent formulated as a dinucleotide of decitabine and deoxyguanosine that yields longer half-life and more extended decitabine exposure than decitabine IV infusion. Here we performed preclinical evaluation of SGI-110 in HCC models to guide the design of a phase I/II clinical trial. HCC cell lines and xenograft models were used to determine the antitumor activity of SGI-110 as a single agent and in combination with oxaliplatin. Pretreatment with low doses of SGI-110 significantly synergized with oxaliplatin yielding enhanced cytotoxicity. The combination of SGI-110 and oxaliplatin was well tolerated and significantly delayed tumor growth in mice compared to oxaliplatin alone. Bromouridine-labeled RNA sequencing (Bru-seq) was employed to elucidate the effects of SGI-110 and/or oxaliplatin on genome-wide transcription. SGI-110 and the combination treatment inhibited the expression of genes involved in WNT/EGF/IGF signaling. DNMT1 and survivin were identified as novel PD markers to monitor the efficacy of the combination treatment. In conclusion, SGI-110 priming sensitizes HCC cells to oxaliplatin by inhibiting distinct signaling pathways. We expect that this combination treatment will show low toxicity and high efficacy in patients. Our study supports the use of the combination of low doses of SGI-110 and oxaliplatin in HCC patients. PMID:26160429

  13. B cell priming for extrafollicular antibody responses requires Bcl-6 expression by T cells.

    PubMed

    Lee, Sau K; Rigby, Robert J; Zotos, Dimitra; Tsai, Louis M; Kawamoto, Shimpei; Marshall, Jennifer L; Ramiscal, Roybel R; Chan, Tyani D; Gatto, Dominique; Brink, Robert; Yu, Di; Fagarasan, Sidonia; Tarlinton, David M; Cunningham, Adam F; Vinuesa, Carola G

    2011-07-01

    T follicular helper cells (Tfh cells) localize to follicles where they provide growth and selection signals to mutated germinal center (GC) B cells, thus promoting their differentiation into high affinity long-lived plasma cells and memory B cells. T-dependent B cell differentiation also occurs extrafollicularly, giving rise to unmutated plasma cells that are important for early protection against microbial infections. Bcl-6 expression in T cells has been shown to be essential for the formation of Tfh cells and GC B cells, but little is known about its requirement in physiological extrafollicular antibody responses. We use several mouse models in which extrafollicular plasma cells can be unequivocally distinguished from those of GC origin, combined with antigen-specific T and B cells, to show that the absence of T cell-expressed Bcl-6 significantly reduces T-dependent extrafollicular antibody responses. Bcl-6(+) T cells appear at the T-B border soon after T cell priming and before GC formation, and these cells express low amounts of PD-1. Their appearance precedes that of Bcl-6(+) PD-1(hi) T cells, which are found within the GC. IL-21 acts early to promote both follicular and extrafollicular antibody responses. In conclusion, Bcl-6(+) T cells are necessary at B cell priming to form extrafollicular antibody responses, and these pre-GC Tfh cells can be distinguished phenotypically from GC Tfh cells. PMID:21708925

  14. High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells.

    PubMed

    Chen, Yu-Ching; Statt, Sarah; Wu, Reen; Chang, Hao-Teng; Liao, Jiunn-Wang; Wang, Chien-Neng; Shyu, Woei-Cherng; Lee, Chen-Chen

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is implicated in bronchial remodeling and loss of lung function in chronic inflammatory airway diseases. Previous studies showed the involvement of the high mobility group box 1 (HMGB1) protein in the pathology of chronic pulmonary inflammatory diseases. However, the role of HMGB1 in EMT of human airway epithelial cells is still unclear. In this study, we used RNA sequencing to show that HMGB1 treatment regulated EMT-related gene expression in human primary-airway epithelial cells. The top five upregulated genes were SNAI2, FGFBP1, VIM, SPARC (osteonectin), and SERPINE1, while the downregulated genes included OCLN, TJP1 (ZO-1), FZD7, CDH1 (E-cadherin), and LAMA5. We found that HMGB1 induced downregulation of E-cadherin and ZO-1, and upregulation of vimentin mRNA transcription and protein translation in a dose-dependent manner. Additionally, we observed that HMGB1 induced AKT phosphorylation, resulting in GSK3β inactivation, cytoplasmic accumulation, and nuclear translocation of β-catenin to induce EMT in human airway epithelial cells. Treatment with PI3K inhibitor (LY294006) and β-catenin shRNA reversed HMGB1-induced EMT. Moreover, HMGB1 induced expression of receptor for advanced glycation products (RAGE), but not that of Toll-like receptor (TLR) 2 or TLR4, and RAGE shRNA inhibited HMGB1-induced EMT in human airway epithelial cells. In conclusion, we found that HMGB1 induced EMT through RAGE and the PI3K/AKT/GSK3β/β-catenin signaling pathway. PMID:26739898

  15. Salivary epithelial cells: an unassuming target site for gene therapeutics

    PubMed Central

    Perez, Paola; Rowzee, Anne M.; Zheng, Changyu; Adriaansen, Janik; Baum, Bruce J.

    2010-01-01

    Salivary glands are classical exocrine glands whose external secretions result in the production of saliva. However, in addition to the secretion of exocrine proteins, salivary epithelial cells are also capable of secreting proteins internally, into the bloodstream. This brief review examines the potential for using salivary epithelial cells as a target site for in situ gene transfer, with an ultimate goal of producing therapeutic proteins for treating both systemic and upper gastrointestinal tract disorders. The review discusses the protein secretory pathways reported to be present in salivary epithelial cells, the viral gene transfer vectors shown useful for transducing these cells, model transgenic secretory proteins examined, and some clinical conditions that might benefit from such salivary gland gene transfer. PMID:20219693

  16. Establishment and Characterization of Immortalized Human Amniotic Epithelial Cells

    PubMed Central

    Zhou, Kaixuan; Koike, Chika; Yoshida, Toshiko; Okabe, Motonori; Fathy, Moustafa; Kyo, Satoru; Kiyono, Tohru; Saito, Shigeru

    2013-01-01

    Abstract Human amniotic epithelial cells (HAEs) have a low immunogenic profile and possess potent immunosuppressive properties. HAEs also have several characteristics similar to stem cells, and they are discarded after parturition. Thus, they could potentially be used in cell therapy with fewer ethical problems. HAEs have a short life, so our aim is to establish and characterize immortalized human amniotic epithelial cells (iHAEs). HAEs were introduced with viral oncogenes E6/E7 and with human telomerase reverse transcriptase (hTERT) to create iHAEs. These iHAEs have proliferated around 200 population doublings (PDs) for at least 12 months. High expression of stem cell markers (Oct 3/4, Nanog, Sox2, Klf4) and epithelial markers (CK5, CK18) were detected by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). These iHAEs were expanded in ultra-low-attachment dishes to form spheroids similarly to epithelial stem/precursor cells. High expression of mesenchymal (CD44, CD73, CD90, CD105) and somatic (CD24, CD29, CD271, Nestin) stem cell markers was detected by flow cytometry. The iHAEs showed adipogenic, osteogenic, neuronal, and cardiac differentiation abilities. In conclusion, the immortalization of HAEs with the characteristics of stem cells has been established, allowing these iHAEs to become useful for cell therapy and regenerative medicine. PMID:23298399

  17. Enhancer repertoires are reshaped independently of early priming and heterochromatin dynamics during B cell differentiation.

    PubMed

    Choukrallah, Mohamed-Amin; Song, Shuang; Rolink, Antonius G; Burger, Lukas; Matthias, Patrick

    2015-01-01

    A widely accepted model posits that activation of enhancers during differentiation goes through a priming step prior to lineage commitment. To investigate the chronology of enhancer repertoire establishment during hematopoiesis, we monitored epigenome dynamics during three developmental stages representing hematopoietic stem cells, B-cell progenitors and mature B-cells. We find that only a minority of enhancers primed in stem cells or progenitors become active at later stages. Furthermore, most enhancers active in differentiated cells were not primed in earlier stages. Thus, the enhancer repertoire is reshaped dynamically during B-cell differentiation and enhancer priming in early stages does not appear to be an obligate step for enhancer activation. Furthermore, our data reveal that heterochromatin and Polycomb-mediated silencing have only a minor contribution in shaping enhancer repertoires during cell differentiation. Together, our data revisit the prevalent model about epigenetic reprogramming during hematopoiesis and give insights into the formation of gene regulatory networks. PMID:26477271

  18. Transcriptional PROFILING OF MUCOCILIARY DIFFERENTIATION IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    When cultured at an air-liquid interface (ALI) in the appropriate medium, primary human airway epithelial cells form a polarized, pseudostratified epithelium composed of ciliated and mucus-secreting cells. This culture system provides a useful tool for the in vitro study of...

  19. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers

    PubMed Central

    St Johnston, Daniel

    2016-01-01

    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium1,2. Here we test this assumption in three types of Drosophila epithelia; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside of the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells appears to be driven by lateral adhesion, which pulls cells born outside the epithelia layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions. PMID:26414404

  20. Epithelial stem cells and implications for wound repair.

    PubMed

    Plikus, Maksim V; Gay, Denise L; Treffeisen, Elsa; Wang, Anne; Supapannachart, Rarinthip June; Cotsarelis, George

    2012-12-01

    Activation of epithelial stem cells and efficient recruitment of their proliferating progeny plays a critical role in cutaneous wound healing. The reepithelialized wound epidermis has a mosaic composition consisting of progeny that can be traced back both to epidermal and several types of hair follicle stem cells. The contribution of hair follicle stem cells to wound epidermis is particularly intriguing as it involves lineage identity change from follicular to epidermal. Studies from our laboratory show that hair follicle-fated bulge stem cells commit only transient amplifying epidermal progeny that participate in the initial wound re-epithelialization, but eventually are outcompeted by other epidermal clones and largely disappear after a few months. Conversely, recently described stem cell populations residing in the isthmus portion of hair follicle contribute long-lasting progeny toward wound epidermis and, arguably, give rise to new interfollicular epidermal stem cells. The role of epithelial stem cells during wound healing is not limited to regenerating stratified epidermis. By studying regenerative response in large cutaneous wounds, our laboratory uncovered that epithelial cells in the center of the wound can acquire greater morphogenetic plasticity and, together with the underlying wound dermis, can engage in an embryonic-like process of hair follicle neogenesis. Future studies should uncover the cellular and signaling basis of this remarkable adult wound regeneration phenomenon. PMID:23085626

  1. Epithelial Stem Cells and Implications for Wound Repair

    PubMed Central

    Plikus, Maksim V.; Gay, Denise L.; Treffeisen, Elsa; Wang, Anne; Supapannachart, Rarinthip June; Cotsarelis, George

    2012-01-01

    Activation of epithelial stem cells and efficient recruitment of their proliferating progeny plays a critical role in cutaneous wound healing. The reepithelialized wound epidermis hasa mosaic composition consisting of progeny that can be traced back both to epidermal and several types of hair follicle stem cells. The contribution of hair follicle stem cells to wound epidermis is particularly intriguing as it involves lineage identity change from follicular to epidermal. Studies from our laboratory show that hair follicle-fated bulge stem cells commit only transient amplifying epidermal progeny that participate in the initial wound re-epithelialization, but eventually are outcompeted by other epidermal clones and largely disappear after a few months. Conversely, recently described stem cell populations residing in the isthmus portion of hair follicle contribute long-lasting progeny toward wound epidermis and, arguably, give rise to new inter-follicular epidermal stem cells. The role of epithelial stem cells during wound healing is not limited to regenerating stratified epidermis. By studying regenerative response in large cutaneous wounds, our laboratory uncovered that epithelial cells in the center of the wound can acquire greater morphogenetic plasticity and, together with the underlying wound dermis, can engage in an embryonic-like process of hair follicle neogenesis. Future studies should uncover cellular and signaling basis of this remarkable adult wound regeneration phenomenon. PMID:23085626

  2. AN IN VITRO MODEL FOR MURINE URETERIC EPITHELIAL CELLS

    EPA Science Inventory

    This report presents a model developed to study growth and differentiation of primary cultures of ureteric epithelial cells from embryonic C57BL/6N mouse urinary tracts. Single cells were resuspended in medium and plated onto transwells coated with collagen IV and laminin. Basa...

  3. [Isolation, purification and identification of epithelial cells derived from fetal islet-like cell clusters].

    PubMed

    Qiao, Hai; Zhao, Ting; Wang, Yun; Yang, Chun-Rong; Xiao, Mei; Dou, Zhong-Ying

    2007-03-01

    The aim of this article is to provide methods for the isolation and identification of pancreatic stem cells and cell source for research and therapy of diabetes. ICCs were isolated by collagenase IV digesting and then cultured; epithelial cells were purified from monolayer cultured ICCs. The growth curve of the epithelial cells was measured by MTT. The expression of molecular markers in the cells was identified by immunohistochemical staining. The surface markers in the epithelial cells were analyzed by FACS. Epithelial cells were purified from isolated human fetal ICCs and passaged 40 times, and 10(6) - 10(8) cells were cryopreservated per passage. The growth curve demonstrated that the epithelial cells proliferated rapidly. The epithelial cells expressed PDX-1, PCNA, CK-7, CK-19, Nestin, Glut2, and Vimentin, but Insulin was undetected. The cells expressed CD29, CD44, and CD166, but did not express CD11a, CD14, CD34, CD45, CD90, CD105, and CD117. Taken together, these results indicate that self-renewable epithelial cells can be isolated and purified from human fetal pancreas. These also show that the epithelial cells originate from ducts and have the characteristics of pancreatic stem cells. PMID:17460896

  4. The syncytial nature of epithelial cells in the thymic cortex.

    PubMed Central

    Kendall, M D

    1986-01-01

    The epithelial cells of the cortex of human and rodent thymus glands were examined by light and electron microscopy, and the intracellular membrane potentials measured from the subcapsular, cortical and medullary regions. In the human thymus cortex, there is a highly correlated age-independent relationship (r = 0.78) between the distance in micron from one adjacent Type 2/3 epithelial nucleus to another, and the number of thymocytes between them. In rodent glands that had undergone some degree of involution due to hypoxia simulating an altitude of 17 000 feet or following the injection of phenylhydrazine, Type 2/3 epithelial cells were often found to be bi- or multinucleated. Electrophysiological studies of 10 mouse thymus lobes using 0.2 micron tipped electrodes showed that there were highly significant differences (P less than 0.0001) between the intracellular membrane potentials of the subcapsular zone, the cortex and the medulla. When dyes were injected intracellularly (through 0.5 micron tipped electrodes) into individual epithelial cells, methylene blue remained within the cytoplasm, but procion yellow passed in 30 minutes into the nuclei of all the epithelial cells of the cortex but not those of the subcapsular zone, nor the medulla. This indicates that the cortex must be a functional syncytium and it differs in this respect from the rest of the gland. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:3319999

  5. Protrusive Activity Guides Changes in Cell-Cell Tension during Epithelial Cell Scattering

    PubMed Central

    Maruthamuthu, Venkat; Gardel, Margaret L.

    2014-01-01

    Knowing how epithelial cells regulate cell-matrix and cell-cell adhesions is essential to understand key events in morphogenesis as well as pathological events such as metastasis. During epithelial cell scattering, epithelial cell islands rupture their cell-cell contacts and migrate away as single cells on the extracellular matrix (ECM) within hours of growth factor stimulation, even as adhesion molecules such as E-cadherin are present at the cell-cell contact. How the stability of cell-cell contacts is modulated to effect such morphological transitions is still unclear. Here, we report that in the absence of ECM, E-cadherin adhesions continue to sustain substantial cell-generated forces upon hepatocyte growth factor (HGF) stimulation, consistent with undiminished adhesion strength. In the presence of focal adhesions, constraints that preclude the spreading and movement of cells at free island edges also prevent HGF-mediated contact rupture. To explore the role of cell motion and cell-cell contact rupture, we examine the biophysical changes that occur during the scattering of cell pairs. We show that the direction of cell movement with respect to the cell-cell contact is correlated with changes in the average intercellular force as well as the initial direction of cell-cell contact rupture. Our results suggest an important role for protrusive activity resulting in cell displacement and force redistribution in guiding cell-cell contact rupture during scattering. PMID:25099795

  6. Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance

    PubMed Central

    West, John D; Dorà, Natalie J; Collinson, J Martin

    2015-01-01

    In this review we evaluate evidence for three different hypotheses that explain how the corneal epithelium is maintained. The limbal epithelial stem cell (LESC) hypothesis is most widely accepted. This proposes that stem cells in the basal layer of the limbal epithelium, at the periphery of the cornea, maintain themselves and also produce transient (or transit) amplifying cells (TACs). TACs then move centripetally to the centre of the cornea in the basal layer of the corneal epithelium and also replenish cells in the overlying suprabasal layers. The LESCs maintain the corneal epithelium during normal homeostasis and become more active to repair significant wounds. Second, the corneal epithelial stem cell (CESC) hypothesis postulates that, during normal homeostasis, stem cells distributed throughout the basal corneal epithelium, maintain the tissue. According to this hypothesis, LESCs are present in the limbus but are only active during wound healing. We also consider a third possibility, that the corneal epithelium is maintained during normal homeostasis by proliferation of basal corneal epithelial cells without any input from stem cells. After reviewing the published evidence, we conclude that the LESC and CESC hypotheses are consistent with more of the evidence than the third hypothesis, so we do not consider this further. The LESC and CESC hypotheses each have difficulty accounting for one main type of evidence so we evaluate the two key lines of evidence that discriminate between them. Finally, we discuss how lineage-tracing experiments have begun to resolve the debate in favour of the LESC hypothesis. Nevertheless, it also seems likely that some basal corneal epithelial cells can act as long-term progenitors if limbal stem cell function is compromised. Thus, this aspect of the CESC hypothesis may have a lasting impact on our understanding of corneal epithelial maintenance, even if it is eventually shown that stem cells are restricted to the limbus as proposed

  7. [Epithelial cell in intestinal homeostasis and inflammatory bowel diseases].

    PubMed

    Zouiten-Mekki, Lilia; Serghini, Meriem; Fekih, Monia; Kallel, Lamia; Matri, Samira; Ben Mustapha, Nadia; Boubaker, Jalel; Filali, Azza

    2013-12-01

    Crohn's disease (CD) and ulcerative colitis (UC) are the principal inflammatory bowel diseases (IBD) which physiopathology is currently poorly elucidated. During these diseases, the participation of the epithelial cell in the installation and the perpetuation of the intestinal inflammation is now clearly implicated. In fact, the intestinal epithelium located at the interface between the internal environment and the intestinal luminal, is key to the homeostatic regulation of the intestinal barrier. This barrier can schematically be regarded as being three barriers in one: a physical, chemical and immune barrier. The barrier function of epithelial cell can be altered by various mechanisms as occurs in IBD. The goal of this article is to review the literature on the role of the epithelial cell in intestinal homeostasis and its implication in the IBD. PMID:24356146

  8. Oxidized alginate hydrogels as niche environments for corneal epithelial cells

    PubMed Central

    Wright, Bernice; De Bank, Paul A; Luetchford, Kim A; Acosta, Fernando R; Connon, Che J

    2014-01-01

    Chemical and biochemical modification of hydrogels is one strategy to create physiological constructs that maintain cell function. The aim of this study was to apply oxidised alginate hydrogels as a basis for development of a biomimetic niche for limbal epithelial stem cells that may be applied to treating corneal dysfunction. The stem phenotype of bovine limbal epithelial cells (LEC) and the viability of corneal epithelial cells (CEC) were examined in oxidised alginate gels containing collagen IV over a 3-day culture period. Oxidation increased cell viability (P ≤ 0.05) and this improved further with addition of collagen IV (P ≤ 0.01). Oxidised gels presented larger internal pores (diameter: 0.2–0.8 µm) than unmodified gels (pore diameter: 0.05–0.1 µm) and were significantly less stiff (P ≤ 0.001), indicating that an increase in pore size and a decrease in stiffness contributed to improved cell viability. The diffusion of collagen IV from oxidised alginate gels was similar to that of unmodified gels suggesting that oxidation may not affect the retention of extracellular matrix proteins in alginate gels. These data demonstrate that oxidised alginate gels containing corneal extracellular matrix proteins can influence corneal epithelial cell function in a manner that may impact beneficially on corneal wound healing therapy. © 2013 The Authors. Journal of Biomedical Materials Research Part A Published byWiley Periodicals, Inc. Part A: 102A: 3393–3400, 2014. PMID:24142706

  9. Epithelial cell cultures from normal and cancerous human tissues.

    PubMed

    Owens, R B; Smith, H S; Nelson-Rees, W A; Springer, E L

    1976-04-01

    Thirty epithelial cell strains were isolated from human carcinomas and normal epithelial tissues by collagenase digestion and selective removal of fibroblasts with trypsin-Versene. Most strains were obtained from metastatic carcinomas or epithelia of the urinary and intestinal tracts. The success rate for growth of both neoplastic and normal tissues (excluding skin) was 38%. Six of these strains showed gross morphologic and chromosome changes typical of malignant cells. Nine resembled normal epithelium. The other 15 exhibited some degree of morphologic change from normal. PMID:176412

  10. Immortalized bovine mammary epithelial cells express stem cell markers and differentiate in vitro.

    PubMed

    Hu, Han; Zheng, Nan; Gao, Haina; Dai, Wenting; Zhang, Yangdong; Li, Songli; Wang, Jiaqi

    2016-08-01

    The bovine mammary epithelial cell is a secretory cell, and its cell number and secretory activity determine milk production. In this study, we immortalized a bovine mammary epithelial cell line by SV40 large T antigen gene using a retrovirus based on Chinese Holstein primary mammary epithelial cells (CMEC) cultured in vitro. An immortalized bovine mammary epithelial cell line surpassed the 50-passage mark and was designated the CMEC-H. The immortalized mammary epithelial cells grew in close contact with each other and exhibited the typical cobblestone morphology characteristic with obvious boundaries. The telomerase expression of CMEC-H has consistently demonstrated the presence of telomerase activity as an immortalized cell line, but the cell line never induced tumor formation in nude mice. CMEC-H expressed epithelial (cytokeratins CK7, CK8, CK18, and CK19), mesenchymal (vimentin), and stem/progenitor (CD44 and p63) cell markers. The induced expression of milk proteins, αS1 -casein, β-casein, κ-casein, and butyrophilin, indicated that CMEC-H maintained the synthesis function of the mammary epithelial cells. The established immortalized bovine mammary epithelial cell line CMEC-H is capable of self-renewal and differentiation and can serve as a valuable reagent for studying the physiological mechanism of the mammary gland. PMID:27189858

  11. Expression of the FGFR2 mesenchymal splicing variant in epithelial cells drives epithelial-mesenchymal transition

    PubMed Central

    Ranieri, Danilo; Rosato, Benedetta; Nanni, Monica; Magenta, Alessandra

    2016-01-01

    The FGFRs are receptor tyrosine kinases expressed by tissue-specific alternative splicing in epithelial IIIb or mesenchymal IIIc isoforms. Deregulation of FGF/FGFR signaling unbalances the epithelial-stromal homeostasis and may lead to cancer development. In the epithelial-context, while FGFR2b/KGFR acts as tumor suppressor, FGFR2c appears to play an oncogenic role. Based on our recent observation that the switching of FGFR2b versus FGFR2c induces EMT, here we investigated the biological outcome of the ectopic expression of FGFR2c in normal human keratinocytes. Morphological analysis showed that, differently from FGFR2b overexpression, the forced expression and activation of FGFR2c drive the epithelial cells to acquire a mesenchymal-like shape and actin reorganization. Moreover, the appearance of invasiveness and anchorage-independent growth ability in FGFR2c transfected keratinocytes was consistent with the potential tumorigenic role proposed for this receptor variant. Biochemical and molecular approaches revealed that the observed phenotypic changes were accompanied by modulation of EMT biomarkers and indicated the involvement of EMT transcription factors and miRs. Finally, the analysis of the expression pattern of discriminating markers strongly suggested that activation of FGFR2c triggers a process corresponding to the initiation of the pathological type III EMT, but not to the more physiological type II EMT occurring during FGFR2b-mediated wound healing. PMID:26713601

  12. Sp3 regulates fas expression in lung epithelial cells.

    PubMed Central

    Pang, H; Miranda, K; Fine, A

    1998-01-01

    By transducing an apoptotic signal in immune effector cells, Fas has been directly implicated in the control of immunological activity. Expression and functional results, however, have also suggested a role for Fas in regulating cell turnover in specific epithelial populations. To characterize factors responsible for Fas expression in epithelial cells, approximately 3 kb of the 5' flanking region of the mouse Fas gene was isolated. By rapid amplification of cDNA ends and primer extension, transcriptional start sites were identified within 50 bp upstream of the translation start site. Transient transfection of promoter-luciferase constructs in a mouse lung epithelial cell line, MLE-15, localized promoter activity to the first 77 bp of upstream sequence. By using a 60 bp DNA probe (-18 to -77) in electrophoretic mobility-shift assays, three shifted complexes were found. Incubation with excess cold Sp1 oligonucleotide or an anti-Sp3 antibody inhibited complex formation. Site-directed mutagenesis of the Sp1 site resulted in 60-70% loss of promoter activity. In Drosophila SL-2 cells, promoter activity was markedly increased by co-transfection of an Sp3 expression construct. These results show that the Sp3 protein is involved in regulating Fas gene expression in lung epithelial cells. PMID:9639581

  13. High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells

    PubMed Central

    Chen, Yu-Ching; Statt, Sarah; Wu, Reen; Chang, Hao-Teng; Liao, Jiunn-Wang; Wang, Chien-Neng; Shyu, Woei-Cherng; Lee, Chen-Chen

    2016-01-01

    Epithelial–mesenchymal transition (EMT) is implicated in bronchial remodeling and loss of lung function in chronic inflammatory airway diseases. Previous studies showed the involvement of the high mobility group box 1 (HMGB1) protein in the pathology of chronic pulmonary inflammatory diseases. However, the role of HMGB1 in EMT of human airway epithelial cells is still unclear. In this study, we used RNA sequencing to show that HMGB1 treatment regulated EMT-related gene expression in human primary-airway epithelial cells. The top five upregulated genes were SNAI2, FGFBP1, VIM, SPARC (osteonectin), and SERPINE1, while the downregulated genes included OCLN, TJP1 (ZO-1), FZD7, CDH1 (E-cadherin), and LAMA5. We found that HMGB1 induced downregulation of E-cadherin and ZO-1, and upregulation of vimentin mRNA transcription and protein translation in a dose-dependent manner. Additionally, we observed that HMGB1 induced AKT phosphorylation, resulting in GSK3β inactivation, cytoplasmic accumulation, and nuclear translocation of β-catenin to induce EMT in human airway epithelial cells. Treatment with PI3K inhibitor (LY294006) and β-catenin shRNA reversed HMGB1-induced EMT. Moreover, HMGB1 induced expression of receptor for advanced glycation products (RAGE), but not that of Toll-like receptor (TLR) 2 or TLR4, and RAGE shRNA inhibited HMGB1-induced EMT in human airway epithelial cells. In conclusion, we found that HMGB1 induced EMT through RAGE and the PI3K/AKT/GSK3β/β-catenin signaling pathway. PMID:26739898

  14. Primed Mesenchymal Stem Cells Alter Healing and Improve Rat Medial Collateral Ligament Healing

    PubMed Central

    Saether, Erin E.; Chamberlain, Connie S.; Aktas, Erdem; Leiferman, Ellen M.; Brickson, Stacey L.; Vanderby, Ray

    2016-01-01

    Cell therapy with mesenchymal stem cells (MSCs) can improve tissue healing. It is possible, however, that priming MSCs prior to implantation can further enhance their therapeutic benefit. This study was then performed to test whether priming MSCs to be more anti-inflammatory would enhance healing in a rat ligament model, i.e. a medial collateral ligament (MCL). MSCs were primed for 48 hours using polyinosinic acid and polycytidylic acid (Poly (I:C)) at a concentration of 1µg/ml. Rat MCLs were surgically transected and administered 1×106 cells in a carrier solution at the time of injury. A series of healing metrics were analyzed at days 4 and 14 post-injury in the ligaments that received primed MSCs, unprimed MSCs, or no cells (controls). Applying primed MSCs beneficially altered healing by affecting endothelialization, type 2 macrophage presence, apoptosis, procollagen 1α, and IL-1Ra levels. When analyzing MSC localization, both primed and unprimed MSCs co-localized with endothelial cells and pericytes suggesting a supportive role in angiogenesis. Priming MSCs prior to implantation altered key ligament healing events, resulted in a more anti-inflammatory environment, and improved healing. PMID:26530282

  15. Airway epithelial cell response to human metapneumovirus infection

    SciTech Connect

    Bao, X.; Liu, T.; Spetch, L.; Kolli, D.; Garofalo, R.P.; Casola, A.

    2007-11-10

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and type I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-{kappa}B, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immunomodulatory mediators.

  16. Cigarette smoke extract affects mitochondrial function in alveolar epithelial cells.

    PubMed

    Ballweg, Korbinian; Mutze, Kathrin; Königshoff, Melanie; Eickelberg, Oliver; Meiners, Silke

    2014-12-01

    Cigarette smoke is the main risk factor for chronic obstructive pulmonary disease (COPD). Exposure of cells to cigarette smoke induces an initial adaptive cellular stress response involving increased oxidative stress and induction of inflammatory signaling pathways. Exposure of mitochondria to cellular stress alters their fusion/fission dynamics. Whereas mild stress induces a prosurvival response termed stress-induced mitochondrial hyperfusion, severe stress results in mitochondrial fragmentation and mitophagy. In the present study, we analyzed the mitochondrial response to mild and nontoxic doses of cigarette smoke extract (CSE) in alveolar epithelial cells. We characterized mitochondrial morphology, expression of mitochondrial fusion and fission genes, markers of mitochondrial proteostasis, as well as mitochondrial functions such as membrane potential and oxygen consumption. Murine lung epithelial (MLE)12 and primary mouse alveolar epithelial cells revealed pronounced mitochondrial hyperfusion upon treatment with CSE, accompanied by increased expression of the mitochondrial fusion protein mitofusin 2 and increased metabolic activity. We did not observe any alterations in mitochondrial proteostasis, i.e., induction of the mitochondrial unfolded protein response or mitophagy. Therefore, our data indicate an adaptive prosurvival response of mitochondria of alveolar epithelial cells to nontoxic concentrations of CSE. A hyperfused mitochondrial network, however, renders the cell more vulnerable to additional stress, such as sustained cigarette smoke exposure. As such, cigarette smoke-induced mitochondrial hyperfusion, although part of a beneficial adaptive stress response in the first place, may contribute to the pathogenesis of COPD. PMID:25326581

  17. AIRWAY EPITHELIAL CELL RESPONSE TO HUMAN METAPNEUMOVIRUS INFECTION

    PubMed Central

    X, Bao; T, Liu; L, Spetch; D, Kolli; R.P, Garofalo; A, Casola

    2007-01-01

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and type I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-κB, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immuno-modulatory mediators. PMID:17655903

  18. Apicobasal polarity controls lymphocyte adhesion to hepatic epithelial cells.

    PubMed

    Reglero-Real, Natalia; Alvarez-Varela, Adrián; Cernuda-Morollón, Eva; Feito, Jorge; Marcos-Ramiro, Beatriz; Fernández-Martín, Laura; Gómez-Lechón, Maria José; Muntané, Jordi; Sandoval, Pilar; Majano, Pedro L; Correas, Isabel; Alonso, Miguel A; Millán, Jaime

    2014-09-25

    Loss of apicobasal polarity is a hallmark of epithelial pathologies. Leukocyte infiltration and crosstalk with dysfunctional epithelial barriers are crucial for the inflammatory response. Here, we show that apicobasal architecture regulates the adhesion between hepatic epithelial cells and lymphocytes. Polarized hepatocytes and epithelium from bile ducts segregate the intercellular adhesion molecule 1 (ICAM-1) adhesion receptor onto their apical, microvilli-rich membranes, which are less accessible by circulating immune cells. Upon cell depolarization, hepatic ICAM-1 becomes exposed and increases lymphocyte binding. Polarized hepatic cells prevent ICAM-1 exposure to lymphocytes by redirecting basolateral ICAM-1 to apical domains. Loss of ICAM-1 polarity occurs in human inflammatory liver diseases and can be induced by the inflammatory cytokine tumor necrosis factor alpha (TNF-α). We propose that adhesion receptor polarization is a parenchymal immune checkpoint that allows functional epithelium to hamper leukocyte binding. This contributes to the haptotactic guidance of leukocytes toward neighboring damaged or chronically inflamed epithelial cells that expose their adhesion machinery. PMID:25242329

  19. Epithelial cell adhesion and gastrointestinal colonization of Lactobacillus in poultry.

    PubMed

    Spivey, Megan A; Dunn-Horrocks, Sadie L; Duong, Tri

    2014-11-01

    Administration of probiotic Lactobacillus cultures is an important alternative to the use of antibiotic growth promoters and has been demonstrated to improve animal health, growth performance, and preharvest food safety in poultry production. Whereas gastrointestinal colonization is thought to be critical to their probiotic functionality, factors important to Lactobacillus colonization in chickens are not well understood. In this study we investigate epithelial cell adhesion in vitro and colonization of Lactobacillusin vivo in broiler chickens. Adhesion of Lactobacillus cultures to epithelial cells was evaluated using the chicken LMH cell line. Lactobacillus cultures were able adhere effectively to LMH cells relative to Bacillus subtilis and Salmonella Typhimurium. Epithelial cell adhesion was similar for Lactobacillus crispatus TDCC 75, L. cristpatus TDCC 76, and Lactobacillus gallinarum TDCC 77, and all 3 were more adherent than L. gallinarum TDCC 78. However, when colonization was evaluated in the ileum and cecum of broiler chicks, L. crispatus TDCC 75 and L. gallinarum TDCC 77 were more persistent than L. crispatus TDCC 76 and L. gallinarum TDCC 78. The reduction of growth in medium supplemented with oxgal was greater for L. gallinarum TDCC 78 than L. gallinarum TDCC 77, suggesting that whereas adhesion was similar for the 2 strains, the difference in colonization between L. gallinarum strains may be due in part to their bile sensitivity. This study demonstrates that whereas adhesion to epithelial cells may be important in predicting gastrointestinal colonization, other factors including bile tolerance may also contribute to the colonization of Lactobacillus in poultry. Additionally, the chicken LMH cell line is expected to provide a platform for investigating mechanisms of Lactobacillus adhesion to epithelial tissue and evaluating the probiotic potential Lactobacillus in poultry. PMID:25239531

  20. Modulation of Candida albicans attachment to human epithelial cells by bacteria and carbohydrates.

    PubMed Central

    Centeno, A; Davis, C P; Cohen, M S; Warren, M M

    1983-01-01

    The effects of carbohydrates (mannose and dextrose). Escherichia coli 07KL. and Klebsiella pneumoniae on Candida albicans attachment to epithelial cells was studied. Dextrose had no effect on yeast attachment to epithelial cells. Conversely, mannose significantly decreased both yeast and piliated bacterial attachment (E. coli 07KL, heavily piliated K. pneumoniae) whereas having no effect on nonpiliated K. pneumoniae attachment to epithelial cells. The number of yeasts attaching to epithelial cells was enhanced by preincubation of epithelial cells with piliated strains of bacteria, whereas preincubation with nonpiliated strains of bacteria had no effect on yeast attachment. Scanning electron microscopy showed that piliated bacteria and yeasts were juxtaposed on the epithelial cell surface. These data suggest that certain piliated strains of bacteria can enhance C. albicans attachment to epithelial cells and that type 1 pili of bacteria can be a factor in the enhanced attachment of C. albicans to epithelial cells. Images PMID:6132878

  1. Renal epithelial cells can release ATP by vesicular fusion

    PubMed Central

    Bjaelde, Randi G.; Arnadottir, Sigrid S.; Overgaard, Morten T.; Leipziger, Jens; Praetorius, Helle A.

    2013-01-01

    Renal epithelial cells have the ability to release nucleotides as paracrine factors. In the intercalated cells of the collecting duct, ATP is released by connexin30 (cx30), which is selectively expressed in this cell type. However, ATP is released by virtually all renal epithelia and the aim of the present study was to identify possible alternative nucleotide release pathways in a renal epithelial cell model. We used MDCK (type1) cells to screen for various potential ATP release pathways. In these cells, inhibition of the vesicular H+-ATPases (bafilomycin) reduced both the spontaneous and hypotonically (80%)-induced nucleotide release. Interference with vesicular fusion using N-ethylamide markedly reduced the spontaneous nucleotide release, as did interference with trafficking from the endoplasmic reticulum to the Golgi apparatus (brefeldin A1) and vesicular transport (nocodazole). These findings were substantiated using a siRNA directed against SNAP-23, which significantly reduced spontaneous ATP release. Inhibition of pannexin and connexins did not affect the spontaneous ATP release in this cell type, which consists of ~90% principal cells. TIRF-microscopy of either fluorescently-labeled ATP (MANT-ATP) or quinacrine-loaded vesicles, revealed that spontaneous release of single vesicles could be promoted by either hypoosmolality (50%) or ionomycin. This vesicular release decreased the overall cellular fluorescence by 5.8 and 7.6% respectively. In summary, this study supports the notion that spontaneous and induced ATP release can occur via exocytosis in renal epithelial cells. PMID:24065923

  2. Lung epithelial cell death induced by oil-dispersant mixtures.

    PubMed

    Wang, He; Shi, Yongli; Major, Danielle; Yang, Zhanjun

    2012-08-01

    The dispersants used in oil spill disasters are claimed to be safe, but increased solubility of high-molecular-weight components in crude oil is of public health concern. The water-accommodated fractions (WAF) of crude oil mixed with dispersants may become airborne and cause lung epithelial damage when inhaled. This study was designed to examine the cell death and related death pathways of lung epithelial cells in response to WAF. Cultured A549 cells were treated for 2 or 24h with different concentrations of WAF. The WAF was prepared by mixing each of the dispersants (Corexit EC9527A, Corexit EC9500A and Corexit EC9580A) with crude oil for extraction with PBS. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT assay, lactate dehydrogenase assay, morphology and cleaved caspase 9 protein, and microtubule-associated protein 1 light chain 3 were all used to measure cell viability, necrosis, apoptosis and autophagy quantitation, respectively. Results showed that the WAF of oil-dispersant mixtures caused cell death in the lung epithelial cells, in a dose-dependent manner, with the major cellular pathways of necrosis and apoptosis involved. Autophagy also occurred in cells exposed to WAF mixtures at lower concentrations before any detectable cell death, indicating greater sensitivity to WAF exposure. The three types of cell behavior, namely necrosis, apoptosis and autophagy, may play different roles in oil spill-related respiratory disorders. PMID:22504303

  3. Metabolic cooperativity between epithelial cells and adipocytes of mice

    SciTech Connect

    Bartley, J.C.; Emerman, J.T.; Bissell, M.J.

    1981-01-01

    We have demonstrated that glycogen and lipid synthesis in adipocytes is modulated by the lactational state and that this modulation in mammary adipocytes requires the presence of the adjacent epithelial cells. Glycogen and lipid synthesis from (/sup 14/C)glucose was measured in mammary fat pads cleared of epithelium, in abdominal fat pads, and in adipocytes from both sources and from intact mammary gland of mature virgin, pregnant, and lactating mice. Accumulation of glycogen, the activity of glycogen synthase, and the lipogenic rate in abdominal and mammary adipocytes remained high during pregnancy but decreased to insignificant levels by early lactation. The depressant effects of lactation were observed solely in those mammary adipocytes isolated from intact glands. The presence of mammary epithelial cells was also required to effect the stimulated lipogenesis in mammary adipocytes during pregnancy. We conclude that the metabolic activity of adipocytes is modulated both during pregnancy and lactation to channel nutrients to the mammary epithelial cell. The fact that the changes occur in mammary adipocytes only when epithelial cells are present indicates that local as well as systemic factors are operating in these modulations.

  4. NITROTYROSINE ATTENUATES RSV-INDUCED INFLAMMATION IN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Nitrotyrosine attenuates RSV-induced inflammation in airway epithelial cells. Joleen Soukup, Zuowei Li, Susanne Becker and Yuh-Chin Huang. NHEERL, ORD, USEPA, RTP, North Carolina, CEMALB, University of North Carolina, Chapel Hill, North Carolina

    Nitrotyrosine (NO2Tyr) is a...

  5. Interactions between Periodontal Bacteria and Human Oral Epithelial Cells: Fusobacterium nucleatum Adheres to and Invades Epithelial Cells

    PubMed Central

    Han, Yiping W.; Shi, Wenyuan; Huang, George T.-J.; Kinder Haake, Susan; Park, No-Hee; Kuramitsu, Howard; Genco, Robert J.

    2000-01-01

    Bacteria are causative agents of periodontal diseases. Interactions between oral bacteria and gingival epithelial cells are essential aspects of periodontal infections. Using an in vitro tissue culture model, a selected group of gram-negative anaerobic bacteria frequently associated with periodontal diseases, including Bacteroides forsythus, Campylobacter curvus, Eikenella corrodens, Fusobacterium nucleatum, Porphyromonas gingivalis, and Prevotella intermedia, were examined for their ability to adhere to and invade primary cultures of human gingival epithelial cells (HGEC). The effects of these bacteria on the production of interleukin-8 (IL-8), a proinflammatory chemokine, were also measured. These studies provided an initial demonstration that F. nucleatum adhered to and invaded HGEC and that this was accompanied by high levels of IL-8 secretion from the epithelial cells. The attachment and invasion characteristics of F. nucleatum were also tested using KB cells, an oral epithelial cell line. The invasion was verified by transmission electron microscopy and with metabolic inhibitors. Invasion appeared to occur via a “zipping” mechanism and required the involvement of actins, microtubules, signal transduction, protein synthesis, and energy metabolism of the epithelial cell, as well as protein synthesis by F. nucleatum. A spontaneous mutant, lam, of F. nucleatum, isolated as defective in autoagglutination, was unable to attach to or invade HGEC or KB cells, further indicating the requirement of bacterial components in these processes. Sugar inhibition assays indicated that lectin-like interactions were involved in the attachment of F. nucleatum to KB cells. Investigation of these new virulence phenotypes should improve our understanding of the role of F. nucleatum in periodontal infections. PMID:10816455

  6. Culture and characterization of human junctional epithelial cells.

    PubMed

    Matsuyama, T; Izumi, Y; Sueda, T

    1997-03-01

    This study was undertaken to establish a culture of junctional epithelial cells derived from gingival tissue attached to the tooth surface and to characterize these cells immunocytochemically and ultrastructurally. Primary cultures of cells were obtained from the junctional tissue explanted on type I collagen-coated dishes and immersed in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum (FBS). Cells were subcultured with conditioned serum-free keratinocyte medium (keratinocyte-SFM + 5% FBS) on dishes coated with solubilized extract of the basement membrane. After 24 hours, the medium was changed to keratinocyte-SFM (0.09 mM Ca2+). The cell-doubling time was 40.5 hours. As a control, cells from gingival tissue were cultured by the same method. Cells from junctional tissue and gingival tissue were compared immunocytochemically using monoclonal antibodies to keratin, vimentin, and desmoplakins I and II and using Dolichos biflorus agglutinin (DBA). The keratin AE1 and AE3 was expressed by all of culture cells. The vimentin (specific for the intermediate filament of mesenchymal cells) was also expressed by all cells. The expression pattern of keratin 19 was observed not only by cells from junctional tissue but also by cells from gingival tissue. All keratin peptides were expressed in both cells. However, DBA reacted only with cells from the junctional tissue. Anti-desmoplakin I and II reacted with both cells, however, the staining patterns differed. DBA-positive cultured epithelial cells from the junctional tissue showed poor tonofilament bundles and were rich in cytoplasmic organelles. These findings suggest that junctional epithelial cells can be isolated from junctional tissue and cultured under improved conditions. PMID:9100198

  7. Lactobacillus equigenerosi Strain Le1 Invades Equine Epithelial Cells

    PubMed Central

    Botha, Marlie; Botes, Marelize; Loos, Ben; Smith, Carine

    2012-01-01

    Lactobacillus equigenerosi strain Le1, a natural inhabitant of the equine gastrointestinal tract, survived pH 3.0 and incubation in the presence of 1.5% (wt/vol) bile salts for at least 2 h. Strain Le1 showed 8% cell surface hydrophobicity, 60% auto-aggregation, and 47% coaggregation with Clostridium difficile C6. Only 1% of the cells adhered to viable buccal epithelial cells and invaded the cells within 20 min after contact. Preincubation of strain Le1 in a buffer containing pronase prevented adhesion to viable epithelial cells. Preincubation in a pepsin buffer delayed invasion from 20 min to 1 h. Strain Le1 did not adhere to nonviable epithelial cells. Administration of L. equigenerosi Le1 (1 × 109 CFU per 50 kg body weight) to healthy horses did not increase white blood cell numbers. Differential white blood cell counts and aspartate aminotransferase levels remained constant. Glucose, lactate, cholesterol, and urea levels remained constant during administration with L. equigenerosi Le1 but decreased during the week after administration. PMID:22504808

  8. Differentiation of cultured epithelial cells: Response to toxic agents

    SciTech Connect

    Rice, R.H.; LaMontagne, A.D.; Petito, C.T.; Rong, Xianhui )

    1989-03-01

    Cell culture systems are instrumental in elucidating regulation of normal function and mechanisms of its perturbation by toxic substances. To this end, three applications of epithelial cells cultured with 3T3 feeder layer support are described. First, treatment of the premalignant human epidermal keratinocyte line SCC-12F2 with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate suppressed cell growth and differentiation. This agent produced a biphasic growth response greatly inhibiting cell growth at 1 to 10 nM, but much less above 100 nM. Expression of the differentiated functions involucrin and transglutaminase was found to be inhibited markedly at concentrations above 10 nM. Second, 3-methylcholanthrene toxicity was surveyed in a variety of rat epithelial cell types. The two most sensitive to growth inhibition were epidermal and mammary epithelial cells, while those from bladder, prostate, thyroid, and endometrium were insensitive to growth inhibition. Finally, expression of estrogen receptors in rat endometrial cells was shown to be stimulated by the cAmP-elevating agent forskolin. Maximal stimulation of 3- to 6-fold occurred in 6 hr, compatible with a requirement for protein synthesis. Pursuit of such results will aid in understanding differences in response among cell types and species, in elucidating mechanisms of action of known toxic substances and, ultimately, in predicting toxicity of less well understood agents.

  9. Collective Epithelial and Mesenchymal Cell Migration During Gastrulation

    PubMed Central

    Chuai, Manli; Hughes, David; Weijer, Cornelis J

    2012-01-01

    Gastrulation, the process that puts the three major germlayers, the ectoderm, mesoderm and endoderm in their correct topological position in the developing embryo, is characterised by extensive highly organised collective cell migration of epithelial and mesenchymal cells. We discuss current knowledge and insights in the mechanisms controlling these cell behaviours during gastrulation in the chick embryo. We discuss several ideas that have been proposed to explain the observed large scale vortex movements of epithelial cells in the epiblast during formation of the primitive streak. We review current insights in the control and execution of the epithelial to mesenchymal transition (EMT) underlying the formation of the hypoblast and the ingression of the mesendoderm cells through the streak. We discuss the mechanisms by which the mesendoderm cells move, the nature and dynamics of the signals that guide these movements, as well as the interplay between signalling and movement that result in tissue patterning and morphogenesis. We argue that instructive cell-cell signaling and directed chemotactic movement responses to these signals are instrumental in the execution of all phases of gastrulation. PMID:23204916

  10. Ciliary neurotrophic factor promotes the activation of corneal epithelial stem/progenitor cells and accelerates corneal epithelial wound healing.

    PubMed

    Zhou, Qingjun; Chen, Peng; Di, Guohu; Zhang, Yangyang; Wang, Yao; Qi, Xia; Duan, Haoyun; Xie, Lixin

    2015-05-01

    Ciliary neurotrophic factor (CNTF), a well-known neuroprotective cytokine, has been found to play an important role in neurogenesis and functional regulations of neural stem cells. As one of the most innervated tissue, however, the role of CNTF in cornea epithelium remains unclear. This study was to explore the roles and mechanisms of CNTF in the activation of corneal epithelial stem/progenitor cells and wound healing of both normal and diabetic mouse corneal epithelium. In mice subjecting to mechanical removal of corneal epithelium, the corneal epithelial stem/progenitor cell activation and wound healing were promoted by exogenous CNTF application, while delayed by CNTF neutralizing antibody. In cultured corneal epithelial stem/progenitor cells, CNTF enhanced the colony-forming efficiency, stimulated the mitogenic proliferation, and upregulated the expression levels of corneal epithelial stem/progenitor cell-associated transcription factors. Furthermore, the promotion of CNTF on the corneal epithelial stem/progenitor cell activation and wound healing was mediated by the activation of STAT3. Moreover, in diabetic mice, the content of CNTF in corneal epithelium decreased significantly when compared with that of normal mice, and the supplement of CNTF promoted the diabetic corneal epithelial wound healing, accompanied with the advanced activation of corneal epithelial stem/progenitor cells and the regeneration of corneal nerve fibers. Thus, the capability of expanding corneal epithelial stem/progenitor cells and promoting corneal epithelial wound healing and nerve regeneration indicates the potential application of CNTF in ameliorating limbal stem cell deficiency and treating diabetic keratopathy. PMID:25546438

  11. Radical-containing ultrafine particulate matter initiates epithelial-to-mesenchymal transitions in airway epithelial cells.

