Science.gov

Sample records for epoxy vacuum impregnation

  1. Polarization of vacuum-pressure-impregnated high voltage epoxy-mica insulations

    SciTech Connect

    Keskinen, E.; Jaeppinen, J.

    1996-12-31

    In this paper the electrical behavior of modern epoxy-mica high voltage insulation is investigated with the help of two-layer insulation model. The simplified model help to understand the charging phenomenon in actual high voltage insulation. The behavior of Vacuum-Pressure-Impregnated (VPI`ed) epoxy-mica insulation is compared with Shellac-Micafolium insulation. It is illustrated that because of higher volume resistivity the rate of change of the field distribution due to charging is considerably slower in epoxy-mica insulation. This tends to result in lower polarization index (PI) value for the epoxy-mica insulation than typically obtained for Shellac-Micafolium insulations. It is also illustrated that the faster PI measurement method (ratio of the 60 seconds value to the 15 seconds value) gives clearly lower PI value than the method defined in IEEE 43 (1974) (ratio of 600 s value to 60 s value). Finally, the effect of moisture on insulation resistance and PI of VPI`ed epoxy-mica winding insulation is discussed.

  2. Managing Coil Epoxy Vacuum Impregnation Systems at the Manufacturing Floor Level To Achieve Ultimate Properties in State-of-the-Art Magnet Assemblies

    SciTech Connect

    J.G. Hubrig; G.H. Biallas

    2005-05-01

    Liquid epoxy resin impregnation systems remain a state-of-the-art polymer material for vacuum and vacuum/pressure impregnation applications in the manufacture of both advanced and conventional coil winding configurations. Epoxy resins inherent latitude in processing parameters accounts for their continued popularity in engineering applications, but also for the tendency to overlook or misinterpret the requisite processing parameters on the manufacturing floor. Resin system impregnation must be managed in detail in order to achieve device life cycle reliability. This closer look reveals how manufacturing floor level management of material acceptance, handling and storage, pre- and post- impregnation processing and cure can be built into a manufacturing plan to increase manufacturing yield, lower unit cost and ensure optimum life cycle performance of the coil.

  3. Interlaboratory comparison of thin section epoxy impregnation procedures

    SciTech Connect

    Wilson, M.D.; Byrnes, A.P.

    1987-05-01

    Evidence of the ineffective blue-dye epoxy impregnation is encountered all too commonly in thin sections. A study involving ceramic disks was conducted to compare the efficiencies of a variety of epoxy impregnation procedures used by major laboratories. Disks were sent to five commercial and four major oil company thin section laboratories which then impregnated the disks and returned them for analysis. Porcelain disks were used because of their high degree of uniformity, white color, rocklike composition and pore geometry, uniform pore size, and high pore connectivity. Impregnation efficiency was determined by calculating the pore volume invaded using helium porosimetry and by determining the areas and distances of invasion based on extent of blue-dye invasion in cross-sectional cuts through the disks. Techniques which proved very highly effective are vacuum or vacuum/pressure impregnation in which the epoxy was added to the sample container subsequent to evacuation. Relatively ineffective are vacuum techniques, at room or elevated temperatures, where the sample is submerged in epoxy prior to evacuation. The key to effective impregnation is to remove air from the sample before it is covered by epoxy. Factors which have little or no influence on the effectiveness of impregnation include type of blue dye, epoxy type, and presence of fluorescent dye. High-quality thin sections can be prepared using less-effective techniques if care is taken to prepare them from the outer edge of the impregnated sample.

  4. Epoxy resin developments for large superconducting magnets impregnation

    NASA Astrophysics Data System (ADS)

    Rey, J. M.; Gallet, B.; Kircher, F.; Lottin, J. C.

    The future detectors ATLAS and CMS of the Large Hadron Collider at CERN will use two huge superconducting magnets. Both are now under design, and their electrical insulation could be realized using epoxy resin and a wet impregnation technique. Because of their large dimensions, and the indirect cooling of the superconductor, the strengths of the resin and of the resin/conductor interface are of major importance. A new generation of epoxy resins for vacuum/pressure impregnation methods has been tested, and compared with some classical and well-known epoxy resins used in impregnation techniques. In order to understand the mechanical behaviour at 4 K, the complete evolution from liquid state to low temperature service condition is considered. The paper will present some results on the mechanical properties, the density and the chemical shrinkage occurring during the polymerization and the thermal contraction between room temperature and 4 K for these different types of epoxy resins.

  5. Impregnating magnetic components with MDA free epoxy

    SciTech Connect

    Sanchez, R.O.; Domeier, L.; Gunewardena, S.

    1995-08-01

    This paper describes the use of {open_quotes}Formula 456{close_quotes} an aliphatic amine cured epoxy for impregnating coils. Methylene dianiline (MDA) has been used for more than 20 years as the curing agent for various epoxy formulations throughout the Department of Energy. Sandia National Laboratories began the process of replacing MDA with other formulations because of regulations imposed by OSHA on the use of MDA.

  6. Pros and cons of vacuum pressure impregnation

    NASA Astrophysics Data System (ADS)

    Wright, T.

    1981-12-01

    The advantages and disadvantages of using a vacuum pressure impregnation process in the application of insulating varnishes to high voltage electric coils are discussed. The process has the advantages of providing a void free system with high dielectric strength, mechanical resilience, chemical and moisture resistance, and good thermal capabilities. The disadvantages of high cost and large tank size requirements are noted.

  7. Enhancement of the transverse stress tolerance of REBCO Roebel cables by epoxy impregnation

    NASA Astrophysics Data System (ADS)

    Otten, S.; Dhallé, M.; Gao, P.; Wessel, W.; Kario, A.; Kling, A.; Goldacker, W.

    2015-06-01

    REBCO Roebel cables are considered for application in high-temperature superconducting inserts for accelerator magnets because of their fully transposed geometry, high-engineering current density, and adequate bending tolerance. In these magnets the cables experience Lorentz forces leading to transverse stresses up to 100-150 MPa. Previous reports have shown bare Roebel cables to degrade under such high stresses so that additional reinforcement is required. In this work, two identical Roebel cables are vacuum impregnated with a mixture of epoxy and fused silica in order to improve their tolerance to transverse stress. After impregnation, the critical current of the cables is measured under transverse mechanical loading at T = 4.2 K, {{B}\\bot }=10.5 T. A reference cable without impregnation is tested as well. Pressures up to 350 MPa are applied to a short (30 mm) section of each cable. No degradation was observed for pressures up to 250 MPa and 170 MPa in the two impregnated cables. The critical current of the non-impregnated cable, in contrast, started to decrease at stresses as low as 40 MPa.

  8. DGEBF epoxy blends for use in the resin impregnation of extremely large composite parts

    SciTech Connect

    Madhukar, M. S.; Martovetsky, N. N.

    2015-01-16

    Large superconducting electromagnets used in fusion reactors utilize a large amount of glass/epoxy composite for electrical insulation and mechanical and thermal strengths. Moreover, the manufacture of these magnets involves wrapping each superconducting cable bundle with dry glass cloth followed by the vacuum-assisted resin transfer molding of the entire magnet. Due to their enormous size (more than 100 tons), it requires more than 40 h for resin impregnation and the subsequent pressure cycles to ensure complete impregnation and removal of any trapped air pockets. Diglycidyl ether of bisphenol F epoxy resin cross-linked with methyltetrahydrophthalic anhydride with an accelerator has been shown to be a good candidate for use in composite parts requiring long impregnation cycles. Viscosity, gel time, and glass transition temperature of four resin-blends of diglycidyl ether of bisphenol F resin system were monitored as a function of time and temperature with an objective to find the blend that provides a working window longer than 40h at low viscosity without lowering its glass transition temperature. A resin-blend in the weight ratios of resin:hardener:accelerator=100:82:0.125 is shown to provide more than 60h at low resin viscosity while maintaining the same glass transition temperature as obtained with previously used resin-blends, based on the results.

  9. DGEBF epoxy blends for use in the resin impregnation of extremely large composite parts

    DOE PAGESBeta

    Madhukar, M. S.; Martovetsky, N. N.

    2015-01-16

    Large superconducting electromagnets used in fusion reactors utilize a large amount of glass/epoxy composite for electrical insulation and mechanical and thermal strengths. Moreover, the manufacture of these magnets involves wrapping each superconducting cable bundle with dry glass cloth followed by the vacuum-assisted resin transfer molding of the entire magnet. Due to their enormous size (more than 100 tons), it requires more than 40 h for resin impregnation and the subsequent pressure cycles to ensure complete impregnation and removal of any trapped air pockets. Diglycidyl ether of bisphenol F epoxy resin cross-linked with methyltetrahydrophthalic anhydride with an accelerator has been shownmore » to be a good candidate for use in composite parts requiring long impregnation cycles. Viscosity, gel time, and glass transition temperature of four resin-blends of diglycidyl ether of bisphenol F resin system were monitored as a function of time and temperature with an objective to find the blend that provides a working window longer than 40h at low viscosity without lowering its glass transition temperature. A resin-blend in the weight ratios of resin:hardener:accelerator=100:82:0.125 is shown to provide more than 60h at low resin viscosity while maintaining the same glass transition temperature as obtained with previously used resin-blends, based on the results.« less

  10. Vacuum powder injector and method of impregnating fiber with powder

    NASA Technical Reports Server (NTRS)

    Working, Dennis C. (Inventor)

    1993-01-01

    A method and apparatus uniformly impregnate stranded material with dry powder such as low solubility, high melt flow polymer powder to produce, for example, composite prepregs. The stranded material is expanded in an impregnation chamber by an influx of air so that the powder, which may enter through the same inlet as the air, penetrates to the center of the stranded material. The stranded material then is contracted for holding the powder therein. The stranded material and powder may be pulled through the impregnation chamber in the same direction by vacuum. Larger particles of powder which do not fully penetrate the stranded material may be combed into the stranded material and powder which does not impregnate the stranded material may be collected and reused.

  11. Thermal-mechanical properties of epoxy-impregnated Bi-2212/Ag composite

    DOE PAGESBeta

    Li, Pei; Wang, Yang; Fermi National Accelerator Lab.; Godeke, Arno; National High Magnetic Field Lab., Tallahassee, FL; Ye, Liyang; Fermi National Accelerator Lab.; Flanagan, Gene; Shen, Tengming

    2014-11-26

    In this study, knowledge of the thermal-mechanical properties of epoxy/superconductor/insulation composite is important for designing, fabricating, and operating epoxy impregnated high field superconducting magnets near their ultimate potentials. We report measurements of the modulus of elasticity, Poisson's ratio, and the coefficient of thermal contraction of epoxy-impregnated composite made from the state-of-the-art powder-in-tube multifilamentary Ag/Bi2Sr2CaCu2Ox round wire at room temperature and cryogenic temperatures. Stress-strain curves of samples made from single-strand and Rutherford cables were tested under both monotonic and cyclic compressive loads, with single strands insulated using a thin TiO2 insulation coating and the Rutherford cable insulated with a braided ceramicmore » sleeve.« less

  12. Thermal-mechanical properties of epoxy-impregnated Bi-2212/Ag composite

    SciTech Connect

    Li, Pei; Wang, Yang; Godeke, Arno; Ye, Liyang; Flanagan, Gene; Shen, Tengming

    2014-11-26

    In this study, knowledge of the thermal-mechanical properties of epoxy/superconductor/insulation composite is important for designing, fabricating, and operating epoxy impregnated high field superconducting magnets near their ultimate potentials. We report measurements of the modulus of elasticity, Poisson's ratio, and the coefficient of thermal contraction of epoxy-impregnated composite made from the state-of-the-art powder-in-tube multifilamentary Ag/Bi2Sr2CaCu2Ox round wire at room temperature and cryogenic temperatures. Stress-strain curves of samples made from single-strand and Rutherford cables were tested under both monotonic and cyclic compressive loads, with single strands insulated using a thin TiO2 insulation coating and the Rutherford cable insulated with a braided ceramic sleeve.

  13. Thermal-mechanical Properties of Epoxy-impregnated Bi-2212/Ag Composite

    SciTech Connect

    Li, Pei; Wang, Yang; Godeke, Arno; Ye, Liyang; Flanagan, Gene; Shen, Tengming

    2014-11-26

    Knowledge of the thermal-mechanical properties of epoxy/superconductor/insulation composite is important for designing, fabricating, and operating epoxy impregnated high field superconducting magnets near their ultimate potentials. We report measurements of the modulus of elasticity, Poisson’s ratio, and the coefficient of thermal contraction of epoxy-impregnated composite made from the state-of-the-art powder-in-tube multifilamentary Ag/Bi2Sr2CaCu2Ox round wire at room temperature and cryogenic temperatures. Stress-strain curves of samples made from single-strand and Rutherford cables were tested under both monotonic and cyclic compressive loads, with single strands insulated using a thin TiO2 insulation coating and the Rutherford cable insulated with a braided ceramic sleeve.

  14. Effect of epoxy cracking resistance on the stability of impregnated superconducting solenoids

    NASA Astrophysics Data System (ADS)

    Sekiya, H.; Moriyama, H.; Mitsui, H.; Nishijima, S.; Okada, T.

    The stability and quench positions of superconducting test solenoids impregnated with three types of epoxy resin, with different crack resistances, have been studied. Voltage signals and acoustic emission (AE) were monitored during training tests. Premature quenches in the solenoids almost occurred at the innermost layer of windings; voltage spikes and AE appeared just prior to the premature quench initiation. This suggested that premature quenches were due to friction or debonding between ground insulation and winding. The solenoid with a release film between ground insulation and winding showed high stability and reached critical current at the second charging. From the results, the effects of epoxy cracking resistance on the stability of impregnated superconducting test solenoids are discussed.

