Science.gov

Sample records for epoxy compounds

  1. Production of epoxy compounds from olefinic compounds

    SciTech Connect

    Gelbein, A.P.; Kwon, J.T.

    1985-01-29

    Chlorine and tertiary alkanol dissolved in an inert organic solvent are reacted with aqueous alkali to produce tertiary alkyl hypochlorite which is recovered in the organic solvent and reacted with water and olefinically unsaturated compound to produce chlorohydrin and tertiary alkanol. Chlorohydrin and tertiary alkanol recovered in the organic solvent are contacted with aqueous alkali to produce the epoxy compound, and tertiary alkanol recovered in the organic solvent is recycled to hypochlorite production. The process may be integrated with the electrolytic production of chlorine, with an appropriate treatment of the recycle aqueous stream when required.

  2. Affinity Adsorbents Based on Carriers Activated by Epoxy-compounds

    NASA Astrophysics Data System (ADS)

    Klyashchitskii, B. A.; Kuznetsov, P. V.

    1984-10-01

    The review is devoted to the synthesis and applications of affinity adsorbents based on carriers activated by epoxy-compounds. The methods for the introduction of epoxy-groups into carriers of different chemical types are discussed and conditions for the immobilisation of three-dimensional spacers and low-molecular-weight and polymeric ligands on carriers containing epoxy-groups are considered. Data are presented on the properties and applications of adsorbents of this type in affinity chromatography. The bibliography includes 144 references.

  3. Some experiences with epoxy resin grouting compounds.

    PubMed

    Hosein, H R

    1980-07-01

    Epoxy resin systems are used in tiling and grouting in the construction industry. Because of the nature of the application, skin contact is the primary hazard. The most prevalent reaction was reddening of the forearms, followed by whole body reddening and loss of appetite, these latter two being associated with smoking while applying the resin. PMID:7415974

  4. Treatment of volatile organic compounds from polyurethane and epoxy manufacture by a trickle-bed air biofilter.

    PubMed

    Chang, K; Lu, C; Lin, M

    2001-01-01

    The objective of this study was to evaluate the performance of a trickle-bed air biofilter (TBAB) for the removal of volatile organic compound (VOC) produced during polyurethane (PU) and epoxy manufacture. The major VOCs emitted are ethyl acetate (EA) for PU and EA and xylene for epoxy production. For the treatment of VOCs emitted during PU production, the employed coal carbon appears to be efficient as a VOC concentration buffer in the biofiltration of waste gases. Based on the results of EA and total hydrocarbon (THC) removal, it was concluded that the TBAB is suitable for controlling VOC emission during PU manufacture. For the treatment of VOCs emitted during epoxy production, it was found that the performance of the TBAB is relatively poor due to the lack of VOC sources. However, this problem could be easily solved by mixing the VOCs emitted during PU and epoxy manufacture. PMID:16233071

  5. Room-temperature ferroelectric mixtures based on a chiral epoxy compound

    NASA Astrophysics Data System (ADS)

    Marzec, M.; Wrobel, A.; Wrobel, S.; Haase, Wolfgang; Dabrowski, Roman S.

    1998-02-01

    Two mixtures: W-90 and W-91 containing an epoxy compound as a chiral dopant have been studied using dielectric and electrooptic methods. W-90 mixture shows a phase sequence Is-N*-SmC* whereas W-91 mixture - Is-N*- SmA*-SmC*. One of the objectives of the paper was to study the transition order between ferroelectric and paraelectric phases. Dielectric spectra were measured using 10micrometers EHC cells. In SmC* phases of both mixtures a broad Goldstone mode dielectric spectrum has been found. Switching properties of both mixtures have been studied by using LINKAM 5 micrometers thick cells. Tilt angle and spontaneous polarization have been measured in the SmC* phase versus temperature. Dielectric and electrooptic data are discussed in terms of the mean field model.

  6. Radiation curing of epoxies

    NASA Astrophysics Data System (ADS)

    Dickson, Lawrence W.; Singh, Ajit

    The literature on radiation polymerization of epoxy compounds has been reviewed to assess the potential use of radiation for curing these industrially important monomers. Chemical curing of epoxies may proceed by either cationic or anionic mechanisms depending on the nature of the curing agent, but most epoxies polymerize by cationic mechanisms under the influence of high-energy radiation. Radiation-induced cationic polymerization of epoxy compounds is inhibited by trace quantities of water because of proton transfer from the chain-propagating epoxy cation to water. Several different methods with potential for obtaining high molecular weight polymers by curing epoxies with high-energy radiation have been studied. Polymeric products with epoxy-like properties have been produced by radiation curing of epoxy oligomers with terminal acrylate groups and mixtures of epoxies with vinyl monomers. Both of these types of resin have good potential for industrial-scale curing by radiation treatment.

  7. Effects of Bonding Wires and Epoxy Molding Compound on Gold and Copper Ball Bonds Intermetallic Growth Kinetics in Electronic Packaging

    NASA Astrophysics Data System (ADS)

    Gan, C. L.; Classe, F. C.; Chan, B. L.; Hashim, U.

    2014-04-01

    This paper discusses the influence of bonding wires and epoxy mold compounds (EMC) on intermetallic compound (IMC) diffusion kinetics and apparent activation energies ( E aa) of CuAl and AuAl IMCs in a fineline ball grid array package. The objective of this study is to study the CuAl and AuAl IMC growth rates with different epoxy mold compounds and to determine the apparent activation energies of different combination of package bills of materials. IMC thickness measurement has been carried out to estimate the coefficient of diffusion ( D o) and E aa various aging conditions of different EMCs and bonding wires. Apparent activation energies ( E aa) of both wire types were investigated after high temperature storage life tests (HTSL) for both molding compounds. Au bonds were identified to have faster IMC formation, compared to slower IMC growth of Cu. The E aa obtained for CuAl IMC diffusion kinetics are 1.08 and 1.04 eV with EMC A and EMC B, respectively. For AuAl IMC diffusion kinetics, the E aa obtained are 1.04 and 0.98 eV, respectively, on EMC A and EMC B. These values are close to previous HTSL studies conducted on Au and Cu ball bonds and are in agreement to the theory of HTSL performance of Au and Cu bonding wires.Overall, EMC B shows slightly lower apparent activation energy ( E aa) valueas in CuAl and AuAl IMCs. This proves that the different types of epoxy mold compounds have some influence on IMC growth rates.

  8. Microautoradiography of Water-Soluble Compounds in Plant Tissue after Freeze-Drying and Pressure Infiltration with Epoxy Resin

    PubMed Central

    Vogelmann, Thomas C.; Dickson, Richard E.

    1982-01-01

    It is difficult to retain and localize radioactive, water-soluble compounds within plant cells. Existing techniques retain water-soluble compounds with varying rates of efficiency and are limited to processing only a few samples at one time. We developed a modified pressure infiltration technique for the preparation of microautoradiographs of 14C-labeled, water-soluble compounds in plant tissue. Samples from cottonwood (Populus deltoides Bartr. ex Marsh.) labeled with 14C were excised, quick frozen in liquid N2, freeze-dried at −50°C, and pressure-infiltrated with epoxy resin without intermediate solvents or prolonged incubation times. The technique facilitates the mass processing of samples for microautoradiography, gives good cellular retention of labeled water-soluble compounds, and is highly reproducible. Images Fig. 2 PMID:16662542

  9. Stabilization of gamma-irradiated poly(vinyl chloride) by epoxy compounds. II. Production of hydroperoxides in gamma-irradiated PVC-stabilizer mixtures

    SciTech Connect

    Lerke, I., Szymanski, W.

    1983-01-01

    The concentration of hydroperoxides,produced in the process of radiolysis, was studied in ..gamma..-irradiated PVC samples with 4% admixture of four epoxy stabilizers: diglycidyl ether of 2.2-bis(4-hydroxy-3-methyl phenyl)propane (I), styrene oxide (1,2-epoxy ethyl benzene) (IV), epoxidized ricinus oil (VI), and epoxidized soybean oil (Drapex 6.8) (VII). The results indicate that the process of radiation oxidation occurs in two stages. Only the stabilizers with benzene ring demonstrate the antioxidative action. The stabilizers VI and VII do not act as the antioxidants, and, moreover, as a consequence of their plasticizing properties, they facilitate the penetration of the oxygen to polymer. The epoxy groups have no influence upon the oxidation process, in the case of compounds VI and VII.

  10. Applying of non-toxic oxide alloys and hybrid polianiline compounds as anticorrosive pigments in organic epoxy coatings

    NASA Astrophysics Data System (ADS)

    Szymański, W.; Halama, A.; Madaliński, J.

    2016-02-01

    The objective of this work was to study inorganic oxide pigments as well as polyaniline heptamolybdes anticorrosive efficiency in epoxy coating. Antycorrosion resistance of modified coatings was examined by accelerated corrosion test in comparison to coatings of the suitable commercial epoxy paint. The carried out investigations shoved much bigrs anticorrosion performance of coatings modified with elaborated, new pigments.

  11. Stabilization of gamma-irradiated poly(vinyl chloride) by epoxy compounds. III. Conjugated double bonds and degree of unsaturation in gamma-irradiated PVC-stabilizer mixtures

    SciTech Connect

    Lerke, G.; Lerke, I.; Szymanski, W.

    1983-01-01

    The concentration of conjugated polyene sequences was studied in ..gamma..-irradiated PVC with 4% admixture of four epoxy stabilizers: diglycidyl ether of 2,2-bis(4-hydroxy-3-methylphenyl)propane (I), styrene oxide (1,2-epoxy ethyl benzene) (IV), epoxidized ricinus oil (VI), and epoxidized soybean oil (Drapex 6.8) (VII). As in the former investigations (Papers I and II), the process of the formation of the polyenes occurs in two stages. The concentration of polyene sequences with n double bonds, H/sub n/ the total amount of polyene sequences, ..sigma..H/sub n/, the average length of the polyene sequence, n, and the extents of reaction x and p, were computed. The stabilizing effect of all compounds used agrees with the increasing content of epoxy groups. The addition of stabilizers diminishes the value of n. The decrease of the fraction of long sequences and the increase of short ones occurs. Apart from the binding of evolved HCl, the protective effect towards the macromolecules of PVC consists mainly in the inhibition of growth of chain dehydrochlorination by the epoxy groups.

  12. Preparation and Characterization of a Novel Epoxy Molding Compound with Low Storage Modulus at High Temperature and Low Glass-Transition Temperature

    NASA Astrophysics Data System (ADS)

    Cui, Hui-wang; Li, Dong-sheng; Fan, Qiong

    2012-09-01

    Epoxy molding compound (EMC) has been widely used as a main material for encapsulation and protection of semiconductor packages because of its low cost, high moisture resistance, high heat resistance, and good mechanical performance. Due to the extensive application of lead-free solder in place of Sn-Pb, soldering temperature is higher than before; this demands that EMC, which is usually used for lead-free solder, should have extremely low thermal stress and excellent stability at elevated temperatures. In this work, 1,3-propanediol bis(4-aminobenzoate) (PBA) was added to an EMC product to form a novel epoxy molding compound (FEMC). PBA had very limited effect on the process feasibility of EMC, and caused reduction of the storage modulus by 40% to 50% at high temperatures and reduction of the glass-transition temperature by more than 10°C, which are very helpful to reduce thermal stress buildup during high-temperature soldering processes. The increases of the tab pull force of copper- and silver-plated lead frames within EMC due to PBA were up to 58% and 117%, respectively. With increasing PBA content in the EMC, water absorption increased in a linear fashion, so the amount of PBA added to the EMC should be limited, preferably to not more than 1%.

  13. Method of making thermally removable epoxies

    DOEpatents

    Loy, Douglas A.; Wheeler, David R.; Russick, Edward M.; McElhanon, James R.; Saunders, Randall S.

    2002-01-01

    A method of making a thermally-removable epoxy by mixing a bis(maleimide) compound to a monomeric furan compound containing an oxirane group to form a di-epoxy mixture and then adding a curing agent at temperatures from approximately room temperature to less than approximately 90.degree. C. to form a thermally-removable epoxy. The thermally-removable epoxy can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C. in a polar solvent. The epoxy material can be used in protecting electronic components that may require subsequent removal of the solid material for component repair, modification or quality control.

  14. Synthesis and characterization of epoxy composites filled with Pb, Bi or W compound for shielding of diagnostic x-rays

    NASA Astrophysics Data System (ADS)

    Noor Azman, Nurul Z.; Siddiqui, Salim A.; Low, It M.

    2013-01-01

    Lead chloride, bismuth oxide and tungsten oxide filled epoxy composites with different weight fractions were fabricated to investigate their x-ray transmission characteristics in the x-ray diagnostic imaging energy range (40-127 kV) by using a conventional laboratory x-ray machine. Characterizations of the microstructure properties of the synthesized composites were performed using synchrotron radiation diffraction, backscattered electron imaging microscopy, three-point bend test and Rockwell hardness test. As expected, the x-ray transmission was decreased by the increment of the filler loading. Meanwhile, the flexural modulus and hardness of the composites were increased through an increase in filler loading. However, the flexural strength showed a marked decrease with the increment of filler loading (≥30 wt%). Some agglomerations were observed for the composites having ≥50 wt% of filler.

  15. Stabilization of gamma-irradiated poly(vinyl chloride) by epoxy compounds. I. Radiation yield of hydrogen chloride and changes of epoxy group concentration in gamma-irradiated PVC-stabilizer mixtures

    SciTech Connect

    Lerke, G.; Lerke, I.; Szymanski, W.

    1983-01-01

    The G/sub HCl/ values of ..gamma..-irradiated PVC mixtures and the changes of the epoxy group concentration were studied after addition of various amounts of five epoxy stabilizers: diglycidyl ether of 2,2-bis(4-hydroxy-3-methyl phenyl) propane (I), diglycidyl ether of 2,2-bis(4-hydroxy-3-nitrophenyl)-propane (II), styrene oxide (1,2-epoxy ethyl benzene) (IV), epoxidized ricinus oil (VI), and epoxidized soybean oil (Drapex 6.8) (VII). It is stated that only about 50% of epoxy groups, declining in the system, take part in binding of HCl; the rest of these groups disappear as a consequence of other reactions. In connection with the data of the previous paper, the results presented indicate that the process of stabilization goes in two stages. In the first stage the process consists of the HC1 capture by the epoxy groups; in the second stage, due to the remaining part of the stabilizer molecule, a protective effect occurs. This effect consists, for the stabilizers I, II, IV, of gaining the energy by the benzene ring and, for the stabilizers VI, VII, of a mechanical drawing of polymer chains, wich makes the energy transfer more difficult. Having the greatest content of epoxy oxygen (about 10%), the styrene oxide (IV) stabilizes best.

  16. Process for Preparing Epoxy-Reinforced Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B (Inventor)

    2016-01-01

    One-pot reaction process for preparing epoxy-reinforced monolithic silica aerogels comprising the reaction of at least one silicon compound selected from the group consisting of alkoxysilanes, orthosilicates and combination thereof in any ratio with effective amounts of an epoxy monomer and an aminoalkoxy silane to obtain an epoxy monomer-silica sol in solution, subsequently preparing an epoxy-monomer silica gel from said silica sol solution followed by initiating polymerization of the epoxy monomer to obtain the epoxy-reinforced monolithic silica aerogel.

  17. Fire-retardant epoxy polymers

    NASA Technical Reports Server (NTRS)

    Akawie, R. I.; Bilow, N.; Giants, T. W.

    1978-01-01

    Phosphorus atoms in molecular structure of epoxies make them fire-retardant without degrading their adhesive strength. Moreover, polymers are transparent, unlike compounds that contain arsenic or other inorganics. They have been used to bond polyvinylfluoride and polyether sulfone films onto polyimide glass laminates.

  18. Epoxy resin

    DOEpatents

    Wilson, Glenn R.; Salyer, Ival O.; Ball, III, George L.

    1976-07-13

    By mixing one part of a prepolymer containing a polyamine partially polymerized with an organic epoxide and subsequently reacted with a fatty acid containing from 8 to 32 carbon atoms, and then reacting this prepolymer mixture with 3 parts of an organic epoxide, a composition was obtained which made a gas frothable, shear-stable, room temperature curing, low density foam. A particularly advantageous prepolymer was prepared using a polyamine selected from the group consisting of diethylenetriamine, triethylenetetramine, and tetraethylenepentamine, partially polymerized with an organic epoxide having an average molecular weight of about 350 and having an epoxide equivalent of 185 to 192, and reacted with 2-10 weight percent linoleic acid. When one part of this prepolymer was reacted with about three parts of epoxy, and frothed by whipping in air or nitrogen an epoxy foam was produced which could be troweled onto surfaces and into corners or crevices, and subsequently cured, at near ambient temperature, to a strong dimensionally stable foam product.

  19. Nature of the adhesion bond between epoxy adhesive and steel

    NASA Astrophysics Data System (ADS)

    Vettegren', V. I.; Mamalimov, R. I.; Savitskii, A. V.; Shcherbakov, I. P.; Sytov, V. V.; Sytov, V. A.

    2014-03-01

    The potential difference that appears in the epoxy resin located between two grade 3 steel plates is studied. One of them is stored in epoxy resin to reach equilibrium, and the second plate is coated with an asprepared mixture of epoxy resin with a hardener. It is found that the potential difference decreases in time because of charge transfer by Fe2+ ions through epoxy resin. The luminescence and infrared absorption spectra of the epoxy adhesive on the grade 3 steel surface are recorded. An analysis of these spectra shows that Fe2+ ions penetrate into the as-prepared mixture of epoxy resin with the hardener, and interact with CN groups in the mixture, and form coordination compounds. As a result, a diffusion layer saturated by the coordination compounds forms at the interface between the steel and the adhesive.

  20. Flame Retardant Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  1. Epoxy-rubber interactions

    SciTech Connect

    McGarry, F.J.; Rosner, R.B.

    1993-12-31

    Films containing amine-terminated butadiene-acrylonitrile (ATBN) rubber and diglycidal ether of bisphenol A (DGEBA) epoxy, cross-linked with amine curing agent, exhibit tensile extensibility over the composition range of 50-600 parts by weight rubber to 100 parts by weight epoxy. This tensile extensibility suggests the presence of ductile behavior in the second-phase particles of ATBN rubber-toughened DGEBA epoxy systems, even if the particles contain substantial amounts of epoxy. Such cured films also are capable of absorbing large additional amounts of liquid epoxy that contains the cure agent. When the epoxy is cured in situ, the film tensile behavior is consistent with the overall proportions of rubber and epoxy present. The solubility behavior also suggests that the glassy epoxy matrix immediately surrounding a precipated particle contains rubber in solid solution and thereby can plastically yield under shear-stress action. As observations confirm, such flow would be heat recoverable. 15 refs., 9 figs., 2 tabs.

  2. Method for epoxy foam production using a liquid anhydride

    DOEpatents

    Celina, Mathias

    2012-06-05

    An epoxy resin mixture with at least one epoxy resin of between approximately 50 wt % and 100 wt %, an anhydride cure agent of between approximately 0 wt % and approximately 50 wt %, a tert-butoxycarbonyl anhydride foaming agent of between proximately 0.1-20 wt %, a surfactant and an imidazole or similar catalyst of less than approximately 2 wt %, where the resin mixture is formed from at least one epoxy resin with a 1-10 wt % tert-butoxycarbonyl anhydride compound and an imidazole catalyst at a temperature sufficient to keep the resin in a suitable viscosity range, the resin mixture reacting to form a foaming resin which in the presence of an epoxy curative can then be cured at a temperature greater than 50.degree. C. to form an epoxy foam.

  3. 3,7,10,14,15-pentaacetyl-5-butanoyl-13,17-epoxy-8-myrsinene a novel compound isolated from Pycnocycla spinosa extract with potent anti-spasmodic and antidiarrheal properties

    PubMed Central

    Sadraei, H.; Ghanadian, M.; Asghari, G.; Sharifian, R.

    2015-01-01

    Bioassay monitoring of hydroalcoholic extract from the aerial part of Pyconcycla spinosa revealed that it contains components with spasmolytic activity in vitro. In addition, P. spinosa extract at oral dose of 1-5 mg/kg inhibits diarrhoea in animal models. Pharmacological screening of pure compounds isolated from P. spinosa hydroalcoholic extract led to the identification of 3,7,10,14,15-pentaacetyl-5-butanoyl-13,17-epoxy-8-myrsinene (PABEM) which is a new diterpene. In this research, we have investigated antispasmodic and antidiarrheal effects of PABEM for comparison with P. spinosa extract. Aerial parts of P. spinosa were extracted with ethanol. For antispasmodic studies, rat isolated ileum was suspended in Tyrode's solution in an organ bath. The ileum was contracted by acetylcholine (ACh, 0.5 μM), serotonin (5-HT, 5 μM) or electrical field stimulation (EFS). P. spinosa extract in a concentration dependent manner (10-640 μg/ml) inhibited ileum contractions induced by ACh, 5-HT or EFS. The new compound isolated form P. spinosa extract “PABEM” in a similar manner inhibited the contractile response to ACh, 5-HT and EFS. However, the inhibitory effects of PABEM were observed at much lower bath concentrations. The relaxation effect of PABEM was started at 40 ng/ml bath concentration and with 2.5 μg/ml PABEM in the bath, the contractile responses of ileum were completely abolished. Both hydroalcoholic extract of P. spinosa and PABEM reduced intestinal meal transit and castor oil and MgSO4 induced diarrhoea in mice. However, PABEM was about 10 times more potent than its parent extract. This research shows that PABEM is probably the main component responsible for antispasmodic and antidiarrheal actions of P. spinosa extract. PMID:26430457

  4. Cobalt ion-containing epoxies

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St.clair, A. K.

    1983-01-01

    Varying concentrations of an organometallic cobalt complex were added to an epoxy system currently used by the aerospace industry as a composite matrix resin. Methods for combining cobalt (III) acetylacetonate with a tetraglycidyl 4,4 prime - diaminodiphenylmethane-based epoxy were investigated. The effects of increasing cobalt ion concentration on the epoxy cure were demonstrated by epoxy gel times and differential scanning calorimetry cure exotherms. Analysis on cured cobalt-containing epoxy castings included determination of glass transition temperatures by thermomechanical analysis, thermooxidative stabilities by thermogravimetric analysis, and densities in a density gradient column. Flexural strength and stiffness were also measured on the neat resin castings.

  5. Synthesis of liquid crystalline epoxy monomers

    NASA Astrophysics Data System (ADS)

    Fabia, J.; Galina, H.; Mossety-Leszczak, B.; Ulanski, J.; Wojciechowski, Piotr; Wlochowicz, Andrzej

    2002-06-01

    A two-stage method of synthesis of liquid-crystalline diepoxy monomers has been developed. In the first stage, esterification of 4-hydroxyphenyl-4-hydroxybenzoate or 4,4'- biphenol or 4,4'-dihydroxyazobenzene was carried out using 4-penetenoic acid. The resulting olefinic precursors were oxidized with m-chloroperoxybenzoic acid to introduce the epoxy groups. The structure of products was confirmed by FT- IR and 1H NMR. Examinations on a polarization microscope with a hot plate confirmed the presence of mesomorphic phases in both the precursors and monomers. The phase transition temperatures were in the range of 73.5 (at cooling) to 128.0 degree(s)C for olefinic precursors and in the range 57.1 (at cooling) to 143 degree(s)C for epoxy compounds, as determined by DSC and thermo-optical analysis (TOA).

  6. An investigation of chemically-induced improvement in saturation moisture characteristics of epoxies

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; St.clair, T. L.; Stoakley, D. M.

    1984-01-01

    MY-720/DDS epoxy samples were treated with three selected chemical compounds to render the active H-sites inactive for moisture absorption. Treating the epoxy castings with acetyl chloride and dichlorodimethyl silane leads only to surface changes indicating that these molecules are too large to penetrate the epoxy castings. Boron trifluoride, on the other hand, does penetrate the epoxy chain as is indicated by the formation of green domains in the interior of the castings. However, the process of saturating the specimens with moisture appears to leach out the chemical additives--thereby nullifying their possible ameliorative effects.

  7. Metal ion-containing epoxies

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St.clair, A. K.

    1982-01-01

    A variety of metallic and organometallic complexes to be used as potential additives for an epoxy used by the aerospace industry as a composite matrix resin were investigated. A total of 9 complexes were screened for compatibility and for their ability to accelerate or inhibit the cure of a highly crosslinkable epoxy resin. Methods for combining the metallic complexes with the resin were investigated, gel times recorded, and cure exotherms studied by differential scanning calorimetry. Glass transition temperatures of cured metal ion containing epoxy castings were determined by thermomechanical analysis. Thermal stabilities of the castings were determined by thermogravimetric analysis. Mechanical strength and stiffness of these doped epoxies were also measured.

  8. Epoxy resin holograms

    NASA Astrophysics Data System (ADS)

    Ruiz-Limón, B.; Wetzel, G. B. J.; Olivares Pérez, A.; Ponce-Lee, E. L.; Ramos-Garcia, R.; Toxqui López, S.; Hernández-Garay, M. P.; Fuentes-Tapia, I.

    2006-02-01

    We observed that a commercial epoxy resin (Comex (R) is enable to record images by means of lithography techniques. We can generate a hologram using a digital image and a computer simulation program and transferred it on our resin by microlithography techniques to get a phase hologram and increase its efficiency. The exposition to the heat produce temperature gradients and the information in the mask is transferred to the material by the refraction index changes, thus the film is recorded. At the same time the hologram is cured.

  9. Interaction of water with epoxy.

    SciTech Connect

    Powers, Dana Auburn

    2009-07-01

    The chemistries of reactants, plasticizers, solvents and additives in an epoxy paint are discussed. Polyamide additives may play an important role in the absorption of molecular iodine by epoxy paints. It is recommended that the unsaturation of the polyamide additive in the epoxy cure be determined. Experimental studies of water absorption by epoxy resins are discussed. These studies show that absorption can disrupt hydrogen bonds among segments of the polymers and cause swelling of the polymer. The water absorption increases the diffusion coefficient of water within the polymer. Permanent damage to the polymer can result if water causes hydrolysis of ether linkages. Water desorption studies are recommended to ascertain how water absorption affects epoxy paint.

  10. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.; Pater, R. H.

    1981-01-01

    High char yield epoxy using novel bisimide amines (BIA's) as curing agents with a state of the art epoxy resin was developed. Stoichiometric quantities of the epoxy resin and the BIA's were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designated IME's (imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by the bisimide amine cured expoxies (IME's) were considerably lower than the state of the art epoxies. The strain-to-failure of the control resin system was improved 25% by replacement of DDS with 6F-DDS. Each BIA containing resin exhibited twice the char yield of the control resin MY 720/DDS. Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems showed superior properties compared to the other Celion 6000/IME composite systems and state of the art graphite epoxy systems. The two systems exhibited excellent wet shear and flexural strengths and moduli at 300 and 350 F.

  11. Thermophysical and flammability characterization of phosphorylated epoxy adhesives

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Giants, T. W.; Bilow, N.; Hsu, M.-T.

    1980-01-01

    Some of the thermophysical and flammability properties of a phosphorylated epoxy adhesive, which has potential applications in aircraft interior panels, are described. The adhesive consists of stoichiometric ratios of bis(3-glycidyloxphenyl)methylphosphine oxide and bis(3-aminophenyl)methylphosphine oxide containing approximately 7.5% phosphorus. Preliminary data are presented from adhesive bonding studies conducted utilizing this adhesive with polyvinyl fluoride (PVF) film and phenolic-glass laminates. Limiting oxygen index and smoke density data are presented and compared with those of the tetraglycidyl methylene dianiline epoxy resin-adhesive system currently used in aircraft interiors. Initial results indicate that the phosphorylated epoxy compound has excellent adhesive properties when used with PVF film and that desirable fire-resistant properties are maintained.

  12. New thermal and microbial resistant metal-containing epoxy polymers.

    PubMed

    Ahamad, Tansir; Alshehri, Saad M

    2010-01-01

    A series of metal-containing epoxy polymers have been synthesized by the condensation of epichlorohydrin (1-chloro-2,3-epoxy propane) with Schiff base metal complexes in alkaline medium. Schiff base was initially prepared by the reaction of 2,6 dihydroxy 1-napthaldehyde and o-phenylenediamine in 1 : 2 molar ratio and then with metal acetate. All the synthesized compounds were characterized by elemental, spectral, and thermal analysis. The physicochemical properties, viz., epoxy value, hydroxyl content, and chlorine content [mol/100 g] were measured by standard procedures. The antimicrobial activities of these metal-containing epoxy polymers were carried out by using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods against S. aureus, B. subtilis (Gram-positive bacteria), and E. coli, P. aeruginosa (Gram-negative bacteria). It was found that the ECu(II) showed higher antibacterial activity than other metal-chelated epoxy resin while EMn(II) exhibited reduced antibacterial activity against all bacteria. PMID:20689716

  13. New Thermal and Microbial Resistant Metal-Containing Epoxy Polymers

    PubMed Central

    Ahamad, Tansir; Alshehri, Saad M.