    PubMed

    Thevenot, Paul T; Saravia, Jordy; Jin, Nili; Giaimo, Joseph D; Chustz, Regina E; Mahne, Sarah; Kelley, Matthew A; Hebert, Valeria Y; Dellinger, Barry; Dugas, Tammy R; Demayo, Francesco J; Cormier, Stephania A

    2013-02-01

    Environmentally persistent free radicals (EPFRs) in combustion-generated particulate matter (PM) are capable of inducing pulmonary pathologies and contributing to the development of environmental asthma. In vivo exposure of infant rats to EPFRs demonstrates their ability to induce airway hyperresponsiveness to methacholine, a hallmark of asthma. However, the mechanisms by which combustion-derived EPFRs elicit in vivo responses remain elusive. In this study, we used a chemically defined EPFR consisting of approximately 0.2 μm amorphrous silica containing 3% cupric oxide with the organic pollutant 1,2-dichlorobenzene (DCB-230). DCB-230 possesses similar radical content to urban-collected EPFRs but offers several advantages, including lack of contaminants and chemical uniformity. DCB-230 was readily taken up by BEAS-2B and at high doses (200 μg/cm(2)) caused substantial necrosis. At low doses (20 μg/cm(2)), DCB-230 particles caused lysosomal membrane permeabilization, oxidative stress, and lipid peroxidation within 24 hours of exposure. During this period, BEAS-2B underwent epithelial-to-mesenchymal transition (EMT), including loss of epithelial cell morphology, decreased E-cadherin expression, and increased α-smooth muscle actin (α-SMA) and collagen I production. Similar results were observed in neonatal air-liquid interface culture (i.e., disruption of epithelial integrity and EMT). Acute exposure of infant mice to DCB-230 resulted in EMT, as confirmed by lineage tracing studies and evidenced by coexpression of epithelial E-cadherin and mesenchymal α-SMA proteins in airway cells and increased SNAI1 expression in the lungs. EMT in neonatal mouse lungs after EPFR exposure may provide an explanation for epidemiological evidence supporting PM exposure and increased risk of asthma. PMID:23087054

  12. Modeling Alveolar Epithelial Cell Behavior In Spatially Designed Hydrogel Microenvironments

    NASA Astrophysics Data System (ADS)

    Lewis, Katherine Jean Reeder

    The alveolar epithelium consists of two cell phenotypes, elongated alveolar type I cells (AT1) and rounded alveolar type II cells (ATII), and exists in a complex three-dimensional environment as a polarized cell layer attached to a thin basement membrane and enclosing a roughly spherical lumen. Closely surrounding the alveolar cysts are capillary endothelial cells as well as interstitial pulmonary fibroblasts. Many factors are thought to influence alveolar epithelial cell differentiation during lung development and wound repair, including physical and biochemical signals from the extracellular matrix (ECM), and paracrine signals from the surrounding mesenchyme. In particular, disrupted signaling between the alveolar epithelium and local fibroblasts has been implicated in the progression of several pulmonary diseases. However, given the complexity of alveolar tissue architecture and the multitude of signaling pathways involved, designing appropriate experimental platforms for this biological system has been difficult. In order to isolate key factors regulating cellular behavior, the researcher ideally should have control over biophysical properties of the ECM, as well as the ability to organize multiple cell types within the scaffold. This thesis aimed to develop a 3D synthetic hydrogel platform to control alveolar epithelial cyst formation, which could then be used to explore how extracellular cues influence cell behavior in a tissue-relevant cellular arrangement. To accomplish this, a poly(ethylene glycol) (PEG) hydrogel network containing enzymatically-degradable crosslinks and bioadhesive pendant peptides was employed as a base material for encapsulating primary alveolar epithelial cells. First, an array of microwells of various cross-sectional shapes was photopatterned into a PEG gel containing photo-labile crosslinks, and primary ATII cells were seeded into the wells to examine the role of geometric confinement on differentiation and multicellular arrangement

  13. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    SciTech Connect

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang Zhang, Yi

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  14. Cytotoxic Effect of Lipophilic Bismuth Dimercaptopropanol Nanoparticles on Epithelial Cells.

    PubMed

    Rene, Hernandez-Delgadillo; Badireddy, Appala Raju; José, Martínez-Sanmiguel Juan; Francisco, Contreras-Cordero Juan; Israel, Martinez-Gonzalez Gustavo; Isela, Sánchez-Nájera Rosa; Chellam, Shankararaman; Claudio, Cabral-Romero

    2016-01-01

    Bismuth nanoparticles have many interesting properties to be applied in biomedical and medicinal sectors, however their safety in humans have not been comprehensively investigated. The objective of this research was to determine the cytotoxic effect of bismuth dimercaptopropanol nanoparticles (BisBAL NPs) on epithelial cells. The nanoparticles are composed of 18.7 nm crystallites on average and have a rhombohedral structure, agglomerating into chains-like or clusters of small nanoparticles. Based on MTT viability assay and fluorescence microscopy, cytotoxicity was not observed on monkey kidney cells after growing with 5 µM of BisBAL NPs for 24 h. Employing same techniques, identical results were obtained with human epithelial cells (HeLa), showing a not strain-dependent phenomenon. The absence of toxic effects on epithelial cells growing with BisBAL NPs was corroborated with long-time experiments (24-72 hrs.), showing no difference in comparison with growing control (cells without nanoparticles). Further, genotoxicity assays, comet assay and fluorescent microscopy and electrophoresis in bromide-stained agarose gel revealed no damage to genomic DNA of MA104 cells after 24 h. of exposition to BisBAL NPs. Finally, the effect of bismuth nanoparticles on protein synthesis was studied in cells growing with BisBAL NPs for 24 h. SDS-PAGE assays showed no difference between treated and untreated cells, suggesting that BisBAL NPs did not interfere with protein synthesis. Hence BisBAL NPs do not appear to exert cytotoxic effects suggesting their biological compatibility with epithelial cells. PMID:27398446

  15. Differentiated kidney epithelial cells repair injured proximal tubule.

    PubMed

    Kusaba, Tetsuro; Lalli, Matthew; Kramann, Rafael; Kobayashi, Akio; Humphreys, Benjamin D

    2014-01-28

    Whether kidney proximal tubule harbors a scattered population of epithelial stem cells is a major unsolved question. Lineage-tracing studies, histologic characterization, and ex vivo functional analysis results conflict. To address this controversy, we analyzed the lineage and clonal behavior of fully differentiated proximal tubule epithelial cells after injury. A CreER(T2) cassette was knocked into the sodium-dependent inorganic phosphate transporter SLC34a1 locus, which is expressed only in differentiated proximal tubule. Tamoxifen-dependent recombination was absolutely specific to proximal tubule. Clonal analysis after injury and repair showed that the bulk of labeled cells proliferate after injury with increased clone size after severe compared with mild injury. Injury to labeled proximal tubule epithelia induced expression of CD24, CD133, vimentin, and kidney-injury molecule-1, markers of putative epithelial stem cells in the human kidney. Similar results were observed in cultured proximal tubules, in which labeled clones proliferated and expressed dedifferentiation and injury markers. When mice with completely labeled kidneys were subject to injury and repair there was no dilution of fate marker despite substantial proliferation, indicating that unlabeled progenitors do not contribute to kidney repair. During nephrogenesis and early kidney growth, single proximal tubule clones expanded, suggesting that differentiated cells also contribute to tubule elongation. These findings provide no evidence for an intratubular stem-cell population, but rather indicate that terminally differentiated epithelia reexpress apparent stem-cell markers during injury-induced dedifferentiation and repair. PMID:24127583

  16. Interleukin-22 Promotes Intestinal Stem Cell-Mediated Epithelial Regeneration

    PubMed Central

    Dudakov, Jarrod A.; Jenq, Robert R.; Velardi, Enrico; Young, Lauren F.; Smith, Odette M.; Lawrence, Gillian; Ivanov, Juliet A.; Fu, Ya-Yuan; Takashima, Shuichiro; Hua, Guoqiang; Martin, Maria L.; O'Rourke, Kevin P.; Lo, Yuan-Hung; Mokry, Michal; Romera-Hernandez, Monica; Cupedo, Tom; Dow, Lukas; Nieuwenhuis, Edward E.; Shroyer, Noah F.; Liu, Chen; Kolesnick, Richard

    2015-01-01

    Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch, and epidermal growth factor (EGF) signals supporting Lgr5+ crypt base columnar ISCs for normal epithelial maintenance1,2. However, little is known about the regulation of the ISC compartment after tissue damage. Utilizing ex vivo organoid cultures, we provide evidence that innate lymphoid cells (ILCs), potent producers of Interleukin-22 (IL-22) after intestinal injury3,4, increased the growth of murine small intestine (SI) organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both murine and human intestinal organoids, increasing proliferation, and promoting ISC expansion. IL-22 induced Stat3 phosphorylation in Lgr5+ ISCs, and Stat3 was critical for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after murine allogeneic bone marrow transplantation (BMT) enhanced recovery of ISCs, increased epithelial regeneration, and reduced intestinal pathology and mortality from graft vs. host disease (GVHD). Atoh1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independent of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support intestinal epithelium, activating ISCs to promote regeneration. PMID:26649819

  17. Notch Signaling in Meibomian Gland Epithelial Cell Differentiation

    PubMed Central

    Gidfar, Sanaz; Afsharkhamseh, Neda; Sanjari, Sara; Djalilian, Ali R.

    2016-01-01

    Purpose Notch1 was previously shown to play a critical role in murine meibomian gland function and maintenance. In this study, we have examined the expression and activation of Notch pathway in human meibomian gland epithelial cells in vitro. Methods An immortalized human meibomian gland epithelial cell (HMGEC) line was cultured under proliferative and differentiative conditions. Expression of Notch receptors and ligands were evaluated by quantitative PCR and Western blot. The effect of Notch inhibition and induction on oil production was also assessed. Results Human meibomian gland epithelial cell expressed Notch1, Notch2, Notch3, Jagged1, Jagged2, Delta-like 1, and Delta-like 3. The level of cleaved (activated) Notch1 strongly increased with differentiation. The expression of Notch3 was inversely correlated with proliferation. Induction and inhibition of Notch1 led to an increase and decrease in the amount of oil production, respectively. Conclusions Notch signaling appears to play an important role in human meibomian gland epithelial differentiation and oil production. This may provide a potential therapeutic pathway for treating meibomian gland dysfunction. PMID:26943148

  18. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration.

    PubMed

    Lindemans, Caroline A; Calafiore, Marco; Mertelsmann, Anna M; O'Connor, Margaret H; Dudakov, Jarrod A; Jenq, Robert R; Velardi, Enrico; Young, Lauren F; Smith, Odette M; Lawrence, Gillian; Ivanov, Juliet A; Fu, Ya-Yuan; Takashima, Shuichiro; Hua, Guoqiang; Martin, Maria L; O'Rourke, Kevin P; Lo, Yuan-Hung; Mokry, Michal; Romera-Hernandez, Monica; Cupedo, Tom; Dow, Lukas E; Nieuwenhuis, Edward E; Shroyer, Noah F; Liu, Chen; Kolesnick, Richard; van den Brink, Marcel R M; Hanash, Alan M

    2015-12-24

    Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch and epidermal growth factor (EGF) signals supporting Lgr5(+) crypt base columnar ISCs for normal epithelial maintenance. However, little is known about the regulation of the ISC compartment after tissue damage. Using ex vivo organoid cultures, here we show that innate lymphoid cells (ILCs), potent producers of interleukin-22 (IL-22) after intestinal injury, increase the growth of mouse small intestine organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both mouse and human intestinal organoids, increasing proliferation and promoting ISC expansion. IL-22 induced STAT3 phosphorylation in Lgr5(+) ISCs, and STAT3 was crucial for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after mouse allogeneic bone marrow transplantation enhanced the recovery of ISCs, increased epithelial regeneration and reduced intestinal pathology and mortality from graft-versus-host disease. ATOH1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independently of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support the intestinal epithelium, activating ISCs to promote regeneration. PMID:26649819

  19. Structural and functional analysis of endosomal compartments in epithelial cells.

    PubMed

    Bay, Andres E Perez; Schreiner, Ryan; Rodriguez-Boulan, Enrique

    2015-01-01

    Epithelial cells display segregated early endosomal compartments, termed apical sorting endosomes and basolateral sorting endosomes, that converge into a common late endosomal-lysosomal degradative compartment and common recycling endosomes (CREs). Unlike recycling endosomes of nonpolarized cells, CREs have the ability to sort apical and basolateral plasma membrane proteins into distinct apical and basolateral recycling routes, utilizing mechanisms similar to those employed by the trans Golgi network in the biosynthetic pathway. The apical recycling route includes an additional compartment, the apical recycling endosomes, consisting of multiple vesicles bundled around the basal body. Recent evidence indicates that, in addition to their role in internalizing ligands and recycling their receptors back to the cell surface, endosomal compartments act as intermediate stations in the biosynthetic routes to the plasma membrane. Here we review methods employed by our laboratory to study the endosomal compartments of epithelial cells and their multiple trafficking roles. PMID:26360040

  20. Epithelial-Mesenchymal Transition and Cell Cooperativity in Metastasis

    PubMed Central

    Tsuji, Takanori; Ibaragi, Soichiro; Hu, Guo-fu

    2009-01-01

    The role of epithelial-mesenchymal transition (EMT) in metastasis remains to be controversial. EMT has been postulated as an absolute requirement for tumor invasion and metastasis. Three different models including incomplete EMT, mesenchymal-epithelial transition (MET), and collective migration have been proposed for the role of EMT in cancer invasion and metastasis. However, skepticism remains as to whether EMT truly occurs during caner progression, and if it does, whether it plays an indispensible role in metastasis. Our recent findings suggest that EMT cells are responsible for degrading the surrounding matrix to enable invasion and intravasation of both EMT and non-EMT cells. Only non-EMT cell that have entered the blood stream are able to reestablish colonies in the secondary sites. Here we discuss an alternative model for the role of EMT in cancer metastasis in which EMT and non-EMT cells cooperate to complete the entire process of spontaneous metastasis. PMID:19738043

  1. Culture and immortalization of pancreatic ductal epithelial cells.

    PubMed

    Lawson, Terence; Ouellette, Michel; Kolar, Carol; Hollingsworth, Michael

    2005-01-01

    Some populations of the epithelial cells from the duct and ductular network of the mammalian pancreas have been isolated and maintained in vitro for up to 3 mo. These cells express many of the surface factors that are unique to them in vivo. They also retain significant drug- and carcinogen-metabolizing capacity in vitro. In this chapter we review the progression of the methods for the isolation, culture and maintenance in vitro for these cells from the earliest when only duct/ductular fragments were obtainable to the current ones which provide epithelial cells. The critical steps in the isolation process are identified and strategies are provided to facilitate these steps. These include the selection of tissue digestive enzymes, the importance of extensive mincing before culture and the importance of roles of some co-factors used in the culture medium. PMID:15542901

  2. Inactivation of Rb in stromal fibroblasts promotes epithelial cell invasion.

    PubMed

    Pickard, Adam; Cichon, Ann-Christin; Barry, Anna; Kieran, Declan; Patel, Daksha; Hamilton, Peter; Salto-Tellez, Manuel; James, Jacqueline; McCance, Dennis J

    2012-07-18

    Stromal-derived growth factors are required for normal epithelial growth but are also implicated in tumour progression. We have observed inactivation of the retinoblastoma protein (Rb), through phosphorylation, in cancer-associated fibroblasts in oro-pharyngeal cancer specimens. Rb is well known for its cell-autonomous effects on cancer initiation and progression; however, cell non-autonomous functions of Rb are not well described. We have identified a cell non-autonomous role of Rb, using three-dimensional cultures, where depletion of Rb in stromal fibroblasts enhances invasive potential of transformed epithelia. In part, this is mediated by upregulation of keratinocyte growth factor (KGF), which is produced by the depleted fibroblasts. KGF drives invasion of epithelial cells through induction of MMP1 expression in an AKT- and Ets2-dependent manner. Our data identify that stromal fibroblasts can alter the invasive behaviour of the epithelium, and we show that altered expression of KGF can mediate these functions. PMID:22643222

  3. Cytotoxic Action of Serratia marcescens Hemolysin on Human Epithelial Cells

    PubMed Central

    Hertle, Ralf; Hilger, Martina; Weingardt-Kocher, Sandra; Walev, Iwan

    1999-01-01

    Incubation of human epithelial cells with nanomolar concentrations of chromatographically purified Serratia marcescens hemolysin (ShlA) caused irreversible vacuolation and subsequent lysis of the cells. Vacuolation differed from vacuole formation by Helicobacter pylori VacA. Sublytic doses of ShlA led to a reversible depletion of intracellular ATP. Restoration to the initial ATP level was presumably due to the repair of the toxin damage and was inhibited by cycloheximide. Pores formed in epithelial cells and fibroblasts without disruption of the plasma membrane, and the pores appeared to be considerably smaller than those observed in artificial lipid membranes and in erythrocytes and did not allow the influx of propidium iodide or trypan blue. All cytotoxic effects induced by isolated recombinant ShlA were also obtained with exponentially growing S. marcescens cells. The previously suggested role of the hemolysin in the pathogenicity of S. marcescens is supported by these data. PMID:9916096

  4. COMPARISON OF PM-INDUCED GENE EXPRESSION PROFILES BETWEEN BRONCHIAL EPITHELIAL CELLS AND NASAL EPITHELIAL CELLS IN HUMAN

    EPA Science Inventory

    Epidemiologic studies have linked exposures to particulate matter (PM) and increased pulmonary mortality and morbidity. Bronchial epithelial cells (BEC) are the primary target of PM. PM exposure induces a wide array of biological responses in BEC. Primary human BEC, however, need...

  5. Priming Mesenchymal Stem Cells with Endothelial Growth Medium Boosts Stem Cell Therapy for Systemic Arterial Hypertension

    PubMed Central

    de Oliveira, Lucas Felipe; Almeida, Thalles Ramos; Ribeiro Machado, Marcus Paulo; Cuba, Marilia Beatriz; Alves, Angélica Cristina; da Silva, Marcos Vinícius; Rodrigues Júnior, Virmondes; Dias da Silva, Valdo José

    2015-01-01

    Systemic arterial hypertension (SAH), a clinical syndrome characterized by persistent elevation of arterial pressure, is often associated with abnormalities such as microvascular rarefaction, defective angiogenesis, and endothelial dysfunction. Mesenchymal stem cells (MSCs), which normally induce angiogenesis and improve endothelial function, are defective in SAH. The central aim of this study was to evaluate whether priming of MSCs with endothelial growth medium (EGM-2) increases their therapeutic effects in spontaneously hypertensive rats (SHRs). Adult female SHRs were administered an intraperitoneal injection of vehicle solution (n = 10), MSCs cultured in conventional medium (DMEM plus 10% FBS, n = 11), or MSCs cultured in conventional medium followed by 72 hours in EGM-2 (pMSC, n = 10). Priming of the MSCs reduced the basal cell death rate in vitro. The administration of pMSCs significantly induced a prolonged reduction (10 days) in arterial pressure, a decrease in cardiac hypertrophy, an improvement in endothelium-dependent vasodilation response to acetylcholine, and an increase in skeletal muscle microvascular density compared to the vehicle and MSC groups. The transplanted cells were rarely found in the hearts and kidneys. Taken together, our findings indicate that priming of MSCs boosts stem cell therapy for the treatment of SAH. PMID:26300922

  6. Circulating progenitor epithelial cells traffic via CXCR4/CXCL12 in response to airway injury.

    PubMed

    Gomperts, Brigitte N; Belperio, John A; Rao, P Nagesh; Randell, Scott H; Fishbein, Michael C; Burdick, Marie D; Strieter, Robert M

    2006-02-01

    Recipient airway epithelial cells are found in human sex-mismatched lung transplants, implying that circulating progenitor epithelial cells contribute to the repair of the airway epithelium. Markers of circulating progenitor epithelial cells and mechanisms for their trafficking remain to be elucidated. We demonstrate that a population of progenitor epithelial cells exists in the bone marrow and the circulation of mice that is positive for the early epithelial marker cytokeratin 5 (CK5) and the chemokine receptor CXCR4. We used a mouse model of sex-mismatched tracheal transplantation and found that CK5+ circulating progenitor epithelial cells contribute to re-epithelialization of the airway and re-establishment of the pseudostratified epithelium. The presence of CXCL12 in tracheal transplants provided a mechanism for CXCR4+ circulating progenitor epithelial cell recruitment to the airway. Depletion of CXCL12 resulted in the epithelium defaulting to squamous metaplasia, which was derived solely from the resident tissue progenitor epithelial cells. Our findings demonstrate that CK5+CXCR4+ cells are markers of circulating progenitor epithelial cells in the bone marrow and circulation and that CXCR4/CXCL12-mediated recruitment of circulating progenitor epithelial cells is necessary for the re-establishment of a normal pseudostratified epithelium after airway injury. These findings support a novel paradigm for the development of squamous metaplasia of the airway epithelium and for developing therapeutic strategies for circulating progenitor epithelial cells in airway diseases. PMID:16424223

  7. Midbody remnant licenses primary cilia formation in epithelial cells.

    PubMed

    Ott, Carolyn M

    2016-08-01

    Tethered midbody remnants dancing across apical microvilli, encountering the centrosome, and beckoning forth a cilium-who would have guessed this is how polarized epithelial cells coordinate the end of mitosis and the beginning of ciliogenesis? New evidence from Bernabé-Rubio et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201601020) supports this emerging model. PMID:27482049

  8. Review: Corneal epithelial stem cells, their niche and wound healing

    PubMed Central

    2013-01-01

    Stem cells emerged as a concept during the second half of 19th century, first as a theoretical entity, but then became one of the most promising research fields in cell biology. This work describes the most important characteristics of adult stem cells, including the experimental criteria used to identify them, and discusses current knowledge that led to the proposal that stem cells existed in different parts of the eye, such as the retina, lens, conjunctiva, corneal stroma, Descemet’s membrane, and the subject of this review: the corneal epithelium. Evidence includes results that support the presence of corneal epithelial stem cells at the limbus, as well as the major obstacles to isolating them as pure cell populations. Part of this review describes the variation in the basement membrane composition between the limbus and the central cornea, to show the importance of the corneal stem cell niche, its structure, and the participation of extracellular matrix (ECM) components in regulating corneal stem cell compartment. Results obtained by various laboratories suggest that the extracellular matrix plays a central role in regulating stem cell commitment, corneal differentiation, and participation in corneal wound healing, in addition to other environmental signals such as cytokines and growth factors. The niche could define cell division patterns in corneal stem cell populations, establishing whether stem cells divide asymmetrically or symmetrically. Characterization and understanding of the factors that regulate corneal epithelial stem cells should open up new paths for developing new therapies and strategies for accelerating and improving corneal wound healing. PMID:23901244

  9. Vangl2 Regulates E-Cadherin in Epithelial Cells

    PubMed Central

    Nagaoka, Tadahiro; Inutsuka, Ayumu; Begum, Khadiza; hafiz, Khandakar musabbir bin; Kishi, Masashi

    2014-01-01

    E-cadherin belongs to the classic cadherin subfamily of calcium-dependent cell adhesion molecules and is crucial for the formation and function of epithelial adherens junctions. In this study, we demonstrate that Vangl2, a vertebrate regulator of planar cell polarity (PCP), controls E-cadherin in epithelial cells. E-cadherin co-immunoprecipitates with Vangl2 from embryonic kidney extracts, and this association is also observed in transfected fibroblasts. Vangl2 enhances the internalization of E-cadherin when overexpressed. Conversely, the quantitative ratio of E-cadherin exposed to the cell surface is increased in cultured renal epithelial cells derived from Vangl2Lpt/+ mutant mice. Interestingly, Vangl2 is also internalized through protein traffic involving Rab5- and Dynamin-dependent endocytosis. Taken together with recent reports regarding the transport of Frizzled3, MMP14 and nephrin, these results suggest that one of the molecular functions of Vangl2 is to enhance the internalization of specific plasma membrane proteins with broad selectivity. This function may be involved in the control of intercellular PCP signalling or in the PCP-related rearrangement of cell adhesions. PMID:25373475

  10. Sef Regulates Epithelial-Mesenchymal Transition in Breast Cancer Cells.

    PubMed

    He, Qing; Gong, Yan; Gower, Lindsey; Yang, Xuehui; Friesel, Robert E

    2016-10-01

    Sef (similar expression to fgf), also know as IL17RD, is a transmembrane protein shown to inhibit fibroblast growth factor signaling in developmental and cancer contexts; however, its role as a tumor suppressor remains to be fully elucidated. Here, we show that Sef regulates epithelial-mesenchymal transition (EMT) in breast cancer cell lines. Sef expression was highest in the normal breast epithelial cell line MCF10A, intermediate expression in MCF-7 cells and lowest in MDA-MB-231 cells. Knockdown of Sef increased the expression of genes associated with EMT, and promoted cell migration, invasion, and a fibroblastic morphology of MCF-7 cells. Overexpression of Sef inhibited the expression of EMT marker genes and inhibited cell migration and invasion in MCF-7 cells. Induction of EMT in MCF10A cells by TGF-β and TNF-α resulted in downregulation of Sef expression concomitant with upregulation of EMT gene expression and loss of epithelial morphology. Overexpression of Sef in MCF10A cells partially blocked cytokine-induced EMT. Sef was shown to block β-catenin mediated luciferase reporter activity and to cause a decrease in the nuclear localization of active β-catenin. Furthermore, Sef was shown to co-immunoprecipitate with β-catenin. In a mouse orthotopic xenograft model, Sef overexpression in MDA-MB-231 cells slowed tumor growth and reduced expression of EMT marker genes. Together, these data indicate that Sef plays a role in the negative regulation of EMT in a β-catenin dependent manner and that reduced expression of Sef in breast tumor cells may be permissive for EMT and the acquisition of a more metastatic phenotype. J. Cell. Biochem. 117: 2346-2356, 2016. © 2016 Wiley Periodicals, Inc. PMID:26950413

  11. Alveolar epithelial type II cell: defender of the alveolus revisited

    PubMed Central

    Fehrenbach, Heinz

    2001-01-01

    In 1977, Mason and Williams developed the concept of the alveolar epithelial type II (AE2) cell as a defender of the alveolus. It is well known that AE2 cells synthesise, secrete, and recycle all components of the surfactant that regulates alveolar surface tension in mammalian lungs. AE2 cells influence extracellular surfactant transformation by regulating, for example, pH and [Ca2+] of the hypophase. AE2 cells play various roles in alveolar fluid balance, coagulation/fibrinolysis, and host defence. AE2 cells proliferate, differentiate into AE1 cells, and remove apoptotic AE2 cells by phagocytosis, thus contributing to epithelial repair. AE2 cells may act as immunoregulatory cells. AE2 cells interact with resident and mobile cells, either directly by membrane contact or indirectly via cytokines/growth factors and their receptors, thus representing an integrative unit within the alveolus. Although most data support the concept, the controversy about the character of hyperplastic AE2 cells, reported to synthesise profibrotic factors, proscribes drawing a definite conclusion today. PMID:11686863

  12. Generation of Stratified Squamous Epithelial Progenitor Cells from Mouse Induced Pluripotent Stem Cells

    PubMed Central

    Yoshida, Satoru; Yasuda, Miyuki; Miyashita, Hideyuki; Ogawa, Yoko; Yoshida, Tetsu; Matsuzaki, Yumi; Tsubota, Kazuo; Okano, Hideyuki; Shimmura, Shigeto

    2011-01-01

    Background Application of induced pluripotent stem (iPS) cells in regenerative medicine will bypass ethical issues associated with use of embryonic stem cells. In addition, patient-specific IPS cells can be useful to elucidate the pathophysiology of genetic disorders, drug screening, and tailor-made medicine. However, in order to apply iPS cells to mitotic tissue, induction of tissue stem cells that give rise to progeny of the target organ is required. Methodology/Principal Findings We induced stratified epithelial cells from mouse iPS cells by co-culture with PA6 feeder cells (SDIA-method) with use of BMP4. Clusters of cells positive for the differentiation markers KRT1 or KRT12 were observed in KRT14-positive colonies. We successfully cloned KRT14 and p63 double-positive stratified epithelial progenitor cells from iPS-derived epithelial cells, which formed stratified epithelial sheets consisting of five- to six-polarized epithelial cells in vitro. When these clonal cells were cultured on denuded mouse corneas, a robust stratified epithelial layer was observed with physiological cell polarity including high levels of E-cadherin, p63 and K15 expression in the basal layer and ZO-1 in the superficial layer, recapitulating the apico-basal polarity of the epithelium in vivo. Conclusions/Significance These results suggest that KRT14 and p63 double-positive epithelial progenitor cells can be cloned from iPS cells in order to produce polarized multilayer epithelial cell sheets. PMID:22174914

  13. Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays

    PubMed Central

    Bachy, Veronique; Hervouet, Catherine; Becker, Pablo D.; Chorro, Laurent; Carlin, Leo M.; Herath, Shanthi; Papagatsias, Timos; Barbaroux, Jean-Baptiste; Oh, Sea-Jin; Benlahrech, Adel; Athanasopoulos, Takis; Dickson, George; Patterson, Steven; Kwon, Sung-Yun; Geissmann, Frederic; Klavinskis, Linda S.

    2013-01-01

    Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8+ T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c+ dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c+ MHCIIhi CD8αneg epithelial cell adhesion molecule (EpCAMneg) CD11b+ langerin (Lang; CD207)neg DCs, but neither Langerhans cells nor Lang+ DCs were required for CD8+ T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8+ T-cell priming by live rAdHu5 MAs. PMID:23386724

  14. Cytokeratin changes in cell culture systems of epithelial cells isolated from oral mucosa: a short review.

    PubMed

    Gasparoni, Alberto; Squier, Christopher Alan; Fonzi, Luciano

    2005-01-01

    In the past three decades, many studies have analyzed ultrastructural and molecular markers of differentiation in squamous stratified epithelial tissues. In these tissues, epithelial cells migrating from the basal layer to the upper layers undergo drastic changes, which involve membrane-associated proteins, DNA synthesis, phenotypic aspects, lipid composition, and cytoskeletal components. Cytoskeletal components include a large and heterogeneous group, including intermediate filaments, components of the cornified envelope, and of the stratum corneum. When grown in mono- and multilayer cell cultures, epithelial cells isolated from the oral mucosa may reproduce many of the biochemical and morphological aspects of epithelial tissue in vivo. In the present paper, we examine phenotypic changes, development of suprabasal layer, and Involucrin expression occurring in differentiating oral epithelial cells, based on literature review and original data. PMID:16277157

  15. Temporal Monitoring of Differentiated Human Airway Epithelial Cells Using Microfluidics

    PubMed Central

    Blume, Cornelia; Reale, Riccardo; Held, Marie; Millar, Timothy M.; Collins, Jane E.; Davies, Donna E.; Morgan, Hywel; Swindle, Emily J.

    2015-01-01

    The airway epithelium is exposed to a variety of harmful agents during breathing and appropriate cellular responses are essential to maintain tissue homeostasis. Recent evidence has highlighted the contribution of epithelial barrier dysfunction in the development of many chronic respiratory diseases. Despite intense research efforts, the responses of the airway barrier to environmental agents are not fully understood, mainly due to lack of suitable in vitro models that recapitulate the complex in vivo situation accurately. Using an interdisciplinary approach, we describe a novel dynamic 3D in vitro model of the airway epithelium, incorporating fully differentiated primary human airway epithelial cells at the air-liquid interface and a basolateral microfluidic supply of nutrients simulating the interstitial flow observed in vivo. Through combination of the microfluidic culture system with an automated fraction collector the kinetics of cellular responses by the airway epithelium to environmental agents can be analysed at the early phases for the first time and with much higher sensitivity compared to common static in vitro models. Following exposure of primary differentiated epithelial cells to pollen we show that CXCL8/IL–8 release is detectable within the first 2h and peaks at 4–6h under microfluidic conditions, a response which was not observed in conventional static culture conditions. Such a microfluidic culture model is likely to have utility for high resolution temporal profiling of toxicological and pharmacological responses of the airway epithelial barrier, as well as for studies of disease mechanisms. PMID:26436734

  16. Temporal Monitoring of Differentiated Human Airway Epithelial Cells Using Microfluidics.

    PubMed

    Blume, Cornelia; Reale, Riccardo; Held, Marie; Millar, Timothy M; Collins, Jane E; Davies, Donna E; Morgan, Hywel; Swindle, Emily J

    2015-01-01

    The airway epithelium is exposed to a variety of harmful agents during breathing and appropriate cellular responses are essential to maintain tissue homeostasis. Recent evidence has highlighted the contribution of epithelial barrier dysfunction in the development of many chronic respiratory diseases. Despite intense research efforts, the responses of the airway barrier to environmental agents are not fully understood, mainly due to lack of suitable in vitro models that recapitulate the complex in vivo situation accurately. Using an interdisciplinary approach, we describe a novel dynamic 3D in vitro model of the airway epithelium, incorporating fully differentiated primary human airway epithelial cells at the air-liquid interface and a basolateral microfluidic supply of nutrients simulating the interstitial flow observed in vivo. Through combination of the microfluidic culture system with an automated fraction collector the kinetics of cellular responses by the airway epithelium to environmental agents can be analysed at the early phases for the first time and with much higher sensitivity compared to common static in vitro models. Following exposure of primary differentiated epithelial cells to pollen we show that CXCL8/IL-8 release is detectable within the first 2h and peaks at 4-6h under microfluidic conditions, a response which was not observed in conventional static culture conditions. Such a microfluidic culture model is likely to have utility for high resolution temporal profiling of toxicological and pharmacological responses of the airway epithelial barrier, as well as for studies of disease mechanisms. PMID:26436734

  17. Retinoic acid promotes primary fetal alveolar epithelial type II cell proliferation and differentiation to alveolar epithelial type I cells.

    PubMed

    Gao, Rui-wei; Kong, Xiang-yong; Zhu, Xiao-xi; Zhu, Guo-qing; Ma, Jin-shuai; Liu, Xiu-xiang

    2015-05-01

    Retinoic acid (RA) plays an important role in lung development and maturation. Many stimuli can induce alveolar epithelial cell damage which will result in the injury of lung parenchyma. The aim of this study was to observe the effect of RA on the proliferation and differentiation of primary fetal alveolar epithelial type II cells (fAECIIs). Primary fAECIIs were isolated from fetal rats at 19 d of gestation and purified by a differential centrifugation and adhesion method. The cells were randomly divided into control (dimethyl sulfoxide, DMSO) and RA groups. Cell proliferation, viability, apoptosis, cycle, and expression of target protein were examined at 24, 48, and 72 h. We found that the proliferation and viability of cells in the RA-exposed group significantly increased compared with the DMSO control group. The proportion (%) of cells in the G2 and S phases in the RA group was significantly higher than that in control group cells. The proportion (%) of both early apoptotic cells and late apoptotic cells decreased significantly in cells exposed to RA compared with cells exposed to DMSO. RA significantly enhanced the expression of aquaporin 5 (AQP5). The expression level of pulmonary surfactant C (SPC) was elevated after cells were exposed to RA for 24 and 72 h but was inhibited when cells were exposed to RA for 48 h. These results suggest that RA promotes fAECII proliferation by improving cell viability, promoting S phase entry and inhibiting apoptosis and RA promotes fAECIIs differentiation to alveolar epithelial type I cells (AECIs). PMID:25515249

  18. Human airway xenograft models of epithelial cell regeneration.

    PubMed

    Puchelle, E; Peault, B

    2000-01-01

    Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID) and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa. PMID:11667974

  19. Epithelial Cell Proliferation Contributes to Airway Remodeling in Severe Asthma

    PubMed Central

    Cohen, Lance; E, Xueping; Tarsi, Jaime; Ramkumar, Thiruvamoor; Horiuchi, Todd K.; Cochran, Rebecca; DeMartino, Steve; Schechtman, Kenneth B.; Hussain, Iftikhar; Holtzman, Michael J.; Castro, Mario

    2007-01-01

    Rationale: Despite long-term therapy with corticosteroids, patients with severe asthma develop irreversible airway obstruction. Objectives: To evaluate if there are structural and functional differences in the airway epithelium in severe asthma associated with airway remodeling. Methods: In bronchial biopsies from 21 normal subjects, 11 subjects with chronic bronchitis, 9 subjects with mild asthma, and 31 subjects with severe asthma, we evaluated epithelial cell morphology: epithelial thickness, lamina reticularis (LR) thickness, and epithelial desquamation. Levels of retinoblastoma protein (Rb), Ki67, and Bcl-2 were measured, reflecting cellular proliferation and death. Terminal deoxynucleotidyl-mediated dUTP nick end labeling (TUNEL) was used to study cellular apoptosis. Measurements and Main Results: Airway epithelial and LR thickness was greater in subjects with severe asthma compared with those with mild asthma, normal subjects, and diseased control subjects (p = 0.009 and 0.033, respectively). There was no significant difference in epithelial desquamation between groups. Active, hypophosphorylated Rb expression was decreased (p = 0.002) and Ki67 was increased (p < 0.01) in the epithelium of subjects with severe asthma as compared with normal subjects, indicating increased cellular proliferation. Bcl-2 expression was decreased (p < 0.001), indicating decreased cell death suppression. There was a greater level of apoptotic activity in the airway biopsy in subjects with severe asthma as compared with the normal subjects using the TUNEL assay (p = 0.002), suggesting increased cell death. Conclusions: In subjects with severe asthma, as compared with subjects with mild asthma, normal subjects, and diseased control subjects, we found novel evidence of increased cellular proliferation in the airway contributing to a thickened epithelium and LR. These changes may contribute to the progressive decline in lung function and airway remodeling in patients with severe

  20. Transcriptional Regulation of Tlr11 Gene Expression in Epithelial Cells*

    PubMed Central

    Cai, Zhenyu; Shi, Zhongcheng; Sanchez, Amir; Zhang, Tingting; Liu, Mingyao; Yang, Jianghua; Wang, Fen; Zhang, Dekai

    2009-01-01

    As sensors of invading microorganisms, Toll-like receptors (TLRs) are expressed not only on macrophages and dendritic cells (DCs) but also on epithelial cells. In the TLR family, Tlr11 appears to have the unique feature in that it is expressed primarily on epithelial cells, although it is also expressed on DCs and macrophages. Here, we demonstrate that transcription of the Tlr11 gene is regulated through two cis-acting elements, one Ets-binding site and one interferon regulatory factor (IRF)-binding site. The Ets element interacts with the epithelium-specific transcription factors, ESE-1 and ESE-3, and the IRF motif interacts with IRF-8. Thus, Tlr11 expression on epithelial cells is regulated by the transcription factors that are presumably distinct from transcription factors that regulate the expression of TLRs in innate immune cells such as macrophages and DCs. Our results imply that the distinctive transcription regulatory machinery for TLRs on epithelium may represent a promising new avenue for the development of epithelia-specific therapeutic interventions. PMID:19801549

  1. Differentiation capacity of epithelial cells in the sponge Suberites domuncula.

    PubMed

    Schröder, Heinz C; Perović-Ottstadt, Sanja; Wiens, Matthias; Batel, Renato; Müller, Isabel M; Müller, Werner E G

    2004-05-01

    Sponges (phylum Porifera) represent the oldest metazoans. Their characteristic metazoan adhesion molecules and transcription factors enable them to establish a complex "Bauplan"; three major differentiated cell types (epithelial cells, skeletal cells/sclerocytes, and contractile cells) can be distinguished. Since no molecular markers are as yet available to distinguish these somatic cells or the corresponding embryonic cells from which they originate, we have selected the following three genes for their characterization: noggin (a signaling molecule in development), a caspase that encodes an apoptotic molecule, and silicatein. Silicatein is an enzyme that is involved in the synthesis of siliceous spicules and can hence be considered as a marker for scleroblasts. We have used the demosponge Suberites domuncula as a model system. During the hatching of the gemmules (asexual reproduction bodies) of S. domuncula, the expression of both noggin and caspase increases, whereas no transcripts for silicatein can be detected, irrespective of the presence of silicate or ferric iron (Fe3+) in the medium. In contrast, in adult specimens, silicate/Fe3+ cause an increased expression of these genes. In situ analysis has revealed that the first cells that express noggin, caspase, and silicatein lie in the epithelial layer of the pinacoderm. In a later phase, the noggin- and silicatein-positive cells migrate into the mesohyl, where they are found in association with spicules. Thus, the pinacoderm of sponges contains cells that have a differentiating capacity and from which somatic cells, such as skeletal cells/sclerocytes, derive. PMID:15024642

  2. Radiogenic transformation of human mammary epithelial cells in vitro

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Tavakoli, A.; Craise, L. M.; Durante, M.

    1996-01-01

    Cancer induction by space radiations is a major concern for manned space exploration. Accurate assessment of radiation risk at low doses requires basic understanding of mechanism(s) of radiation carcinogenesis. For determining the oncogenic effects of ionizing radiation in human epithelial cells, we transformed a mammary epithelial cell line (185B5), which was immortalized by benzo(a)pyrene, with energetic heavy ions and obtained several transformed clones. These transformed cells showed growth properties on Matrigel similar to human mammary tumor cells. To better understand the mechanisms of radiogenic transformation of human cells, we systematically examined the alterations in chromosomes and cancer genes. Among 16 autosomes examined for translocations, by using fluorescence in situ hybridization (FISH) technique, chromosomes 3, 12, 13, 15, 16, and 18 appeared to be normal in transformed cells. Chromosomes 1, 4, 6, 8, and 17 in transformed cells, however, showed patterns different from those in nontransformed cells. Southern blot analyses indicated no detectable alterations in myc, ras, Rb, or p53 genes. Further studies of chromosome 17 by using in situ hybridization with unique sequence p53 gene probe and a centromere probe showed no loss of p53 gene in transformed cells. Experimental results from cell fusion studies indicated that the transforming gene(s) is recessive. The role of genomic instability and tumor suppressor gene(s) in radiogenic transformation of human breast cells remains to be identified.

  3. Distribution of Primed T Cells and Antigen-Loaded Antigen Presenting Cells Following Intranasal Immunization in Mice

    PubMed Central

    Ciabattini, Annalisa; Pettini, Elena; Fiorino, Fabio; Prota, Gennaro; Pozzi, Gianni; Medaglini, Donata

    2011-01-01

    Priming of T cells is a key event in vaccination, since it bears a decisive influence on the type and magnitude of the immune response. T-cell priming after mucosal immunization via the nasal route was studied by investigating the distribution of antigen-loaded antigen presenting cells (APCs) and primed antigen-specific T cells. Nasal immunization studies were conducted using the model protein antigen ovalbumin (OVA) plus CpG oligodeoxynucleotide adjuvant. Trafficking of antigen-specific primed T cells was analyzed in vivo after adoptive transfer of OVA-specific transgenic T cells in the presence or absence of fingolimod, a drug that causes lymphocytes sequestration within lymph nodes. Antigen-loaded APCs were observed in mediastinal lymph nodes, draining the respiratory tract, but not in distal lymph nodes. Antigen-specific proliferating T cells were first observed within draining lymph nodes, and later in distal iliac and mesenteric lymph nodes and in the spleen. The presence at distal sites was due to migration of locally primed T cells as shown by fingolimod treatment that caused a drastic reduction of proliferated T cells in non-draining lymph nodes and an accumulation of extensively divided T cells within draining lymph nodes. Homing of nasally primed T cells in distal iliac lymph nodes was CD62L-dependent, while entry into mesenteric lymph nodes depended on both CD62L and α4β7, as shown by in vivo antibody-mediated inhibition of T-cell trafficking. These data, elucidating the trafficking of antigen-specific primed T cells to non-draining peripheral and mucosa-associated lymph nodes following nasal immunization, provide relevant insights for the design of vaccination strategies based on mucosal priming. PMID:21559409

  4. Prime Knowledge about Primes

    ERIC Educational Resources Information Center

    Eisenberg, Theodore

    2007-01-01

    Several proofs demonstrating that there are infinitely many primes, different types of primes, tests of primality, pseudo primes, prime number generators and open questions about primes are discussed in Section 1. Some of these notions are elaborated upon in Section 2, with discussions of the Riemann zeta function and how algorithmic complexity…

  5. Nucleus Morphometry in Cultured Epithelial Cells Correlates with Phenotype.

    PubMed

    Khan, Ayyad Z; Utheim, Tor P; Jackson, Catherine J; Reppe, Sjur; Lyberg, Torstein; Eidet, Jon R

    2016-06-01

    Phenotype of cultured ocular epithelial transplants has been shown to affect clinical success rates following transplantation to the cornea. The purpose of this study was to evaluate the relationship between cell nucleus morphometry and phenotype in three types of cultured epithelial cells. This study provides knowledge for the development of a non-invasive method of determining the phenotype of cultured epithelium before transplantation. Cultured human conjunctival epithelial cells (HCjE), human epidermal keratinocytes (HEK), and human retinal pigment epithelial cells (HRPE) were analyzed by quantitative immunofluorescence. Assessments of nucleus morphometry and nucleus-to-cytoplasm ratio (N/C ratio) were performed using ImageJ. Spearman's correlation coefficient was employed for statistical analysis. Levels of the proliferation marker PCNA in HCjE, HEK, and HRPE correlated positively with nuclear area. Nuclear area correlated significantly with levels of the undifferentiated cell marker ABCG2 in HCjE. Bmi1 levels, but not p63α levels, correlated significantly with nuclear area in HEK. The N/C ratio did not correlate significantly with any of the immunomarkers in HCjE (ABCG2, CK7, and PCNA) and HRPE (PCNA). In HEK, however, the N/C ratio was negatively correlated with levels of the undifferentiated cell marker CK14 and positively correlated with Bmi1 expression. The size of the nuclear area correlated positively with proliferation markers in all three epithelia. Morphometric indicators of phenotype in cultured epithelia can be identified using ImageJ. Conversely, the N/C ratio did not show a uniform relationship with phenotype in HCjE, HEK, or HRPE. N/C ratio therefore, may not be a useful morphometric marker for in vitro assessment of phenotype in these three epithelia. PMID:27329312

  6. Zinc modulates cytokine-induced lung epithelial cell barrier permeability.

    PubMed

    Bao, Shenying; Knoell, Daren L

    2006-12-01

    Apoptosis plays a causative role in acute lung injury in part due to epithelial cell loss. We recently reported that zinc protects the lung epithelium during inflammatory stress whereas depletion of intracellular zinc enhances extrinsic apoptosis. In this investigation, we evaluated the relationship between zinc, caspase-3, and cell-to-cell contact via proteins that form the adherens junction complex. Cell adhesion proteins are directly responsible for formation of the mechanical barrier of the lung epithelium. We hypothesized that exposure to inflammatory cytokines, in conjunction with zinc deprivation, would induce caspase-3, leading to degradation of junction proteins, loss of cell-to-cell contact, and compromised barrier function. Primary human upper airway and type I/II alveolar epithelial cultures were obtained from multiple donors and exposed to inflammatory stimuli that provoke extrinsic apoptosis in addition to depletion of intracellular zinc. We observed that zinc deprivation combined with tumor necrosis factor-alpha, interferon-gamma, and Fas receptor ligation accelerates caspase-3 activation, proteolysis of E-cadherin and beta-catenin, and cellular apoptosis, leading to increased paracellular leak across monolayers of both upper airway and alveolar lung epithelial cultures. Zinc supplementation inhibited apoptosis and paracellular leak, whereas caspase inhibition was less effective. We conclude that zinc is a vital factor in the lung epithelium that protects against death receptor-mediated apoptosis and barrier dysfunction. Furthermore, our findings suggest that although caspase-3 inhibition reduces lung epithelial apoptosis it does not prevent mechanical dysfunction. These findings facilitate future studies aimed at developing therapeutic strategies to prevent acute lung injury. PMID:16844947

  7. Borrelia burgdorferi bind to epithelial cell proteoglycans.

    PubMed Central

    Isaacs, R D

    1994-01-01

    Borrelia burgdorferi adhere to mammalian cells in vitro but neither the ligand(s) nor the receptor(s) has (have) been clearly established. Using an in vitro attachment-inhibition assay, a B. burgdorferi attachment mechanism has been identified. Heparin, heparan sulfate, and dermatan sulfate reduced the attachment of virulent B. burgdorferi strain 297 to HeLa cells by approximately 60%. In addition, virulent, but not avirulent, B. burgdorferi strains B31, N40, and HB19 demonstrated heparin attachment-inhibition. Attachment to Chinese hamster ovary cells deficient in heparan sulfate proteoglycans was reduced by 68% compared to attachment to wild-type cells and was identical to attachment at maximum heparin inhibition to the wild-type cells. Pretreatment of HeLa cell monolayers with heparitinase, heparinase, and chondroitinase ABC, but not with chondroitinase AC, reduced borrelial attachment by approximately 50%. A moderately high affinity, low copy number, promiscuous B. burgdorferi glycosaminoglycan receptor was demonstrated by equilibrium binding studies. A 39-kD polypeptide, purified by heparin affinity chromatography from Triton X-100 extracts derived from virulent borrelia, was a candidate for this receptor. These studies indicate that one mode of B. burgdorferi attachment to eukaryotic cells is mediated by a borrelial glycosaminoglycan receptor attaching to surface-exposed proteoglycans on mammalian cells. Images PMID:8113413

  8. CCL20, (gamma)(delta) T cells, and IL-22 in corneal epithelial healing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After corneal epithelial abrasion, leukocytes and platelets rapidly enter the corneal stroma, and CCR6 (+) IL-17(+) gamma delta T cells migrate into the epithelium. Gamma delta T-cell-deficient (TCRd(-/-)) mice have significantly reduced inflammation and epithelial wound healing. Epithelial CCL20 mR...