  15. Zinc enrichment of whole potato tuber by vacuum impregnation.

    PubMed

    Erihemu; Hironaka, Kazunori; Koaze, Hiroshi; Oda, Yuji; Shimada, Kenichiro

    2015-04-01

    Zinc is a nutritionally essential truce element, and thus zinc deficiency (ZD) severely affects human health. More than 25% of the world's population is at risk of ZD. This study was initiated to examine the use of the vacuum impregnation (VI) technique for enriching zinc content of whole potatoes; the effect of vacuum time, restoration time, steam-cooking and storage at 4 °C on the zinc content of VI whole potatoes was evaluated. Whole potato tubers were immersed in a 9 g/100 g zinc (zinc gluconate) solution. Vacuum pressure of 1,000 Pa was applied for 0-120 min, and atmospheric pressure restoration for 0-4 h. Experimental results showed that the zinc content of VI potatoes increased with vacuum and restoration time. Moreover, VI-cooked unpeeled or peeled potatoes had 63-94 times and 47-75 times higher zinc contents than un-VI-cooked unpeeled or peeled potatoes, respectively. The world daily potato consumption (86 g) of the VI-cooked unpeeled and peeled potatoes provided adult men with 130-148% and 100-135% of the recommended daily allowance (RDA) of zinc, respectively. Also, the daily potato consumption of the unpeeled and peeled potatoes supplied adult women with 178-203% and 137-185% of the RDA level, respectively. In addition, the VI potatoes had 40 times higher zinc contents through 30 days of storage at 4 °C, compared with un-VI-treated potatoes. This study indicated that VI treatment of whole potatoes was useful for enriching the zinc content. PMID:25829619

  16. Experimental determination of the dynamics of vacuum impregnation of apples.

    PubMed

    Laurindo, J B; Stringari, G B; Paes, S S; Carciofi, B A M

    2007-10-01

    Vacuum impregnation (VI) is a food processing method by which air and native solution are removed from porous spaces within a food and replaced by an external solution. In this study, an experimental device based on a previous design was built, including some modifications, in order to investigate the dynamics of the VI process. The device measured the net force exerted by a food sample submitted to the VI process using a load cell. The influence of the vacuum level and sample geometry was well quantified by the experimental procedure and the modified equipment using apple samples (Fuji var.) as a food model. The results indicated that the experimental device proposed in this study, together with the suggested procedure, is a useful tool to investigate the dynamics of VI processes. It is robust and versatile, and has the advantage of not requiring the determination of the water evaporated during the VI process in a separate experiment, which represents an increase in the accuracy of the results. PMID:17995607

  17. Nutritional enrichment of fresh apple (Royal Gala) by vacuum impregnation.

    PubMed

    Xie, J; Zhao, Y

    2003-09-01

    This study evaluates the use of vacuum impregnation (VI) for developing nutritionally fortified fresh cut apples (Royal Gala). Cut apples were immersed in diluted high fructose corn syrup (20% w/w or 50% w/w) containing calcium or zinc. A vacuum pressure of 50 mmHg was applied for 15 min following atmospheric pressure restoration for 30 min while samples remained in the VI solution. Nutraceutical content and physicochemical properties of the apples immediately after VI were determined. Storability of VI apples at 6 degrees C and 90% relative humidity was also studied based on the color and texture of apples. Results indicated that 15-20% of the Daily Reference Intake of calcium and above 40% of the Daily Reference Intake of zinc could be obtained in 200 g fresh cut apples. VI treatments in 20% w/w high fructose corn syrup solutions had little effects on the physicochemical properties of apples. Storage study showed that VI with zinc significantly improved color stability, and calcium enhanced the firmness of the apples. PMID:12907403

  18. Effects of Vacuum Impregnation with Sucrose Solution on Mango Tissue.

    PubMed

    Lin, Xian; Luo, Cailian; Chen, Yulong

    2016-06-01

    The influences of vacuum impregnation (VI) on the tissue of mango cubes during atmospheric immersion in sucrose solution were investigated. Results showed that VI effectively facilitated water loss (WL) and sugar gain (SG) during the 300min immersion process, with increases of 20.59% and 31.26%, respectively. A pectin solubilization/degradation phenomenon was observed in the immersion process. The intercellular space and cross section area in the VI-treated mango tissue increased immediately after being released to atmospheric pressure. And it was noted that after experiencing shrinkage-relaxation period twice in the 300 min immersion process, the size of VI-treated mango cells recovered to the original level of fresh ones. Major variations in WL, protopectin content, water soluble pectin content, firmness and microstructure of mango cubes appeared within the first 60 min. In addition, the firmness of mango cubes was positively correlated with the protopectin content (P < 0.01), but negatively correlated with WL and the water soluble pectin content (P < 0.01), indicating that WL and degradation of protopectin contributed greatly to the loss of firmness. PMID:27100561

  19. Thermo-mechanical characterization of insulated and epoxy-impregnated Nb3Sn composites

    SciTech Connect

    Linda Imbasciati et al.

    2002-12-11

    Nb{sub 3}Sn is, at present, the best superconductor for high field accelerator magnets. Several models using Nb{sub 3}Sn are under development in many laboratories. Knowledge of the thermo-mechanical properties of the impregnated coils is of crucial importance for the design of these magnets. In fact, the performance of epoxy-impregnated coils is sensitive to the thermal conductivity value, especially in case of heating caused by hysteretic losses, which are usually relevant in Nb{sub 3}Sn magnets, and in the case of continuous heat deposition, such as in magnets near the interaction region of a collider. Thermal contraction measurements are necessary to estimate the stresses during the magnet thermal cycle. Different insulation materials have been studied at Fermilab utilizing various design approaches and fabrication methods. Thermal conductivity and thermal contraction measurements, at cryogenic temperatures, have been performed respectively at INFN-LASA and Fermilab. The results are reported and discussed in this paper.

  20. Enhanced antimicrobial effect of organic acid washing against foodborne pathogens on broccoli by vacuum impregnation.

    PubMed

    Kang, Jun-Won; Kang, Dong-Hyun

    2016-01-18

    This study was undertaken to evaluate the effect of vacuum impregnation applied to the washing process for removal of Salmonella Typhimurium and Listeria monocytogenes from broccoli surfaces. Broccoli was inoculated with the two foodborne pathogens and treated with simple dipping washing or with vacuum impregnation in 2% malic acid for 5, 10, 20, or 30 min. There were two methods of vacuum impregnation: continuous and intermittent. After 30 min of 101.3 kPa (=14.7 psi, simple dipping), 61.3 kPa (=8.9 psi), and 21.3 kPa (=3.1 psi) of continuous vacuum impregnation treatment, there were 1.6, 2.0, and 2.4 log 10 CFU/g reductions of S. Typhimurium and 1.5, 1.7, and 2.3 log 10 CFU/g reductions of L. monocytogenes, respectively. After 30 min of 101.3, 61.3, and 21.3 kPa of intermittent vacuum impregnation treatment, there were 1.5, 2.3, and 3.7 log 10 CFU/g reductions of S. Typhimurium and 1.6, 2.1, and 3.2 log 10 CFU/g reductions of L. monocytogenes, respectively. Scanning electron photomicrographs showed that bacteria tend to attach to or become entrapped in protective sites after simple wash processing (dipping). However, most bacteria were washed out of protective sites after intermittent treatment. Direct treatment of cell suspensions with vacuum impregnation showed that it had no inactivation capacity in itself since there were no significant differences (P ≥ 0.05) between the reduction rates of non- and vacuum impregnation treatment. These results demonstrate that the increased antimicrobial effect of vacuum impregnation can be attributed to increased accessibility of sanitizer and an enhanced washing effect in protected sites on produce. Color, texture and titratable acidity values of broccoli treated with intermittent vacuum impregnation in 2% malic acid for 30 min were not significantly (P ≥ 0.05) different from those of untreated samples even though a storage interval was needed for titratable acidity values to be reduced to levels comparable to those of

  1. Effect of Strain Rate on Tensile Properties of Carbon Fiber Epoxy-Impregnated Bundle Composite

    NASA Astrophysics Data System (ADS)

    Naito, Kimiyoshi

    2014-03-01

    The tensile tests for high tensile strength polyacrylonitrile (PAN)-based (T1000GB) carbon fiber epoxy-impregnated bundle composite at various strain rates ranging from 3.33 × 10-5 to 6.0 × 102 s-1 (various crosshead speeds ranging from 8.33 × 10-7 to 1.5 × 101 m/s) were investigated. The statistical distributions of the tensile strength were also evaluated. The results clearly demonstrated that the tensile strength of bundle composite slightly increased with an increase in the strain rate (crosshead speed) and the Weibull modulus of tensile strength for the bundle composite decreased with an increase in the strain rate (crosshead speed), there is a linear relation between the Weibull modulus and the average tensile strength on log-log scale.

  2. Effect of ground insulation contact on stability of epoxy-impregnated superconducting solenoids

    NASA Astrophysics Data System (ADS)

    Moriyama, H.; Sekiya, H.; Mitsui, H.; Nishijima, S.; Okada, T.

    To clarify the effect of ground insulation contact on the stability of epoxy-impregnated superconducting solenoids, test coils with ground insulation between a winding and a metal former were fabricated. Aluminium and stainless steel were used as the former materials. The training effects of coils and the circumferential strains of former inner surfaces were measured. The training effects of aluminium former coils were larger than those of the stainless steel former coils. The strains of stainless steel formers became greater as the exciting current increased, but the strains of the aluminium formers did not change. These results show that the insulation of aluminium former coils became a floating state, the insulation of stainless steel former coils maintained a pressed state, and the floating state caused the large training effects.

  3. A Hybrid Heating Method for the HT-7U Coils during Vacuum-Pressure Impregnation

    NASA Astrophysics Data System (ADS)

    Cui, Yi-min; Wu, Song-tao; Pan, Wan-jiang; Weng, Pei-de; Wan, Yuan-xi

    2001-04-01

    The HT-7U superconducting tokamak is a full-superconducting magnetically confined fusion device, The toroidal magnet system of HT-7U is a very important part of the device. In VPI (Vacuum-Pressure Impregnation) process the magnet coils must be heated and degassed before impregnating and must be heated to the gel temperature and then the curing temperature, and keep the two kinds of temperatures for a long period of time after impregnating. Thus the heating method of VPI is critical. In this paper, a hybrid method of combining the internal and external heating for the coils is analyzed, especially the possibility of the internal heating method is proved.

  4. Preparation of serial sections of arthropods using 2,2-dimethoxypropane dehydration and epoxy resin embedding under vacuum.

    PubMed

    Pernstich, A; Krenn, H W; Pass, G

    2003-02-01

    Improved methods are described for anatomical investigation of small insects and other arthropods using serial semithin sections. The specimens were dehydrated with acidified 2,2-dimethoxypropane and embedded in ERL 4206 epoxy resin under vacuum. This procedure ensures good resin impregnation of thin, long body compartments and appendages. Furthermore, it produces excellent overall preservation of the specimen and its fragile anatomical structures. This procedure saves time and gives excellent results when sectioning difficult arthropod material. A continuous recording of serial semithin sections is possible when diamond knives are used. PMID:12713135

  5. PROPERTY CHANGES OF CYANATE ESTER/EPOXY INSULATION SYSTEMS CAUSED BY AN ITER-LIKE DOUBLE IMPREGNATION AND BY REACTOR IRRADIATION

    SciTech Connect

    Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.

    2010-04-08

    Because of the double pancake design of the ITER TF coils the insulation will be applied in several steps. As a consequence, the conductor insulation as well as the pancake insulation will undergo multiple heat cycles in addition to the initial curing cycle. In particular the properties of the organic resin may be influenced, since its heat resistance is limited. Two identical types of sample consisting of wrapped R-glass/Kapton layers and vacuum impregnated with a cyanate ester/epoxy blend were prepared. The build-up of the reinforcement was identical for both insulation systems; however, one system was fabricated in two steps. In the first step only one half of the reinforcing layers was impregnated and cured. Afterwards the remaining layers were wrapped onto the already cured system, before the resulting system was impregnated and cured again. The mechanical properties were characterized prior to and after irradiation to fast neutron fluences of 1 and 2x10{sup 22} m{sup -2}(E>0.1 MeV) in tension and interlaminar shear at 77 K. In order to simulate the pulsed operation of ITER, tension-tension fatigue measurements were performed in the load controlled mode. The results do not show any evidence for reduced mechanical strength caused by the additional heat cycle.

  6. Property Changes of Cyanate Ester/epoxy Insulation Systems Caused by AN Iter-Like Double Impregnation and by Reactor Irradiation

    NASA Astrophysics Data System (ADS)

    Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.

    2010-04-01

    Because of the double pancake design of the ITER TF coils the insulation will be applied in several steps. As a consequence, the conductor insulation as well as the pancake insulation will undergo multiple heat cycles in addition to the initial curing cycle. In particular the properties of the organic resin may be influenced, since its heat resistance is limited. Two identical types of sample consisting of wrapped R-glass/Kapton layers and vacuum impregnated with a cyanate ester/epoxy blend were prepared. The build-up of the reinforcement was identical for both insulation systems; however, one system was fabricated in two steps. In the first step only one half of the reinforcing layers was impregnated and cured. Afterwards the remaining layers were wrapped onto the already cured system, before the resulting system was impregnated and cured again. The mechanical properties were characterized prior to and after irradiation to fast neutron fluences of 1 and 2×1022 m-2 (E>0.1 MeV) in tension and interlaminar shear at 77 K. In order to simulate the pulsed operation of ITER, tension-tension fatigue measurements were performed in the load controlled mode. The results do not show any evidence for reduced mechanical strength caused by the additional heat cycle.

  7. Measurement of inter-strand contact resistance in epoxy impregnated Nb3Sn Rutherford cables

    SciTech Connect

    Giorgio Ambrosio et al.

    2003-10-07

    An apparatus for the measurement, under transverse pressure, of the inter-strand contact resistance in epoxy-impregnated Nb{sub 3}Sn Rutherford cables has been recently assembled at Fermilab. Procedures have been developed to instrument and measure samples extracted from Nb{sub 3}Sn coils. Samples were extracted from coils fabricated with the Wind-and-React and the React-and-Wind technology, both presently under development at Fermilab. A ceramic binder is used to improve the insulation and to simplify the fabrication of coils using the Wind-and-React technology. Synthetic oil is used to prevent sintering during the heat treatment of coils to be wound after reaction. In order to evaluate the effects of the ceramic binder and of the synthetic oil on the inter-strand resistance, measurements of samples extracted from coils were compared with measurements of cable stacks with varying characteristics. In this paper we describe the apparatus, the sample preparation, the measurement procedure, and the results of the first series of tests.