    2010-01-01

    A series of metal-containing epoxy polymers have been synthesized by the condensation of epichlorohydrin (1-chloro-2,3-epoxy propane) with Schiff base metal complexes in alkaline medium. Schiff base was initially prepared by the reaction of 2,6 dihydroxy 1-napthaldehyde and o-phenylenediamine in 1  :  2 molar ratio and then with metal acetate. All the synthesized compounds were characterized by elemental, spectral, and thermal analysis. The physicochemical properties, viz., epoxy value, hydroxyl content, and chlorine content [mol/100 g] were measured by standard procedures. The antimicrobial activities of these metal-containing epoxy polymers were carried out by using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods against S. aureus, B. subtilis (Gram-positive bacteria), and E. coli, P. aeruginosa (Gram-negative bacteria). It was found that the ECu(II) showed higher antibacterial activity than other metal-chelated epoxy resin while EMn(II) exhibited reduced antibacterial activity against all bacteria. PMID:20689716

  14. Epoxy nanocomposites based on high temperature pyridinium-modified clays.

    PubMed

    Zhang, Qingxin; Naito, Kimiyoshi; Qi, Ben; Kagawa, Yutaka

    2009-01-01

    Polymer/clay nanocomposites are generally fabricated by thermal curing or melt compounding at elevated temperatures, however the thermal stability of common alkyl ammonium treated clays is poor and decomposition occurs inevitably during high temperature processing. In this study, we modified clays with an aromatic pyridinium salt. Thermogravimetric analysis (TGA) showed that the onset degradation temperature (Td(onset)) and maximum decomposition temperature (Td(max)) of the pyridinium treatment clays was up to 310 and 457 degrees C respectively implying high thermal stability. The thermal decomposition behaviour of the pyridinium modified clays was discussed. A series of epoxy/clay nanocomposites were synthesized using a diglycidyl ether of bisphenol A (DGEBA) epoxy and diethyltoluene diamine (DETDA). The morphology of epoxy/clay nanocomposites was characterized with wide angle X-ray diffraction (WAXD) and transmission electron microscope (TEM), and intercalated structures were observed. The storage modulus of epoxy was increased but glass transition temperature was decreased with clay incorporation. The effects of clays on glass transition temperature (Tg) of epoxy were also discussed. PMID:19441298

  15. Synthesis of polyoxometalate-loaded epoxy composites

    DOEpatents

    Anderson, Benjamin J

    2014-10-07

    The synthesis of a polyoxometalate-loaded epoxy uses a one-step cure by applying an external stimulus to release the acid from the polyoxometalate and thereby catalyze the cure reaction of the epoxy resin. Such polyoxometalate-loaded epoxy composites afford the cured epoxy unique properties imparted by the intrinsic properties of the polyoxometalate. For example, polyoxometalate-loaded epoxy composites can be used as corrosion resistant epoxy coatings, for encapsulation of electronics with improved dielectric properties, and for structural applications with improved mechanical properties.

  16. Multifunctional epoxy composites with natural Moroccan clays

    NASA Astrophysics Data System (ADS)

    Monsif, M.; Zerouale, A.; Kandri, N. Idrissi; Allali, F.; Sgarbossa, P.; Bartolozzi, A.; Tamburini, S.; Bertani, R.

    2016-05-01

    Two natural Moroccan clays, here firstly completely characterized, have been used as fillers without modification in epoxy composites. Mechanical properties resulted to be improved and a significant antibacterial activity is exhibited by the epoxy composite containing the C2 clay.

  17. Measuring the Electrical Properties of Epoxies

    NASA Technical Reports Server (NTRS)

    Sergent, J. E.

    1982-01-01

    Two techniques rapidly determine low-frequency resistivity of conductive epoxies and high-frequency dielectric properties of insulating epoxies. Conductive epoxy is molded in channels in plastic block. Four-point ohmmeter is used to apply current and sense voltage; it reads out resistance. Because mold has precise and stable dimensions, it produces accurate consistent measurements.

  18. Epoxy Grout With Silica Thickener

    NASA Technical Reports Server (NTRS)

    Mcclung, C. E.

    1984-01-01

    Grout cures quickly, even in presence of hydraulic oil. Grout is mixture of aggregate particles, finely-divided silica, epoxy resin, and triethylenetetramine curing agent, with mixture containing about 85 percent silica and aggregate particle sand 15 percent resin and curing agent. Silica is thickening agent and keeps grout from sagging.

  19. Chromatographic assessment of two hybrid monoliths prepared via epoxy-amine ring-opening polymerization and methacrylate-based free radical polymerization using methacrylate epoxy cyclosiloxane as functional monomer.

    PubMed

    Wang, Hongwei; Ou, Junjie; Lin, Hui; Liu, Zhongshan; Huang, Guang; Dong, Jing; Zou, Hanfa

    2014-11-01

    Two kinds of hybrid monolithic columns were prepared by using methacrylate epoxy cyclosiloxane (epoxy-MA) as functional monomer, containing three epoxy moieties and one methacrylate group. One column was in situ fabricated by ring-opening polymerization of epoxy-MA and 1,10-diaminodecane (DAD) using a porogenic system consisting of isopropanol (IPA), H2O and ethanol at 65°C for 12h. The other was prepared by free radical polymerization of epoxy-MA and ethylene dimethacrylate (EDMA) using 1-propanol and 1,4-butanediol as the porogenic solvents at 60°C for 12h. Two hybrid monoliths were investigated on the morphology and chromatographic assessment. Although two kinds of monolithic columns were prepared with epoxy-MA, their morphologies looked rather different. It could be found that the epoxy-MA-DAD monolith possessed higher column efficiencies (25,000-34,000plates/m) for the separation of alkylbenzenes than the epoxy-MA-EDMA monolith (12,000-13,000plates/m) in reversed-phase nano-liquid chromatography (nano-LC). Depending on the remaining epoxy or methacrylate groups on the surface of two pristine monoliths, the epoxy-MA-EDMA monolith could be easily modified with 1-octadecylamine (ODA) via ring-opening reaction, while the epoxy-MA-DAD monolith could be modified with stearyl methacrylate (SMA) via free radical reaction. The chromatographic performance for the separation of alkylbenzenes on SMA-modified epoxy-MA-DAD monolith was remarkably improved (42,000-54,000 plates/m) when compared with that on pristine epoxy-MA-DAD monolith, while it was not obviously enhanced on ODA-modified epoxy-MA-EDMA monolith when compared with that on pristine epoxy-MA-EDMA monolith. The enhancement of the column efficiency of epoxy-MA-DAD monolith after modification might be ascribed to the decreased mass-transfer resistence. The two kinds of hybrid monoliths were also applied for separations of six phenols and seven basic compounds in nano-LC. PMID:25311483

  20. Hearing loss in workers exposed to epoxy adhesives and noise: a cross-sectional study

    PubMed Central

    Yang, Hsiao-Yu; Shie, Ruei-Hao; Chen, Pau-Chung

    2016-01-01

    Objectives Epoxy adhesives contain organic solvents and are widely used in industry. The hazardous effects of epoxy adhesives remain unclear. The objective of this study was to investigate the risk of hearing loss among workers exposed to epoxy adhesives and noise. Design Cross-sectional study. Methods For this cross-sectional study, we recruited 182 stone workers who were exposed to both epoxy adhesives and noise, 89 stone workers who were exposed to noise only, and 43 workers from the administrative staff who had not been exposed to adhesives or noise. We obtained demographic data, occupational history and medical history through face-to-face interviews and arranged physical examinations and pure-tone audiometric tests. We also conducted walk-through surveys in the stone industry. A total of 40 representative noise assessments were conducted in 15 workplaces. Air sampling was conducted at 40 workplaces, and volatile organic compounds were analysed using the Environmental Protection Agency (EPA) TO-15 method. Results The mean sound pressure level was 87.7 dBA (SD 9.9). The prevalence of noise-induced hearing loss was considerably increased in the stone workers exposed to epoxy adhesives (42%) compared with the stone workers who were not exposed to epoxy adhesives (21%) and the administrative staff group (9.3%). A multivariate logistic regression analysis revealed that exposure to epoxy adhesives significantly increased the risk of hearing loss between 2 and 6 kHz after adjusting for age. Significant interactions between epoxy adhesives and noise and hearing impairment were observed at 3, 4 and 6 kHz. Conclusions Epoxy adhesives exacerbate hearing impairment in noisy environments, with the main impacts occurring in the middle and high frequencies. PMID:26892792

  1. Preparation and cured properties of novel cycloaliphatic epoxy resins

    SciTech Connect

    Tokizawa, Makoto; Okada, Hiroyoshi; Wakabayashi, Nobukatsu; Kimura, Tomiaki . Research Center)

    1993-10-20

    Preparation and characterization of novel cycloaliphatic epoxy resins, which are derived from octadienyl compounds, were studied. From a model peracetic acid epoxidation reaction using 2,7-octadienyl acetate-1, the structure of the liquid resins is estimated to be mainly terminal epoxides and some amount of inner epoxide depending on the epoxide content. The epoxy resins offer lower toxicity and lower vapor pressure. The reactivity of the resin with acid anhydrides is moderate but faster than that of traditional cyclohexane epoxide-type resins and slower than that of the glycidyl ester-type resins. This reactivity was also examined using model compounds. The heat deflection temperature of the hexahydro-phthalic anhydride-cured resins is shown to be directly proportional to the number of epoxy groups in the molecules. The flexural strength of the cured resins is nearly equivalent to that of the commercial resins, although the flexural elongation of the resins is larger than that of the rigid cyclohexane epoxide-type resins. The thermal stability of the cured resins is compared to typical rigid cycloaliphatic resins; furthermore, high water resistance of the cured resins is suggested to be attributed to the hydrophobic character of the C[sub 8] chain by cross-linking.

  2. Evaluation of experimental epoxy monomers

    NASA Technical Reports Server (NTRS)

    Hodges, W. T.; St.clair, T. L.; Pratt, J. R.; Ficklin, R.

    1985-01-01

    Future generation aircraft need higher performance polymer matrices to fully achieve the weight savings possible with composite materials. New resins are being formulated in an effort to understand basic polymer behavior and to develop improved resins. Some polymer/curing agent combinations that could be useful are difficult to process. In the area of epoxies, a major problem is that some components have physical properties which make them difficult to utilize as matrix resins. A previous study showed that the use of ultrasonic energy can be advantageous in the mixing of curing agents into a standard epoxy resin, such as MY 720 (Ciba-Geigy designation). This work is expanded to include three novel epoxides.

  3. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1982-01-01

    Results of a program designed to develop tough imide modified epoxy (IME) resins cured by bisimide amine (BIA) hardeners are presented. State of the art epoxy resin, MY720, was used. Three aromatic bisimide amines and one aromatic aliphatic BIA were evaluated. BIA's derived from 6F anhydride (3,3 prime 4,4 prime-(hexafluoro isopropyl idene) bis (phthalic anhydride) and diamines, 3,3 prime-diam nodiphenyl sulfone (3,3 prime-DDS), 4,4 prime-diamino diphenyl sulfone (4,4 prime-DDS), 1.12-dodecane diamine (1,12-DDA) were used. BIA's were abbreviated 6F-3,3 prime-DDS, 6F-4,4 prime-DDS, 6F-3,3 prime-DDS-4,4 prime DDS, and 6F-3,3 prime-DDS-1,12-DDA corresponding to 6F anhydride and diamines mentioned. Epoxy resin and BIA's (MY720/6F-3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA and a 50:50 mixture of a BIA and parent diamine, MY720/6F-3,3 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA/3,3 prime-DDS were studied to determine effect of structure and composition. Effect of the addition of two commercial epoxies, glyamine 200 and glyamine 100 on the properties of several formulations was evaluated. Bisimide amine cured epoxies were designated IME's (imide modified epoxy). Physical, thermal and mechanical properties of these resins were determined. Moisture absorption in boiling water exhibited by several of the IME's was considerably lower than the state of the art epoxies (from 3.2% for the control and state of the art to 2.0 wt% moisture absorption). Char yields are increased from 20% for control and state of the art epoxies to 40% for IME resins. Relative toughness characteristics of IME resins were measured by 10 deg off axis tensile tests of Celion 6000/IME composites. Results show that IME's containing 6F-3,3 prime-DDS or 6F-3,3 prime-DDS-1,12-DDA improved the "toughness" characteristics of composites by about 35% (tensile strength), about 35% (intralaminar shear

  4. Flammability of Epoxy Resins Containing Phosphorus

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Thompson, C. M.; Smith, J. G.; Connell, J. W.; Hinkley, J. A.

    2005-01-01

    As part of a program to develop fire-resistant exterior composite structures for future subsonic commercial and general aviation aircraft, flame-retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured neat epoxy formulations were characterized by thermogravimetric analysis, propane torch test, elemental analysis, microscale combustion calorimetry, and fire calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness and compressive strength of several cured formulations showed no detrimental effect due to phosphorus content. The chemistry and properties of these new epoxy formulations are discussed.

  5. Epoxy resins in the construction industry.

    PubMed

    Spee, Ton; Van Duivenbooden, Cor; Terwoert, Jeroen

    2006-09-01

    Epoxy resins are used as coatings, adhesives, and in wood and concrete repair. However, epoxy resins can be highly irritating to the skin and are strong sensitizers. Some hardeners are carcinogenic. Based on the results of earlier Dutch studies, an international project on "best practices,"--Epoxy Code--with epoxy products was started. Partners were from Denmark, Germany, the Netherlands, and the UK. The "Code" deals with substitution, safe working procedures, safer tools, and skin protection. The feasibility of an internationally agreed "ranking system" for the health risks of epoxy products was studied. Such a ranking system should inform the user of the harmfulness of different epoxies and stimulate research on less harmful products by product developers. PMID:17119222

  6. High char imide-modified epoxy matrix resins. [for graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D.

    1979-01-01

    The synthesis of a class of bis(imide-amine) curing agents for epoxy matrix resins is discussed. Glass transition temperatures and char yield data of an epoxy cured with various bis(imide-amines) are presented. The room temperature and 350 F mechanical properties, and char yields of unidirectional graphite fiber laminates prepared with conventional epoxy and imide-modified epoxy resins are presented.

  7. Nonmetallic materials handbook. Volume 1: Epoxy materials

    NASA Technical Reports Server (NTRS)

    Podlaseck, S. E.

    1979-01-01

    Thermochemical and other properties data is presented for the following types of epoxy materials: adhesives, coatings finishes, inks, electrical insulation, encapsulants, sealants, composite laminates, tapes, and thermal insulators.

  8. Lightweight Forms for Epoxy/Aramid Ducts

    NASA Technical Reports Server (NTRS)

    Mix, E. W.; Anderson, A. N.; Bedford, Donald L., Sr.

    1986-01-01

    Aluminum mandrels easy to remove. Lightweight aluminum mandrel for shaping epoxy/aramid ducts simplifies and speeds production. In new process, glass-reinforced epoxy/aramid cloth wrapped on aluminum mandrel. Stainless-steel flanges and other hardware fitted on duct and held by simple tooling. Entire assembly placed in oven to cure epoxy. After curing, assembly placed in alkaline bath dissolves aluminum mandrel in about 4 hours. Epoxy/aramid shell ready for use as duct. Aluminum mandrel used to make ducts of various inside diameters up to 6 in. Standard aluminum forms used. Conventional tube-bending equipment produces requisite curves in mandrels.

  9. Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating.

    PubMed

    M El Saeed, Ashraf; Abd El-Fattah, M; Azzam, Ahmed M; Dardir, M M; Bader, Magd M

    2016-08-01

    Cuprous oxide is commonly used as a pigment; paint manufacturers begin to employ cuprous oxide as booster biocides in their formulations, to replace the banned organotins as the principal antifouling compounds. Epoxy coating was reinforced with cuprous oxide nanoparticles (Cu2O NPs). The antibacterial as well as antifungal activity of Cu2O epoxy nanocomposite (Cu2O EN) coating films was investigated. Cu2O NPs were also experimented for antibiofilm and time-kill assay. The thermal stability and the mechanical properties of Cu2O EN coating films were also investigated. The antimicrobial activity results showed slowdown, the growth of organisms on the Cu2O EN coating surface. TGA results showed that incorporating Cu2O NPs into epoxy coating considerably enhanced the thermal stability and increased the char residue. The addition of Cu2O NPs at lower concentration into epoxy coating also led to an improvement in the mechanical resistance such as scratch and abrasion. Cu2O NPs purity was confirmed by XRD. The TEM photograph demonstrated that the synthesized Cu2O NPs were of cubic shape and the average diameter of the crystals was around 25nm. The resulting perfect dispersion of Cu2O NPs in epoxy coating revealed by SEM ensured white particles embedded in the epoxy matrix. PMID:27103492

  10. The quantification and characterization of endocrine disruptor bisphenol-A leaching from epoxy resin.

    PubMed

    Bae, B; Jeong, J H; Lee, S J

    2002-01-01

    Bisphenol-A (BPA), a known endocrine disruptor, is a main building block of epoxy resin which has been widely used as a surface coating agent on residential water storage tanks. Therefore, BPA leaching from the epoxy resin can adversely affect human health. In this study, BPA leaching from three epoxy resins were quantified at 20, 50, 75 and 100 degrees C both in deionized water and the specified test water, respectively. BPA leached to the test water was identified using GC-MS and quantified with GC-FID after a sequential extraction and concentration. The results showed that BPA leaching has occurred in all three samples tested. The quantity of BPA from unit area of epoxy resin coating was in the range of 01.68-273. 12 microg/m2 for sample A, 29.74-1734.05 microg/m2 for sample B and 52.86-548.78 microg/m2 for sample C depending on the test temperature, respectively. In general, the amount of BPA leashing increased as the water temperature increases. This result implies a higher risk of BPA leaching to drinking water during a summer season. In addition, microbial growth, measured by colony forming units, in epoxy coated water tanks was higher than that in a stainless steel tank. The results suggest that compounds leaching from epoxy resin may support the growth of microorganisms in a residential water holding tank. PMID:12523782

  11. EPOXI at Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    A'Hearn, Michael F.; Belton, Michael J. S.; Delamere, W. Alan; Feaga, Lori M.; Hampton, Donald; Kissel, Jochen; Klaasen, Kenneth P.; McFadden, Jessica M.; Meech, Karen J.; Melosh, H. Jay; Schultz, Peter H.; Sunshine, Jessica M.; Thomas, Peter C.; Veverka, Joseph; Wellnitz, Dennis D.; Yeomans, Donald K.; Besse, Sebastien; Bodewits, Dennis; Bowling, Timothy J.; Carcish, Brian T.; Collins, Steven M.; Farnham, Tony F.; Groussin, Oliver; Hermalyn, Brendan; Kelley, Michael S.

    2011-01-01

    Understanding how comets work, i,e., what drives their activity, is crucial to using comets to study the early solar system. EPOXI flew past comet 103P/Hartley 2, one with an unusually small but very active nucleus. taking both images and spectra. Unlike large, relatively inactive nuclei, this nncleus is outgassing primarily due to CO2, which drags chnnks of ice out of the nnclens. It also shows significant differences in the relative abundance of volatiles from various parts of the nucleus.

  12. Water transport into epoxy resins and composites

    SciTech Connect

    Tsou, H.S.

    1987-01-01

    The processing-property relationships were established for the epoxy system of tetraglycidyl 4,4'-diaminodiphenyl methane (TGDDM) cured with diaminodiphenyl sulfone (DDS). The TGDDM-DDS epoxy system was selected for analysis as the ensuing polymer matrix is most common in high-performance fiber-reinforced epoxy composites. Experiments on water transport in epoxy resins with varying compositions were performed and a relaxation-coupled transport behavior was observed in these epoxy resins. By post-curing vitrified epoxy resins, the additional free volume usually measured in them was removed and maximum water uptake was reduced. Since epoxy resins were in a quasi-equilibrium glassy state after the post-cure, Fick's law with a constant diffusion coefficient could adequately describe the water sorption behavior. A network formation model based on the branching theory was developed, taking into account the difference in reactivities of primary and secondary amines and the etherification reaction. Using this network formation model, water uptake in post-cured epoxy resins was found to be proportional to tertiary amine concentration.

  13. Thermoset epoxy polymers from renewable resources

    DOEpatents

    East, Anthony; Jaffe, Michael; Zhang, Yi; Catalani, Luiz H

    2009-11-17

    Novel thermoset epoxy polymers using the bisglycidyl ethers of anhydrosugars, such as isosorbide, isomannide, and isoidide, are disclosed. The bisglycidyl ethers are useful as substitutes for bisphenol A in the manufacture of thermoset epoxy ethers. The anhydrosugars are derived from renewable sources and the bisglycidyl ethers are not xenoestrogenic and the thermoset curing agents are likewise derived form renewable resources.

  14. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1984-01-01

    The results of a program designed to develop tough imide modified epoxy resins cured by bisimide amine (BIA) hardeners are described. State-of-the-art epoxides MY720 and DER383 were used, and four bismide amines were evaluated. These were the BIA's derived from the 6F anhydride (4,4'-(hexafluoroisopropylidene) bis(phthalic anhydride) and the diamines 3,3'-diaminodiphynyl sulfone, 4,4'-oxygianiline, 4,4'-methylene dianiline, and 1,12-dodecane diamine. A key intermediate, designated 6F anhydride, is required for the synthesis of the bisimide amines. Reaction parameters to synthesize a precursor to the 6F anhydride (6FHC) in high yields were investigated. The catalyst trifluoromethane sulfonic acid was studied. Although small scale runs yielded the 6FHC in 50 percent yield, efforts to ranslate these results to a larger scale synthesis gave the 6FHC in only 9 percent yield. Results show that the concept of using bisimide amine as curing agents to improve the toughness properties of epoxies is valid.

  15. Synthesis & Biological, Physical, & Adhesive Properties of Epoxy Sucroses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raw sugar was converted in two steps to epoxy allyl sucroses (EAS), epoxy crotyl sucroses (ECS), and epoxy methallyl sucroses (EMS) respectively, in 82, 91, and 91.5 % overall yields. EAS, ECS, and EMS are regio and diastereo isomeric epoxy monomers that are liquids at room temperature. The averag...

  16. Mechanical behaviors of hyberbranched epoxy toughened bisphenol F epoxy resin for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Li, Jingwen; Wu, Zhixiong; Huang, Chuanjun; Huang, Rongjin; Li, Laifeng

    2014-01-01

    Epoxy resins have been widely employed in cryogenic engineering fields. In this work, bisphenol F epoxy resin was modified by an aromatic polyester hyperbranched epoxy resin (HTDE-2). Mechanical behaviors of the modified epoxy resins in terms of tensile properties and impact property were studied at both room and cryogenic temperatures. Moreover, the toughening mechanism was discussed by fracture surface morphology analysis. The results demonstrated that, the mechanical properties of composites initially increased until reaches the maximum value with increasing the mass content of the HTDE-2, and then decreased at both room temperature (RT) and 77K. Especially, the impact strength at 77 K was improved 40.7% compared with the pure epoxy matrix when 10 wt% HTDE-2 was introduced. The findings suggest that the HTDE-2 will be an effective toughener for the brittle bisphenol F epoxy resin for cryogenic applications.

  17. Drinking water contaminants from epoxy resin-coated pipes: A field study.

    PubMed

    Rajasärkkä, Johanna; Pernica, Marek; Kuta, Jan; Lašňák, Jonáš; Šimek, Zdenĕk; Bláha, Luděk

    2016-10-15

    Rehabilitation of aged drinking water pipes is an extensive renovation and increasingly topical in many European cities. Spray-on-lining of drinking water pipes is an alternative cost-effective rehabilitation technology in which the insides of pipes are relined with organic polymer. A commonly used polymer is epoxy resin consisting of monomer bisphenol A (BPA). Leaching of BPA from epoxy lining to drinking water has been a concern among public and authorities. Currently epoxy lining is not recommended in some countries. BPA leaching has been demonstrated in laboratory studies but the behavior and ageing process of epoxy lining in situ is not well known. In this study 6 locations with different age epoxy linings of drinking water pipes done using two distinct technologies were studied. While bisphenol F, 4-n-nonylphenol, and 4-t-octylphenol were rarely found and in trace concentrations, BPA was detected in majority of samples. Pipes lined with the older technology (LSE) leached more BPA than those with more recent technology (DonPro): maxima in cold water were 0.25 μg/L and 10 ng/L, respectively. Incubation of water in pipes 8-10 h prior to sampling increased BPA concentration in cold water 1.1-43-fold. Hot water temperature caused even more BPA leaching - at maximum 23.5 μg/L. The influence of ageing of epoxy lining on BPA leaching on could be shown in case of LSE technology: locations with 8-9 years old lining leached 4-20-fold more BPA compared to a location with 2-year-old lining. Analysis of metals showed that epoxy lining can reduce especially iron concentration in water. No significant burden to water could be shown by the analyzed 72 volatile organic compounds, including epichlorhydrin, precursor used in epoxy resin. Estrogenicity was detected in water samples with the highest BPA loads. Comparable responses of two yeast bioreporters (estrogen receptor α and BPA-targeted) indicated that bisphenol-like compounds were the main cause of estrogenicity

  18. Epoxy Foam Encapsulants: Processing and Dielectric Characterization

    SciTech Connect

    Linda Domeier; Marion Hunter

    1999-01-01

    The dielectric performance of epoxy foams was investigated to determine if such materials might provide advantages over more standard polyurethane foams in the encapsulation of electronic assemblies. Comparisons of the dielectric characteristics of epoxy and urethane encapsulant foams found no significant differences between the two resin types and no significant difference between as-molded and machined foams. This study specifically evaluated the formulation and processing of epoxy foams using simple methylhydrosiloxanes as the flowing agent and compared the dielectric performance of those to urethane foams of similar density.

  19. Breakdown properties of epoxy nanodielectric

    SciTech Connect

    Tuncer, Enis; Cantoni, Claudia; More, Karren Leslie; James, David Randy; Polyzos, Georgios; Sauers, Isidor; Ellis, Alvin R

    2010-01-01

    Recent developments in polymeric dielectric nanocomposites have shown that these novel materials can improve design of high voltage (hv) components and systems. Some of the improvements can be listed as reduction in size (compact hv systems), better reliability, high energy density, voltage endurance, and multifunctionality. Nanodielectric systems demonstrated specific improvements that have been published in the literature by different groups working with electrical insulation materials. In this paper we focus on the influence of in-situ synthesized titanium dioxide (TiO{sub 2}) nanoparticles on the dielectric breakdown characteristics of an epoxy-based nanocomposite system. The in-situ synthesis of the particles creates small nanoparticles on the order of 10 nm with narrow size distribution and uniform particle dispersion in the matrix. The breakdown strength of the nanocomposite was studied as a function of TiO{sub 2} concentration at cryogenic temperatures. It was observed that between 2 and 6wt% yields high breakdown values for the nanodielectric.

  20. Effect of interfacial chemical bonding and surface topography on adhesion in carbon fiber/epoxy composites

    SciTech Connect

    Drzal, L.T.; Sugiura, N.; Hook, D. |

    1994-12-31

    A series of PAN-based IM6 carbon fibers having varying amounts of surface treatment were, pretreated with compounds representing the constituents encountered in epoxy composites to pre-react any groups on the fiber surface before composite fabrication in order to determine the effect of chemical bonding on fiber-matrix adhesion. Chemical bonding was quantified using XPS. Chemical bonding between reactive groups in amine cured epoxy matrices and the surface groups present on IN46 carbon fibers as a result of commercial surface treatments has been detected although the absolute amount of chemical bonding is low (1-3%). It was found that reaction with monofunctional epoxy groups having hydrocarbon functionalities blocked the surface from further reaction and reduced the adhesion that could be attained to its lowest value. Prereaction with difunctional amines had little effect on adhesion when compared to normal composite fabrication procedures. Prereaction with difunctional epoxy groups did enhance adhesion levels over the level attained in normal composite fabrication methods. These results showed that chemical bonding between epoxy and the carbon fiber surface could increases the adhesion between fiber and matrix about 25% while between the amino group and the carbon fiber surface about 15%. Quantitative measurements of the fiber surface microtopography were made with scanning tunneling microscopy. An increase in roughness was detected with increasing surface treatment. It was concluded that surface roughness also accounted for a significant increase in fiber-matrix adhesion.