  9. Mesenchymal precursor cells maintain the differentiation and proliferation potentials of breast epithelial cells

    PubMed Central

    2014-01-01

    Introduction Stromal-epithelial interactions play a fundamental role in tissue homeostasis, controlling cell proliferation and differentiation. Not surprisingly, aberrant stromal-epithelial interactions contribute to malignancies. Studies of the cellular and molecular mechanisms underlying these interactions require ex vivo experimental model systems that recapitulate the complexity of human tissue without compromising the differentiation and proliferation potentials of human primary cells. Methods We isolated and characterized human breast epithelial and mesenchymal precursors from reduction mammoplasty tissue and tagged them with lentiviral vectors. We assembled heterotypic co-cultures and compared mesenchymal and epithelial cells to cells in corresponding monocultures by analyzing growth, differentiation potentials, and gene expression profiles. Results We show that heterotypic culture of non-immortalized human primary breast epithelial and mesenchymal precursors maintains their proliferation and differentiation potentials and constrains their growth. We further describe the gene expression profiles of stromal and epithelial cells in co-cultures and monocultures and show increased expression of the tumor growth factor beta (TGFβ) family member inhibin beta A (INHBA) in mesenchymal cells grown as co-cultures compared with monocultures. Notably, overexpression of INHBA in mesenchymal cells increases colony formation potential of epithelial cells, suggesting that it contributes to the dynamic reciprocity between breast mesenchymal and epithelial cells. Conclusions The described heterotypic co-culture system will prove useful for further characterization of the molecular mechanisms mediating interactions between human normal or neoplastic breast epithelial cells and the stroma, and will provide a framework to test the relevance of the ever-increasing number of oncogenomic alterations identified in human breast cancer. PMID:24916766

  10. Efficacy of several candidate protein biomarkers in the differentiation of vaginal from buccal epithelial cells.

    PubMed

    Simons, Joanne L; Vintiner, Sue K

    2012-11-01

    Currently, there is no accurate method to differentiate vaginal epithelial cells from buccal epithelial cells in biological samples typically encountered in forensic casework. This study tested the expression of a selection of candidate proteins in buccal and vaginal epithelial cells. We investigated six candidate biomarkers, such as loricrin, vimentin, stratifin, cytokeratin 4, cytokeratin 13, small proline-rich protein 2, and involucrin, using Western blot analysis on whole protein extracts and immunohistochemistry (IHC) on intact cells in an attempt to identify cell-specific markers that would differentiate these cells by microscopy. Involucrin, loricrin, and stratifin showed differential expression during Western blot analysis and were carried through to IHC. Although proteins unique to vaginal epithelial cells and buccal epithelial cells were not identified from among the proteins tested, the increased expression levels of two proteins, loricrin and stratifin in vaginal cells, when compared to buccal cells, do provide encouraging results in the search for epithelial cell-specific markers. PMID:22612601

  11. XB130 promotes bronchioalveolar stem cell and Club cell proliferation in airway epithelial repair and regeneration

    PubMed Central

    Toba, Hiroaki; Wang, Yingchun; Bai, Xiaohui; Zamel, Ricardo; Cho, Hae-Ra; Liu, Hongmei; Lira, Alonso; Keshavjee, Shaf; Liu, Mingyao

    2015-01-01

    Proliferation of bronchioalveolar stem cells (BASCs) is essential for epithelial repair. XB130 is a novel adaptor protein involved in the regulation of epithelial cell survival, proliferation and migration through the PI3K/Akt pathway. To determine the role of XB130 in airway epithelial injury repair and regeneration, a naphthalene-induced airway epithelial injury model was used with XB130 knockout (KO) mice and their wild type (WT) littermates. In XB130 KO mice, at days 7 and 14, small airway epithelium repair was significantly delayed with fewer number of Club cells (previously called Clara cells). CCSP (Club cell secreted protein) mRNA expression was also significantly lower in KO mice at day 7. At day 5, there were significantly fewer proliferative epithelial cells in the KO group, and the number of BASCs significantly increased in WT mice but not in KO mice. At day 7, phosphorylation of Akt, GSK-3β, and the p85α subunit of PI3K was observed in airway epithelial cells in WT mice, but to a much lesser extent in KO mice. Microarray data also suggest that PI3K/Akt-related signals were regulated differently in KO and WT mice. An inhibitory mechanism for cell proliferation and cell cycle progression was suggested in KO mice. XB130 is involved in bronchioalveolar stem cell and Club cell proliferation, likely through the PI3K/Akt/GSK-3β pathway. PMID:26360608

  12. Live-cell Imaging and Quantitative Analysis of Embryonic Epithelial Cells in Xenopus laevis

    PubMed Central

    Joshi, Sagar D.; Davidson, Lance A.

    2010-01-01

    Embryonic epithelial cells serve as an ideal model to study morphogenesis where multi-cellular tissues undergo changes in their geometry, such as changes in cell surface area and cell height, and where cells undergo mitosis and migrate. Furthermore, epithelial cells can also regulate morphogenetic movements in adjacent tissues1. A traditional method to study epithelial cells and tissues involve chemical fixation and histological methods to determine cell morphology or localization of particular proteins of interest. These approaches continue to be useful and provide "snapshots" of cell shapes and tissue architecture, however, much remains to be understood about how cells acquire specific shapes, how various proteins move or localize to specific positions, and what paths cells follow toward their final differentiated fate. High resolution live imaging complements traditional methods and also allows more direct investigation into the dynamic cellular processes involved in the formation, maintenance, and morphogenesis of multicellular epithelial sheets. Here we demonstrate experimental methods from the isolation of animal cap tissues from Xenopus laevis embryos to confocal imaging of epithelial cells and simple measurement approaches that together can augment molecular and cellular studies of epithelial morphogenesis. PMID:20498627

  13. Interaction exists between matriptase inhibitors and intestinal epithelial cells.

    PubMed

    Pászti-Gere, Erzsebet; Barna, Réka Fanni; Ujhelyi, Gabriella; Steinmetzer, Torsten

    2016-10-01

    The type II trypsin-like transmembrane serine protease matriptase, is mainly expressed in epithelial cells and one of the key regulators in the formation and maintenance of epithelial barrier integrity. Therefore, we have studied the inhibition of matriptase in a non-transformed porcine intestinal IPEC-J2 cell monolayer cultured on polyester membrane inserts by the non-selective 4-(2-aminoethyl)-benzosulphonylfluoride (AEBSF) and four more selective 3-amidinophenylalanine-derived matriptase inhibitors. It was found that suppression of matriptase activity by MI-432 and MI-460 led to decreased transepithelial electrical resistance (TER) of the cell monolayer and to an enhanced transport of fluorescently labelled dextran, a marker for paracellular transport between apical and basolateral compartments. To this date this is the first report in which the inhibition of matriptase activity by synthetic inhibitors has been correlated to a reduced barrier integrity of a non-cancerous IPEC-J2 epithelial cell monolayer in order to describe interaction between matriptase activity and intestinal epithelium in vitro. PMID:26118419

  14. Blood group glycolipids as epithelial cell receptors for Candida albicans.

    PubMed Central

    Cameron, B J; Douglas, L J

    1996-01-01

    The role of glycosphingolipids as possible epithelial cell receptors for Candida albicans was examined by investigating the binding of biotinylated yeasts to lipids extracted from human buccal epithelial cells and separated on thin-layer chromatograms. Binding was visualized by the addition of 125I-streptavidin followed by autoradiography. Five C. albicans strains thought from earlier work to have a requirement for fucose-containing receptors all bound to the same three components in the lipid extract. A parallel chromatogram overlaid with biotinylated Ulex europaeus lectin, which is a fucose-binding lectin with a specificity for the H blood group antigen, showed that two of these glycosphingolipids carried this antigenic determinant. Preparations of crude and purified adhesin (a protein with a size of 15.7 kDa which lacked cysteine residues) from one of the strains also bound to these same two components. The third glycosphingolipid, which bound whole cells but neither preparation of adhesin, was recognized by Helix pomatia lectin, indicating that it contained N-acetylgalactosamine, possibly in the form of the A blood group antigen. Overlay assays with a sixth strain of C. albicans (GDH 2023) revealed a completely different binding pattern of four receptors, each of which contained N-acetylglucosamine. These results confirm earlier predictions about the receptor specificity of the strains made on the basis of adhesion inhibition studies and indicate that blood group antigens can act as epithelial cell receptors for C. albicans. PMID:8641797

  15. Photodynamic treatment of lens epithelial cells for cataract surgery

    NASA Astrophysics Data System (ADS)

    Lingua, Robert W.; Parel, Jean-Marie A.; Simon, Gabriel; Li, Kam

    1991-06-01

    Photodynamic therapy (PDT) eiiploying Dihematopor*iyrin ethers (DHE) (Photofrin II) at pharmacologic lvels, has been denonstrate3 to kill rabbit lens epithelial cells, in vivo. This in vitro study, reports on the minimal necessary parameters for rabbit lens epithelial cell death. Explants of rabbit lenses were incubated in various concentrations of DHE (1O,, 100, 500, 1000 ug/ml) for 1, 2, or 5 minutes. 30 to 120 Joules/an of collimated 514.5 nm Argon laser light re delivered to the locier concentrations of 10, 50, and 100 ug,'ml DHE treated cells. One hundre1 fifteen explants were treated, in all. Higher concentrations of DHE alone (500 and 1000 ug/ml) were sufficient to induce cellular swelling. Lower concentrations required light for cellular effect. Trypan blue staining revealed cell death at these minimal pa9ieters: DHE 50 ug/ml, incubation 1 minute, 514.5 r Argon light 1.0 Watt/an for 30 sec (30 Joules) . In future studies, these rameters will be tested in vivo, for their ability to eliminate lens epithelial proliferation after cataract surgery.

  16. Regulation of local immunity by airway epithelial cells.

    PubMed

    Mayer, Anja K; Dalpke, Alexander H

    2007-01-01

    Epithelial cells are the first line of defense against invading microbial pathogens. They are important contributors to innate mucosal immunity and generate various and sophisticated anti-microbial defense mechanisms, including the formation of a tight barrier and secretion of anti-microbial substances as well as inflammatory mediators. To provide these active defense mechanisms, epithelial cells functionally express various pattern-recognition receptors. Toll-like receptors have been shown to recognize conserved microbial patterns mediating inducible activation of innate immunity. Mucosal surfaces, however, are prone to contact with pathogenic as well as non-pathogenic microbes and, therefore, immune-recognition principles have to be strictly regulated to avoid uncontrolled permanent activation. This review will focus on mechanisms by which epithelial cells regulate mucosal immune responses, thus creating an organ-specific microenvironment. This includes local adaptations in microbial recognition, regulation of local immune homeostasis, and modulation of antigen-presenting cells and adaptive immune responses. These regulatory mechanisms serve the special needs of controlled microbial recognition in mucosal compartments. PMID:18060372

  17. Epigenetics in Intestinal Epithelial Cell Renewal.

    PubMed

    Roostaee, Alireza; Benoit, Yannick D; Boudjadi, Salah; Beaulieu, Jean-François

    2016-11-01

    A controlled balance between cell proliferation and differentiation is essential to maintain normal intestinal tissue renewal and physiology. Such regulation is powered by several intracellular pathways that are translated into the establishment of specific transcription programs, which influence intestinal cell fate along the crypt-villus axis. One important check-point in this process occurs in the transit amplifying zone of the intestinal crypts where different signaling pathways and transcription factors cooperate to manage cellular proliferation and differentiation, before secretory or absorptive cell lineage terminal differentiation. However, the importance of epigenetic modifications such as histone methylation and acetylation in the regulation of these processes is still incompletely understood. There have been recent advances in identifying the impact of histone modifications and chromatin remodelers on the proliferation and differentiation of normal intestinal crypt cells. In this review we discuss recent discoveries on the role of the cellular epigenome in intestinal cell fate, development, and tissue renewal. J. Cell. Physiol. 231: 2361-2367, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:27061836

  18. Left-right asymmetric cell intercalation drives directional collective cell movement in epithelial morphogenesis.

    PubMed

    Sato, Katsuhiko; Hiraiwa, Tetsuya; Maekawa, Emi; Isomura, Ayako; Shibata, Tatsuo; Kuranaga, Erina

    2015-01-01

    Morphogenetic epithelial movement occurs during embryogenesis and drives complex tissue formation. However, how epithelial cells coordinate their unidirectional movement while maintaining epithelial integrity is unclear. Here we propose a novel mechanism for collective epithelial cell movement based on Drosophila genitalia rotation, in which epithelial tissue rotates clockwise around the genitalia. We found that this cell movement occurs autonomously and requires myosin II. The moving cells exhibit repeated left-right-biased junction remodelling, while maintaining adhesion with their neighbours, in association with a polarized myosin II distribution. Reducing myosinID, known to cause counter-clockwise epithelial-tissue movement, reverses the myosin II distribution. Numerical simulations revealed that a left-right asymmetry in cell intercalation is sufficient to induce unidirectional cellular movement. The cellular movement direction is also associated with planar cell-shape chirality. These findings support a model in which left-right asymmetric cell intercalation within an epithelial sheet drives collective cellular movement in the same direction. PMID:26656655

  19. Left–right asymmetric cell intercalation drives directional collective cell movement in epithelial morphogenesis

    PubMed Central

    Sato, Katsuhiko; Hiraiwa, Tetsuya; Maekawa, Emi; Isomura, Ayako; Shibata, Tatsuo; Kuranaga, Erina

    2015-01-01

    Morphogenetic epithelial movement occurs during embryogenesis and drives complex tissue formation. However, how epithelial cells coordinate their unidirectional movement while maintaining epithelial integrity is unclear. Here we propose a novel mechanism for collective epithelial cell movement based on Drosophila genitalia rotation, in which epithelial tissue rotates clockwise around the genitalia. We found that this cell movement occurs autonomously and requires myosin II. The moving cells exhibit repeated left–right-biased junction remodelling, while maintaining adhesion with their neighbours, in association with a polarized myosin II distribution. Reducing myosinID, known to cause counter-clockwise epithelial-tissue movement, reverses the myosin II distribution. Numerical simulations revealed that a left–right asymmetry in cell intercalation is sufficient to induce unidirectional cellular movement. The cellular movement direction is also associated with planar cell-shape chirality. These findings support a model in which left–right asymmetric cell intercalation within an epithelial sheet drives collective cellular movement in the same direction. PMID:26656655

  20. *Iron accumulation in bronchial epithelial cells is dependent on concurrent sodium transport

    EPA Science Inventory

    Airway epithelial cells prevent damaging effects of extracellular iron by taking up the metal and sequestering it within intracellular ferritin. Epithelial iron transport is associated with transcellular movement of other cations including changes in the expression or activity of...

  1. Murine Langerin+ dermal dendritic cells prime CD8+ T cells while Langerhans cells induce cross-tolerance

    PubMed Central

    Flacher, Vincent; Tripp, Christoph H; Mairhofer, David G; Steinman, Ralph M; Stoitzner, Patrizia; Idoyaga, Juliana; Romani, Nikolaus

    2014-01-01

    Skin dendritic cells (DCs) control the immunogenicity of cutaneously administered vaccines. Antigens targeted to DCs via the C-type lectin Langerin/CD207 are cross-presented to CD8+ T cells in vivo. We investigated the relative roles of Langerhans cells (LCs) and Langerin+ dermal DCs (dDCs) in different vaccination settings. Poly(I:C) and anti-CD40 agonist antibody promoted cytotoxic responses upon intradermal immunization with ovalbumin (OVA)-coupled anti-Langerin antibodies (Langerin/OVA). This correlated with CD70 upregulation in Langerin+ dDCs, but not LCs. In chimeric mice where Langerin targeting was restricted to dDCs, CD8+ T-cell memory was enhanced. Conversely, providing Langerin/OVA exclusively to LCs failed to prime cytotoxicity, despite initial antigen cross-presentation to CD8+ T cells. Langerin/OVA combined with imiquimod could not prime CD8+ T cells and resulted in poor cytotoxicity in subsequent responses. This tolerance induction required targeting and maturation of LCs. Altogether, Langerin+ dDCs prime long-lasting cytotoxic responses, while cross-presentation by LCs negatively influences CD8+ T-cell priming. Moreover, this highlights that DCs exposed to TLR agonists can still induce tolerance and supports the existence of qualitatively different DC maturation programs. PMID:25085878

  2. Novel human bronchial epithelial cell lines for cystic fibrosis research

    PubMed Central

    Fulcher, M. L.; Gabriel, S. E.; Olsen, J. C.; Tatreau, J. R.; Gentzsch, M.; Livanos, E.; Saavedra, M. T.; Salmon, P.; Randell, S. H.

    2009-01-01

    Immortalization of human bronchial epithelial (hBE) cells often entails loss of differentiation. Bmi-1 is a protooncogene that maintains stem cells, and its expression creates cell lines that recapitulate normal cell structure and function. We introduced Bmi-1 and the catalytic subunit of telomerase (hTERT) into three non-cystic fibrosis (CF) and three ΔF508 homozygous CF primary bronchial cell preparations. This treatment extended cell life span, although not as profoundly as viral oncogenes, and at passages 14 and 15, the new cell lines had a diploid karyotype. Ussing chamber analysis revealed variable transepithelial resistances, ranging from 200 to 1,200 Ω·cm2. In the non-CF cell lines, short-circuit currents were stimulated by forskolin and inhibited by CFTR(inh)-172 at levels mostly comparable to early passage primary cells. CF cell lines exhibited no forskolin-stimulated current and minimal CFTR(inh)-172 response. Amiloride-inhibitable and UTP-stimulated currents were present, but at lower and higher amplitudes than in primary cells, respectively. The cells exhibited a pseudostratified morphology, with prominent apical membrane polarization, few apoptotic bodies, numerous mucous secretory cells, and occasional ciliated cells. CF and non-CF cell lines produced similar levels of IL-8 at baseline and equally increased IL-8 secretion in response to IL-1β, TNF-α, and the Toll-like receptor 2 agonist Pam3Cys. Although they have lower growth potential and more fastidious growth requirements than viral oncogene transformed cells, Bmi-1/hTERT airway epithelial cell lines will be useful for several avenues of investigation and will help fill gaps currently hindering CF research and therapeutic development. PMID:18978040

  3. Epithelial Cell Polarity Determinant CRB3 in Cancer Development

    PubMed Central

    Li, Pingping; Mao, Xiaona; Ren, Yu; Liu, Peijun

    2015-01-01

    Cell polarity, which is defined as asymmetry in cell shape, organelle distribution and cell function, is essential in numerous biological processes, including cell growth, cell migration and invasion, molecular transport, and cell fate. Epithelial cell polarity is mainly regulated by three conserved polarity protein complexes, the Crumbs (CRB) complex, partitioning defective (PAR) complex and Scribble (SCRIB) complex. Research evidence has indicated that dysregulation of cell polarity proteins may play an important role in cancer development. Crumbs homolog 3 (CRB3), a member of the CRB complex, may act as a cancer suppressor in mouse kidney epithelium and mouse mammary epithelium. In this review, we focus on the current data available on the roles of CRB3 in cancer development. PMID:25552927

  4. Clonal analysis of limbal epithelial stem cell populations.

    PubMed

    Schlötzer-Schrehardt, Ursula

    2013-01-01

    While convincing data clearly suggest the presence of stem cells in the basal limbal epithelium in vivo, testing the proliferation, self-renewal, and differentiation capacity of stem cells relies on the development of methodologies that allow for their isolation and extensive propagation in vitro. Clonal analysis involving differentiation between short-lived transient cell clones and long-lived stem cell clones is an invaluable technique to identify stem cells in vitro, and allows cells to be expanded over multiple passages. This chapter describes a protocol for the isolation, expansion, and clonal analysis of limbal epithelial stem cells. The cultivation method described may be essential for long-term restoration of the damaged ocular surface in patients with limbal stem cell deficiency. PMID:23690004

  5. Measles virus breaks through epithelial cell barriers to achieve transmission

    PubMed Central

    Takeda, Makoto

    2008-01-01

    Measles is a highly contagious disease that causes immunosuppression in patients. Measles virus infection has been thought to begin in the respiratory epithelium and then spread to lymphoid tissue. In this issue of the JCI, Leonard et al. provide data to suggest an alternative model of measles virus pathogenesis (see the related article beginning on page 2448). In human primary epithelial cells and rhesus monkeys in vivo, the authors show that initial infection of respiratory epithelium is not necessary for the virus to enter the host but that viral entry into epithelial cells via interaction of the virus with a receptor located on the basolateral side of the epithelium is required for viral shedding into the airway and subsequent transmission. PMID:18568081

  6. Oral epithelial cell responses to multispecies microbial biofilms.

    PubMed

    Peyyala, R; Kirakodu, S S; Novak, K F; Ebersole, J L

    2013-03-01

    This report describes the use of a novel model of multispecies biofilms to stimulate profiles of cytokines/chemokines from oral epithelial cells that contribute to local inflammation in the periodontium. Streptococcus gordonii (Sg)/S. oralis (So)/S. sanguinis (Ss) and Sg/Fusobacterium nucleatum (Fn)/Porphyromonas gingivalis (Pg) biofilms elicited significantly elevated levels of IL-1α and showed synergistic stimulatory activity compared with an additive effect of the 3 individual bacteria. Only the Sg/Actinomyces naeslundii (An)/Fn multispecies biofilms elicited IL-6 levels above those of control. IL-8 was a primary response to the Sg/An/Fn biofilms, albeit the level was not enhanced compared with a predicted composite level from the monospecies challenges. These results represent some of the first data documenting alterations in profiles of oral epithelial cell responses to multispecies biofilms. PMID:23300185

  7. LOXL2 in epithelial cell plasticity and tumor progression.

    PubMed

    Cano, Amparo; Santamaría, Patricia G; Moreno-Bueno, Gema

    2012-09-01

    Several members of the lysyl oxidase family have recently emerged as important regulators of tumor progression. Among them, LOXL2 has been shown to be involved in tumor progression and metastasis of several tumor types, including breast carcinomas. Secreted LOXL2 participates in the remodeling of the extracellular matrix of the tumor microenvironment, in a similar fashion to prototypical lysyl oxidase. In addition, new intracellular functions of LOXL2 have been described, such as its involvement in the regulation of the epithelial-to-mesenchymal transition, epithelial cell polarity and differentiation mediated by transcriptional repression mechanisms. Importantly, intracellular (perinuclear) expression of LOXL2 is associated with poor prognosis and distant metastasis of specific tumor types, such as larynx squamous cell carcinoma and basal breast carcinomas. These recent findings open new avenues for the therapeutic utility of LOXL2. PMID:23030485

  8. CXCL12 expression by healthy and malignant ovarian epithelial cells

    PubMed Central

    2011-01-01

    Background CXCL12 has been widely reported to play a biologically relevant role in tumor growth and spread. In epithelial ovarian cancer (EOC), CXCL12 enhances tumor angiogenesis and contributes to the immunosuppressive network. However, its prognostic significance remains unclear. We thus compared CXCL12 status in healthy and malignant ovaries, to assess its prognostic value. Methods Immunohistochemistry was used to analyze CXCL12 expression in the reproductive tracts, including the ovaries and fallopian tubes, of healthy women, in benign and borderline epithelial tumors, and in a series of 183 tumor specimens from patients with advanced primary EOC enrolled in a multicenter prospective clinical trial of paclitaxel/carboplatin/gemcitabine-based chemotherapy (GINECO study). Univariate COX model analysis was performed to assess the prognostic value of clinical and biological variables. Kaplan-Meier methods were used to generate progression-free and overall survival curves. Results Epithelial cells from the surface of the ovary and the fallopian tubes stained positive for CXCL12, whereas the follicles within the ovary did not. Epithelial cells in benign, borderline and malignant tumors also expressed CXCL12. In EOC specimens, CXCL12 immunoreactivity was observed mostly in epithelial tumor cells. The intensity of the signal obtained ranged from strong in 86 cases (47%) to absent in 18 cases (<10%). This uneven distribution of CXCL12 did not reflect the morphological heterogeneity of EOC. CXCL12 expression levels were not correlated with any of the clinical parameters currently used to determine EOC prognosis or with HER2 status. They also had no impact on progression-free or overall survival. Conclusion Our findings highlight the previously unappreciated constitutive expression of CXCL12 on healthy epithelia of the ovary surface and fallopian tubes, indicating that EOC may originate from either of these epithelia. We reveal that CXCL12 production by malignant

  9. Ivermectin Inhibits Growth of Chlamydia trachomatis in Epithelial Cells

    PubMed Central

    Pettengill, Matthew A.; Lam, Verissa W.; Ollawa, Ikechukwu; Marques-da-Silva, Camila; Ojcius, David M.

    2012-01-01

    Ivermectin is currently approved for treatment of both clinical and veterinary infections by nematodes, including Onchocerca cervicalis in horses and Onchocerca volvulus in humans. However, ivermectin has never been shown to be effective against bacterial pathogens. Here we show that ivermectin also inhibits infection of epithelial cells by the bacterial pathogen, Chlamydia trachomatis, at doses that could be envisioned clinically for sexually-transmitted or ocular infections by Chlamydia. PMID:23119027

  10. Ivermectin inhibits growth of Chlamydia trachomatis in epithelial cells.

    PubMed

    Pettengill, Matthew A; Lam, Verissa W; Ollawa, Ikechukwu; Marques-da-Silva, Camila; Ojcius, David M

    2012-01-01

    Ivermectin is currently approved for treatment of both clinical and veterinary infections by nematodes, including Onchocerca cervicalis in horses and Onchocerca volvulus in humans. However, ivermectin has never been shown to be effective against bacterial pathogens. Here we show that ivermectin also inhibits infection of epithelial cells by the bacterial pathogen, Chlamydia trachomatis, at doses that could be envisioned clinically for sexually-transmitted or ocular infections by Chlamydia. PMID:23119027

  11. Sensitivity of proliferating human breast epithelial cells to hypotonic treatment

    SciTech Connect

    Goldstone, S.E.; Stanyon, R.; Lan, S.

    1982-12-01

    An assay for colony-forming cells of breast epithelia derived from normal and malignant surgical specimens is described using an IMR 90 fibroblast feeder layer. Their radiosensitivity (DO: 120-172) is consistent with the proliferative origin of the colonies. Distilled water inhibits proliferation of a proportion of the colony-forming cells after a 1-minute exposure. Continued detection of colonies after 10 minutes of exposure indicates that it is an inefficient way of completely eradicating proliferating epithelial cells of normal and malignant origin.

  12. Hyperoxia alters the mechanical properties of alveolar epithelial cells.

    PubMed

    Roan, Esra; Wilhelm, Kristina; Bada, Alex; Makena, Patrudu S; Gorantla, Vijay K; Sinclair, Scott E; Waters, Christopher M

    2012-06-15

    Patients with severe acute lung injury are frequently administered high concentrations of oxygen (>50%) during mechanical ventilation. Long-term exposure to high levels of oxygen can cause lung injury in the absence of mechanical ventilation, but the combination of the two accelerates and increases injury. Hyperoxia causes injury to cells through the generation of excessive reactive oxygen species. However, the precise mechanisms that lead to epithelial injury and the reasons for increased injury caused by mechanical ventilation are not well understood. We hypothesized that alveolar epithelial cells (AECs) may be more susceptible to injury caused by mechanical ventilation if hyperoxia alters the mechanical properties of the cells causing them to resist deformation. To test this hypothesis, we used atomic force microscopy in the indentation mode to measure the mechanical properties of cultured AECs. Exposure of AECs to hyperoxia for 24 to 48 h caused a significant increase in the elastic modulus (a measure of resistance to deformation) of both primary rat type II AECs and a cell line of mouse AECs (MLE-12). Hyperoxia also caused remodeling of both actin and microtubules. The increase in elastic modulus was blocked by treatment with cytochalasin D. Using finite element analysis, we showed that the increase in elastic modulus can lead to increased stress near the cell perimeter in the presence of stretch. We then demonstrated that cyclic stretch of hyperoxia-treated cells caused significant cell detachment. Our results suggest that exposure to hyperoxia causes structural remodeling of AECs that leads to decreased cell deformability. PMID:22467640

  13. Human alveolar epithelial type II cells in primary culture.

    PubMed

    Mao, Pu; Wu, Songling; Li, Jianchun; Fu, Wei; He, Weiqun; Liu, Xiaoqing; Slutsky, Arthur S; Zhang, Haibo; Li, Yimin

    2015-02-01

    Alveolar epithelial type II (AEII) cells are a key structure and defender in the lung but also are the targets in many lung diseases, including acute respiratory distress syndrome, ventilator-induced lung injury, and pulmonary fibrosis. We sought to establish an optimized method for high yielding and long maintenance of characteristics of primary human AEII cells to facilitate the investigation of the mechanisms of lung diseases at the cellular and molecular levels. Adult human peripheral normal lung tissues of oncologic patients undergoing lung resection were collected. The AEII cells were isolated and identified by the expression of pro-surfactant protein (SP)C, epithelial sodium channel (αENaC) and cytokeratin (CK)-8, the lamellar bodies specific for AEII cells, and confirmed by the histology using electron microscopy. The phenotype of AEII cells was characterized by the expression of surfactant proteins (SP-A, SP-B, SP-C, SP-D), CK-8, KL-6, αENaC, and aquaporin (AQP)-3, which was maintained over 20 days. The biological activity of the primary human AEII cells producing SP-C, cytokines, and intercellular adhesion molecule-1 was vigorous in response to stimulation with tumor necrosis factor-α. We have modified previous methods and optimized a method for isolation of high purity and long maintenance of the human AEII cell phenotype in primary culture. This method provides an important tool for studies aiming at elucidating the molecular mechanisms of lung diseases exclusively in AEII cells. PMID:25677546

  14. Human alveolar epithelial type II cells in primary culture

    PubMed Central

    Mao, Pu; Wu, Songling; Li, Jianchun; Fu, Wei; He, Weiqun; Liu, Xiaoqing; Slutsky, Arthur S; Zhang, Haibo; Li, Yimin

    2015-01-01

    Alveolar epithelial type II (AEII) cells are a key structure and defender in the lung but also are the targets in many lung diseases, including acute respiratory distress syndrome, ventilator-induced lung injury, and pulmonary fibrosis. We sought to establish an optimized method for high yielding and long maintenance of characteristics of primary human AEII cells to facilitate the investigation of the mechanisms of lung diseases at the cellular and molecular levels. Adult human peripheral normal lung tissues of oncologic patients undergoing lung resection were collected. The AEII cells were isolated and identified by the expression of pro-surfactant protein (SP)C, epithelial sodium channel (αENaC) and cytokeratin (CK)-8, the lamellar bodies specific for AEII cells, and confirmed by the histology using electron microscopy. The phenotype of AEII cells was characterized by the expression of surfactant proteins (SP-A, SP-B, SP-C, SP-D), CK-8, KL-6, αENaC, and aquaporin (AQP)-3, which was maintained over 20 days. The biological activity of the primary human AEII cells producing SP-C, cytokines, and intercellular adhesion molecule-1 was vigorous in response to stimulation with tumor necrosis factor-α. We have modified previous methods and optimized a method for isolation of high purity and long maintenance of the human AEII cell phenotype in primary culture. This method provides an important tool for studies aiming at elucidating the molecular mechanisms of lung diseases exclusively in AEII cells. PMID:25677546

  15. TCDD alters medial epithelial cell differentiation during palatogenesis

    SciTech Connect

    Abbott, B.D.; Birnbaum, L.S. )

    1989-06-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widely distributed, persistent environmental contaminant that is teratogenic in mice, where it induces hydronephrosis and cleft palate. The incidence of clefting has been shown to be dose dependent after exposure on either gestation Day (GD) 10 or 12, although the embryo is more susceptible on GD 12. TCDD-exposed palatal shelves meet but do not fuse, and programmed cell death of the medial epithelial cells is inhibited. The mechanism of action through which TCDD alters the program of medial cell development has not been examined in earlier studies, and it is not known whether the mechanism is the same regardless of the dose or developmental stage of exposure. In this study, C57BL/6N mice, a strain sensitive to TCDD, were dosed orally on GD 10 or 12 with 0, 6, 12, 24, or 30 micrograms/kg body wt, in 10 ml corn oil/kg. Embryonic palatal shelves were examined on GD 14, 15, or 16. The degree of palatal closure, epithelial surface morphology, and cellular ultrastructure, the incorporation of (3H)TdR, the expression of EGF receptors, and the binding of 125I-EGF were assessed. After exposure on GD 10 or 12, TCDD altered the differentiation pathway of the medial epithelial cells. The palatal shelves were of normal size and overall morphology, but fusion of the medial epithelia of the opposing shelves did not occur. TCDD prevented programmed cell death of the medial peridermal cells. The expression of EGF receptors by medial cells continued through Day 16 and the receptors were able to bind ligand. The medial cells differentiated into a stratified, squamous, keratinizing epithelium. The shift in phenotype to an oral-like epithelium occurred after exposure on either GD 10 or 12. At the lower dose (6 micrograms/kg), fewer cleft palates were produced, but those shelves which did respond had a fully expressed shift in differentiation.

  16. A Molecular Switch for the Orientation of Epithelial Cell Polarization

    PubMed Central

    Bryant, David M.; Roignot, Julie; Datta, Anirban; Overeem, Arend W.; Kim, Minji; Yu, Wei; Peng, Xiao; Eastburn, Dennis J.; Ewald, Andrew J.; Werb, Zena; Mostov, Keith E.

    2014-01-01

    SUMMARY The formation of epithelial tissues containing lumens requires not only the apical-basolateral polarization of cells, but also the coordinated orientation of this polarity such that the apical surfaces of neighboring cells all point toward the central lumen. Defects in extracellular matrix (ECM) signaling lead to inverted polarity so that the apical surfaces face the surrounding ECM. We report a molecular switch mechanism controlling polarity orientation. ECM signals through a β1-integrin/FAK/p190RhoGAP complex to down-regulate a RhoA/ROCK/Ezrin pathway at the ECM interface. PKCβII phosphorylates the apical identity-promoting Podocalyxin/NHERF1/Ezrin complex, removing Podocalyxin from the ECM-abutting cell surface and initiating its transcytosis to an apical membrane initiation site for lumen formation. Inhibition of this switch mechanism results in the retention of Podocalyxin at the ECM interface and the development instead of collective front-rear polarization and motility. Thus, ECM-derived signals control the morphogenesis of epithelial tissues by controlling the collective orientation of epithelial polarization. PMID:25307480

  17. Adherence of Tritrichomonas foetus to bovine vaginal epithelial cells.

    PubMed Central

    Corbeil, L B; Hodgson, J L; Jones, D W; Corbeil, R R; Widders, P R; Stephens, L R

    1989-01-01

    Adherence of Tritrichomonas foetus to bovine vaginal epithelial cells (VECs) in vitro was investigated with fresh washed bovine VECs and log-phase cultures of T. foetus. Observation under phase-contrast microscopy showed that T. foetus usually adhered first by the posterior flagellum and later by the body. Significantly more keratinized squamous epithelial cells were detected with attached parasites than nonkeratinized round epithelial cells. The optimal pH range for attachment was 6.0 to 7.5, with peak attachment at pH 6.5 for squamous VECs. Surface-reactive bovine antiserum to T. foetus prevented adherence to bovine squamous VECs. Inhibition of adherence occurred at nonagglutinating, nonimmobilizing serum dilutions. Antiserum fractions enriched for immunoglobulin G1 inhibited adherence, but fractions enriched for immunoglobulin G2 did not. The inhibitory antiserum was specific for several medium- to high-molecular-weight membrane antigens as detected in Western blots (immunoblots). The ability of surface-reactive antibodies to prevent adherence and to agglutinate and immobilize T. foetus indicates that they may be protective. Images PMID:2471692

  18. Helminth-conditioned dendritic cells prime CD4+ T cells to IL-4 production in vivo.

    PubMed

    Connor, Lisa M; Tang, Shiau-Choot; Camberis, Mali; Le Gros, Graham; Ronchese, Franca

    2014-09-15

    Dendritic cells (DC) are critical for the initiation of immune responses; however, their role in priming IL-4-producing Th2 cells in vivo is not fully understood. We used a model of intradermal injection with fluorescent-labeled, nonviable larvae from the helminth parasite nonviable Nippostrongylus brasiliensis L3 larvae (Nb), a strong inducer of Th2 responses, together with IL-4-GFP reporter mice that enable a sensitive detection of IL-4 production to examine the contribution of DC to the priming of IL-4-producing CD4(+) T cells in vivo. We found that parasite material is taken up by two distinct DC populations in draining lymph nodes: a mostly CD11c(int)MHC class II (MHCII)(hi)CD11b(+)Ly6C(-) dermal DC population and a CD11c(hi)MHCII(int)CD11b(+)Ly6C(+) monocyte-derived DC population. After Nb treatment, these two DC populations appeared in the draining lymph nodes in comparable numbers and with similar kinetics; however, treatment with pertussis toxin blocked the migration of dermal DC and the priming of IL-4-producing T cells, but only partially affected monocyte-derived DC numbers. In line with this observation, transfer of OVA-loaded CD11c(int)MHCII(hi) DC from Nb-treated mice into naive hosts could sensitize OVA-specific CD4(+) T cells to IL-4 production, whereas transfer of CD11c(int)MHCII(hi) DC from naive mice, or CD11c(hi)MHCII(int) DC from Nb-treated or naive mice, induced CD4(+) T cell expansion but no IL-4 production. Phenotypic analysis of Nb-loaded CD11c(int)MHCII(hi) DC revealed expression of programmed death ligand 2, CD301b, IFN regulatory factor 4, and moderate upregulation of OX40 ligand. However, thymic stromal lymphopoietin and OX40 ligand were not required for Th2 priming. Thus, our data suggest that appropriate stimuli can induce DC to express the unique signals sufficient to direct CD4(+) T cells to Th2 differentiation. PMID:25108019

  19. Elastic properties of epithelial cells probed by atomic force microscopy.

    PubMed

    Brückner, Bastian R; Janshoff, Andreas

    2015-11-01

    Cellular mechanics plays a crucial role in many biological processes such as cell migration, cell growth, embryogenesis, and oncogenesis. Epithelia respond to environmental cues comprising biochemical and physical stimuli through defined changes in cell elasticity. For instance, cells can differentiate between certain properties such as viscoelasticity or topography of substrates by adapting their own elasticity and shape. A living cell is a complex viscoelastic body that not only exhibits a shell architecture composed of a membrane attached to a cytoskeleton cortex but also generates contractile forces through its actomyosin network. Here we review cellular mechanics of single cells in the context of epithelial cell layers responding to chemical and physical stimuli. This article is part of a Special Issue entitled: Mechanobiology. PMID:26193077

  20. Differential Glutamate Metabolism in Proliferating and Quiescent Mammary Epithelial Cells.

    PubMed

    Coloff, Jonathan L; Murphy, J Patrick; Braun, Craig R; Harris, Isaac S; Shelton, Laura M; Kami, Kenjiro; Gygi, Steven P; Selfors, Laura M; Brugge, Joan S

    2016-05-10

    Mammary epithelial cells transition between periods of proliferation and quiescence during development, menstrual cycles, and pregnancy, and as a result of oncogenic transformation. Utilizing an organotypic 3D tissue culture model coupled with quantitative metabolomics and proteomics, we identified significant differences in glutamate utilization between proliferating and quiescent cells. Relative to quiescent cells, proliferating cells catabolized more glutamate via transaminases to couple non-essential amino acid (NEAA) synthesis to α-ketoglutarate generation and tricarboxylic acid (TCA) cycle anaplerosis. As cells transitioned to quiescence, glutamine consumption and transaminase expression were reduced, while glutamate dehydrogenase (GLUD) was induced, leading to decreased NEAA synthesis. Highly proliferative human tumors display high transaminase and low GLUD expression, suggesting that proliferating cancer cells couple glutamine consumption to NEAA synthesis to promote biosynthesis. These findings describe a competitive and partially redundant relationship between transaminases and GLUD, and they reveal how coupling of glutamate-derived carbon and nitrogen metabolism can be regulated to support cell proliferation. PMID:27133130

  1. 293 cells express both epithelial as well as mesenchymal cell adhesion molecules

    PubMed Central

    INADA, MASAKAZU; IZAWA, GENYA; KOBAYASHI, WAKAKO; OZAWA, MASAYUKI

    2016-01-01

    The 293 cell line, used extensively in various types of studies due to the ease with which these cells can be transfected, was thought to be derived by the transformation of primary cultures of human embryonic kidney cells with sheared adenovirus type 5 DNA. Although the 293 cells were assumed to originate from epithelial cells, the exact origin of these cells remains unknown. Previous attempts to characterize these cells combined immunostaining, immunoblot analysis and microarray analysis to demonstrate that 293 cells express neurofilament subunits, α-internexin, and several other proteins typically found in neurons. These findings raised the possibility that the 293 cell line may have originated from human neuronal lineage cells. Contrary to this suggestion, in this study, we found that the 293 cells expressed N-cadherin and vimentin, which are marker proteins expressed in mesenchymal cells. Furthermore, the 293 cells also expressed E-cadherin, cytokeratins 5/8 and desmoglein 2, which are epithelial cell markers. When the cells, primarily cultured from the kidneys of Clawn miniature swine and passaged 10–15 generations [termed porcine kidney epithelial (PKE) cells] were examined, they were found to be positive for the expression of both mesenchymal and epithelial markers. Thus, transformation by adenovirus was not necessary for the cells to express N-cadherin. Occludin and zonula occludens (ZO)-1, two components of tight junctions in epithelial and endothelial cells, were detected in the 293 and the PKE cells. Thus, the findings of the present study demonstrate that 293 cells retain several characteristics of epithelial cells. PMID:27121032

  2. Glycan modification of antigen alters its intracellular routing in dendritic cells, promoting priming of T cells

    PubMed Central

    Streng-Ouwehand, Ingeborg; Ho, Nataschja I; Litjens, Manja; Kalay, Hakan; Boks, Martine Annemarie; Cornelissen, Lenneke AM; Kaur Singh, Satwinder; Saeland, Eirikur; Garcia-Vallejo, Juan J; Ossendorp, Ferry A; Unger, Wendy WJ; van Kooyk, Yvette

    2016-01-01

    Antigen uptake by dendritic cells and intracellular routing of antigens to specific compartments is regulated by C-type lectin receptors that recognize glycan structures. We show that the modification of Ovalbumin (OVA) with the glycan-structure LewisX (LeX) re-directs OVA to the C-type lectin receptor MGL1. LeX-modification of OVA favored Th1 skewing of CD4+ T cells and enhanced cross-priming of CD8+ T cells. While cross-presentation of native OVA requires high antigen dose and TLR stimuli, LeX modification reduces the required amount 100-fold and obviates its dependence on TLR signaling. The OVA-LeX-induced enhancement of T cell cross-priming is MGL1-dependent as shown by reduced CD8+ effector T cell frequencies in MGL1-deficient mice. Moreover, MGL1-mediated cross-presentation of OVA-LeX neither required TAP-transporters nor Cathepsin-S and was still observed after prolonged intracellular storage of antigen in Rab11+LAMP1+ compartments. We conclude that controlled neo-glycosylation of antigens can crucially influence intracellular routing of antigens, the nature and strength of immune responses and should be considered for optimizing current vaccination strategies. DOI: http://dx.doi.org/10.7554/eLife.11765.001 PMID:26999763

  3. ITAM signaling in dendritic cells controls T helper cell priming by regulating MHC class II recycling

    PubMed Central

    Graham, Daniel B.; Akilesh, Holly M.; Gmyrek, Grzegorz B.; Piccio, Laura; Gilfillan, Susan; Sim, Julia; Belizaire, Roger; Carrero, Javier A.; Wang, Yinan; Blaufuss, Gregory S.; Sandoval, Gabriel; Fujikawa, Keiko; Cross, Anne H.; Russell, John H.; Cella, Marina

    2010-01-01

    Immature dendritic cells (DCs) specialize in antigen capture and maintain a highly dynamic pool of intracellular major histocompatibility complex class II (MHCII) that continuously recycles from peptide loading compartments to the plasma membrane and back again. This process facilitates sampling of environmental antigens for presentation to T helper cells. Here, we show that a signaling pathway mediated by the DC immunoreceptor tyrosine-based activation motif (ITAM)–containing adaptors (DAP12 and FcRγ) and Vav family guanine nucleotide exchange factors controls the half-life of surface peptide-MHCII (pMHCII) complexes and is critical for CD4 T-cell triggering in vitro. Strikingly, mice with disrupted DC ITAMs show defective T helper cell priming in vivo and are protected from experimental autoimmune encephalitis. Mechanistically, we show that deficiency in ITAM signaling results in increased pMHCII internalization, impaired recycling, and an accumulation of ubiquitinated MHCII species that are prematurely degraded in lysosomes. We propose a novel mechanism for control of T helper cell priming. PMID:20634378

  4. Comparison of functional limbal epithelial stem cell isolation methods.

    PubMed

    López-Paniagua, Marina; Nieto-Miguel, Teresa; de la Mata, Ana; Dziasko, Marc; Galindo, Sara; Rey, Esther; Herreras, José M; Corrales, Rosa M; Daniels, Julie T; Calonge, Margarita

    2016-05-01

    The transplantation of limbal epithelial stem cells (LESCs) cultured in vitro is a great advance in the treatment of patients suffering from LESC deficiency. However, the optimal technique for LESC isolation from a healthy limbal niche has not yet been established. Our aim was to determine which isolation method renders the highest recovery of functional LESCs from the human limbus. To achieve this purpose, we compared limbal primary cultures (LPCs) obtained from explants and cell suspensions on plastic culture plates. Cell morphology was observed by phase contrast and transmission electron microscopy. LESC, corneal epithelial cell, fibroblast, endothelial cell, melanocyte, and dendritic cell markers were analyzed by real time by reverse transcription polymerase chain reaction and/or immunofluorescence. In addition, colony forming efficiency (CFE) and the presence of holoclones, meroclones, and paraclones were studied. We observed that LPC cells obtained from both methods had cuboidal morphology, desmosomes, and prominent intermediate filaments. The expression of LESC markers (K14, K15, ABCG2, p63α) was similar or higher in LPCs established through cell suspensions, except the expression of p63α mRNA, and there were no significant differences in the expression of corneal epithelial markers (K3, K12). Endothelial cell (PECAM), melanocyte (MART-1), and dendritic cell (CD11c) proteins were not detected, while fibroblast-protein (S100A4) was detected in all LPCs. The CFE was significantly higher in LPCs from cell suspensions. Cells from confluent LPCs produced by explants generated only paraclones (100%), while the percentage of paraclones from LPCs established through cell suspensions was 90% and the remaining 10% were meroclones. In conclusion, LPCs established from cell suspensions have a cell population richer in functional LESCs than LPCs obtained from explants. These results suggest that in a clinical situation in which it is possible to choose between either

  5. Ethanol stimulation of HIV infection of oral epithelial cells.

    PubMed

    Zheng, Jun; Yang, Otto O; Xie, Yiming; Campbell, Richard; Chen, Irvin S Y; Pang, Shen

    2004-12-01

    Oral mucosal cells can be infected by exogenous HIV during receptive oral sex or breast-feeding. The risk of oral mucosal infection depends on the infection efficiency of the HIV strains present in the oral cavity, the viral titers, and the defense mechanisms in the oral cavity environment. It is expected that alcohol can weaken the host defense mechanism against HIV infection in the oral cavity. We modified an HIV strain, NL4-3, by inserting the enhanced green fluorescent protein gene and used this virus to infect oral epithelial cells obtained from patients. Various concentrations of ethanol (0%-4%) were added to the infected cells. HIV-infected cells were detected by fluorescent microscopy or fluorescence-activated cell sorting. We found that ethanol significantly increases HIV infection of primary oral epithelial cells (POEs). POEs pretreated with 4% ethanol for less than 10 minutes demonstrated 3- to 6-fold higher susceptibility to infection by the CXCR-4 HIV strain NL4-3. Our studies also demonstrated that HIV infects POEs through a gp120-independent mechanism. We tested an HIV CCR5 strain, JRCSF, and also found its infection efficiency to be stimulated by alcohol. Our results indicate that in cell culture conditions, the ranges of concentrations of alcohol that are commercially available are able to stimulate the infection efficiency of HIV in POEs. PMID:15602121

  6. Prion Infection of Epithelial Rov Cells Is a Polarized Event

    PubMed Central

    Paquet, Sophie; Sabuncu, Elifsu; Delaunay, Jean-Louis; Laude, Hubert; Vilette, Didier

    2004-01-01

    During prion infections, the cellular glycosylphosphatidylinositol-anchored glycoprotein PrP is converted into a conformational isoform. This abnormal conformer is thought to recruit and convert the normal cellular PrP into a likeness of itself and is proposed to be the infectious agent. We investigated the distribution of the PrP protein on the surface of Rov cells, an epithelial cell line highly permissive to prion multiplication, and we found that PrP is primarily expressed on the apical side. We further show that prion transmission to Rov cells is much more efficient if infectivity contacts the apical side, indicating that the apical and basolateral sides of Rov cells are not equally competent for prion infection and adding prions to the list of the conventional infectious agents (viruses and bacteria) that infect epithelial cells in a polarized manner. These data raise the possibility that apically expressed PrP may be involved in this polarized process of infection. This would add further support for a crucial role of PrP at the cell surface in prion infection of target cells. PMID:15194791

  7. Kindlin-1 and -2 Have Overlapping Functions in Epithelial Cells

    PubMed Central

    He, Yinghong; Esser, Philipp; Heinemann, Anja; Bruckner-Tuderman, Leena; Has, Cristina

    2011-01-01

    Kindlins are a novel family of intracellular adaptor proteins in integrin-containing focal adhesions. Kindlin-1 and -2 are expressed in the skin, but whether and how they cooperate in adult epithelial cells have remained elusive. We uncovered the overlapping roles of kindlin-1 and -2 in maintaining epithelial integrity and show that the phenotype of kindlin-1-deficient cells can be modulated by regulating kindlin-2 gene expression and vice versa. The experimental evidence is provided by use of human keratinocyte cell lines that express both kindlins, just kindlin-1 or kindlin-2, or none of them. Double deficiency of kindlin-1 and -2 had significant negative effects on focal adhesion formation and actin cytoskeleton organization, cell adhesion, survival, directional migration, and activation of β1 integrin, whereas deficiency of one kindlin only showed variable perturbation of these functions. Cell motility and formation of cell-cell contacts were particularly affected by lack of kindlin-2. These results predict that kindlin-1 and -2 can functionally compensate for each other, at least in part. The high physiologic and pathologic significance of the compensation was emphasized by the discovery of environmental regulation of kindlin-2 expression. UV-B irradiation induced loss of kindlin-2 in keratinocytes. This first example of environmental regulation of kindlin expression has implications for phenotype modulation in Kindler syndrome, a skin disorder caused by kindlin-1 deficiency. PMID:21356350

  8. Mesenchymal Stromal Cells Epithelial Transition Induced by Renal Tubular Cells-Derived Extracellular Vesicles

    PubMed Central

    Chiabotto, Giulia; Bruno, Stefania; Collino, Federica

    2016-01-01

    Mesenchymal-epithelial interactions play an important role in renal tubular morphogenesis and in maintaining the structure of the kidney. The aim of this study was to investigate whether extracellular vesicles (EVs) produced by human renal proximal tubular epithelial cells (RPTECs) may induce mesenchymal-epithelial transition of bone marrow-derived mesenchymal stromal cells (MSCs). To test this hypothesis, we characterized the phenotype and the RNA content of EVs and we evaluated the in vitro uptake and activity of EVs on MSCs. MicroRNA (miRNA) analysis suggested the possible implication of the miR-200 family carried by EVs in the epithelial commitment of MSCs. Bone marrow-derived MSCs were incubated with EVs, or RPTEC-derived total conditioned medium, or conditioned medium depleted of EVs. As a positive control, MSCs were co-cultured in a transwell system with RPTECs. Epithelial commitment of MSCs was assessed by real time PCR and by immunofluorescence analysis of cellular expression of specific mesenchymal and epithelial markers. After one week of incubation with EVs and total conditioned medium, we observed mesenchymal-epithelial transition in MSCs. Stimulation with conditioned medium depleted of EVs did not induce any change in mesenchymal and epithelial gene expression. Since EVs were found to contain the miR-200 family, we transfected MSCs using synthetic miR-200 mimics. After one week of transfection, mesenchymal-epithelial transition was induced in MSCs. In conclusion, miR-200 carrying EVs released from RPTECs induce the epithelial commitment of MSCs that may contribute to their regenerative potential. Based on experiments of MSC transfection with miR-200 mimics, we suggested that the miR-200 family may be involved in mesenchymal-epithelial transition of MSCs. PMID:27409796

  9. Extracellular matrix and hormones transcriptionally regulate bovine. beta. -casein 5 prime sequences in stably transfected mouse mammary cells

    SciTech Connect

    Schmidhauser, C. Bissell, M.J. ); Myers, C.A.; Casperson, G.F. )

    1990-12-01

    Milk protein regulation involves synergistic action of lactogenic hormones and extracellular matrix (ECM). It is well established that substratum has a dramatic effect on morphology and function of mammary cells. The molecular mechanisms that regulate the ECM- and hormone-dependent gene expression, however, have not been resolved. To address this question, a subpopulation (designated CID 9) of the mouse mammary epithelial cell strain COMMA-2D has been developed in which more than 35% of the cells express {beta}-casein, form alveoli-like structures when plated onto a reconstituted basement membrane, and secrete {beta}-casein undirectionally into a lumen. These cells were stably transfected with a series of chloramphenicol acetyltransferase (CAT) fusion genes to study transcriptional regulation of the bovine {beta}-casein gene. The expression of CAT in these lines demonstrated a striking matrix and hormone dependency. This regulation occurered primarily at the transcriptional level and was dependent on the length of the 5{prime} flanking region of the {beta}-casein promotor. Both matrix and hormonal control of transcription occurred within at least the first 1790 base pairs upstream and/or 42 base pairs downstream of the transcriptional initiation site. The ECM effect was independent of glucocorticoid stimulation. However, prolactin was essential and hydrocortisone further increased CAT expression. Endogenous {beta}-casein expression in these lines was similar to that of the parent CID 9 cells. Our data indicate the existence of matrix-dependent elements that regulate transcription.