  8. Honey in combination with vacuum impregnation to prevent enzymatic browning of fresh-cut apples.

    PubMed

    Jeon, M; Zhao, Y

    2005-05-01

    This study evaluated the antioxidative capacity of 13 US Northwest honeys from different floral sources and their anti-browning effect on fresh-cut apples. The inhibitory effect of honey on enzymatic browning of fresh-cut apples were studied by simply immersing apple slices in 10% honey solution for 30 min or vacuum impregnating (vacuum at 75 mmHg for 15 min followed with 30 min restoration at atmospheric pressure) in the same honey solution. The 10% diluted high-fructose corn syrup solution was used as a comparison. The surface color of the apple slices was monitored during 14 days of storage at 3 degrees C and 90% relative humidity. Physicochemical properties of the apples immediately after treatment were also evaluated. Wildflower honey had the darkest color and the highest antioxidative capacity among all test honeys. Vacuum impregnation with honey was more effective in controlling browning discoloration than that of simple immersion treatment. Honey in combination with vacuum impregnating operation may have a great potential for developing high-quality fresh-cut fruits. PMID:16009631

  9. New insights into the dynamics of vacuum impregnation of plant tissues and its metabolic consequences.

    PubMed

    Galindo, Federico Gómez; Yusof, Noor Liyana

    2015-04-01

    The complex and highly interconnected intercellular air spaces of plant tissues occupied by gas or native liquid has offered the possibility for impregnation with a wide range of compounds. In food processing, the development of vacuum impregnation has allowed a controlled way to introduce these compounds to the tissue structure aiming at modifying structural, nutritional, and/or functional properties as well as improving the processability of fruits and vegetables. In the last 10 years, more than 100 research articles have been published on the topic and significant insights had been gained including improved understanding of mechanisms for mass transfer as well as the development of new, fascinating industrial applications. In the recent years, our knowledge on these aspects has increased by bringing new exploration technologies for studying the impregnation of porous materials and plant cell physiology approaches to bear on the topic. The aim of this paper is to highlight some of these exciting advances. PMID:24917465

  10. DC characterization and 3D modelling of a triangular, epoxy-impregnated high temperature superconducting coil

    NASA Astrophysics Data System (ADS)

    Hu, D.; Ainslie, M. D.; Rush, J. P.; Durrell, J. H.; Zou, J.; Raine, M. J.; Hampshire, D. P.

    2015-06-01

    The direct current (dc) characterization of high temperature superconducting (HTS) coils is important for applications, such as electric machines, superconducting magnetic energy storage and transformers. In this paper, the dc characterization of a triangular-shaped, epoxy-impregnated HTS coil wound with YBCO coated conductor intended for use in an axial-flux HTS motor is presented. Voltage was measured at several points along the coil to provide detailed information of its dc characteristics. The coil is modelled based on the H -formulation using a new three-dimensional (3D) technique that utilizes the real superconducting layer thickness, and this model allows simulation of the actual geometrical layout of the HTS coil structure. Detailed information on the critical current density’s dependence on the magnitude and orientation of the magnetic flux density, Jc(B,θ), determined from experimental measurement of a short sample of the coated conductor comprising the coil is included directly in the numerical model by a two-variable direct interpolation to avoid developing complicated equations for data fitting and greatly improve the computational speed. Issues related to meshing the finite elements of the real thickness 3D model are also discussed in detail. Based on a comparison of the measurement and simulation results, it is found that non-uniformity along the length exists in the coil, which implies imperfect superconducting properties in the coated conductor, and hence, coil. By evaluating the current-voltage (I-V) curves using the experimental data, and after taking into account a more practical n value and critical current for the non-uniform region, the modelling results show good agreement with the experimental results, validating this model as an appropriate tool to estimate the dc I-V relationship of a superconducting coil. This work provides a further step towards effective and efficient 3D modelling of superconducting devices for large

  11. 2D/3D quench simulation using ANSYS for epoxy impregnated Nb3Sn high field magnets

    SciTech Connect

    Ryuji Yamada et al.

    2002-09-19

    A quench program using ANSYS is developed for the high field collider magnet for three-dimensional analysis. Its computational procedure is explained. The quench program is applied to a one meter Nb{sub 3}Sn high field model magnet, which is epoxy impregnated. The quench simulation program is used to estimate the temperature and mechanical stress inside the coil as well as over the whole magnet. It is concluded that for the one meter magnet with the presented cross section and configuration, the thermal effects due to the quench is tolerable. But we need much more quench study and improvements in the design for longer magnets.

  12. Experimental and theoretical investigation of mechanical disturbances in epoxy-impregnated superconducting coils. 3. Fracture-induced premature quenches

    NASA Astrophysics Data System (ADS)

    Iwasa, Y.; Bobrov, E. S.; Tsukamoto, O.; Takaghi, T.; Fujita, H.

    The theoretical correlation between shear stress and epoxy resin fracture developed in Part 2 was verified experimentally using a series of epoxy-impregnated, thin-walled superconducting test coils. A Lorentz shear stress field was created within the winding of each coil by placing it in a constant background magnetic field and energizing it with transport current, which was increased slowly at a constant rate. Because the boundary condition at each end of the test coil critically influenced the Lorentz shear stress field, which caused epoxy resin fracture, premature quench data were measured for test coils with different combinations of end boundary conditions. In test coils with both ends rigidly clamped, cracks occurred as transport current was increased; during a training sequence the test was terminated by a premature quench. Using acoustic emission and voltage signals, each premature quench was linked directly to a crack occurring near one of the ends. Test coils which had both ends unsupported, giving the winding freedom to expand radially, did not experience epoxy fracture and showed no premature quenches: these reached critical current at the first attempt.

  13. [Preparation and characterization of activated carbon-silver composite with antibacterial behavior via vacuum impregnation method].

    PubMed

    Wang, Zi-Qiang; Liu, Shou-Xin

    2011-01-01

    Activated carbon-silver composite (Ag/AC) for antibacterial performance by controlling silver release was prepared by silver acetate vacuum impregnation method. The antibacterial activity towards E. coil and resistance of water erosion was investigated through distilled water. Surface area and porosity analyzer, Scanning electron spectroscopy (SEM) and X-ray diffraction (XRD) were used to characterize the surface morphology and pore properties. The results show that Ag0 was deposited on AC symmetrically. The content of silver supported and particle size were increased by the increasing of the concentration of CH3 COOAg, while specific surface area, total pore volume and average pore size were decreased. Ag/AC prepared with silver content of 0.97% which killed 10(7) CFU/mL concentration of E. coil in 120 min exhibited the similar antibacterial activity for E. coil with that prepared by traditional impregnation method. However, the silver loss of the Ag/AC prepared with silver content of 0.97% was 37.6%, showing much higher resistance to water erosion. High antibacterial activity and control silver release can be simultaneously realized by the silver acetate vacuum impregnation method. PMID:21404679

  14. Microwave application on air drying of apple (var. Granny Smith). The influence of vacuum impregnation pretreatment

    NASA Astrophysics Data System (ADS)

    Martin Esparza, Maria Eugenia

    Combined hot air-microwave drying has been studied on apple (var. Granny Smith), with and without vacuum impregnation (VI) pretreatment with isotonic solution, respect to kinetics, microstructural and final quality items. In order to reach this objective, a drier has been designed and built, that allows to control and to register all the variables which take place during the drying process. Thermal and dielectric properties, that are very important characteristics when studying heat and mass transfer phenomena that occur during the combined drying process, have been related to temperature and/or moisture content throughout empirical equations. It could be observed that all these properties decreased with product moisture content. Respect to dielectric properties, a relationship among water binding forms to food structure and water molecules relaxation frequency has been found. On the other hand, the effect of drying treatment conditions (air rate, drying temperature, sample thickness and incident microwave power) on the drying rate, from an empirical model based on diffusional mechanisms with two kinetic parameters (k1 and k2), both function of the incident microwave power, has been studied. Microwave application to air drying implied a notable decrease on drying time, the higher the applied power the higher the reduction. Microstructural study by Cryo-Sem revealed fast water vaporization taking place when microwaves are applied. Vacuum impregnation did not implied an additional advantage for combined drying as drying rate was similar to that of NIV samples. Finally, it has been studied the influence of process conditions on the color and mechanical properties of the dried product (IV and NIV). Vacuum impregnation implied an increase on the fracture resistance and less purity and tone angle. Microwave application induced product browning with respect to air drying (tone decreased and purity increased).

  15. Proteolysis in Manchego-type cheese salted by brine vacuum impregnation.

    PubMed

    Pavia, M; Trujillo, A J; Guamis, B; Ferragut, V

    2000-07-01

    A new salting procedure based on the brine vacuum impregnation of porous products was tested on Manchego-type cheese and compared with conventional brine immersion. Its effect on cheese proteolysis throughout a 90-d ripening period was determined. Three cheese regions were evaluated (the rind, the middle, and the internal regions). The parameters analyzed were total N, water-soluble N, soluble N in trichloroacetic acid and soluble N in phosphotungstic acid by using the Kjeldahl method, casein profile by urea-PAGE, and peptide profile of the water soluble nitrogen extract by reverse-phase HPLC. Free amino acid formation was monitored with a spectrophotometric method by using a Cd-ninhydrin reagent. Globally, proteolysis was significantly affected by ripening stage (increasing throughout all the maturation period studied) and cheese region (rind showed a proteolysis pattern different from the middle and internal regions). The salting procedure only affected cheese proteolysis in the rind, whereas conventional brine-salted cheeses showed lower proteolysis than vacuum-impregnated cheeses. PMID:10908050

  16. Ascorbic acid enrichment of whole potato tuber by vacuum-impregnation.

    PubMed

    Hironaka, K; Kikuchi, M; Koaze, H; Sato, T; Kojima, M; Yamamoto, K; Yasuda, K; Mori, M; Tsuda, S

    2011-08-01

    The aim of this study was to evaluate the use of vacuum-impregnation (VI) for enriching the ascorbic acid content of whole potatoes. Whole potatoes were immersed in a 10% ascorbic acid (AA) solution. A vacuum pressure of 70cm Hg was applied for 0-60min, following atmospheric pressure restoration for 3h, while samples remained in the VI solution. AA concentrations of potatoes were measured using HPLC. The effects of cooking and storage time in subsets of the fortified samples were also evaluated. Results indicated that the AA concentration of whole potatoes increased with vacuum time (max 150mg/100g fr. wt.). In addition, a steam-cooking study showed that 100g of the 25min steam-cooked VI potatoes could provide adults with 90-100% of the recommended daily allowance of AA (100mg). The storage study showed that VI whole potatoes had a relatively high AA concentration (50mg/100gfr. wt.), even at 14days of storage at 4°C. This study indicated that VI treatment of whole potatoes was useful for enriching the AA content. PMID:25214103

  17. Applicability of vacuum impregnation to modify physico-chemical, sensory and nutritive characteristics of plant origin products--a review.

    PubMed

    Radziejewska-Kubzdela, Elżbieta; Biegańska-Marecik, Róża; Kidoń, Marcin

    2014-01-01

    Vacuum impregnation is a non-destructive method of introducing a solution with a specific composition to the porous matrices of fruit and vegetables. Mass transfer in this process is a result of mechanically induced differences in pressure. Vacuum impregnation makes it possible to fill large volumes of intercellular spaces in tissues of fruit and vegetables, thus modifying physico-chemical properties and sensory attributes of products. This method may be used, e.g., to reduce pH and water activity of the product, change its thermal properties, improve texture, color, taste and aroma. Additionally, bioactive compounds may be introduced together with impregnating solutions, thus improving health-promoting properties of the product or facilitating production of functional food. PMID:25244012

  18. Applicability of Vacuum Impregnation to Modify Physico-Chemical, Sensory and Nutritive Characteristics of Plant Origin Products—A Review

    PubMed Central

    Radziejewska-Kubzdela, Elżbieta; Biegańska-Marecik, Róża; Kidoń, Marcin

    2014-01-01

    Vacuum impregnation is a non-destructive method of introducing a solution with a specific composition to the porous matrices of fruit and vegetables. Mass transfer in this process is a result of mechanically induced differences in pressure. Vacuum impregnation makes it possible to fill large volumes of intercellular spaces in tissues of fruit and vegetables, thus modifying physico-chemical properties and sensory attributes of products. This method may be used, e.g., to reduce pH and water activity of the product, change its thermal properties, improve texture, color, taste and aroma. Additionally, bioactive compounds may be introduced together with impregnating solutions, thus improving health-promoting properties of the product or facilitating production of functional food. PMID:25244012

  19. Influence of vacuum impregnation and pulsed electric field on the freezing temperature and ice propagation rates of spinach leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efforts are currently directed towards improving the quality of sensitive tissues of fruits and vegetables after freezing and thawing. One of the methods under investigation is the combination of vacuum impregnation (VI) with cryoprotectants and pulsed electric field (PEF) applied to the plant tiss...

  20. Antibacterial effects of the povidone-iodine vacuum impregnation technique in expanded polytetrafluoroethylene augmentation rhinoplasty.

    PubMed

    Lee, Jung Min; Lee, Joong Seob; Kim, Dong-Kyu; Lee, Jun Ho; Park, Hae Sang; Lee, Ho Jun; Bae, Sung Hee; Jang, Ji Su; Lee, Jae Jun; Park, Chan Hum

    2016-06-01

    Expanded polytetrafluoroethylene (e-PTFE) is a popular graft material for augmentation rhinoplasty. Gore-Tex and Surgiform are two types of e-PTFE; Surgiform has thicker fibrils and is more compact than Gore-Tex. We conducted an ex vivo study to evaluate the ability of povidone-iodine (PVP-I) vacuum pretreatment to prevent infection with these two types of e-PTFE. Gore-Tex and Surgiform specimens were cut into 2-mm(3) pieces, which were separated into two groups. One group for each e-PTFE was disinfected with vacuum PVP-I impregnation and the other group was not disinfected. Using the pieces of implant material, swabs were obtained from the nasal cavities of 20 healthy adults, and the specimens were incubated on agar plates and viewed by scanning electron microscopy (SEM). We found that PVP-I treatment significantly reduced the bacterial colony counts in both the Gore-Tex and Surgiform groups. In the SEM images, bacterial colonies were observed both inside and outside the untreated Gore-Tex; on the untreated Surgiform, they were found primarily on the surface. Few bacteria were detected in the PVP-I-treated Gore-Tex and Surgiform groups. Our findings suggest that PVP-I pretreatment can reduce the risk of infection associated with e-PTFE. PMID:27304448

  1. Expansion into vacuum of a shocked tungsten carbide-epoxy mixture.

    SciTech Connect

    Reinhart, William Dodd; Thornhill, Tom Finley, III; Vogler, Tracy John; Alexander, C. Scott

    2009-03-01

    The behavior of a shocked tungsten carbide / epoxy mixture as it expands into a vacuum has been studied through a combination of experiments and simulations. X-ray radiography of the expanding material as well as the velocity measured for a stood-off witness late are used to understand the physics of the problem. The initial shock causes vaporization of the epoxy matrix, leading to a multi-phase flow situation as the epoxy expands rapidly at around 8 km/s followed by the WC particles moving around 3 km/s. There are also small amounts of WC moving at higher velocities, apparently due to jetting in the sample. These experiments provide important data about the multi-phase flow characteristics of this material.