  1. Physical aging in graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Kong, E. S. W.

    1983-01-01

    Sub-Tg annealing has been found to affect the properties of graphite/epoxy composites. The network epoxy studied was based on the chemistry of tetraglycidyl 4,4'-diamino-diphenyl methane (TGDDM) crosslinked by 4,4'-diamino-diphenyl sulfone (DDS). Differential scanning calorimetry, thermal mechanical analysis, and solid-state cross-polarized magic-angle-spinning nuclear magnetic resonance spectroscopy have been utilized in order to characterize this process of recovery towards thermodynamic equilibrium. The volume and enthalpy recovery as well as the 'thermoreversibility' aspects of the physical aging are discussed. This nonequilibrium and time-dependent behavior of network epoxies are considered in view of the increasingly wide applications of TGDDM-DDS epoxies as matrix materials of structural composites in the aerospace industry.

  2. Impregnating magnetic components with MDA free epoxy

    SciTech Connect

    Sanchez, R.O.; Domeier, L.; Gunewardena, S.

    1995-08-01

    This paper describes the use of {open_quotes}Formula 456{close_quotes} an aliphatic amine cured epoxy for impregnating coils. Methylene dianiline (MDA) has been used for more than 20 years as the curing agent for various epoxy formulations throughout the Department of Energy. Sandia National Laboratories began the process of replacing MDA with other formulations because of regulations imposed by OSHA on the use of MDA.

  3. Investigation of paramagnetic response of metallic epoxies

    NASA Technical Reports Server (NTRS)

    Ash, R. L.; Chegini, H.

    1986-01-01

    The paramagnetic properties of epoxies which were impregnated with metal ions were examined as the primary task in this research. A major conclusion was that the quality control of the epoxies was insufficient to permit reliable evaluation. Subsequently, a new set of specimens is being prepared. As an additional task, a new method is investigated for estimating heats of combustion for saturated hydrocarbons. The results of that investigation have shown that the empirical approach is a promising method for on-line measurements.

  4. Electrical properties of epoxies and film resistors

    NASA Technical Reports Server (NTRS)

    Sergent, J. E.

    1976-01-01

    The reliability of hybrid microcircuits has been enhanced in recent years by the use of organic adhesives as a replacement for solder and eutectics. The epoxies have been the most effective and widely used material for this application. Methods for measuring the electrical and mechanical properties of epoxies are developed. Data are given for selected conductive adhesives at high and low frequencies. The temperature coefficients of resistance of thick film resistors are presented.

  5. The modifications of epoxy resin and their crystalline polymer particle filled epoxies

    SciTech Connect

    Huei-Hsiung Wang

    1996-12-31

    The chemical linking of the modifier to the epoxy network was overcome by using Bisphenol A, 4,4`-diaminodiphenyl sulphone or benzophenone-tetracarboxylic dianhydride as a coupling agent between the PU and the epoxy oligomer. From the experimental results, it was shown that the values of fracture energy, G{sub IC} for PU-modified epoxy were dependent on the macroglycols and the coupling agents. Scanning electron microscopy and the glass transition temperature were used to assess the morphology and their compatibility of these modified epoxies. It revealed that the ether type (PTMG) of PU modified epoxy showed the present of an aggregated separated phase. However, the ester type (PBA) PU-modified epoxy resin showed a homogenous morphology. In addition, the {Beta}-relaxation of cured epoxy resin showed a more clear two-phase separation existed in Bis-A as a coupling agents. The additive of the semi-crystalline PBT powder was more efficient in fracture energies of epoxy network than that of the Nylon 6,6 powder.

  6. New epoxy/episulfide resin system for electronic and coating applications: Curing mechanisms and properties

    NASA Astrophysics Data System (ADS)

    Tsuchida, Katsuyuki

    This work involves research on a new resin system useful for printed circuit board and protective coating applications. The system provides excellent adhesion to copper and corrosion resistance for copper. The research involved detailed studies of the reaction mechanisms, and correlation of these mechanisms with the observed properties. The epoxy/episulfide system, when used with a dicyandiamide (DICY) curing agent, exhibits better adhesion to copper substrate, a better pot life and prepreg storage life, a lower thermal expansion coefficient, a lower heat of reaction, a lower degradation temperature, and higher water absorption as compared with the standard epoxy system. From model compound studies, the sulfur of the opened episulfide ring reacts with copper, resulting in a durable bond between the copper and matrix resin even after water boiling. Since the S- formed by the reaction of the episulfide with the curing agent easily reacts with both the episulfide and the epoxy, a C-S-C bond is formed and more unreacted curing agent remains as compared to the standard epoxy system. The new bond formation causes a lower thermal expansion coefficient and somewhat lower degradation temperature. The unreacted curing agent causes slightly higher water absorption. Since the episulfide ring has less stress than the epoxy ring the epoxy/episulfide system shows lower heat of reaction, i.e., a lower exotherm. and lower shrinkage. The epoxy/episuffide system, when used with a polyamide curing agent, exhibits better corrosion protection for copper substrates, a lower thermal expansion coefficient and a lower degradation temperature. From model compound studies, the curing reactions are changed by changing curing temperature and the presence of copper: the episulfide homopolymerization and the S--epoxy reactions increase in the case of room temperature curing or in the presence of copper. In the presence of copper, the sulfur of the episulfide also reacts with copper, although the

  7. Physical aging and its influence on the reliability of network epoxies and epoxy-matrix composites

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1983-01-01

    The matrix-dominated physical and mechanical properties of a carbon fiber reinforced epoxy composite and a neat epoxy resin were found to be affected by sub-Tg annealing in nitrogen and dark atmosphere. Postcured specimens of Thornel 300 carbon-fiber/Fiberite 934 epoxy as well as Fiberite 934 epoxy resin were quenched from above Tg and given annealing at 140 C, 110 C, or 80 C, for time up to one-hundred thousand minutes. No weight loss was observed during annealing at these temperatures. Significant variations were found in density, modulus, hardness, damping, moisture absorption ability, thermal expansivity. Moisture-epoxy interactious were also studied. The kinetics of aging as well as the molecular aggregation during this densification process were monitored by differential scanning calorimetry, dynamic mechanical analysis, density gradient column, microhardness tester, Instron, and solid-state nuclear magnetic resonance spectroscopy.

  8. Effects of Aging Treatment on Mechanical Properties of Sn-58Bi Epoxy Solder on ENEPIG-Surface-Finished PCB

    NASA Astrophysics Data System (ADS)

    Kim, Jungsoo; Myung, Woo-Ram; Jung, Seung-Boo

    2016-07-01

    The mechanical properties of Sn-58Bi epoxy solder were evaluated by low-speed shear testing as functions of aging time and temperature. To determine the effects of epoxy, the interfacial reaction and mechanical properties of both Sn-58Bi and Sn-58Bi epoxy solder were investigated after aging treatment. The chemical composition and growth kinetics of the intermetallic compound (IMC) formed at the interface between Sn-58Bi solder and electroless nickel electroless palladium immersion gold (ENEPIG) surface finish were analyzed. Sn-58Bi solder paste was applied by stencil-printing on flame retardant-4 substrate, then reflowed. Reflowed samples were aged at 85°C, 95°C, 105°C, and 115°C for up to 1000 h. (Ni,Pd)3Sn4 IMC formed between Sn-58Bi solder and ENEPIG surface finish after reflow. Ni3Sn4 and Ni3P IMCs formed at the interface between (Ni,Pd)3Sn4 IMC and ENEPIG surface finish after aging at 115°C for 300 h. The overall IMC growth rate of Sn-58Bi solder joint was higher than that of Sn-58Bi epoxy solder joint during aging. The shear strength of Sn-58Bi epoxy solder was about 2.4 times higher than that of Sn-58Bi solder due to the blocking effect of epoxy, and the shear strength decreased with increasing aging time.

  9. Electrical properties of epoxies used in hybrid microelectronics

    NASA Technical Reports Server (NTRS)

    Stout, C. W.

    1976-01-01

    The electrical properties and basic characteristics of the structure of conductive epoxies were studied. The results of the experimental work performed to measure the electrical properties of epoxies are presented.

  10. RADIATION EFFECTS ON EPOXY CARBON FIBER COMPOSITE

    SciTech Connect

    Hoffman, E

    2008-05-30

    Carbon fiber-reinforced bisphenol-A epoxy matrix composite was evaluated for gamma radiation resistance. The composite was exposed to total gamma doses of 50, 100, and 200 Mrad. Irradiated and baseline samples were tested for tensile strength, hardness and evaluated using FTIR (Fourier transform infrared) spectroscopy and DSC (differential scanning calorimetry) for structural changes. Scanning electron microscopy was used to evaluate microstructural behavior. Mechanical testing of the composite bars revealed no apparent change in modulus, strain to failure, or fracture strength after exposures. However, testing of only the epoxy matrix revealed changes in hardness, thermal properties, and FTIR results with increasing gamma irradiation. The results suggest the epoxy within the composite can be affected by exposure to gamma irradiation.

  11. Free-volume characteristics of epoxies

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; Shultz, William J.; St.clair, Terry L.

    1992-01-01

    Positron annihilation spectroscopy was used to measure free-volume characteristics of selected epoxies. Fluorene resins, a new family of high-temperature thermosetting resins, were selected as the test medium. Experimental results indicate that the free-volume cell size V sub f varies with the molecular weight between the cross-links M sub c according to an equation of the form V sub f = AM sub c sup B, where A and B are structural constants. In two of the samples, the concentration of bulky fluorene groups was increased in the network backbone by replacement of some of the conventional bisphenol A epoxy resin with fluorene-derived epoxy resin. This resulted in an increase in their glass transition temperature for a given level of cross-linking. It was found that in these samples, the Doppler broadening of the annihilation peak decreases with the increasing fluorene content, presumably due to enhanced damping of the chain motions.

  12. Microwave assisted pultrusion of an epoxy composite

    SciTech Connect

    Methven, J.M.; Abidin, A.Z.

    1995-12-01

    A 6mm diameter cylindrical profile based on E-glass fibers and a BF{sub 3}-triamine-epoxy resin system has been manufactured by Microwave Assisted Pultrusion (MAP) using a single mode resonant microwave cavity operating in a TM{sub 010} mode at 2450 MHz. Power transfer is at least 70% and pulling speeds of more than 2m/minute have been achieved for a power input of about 800W. The results are consistent with earlier MAP studies using unsaturated polyesters, epoxies urethane acrylates and vinyl esters. The results provide a sound basis for proposing the use of this type of epoxy system as a material that is suitable for a high speed gel-cure pultrusion process that uses both a microwave heating cavity and a conventional pultrusion die.

  13. Biodegradable Epoxy Networks Cured with Polypeptides

    NASA Astrophysics Data System (ADS)

    Nakamura, Shigeo; Kramer, Edward J.

    2006-03-01

    Epoxy resins are used widely for adhesives as well as coatings. However, once cured they are usually highly cross-linked and are not biodegradable. To obtain potentially biodegradable polypeptides that can cure with epoxy resins and achieve as good properties as the conventional phenol novolac hardeners, poly(succinimide-co-tyrosine) was synthesized by thermal polycondensation of L-aspartic acid and L-tyrosine with phosphoric acid under reduced pressure. The tyrosine/succinimide ratio in the polypeptide was always lower than the tyrosine/(aspartic acid) feed ratio and was influenced by the synthesis conditions. Poly(succinimide-tyrosine- phenylalanine) was also synthesized from L-aspartic acid, L- tyrosine and L-phenylalanine. The thermal and mechanical properties of epoxy resins cured with these polypeptides are comparable to those of similar resins cured with conventional hardeners. In addition, enzymatic degradability tests showed that Chymotrypsin or Subtilisin A could cleave cured films in an alkaline borate buffer.

  14. Free-volume characteristics of epoxies

    SciTech Connect

    Singh, J.J.; Eftekhari, A.; Shultz, W.J.; St.Clair, T.L.

    1992-09-01

    Positron annihilation spectroscopy was used to measure free-volume characteristics of selected epoxies. Fluorene resins, a new family of high-temperature thermosetting resins, were selected as the test medium. Experimental results indicate that the free-volume cell size V sub f varies with the molecular weight between the cross-links M sub c according to an equation of the form V sub f = AM sub c sup B, where A and B are structural constants. In two of the samples, the concentration of bulky fluorene groups was increased in the network backbone by replacement of some of the conventional bisphenol A epoxy resin with fluorene-derived epoxy resin. This resulted in an increase in their glass transition temperature for a given level of cross-linking. It was found that in these samples, the Doppler broadening of the annihilation peak decreases with the increasing fluorene content, presumably due to enhanced damping of the chain motions.

  15. Physical aging in graphite epoxy composites

    NASA Technical Reports Server (NTRS)

    Kong, E. S. W.

    1981-01-01

    The matrix dominated mechanical behavior of a graphite epoxy composite was found to be affected by sub Tg annealing. Postcured + or - 45 deg 4S specimens of Thornel 300 graphite/Narmco 5208 epoxy were quenched from above Tg and given a sub Tg annealing at 140 C for times up to 10 to the 5th power min. The ultimate tensile strength, strain to break, and toughness of the composite material were found to decrease as functions of sub Tg annealing time. No weight loss was observed during the sub Tg annealing. The time dependent change in mechanical behavior is explained on the basis of free volume changes that are related to the physical aging of the nonequilibrium glassy network epoxy. The results imply possible changes in composite properties with service time.

  16. Evaluation of epoxy systems for use in SBASI

    NASA Technical Reports Server (NTRS)

    Coultas, T. J.

    1971-01-01

    The purpose of the test program was to evaluate the performance of different epoxy systems as replacements for existing epoxy systems in the SBASI. The three areas of investigation were the connector shell potting, the epoxy tape under the charge cup, and the epoxy impregnated fiberglass over the output charge. Factors considered, in addition to performance, were availability, shelf life, pot life, and effect on producibility and cost.

  17. Chromium Ions Improve Moisure Resistance of Epoxy Resins

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; St. Clair, T. L.; Stoakley, D. M.; Singh, J. J.; Sprinkle, D. R.

    1986-01-01

    Broad spectrum of thermosetting epoxy resins used on commercial and military aircraft, primarily as composite matrices and adhesives. In new technique, chromium-ion containing epoxy with improved resistance to moisture produced where chromium ions believed to prevent absorption of water molecules by coordinating themselves to hydroxyl groups on epoxy chain. Anticipated that improved epoxy formulation useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft. Improvement made without sacrifice in mechanical properties of polymer.

  18. Thermal properties of epoxy composites filled with boric acid

    NASA Astrophysics Data System (ADS)

    Visakh, P. M.; Nazarenko, O. B.; Amelkovich, Yu A.; Melnikova, T. V.

    2015-04-01

    The thermal properties of epoxy composites filled with boric acid fine powder at different percentage were studied. Epoxy composites were prepared using epoxy resin ED-20, boric acid as flame-retardant filler, hexamethylenediamine as a curing agent. The prepared samples and starting materials were examined using methods of thermal analysis, scanning electron microscopy and infrared spectroscopy. It was found that the incorporation of boric acid fine powder enhances the thermal stability of epoxy composites.

  19. Food contamination from epoxy resins and organosols used as can coatings: analysis by gradient NPLC.

    PubMed

    Biedermann, M; Grob, K

    1998-07-01

    Normal phase LC with gradient elution enabled the analysis of a broadened range of oligomers of BADGE (Bisphenol-A diglycidyl ether) and Novolak compounds in canned foods, such as sea foods in oil, meat products and soups. A major component released from Bisphenol-A resins was identified as the cyclo-(Bisphenol-A monoglycidyl ether) dimer and was commonly present in foods at concentrations of around 1 mg/kg. For the epoxy Novolaks, concentrations of the three- to six-ring compounds often far exceeded those of BFDGE (Bisphenol-F diglycidyl ether) and reached 20 mg/kg in foods. A two-step acylation is proposed for the detection of epoxy components. PMID:9829047

  20. Effects of epoxy/hardener stoichiometry on structures and properties of a diethanolamine-cured epoxy encapsulant

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Xiao, M. Z.; Wu, Z.; Peng, K.; Han, C. M.; Xiang, W.; Dai, J. Y.

    2016-07-01

    For the epoxy encapsulant cured by diethanolamine, optimal epoxy/hardener stoichiometry could hardly be predicted due to the complex curing mechanisms. In this paper, the influences of stoichiometry were investigated by FTIR, DMA and tensile testing. The results showed that stoichiometry has a dominating effect on both Tg and tensile properties of the cured epoxy. The largest Tg , highest crosslink density as well as excellent ductility appeared in epoxy encapsulant cured with 14 wt% diethanolmine. When the content of diethanolamine was lower than 14 wt%, epoxy encapsulants showed smaller glycidyl conversion even with long-duration post-cure. Larger tensile strength and modulus were also observed in the glycidyl-rich epoxies, which could be explained by anti-plasticization effect. The amine-rich epoxy, however, had extremely high glycidyl conversion and presented brittle tensile behavior. A diethanolamine content of 12-14 wt% for the epoxy encapsulant is suggested to obtain optimal thermal and tensile properties.

  1. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under...

  2. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under...

  3. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under...

  4. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  5. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  6. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  7. Interphase tailoring in graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Subramanian, R. V.; Sanadi, A. R.; Crasto, A. S.

    1988-01-01

    The fiber-matrix interphase in graphite fiber-epoxy matrix composites is presently modified through the electrodeposition of a coating of the polymer poly(styrene-comaleic anhydride), or 'SMA' on the graphite fibers; optimum conditions have been established for the achievement of the requisite thin, uniform coatings, as verified by SEM. A single-fiber composite test has shown the SMA coating to result in an interfacial shear strength to improve by 50 percent over commercially treated fibers without sacrifice in impact strength. It is suggested that the epoxy resin's superior penetration into the SMA interphase results in a tougher fiber/matrix interface which possesses intrinsic energy-absorbing mechanisms.

  8. Kevlar 49/Epoxy COPV Aging Evaluation

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Salem, Jonathan L.; Thesken, John C.; Russell, Richard W.; Littell, Justin; Ruggeri, Charles; Leifeste, Mark R.

    2008-01-01

    NASA initiated an effort to determine if the aging of Kevlar 49/Epoxy composite overwrapped pressure vessels (COPV) affected their performance. This study briefly reviews the history and certification of composite pressure vessels employed on NASA Orbiters. Tests to evaluate overwrap tensile strength changes compared 30 year old samples from Orbiter vessels to new Kevlar/Epoxy pressure vessel materials. Other tests include transverse compression and thermal analyses (glass transition and moduli). Results from these tests do not indicate a noticeable effect due to aging of the overwrap materials.

  9. Control of pore size in epoxy systems.

    SciTech Connect

    Sawyer, Patricia Sue; Lenhart, Joseph Ludlow; Lee, Elizabeth; Kallam, Alekhya; Majumdar, Partha; Dirk, Shawn M.; Gubbins, Nathan; Chisholm, Bret J.; Celina, Mathias Christopher; Bahr, James; Klein, Robert J.

    2009-01-01

    Both conventional and combinatorial approaches were used to study the pore formation process in epoxy based polymer systems. Sandia National Laboratories conducted the initial work and collaborated with North Dakota State University (NDSU) using a combinatorial research approach to produce a library of novel monomers and crosslinkers capable of forming porous polymers. The library was screened to determine the physical factors that control porosity, such as porogen loading, polymer-porogen interactions, and polymer crosslink density. We have identified the physical and chemical factors that control the average porosity, pore size, and pore size distribution within epoxy based systems.

  10. Electroactive polymer gels based on epoxy resin

    NASA Astrophysics Data System (ADS)

    Samui, A. B.; Jayakumar, S.; Jayalakshmi, C. G.; Pandey, K.; Sivaraman, P.

    2007-04-01

    Five types of epoxy gels have been synthesized from common epoxy resins and hardeners. Fumed silica and nanoclay, respectively, were used as fillers and butyl methacrylate/acrylamide were used as monomer(s) for making interpenetrating polymer networks (IPNs) in three compositions. Swelling study, tensile property evaluation, dynamic mechanical thermal analysis, thermo-gravimetric analysis, scanning electron microscopy and electroactive property evaluation were done. The gels have sufficient mechanical strength and the time taken for bending to 20° was found to be 22 min for forward bias whereas it was just 12 min for reverse bias.

  11. Expression Profiling Identifies Epoxy Anthraquinone Derivative as a DNA Topoisomerase Inhibitor

    PubMed Central

    Gheeya, Jinesh; Johansson, Peter; Chen, Qing-Rong; Dexheimer, Thomas; Metaferia, Belhu; Song, Young K.; Wei, Jun S.; He, Jianbin; Pommier, Yves

    2014-01-01

    To discover novel drugs for neuroblastoma treatment, we have previously screened a panel of drugs and identified 30 active agents against neuroblastoma cells. Here we performed microarray gene expression analysis to monitor the impact of these agents on a neuroblastoma cell line and used the connectivity map (cMAP) to explore putative mechanism of action of unknown drugs. We first compared the expression profiles of ten compounds shared in both our dataset and cMAP database and observed the high connectivity scores for 7 of 10 matched drugs regardless of the differences of cell lines utilized. The screen of cMAP for uncharacterized drugs indicated the signature of Epoxy anthraquinone derivative (EAD) matched the profiles of multiple known DNA targeted agents (topoisomerase I/II inhibitors, DNA intercalators, and DNA alkylation agents) as predicted by its structure. Similar result was obtained by querying against our internal NB-cMAP (http://pob.abcc.ncifcrf.gov/cgi-bin/cMAP), a database containing the profiles of 30 active drugs. These results suggest that Epoxy anthraquinone derivative may inhibit neuroblastoma cells by targeting DNA replication inhibition. Experimental data also demonstrate that Epoxy anthraquinone derivative indeed induces DNA double-strand breaks through DNA alkylation and inhibition of topoisomerase activity. Our study indicates that Epoxy anthraquinone derivative may be a novel DNA topoisomerase inhibitor that can be potentially used for treatment of neuroblastoma or other cancer patients. PMID:20133050

  12. Cure Kinetics of Epoxy Nanocomposites Affected by MWCNTs Functionalization: A Review

    PubMed Central

    Saeb, Mohammad Reza; Bakhshandeh, Ehsan; Khonakdar, Hossein Ali; Mäder, Edith; Scheffler, Christina; Heinrich, Gert

    2013-01-01

    The current paper provides an overview to emphasize the role of functionalization of multiwalled carbon nanotubes (MWCNTs) in manipulating cure kinetics of epoxy nanocomposites, which itself determines ultimate properties of the resulting compound. In this regard, the most commonly used functionalization schemes, that is, carboxylation and amidation, are thoroughly surveyed to highlight the role of functionalized nanotubes in controlling the rate of autocatalytic and vitrification kinetics. The current literature elucidates that the mechanism of curing in epoxy/MWCNTs nanocomposites remains almost unaffected by the functionalization of carbon nanotubes. On the other hand, early stage facilitation of autocatalytic reactions in the presence of MWCNTs bearing amine groups has been addressed by several researchers. When carboxylated nanotubes were used to modify MWCNTs, the rate of such reactions diminished as a consequence of heterogeneous dispersion within the epoxy matrix. At later stages of curing, however, the prolonged vitrification was seen to be dominant. Thus, the type of functional groups covalently located on the surface of MWCNTs directly affects the degree of polymer-nanotube interaction followed by enhancement of curing reaction. Our survey demonstrated that most widespread efforts ever made to represent multifarious surface-treated MWCNTs have not been directed towards preparation of epoxy nanocomposites, but they could result in property synergism. PMID:24348181

  13. Characterization of Epoxy Functionalized Graphite Nanoparticles and the Physical Properties of Epoxy Matrix Nanocomposites

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Bauer, Jonathan L.; Maryanski, Michael J.; Heimann, Paula J.; Barlow, Jeremy P.; Gosau, Jan-Michael; Allred, Ronald E.

    2010-01-01

    This work presents a novel approach to the functionalization of graphite nanoparticles. The technique provides a mechanism for covalent bonding between the filler and matrix, with minimal disruption to the sp2 hybridization of the pristine graphene sheet. Functionalization proceeded by covalently bonding an epoxy monomer to the surface of expanded graphite, via a coupling agent, such that the epoxy concentration was measured as approximately 4 wt.%. The impact of dispersing this material into an epoxy resin was evaluated with respect to the mechanical properties and electrical conductivity of the graphite-epoxy nanocomposite. At a loading as low as 0.5 wt.%, the electrical conductivity was increased by five orders of magnitude relative to the base resin. The material yield strength was increased by 30% and Young s modulus by 50%. These results were realized without compromise to the resin toughness.

  14. Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy-Alumina Composites

    NASA Astrophysics Data System (ADS)

    Giang, Thanhkieu; Kim, Jinhwan

    2016-06-01

    In a series of papers published recently, we clearly demonstrated that the most important factor governing the thermal conductivity of epoxy-Al2O3 composites is the backbone structure of the epoxy. In this study, three more epoxies based on diglycidyl ester-terminated liquid-crystalline epoxy (LCE) have been synthesized to draw conclusions regarding the effect of the epoxy backbone structure on the thermal conductivity of epoxy-alumina composites. The synthesized structures were characterized by proton nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy. Differential scanning calorimetry, thermogravimetric analysis, and optical microscopy were also employed to examine the thermal and optical properties of the synthesized LCEs and the cured composites. All three LCE resins exhibited typical liquid-crystalline behaviors: clear solid crystalline state below the melting temperature (T m), sharp crystalline melting at T m, and transition to nematic phase above T m with consequent isotropic phase above the isotropic temperature (T i). The LCE resins displayed distinct nematic liquid-crystalline phase over a wide temperature range and retained liquid-crystalline phase after curing, with high thermal conductivity of the resulting composite. The thermal conductivity values ranged from 3.09 W/m-K to 3.89 W/m-K for LCE-Al2O3 composites with 50 vol.% filler loading. The steric effect played a governing role in the difference. The neat epoxy resin thermal conductivity was obtained as 0.35 W/m-K to 0.49 W/m-K based on analysis using the Agari-Uno model. The results clearly support the objective of this study in that the thermal conductivity of the LCE-containing networks strongly depended on the epoxy backbone structure and the degree of ordering in the cured network.

  15. Development of Graphite/Epoxy Corner Fittings

    NASA Technical Reports Server (NTRS)

    Faile, G.; Hollis, R.; Ledbetter, F.; Maldonado, J.; Sledd, J.; Stuckey, J.; Waggoner, G.; Engler, E.

    1986-01-01

    Report documents development project aimed at improving design and load-carrying ability of complicated corner fitting for optical bench. New fitting made of graphite filaments in epoxy-resin matrix. Composite material selected as replacement for titanium because lighter and dimensions change little with temperature variations.

  16. Polymeric Additives For Graphite/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Nir, Z.

    1990-01-01

    Report describes experimental studies of properties of several graphite/epoxy composites containing polymeric additives as flexibilizing or toughening agents. Emphasizes effects of brominated polymeric additives (BPA's) with or without carboxy-terminated butadiene acrylonitrile rubber. Reviews effects of individual and combined additives on fracture toughnesses, environmental stabilities, hot/wet strengths, thermomechanical behaviors, and other mechanical properties of composites.

  17. Thermal modeling of an epoxy encapsulation process

    SciTech Connect

    Baca, R.G.; Schutt, J.A.

    1991-01-01

    The encapsulation of components is a widely used process at Sandia National Laboratories for packaging components to withstand structural loads. Epoxy encapsulants are also used for their outstanding dielectric strength characteristics. The production of high voltage assemblies requires the encapsulation of ceramic and electrical components (such as transformers). Separation of the encapsulant from internal contact surfaces or voids within the encapsulant itself in regions near the mold base have caused high voltage breakdown failures during production testing. In order to understand the failure mechanisms, a methodology was developed to predict both the thermal response and gel front progression of the epoxy the encapsulation process. A thermal model constructed with PATRAN Plus (1) and solved with the P/THERMAL (2) analysis system was used to predict the thermal response of the encapsulant. This paper discusses the incorporation of an Arrhenius kinetics model into Q/TRAN (2) to model the complex volumetric heat generation of the epoxy during the encapsulation process. As the epoxy begins to cure, it generates heat and shrinks. The total cure time of the encapsulant (transformation from a viscous liquid to solid) is dependent on both the initial temperature and the entire temperature history. Because the rate of cure is temperature dependent, the cure rate accelerates with a temperature increase and, likewise, the cure rate is quenched if the temperature is reduced. The temperature and conversion predictions compared well against experimental data. The thermal simulation results were used to modify the temperature cure process of the encapsulant and improve production yields.