  10. Intercellular Protein Transfer from Thymocytes to Thymic Epithelial Cells.

    PubMed

    Wang, Hong-Xia; Qiu, Yu-Rong; Zhong, Xiao-Ping

    2016-01-01

    Promiscuous expression of tissue restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs) is crucial for negative selection of self-reactive T cells to establish central tolerance. Intercellular transfer of self-peptide-MHC complexes from mTECs to thymic dendritic cells (DCs) allows DCs to acquire TRAs, which in turn contributes to negative selection and regulatory T cell generation. However, mTECs are unlikely to express all TRAs, such as immunoglobulins generated only in B cells after somatic recombination, hyper-mutation, or class-switches. We report here that both mTECs and cortical TECs can efficiently acquire not only cell surface but also intracellular proteins from thymocytes. This reveals a previously unappreciated intercellular sharing of molecules from thymocytes to TECs, which may broaden the TRA inventory in mTECs for establishing a full spectrum of central tolerance. PMID:27022746

  11. Intercellular Protein Transfer from Thymocytes to Thymic Epithelial Cells

    PubMed Central

    Wang, Hong-Xia; Qiu, Yu-Rong; Zhong, Xiao-Ping

    2016-01-01

    Promiscuous expression of tissue restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs) is crucial for negative selection of self-reactive T cells to establish central tolerance. Intercellular transfer of self-peptide-MHC complexes from mTECs to thymic dendritic cells (DCs) allows DCs to acquire TRAs, which in turn contributes to negative selection and regulatory T cell generation. However, mTECs are unlikely to express all TRAs, such as immunoglobulins generated only in B cells after somatic recombination, hyper-mutation, or class-switches. We report here that both mTECs and cortical TECs can efficiently acquire not only cell surface but also intracellular proteins from thymocytes. This reveals a previously unappreciated intercellular sharing of molecules from thymocytes to TECs, which may broaden the TRA inventory in mTECs for establishing a full spectrum of central tolerance. PMID:27022746

  12. Plasticity of Airway Epithelial Cell Transcriptome in Response to Flagellin

    PubMed Central

    Clark, Joan G.; Kim, Kyoung-Hee; Basom, Ryan S.; Gharib, Sina A.

    2015-01-01

    Airway epithelial cells (AEC) are critical components of the inflammatory and immune response during exposure to pathogens. AECs in monolayer culture and differentiated epithelial cells in air-liquid interface (ALI) represent two distinct and commonly used in vitro models, yet differences in their response to pathogens have not been investigated. In this study, we compared the transcriptional effects of flagellin on AECs in monolayer culture versus ALI culture using whole-genome microarrays and RNA sequencing. We exposed monolayer and ALI AEC cultures to flagellin in vitro and analyzed the transcriptional response by microarray and RNA-sequencing. ELISA and RT-PCR were used to validate changes in select candidates. We found that AECs cultured in monolayer and ALI have strikingly different transcriptional states at baseline. When challenged with flagellin, monolayer AEC cultures greatly increased transcription of numerous genes mapping to wounding response, immunity and inflammatory response. In contrast, AECs in ALI culture had an unexpectedly muted response to flagellin, both in number of genes expressed and relative enrichment of inflammatory and immune pathways. We conclude that in vitro culturing methods have a dramatic effect on the transcriptional profile of AECs at baseline and after stimulation with flagellin. These differences suggest that epithelial responses to pathogen challenges are distinctly different in culture models of intact and injured epithelium. PMID:25668187

  13. Plasticity of airway epithelial cell transcriptome in response to flagellin.

    PubMed

    Clark, Joan G; Kim, Kyoung-Hee; Basom, Ryan S; Gharib, Sina A

    2015-01-01

    Airway epithelial cells (AEC) are critical components of the inflammatory and immune response during exposure to pathogens. AECs in monolayer culture and differentiated epithelial cells in air-liquid interface (ALI) represent two distinct and commonly used in vitro models, yet differences in their response to pathogens have not been investigated. In this study, we compared the transcriptional effects of flagellin on AECs in monolayer culture versus ALI culture using whole-genome microarrays and RNA sequencing. We exposed monolayer and ALI AEC cultures to flagellin in vitro and analyzed the transcriptional response by microarray and RNA-sequencing. ELISA and RT-PCR were used to validate changes in select candidates. We found that AECs cultured in monolayer and ALI have strikingly different transcriptional states at baseline. When challenged with flagellin, monolayer AEC cultures greatly increased transcription of numerous genes mapping to wounding response, immunity and inflammatory response. In contrast, AECs in ALI culture had an unexpectedly muted response to flagellin, both in number of genes expressed and relative enrichment of inflammatory and immune pathways. We conclude that in vitro culturing methods have a dramatic effect on the transcriptional profile of AECs at baseline and after stimulation with flagellin. These differences suggest that epithelial responses to pathogen challenges are distinctly different in culture models of intact and injured epithelium. PMID:25668187

  14. Hertwig's epithelial root sheath cells do not transform into cementoblasts in rat molar cementogenesis.

    PubMed

    Yamamoto, Tsuneyuki; Takahashi, Shigeru

    2009-12-01

    It is generally accepted that cementoblasts originate in the process of differentiation of the mesenchymal cells of the dental follicle. Recently, a different hypothesis for the origin of cementoblasts has been proposed. Hertwig's epithelial root sheath cells undergo the epithelial-mesenchymal transformation to differentiate into cementoblasts. To elucidate whether the epithelial-mesenchymal transformation occurs in the epithelial sheath, developing rat molars were examined by keratin-vimentin and Runx2 (runt-related transcription factor 2)-keratin double immunostaining. In both acellular and cellular cementogenesis, epithelial sheath and epithelial cells derived from the epithelial sheath expressed keratin, but did not express vimentin or Runx2. Dental follicle cells and cementoblasts, however, expressed vimentin and Runx2, but did not express keratin. No cells showed coexisting keratin-vimentin or Runx2-keratin staining. These findings suggest that there is no intermediate phenotype transforming epithelial to mesenchymal cells, and that epithelial sheath cells do not generate mineralized tissue. This study concludes that the epithelial-mesenchymal transformation does not occur in Hertwig's epithelial root sheath in rat acellular or cellular cementogenesis and that the dental follicle is the origin of cementoblasts, as has been proposed in the original hypothesis. PMID:19716687

  15. TCDD exposure disrupts mammary epithelial cell differentiation and function

    PubMed Central

    Collins, Loretta L.; Lew, Betina J.; Lawrence, B. Paige

    2011-01-01

    Mammary gland growth and differentiation during pregnancy is a developmental process that is sensitive to the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TCDD is a widespread environmental contaminant and a potent ligand for the aryl hydrocarbon receptor (AhR). We demonstrate reduced β-casein protein induction in mouse mammary glands and in cultured SCp2 mammary epithelial cells following exposure to TCDD. SCp2 cells exposed to TCDD also show reduced cell clustering and less alveolar-like structure formation. SCp2 cells express transcriptionally active AhR, and exposure to TCDD induces expression of the AhR target gene CYP1B1. Exposure to TCDD during pregnancy reduced expression of the cell adhesion molecule E-cadherin in the mammary gland and decreased phosphorylation of STAT5, a known regulator of β-casein gene expression. These data provide morphological and molecular evidence that TCDD-mediated AhR activation disrupts structural and functional differentiation of the mammary gland, and present an in vitro model for studying the effects of TCDD on mammary epithelial cell function. PMID:19490989

  16. ASBESTOS-INDUCED ACTIVATION OF CELL SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Using respiratory epithelial cells transfected with either superoxide dismutase (SOD) or catalase, the authors tested the hypothesis that the activation of the epidermal growth factor (EGF) receptor signal pathway after asbestos exposure involves an oxidative stress. Western blot...

  17. Epithelial cells from smokers modify dendritic cell responses in the context of influenza infection

    EPA Science Inventory

    Epidemiologic evidence suggests that cigarette smoking is a risk factor for infection with influenza, but the mechanisms underlying this susceptibility remain unknown. To ascertain if airway epithelial cells from smokers demonstrate a decreased ability to orchestrate an influenza...

  18. ATP7B detoxifies silver in ciliated airway epithelial cells

    SciTech Connect

    Ibricevic, Aida; Brody, Steven L.; Youngs, Wiley J.; Cannon, Carolyn L.

    2010-03-15

    Silver is a centuries-old antibiotic agent currently used to treat infected burns. The sensitivity of a wide range of drug-resistant microorganisms to silver killing suggests that it may be useful for treating refractory lung infections. Toward this goal, we previously developed a methylated caffeine silver acetate compound, SCC1, that exhibits broad-spectrum antimicrobial activity against clinical strains of bacteria in vitro and when nebulized to lungs in mouse infection models. Preclinical testing of high concentrations of SCC1 in primary culture mouse tracheal epithelial cells (mTEC) showed selective ciliated cell death. Ciliated cell death was induced by both silver- and copper-containing compounds but not by the methylated caffeine portion of SCC1. We hypothesized that copper transporting P-type ATPases, ATP7A and ATP7B, play a role in silver detoxification in the airway. In mTEC, ATP7A was expressed in non-ciliated cells, whereas ATP7B was expressed only in ciliated cells. The exposure of mTEC to SCC1 induced the trafficking of ATP7B, but not ATP7A, suggesting the presence of a cell-specific silver uptake and detoxification mechanisms. Indeed, the expression of the copper uptake protein CTR1 was also restricted to ciliated cells. A role of ATP7B in silver detoxification was further substantiated when treatment of SCC1 significantly increased cell death in ATP7B shRNA-treated HepG2 cells. In addition, mTEC from ATP7B{sup -/-} mice showed enhanced loss of ciliated cells compared to wild type. These studies are the first to demonstrate a cell type-specific expression of the Ag{sup +}/Cu{sup +} transporters ATP7A, ATP7B, and CTR1 in airway epithelial cells and a role for ATP7B in detoxification of these metals in the lung.

  19. Tissuelike 3D Assemblies of Human Broncho-Epithelial Cells

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2010-01-01

    Three-dimensional (3D) tissuelike assemblies (TLAs) of human broncho-epithelial (HBE) cells have been developed for use in in vitro research on infection of humans by respiratory viruses. The 2D monolayer HBE cell cultures heretofore used in such research lack the complex cell structures and interactions characteristic of in vivo tissues and, consequently, do not adequately emulate the infection dynamics of in-vivo microbial adhesion and invasion. In contrast, the 3D HBE TLAs are characterized by more-realistic reproductions of the geometrical and functional complexity, differentiation of cells, cell-to-cell interactions, and cell-to-matrix interactions characteristic of human respiratory epithelia. Hence, the 3D HBE TLAs are expected to make it possible to perform at least some of the research in vitro under more-realistic conditions, without need to infect human subjects. The TLAs are grown on collagen-coated cyclodextran microbeads under controlled conditions in a nutrient liquid in the simulated microgravitational environment of a bioreactor of the rotating- wall-vessel type. Primary human mesenchymal bronchial-tracheal cells are used as a foundation matrix, while adult human bronchial epithelial immortalized cells are used as the overlying component. The beads become coated with cells, and cells on adjacent beads coalesce into 3D masses. The resulting TLAs have been found to share significant characteristics with in vivo human respiratory epithelia including polarization, tight junctions, desmosomes, and microvilli. The differentiation of the cells in these TLAs into tissues functionally similar to in vivo tissues is confirmed by the presence of compounds, including villin, keratins, and specific lung epithelium marker compounds, and by the production of tissue mucin. In a series of initial infection tests, TLA cultures were inoculated with human respiratory syncytial viruses and parainfluenza type 3 viruses. Infection was confirmed by photomicrographs that

  20. Incremental responses to light recorded from pigment epithelial cells and horizontal cells of the cat retina

    PubMed Central

    Steinberg, Roy H.

    1971-01-01

    1. Rod-dependent incremental responses were recorded intracellularly in both pigment epithelial cells and horizontal cells of the cat retina. They were elicited by test flashes which were superimposed on background flashes after a delay. 2. In pigment epithelial cells smaller test responses were produced as background intensity was raised. The incremental sensitivity function was linear for about 1·4 log units, with a slope of 0·86, and the approach of saturation occurred at about 2·5 log td scotopic. 3. The amplitude of pigment epithelial test responses could be estimated from the dark-adapted amplitude—log intensity function obtained with single flashes. Test flashes produced the voltage increment predicted by the slope of this function just above the point on the curve equal to the background intensity. The pigment epithelial response to a test flash, therefore, is the response expected if the background were presented alone and made more intense by the amount of the test flash. 4. Rod-dependent incremental sensitivity functions of horizontal cells closely resembled the ones obtained from pigment epithelial cells. 5. It was concluded that the adaptive effects observed in pigment epithelial cells originated in individual rods. These effects arose from the compressive nature of the dark-adapted amplitude—intensity function. In horizontal cell responses these effects may be modified by the failure of the background response to maintain its initial voltage. PMID:5571955

  1. Increasing the efficacy of tumor cell vaccines by enhancing cross priming

    PubMed Central

    Andersen, Brian M.; Ohlfest, John R.

    2012-01-01

    Cancer immunotherapy has been attempted for more than a century, and investment has intensified in the last 20 years. The complexity of the immune system is exemplified by the myriad of immunotherapeutic approaches under investigation. While anti-tumor immunity has been achieved experimentally with multiple effector cells and molecules, particular promise is shown for harnessing the CD8 T cell response. Tumor cell-based vaccines have been employed in hundreds of clinical trials to date and offer several advantages over subunit and peptide vaccines. However, tumor cell-based vaccines, often aimed at cross priming tumor-reactive CD8 T cells, have shown modest success in clinical trials. Here we review the mechanisms of cross priming and discuss strategies to increase the efficacy of tumor cell-based vaccines. A synthesis of recent findings on tissue culture conditions, cell death, and dendritic cell activation reveals promising new avenues for clinical investigation. PMID:22809568

  2. Studies in human skin epithelial cell carcinogenesis

    SciTech Connect

    Lehman, T.A.

    1987-01-01

    Metabolism and DNA adduct formation of benzo(a)pyrene (BP) by human epidermal keratinocytes pretreated with inhibitors or inducer of cytochrame P450 was studied. To study DNA adduct analysis, cultures were pretreated as described above, and then treated with non-radiolabeled BP. DNA was prepared from these cultures, digested to the nucleotide level, and /sup 32/P-postlabeled for adduct analysis. Cultures pretreated with BHA, 7,8-BF or disulfiralm formed significantly fewer BPDE I-dB adducts than non-pretreated cultures, while cultures pretreated with MeBHA formed more BPDE-I-dG adducts. MeBHA increased BP activation and adduct formation inhuman keratinocyte in cultures by inducing a specific isoenzyme of cytochrome P450 which preferentially increases the oxidative metabolism of BP to 7,8 diol BP and 7,8 diol BP to BPDE I. To approximate an in vivo human system, metabolism of BPDE I by human skin xenografts treated with cell cycles modulators was studied. When treated with BPDE I, specific carcinogen-DNA adducts were formed. Separation and identification of these adducts by the /sup 32/P-postlabeling technique indicated that the 7R- and 7S-BPDE I-dG adducts were the major adducts.

  3. Microvesicles released from tumor cells disrupt epithelial cell morphology and contractility.

    PubMed

    Bordeleau, Francois; Chan, Bryan; Antonyak, Marc A; Lampi, Marsha C; Cerione, Richard A; Reinhart-King, Cynthia A

    2016-05-24

    During tumor progression, cancer cells interact and communicate with non-malignant cells within their local microenvironment. Microvesicles (MV) derived from human cancer cells play an important role in mediating this communication. Another critical aspect of cancer progression involves widespread ECM remodeling, which occur both at the primary and metastatic sites. ECM remodeling and reorganization within the tumor microenvironment is generally attributed to fibroblasts. Here, using MCF10a cells, a well-characterized breast epithelial cell line that exhibits a non-malignant epithelial phenotype, and MVs shed by aggressive MDA-MB-231 carcinoma cells, we show that non-malignant epithelial cells can participate in ECM reorganization of 3D collagen matrices following their treatment with cancer cell-derived MVs. In addition, MVs trigger several changes in epithelial cells under 3D culture conditions. Furthermore, we show that this ECM reorganization is associated with an increase in cellular traction force following MV treatment, higher acto-myosin contractility, and higher FAK activity. Overall, our findings suggest that MVs derived from tumor cells can contribute to ECM reorganization occurring within the tumor microenvironment by enhancing the contractility of non-malignant epithelial cells. PMID:26477404

  4. Alveolar Epithelial Cells Secrete Chemokines in Response to IL-1β and Lipopolysaccharide but Not to Ozone

    PubMed Central

    Manzer, Rizwan; Wang, Jieru; Nishina, Kahoru; McConville, Glen; Mason, Robert J.

    2006-01-01

    Ozone exposure produces acute inflammation and neutrophil influx in the distal lung. Alveolar epithelial cells cover a large surface area, secrete chemokines, and may initiate or modify the inflammatory response. The effect of ozone on chemokine production by these cells has not been defined. Isolated rat type II cells were cultured in different conditions to express the morphologic appearance and biochemical markers for the type I and the type II cell phenotypes. These cells were exposed to ozone at an air/liquid interface. The type I–like cells were more susceptible to injury than the type II cells and showed signs of injury at exposure levels of 100 ppb ozone for 60 min. Both phenotypes showed evidence of lipid peroxidation after ozone exposure as measured by 8-isoprostane production, but neither phenotype secreted increased amounts of MIP-2 (CXCL3), CINC-1 (CXCL1), or MCP-1 (CCL2) in response to ozone. Both cell phenotypes secreted MIP-2 and MCP-1 in response to IL-1β or lipopolysaccharide, but there was no priming or synergy with ozone. It is likely that the inflammatory response to ozone in the alveolar compartment is not due to the direct effect of ozone on epithelial cells. PMID:16239643

  5. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells.

    PubMed

    Rimoldi, Monica; Chieppa, Marcello; Salucci, Valentina; Avogadri, Francesca; Sonzogni, Angelica; Sampietro, Gianluca M; Nespoli, Angelo; Viale, Giuseppe; Allavena, Paola; Rescigno, Maria

    2005-05-01

    The control of damaging inflammation by the mucosal immune system in response to commensal and harmful ingested bacteria is unknown. Here we show epithelial cells conditioned mucosal dendritic cells through the constitutive release of thymic stromal lymphopoietin and other mediators, resulting in the induction of 'noninflammatory' dendritic cells. Epithelial cell-conditioned dendritic cells released interleukins 10 and 6 but not interleukin 12, and they promoted the polarization of T cells toward a 'classical' noninflammatory T helper type 2 response, even after exposure to a T helper type 1-inducing pathogen. This control of immune responses seemed to be lost in patients with Crohn disease. Thus, the intimate interplay between intestinal epithelial cells and dendritic cells may help to maintain gut immune homeostasis. PMID:15821737

  6. Stereological Quantification of Cell-Cycle Kinetics and Mobilization of Epithelial Stem Cells during Wound Healing.

    PubMed

    Martínez-Martínez, Eduardo; Uribe-Querol, Eileen; Galván-Hernández, Claudio I; Gutiérrez-Ospina, Gabriel

    2016-01-01

    We describe a stereology method to obtain reliable estimates of the total number of proliferative and migratory epithelial cells after wounding. Using pulse and chase experiments with halogenated thymidine analogs such as iododeoxyuridine (IdU) and chlorodeoxyuridine (CldU), it is possible to track epithelial populations with heterogeneous proliferative characteristics through skin compartments. The stereological and tissue processing methods described here apply widely to address important questions of skin stem-cell biology. PMID:27431250

  7. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    SciTech Connect

    Sidjanin, D.; Grdina, D.; Woloschak, G.E.

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  8. Interleukin-23 Increases Intestinal Epithelial Cell Permeability In Vitro.

    PubMed

    Heinzerling, Nathan P; Donohoe, Deborah; Fredrich, Katherine; Gourlay, David M; Liedel, Jennifer L

    2016-06-01

    Background Breast milk has a heterogeneous composition that differs between mothers and changes throughout the first weeks after birth. The proinflammatory cytokine IL-23 has a highly variable expression in human breast milk. We hypothesize that IL-23 found in human breast milk is biologically active and promotes epithelial barrier dysfunction. Methods The immature rat small intestinal epithelial cell line, IEC-18, was grown on cell inserts or standard cell culture plates. Confluent cultures were exposed to human breast milk with high or low levels of IL-23 and barrier function was measured using a flux of fluorescein isothiocyanate-dextran (FD-70). In addition, protein and mRNA expression of occludin and ZO-1 were measured and immunofluorescence used to stain occludin and ZO-1. Results Exposure to breast milk with high levels of IL-23 caused an increase flux of FD-70 compared with both controls and breast milk with low levels of IL-23. The protein expression of ZO-1 but not occludin was decreased by exposure to high levels of IL-23. These results correlate with immunofluorescent staining of ZO-1 and occludin which show decreased staining of occludin in both the groups exposed to breast milk with high and low IL-23. Conversely, cells exposed to high IL-23 breast milk had little peripheral staining of ZO-1 compared with controls and low IL-23 breast milk. Conclusion IL-23 in human breast milk is biologically active and negatively affects the barrier function of intestinal epithelial cells through the degradation of tight junction proteins. PMID:26007691

  9. Oral microbial biofilm stimulation of epithelial cell responses.

    PubMed

    Peyyala, Rebecca; Kirakodu, Sreenatha S; Novak, Karen F; Ebersole, Jeffrey L

    2012-04-01

    Oral bacterial biofilms trigger chronic inflammatory responses in the host that can result in the tissue destructive events of periodontitis. However, the characteristics of the capacity of specific host cell types to respond to these biofilms remain ill-defined. This report describes the use of a novel model of bacterial biofilms to stimulate oral epithelial cells and profile select cytokines and chemokines that contribute to the local inflammatory environment in the periodontium. Monoinfection biofilms were developed with Streptococcus sanguinis, Streptococcus oralis, Streptococcus gordonii, Actinomyces naeslundii, Fusobacterium nucleatum, and Porphyromonas gingivalis on rigid gas-permeable contact lenses. Biofilms, as well as planktonic cultures of these same bacterial species, were incubated under anaerobic conditions with a human oral epithelial cell line, OKF4, for up to 24h. Gro-1α, IL1α, IL-6, IL-8, TGFα, Fractalkine, MIP-1α, and IP-10 were shown to be produced in response to a range of the planktonic or biofilm forms of these species. P. gingivalis biofilms significantly inhibited the production of all of these cytokines and chemokines, except MIP-1α. Generally, the biofilms of all species inhibited Gro-1α, TGFα, and Fractalkine production, while F. nucleatum biofilms stimulated significant increases in IL-1α, IL-6, IL-8, and IP-10. A. naeslundii biofilms induced elevated levels of IL-6, IL-8 and IP-10. The oral streptococcal species in biofilms or planktonic forms were poor stimulants for any of these mediators from the epithelial cells. The results of these studies demonstrate that oral bacteria in biofilms elicit a substantially different profile of responses compared to planktonic bacteria of the same species. Moreover, certain oral species are highly stimulatory when in biofilms and interact with host cell receptors to trigger pathways of responses that appear quite divergent from individual bacteria. PMID:22266273

  10. Ultrastructural analysis of primary human urethral epithelial cell cultures infected with Neisseria gonorrhoeae.

    PubMed

    Harvey, H A; Ketterer, M R; Preston, A; Lubaroff, D; Williams, R; Apicella, M A

    1997-06-01

    In men with gonococcal urethritis, the urethral epithelial cell is a site of infection. To study the pathogenesis of gonorrhea in this cell type, we have developed a method to culture primary human urethral epithelial cells obtained at the time of urologic surgery. Fluorescent analysis demonstrated that 100% of the cells stained for keratin. Microscopic analyses indicated that these epithelial cells arrayed in a pattern similar to that seen in urethral epithelium. Using immunoelectron and confocal microscopy, we compared the infection process seen in primary cells with events occurring during natural infection of the same cell type in men with gonococcal urethritis. Immunoelectron microscopy studies of cells infected with Neisseria gonorrhoeae 1291 Opa+ P+ showed adherence of organisms to the epithelial cell membrane, pedestal formation with evidence of intimate association between the gonococcal and the epithelial cell membranes, and intracellular gonococci present in vacuoles. Confocal studies of primary urethral epithelial cells showed actin polymerization upon infection. Polyclonal antibodies to the asialoglycoprotein receptor (ASGP-R) demonstrated the presence of this receptor on infected cells in the primary urethral cell culture. In situ hybridization using a fluorescent-labeled probe specific to the ASGP-R mRNA demonstrated this message in uninfected and infected cells. These features were identical to those seen in urethral epithelial cells in exudates from males with gonorrhea. Infection of primary urethral cells in culture mimics events seen in natural infection and will allow detailed molecular analysis of gonococcal pathogenesis in a human epithelial cell which is commonly infected. PMID:9169783

  11. Isoprenaline induces epithelial-mesenchymal transition in gastric cancer cells.

    PubMed

    Lu, Yan-Jie; Geng, Zhi-Jun; Sun, Xiao-Yan; Li, Yu-Hong; Fu, Xiao-Bing; Zhao, Xiang-Yang; Wei, Bo

    2015-10-01

    The emerging role of stress-related signaling in regulating cancer development and progression has been recognized. However, whether stress serves as a mechanism to promote gastric cancer metastasis is not clear. Here, we show that the β2-AR agonist, isoprenaline, upregulates expression levels of CD44 and CD44v8-10 in gastric cancer cells. CD44, a cancer stem cell-related marker, is expressed at high levels in gastric cancer tissues, which strongly correlates with the occurrence of epithelial-mesenchymal transition (EMT)-associated phenotypes both in vivo and in vitro. Combined with experimental observations in two human gastric cancer cell lines, we found that β2-AR signaling can initiate EMT. It led to an increased expression of mesenchymal markers, such as α-SMA, vimentin, and snail at mRNA and protein levels, and conversely a decrease in epithelial markers, E-cadherin and β-catenin. Isoprenaline stimulation of β2-AR receptors activates the downstream target STAT3, which functions as a positive regulator and mediated the phenotypic switch toward a mesenchymal cell type in gastric cancer cells. Our data provide a mechanistic understanding of the complex signaling cascades involving stress-related hormones and their effects on EMT. In light of our observations, pharmacological interventions targeting β2-AR-STAT3 signaling can potentially be used to ameliorate stress-associated influences on gastric cancer development and progression. PMID:26253173

  12. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool.

    PubMed

    Mesa, Kailin R; Rompolas, Panteleimon; Zito, Giovanni; Myung, Peggy; Sun, Thomas Y; Brown, Samara; Gonzalez, David G; Blagoev, Krastan B; Haberman, Ann M; Greco, Valentina

    2015-06-01

    Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression). In contrast to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration. Here we show by intravital microscopy in live mice that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbours. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through transforming growth factor (TGF)-β activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool, as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviours and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis. PMID:25849774

  13. Niche induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool

    PubMed Central

    Mesa, Kailin R.; Rompolas, Panteleimon; Zito, Giovanni; Myung, Peggy; Sun, Thomas Yang; Brown, Samara; Gonzalez, David; Blagoev, Krastan B.; Haberman, Ann M.; Greco, Valentina

    2015-01-01

    Summary Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression)1,2. Contrary to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration3. Here we show by intravital microscopy in live mice4–6 that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbors. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through TGFβ activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviors and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis. PMID:25849774

  14. Cell surface morphology in epithelial malignancy and its precursor lesions.

    PubMed

    Kenemans, P; Davina, J H; de Haan, R W; van der Zanden, P; Vooys, G P; Stolk, J G; Stadhouders, A M

    1981-01-01

    The cell surface organization of cancer cells is of potentially great significance, as it may not only allow (early) diagnosis, but as it may also harbour markers for refined prognosis (degree of oncogenetic and metastatic potential), and targets for selective cancer (chemo- and immuno) therapy. With these aspects in mind, the present review deals with SEM work done on (pre-) malignant cells, both in vivo and in vitro, and in animal models. Attention, however, is focused on human cancer cells. Cancer cells in vitro may lose many of their original malignant characteristics, and show adaptations to culture conditions. Many other factors have been shown to influence cell surface morphology, such as cell cycle, cell contacts, and preparations technique. Cancer cells differ in their surface morphology from normal cells, and have an extra ordinary amount of surface activity. Human malignant epithelial cells show abundant long. pleomorphic microvilli, especially those present in effusions. In squamous epithelium (bladder, cervix) microridge system present on normal superficial cells are progressively replaced by microvilli which increase in number and degree of pleomorphism during experimental and clinical oncogenesis. The question of whether or not the appearance of long. Pleomorphic microvilli reflects an irreversible alteration of the epithelium, and thus provides an early marker of irreversible neoplastic transformation is considered and assessed on the basis of our work with (pre-) malignant cells of the human uterine cervix. Although SEM has contributed significantly to the description of oncogenesis, up to now it has no early diagnostic, prognostic or therapeutic significance. PMID:7199203

  15. Francisella tularensis replicates within alveolar type II epithelial cells in vitro and in vivo following inhalation.

    PubMed

    Hall, Joshua D; Craven, Robin R; Fuller, James R; Pickles, Raymond J; Kawula, Thomas H

    2007-02-01

    Francisella tularensis replicates in macrophages and dendritic cells, but interactions with other cell types have not been well described. F. tularensis LVS invaded and replicated within alveolar epithelial cell lines. Following intranasal inoculation of C57BL/6 mice, Francisella localized to the alveolus and replicated within alveolar type II epithelial cells. PMID:17088343

  16. Isolating Epithelial and Epithelial-to-Mesenchymal Transition Populations from Primary Tumors by Fluorescence-Activated Cell Sorting.

    PubMed

    Aiello, Nicole M; Rhim, Andrew D; Stanger, Ben Z

    2016-01-01

    Transgenic mice that express conditional reporters allow for the isolation of specific cell lineages. These cells can be further stratified by gene expression and collected by fluorescence-activated cell sorting (FACS) for further analysis. Using Cre-recombinase (Cre) technology we have generated a transgenic mouse line termed PKCY in which all pancreatic epithelial cells and therefore all pancreatic cancer cells are constitutively labeled with yellow fluorescent protein (YFP). We have used immunofluorescent staining for E-cadherin to divide the YFP(+) tumor population into epithelial cells (E-cadherin positive) and cells that have undergone an epithelial-to-mesenchymal transition (EMT; E-cadherin negative). This protocol describes how to prepare a tumor sample for FACS, with an emphasis on separating epithelial and EMT populations. These cells can then be used for a number of applications including, but not limited to, the generation of cell lines, gene-expression analysis by quantitative polymerase chain reaction (qPCR) or RNA sequencing, DNA sequencing, chromatin immunoprecipitation, and western blots. PMID:26729901

  17. CD8α+ Dendritic cells prime TCR-peptide-reactive regulatory CD4+FOXP3− T cells

    PubMed Central

    Smith, Trevor R. F.; Maricic, Igor; Ria, Francesco; Schneider, Susan; Kumar, Vipin

    2011-01-01

    Summary CD4+ T cells with immune regulatory function can be either FOXP3+ or FOXP3−. We have previously shown that priming of naturally occurring TCR-peptide-reactive regulatory CD4+FOXP3− T cells (Treg) specifically controls Vβ8.2+CD4+ T cells mediating experimental autoimmune encephalomyelitis (EAE). However, the mechanism by which these Treg are primed to recognize their cognate antigenic determinant, which is derived from the TCRVβ8.2-chain, is not known. In this study we show that antigen presenting cells (APC) derived from splenocytes of naïve mice are able to stimulate cloned CD4+ Treg in the absence of exogenous antigen, and their stimulation capacity is augmented during EAE. Among the APC populations DC were the most efficient in stimulating the Treg. Stimulation of CD4+ Treg was dependent upon processing and presentation of TCR peptides from ingested Vβ8.2TCR+ CD4+ T cells. Additionally, dendritic cells pulsed with TCR peptide or apoptotic Vβ8.2+ T cells are able to prime Treg in vivo and mediate protection from disease in a CD8-dependent fashion. These data highlight a novel mechanism for the priming of CD4+ Treg by CD8α+ DC, and suggest a pathway that can be exploited to prime antigen-specific regulation of T cell-mediated inflammatory disease. PMID:20394075

  18. Characterization of an epithelial cell line from bovine mammary gland.

    PubMed

    German, Tania; Barash, Itamar

    2002-05-01

    Elucidation of the bovine mammary gland's unique characteristics depends on obtaining an authentic cell line that will reproduce its function in vitro. Representative clones from bovine mammary cell populations, differing in their attachment capabilities, were cultured. L-1 cells showed strong attachment to the plate, whereas H-7 cells detached easily. Cultures established from these clones were nontumorigenic upon transplantation to an immunodeficient host; they exhibited the epithelial cell characteristics of positive cytokeratin but not smooth muscle actin staining. Both cell lines depended on fetal calf serum for proliferation. They exhibited distinct levels of differentiation on Matrigel in serum-free, insulin-supplemented medium on the basis of their organization and beta-lactoglobulin (BLG) secretion. H-7 cells organized into mammospheres, whereas L-1 cells arrested in a duct-like morphology. In both cell lines, prolactin activated phosphorylation of the signal transducer and activator of transcription, Stat5-a regulator of milk protein gene transcription, and of PHAS-I-an inhibitor of translation initiation in its nonphosphorylated form. De novo synthesis and secretion of BLG were detected in differentiated cultures: in L-1 cells, BLG was dependent on lactogenic hormones for maximal induction but was less stringently controlled than was beta-casein in the mouse CID-9 cell line. L-1 cells also encompassed a near-diploid chromosomal karyotype and may serve as a tool for studying functional characteristics of the bovine mammary gland. PMID:12418925

  19. Novel strategies to enforce an epithelial phenotype in mesenchymal cells.

    PubMed

    Dragoi, Ana-Maria; Swiss, Rachel; Gao, Beile; Agaisse, Hervé

    2014-07-15

    E-cadherin downregulation in cancer cells is associated with epithelial-to-mesenchymal transition (EMT) and metastatic prowess, but the underlying mechanisms are incompletely characterized. In this study, we probed E-cadherin expression at the plasma membrane as a functional assay to identify genes involved in E-cadherin downregulation. The assay was based on the E-cadherin-dependent invasion properties of the intracellular pathogen Listeria monocytogenes. On the basis of a functional readout, automated microscopy and computer-assisted image analysis were used to screen siRNAs targeting 7,000 human genes. The validity of the screen was supported by its definition of several known regulators of E-cadherin expression, including ZEB1, HDAC1, and MMP14. We identified three new regulators (FLASH, CASP7, and PCGF1), the silencing of which was sufficient to restore high levels of E-cadherin transcription. In addition, we identified two new regulators (FBXL5 and CAV2), the silencing of which was sufficient to increase E-cadherin expression at a posttranscriptional level. FLASH silencing regulated the expression of E-cadherin and other ZEB1-dependent genes, through posttranscriptional regulation of ZEB1, but it also regulated the expression of numerous ZEB1-independent genes with functions predicted to contribute to a restoration of the epithelial phenotype. Finally, we also report the identification of siRNA duplexes that potently restored the epithelial phenotype by mimicking the activity of known and putative microRNAs. Our findings suggest new ways to enforce epithelial phenotypes as a general strategy to treat cancer by blocking invasive and metastatic phenotypes associated with EMT. PMID:24845104

  20. Novel strategies to enforce an epithelial phenotype in mesenchymal cells

    PubMed Central

    Dragoi, Ana-Maria; Swiss, Rachel; Gao, Beile; Agaisse, Hervé

    2014-01-01

    E-cadherin downregulation in cancer cells is associated with epithelial-to-mesenchymal transition (EMT) and metastatic prowess, but the underlying mechanisms are incompletely characterized. In this study, we probed E-cadherin expression at the plasma membrane as a functional assay to identify genes involved in E-cadherin downregulation. The assay was based on the E-cadherin-dependent invasion properties of the intracellular pathogen Listeria monocytogenes. On the basis of a functional readout, automated microscopy and computer-assisted image analysis were used to screen siRNAs targeting 7,000 human genes. The validity of the screen was supported by its definion of several known regulators of E-cadherin expression, including ZEB1, HDAC1 and MMP14. We identified three new regulators (FLASH, CASP7 and PCGF1), the silencing of which was sufficient to restore high levels of E-cadherin transcription. Additionally, we identified two new regulators (FBXL5 and CAV2), the silencing of which was sufficient to increase E-cadherin expression at a post-transcriptional level. FLASH silencing regulated the expression of E-cadherin and other ZEB1-dependent genes, through post-transcriptional regulation of ZEB1, but it also regulated the expression of numerous ZEB1-independent genes with functions predicted to contribute to a restoration of the epithelial phenotype. Finally, we also report the identification of siRNA duplexes that potently restored the epithelial phenotype by mimicking the activity of known and putative microRNAs. Our findings suggest new ways to enforce epithelial phenotypes as a general strategy to treat cancer by blocking invasive and metastatic phenotypes associated with EMT. PMID:24845104

  1. Survivin expression is associated with lens epithelial cell proliferation and fiber cell differentiation

    PubMed Central

    Mansergh, Fiona C.; Boulton, Michael E.; Gunhaga, Lena

    2012-01-01

    Purpose Survivin (Birc5) is the smallest member of the inhibitor of apoptosis (IAP) protein family, which regulates the cell cycle/apoptosis balance. The purpose of this study was to examine Survivin expression in the embryonic chick lens, in chick lens epithelial cell cultures, and in the postnatal mouse lens. Methods Survivin expression was examined using a combination of quantitative real-time polymerase chain reaction, western blotting, and immunocytochemistry. To correlate Survivin expression with the timing of proliferation, we determined the profile of cell proliferation in the developing lens using the cell cycle marker proliferating cell nuclear antigen (PCNA) in quantitative western blotting and immunocytochemistry studies. We also examined the expression of PCNA and the extent of denucleation using terminal deoxynucleotidyl transferase (TdT)-mediated biotin-dUTP nick-end labeling (TUNEL) of lentoids (lens fiber-like cells) during chick lens epithelial cell differentiation in vitro. Results At embryonic day (ED) 4, Survivin immunostaining was present in two pools in lens epithelial cells and fiber cells: cytoplasmic and nuclear. The nuclear staining became more pronounced as the lens epithelial cells differentiated into lens fiber cells. At ED12, Survivin staining was observed in lens fiber cell nuclei containing marginalized chromatin, indicative of early denucleation events. Using western blotting, Survivin expression peaked at ED6, diminishing thereafter. This profile of expression correlated with the events in chick lens epithelial cell cultures: i) increased Survivin expression was associated with an increase in PCNA staining up to day 6 of culture and ii) downregulation of Survivin expression at day 8 of culture was coincident with a dramatic decrease in PCNA staining and an increase in TdT-mediated biotin-dUTP nick-end labeling in lentoids. In early postnatal mouse lenses, Survivin and PCNA were highly expressed and decreased thereafter during

  2. Sensing, signaling and sorting events in kidney epithelial cell physiology.

    PubMed

    Brown, Dennis; Breton, Sylvie; Ausiello, Dennis A; Marshansky, Vladimir

    2009-03-01

    The kidney regulates body fluid, ion and acid/base homeostasis through the interaction of a host of channels, transporters and pumps within specific tubule segments, specific cell types and specific plasma membrane domains. Furthermore, renal epithelial cells have adapted to function in an often unique and challenging environment that includes high medullary osmolality, acidic pHs, variable blood flow and constantly changing apical and basolateral 'bathing' solutions. In this review, we focus on selected protein trafficking events by which kidney epithelial cells regulate body fluid, ion and acid-base homeostasis in response to changes in physiological conditions. We discuss aquaporin 2 and G-protein-coupled receptors in fluid and ion balance, the vacuolar H(+)-adenosine triphosphatase (V-ATPase) and intercalated cells in acid/base regulation and acidification events in the proximal tubule degradation pathway. Finally, in view of its direct role in vesicle trafficking that we outline in this study, we propose that the V-ATPase itself should, under some circumstances, be considered a fourth category of vesicle 'coat' protein (COP), alongside clathrin, caveolin and COPs. PMID:19170982

  3. Glutamatergic Signaling Maintains the Epithelial Phenotype of Proximal Tubular Cells

    PubMed Central

    Bozic, Milica; de Rooij, Johan; Parisi, Eva; Ortega, Marta Ruiz; Fernandez, Elvira

    2011-01-01

    Epithelial–mesenchymal transition (EMT) contributes to the progression of renal tubulointerstitial fibrosis. The N-methyl-d-aspartate receptor (NMDAR), which is present in proximal tubular epithelium, is a glutamate receptor that acts as a calcium channel. Activation of NMDAR induces actin rearrangement in cells of the central nervous system, but whether it helps maintain the epithelial phenotype of the proximal tubule is unknown. Here, knockdown of NMDAR1 in a proximal tubule cell line (HK-2) induced changes in cell morphology, reduced E-cadherin expression, and increased α-SMA expression. Induction of EMT with TGF-β1 led to downregulation of both E-cadherin and membrane-associated β-catenin, reorganization of F-actin, expression of mesenchymal markers de novo, upregulation of Snail1, and increased cell migration; co-treatment with NMDA attenuated all of these changes. Furthermore, NMDA reduced TGF-β1–induced phosphorylation of Erk1/2 and Akt and the activation of Ras, suggesting that NMDA antagonizes TGF-β1–induced EMT by inhibiting the Ras-MEK pathway. In the unilateral ureteral obstruction model, treatment with NMDA blunted obstruction-induced upregulation of α-SMA, FSP1, and collagen I and downregulation of E-cadherin. Taken together, these results suggest that NMDAR plays a critical role in preserving the normal epithelial phenotype and modulating tubular EMT. PMID:21597037

  4. Generation of airway epithelial cells with native characteristics from mouse induced pluripotent stem cells.

    PubMed

    Yoshie, Susumu; Imaizumi, Mitsuyoshi; Nakamura, Ryosuke; Otsuki, Koshi; Ikeda, Masakazu; Nomoto, Yukio; Wada, Ikuo; Omori, Koichi

    2016-05-01

    Airway epithelial cells derived from induced pluripotent stem (iPS) cells are expected to be a useful source for the regeneration of airway epithelium. Our preliminary study of embryoid body (EB) formation and the air-liquid interface (ALI) method suggested that mouse iPS cells can differentiate into airway epithelial cells. However, whether the cells generated from mouse iPS cells had the character and phenotype of native airway epithelial cells remained uninvestigated. In this study, we generated airway epithelial cells from EBs by culturing them under serum-free conditions supplemented with Activin and bFGF and by the ALI method and characterized the iPS cell-derived airway epithelial cells in terms of their gene expression, immunoreactivity, morphology, and function. Analysis by quantitative real-time reverse transcription-polymerase chain reaction(RT-PCR) revealed that the expression of the undifferentiated cell marker Nanog decreased time-dependently after the induction of differentiation, whereas definitive endoderm markers Foxa2 and Cxcr4 were transiently up-regulated. Thereafter, the expression of airway epithelium markers such as Tubb4a, Muc5ac, and Krt5 was detected by RT-PCR and immunostaining. The formation of tight junctions was also confirmed by immunostaining and permeability assay. Analysis by hematoxylin and eosin staining and scanning electron microscopy indicated that the cells generated from mouse iPS cells formed airway-epithelium-like tissue and had cilia, the movement of which was visualized and observed to be synchronized. These results demonstrate that the airway epithelial cells generated by our method have native characteristics and open new perspectives for the regeneration of injured airway epithelium. PMID:26590823

  5. Mast-Cell-Derived TNF Amplifies CD8(+) Dendritic Cell Functionality and CD8(+) T Cell Priming.

    PubMed

    Dudeck, Jan; Ghouse, Shanawaz Mohammed; Lehmann, Christian H K; Hoppe, Anja; Schubert, Nadja; Nedospasov, Sergei A; Dudziak, Diana; Dudeck, Anne

    2015-10-13

    Mast cells are critical promoters of adaptive immunity in the contact hypersensitivity model, but the mechanism of allergen sensitization is poorly understood. Using Mcpt5-CreTNF(FL/FL) mice, we show here that the absence of TNF exclusively in mast cells impaired the expansion of CD8(+) T cells upon sensitization and the T-cell-driven adaptive immune response to elicitation. T cells primed in the absence of mast cell TNF exhibited a diminished efficiency to transfer sensitization to naive recipients. Specifically, mast cell TNF promotes CD8(+) dendritic cell (DC) maturation and migration to draining lymph nodes. The peripherally released mast cell TNF further critically boosts the CD8(+) T-cell-priming efficiency of CD8(+) DCs, thereby linking mast cell effects on T cells to DC modulation. Collectively, our findings identify the distinct potential of mast cell TNF to amplify CD8(+) DC functionality and CD8(+) T-cell-dominated adaptive immunity, which may be of great importance for immunotherapy and vaccination approaches. PMID:26411682

  6. Erk5 Is a Key Regulator of Naive-Primed Transition and Embryonic Stem Cell Identity.

    PubMed

    Williams, Charles A C; Fernandez-Alonso, Rosalia; Wang, Jinhua; Toth, Rachel; Gray, Nathanael S; Findlay, Greg M

    2016-08-16

    Embryonic stem cells (ESCs) can self-renew or differentiate into any cell type, a phenomenon known as pluripotency. Distinct pluripotent states, termed naive and primed pluripotency, have been described. However, the mechanisms that control naive-primed pluripotent transition are poorly understood. Here, we perform a targeted screen for kinase inhibitors, which modulate the naive-primed pluripotent transition. We find that XMD compounds, which selectively inhibit Erk5 kinase and BET bromodomain family proteins, drive ESCs toward primed pluripotency. Using compound selectivity engineering and CRISPR/Cas9 genome editing, we reveal distinct functions for Erk5 and Brd4 in pluripotency regulation. We show that Erk5 signaling maintains ESCs in the naive state and suppresses progression toward primed pluripotency and neuroectoderm differentiation. Additionally, we identify a specialized role for Erk5 in defining ESC lineage selection, whereby Erk5 inhibits a cardiomyocyte-specific differentiation program. Our data therefore reveal multiple critical functions for Erk5 in controlling ESC identity. PMID:27498864

  7. Epithelial cell adhesion molecule (Ep-CAM) modulates cell-cell interactions mediated by classic cadherins.

    PubMed

    Litvinov, S V; Balzar, M; Winter, M J; Bakker, H A; Briaire-de Bruijn, I H; Prins, F; Fleuren, G J; Warnaar, S O

    1997-12-01

    The contribution of noncadherin-type, Ca2+-independent cell-cell adhesion molecules to the organization of epithelial tissues is, as yet, unclear. A homophilic, epithelial Ca2+-independent adhesion molecule (Ep-CAM) is expressed in most epithelia, benign or malignant proliferative lesions, or during embryogenesis. Here we demonstrate that ectopic Ep-CAM, when expressed in cells interconnected by classic cadherins (E- or N-cadherin), induces segregation of the transfectants from the parental cell type in coaggregation assays and in cultured mixed aggregates, respectively. In the latter assay, Ep-CAM-positive transfectants behave like cells with a decreased strength of cell-cell adhesion as compared to the parental cells. Using transfectants with an inducible Ep-CAM-cDNA construct, we demonstrate that increasing expression of Ep-CAM in cadherin-positive cells leads to the gradual abrogation of adherens junctions. Overexpression of Ep-CAM has no influence on the total amount of cellular cadherin, but affects the interaction of cadherins with the cytoskeleton since a substantial decrease in the detergent-insoluble fraction of cadherin molecules was observed. Similarly, the detergent-insoluble fractions of alpha- and beta-catenins decreased in cells overexpressing Ep-CAM. While the total beta-catenin content remains unchanged, a reduction in total cellular alpha-catenin is observed as Ep-CAM expression increases. As the cadherin-mediated cell-cell adhesions diminish, Ep-CAM-mediated intercellular connections become predominant. An adhesion-defective mutant of Ep-CAM lacking the cytoplasmic domain has no effect on the cadherin-mediated cell-cell adhesions. The ability of Ep-CAM to modulate the cadherin-mediated cell-cell interactions, as demonstrated in the present study, suggests a role for this molecule in development of the proliferative, and probably malignant, phenotype of epithelial cells, since an increase of Ep-CAM expression was observed in vivo in association

  8. Paracrine CCL20 loop induces epithelial-mesenchymal transition in breast epithelial cells.

    PubMed

    Marsigliante, S; Vetrugno, C; Muscella, A

    2016-07-01

    We previously found that CCL20 induced primarily cultured healthy breast cell proliferation and migration. The objective of this study was to investigate the hypothesis that CCL20 modulated the epithelial-mesenchymal transition (EMT) of primarily cultured healthy breast epithelial cells and the angiogenesis in areas adjacent to the tumor. Key results showed that CCL20 (a) down-regulated E-cadherin and ZO-1; (b) up-regulated N-cadherin, vimentin, and Snail expressions; (c) increased mRNA and secretion of VEGF and (d) increased angiogenic micro vessel sprouting. Thus, the signal transduction pathways evoked by CCL20 were investigated. We showed that NF-kB p65 down-regulation (by small interfering RNA, siRNA) reversed CCL20-induced Snail and blocked the up-regulation of vimentin and N-cadherin mRNAs. Furthermore, PI3K/AKT inhibition (by LY294002) completely blocked CCL20-induced Snail and NF-kB activation. Inhibition of JNK1/2 (by SP60125) or PKC-α (by siRNA) or src (by PP1) blocked NF-kB activation and Snail expression suggesting that these kinases are all upstream of NF-kB/Snail. Inhibition of mTOR (by rapamycin) abolished the effects of CCL20 on N-cadherin and vimentin protein synthesis. Furthermore, siRNA of PKC-δ inhibited the phosphorylation of CCL20-induced mTOR and S6, increased vimentin and N-cadherin expressions and, finally, blocked the CCL20 induced-EMT. CCL20 increased mRNA and secretion of VEGF by healthy breast cells by using PKC-α, src, Akt, NF-kB, and Snail signalling. In summary, tumor cells signal to the surrounding healthy cells through CCL20 inducing the modulation of the expression of molecules involved in EMT and promoting angiogenesis directly and indirectly through the secretion of VEGF, a major contributor to angiogenesis. © 2015 Wiley Periodicals, Inc. PMID:26154142

  9. Galvanotactic control of collective cell migration in epithelial monolayers

    NASA Astrophysics Data System (ADS)

    Cohen, Daniel J.; James Nelson, W.; Maharbiz, Michel M.