  2. Preparation of flat-polished specimens for SEM-backscattered electron imaging and X-ray microanalysis--importance of epoxy impregnation

    SciTech Connect

    Kjellsen, K.O.; Monsoey, A.; Isachsen, K.; Detwiler, R.J

    2003-04-01

    Representative and quantitative microstructural information of cement-based materials can be obtained in the backscattered electron and X-ray modes of the scanning electron microscope (SEM). One prerequisite, of several, is to use flat specimens. Microstructures that are minimally affected by the grinding and polishing necessary to produce the flat surface can be obtained. It is essential to fill the pores of the specimen with epoxy resin prior to grinding and polishing. After hardening, the epoxy stabilizes the microstructure and enables it to withstand the stresses of grinding and polishing without alteration. In the present paper, we describe a preparation technique that we consider to have produced excellent polished specimens. The importance of epoxy impregnation is demonstrated.

  3. Application of a vacuum pressure impregnation technique for rehydrating decellularized tissues.

    PubMed

    Negishi, Jun; Hashimoto, Yoshihide; Nam, Kwangoo; Kimura, Tsuyoshi; Funamoto, Seiichi; Kishida, Akio

    2014-09-01

    Most of the clinically available decellularized tissues are preserved in a freeze-dried state. Freeze-dried (FD) tissues can be preserved for long term, although a rehydration process is necessary before use. Currently, an immersion method is most commonly used in clinical procedures, but it is difficult for complicated and thick structure tissue rehydration. In this study, we tried to apply a vacuum pressure impregnation (VPI) technique for FD tissue rehydration. The water content of decellularized tissues can reach the water content of native tissues within 30 min using VPI, whereas it took 6 h to reach the same water content using the immersion method. Furthermore, heparin rehydrated aortas by VPI had more heparin release at each time point and therefore appeared more anticoagulant activity. We found that the VPI treatment promotes solution infiltration into materials, achieves complete rehydration of the decellularized tissues, and deep infiltration of heparin into the decellularized tissues, suggesting that VPI treatment could be applied as a rehydration method for biological materials. PMID:24438501

  4. Testing of machine wound second generation HTS tape Vacuum Pressure Impregnated coils

    NASA Astrophysics Data System (ADS)

    Swaffield, D.; Lewis, C.; Eugene, J.; Ingles, M.; Peach, D.

    2014-05-01

    Delamination of second generation (2G) High Temperature Superconducting (HTS) tapes has previously been reported when using resin based insulation systems for wound coils. One proposed root cause is the differential thermal contraction between the coil former and the resin encapsulated coil turns resulting in the tape c-axis tensile stress being exceeded. Importantly, delamination results in unacceptable degradation of the superconductor critical current level. To mitigate the delamination risk and prove winding, jointing and Vacuum Pressure Impregnation (VPI) processes in the production of coils for superconducting rotating machines at GE Power Conversion two scaled trial coils have been wound and extensively tested. The coils are wound from 12mm wide 2G HTS tape supplied by AMSC onto stainless steel 'racetrack' coil formers. The coils are wound in two layers which include both in-line and layer-layer joints subject to in-process test. The resin insulation system chosen is VPI and oven cured. Tests included; insulation resistance, repeat quench and recovery of the superconductor, heat runs and measurement of n-value, before and after multiple thermal cycling between ambient and 35 Kelvin. No degradation of coil performance is evidenced.

  5. Highly radiation-resistant vacuum impregnation resin systems for fusion magnet insulation

    NASA Astrophysics Data System (ADS)

    Fabian, P. E.; Munshi, N. A.; Denis, R. J.

    2002-05-01

    Magnets built for fusion devices such as the newly proposed Fusion Ignition Research Experiment (FIRE) need to be highly reliable, especially in a high radiation environment. Insulation materials are often the weak link in the design of superconducting magnets due to their sensitivity to high radiation doses, embrittlement at cryogenic temperatures, and the limitations on their fabricability. An insulation system capable of being vacuum impregnated with desirable properties such as a long pot-life, high strength, and excellent electrical integrity and which also provides high resistance to radiation would greatly improve magnet performance and reduce the manufacturing costs. A new class of insulation materials has been developed utilizing cyanate ester chemistries combined with other known radiation-resistant resins, such as bismaleimides and polyimides. These materials have been shown to meet the demanding requirements of the next generation of devices, such as FIRE. Post-irradiation testing to levels that exceed those required for FIRE showed no degradation in mechanical properties. In addition, the cyanate ester-based systems showed excellent performance at cryogenic temperatures and possess a wide range of processing variables, which will enable cost-effective fabrication of new magnets. This paper details the processing parameters, mechanical properties at 76 K and 4 K, as well as post-irradiation testing to dose levels surpassing 108 Gy.

  6. Tryout of the vacuum impregnation procedure for the ITER PF1 coil on the VPI mold made of plastic shell

    NASA Astrophysics Data System (ADS)

    Grigoriev, S.; Rodin, I.; Tanchuk, V.; Korban, S.; Bursikov, A.; Mednikov, A.; Pugachev, A.

    2014-05-01

    The PF1 Coil as part of the ITER superconducting magnet system is intended for positioning and shaping of the magnetic poloidal field. The technical specification for the PF1 coil requires a full-scale simulation of the basic technological processes including vacuum pressure impregnation (VPI). Usually, a VPI mold is made of massive stainless steel walls to get the required quality of the monolithic structure of the pancake insulation by hot-curing compound. As a result, we obtain a high-cost furnace with a considerable amount of steel inside to be heated up to the specified temperature; excessive energy consumption for the furnace heating system; problems with the vacuum tightness of the VPI mold. The impregnation procedure using a VPI "plastic" mold was proposed so as to avoid the above mentioned shortcomings associated with the use of the furnace made of stainless steel.

  7. Characterization of a graphite epoxy optical bench during thermal vacuum cycling

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Jenkins, Teresa K.; Maag, Carl R.; Taylor, Daniel M.

    1988-01-01

    In-situ monitoring of the Wide-Field/Planetary Camera, a Hubble Space Telescope science instrument, was performed in a vacuum environment to better understand the formation of ice on cooled optical detectors. Several diagnostic instruments were mounted on an access plate to view the interior of the instrument housing and the graphite epoxy optical bench. The instrumentation chosen and the rationale for choosing the instrumentation are discussed. In addition, the performance of the instrumentation during monitoring operations is discussed.

  8. Vacuum infusion manufacturing and experimental characterization of Kevlar/epoxy composites

    SciTech Connect

    Ricciardi, M. R.; Giordano, M.; Antonucci, V.; Langella, A.; Nele, L.

    2014-05-15

    Epoxy/Kevlar composites have been manufactured by conventional Vacuum Infusion process and the Pulse Infusion technique. Pulse Infusion allows to control the pressure of the vacuum bag on the dry fiber reinforcement by using a proper designed pressure distributor that induces a pulsed transverse action and promotes the through thickness resin flow. The realized composite panel have been mechanically characterized by performing tensile and short beam shear tests according with the ASTM D3039 and ASTM D2344/D 2344M standard respectively in order to investigate the effect of Pulse Infusion on the tensile strength and ILSS.

  9. Investigation of alternative materials for impregnation of Nb3Sn accelerator magnets

    SciTech Connect

    Deepak Reddy Chichili, Jay Hoffman and Alexander Zlobin

    2003-11-17

    Insulation is one of the most important elements of magnet design, which determines the electrical, mechanical, and thermal performance as well as lifetime of the magnet. The exposure to high radiation loads especially for the proposed LHC second-generation interaction region Nb{sub 3}Sn quadrupoles further limits the choices of the insulation materials. Traditionally Nb{sub 3}Sn magnets were impregnated with epoxy to improve both the mechanical and electrical properties. However, the acceptable radiation limit for epoxy is low which reduces the lifetime of the magnet. The paper presents the results of the feasibility study to replace epoxy with high radiation-resistant material during vacuum impregnation. The mechanical, thermal and electrical properties of samples impregnated with Matrimid were measured and compared with epoxy-impregnated samples.

  10. A definition of the parameters that influence and control the flow of resin during vacuum impregnation of magnets and other structures

    NASA Astrophysics Data System (ADS)

    Canfer, S. J.; Evans, D.; Greenhalgh, R. J. S.; Morrow, D.

    2002-05-01

    After winding and termination, the final stage in the preparation of many superconducting and conventional magnets is vacuum impregnation with an epoxide resin. Given the importance of the vacuum impregnation process in the overall scheme of magnet manufacture, it is surprising that there are many factors that effect the success and economics of the process that are still not quantified. This paper defines the pressure range, outgassing rates and moisture content that are considered necessary to achieve complete resin impregnation of tightly wound or other compacted, high impedance structures.

  11. Experimental and theoretical investigation of mechanical disturbances in epoxy-impregnated superconducting coils. 2. Shear-stress-induced epoxy fracture as the principal source of premature quenches and training theoretical analysis

    NASA Astrophysics Data System (ADS)

    Bobrov, E. S.; Williams, J. E. C.; Iwasa, Y.

    An epoxy-impregnated superconducting winding may be considered structurally as a unidirectional composite consisting of superconducting wires embedded in a matrix of epoxy resin. The epoxy, because of its low strength and brittleness at low temperatures, is susceptible to brittle fracture which occurs under stresses induced initially during the cooldown (by differential thermal contractions of epoxy and metal) and subsequently during the magnet charge-up (by the Lorentz forces). Various modes of matrix failure are discussed and analysed. For the composite winding represented by four principal characteristics - geometry; constituent material properties; winding boundary conditions; and microcracks which become stress concentration sites for the initiation of further cracking. It is demonstrated that the transverse shear stresses induced by Lorentz forces in windings with cylindrical symmetry are principally responsible for premature magnet quenches. It is further demonstrated that to minimize shear stresses and thus prevent epoxy fracture in the winding, the whole winding body must not be restrained by the coil form and must be free to take its natural shape as the magnet is energized. This unrestrained winding support design is called the floating coil concept. The conclusions of the analysis agree both qualitatively and quantitatively with experimental results reported in the next two parts of this work.

  12. A technique for embedding undecalcified bone samples for detecting alpha-emitters using vacuum impregnation with Spurr's resin.

    PubMed

    Haines, J W

    1992-01-01

    A method has been developed by which large samples of mineralized bone, containing an alpha-emitter, can be embedded in Spurr's resin in a fraction of the time required by conventional methods. Bone samples were freeze-dried or fixed and dried prior to impregnation with Spurr's resin under vacuum. Sections were cut for the preparation of either alpha-track or fission-track autoradiographs using the solid state detector CR-39. This method is applicable to samples containing a mobile form of a radionuclide that may be translocated during the processes of fixation and dehydration of the specimen. PMID:1377500

  13. Vacuum barrier for excimer lasers

    DOEpatents

    Shurter, Roger P.

    1992-01-01

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput.

  14. Vacuum barrier for excimer lasers

    DOEpatents

    Shurter, R.P.

    1992-09-15

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput. 3 figs.

  15. Surface Flashover on Epoxy-Resin Printed Circuit Boards in Vacuum under Electron Irradiation

    NASA Astrophysics Data System (ADS)

    Fujii, Haruhisa; Hasegawa, Taketoshi; Osuga, Hiroyuki; Matsui, Katsuaki

    This paper deals with the surface flashover characteristics of dielectric material in vacuum during electron beam irradiation in order to design adequately the conductive patterns on printed circuit boards used inside a spacecraft. The dielectric material, glass-fiber reinforced epoxy resin, and the electrodes printed on it were irradiated with electrons of the energy of 3-10 keV. DC high voltage was applied between the two electrodes during electron irradiation. The voltage was increased stepwise until the surface flashover occurred on the dielectric material. We obtained the results that the surface flashover voltage increased with the insulation distance between the electrodes but electron irradiation made the flashover voltage lower. The flashover voltage characteristics were obtained as parameters of the electrode distance and the energy of the electron beam.

  16. Thermal contact conductance between aligned, unidirectional carbon/epoxy resin composites under vacuum conditions

    SciTech Connect

    Rhoades, M.E.; Moses, W.M. Mercer Univ., Macon, GA )

    1991-01-01

    This paper investigates the thermal contact conductance across carbon fiber/epoxy resin composites under vacuum conditions at discrete contact pressures. Samples with unidirectional, continuous fibers oriented at 0 and 90 degrees to the contact interface are analyzed in 0/0 and 90/90 test configurations. Experimental results are compared with analytical data obtained using theory developed for homogeneous, isotropic, metallic contacts. As with earlier experiments in air, variations in the experimental data show the importance of material anisotropy and heterogeneity in governing thermal contact conductance between composites. While metallic theory can incorporate the anisotropic influence of fiber orientation, it fails to account for the distinct contributions of both fiber and matrix to the composite contact problem. 21 refs.

  17. Combined vacuum impregnation and electron-beam irradiation treatment to extend the storage life of sliced white button mushrooms (Agaricus bisporus).