  18. Synthesis of a Novel Phosphorus-Containing Flame Retardant Curing Agent and Its Application in Epoxy Resins.

    PubMed

    Zhang, Hongkun; Xu, Miaojun; Li, Bin

    2016-03-01

    A novel phosphorus-containing compound diphenyl-(2,5-dihydroxyphenyl)-phosphine oxide defined as DPDHPPO was synthesized and used as flame retardant and curing agent for epoxy resins (EP). The chemical structure was well characterized by Fourier transform infrared (FTIR) spectroscopy, 1H, 13C and 31P nuclear magnetic resonance. The flame retardant properties, combusting performances and thermal degradation behaviors of the cured epoxy resins were investigated by limiting oxygen index (LOI), vertical burning tests (UL-94), cone calorimeter and thermogravimetric analysis (TGA) tests. The morphologies and chemical compositions of char residues for cured epoxy resins were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The water resistant properties were evaluated by putting the samples into distilled water at 70 degrees C for 168 h. The results revealed that the EP/40 wt% DPDHPPO/60 wt% PDA thermosets successfully passed UL-94 V-0 flammability rating and the LOI value was as high as 31.9%. The cone tests results revealed that the incorporation of DPDHPPO efficiently reduced the combustion parameters of epoxy resins thermosets, such as heat release rate (HRR), total heat release (THR) and so on. The TGA results indicated that the introduction of DPDHPPO promoted epoxy resins matrix decomposed ahead of time compared with that of pure EP and led to a higher char yield and thermal stability at high temperature. The morphological structures and analysis of XPS of char residues revealed that DPDHPPO benefited to the formation of a sufficient, compact and homogeneous char layer with rich flame retardant elements on the epoxy resins materials surface during combustion. After water resistance tests, EP/40 wt% DPDHPPO/60 wt% PDA thermosets still remained excellent flame retardancy, the moisture absorption of epoxy resins thermosets decreased with the increase of DPDHPPO contents in the thermosets due to the existing

  19. Quantitation of buried contamination by use of solvents. Part 1: Solvent degradation of amine cured epoxy resins

    NASA Technical Reports Server (NTRS)

    Rheineck, A. E.; Heskin, R. A.; Hill, L. W.

    1972-01-01

    The solubility and/or swelling of cured epoxy resins was studied using the solubility parameter method. Determination of solubility parameters were found in order to select solvents for solvent-assisted degradation of cured epoxy polymers used in spacecraft. A method for improving recovery of seeded spores is suggested for assay of buried contaminants. Three commercial epoxy resins were cured using four different alkyl amines. For each resin-amine combination, three levels of amine were used, corresponding to 1/3, 2/3, and all of the amine required to react with the oxirane groups of the resin. The solubility parameters of the 36 resulting model compounds were determined in poorly and moderately hydrogen-bonded solvents. No strongly hydrogen-bonded solvents caused dissolution or swelling. The tolerance of cured resins is discussed in terms of polymer structure.

  20. Tensile properties of nanoclay reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Ku, H.; Trada, Mohan

    2013-08-01

    Kinetic epoxy resin was filled with nanoclay to increase tensile properties of the composite for civil and structural. This project manufactured samples with different percentages by weight of nanoclay in the composites in steps of 1 wt %, which were then post-cured in an oven. The samples were then subjected to tensile tests. The results showed that the composite with 3 wt % of nanoclay produced the highest yield and tensile strengths. However, the Young's modulus increased with increasing nanoparticulate loading. It is hoped that the discussion and results in this work would not only contribute towards the further development of nanoclay reinforced epoxy composites with enhanced material properties, but also provide useful information for the studies of fracture toughness, tensile properties and flexural properties of other composites.

  1. Glass/Epoxy Door Panel for Automobiles

    NASA Technical Reports Server (NTRS)

    Bauer, J. L. JR.

    1985-01-01

    Lightweight panel cost-effective. Integrally-molded intrusion strap key feature of composite outer door panel. Strap replaces bulky and heavy steel instrusion beam of conventional door. Standard steel inner panel used for demonstration purposes. Door redesigned to exploit advantages of composite outer panel thinner. Outer panel for automobilie door, made of glass/epoxy composite material, lighter than conventional steel door panel, meets same strength requirements, and less expensive.

  2. Safe epoxy encapsulant for high voltage magnetics

    SciTech Connect

    Sanchez, R.O.; Archer, W.E.

    1998-01-01

    This paper describes the use of Formula 456, an aliphatic amine cured epoxy for impregnating coils and high voltage transformers. Sandia has evaluated a number of MDA-free epoxy encapsulants which relied on either anhydride or other aromatic amine curing agents. The use of aliphatic amine curing agents was more recently evaluated and has resulted in the definition of Formula 456 resin. Methylene dianiline (MDA) has been used for more than 20 years as the curing agent for various epoxy formulations throughout the Department of Energy and much of industry. Sandia National Laboratories began the process of replacing MDA with other formulations because of regulations imposed by OSHA on the use of MDA. OSHA has regulated MDA because it is a suspect carcinogen. Typically the elimination of OSHA-regulated materials provides a rare opportunity to qualify new formulations in a range of demanding applications. It was important to take full advantage of that opportunity, although the associated materials qualification effort was costly. Small high voltage transformers are one of those demanding applications. The successful implementation of the new formulation for high reliability transformers will be described. The test results that demonstrate the parts are qualified for use in DOE weapon systems will be presented.

  3. Interconnected porous epoxy monoliths prepared by concentrated emulsion templating.

    PubMed

    Wang, Jianli; Du, Zhongjie; Li, Hangquan; Xiang, Aimin; Zhang, Chen

    2009-10-01

    Porous epoxy monoliths were prepared via a step polymerization in a concentrated emulsion stabilized by non-ionic emulsifiers and colloidal silica. A solution in 4-methyl-2-pentanon was used as the continuous phase, which contained glycidyl amino epoxy monomer (GAE), curing agent, and an emulsifier. An aqueous suspension of colloidal silica was used as the dispersed phase of the concentrated emulsion. After the continuous phase was completely polymerized, the dispersed phase was removed and a porous epoxy was obtained. An optimal HLB value of emulsifier for the GAE concentrated emulsion was determined. In addition, the morphology of the porous epoxy was observed by SEM. The effect of the colloidal silica, the emulsifier, the curing of the epoxy, and the volume fraction of the dispersed phase on the morphology of porous epoxy are systematically discussed. PMID:19595357

  4. Epoxy thermoset networks derived from vegetable oils and their blends

    NASA Astrophysics Data System (ADS)

    Ryu, Chang; Ravalli, Matthew

    2015-03-01

    Epoxidized vegetable oils (EVOs), such as epoxidized soybean oil and linseed oils were prepared by the partial oxidation of the unsaturated double bonds in vegetable oils and used as monomers for preparing epoxy thermoset materials based on the cationic polymerization. These EVOs have been used to prepare epoxy thermosets of different network densities by cationic polymerization using onium salt catalyst. The crosslinked epoxy thermosets provide an ideal platform to study the structure-property-relationships of networked polymers. In particular, rheological studies on the epoxidized vegetable oil thermosets have been performed to measure the molecular weights between crosslinks (Mx) in the epoxy thermosets and to ultimately elucidate the role of functionality of epoxy groups in EVO on the mechanical and thermophysical properties of the epoxy thermoset materials. NSF DMR POLYMERS 1308617.

  5. Morphology development of rubber-modified epoxy thermosets

    SciTech Connect

    Kwon, O.; Ward, T.C.

    1996-12-31

    Epoxy thermosets have been widely used as high performance adhesives and matrix resins for composites due to their outstanding mechanical and thermal properties, such as high modulus and tensile strength, high glass transition temperature, high thermal stability, and moisture resistance. Incorporation of a secondary rubbery phase into the glassy epoxy matrix can improve impact and fracture toughness of epoxy thermosets without sacrificing the other desirable properties of the neat epoxy thermoset. During the curing process, the initial homogeneous solution of epoxy resin-curing agent-rubber generally forms rubber-rich and epoxy-rich phases by a phase separation process which is arrested by gelation or vitrification. The final morphology developed by the cure depends on relative rates of cure reaction and phase separation. Cure conditions and the initial rubber composition control the morphology of the system and thus control the mechanical properties of the system.

  6. Biobased Epoxy Nanocomposites Derived from Lignin-Based Monomers.

    PubMed

    Zhao, Shou; Abu-Omar, Mahdi M

    2015-07-13

    Biobased epoxy nanocomposites were synthesized based on 2-methoxy-4-propylphenol (dihydroeugenol, DHE), a molecule that has been obtained from the lignin component of biomass. To increase the content of hydroxyl groups, DHE was o-demethylated using aqueous HBr to yield propylcatechol (DHEO), which was subsequently glycidylated to epoxy monomer. Optimal conditions in terms of yield and epoxy equivalent weight were found to be 60 °C with equal NaOH/phenolic hydroxyl molar ratio. The structural evolution from DHE to cured epoxy was followed by (1)H NMR and Fourier transform infrared spectroscopy. The nano-montmorillonite modified DHEO epoxy exhibited improved storage modulus and thermal stability as determined from dynamic mechanical analysis and thermogravimetric analysis. This study widens the synthesis routes of biobased epoxy thermosets from lignin-based molecules. PMID:26135389

  7. Rate dependent response and failure of a ductile epoxy and carbon fiber reinforced epoxy composite

    SciTech Connect

    Brown, Eric N; Rae, Philip J; Dattelbaum, Dana M; Stahl, David B

    2010-01-01

    An extensive characterization suite has been performed on the response and failure of a ductile epoxy 55A and uniaxial carbon fiber reinforced epoxy composite of IM7 fibers in 55A resin from the quasistatic to shock regime. The quasistatic and intermediate strain rate response, including elastic modulus, yield and failure have are characterized by quasistatic, SHPB, and DMA measurements as a function of fiber orientation and temperature. The high strain rate shock effect of fiber orientation in the composite and response of the pure resin are presented for plate impact experiments. It has previously been shown that at lower impact velocities the shock velocity is strongly dependent on fiber orientation but at higher impact velocity the in-plane and through thickness Hugoniots converge. The current results are compared with previous studies of the shock response of carbon fiber composites with more conventional brittle epoxy matrices. The spall response of the composite is measured and compared with quasistatic fracture toughness measurements.

  8. Toughened epoxy resin system and a method thereof

    DOEpatents

    Janke, Christopher J.; Dorsey, George F.; Havens, Stephen J.; Lopata, Vincent J.

    1998-01-01

    Mixtures of epoxy resins with cationic initiators are curable under high energy ionizing radiation such as electron beam radiation, X-ray radiation, and gamma radiation. The composition of this process consists of an epoxy resin, a cationic initiator such as a diaryliodonium or triarylsulfonium salt of specific anions, and a toughening agent such as a thermoplastic, hydroxy-containing thermoplastic oligomer, epoxy-containing thermoplastic oligomer, reactive flexibilizer, rubber, elastomer, or mixture thereof. Cured compositions have high glass transition temperatures, good mechanical properties, and good toughness. These properties are comparable to those of similar thermally cured epoxies.

  9. Toughened epoxy resin system and a method thereof

    DOEpatents

    Janke, C.J.; Dorsey, G.F.; Havens, S.J.; Lopata, V.J.

    1998-03-10

    Mixtures of epoxy resins with cationic initiators are curable under high energy ionizing radiation such as electron beam radiation, X-ray radiation, and gamma radiation. The composition of this process consists of an epoxy resin, a cationic initiator such as a diaryliodonium or triarylsulfonium salt of specific anions, and a toughening agent such as a thermoplastic, hydroxy-containing thermoplastic oligomer, epoxy-containing thermoplastic oligomer, reactive flexibilizer, rubber, elastomer, or mixture thereof. Cured compositions have high glass transition temperatures, good mechanical properties, and good toughness. These properties are comparable to those of similar thermally cured epoxies.

  10. Cobalt Ions Improve the Strength of Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St. Clair, A. K.

    1986-01-01

    Technique developed for improving mechanical strength of epoxy resins by adding cobalt ions in form of tris(acetylacetonato)cobalt (III) complex. Solid cast disks prepared from cobalt ion-containing epoxy resins tested for flexural strength and stiffness. Incorporation of cobalt ions into epoxies increased flexural strength of resins by 10 to 95 percent. Suitable resins for this technique include any liquid or solid TGMDA resins. Improved epoxy formulation proves useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft.

  11. Space environmental effects on graphite-epoxy compressive properties and epoxy tensile properties

    NASA Technical Reports Server (NTRS)

    Fox, Derek J.; Sykes, George F., Jr.; Herakovich, Carl T.

    1987-01-01

    This study characterizes the effects of electron radiation and temperature on a graphite-epoxy composite material. Compressive properties of the T300/934 material system were obtained at -250 F (-157 C), room temperature, and 250 F (121 C). Tensile specimens of the Fiberite 934 epoxy resin were fabricated and tested at room temperature and 250 F (121 C). Testing was conducted in the baseline (nonirradiated) and irradiated conditions. The radiation exposure was designed to simulate 30 year, worst-case exposure in geosynchronous Earth orbit. Mechanical properties tended to degrade at elevated temperature and improve at cryogenic temperature. Irradiation generally degraded properties at all temperatures.

  12. Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G (Inventor)

    2013-01-01

    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.

  13. Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites

    NASA Astrophysics Data System (ADS)

    Fasanella, Nicholas A.; Sundararaghavan, Veera

    2016-05-01

    The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.

  14. [Microbial settlement of paint- and building-materials in the sphere of drinking water. 7. Communication: long time observations in two drinking water reservoirs coated by epoxy resin (author's transl)].

    PubMed

    Schoenen, D; Dott, W; Thofern, E

    1981-01-01

    In two potable water reservoirs with an epoxy resin lining an increase of the colony count in the water and a visible microbial growth on the surface could be observed. The slime consists of bacteria and fungi. In one case higher organisms like protozoa were found too. The growth of microorganisms is caused by organic compounds of the epoxy resin which can be deteriorated by microorganisms. After a period of 3 years both materials still promote microbial growth on the surface. PMID:6792815

  15. Thermal Expansion and Swelling of Cured Epoxy Resin Used in Graphite/Epoxy Composite

    NASA Technical Reports Server (NTRS)

    Adamson, M. J.

    1979-01-01

    The thermal expansion and swelling of resin material as influenced by variations in temperature during moisture absorption is discussed. Comparison measurements using composites constructed of graphite fibers and each of two epoxy resin matrices are included. Polymer theory relative to these findings is discussed and modifications are proposed.

  16. The fabrication, testing and delivery of boron/epoxy and graphite/epoxy nondestructive test standards

    NASA Technical Reports Server (NTRS)

    Pless, W. M.; Lewis, W. H.

    1971-01-01

    A description is given of the boron/epoxy and graphite/epoxy nondestructive test standards which were fabricated, tested and delivered to the National Aeronautics and Space Administration. Detailed design drawings of the standards are included to show the general structures and the types and location of simulated defects built into the panels. The panels were laminates with plies laid up in the 0 deg, + or - 45 deg, and 90 deg orientations and containing either titanium substrates or interlayered titanium perforated shims. Panel thickness was incrementally stepped from 2.36 mm (0.093 in.) to 12.7 mm (0.500 in.) for the graphite/epoxy standards, and from 2.36 mm (0.093 in.) to 6.35 mm (0.25 in.) for the boron/epoxy standards except for the panels with interlayered shims which were 2.9 mm (0.113 in.) maximum thickness. The panel internal conditions included defect free regions, resin variations, density/porosity variations, cure variations, delaminations/disbonds at substrate bondlines and between layers, inclusions, and interlayered shims. Ultrasonic pulse echo C-scan and low-kilovoltage X-ray techniques were used to evaluate and verify the internal conditions of the panels.

  17. Organo-modified bentonites as new flame retardant fillers in epoxy resin nanocomposites

    NASA Astrophysics Data System (ADS)

    Benelli, Tiziana; D'Angelo, Emanuele; Mazzocchetti, Laura; Saraga, Federico; Sambri, Letizia; Franchini, Mauro Comes; Giorgini, Loris

    2016-05-01

    The present work deals with two organophilic bentonites, based on nitrogen-containing compounds: these organoclays were synthesized via an ion exchange process starting from pristine bentonite with 6-(4-butylphenyl)-1,3,5-triazine-2,4-diamine (BFTDA) and 11-amino-N-(pyridine-2yl)undecanamide (APUA) and then used for the production of epoxy-based flame retardant nanocomposites. The amount of organic modifier in the organoclays Bento-BFTDA and Bento-APUA was determined with a TGA analysis and is around 0.4mmol/g for both samples. The effect of the organoclays on a commercial epoxy resin nanocomposite's thermo-mechanical and flammability properties was investigated. Composites containing 3wt% and 5wt% of the nanofillers were prepared by solventless addition of each organoclay to the epoxy resin, followed by further addition of the hardener component. For the sake of comparison a similar nanocomposite with the plain unmodified bentonite was produced in similar condition. The nanocomposites's thermo-mechanical properties of all the produced samples were measured and they resulted slightly improved or practically unaffected. On the contrary, when the flame behaviour was assessed in the cone-calorimeter, an encouraging decrease of 17% in the peak heat released rate (pHRR) was obtained at 3wt% loading level with Bento-APUA. This is a promising result, assessing that the APUA modified organoclay might act as flame retardant.

  18. Large fracture toughness boron-epoxy composites

    NASA Technical Reports Server (NTRS)

    Atkins, A. G.

    1975-01-01

    The high tensile strengths of strong interfacial bonding may be combined with the large fracture toughness of weak interfacial bonding in brittle fiber/brittle matrix composites by intermittently coating the filaments before layup so as to have random alternate weak and strong regions. Appropriate coating materials enable Cook-Gordon Mode I interfacial debonding to take place, which produces very long pull-out lengths with an associated large contribution to toughness. Unidirectional boron-epoxy composites have been so made which have toughnesses greater than 200 kJ/sq m while retaining rule of mixtures tensile strengths. Similar trends have been observed for crossply layups.

  19. Respiratory effects of exposure of shipyard workers to epoxy paints.

    PubMed Central

    Rempel, D; Jones, J; Atterbury, M; Balmes, J

    1991-01-01

    Epoxy resin systems have been associated with occupational asthma in several case reports, but medical publications contain little on the potential adverse respiratory effects of these chemicals in exposed worker populations. To further evaluate the association of workplace exposure to epoxy paints and respiratory dysfunction, the cross workshift changes in pulmonary function and symptoms of 32 shipyard painters exposed to epoxy paints were compared with 28 shipyard painters not exposed to epoxy paints. The prevalence of lower respiratory tract symptoms was significantly higher among painters exposed to epoxy paints compared with controls. Among exposed painters the mean cross workshift change in forced expiratory volume in one second (FEV1) (-3.4%) was greater than the decrement in the non-exposed group (-1.4%). A significant linear relation was seen between % decrement in FEV1 and hours of exposure to epoxy paints. This study suggests that epoxy resin coatings as used by shipyard painters are associated with increased lower respiratory tract symptoms and acute decrements in FEV1. Adequate respiratory protection and medical surveillance programmes should be established in workplaces where exposure to epoxy resin systems occurs. PMID:1954156

  20. 40 CFR 721.320 - Acrylamide-substituted epoxy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.320 Acrylamide-substituted epoxy. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylamide-substituted epoxy (PMN...

  1. 40 CFR 721.320 - Acrylamide-substituted epoxy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.320 Acrylamide-substituted epoxy. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylamide-substituted epoxy (PMN...

  2. Large boron--epoxy filament-wound pressure vessels

    NASA Technical Reports Server (NTRS)

    Jensen, W. M.; Bailey, R. L.; Knoell, A. C.

    1973-01-01

    Advanced composite material used to fabricate pressure vessel is prepeg (partially cured) consisting of continuous, parallel boron filaments in epoxy resin matrix arranged to form tape. To fabricate chamber, tape is wound on form which must be removable after composite has been cured. Configuration of boron--epoxy composite pressure vessel was determined by computer program.

  3. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Vinyl epoxy ester. 721.3140 Section 721.3140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3140 Vinyl epoxy ester. (a)...

  4. Carbonation of epoxy methyl soyate at atmospheric pressure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbonated methyl soyates were prepared from epoxy methyl soyate by the introduction of carbon dioxide at the oxirane position. Carbonation was performed with carbon dioxide gas by sparging carbon dioxide through the epoxy esters at atmospheric pressure in the presence of tetrabutylammonium bromide...

  5. Physical aging of linear and network epoxy resins

    NASA Technical Reports Server (NTRS)

    Kong, E. S.-W.; Wilkes, G. L.; Mcgrath, J. E.; Banthia, A. K.; Mohajer, Y.; Tant, M. R.

    1981-01-01

    Network and linear epoxy resins principally based on the diglycidyl ether of bisphenol-A and its oligomers are prepared and studied using diamine and anhydride crosslinking agents. Rubber modified epoxies and a carbon fiber reinforced composite are also investigated. All materials display time-dependent changes when stored at temperatures below the glass transition temperature after quenching (sub-T/g/ annealing). Solvent sorption experiments initiated after different sub-T(g) annealing times demonstrate that the rate of solvent uptake can be indirectly related to the free volume of the epoxy resins. Residual thermal stresses and water are found to have little effect on the physical aging process, which affects the sub-T(g) properties of uniaxial carbon fiber reinforced epoxy material. Finally, the importance of the recovery phenomenon which affects the durability of epoxy glasses is considered.

  6. From waste to functional additive: toughening epoxy resin with lignin.

    PubMed

    Liu, Wanshuang; Zhou, Rui; Goh, Hwee Li Sally; Huang, Shu; Lu, Xuehong

    2014-04-23

    A novel approach to toughen epoxy resin with lignin, a common waste material from the pulp and paper industry, is presented in this article. First, carboxylic acid-functionalized alkali lignin (AL-COOH) was prepared and subsequently incorporated into anhydride-cured epoxy networks via a one-pot method. The results of mechanical tests show that covalent incorporation of rigid AL-COOH into epoxy networks can significantly toughen the epoxy matrix without deteriorating its tensile strength and modulus. The addition of 1.0 wt % AL-COOH gives increases of 68 and 164% in the critical stress intensity factor (K(IC)) and critical strain energy release rate (G(IC)), respectively, relative to that of neat epoxy. This article opens up the possibility of utilizing low-cost and renewable lignin feedstocks as effective toughening agents for thermoset polymers. PMID:24660855

  7. Insights into Epoxy Network Nanostructural Heterogeneity Using AFM-IR.

    PubMed

    Morsch, Suzanne; Liu, Yanwen; Lyon, Stuart B; Gibbon, Simon R

    2016-01-13

    The first direct observation of a chemically heterogeneous nanostructure within an epoxy resin is reported. Epoxy resins comprise the matrix component of many high performance composites, coatings and adhesives, yet the molecular network structure that underpins the performance of these industrially essential materials is not well understood. Internal nodular morphologies have repeatedly been reported for epoxy resins analyzed using SEM or AFM, yet the origin of these features remains a contentious subject, and epoxies are still commonly assumed to be chemically homogeneous. Uniquely, in this contribution we use the recently developed AFM-IR technique to eliminate previous differences in interpretation, and establish that nodule features correspond to heterogeneous network connectivity within an epoxy phenolic formulation. PMID:26694687

  8. Toughening of epoxy resins by epoxidized soybean oil

    SciTech Connect

    Frischinger, I.; Dirlikov, S.

    1993-12-31

    Homogeneous mixtures of a liquid rubber based on prepolymers of epoxidized soybean oil with amines, diglycidyl ether of bisphenol A epoxy resins, and commercial diamines form, under certain conditions, two-phase thermosetting materials that consist of a rigid epoxy matrix and randomly distributed small rubbery soybean particles (0.1-5 {mu}m). These two-phase thermosets have improved toughness, similar to that of other rubber-modified epoxies, low water absorption, and low sodium content. In comparison to the unmodified thermosets, the two-phase thermosets exhibit slightly lower glass-transition temperatures and Young`s moduli, but their dielectric properties do not change. The epoxidized soybean oil is available at a price below that of commercial epoxy resins and appears very attractive for epoxy toughening on an industrial scale. 15 refs., 17 figs., 6 tabs.

  9. Cationic cure kinetics of a polyoxometalate loaded epoxy nanocomposite

    SciTech Connect

    Anderson, Benjamin J.

    2012-08-06

    The reaction cure kinetics of a novel polyoxometalate (POM) loaded epoxy nanocomposite is described. The POM is dispersed in the epoxy resin up to volume fractions of 0.1. Differential scanning calorimetry measurements show the cure of the epoxy resin to be sensitive to the POM loading. A kinetics study of the cure exotherm confirms that POM acts as a catalyst promoting cationic homopolymerization of the epoxy resin. The cure reaction is shown to propagate through two cure regimes. A fast cure at short time is shown to be propagation by the activated chain end (ACE) mechanism. A slow cure at long time is shown to be propagation by the activated monomer (AM) mechanism. The activation energies for the fast and slow cure regimes agree well with other epoxy based systems that have been confirmed to propagate by the ACE and AM mechanisms.

  10. Fiber-optic epoxy composite cure sensor. II. Performance characteristics

    NASA Astrophysics Data System (ADS)

    Lam, Kai-Yuen; Afromowitz, Martin A.

    1995-09-01

    The performance of a fiber-optic epoxy composite cure sensor, as previously proposed, depends on the optical properties and the reaction kinetics of the epoxy. The reaction kinetics of a typical epoxy system are presented. It is a third-order autocatalytic reaction with a peak observed in each isothermal reaction-rate curve. A model is derived to describe the performance characteristics of the epoxy cure sensor. If a composite coupon is cured at an isothermal temperature, the sensor signal can be used to predict the time when the gel point occurs and to monitor the cure process. The sensor is also shown to perform well in nonstoichiometric epoxy matrices. In addition the sensor can detect the end of the cure without calibration.

  11. A self-crosslinking thermosetting monomer with both epoxy and anhydride groups derived from Tung oil fatty acids: Synthesis and properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A self-crosslinking compound with epoxy groups and anhydride groups (GEMA) has been successfully synthesized from Tung oil fatty acid by reacting with maleic anhydride via the Diels-Alder reaction. GEMA has very good storage stability and can be cured with trace amounts of tertiary amine. This advan...

  12. Vinyl ethers containing an epoxy group. XVI. Reaction of glycidol vinyloxyethyl ether with acetals

    SciTech Connect

    Nedolya, N.A.; Khil'ko, M.Ya.; Trofimov, B.A.; Sigalov, M.V.

    1988-10-10

    In order to obtain branched acetals with epoxide groups (prospective monomers and intermediates) the authors investigated the reaction of acetaldehyde diethyl and di(1,1,3-trihydrotetrafluoropropyl) acetals with glycidol vinyloxyethyl ether. The addition of acetals to vinyl epoxy ethers was realized, and the first representative of compounds of this type, i.e., 9-glycidyloxy-6-ethoxy-4-methyl-3,7-dioxanonane, was obtained. It was also impossible to add a fluoroacetal to butyl vinyl ether (0.08-1.00 wt. % of catalyst CF/sub 3/COOH, BF/sub 3//times/ OEt/sub 2/, 20-80/degree/C, 0.5-3 h).

  13. Electrical properties of epoxy/silver nanocomposites

    NASA Astrophysics Data System (ADS)

    Gonon, P.; Boudefel, A.

    2006-01-01

    We investigated the electrical properties of nanocomposites made of epoxy resin filled with 70-nm-sized silver particles. These composites were studied for the fabrication of integrated capacitors in electronics packaging. The dc conductivity was studied as a function of the filler concentration and as a function of temperature. We also studied the ac conductivity and the permittivity in the 10-1-105 Hz range as a function of the filler concentration. Experimental properties were analyzed using standard percolation theories. The dc conductivity varies as (φ-φc)t, where φ is the filler concentration, φc is the percolation threshold, and t is the dc critical exponent. A very low percolation threshold is obtained (φc=1%) which is believed to be related to a segregated distribution of the fillers in the epoxy matrix. We also measured a very high dc critical exponent (t=5) probably related to the interparticle electrical contact. A universal scaling law is observed for σ(ω) and ɛ(ω). Above a cutoff frequency (ωc, which scales with the dc conductivity as ωc~σdcq) the conductivity and the permittivity follow the universal power laws (σ~ωu and V~ω-v) with critical exponents taking nonstandard values (q=0.83-0.98, u=0.79, and v=0.03).

  14. Ultrasonic mixing of epoxy curing agents

    NASA Technical Reports Server (NTRS)

    Hodges, W. T.; St.clair, T. L.