    2014-04-01

    Many normal and pathological biological processes involve the migration of epithelial cell sheets. This arises from complex emergent behaviour resulting from the interplay between cellular signalling networks and the forces that physically couple the cells. Here, we demonstrate that collective migration of an epithelium can be interactively guided by applying electric fields that bias the underlying signalling networks. We show that complex, spatiotemporal cues are locally interpreted by the epithelium, resulting in rapid, coordinated responses such as a collective U-turn, divergent migration, and unchecked migration against an obstacle. We observed that the degree of external control depends on the size and shape of the cell population, and on the existence of physical coupling between cells. Together, our results offer design and engineering principles for the rational manipulation of the collective behaviour and material properties of a tissue.

  10. Force dependence of phagosome trafficking in retinal pigment epithelial cells

    NASA Astrophysics Data System (ADS)

    Daniel, Rebekah; Koll, Andrew T.; Altman, David

    2014-09-01

    Retinal pigment epithelial (RPE) cells play an integral role in the renewal of photoreceptor disk membranes. As rod and cone cells shed their outer segments, they are phagocytosed and degraded by the RPE, and a failure in this process can result in retinal degeneration. We have studied the role of myosin VI in nonspecific phagocytosis in a human RPE primary cell line (ARPE-19), testing the hypothesis that this motor generates the forces required to traffic phagosomes in these cells. Experiments were conducted in the presence of forces through the use of in vivo optical trapping. Our results support a role for myosin VI in phagosome trafficking and demonstrate that applied forces modulate rates of phagosome trafficking.

  11. Quantification of regenerative potential in primary human mammary epithelial cells

    PubMed Central

    Linnemann, Jelena R.; Miura, Haruko; Meixner, Lisa K.; Irmler, Martin; Kloos, Uwe J.; Hirschi, Benjamin; Bartsch, Harald S.; Sass, Steffen; Beckers, Johannes; Theis, Fabian J.; Gabka, Christian; Sotlar, Karl; Scheel, Christina H.

    2015-01-01

    We present an organoid regeneration assay in which freshly isolated human mammary epithelial cells are cultured in adherent or floating collagen gels, corresponding to a rigid or compliant matrix environment. In both conditions, luminal progenitors form spheres, whereas basal cells generate branched ductal structures. In compliant but not rigid collagen gels, branching ducts form alveoli at their tips, express basal and luminal markers at correct positions, and display contractility, which is required for alveologenesis. Thereby, branched structures generated in compliant collagen gels resemble terminal ductal-lobular units (TDLUs), the functional units of the mammary gland. Using the membrane metallo-endopeptidase CD10 as a surface marker enriches for TDLU formation and reveals the presence of stromal cells within the CD49fhi/EpCAM− population. In summary, we describe a defined in vitro assay system to quantify cells with regenerative potential and systematically investigate their interaction with the physical environment at distinct steps of morphogenesis. PMID:26071498

  12. Galvanotactic control of collective cell migration in epithelial monolayers.

    PubMed

    Cohen, Daniel J; Nelson, W James; Maharbiz, Michel M

    2014-04-01

    Many normal and pathological biological processes involve the migration of epithelial cell sheets. This arises from complex emergent behaviour resulting from the interplay between cellular signalling networks and the forces that physically couple the cells. Here, we demonstrate that collective migration of an epithelium can be interactively guided by applying electric fields that bias the underlying signalling networks. We show that complex, spatiotemporal cues are locally interpreted by the epithelium, resulting in rapid, coordinated responses such as a collective U-turn, divergent migration, and unchecked migration against an obstacle. We observed that the degree of external control depends on the size and shape of the cell population, and on the existence of physical coupling between cells. Together, our results offer design and engineering principles for the rational manipulation of the collective behaviour and material properties of a tissue. PMID:24608142

  13. Plasticity of epithelial stem cells in tissue regeneration

    PubMed Central

    Blanpain, Cédric; Fuchs, Elaine

    2015-01-01

    Tissues rely upon stem cells for homeostasis and repair. Recent studies show that the fate and multilineage potential of epithelial stem cells can change depending on whether a stem cell exists within its resident niche and responds to normal tissue homeostasis, whether it is mobilized to repair a wound, or whether it is taken from its niche and challenged to de novo tissue morphogenesis after transplantation. In this Review, we discuss how different populations of naturally lineage-restricted stem cells and committed progenitors can display remarkable plasticity and reversibility and reacquire long-term self-renewing capacities and multilineage differentiation potential during physiological and regenerative conditions. We also discuss the implications of cellular plasticity for regenerative medicine and for cancer. PMID:24926024

  14. In Vitro Culture and Characterization of a Mammary Epithelial Cell Line from Chinese Holstein Dairy Cow

    PubMed Central

    Hu, Han; Wang, Jiaqi; Bu, Dengpan; Wei, Hongyang; Zhou, Linyun; Li, Fadi; Loor, Juan J.

    2009-01-01

    Background The objective of this study was to establish a culture system and elucidate the unique characteristics of a bovine mammary epithelial cell line in vitro. Methodology Mammary tissue from a three year old lactating dairy cow (ca. 100 d relative to parturition) was used as a source of the epithelial cell line, which was cultured in collagen-coated tissue culture dishes. Fibroblasts and epithelial cells successively grew and extended from the culturing mammary tissue at the third day. Pure epithelial cells were obtained by passages culture. Principal Findings The strong positive immunostaining to cytokeratin 18 suggested that the resulting cell line exhibited the specific character of epithelial cells. Epithelial cells cultured in the presence of 10% FBS, supraphysiologic concentrations of insulin, and hydrocortisone maintained a normal diploid chromosome modal number of 2n = 60. Furthermore, they were capable of synthesizing β-casein (CSN2), acetyl-CoA carboxylase-α (ACACA) and butyrophilin (BTN1A1). An important finding was that frozen preservation in a mixture of 90% FBS and 10% DMSO did not influence the growth characteristics, chromosome number, or protein secretion of the isolated epithelial cell line. Conclusions The obtained mammary epithelial cell line had normal morphology, growth characteristics, cytogenetic and secretory characteristics, thus, it might represent an useful tool for studying the function of Chinese Holstein dairy cows mammary epithelial cell (CMECs). PMID:19888476

  15. Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells

    SciTech Connect

    Roberts, Joan E. Wielgus, Albert R. Boyes, William K. Andley, Usha Chignell, Colin F.

    2008-04-01

    The water-soluble, hydroxylated fullerene [fullerol, nano-C{sub 60}(OH){sub 22-26}] has several clinical applications including use as a drug carrier to bypass the blood ocular barriers. We have assessed fullerol's potential ocular toxicity by measuring its cytotoxicity and phototoxicity induced by UVA and visible light in vitro with human lens epithelial cells (HLE B-3). Accumulation of nano-C{sub 60}(OH){sub 22-26} in the cells was confirmed spectrophotometrically at 405 nm and cell viability estimated using MTS and LDH assays. Fullerol was cytotoxic to HLE B-3 cells maintained in the dark at concentrations higher than 20 {mu}M. Exposure to either UVA or visible light in the presence of > 5 {mu}M fullerol-induced phototoxic damage. When cells were pretreated with non-toxic antioxidants: 20 {mu}M lutein, 1 mM N-acetyl cysteine, or 1 mM L-ascorbic acid prior to irradiation, only the singlet oxygen quencher-lutein significantly protected against fullerol photodamage. Apoptosis was observed in lens cells treated with fullerol whether or not the cells were irradiated, in the order UVA > visible light > dark. Dynamic light scattering (DLS) showed that in the presence of the endogenous lens protein {alpha}-crystallin, large aggregates of fullerol were reduced. In conclusion, fullerol is both cytotoxic and phototoxic to human lens epithelial cells. Although the acute toxicity of water-soluble nano-C{sub 60}(OH){sub 22-26} is low, these compounds are retained in the body for long periods, raising concern for their chronic toxic effect. Before fullerols are used to deliver drugs to the eye, they should be tested for photo- and cytotoxicity in vivo.

  16. Cell crawling mediates collective cell migration to close undamaged epithelial gaps.

    PubMed

    Anon, Ester; Serra-Picamal, Xavier; Hersen, Pascal; Gauthier, Nils C; Sheetz, Michael P; Trepat, Xavier; Ladoux, Benoît

    2012-07-01

    Fundamental biological processes such as morphogenesis and wound healing involve the closure of epithelial gaps. Epithelial gap closure is commonly attributed either to the purse-string contraction of an intercellular actomyosin cable or to active cell migration, but the relative contribution of these two mechanisms remains unknown. Here we present a model experiment to systematically study epithelial closure in the absence of cell injury. We developed a pillar stencil approach to create well-defined gaps in terms of size and shape within an epithelial cell monolayer. Upon pillar removal, cells actively respond to the newly accessible free space by extending lamellipodia and migrating into the gap. The decrease of gap area over time is strikingly linear and shows two different regimes depending on the size of the gap. In large gaps, closure is dominated by lamellipodium-mediated cell migration. By contrast, closure of gaps smaller than 20 μm was affected by cell density and progressed independently of Rac, myosin light chain kinase, and Rho kinase, suggesting a passive physical mechanism. By changing the shape of the gap, we observed that low-curvature areas favored the appearance of lamellipodia, promoting faster closure. Altogether, our results reveal that the closure of epithelial gaps in the absence of cell injury is governed by the collective migration of cells through the activation of lamellipodium protrusion. PMID:22711834

  17. The Timing of T Cell Priming and Cycling

    PubMed Central

    Obst, Reinhard

    2015-01-01

    The proliferation of specific lymphocytes is the central tenet of the clonal selection paradigm. Antigen recognition by T cells triggers a series of events that produces expanded clones of differentiated effector cells. TCR signaling events are detectable within seconds and minutes and are likely to continue for hours and days in vivo. Here, I review the work done on the importance of TCR signals in the later part of the expansion phase of the primary T cell response, primarily regarding the regulation of the cell cycle in CD4+ and CD8+ cells. The results suggest a degree of programing by early signals for effector differentiation, particularly in the CD8+ T cell compartment, with optimal expansion supported by persistent antigen presentation later on. Differences to CD4+ T cell expansion and new avenues toward a molecular understanding of cell cycle regulation in lymphocytes are discussed. PMID:26594213

  18. Characterization of rabbit limbal epithelial side population cells using RNA sequencing and single-cell qRT-PCR.

    PubMed

    Kameishi, Sumako; Umemoto, Terumasa; Matsuzaki, Yu; Fujita, Masako; Okano, Teruo; Kato, Takashi; Yamato, Masayuki

    2016-05-01

    Corneal epithelial stem cells reside in the limbus, a transitional zone between the cornea and conjunctiva, and are essential for maintaining homeostasis in the corneal epithelium. Although our previous studies demonstrated that rabbit limbal epithelial side population (SP) cells exhibit stem cell-like phenotypes with Hoechst 33342 staining, the different characteristics and/or populations of these cells remain unclear. Therefore, in this study, we determined the gene expression profiles of limbal epithelial SP cells by RNA sequencing using not only present public databases but also contigs that were created by de novo transcriptome assembly as references for mapping. Our transcriptome data indicated that limbal epithelial SP cells exhibited a stem cell-like phenotype compared with non-SP cells. Importantly, gene ontology analysis following RNA sequencing demonstrated that limbal epithelial SP cells exhibited significantly enhanced expression of mesenchymal/endothelial cell markers rather than epithelial cell markers. Furthermore, single-cell quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) demonstrated that the limbal epithelial SP population consisted of at least two immature cell populations with endothelial- or mesenchymal-like phenotypes. Therefore, our present results may propose the presence of a novel population of corneal epithelial stem cells distinct from conventional epithelial stem cells. PMID:26546824

  19. AGE-RAGE interaction in the TGFβ2-mediated epithelial to mesenchymal transition of human lens epithelial cells.

    PubMed

    Raghavan, Cibin T; Nagaraj, Ram H

    2016-08-01

    Basement membrane (BM) proteins accumulate chemical modifications with age. One such modification is glycation, which results in the formation of advanced glycation endproducts (AGEs). In a previous study, we reported that AGEs in the human lens capsule (BM) promote the TGFβ2-mediated epithelial-to-mesenchymal transition (EMT) of lens epithelial cells, which we proposed as a mechanism for posterior capsule opacification (PCO) or secondary cataract formation. In this study, we investigated the role of a receptor for AGEs (RAGE) in the TGFβ2-mediated EMT in a human lens epithelial cell line (FHL124). RAGE was present in FHL124 cells, and its levels were unaltered in cells cultured on either native or AGE-modified BM or upon treatment with TGFβ2. RAGE overexpression significantly enhanced the TGFβ2-mediated EMT responses in cells cultured on AGE-modified BM compared with the unmodified matrix. In contrast, treatment of cells with a RAGE antibody or EN-RAGE (an endogenous ligand for RAGE) resulted in a significant reduction in the TGFβ2-mediated EMT response. This was accompanied by a reduction in TGFβ2-mediated Smad signaling and ROS generation. These results imply that the interaction of matrix AGEs with RAGE plays a role in the TGFβ2-mediated EMT of lens epithelial cells and suggest that the blockade of RAGE could be a strategy to prevent PCO and other age-associated fibrosis. PMID:27263094

  20. Mesd extrinsically promotes phagocytosis by retinal pigment epithelial cells.

    PubMed

    Chen, Xiuping; Guo, Feiye; LeBlanc, Michelle E; Ding, Ying; Zhang, Chenming; Shakya, Akhalesh; Li, Wei

    2016-08-01

    Phagocytosis is a critical process to maintain tissue homeostasis. In the retina, photoreceptor cells renew their photoexcitability by shedding photoreceptor outer segments (POSs) in a diurnal rhythm. Shed POSs are phagocytosed by retinal pigment epithelial (RPE) cells to prevent debris accumulation, retinal degeneration, and blindness. Phagocytosis ligands are the key to understanding how RPE recognizes shed POSs. Here, we characterized mesoderm development candidate 2 (Mesd or Mesdc2), an endoplasmic reticulum (ER) chaperon for low-density lipoprotein receptor-related proteins (LRPs), to extrinsically promote RPE phagocytosis. The results showed that Mesd stimulated phagocytosis of fluorescence-labeled POS vesicles by D407 RPE cells. Ingested POSs were partially degraded within 3 h in some RPE cells to dispense undegradable fluorophore throughout the cytoplasm. Internalized POSs were colocalized with phagosome biomarker Rab7, suggesting that Mesd-mediated engulfment is involved in a phagocytosis pathway. Mesd also facilitated phagocytosis of POSs by primary RPE cells. Mesd bound to unknown phagocytic receptor(s) on RPE cells. Mesd was detected in the cytoplasm, but not nuclei, of different retinal layers and is predominantly expressed in the ER-free cellular compartment of POSs. Mesd was not secreted into medium from healthy cells but passively released from apoptotic cells with increased membrane permeability. Released Mesd selectively bound to the surface of POS vesicles and apoptotic cells, but not healthy cells. These results suggest that Mesd may be released from and bind to shed POSs to facilitate their phagocytic clearance. PMID:27184668

  1. Cellular and Nuclear Alignment Analysis for Determining Epithelial Cell Chirality.

    PubMed

    Raymond, Michael J; Ray, Poulomi; Kaur, Gurleen; Singh, Ajay V; Wan, Leo Q

    2016-05-01

    Left-right (LR) asymmetry is a biologically conserved property in living organisms that can be observed in the asymmetrical arrangement of organs and tissues and in tissue morphogenesis, such as the directional looping of the gastrointestinal tract and heart. The expression of LR asymmetry in embryonic tissues can be appreciated in biased cell alignment. Previously an in vitro chirality assay was reported by patterning multiple cells on microscale defined geometries and quantified the cell phenotype-dependent LR asymmetry, or cell chirality. However, morphology and chirality of individual cells on micropatterned surfaces has not been well characterized. Here, a Python-based algorithm was developed to identify and quantify immunofluorescence stained individual epithelial cells on multicellular patterns. This approach not only produces results similar to the image intensity gradient-based method reported previously, but also can capture properties of single cells such as area and aspect ratio. We also found that cell nuclei exhibited biased alignment. Around 35% cells were misaligned and were typically smaller and less elongated. This new imaging analysis approach is an effective tool for measuring single cell chirality inside multicellular structures and can potentially help unveil biophysical mechanisms underlying cellular chiral bias both in vitro and in vivo. PMID:26294010

  2. Phototoxicity of chlorpromazine on retinal pigment epithelial cells.

    PubMed

    Persad, S; Menon, I A; Basu, P K; Carre, F

    1988-01-01

    As it is known that chlorpromazine (CPZ) can bind to melanins as well as cause ocular phototoxicity, we investigated the cytotoxic effects of UV-visible irradiation of melanotic and amelanotic retinal pigment epithelial (RPE) cells in the presence of CPZ. At low concentrations (5 micrograms/ml) of CPZ a photosensitization reaction took place which lysed the cells as measured by the release of 51Cr from cells labelled with chromium. At concentrations of CPZ less than 5 micrograms/ml, no significant cell lysis occurred when the cells were incubated at 37 degrees C in the dark. As the concentration of CPZ was increased to 25 micrograms/ml or more, high percentages of cells were lysed. When the melanotic RPE cells were exposed to different concentrations of CPZ and grown in culture, the cell growth (multiplication) diminished drastically with low concentrations (less than 2 micrograms/ml CPZ). Vitamin E decreased the cell lysis both in the dark and upon irradiation. Oxygen radical scavengers such as glutathione, B-carotene, mannitol, D-penicillamine as well as superoxide dismutase and catalase did not decrease cell lysis. The phototoxic effects of CPZ was found not to be due to stable photoproducts formed during irradiation of CPZ. PMID:3359800

  3. Y-27632, a ROCK Inhibitor, Promoted Limbal Epithelial Cell Proliferation and Corneal Wound Healing

    PubMed Central

    Sun, Chi-Chin; Chiu, Hsiao-Ting; Lin, Yi-Fang; Lee, Kuo-Ying; Pang, Jong-Hwei Su

    2015-01-01

    Transplantation of ex vivo cultured limbal epithelial cells is proven effective in restoring limbal stem cell deficiency. The present study aimed to investigate the promoting effect of Y-27632 on limbal epithelial cell proliferation. Limbal explants isolated from human donor eyes were expanded three weeks on culture dishes and outgrowth of epithelial cells was subsequently subcultured for in vitro experiments. In the presence of Y-27632, the ex vivo limbal outgrowth was accelerated, particularly the cells with epithelial cell-like morphology. Y-27632 dose-dependently promoted the proliferation of in vitro cultured human limbal epithelial cells as examined by phase contrast microscopy and luminescent cell-viability assay 30 hours after the treatment. The colony forming efficacy determined 7 days after the treatment was enhanced by Y-27632 also in a dose-dependent manner. The number of p63- or Ki67-positive cells was dose-dependently increased in Y-27632-treated cultures as detected by immunofluorescent staining and western blotanalysis. Cell cycle analysis by flow cytometric method revealed an increase in S-phase proliferating cells. The epithelial woundclosure rate was shown to be faster in experimental group received topical treatment withY-27632 than the sham control using a rat corneal wounding model. These resultsdemonstrate that Y-27632 can promote both the ex vivo and in vitro proliferation oflimbal epithelial cell proliferation. The in vivo enhanced epithelial wound healingfurther implies that the Y-27632 may act as a new strategy for treating limbal stem cell deficiency. PMID:26673160

  4. Y-27632, a ROCK Inhibitor, Promoted Limbal Epithelial Cell Proliferation and Corneal Wound Healing.

    PubMed

    Sun, Chi-Chin; Chiu, Hsiao-Ting; Lin, Yi-Fang; Lee, Kuo-Ying; Pang, Jong-Hwei Su

    2015-01-01

    Transplantation of ex vivo cultured limbal epithelial cells is proven effective in restoring limbal stem cell deficiency. The present study aimed to investigate the promoting effect of Y-27632 on limbal epithelial cell proliferation. Limbal explants isolated from human donor eyes were expanded three weeks on culture dishes and outgrowth of epithelial cells was subsequently subcultured for in vitro experiments. In the presence of Y-27632, the ex vivo limbal outgrowth was accelerated, particularly the cells with epithelial cell-like morphology. Y-27632 dose-dependently promoted the proliferation of in vitro cultured human limbal epithelial cells as examined by phase contrast microscopy and luminescent cell-viability assay 30 hours after the treatment. The colony forming efficacy determined 7 days after the treatment was enhanced by Y-27632 also in a dose-dependent manner. The number of p63- or Ki67-positive cells was dose-dependently increased in Y-27632-treated cultures as detected by immunofluorescent staining and western blotanalysis. Cell cycle analysis by flow cytometric method revealed an increase in S-phase proliferating cells. The epithelial woundclosure rate was shown to be faster in experimental group received topical treatment withY-27632 than the sham control using a rat corneal wounding model. These resultsdemonstrate that Y-27632 can promote both the ex vivo and in vitro proliferation oflimbal epithelial cell proliferation. The in vivo enhanced epithelial wound healingfurther implies that the Y-27632 may act as a new strategy for treating limbal stem cell deficiency. PMID:26673160

  5. Epithelial cell apoptosis causes acute lung injury masquerading as emphysema.

    PubMed

    Mouded, Majd; Egea, Eduardo E; Brown, Matthew J; Hanlon, Shane M; Houghton, A McGarry; Tsai, Larry W; Ingenito, Edward P; Shapiro, Steven D

    2009-10-01

    Theories of emphysema traditionally revolved around proteolytic destruction of extracellular matrix. Models have recently been developed that show airspace enlargement with the induction of pulmonary cell apoptosis. The purpose of this study was to determine the mechanism by which a model of epithelial cell apoptosis caused airspace enlargement. Mice were treated with either intratracheal microcystin (MC) to induce apoptosis, intratracheal porcine pancreatic elastase (PPE), or their respective vehicles. Mice from all groups were inflated and morphometry was measured at various time points. Physiology measurements were performed for airway resistance, tissue elastance, and lung volumes. The groups were further analyzed by air-saline quasistatic measurements, surfactant staining, and surfactant functional studies. Mice treated with MC showed evidence of reversible airspace enlargement. In contrast, PPE-treated mice showed irreversible airspace enlargement. The airspace enlargement in MC-treated mice was associated with an increase in elastic recoil due to an increase in alveolar surface tension. PPE-treated mice showed a loss of lung elastic recoil and normal alveolar surface tension, a pattern more consistent with human emphysema. Airspace enlargement that occurs with the MC model of pulmonary epithelial cell apoptosis displays physiology distinct from human emphysema. Reversibility, restrictive physiology due to changes in surface tension, and alveolar enlargement associated with heterogeneous alveolar collapse are most consistent with a mild acute lung injury. Inflation near total lung capacity gives the appearance of enlarged alveoli as neighboring collapsed alveoli exert tethering forces. PMID:19188661

  6. Proteomic Analysis of Nasal Epithelial Cells from Cystic Fibrosis Patients

    PubMed Central

    Papon, Jean-François; Chhuon, Cerina; Zadigue, Patricia; Prulière-Escabasse, Virginie; Amselem, Serge; Escudier, Estelle; Coste, André; Edelman, Aleksander

    2014-01-01

    The pathophysiology of cystic fibrosis (CF) lung disease remains incompletely understood. New explanations for the pathogenesis of CF lung disease may be discovered by studying the patterns of protein expression in cultured human nasal epithelial cells (HNEC). To that aim, we compared the level of protein expressions in primary cultures of HNEC from nasal polyps secondary to CF (CFNP, n = 4), primary nasal polyps (NP, n = 8) and control mucosa (CTRL, n = 4) using isobaric tag for relative and absolute quantification (iTRAQ) labeling coupled with liquid chromatography (LC)-MS-MS. The analysis of the data revealed 42 deregulated protein expressions in CFNP compared to NP and CTRL, suggesting that these alterations are related to CF. Overall, AmiGo analysis highlighted six major pathways important for cell functions that seem to be impaired: metabolism, G protein process, inflammation and oxidative stress response, protein folding, proteolysis and structural proteins. Among them, glucose and fatty acid metabolic pathways could be impaired in CF with nine deregulated proteins. Our proteomic study provides a reproducible set of differentially expressed proteins in airway epithelial cells from CF patients and reveals many novel deregulated proteins that could lead to further studies aiming to clarify the involvement of such proteins in CF pathophysiology. PMID:25268127

  7. DUSP10 regulates intestinal epithelial cell growth and colorectal tumorigenesis.

    PubMed

    Png, C W; Weerasooriya, M; Guo, J; James, S J; Poh, H M; Osato, M; Flavell, R A; Dong, C; Yang, H; Zhang, Y

    2016-01-14

    Dual specificity phosphatase 10 (DUSP10), also known as MAP kinase phosphatase 5 (MKP5), negatively regulates the activation of MAP kinases. Genetic polymorphisms and aberrant expression of this gene are associated with colorectal cancer (CRC) in humans. However, the role of DUSP10 in intestinal epithelial tumorigenesis is not clear. Here, we showed that DUSP10 knockout (KO) mice had increased intestinal epithelial cell (IEC) proliferation and migration and developed less severe colitis than wild-type (WT) mice in response to dextran sodium sulphate (DSS) treatment, which is associated with increased ERK1/2 activation and Krüppel-like factor 5 (KLF5) expression in IEC. In line with increased IEC proliferation, DUSP10 KO mice developed more colon tumours with increased severity compared with WT mice in response to administration of DSS and azoxymethane (AOM). Furthermore, survival analysis of CRC patients demonstrated that high DUSP10 expression in tumours was associated with significant improvement in survival probability. Overexpression of DUSP10 in Caco-2 and RCM-1 cells inhibited cell proliferation. Our study showed that DUSP10 negatively regulates IEC growth and acts as a suppressor for CRC. Therefore, it could be targeted for the development of therapies for colitis and CRC. PMID:25772234

  8. Pseudomonas pyocyanine alters calcium signaling in human airway epithelial cells.

    PubMed

    Denning, G M; Railsback, M A; Rasmussen, G T; Cox, C D; Britigan, B E

    1998-06-01

    Pseudomonas aeruginosa, an opportunistic human pathogen, causes both acute and chronic lung disease. P. aeruginosa exerts many of its pathophysiological effects by secreting virulence factors, including pyocyanine, a redox-active compound that increases intracellular oxidant stress. Because oxidant stress has been shown to affect cytosolic Ca2+ concentration ([Ca2+]c) in other cell types, we studied the effect of pyocyanine on [Ca2+]c in human airway epithelial cells (A549 and HBE). At lower concentrations, pyocyanine inhibits inositol 1,4,5-trisphosphate formation and [Ca2+]c increases in response to G protein-coupled receptor agonists. Conversely, at higher concentrations, pyocyanine itself increases [Ca2+]c. The pyocyanine-dependent [Ca2+]c increase appears to be oxidant dependent and to result from increased inositol trisphosphate and release of Ca2+ from intracellular stores. Ca2+ plays a central role in epithelial cell function, including regulation of ion transport, mucus secretion, and ciliary beat frequency. By disrupting Ca2+ homeostasis, pyocyanine could interfere with these critical functions and contribute to the pathophysiological effects observed in Pseudomonas-associated lung disease. PMID:9609727

  9. Hertwig's epithelial root sheath cell behavior during initial acellular cementogenesis in rat molars.

    PubMed

    Yamamoto, Tsuneyuki; Yamamoto, Tomomaya; Yamada, Tamaki; Hasegawa, Tomoka; Hongo, Hiromi; Oda, Kimimitsu; Amizuka, Norio

    2014-11-01

    This study was designed to examine developing acellular cementum in rat molars by immunohistochemistry, to elucidate (1) how Hertwig's epithelial root sheath disintegrates and (2) whether epithelial sheath cells transform into cementoblasts through epithelial-mesenchymal transition (EMT). Initial acellular cementogenesis was divided into three developmental stages, which can be seen in three different portions of the root: portion 1, where the epithelial sheath is intact; portion 2, where the epithelial sheath becomes fragmented; and portion 3, where acellular cementogenesis begins. Antibodies against three kinds of matrix proteinases, which degrade epithelial sheath-maintaining factors, including basement membrane and desmosomes, were used to investigate proteolytic activity of the epithelial sheath. Tissue non-specific alkaline phosphatase (TNALP) and keratin were used to investigate EMT. Epithelial sheath cells showed immunoreactivity for all three enzymes at fragmentation, which suggests that epithelial sheath disintegration is enzymatically mediated. Dental follicle cells and cementoblasts showed intense immunoreactivity for TNALP, and from portion 1 through to 3, the reaction extended from the alveolar bone-related zone to the root-related zone. Cells possessing keratin/TNALP double immunoreactivity were virtually absent. Keratin-positive epithelial sheath cells showed negligible immunoreactivity for TNALP, and epithelial cells did not appear to migrate to the dental follicle. Together, these findings suggest that a transition phenotype between epithelial cells and cementoblasts does not exist in the developing dental follicle and hence that epithelial sheath cells do not undergo EMT during initial acellular cementogenesis. In brief, this study supports the notion that cementoblasts derive from the dental follicle. PMID:24859538

  10. Small molecule and RNAi induced phenotype transition of expanded and primary colonic epithelial cells

    PubMed Central

    Sharbati, Jutta; Hanisch, Carlos; Pieper, Robert; Einspanier, Ralf; Sharbati, Soroush

    2015-01-01

    Recent progress in mammalian intestinal epithelial cell culture led to novel concepts of tissue modeling. Especially the development of phenotypically stable cell lines from individual animals enables an investigation of distinct intestinal loci and disease states. We here report primary and prolonged culture of normal porcine epithelial cells from colon for cell line development. In addition, a novel primary three-dimensional intestinal culture system is presented, which generated organoids composed of a highly polarized epithelial layer lining a core of subepithelial tissue. Cellular characterization of monolayer cell lines revealed epithelial identity and pointed to a proliferative crypt cell phenotype. We evaluated both RNAi and chemical approaches to induce epithelial differentiation in generated cell lines by targeting promoters of epithelial to mesenchymal transition (EMT). By in silico prediction and ectopic expression, miR-147b was proven to be a potent trigger of intestinal epithelial cell differentiation. Our results outline an approach to generate phenotypically stable cell lines expanded from primary colonic epithelial cultures and demonstrate the relevance of miR-147b and chemical inhibitors for promoting epithelial differentiation features. PMID:26223582

  11. Hyaluronan in aged collagen matrix increases prostate epithelial cell proliferation

    PubMed Central

    Damodarasamy, Mamatha; Vernon, Robert B.; Chan, Christina K.; Plymate, Stephen R.; Wight, Thomas N.

    2015-01-01

    The extracellular matrix (ECM) of the prostate, which is comprised primarily of collagen, becomes increasingly disorganized with age, a property that may influence the development of hyperplasia and cancer. Collageous ECM extracted from the tails of aged mice exhibits many characteristics of collagen in aged tissues, including the prostate. When polymerized into a 3-dimensional (3D) gel, these collagen extracts can serve as models for the study of specific cell-ECM interactions. In the present study, we examined the behaviors of human prostatic epithelial cell lines representing normal prostate epithelial cells (PEC), benign prostatic hyperplasia (BPH-1), and adenocarcinoma (LNCaP) cultured in contact with 3D gels made from collagen extracts of young and aged mice. We found that proliferation of PEC, BPH-1, and LNCaP cells were all increased by culture on aged collagen gels relative to young collagen gels. In examining age-associated differences in the composition of the collagen extracts, we found that aged and young collagen had a similar amount of several collagen-associated ECM components, but aged collagen had a much greater content of the glycosaminoglycan hyaluronan (HA) than young collagen. The addition of HA (of similar size and concentration to that found in aged collagen extracts) to cells placed in young collagen elicited significantly increased proliferation in BPH-1 cells, but not in PEC or LNCaP cells, relative to controls not exposed to HA. Of note, histochemical analyses of human prostatic tissues showed significantly higher expression of HA in BPH and prostate cancer stroma relative to stroma of normal prostate. Collectively, these results suggest that changes in ECM involving increased levels of HA contribute to the growth of prostatic epithelium with aging. PMID:25124870

  12. Distinct Transcriptional Programs Control Cross-Priming in Classical and Monocyte-Derived Dendritic Cells.

    PubMed

    Briseño, Carlos G; Haldar, Malay; Kretzer, Nicole M; Wu, Xiaodi; Theisen, Derek J; Kc, Wumesh; Durai, Vivek; Grajales-Reyes, Gary E; Iwata, Arifumi; Bagadia, Prachi; Murphy, Theresa L; Murphy, Kenneth M

    2016-06-14

    Both classical DCs (cDCs) and monocyte-derived DCs (Mo-DCs) are capable of cross-priming CD8(+) T cells in response to cell-associated antigens. We found that Ly-6C(hi)TREML4(-) monocytes can differentiate into Zbtb46(+) Mo-DCs in response to granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) but that Ly-6C(hi)TREML4(+) monocytes were committed to differentiate into Ly-6C(lo)TREML4(+) monocytes. Differentiation of Zbtb46(+) Mo-DCs capable of efficient cross-priming required both GM-CSF and IL-4 and was accompanied by the induction of Batf3 and Irf4. However, monocytes require IRF4, but not BATF3, to differentiate into Zbtb46(+) Mo-DCs capable of cross-priming CD8(+) T cells. Instead, Irf4(-/-) monocytes differentiate into macrophages in response to GM-CSF and IL-4. Thus, cDCs and Mo-DCs require distinct transcriptional programs of differentiation in acquiring the capacity to prime CD8(+) T cells. These differences may be of consideration in the use of therapeutic DC vaccines based on Mo-DCs. PMID:27264183

  13. Primed 3D injectable microniches enabling low-dosage cell therapy for critical limb ischemia.

    PubMed

    Li, Yaqian; Liu, Wei; Liu, Fei; Zeng, Yang; Zuo, Simin; Feng, Siyu; Qi, Chunxiao; Wang, Bingjie; Yan, Xiaojun; Khademhosseini, Ali; Bai, Jing; Du, Yanan

    2014-09-16

    The promise of cell therapy for repair and restoration of damaged tissues or organs relies on administration of large dose of cells whose healing benefits are still limited and sometimes irreproducible due to uncontrollable cell loss and death at lesion sites. Using a large amount of therapeutic cells increases the costs for cell processing and the risks of side effects. Optimal cell delivery strategies are therefore in urgent need to enhance the specificity, efficacy, and reproducibility of cell therapy leading to minimized cell dosage and side effects. Here, we addressed this unmet need by developing injectable 3D microscale cellular niches (microniches) based on biodegradable gelatin microcryogels (GMs). The microniches are constituted by in vitro priming human adipose-derived mesenchymal stem cells (hMSCs) seeded within GMs resulting in tissue-like ensembles with enriched extracellular matrices and enhanced cell-cell interactions. The primed 3D microniches facilitated cell protection from mechanical insults during injection and in vivo cell retention, survival, and ultimate therapeutic functions in treatment of critical limb ischemia (CLI) in mouse models compared with free cell-based therapy. In particular, 3D microniche-based therapy with 10(5) hMSCs realized better ischemic limb salvage than treatment with 10(6) free-injected hMSCs, the minimum dosage with therapeutic effects for treating CLI in literature. To the best of our knowledge, this is the first convincing demonstration of injectable and primed cell delivery strategy realizing superior therapeutic efficacy for treating CLI with the lowest cell dosage in mouse models. This study offers a widely applicable cell delivery platform technology to boost the healing power of cell regenerative therapy. PMID:25197069

  14. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition.

    PubMed

    Sperber, Henrik; Mathieu, Julie; Wang, Yuliang; Ferreccio, Amy; Hesson, Jennifer; Xu, Zhuojin; Fischer, Karin A; Devi, Arikketh; Detraux, Damien; Gu, Haiwei; Battle, Stephanie L; Showalter, Megan; Valensisi, Cristina; Bielas, Jason H; Ericson, Nolan G; Margaretha, Lilyana; Robitaille, Aaron M; Margineantu, Daciana; Fiehn, Oliver; Hockenbery, David; Blau, C Anthony; Raftery, Daniel; Margolin, Adam A; Hawkins, R David; Moon, Randall T; Ware, Carol B; Ruohola-Baker, Hannele

    2015-12-01

    For nearly a century developmental biologists have recognized that cells from embryos can differ in their potential to differentiate into distinct cell types. Recently, it has been recognized that embryonic stem cells derived from both mice and humans exhibit two stable yet epigenetically distinct states of pluripotency: naive and primed. We now show that nicotinamide N-methyltransferase (NNMT) and the metabolic state regulate pluripotency in human embryonic stem cells (hESCs).  Specifically, in naive hESCs, NNMT and its enzymatic product 1-methylnicotinamide are highly upregulated, and NNMT is required for low S-adenosyl methionine (SAM) levels and the H3K27me3 repressive state. NNMT consumes SAM in naive cells, making it unavailable for histone methylation that represses Wnt and activates the HIF pathway in primed hESCs. These data support the hypothesis that the metabolome regulates the epigenetic landscape of the earliest steps in human development. PMID:26571212

  15. Cigarette Smoke Suppresses Bik To Cause Epithelial Cell Hyperplasia and Mucous Cell Metaplasia

    PubMed Central

    Mebratu, Yohannes A.; Schwalm, Kurt; Smith, Kevin R.; Schuyler, Mark; Tesfaigzi, Yohannes

    2011-01-01

    Rationale: Aberrant regulation of airway epithelial cell numbers in airways leads to increased mucous secretions in chronic lung diseases such as chronic bronchitis. Because the Bcl-2 family of proteins is crucial for airway epithelial homeostasis, identifying the players that reduce cigarette smoke (CS)-induced mucous cell metaplasia can help to develop effective therapies. Objectives: To identify the Bcl-2 family of proteins that play a role in reducing CS-induced mucous cell metaplasia. Methods: We screened for dysregulated expression of the Bcl-2 family members. Measurements and Main Results: We identified Bik to be significantly reduced in bronchial brushings of patients with chronic epithelial cell hyperplasia compared with nondiseased control subjects. Reduced Bik but increased MUC5AC mRNA levels were also detected when normal human airway epithelial cells (HAECs) were exposed to CS or when autopsy tissues from former smokers with and without chronic bronchitis were compared. Similarly, exposure of C57Bl/6 mice to CS resulted in increased numbers of epithelial and mucous cells per millimeter of basal lamina, along with reduced Bik but increased Muc5ac expression, and this change was sustained even when mice were allowed to recover in filtered air for 8 weeks. Restoring Bik expression significantly suppressed CS-induced mucous cell metaplasia in differentiated primary HAEC cultures and in airways of mice in vivo. Bik blocked nuclear translocation of phospho-ERK1/2 to induce apoptosis of HAECs. The conserved Leu61 within Bik and ERK1/2 activation were essential to induce cell death in hyperplastic mucous cells. Conclusions: These studies show that CS suppresses Bik expression to block airway epithelia cell death and thereby increases epithelial cell hyperplasia in chronic bronchitis. PMID:21317312

  16. Enterotoxigenic Escherichia coli infection induces intestinal epithelial cell autophagy.

    PubMed

    Tang, Yulong; Li, Fengna; Tan, Bie; Liu, Gang; Kong, Xiangfeng; Hardwidge, Philip R; Yin, Yulong

    2014-06-25

    The morbidity and mortality in piglets caused by enterotoxigenic Escherichia coli (ETEC) results in large economic losses to the swine industry, but the precise pathogenesis of ETEC-associated diseases remains unknown. Intestinal epithelial cell autophagy serves as a host defense against pathogens. We found that ETEC induced autophagy, as measured by both the increased punctae distribution of GFP-LC3 and the enhanced conversion of LC3-I to LC3-II. Inhibiting autophagy resulted in decreased survival of IPEC-1 cells infected with ETEC. ETEC triggered autophagy in IPEC-1 cells through a pathway involving the mammalian target of rapamycin (mTOR), the extracellular signal-regulated kinases 1/2 (ERK1/2), and the AMP-activated protein kinase (AMPK). PMID:24742948

  17. Stepwise Protocol for Cytospin-enhanced Smearing for Scraped Corneal Epithelial Cells.

    PubMed

    Jeyalatha, Mani V; Malathi, Jambulingam; Madhavan, Hajib N

    2016-01-01

    Proteins and antigens present on the cell surface are usually determined by immunofluorescence staining. Uniform distribution of cells is required to appreciate the presence of surface proteins. Improper smearing or crushing of the corneal epithelial cells can potentially destroy the cellular integrity. Thus a simplified, systemic method was designed to smear the cells scraped from the cornea. The procedure includes trypsinisation for dissociation of corneal epithelial cells and cytospinning for concentrating the cells in a smear. The standardized protocol was found to be efficient in maintaining the integrity of the corneal epithelial cells and also the distribution of the cells in the smear. PMID:26633702

  18. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells.

    PubMed

    Millaku, Agron; Drobne, Damjana; Torkar, Matjaz; Novak, Sara; Remškar, Maja; Pipan-Tkalec, Živa

    2013-09-15

    We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells. PMID:23742956

  19. Effect of curcumin on aging retinal pigment epithelial cells.

    PubMed

    Zhu, Wei; Wu, Yan; Meng, Yi-Fang; Wang, Jin-Yu; Xu, Ming; Tao, Jian-Jun; Lu, Jiong

    2015-01-01

    Age-related macular degeneration (AMD) is now one of the leading causes of blindness in the elderly population. The antioxidative effects of curcumin on aging retinal pigment epithelial (RPE) cells are still unclear. We conducted an in vitro study to investigate the effects of curcumin on aging RPE cells. A pulsed H2O2 exposure aging model was adopted. Aging RPE cells were treated with curcumin 20 µM, 40 µM, and 80 µM. Apoptosis of RPE cells was analyzed by flow cytometry. The intracellular reactive oxygen species concentration was detected using a specific probe and apoptosis-associated proteins were detected by Western blot. Expression of oxidative biomarkers, including superoxide dismutase, maleic dialdehyde, and glutathione, was detected commercially available assay kits. Compared with normal cells, lower cell viability, higher apoptosis rates, and more severe oxidation status were identified in the aging RPE cell model. Curcumin improved cell viability and decreased apoptosis and oxidative stress. Further, curcumin had a significant influence on expression of apoptosis-associated proteins and oxidative stress biomarkers. In conclusion, treatment with curcumin was able to regulate proliferation, oxidative stress, and apoptosis in aging RPE cells. Accordingly, application of curcumin may be a novel strategy to protect against age-related change in AMD. PMID:26445530

  20. Magnetite induces oxidative stress and apoptosis in lung epithelial cells.

    PubMed

    Ramesh, Vani; Ravichandran, Prabakaran; Copeland, Clinton L; Gopikrishnan, Ramya; Biradar, Santhoshkumar; Goornavar, Virupaxi; Ramesh, Govindarajan T; Hall, Joseph C

    2012-04-01

    There is an ongoing concern regarding the biocompatibility of nanoparticles with sizes less than 100 nm as compared to larger particles of the same nominal substance. In this study, we investigated the toxic properties of magnetite stabilized with polyacrylate sodium. The magnetite was characterized by X-ray powder diffraction analysis, and the mean particle diameter was calculated using the Scherrer formula and was found to be 9.3 nm. In this study, we treated lung epithelial cells with different concentrations of magnetite and investigated their effects on oxidative stress and cell proliferation. Our data showed an inhibition of cell proliferation in magnetite-treated cells with a significant dose-dependent activation and induction of reactive oxygen species. Also, we observed a depletion of antioxidants, glutathione, and superoxide dismutase, respectively, as compared with control cells. In addition, apoptotic-related protease/enzyme such as caspase-3 and -8 activities, were increased in a dose-dependent manner with corresponding increased levels of DNA fragmentation in magnetite-treated cells compared to than control cells. Together, the present study reveals that magnetite exposure induces oxidative stress and depletes antioxidant levels in the cells to stimulate apoptotic pathway for cell death. PMID:22147200

  1. Hyperoxia induces alveolar epithelial-to-mesenchymal cell transition

    PubMed Central

    Wang, Wenyi; Kato, Satomi; Colvocoresses-Dodds, Jennifer; Fifadara, Nimita H.; Gauthier, Theresa W.; Helms, My N.; Carlton, David P.; Brown, Lou Ann S.

    2013-01-01

    Myofibroblast accumulation is a pathological feature of lung diseases requiring oxygen therapy. One possible source for myofibroblasts is through the epithelial-to-mesenchymal transition (EMT) of alveolar epithelial cells (AEC). To study the effects of oxygen on alveolar EMT, we used RLE-6TN and ex vivo lung slices and found that hyperoxia (85% O2, H85) decreased epithelial proteins, presurfactant protein B (pre-SpB), pro-SpC, and lamellar protein by 50% and increased myofibroblast proteins, α-smooth muscle actin (α-SMA), and vimentin by over 200% (P < 0.05). In AEC freshly isolated from H85-treated rats, mRNA for pre-SpB and pro-SpC was diminished by ∼50% and α-SMA was increased by 100% (P < 0.05). Additionally, H85 increased H2O2 content, and H2O2 (25–50 μM) activated endogenous transforming growth factor-β1 (TGF-β1), as evident by H2DCFDA immunofluorescence and ELISA (P < 0.05). Both hyperoxia and H2O2 increased SMAD3 phosphorylation (260% of control, P < 0.05). Treating cultured cells with TGF-β1 inhibitors did not prevent H85-induced H2O2 production but did prevent H85-mediated α-SMA increases and E-cadherin downregulation. Finally, to determine the role of TGF-β1 in hyperoxia-induced EMT in vivo, we evaluated AEC from H85-treated rats and found that vimentin increased ∼10-fold (P < 0.05) and that this effect was prevented by intraperitoneal TGF-β1 inhibitor SB-431542. Additionally, SB-431542 treatment attenuated changes in alveolar histology caused by hyperoxia. Our studies indicate that hyperoxia promotes alveolar EMT through a mechanism that is dependent on activation of TGF-β1 signaling. PMID:24375795

  2. Hyperoxia induces alveolar epithelial-to-mesenchymal cell transition.

    PubMed

    Vyas-Read, Shilpa; Wang, Wenyi; Kato, Satomi; Colvocoresses-Dodds, Jennifer; Fifadara, Nimita H; Gauthier, Theresa W; Helms, My N; Carlton, David P; Brown, Lou Ann S

    2014-02-15

    Myofibroblast accumulation is a pathological feature of lung diseases requiring oxygen therapy. One possible source for myofibroblasts is through the epithelial-to-mesenchymal transition (EMT) of alveolar epithelial cells (AEC). To study the effects of oxygen on alveolar EMT, we used RLE-6TN and ex vivo lung slices and found that hyperoxia (85% O2, H85) decreased epithelial proteins, presurfactant protein B (pre-SpB), pro-SpC, and lamellar protein by 50% and increased myofibroblast proteins, α-smooth muscle actin (α-SMA), and vimentin by over 200% (P < 0.05). In AEC freshly isolated from H85-treated rats, mRNA for pre-SpB and pro-SpC was diminished by ∼50% and α-SMA was increased by 100% (P < 0.05). Additionally, H85 increased H2O2 content, and H2O2 (25-50 μM) activated endogenous transforming growth factor-β1 (TGF-β1), as evident by H2DCFDA immunofluorescence and ELISA (P < 0.05). Both hyperoxia and H2O2 increased SMAD3 phosphorylation (260% of control, P < 0.05). Treating cultured cells with TGF-β1 inhibitors did not prevent H85-induced H2O2 production but did prevent H85-mediated α-SMA increases and E-cadherin downregulation. Finally, to determine the role of TGF-β1 in hyperoxia-induced EMT in vivo, we evaluated AEC from H85-treated rats and found that vimentin increased ∼10-fold (P < 0.05) and that this effect was prevented by intraperitoneal TGF-β1 inhibitor SB-431542. Additionally, SB-431542 treatment attenuated changes in alveolar histology caused by hyperoxia. Our studies indicate that hyperoxia promotes alveolar EMT through a mechanism that is dependent on activation of TGF-β1 signaling. PMID:24375795

  3. CXCL9 Regulates TGF-β1 induced Epithelial to Mesenchymal Transition in Human Alveolar Epithelial Cells

    PubMed Central

    O’Beirne, Sarah L; Walsh, Sinead M; Fabre, Aurélie; Reviriego, Carlota; Worrell, Julie C; Counihan, Ian P; Lumsden, Robert V; Cramton-Barnes, Jennifer; Belperio, John A.; Donnelly, Seamas C; Boylan, Denise; Marchal-Somme, Joëlle; Kane, Rosemary; Keane, Michael P

    2016-01-01

    Epithelial to mesenchymal transition (EMT), whereby fully differentiated epithelial cells transition to a mesenchymal phenotype has been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). CXCR3 and its ligands are recognized to play a protective role in pulmonary fibrosis. In this study, we investigated the presence and extent of EMT and CXCR3 expression in human IPF surgical lung biopsies and assessed whether CXCR3 and its ligand CXCL9 modulate EMT in alveolar epithelial cells. Coexpression of the epithelial maker thyroid transcription factor-1, and mesenchymal marker α-smooth muscle actin and CXCR3 expression was examined by immunohistochemical staining of IPF surgical lung biopsies. Epithelial and mesenchymal marker expression was examined by quantitative real-time PCR, Western blotting, and immunofluorescence in human alveolar epithelial (A549) cells treated with TGF-β1 and CXCL9, whilst Smad2, Smad3, and Smad7 expression and cellular localization examined by Western blotting. We found that significantly more cells were undergoing EMT in fibrotic versus normal areas of lung in IPF surgical lung biopsy samples. CXCR3 was expressed by type II pneumocytes and fibroblasts in fibrotic areas in close proximity to cells undergoing EMT. In vitro, CXCL9 abrogated TGF-β1 induced EMT. A decrease in TGF-β1 induced phosphorylation of Smad2 and Smad3 occurred with CXCL9 treatment. This was associated with increased shuttling of Smad7 from the nucleus to the cytoplasm where it inhibits Smad phosphorylation. This suggests a role for EMT in the pathogenesis of IPF and provides a novel mechanism for the inhibitory effects of CXCL9 on TGF-β1 induced EMT. PMID:26268659

  4. Equine tracheal epithelial membrane strips - An alternate method for examining epithelial cell arachidonic acid metabolism

    SciTech Connect

    Gray, P.R.; Derksen, F.J.; Robinson, N.E.; Peter-Golden, M.L. Univ. of Michigan, Ann Arbor )

    1990-02-26

    Arachidonic acid metabolism by tracheal epithelium can be studied using enzymatically dispersed cell suspensions or cell cultures. Both techniques require considerable tissue disruption and manipulation and may not accurately represent in vivo activity. The authors have developed an alternate method for obtaining strips of equine tracheal epithelium without enzymatic digestion. In the horse, a prominent elastic lamina supports the tracheal epithelium. By physical splitting this lamina, they obtained strips ({le}12 x 1.5 cm) of pseudostratified columnar epithelium attached to a layer of elastic tissue 30-100 {mu}m thick. Epithelial strips (1.2 x 0.5 cm) were attached to plexiglass rods and incubated with ({sup 3}H)arachidonic acid in M199 medium (0.5 {mu}Ci/ml) for 24 hours at 37C. The strips incorporated 36{+-}4% (mean {+-} SEM) of the total radioactivity and released 8.0{+-}1.2% of incorporated radioactivity when stimulated by 5.0 {mu}M calcium ionophore A23187. The extracted supernatant was processed using HPLC, resulting in peaks of radioactivity that co-eluted with authentic PGE{sub 2}, PGF{sub 2}{alpha}, and 12-HETE standards. The greatest activity corresponded to the PGE{sub 2} and PGF{sub 2}{alpha} standards, which is a similar pattern to that reported for cultured human tracheal epithelium.