    PubMed

    Yurttas, Zeynep Sevimli; Moreira, Rosana G; Castell-Perez, Elena

    2014-01-01

    This study assessed the application of an antibrowning solution using vacuum impregnation (VI) and then electron-beam irradiation as a means to extend the shelf life of sliced white button mushrooms (Agaricus bisporus). A preliminary study helped to determine the best antibrowning solution and VI process parameters. Mushroom slices were impregnated with 2 g/100 g ascorbic acid + 1 g/100 g calcium lactate; 2 g/100 g citric acid + 1 g/100 g calcium lactate; 1 g/100 g chitosan + 1 g/100 g calcium lactate; and 1 g/100 g calcium lactate at different vacuum pressures and times and atmospheric restoration times. Selection of the antibrowning solution and VI parameters was based on texture and color of the mushroom slices. Next, the slices were irradiated at 1 kGy using a 1.35-MeV e-beam accelerator. Physicochemical, sensory, and microbial quality of mushrooms was monitored for 15 d at 4 °C. The best impregnation process in this study was 2 g/100 g ascorbic acid and 1 g/100 g calcium lactate at 50 mm Hg for 5 min and an atmospheric restoration time of 5 min. The control (untreated) samples suffered structural losses throughout storage. Only the vacuum impregnated-irradiated samples had acceptable color by the end of storage. Sensory panelists consistently preferred the samples produced with VI and irradiation because exposure to ionizing radiation inhibited growth of spoilage microorganisms. PMID:24266620

  18. Ageing of organic electrical insulating materials due to radiation. Physical properties of a cycloaliphatic epoxy resin irradiated under vacuum

    NASA Astrophysics Data System (ADS)

    Sparado, G.; Calderaro, E.; Schifani, R.; Tutone, R.; Rizzo, G.

    Physical properties of a cycloaliphatic epoxy resin irradiated under vacuum have been investigated. In particular dynamic-mechanical, dielectric and tensile measurements have been performed. This is a useful basis with a view to studying the ageing phenomenon of organic insulating materials due to radiation under the combined effect of environmental conditions. The results indicate that, in the dose range investigated (0-1.5 x 10 6Gy), the main effect of γ-rays under vacuum is to increase the degree of crosslinking

  19. Synthesis of Pd particle-deposited microporous silica membranes via a vacuum-impregnation method and their gas permeation behavior.

    PubMed

    Lee, Dong-Wook; Yu, Chang-Yeol; Lee, Kew-Ho

    2008-09-15

    Pd particle-deposited microporous silica membranes were synthesized to improve hydrogen permselectivity of the microporous silica membrane and to overcome high cost of palladium and crack formation through hydrogen embrittlement. Pd particles below 400 nm in diameter were readily deposited on the microporous silica membrane via a vacuum-impregnation method by using a Pd(C(3)H(5))(C(5)H(5)) precursor. After deposition of Pd particles on the microporous silica membrane, hydrogen permselectivity over nitrogen considerably increased from 11-28 to 30-115 in a permeation temperature range of 25-350 degrees C due to plugging membrane defects and hydrogen adsorption diffusion through the interface between the Pd and silica layer. The activation energy of the Pd-deposited silica membrane (6.32 kJ mol(-1)) was higher than that of the microporous silica membrane (4.22 kJ mol(-1)). In addition, the Pd-particle deposition led to an increase in the permselectivity of He and CO(2) with little chemical affinity for the Pd particles, which indicates that Pd-particle deposition gives the effect of plugging defects such as pinholes or cracks, which could be formed during the membrane preparation. Therefore it is demonstrated that Pd-particle deposition on the silica membrane is effective for induction of the hydrogen adsorption diffusion and plugging membrane defects. PMID:18620361

  20. Properties of radiation stable, low viscosity impregnating resin for cryogenic insulation system

    NASA Astrophysics Data System (ADS)

    Wu, Zhixiong; Zhang, Hao; Yang, Huihui; Chu, Xinxin; Song, Yuntao; Wu, Weiyue; Liu, Huajun; Li, Laifeng

    2011-06-01

    Impregnating resins in fusion magnet technology are required to be radiation stable, low viscosity, long usable life and high toughness. To meet these objectives, we developed a new epoxy based composite which consists of triglycidyl-p-aminophenol (TGPAP) epoxy resin and isopropylidenebisphenol bis[(2-glycidyloxy-3-n-butoxy)-1-propylether] (IPBE). The ratio of TGPAP to IPBE can be varied to achieve desired viscosity and working time. The boron-free glass fiber reinforced composites were prepared by vacuum pressure impregnation. The radiation resistance was evaluated by 60Co γ-ray irradiation of 1 MGy at ambient temperature. The mechanical properties of the composites have been measured at room temperature and at 77 K.

  1. Surface impregnation by particle injection — laser impregnation

    NASA Astrophysics Data System (ADS)

    Flinkfeldt, J. E.

    1988-02-01

    Wear resistance can be improved by laser impregnation — the surface layer of a base material is melted and hard wear resistant carbide particles are injected into the melted pool. Previously, experiments were mainly performed in a vacuum chamber at a laser power of 10 kW. In this paper, results are presented of experiments carried out with 1.5 and 2.5 kW lasers at ambient atmospheric pressure. Laser impregnated layers show increased wear resistance of the order of 20-40 times for impregnated compared to untreated aluminium, and 5-20 times for impregnated compared to hardened carbon steels.

  2. Low-temperature mechanical properties of glass/epoxy laminates

    SciTech Connect

    Reed, R. P.; Madhukar, M.; Thaicharoenporn, B.; Martovetsky, N. N.

    2014-01-27

    Selected mechanical properties of glass/epoxy laminate candidates for use in the electrical turn and ground insulation of the ITER Central solenoid (CS) modules were measured. Short-beam shear and flexural tests have been conducted on various E-glass cloth weaves/epoxy laminates at 295 and 77 K. Types of glass weave include 1581, 7500, 7781, and 38050, which represent both satin and plain weaves. The epoxy, planned for use for vacuum-pressure impregnation of the CS module, consists of an anhydride-cured bisphenol F resin system. Inter-laminar shear strength, flexural elastic modulus, and flexural strength have been measured. The data indicate that these properties are dependent on the volume percent of glass. Short-beam shear strength was measured as a function of the span-to-thickness ratio for all laminates at 77 K. Comprehensive fractography was conducted to obtain the failure mode of each short-beam shear test sample.

  3. Low-temperature mechanical properties of glass/epoxy laminates

    NASA Astrophysics Data System (ADS)

    Reed, R. P.; Madhukar, M.; Thaicharoenporn, B.; Martovetsky, N. N.

    2014-01-01

    Selected mechanical properties of glass/epoxy laminate candidates for use in the electrical turn and ground insulation of the ITER Central solenoid (CS) modules were measured. Short-beam shear and flexural tests have been conducted on various E-glass cloth weaves/epoxy laminates at 295 and 77 K. Types of glass weave include 1581, 7500, 7781, and 38050, which represent both satin and plain weaves. The epoxy, planned for use for vacuum-pressure impregnation of the CS module, consists of an anhydride-cured bisphenol F resin system. Inter-laminar shear strength, flexural elastic modulus, and flexural strength have been measured. The data indicate that these properties are dependent on the volume percent of glass. Short-beam shear strength was measured as a function of the span-to-thickness ratio for all laminates at 77 K. Comprehensive fractography was conducted to obtain the failure mode of each short-beam shear test sample.

  4. Impregnation mode in wood plastic composite

    NASA Astrophysics Data System (ADS)

    Mozaffar Husain, M.; Khan, Mubarak A.; Azam Ali, M.; Idriss Ali, K. M.; Mustafa, A. I.

    1996-12-01

    Bulk monomer MMA was impregnated into simul, a fuel wood of Bangladesh, under vacuum and under normal temperature and pressure conditions in order to compare the mode of impregnation and its effect on various characteristic parameters of wood plastic composites. Methanol (MeOH) was used as the swelling solvent with methylmethacrylate (MMA) at MMA: MeOH = 70:30, v/v. Impregnation of the bulk monomer was very high under vacuum compared to that at normal condition; but the difference of grafting of MMA to the wood cellulose under these two impregnating conditions was much lower as compared to that of the uptakes of impregnating solution MMA + MeOH under these two modes of impregnation. Incorporation of additives to MMA + MeOH has substantially enhanced grafting, tensile strength, bending strength and compression strength of thcomposite of such an extent that there is virtually very little difference between vacuum impregnation and normal impregnation. Considering the available data it is suggested that the impregnation under normal condition is preferable beacuse different substrates of various sizes and shapes can be suitably impregnated under normal condition while vacuum impregnation has several limitations in this respect.

  5. Vacuum Sealing Drainage Treatment Combined with Antibiotic-Impregnated Bone Cement for Treatment of Soft Tissue Defects and Infection

    PubMed Central

    Liu, Xin; Liang, Jiulong; Zhao, Jun; Quan, Liangliang; Jia, Xunyuan; Li, Mingchao; Tao, Kai

    2016-01-01

    Background This study aimed to evaluate the combined effect of vacuum sealing drainage (VSD) and antibiotic-loaded bone cement on soft tissue defects and infection. Material/Methods This prospective non-blinded study recruited 46 patients with soft tissue defects and infection from January 2010 to May 2014 and randomly divided them into experimental and control groups (n=23). Patients in the experimental group were treated with VSD and antibiotic-loaded bone cement, while the patients in the control group were treated with VSD only. Results In the experimental group, the wound was healed in 23 cases at 4 weeks postoperatively, of which direct suture was performed in 12 cases, and additional free flap transplantation or skin grafting was performed in 6 cases and 5 cases, respectively. No infection reoccurred in 1-year follow-up. In the control group, the wound was healed in 15 cases at 6 weeks postoperatively, of which direct suture was performed in 8 cases, and additional free flap transplantation or skin grafting was performed in 3 cases and 4 cases, respectively. In the other 8 cases the wound was healed at 8 weeks postoperatively. Infection reoccurred in 3 cases during the follow-up. The experimental group had significantly fewer VSD dressing renewals, shorter time needed until the wound was ready for surgery, shorter duration of antibiotic administration, faster wound healing, and shorter hospital stay than the control group (p<0.01). Conclusions The combination of VSD and antibiotic bone cement might be a better method for treatment of soft tissue defects and infection. PMID:27281233

  6. Vacuum Sealing Drainage Treatment Combined with Antibiotic-Impregnated Bone Cement for Treatment of Soft Tissue Defects and Infection.

    PubMed

    Liu, Xin; Liang, Jiulong; Zao, Jun; Quan, Liangliang; Jia, Xunyuan; Li, Mingchao; Tao, Kai

    2016-01-01

    BACKGROUND This study aimed to evaluate the combined effect of vacuum sealing drainage (VSD) and antibiotic-loaded bone cement on soft tissue defects and infection. MATERIAL AND METHODS This prospective non-blinded study recruited 46 patients with soft tissue defects and infection from January 2010 to May 2014 and randomly divided them into experimental and control groups (n=23). Patients in the experimental group were treated with VSD and antibiotic-loaded bone cement, while the patients in the control group were treated with VSD only. RESULTS In the experimental group, the wound was healed in 23 cases at 4 weeks postoperatively, of which direct suture was performed in 12 cases, and additional free flap transplantation or skin grafting was performed in 6 cases and 5 cases, respectively. No infection reoccurred in 1-year follow-up. In the control group, the wound was healed in 15 cases at 6 weeks postoperatively, of which direct suture was performed in 8 cases, and additional free flap transplantation or skin grafting was performed in 3 cases and 4 cases, respectively. In the other 8 cases the wound was healed at 8 weeks postoperatively. Infection reoccurred in 3 cases during the follow-up. The experimental group had significantly fewer VSD dressing renewals, shorter time needed until the wound was ready for surgery, shorter duration of antibiotic administration, faster wound healing, and shorter hospital stay than the control group (p<0.01). CONCLUSIONS The combination of VSD and antibiotic bone cement might be a better method for treatment of soft tissue defects and infection. PMID:27281233

  7. An Improved Technique for the Preparation of Mounted or Unmounted Carbon/Epoxy Specimens

    NASA Technical Reports Server (NTRS)

    Edahl, Robert A., Jr.

    2007-01-01

    As carbon/epoxy materials became more prevalent in the aerospace industry, microstructural analysis demanded specimen preparation techniques that led to better polished surfaces, achievable in a shorter time, and using fewer steps. The desire to use image analysis for material characterization also helped drive the goal for defect free surfaces. At NASA-Langley (LaRC), carbon/epoxy specimens had been historically prepared in 1 inch diameter Bakelite mounts. Carbon/epoxy specimens that were 1/8 to 1/4 inch thick were not affected by the heat and pressure required for mounting in Bakelite, however thinner specimens were crushed during mounting. A two-part room temperature curing epoxy was chosen as an alternative but sometimes voids developed between the specimen and the mounting material. This was prevented by either heating the epoxy to 140 degrees F to lower the viscosity of the epoxy or by using a vacuum impregnation apparatus. Both techniques helped facilitate flow and allowed the epoxy to penetrate crevices.

  8. Cryogenic tests of glass-epoxy based electrical insulation

    SciTech Connect

    Taylor, J.D.; Martin, P.S.; Pripstein, M.; Green, M.A.

    1981-08-01

    A thin superconducting solenoid for the Time Projection Chamber (TPC) experiment at PEP was constructed at Lawrence Berkeley Laboratory (LBL) in 1979 and tested in 1980. A failure of the ground plane insulation damaged the coil to the point that it required rebuilding. An extensive study of this failure indicated that an iron chip embedded in the bore tube had penetrated the insulation. Before rebuilding the coil, an investigation of the insulation system was done with the goal of determining the most reliable techniques and materials for withstanding high voltages in the coil package. The experience with the TPC coil and its prototypes indicate that glass cloth vacuum-impregnated with epoxy is an excellent material for cryogenic applications from the mechanical standpoint. Further, since the LBL assembly shop had extensive experience with the epoxy formulation used in the coil, there was reluctance to change that component. Therefore, the investigation concentrated on different types of glass cloth and on composites containing glass cloth.

  9. Thermal expansion of epoxy-fiberglass composite specimens

    SciTech Connect

    McElroy, D.L.; Weaver, F.J.; Bridgman, C.