    1983-01-01

    A new technique for mixing solid curing agents into liquid epoxy resins using ultrasonic energy was developed. This procedure allows standard curing agents such as 4,4 prime-diaminodiphenyl sulfone (4,4 prime-DDS) and its 3,3 prime-isomer, (3,3 prime-DDS) to be mixed without prior melting of the curing agent. It also allows curing agents such as 4,4 prime-diaminodiphenyl sulfone (4,4 prime-DDS) and its 3,3 prime-isomer, (3,3 prime-DDS) to be mixed without prior melting of the curing agent. It also allows curing agents with very high melt temperatures such as 4,4 prime-diaminobenzophenone (4,4 prime-DABP) (242 C) to be mixed without premature curing. Four aromatic diamines were ultrasonically blended into MY-720 epoxy resin. These were 4,4 prime-DDS; 3,3 prime-DDA; 4,4 prime-DABP and 3,3 prime-DABP. Unfilled moldings were cast and cured for each system and their physical and mechanical properties compared.

  15. Epoxy Crosslinked Silica Aerogels (X-Aerogels)

    NASA Technical Reports Server (NTRS)

    fabrizio, Eve; Ilhan, Faysal; Meador, Mary Ann; Johnston, Chris; Leventis, Nicholas

    2004-01-01

    NASA is interested in the development of strong lightweight materials for the dual role of thermal insulator and structural component for space vehicles; freeing more weight for useful payloads. Aerogels are very-low density materials (0.010 to 0.5 g/cc) that, due to high porosity (meso- and microporosity), can be, depending on the chemical nature of the network, ideal thermal insulators (thermal conductivity approx. 15 mW/mK). However, aerogels are extremely fragile. For practical application of aerogels, one must increase strength without compromising the physical properties attributed to low density. This has been achieved by templated growth of an epoxy polymer layer that crosslinks the "pearl necklace" network of nanoparticles: the framework of a typical silica aerogel. The requirement for conformal accumulation of the epoxy crosslinker is reaction both with the surface of silica and with itself. After cross-linking, the strength of a typical aerogel monolith increases by a factor of 200, in the expense of only a 2-fold increase in density. Strength is increased further by coupling residual unreacted epoxides with diamine.

  16. Thermographic Qualification of Graphite/Epoxy Instrumentation Racks

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Russell, Samuel S.; Workman, Gary L.

    1998-01-01

    A nondestructive evaluation method is desired for ensuring the 'as manufactured' and 'post service' quality of graphite/epoxy instrumentation rack shells. The damage tolerance and geometry of the racks dictate that the evaluation method be capable of identifying defects, as small as 0.25 inch 2 in area, over large acreage regions, tight compound radii and thickness transition zones. The primary defects of interest include voids, inclusions, delaminations and porosity. The potential for an infrared thermographic inspection to replace ultrasonic testing, for qualifying the racks as 'defect free' is under investigation. The inspection process is validated by evaluating defect standard panels built to the same specifications as the racks, except for the insertion of artificial fabricated defects. The artificial defects are designed to match those which are most prevalent in the actual instrumentation racks. A target defect area of 0.0625 inch 2 (a square with 0.25 inch on a side) was chosen for the defect standard panels to ensure the ability to find all defects of the critical (0.25 inch squared) size.

  17. Pretreatment of Kapton-coated cable for epoxy adhesion

    SciTech Connect

    Carley, J.F.

    1984-01-09

    Preliminary testing of a new system for protecting bonded strain gages that will be attached to the MFTF magnets indicated falling electrical resistance to ground, attributed to the infiltration of moisture. The most likely infiltration route seemed to be along the Kapton lead cable, which has an outer surface of FEP fluorocarbon resin. Samples of the cable were pretreated with a fluorocarbon etchant, Tetra-Etch, for periods of 10, 25, and 40 s at room temperature, followed by rinsing with demineralized water. The treated ends were embedded in the proposed epoxy sealant, Hysol EA 934, a compound containing 70 wt % of asbestos. The tensile-shear stresses required to pull the wires out of these embedments were measured. Results show that the three levels of treatment are equally effective in raising the bond strength from 377 psi for the untreated cable to about twice that, 763 psi. The 40-s exposure to Tetra-Etch appears to have penetrated the 0.5-mil fluorocarbon coating and attacked the Kapton film and the conductor coatings inside it.

  18. Effect of Co-60 gamma radiation on the mechanical properties of epoxy blends and epoxy-graphite fiber interface

    SciTech Connect

    Netravali, A.N.; Manji, A. )

    1991-06-01

    The effect of Co-60 gamma radiation of up to 100 Mrads on an IM6-G graphite fiber-epoxy interface was studied using the single-fiber-composite (SFC) technique. Flexible epoxy blends were formulated using DGEBA based and polyglycol diepoxide epoxies which were cured with aliphatic and aromatic curing agents. Bulk epoxy specimens and graphite fibers were tension tested to obtain their tensile properties. The fragment length distribution from SFC tests, single fiber strength data, and a Monte Carlo simulation of Poisson/Weibull model for fiber strength and flaws were used to obtain the effective interfacial shear strength values. The results indicate that while graphite fiber strength is not affected by radiation, the tensile properties of the epoxies used are adversely affected by the radiation. The interfacial shear strength, however, increases significantly with the radiation dose. 36 refs.

  19. Progress toward Making Epoxy/Carbon-Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Tiano, Thomas; Roylance, Margaret; Gassner, John; Kyle, William

    2008-01-01

    A modicum of progress has been made in an effort to exploit single-walled carbon nanotubes as fibers in epoxy-matrix/fiber composite materials. Two main obstacles to such use of carbon nanotubes are the following: (1) bare nanotubes are not soluble in epoxy resins and so they tend to agglomerate instead of becoming dispersed as desired; and (2) because of lack of affinity between nanotubes and epoxy matrices, there is insufficient transfer of mechanical loads between the nanotubes and the matrices. Part of the effort reported here was oriented toward (1) functionalization of single-walled carbon nanotubes with methyl methacrylate (MMA) to increase their dispersability in epoxy resins and increase transfer of mechanical loads and (2) ultrasonic dispersion of the functionalized nanotubes in tetrahydrofuran, which was used as an auxiliary solvent to aid in dispersing the functionalized nanotubes into a epoxy resin. In another part of this effort, poly(styrene sulfonic acid) was used as the dispersant and water as the auxiliary solvent. In one experiment, the strength of composite of epoxy with MMA-functionalized-nanotubes was found to be 29 percent greater than that of a similar composite of epoxy with the same proportion of untreated nanotubes.

  20. The failure mode of natural silk epoxy triggered composite tubes

    NASA Astrophysics Data System (ADS)

    Eshkour, R. A.; Ariffin, A. K.; Zulkifli, R.; Sulong, A. B.; Azhari, C. H.

    2012-09-01

    In this study the quasi static compression test over natural silk epoxy triggered composite tubes has been carried out, the natural silk epoxy composite tubes consist of 24 layer of woven natural silk as reinforcement and thermoset epoxy resin as matrix which both of them i e natural silk and epoxy have excellent mechanical properties More over the natural silk have better moisture resistance in comparison with other natural reinforcements, the length of tubes are 50, 80 and 120 mm The natural silk epoxy composite tubes are associated with an external trigger which includes 4 steel pieces welded on downside flat plate fixture The hand lay up fabrication method has been used to make the natural silk epoxy composite tubes Instron universal testing machine with 250 KN load capacity has been employed to accomplish this investigation The failure modes of natural silk epoxy triggered composite tubes has been investigated by representative photographs which has been taken by a high resolution camera(12 2 Mp) during the quasi static compression test, from the photographs is observed the failure modes is progressive local buckling

  1. Experimental studies of graphite-epoxy and boron-epoxy angle ply laminates in shear

    NASA Technical Reports Server (NTRS)

    Weller, T.

    1977-01-01

    The nonlinear/inelastic response under inplane shear of a large variety of graphite-epoxy and boron-epoxy angle-ply laminates was tested. Their strength allowables were obtained and the mechanisms which govern their mode of failure were determined. Two types of specimens for the program were chosen, tested, and evaluated: shear panels stabilized by an aluminum honeycomb core and shear tubes. A modified biaxially compression/tension loaded picture frame was designed and utilized in the test program with the shear panels. The results obtained with this test technique categorically prefer the shear panels, rather than the tubes, for adequate and satisfactory experimental definition of the objectives. Test results indicate the existence of a so-called core-effect which ought to be considered when reducing experimental data for weak in shear laminates.

  2. Tension fatigue of glass/epoxy and graphite/epoxy tapered laminates

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.; Obrien, T. Kevin; Salpekar, Satish A.

    1990-01-01

    Symmetric tapered laminates with internally dropped plies were tested with two different layups and two materials, S2/SP250 glass/epoxy and IM6/1827I graphite/epoxy. The specimens were loaded in cyclic tension until they delaminated unstably. Each combination of material and layup had a unique failure mode. Calculated values of strain energy release rate, G, from a finite element analysis model of delamination along the taper, and for delamination from a matrix ply crack, were used with mode I fatigue characterization data from tests of the tested materials to calculate expected delamination onset loads. Calculated values were compared to the experimental results. The comparison showed that when the calculated G was chosen according to the observed delamination failures, the agreement between the calculated and measured delamination onset loads was reasonable for each combination of layup and material.

  3. Tension fatigue of glass/epoxy and graphite/epoxy tapered laminates

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.; O'Brien, T. Kevin; Salpekar, Satish A.

    1990-01-01

    Symmetric tapered laminates with internally dropped plies were tested with two different layups and two materials, S2/SP250 glass/epoxy and IM6/18271 graphite/epoxy. The specimens were loaded in cyclic tension until they delaminated unstably. Each combination of material and layup had a unique failure mode. Calculated values of strain energy release rate, G, from a finite element analysis model of delamination along the taper, and for delamination from a matrix ply crack, were used with mode I fatigue characterization data from tests of the tested materials to calculate expected delamination onset loads. Calculated values were compared to the experimental results. The comparison showed that when the calculated G was chosen according to the observed delamination failures, the agreement between the calculated and measured delamination onset loads was reasonable for each combination of layup and material.

  4. Magnetic nano-Fe3O4-supported 1-benzyl-1,4-dihydronicotinamide (BNAH): synthesis and application in the catalytic reduction of α,β-epoxy ketones.

    PubMed

    Xu, Hua-Jian; Wan, Xin; Shen, Yong-Ya; Xu, Song; Feng, Yi-Si

    2012-03-01

    A novel magnetically recoverable organic hydride compound was successfully constructed by using silica-coated magnetic nanoparticles as a support. An as-prepared magnetic organic hydride compound, BNAH (1-benzyl-1,4-dihydronicotinamide), showed efficient activity in the catalytic reduction of α,β-epoxy ketones. After reaction, the magnetic nanoparticle-supported BNAH can be separated by simple magnetic separation which made the separation of the product easier. PMID:22324403

  5. Effect of modified aminosilane interfaces in glass/epoxy composites

    SciTech Connect

    Porter, C.E.; Blum, F.D.

    1996-10-01

    The effects of the interfacial modification of glass/epoxy composites have been studied using 3-point bending tests. Hydrolyzed {gamma}-aminopropyltriethyoxysilane APS and {gamma}-aminobutyltriethoxysilane (ABS) were separately adsorbed onto E-glass and the treated fibers were then used in composites that used both a diglycidyl ether of bisphenol A and a diglycidyl ether of polypropylene epoxy matrix. Mechanical tests were used to characterize the flexural strength of the composite as a function of the silane coupling agent and the flexibility of the epoxy used.

  6. Epoxy coatings over latex block fillers

    SciTech Connect

    Vincent, L.D.

    1997-12-01

    Failures of polymerized epoxy coatings applied over latex/acrylic block fillers continue to plague owners of commercial buildings, particularly those with high architectural content such as condominiums, high rise offices, etc. Water treatment facilities in paper mills are especially prone to this problem. The types of failures include delamination of the topcoats, blisters in both the block fillers and the topcoats and disintegration of the block filler itself. While the problem is well known, the approach to a solution is not. A study of several coatings manufacturer`s Product Data Sheets shows a wide variance in the recommendations for what are purportedly generically equivalent block fillers. While one manufacturer might take an essentially architectural approach, another will take a heavy-duty industrial approach. To the specifying architect or engineer who has little training in the complexities of protective coating systems, this presents a dilemma. Who does he believe? What does he specify? To whom can he turn for independent advice?

  7. Contactless optoelectronic technique for monitoring epoxy cure.

    PubMed

    Cusano, A; Buonocore, V; Breglio, G; Calabrò, A; Giordano, M; Cutolo, A; Nicolais, L

    2000-03-01

    We describe a novel noninvasive optical technique to monitor the refractive-index variation in an epoxy-based resin that is due to the polymerization process. This kind of resin is widely used in polymer matrix composites. It is well known that the process of fabricating a thermoset-based composite involves mass and heat transfer coupled with irreversible chemical reactions that induce physical changes. To improve the quality and the reliability of these materials, monitoring the cure and optimization of the manufacturing process are of key importance. We discuss the basic operating principles of an optical system based on angle deflection measurements and present typical cure-monitoring results obtained from optical characterization. The method provides a flexible, high-sensitivity, material-independent, low-cost, noninvasive tool for monitoring real-time refractive-index variation. PMID:18337994

  8. Epoxy bond and stop etch fabrication method

    DOEpatents

    Simmons, Jerry A.; Weckwerth, Mark V.; Baca, Wes E.

    2000-01-01

    A class of epoxy bond and stop etch (EBASE) microelectronic fabrication techniques is disclosed. The essence of such techniques is to grow circuit components on top of a stop etch layer grown on a first substrate. The first substrate and a host substrate are then bonded together so that the circuit components are attached to the host substrate by the bonding agent. The first substrate is then removed, e.g., by a chemical or physical etching process to which the stop etch layer is resistant. EBASE fabrication methods allow access to regions of a device structure which are usually blocked by the presence of a substrate, and are of particular utility in the fabrication of ultrafast electronic and optoelectronic devices and circuits.

  9. Cryogenic evaluation of epoxy bond strength

    NASA Astrophysics Data System (ADS)

    Albritton, N.; Young, W.

    The purpose of the work presented here was to determine methods of optimizing the adhesion of a particular epoxy (CTD-101K, Composite Technology Development Inc.) to a particular nickel-based alloy substrate (Incoloy ® 908, Inco Alloys International) for cryogenic applications. Initial efforts were focused on surface preparation of the substrate material via various mechanical and chemical cleaning techniques. Test samples, fabricated to simulate the conduit-to-insulation interface, were put through a mock heat treat and vacuum/pressure impregnation process. Samples were compression/shear load tested to compare the bond strengths at room temperature and liquid nitrogen temperature. The resulting data indicate that acid etching creates a higher bond strength than the other tested techniques and that the bond formed is stronger at cryogenic temperatures than at room temperature. A description of the experiment along with the resulting data is presented here.

  10. Measurement of damping of graphite epoxy materials

    NASA Technical Reports Server (NTRS)

    Crocker, M. J.

    1985-01-01

    The design of an experiment to measure the damping of a cylindrical graphite-epoxy specimen with a three point support and a knife edge support is described as well as equipment used in tests conducted to determine the influence of the support at the two ends of the specimen and to simulate an idealized free-free boundary condition at the two edges. A curve fitting technique is being used to process the frequency response data obtained. Experiments conducted on the thin plate specimen also reveal the influence of the end support condition on the damping ratio of the specimen. The damping ratio values measured for both specimens appear to be strongly influenced by the shape of the specimen and appear to depend on length and fiber orientation as well as the presence of discontinuities such as sharp bends, corners, and notches.

  11. Epoxy resin developments for large superconducting magnets impregnation

    NASA Astrophysics Data System (ADS)

    Rey, J. M.; Gallet, B.; Kircher, F.; Lottin, J. C.

    The future detectors ATLAS and CMS of the Large Hadron Collider at CERN will use two huge superconducting magnets. Both are now under design, and their electrical insulation could be realized using epoxy resin and a wet impregnation technique. Because of their large dimensions, and the indirect cooling of the superconductor, the strengths of the resin and of the resin/conductor interface are of major importance. A new generation of epoxy resins for vacuum/pressure impregnation methods has been tested, and compared with some classical and well-known epoxy resins used in impregnation techniques. In order to understand the mechanical behaviour at 4 K, the complete evolution from liquid state to low temperature service condition is considered. The paper will present some results on the mechanical properties, the density and the chemical shrinkage occurring during the polymerization and the thermal contraction between room temperature and 4 K for these different types of epoxy resins.

  12. Magnetism in graphene oxide induced by epoxy groups

    SciTech Connect

    Lee, Dongwook; Seo, Jiwon; Zhu, Xi; Su, Haibin; Cole, Jacqueline M.

    2015-04-27

    We have engineered magnetism in graphene oxide. Our approach transforms graphene into a magnetic insulator while maintaining graphene's structure. Fourier transform infrared spectroscopy spectra reveal that graphene oxide has various chemical groups (including epoxy, ketone, hydroxyl, and C-O groups) on its surface. Destroying the epoxy group with heat treatment or chemical treatment diminishes magnetism in the material. Local density approximation calculation results well reproduce the magnetic moments obtained from experiments, and these results indicate that the unpaired spin induced by the presence of epoxy groups is the origin of the magnetism. The calculation results also explain the magnetic properties, which are generated by the interaction between separated magnetic regions and domains. Our results demonstrate tunable magnetism in graphene oxide based on controlling the epoxy group with heat or chemical treatment.

  13. Study on cationic photopolymerization reaction of epoxy polysiloxane

    NASA Astrophysics Data System (ADS)

    Sun, F.; Jiang, S. L.; Liu, J.

    2007-11-01

    The effects of epoxy monomers, concentration of photoinitiator and radical photoinitiators on the photosensitive properties of cationic phopolymerization system with a novel epoxy polysiloxane oligomer (CEPS) were investigated via a gel yield method. The results showed that among the tested epoxy monomers, the reactivity of ERL-4221 with cycloaliphatic epoxy groups was the highest. The optimum concentration of diaryldiodonium salt (SR-1012) was determined as 4-5 wt.%. Increasing the amounts of ERL-4221 in the CEPS cationic photopolymerization system, UV-curing rate increased. Radical photoinitiators with ArC dbnd O structure possessed sensitization capacity to the cationic photoinitiator SR-1012. The photosensitivity of the CEPS system could be up to 165 mJ/cm 2. Adding a small amount of IPA and BP could greatly improve the photosensitivity of CEPS cationic photosensitive system. The optimal quantity of isopropanol added to the system was not more than 2 wt.%.

  14. Method of making superhydrophobic/superoleophilic paints, epoxies, and composites

    DOEpatents

    Simpson, John T.; Hunter, Scott Robert

    2016-05-10

    Superhydrophobic paints and epoxies comprising superoleophilic particles and surfaces and methods of making the same are described. The superoleophilic particles can include porous particles having a hydrophobic coating layer deposited thereon. superoleophilic particles.

  15. Epoxy Nanocomposites—Curing Rheokinetics, Wetting and Adhesion to Fibers

    NASA Astrophysics Data System (ADS)

    Ilyin, S. O.; Kotomin, S. V.; Kulichikhin, V. G.

    2010-06-01

    Epoxy nanocomposites considered as challenging polymeric matrix for advanced reinforced plastics. Nanofillers change rheokinetics of epoxy resin curing, affect wetting and adhesion to aramid and carbon fibers. In all cases extreme dependence of adhesive strength vs filler content in the binder was observed. New experimental techniques were developed to study wettability and fiber-matrix adhesion interaction, using yarn penetration path length, aramid fiber knot pull-up test and electrical admittance of the fracture surface of CFRP.

  16. Fabrication of graphite/epoxy cases for orbit insertion motors

    NASA Technical Reports Server (NTRS)

    Schmidt, W. W.

    1973-01-01

    The fabrication procedures are described for filament-wound rocket motor cases, approximately 26.25 inches long by 25.50 inches diameter, utilizing graphite fibers. The process utilized prepreg tape which consists of Fortafil 4-R fibers in the E-759 epoxy resin matrix. This fabrication effect demonstrated an ability to fabricate high quality graphite/epoxy rocket motor cases in the 26.25 inch by 25.50 inch size range.

  17. Exit Presentation: Infrared Thermography on Graphite/Epoxy

    NASA Technical Reports Server (NTRS)

    Comeaux, Kayla

    2010-01-01

    This slide presentation reports on the internship project that was accomplished during the summer of 2010. The objectives of the project were to: (1) Simulate Flash Thermography on Graphite/Epoxy Flat Bottom hole Specimen and thin void specimens, (2) Obtain Flash Thermography data on Graphite/Epoxy flat bottom hole specimens, (3) Compare experimental results with simulation results, Compare Flat Bottom Hole Simulation with Thin Void Simulation to create a graph to determine size of IR Thermography detected defects

  18. Heat generation from epoxy cracks and bond failures

    NASA Astrophysics Data System (ADS)

    Maeda, H.; Iwasa, Y.

    Energy released following cracks and bond failures were measured for an EPON epoxy near 4.2 K. Crack events were monitored with an acoustic emission sensor; the energy released by each crack or bond failure was calculated from the temperature rise measured with thermocouples. Cracking was observed to be load dependent; this may account in part for the training phenomenon observed in bringing epoxy-impregnated superconducting magnets to full design field.

  19. Epoxy Nanocomposites - Curing Rheokinetics, Wetting and Adhesion to Fibers

    SciTech Connect

    Ilyin, S. O.; Kotomin, S. V.; Kulichikhin, V. G.

    2010-06-02

    Epoxy nanocomposites considered as challenging polymeric matrix for advanced reinforced plastics. Nanofillers change rheokinetics of epoxy resin curing, affect wetting and adhesion to aramid and carbon fibers. In all cases extreme dependence of adhesive strength vs filler content in the binder was observed. New experimental techniques were developed to study wettability and fiber-matrix adhesion interaction, using yarn penetration path length, aramid fiber knot pull-up test and electrical admittance of the fracture surface of CFRP.

  20. Theoretical studies of radiation effects in composite materials for space use. [graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Chang, C. K.; Kamaratos, E.

    1982-01-01

    Tetraglycidyl 4,4'-diamino diphenyl methane epoxy cured with diamino diphenyl sulfone was used as a model compound. Computer programs were developed to calculate (1) energy deposition coefficients of protons and electrons of various energies at different depths of the material; (2) ranges of protons and electrons of various energies in the material; and (3) cumulative doses received by the composite in different geometric shapes placed in orbits of various altitudes and inclination. A preliminary study on accelerated testing was conducted and it was found that an elliptical equitorial orbit of 300 km perigee by 2750 km apogee can accumulate, in 2 years or less, enough radiation dose comparable to geosynchronous environment for 30 years. The local plasma model calculated the mean excitation energies for covalent and ionic compounds. Longitudinal and lateral distributions of excited species by electron and proton impact as well as the probability of overlapping of two tracks due to two charged particles within various time intervals were studied.

  1. Interlaboratory comparison of thin section epoxy impregnation procedures

    SciTech Connect

    Wilson, M.D.; Byrnes, A.P.

    1987-05-01

    Evidence of the ineffective blue-dye epoxy impregnation is encountered all too commonly in thin sections. A study involving ceramic disks was conducted to compare the efficiencies of a variety of epoxy impregnation procedures used by major laboratories. Disks were sent to five commercial and four major oil company thin section laboratories which then impregnated the disks and returned them for analysis. Porcelain disks were used because of their high degree of uniformity, white color, rocklike composition and pore geometry, uniform pore size, and high pore connectivity. Impregnation efficiency was determined by calculating the pore volume invaded using helium porosimetry and by determining the areas and distances of invasion based on extent of blue-dye invasion in cross-sectional cuts through the disks. Techniques which proved very highly effective are vacuum or vacuum/pressure impregnation in which the epoxy was added to the sample container subsequent to evacuation. Relatively ineffective are vacuum techniques, at room or elevated temperatures, where the sample is submerged in epoxy prior to evacuation. The key to effective impregnation is to remove air from the sample before it is covered by epoxy. Factors which have little or no influence on the effectiveness of impregnation include type of blue dye, epoxy type, and presence of fluorescent dye. High-quality thin sections can be prepared using less-effective techniques if care is taken to prepare them from the outer edge of the impregnated sample.

  2. Investigation of the effects of cobalt ions on epoxy properties

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Stoakley, D. M.

    1986-01-01

    The effects of Co(acac)sub x complexes on MY-720 epoxy properties have been investigated. It appears that Co2(+) ions form antibonding or nonbonding orbitals which increase the free volume and also reduce the cohesiveness of the host epoxy. The effects of Co2(+) ions, on the other hand, seem to result in increased Cohesiveness of the epoxy. The experimental values of magnetic moments of both types of ions in MY-720 suggest that the orbital momentum contributions of the (3d) electrons are partially conserved, though the effect is more pronounced for Co2(+) ions. The coordination environment of the cobalt ions in the host epoxy does not appear to be uniquely defined. These results indicate that the effects of metal ions on resin properties cannot be easily predicted on the basis of ligand field theory argument alone. Complex interactions between metal ions and host epoxy molecular structure suggest the desirability of parallel experimental investigations of electronic, magnetic, and mechanical properties of metal ion-containing epoxy samples for comparison with theory.

  3. Effects of Nanofillers on the Thermo-Mechanical Properties and Chemical Resistivity of Epoxy Nanocomposites.

    PubMed

    Atchudan, Raji; Pandurangan, Arumugam; Joo, Jin

    2015-06-01

    MWCNTs was synthesized using Ni-Cr/MgO by CVD method and were purified. The purified MWCNT was used as a filler material for the fabrication of epoxy nanocomposites. The epoxy nanocomposites with different amount (wt% = 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0) of nanofillers (CB, SiO2 and MWCNTs) were prepared by casting method. The effects of nanofillers on the properties of neat epoxy matrix were well studied. The thermal properties of nanocomposites were studied using DSC, TGA and flame retardant, and also the mechanical properties such as tensile strength, flexural strength, compressive strength, impact strength, determination of hardness and chemical resistance were studied extensively. Based on the experiment's results, 2 wt% MWCNTs loading in epoxy resin showed the highest improvement in tensile strength, as compared to neat epoxy and to other epoxy systems (CB/epoxy, SiO2/epoxy). Improvements in tensile strength, glass transition temperature and decomposition temperature were observed by the addition of MWCNTs. The mechanical properties of the epoxy nanocomposites were improved due to the interfacial bonding between the MWCNTs and epoxy resin. Strain hardening behavior was higher for MWCNT/epoxy nanocomposites compared with CB/epoxy and SiO2/epoxy nanocomposites. The investigation of thermal and mechanical properties reveals that the incorporation of MWCNTs into the epoxy nanocomposites increases its thermal stability to a great extent. Discrete increase of glass transition temperature of nanocomposites is linearly dependent on MWCNTs content. Due to strong interfacial bonding between MWCNTs and epoxy resin, the chemical resistivity of MWCNT/epoxy nanocomposites is superior to neat epoxy and other epoxy systems. PMID:26369037

  4. Bioactive compounds from Iostephane heterophylla (Asteraceae).

    PubMed

    Aguilar, M I; Delgado, G; Hernández, M L; Villarreal, M L

    2001-01-01

    The novel bisabolene sesquiterpenes 3-6, were isolated from Iostephane heterophylla, using bioguided fractionation. The new compounds were determined to be (12R/12S)-12,13-epoxy-xanthorrhizols (3,4) and (12R/12S)-12,13-dihydro-12,13-dihydroxy-xanthorrizols (5,6) and their structures were characterized by analysis of spectroscopic data and by chemical correlation from xanthorrhizol (2). The stereochemistry at C-12 of 5 was deduced using the modified Mosher experiment. Some of the isolated compounds elicited activity against gram positive and gram negative bacteria, levadura and dermatophytes. PMID:11561451

  5. Viscoelastic properties of graphene-based epoxy resins

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Fierro, Annalisa; Rosolia, Salvatore; Raimondo, Marialuigia; Lafdi, Khalid; Guadagno, Liberata

    2015-12-01

    In this paper the viscoelastic properties of an epoxy resin filled with graphene-based nanoparticles have been investigated in the liquid state, before curing, by means of a rotational rheometer equipped with a parallel plate geometry. Exfoliated graphite was prepared using traditional acid intercalation followed by a sudden treatment at high temperature (900°C). The percentage of exfoliated graphite was found to be 56%. The epoxy matrix was prepared by mixing a tetrafunctional precursor with a reactive diluent which produces a significant decrease in the viscosity of the epoxy precursor so that the dispersion step of nanofillers in the matrix can easily occur. The hardener agent, the 4,4-diaminodiphenyl sulfone (DDS), was added at a stoichiometric concentration with respect to all the epoxy rings. The inclusion of the partially exfoliated graphite (pEG) in the formulated epoxy mixture significantly modifies the rheological behaviour of the mixture itself. The epoxy mixture, indeed, shows a Newtonian behaviour while, at 3 wt % pEG content, the complex viscosity of the nanocomposite clearly shows a shear thinning behaviour with η* values much higher at the lower frequencies. The increase in complex viscosity with the increasing of the partially exfoliated graphite content was mostly caused by a dramatic increase in the storage modulus. All the graphene-based epoxy mixtures were cured by a two-stage curing cycles: a first isothermal stage was carried out at the lower temperature of 125°C for 1 hour while the second isothermal stage was performed at the higher temperature of 200°C for 3 hours. The mechanical properties of the cured nanocomposites show high values in the storage modulus and glass transition temperature.