  5. Three-Dimensional Cultures of Mouse Mammary Epithelial Cells

    PubMed Central

    Mroue, Rana; Bissell, Mina J.

    2013-01-01

    The mammary gland is an ideal “model organism” for studying tissue specificity and gene expression in mammals: it is one of the few organs that develop after birth and it undergoes multiple cycles of growth, differentiation and regression during the animal’s lifetime in preparation for the important function of lactation. The basic “functional differentiation” unit in the gland is the mammary acinus made up of a layer of polarized epithelial cells specialized for milk production surrounded by myoepithelial contractile cells, and the two-layered structure is surrounded by basement membrane. Much knowledge about the regulation of mammary gland development has been acquired from studying the physiology of the gland and of lactation in rodents. Culture studies, however, were hampered by the inability to maintain functional differentiation on conventional tissue culture plastic. We now know that the microenvironment, including the extracellular matrix and tissue architecture, plays a crucial role in directing functional differentiation of organs. Thus, in order for culture systems to be effective experimental models, they need to recapitulate the basic unit of differentiated function in the tissue or organ and to maintain its three-dimensional (3D) structure. Mouse mammary culture models evolved from basic monolayers of cells to an array of complex 3D systems that observe the importance of the microenvironment in dictating proper tissue function and structure. In this chapter, we focus on how 3D mouse mammary epithelial cultures have enabled investigators to gain a better understanding of the organization, development and function of the acinus, and to identify key molecular, structural, and mechanical cues important for maintaining mammary function and architecture. The accompanying chapter of Vidi et al. describes 3D models developed for human cells. Here, we describe how mouse primary epithelial cells and cell lines—essentially those we use in our

  6. Potassium currents in rat type II alveolar epithelial cells.

    PubMed Central

    DeCoursey, T E; Jacobs, E R; Silver, M R

    1988-01-01

    1. Type II alveolar epithelial cells isolated from adult rats and grown in primary culture were studied using the whole-cell configuration of the gigohm-seal voltage clamp technique. 2. The average specific capacitance of type II cells was 2.5 microF/cm2, suggesting that type II cell membranes in vitro are irregular, with an actual area more than twice the apparent area. 3. Most type II cells have time- and voltage-dependent outward currents carried by potassium ions. Potassium currents activate with a sigmoid time course upon membrane depolarization, and inactivate during maintained depolarization. The average maximum whole-cell K+ conductance was 1.6 nS. 4. Two distinct types of K+-selective channels underlie outward currents in type II cells. Most cells have currents resembling delayed rectifier K+ currents in skeletal muscle, nerve and immune cells. A few cells had a different type of K+ conductance which is more sensitive to block by tetraethylammonium ions, has faster 'tail currents', and activates at more positive potentials. 5. In some experiments, individual type II cells were identified by staining with phosphine, a fluorescent dye which is concentrated in lamellar bodies. Both types of K+ channels were seen in type II cells identified with this dye. 6. Phosphine added to the bathing solution reversibly reduced K+ currents and shifted K+ channel activation to more positive potentials. Excitation of phosphine to fluoresce reduced irreversibly K+ currents in type II cells. The usefulness of phosphine as a means of identifying cells for study is discussed. PMID:2457683

  7. The PCP pathway regulates Baz planar distribution in epithelial cells.

    PubMed

    Aigouy, Benoit; Le Bivic, André

    2016-01-01

    The localisation of apico-basal polarity proteins along the Z-axis of epithelial cells is well understood while their distribution in the plane of the epithelium is poorly characterised. Here we provide a systematic description of the planar localisation of apico-basal polarity proteins in the Drosophila ommatidial epithelium. We show that the adherens junction proteins Shotgun and Armadillo, as well as the baso-lateral complexes, are bilateral, i.e. present on both sides of cell interfaces. In contrast, we report that other key adherens junction proteins, Bazooka and the myosin regulatory light chain (Spaghetti squash) are unilateral, i.e. present on one side of cell interfaces. Furthermore, we demonstrate that planar cell polarity (PCP) and not the apical determinants Crumbs and Par-6 control Bazooka unilaterality in cone cells. Altogether, our work unravels an unexpected organisation and combination of apico-basal, cytoskeletal and planar polarity proteins that is different on either side of cell-cell interfaces and unique for the different contacts of the same cell. PMID:27624969

  8. Induction of CD8+ T cells using heterologous prime-boost immunisation strategies.

    PubMed

    Schneider, J; Gilbert, S C; Hannan, C M; Dégano, P; Prieur, E; Sheu, E G; Plebanski, M; Hill, A V

    1999-08-01

    One of the current challenges in vaccine design is the development of antigen delivery systems or vaccination strategies that induce high protective levels of CD8+ T cells. These cells are crucial for protection against certain tumours and intracellular pathogens such as the liver-stage parasite of malaria. A liver-stage malaria vaccine should therefore include CD8+ T-cell-inducing components. This review provides an overview of prime-boost immunisation strategies that result in protective CD8+ T-cell responses against malaria with an emphasis on work from our laboratory. Possible mechanisms explaining why heterologous prime-boost strategies, in particular boosting with replication-impaired recombinant poxviruses, are so effective are discussed. PMID:10566139

  9. Epithelial mechanobiology, skin wound healing, and the stem cell niche.

    PubMed

    Evans, Nicholas D; Oreffo, Richard O C; Healy, Eugene; Thurner, Philipp J; Man, Yu Hin

    2013-12-01

    Skin wound healing is a vital process that is important for re-establishing the epithelial barrier following disease or injury. Aberrant or delayed skin wound healing increases the risk of infection, causes patient morbidity, and may lead to the formation of scar tissue. One of the most important events in wound healing is coverage of the wound with a new epithelial layer. This occurs when keratinocytes at the wound periphery divide and migrate to re-populate the wound bed. Many approaches are under investigation to promote and expedite this process, including the topical application of growth factors and the addition of autologous and allogeneic tissue or cell grafts. The mechanical environment of the wound site is also of fundamental importance for the rate and quality of wound healing. It is known that mechanical stress can influence wound healing by affecting the behaviour of cells within the dermis, but it remains unclear how mechanical forces affect the healing epidermis. Tensile forces are known to affect the behaviour of cells within epithelia, however, and the material properties of extracellular matrices, such as substrate stiffness, have been shown to affect the morphology, proliferation, differentiation and migration of many different cell types. In this review we will introduce the structure of the skin and the process of wound healing. We will then discuss the evidence for the effect of tissue mechanics in re-epithelialisation and, in particular, on stem cell behaviour in the wound microenvironment and in intact skin. We will discuss how the elasticity, mechanical heterogeneity and topography of the wound extracellular matrix impact the rate and quality of wound healing, and how we may exploit this knowledge to expedite wound healing and mitigate scarring. PMID:23746929

  10. Methods toward in vivo measurement of zebrafish epithelial and deep cell proliferation.

    PubMed

    Campana, Matteo; Maury, Benoit; Dutreix, Marie; Peyriéras, Nadine; Sarti, Alessandro

    2010-05-01

    We present a strategy for automatic classification and density estimation of epithelial enveloping layer (EVL) and deep layer (DEL) cells, throughout zebrafish early embryonic stages. Automatic cells classification provides the bases to measure the variability of relevant parameters, such as cells density, in different classes of cells and is finalized to the estimation of effectiveness and selectivity of anticancer drug in vivo. We aim at approaching these measurements through epithelial/deep cells classification, epithelial area and thickness measurement, and density estimation from scattered points. Our procedure is based on Minimal Surfaces, Otsu clustering, Delaunay Triangulation, and Within-R cloud of points density estimation approaches. In this paper, we investigated whether the distance between nuclei and epithelial surface is sufficient to discriminate epithelial cells from deep cells. Comparisons of different density estimators, experimental results, and extensively accuracy measurements are included. PMID:19781805

  11. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions.

    PubMed

    Short, Kirsty R; Kasper, Jennifer; van der Aa, Stijn; Andeweg, Arno C; Zaaraoui-Boutahar, Fatiha; Goeijenbier, Marco; Richard, Mathilde; Herold, Susanne; Becker, Christin; Scott, Dana P; Limpens, Ronald W A L; Koster, Abraham J; Bárcena, Montserrat; Fouchier, Ron A M; Kirkpatrick, Charles James; Kuiken, Thijs

    2016-03-01

    A major cause of respiratory failure during influenza A virus (IAV) infection is damage to the epithelial-endothelial barrier of the pulmonary alveolus. Damage to this barrier results in flooding of the alveolar lumen with proteinaceous oedema fluid, erythrocytes and inflammatory cells. To date, the exact roles of pulmonary epithelial and endothelial cells in this process remain unclear.Here, we used an in vitro co-culture model to understand how IAV damages the pulmonary epithelial-endothelial barrier. Human epithelial cells were seeded on the upper half of a transwell membrane while human endothelial cells were seeded on the lower half. These cells were then grown in co-culture and IAV was added to the upper chamber.We showed that the addition of IAV (H1N1 and H5N1 subtypes) resulted in significant barrier damage. Interestingly, we found that, while endothelial cells mounted a pro-inflammatory/pro-coagulant response to a viral infection in the adjacent epithelial cells, damage to the alveolar epithelial-endothelial barrier occurred independently of endothelial cells. Rather, barrier damage was associated with disruption of tight junctions amongst epithelial cells, and specifically with loss of tight junction protein claudin-4.Taken together, these data suggest that maintaining epithelial cell integrity is key in reducing pulmonary oedema during IAV infection. PMID:26743480

  12. Human Epithelial Cells Discriminate between Commensal and Pathogenic Interactions with Candida albicans

    PubMed Central

    Rast, Timothy J.; Kullas, Amy L.; Southern, Peter J.; Davis, Dana A.

    2016-01-01

    The commensal fungus, Candida albicans, can cause life-threatening infections in at risk individuals. C. albicans colonizes mucosal surfaces of most people, adhering to and interacting with epithelial cells. At low concentrations, C. albicans is not pathogenic nor does it cause epithelial cell damage in vitro; at high concentrations, C. albicans causes mucosal infections and kills epithelial cells in vitro. Here we show that while there are quantitative dose-dependent differences in exposed epithelial cell populations, these reflect a fundamental qualitative difference in host cell response to C. albicans. Using transcriptional profiling experiments and real time PCR, we found that wild-type C. albicans induce dose-dependent responses from a FaDu epithelial cell line. However, real time PCR and Western blot analysis using a high dose of various C. albicans strains demonstrated that these dose-dependent responses are associated with ability to promote host cell damage. Our studies support the idea that epithelial cells play a key role in the immune system by monitoring the microbial community at mucosal surfaces and initiating defensive responses when this community is dysfunctional. This places epithelial cells at a pivotal position in the interaction with C. albicans as epithelial cells themselves promote C. albicans stimulated damage. PMID:27088599

  13. Stromal–epithelial cell interactions and alteration of branching morphogenesis in macromastic mammary glands

    PubMed Central

    Zhong, Aimei; Wang, Guohua; Yang, Jie; Xu, Qijun; Yuan, Quan; Yang, Yanqing; Xia, Yun; Guo, Ke; Horch, Raymund E; Sun, Jiaming

    2014-01-01

    True macromastia is a rare but disabling condition characterized by massive breast growth. The aetiology and pathogenic mechanisms for this disorder remain largely unexplored because of the lack of in vivo or in vitro models. Previous studies suggested that regulation of epithelial cell growth and development by oestrogen was dependent on paracrine growth factors from the stroma. In this study, a co-culture model containing epithelial and stromal cells was used to investigate the interactions of these cells in macromastia. Epithelial cell proliferation and branching morphogenesis were measured to assess the effect of macromastic stromal cells on epithelial cells. We analysed the cytokines secreted by stromal cells and identified molecules that were critical for effects on epithelial cells. Our results indicated a significant increase in cell proliferation and branching morphogenesis of macromastic and non-macromastic epithelial cells when co-cultured with macromastic stromal cells or in conditioned medium from macromastic stromal cells. Hepatocyte growth factor (HGF) is a key factor in epithelial–stromal interactions of macromastia-derived cell cultures. Blockade of HGF with neutralizing antibodies dramatically attenuated epithelial cell proliferation in conditioned medium from macromastic stromal cells. The epithelial–stromal cell co-culture model demonstrated reliability for studying interactions of mammary stromal and epithelial cells in macromastia. In this model, HGF secreted by macromastic stromal cells was found to play an important role in modifying the behaviour of co-cultured epithelial cells. This model allows further studies to investigate basic cellular and molecular mechanisms in tissue from patients with true breast hypertrophy. PMID:24720804

  14. The yin and yang of intestinal epithelial cells in controlling dendritic cell function

    PubMed Central

    Iliev, Iliyan D.; Matteoli, Gianluca; Rescigno, Maria

    2007-01-01

    Recent work suggests that dendritic cells (DCs) in mucosal tissues are “educated” by intestinal epithelial cells (IECs) to suppress inflammation and promote immunological tolerance. After attack by pathogenic microorganisms, however, “non-educated” DCs are recruited from nearby areas, such as the dome of Peyer's patches (PPs) and the blood, to initiate inflammation and the ensuing immune response to the invader. Differential epithelial cell (EC) responses to commensals and pathogens may control these two tolorogenic and immunogenic functions of DCs. PMID:17893197

  15. Interactions between airway epithelial cells and dendritic cells during viral infections using an in vitro co-culture model

    EPA Science Inventory

    Rationale: Historically, single cell culture models have been limited in pathological and physiological relevance. A co-culture model of dendritic cells (DCs) and differentiated human airway epithelial cells was developed to examine potential interactions between these two cell t...

  16. Ferritinophagy drives uropathogenic Escherichia coli persistence in bladder epithelial cells.

    PubMed

    Bauckman, Kyle A; Mysorekar, Indira U

    2016-05-01

    Autophagy is a cellular recycling pathway, which in many cases, protects host cells from infections by degrading pathogens. However, uropathogenic Escherichia coli (UPEC), the predominant cause of urinary tract infections (UTIs), persist within the urinary tract epithelium (urothelium) by forming reservoirs within autophagosomes. Iron is a critical nutrient for both host and pathogen, and regulation of iron availability is a key host defense against pathogens. Iron homeostasis depends on the shuttling of iron-bound ferritin to the lysosome for recycling, a process termed ferritinophagy (a form of selective autophagy). Here, we demonstrate for the first time that UPEC shuttles with ferritin-bound iron into the autophagosomal and lysosomal compartments within the urothelium. Iron overload in urothelial cells induces ferritinophagy in an NCOA4-dependent manner causing increased iron availability for UPEC, triggering bacterial overproliferation and host cell death. Addition of even moderate levels of iron is sufficient to increase and prolong bacterial burden. Furthermore, we show that lysosomal damage due to iron overload is the specific mechanism causing host cell death. Significantly, we demonstrate that host cell death and bacterial burden can be reversed by inhibition of autophagy or inhibition of iron-regulatory proteins, or chelation of iron. Together, our findings suggest that UPEC persist in host cells by taking advantage of ferritinophagy. Thus, modulation of iron levels in the bladder may provide a therapeutic avenue to controlling UPEC persistence, epithelial cell death, and recurrent UTIs. PMID:27002654

  17. Antigen presentation by small intestinal epithelial cells uniquely enhances IFN-γ secretion from CD4{sup +} intestinal intraepithelial lymphocytes

    SciTech Connect

    Hatano, Ryo; Yamada, Kiyoshi; Iwamoto, Taku; Maeda, Nana; Emoto, Tetsuro; Shimizu, Makoto; Totsuka, Mamoru

    2013-06-14

    Highlights: •Small intestinal epithelial cells (sIECs). •sIECs are able to induce antigen specific proliferation of CD4{sup +} IELs. •sIECs induce markedly enhanced IFN-γ secretion by CD4{sup +} IELs. •Induction of enhanced IFN-γ secretion by sIECs is uniquely observed in CD4{sup +} IELs. -- Abstract: Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-γ) by CD4{sup +} IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-γ secretion by CD4{sup +} LPLs and primed splenic CD4{sup +} T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4{sup +} IELs and induce remarkable IFN-γ secretion upon antigenic stimulation in vivo.

  18. Expression and function of the epithelial sodium channel δ-subunit in human respiratory epithelial cells in vitro.

    PubMed

    Schwagerus, Elena; Sladek, Svenja; Buckley, Stephen T; Armas-Capote, Natalia; Alvarez de la Rosa, Diego; Harvey, Brian J; Fischer, Horst; Illek, Beate; Huwer, Hanno; Schneider-Daum, Nicole; Lehr, Claus-Michael; Ehrhardt, Carsten

    2015-11-01

    Using human airway epithelial cell lines (i.e. NCI-H441 and Calu-3) as well as human alveolar epithelial type I-like (ATI) cells in primary culture, we studied the contribution of the epithelial sodium channel δ-subunit (δ-ENaC) to transepithelial sodium transport in human lung in vitro. Endogenous δ-ENaC protein was present in all three cell types tested; however, protein abundance was low, and no expression was detected in the apical cell membrane of these cells. Similarly, known modulators of δ-ENaC activity, such as capsazepine and icilin (activators) and Evans blue (inhibitor), did not show effects on short-circuit current (I SC), suggesting that δ-ENaC is not involved in the modulation of transcellular sodium absorption in NCI-H441 cell monolayers. Over-expression of δ-ENaC in NCI-H441 cells resulted in detectable protein expression in the apical cell membrane, as well as capsazepine and icilin-stimulated increases in I SC that were effectively blocked by Evans blue and that were consistent with δ-ENaC activation and inhibition, respectively. Consequently, these observations suggest that δ-ENaC expression is low in NCI-H441, Calu-3, and ATI cells and does not contribute to transepithelial sodium absorption. PMID:25677639

  19. Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells

    PubMed Central

    Karuri, Nancy W.; Liliensiek, Sara; Teixeira, Ana I.; Abrams, George; Campbell, Sean; Nealey, Paul F.; Murphy, Christopher J.

    2006-01-01

    Summary The basement membrane possesses a rich 3-dimensional nanoscale topography that provides a physical stimulus, which may modulate cell-substratum adhesion. We have investigated the strength of cell-substratum adhesion on nanoscale topographic features of a similar scale to that of the native basement membrane. SV40 human corneal epithelial cells were challenged by well-defined fluid shear, and cell detachment was monitored. We created silicon substrata with uniform grooves and ridges having pitch dimensions of 400-4000 nm using X-ray lithography. F-actin labeling of cells that had been incubated for 24 hours revealed that the percentage of aligned and elongated cells on the patterned surfaces was the same regardless of pitch dimension. In contrast, at the highest fluid shear, a biphasic trend in cell adhesion was observed with cells being most adherent to the smaller features. The 400 nm pitch had the highest percentage of adherent cells at the end of the adhesion assay. The effect of substratum topography was lost for the largest features evaluated, the 4000 nm pitch. Qualitative and quantitative analyses of the cells during and after flow indicated that the aligned and elongated cells on the 400 nm pitch were more tightly adhered compared to aligned cells on the larger patterns. Selected experiments with primary cultured human corneal epithelial cells produced similar results to the SV40 human corneal epithelial cells. These findings have relevance to interpretation of cell-biomaterial interactions in tissue engineering and prosthetic design. PMID:15226393

  20. Combined effects of chemical priming and mechanical stimulation on mesenchymal stem cell differentiation on nanofiber scaffolds

    PubMed Central

    Subramony, Siddarth D.; Su, Amanda; Yeager, Keith; Lu, Helen H.

    2014-01-01

    Functional tissue engineering of connective tissues such as the anterior cruciate ligament (ACL) remains a significant clinical challenge, largely due to the need for mechanically competent scaffold systems for grafting, as well as a reliable cell source for tissue formation. We have designed an aligned, polylactide-co-glycolide (PLGA) nanofiber-based scaffold with physiologically relevant mechanical properties for ligament regeneration. The objective of this study is to identify optimal tissue engineering strategies for fibroblastic induction of human mesenchymal stem cells (hMSC), testing the hypothesis that basic fibroblast growth factor (bFGF) priming coupled with tensile loading will enhance hMSC-mediated ligament regeneration. It was observed that compared to the unloaded, as well as growth factor-primed but unloaded controls, bFGF stimulation followed by physiologically relevant tensile loading enhanced hMSC proliferation, collagen production and subsequent differentiation into ligament fibroblast-like cells, upregulating the expression of types I and III collagen, as well as tenasin-C and tenomodulin. The results of this study suggest that bFGF priming increases cell proliferation, while mechanical stimulation of the hMSCs on the aligned nanofiber scaffold promotes fibroblastic induction of these cells. In addition to demonstrating the potential of nanofiber scaffolds for hMSC-mediated functional ligament tissue engineering, this study yields new insights into the interactive effects of chemical and mechanical stimuli on stem cell differentiation. PMID:24267271

  1. Oncogenic NRAS Primes Primary Acute Myeloid Leukemia Cells for Differentiation.

    PubMed

    Brendel, Cornelia; Teichler, Sabine; Millahn, Axel; Stiewe, Thorsten; Krause, Michael; Stabla, Kathleen; Ross, Petra; Huynh, Minh; Illmer, Thomas; Mernberger, Marco; Barckhausen, Christina; Neubauer, Andreas

    2015-01-01

    RAS mutations are frequently found among acute myeloid leukemia patients (AML), generating a constitutively active signaling protein changing cellular proliferation, differentiation and apoptosis. We have previously shown that treatment of AML patients with high-dose cytarabine is preferentially beneficial for those harboring oncogenic RAS. On the basis of a murine AML cell culture model, we ascribed this effect to a RAS-driven, p53-dependent induction of differentiation. Hence, in this study we sought to confirm the correlation between RAS status and differentiation of primary blasts obtained from AML patients. The gene expression signature of AML blasts with oncogenic NRAS indeed corresponded to a more mature profile compared to blasts with wildtype RAS, as demonstrated by gene set enrichment analysis (GSEA) and real-time PCR analysis of myeloid ecotropic viral integration site 1 homolog (MEIS1) in a unique cohort of AML patients. In addition, in vitro cell culture experiments with established cell lines and a second set of primary AML cells showed that oncogenic NRAS mutations predisposed cells to cytarabine (AraC) driven differentiation. Taken together, our findings show that AML with inv(16) and NRAS mutation have a differentiation gene signature, supporting the notion that NRAS mutation may predispose leukemic cells to AraC induced differentiation. We therefore suggest that promotion of differentiation pathways by specific genetic alterations could explain the superior treatment outcome after therapy in some AML patient subgroups. Whether a differentiation gene expression status may generally predict for a superior treatment outcome in AML needs to be addressed in future studies. PMID:25901794

  2. Imaging cell biology in live animals: Ready for prime time

    PubMed Central

    Porat-Shliom, Natalie; Amornphimoltham, Panomwat

    2013-01-01

    Time-lapse fluorescence microscopy is one of the main tools used to image subcellular structures in living cells. Yet for decades it has been applied primarily to in vitro model systems. Thanks to the most recent advancements in intravital microscopy, this approach has finally been extended to live rodents. This represents a major breakthrough that will provide unprecedented new opportunities to study mammalian cell biology in vivo and has already provided new insight in the fields of neurobiology, immunology, and cancer biology. PMID:23798727

  3. Uterine epithelial cell proliferation and endometrial hyperplasia: evidence from a mouse model.

    PubMed

    Gao, Yang; Li, Shu; Li, Qinglei

    2014-08-01

    In the uterus, epithelial cell proliferation changes during the estrous cycle and pregnancy. Uncontrolled epithelial cell proliferation results in implantation failure and/or cancer development. Transforming growth factor-β (TGF-β) signaling is a fundamental regulator of diverse biological processes and is indispensable for multiple reproductive functions. However, the in vivo role of TGF-β signaling in uterine epithelial cells remains poorly defined. We have shown that in the uterus, conditional deletion of the Type 1 receptor for TGF-β (Tgfbr1) using anti-Müllerian hormone receptor type 2 (Amhr2) Cre leads to myometrial defects. Here, we describe enhanced epithelial cell proliferation by immunostaining of Ki67 in the uteri of these mice. The aberration culminated in endometrial hyperplasia in aged females. To exclude the potential influence of ovarian steroid hormones, the proliferative status of uterine epithelial cells was assessed following ovariectomy. Increased uterine epithelial cell proliferation was also revealed in ovariectomized Tgfbr1 Amhr2-Cre conditional knockout mice. We further demonstrated that transcript levels for fibroblast growth factor 10 (Fgf10) were markedly up-regulated in Tgfbr1 Amhr2-Cre conditional knockout uteri. Consistently, treatment of primary uterine stromal cells with TGF-β1 significantly reduced Fgf10 mRNA expression. Thus, our findings suggest a potential involvement of TGFBR1-mediated signaling in the regulation of uterine epithelial cell proliferation, and provide genetic evidence supporting the role of uterine epithelial cell proliferation in the pathogenesis of endometrial hyperplasia. PMID:24770950

  4. Control of cell mechanics by RhoA and calcium fluxes during epithelial scattering.

    PubMed

    Haws, Hillary J; McNeil, Melissa A; Hansen, Marc D H

    2016-01-01

    Epithelial tissues use adherens junctions to maintain tight interactions and coordinate cellular activities. Adherens junctions are remodeled during epithelial morphogenesis, including instances of epithelial-mesenchymal transition, or EMT, wherein individual cells detach from the tissue and migrate as individual cells. EMT has been recapitulated by growth factor induction of epithelial scattering in cell culture. In culture systems, cells undergo a highly reproducible series of cell morphology changes, most notably cell spreading followed by cellular compaction and cell migration. These morphology changes are accompanied by striking actin rearrangements. The current evidence suggests that global changes in actomyosin-based cellular contractility, first a loss of contractility during spreading and its activation during cell compaction, are the main drivers of epithelial scattering. In this review, we focus on how spreading and contractility might be controlled during epithelial scattering. While we propose a central role for RhoA, which is well known to control cellular contractility in multiple systems and whose role in epithelial scattering is well accepted, we suggest potential roles for additional cellular systems whose role in epithelial cell biology has been less well documented. In particular, we propose critical roles for vesicle recycling, calcium channels, and calcium-dependent kinases. PMID:27583192

  5. Increased programmed death-ligand-1 expression in human gastric epithelial cells in Helicobacter pylori infection

    PubMed Central

    Wu, Y-Y; Lin, C-W; Cheng, K-S; Lin, C; Wang, Y-M; Lin, I-T; Chou, Y-H; Hsu, P-N

    2010-01-01

    B7-H1 [programmed death-ligand-1 (PD-L1)] is a B7-family member that binds to programmed death-1 (PD-1). Recently, deficiency of PD-L1 has been demonstrated to result in accelerated gastric epithelial cell damage in gastritis, and PD-L1 is suggested to play a critical role in regulating T cell homeostasis. Here, we aimed to gain more insight into gastric PD-L1 expression, regulation and function during Helicobacter pylori infection. PD-L1 expression in human gastric epithelial cells was analysed using Western blotting, quantitative polymerase chain reaction and fluorescence activated cell sorter analysis. Furthermore, co-culture experiments of human gastric epithelial cells with primary human T cells or Jurkat T cells were conducted. PD-L1 expression in primary human gastric epithelial cells was strongly enhanced by H. pylori infection and activated T cells, and augmented markedly by further stimulation with interferon-γ or tumour necrosis factor-α. Moreover, PD-L1 expression in gastric epithelial cells significantly induced apoptosis of T cells. Our results indicate that a novel bidirectional interaction between human gastric epithelial cells and lymphocytes modulates PD-L1 expression in human gastric epithelial cells, contributing to the unique immunological properties of the stomach. PMID:20646001

  6. Guiding Epithelial Cell Phenotypes with Engineered Integrin-Specific Recombinant Fibronectin Fragments

    PubMed Central

    Brown, Ashley C.; Rowe, Jessica A.

    2011-01-01

    The extracellular matrix (ECM) provides important cues for directing cell phenotype. Cells interact with underlying ECM through cell-surface receptors known as integrins, which bind to specific sequences on their ligands. During tissue development, repair, and regeneration of epithelial tissues, cells must interact with an interstitial fibronectin (Fn)-rich matrix, which has been shown to direct a more migratory/repair phenotype, presumably through interaction with Fn’s cell binding domain comprised of both synergy Pro-His-Ser-Arg-Asn (PHSRN) and Arg-Gly-Asp (RGD) sequences. We hypothesized that the Fn synergy site is critical to the regulation of epithelial cell phenotype by directing integrin specificity. Epithelial cells were cultured on Fn fragments displaying stabilized synergy and RGD (FnIII9’10), or RGD alone (FnIII10) and cell phenotype analyzed by cytoskeleton changes, epithelial cell–cell contacts, changes in gene expression of epithelial and mesenchymal markers, and wound healing assay. Data indicate that epithelial cells engage RGD only with αv integrins and display a significant shift toward a mesenchymal phenotype due, in part, to enhanced transforming growth factor-β activation and/or signaling compared with cells on the synergy containing FnIII9’10. These studies demonstrate the importance of synergy in regulating epithelial cell phenotype relevant to tissue engineering as well as the utility of engineered integrin-specific ECM fragments in guiding cell phenotype. PMID:20695776

  7. A Nasal Epithelial Receptor for Staphylococcus aureus WTA Governs Adhesion to Epithelial Cells and Modulates Nasal Colonization

    PubMed Central

    Faulstich, Manuela; Grau, Timo; Severin, Yannik; Unger, Clemens; Hoffmann, Wolfgang H.; Rudel, Thomas; Autenrieth, Ingo B.; Weidenmaier, Christopher

    2014-01-01

    Nasal colonization is a major risk factor for S. aureus infections. The mechanisms responsible for colonization are still not well understood and involve several factors on the host and the bacterial side. One key factor is the cell wall teichoic acid (WTA) of S. aureus, which governs direct interactions with nasal epithelial surfaces. We report here the first receptor for the cell wall glycopolymer WTA on nasal epithelial cells. In several assay systems this type F-scavenger receptor, termed SREC-I, bound WTA in a charge dependent manner and mediated adhesion to nasal epithelial cells in vitro. The impact of WTA and SREC-I interaction on epithelial adhesion was especially pronounced under shear stress, which resembles the conditions found in the nasal cavity. Most importantly, we demonstrate here a key role of the WTA-receptor interaction in a cotton rat model of nasal colonization. When we inhibited WTA mediated adhesion with a SREC-I antibody, nasal colonization in the animal model was strongly reduced at the early onset of colonization. More importantly, colonization stayed low over an extended period of 6 days. Therefore we propose targeting of this glycopolymer-receptor interaction as a novel strategy to prevent or control S. aureus nasal colonization. PMID:24788600

  8. Characterization of isoform expression and subcellular distribution of MYPT1 in intestinal epithelial cells.

    PubMed

    Zha, Juan-Min; Li, Hua-Shan; Wang, Yi-Tang; Lin, Qian; Tao, Min; He, Wei-Qi

    2016-08-15

    The regulation of intestinal epithelial permeability requires phosphorylation of myosin regulatory light chain (MLC). The phosphorylation status of MLC is regulated by myosin light chain phosphatase (MLCP) activities. The activity of the catalytic subunit of MLCP (PP1cδ) toward MLC depends on its regulatory subunit (MYPT1). In this study, we revealed the presence of two MYPT1 isoforms, full length and variant 2 in human intestinal (Caco-2) epithelial cells and isolated intestinal epithelial cells (IECs) from mice. In confluent Caco-2 cells, MYPT1 was distributed at cell-cell contacts and colocalized with F-actin. These results suggest that MYPT1 isoforms are expressed in intestinal epithelial cells and MYPT1 may be involved in the regulation of intestinal epithelial barrier function. PMID:27129938

  9. Recognition of Major Histocompatibility Complex Antigens on Cultured Human Biliary Epithelial Cells by Alloreactive Lymphocytes

    PubMed Central

    Saidman, Susan L.; Duquesnoy, Rene J.; Zeevi, Adriana; Fung, John J.; Starzl, Thomas E.; Demetris, A. Jake

    2010-01-01

    We have developed an in vitro system to study the interactions between biliary epithelium and lymphocytes using cultured human biliary epithelial cells. No class II antigens were detected by immunoperoxidase staining of the normal biliary epithelial cells, but alloactivated lymphocyte culture supernatants were able to induce class II expression. The activity of the supernatants was blocked with an anti-γ-interferon monoclonal antibody. In addition, recombinant human γ-interferon alone induced the expression of class II antigens and increased the intensity of class I staining of cultured biliary epithelial cells. Biliary epithelial cell–induced proliferation of alloreactive T lymphocytes demonstrated that the major histocompatibility complex molecules carry functional lymphocyte-activating determinants. The recognition of major histocompatibility complex determinants was confirmed by monoclonal antibody–blocking studies and by stimulation of an alloreactive T-cell clone. However, the biliary epithelial cells were much less potent stimulators than arterial endothelial cells tested in the same assay system. PMID:1704868

  10. Role of the microtubule-targeting drug vinflunine on cell-cell adhesions in bladder epithelial tumour cells

    PubMed Central

    2014-01-01

    Background Vinflunine (VFL) is a microtubule-targeting drug that suppresses microtubule dynamics, showing anti-metastatic properties both in vitro and in living cancer cells. An increasing body of evidence underlines the influence of the microtubules dynamics on the cadherin-dependent cell-cell adhesions. E-cadherin is a marker of epithelial-to-mesenchymal transition (EMT) and a tumour suppressor; its reduced levels in carcinoma are associated with poor prognosis. In this report, we investigate the role of VFL on cell-cell adhesions in bladder epithelial tumour cells. Methods Human bladder epithelial tumour cell lines HT1376, 5637, SW780, T24 and UMUC3 were used to analyse cadherin-dependent cell-cell adhesions under VFL treatment. VFL effect on growth inhibition was measured by using a MTT colorimetric cell viability assay. Western blot, immunofluorescence and transmission electron microscopy analyses were performed to assess the roles of VFL effect on cell-cell adhesions, epithelial-to-mesenchymal markers and apoptosis. The role of the proteasome in controlling cell-cell adhesion was studied using the proteasome inhibitor MG132. Results We show that VFL induces cell death in bladder cancer cells and activates epithelial differentiation of the remaining living cells, leading to an increase of E-cadherin-dependent cell-cell adhesion and a reduction of mesenchymal markers, such as N-cadherin or vimentin. Moreover, while E-cadherin is increased, the levels of Hakai, an E3 ubiquitin-ligase for E-cadherin, were significantly reduced in presence of VFL. In 5637, this reduction on Hakai expression was blocked by MG132 proteasome inhibitor, indicating that the proteasome pathway could be one of the molecular mechanisms involved in its degradation. Conclusions Our findings underscore a critical function for VFL in cell-cell adhesions of epithelial bladder tumour cells, suggesting a novel molecular mechanism by which VFL may impact upon EMT and metastasis. PMID:25012153

  11. Focal Adhesion Kinase regulates cell-cell contact formation in epithelial cells via modulation of Rho

    SciTech Connect

    Playford, Martin P.; Vadali, Kavita; Cai Xinming; Burridge, Keith; Schaller, Michael D.

    2008-10-15

    Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase that plays a key role in cellular processes such as cell adhesion, migration, proliferation and survival. Recent studies have also implicated FAK in the regulation of cell-cell adhesion. Here, evidence is presented showing that siRNA-mediated suppression of FAK levels in NBT-II cells and expression of dominant negative mutants of FAK caused loss of epithelial cell morphology and inhibited the formation of cell-cell adhesions. Rac and Rho have been implicated in the regulation of cell-cell adhesions and can be regulated by FAK signaling. Expression of active Rac or Rho in NBT-II cells disrupted formation of cell-cell contacts, thus promoting a phenotype similar to FAK-depleted cells. The loss of intercellular contacts in FAK-depleted cells is prevented upon expression of a dominant negative Rho mutant, but not a dominant negative Rac mutant. Inhibition of FAK decreased tyrosine phosphorylation of p190RhoGAP and elevated the level of GTP-bound Rho. This suggests that FAK regulates cell-cell contact formation by regulation of Rho.

  12. Human Normal Bronchial Epithelial Cells: A Novel In Vitro Cell Model for Toxicity Evaluation

    PubMed Central

    Huang, Haiyan; Xia, Bo; Liu, Hongya; Li, Jie; Lin, Shaolin; Li, Tiyuan; Liu, Jianjun; Li, Hui

    2015-01-01

    Human normal cell-based systems are needed for drug discovery and toxicity evaluation. hTERT or viral genes transduced human cells are currently widely used for these studies, while these cells exhibited abnormal differentiation potential or response to biological and chemical signals. In this study, we established human normal bronchial epithelial cells (HNBEC) using a defined primary epithelial cell culture medium without transduction of exogenous genes. This system may involve decreased IL-1 signaling and enhanced Wnt signaling in cells. Our data demonstrated that HNBEC exhibited a normal diploid karyotype. They formed well-defined spheres in matrigel 3D culture while cancer cells (HeLa) formed disorganized aggregates. HNBEC cells possessed a normal cellular response to DNA damage and did not induce tumor formation in vivo by xenograft assays. Importantly, we assessed the potential of these cells in toxicity evaluation of the common occupational toxicants that may affect human respiratory system. Our results demonstrated that HNBEC cells are more sensitive to exposure of 10~20 nm-sized SiO2, Cr(VI) and B(a)P compared to 16HBE cells (a SV40-immortalized human bronchial epithelial cells). This study provides a novel in vitro human cells-based model for toxicity evaluation, may also be facilitating studies in basic cell biology, cancer biology and drug discovery. PMID:25861018

  13. Human normal bronchial epithelial cells: a novel in vitro cell model for toxicity evaluation.

    PubMed

    Feng, Wenqiang; Guo, Juanjuan; Huang, Haiyan; Xia, Bo; Liu, Hongya; Li, Jie; Lin, Shaolin; Li, Tiyuan; Liu, Jianjun; Li, Hui

    2015-01-01

    Human normal cell-based systems are needed for drug discovery and toxicity evaluation. hTERT or viral genes transduced human cells are currently widely used for these studies, while these cells exhibited abnormal differentiation potential or response to biological and chemical signals. In this study, we established human normal bronchial epithelial cells (HNBEC) using a defined primary epithelial cell culture medium without transduction of exogenous genes. This system may involve decreased IL-1 signaling and enhanced Wnt signaling in cells. Our data demonstrated that HNBEC exhibited a normal diploid karyotype. They formed well-defined spheres in matrigel 3D culture while cancer cells (HeLa) formed disorganized aggregates. HNBEC cells possessed a normal cellular response to DNA damage and did not induce tumor formation in vivo by xenograft assays. Importantly, we assessed the potential of these cells in toxicity evaluation of the common occupational toxicants that may affect human respiratory system. Our results demonstrated that HNBEC cells are more sensitive to exposure of 10~20 nm-sized SiO2, Cr(VI) and B(a)P compared to 16HBE cells (a SV40-immortalized human bronchial epithelial cells). This study provides a novel in vitro human cells-based model for toxicity evaluation, may also be facilitating studies in basic cell biology, cancer biology and drug discovery. PMID:25861018

  14. Myosin Id is required for planar cell polarity in ciliated tracheal and ependymal epithelial cells.

    PubMed

    Hegan, Peter S; Ostertag, Eric; Geurts, Aron M; Mooseker, Mark S

    2015-10-01

    In wild type (WT) tracheal epithelial cells, ciliary basal bodies are oriented such that all cilia on the cell surface beat in the same upward direction. This precise alignment of basal bodies and, as a result, the ciliary axoneme, is termed rotational planar cell polarity (PCP). Rotational PCP in the multi-ciliated epithelial cells of the trachea is perturbed in rats lacking myosin Id (Myo1d). Myo1d is localized in the F-actin and basal body rich subapical cortex of the ciliated tracheal epithelial cell. Scanning and transmission electron microscopy of Myo1d knock out (KO) trachea revealed that the unidirectional bending pattern is disrupted. Instead, cilia splay out in a disordered, often radial pattern. Measurement of the alignment axis of the central pair axonemal microtubules was much more variable in the KO, another indicator that rotational PCP is perturbed. The asymmetric localization of the PCP core protein Vangl1 is lost. Both the velocity and linearity of cilia-driven movement of beads above the tracheal mucosal surface was impaired in the Myo1d KO. Multi-ciliated brain ependymal epithelial cells exhibit a second form of PCP termed translational PCP in which basal bodies and attached cilia are clustered at the anterior side of the cell. The precise asymmetric clustering of cilia is disrupted in the ependymal cells of the Myo1d KO rat. While basal body clustering is maintained, left-right positioning of the clusters is lost. PMID:26446290

  15. Ionizing radiation induces heritable disruption of epithelial cell interactions

    NASA Technical Reports Server (NTRS)

    Park, Catherine C.; Henshall-Powell, Rhonda L.; Erickson, Anna C.; Talhouk, Rabih; Parvin, Bahram; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Chatterjee, A. (Principal Investigator)

    2003-01-01

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, beta-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization.

  16. Effect of Stratification on Surface Properties of Corneal Epithelial Cells

    PubMed Central

    Yáñez-Soto, Bernardo; Leonard, Brian C.; Raghunathan, Vijay Krishna; Abbott, Nicholas L.; Murphy, Christopher J.

    2015-01-01

    Purpose The purpose of this study was to determine the influence of mucin expression in an immortalized human corneal epithelial cell line (hTCEpi) on the surface properties of cells, such as wettability, contact angle, and surface heterogeneity. Methods hTCEpi cells were cultured to confluence in serum-free medium. The medium was then replaced by stratification medium to induce mucin biosynthesis. The mucin expression profile was analyzed using quantitative PCR and Western blotting. Contact angles were measured using a two-immiscible liquid method, and contact angle hysteresis was evaluated by tilting the apparatus and recording advancing and receding contact angles. The spatial distribution of mucins was evaluated with fluorescently labeled lectin. Results hTCEpi cells expressed the three main ocular mucins (MUC1, MUC4, and MUC16) with a maximum between days 1 and 3 of the stratification process. Upon stratification, cells caused a very significant increase in contact angle hysteresis, suggesting the development of spatially discrete and heterogeneously distributed surface features, defined by topography and/or chemical functionality. Although atomic force microscopy measurements showed no formation of appreciable topographic features on the surface of the cells, we observed a significant increase in surface chemical heterogeneity. Conclusions The surface chemical heterogeneity of the corneal epithelium may influence the dynamic behavior of tear film by “pinning” the contact line between the cellular surface and aqueous tear film. Engineering the surface properties of corneal epithelium could potentially lead to novel treatments in dry eye disease. PMID:26747762

  17. Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells.

    PubMed

    Gray, Daniel H D; Seach, Natalie; Ueno, Tomoo; Milton, Morag K; Liston, Adrian; Lew, Andrew M; Goodnow, Christopher C; Boyd, Richard L

    2006-12-01

    Despite the importance of thymic stromal cells to T-cell development, relatively little is known about their biology. Here, we use single-cell analysis of stromal cells to analyze extensive changes in the number and composition of thymic stroma throughout life, revealing a surprisingly dynamic population. Phenotypic progression of thymic epithelial subsets was assessed at high resolution in young mice to provide a developmental framework. The cellular and molecular requirements of adult epithelium were studied, using various mutant mice to demonstrate new cross talk checkpoints dependent on RelB in the cortex and CD40 in the medulla. With the use of Ki67 and BrdU labeling, the turnover of thymic epithelium was found to be rapid, but then diminished on thymic involution. The various defects in stromal turnover and composition that accompanied involution were rapidly reversed following sex steroid ablation. Unexpectedly, mature cortical and medullary epithelium showed a potent capacity to stimulate naive T cells, comparable to that of thymic dendritic cells. Overall, these studies show that the thymic stroma is a surprisingly dynamic population and may have a more direct role in negative selection than previously thought. PMID:16896157

  18. Immunomagnetic separation can enrich fixed solid tumors for epithelial cells.

    PubMed Central

    Yaremko, M. L.; Kelemen, P. R.; Kutza, C.; Barker, D.; Westbrook, C. A.

    1996-01-01

    Immunomagnetic separation is a highly specific technique for the enrichment or isolation of cells from a variety of fresh tissues and microorganisms or molecules from suspensions. Because new techniques for molecular analysis of solid tumors are now applicable to fixed tissue but sometimes require or benefit from enrichment for tumor cells, we tested the efficacy of immunomagnetic separation for enriching fixed solid tumors for malignant epithelial cells. We applied it to two different tumors and fixation methods to separate neoplastic from non-neoplastic cells in primary colorectal cancers and metastatic breast cancers, and were able to enrich to a high degree of purity. Immunomagnetic separation was effective in unembedded fixed tissue as well as fixed paraffin-embedded tissue. The magnetically separated cells were amenable to fluorescence in situ hybridization and polymerase chain reaction amplification of their DNA with minimal additional manipulation. The high degree of enrichment achieved before amplification contributed to interpretation of loss of heterozygosity in metastatic breast cancers, and simplified fluorescence in situ hybridization analysis because only neoplastic cells were hybridized and counted. Immunomagnetic separation is effective for the enrichment of fixed solid tumors, can be performed with widely available commercial antibodies, and requires little specialized instrumentation. It can contribute to interpretation of results in situations where enrichment by other methods is difficult or not possible. Images Figure 1 Figure 2 Figure 3 PMID:8546231

  19. Drug permeation across intestinal epithelial cells using porous silicon nanoparticles.

    PubMed

    Bimbo, Luis M; Mäkilä, Ermei; Laaksonen, Timo; Lehto, Vesa-Pekka; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2011-04-01

    Mesoporous silicon particles hold great potential in improving the solubility of otherwise poorly soluble drugs. To effectively translate this feature into the clinic, especially via oral or parenteral administration, a thorough understanding of the interactions of the micro- and nanosized material with the physiological environment during the delivery process is required. In the present study, the behaviour of thermally oxidized porous silicon particles of different sizes interacting with Caco-2 cells (both non-differentiated and polarized monolayers) was investigated in order to establish their fate in a model of intestinal epithelial cell barrier. Particle interactions and TNF-α were measured in RAW 264.7 macrophages, while cell viabilities, reactive oxygen species and nitric oxide levels, together with transmission electron microscope images of the polarized monolayers, were assessed with both the Caco-2 cells and RAW 264.7 macrophages. The results showed a concentration and size dependent influence on cell viability and ROS-, NO- and TNF-α levels. There was no evidence of the porous nanoparticles crossing the Caco-2 cell monolayers, yet increased permeation of the loaded poorly soluble drug, griseofulvin, was shown. PMID:21194747

  20. Glycoprotein E of Varicella-Zoster Virus Enhances Cell-Cell Contact in Polarized Epithelial Cells

    PubMed Central

    Mo, Chengjun; Schneeberger, Eveline E.; Arvin, Ann M.

    2000-01-01

    Varicella-zoster virus (VZV) infection involves the cell-cell spread of virions, but how viral proteins interact with the host cell membranes that comprise intercellular junctions is not known. Madin-Darby canine kidney (MDCK) cells were constructed to express the glycoproteins gE, gI, or gE/gI constitutively and were used to examine the effects of these VZV glycoproteins in polarized epithelial cells. At low cell density, VZV gE induced partial tight junction (TJ) formation under low-calcium conditions, whether expressed alone or with gI. Although most VZV gE was intracellular, gE was also shown to colocalize with the TJ protein ZO-1 with or without concomitant expression of gI. Freeze fracture electron microscopy revealed normal TJ strand morphology in gE-expressing MDCK cells. Functionally, the expression of gE was associated with a marked acceleration in the establishment of maximum transepithelial electrical resistance (TER) in MDCK-gE cells; MDCK-gI and MDCK-gE/gI cells exhibited a similar pattern of early TER compared to MDCK cells, although peak resistances were lower than those of gE alone. VZV gE expression altered F-actin organization and lipid distribution, but coexpression of gI modulated these effects. Two regions of the gE ectodomain, amino acids (aa) 278 to 355 and aa 467 to 498, although lacking Ca2+ binding motifs, exhibit similarities with corresponding regions of the cell adhesion molecules, E-cadherin and desmocollin. These observations suggest that VZV gE and gE/gI may contribute to viral pathogenesis by facilitating epithelial cell-cell contacts. PMID:11070038

  1. Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells.