    1986-01-01

    The thermal expansion behavior of three epoxy-fiberglass composite specimens was measured from 20 to 120/sup 0/C (70 to 250/sup 0/F) using a fused quartz push-rod dilatometer. Billets produced by vacuum impregnating layers of two types of fiberglass cloth with an epoxy resin were core-drilled to produce cylindrical specimens. These were used to study expansion perpendicular and parallel to the fiberglass layers. The dilatometer is held at a preselected temperature until steady-state is indicated by stable length and temperature data. Before testing the composite specimens, a reliability check of the dilatometer was performed using a copper secondary standard. This indicated thermal expansion coefficient (..cap alpha..) values within +-2% of expected values from 20 to 200/sup 0/C.

  10. Matrix Characterization and Development for the Vacuum Assisted Resin Transfer Molding Process

    NASA Technical Reports Server (NTRS)

    Grimsley, B. W.; Hubert, P.; Hou, T. H.; Cano, R. J.; Loos, A. C.; Pipes, R. B.

    2001-01-01

    The curing kinetics and viscosity of an epoxy resin system, SI-ZG-5A, have been characterized for application in the vacuum assisted resin transfer molding (VARTM) process. Impregnation of a typical carbon fiber perform provided the test bed for the characterization. Process simulations were carried out using the process model, COMPRO, to examine heat transfer and curing kinetics for a fully impregnated panel, neglecting resin flow. The predicted viscosity profile and final degree of cure were found to be in good agreement with experimental observations.

  11. Rheological behavior and cryogenic properties of cyanate ester/epoxy insulation material for fusion superconducting magnet

    NASA Astrophysics Data System (ADS)

    Wu, Z. X.; Li, L. F.; Li, J. W.; Huang, C. J.; Tan, R.; Tu, Y. P.

    2014-01-01

    In a Tokamak fusion reactor device like ITER, insulation materials for superconducting magnets are usually fabricated by a vacuum pressure impregnation (VPI) process. Thus these insulation materials must exhibit low viscosity, long working life as well as good radiation resistance. Previous studies have indicated that cyanate ester (CE) blended with epoxy has an excellent resistance against neutron irradiation which is expected to be a candidate insulation material for a fusion magnet. In this work, the rheological behavior of a CE/epoxy (CE/EP) blend containing 40% CE was investigated with non-isothermal and isothermal viscosity experiments. Furthermore, the cryogenic mechanical and electrical properties of the composite were evaluated in terms of interlaminar shear strength and electrical breakdown strength. The results showed that CE/epoxy blend had a very low viscosity and an exceptionally long processing life of about 4 days at 60 °C.

  12. Rheological behavior and cryogenic properties of cyanate ester/epoxy insulation material for fusion superconducting magnet

    SciTech Connect

    Wu, Z. X.; Huang, C. J.; Li, L. F.; Li, J. W.; Tan, R.; Tu, Y. P.

    2014-01-27

    In a Tokamak fusion reactor device like ITER, insulation materials for superconducting magnets are usually fabricated by a vacuum pressure impregnation (VPI) process. Thus these insulation materials must exhibit low viscosity, long working life as well as good radiation resistance. Previous studies have indicated that cyanate ester (CE) blended with epoxy has an excellent resistance against neutron irradiation which is expected to be a candidate insulation material for a fusion magnet. In this work, the rheological behavior of a CE/epoxy (CE/EP) blend containing 40% CE was investigated with non-isothermal and isothermal viscosity experiments. Furthermore, the cryogenic mechanical and electrical properties of the composite were evaluated in terms of interlaminar shear strength and electrical breakdown strength. The results showed that CE/epoxy blend had a very low viscosity and an exceptionally long processing life of about 4 days at 60 °C.

  13. Cryogenic evaluation of epoxy bond strength

    NASA Astrophysics Data System (ADS)

    Albritton, N.; Young, W.

    The purpose of the work presented here was to determine methods of optimizing the adhesion of a particular epoxy (CTD-101K, Composite Technology Development Inc.) to a particular nickel-based alloy substrate (Incoloy ® 908, Inco Alloys International) for cryogenic applications. Initial efforts were focused on surface preparation of the substrate material via various mechanical and chemical cleaning techniques. Test samples, fabricated to simulate the conduit-to-insulation interface, were put through a mock heat treat and vacuum/pressure impregnation process. Samples were compression/shear load tested to compare the bond strengths at room temperature and liquid nitrogen temperature. The resulting data indicate that acid etching creates a higher bond strength than the other tested techniques and that the bond formed is stronger at cryogenic temperatures than at room temperature. A description of the experiment along with the resulting data is presented here.

  14. Vacuum-bag-only processing of composites

    NASA Astrophysics Data System (ADS)

    Thomas, Shad

    Ultrasonic imaging in the C-scan mode in conjunction with the amplitude of the reflected signal was used to measure flow rates of an epoxy resin film penetrating through the thickness of single layers of woven carbon fabric. Assemblies, comprised of a single layer of fabric and film, were vacuum-bagged and ultrasonically scanned in a water tank during impregnation at 50°C, 60°C, 70°C, and 80°C. Measured flow rates were plotted versus inverse viscosity to determine the permeability in the thin film, non-saturated system. The results demonstrated that ultrasonic imaging in the C-scan mode is an effective method of measuring z-direction resin flow through a single layer of fabric. The permeability values determined in this work were consistent with permeability values reported in the literature. Capillary flow was not observed at the temperatures and times required for pressurized flow to occur. The flow rate at 65°C was predicted from the linear plot of flow rate versus inverse viscosity. The effects of fabric architecture on through-thickness flow rates during impregnation of an epoxy resin film were measured by ultrasonic imaging. Multilayered laminates comprised of woven carbon fabrics and epoxy films (prepregs) were fabricated by vacuum-bagging. Ultrasonic imaging was performed in a heated water tank (65°C) during impregnation. Impregnation rates showed a strong dependence on fabric architecture, despite similar areal densities. Impregnation rates are directly affected by inter-tow spacing and tow nesting, which depend on fabric architecture, and are indirectly affected by areal densities. A new method of predicting resin infusion rates in prepreg and resin film infusion processes was proposed. The Stokes equation was used to derive an equation to predict the impregnation rate of laminates as a function of fabric architecture. Flow rate data previously measured by ultrasound was analyzed with the new equation and the Kozeny-Carman equation. A fiber

  15. Properties of Two Carbon Composite Materials Using LTM25 Epoxy Resin

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Shah, C. H.; Postyn, A. S.

    1996-01-01

    In this report, the properties of two carbon-epoxy prepreg materials are presented. The epoxy resin used in these two materials can yield lower manufacturing costs due to its low initial cure temperature, and the capability of being cured using vacuum pressure only. The two materials selected for this study are MR50/LTM25, and CFS003/LTM25 with Amoco T300 fiber; both prepregs are manufactured by The Advanced Composites Group. MR50/LTM25 is a unidirectional prepreg tape using Mitsubishi MR50 carbon fiber impregnated with LTM25 epoxy resin. CRS003/LTM25 is a 2 by 2 twill fabric using Amoco T300 fiber and impregnated with LTM25 epoxy resin. Among the properties presented in this report are strength, stiffness, bolt bearing, and damage tolerance. Many of these properties were obtained at three environmental conditions: cold temperature/dry (CTD), room temperature/dry (RTD), and elevated temperature/wet (ETW). A few properties were obtained at room temperature/wet (RTW), and elevated temperature/dry (ETD). The cold and elevated temperatures used for testing were -125 F and 180 F, respectively. In addition, several properties related to processing are presented.

  16. Evaluation of epoxy systems for use in SBASI

    NASA Technical Reports Server (NTRS)

    Coultas, T. J.

    1971-01-01

    The purpose of the test program was to evaluate the performance of different epoxy systems as replacements for existing epoxy systems in the SBASI. The three areas of investigation were the connector shell potting, the epoxy tape under the charge cup, and the epoxy impregnated fiberglass over the output charge. Factors considered, in addition to performance, were availability, shelf life, pot life, and effect on producibility and cost.

  17. ITER central solenoid model coil impregnation optimization

    NASA Astrophysics Data System (ADS)

    Schutz, J. B.; Munshi, N. A.; Smith, K. B.

    The success of the vacuum-pressure impregnation of the International Thermonuclear Experimental Reactor central solenoid is critical to success of the magnet system. Analysis of fluid flow through a fabric bed is extremely complicated, and complete analytical solutions are not available, but semiempirical methods can be adapted to model these flows. Several of these models were evaluated to predict the impregnation characteristics of a liquid resin through a mat of reinforcing glass fabric, and an experiment was performed to validate these models. The effects of applied pressure differential, glass fibre volume fraction, resin viscosity and impregnation time were examined analytically. From the results of this optimization, it is apparent that use of elevated processing temperature resin systems offer significant advantages in large scale impregnation due to their lower viscosity and longer working life, and they may be essential for large scale impregnations.

  18. Properties of multiaxial and 3-D orthogonal woven carbon/epoxy composites

    SciTech Connect

    Bilisik, A.K.; Mohamed, M.H.

    1995-06-01

    A new three-dimensional multiaxial weaving technique was developed at NCSU. Rectangular cross-sectional preforms were fabricated. The preforms have five sets of yarn: these are warp, filling, Z-yarn and {+-}45{degree} yarns. The preforms which are made from carbon fibers were consolidated by vacuum impregnation molding at N.C. A and T State University. Epoxy/resin was used as the matrix. The unit cell of the multiaxial 3-D woven structure has been described. Mechanical tests were carried out on multiaxial 3-D woven and orthogonal woven carbon/epoxy composites. The tests included bending, interlaminar shear and in-plane shear. Test results for both structures were compared and are presented.

  19. Investigation of paramagnetic response of metallic epoxies

    NASA Technical Reports Server (NTRS)

    Ash, R. L.; Chegini, H.

    1986-01-01

    The paramagnetic properties of epoxies which were impregnated with metal ions were examined as the primary task in this research. A major conclusion was that the quality control of the epoxies was insufficient to permit reliable evaluation. Subsequently, a new set of specimens is being prepared. As an additional task, a new method is investigated for estimating heats of combustion for saturated hydrocarbons. The results of that investigation have shown that the empirical approach is a promising method for on-line measurements.

  20. Effect of Matrix Modification on Interlaminar Shear Strength of Glass Fibre Reinforced Epoxy Composites at Cryogenic Temperature

    NASA Astrophysics Data System (ADS)

    Wu, Zhixiong; Li, Jingwen; Huang, Chuanjun; Li, Laifeng

    In order to investigate the effect of the matrix variability on the interlaminar shear strength (ILSS) of glass fiber reinforced composites at 77K, three kinds of modifiers were employed to diethyl toluene diamine (DETD) cured diglycidyl ether of bisphenol F (DGEBF) epoxy resin system. The woven glass fiber reinforced composites were fabricated by vacuum pressure impregnation (VPI). The ILSS at 77 K was studied and the results indicated that introduction of modifiers used in this study can enhance the ILSS of composite at 77 K. A maximum of 14.87% increase was obtained by addition of 10 wt% IPBE into the epoxy matrix. Furthermore, scanning electron microscopy (SEM) was used to investigate the fracture mechanism and strengthening effect.

  1. Resin impregnation process for producing a resin-fiber composite

    NASA Technical Reports Server (NTRS)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  2. Vacuum multilayer lamination of printed wiring boards

    NASA Astrophysics Data System (ADS)

    Wilkus, J. W.

    1992-11-01

    This experiment investigates vacuum multilayer lamination of rigid/flex, epoxy glass, polyimide glass, and polyimide quartz printed wiring boards. The effectiveness of the vacuum in removing entrapped air during the lamination cycle is demonstrated. The results of the experiment have also shown that vacuum lamination of epoxy glass multilayers improves the delamination resistance. Thus, epoxy glass multilayers that have been vacuum laminated will be able to withstand soldering temperatures longer without delaminating. Also, the experiment shows that vacuum multilayer lamination does not significantly change thickness, layer-to-layer registration, glass transition temperature, dielectric spacing between conductors, electrical resistance following thermal shock test, and other critical printed wiring board properties.

  3. Heat generation from epoxy cracks and bond failures

    NASA Astrophysics Data System (ADS)

    Maeda, H.; Iwasa, Y.

    Energy released following cracks and bond failures were measured for an EPON epoxy near 4.2 K. Crack events were monitored with an acoustic emission sensor; the energy released by each crack or bond failure was calculated from the temperature rise measured with thermocouples. Cracking was observed to be load dependent; this may account in part for the training phenomenon observed in bringing epoxy-impregnated superconducting magnets to full design field.

  4. Composite material impregnation unit

    NASA Technical Reports Server (NTRS)

    Wilkinson, S. P.; Marchello, J. M.; Johnston, N. J.

    1993-01-01

    This memorandum presents an introduction to the NASA multi-purpose prepregging unit which is now installed and fully operational at the Langley Research Center in the Polymeric Materials Branch. A description of the various impregnation methods that are available to the prepregger are presented. Machine operating details and protocol are provided for its various modes of operation. These include, where appropriate, the related equations for predicting the desired prepreg specifications. Also, as the prepregger is modular in its construction, each individual section is described and discussed. Safety concerns are an important factor and a chapter has been included that highlights the major safety features. Initial experiences and observations for fiber impregnation are described. These first observations have given great insight into the areas of future work that need to be addressed. Future memorandums will focus on these individual processes and their related problems.

  5. Woven graphite epoxy composite test specimens with glass buffer strips

    NASA Technical Reports Server (NTRS)

    Bonnar, G. R.; Palmer, R. J.

    1982-01-01

    Woven unidirectional graphite cloth with bands of fiberglass replacing the graphite in discrete lengthwise locations was impregnated with epoxy resin and used to fabricate a series of composite tensile and shear specimens. The finished panels, with the fiberglass buffer strips, were tested. Details of the fabrication process are reported.

  6. GRAPHITE IMPREGNATION METHOD

    DOEpatents

    Kertesz, F.; Buttram, H.J.

    1962-04-24

    ABS>A method for impregnating a refractory material by filling its pores with a first salt having a high melting temperature is described. The salt is mixed with another, more volatile salt, giving the mixture a much lower melting temperature than that of the first salt. The material is coated with the mixture, then heated to drive off the volatile salt, leaving the first salt in place. (AEC)

  7. Epoxy resin

    DOEpatents

    Wilson, Glenn R.; Salyer, Ival O.; Ball, III, George L.