  6. Toughening Mechanisms in Silica-Filled Epoxy Nanocomposites

    NASA Astrophysics Data System (ADS)

    Patel, Binay S.

    Epoxies are widely used as underfill resins throughout the microelectronics industry to mechanically couple and protect various components of flip-chip assemblies. Generally rigid materials largely surround underfill resins. Improving the mechanical and thermal properties of epoxy resins to better match those of their rigid counterparts can help extend the service lifetime of flip-chip assemblies. Recently, researchers have demonstrated that silica nanoparticles are effective toughening agents for lightly-crosslinked epoxies. Improvements in the fracture toughness of silica-filled epoxy nanocomposites have primarily been attributed to two toughening mechanisms: particle debonding with subsequent void growth and matrix shear banding. Various attempts have been made to model the contribution of these toughening mechanisms to the overall fracture energy observed in silica-filled epoxy nanocomposites. However, disparities still exist between experimental and modeled fracture energy results. In this dissertation, the thermal, rheological and mechanical behavior of eight different types of silica-filled epoxy nanocomposites was investigated. Each nanocomposite consisted of up to 10 vol% of silica nanoparticles with particle sizes ranging from 20 nm to 200 nm, with a variety of surface treatments and particle structures. Fractographical analysis was conducted with new experimental approaches in order to accurately identify morphological evidence for each proposed toughening mechanism. Overall, three major insights into the fracture behavior of real world silica-filled epoxy nanocomposites were established. First, microcracking was observed as an essential toughening mechanism in silica-filled epoxy nanocomposites. Microcracking was observed on the surface and subsurface of fractured samples in each type of silica-filled epoxy nanocomposite. The additional toughening contribution of microcracking to overall fracture energy yielded excellent agreement between experimental

  7. Electron beam curing of epoxy resins by cationic polymerization

    SciTech Connect

    Janke, C.J.; Dorsey, G.F.; Havens, S.J.; Lopata, V.J.

    1995-10-01

    Preliminary investigations have determined that conventional epoxy resins can be cured at selectable temperatures with high glass transition temperatures (essentially the same as with thermal curing), while still exhibiting equivalent or comparable mechanical properties. A cationic photoinitiator at a concentration of 1--3 parts per hundred of the epoxy resin is required for this process. Gamma cell screening of cationic photoinitiators with bisphenol A, bisphenol F, and cycloaliphatic epoxies demonstrated that diaryliodonium salts of weakly nucleophilic anions such as hexafluoroantimonate are most effective. Diaryliodonium salts were also found to be most effective initiators for the cationic polymerization of epoxy resins when a high energy/power electron beam accelerator was used as the source of ionizing radiation. For example Dow Tactix 123 (bisphenol A epoxy) containing 3 phr (4-octyloxyphenyl)phenyliodonium hexafluoroantimonate was irradiated at a total dosage of 100 kGy. Glass transition temperature (tan delta) of the cured material as determined by dynamic mechanical analysis was 182 C as compared to 165 C thermally cured material.

  8. Fiber-Reinforced Reactive Nano-Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Zhong, Wei-Hong

    2011-01-01

    An ultra-high-molecular-weight polyethylene/ matrix interface based on the fabrication of a reactive nano-epoxy matrix with lower surface energy has been improved. Enhanced mechanical properties versus pure epoxy on a three-point bend test include: strength (25 percent), modulus (20 percent), and toughness (30 percent). Increased thermal properties include higher Tg (glass transition temperature) and stable CTE (coefficient of thermal expansion). Improved processability for manufacturing composites includes faster wetting rates on macro-fiber surfaces, lower viscosity, better resin infusion rates, and improved rheological properties. Improved interfacial adhesion properties with Spectra fibers by pullout tests include initial debonding force of 35 percent, a maximum pullout force of 25 percent, and energy to debond at 65 percent. Improved mechanical properties of Spectra fiber composites (tensile) aging resistance properties include hygrothermal effects. With this innovation, high-performance composites have been created, including carbon fibers/nano-epoxy, glass fibers/nano-epoxy, aramid fibers/ nano-epoxy, and ultra-high-molecularweight polyethylene fiber (UHMWPE).

  9. Void-free epoxy castings for cryogenic insulators and seals

    SciTech Connect

    Quirk, J.F.

    1983-01-01

    The design of the Westinghouse Magnet for the Oak Ridge National Laboratory's Large Coil Program (LCP) incorporates a main lead bushing which transmits heat-leak loads by conduction to the supercritical helium stream. The bushing, which consists of epoxy resin cast about a copper conductor, must be electrically insulated, vacuum tight and be capable of withstanding the stresses encountered in cryognic service. The seal design of the bushing is especially important; leakage from either the helium system or the external environment into the vacuum will cause the magnet to quench. Additionally, the epoxy-resin casting must resist mechanical loads caused by the weight of leads attached to the bushing and thermal stresses transmitted to the epoxy via the conductor. The epoxy resin is cast about the conductor in such a way as to provide the required vacuum tight seal. The technique by which this is accomplished is reviewed. Equally important is the elimination of voids in the epoxy which will act as stress-concentrating discontinuities during cooling to or warming from 4K. The types of voids that could be expected and their causes are described. The paper reviews techniques employed to eliminate voids within the cast-resin portion of the bushing.

  10. High-performance fiber/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Chiao, T. T.; Hamstad, M. A.; Jessop, E. S.; Toland, R. H.

    1978-01-01

    Activities described include: (1) determining the applicability of an ultrahigh-strength graphite fiber to composite pressure vessels; (2) defining the fatigue performance of thin-titanium-lined, high-strength graphite/epoxy pressure vessel; (3) selecting epoxy resin systems suitable for filament winding; (4) studying the fatigue life potential of Kevlar 49/epoxy pressure vessels; and (5) developing polymer liners for composite pressure vessels. Kevlar 49/epoxy and graphite fiber/epoxy pressure vessels, 10.2 cm in diameter, some with aluminum liners and some with alternation layers of rubber and polymer were fabricated. To determine liner performance, vessels were subjected to gas permeation tests, fatigue cycling, and burst tests, measuring composite performance, fatigue life, and leak rates. Both the metal and the rubber/polymer liner performed well. Proportionately larger pressure vessels (20.3 and 38 cm in diameter) were made and subjected to the same tests. In these larger vessels, line leakage problems with both liners developed the causes of the leaks were identified and some solutions to such liner problems are recommended.

  11. Curing and toughening of epoxy resins with phosphorus containing monomers and polymers

    SciTech Connect

    Park, Y.R.; Park, I.Y.; Yoon, T.H.

    1996-12-31

    Epoxy resins have been utilized in many areas, from house holds to airplanes, for the past several decades due to some exceptional properties such as low cost, good mechanical properties and excellent adhesive properties. However, low fracture toughness and flame resistance of epoxy resins have limited their applicability. Therefore, enhancing those properties have been of great interest to many researchers and scientists. As introduced by McGrath and co-workers in 1980s, the reactive thermoplastic polymers have proven to be an excellent toughener for improving not only fracture toughness but also adhesive properties without sacrificing thermo-mechanical properties and chemical resistance. Flame retardency could be improved by adding flame retardent additives which are divided into two groups; additives and reactives. However, among the additives, halogen compounds are known to be toxic gas generator and ozone depleter. Moreover, additives could be potentially leached out of the material, while reactives are inferior to additives. Recently, a reactive type phosphine oxide containing flame retardants have been introduced by McGrath and co-workers and proven to be an excellent flame retardant. In this paper, phospine oxide containing monomers were prepared and utilized as curing agents for expoxy resins, and starting materials for the polymers.

  12. ETV Program Report: Coatings for Wastewater Collection Systems - Standard Cement Materials, Epoxy Coating 4553

    EPA Science Inventory

    The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Ma...

  13. Multiple welding of long fiber epoxy vitrimer composites.

    PubMed

    Chabert, Erwan; Vial, Jérôme; Cauchois, Jean-Pierre; Mihaluta, Marius; Tournilhac, François

    2016-05-25

    Vitrimers appear as a new class of polymers that exhibit mechanical strength and are insoluble even at high temperatures, like thermosets, and yet, like thermoplastics, they are heat processable, recyclable and weldable. The question arises whether this welding property is maintained in composite materials made of more than 50 vol% of reinforcing fibers. In this paper, we quantitatively analyze the bond strength of epoxy vitrimer-based composite plates made by resin transfer molding and compare them to their non-vitrimer counterparts made of a standard thermoset epoxy. It is demonstrated that only epoxy vitrimer samples show substantial bond strength and the ability to be repeatedly welded thanks to the exchange reactions, which promote improved surface conformity and chemical bonding between the adherands at the joint interface. This opens the way towards joining composite parts without adhesives nor mechanical fasteners. PMID:27140663

  14. DEGRADATION OF MAGNET EPOXY AT NSLS X-RAY RING.

    SciTech Connect

    HU,J.P.; ZHONG,Z.; HAAS,E.; HULBERT,S.; HUBBARD,R.

    2004-05-24

    Epoxy resin degradation was analyzed for NSLS X-ring magnets after two decades of 2.58-2.8 GeV continuous electron-beam operation, based on results obtained from thermoluminescent dosimeters irradiated along the NSLS ring and epoxy samples irradiated at the beamline target location. A Monte Carlo-based particle transport code, MCNP, was utilized to verify the dose from synchrotron radiation distributed along the axial- and transverse-direction in a ring model, which simulates the geometry of a ring quadrupole magnet and its central vacuum chamber downstream of the bending-magnet photon ports. The actual life expectancy of thoroughly vacuum baked-and-cured epoxy resin was estimated from radiation tests on similar polymeric materials using a radiation source developed for electrical insulation and mechanical structure studies.

  15. Interfacial Strength and Physical Properties of Functionalized Graphene - Epoxy Nanocomposites

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Heimann, Paula; Scheiman, Daniel; Adamson, Douglas H.; Aksay, Iihan A.; Prud'homme, Robert K.

    2006-01-01

    The toughness and coefficient of thermal expansion of a series of functionalized graphene sheet - epoxy nanocomposites are investigated. Functionalized graphene sheets are produced by splitting graphite oxide into single graphene sheets through a rapid thermal expansion process. These graphene sheets contain approx. 10% oxygen due to the presence of hydroxide, epoxide, and carboxyl functional groups which assist in chemical bond formation with the epoxy matrix. Intrinsic surface functionality is used to graft alkyl amine chains on the graphene sheets, and the addition of excess hardener insures covalent bonding between the epoxide matrix and graphene sheets. Considerable improvement in the epoxy dimensional stability is obtained. An increase in nanocomposite toughness is observed in some cases.

  16. Low-temperature mechanical properties of glass/epoxy laminates

    SciTech Connect

    Reed, R. P.; Madhukar, M.; Thaicharoenporn, B.; Martovetsky, N. N.

    2014-01-27

    Selected mechanical properties of glass/epoxy laminate candidates for use in the electrical turn and ground insulation of the ITER Central solenoid (CS) modules were measured. Short-beam shear and flexural tests have been conducted on various E-glass cloth weaves/epoxy laminates at 295 and 77 K. Types of glass weave include 1581, 7500, 7781, and 38050, which represent both satin and plain weaves. The epoxy, planned for use for vacuum-pressure impregnation of the CS module, consists of an anhydride-cured bisphenol F resin system. Inter-laminar shear strength, flexural elastic modulus, and flexural strength have been measured. The data indicate that these properties are dependent on the volume percent of glass. Short-beam shear strength was measured as a function of the span-to-thickness ratio for all laminates at 77 K. Comprehensive fractography was conducted to obtain the failure mode of each short-beam shear test sample.

  17. Low-temperature mechanical properties of glass/epoxy laminates

    NASA Astrophysics Data System (ADS)

    Reed, R. P.; Madhukar, M.; Thaicharoenporn, B.; Martovetsky, N. N.

    2014-01-01

    Selected mechanical properties of glass/epoxy laminate candidates for use in the electrical turn and ground insulation of the ITER Central solenoid (CS) modules were measured. Short-beam shear and flexural tests have been conducted on various E-glass cloth weaves/epoxy laminates at 295 and 77 K. Types of glass weave include 1581, 7500, 7781, and 38050, which represent both satin and plain weaves. The epoxy, planned for use for vacuum-pressure impregnation of the CS module, consists of an anhydride-cured bisphenol F resin system. Inter-laminar shear strength, flexural elastic modulus, and flexural strength have been measured. The data indicate that these properties are dependent on the volume percent of glass. Short-beam shear strength was measured as a function of the span-to-thickness ratio for all laminates at 77 K. Comprehensive fractography was conducted to obtain the failure mode of each short-beam shear test sample.

  18. Dielectric properties of inorganic fillers filled epoxy thin film

    SciTech Connect

    Norshamira, A. Mariatti, M.

    2015-07-22

    The demand on the small size and high performance electronics has driven changes in the electronic packaging requirements from discrete capacitor to embedded capacitor. Embedded capacitor can improve electrical performance compared with discrete capacitor. This study aimed to achieve high dielectric of epoxy thin film composite that were targeted for application as embedded capacitor. In this study, inorganic fillers such as Calcium Copper Titanate (CCTO), Iron(III) Oxide (Fe{sub 2}O{sub 3}) and Titanium Dioxide (TiO{sub 2}) were loaded in epoxy system at 5 and 20vol%. Morphology and dielectric properties were investigated to identify the effect of fillers loading and types of fillers on the properties of epoxy thin film composite. Based on the study, CCTO with 20vol% loading was found to have good dielectric properties compared to other type of fillers.

  19. Navigation of the EPOXI Spacecraft to Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    Bhaskaran, Shyam; Abrahamson, Matt; Chesley, Steven; Chung, Min-Kun; Halsell, Allen; Haw, Robert; Helfrich, Cliff; Jefferson, David; Kennedy, Brian; McElrath, Tim; Owen, William; Rush, Brian; Smith, Jonathon; Wang, Tseng-Chan; Yen, Chen-Wan

    2011-01-01

    On November 4, 2010, the EPOXI spacecraft flew by the comet Hartley 2, marking the fourth time that a NASA spacecraft successfully captured high resolution images of a cometary nucleus. EPOXI is the extended mission of the Deep Impact mission, which delivered an impactor on comet Tempel-1 on July 4, 2005. EPOXI officially started in September 2007 and eventually took over 3 years of flight time and had 3 Earth gravity assists to achieve the proper encounter conditions. In the process, the mission was redesigned to accommodate a new comet as the target and changes in the trajectory to achieve better imaging conditions at encounter. Challenges in navigation of the spacecraft included precision targeting of several Earth flybys and the comet encounter, uncertainties in determining the ephemeris of the comet relative to the spacecraft, and the high accuracy trajectory knowledge needed to image the comet during the encounter. This paper presents an overview of the navigation process used for the mission.

  20. Epoxy foams using multiple resins and curing agents

    DOEpatents

    Russick, Edward M.; Rand, Peter B.

    2000-01-01

    An epoxy foam comprising a plurality of resins, a plurality of curing agents, at least one blowing agent, at least one surfactant and optionally at least one filler and the process for making. Preferred is an epoxy foam comprising two resins of different reactivities, two curing agents, a blowing agent, a surfactant, and a filler. According to the present invention, an epoxy foam is prepared with tailorable reactivity, exotherm, and pore size by a process of admixing a plurality of resins with a plurality of curing agents, a surfactant and blowing agent, whereby a foamable mixture is formed and heating said foamable mixture at a temperature greater than the boiling temperature of the blowing agent whereby said mixture is foamed and cured.

  1. Reinforcement of Epoxies Using Single Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Krishnamoorti, Ramanan; Sharma, Jitendra; Chatterjee, Tirtha

    2008-03-01

    The reinforcement of bisphenol-A and bisphenol-F epoxies using single walled carbon nanotubes has been approached experimentally by understanding the nature of interactions between the matrices and nanotubes. Unassisted dispersions of single walled carbon nanotubes in epoxies were studied by a combination of radiation scattering (elastic small angle scattering and inelastic scattering), DSC based glass transition determination, melt rheology and solid-state mechanical testing in order to understand and correlate changes in local and global dynamics to the tailoring of composite mechanical properties. Significant changes in the glass transition temperature of the matrix can successfully account for changes in the viscoelastic properties of the epoxy dispersions for concentrations below the percolation threshold, while above the percolation threshold the network superstructure formed by the nanotubes controls the viscoelastic properties.

  2. New routes to improve toughness of rubber-modified epoxies

    SciTech Connect

    Pearson, R.A.

    1995-12-31

    Significant progress has been made in modeling the toughening mechanisms in rubber-modified epoxies due to the efforts of many researchers. The result of these efforts has led to an increased awareness of the roles of rubber particle bridging, rubber particle cavitation, matrix dilation, and matrix shear banding on the enhancement of fracture toughness. However, there are still many questions regarding rubber-toughening which remain unanswered. This talk will focus on the importance and the roles of the interphase region between the epoxy matrix and the rubber particle and of the overall particle morphology on the toughness enhancement in rubber-modified epoxies. It will be demonstrated that additional toughness enhancement may be achieved by means not included in any of the toughening models proposed to date. Methods to incorporate these effects into existing toughening models will be discussed.

  3. Water diffusion profile measurements in epoxy using neutron radiography

    NASA Astrophysics Data System (ADS)

    Lindsay, John T.; Matsubayashi, Masahito; Nurul Islam, Md.

    1994-12-01

    The diffusion characteristics of water in polymer materials have been studied for a few decades. Several methods have been developed to provide water diffusion characteristics as a function of time, temperature, pressure, or thickness of polymer. Unfortunately, most of these methods give the amount of water absorbed as a function of weight versus time at given environmental conditions. Concentration profiles of the water diffusion through the polymer have been unobtainable by these established methods. Neutron radiography is a method of non-destructive testing that has grown rapidly over the past ten years and is capable of giving these concentration profiles. Epoxy is one of the most commonly used polymers for which water diffusion information is important. In the automotive industry, epoxy is used both as a sealant and a bonder to prevent water from getting inside structures and causing corrosion. To prevent this corrosion, it is important to know the diffusion behavior of water in the epoxy adhesive.p ]This paper will demonstrate the use of high resolution neutron radiography as a viable method for the determination of the diffusion profile of water in commercially available epoxies. Aluminum coupons were constructed and joined together using four different epoxies. These coupons were then submerged in water. Neutron radiographs were made of the coupons as a function of total time submerged and water temperature. The weights of the coupons were also obtained as a function of submerged time for comparison with other methods. Four different epoxies were tested. Profiles of the water concentration are easily observed and measured.

  4. Education and Public Outreach for NASA's EPOXI Mission.

    NASA Astrophysics Data System (ADS)

    McFadden, Lucy-Ann A.; Crow, C. A.; Behne, J.; Brown, R. N.; Counley, J.; Livengood, T. A.; Ristvey, J. D.; Warner, E. M.

    2009-09-01

    NASA's EPOXI mission is reusing the Deep Impact (DI) flyby spacecraft to study comets and extra-solar planets around other stars. During the Extrasolar Planetary Observations and Characterization (EPOCh) phase of the mission extrasolar planets transiting their parent stars were observed to gain further knowledge and understanding of planetary systems. Observations of Earth also allowed for characterization of Earth as an extrasolar planet. A movie of a lunar transit of the Earth created from EPOCh images and links to existing planet finding activities from other NASA missions are available on the EPOXI website. The Deep Impact Extended Investigation (DIXI) continues the Deep Impact theme of investigating comet properties and formation by observing comet Hartley 2 in November 2010. The EPOXI Education and Public Outreach (E/PO) program is both creating new materials and updating and modifying existing Deep Impact materials based on DI mission results. Comparing Comets is a new educational activity under development that will guide students in conducting analyses of comet surface features similar to those the DIXI scientists will perform after observing comet Hartley 2. A new story designed to stimulate student creativity was developed in alignment with national educational standards. EPOXI E/PO also funded Family Science Night (FSN), a program bringing together students, families, and educators for an evening at the National Air and Space Museum in Washington, DC. FSN events include time for families to explore the museum, a presentation by a space scientist, and an astronomy themed IMAX film. Nine events were held during the 2008-2009 school year with a total attendance of 3,145 (attendance since inception reached 44,732). Half of attendance is reserved for schools with high percentages of underrepresented minorities. EPOXI additionally offers a bi-monthly newsletter to keep the public, teachers, and space enthusiasts updated on current mission activities. For more

  5. Toughening mechanism in elastomer-modified epoxy resins, part 2

    NASA Technical Reports Server (NTRS)

    Yee, A. F.; Pearson, R. A.

    1984-01-01

    The role of matrix ductility on the toughenability and toughening mechanism of elastomer-modified DGEBRA epoxies was investigated. Matrix ductility was varied by using epoxide resins of varying epoxide monomer molecular weights. These epoxide resins were cured using 4,4' diaminodiphenyl sulfone (DDS) and, in some cases, modified with 10% HYCAR(r)CTBN 1300X8. Fracture roughness values for the neat epoxies were found to be almost independent on the monomer molecular weight of the epoxide resin used. However, it was found that the fracture toughness of the elastomer-modified epoxies was very dependent upon the epoxide monomer molecular weight. Tensile dilatometry indicated that the toughening mechanism, when present, is similar to the mechanisms found for the piperidine cured epoxies in Part 1. SEM and OM corroborate this finding. Dynamic mechanical studies were conducted to shed light on the toughenability of the epoxies. The time-dependent small strain behavior of these epoxies were separated into their bulk and shear components. The bulk component is related to brittle fracture, whereas the shear component is related to yielding. It can be shown that the rates of shear and bulk strain energy buildup for a given stress are uniquely determined by the values of Poisson's ratio, nu. It was found that nu increases as the monomer molecular weight of the epoxide resin used increases. This increase in nu can be associated with the low temperature beta relaxation. The effect of increasing cross-link density is to shift the beta relaxation to higher temperatures and to decrease the magnitude of the beta relaxation. Thus, increasing cross-link density decreases nu and increases the tendency towards brittle fracture.

  6. Aging results for PRD 49 III/epoxy and Kevlar 49/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Hamstad, M. A.

    1983-01-01

    Kevlar 49/epoxy composite is growing in use as a structural material because of its high strength-to-weight ratio. Currently, it is used for the Trident rocket motor case and for various pressure vessels on the Space Shuttle. In 1979, the initial results for aging of filament-wound cylindrical pressure vessels which were manufactured with preproduction Kevlar 49 (Hamstad, 1979) were published. This preproduction fiber was called PRD 49 III. This report updates the continuing study to 10-year data and also presents 7.5-year data for spherical pressure vessels wound with production Kevlar 49. For completeness, this report will again describe the specimens of the original study with PRD 49 as well as specimens for the new study with Kevlar 49.

  7. Selectfluor-Mediated Simultaneous Cleavage of C-O and C-C Bonds in α,β-Epoxy Ketones Under Transition-Metal-Free Conditions: A Route to 1,2-Diketones.

    PubMed

    Wang, Heng; Ren, Shaobo; Zhang, Jian; Zhang, Wei; Liu, Yunkui

    2015-07-01

    Selectfluor-mediated simultaneous cleavage of C-O and C-C bonds in α,β-epoxy ketones has been successfully achieved under transition-metal-free conditions. The reaction gives 1,2-diketone compounds in moderate to good yields involving a ring-opening/benzoyl rearrangement/C-C bond cleavage sequence under oxidative conditions. PMID:26050519

  8. Epoxy composites based on inexpensive tire waste filler

    NASA Astrophysics Data System (ADS)

    Ahmetli, Gulnare; Gungor, Ahmet; Kocaman, Suheyla

    2014-05-01

    Tire waste (TW) was recycled as raw material for the preparation of DGEBA-type epoxy composite materials. The effects of filler amount and epoxy type on the mechanical properties of the composites were investigated. Tensile strength and Young's modulus of the composites with NPEL were generally higher than composites with NPEF. The appropriate mass level for TW in both type composites was found to be 20 wt%. The equilibrium water sorption of NPEL/TW and NPEF/TW composites for 14-day immersion was determined as 0.10 % and 0.21 %, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for characterization of the composites.

  9. Radiochemical ageing of epoxy coating for nuclear plants

    NASA Astrophysics Data System (ADS)

    Queiroz, D. P. R.; Fraïsse, F.; Fayolle, B.; Kuntz, M.; Verdu, J.

    2010-03-01

    The degradation of an epoxy-amine network exposed to gamma irradiation in oxygen atmosphere has been studied by using a variety of analytical methods, including infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and sol-gel analysis. Results show that the oxidation of epoxy systems grows with the irradiation dose. Hydroperoxides, which are species resulting from oxidation, were identified and quantified by DSC. As indicated by the sol-gel analysis, the mechanism of degradation of chain scission seems to be predominant over crosslinking. The modifications induced by irradiation reflect in a greater capacity of water absorption.

  10. Rheological and morphological properties of graphene-epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Raimondo, Marialuigia; Lafdi, Khalid; Guadagno, Liberata

    2016-05-01

    In this paper the rheological and morphological properties of an epoxy resin filled with graphene-based nanoparticles have been investigated. Two samples of partially exfoliated graphite (pEG) and carboxylated partially exfoliated graphite (CpEG), differing essentially for the content of carboxylated groups, are used. The percentage of exfoliated graphite is slightly different for the two samples: 56% for pEG and and 60% for CpEG. Exfoliated graphite is prepared using traditional acid intercalation followed by a sudden treatment at high temperature (900°C). The epoxy matrix is prepared by mixing a tetrafunctional precursor with a reactive diluent which produces a significant decrease in the viscosity of the epoxy precursor so that the dispersion step of nanofillers in the matrix can easily occur. The hardener agent, the 4,4-diaminodiphenyl sulfone (DDS), is added at a stoichiometric concentration with respect to all the epoxy rings. The inclusion of the pEG and CpEG samples in the formulated epoxy mixture significantly modifies the rheological behaviour of the mixture itself. The epoxy mixture, indeed, shows a Newtonian behavior; on the contrary the complex viscosity of the nanocomposites clearly shows a shear thinning behavior at 3 wt % of pEG content and at 0.75 wt% of CpEG content. The increase in complex viscosity with the increasing of pEG and CpEG content is mostly caused by a dramatic increase in the storage modulus of the nanocomposites. All the graphene-based epoxy mixtures are cured by a two-stage curing cycles: a first isothermal stage is carried out at the lower temperature of 125°C for 1 hour and, then, a second isothermal stage at the higher temperature of 200°C for 3 hours. The different morphology shown by the two pEG and CpEG samples is consistent with the difference in the percentage of exfoliation degree and well correlates with the rheological behavior of investigated graphene-epoxy nanocomposites.

  11. Qualification of S-glass/epoxy thermal isolator bands

    NASA Technical Reports Server (NTRS)

    Bauer, Jerry

    1987-01-01

    Unidirectional fiberglass reinforced epoxy structures have been evaluated as thermal isolator tension straps for the charge-coupled devices on the Hubble Space Telescope's Wide Field/Planetary Camera. Mechanical and thermal properties are reported for filament-wound S-2 glass in a generic epoxy resin and compared to S-901 glass bands used on a previous camera. Measurements were performed on very small paper clip-shaped bands. Probably the smallest in length and have a load carrying mean cross sectional area of only 0.00024 square inches.

  12. Development of quality assurance methods for epoxy graphite prepreg

    NASA Technical Reports Server (NTRS)

    Chen, J. S.; Hunter, A. B.

    1982-01-01

    Quality assurance methods for graphite epoxy/prepregs were developed. Liquid chromatography, differential scanning calorimetry, and gel permeation chromatography were investigated. These methods were applied to a second prepreg system. The resin matrix formulation was correlated with mechanical properties. Dynamic mechanical analysis and fracture toughness methods were investigated. The chromatography and calorimetry techniques were all successfully developed as quality assurance methods for graphite epoxy prepregs. The liquid chromatography method was the most sensitive to changes in resin formulation. The were also successfully applied to the second prepreg system.