    PubMed

    Lotz, Michael; Gütle, Dominique; Walther, Sabrina; Ménard, Sandrine; Bogdan, Christian; Hornef, Mathias W

    2006-04-17

    The role of innate immune recognition by intestinal epithelial cells (IECs) in vivo is ill-defined. Here, we used highly enriched primary IECs to analyze Toll-like receptor (TLR) signaling and mechanisms that prevent inappropriate stimulation by the colonizing microflora. Although the lipopolysaccharide (LPS) receptor complex TLR4/MD-2 was present in fetal, neonatal, and adult IECs, LPS-induced nuclear factor kappaB (NF-kappaB) activation and chemokine (macrophage inflammatory protein 2 [MIP-2]) secretion was only detected in fetal IECs. Fetal intestinal macrophages, in contrast, were constitutively nonresponsive to LPS. Acquisition of LPS resistance was paralleled by a spontaneous activation of IECs shortly after birth as illustrated by phosphorylation of IkappaB-alpha and nuclear translocation of NF-kappaB p65 in situ as well as transcriptional activation of MIP-2. Importantly, the spontaneous IEC activation occurred in vaginally born mice but not in neonates delivered by Caesarean section or in TLR4-deficient mice, which together with local endotoxin measurements identified LPS as stimulatory agent. The postnatal loss of LPS responsiveness of IECs was associated with a posttranscriptional down-regulation of the interleukin 1 receptor-associated kinase 1, which was essential for epithelial TLR4 signaling in vitro. Thus, unlike intestinal macrophages, IECs acquire TLR tolerance immediately after birth by exposure to exogenous endotoxin to facilitate microbial colonization and the development of a stable intestinal host-microbe homeostasis. PMID:16606665

  2. Culture of Oral Mucosal Epithelial Cells for the Purpose of Treating Limbal Stem Cell Deficiency

    PubMed Central

    Paaske Utheim, Tor; Aass Utheim, Øygunn; Khan, Qalb-E-Saleem; Sehic, Amer

    2016-01-01

    The cornea is critical for normal vision as it allows allowing light transmission to the retina. The corneal epithelium is renewed by limbal epithelial cells (LEC), which are located in the periphery of the cornea, the limbus. Damage or disease involving LEC may lead to various clinical presentations of limbal stem cell deficiency (LSCD). Both severe pain and blindness may result. Transplantation of cultured autologous oral mucosal epithelial cell sheet (CAOMECS) represents the first use of a cultured non-limbal autologous cell type to treat this disease. Among non-limbal cell types, CAOMECS and conjunctival epithelial cells are the only laboratory cultured cell sources that have been explored in humans. Thus far, the expression of p63 is the only predictor of clinical outcome following transplantation to correct LSCD. The optimal culture method and substrate for CAOMECS is not established. The present review focuses on cell culture methods, with particular emphasis on substrates. Most culture protocols for CAOMECS used amniotic membrane as a substrate and included the xenogeneic components fetal bovine serum and murine 3T3 fibroblasts. However, it has been demonstrated that tissue-engineered epithelial cell sheet grafts can be successfully fabricated using temperature-responsive culture surfaces and autologous serum. In the studies using different substrates for culture of CAOMECS, the quantitative expression of p63 was generally poorly reported; thus, more research is warranted with quantification of phenotypic data. Further research is required to develop a culture system for CAOMECS that mimics the natural environment of oral/limbal/corneal epithelial cells without the need for undefined foreign materials such as serum and feeder cells. PMID:26938569

  3. ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCTED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS

    EPA Science Inventory

    ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS.
    OBJECTIVE: We have shown that functional gap junction communication as measured by Lucifer yellow dye transfer (DT) in Clone-9 rat liver epithelial cells, c...

  4. Diet Does Not Affect Putative Mammary Epithelial Stem Cells in Pre-weaned Holstein Heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Overfeeding prepubertal heifers can impair mammary epithelial growth and development, processes that depend on stem cells. In this study we evaluated effects of diet composition on putative bovine mammary epithelial stem cell populations using a 5-bromo-2-deoxyrudine (BrdU; a thymidine analog) label...

  5. Deletion of Lkb1 in Renal Tubular Epithelial Cells Leads to CKD by Altering Metabolism.

    PubMed

    Han, Seung Hyeok; Malaga-Dieguez, Laura; Chinga, Frank; Kang, Hyun Mi; Tao, Jianling; Reidy, Kimberly; Susztak, Katalin

    2016-02-01

    Renal tubule epithelial cells are high-energy demanding polarized epithelial cells. Liver kinase B1 (LKB1) is a key regulator of polarity, proliferation, and cell metabolism in epithelial cells, but the function of LKB1 in the kidney is unclear. Our unbiased gene expression studies of human control and CKD kidney samples identified lower expression of LKB1 and regulatory proteins in CKD. Mice with distal tubule epithelial-specific Lkb1 deletion (Ksp-Cre/Lkb1(flox/flox)) exhibited progressive kidney disease characterized by flattened dedifferentiated tubule epithelial cells, interstitial matrix accumulation, and dilated cystic-appearing tubules. Expression of epithelial polarity markers β-catenin and E-cadherin was not altered even at later stages. However, expression levels of key regulators of metabolism, AMP-activated protein kinase (Ampk), peroxisome proliferative activated receptor gamma coactivator 1-α (Ppargc1a), and Ppara, were significantly lower than those in controls and correlated with fibrosis development. Loss of Lkb1 in cultured epithelial cells resulted in energy depletion, apoptosis, less fatty acid oxidation and glycolysis, and a profibrotic phenotype. Treatment of Lkb1-deficient cells with an AMP-activated protein kinase (AMPK) agonist (A769662) or a peroxisome proliferative activated receptor alpha agonist (fenofibrate) restored the fatty oxidation defect and reduced apoptosis. In conclusion, we show that loss of LKB1 in renal tubular epithelial cells has an important role in kidney disease development by influencing intracellular metabolism. PMID:26054542

  6. Autonomous immunity in mucosal epithelial cells: fortifying the barrier against infection.

    PubMed

    Ross, Karen F; Herzberg, Mark C

    2016-06-01

    Mucosal epithelial cells express an autonomous innate immune response that controls the overgrowth of invaded bacteria, mitigates the harmful effects of the bacteria carried within, and does not rely on other external arms of the immune response. Epithelial cell autonomous innate immunity "respects" the social biology of invading bacteria to achieve symbiosis, and is the primary protective mechanism against pathogens. PMID:27005450

  7. Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover

    PubMed Central

    Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G

    1998-01-01

    Background—The functions of urokinase in intestinal epithelia are unknown. 
Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. 
Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequentially from the crypt-villus axis of the rat small intestine. In separate experiments, urokinase activity and epithelial kinetics (measured stathmokinetically) were measured in homogenates of distal colonic mucosa of 14 groups of eight rats fed diets known to alter epithelial turnover. 
Results—From the crypt base, an ascending gradient of expression and activity of urokinase was associated with the epithelial cells. Median mucosal urokinase activities in each of the dietary groups of rats correlated positively with autologous median number of metaphase arrests per crypt (r=0.68; p<0.005) and per 100 crypt cells (r=0.75; p<0.001), but not with crypt column height. 
Conclusions—Localisation of an enzyme capable of leading to digestion of cell substratum in the region where cells are loosely attached to their basement membrane, and the association of its activity with indexes of cell turnover, suggest a role for urokinase in facilitating epithelial cell loss in the intestine. 

 Keywords: urokinase; intestinal epithelium; colon; epithelial proliferation PMID:9824347

  8. CYTOTOXICITY OF CHEMICAL CARCINOGENS TOWARDS HUMAN BRONCHIAL EPITHELIAL CELLS EVALUATED IN A CLONAL ASSAY

    EPA Science Inventory

    Survival of human bronchial epithelial cells after administration of four chemical carcinogens was measured in a clonal assay. Human bronchial epithelial cells were obtained from outgrowths of explanted tissue pieces. Serum-free medium was used for both explant culture and clonal...

  9. Roles of Wnt/{beta}-catenin signaling in epithelial differentiation of mesenchymal stem cells

    SciTech Connect

    Wang, Yajing; Sun, Zhaorui; Qiu, Xuefeng; Li, Yan; Qin, Jizheng; Han, Xiaodong

    2009-12-25

    Bone marrow-derived mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into epithelial lineage, but the precise mechanisms controlling this process are unclear. Our aim is to explore the roles of Wnt/{beta}-catenin in the epithelial differentiation of MSCs. Using indirect co-culture of rat MSCs with rat airway epithelial cells (RTE), MSCs expressed several airway epithelial markers (cytokeratin 18, tight junction protein occudin, cystic fibrosis transmembrance regulator). The protein levels of some important members in Wnt/{beta}-catenin signaling were determined, suggested down-regulation of Wnt/{beta}-catenin with epithelial differentiation of MSCs. Furthermore, Wnt3{alpha} can inhibit the epithelial differentiation of MSCs. A loss of {beta}-catenin induced by Dickkopf-1 can enhance MSCs differentiation into epithelial cells. Lithium chloride transiently activated {beta}-catenin expression and subsequently decreased {beta}-catenin level and at last inhibited MSCs to differentiate into airway epithelium. Taken together, our study indicated that RTE cells can trigger epithelial differentiation of MSCs. Blocking Wnt/{beta}-catenin signaling may promote MSCs to differentiate towards airway epithelial cells.

  10. Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein.

    PubMed

    Zhong, Qian; Zhou, Beiyun; Ann, David K; Minoo, Parviz; Liu, Yixin; Banfalvi, Agnes; Krishnaveni, Manda S; Dubourd, Mickael; Demaio, Lucas; Willis, Brigham C; Kim, Kwang-Jin; duBois, Roland M; Crandall, Edward D; Beers, Michael F; Borok, Zea

    2011-09-01

    Endoplasmic reticulum (ER) stress has been implicated in alveolar epithelial type II (AT2) cell apoptosis in idiopathic pulmonary fibrosis. We hypothesized that ER stress (either chemically induced or due to accumulation of misfolded proteins) is also associated with epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AECs). ER stress inducers, thapsigargin (TG) or tunicamycin (TN), increased expression of ER chaperone, Grp78, and spliced X-box binding protein 1, decreased epithelial markers, E-cadherin and zonula occludens-1 (ZO-1), increased the myofibroblast marker, α-smooth muscle actin (α-SMA), and induced fibroblast-like morphology in both primary AECs and the AT2 cell line, RLE-6TN, consistent with EMT. Overexpression of the surfactant protein (SP)-C BRICHOS mutant SP-C(ΔExon4) in A549 cells increased Grp78 and α-SMA and disrupted ZO-1 distribution, and, in primary AECs, SP-C(ΔExon4) induced fibroblastic-like morphology, decreased ZO-1 and E-cadherin and increased α-SMA, mechanistically linking ER stress associated with mutant SP to fibrosis through EMT. Whereas EMT was evident at lower concentrations of TG or TN, higher concentrations caused apoptosis. The Src inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4]pyramidine) (PP2), abrogated EMT associated with TN or TG in primary AECs, whereas overexpression of SP-C(ΔExon4) increased Src phosphorylation, suggesting a common mechanism. Furthermore, increased Grp78 immunoreactivity was observed in AT2 cells of mice after bleomycin injury, supporting a role for ER stress in epithelial abnormalities in fibrosis in vivo. These results demonstrate that ER stress induces EMT in AECs, at least in part through Src-dependent pathways, suggesting a novel role for ER stress in fibroblast accumulation in pulmonary fibrosis. PMID:21169555

  11. Nucleoside transport in primary cultured rabbit tracheal epithelial cells.

    PubMed

    Mathias, Neil R; Wu, Sharon K; Kim, Kwang-Jin; Lee, Vincent H L

    2005-01-01

    The present study aimed at elucidating the mechanisms of nucleoside transport in primary cultured rabbit tracheal epithelial cells (RTEC) grown on a permeable filter support. Uptake of (3)H-uridine, the model nucleoside substrate, from the apical fluid of primary cultured RTEC was examined with respect to its dependence on Na(+), substrate concentration, temperature and its sensitivity to inhibitors, other nucleosides and antiviral nucleoside analogs. Apical (3)H-uridine uptake in primary cultured RTEC was strongly dependent on an inward Na(+) gradient and temperature. Ten micromolar nitro-benzyl-mercapto-purine-ribose (NBMPR) (an inhibitor of es-type nucleoside transport in the nanomolar range) did not further inhibit this process. (3)H-uridine uptake from apical fluid was inhibited by basolateral ouabain (10 microM) and apical phloridzin (100 microM), indicating that uptake may involve a secondary active transport process. Uridine uptake was saturable with a K(m) of 3.4 +/- 1.8 microM and the V(max) of 24.3 +/- 5.2 pmoles/mg protein/30 s. Inhibition studies indicated that nucleoside analogs that have a substitution on the nucleobase competed with uridine uptake from apical fluid, but those with modifications on the ribose sugar including acyclic analogs were ineffective. The pattern of inhibition of apical (3)H-uridine, (3)H-inosine and (3)H-thymidine uptake into RTEC cells by physiological nucleosides was consistent with multiple systems: A pyrimidine-selective transport system (CNT1); a broad nucleoside substrate transport system that excludes inosine (CNT4) and an equilibrative NBMPR-insensitive nucleoside transport system (ei type). These results indicate that the presence of apically located nucleoside transporters in the epithelial cells lining the upper respiratory tract can lead to a high accumulation of nucleosides in the trachea. At least one Na(+)-dependent, secondary, active transport process may mediate the apical absorption of nucleosides or

  12. PI3Kγ Is Critical for Dendritic Cell-Mediated CD8+ T Cell Priming and Viral Clearance during Influenza Virus Infection

    PubMed Central

    Nobs, Samuel Philip; Schneider, Christoph; Heer, Alex Kaspar; Huotari, Jatta; Helenius, Ari; Kopf, Manfred

    2016-01-01

    Phosphoinositide-3-kinases have been shown to be involved in influenza virus pathogenesis. They are targeted directly by virus proteins and are essential for efficient viral replication in infected lung epithelial cells. However, to date the role of PI3K signaling in influenza infection in vivo has not been thoroughly addressed. Here we show that one of the PI3K subunits, p110γ, is in fact critically required for mediating the host’s antiviral response. PI3Kγ deficient animals exhibit a delayed viral clearance and increased morbidity during respiratory infection with influenza virus. We demonstrate that p110γ is required for the generation and maintenance of potent antiviral CD8+ T cell responses through the developmental regulation of pulmonary cross-presenting CD103+ dendritic cells under homeostatic and inflammatory conditions. The defect in lung dendritic cells leads to deficient CD8+ T cell priming, which is associated with higher viral titers and more severe disease course during the infection. We thus identify PI3Kγ as a novel key host protective factor in influenza virus infection and shed light on an unappreciated layer of complexity concerning the role of PI3K signaling in this context. PMID:27030971

  13. Spatiotemporally Regulated Ablation of Klf4 in Adult Mouse Corneal Epithelial Cells Results in Altered Epithelial Cell Identity and Disrupted Homeostasis

    PubMed Central

    Delp, Emili E.; Swamynathan, Sudha; Kao, Winston W.; Swamynathan, Shivalingappa K.

    2015-01-01

    Purpose. In previous studies, conditional disruption of Klf4 in the developing mouse ocular surface from embryonic day 10 resulted in corneal epithelial fragility, stromal edema, and loss of conjunctival goblet cells, revealing the importance of Klf4 in ocular surface maturation. Here, we use spatiotemporally regulated ablation of Klf4 to investigate its functions in maintenance of adult corneal epithelial homeostasis. Methods. Expression of Cre was induced in ternary transgenic (Klf4LoxP/LoxP/Krt12rtTA/rtTA/Tet-O-Cre) mouse corneal epithelium by doxycycline administered through intraperitoneal injections and drinking water, to generate corneal epithelium–specific deletion of Klf4 (Klf4Δ/ΔCE). Corneal epithelial barrier function was tested by fluorescein staining. Expression of selected Klf4-target genes was determined by quantitative PCR (QPCR), immunoblotting, and immunofluorescent staining. Results. Klf4 was efficiently ablated within 5 days of doxycycline administration in adult Klf4Δ/ΔCE corneal epithelium. The Klf4Δ/ΔCE corneal epithelial barrier function was disrupted, and the basal cells were swollen and rounded after 15 days of doxycycline treatment. Increased numbers of cell layers and Ki67-positive proliferating cells suggested deregulated Klf4Δ/ΔCE corneal epithelial homeostasis. Expression of tight junction proteins ZO-1 and occludin, desmosomal Dsg and Dsp, basement membrane laminin-332, and corneal epithelial–specific keratin-12 was decreased, while that of matrix metalloproteinase Mmp9 and noncorneal keratin-17 increased, suggesting altered Klf4Δ/ΔCE corneal epithelial cell identity. Conclusions. Ablation of Klf4 in the adult mouse corneas resulted in the absence of characteristic corneal epithelial cell differentiation, disrupted barrier function, and squamous metaplasia, revealing that Klf4 is essential for maintenance of the adult corneal epithelial cell identity and homeostasis. PMID:26047041

  14. Oxidized glutathione (GSSG) inhibits epithelial sodium channel activity in primary alveolar epithelial cells

    PubMed Central

    Downs, Charles A.; Kreiner, Lisa; Zhao, Xing-Ming; Trac, Phi; Johnson, Nicholle M.; Hansen, Jason M.; Brown, Lou Ann

    2015-01-01

    Amiloride-sensitive epithelial Na+ channels (ENaC) regulate fluid balance in the alveoli and are regulated by oxidative stress. Since glutathione (GSH) is the predominant antioxidant in the lungs, we proposed that changes in glutathione redox potential (Eh) would alter cell signaling and have an effect on ENaC open probability (Po). In the present study, we used single channel patch-clamp recordings to examine the effect of oxidative stress, via direct application of glutathione disulfide (GSSG), on ENaC activity. We found a linear decrease in ENaC activity as the GSH/GSSG Eh became less negative (n = 21; P < 0.05). Treatment of 400 μM GSSG to the cell bath significantly decreased ENaC Po from 0.39 ± 0.06 to 0.13 ± 0.05 (n = 8; P < 0.05). Likewise, back-filling recording electrodes with 400 μM GSSG reduced ENaC Po from 0.32 ± 0.08 to 0.17 ± 0.05 (n = 10; P < 0.05), thus implicating GSSG as an important regulatory factor. Biochemical assays indicated that oxidizing potentials promote S-glutathionylation of ENaC and irreversible oxidation of cysteine residues with N-ethylmaleimide blocked the effects of GSSG on ENaC Po. Additionally, real-time imaging studies showed that GSSG impairs alveolar fluid clearance in vivo as opposed to GSH, which did not impair clearance. Taken together, these data show that glutathione Eh is an important determinant of alveolar fluid clearance in vivo. PMID:25713321

  15. Disruption of the keratin filament network during epithelial cell division.

    PubMed Central

    Lane, E B; Goodman, S L; Trejdosiewicz, L K

    1982-01-01

    The behaviour of keratin filaments during cell division was examined in a wide range of epithelial lines from several species. Almost half of them show keratin disruption as described previously: by immunofluorescence, filaments are replaced during mitosis by a 'speckled' pattern of discrete cytoplasmic dots. In the electron microscope these ' speckles ' are seen as granules around the cell periphery, just below the actin cortical mesh, with no detectable 10 nm filament structure inside them and no keratin filament bundles in the rest of the cytoplasm. A time course of the filament reorganization was constructed from double immunofluorescence data; filaments are disrupted in prophase, and the filament network is intact again by cytokinesis. The phenomenon is restricted to cells rich in keratin filaments, such as keratinocytes; it is unrelated to the co-existence of vimentin in many of these cells, and vimentin is generally maintained as filaments while the keratin is restructured. Some resistance to the effect may be conferred by an extended cycle time. Filament reorganization takes place within minutes, so that a reversible mechanism seems more likely than one involving de novo protein synthesis, at this metabolically quiet stage of the cell cycle. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:6202508

  16. Ibuprofen regulation of microtubule dynamics in cystic fibrosis epithelial cells.

    PubMed

    Rymut, Sharon M; Kampman, Claire M; Corey, Deborah A; Endres, Tori; Cotton, Calvin U; Kelley, Thomas J

    2016-08-01

    High-dose ibuprofen, an effective anti-inflammatory therapy for the treatment of cystic fibrosis (CF), has been shown to preserve lung function in a pediatric population. Despite its efficacy, few patients receive ibuprofen treatment due to potential renal and gastrointestinal toxicity. The mechanism of ibuprofen efficacy is also unclear. We have previously demonstrated that CF microtubules are slower to reform after depolymerization compared with respective wild-type controls. Slower microtubule dynamics in CF cells are responsible for impaired intracellular transport and are related to inflammatory signaling. Here, it is identified that high-dose ibuprofen treatment in both CF cell models and primary CF nasal epithelial cells restores microtubule reformation rates to wild-type levels, as well as induce extension of microtubules to the cell periphery. Ibuprofen treatment also restores microtubule-dependent intracellular transport monitored by measuring intracellular cholesterol transport. These effects are specific to ibuprofen as other cyclooxygenase inhibitors have no effect on these measures. Effects of ibuprofen are mimicked by stimulation of AMPK and blocked by the AMPK inhibitor compound C. We conclude that high-dose ibuprofen treatment enhances microtubule formation in CF cells likely through an AMPK-related pathway. These findings define a potential mechanism to explain the efficacy of ibuprofen therapy in CF. PMID:27317686

  17. Hormonal regulation of Na -K -ATPase in cultured epithelial cells

    SciTech Connect

    Johnson, J.P.; Jones, D.; Wiesmann, W.P.

    1986-08-01

    Aldosterone and insulin stimulate Na transport through mechanisms involving protein synthesis. Na -K -ATPase has been implicated in the action of both hormones. The authors examined the effect of aldosterone and insulin on Na -K -ATPase in epithelial cells in culture derived from toad urinary bladder (TB6C) and toad kidney (A6). Aldosterone, but not insulin, increases short-circuit current (I/sub sc/) in TB6C cells. Aldosterone increases Na -K -(TSP)ATPase activity after 18 h of incubation, but no effect can be seen at 3 and 6 h. Amiloride, which inhibits aldosterone-induced increases in I/sub sc/, has no effect on either basal or aldosterone stimulated enzyme activity. Both aldosterone and insulin increase I/sub sc/ in A6 cells and when added together are synergistic. Aldosterone stimulates enzyme activity in A6 cells, but insulin alone has no effect. However, aldosterone and insulin together stimulate enzyme activity more than aldosterone alone. It appears that stimulation of Na -K -ATPase activity is involved in aldosterone action in both cell lines but does not appear to be due to increased Na entry, since enhanced enzyme activity is not inhibited by amiloride. In contrast, insulin alone has no direct effect on Na -K -ATPase, although the increased enzyme activity following both agents in combination may explain their synergism on I/sub sc/.

  18. Lymphohaemopoietic antigens of cultured human glomerular epithelial cells.

    PubMed Central

    van der Woude, F. J.; Michael, A. F.; Muller, E.; van der Hem, G. K.; Vernier, R. L.; Kim, Y.

    1989-01-01

    Glomerular visceral epithelial cells (GVEC) from normal human glomeruli were grown in tissue culture. Cell surface markers were studied by immunofluorescence microscopy using antibodies against lymphohaemopoietic differentiation antigens which are known to be present early (BA-1, OKB2, BA-2) and late (J5, anti CR1) in renal ontogenesis. Like foetal human glomerular epithelium, the cultured cells reacted with BA-1 and OKB2 (identifying an antigen expressed on B cells and polymorphonuclear leucocytes), and BA-2 (leukaemia-associated antigen), but were consistently negative for CR1 (C3b receptor); J5 which identifies the common acute lymphoblastic leukaemia antigen (CALLA) stained variably. Reactivity with antimyosin or anti factor VIII were absent. The cells produced an extracellular matrix containing laminin, type IV collagen, and fibronectin. This study supports the notion that GVEC undergo dedifferentiation as shown by the acquisition of lymphohaemopoietic differentiation antigens present early in renal ontogeny. In addition, the production of extracellular matrix constituents in vitro may be useful for the investigation of human glomerular basement membranes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:2647119

  19. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  20. ABCF1 extrinsically regulates retinal pigment epithelial cell phagocytosis

    PubMed Central

    Guo, Feiye; Ding, Ying; Caberoy, Nora; Alvarado, Gabriela; Wang, Feng; Chen, Rui; Li, Wei

    2015-01-01

    Phagocytosis of shed photoreceptor outer segments (POSs) by retinal pigment epithelial (RPE) cells is critical to retinal homeostasis and shares many conserved signaling pathways with other phagocytes, including extrinsic regulations. Phagocytotic ligands are the key to cargo recognition, engulfment initiation, and activity regulation. In this study, we identified intracellular protein ATP-binding cassette subfamily F member 1 (ABCF1) as a novel RPE phagocytotic ligand by a new approach of functional screening. ABCF1 was independently verified to extrinsically promote phagocytosis of shed POSs by D407 RPE cells. This finding was further corroborated with primary RPE cells and RPE explants. Internalized POS vesicles were colocalized with a phagosome marker, suggesting that ABCF1-mediated engulfment is through a phagocytic pathway. ABCF1 was released from apoptotic cells and selectively bound to shed POS vesicles and apoptotic cells, possibly via externalized phosphatidylserine. ABCF1 is predominantly expressed in POSs and colocalized with the POS marker rhodopsin, providing geographical convenience for regulation of RPE phagocytosis. Collectively these results suggest that ABCF1 is released from and binds to shed POSs in an autocrine manner to facilitate RPE phagocytosis through a conserved pathway. Furthermore, the new approach is broadly applicable to many other phagocytes and will enable systematic elucidation of their ligands to understand extrinsic regulation and cargo recognition. PMID:25904329

  1. Alteration of cell-cycle regulation in epithelial ovarian cancer.

    PubMed

    Nam, E J; Kim, Y T

    2008-01-01

    In spite of the clinical importance of epithelial ovarian cancer (EOC), little is known about the pathobiology of its precursor lesions and progression. Regulatory mechanisms of the cell cycle are mainly composed of cyclins, cyclin-dependent kinases (CDK), and CDK inhibitors. Alteration of these mechanisms results in uncontrolled cell proliferation, which is a distinctive feature of human cancers. This review describes the current state of knowledge about the alterations of cell-cycle regulations in the context of p16-cyclin D1-CDK4/6-pRb pathway, p21-p27-cyclin E-CDK2 pathway, p14-MDM2-p53 pathway, and ATM-Chk2-CDC25 pathway, respectively. Recent evidence suggests that ovarian cancer is a heterogenous group of neoplasms with several different histologic types, each with its own underlying molecular genetic mechanism. Therefore, expression of cell cycle regulatory proteins should be tested separately according to each histologic type. In serous ovarian carcinoma, high expression of p16, p53, and p27 and low expression of p21 and cyclin E were shown. In addition, this review focuses on the prognostic significance of cell cycle-regulating proteins in EOC. However, it is difficult to compare the results from different groups due to diverse methodologies and interpretations. Accordingly, researchers should establish standardized criteria for the interpretation of immunohistochemical results. PMID:18298566

  2. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Astrophysics Data System (ADS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  3. The Neisseria meningitidis ADP-Ribosyltransferase NarE Enters Human Epithelial Cells and Disrupts Epithelial Monolayer Integrity

    PubMed Central

    Ayala, Inmaculada; Colanzi, Antonino; Lapazio, Lucia; Corda, Daniela; Soriani, Marco; Pizza, Mariagrazia; Rossi Paccani, Silvia

    2015-01-01

    Many pathogenic bacteria utilize ADP-ribosylating toxins to modify and impair essential functions of eukaryotic cells. It has been previously reported that Neisseria meningitidis possesses an ADP-ribosyltransferase enzyme, NarE, retaining the capacity to hydrolyse NAD and to transfer ADP-ribose moiety to arginine residues in target acceptor proteins. Here we show that upon internalization into human epithelial cells, NarE gains access to the cytoplasm and, through its ADP-ribosylating activity, targets host cell proteins. Notably, we observed that these events trigger the disruption of the epithelial monolayer integrity and the activation of the apoptotic pathway. Overall, our findings provide, for the first time, evidence for a biological activity of NarE on host cells, suggesting its possible involvement in Neisseria pathogenesis. PMID:25996923

  4. Carcinoma cells induce lumen filling and EMT in epithelial cells through soluble E-cadherin-mediated activation of EGFR.

    PubMed

    Patil, Pratima U; D'Ambrosio, Julia; Inge, Landon J; Mason, Robert W; Rajasekaran, Ayyappan K

    2015-12-01

    In epithelial cancers, carcinoma cells coexist with normal cells. Although it is known that the tumor microenvironment (TME) plays a pivotal role in cancer progression, it is not completely understood how the tumor influences adjacent normal epithelial cells. In this study, a three-dimensional co-culture system comprising non-transformed epithelial cells (MDCK) and transformed carcinoma cells (MSV-MDCK) was used to demonstrate that carcinoma cells sequentially induce preneoplastic lumen filling and epithelial-mesenchymal transition (EMT) in epithelial cysts. MMP-9 secreted by carcinoma cells cleaves cellular E-cadherin (encoded by CDH1) from epithelial cells to generate soluble E-cadherin (sE-cad), a pro-oncogenic protein. We show that sE-cad induces EGFR activation, resulting in lumen filling in MDCK cysts. Long-term sE-cad treatment induced EMT. sE-cad caused lumen filling by induction of the ERK signaling pathway and triggered EMT through the sustained activation of the AKT pathway. Although it is known that sE-cad induces MMP-9 release and consequent EGFR activation in tumor cells, our results, for the first time, demonstrate that carcinoma cells can induce sE-cad shedding in adjacent epithelial cells, which leads to EGFR activation and the eventual transdifferentiation of the normal epithelial cells. PMID:26483386

  5. Retinal Pigment Epithelial Cell Line Suppression of Phagolysosome Activation

    PubMed Central

    Taylor, AW; Dixit, S; Yu, J

    2015-01-01

    The eye is an immune privileged tissue with multiple mechanisms of immunosuppression to protect the light gathering tissues from the damage of inflammation. One of theses mechanisms involves retinal pigment epithelial cell suppression of phagosome activation in macrophages. The objective of this work is to determine if the human RPE cell line ARPE-19 is capable of suppressing the activation of the phagolysosome in macrophages in a manner similar to primary RPE. The conditioned media of RPE eyecups, sub-confluent, just confluent cultures, or established confluent cultures of human ARPE-19 cells were generated. These condition media were used to treat macrophages phagocytizing pHrodo bioparticles. After 24 hours incubation the macrophages were imaged by fluorescent microscopy, and fluorescence was measured. The fluorescent intensity is proportional to the amount of bioparticles phagocytized and are in an activated phagolysosome. The conditioned media of in situ mouse RPE eyecups significantly suppressed the activation of phagolysosome. The conditioned media from cultures of human ARPE-19 cells, grown to sub-confluence (50%) or grown to confluence had no effect on phagolysosome activation. In contrast, the conditioned media from established confluent cultures significantly suppressed phagolysosome activation. The neuropeptides alpha-MSH and NPY were depleted from the conditioned media of established confluent ARPE-19 cell cultures. This depleted conditioned media had diminished suppression of phagolysosome activation while promoting macrophage cell death. In addition, the condition media from cultures of ARPE-19 monolayers wounded with a bisecting scrape was diminished in suppressing phagolysosome activation. This technical report suggests that like primary RPE monolayers, established confluent cultures of ARPE-19 cells produce soluble factors that suppress the activation of macrophages, and can be used to study the molecular mechanisms of retinal immunobiology. In

  6. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement

    PubMed Central

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P.; Cattin, Cedric J.; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A.; Hierlemann, Andreas; Müller, Daniel J.

    2015-01-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells. PMID:26602832

  7. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement.

    PubMed

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P; Cattin, Cedric J; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A; Hierlemann, Andreas; Müller, Daniel J

    2015-01-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells. PMID:26602832

  8. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement

    NASA Astrophysics Data System (ADS)

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P.; Cattin, Cedric J.; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A.; Hierlemann, Andreas; Müller, Daniel J.

    2015-11-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells.

  9. IL-10-producing CD4+ T cells negatively regulate fucosylation of epithelial cells in the gut

    PubMed Central

    Goto, Yoshiyuki; Lamichhane, Aayam; Kamioka, Mariko; Sato, Shintaro; Honda, Kenya; Kunisawa, Jun; Kiyono, Hiroshi

    2015-01-01

    Fucosylated glycans on the surface of epithelial cells (ECs) regulate intestinal homeostasis by serving as attachment receptors and a nutrient source for some species of bacteria. We show here that epithelial fucosylation in the ileum is negatively regulated by IL-10-producing CD4+ T cells. The number of fucosylated ECs was increased in the ileum of mice lacking T cells, especially those expressing αβ T cell receptor (TCR), CD4, and IL-10. No such effect was observed in mice lacking B cells. Adoptive transfer of αβTCR+ CD4+ T cells from normal mice, but not IL-10-deficient mice, normalized fucosylation of ECs. These findings suggest that IL-10-producing CD4+ T cells contribute to the maintenance of the function of ECs by regulating their fucosylation. PMID:26522513

  10. Mobilization of CD34+CD38- hematopoietic stem cells after priming in acute myeloid leukemia

    PubMed Central

    Plesa, Adriana; Chelghoum, Youcef; Mattei, Eve; Labussière, Hélène; Elhamri, Mohamed; Cannas, Giovanna; Morisset, Stéphane; Tagoug, Inès; Michallet, Mauricette; Dumontet, Charles; Thomas, Xavier

    2013-01-01

    AIM: To evaluate quantitatively and qualitatively the different CD34+ cell subsets after priming by chemotherapy granulocyte colony-stimulating factor (± G-CSF) in patients with acute myeloid leukemia. METHODS: Peripheral blood and bone marrow samples were harvested in 8 acute myeloid leukemia patients during and after induction chemotherapy. The CD34/CD38 cell profile was analyzed by multi-parameter flow cytometry. Adhesion profile was made using CXC chemokine receptor 4 (CXCR4) (CD184), VLA-4 (CD49d/CD29) and CD47. RESULTS: Chemotherapy ± G-CSF mobilized immature cells (CD34+CD38− population), while the more mature cells (CD34+CD38low and CD34+CD38+ populations) decreased progressively after treatment. Circulating CD34+ cells tended to be more sensitive to chemotherapy after priming with G-CSF. CD34+ cell mobilization was correlated with a gradual increase in CXCR4 and CD47 expression, suggesting a role in cell protection and the capacity of homing back to the marrow. CONCLUSION: Chemotherapy ± G-CSF mobilizes into the circulation CD34+ bone marrow cells, of which, the immature CD34+CD38– cell population. Further manipulations of these interactions may be a means with which to control the trafficking of leukemia stem cells to improve patients’ outcomes. PMID:24179607

  11. Characterization of kidney epithelial cells from the Florida manatee, Trichechus manatus latirostris.

    PubMed

    Sweat JMDunigan, D D; Wright, S D

    2001-06-01

    The West-Indian manatee, Trichechus manatus latirostris, is a herbivorous marine mammal found in the coastal waters of Florida. Because of their endangered status, animal experimentation is not allowed. Therefore, a cell line was developed and characterized from tissue collected during necropsies of the manatees. A primary cell culture was established by isolating single cells from kidney tissue using both enzymatic and mechanical techniques. Primary manatee kidney (MK) cells were subcultured for characterization. These cells were morphologically similar to the cell lines of epithelial origin. An immunocytochemistry assay was used to localize the cytokeratin filaments common to cells of epithelial origin. At second passage, epithelial-like cells had an average population-doubling time of 48 h, had an optimum seeding density of 5 x 10(3) cells/cm2, and readily attached to plastic culture plates with a high level of seeding efficiency. Although the epithelial-like cells had a rapid growth rate during the first three passages, the cloning potential was low. These cells did not form colonies in agar medium, were serum dependent, had a limited life span of approximately nine passages, and possessed cell-contact inhibition. These data suggest that the cells were finite (noncontinuous growth), did not possess transformed properties, and were of epithelial origin. These cells are now referred to as MK epithelial cells. PMID:11515973

  12. Bovine TLR2 and TLR4 mediate Cryptosporidium parvum recognition in bovine intestinal epithelial cells.

    PubMed

    Yang, Zhengtao; Fu, Yunhe; Gong, Pengtao; Zheng, Jingtong; Liu, Li; Yu, Yuqiang; Li, Jianhua; Li, He; Yang, Ju; Zhang, Xichen

    2015-08-01

    Cryptosporidium parvum (C. parvum) is an intestinal parasite that causes diarrhea in neonatal calves. It results in significant morbidity of neonatal calves and economic losses for producers worldwide. Innate resistance against C. parvum is thought to depend on engagement of pattern recognition receptors. However, the role of innate responses to C. parvum has not been elucidated in bovine. The aim of this study was to evaluate the role of TLRs in host-cell responses during C. parvum infection of cultured bovine intestinal epithelial cells. The expressions of TLRs in bovine intestinal epithelial cells were detected by qRT-PCR. To determine which, if any, TLRs may play a role in the response of bovine intestinal epithelial cells to C. parvum, the cells were stimulated with C. parvum and the expression of TLRs were tested by qRT-PCR. The expression of NF-κB was detected by western blotting. Further analyses were carried out in bovine TLRs transfected HEK293 cells and by TLRs-DN transfected bovine intestinal epithelial cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs. The expression of TLR2 and TLR4 were up-regulated when bovine intestinal epithelial cells were treated with C. parvum. Meanwhile, C. parvum induced IL-8 production in TLR2 or TLR4/MD-2 transfected HEK293 cells. Moreover, C. parvum induced NF-κB activation and cytokine expression in bovine intestinal epithelial cells. The induction of NF-κB activation and cytokine expression by C. parvum were reduced in TLR2-DN and TLR4-DN transfected cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs, and bovine intestinal epithelial cells recognized and responded to C. parvum via TLR2 and TLR4. PMID:26048276

  13. Human Bronchial Epithelial Cell Response to Heavy Particle Exposure

    NASA Astrophysics Data System (ADS)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Peyton, Michael; Larsen, Jill

    2012-07-01

    A battery of non-oncogenically immortalized human bronchial epithelial cells (HBECs) are being used to examine the molecular changes that lead to lung carcinogenesis after exposure to heavy particles found in the free space environment. The goal is to ultimately identify biomarkers of radioresponse that can be used for prediction of carcinogenic risk for fatal lung cancer. Our initial studies have focused on the cell line HBEC3 KT and the isogenic variant HBEC3 KTR53, which overexpresses the RASv12 mutant and where p53 has been knocked down by shRNA, and is considered to be a more oncogenically progressed variant. We have previously described the response of HBEC3 KT at the cellular and molecular level, however, the focus here is on the rate of cellular transformation after HZE radiation exposure and the molecular changes in transformed cells. When comparing the two cell lines we find that there is a maximum rate of cellular transformation at 0.25 Gy when cells are exposed to 1 GeV Fe particles, and, for the HBEC3 KTR53 there are multiple pathways upregulated that promote anchorage independent growth including the mTOR pathway, the TGF-1 pathway, RhoA signaling and the ERK/MAPK pathway as early as 2 weeks after radiation. This does not occur in the HBEC3 KT cell line. Transformed HBEC3 KT cells do not show any morphologic or phenotypic changes when grown as cell cultures. HBEC3 KTR53 cells on the other hand show substantial changes in morphology from a cobblestone epithelial appearance to a mesenchymal appearance with a lack of contact inhibition. This epithelial to mesenchymal change in morphology is accompanied by the expression of vimentin and a reduction in the expression of E-cadherin, which are hallmarks of epithelial to mesenchymal transition. Interestingly, for HBEC3 KT transformed cells there are no mutations in the p53 gene, 2 of 15 clones were found to be heterozygous for the RASV12 mutation, and 3 of 15 clones expressed high levels of BigH3, a TGFB

  14. Collective cell streams in epithelial monolayers depend on cell adhesion

    NASA Astrophysics Data System (ADS)

    Czirók, András; Varga, Katalin; Méhes, Előd; Szabó, András

    2013-07-01

    We report spontaneously emerging, randomly oriented, collective streaming behavior within a monolayer culture of a human keratinocyte cell line, and explore the effect of modulating cell adhesions by perturbing the function of calcium-dependent cell adhesion molecules. We demonstrate that decreasing cell adhesion induces narrower and more anisotropic cell streams, reminiscent of decreasing the Taylor scale of turbulent liquids. To explain our empirical findings, we propose a cell-based model that represents the dual nature of cell-cell adhesions. Spring-like connections provide mechanical stability, while a cellular Potts model formalism represents surface-tension driven attachment. By changing the relevance and persistence of mechanical links between cells, we are able to explain the experimentally observed changes in emergent flow patterns.

  15. Gene expression in epithelial cells in response to pneumovirus infection

    PubMed Central

    Domachowske, Joseph B; Bonville, Cynthia A; Rosenberg, Helene F

    2001-01-01

    Respiratory syncytial virus (RSV) and pneumonia virus of mice (PVM) are viruses of the family Paramyxoviridae, subfamily pneumovirus, which cause clinically important respiratory infections in humans and rodents, respectively. The respiratory epithelial target cells respond to viral infection with specific alterations in gene expression, including production of chemoattractant cytokines, adhesion molecules, elements that are related to the apoptosis response, and others that remain incompletely understood. Here we review our current understanding of these mucosal responses and discuss several genomic approaches, including differential display reverse transcription-polymerase chain reaction (PCR) and gene array strategies, that will permit us to unravel the nature of these responses in a more complete and systematic manner. PMID:11686888

  16. Single-Cell Gene Expression Profiles Define Self-Renewing, Pluripotent, and Lineage Primed States of Human Pluripotent Stem Cells

    PubMed Central

    Hough, Shelley R.; Thornton, Matthew; Mason, Elizabeth; Mar, Jessica C.; Wells, Christine A.; Pera, Martin F.

    2014-01-01

    Summary Pluripotent stem cells display significant heterogeneity in gene expression, but whether this diversity is an inherent feature of the pluripotent state remains unknown. Single-cell gene expression analysis in cell subsets defined by surface antigen expression revealed that human embryonic stem cell cultures exist as a continuum of cell states, even under defined conditions that drive self-renewal. The majority of the population expressed canonical pluripotency transcription factors and could differentiate into derivatives of all three germ layers. A minority subpopulation of cells displayed high self-renewal capacity, consistently high transcripts for all pluripotency-related genes studied, and no lineage priming. This subpopulation was characterized by its expression of a particular set of intercellular signaling molecules whose genes shared common regulatory features. Our data support a model of an inherently metastable self-renewing population that gives rise to a continuum of intermediate pluripotent states, which ultimately become primed for lineage specification. PMID:24936473

  17. Cell cycle-dependent regulation of extra-adrenal glucocorticoid synthesis in murine intestinal epithelial cells.

    PubMed

    Atanasov, Atanas G; Leiser, Dominic; Roesselet, Corinne; Noti, Mario; Corazza, Nadia; Schoonjans, Kristina; Brunner, Thomas

    2008-12-01

    Glucocorticoids are anti-inflammatory steroids with important applications in the treatment of inflammatory diseases. Endogenous glucocorticoids are mainly produced by the adrenal glands, although there is increasing evidence for extra-adrenal sources. Recent findings show that intestinal crypt cells produce glucocorticoids, which contribute to the maintenance of intestinal immune homeostasis. Intestinal glucocorticoid synthesis is critically regulated by the transcription factor liver receptor homologue-1 (LRH-1). As expression of steroidogenic enzymes and LRH-1 is restricted to the proliferating cells of the crypts, we aimed to investigate the role of the cell cycle in the regulation of LRH-1 activity and intestinal glucocorticoid synthesis. We here show that either pharmacological or molecular modulation of cell cycle progression significantly inhibited expression of steroidogenic enzymes and synthesis of glucocorticoids in intestinal epithelial cells. Synchronization of intestinal epithelial cells in the cell cycle revealed that expression of steroidogenic enzymes is preferentially induced at the G(1)/S stage. Differentiation of immature intestinal epithelial cells to mature nonproliferating cells also resulted in reduced expression of steroidogenic enzymes. This cell cycle-related effect on intestinal steroidogenesis was found to be mediated through the regulation of LRH-1 transcriptional activity. This mechanism may restrict intestinal glucocorticoid synthesis to the proliferating cells of the crypts. PMID:18711026

  18. Regenerative capacity of adult cortical thymic epithelial cells.

    PubMed

    Rode, Immanuel; Boehm, Thomas

    2012-02-28

    Involution of the thymus is accompanied by a decline in the number of thymic epithelial cells (TECs) and a severely restricted peripheral repertoire of T-cell specificities. TECs are essential for T-cell differentiation; they originate from a bipotent progenitor that gives rise to cells of cortical (cTEC) and medullary (mTEC) phenotypes, via compartment-specific progenitors. Upon acute selective near-total ablation during embryogenesis, regeneration of TECs fails, suggesting that losses from the pool of TEC progenitors are not compensated. However, it is unclear whether this is also true for the compartment-specific progenitors. The decline of cTECs is a prominent feature of thymic involution. Because cTECs support early stages of T-cell development and hence determine the overall lymphopoietic capacity of the thymus, it is possible that the lack of sustained regenerative capacity of cTEC progenitor cells underlies the process of thymic involution. Here, we examine this hypothesis by cell-type-specific conditional ablation of cTECs. Expression of the human diphtheria toxin receptor (hDTR) gene under the regulatory influence of the chemokine receptor Ccx-ckr1 gene renders cTECs sensitive to the cytotoxic effects of diphtheria toxin (DT). As expected, DT treatment of preadolescent and adult mice led to a dramatic loss of cTECs, accompanied by a rapid demise of immature thymocytes. Unexpectedly, however, the cTEC compartment regenerated after cessation of treatment, accompanied by the restoration of T-cell development. These findings provide the basis for the development of targeted interventions unlocking the latent regenerative potential of cTECs to counter thymic involution. PMID:22331880

  19. PAX8 Expression in Ovarian Surface Epithelial Cells

    PubMed Central

    Adler, Emily; Mhawech-Fauceglia, Paulette; Gayther, Simon A; Lawrenson, Kate

    2015-01-01

    High-grade serous ovarian carcinoma (HGSOC) is usually diagnosed at a late stage and is associated with poor prognosis. Understanding early stage disease biology is essential in developing clinical biomarkers to detect HGSOC earlier. While recent studies indicate that HGSOCs arise from fallopian tube secretory epithelial cells (FTSECs), a considerable body of evidence also suggests that HGSOC can also arise from ovarian surface epithelial cells (OSECs). PAX8 is overexpressed in HGSOCs and expressed in FTSECs, but there are conflicting reports about PAX8 expression in OSECs. The purpose of this study was to comprehensively characterize PAX8 expression in a large series of OSECs, and to investigate the role of PAX8 in early HGSOC development. PAX8 protein expression was analyzed in the OSECs of 27 normal ovaries and 7 primary OSEC cultures using immunohistochemistry and immunofluorescent cytochemistry. PAX8 mRNA expression was quantified in 66 primary OSEC cultures. Cellular transformation was evaluated in OSECs expressing a PAX8 construct. PAX8 was expressed by 44-71% of OSECs. Calretinin and E-cadherin were frequently co-expressed with PAX8. Expression of PAX8 in OSECs decreased cellular migration (P=0.028), but had no other effects on cellular transformation. In addition, PAX8 expression was significantly increased (P=0.003) in an in vitro stepwise model of neoplastic transformation. In conclusion, PAX8 is frequently expressed by OSECs and endogenous levels of PAX8 expression are non-transforming. These data indicate that in OSECs PAX8 expression may represent a normal state and that OSECs may represent an origin of HGSOCs. PMID:26079312

  20. Ionizing radiation predisposes non-malignant human mammaryepithelial cells to undergo TGF beta-induced epithelial to mesenchymaltransition

    SciTech Connect

    Andarawewa, Kumari L.; Erickson, Anna C.; Chou, William S.; Costes, Sylvain; Gascard, Philippe; Mott, Joni D.; Bissell, Mina J.; Barcellos-Hoff, Mary Helen

    2007-04-06

    Transforming growth factor {beta}1 (TGF{beta}) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGF{beta}, activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGF{beta}-mediated epithelial to mesenchymal transition (EMT). Non-malignant HMEC (MCF10A, HMT3522 S1 and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture, or treated with a low concentration of TGF{beta} (0.4 ng/ml), or double-treated. All double-treated (IR+TGF{beta}) HMEC underwent a morphological shift from cuboidal to spindle-shaped. This phenotype was accompanied by decreased expression of epithelial markers E-cadherin, {beta}-catenin and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin and vimentin. Furthermore, double-treatment increased cell motility, promoted invasion and disrupted acinar morphogenesis of cells subsequently plated in Matrigel{trademark}. Neither radiation nor TGF{beta} alone elicited EMT, even though IR increased chronic TGF{beta} signaling and activity. Gene expression profiling revealed that double treated cells exhibit a specific 10-gene signature associated with Erk/MAPK signaling. We hypothesized that IR-induced MAPK activation primes non-malignant HMEC to undergo TGF{beta}-mediated EMT. Consistent with this, Erk phosphorylation were transiently induced by irradiation, persisted in irradiated cells treated with TGF{beta}, and treatment with U0126, a Mek inhibitor, blocked the EMT phenotype. Together, these data demonstrate that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.