    1976-07-13

    By mixing one part of a prepolymer containing a polyamine partially polymerized with an organic epoxide and subsequently reacted with a fatty acid containing from 8 to 32 carbon atoms, and then reacting this prepolymer mixture with 3 parts of an organic epoxide, a composition was obtained which made a gas frothable, shear-stable, room temperature curing, low density foam. A particularly advantageous prepolymer was prepared using a polyamine selected from the group consisting of diethylenetriamine, triethylenetetramine, and tetraethylenepentamine, partially polymerized with an organic epoxide having an average molecular weight of about 350 and having an epoxide equivalent of 185 to 192, and reacted with 2-10 weight percent linoleic acid. When one part of this prepolymer was reacted with about three parts of epoxy, and frothed by whipping in air or nitrogen an epoxy foam was produced which could be troweled onto surfaces and into corners or crevices, and subsequently cured, at near ambient temperature, to a strong dimensionally stable foam product.

  8. Recent progress and tests of radiation resistant impregnation materials for Nb{sub 3}Sn coils

    SciTech Connect

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-27

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of “ten stacks” of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy.

  9. Recent progress and tests of radiation resistant impregnation materials for Nb3Sn coils

    NASA Astrophysics Data System (ADS)

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-01

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of "ten stacks" of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy.

  10. Analysis of two-dimensional flow of epoxy fluids through woven glass fabric

    SciTech Connect

    Schutz, J.B.; Smith, K.B.

    1997-06-01

    Fabrication of magnet coils for the International Thermonuclear Experimental Reactor will require vacuum pressure impregnation of epoxy resin into the glass fabric of the insulation system. Flow of a fluid through a packed bed of woven glass fabric is extremely complicated, and semiempirical methods must be used to analyze these flows. The previous one-dimensional model has been modified for analysis of two-dimensional isotropic flow of epoxy resins through woven glass fabric. Several two-dimensional flow experiments were performed to validate the analysis, and to determine permeabilities of several fabric weave types. The semiempirical permeability is shown to be a characteristic of the fabric weave, and once determined, may be used to analyze flow of fluids of differing viscosities. Plain weave has a lower permeability than satin weave fabric, possibly due to the increased tortuosity of the preferential flow paths along fiber tows. A flow radius of approximately 2 meters through satin weave fabric is predicted for fluid viscosities of 0.10 Pa s (100 cps) in 20 hours, characteristic of VPI resins.

  11. Secondary polymer layered impregnated tile

    NASA Technical Reports Server (NTRS)

    Tran, Huy K. (Inventor); Rasky, Daniel J. (Inventor); Szalai, Christine E. (Inventor); Carroll, Joseph A. (Inventor); Hsu, Ming-ta S. (Inventor)

    2005-01-01

    A low density organic polymer impregnated preformed fibrous ceramic article includes a plurality of layers. A front layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one organic polymer. A middle layer includes polymer impregnated ceramic fibers. A back layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one low temperature pyrolyzing organic polymer capable of decomposing without depositing residues.

  12. Adhesive, elastomeric gel impregnating composition

    DOEpatents

    Shaw, David Glenn; Pollard, John Randolph; Brooks, Robert Aubrey

    2002-01-01

    An improved capacitor roll with alternating film and foil layers is impregnated with an adhesive, elastomeric gel composition. The gel composition is a blend of a plasticizer, a polyol, a maleic anhydride that reacts with the polyol to form a polyester, and a catalyst for the reaction. The impregnant composition is introduced to the film and foil layers while still in a liquid form and then pressure is applied to aid with impregnation. The impregnant composition is cured to form the adhesive, elastomeric gel. Pressure is maintained during curing.

  13. PROCESS OF PREPARING URANIUM-IMPREGNATED GRAPHITE BODY

    DOEpatents

    Kanter, M.A.

    1958-05-20

    A method for the fabrication of graphite bodies containing uniformly distributed uranium is described. It consists of impregnating a body of graphite having uniform porosity and low density with an aqueous solution of uranyl nitrate hexahydrate preferably by a vacuum technique, thereafter removing excess aqueous solution from the surface of the graphite, then removing the solvent water from the body under substantially normal atmospheric conditions of temperature and pressure in the presence of a stream of dry inert gas, and finally heating the dry impregnated graphite body in the presence of inert gas at a temperature between 800 and 1400 d C to convert the uranyl nitrate hexahydrate to an oxide of uranium.

  14. Impregnating Coal With Calcium Carbonate

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Voecks, Gerald E.; Gavalas, George R.

    1991-01-01

    Relatively inexpensive process proposed for impregnating coal with calcium carbonate to increase rates of gasification and combustion of coal and to reduce emission of sulfur by trapping sulfur in calcium sulfide. Process involves aqueous-phase reactions between carbon dioxide (contained within pore network of coal) and calcium acetate. Coal impregnated with CO2 by exposing it to CO2 at high pressure.

  15. Radiation curing of epoxies

    NASA Astrophysics Data System (ADS)

    Dickson, Lawrence W.; Singh, Ajit

    The literature on radiation polymerization of epoxy compounds has been reviewed to assess the potential use of radiation for curing these industrially important monomers. Chemical curing of epoxies may proceed by either cationic or anionic mechanisms depending on the nature of the curing agent, but most epoxies polymerize by cationic mechanisms under the influence of high-energy radiation. Radiation-induced cationic polymerization of epoxy compounds is inhibited by trace quantities of water because of proton transfer from the chain-propagating epoxy cation to water. Several different methods with potential for obtaining high molecular weight polymers by curing epoxies with high-energy radiation have been studied. Polymeric products with epoxy-like properties have been produced by radiation curing of epoxy oligomers with terminal acrylate groups and mixtures of epoxies with vinyl monomers. Both of these types of resin have good potential for industrial-scale curing by radiation treatment.

  16. Ultrarapid vacuum-microwave histoprocessing.

    PubMed

    Kok, L P; Boon, M E

    1995-05-01

    A novel histoprocessing method for paraffin sections is presented in which the combination of vacuum and microwave exposure is the key element. By exploiting the decrease in boiling temperature under vacuum, the liquid molecules in the tissues have been successfully extracted and exchanged at relatively low temperatures during each of the steps from dehydration, clearing, and impregnation. In this vacuum-microwave method, an extremely short time suffices for the preparation of optimal-quality paraffin blocks. No xylene (but isopropanol instead) was used as the intermediate solvent. Thirty biopsies (thickness 2-4 mm) can be processed in 40 min. In addition, this approach can be used to produce large sections of giant blocks (4 x 6 x 1 cm3) which can be easily cut on a routine microtome due to the optimal paraffin impregnation. These giant blocks do not shrink during this vacuum-microwave histoprocessing. PMID:7657560

  17. Fiber-Reinforced Epoxy Composites and Methods of Making Same Without the Use of Oven or Autoclave

    NASA Technical Reports Server (NTRS)

    Barnell, Thomas J. (Inventor); Rauscher, Michael D. (Inventor); Stienecker, Rick D. (Inventor); Nickerson, David M. (Inventor); Tong, Tat H. (Inventor)

    2016-01-01

    Method embodiments for producing a fiber-reinforced epoxy composite comprise providing a mold defining a shape for a composite, applying a fiber reinforcement over the mold, covering the mold and fiber reinforcement thereon in a vacuum enclosure, performing a vacuum on the vacuum enclosure to produce a pressure gradient, insulating at least a portion of the vacuum enclosure with thermal insulation, infusing the fiber reinforcement with a reactive mixture of uncured epoxy resin and curing agent under vacuum conditions, wherein the reactive mixture of uncured epoxy resin and curing agent generates exothermic heat, and producing the fiber-reinforced epoxy composite having a glass transition temperature of at least about 100.degree. C. by curing the fiber reinforcement infused with the reactive mixture of uncured epoxy resin and curing agent by utilizing the exothermically generated heat, wherein the curing is conducted inside the thermally insulated vacuum enclosure without utilization of an external heat source or an external radiation source.

  18. Boron impregnation treatment of Eucalyptus grandis wood.

    PubMed

    Dhamodaran, T K; Gnanaharan, R

    2007-08-01

    Eucalyptus grandis is suitable for small timber purposes, but its wood is reported to be non-durable and difficult to treat. Boron compounds being diffusible, and the vacuum-pressure impregnation (VPI) method being more suitable for industrial-scale treatment, the possibility of boron impregnation of partially dry to green timber was investigated using a 6% boric acid equivalent (BAE) solution of boric acid and borax in the ratio 1:1.5 under different treatment schedules. It was found that E. grandis wood, even in green condition, could be pressure treated to desired chemical dry salt retention (DSR) and penetration levels using 6% BAE solution. Up to a thickness of 50mm, in order to achieve a DSR of 5 kg/m(3) boron compounds, the desired DSR level as per the Indian Standard for perishable timbers for indoor use, it was found that neither the moisture content of wood nor the treatment schedule posed any problem as far as the treatability of E. grandis wood was concerned. PMID:17046244

  19. Flame Retardant Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  20. Safe epoxy encapsulant for high voltage magnetics

    SciTech Connect

    Sanchez, R.O.; Archer, W.E.

    1998-01-01

    This paper describes the use of Formula 456, an aliphatic amine cured epoxy for impregnating coils and high voltage transformers. Sandia has evaluated a number of MDA-free epoxy encapsulants which relied on either anhydride or other aromatic amine curing agents. The use of aliphatic amine curing agents was more recently evaluated and has resulted in the definition of Formula 456 resin. Methylene dianiline (MDA) has been used for more than 20 years as the curing agent for various epoxy formulations throughout the Department of Energy and much of industry. Sandia National Laboratories began the process of replacing MDA with other formulations because of regulations imposed by OSHA on the use of MDA. OSHA has regulated MDA because it is a suspect carcinogen. Typically the elimination of OSHA-regulated materials provides a rare opportunity to qualify new formulations in a range of demanding applications. It was important to take full advantage of that opportunity, although the associated materials qualification effort was costly. Small high voltage transformers are one of those demanding applications. The successful implementation of the new formulation for high reliability transformers will be described. The test results that demonstrate the parts are qualified for use in DOE weapon systems will be presented.

  1. Dynamic Impregnator Reactor System (Poster)

    SciTech Connect

    Not Available

    2012-09-01

    IBRF poster developed for the IBRF showcase. Describes the multifarious system designed for complex feedstock impregnation and processing. IBRF feedstock system has several unit operations combined into one robust system that provides for flexible and staged process configurations, such as spraying, soaking, low-severity pretreatment, enzymatic hydrolysis, fermentation, concentration/evaporation, and distillation.

  2. Epoxy-rubber interactions

    SciTech Connect

    McGarry, F.J.; Rosner, R.B.

    1993-12-31

    Films containing amine-terminated butadiene-acrylonitrile (ATBN) rubber and diglycidal ether of bisphenol A (DGEBA) epoxy, cross-linked with amine curing agent, exhibit tensile extensibility over the composition range of 50-600 parts by weight rubber to 100 parts by weight epoxy. This tensile extensibility suggests the presence of ductile behavior in the second-phase particles of ATBN rubber-toughened DGEBA epoxy systems, even if the particles contain substantial amounts of epoxy. Such cured films also are capable of absorbing large additional amounts of liquid epoxy that contains the cure agent. When the epoxy is cured in situ, the film tensile behavior is consistent with the overall proportions of rubber and epoxy present. The solubility behavior also suggests that the glassy epoxy matrix immediately surrounding a precipated particle contains rubber in solid solution and thereby can plastically yield under shear-stress action. As observations confirm, such flow would be heat recoverable. 15 refs., 9 figs., 2 tabs.

  3. A rapid preparation of acicular Ni impregnated anode with enhanced conductivity and operational stability

    NASA Astrophysics Data System (ADS)

    Zhu, Xingbao; Guan, Chengzhi; Lü, Zhe; Wei, Bo; Li, Yiqian; Su, Wenhui

    2014-06-01

    A novel method for fabricating Ni(NO3)2 solution impregnated YSZ (YSZ: Yttria Stabilized Zirconia) anodes for solid oxide fuel cells (SOFCs) is presented. In order to reduce the impregnation cycles and increase the reliability of the YSZ membrane, a YSZ support with a porosity of ∼60% is soaked in a saturated Ni(NO3)2 solution with an increased temperature of 80 °C. The impregnated anode is dried in a vacuum drying device without heating, resulting in a flower-like Ni(NO3)2·6H2O crystal. The formed porous structure is likely to facilitate the impregnating process and considered to be the key to success of the impregnation process with saturated solution. After heating at 700 °C, a novel needle-shaped NiO is presented, which exhibits some advantages including fast preparation, high connectivity, large specific surface area and high operational stability (i.e. high aggregation resistance). For the purpose of comparison, Ni(NO3)2 solution impregnated YSZ anodes prepared through the conventional impregnation process are also characterized under the same conditions.

  4. Void-free epoxy castings for cryogenic insulators and seals

    SciTech Connect

    Quirk, J.F.

    1983-01-01

    The design of the Westinghouse Magnet for the Oak Ridge National Laboratory's Large Coil Program (LCP) incorporates a main lead bushing which transmits heat-leak loads by conduction to the supercritical helium stream. The bushing, which consists of epoxy resin cast about a copper conductor, must be electrically insulated, vacuum tight and be capable of withstanding the stresses encountered in cryognic service. The seal design of the bushing is especially important; leakage from either the helium system or the external environment into the vacuum will cause the magnet to quench. Additionally, the epoxy-resin casting must resist mechanical loads caused by the weight of leads attached to the bushing and thermal stresses transmitted to the epoxy via the conductor. The epoxy resin is cast about the conductor in such a way as to provide the required vacuum tight seal. The technique by which this is accomplished is reviewed. Equally important is the elimination of voids in the epoxy which will act as stress-concentrating discontinuities during cooling to or warming from 4K. The types of voids that could be expected and their causes are described. The paper reviews techniques employed to eliminate voids within the cast-resin portion of the bushing.

  5. Pressure Venting Tests of Phenolic Impregnated Carbon Ablator (PICA)

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.; Knutson, Jeffrey R.