  13. Epoxide Opening of a 7,17-Seco-7,8-Epoxy-C19-Diterpenoid Alkaloid.

    PubMed

    Ji, Hong; Wang, Feng-Peng; Chen, Qiao-Hong

    2015-12-01

    A new and effective approach toward epoxide opening of a 7,17-seco-7,8-epoxy-C19-diterpenoid alkaloid is herein described. The starting epoxide was prepared from naturally occurring yunnaconitine via a nine-step transformation. Treatment of this epoxide with trifluoroacetic anhydride in dioxane at 110 degrees C followed by reduction with sodium boron hydride generated two epoxide opening compounds 7 and 8. Each of their structures is characteristic of a Δ8,15 bridgehead double bond and a 7β-oxygen-substituted group. PMID:26882668

  14. Polyester and epoxy resins: Abrasion resistance. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect

    Not Available

    1994-06-01

    The bibliography contains citations concerning techniques and materials for enhanced wear and abrasion resistance of polyester and epoxy resins. Topics include test procedures and results, compounds and additives, forming processes, reinforcement effects, and applications. Electrical insulation, linings and coatings for numerous substrates, solar control film glazing material, hoses, material to rebuild worn metal parts, pipes, boats, industrial floor coverings, and ladder rungs are among the applications discussed. Trade name materials and manufacturers are included. (Contains a minimum of 130 citations and includes a subject term index and title list.)

  15. Microbial biotransformation of 16α,17-epoxy-ent-kaurane-19-oic acid by Beauveria sulfurescens ATCC 7159-F.

    PubMed

    Furtado, Ricardo A; Gunaherath, G M Kamal B; Bastos, Jairo K; Gunatilak, A A Leslie

    2013-08-01

    Biotransformation of 16alpha,17-epoxy-ent-kaurane-19-oic acid (1) by Beauveria sulfurescens ATCC 7159-F led to the production of a new ent-kaurane diterpenoid, 7beta,17-dihydroxy-ent-kaur-15-en-19-oic acid (7), and four other ent-kauranes (8 - 11), all of which were identified as their methyl esters. Compounds 9 and 10 were found to be new stereoisomers. Structures of these were established by the extensive usage of their spectroscopic characteristics. PMID:24079162

  16. Monomers for thermosetting and toughening epoxy resins. [glycidyl amine derivatives, propargyl-containing amines, and mutagenic testing of aromatic diamines

    NASA Technical Reports Server (NTRS)

    Pratt, J. R.

    1981-01-01

    Eight glycidyl amines were prepared by alkylating the parent amine with epichlorohydrin to form chlorohydrin, followed by cyclization with aqueous NaOH. Three of these compounds contained propargyl groups with postcuring studies. A procedure for quantitatively estimating the epoxy content of these glycidyl amines was employed for purity determination. Two diamond carbonates and several model propargly compounds were prepared. The synthesis of three new diamines, two which contain propargyloxy groups, and another with a sec-butyl group is in progress. These materials are at the dinitro stage ready for the final hydrogenation step. Four aromatic diamines were synthesized for mutagenic testing purposes. One of these compounds rapidly decomposes on exposure to air.

  17. Stimuli-responsive cellulose modified by epoxy-functionalized polymer nanoparticles with photochromic and solvatochromic properties.

    PubMed

    Abdollahi, Amin; Rad, Jaber Keyvan; Mahdavian, Ali Reza

    2016-10-01

    Photoresponsive papers are among the fast and simple tools for detection of polarity by solvatochromic and photochromic behaviors upon UV irradiation. Here, a new, green and facile modification strategy was employed to prepare novel stimuli-responsive cellulose materials containing spiropyran by mixing microcrystalline cellulose (MCC), as a model compound, with epoxy-functionalized photochromic latex. FTIR analysis, thermal and thermo-mechanical properties were used to confirm the microstructral properties. Crystallographic analysis revealed a decrease in crystallinity of cellulose matrix and approved the incorporation of photochromic copolymer. Then stimuli-responsive papers were prepared by using pulp paper as the cellulosic matrix and their smart characteristics were studied under UV irradiation while dried or immersed into some polar and non-polar solvents. Different color changes were observed and investigated by solid-state UV-vis spectroscopy. These significant results were attributed to the efficient chemical modification and confirmed by SEM, EDX and nitrogen mapping analyses. PMID:27312622

  18. Thermal properties of multi-walled carbon nanotubes-graphite nanosheets/epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Ramana, G. Venkata; Padya, Balaji; Srikanth, Vadali V. S. S.; Jain, P. K.

    2013-06-01

    Multi-walled carbon nanotubes (MWCNTs) and graphite nanosheets (GNS) reinforced epoxy nanocomposites are synthesized by solution mixing process. Various surface active groups on filler materials are analyzed and their effect on dispersion, interfacial bonding was correlated to the thermal conductivity and dimensional stability of the nanocomposites. Thermal conductivity of MWCNTs/epoxy nanocomposites was enhanced by 34% when compared to GNS/epoxy nanocomposites at room temperature. Improved dimensional stability was also observed in the case of MWCNTs/epoxy nanocomposites. Poor thermal properties of GNS/epoxy nanocomposites are due to formation of GNS agglomerates in the nanocomposites.

  19. Structural and electrical properties of functionalized multiwalled carbon nanotube/epoxy composite

    NASA Astrophysics Data System (ADS)

    Gantayat, S.; Rout, D.; Swain, S. K.

    2016-05-01

    The effect of the functionalization of multiwalled carbon nanotube on the structure and electrical properties of composites was investigated. Samples based on epoxy resin with different weight percentage of MWCNTs were prepared and characterized. The interaction between MWCNT & epoxy resin was noticed by Fourier transform infrared spectroscopy (FTIR). The structure of functionalized multiwalled carbon nanotube (f-MWCNT) reinforced epoxy composite was studied by field emission scanning electron microscope (FESEM). The dispersion of f-MWCNT in epoxy resin was evidenced by high resolution transmission electron microscope (HRTEM). Electrical properties of epoxy/f-MWCNT nanocomposites were measured & the result indicated that the conductivity increased with increasing concentration of f-MWCNTs.

  20. New hybrid thermosets based on epoxy resins and benzocylobutenes

    SciTech Connect

    Brennan, D.J.; White, J.E.; Burks, B.T.

    1995-12-31

    A series of new, one component thermosets have been prepared by combining Dow`s epoxy resin and benzo-cyclobutene (BCB) technologies. The hybrid epoxy/BCB thermosetting monomers are prepared in the melt by reactions of amine-, phenol-, and carboxyl-functionalized benzocyclobutenes with epoxy-containing species such as bisphenol-A diglycidyl ether, chain-extended bisphenol-A epoxy resins, 9,9-bis(4-glycidyloxy-phenyl)fluorene, and epichlorohydrin. The monomers have outstanding processing characteristics, potentially long shelf life, and the convenience of an uncatalyzed, thermally cured, one component system. The resins are cured at >170{degrees}C (T{sub max}=260{degrees}C) and exhibit glass transition temperatures (Tg) of 85 to over 250{degrees}C. The examples shown below (n=0, 1, and 3.5) were prepared as part of this work. The chain extended species (n=3.5) is an extraordinarily tough thermoset, with a fracture toughness (K{sub Ic}) of over 3,000 psi-in{sup 0.5}.

  1. Thermal expansion of an epoxy-glass microsphere composite

    NASA Technical Reports Server (NTRS)

    Price, H. L.; Burks, H. D.

    1977-01-01

    The thermal expansion of a composite of epoxy (diglycidyl ether of bisphenol A) and solid glass microspheres was investigated. The microspheres had surfaces which were either untreated or treated with a silicone release agent, an epoxy coupling agent, or a general purpose silane coupling agent. Both room temperature (about 300 K) and elevated temperature (about 475 K) cures were used for the epoxy. Two microsphere size ranges were used, about 50 microns, which is applicable in filled moldings, and about 125 microns, which is applicable as bond line spacers. The thermal expansion of the composites was measured from 300 to 350 K or from 300 to 500 K, depending on the epoxy cure temperature. Measurements were made on composites containing up to .6 volume fraction microspheres. Two predictive models, which required only the values of thermal expansion of the polymer and glass and their specific gravities, were tested against the experimental data. A finite element analysis was made of the thermal strain of a composite cell containing a single microsphere surrounded by a finite-thickness interface.

  2. Galvanic Corrosion In (Graphite/Epoxy)/Alloy Couples

    NASA Technical Reports Server (NTRS)

    Danford, Merlin D.; Higgins, Ralph H.

    1988-01-01

    Effects of galvanic coupling between graphite/epoxy composite material, G/E, and D6AC steel, 6061-T6 aluminum, and Inconel(R) 718 nickel alloy in salt water described in report. Introductory section summarizes previous corrosion studies of G/E with other alloys. Details of sample preparation presented along with photographs of samples before and after immersion.

  3. Novel Epoxy Activated Hydrogels for Solving Lactose Intolerance

    PubMed Central

    Elnashar, Magdy M. M.; Hassan, Mohamed E.

    2014-01-01

    “Lactose intolerance” is a medical problem for almost 70% of the world population. Milk and dairy products contain 5–10% w/v lactose. Hydrolysis of lactose by immobilized lactase is an industrial solution. In this work, we succeeded to increase the lactase loading capacity to more than 3-fold to 36.3 U/g gel using epoxy activated hydrogels compared to 11 U/g gel using aldehyde activated carrageenan. The hydrogel's mode of interaction was proven by FTIR, DSC, and TGA. The high activity of the epoxy group was regarded to its ability to attach to the enzyme's –SH, –NH, and –OH groups, whereas the aldehyde group could only bind to the enzyme's –NH2 group. The optimum conditions for immobilization such as epoxy chain length and enzyme concentration have been studied. Furthermore, the optimum enzyme conditions were also deliberated and showed better stability for the immobilized enzyme and the Michaelis constants, Km and Vmax, were doubled. Results revealed also that both free and immobilized enzymes reached their maximum rate of lactose conversion after 2 h, albeit, the aldehyde activated hydrogel could only reach 63% of the free enzyme. In brief, the epoxy activated hydrogels are more efficient in immobilizing more enzymes than the aldehyde activated hydrogel. PMID:25013804

  4. Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes

    DOEpatents

    Hibbs, Michael; Fujimoto, Cy H.; Norman, Kirsten; Hickner, Michael A.

    2010-10-19

    An epoxy-crosslinked sulfonated poly(phenylene) copolymer composition used as proton exchange membranes, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cell, in electrode casting solutions and electrodes, and in sulfur dioxide electrolyzers. These improved membranes are tougher, have higher temperature capability, and lower SO.sub.2 crossover rates.

  5. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Epoxy resin containing phosphorus (generic). 721.2752 Section 721.2752 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2752...

  6. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Epoxy resin containing phosphorus (generic). 721.2752 Section 721.2752 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2752...

  7. Woven graphite epoxy composite test specimens with glass buffer strips

    NASA Technical Reports Server (NTRS)

    Bonnar, G. R.; Palmer, R. J.

    1982-01-01

    Woven unidirectional graphite cloth with bands of fiberglass replacing the graphite in discrete lengthwise locations was impregnated with epoxy resin and used to fabricate a series of composite tensile and shear specimens. The finished panels, with the fiberglass buffer strips, were tested. Details of the fabrication process are reported.

  8. Synchrotron Radiation Investigation in Epoxy Resin Modified with Polysiloxane System

    NASA Astrophysics Data System (ADS)

    Gan, Wenjun; Li, Weizhen; Ding, Jindian; Gu, Xiaodan; Wang, Cheng

    2014-03-01

    Epoxy resins are one of the most important classes of thermosetting polymers. Epoxy resin modified with polysiloxane is expected that the siloxane moiety may exert its qualities of thermal stability, impact toughness and surface-modification properties. Our group tried to introduce polysiloxane into epoxy resin by blending diglycidyl-ether of bisphenol-A with epoxypropoxypropyl terminated polydimethyl-siloxane and polyetherimide-siloxane in different proportion. These polysiloxane modified epoxy resins have been investigated using a combination of small- and wide angle X-ray scatterings (SAXS and WAXS) and scanning transmission soft X-ray microscopy (STXM). Nano- to micro-scale domain size, distribution and chemical composition were observed with spatial and spectroscopic sensitivities offered by both hard and soft x-ray scattering/microscopy. In-situ SAXS experiments were performed to understand the mechanism of microphase separation and dynamics of nanostructure evolution. Acknowledgment: The authors thank Shanghai Municipal Education Commission (Overseas Visiting Scholar Program 2012) and Shanghai University of Engineering Science (2011xz04) for financial supports.

  9. Environmental Testing of Glass-Fiber/Epoxy Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.

    1987-01-01

    Pair of reports discusses long-term environmental tests of glassfiber/epoxy composite pressure vessels. Strength diminishes during long exposure to environment. Since such data necessary for accurate design of long-life structures such as pressure vessels, NASA Lewis Research Center built outdoor test stand in 1973. Test stand maintains system under constant pressure loading without frequent intervention of personnel.

  10. Novel epoxy activated hydrogels for solving lactose intolerance.

    PubMed

    Elnashar, Magdy M M; Hassan, Mohamed E

    2014-01-01

    "Lactose intolerance" is a medical problem for almost 70% of the world population. Milk and dairy products contain 5-10% w/v lactose. Hydrolysis of lactose by immobilized lactase is an industrial solution. In this work, we succeeded to increase the lactase loading capacity to more than 3-fold to 36.3 U/g gel using epoxy activated hydrogels compared to 11 U/g gel using aldehyde activated carrageenan. The hydrogel's mode of interaction was proven by FTIR, DSC, and TGA. The high activity of the epoxy group was regarded to its ability to attach to the enzyme's -SH, -NH, and -OH groups, whereas the aldehyde group could only bind to the enzyme's -NH2 group. The optimum conditions for immobilization such as epoxy chain length and enzyme concentration have been studied. Furthermore, the optimum enzyme conditions were also deliberated and showed better stability for the immobilized enzyme and the Michaelis constants, K m and V max, were doubled. Results revealed also that both free and immobilized enzymes reached their maximum rate of lactose conversion after 2 h, albeit, the aldehyde activated hydrogel could only reach 63% of the free enzyme. In brief, the epoxy activated hydrogels are more efficient in immobilizing more enzymes than the aldehyde activated hydrogel. PMID:25013804

  11. Functionalizing CNTs for Making Epoxy/CNT Composites

    NASA Technical Reports Server (NTRS)

    Chen, Jian; Rajagopal, Ramasubramaniam

    2009-01-01

    Functionalization of carbon nanotubes (CNTs) with linear molecular side chains of polyphenylene ether (PPE) has been shown to be effective in solubilizing the CNTs in the solvent components of solutions that are cast to make epoxy/CNT composite films. (In the absence of solubilization, the CNTs tend to clump together instead of becoming dispersed in solution as needed to impart, to the films, the desired CNT properties of electrical conductivity and mechanical strength.) Because the PPE functionalizes the CNTs in a noncovalent manner, the functionalization does not damage the CNTs. The functionalization can also be exploited to improve the interactions between CNTs and epoxy matrices to enhance the properties of the resulting composite films. In addition to the CNTs, solvent, epoxy resin, epoxy hardener, and PPE, a properly formulated solution also includes a small amount of polycarbonate, which serves to fill voids that, if allowed to remain, would degrade the performance of the film. To form the film, the solution is drop-cast or spin-cast, then the solvent is allowed to evaporate.

  12. Molecular Dynamics Simulations of Adhesion at Epoxy Interfaces

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Clancy, Thomas C.; Hinkley, J. A.; Gates. T. S.

    2008-01-01

    The effect of moisture on adhesives used in aerospace applications can be modeled with chemically specific techniques such as molecular dynamics simulation. In the present study, the surface energy and work of adhesion are calculated for epoxy surfaces and interfaces, respectively, by using molecular dynamics simulation. Modifications are made to current theory to calculate the work of adhesion at the epoxy-epoxy interface with and without water. Quantitative agreement with experimental values is obtained for the surface energy and work of adhesion at the interface without water. The work of adhesion agrees qualitatively with the experimental values for the interface with water: the magnitude is reduced 15% with respect to the value for the interface without water. A variation of 26% in the magnitude is observed depending on the water configuration at a concentration of 1.6 wt%. The methods and modifications to the method that are employed to obtain these values are expected to be applicable for other epoxy adhesives to determine the effects of moisture uptake on their work of adhesion.

  13. Photosensitive filler minimizes internal stresses in epoxy resins

    NASA Technical Reports Server (NTRS)

    Dillon, J. N.

    1967-01-01

    Photosensitive filler is added to curable epoxy resins to minimize stress from internal shrinkage during curing or polymerization. Cinnamic acid resins and cinnamal ketones may be added in the amount of 1 to 3 percent by weight of the resin mixture.

  14. Nonlinear Inelastic Mechanical Behavior Of Epoxy Resin Polymeric Materials

    NASA Astrophysics Data System (ADS)

    Yekani Fard, Masoud

    Polymer and polymer matrix composites (PMCs) materials are being used extensively in different civil and mechanical engineering applications. The behavior of the epoxy resin polymers under different types of loading conditions has to be understood before the mechanical behavior of Polymer Matrix Composites (PMCs) can be accurately predicted. In many structural applications, PMC structures are subjected to large flexural loadings, examples include repair of structures against earthquake and engine fan cases. Therefore it is important to characterize and model the flexural mechanical behavior of epoxy resin materials. In this thesis, a comprehensive research effort was undertaken combining experiments and theoretical modeling to investigate the mechanical behavior of epoxy resins subject to different loading conditions. Epoxy resin E 863 was tested at different strain rates. Samples with dog-bone geometry were used in the tension tests. Small sized cubic, prismatic, and cylindrical samples were used in compression tests. Flexural tests were conducted on samples with different sizes and loading conditions. Strains were measured using the digital image correlation (DIC) technique, extensometers, strain gauges, and actuators. Effects of triaxiality state of stress were studied. Cubic, prismatic, and cylindrical compression samples undergo stress drop at yield, but it was found that only cubic samples experience strain hardening before failure. Characteristic points of tensile and compressive stress strain relation and load deflection curve in flexure were measured and their variations with strain rate studied. Two different stress strain models were used to investigate the effect of out-of-plane loading on the uniaxial stress strain response of the epoxy resin material. The first model is a strain softening with plastic flow for tension and compression. The influence of softening localization on material behavior was investigated using the DIC system. It was found that

  15. Copper oxide nanoparticles in an epoxy network: microstructure, chain confinement and mechanical behaviour.

    PubMed

    Sunny, Anu Tresa; Vijayan P, Poornima; Adhikari, Rameshwar; Mathew, Suresh; Thomas, Sabu

    2016-07-20

    Copper oxide nanoparticles (nCOPs) having octahedral morphology, synthesized through hydrazine reduction reaction were employed to formulate an epoxy based novel nanocomposite. The synthesis of copper oxide nanoparticles was carried out in polyethylene glycol medium to enhance their interfacial adhesion with the epoxy matrix. The extent of conservation of the crystalline nature and octahedral morphology of the nCOP in its epoxy nanocomposites was confirmed by X-ray diffraction and electron microscopy analysis. The mechanical properties including tensile, impact, fracture toughness and surface hardness of epoxy-nCOP nanocomposites were evaluated as a function of nCOP content. The maximum enhancement in strength, modulus, impact strength, fracture toughness and surface hardness of epoxy-nCOP nanocomposites was observed for 5 phr nCOP content. This may be due to the strong interaction between the nCOP and epoxy chains at this composition arising from its fairly uniform dispersion. A quantitative measurement of constrained epoxy chains immobilized by the nCOP octahedra was carried out using dynamic mechanical analysis. The enhancement in the storage modulus is related to the amount of the added nCOP as well as the volume of the constrained epoxy chains in the proximity of nCOP. The behaviour of epoxy-nCOP nanocomposites in this study has been explained by proposing a mechanism based on the distribution of nCOP domains in the epoxy matrix and the existing volume of constrained epoxy chains. PMID:27381062

  16. Thermal and Mechanical Characteristics of Polymer Composites Based on Epoxy Resin, Aluminium Nanopowders and Boric Acid

    NASA Astrophysics Data System (ADS)

    Nazarenko, O. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The epoxy polymers are characterized by low thermal stability and high flammability. Nanoparticles are considered to be effective fillers of polymer composites for improving their thermal and functional properties. In this work, the epoxy composites were prepared using epoxy resin ED-20, polyethylene polyamine as a hardener, aluminum nanopowder and boric acid fine powder as flame-retardant filler. The thermal characteristics of the obtained samples were studied using thermogravimetric analysis and differential scanning calorimetry. The mechanical characteristics of epoxy composites were also studied. It was found that an addition of all fillers enhances the thermal stability and mechanical characteristics of the epoxy composites. The best thermal stability showed the epoxy composite filled with boric acid. The highest flexural properties showed the epoxy composite based on the combination of boric acid and aluminum nanopowder.

  17. Lower Permittivity Characteristic of Mesoporous-Alumina/Epoxy Composite due to Particle Porosity

    NASA Astrophysics Data System (ADS)

    Kurimoto, Muneaki; Murakami, Yoshinobu; Nagao, Masayuki

    Introduction of metal oxide nanoparticles to polymer composite material is known to have unique dielectric behavior and significant advantage in the electrical insulation performance of electrical power apparatus. This paper presents an attempt to derive the dielectric characteristics of polymer composite filled with the metal oxide particle which has mesoporous structure. Experiments were carried out in the epoxy composites filled with alumina microparticles which have the mesoporous structure (mesoporous-alumina/epoxy composites) with different particle content. Based on the measurement of the specific gravity of mesoporous-alumina/epoxy composites, the porosity of mesoporous-alumina particle in the epoxy matrix was found to be higher than that of nonporous-alumina particle. Furthermore, we evaluated relative permittivity of mesoporous-alumina/epoxy composites by measuring the capacitance of its specimens. As the results, we verified that the permittivity of mesoporous-alumina/epoxy composites was lower than that of nonporous-alumina/epoxy composites due to the particle porosity.

  18. Effect of fluorination on the mechanical behavior and electromagnetic interference shielding of MWCNT/epoxy composites

    NASA Astrophysics Data System (ADS)

    Lee, Si-Eun; Lee, Man Young; Lee, Min-Kyung; Jeong, Euigyung; Lee, Young-Seak

    2016-04-01

    Multi-walled carbon nanotube (MWCNT)/epoxy composites were prepared using MWCNT fluorinated to different extents. The mechanical properties, fracture surface morphologies and electromagnetic interference shielding efficiency (EMI-SE) of these composites were evaluated for epoxy matrices containing MWCNT with degrees of fluorination. The tensile strengths of the MWCNT/epoxy composites improved by 31% with treated MWCNT compared to that of the epoxy composites with untreated MWCNT. The EMI-SE values of the fluorinated MWCNT/epoxy composites improved up to 26% with increasing fluorination extent. The mechanical and electrical properties enhancement of the composites were attributed to the fluorinated MWCNT, which improved both the dispersion of the MWCNT in epoxy matrix and interfacial interactions between the MWCNT and the epoxy matrix.

  19. Epoxy-acrylic core-shell particles by seeded emulsion polymerization.

    PubMed

    Chen, Liang; Hong, Liang; Lin, Jui-Ching; Meyers, Greg; Harris, Joseph; Radler, Michael

    2016-07-01

    We developed a novel method for synthesizing epoxy-acrylic hybrid latexes. We first prepared an aqueous dispersion of high molecular weight solid epoxy prepolymers using a mechanical dispersion process at elevated temperatures, and we subsequently used the epoxy dispersion as a seed in the emulsion polymerization of acrylic monomers comprising methyl methacrylate (MMA) and methacrylic acid (MAA). Advanced analytical techniques, such as scanning transmission X-ray microscopy (STXM) and peak force tapping atomic force microscopy (PFT-AFM), have elucidated a unique core-shell morphology of the epoxy-acrylic hybrid particles. Moreover, the formation of the core-shell morphology in the seeded emulsion polymerization process is primarily attributed to kinetic trapping of the acrylic phase at the exterior of the epoxy particles. By this new method, we are able to design the epoxy and acrylic polymers in two separate steps, and we can potentially synthesize epoxy-acrylic hybrid latexes with a broad range of compositions. PMID:27078740

  20. Electron beam curing of epoxy resins by cationic polymerization

    SciTech Connect

    Janke, C.J.; Dorsey, G.F.; Havens, S.J.

    1996-12-31

    A Cooperative Research and Development Agreement (CRADA) sponsored by the Department of Energy Defense Programs and 10 industrial partners has been established to develop high performance Electron Beam (EB) curable polymer matrix composites. EB curing of composites has a number of advantages over conventional thermal curing. Composites cured by EB have much shorter cure times, lower overall energy requirements, and reduced thermal stresses in the cured part. Furthermore, less expensive tooling can be used since the process occurs at lower temperatures. Preliminary investigations have determined that conventional epoxy resins can be cured at selectable temperatures with high glass transition temperatures (essentially the same as with thermal curing), while still exhibiting equivalent or comparable mechanical properties. A cationic photoinitiator at a concentration of 1-3 parts per hundred of the epoxy resin is required for this process. Gamma cell screening of cationic photoinitiators with bisphenol A, bisphenol F, and cycloaliphatic epoxies demonstrated that diaryliodonium salts of weakly nucleophilic anions such as hexafluoroantimonate are most effective. Diaryliodonium salts were also found to be the most effective initiators for the cationic polymerization of epoxy resins when a high energy/power electron beam accelerator was used as the source of ionizing radiation. For example Dow Tactix 123 (bisphenol A epoxy) containing 3 phr (4-octyloxyphenyl) phenyliodonium hexafluoroantimonate was irradiated at a total dosage of 100 kGy. Glass transition temperature (tan delta) of the cured material as determined by dynamic mechanical analysis was 182{degrees}C as compared to 165{degrees}C for the thermally cured material.

  1. Preparation and Various Characteristics of Epoxy/Alumina Nanocomposites

    NASA Astrophysics Data System (ADS)

    Kozako, Masahiro; Ohki, Yoshimichi; Kohtoh, Masanori; Okabe, Shigemitsu; Tanaka, Toshikatsu

    Epoxy/ alumina nanocomposites were newly prepared by dispersing 3, 5, 7, and 10 weight (wt) % boehmite alumina nanofillers in a bisphenol-A epoxy resin using a special two-stage direct mixing method. It was confirmed by scanning electron microscopy imaging that the nanofillers were homogeneously dispersed in the epoxy matrix. Dielectric, mechanical, and thermal properties were investigated. It was elucidated that nanofillers affects various characteristics of epoxy resins, when they are nanostructrued. Such nano-effects we obtained are summarized as follows. Partial discharge resistance increases as the filler content increases; e.g. 7 wt% nanofiller content creates a 60 % decrease in depth of PD-caused erosion. Weibull analysis shows that short-time electrical treeing breakdown time is prolonged to 265 % by 5 wt% addition of nanofillers. But there was more data scatter in nanocomposites than in pure epoxy. Permittivity tends to increase from 3.7 to 4.0 by 5 wt% nanofiller addition as opposed to what was newly found in the recent past. Glass transition temperature remains unchanged as 109 °C. Mechanical properties such as flexural strength and flexural modulus increase; e.g. flexural strength and flexural modulus are improved by 5 % and 8 % with 5 wt% content, respectively. Excess addition causes a reverse effect. It is concluded from permittivity and glass transition temperature characteristics that interfacial bonding seems to be more or less weak in the nanocomposite specimens prepared this time, even though mechanical strengths increase. There is a possibility that the nanocomposites specimens will be improved in interfacial quality.

  2. Education And Public Outreach For NASA's EPOXI Mission

    NASA Astrophysics Data System (ADS)

    McFadden, Lucy-Ann A.; Warner, E. M.; Crow, C. A.; Ristvey, J. D.; Counley, J.

    2008-09-01

    NASA's EPOXI mission has two scientific objectives in using the Deep Impact flyby spacecraft for further studies of comets and adding studies of extra-solar planets around other stars. During the Extrasolar Planetary Observations and Characterization (EPOCh) phase of the mission, observations of extrasolar planets transiting their parent stars are observed to further knowledge and understanding of planetary systems. Observations of Earth allow for comparison with Earth-like planets around other stars. A movie of Earth during a day when the Moon passed between Earth and the spacecraft is an educational highlight with scientific significance. The Deep Impact Extended Investigation (DIXI) continues the Deep Impact theme of investigating comets with a flyby of comet Hartley 2 in November 2010 to further explore the properties of comets and their formation. The EPOXI Education and Public Outreach (E/PO) program builds upon existing materials related to exploring comets and the Deep Impact mission, updating and modifying activities based on results from Deep Impact. An educational activity called Comparing Comets is under development that will guide students in conducting analyses similar to those that DIXI scientists will perform after observing comet Hartley 2. Existing educational materials related to planet finding from other NASA programs are linked from EPOXI's web page. Journey Through the Universe at the National Air and Space Museum encourages education in family and community groups and reaches out to underrepresented minorities. EPOXI's E/PO program additionally offers a newsletter to keep the public, teachers, and space enthusiasts apprised of mission activities. For more information visit: http://epoxi.umd.edu.