  1. Ionizing radiation induces heritable disruption of epithelial cell interactions

    PubMed Central

    Park, Catherine C.; Henshall-Powell, Rhonda L.; Erickson, Anna C.; Talhouk, Rabih; Parvin, Bahram; Bissell, Mina J.; Barcellos-Hoff, Mary Helen

    2003-01-01

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, β-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell–cell communication, aberrant cell–extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization. PMID:12960393

  2. Early Trypanosoma cruzi Infection Reprograms Human Epithelial Cells

    PubMed Central

    Chiribao, María Laura; Libisch, Gabriela; Parodi-Talice, Adriana; Robello, Carlos

    2014-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, has the peculiarity, when compared with other intracellular parasites, that it is able to invade almost any type of cell. This property makes Chagas a complex parasitic disease in terms of prophylaxis and therapeutics. The identification of key host cellular factors that play a role in the T. cruzi invasion is important for the understanding of disease pathogenesis. In Chagas disease, most of the focus is on the response of macrophages and cardiomyocytes, since they are responsible for host defenses and cardiac lesions, respectively. In the present work, we studied the early response to infection of T. cruzi in human epithelial cells, which constitute the first barrier for establishment of infection. These studies identified up to 1700 significantly altered genes regulated by the immediate infection. The global analysis indicates that cells are literally reprogrammed by T. cruzi, which affects cellular stress responses (neutrophil chemotaxis, DNA damage response), a great number of transcription factors (including the majority of NFκB family members), and host metabolism (cholesterol, fatty acids, and phospholipids). These results raise the possibility that early host cell reprogramming is exploited by the parasite to establish the initial infection and posterior systemic dissemination. PMID:24812617

  3. Cell surface expression and biosynthesis of epithelial Na+ channels.

    PubMed Central

    Prince, L S; Welsh, M J

    1998-01-01

    The epithelial Na+ channel (ENaC) complex is composed of three homologous subunits: alpha, beta and gamma. Mutations in ENaC subunits can increase the number of channels on the cell surface, causing a hereditary form of hypertension called Liddle's syndrome, or can decrease channel activity, causing pseudohypoaldosteronism type I, a salt-wasting disease of infancy. To investigate surface expression, we studied ENaC subunits expressed in COS-7 and HEK293 cells. Using surface biotinylation and protease sensitivity, we found that when individual ENaC subunits are expressed alone, they traffic to the cell surface. The subunits are glycosylated with high-mannose oligosaccharides, but seem to have the carbohydrate removed before they reach the cell surface. Moreover, subunits form a complex that cannot be disrupted by several non-ionic detergents. The pattern of glycosylation and detergent solubility/insolubility persists when the N-teminal and C-terminal cytoplasmic regions of ENaC are removed. With co-expression of all three ENaC subunits, the insoluble complex is the predominant species. These results show that ENaC and its family members are unique in their trafficking, biochemical characteristics and post-translational modifications. PMID:9841884

  4. Epithelial cell invasion by bovine septicemic Escherichia coli.

    PubMed Central

    Korth, M J; Lara, J C; Moseley, S L

    1994-01-01

    Little is known regarding the pathogenesis of Escherichia coli-induced septicemic colibacillosis of calves. To understand the mechanism by which these strains penetrate the intestinal epithelium and gain access to the bloodstream, we examined the potential of bovine septicemic E. coli to invade cultured epithelial cells. By using a gentamicin survival assay, we demonstrated bacterial invasion of Madin-Darby canine kidney (MDCK) cells. Transcytosis of polarized MDCK cell monolayers was also observed, but only when bacteria were added to the basolateral surface. Electron microscopy confirmed the presence of intracellular organisms which appeared to be within membrane-bound vacuoles. The bovine septicemic isolate used in this study expressed the fimbrial adhesion CS31A. To examine the role of CS31A-mediated adherence in invasion and transcytosis of MDCK cell monolayers, a CS31A-deficient mutant was constructed by suicide vector-mediated insertional mutagenesis. Although nonadherent, the mutant showed a level of invasion similar to that of the wild-type parent. E. coli DH5 alpha carrying the cloned CS31A determinant was noninvasive. These findings suggest that expression of CS31A is neither required nor sufficient to mediate invasion. Images PMID:7903284

  5. Acute respiratory bronchiolitis: an ultrastructural and autoradiographic study of epithelial cell injury and renewal in Rhesus monkeys exposed to ozone

    SciTech Connect

    Castleman, W.L.; Dungworth, D.L.; Schwartz, L.W.; Tyler, W.S.

    1980-03-01

    The pathogenesis of acute respiratory bronchiolitis was examined in Rhesus monkeys exposed to 0.8 ppM ozone for 4 to 50 hours. Epithelial injury and renewal were qualitatively and quantitatively characterized by correlated techniques of scanning and transmission electron microscopy as well as by light-microscopic autoradiography following labeling with tritiated thymidine. Extensive degeneration and necrosis of Type 1 epithelial cells occurred on the respiratory bronchiolar wall during the initial 4 to 12 hours of exposure. Increased numbers of labeled epithelial cells were present in this region after 18 hours of exposure, and the highest labeling index (18%) was measured after 50 hours of exposure. Most (67 to 80%) of the labeled cells and all the mitotic epithelial cells (22) observed ultrastructurally were cuboidal bronchiolar epithelial cells. Of the labeled epithelial cells, 20 to 33% were Type 2 epithelial cells. After 50 hours of exposure the respiratory bronchiolar epithelium was hyperplastic. The predominant inflammatory cell in respiratory bronchiolar exudate was the alveolar macrophage. Monkeys that were exposed for 50 hours and allowed to recover in unozonized air for 7 days had incomplete resolution of respiratory bronchiolar epithelial hyperplasia. The results indicate that Type 1 epithelial cells lining respiratory bronchioles are the cell types most sensitive to injury and that both cuboidal bronchiolar epithelial cells and Type 2 epithelial cells function as stem cells in epithelial renewal.

  6. Dendritic cell-derived tumor necrosis factor α modifies airway epithelial cell responses.

    PubMed

    Lutfi, R; Ledford, J R; Zhou, P; Lewkowich, I P; Page, K

    2012-01-01

    Mucosal dendritic cells (DC) are intimately associated with the airway epithelium and thus are ideally situated to be first responders to pathogens. We hypothesize that DC drive innate immune responses through early release of tumor necrosis factor (TNF) α, which drives airway epithelial cell responses. In a mouse model, TNFα release was significantly increased following a single exposure to German cockroach (GC) frass, an event independent of neutrophil recruitment into the airways. While lung epithelial cells and alveolar macrophages failed to release TNFα following GC frass exposure, bone marrow-derived DC (BMDC) produced substantial amounts of TNFα suggesting their importance as early responding cells. This was confirmed by flow cytometry of pulmonary myeloid DC. Addition of GC frass-pulsed BMDC or conditioned media from GC frass-pulsed BMDC to primary mouse tracheal epithelial cells (MTEC) or MLE-15 cells induced chemokine (C-C) motif ligand (CCL) 20 and granulocyte macrophage (GM) colony-stimulating factor (CSF), both of which are important for DC recruitment, survival and differentiation. Importantly, DC do not produce CCL20 or GM-CSF following allergen exposure. Blocking TNFα receptor 1 (TNFR1) completely abolished chemokine production, suggesting that BMDC-derived TNFα induced airway epithelial cell activation and enhancement of the innate immune response. Lastly, blocking TNFR1 in vivo resulted in significantly decreased CCL20 and GM-CSF production in the lungs of mice. Together, our data strongly suggest that DC-derived TNFα plays a crucial role in the initiation of innate immune responses through the modification of airway epithelial cell responses. PMID:22517116

  7. Bactericidal effects of antimicrobial agents on epithelial cell-associated Pseudomonas aeruginosa.

    PubMed

    Hirakata, Yoichi; Yano, Hisakazu; Arai, Kazuaki; Kitagawa, Miho; Hatta, Masumitsu; Kunishima, Hiroyuki; Kaku, Mitsuo

    2012-06-01

    It is not clear whether antipseudomonal agents can kill cell-associated bacteria within a short time. Madin-Darby canine kidney (MDCK) and A549 cells were infected with Pseudomonas aeruginosa ATCC 27853 and PAO1 and the bactericidal activity of ceftazidime, imipenem, meropenem, gentamicin, and ciprofloxacin against the organisms was investigated. In both MDCK and A549 cells, β-lactams could not kill epithelial cell-associated bacteria within 2 h. Gentamicin at concentrations ≤32 μg/ml killed more than 99% of epithelial cell-associated bacteria. Ciprofloxacin at 0.5 μg/ml killed more than 99.9% of MDCK cell-associated bacteria. Ciprofloxacin has the strongest and most rapid bactericidal activity against epithelial cell-associated bacteria, which may be explained by the combination of potent in-vitro bactericidal activity and high penetration ability into epithelial cells. PMID:22116462

  8. An improved method for isolation of epithelial and stromal cells from the human endometrium

    PubMed Central

    MASUDA, Ayako; KATOH, Noriko; NAKABAYASHI, Kazuhiko; KATO, Kiyoko; SONODA, Kenzo; KITADE, Mari; TAKEDA, Satoru; HATA, Kenichiro; TOMIKAWA, Junko

    2016-01-01

    We aimed to improve the efficiency of isolating endometrial epithelial and stromal cells (EMECs and EMSCs) from the human endometrium. We revealed by immunohistochemical staining that the large tissue fragments remaining after collagenase treatment, which are usually discarded after the first filtration in the conventional protocol, consisted of glandular epithelial and stromal cells. Therefore, we established protease treatment and cell suspension conditions to dissociate single cells from the tissue fragments and isolated epithelial (EPCAM-positive) and stromal (CD13-positive) cells by fluorescence-activated cell sorting. Four independent experiments showed that, on average, 1.2 × 106 of EMECs and 2.8 × 106 EMSCs were isolated from one hysterectomy specimen. We confirmed that the isolated cells presented transcriptomic features highly similar to those of epithelial and stromal cells obtained by the conventional method. Our improved protocol facilitates future studies to better understand the molecular mechanisms underlying the dynamic changes of the endometrium during the menstrual cycle. PMID:26853786

  9. Cell proliferation in the human mammary epithelium. Differential contribution by epithelial and myoepithelial cells.

    PubMed Central

    Joshi, K.; Smith, J. A.; Perusinghe, N.; Monoghan, P.

    1986-01-01

    The ductal system of the human breast consists of epithelial, myoepithelial, and basal clear cells. By labeling ducts and alveoli dissected from reduction mammoplasty specimens with 3H-thymidine in vitro and labeling human breast organoids xenografted in nude mice in vivo, it was found that cellular proliferation in the human breast is virtually confined to epithelial and basal clear cells. A pulse label of 3H-thymidine in organ culture explants was followed over a period of time, and it was found that myoepithelial cells originate from a precursor cell population within the mammary epithelium after a number of cell divisions. Myoepithelial cells were not seen to divide when fully mature. Images Figure 1 Figure 2 PMID:3740213

  10. Oestrogen-induced epithelial-mesenchymal transition of endometrial epithelial cells contributes to the development of adenomyosis.

    PubMed

    Chen, Yi-Jen; Li, Hsin-Yang; Huang, Chi-Hung; Twu, Nae-Fang; Yen, Ming-Shyen; Wang, Peng-Hui; Chou, Teh-Ying; Liu, Yen-Ni; Chao, Kuan-Chong; Yang, Muh-Hwa

    2010-11-01

    Adenomyosis is an oestrogen-dependent disease caused by a downward extension of the endometrium into the uterine myometrium. Epithelial-mesenchymal transition (EMT) endows cells with migratory and invasive properties and can be induced by oestrogen. We hypothesized that oestrogen-induced EMT is critical in the pathogenesis of adenomyosis. We first investigated whether EMT occurred in adenomyotic lesions and whether it correlated with serum 17β-oestradiol (E2) levels. Immunohistochemistry was performed on adenomyotic lesions and corresponding eutopic endometrium samples from women with adenomyosis. Endometria from women without endometrial disorders were used as a control. In the epithelial component of adenomyotic lesions, vimentin expression was up-regulated and E-cadherin expression was down-regulated compared to the eutopic endometrium, suggesting that EMT occurs in adenomyosis. In adenomyosis, the serum E2 level was negatively correlated with E-cadherin expression in the epithelial components of the eutopic endometrium and adenomyotic lesions, suggesting the involvement of oestrogen-induced EMT in endometrial cells. In oestrogen receptor-positive Ishikawa endometrial epithelial cells, oestrogen induced a morphological change to a fibroblast-like phenotype, a shift from epithelial marker expression to mesenchymal marker expression, increased migration and invasion, and up-regulation of the EMT regulator Slug. Raloxifene, a selective oestrogen receptor modulator, abrogated these effects. To determine the role of oestrogen-induced EMT in the implantation of ectopic endometrium, we xenotransplanted eutopic endometrium or adenomyotic lesions from adenomyosis patients into ovariectomized SCID mice. The implantation of endometrium was oestrogen-dependent and was suppressed by raloxifene. Collectively, these data highlight the crucial role of oestrogen-induced EMT in the development of adenomyosis and suggest that raloxifene may be a potential therapeutic agent for

  11. LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency.

    PubMed

    Zhang, Jin; Ratanasirintrawoot, Sutheera; Chandrasekaran, Sriram; Wu, Zhaoting; Ficarro, Scott B; Yu, Chunxiao; Ross, Christian A; Cacchiarelli, Davide; Xia, Qing; Seligson, Marc; Shinoda, Gen; Xie, Wen; Cahan, Patrick; Wang, Longfei; Ng, Shyh-Chang; Tintara, Supisara; Trapnell, Cole; Onder, Tamer; Loh, Yuin-Han; Mikkelsen, Tarjei; Sliz, Piotr; Teitell, Michael A; Asara, John M; Marto, Jarrod A; Li, Hu; Collins, James J; Daley, George Q

    2016-07-01

    The RNA-binding proteins LIN28A and LIN28B play critical roles in embryonic development, tumorigenesis, and pluripotency, but their exact functions are poorly understood. Here, we show that, like LIN28A, LIN28B can function effectively with NANOG, OCT4, and SOX2 in reprogramming to pluripotency and that reactivation of both endogenous LIN28A and LIN28B loci are required for maximal reprogramming efficiency. In human fibroblasts, LIN28B is activated early during reprogramming, while LIN28A is activated later during the transition to bona fide induced pluripotent stem cells (iPSCs). In murine cells, LIN28A and LIN28B facilitate conversion from naive to primed pluripotency. Proteomic and metabolomic analysis highlighted roles for LIN28 in maintaining the low mitochondrial function associated with primed pluripotency and in regulating one-carbon metabolism, nucleotide metabolism, and histone methylation. LIN28 binds to mRNAs of proteins important for oxidative phosphorylation and modulates protein abundance. Thus, LIN28A and LIN28B play cooperative roles in regulating reprogramming, naive/primed pluripotency, and stem cell metabolism. PMID:27320042

  12. The Osteogenic Priming of Mesenchymal Stem Cells is Impaired in Experimental Diabetes.

    PubMed

    Silva, J C; Sampaio, P; Fernandes, M H; Gomes, P S

    2015-08-01

    Diabetes mellitus encompasses a group of metabolic conditions embracing the dysfunction and failure of various tissues and organs, including bone. Sustained bone alterations seem to result from anabolic, rather than catabolic processes, and suggest a decreased osteoblastic recruitment and activity. Current knowledge on the cellular and molecular mechanisms were provided by studies performed with osteogenic populations cultured in diabetic-simulated conditions, and osteogenic-induced precursor populations harvested from diabetic animals, sustaining an impaired cellular behavior in terms of osteogenic responsiveness and function. However, the reasons leaning to this impairment remain essentially unknown, as the priming capability and functionality of undifferentiated precursors, developed within the diabetic environment, have not been addressed. Accordingly, this work aims to evaluate the functionality and osteogenic priming capability of bone marrow-derived mesenchymal stem cells (MSCs), harvested from animals with experimental diabetes, and grown in the absence of any given differentiation factor. MSCs developed within a diabetic microenvironment displayed an impaired behavior, with diminished cell viability and proliferation, altered cytoskeleton organization, impaired osteogenic priming, and increased adipogenic activation. Further, the osteogenic induction of diabetic MSCs resulted in an impaired osteogenic commitment. The modified cell phenotype may be related, at least in part, with altered activity of ERK WNT and p38 signaling pathways in diabetic-derived cultures. Specific strategies, aiming the modulation of the verified hindrances, may be of therapeutic value to enhance the functionality of diabetic MSCs and sustain an improved outcome in the metabolism and regeneration of the bone tissue in diabetic conditions. PMID:25704854

  13. Hemorrhagic shock primes for lung vascular endothelial cell pyroptosis: role in pulmonary inflammation following LPS.

    PubMed

    Yang, Jie; Zhao, Yanfeng; Zhang, Peng; Li, Yuehua; Yang, Yong; Yang, Yang; Zhu, Junjie; Song, Xiao; Jiang, Gening; Fan, Jie

    2016-01-01

    Hemorrhagic shock (HS) often renders patients more susceptible to lung injury by priming for an exaggerated response to a second infectious stimulus. Acute lung injury (ALI) is a major component of multiple organ dysfunction syndrome following HS and regularly serves as a major cause of patient mortality. The lung vascular endothelium is an active organ that has a central role in the development of ALI through synthesizing and releasing of a number of inflammatory mediators. Cell pyroptosis is a caspase-1-dependent regulated cell death, which features rapid plasma membrane rupture and release of proinflammatory intracellular contents. In this study, we demonstrated an important role of HS in priming for LPS-induced lung endothelial cell (EC) pyroptosis. We showed that LPS through TLR4 activates Nlrp3 (NACHT, LRR, and PYD domains containing protein 3) inflammasome in mouse lung vascular EC, and subsequently induces caspase-1 activation. However, HS induced release of high-mobility group box 1 (HMGB1), which acting through the receptor for advanced glycation end products initiates EC endocytosis of HMGB1, and subsequently triggers a cascade of molecular events, including cathepsin B release from ruptured lysosomes followed by pyroptosome formation and caspase-1 activation. These HS-induced events enhance LPS-induced EC pyroptosis. We further showed that lung vascular EC pyroptosis significantly exaggerates lung inflammation and injury. The present study explores a novel mechanism underlying HS-primed ALI and thus presents a potential therapeutic target for post-HS ALI. PMID:27607578

  14. Tacrolimus Modulates TGF-β Signaling to Induce Epithelial-Mesenchymal Transition in Human Renal Proximal Tubule Epithelial Cells.

    PubMed

    Bennett, Jason; Cassidy, Hilary; Slattery, Craig; Ryan, Michael P; McMorrow, Tara

    2016-01-01

    Epithelial-mesenchymal transition (EMT), a process which describes the trans-differentiation of epithelial cells into motile mesenchymal cells, is pivotal in stem cell behavior, development and wound healing, as well as contributing to disease processes including fibrosis and cancer progression. Maintenance immunosuppression with calcineurin inhibitors (CNIs) has become routine management for renal transplant patient, but unfortunately the nephrotoxicity of these drugs has been well documented. HK-2 cells were exposed to Tacrolimus (FK506) and EMT markers were assessed by RT PCR and western blot. FK506 effects on TGF-β mRNA were assessed by RT PCR and TGF-β secretion was measured by ELISA. The impact of increased TGF-β secretion on Smad signaling pathways was investigated. The impact of inhibition of TGF-β signaling on EMT processes was assessed by scratch-wound assay. The results presented in this study suggest that FK506 initiates EMT processes in the HK-2 cell line, with altered expression of epithelial and myofibroblast markers evident. Additionally, the study demonstrates that FK506 activation of the TGF-β/ SMAD pathways is an essential step in the EMT process. Overall the results demonstrate that EMT is heavily involved in renal fibrosis associated with CNI nephrotoxicity. PMID:27128949

  15. Tacrolimus Modulates TGF-β Signaling to Induce Epithelial-Mesenchymal Transition in Human Renal Proximal Tubule Epithelial Cells

    PubMed Central

    Bennett, Jason; Cassidy, Hilary; Slattery, Craig; Ryan, Michael P.; McMorrow, Tara

    2016-01-01

    Epithelial-mesenchymal transition (EMT), a process which describes the trans-differentiation of epithelial cells into motile mesenchymal cells, is pivotal in stem cell behavior, development and wound healing, as well as contributing to disease processes including fibrosis and cancer progression. Maintenance immunosuppression with calcineurin inhibitors (CNIs) has become routine management for renal transplant patient, but unfortunately the nephrotoxicity of these drugs has been well documented. HK-2 cells were exposed to Tacrolimus (FK506) and EMT markers were assessed by RT PCR and western blot. FK506 effects on TGF-β mRNA were assessed by RT PCR and TGF-β secretion was measured by ELISA. The impact of increased TGF-β secretion on Smad signaling pathways was investigated. The impact of inhibition of TGF-β signaling on EMT processes was assessed by scratch-wound assay. The results presented in this study suggest that FK506 initiates EMT processes in the HK-2 cell line, with altered expression of epithelial and myofibroblast markers evident. Additionally, the study demonstrates that FK506 activation of the TGF-β/ SMAD pathways is an essential step in the EMT process. Overall the results demonstrate that EMT is heavily involved in renal fibrosis associated with CNI nephrotoxicity. PMID:27128949

  16. Reversible interconversion and maintenance of mammary epithelial cell characteristics by the ligand-regulated EGFR system

    PubMed Central

    Fukuda, Shinji; Nishida-Fukuda, Hisayo; Nanba, Daisuke; Nakashiro, Koh-ichi; Nakayama, Hironao; Kubota, Hiroyuki; Higashiyama, Shigeki

    2016-01-01

    Epithelial cell plasticity is controlled by extracellular cues, but the underlying mechanisms remain to be fully understood. Epidermal growth factor (EGF) and amphiregulin (AREG) are high- and low-affinity ligands for EGF receptor (EGFR), respectively. EGFR signaling is known to promote epithelial-mesenchymal transition (EMT) by the activation of ERK and the induction of an EMT transcription factor, ZEB1. Here, we demonstrate that ligand-switching between EGF and AREG at equivalent molarity reversibly interconverts epithelial and mesenchymal-like states of EGFR signal-dependent mammary epithelial cells. The EGF- and AREG-cultured cells also differ in their epithelial characteristics, including the expression of cell surface markers, the mode of migration and the ability for acinus-formation. The ligand-switching between EGF and AREG temporally alters strength of the shared EGFR-ERK signaling. This alteration inverts relative expression levels of ZEB1 and its antagonizing microRNAs, miR-205 and miR-200c, those are critical determinants of the epithelial phenotype. Further, AREG-induced EGFR accumulation on the plasma membrane compensates for the weak association between AREG and EGFR. The EGFR dynamics enables AREG to support proliferation as efficiently as EGF at equivalent molarity and to maintain epithelial characteristics. Our findings reveal a role of EGFR ligands-generated signal strength in the regulation of mammary epithelial cell plasticity. PMID:26831618

  17. A rapid method for the evaluation of the ionic permeabilities across epithelial cell membranes.

    PubMed

    Movileanu, L

    1999-02-01

    This short note presents a recipe for the calculation of the ionic permeabilities across epithelial cell membranes. The method requires the Goldman-Hodgkin-Katz formalism as well as the consideration of the equivalent electrical circuit for an epithelial cell. The equivalent electrical circuit is solved in terms of the equivalent electromotive forces coupled in series with the ionic resistances of both cell membranes (apical and basolateral). The present procedure is feasible for any leaky epithelial cell membrane with the condition that this membrane (apical or basolateral) does not contain primary or secondary mechanisms for active transport. PMID:10100952

  18. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    SciTech Connect

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho; Kim, Hyung Jung; Yoo, Young Do

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  19. Effects of Weaning on Intestinal Upper Villus Epithelial Cells of Piglets

    PubMed Central

    Wang, Xiaocheng; Tan, Bie; Li, Tiejun; Yin, Yulong

    2016-01-01

    The intestinal upper villus epithelial cells represent the differentiated epithelial cells and play key role in digesting and absorbing lumenal nutrients. Weaning stress commonly results in a decrease in villus height and intestinal dysfunction in piglets. However, no study have been conducted to test the effects of weaning on the physiology and functions of upper villus epithelial cells. A total of 40 piglets from 8 litters were weaned at 14 days of age and one piglet from each litter was killed at 0 d (w0d), 1 d (w1d), 3 d (w3d), 5 d (w5d), and 7 d (w7d) after weaning, respectively. The upper villus epithelial cells in mid-jejunum were isolated using the distended intestinal sac method. The expression of proteins in upper villus epithelial cells was analyzed using the isobaric tags for relative and absolute quantification or Western blotting. The expression of proteins involved in energy metabolism, Golgi vesicle transport, protein amino acid glycosylation, secretion by cell, transmembrane transport, ion transport, nucleotide catabolic process, translational initiation, and epithelial cell differentiation and apoptosis, was mainly reduced during the post-weaning period, and these processes may be regulated by mTOR signaling pathway. These results indicated that weaning inhibited various cellular processes in jejunal upper villus epithelial cells, and provided potential new directions for exploring the effects of weaning on the functions of intestine and improving intestinal functions in weaning piglets. PMID:27022727

  20. Loss of CLCA4 Promotes Epithelial-to-Mesenchymal Transition in Breast Cancer Cells

    PubMed Central

    Yu, Yang; Walia, Vijay; Elble, Randolph C.

    2013-01-01

    The epithelial to mesenchymal transition (EMT) is a developmental program in which epithelial cells downregulate their cell-cell junctions, acquire spindle cell morphology and exhibit cellular motility. In breast cancer, EMT facilitates invasion of surrounding tissues and correlates closely with cancer metastasis and relapse. We found previously that the candidate tumor suppressor CLCA2 is expressed in differentiated, growth-arrested mammary epithelial cells but is downregulated during tumor progression and EMT. We further demonstrated that CLCA2 is a p53-inducible proliferation-inhibitor whose loss indicates an increased risk of metastasis. We show here that another member of the CLCA gene family, CLCA4, is expressed in mammary epithelial cells and is similarly downregulated in breast tumors and in breast cancer cell lines. Like CLCA2, the gene is stress-inducible, and ectopic expression inhibits colony formation. Transcriptional profiling studies revealed that CLCA4 and CLCA2 together are markers for mammary epithelial differentiation, and both are downregulated by TGF beta. Moreover, knockdown of CLCA4 in immortalized cells by shRNAs caused downregulation of epithelial marker E-cadherin and CLCA2, while mesenchymal markers N-cadherin, vimentin, and fibronectin were upregulated. Double knockdown of CLCA2 and CLCA4 enhanced the mesenchymal profile. These findings suggest that CLCA4 and CLCA2 play complementary but distinct roles in epithelial differentiation. Clinically, low expression of CLCA4 signaled lower relapse-free survival in basal and luminal B breast cancers. PMID:24386311

  1. Effects of Weaning on Intestinal Upper Villus Epithelial Cells of Piglets.

    PubMed

    Yang, Huansheng; Xiong, Xia; Wang, Xiaocheng; Tan, Bie; Li, Tiejun; Yin, Yulong

    2016-01-01

    The intestinal upper villus epithelial cells represent the differentiated epithelial cells and play key role in digesting and absorbing lumenal nutrients. Weaning stress commonly results in a decrease in villus height and intestinal dysfunction in piglets. However, no study have been conducted to test the effects of weaning on the physiology and functions of upper villus epithelial cells. A total of 40 piglets from 8 litters were weaned at 14 days of age and one piglet from each litter was killed at 0 d (w0d), 1 d (w1d), 3 d (w3d), 5 d (w5d), and 7 d (w7d) after weaning, respectively. The upper villus epithelial cells in mid-jejunum were isolated using the distended intestinal sac method. The expression of proteins in upper villus epithelial cells was analyzed using the isobaric tags for relative and absolute quantification or Western blotting. The expression of proteins involved in energy metabolism, Golgi vesicle transport, protein amino acid glycosylation, secretion by cell, transmembrane transport, ion transport, nucleotide catabolic process, translational initiation, and epithelial cell differentiation and apoptosis, was mainly reduced during the post-weaning period, and these processes may be regulated by mTOR signaling pathway. These results indicated that weaning inhibited various cellular processes in jejunal upper villus epithelial cells, and provided potential new directions for exploring the effects of weaning on the functions of intestine and improving intestinal functions in weaning piglets. PMID:27022727

  2. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    SciTech Connect

    Twite, Nicolas; Andrei, Graciela; Kummert, Caroline; Donner, Catherine; Perez-Morga, David; De Vos, Rita; Snoeck, Robert; Marchant, Arnaud

    2014-07-15

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMV by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.

  3. IGF-1 protects tubular epithelial cells during injury via activation of ERK/MAPK signaling pathway

    PubMed Central

    Wu, Zengbin; Yu, Yang; Niu, Lei; Fei, Aihua; Pan, Shuming

    2016-01-01

    Injury of renal tubular epithelial cells can induce acute renal failure and obstructive nephropathy. Previous studies have shown that administration of insulin-like growth factor-1 (IGF-1) ameliorates the renal injury in a mouse unilateral ureteral obstruction (UUO) model, whereas the underlying mechanisms are not completely understood. Here, we addressed this question. We found that the administration of IGF-1 significantly reduced the severity of the renal fibrosis in UUO. By analyzing purified renal epithelial cells, we found that IGF-1 significantly reduced the apoptotic cell death of renal epithelial cells, seemingly through upregulation of anti-apoptotic protein Bcl-2, at protein but not mRNA level. Bioinformatics analyses and luciferase-reporter assay showed that miR-429 targeted the 3′-UTR of Bcl-2 mRNA to inhibit its protein translation in renal epithelial cells. Moreover, IGF-1 suppressed miR-429 to increase Bcl-2 in renal epithelial cells to improve survival after UUO. Furthermore, inhibition of ERK/MAPK signaling pathway in renal epithelial cells abolished the suppressive effects of IGF-1 on miR-429 activation, and then the enhanced effects on Bcl-2 in UUO. Thus, our data suggest that IGF-1 may protect renal tubular epithelial cells via activation of ERK/MAPK signaling pathway during renal injury. PMID:27301852

  4. Regulation of Epithelial-Mesenchymal Transition in Breast Cancer Cells by Cell Contact and Adhesion

    PubMed Central

    Cichon, Magdalena A; Nelson, Celeste M; Radisky, Derek C

    2015-01-01

    Epithelial-mesenchymal transition (EMT) is a physiological program that is activated during cancer cell invasion and metastasis. We show here that EMT-related processes are linked to a broad and conserved program of transcriptional alterations that are influenced by cell contact and adhesion. Using cultured human breast cancer and mouse mammary epithelial cells, we find that reduced cell density, conditions under which cell contact is reduced, leads to reduced expression of genes associated with mammary epithelial cell differentiation and increased expression of genes associated with breast cancer. We further find that treatment of cells with matrix metalloproteinase-3 (MMP-3), an inducer of EMT, interrupts a defined subset of cell contact-regulated genes, including genes encoding a variety of RNA splicing proteins known to regulate the expression of Rac1b, an activated splice isoform of Rac1 known to be a key mediator of MMP-3-induced EMT in breast, lung, and pancreas. These results provide new insights into how MMPs act in cancer progression and how loss of cell–cell interactions is a key step in the earliest stages of cancer development. PMID:25698877

  5. Milk Modulates Campylobacter Invasion into Caco-2 Intestinal Epithelial Cells.

    PubMed

    Louwen, Rogier; van Neerven, R J Joost

    2015-09-01

    Raw milk is a recognized source of Campylobacter outbreaks, but pasteurization is an effective way to eliminate the causative agent of Campylobacteriosis. Whereas breastfeeding is protective against infectious diseases, consumption of formula milk is thought to be not. However, in relation to Campylobacter, such data is currently unavailable. Although both pasteurized and formula milk are pathogen free and prepared in a quality controlled manner, the effect they have on the virulence of Campylobacter species is unknown. Here, we studied the effect of cow, goat, horse, and formula milk on Campylobacter invasion into intestinal epithelial Caco-2 cells, a pathogenic feature of this bacterial species, using a gentamicin exclusion invasion assay. We found that all milk products modulated the invasion of Campylobacter species into the Caco-2 cells in a dose-dependent manner. Control experiments showed that the milks were not toxic for the Caco-2 cells and that the effect on invasion is caused by heat labile (e.g., milk proteins) or heat stable (e.g., sugar/lipids) components depending on the Campylobacter species studied. This in vitro study shows for the first time that pasteurized and formula milk affect the invasion of Campylobacter. We recommend a prospective study to examine whether pasteurized and formula milk affect Campylobacteriosis. PMID:26495128

  6. Milk Modulates Campylobacter Invasion into Caco-2 Intestinal Epithelial Cells

    PubMed Central

    Louwen, Rogier; van Neerven, R. J. Joost

    2015-01-01

    Raw milk is a recognized source of Campylobacter outbreaks, but pasteurization is an effective way to eliminate the causative agent of Campylobacteriosis. Whereas breastfeeding is protective against infectious diseases, consumption of formula milk is thought to be not. However, in relation to Campylobacter, such data is currently unavailable. Although both pasteurized and formula milk are pathogen free and prepared in a quality controlled manner, the effect they have on the virulence of Campylobacter species is unknown. Here, we studied the effect of cow, goat, horse, and formula milk on Campylobacter invasion into intestinal epithelial Caco-2 cells, a pathogenic feature of this bacterial species, using a gentamicin exclusion invasion assay. We found that all milk products modulated the invasion of Campylobacter species into the Caco-2 cells in a dose-dependent manner. Control experiments showed that the milks were not toxic for the Caco-2 cells and that the effect on invasion is caused by heat labile (e.g., milk proteins) or heat stable (e.g., sugar/lipids) components depending on the Campylobacter species studied. This in vitro study shows for the first time that pasteurized and formula milk affect the invasion of Campylobacter. We recommend a prospective study to examine whether pasteurized and formula milk affect Campylobacteriosis. PMID:26495128

  7. Sex hormones have pervasive effects on thymic epithelial cells

    PubMed Central

    Dumont-Lagacé, Maude; St-Pierre, Charles; Perreault, Claude

    2015-01-01

    The goal of our study was to evaluate at the systems-level, the effect of sex hormones on thymic epithelial cells (TECs). To this end, we sequenced the transcriptome of cortical and medullary TECs (cTECs and mTECs) from three groups of 6 month-old mice: males, females and males castrated at four weeks of age. In parallel, we analyzed variations in the size of TEC subsets in those three groups between 1 and 12 months of age. We report that sex hormones have pervasive effects on the transcriptome of TECs. These effects were exquisitely TEC-subset specific. Sexual dimorphism was particularly conspicuous in cTECs. Male cTECs displayed low proliferation rates that correlated with low expression of Foxn1 and its main targets. Furthermore, male cTECs expressed relatively low levels of genes instrumental in thymocyte expansion (e.g., Dll4) and positive selection (Psmb11 and Ctsl). Nevertheless, cTECs were more abundant in males than females. Accumulation of cTECs in males correlated with differential expression of genes regulating cell survival in cTECs and cell differentiation in mTECs. The sexual dimorphism of TECs highlighted here may be mechanistically linked to the well-recognized sex differences in susceptibility to infections and autoimmune diseases. PMID:26250469

  8. Antiproteases modulate bronchial epithelial cell responses to endotoxin.

    PubMed Central

    Koyama, S.; Rennard, S. I.; Claassen, L.; Robbins, R. A.

    1995-01-01

    Escherichia coli endotoxin (0.1 to 1000 micrograms/ml) stimulated the release of neutrophil chemotactic activity (P < 0.001) and induced bronchial epithelial cell (BEC) cytotoxicity assessed by lactate dehydrogenase release (P < 0.001). Endotoxin (100 micrograms/ml) inhibited BEC accumulation (P < 0.001). In the present study, we investigated the role of proteolytic activity of BECs per se in response to endotoxin. Several structurally and functionally different antiproteases, alpha 1 protease inhibitor, soybean trypsin inhibitor, two chloromethyl ketone derivatives (N-tosyl-L-lysine chloromethyl ketone and methoxysuccinyl-Ala-Ala-Pro-Val chloromethyl ketone), and L-658,758, a neutrophil elastase inhibitor, attenuated the release of neutrophil chemotactic activity and lactate dehydrogenase (P < 0.01). alpha 1-Protease inhibitor and N-tosyl-L-lysine chloromethyl ketone attenuated the inhibition of BEC accumulation by endotoxin (P < 0.001). The proteolytic enzyme activity measured by synthetic substrates revealed that endotoxin significantly augmented the serine proteolytic activity in the cell layers. Culture supernatant fluids and cell lysates of BECs in the presence of endotoxin solubilized 14C-labeled casein. These data suggest that responses of BECs to endotoxin may involve activation of cellular proteolytic activity. PMID:7747815

  9. Tungsten-induced carcinogenesis in human bronchial epithelial cells.

    PubMed

    Laulicht, Freda; Brocato, Jason; Cartularo, Laura; Vaughan, Joshua; Wu, Feng; Kluz, Thomas; Sun, Hong; Oksuz, Betul Akgol; Shen, Steven; Peana, Massimiliano; Medici, Serenella; Zoroddu, Maria Antonietta; Costa, Max

    2015-10-01

    Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten's ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer-related pathways in transformed clones as determined by RNA sequencing. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data show the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. PMID:26164860

  10. Entry of genital Chlamydia trachomatis into polarized human epithelial cells.

    PubMed Central

    Wyrick, P B; Choong, J; Davis, C H; Knight, S T; Royal, M O; Maslow, A S; Bagnell, C R

    1989-01-01

    To study the initial invasion process(es) of genital chlamydiae, a model system consisting of hormonally maintained primary cultures of human endometrial gland epithelial cells (HEGEC), grown in a polarized orientation on collagen-coated filters, was utilized. After Chlamydia trachomatis inoculation of the apical surface of polarized HEGEC, chlamydiae were readily visualized, by transmission electron microscopy, in coated pits and coated vesicles. This was true for HEGEC maintained in physiologic concentrations of estrogen (proliferative phase) and of estrogen plus progesterone (secretory phase), despite the finding that association of chlamydiae with secretory-phase HEGEC is significantly reduced (P = 0.025; A.S. Maslow, C.H. Davis, J. Choong, and P.B. Wyrick, Am. J. Obstet. Gynecol. 159:1006-1014, 1988). In contrast, chlamydiae were rarely observed in the clathrin-associated structures if the HEGEC were cultured on plastic surfaces. The same pattern of coated pit versus noncoated pit entry was reproducible in HeLa cells. The quantity of coated pits associated with isolated membrane sheets derived from HeLa cells, grown on poly-L-lysine-coated cover slips in medium containing the female hormones, was not significantly different as monitored by radiolabeling studies and by laser scanning microscopy. These data suggest that culture conditions which mimic in vivo cellular organization may enhance entry into coated pits for some obligate intracellular pathogens. Images PMID:2744852

  11. Culture models of human mammary epithelial cell transformation

    SciTech Connect

    Stampfer, Martha R.; Yaswen, Paul

    2000-11-10

    Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS)3 already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the know in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcome stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TFGB. We propose th at overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.

  12. How tubular epithelial cells dictate the rate of renal fibrogenesis?

    PubMed Central

    Louis, Kevin; Hertig, Alexandre

    2015-01-01

    The main threat to a kidney injury, whatever its cause and regardless of whether it is acute or chronic, is the initiation of a process of renal fibrogenesis, since fibrosis can auto-perpetuate and is of high prognostic significance in individual patients. In the clinic, a decrease in glomerular filtration rate correlates better with tubulointerstitial damage than with glomerular injury. Accumulation of the extracellular matrix should not be isolated from other significant cellular changes occurring in the kidney, such as infiltration by inflammatory cells, proliferation of myofibroblasts, obliteration of peritubular capillaries and atrophy of tubules. The aim of this review is to focus on tubular epithelial cells (TEC), which, necessarily involved in the repair process, eventually contribute to accelerating fibrogenesis. In the context of injury, TEC rapidly exhibit phenotypic and functional changes that recall their mesenchymal origin, and produce several growth factors known to activate myofibroblasts. Because they are high-demanding energy cells, TEC will subsequently suffer from the local hypoxia that progressively arises in a microenvironment where the matrix increases and capillaries become rarified. The combination of hypoxia and metabolic acidosis may induce a vicious cycle of sustained inflammation, at the center of which TEC dictate the rate of renal fibrogenesis. PMID:26167460

  13. Molecular basis of potassium channels in pancreatic duct epithelial cells

    PubMed Central

    Hayashi, Mikio; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K+ channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K+ channels in pancreatic duct cells, including KCNN4 (KCa3.1), KCNMA1 (KCa1.1), KCNQ1 (Kv7.1), KCNH2 (Kv11.1), KCNH5 (Kv10.2), KCNT1 (KCa4.1), KCNT2 (KCa4.2), and KCNK5 (K2P5.1). We will give an overview of K+ channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K+ channel research with respect to the physiology of secretion and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K+ channels may be of importance. PMID:23962792

  14. Antigen-Specific Th17 Cells Are Primed by Distinct and Complementary Dendritic Cell Subsets in Oropharyngeal Candidiasis.

    PubMed

    Trautwein-Weidner, Kerstin; Gladiator, André; Kirchner, Florian R; Becattini, Simone; Rülicke, Thomas; Sallusto, Federica; LeibundGut-Landmann, Salomé

    2015-10-01

    Candida spp. can cause severe and chronic mucocutaneous and systemic infections in immunocompromised individuals. Protection from mucocutaneous candidiasis depends on T helper cells, in particular those secreting IL-17. The events regulating T cell activation and differentiation toward effector fates in response to fungal invasion in different tissues are poorly understood. Here we generated a Candida-specific TCR transgenic mouse reactive to a novel endogenous antigen that is conserved in multiple distant species of Candida, including the clinically highly relevant C. albicans and C. glabrata. Using TCR transgenic T cells in combination with an experimental model of oropharyngeal candidiasis (OPC) we investigated antigen presentation and Th17 priming by different subsets of dendritic cells (DCs) present in the infected oral mucosa. Candida-derived endogenous antigen accesses the draining lymph nodes and is directly presented by migratory DCs. Tissue-resident Flt3L-dependent DCs and CCR2-dependent monocyte-derived DCs collaborate in antigen presentation and T cell priming during OPC. In contrast, Langerhans cells, which are also present in the oral mucosa and have been shown to prime Th17 cells in the skin, are not required for induction of the Candida-specific T cell response upon oral challenge. This highlights the functional compartmentalization of specific DC subsets in different tissues. These data provide important new insights to our understanding of tissue-specific antifungal immunity. PMID:26431538

  15. Antigen-Specific Th17 Cells Are Primed by Distinct and Complementary Dendritic Cell Subsets in Oropharyngeal Candidiasis

    PubMed Central

    Kirchner, Florian R.; Becattini, Simone; Rülicke, Thomas; Sallusto, Federica; LeibundGut-Landmann, Salomé

    2015-01-01

    Candida spp. can cause severe and chronic mucocutaneous and systemic infections in immunocompromised individuals. Protection from mucocutaneous candidiasis depends on T helper cells, in particular those secreting IL-17. The events regulating T cell activation and differentiation toward effector fates in response to fungal invasion in different tissues are poorly understood. Here we generated a Candida-specific TCR transgenic mouse reactive to a novel endogenous antigen that is conserved in multiple distant species of Candida, including the clinically highly relevant C. albicans and C. glabrata. Using TCR transgenic T cells in combination with an experimental model of oropharyngeal candidiasis (OPC) we investigated antigen presentation and Th17 priming by different subsets of dendritic cells (DCs) present in the infected oral mucosa. Candida-derived endogenous antigen accesses the draining lymph nodes and is directly presented by migratory DCs. Tissue-resident Flt3L-dependent DCs and CCR2-dependent monocyte-derived DCs collaborate in antigen presentation and T cell priming during OPC. In contrast, Langerhans cells, which are also present in the oral mucosa and have been shown to prime Th17 cells in the skin, are not required for induction of the Candida-specific T cell response upon oral challenge. This highlights the functional compartmentalization of specific DC subsets in different tissues. These data provide important new insights to our understanding of tissue-specific antifungal immunity. PMID:26431538

  16. Tetanus neurotoxin-mediated cleavage of cellubrevin impairs epithelial cell migration and integrin-dependent cell adhesion

    PubMed Central

    Proux-Gillardeaux, Véronique; Gavard, Julie; Irinopoulou, Theano; Mège, René-Marc; Galli, Thierry

    2005-01-01

    A role for endocytosis and exocytosis in cell migration has been proposed but not yet demonstrated. Here, we show that cellubrevin (Cb), an early endosomal v-SNARE, mediates trafficking in the lamellipod of migrating epithelial cells and partially colocalizes with markers of focal contacts. Expression of tetanus neurotoxin, which selectively cleaves Cb, significantly reduced the speed of migrating epithelial cells. Furthermore, expression of tetanus neurotoxin enhanced the adhesion of epithelial cells to collagen, laminin, fibronectin, and E-cadherin; altered spreading on collagen; and impaired the recycling of β1 integrins. These results suggest that Cb-dependent membrane trafficking participates in cell motility through the regulation of cell adhesion. PMID:15851685

  17. Differentiation of adult rat bone marrow stem cells into epithelial progenitor cells in culture.

    PubMed

    Shu, Chang; Li, Ting Yu; Tsang, Lai Ling; Fok, Kin Lam; Lo, Pui Shan; Zhu, Jin Xia; Ho, Lo Sze; Chung, Yiu Wa; Chan, Hsiao Chang

    2006-10-01

    We have previously obtained monoclonal bone marrow stem cells from adult rats (rMSCs) and induced them into phenotypic neurons. In the present study, we aimed to induce rMSCs into epithelial cells by culturing them onto compartmentalized permeable supports, which have been used for growing a variety of polarized epithelia in culture. Hematoxylin staining showed that after 4 days grown on permeable supports, rMSCs formed an epithelial-like monolayer. Immunofluorescence of the permeably-supported monolayers, but not the rMSCs grown in culture flasks, showed positive signals for epithelial markers, cytokeratin 5 & 8. RT-PCR results also showed the mRNA expression of epithelial sodium channel (ENaC) and cystic fibrosis transmembrane conductance regulator (CFTR) as well as tight junction protein ZO-1 in the rMSC-derived monolayers grown on permeable supports but absent from those grown in culture flasks. However, western blot only detected protein expression of ZO-1 but not ENaC nor CFTR. The short-circuit current measurements showed that the rMSC-derived monolayers grown on permeable supports exhibited a trans-monolayer resistance of 30-50 Omega cm(2); however, the monolayers did not respond to activators or blockers of CFTR or ENaC. The results suggest that compartmentalized or polarized culture conditions provide a suitable environment for rMSCs to differentiate into epithelial progenitor cells with tight junction formation; however, this condition is not sufficient for functional expression of epithelial ion channels associated with well-differentiated epithelia. PMID:16877014

  18. Growth Factor Priming Differentially Modulates Components of the Extracellular Matrix Proteome in Chondrocytes and Synovium-Derived Stem Cells

    PubMed Central

    Xiong, Jennifer C.; Colligan, Ryan M.; Bulinski, J. Chloë; Cook, James L.; Ateshian, Gerard A.; Brown, Lewis M.; Hung, Clark T.

    2014-01-01

    To make progress in cartilage repair it is essential to optimize protocols for two-dimensional cell expansion. Chondrocytes and SDSCs are promising cell sources for cartilage repair. We previously observed that priming with a specific growth factor cocktail (1 ng/mL transforming growth factor-β1, 5 ng/mL basic fibroblast growth factor, and 10 ng/mL platelet-derived growth factor-BB) in two-dimensional culture, led to significant improvement in mechanical and biochemical properties of synovium-derived stem cell (SDSC)-seeded constructs. The current study assessed the effect of growth factor priming on the proteome of canine chondrocytes and SDSCs. In particular, growth factor priming modulated the proteins associated with the extracellular matrix in two-dimensional cultures of chondrocytes and SDSCs, inducing a partial dedifferentiation of chondrocytes (most proteins associated with cartilage were down-regulated in primed chondrocytes) and a partial differentiation of SDSCs (some collagen-related proteins were up-regulated in primed SDSCs). However, when chondrocytes and SDSCs were grown in pellet culture, growth factor-primed cells maintained their chondrogenic potential with respect to glycosaminoglycan and collagen production. In conclusion, the strength of the label-free proteomics technique is that it allows for the determination of changes in components of the extracellular matrix proteome in chondrocytes and SDSCs in response to growth factor priming, which could help in future tissue engineering strategies. PMID:24516581

  19. Priming with ceramide-1 phosphate promotes the therapeutic effect of mesenchymal stem/stromal cells on pulmonary artery hypertension.

    PubMed

    Lim, Jisun; Kim, YongHwan; Heo, Jinbeom; Kim, Kang-Hyun; Lee, Seungun; Lee, Sei Won; Kim, Kyunggon; Kim, In-Gyu; Shin, Dong-Myung

    2016-04-22

    Some molecules enriched in damaged organs can contribute to tissue repair by stimulating the mobilization of stem cells. These so-called "priming" factors include bioactive lipids, complement components, and cationic peptides. However, their therapeutic significance remains to be determined. Here, we show that priming of mesenchymal stromal/stem cells (MSCs) with ceramide-1 phosphate (C1P), a bioactive lipid, enhances their therapeutic efficacy in pulmonary artery hypertension (PAH). Human bone marrow (BM)-derived MSCs treated with 100 or 200 μM C1P showed improved migration activity in Transwell assays compared with non-primed MSCs and concomitantly activated MAPK(p42/44) and AKT signaling cascades. Although C1P priming had little effect on cell surface marker phenotypes and the multipotency of MSCs, it potentiated their proliferative, colony-forming unit-fibroblast, and anti-inflammatory activities. In a monocrotaline-induced PAH animal model, a single administration of human MSCs primed with C1P significantly attenuated the PAH-related increase in right ventricular systolic pressure, right ventricular hypertrophy, and thickness of α-smooth muscle actin-positive cells around the vessel wall. Thus, this study shows that C1P priming increases the effects of MSC therapy by enhancing the migratory, self-renewal, and anti-inflammatory activity of MSCs and that MSC therapy optimized with priming protocols might be a promising option for the treatment of PAH patients. PMID:26993164

  20. Comparative analysis of human and mouse transcriptomes of Th17 cell priming.

    PubMed

    Tuomela, Soile; Rautio, Sini; Ahlfors, Helena; Öling, Viveka; Salo, Verna; Ullah, Ubaid; Chen, Zhi; Hämälistö, Saara; Tripathi, Subhash K; Äijö, Tarmo; Rasool, Omid; Soueidan, Hayssam; Wessels, Lodewyk; Stockinger, Brigitta; Lähdesmäki, Harri; Lahesmaa, Riitta

    2016-03-22

    Uncontrolled Th17 cell activity is associated with cancer and autoimmune and inflammatory diseases. To validate the potential relevance of mouse models of targeting the Th17 pathway in human diseases we used RNA sequencing to compare the expression of coding and non-coding transcripts during the priming of Th17 cell differentiation in both human and mouse. In addition to already known targets, several transcripts not previously linked to Th17 cell polarization were found in both species. Moreover, a considerable number of human-specific long non-coding RNAs were identified that responded to cytokines stimulating Th17 cell differentiation. We integrated our transcriptomics data with known disease-associated polymorphisms and show that conserved regulation pinpoints genes that are relevant to Th17 cell-mediated human diseases and that can be modelled in mouse. Substantial differences observed in non-coding transcriptomes between the two species as well as increased overlap between Th17 cell-specific gene expression and disease-associated polymorphisms underline the need of parallel analysis of human and mouse models. Comprehensive analysis of genes regulated during Th17 cell priming and their classification to conserved and non-conserved between human and mouse facilitates translational research, pointing out which candidate targets identified in human are worth studying by using in vivo mouse models. PMID:26967054