  3. Compound matrices

    NASA Astrophysics Data System (ADS)

    Kravvaritis, Christos; Mitrouli, Marilena

    2009-02-01

    This paper studies the possibility to calculate efficiently compounds of real matrices which have a special form or structure. The usefulness of such an effort lies in the fact that the computation of compound matrices, which is generally noneffective due to its high complexity, is encountered in several applications. A new approach for computing the Singular Value Decompositions (SVD's) of the compounds of a matrix is proposed by establishing the equality (up to a permutation) between the compounds of the SVD of a matrix and the SVD's of the compounds of the matrix. The superiority of the new idea over the standard method is demonstrated. Similar approaches with some limitations can be adopted for other matrix factorizations, too. Furthermore, formulas for the n - 1 compounds of Hadamard matrices are derived, which dodge the strenuous computations of the respective numerous large determinants. Finally, a combinatorial counting technique for finding the compounds of diagonal matrices is illustrated.

  4. Synthesis and properties of a bio-based epoxy resin with high epoxy value and low viscosity.

    PubMed

    Ma, Songqi; Liu, Xiaoqing; Fan, Libo; Jiang, Yanhua; Cao, Lijun; Tang, Zhaobin; Zhu, Jin

    2014-02-01

    A bio-based epoxy resin (denoted TEIA) with high epoxy value (1.16) and low viscosity (0.92 Pa s, 258C) was synthesized from itaconic acid and its chemical structure was confirmed by 1H NMR and 13C NMR spectroscopy. Its curing reaction with poly(propylene glycol) bis(2-aminopropyl ether) (D230) and methyl hexahydrophthalic anhydride (MHHPA) was investigated. For comparison, the commonly used diglycidyl ether of bisphenol A (DGEBA) was also cured with the same curing agents. The results demonstrated that TEIA showed higher curing reactivity towards D230/MHHPA and lower viscosity compared with DGEBA, resulting in the better processability. Owing to its high epoxy value and unique structure, comparable or better glass transition temperature as well as mechanical properties could be obtained for the TEIA-based network relative to the DGEBA-based network. The results indicated that itaconic acid is a promising renewable feedstock for the synthesis of bio-based epoxy resin with high performance. PMID:24136894

  5. Neurosteroids: Can a 2alpha,3alpha-epoxy ring make up for the 3alpha-hydroxyl group?

    PubMed

    Kasal, Alexander; Buděšínský, Miloš; Mareš, Pavel; Krištofíková, Zdena; Leitão, Alcino J; Sá e Melo, Maria Luisa; Silva, Maria Manuel C

    2016-01-01

    Seven steroid epoxides were prepared from 5α-pregn-2-en-20-one and 5α-pregn-3-en-20-one and their side-chain derivatives. All compounds were tested in vitro for binding to γ-aminobutyric acid (GABAA) receptor, some of them also in vivo for anticonvulsant action. 2α,3α-Epoxy-5α-pregnan-20-one inhibited the TBPS binding to the GABAA receptor and showed a moderate anticonvulsant action in immature rats. In contrast, its 3α,4α-isomer was inactive. More polar epoxide derivatives, modified at the side chain were less active or inactive. Noteworthy, diol 20, the product of trans-diaxial opening of the 2α,3α-epoxide 4, was not able to inhibit the TBPS binding, showing that the activity of the epoxide is due to the compound itself and not to its hydrolytic product. The 3α-hydroxyl group is known to be essential for the GABAA receptor binding. Despite the shortness of in vivo effects which are probably due to metabolic inactivation of the products prepared, our results show that the 2α,3α-epoxy ring is another structural pattern with ability to bind the GABAAR. PMID:26631551

  6. New antitumor compounds from Carya cathayensis.

    PubMed

    Wu, Wei; Bi, Xiu-Li; Cao, Jia-Qing; Zhang, Kai-Qing; Zhao, Yu-Qing

    2012-03-01

    A new lignan (7R,8S,8'R)-4,4',9-trihydroxy-7,9'-epoxy-8,8'-lignan, and three new phenolics, carayensin-A, carayensin-B, and carayensin-C, together with 13 known compounds were isolated from the shells of Carya cathayensis. Their chemical structures were established mainly by 1D and 2D NMR techniques and mass spectrometry. All the compounds were evaluated for cytotoxicity against several human tumor types including human colorectal cancer cell lines (HCT-116, HT-29), human lung cancer cell line (A549), and human breast cancer cell line (MCF-7). The compounds 1, 5, 6, and 16 are considered to be potential as antitumor agents, which could significantly inhibit the cancer cell growth in a dose-dependent manner. PMID:22330636

  7. Synthesis, Characterization, and Cross-Linking Strategy of a Quercetin-Based Epoxidized Monomer as a Naturally-Derived Replacement for BPA in Epoxy Resins.

    PubMed

    Kristufek, Samantha L; Yang, Guozhen; Link, Lauren A; Rohde, Brian J; Robertson, Megan L; Wooley, Karen L

    2016-08-23

    The natural polyphenolic compound quercetin was functionalized and cross-linked to afford a robust epoxy network. Quercetin was selectively methylated and functionalized with glycidyl ether moieties using a microwave-assisted reaction on a gram scale to afford the desired monomer (Q). This quercetin-derived monomer was treated with nadic methyl anhydride (NMA) to obtain a cross-linked network (Q-NMA). The thermal and mechanical properties of this naturally derived network were compared to those of a conventional diglycidyl ether bisphenol A-derived counterpart (DGEBA-NMA). Q-NMA had similar thermal properties [i.e., glass transition (Tg ) and decomposition (Td ) temperatures] and comparable mechanical properties (i.e., Young's Modulus, storage modulus) to that of DGEBA-NMA. However, it had a lower tensile strength and higher flexural modulus at elevated temperatures. The application of naturally derived, sustainable compounds for the replacement of commercially available petrochemical-based epoxies is of great interest to reduce the environmental impact of these materials. Q-NMA is an attractive candidate for the replacement of bisphenol A-based epoxies in various specialty engineering applications. PMID:27415143

  8. Thermal degradation of new and aged urethane foam and epon 826 epoxy.

    SciTech Connect

    Kruizenga, Alan Michael; Mills, Bernice E.

    2013-08-01

    Thermal desorption spectroscopy was used to monitor the decomposition as a function of temperature for the foam and epoxy as a function of temperature in the range of 60C to 170C. Samples were studied with one day holds at each of the studied temperatures. Both new (FoamN and EpoxyN) and aged (FoamP and EpoxyP) samples were studied. During these ~10 day experiments, the foam samples lost 11 to 13% of their weight and the EpoxyN lost 10% of its weight. The amount of weight lost was difficult to quantify for EpoxyP because of its inert filler. The onset of the appearance of organic degradation products from FoamP began at 110C. Similar products did not appear until 120C for FoamN, suggesting some effect of the previous decades of storage for FoamP. In the case of the epoxies, the corresponding temperatures were 120C for EpoxyP and 110C for EpoxyN. Suggestions for why the aged epoxy seems more stable than newer sample include the possibility of incomplete curing or differences in composition. Recommendation to limit use temperature to 90-100C for both epoxy and foam.

  9. High Temperature Characteristic in Electrical Breakdown and Electrical Conduction of Epoxy/Boron-nitride Composite

    NASA Astrophysics Data System (ADS)

    Takenaka, Yutaka; Kurimoto, Muneaki; Murakami, Yoshinobu; Nagao, Masayuki

    The power module for the electrical vehicle needs electrical insulation material with high thermal conductivity. Recently, the epoxy insulating material filled with boron-nitride particles (epoxy/boron-nitride composite) is focused as an effective solution. However, the insulation performance of epoxy/boron-nitride composite was not investigated enough especially at the high temperature in which the power module was used, i.e. more than 100°C. In this paper, we investigated high temperature characteristics in electrical breakdown and conduction current of epoxy/boron-nitride composite. Breakdown test under the application of DC lamp voltage and impulse voltage clarified that the epoxy/boron-nitride composite had the constant breakdown strength even in the high temperature. Comparison of the epoxy/boron-nitride composite with previous material, which was epoxy/alumina composite, indicated that the breakdown voltage of the epoxy/boron-nitride composite in the high temperature was found to be higher than that of epoxy/alumina composite under the same thermal-transfer quantity among them. Furthermore, conduction current measurement of epoxy/boron-nitride composite in the high temperature suggested the possibility of the ionic conduction mechanism.

  10. Cure reaction of epoxy resins catalyzed by graphite-based nanofiller

    NASA Astrophysics Data System (ADS)

    Corcione, C. Esposito; Acocella, Maria Rosaria; Giuri, Antonella; Maffezzoli, Alfonso; Guerra, Gaetano

    2015-12-01

    A significant effort was directed to the synthesis of graphene stacks/epoxy nanocomposites and to the analysis of the effect of a graphene precursor on cure reaction of a model epoxy matrix. A comparative thermal analysis of epoxy resins filled with an exfoliated graphite oxide eGO were conducted. The main aim was to understand the molecular origin of the influence of eGO on the Tg of epoxy resins. The higher Tg values previously observed for low curing temperatures, for epoxy resins with graphite-based nanofillers, were easily rationalized by a catalytic activity of graphitic layers on the reaction between the epoxy and amine groups of the resin, which leads to higher crosslinking density in milder conditions. A kinetic analysis of the cure mechanism of the epoxy resin associated to the catalytical activity of the graphite based filler was performed by isothermal DSC measurements. The DSC results showed that the addition of graphite based filler greatly increased the enthalpy of epoxy reaction and the reaction rate, confirming the presence of a catalytic activity of graphitic layers on the crosslinking reaction between the epoxy resin components (epoxide oligomer and di-amine). A kinetic modelling analysis, arising from an auto-catalyzed reaction mechanism, was finally applied to isothermal DSC data, in order to predict the cure mechanism of the epoxy resin in presence of the graphite based nanofiller.

  11. Green Preparation of Epoxy/Graphene Oxide Nanocomposites Using a Glycidylamine Epoxy Resin as the Surface Modifier and Phase Transfer Agent of Graphene Oxide.

    PubMed

    Tang, Xinlei; Zhou, Yang; Peng, Mao

    2016-01-27

    In studies of epoxy/graphene oxide (GO) nanocomposites, organic solvents are commonly used to disperse GO, and vigorous mechanical processes and complicated modification of GO are usually required, increasing the cost and hindering the development and application of epoxy nanocomposites. Here, we report a green, facile, and efficient method of preparing epoxy/GO nanocomposites. When triglycidyl para-aminophenol (TGPAP), a commercially available glycidyl amine epoxy resin with one tertiary amine group per molecule, is used as both the surface modifier and phase transfer agent of GO, GO can be directly and rapidly transferred from water to diglycidyl ether of bisphenol A and other types of epoxy resins by manual stirring under ambient conditions, whereas GO cannot be transferred to these epoxy resins in the absence of TGPAP. The interaction between TGPAP and GO and the effect of the TGPAP content on the dispersion of GO in the epoxy matrix were investigated systematically. Superior dispersion and exfoliation of GO nanosheets and remarkably improved mechanical properties, including tensile and flexural properties, toughness, storage modulus, and microhardness, of the epoxy/GO nanocomposites with a suitable amount of TGPAP were demonstrated. This method is organic-solvent-free and technically feasible for large-scale preparation of high-performance nanocomposites; it opens up new opportunities for exploiting the unique properties of graphene or even other nanofillers for a wide range of applications. PMID:26720708

  12. Six new cytotoxic and anti-inflammatory 11, 20-epoxy-ent-kaurane diterpenoids from Isodon wikstroemioides.

    PubMed

    Wu, Hai-Yan; Wang, Wei-Guang; Du, Xue; Yang, Jin; Pu, Jian-Xin; Sun, Han-Dong

    2015-05-01

    The present study was designed to determine the chemical constituents of EtOAc extracts of the aerial parts of Isodon wikstroemioides. Compounds 1-8 were isolated and purified by normal-phase silica gel and reversed-phase C18silica gel column chromatography and HPLC. Their structures were elucidated by extensive spectroscopic methods. Most of them were evaluated for their in vitro cytotoxicity against human cancer HL-60, SMMC-7721, A-549, MCF-7, and SW-480 cells and their inhibitory activity against nitric oxide (NO) production in LPS-activated RAW264.7 macrophages. Among the eight 11, 20-epoxy-ent-kauranoids isolated, compounds 1-6 (isowikstroemins H-M) were new diterpenoids. Compounds 1, 3, and 7 exhibited significant cytotoxicity with IC50 values ranging from (0.84 ± 0.02) to (4.09 ± 0.34) μmol · L(-1), while compounds 4 and 5 showed selective cytotoxicity. In addition, compounds 1, 3, 4, and 7 exhibited inhibitory activity against nitric oxide (NO) production in LPS-activated RAW264.7 macrophages. These results provide a basis for future development of these compounds as anti-cancer and anti-inflammatory agents. PMID:25986288

  13. Sliding wear resistance of epoxy polymers against stainless steel

    SciTech Connect

    Spinks, G.M.; Dimovski, L.; Samandi, M.

    1993-12-31

    The wear mechanisms occurring during sliding contact between epoxy resins and a smooth steel counterface have been investigated. The samples were prepared from a commercial diglycidyl ether of bisphenol-A epoxy and cured with various hardeners. The cured resins displayed a wide range of mechanical properties (particularly fracture toughness), and crosslink densities. The wear rates of the samples were found to vary by up to four orders of magnitude. It was found that the wear rates correlated to the inverse of the fracture toughness, which was in accord with previous studies on the wear of plastics by Omar et al. The mechanism was found to involve an ``adhesive/fatigue`` process, as proposed by Omar. Additionally, it was found that the addition of a rubber toughening agent had no effect on the wear rate, whilst sliding contact between polymer and polymer resulted in a much higher rate of wear. Possible explanations for this behavior are given.

  14. Study on joining method for Graphite Epoxy tubes

    NASA Astrophysics Data System (ADS)

    Yamagata, Tasuku; Namba, Kazuroh

    Graphite/Epoxy (GE) tubes are commonly used to construct truss assemblies for spacecraft applications. One of the most important items for developing these tubes is the joining method. The joining of these tubes usually employs metallic end fittings which are adhesively bonded to tubes. These methods, however, are not suitable for joining GE tubes because of heavy weight on metallic end fittings. This paper describes the design, fabrication and evaluation of the whole GE tubes which are formed into screwthreads on the inner surface of the tube simultaneously. Three types of tubes with different fiber arrangement in the region of the screw are designed. 40-mm diameter tubes constituted of 290 GPa modulus fibers in epoxy prepreg are used to fabricate 600 mm length specimens. The specimens are tested to measure the tensile strength and stiffness. The maximum loads of specimens range from 120 kN to 240 kN by the difference in fiber arrangement.

  15. Formation of porous epoxy monolith via concentrated emulsion polymerization.

    PubMed

    Wang, Jianli; Zhang, Chen; Du, Zhongjie; Xiang, Aiming; Li, Hangquan

    2008-09-15

    Step polymerization was introduced into the concentrated emulsion templating method and was illustrated with the preparation of porous epoxy monolith. A solution of diglycidyl ether of bisphenol-A (DGEBA), its curing agent low molecular weight polyamide resin, and surfactant nonyl phenol polyoxyethylene ether in 4-methyl-2-pentanon as a solvent was used as the continuous phase, an aqueous suspension of colloidal silica as the dispersed phase of the concentrated emulsion. After the continuous phase polymerized and the dispersed phase removed, a porous material is obtained. The key point in this work is to find a compromise between the rates of curing and phase separating and thus achieve a kinetic stability of the concentrated emulsion. The effects of loading of colloidal silica, the pre-curing of the epoxy precursors, and the volume fraction of the dispersed phase were systematically investigated. PMID:18571192

  16. Thermal expansion of epoxy-fiberglass composite specimens

    SciTech Connect

    McElroy, D.L.; Weaver, F.J.; Bridgman, C.

    1986-01-01

    The thermal expansion behavior of three epoxy-fiberglass composite specimens was measured from 20 to 120/sup 0/C (70 to 250/sup 0/F) using a fused quartz push-rod dilatometer. Billets produced by vacuum impregnating layers of two types of fiberglass cloth with an epoxy resin were core-drilled to produce cylindrical specimens. These were used to study expansion perpendicular and parallel to the fiberglass layers. The dilatometer is held at a preselected temperature until steady-state is indicated by stable length and temperature data. Before testing the composite specimens, a reliability check of the dilatometer was performed using a copper secondary standard. This indicated thermal expansion coefficient (..cap alpha..) values within +-2% of expected values from 20 to 200/sup 0/C.

  17. Thermal properties of epoxy resins at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Nakane, H.; Nishijima, S.; Fujishiro, H.; Yamaguchi, T.; Yoshizawa, S.; Yamazaki, S.

    2002-05-01

    In order to establish the design technique of epoxy resin at cryogenic temperature, its thermal contraction coefficients and dynamic Young's modulus were measured from room to cryogenic temperatures when plasticizer was both present and absent. The disappearance of the effects of the plasticizer were confirmed by measuring its thermal expansion coefficient. The process in which the addition of plasticizer reduces the glass transition temperature was clarified by measuring its dynamic Young's modulus. It was also discovered that blunt peak is caused by addition of plasticizer. The data obtained by measuring the dynamic Young's modulus clearly indicate that this peak disappears at cryogenic temperature resulting in the disappearance of the effects of the plastizer. The conclusion is that when epoxy resin is to be used at cryogenic temperature it is desirable that the addition of plastizer is kept at the minimum level.

  18. Development of ricehusk ash reinforced bismaleimide toughened epoxy nanocomposites.

    PubMed

    Kanimozhi, K; Sethuraman, K; Selvaraj, V; Alagar, M

    2014-01-01

    Recent past decades have witnessed remarkable advances in composites with potential applications in biomedical devices, aerospace, textiles, civil engineering, energy, electronic engineering, and household products. Thermoset polymer composites have further enhanced and broadened the area of applications of composites. In the present work epoxy-BMI toughened-silica hybrid (RHA/DGEBA-BMI) was prepared using bismaleimide as toughener, bisphenol-A as matrix and a silica precursor derived from rice husk ash as reinforcement with glycidoxypropyltrimethoxysilane as coupling agent. Differential scanning calorimetry, electron microscopy, thermogravimetric analysis, and goniometry were used to characterize RHA/DGEBA-BMI composites developed in the present work. Tensile, impact and flexural strength, tensile and flexural modulus, hardness, dielectric properties were also studied and discussed. The hybrid nanocomposites possess the higher values of the glass transition temperature (Tg) and mechanical properties than those of neat epoxy matrix. PMID:25279372

  19. Pyrolysis of epoxies used for thermal-battery headers

    SciTech Connect

    Guidotti, R.A.; Thornberg, S.M.; Campbell-Domme, B.

    1995-08-01

    Thermally activated batteries use an epoxy for encapsulation of the electrical feedthroughs in the header of the battery. When the thermal battery is thermally abused, the encapsulant can pyrolyze and generate large internal pressures. This causes the battery to vent in extreme cases. The nature of these gases has never been adequately documented. Therefore, a study was undertaken to address this deficiency. The pyrolysis of various encapsulants that have been used, or are being considered for use, in thermally activated batteries was studied over a temperature range of 155 to 455 C. The composition of the pyrolysis decomposition products was determined by gas chromatography/mass spectrometry (GS/MS). This determination is helpful in assessing the potential environmental and health effect for personnel exposed to such gases. In addition, the thermal stability of the various epoxies was measured by thermogravimetric analysis (TGA).

  20. Cryogenic tests of glass-epoxy based electrical insulation

    SciTech Connect

    Taylor, J.D.; Martin, P.S.; Pripstein, M.; Green, M.A.

    1981-08-01

    A thin superconducting solenoid for the Time Projection Chamber (TPC) experiment at PEP was constructed at Lawrence Berkeley Laboratory (LBL) in 1979 and tested in 1980. A failure of the ground plane insulation damaged the coil to the point that it required rebuilding. An extensive study of this failure indicated that an iron chip embedded in the bore tube had penetrated the insulation. Before rebuilding the coil, an investigation of the insulation system was done with the goal of determining the most reliable techniques and materials for withstanding high voltages in the coil package. The experience with the TPC coil and its prototypes indicate that glass cloth vacuum-impregnated with epoxy is an excellent material for cryogenic applications from the mechanical standpoint. Further, since the LBL assembly shop had extensive experience with the epoxy formulation used in the coil, there was reluctance to change that component. Therefore, the investigation concentrated on different types of glass cloth and on composites containing glass cloth.

  1. Development of ricehusk ash reinforced bismaleimide toughened epoxy nanocomposites

    PubMed Central

    Kanimozhi, K.; Sethuraman, K.; Selvaraj, V.; Alagar, M.

    2014-01-01

    Recent past decades have witnessed remarkable advances in composites with potential applications in biomedical devices, aerospace, textiles, civil engineering, energy, electronic engineering, and household products. Thermoset polymer composites have further enhanced and broadened the area of applications of composites. In the present work epoxy-BMI toughened-silica hybrid (RHA/DGEBA-BMI) was prepared using bismaleimide as toughener, bisphenol-A as matrix and a silica precursor derived from rice husk ash as reinforcement with glycidoxypropyltrimethoxysilane as coupling agent. Differential scanning calorimetry, electron microscopy, thermogravimetric analysis, and goniometry were used to characterize RHA/DGEBA-BMI composites developed in the present work. Tensile, impact and flexural strength, tensile and flexural modulus, hardness, dielectric properties were also studied and discussed. The hybrid nanocomposites possess the higher values of the glass transition temperature (Tg) and mechanical properties than those of neat epoxy matrix. PMID:25279372

  2. Degradation of epoxy coatings on phosphatized zinc-electroplated steel

    SciTech Connect

    Deflorian, F.; Miskovic-Stankovic, V.B.; Bonora, P.L.; Fedrizzi, L. . Material Engineering Dept.)

    1994-06-01

    The corrosion behavior of phosphatized zinc (Zn)-electroplated steel coated with epoxy films of different thicknesses was studies using electrochemical impedance spectroscopy (EIS), the breakpoint frequency method, potentiodynamic measurements, and the faradaic distortion method. The trends with time of the coatings' electrical properties (resistance and capacitance) and of the corrosion current were recorded. Coated samples were immersed in 5% sodium chloride (NaCl) in distilled water. To study the delamination tendency of the epoxy coatings, a small hole of 0.1 mm diam was drilled through the coatings to the metal-polymer interface. Comparison of the methods to evaluate the area of the defect in the organic coating and to establish the substrate area in contact with the electrolyte showed the breakpoint method failed to provide accurate information during a long initial period.

  3. Dielectric properties of epoxy resin fly ash composite

    NASA Astrophysics Data System (ADS)

    Pattanaik, A.; Bhuyan, S. K.; Samal, S. K.; Behera, A.; Mishra, S. C.

    2016-02-01

    Epoxy resin is widely used as an insulating material in high voltage applications. Ceramic fillers are always added to the polymer matrix to enhance its mechanical properties. But at the same time, filler materials decreases the electrical properties. So while making the fly ash epoxy composite, it is obvious to detect the effect of fly ash reinforcement on the dielectric nature of the material. In the present research work, fly ash is added to four different weight percentages compositions and post-curing has been done in the atmospheric condition, normal oven and micro oven. Tests were carried out on the developed polymer composite to measure its dielectric permittivity and tan delta value in a frequency range of 1 Hz - 1 MHz. The space charge behaviours were also observed by using the pulse electroacoustic (PEA) technique. The dielectric strength and losses are compared for different conditions.

  4. Development of ricehusk ash reinforced bismaleimide toughened epoxy nanocomposites.

    NASA Astrophysics Data System (ADS)

    K, Kanimozhi; Sethuraman, K.; V, Selvaraj; Alagar, Muthukaruppan

    2014-09-01

    Abstract Recent past decades have witnessed remarkable advances in composites with potential applications in biomedical devices, aerospace, textiles, civil engineering, energy, electronic engineering, and household products. Thermoset polymer composites have further enhanced and broadened the area of applications of composites. In the present work epoxy-BMI toughened-silica hybrid (RHA/DGEBA-BMI) was prepared using bismaleimide as toughener, bisphenol-A as matrix and a silica precursor derived from rice husk ash as reinforcement with glycidoxypropyltrimethoxysilane as coupling agent. Differential scanning calorimetry, electron microscopy, thermogravimetric analysis, and goniometry were used to characterize RHA/DGEBA-BMI composites developed in the present work. Tensile, impact and flexural strength, tensile and flexural modulus, hardness, dielectric properties were also studied and discussed. The hybrid nanocomposites possess the higher values of the glass transition temperature (Tg) and mechanical properties than those of neat epoxy matrix.

  5. Relaxation Characteristics of 828 DGEBA Epoxy Over Long Time Periods

    NASA Astrophysics Data System (ADS)

    Hoo, Jasmine; Reprogle, Riley C.; Wisler, Brian; Arechederra, Gabriel K.; McCoy, John D.; Kropka, Jamie M.; Long, Kevin N.

    The mechanical relaxation response in uniaxial compression of a diglycidyl ether of bisphenol-A epoxy was studied over long time periods. The epoxy, 828DEA, was Epon 828 cured with diethanolamine (DEA). A sample was compressed at constant strain rate and held at various strain levels for days to allow the sample to relax. The sample was then compressed further and held once more. The relaxation curves were fit with a stretched exponential function. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  6. Epoxy composites based on inexpensive tire waste filler

    SciTech Connect

    Ahmetli, Gulnare Gungor, Ahmet Kocaman, Suheyla

    2014-05-15

    Tire waste (TW) was recycled as raw material for the preparation of DGEBA-type epoxy composite materials. The effects of filler amount and epoxy type on the mechanical properties of the composites were investigated. Tensile strength and Young’s modulus of the composites with NPEL were generally higher than composites with NPEF. The appropriate mass level for TW in both type composites was found to be 20 wt%. The equilibrium water sorption of NPEL/TW and NPEF/TW composites for 14-day immersion was determined as 0.10 % and 0.21 %, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for characterization of the composites.

  7. Formulation and Characterization of Epoxy Resin Copolymer for Graphite Composites

    NASA Technical Reports Server (NTRS)

    Keck, F. L.

    1983-01-01

    Maximum char yield was obtained with a copolymer containing 25% mol fraction DGEBE and 75% mol fraction DGEBA (Epon 828). To achieve the high values (above 40%), a large quantity of catalyst (trimethoxyboroxine) was necessary. Although a graphite laminate 1/8" thick was successfully fabricated, the limited life of the catalyzed epoxy copolymer system precludes commercial application. Char yields of 45% can be achieved with phenolic cured epoxy systems as indicated by data generated under NAS2-10207 contract. A graphite laminate using this type of resin system was fabricated for comparison purposes. The resultant laminate was easier to process and because the graphite prepreg is more stable, the fabrication process could readily be adapted to commercial applications.

  8. Study made to control depth of potting compound for honeycomb sandwich fasteners

    NASA Technical Reports Server (NTRS)

    Cushman, J.

    1966-01-01

    Study determines optimum fastener insert size and shape, type of embedding cement, diameter, undercut and depth control by fiber glass plug in a honeycomb structure for maximum tensile strength The best potting compound is 5-5-1 weight mixture of epoxy resin, curing agent, and milled glass fibers.

  9. Toughening reinforced epoxy composites with brominated polymeric additives

    NASA Technical Reports Server (NTRS)

    Nir, Z. (Inventor); Gilwee, W. J., Jr. (Inventor)

    1985-01-01

    Cured polyfunctional epoxy resins including tris(hydroxyphenyl)methane triglycidyl ether are toughened by addition of polybrominated polymeric additives having an EE below 1500 to the pre-cure composition. Carboxy-terminated butadiene-acrylonitrile rubber is optionally present in the pre-cure mixture as such or as a pre-formed copolymer with other reactants. Reinforced composites, particularly carbon-reinforced composites, of these resins are disclosed and shown to have improved toughness.

  10. Toughening reinforced epoxy composites with brominated polymeric additives

    NASA Technical Reports Server (NTRS)

    Nir, Z.; Gilwee, W. J., Jr. (Inventor)

    1985-01-01

    Cured polyfunctional epoxy resins including tris (hydroxyphenyl) methane triglycidyl ether are toughened by addition of polybrominated polymeric additives having an EE below 1500 to the pre-cure composition. Carboxy terminated butadiene acrylonitrile rubber is optionally present in the precure mixture as such or as a pre-formed copolymer with other reactants. Reinforced composites, particularly carbon reinforced composites, of these resins are disclosed and shown to have improved toughness.