    2015-01-01

    A series of tests was devised to investigate the pressure venting behavior of one of the candidate ablators for the Orion capsule heat shield. Three different specimens of phenolic impregnated carbon ablator (PICA) were instrumented with internal pressure taps and subjected to rapid pressure changes from near vacuum to one atmosphere and simulated Orion ascent pressure histories. The specimens vented rapidly to ambient pressure and sustained no detectable damage during testing. Peak pressure differences through the thickness of a 3-inch-thick specimen were less than 1 psi during a simulated ascent pressure history.

  6. DEGRADATION OF MAGNET EPOXY AT NSLS X-RAY RING.

    SciTech Connect

    HU,J.P.; ZHONG,Z.; HAAS,E.; HULBERT,S.; HUBBARD,R.

    2004-05-24

    Epoxy resin degradation was analyzed for NSLS X-ring magnets after two decades of 2.58-2.8 GeV continuous electron-beam operation, based on results obtained from thermoluminescent dosimeters irradiated along the NSLS ring and epoxy samples irradiated at the beamline target location. A Monte Carlo-based particle transport code, MCNP, was utilized to verify the dose from synchrotron radiation distributed along the axial- and transverse-direction in a ring model, which simulates the geometry of a ring quadrupole magnet and its central vacuum chamber downstream of the bending-magnet photon ports. The actual life expectancy of thoroughly vacuum baked-and-cured epoxy resin was estimated from radiation tests on similar polymeric materials using a radiation source developed for electrical insulation and mechanical structure studies.

  7. Use of 2,5-dimethyl-2,5-hexane diamine as a curing agent for epoxy resins

    DOEpatents

    Rinde, J.A.; Newey, H.A.

    1981-02-24

    Primary diamines are disclosed of the formula shown in a diagram wherein R is a straight chain saturated hydrocarbon of 2 to 4 carbons, a disubstituted benzene ring, or disubstituted dibenzomethane for use as a curing agent for epoxy resins. These curing agents can be used to form epoxy resin mixtures useful in filament winding and pre-impregnated fiber molding and in formulating film adhesives, powder coatings and molding powders. The epoxy mixtures form for such uses as room temperature non-reacting, intermediate stable state which has a latent cross-linking capability.

  8. Use of 2,5-dimethyl-2,5-hexane diamine as a curing agent for epoxy resins

    DOEpatents

    Rinde, James A. [Livermore, CA; Newey, Herbert A. [Lafayette, CA

    1981-02-24

    Primary diamines of the formula ##STR1## wherein R is a straight chain saturated hydrocarbon of 2 to 4 carbons, a disubstituted benzene ring, or disubstituted dibenzo methane for use as a curing agent for epoxy resins. These curing agents can be used to form epoxy resin mixtures useful in filament winding and pre-impregnated fiber molding and in formulating film adhesives, powder coatings and molding powders. The epoxy mixtures form for such uses as room temperature non-reacting, intermediate stable state which has a latent cross-linking capability.

  9. Vacuum force

    NASA Astrophysics Data System (ADS)

    Han, Yongquan

    2015-03-01

    To study on vacuum force, we must clear what is vacuum, vacuum is a space do not have any air and also ray. There is not exist an absolute the vacuum of space. The vacuum of space is relative, so that the vacuum force is relative. There is a certain that vacuum vacuum space exists. In fact, the vacuum space is relative, if the two spaces compared to the existence of relative vacuum, there must exist a vacuum force, and the direction of the vacuum force point to the vacuum region. Any object rotates and radiates. Rotate bend radiate- centripetal, gravity produced, relative gravity; non gravity is the vacuum force. Gravity is centripetal, is a trend that the objects who attracted wants to Centripetal, or have been do Centripetal movement. Any object moves, so gravity makes the object curve movement, that is to say, the radiation range curve movement must be in the gravitational objects, gravity must be existed in non vacuum region, and make the object who is in the region of do curve movement (for example: The earth moves around the sun), or final attracted in the form gravitational objects, and keep relatively static with attract object. (for example: objects on the earth moves but can't reach the first cosmic speed).

  10. Reinforced Epoxy Nanocomposite Sheets Utilizing Large Interfacial Area from a High Surface Area Single-Walled Carbon Nanotube Scaffold

    NASA Astrophysics Data System (ADS)

    Kobashi, Kazufumi; Nishino, Hidekazu; Yamada, Takeo; Futaba, Don; Yumura, Motoo; Hata, Kenji

    2011-03-01

    We employed single-walled carbon nanotubes (SWNTs) with the available highest specific surface area (more than 1000 m2/g) that provided very large interfacial area for the matrix to fabricate epoxy composite sheets. Through mechanical redirection of the SWNT alignment to horizontal to create a laterally aligned scaffold sheet, into which epoxy resin was impregnated. The SWNT scaffold was engineered in structure to meet the these two nearly mutually exclusive demands, i.e. to have nanometer meso-pores (2-50 nm) to facilitate homogeneous impregnation of the epoxy resin and to have mechanical strength to tolerate the compaction forces generated during impregnation. Through this approach, a SWNT/epoxy composite sheet with a nearly ideal morphology was realized where long and aligned SWNTs were loaded at high weight fraction (33 percent) with an intertube distance approaching the radius of gyration for polymers. The resultant composite showed a Young's modulus of 15.0 GPa and a tensile strength of 104 MPa, thus achieving 5.4 and 2.1 times reinforcement as compared to the neat epoxy resin.

  11. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    NASA Astrophysics Data System (ADS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-11-01

    The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed.

  12. FIELD STUDIES OF IMPREGNATED CONCRETE PIPE

    EPA Science Inventory

    The follow-on study (initiated in June 1980) continued to monitor performance of 1,400 ft of impregnated concrete pipe installed in several Texas cities. The performance of concrete pipe has been compared with that of sulfur-impregnated concrete pipe; hydrofluoric acid (HF)-treat...

  13. Qualification of a cyanate ester epoxy blend supplied by Japanese industry for the ITER TF coil insulation

    NASA Astrophysics Data System (ADS)

    Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.; Knaster, J.; Savary, F.

    2012-06-01

    During the last years, two cyanate ester epoxy blends supplied by European and US industry have been successfully qualified for the ITER TF coil insulation. The results of the qualification of a third CE blend supplied by Industrial Summit Technology (IST, Japan) will be presented in this paper. Sets of test samples were fabricated exactly under the same conditions as used before. The reinforcement of the composite consists of wrapped R-glass / polyimide tapes, which are vacuum pressure impregnated with the resin. The mechanical properties of this material were characterized prior to and after reactor irradiation to a fast neutron fluence of 2×1022m-2 (E>0.1 MeV), i.e. twice the ITER design fluence. Static and dynamic tensile as well as static short beam shear tests were carried out at 77 K. In addition, stress strain relations were recorded to determine the Young's modulus at room temperature and at 77 K. The results are compared in detail with the previously qualified materials from other suppliers.

  14. Continuous plasma treatment and resin impregnation of a high-strength fiber material

    SciTech Connect

    Tira, J.S.

    1983-09-01

    A system was developed for the continuous plasma treatment of fibrous, reinforcing materials used in composites. Data are presented on the removal of moisture from Kevlar 49 Aramid by the use of argon and zero air plasma. Adhesion test results with plasma-treated, unidirectional Kevlar 49/epoxy laminates showed an improvement in adhesion ranging from 1.4 to 3.7 times, as reported by the plasma treatment effectiveness parameter. Limited tensile testing of resin-impregnated yarn showed no catastropic failure from plasma treatment.

  15. Cobalt ion-containing epoxies

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St.clair, A. K.

    1983-01-01

    Varying concentrations of an organometallic cobalt complex were added to an epoxy system currently used by the aerospace industry as a composite matrix resin. Methods for combining cobalt (III) acetylacetonate with a tetraglycidyl 4,4 prime - diaminodiphenylmethane-based epoxy were investigated. The effects of increasing cobalt ion concentration on the epoxy cure were demonstrated by epoxy gel times and differential scanning calorimetry cure exotherms. Analysis on cured cobalt-containing epoxy castings included determination of glass transition temperatures by thermomechanical analysis, thermooxidative stabilities by thermogravimetric analysis, and densities in a density gradient column. Flexural strength and stiffness were also measured on the neat resin castings.

  16. Curing of Furfuryl Alcohol-Impregnated Parts

    NASA Technical Reports Server (NTRS)

    Lawton, J. W.; Brayden, T. H.

    1983-01-01

    Delamination problem in reinforced carbon/carbon parts impregnated with oxalic acid-catalyzed furfuryl alcohol overcome by instituting two additional quality-control tests on alcohol and by changing curing conditions.

  17. Carbon-Fiber/Epoxy Tube Lined With Aluminum Foil

    NASA Technical Reports Server (NTRS)

    Gernet, Nelson J.; Kerr, Gregory K.

    1995-01-01

    Carbon-fiber/epoxy composite tube lined with welded aluminum foil useful as part of lightweight heat pipe in which working fluid ammonia. Aluminum liner provides impermeability for vacuum seal, to contain ammonia in heat pipe, and to prevent flow of noncondensable gases into heat pipe. Similar composite-material tubes lined with foils also incorporated into radiators, single- and two-phase thermal buses, tanks for storage of cryogenic materials, and other plumbing required to be lightweight.

  18. Metal ion-containing epoxies

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St.clair, A. K.

    1982-01-01

    A variety of metallic and organometallic complexes to be used as potential additives for an epoxy used by the aerospace industry as a composite matrix resin were investigated. A total of 9 complexes were screened for compatibility and for their ability to accelerate or inhibit the cure of a highly crosslinkable epoxy resin. Methods for combining the metallic complexes with the resin were investigated, gel times recorded, and cure exotherms studied by differential scanning calorimetry. Glass transition temperatures of cured metal ion containing epoxy castings were determined by thermomechanical analysis. Thermal stabilities of the castings were determined by thermogravimetric analysis. Mechanical strength and stiffness of these doped epoxies were also measured.

  19. Application of In Situ Fiberization for fabrication of improved strain isolation pads and graphite epoxy composites

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Seibold, R. W.; Basiulis, D. I.

    1982-01-01

    The feasibility of applying the in situ fiberization process to the fabrication of strain isolation pads (SIP) for the Space Shuttle and to the fabrication of graphite-epoxy composites was evaluated. The ISF process involves the formation of interconnected polymer fiber networks by agitation of dilute polymer solutions under controlled conditions. High temperature polymers suitable for SIP use were fiberized and a successful fiberization of polychloro trifluoroethylene, a relatively high melting polymer, was achieved. Attempts to fiberize polymers with greater thermal stability were unsuccessful, apparently due to characteristics caused by the presence of aromaticity in the backbone of such materials. Graphite-epoxy composites were fabricated by interconnecting two dimensional arrays of graphite fiber with polypropylene IS fibers with subsequent epoxy resin impregnation. Mechanical property tests were performed on laminated panels of this material to evaluate intralaminar and interlaminar shear strength, and thus fracture toughness. Test results were generally unpromising.

  20. VACUUM TRAP

    DOEpatents

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  1. In vitro analysis of the penetration of methylene blue dye in human radicular dentin using different methods of impregnation.

    PubMed

    Ferreira, Ronise; Bombana, Antonio C; Sayeg, Isaac J

    2008-12-01

    The purpose of the present study was to verity whether different conditions of contact with a dye solution would result in different levels of the impregnation by the marker agent in human radicular dentin. The root canals of 60 upper human canines were immersed in methylene blue dye (0.5%, pH 7.0) for 24 h under six different conditions: passive immersion; pre-agitation for 10 min using an endodontic ultrasound; pre-agitation for 10 min using a cleaning ultrasound; 25-mmHg vacuum for 10 min followed by passive immersion; 30-mmHg and 650-mmHg vacuum for 24 h. The roots were longitudinally sectioned and dye impregnation was assessed by a trained and calibrated examiner, using the Q 550 IW image analyser (Leica Qwin, Cambridge, England). The measurements were analysed with anova and Tukey test. The results revealed no significant difference among the different methods for dye impregnation. In the cervical third, impregnation with 30 mmHg was significantly more effective than with endodontic ultrasound or 25 mmHg. At the apical third, no differences were observed between any of the dye impregnation methods. The comparison of different thirds revealed a statistically significant difference between the cervical and apical and the middle and apical thirds, but not between the cervical and middle thirds. PMID:19032645

  2. Vacuum Technology

    SciTech Connect

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  3. Vacuum Virtues

    ERIC Educational Resources Information Center

    Rathey, Allen

    2007-01-01

    Upright vacuums, like cars, vary in quality, features and performance. Like automobiles, some uprights are reliable, others may be problematic, and some become a problem as a result of neglect or improper use. So, how do education institutions make an informed choice and, having done so, ensure that an upright vacuum goes the distance? In this…

  4. Vacuum mechatronics

    NASA Technical Reports Server (NTRS)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  5. Epoxy resin holograms

    NASA Astrophysics Data System (ADS)

    Ruiz-Limón, B.; Wetzel, G. B. J.; Olivares Pérez, A.; Ponce-Lee, E. L.; Ramos-Garcia, R.; Toxqui López, S.; Hernández-Garay, M. P.; Fuentes-Tapia, I.

    2006-02-01

    We observed that a commercial epoxy resin (Comex (R) is enable to record images by means of lithography techniques. We can generate a hologram using a digital image and a computer simulation program and transferred it on our resin by microlithography techniques to get a phase hologram and increase its efficiency. The exposition to the heat produce temperature gradients and the information in the mask is transferred to the material by the refraction index changes, thus the film is recorded. At the same time the hologram is cured.

  6. Interaction of water with epoxy.

    SciTech Connect

    Powers, Dana Auburn

    2009-07-01

    The chemistries of reactants, plasticizers, solvents and additives in an epoxy paint are discussed. Polyamide additives may play an important role in the absorption of molecular iodine by epoxy paints. It is recommended that the unsaturation of the polyamide additive in the epoxy cure be determined. Experimental studies of water absorption by epoxy resins are discussed. These studies show that absorption can disrupt hydrogen bonds among segments of the polymers and cause swelling of the polymer. The water absorption increases the diffusion coefficient of water within the polymer. Permanent damage to the polymer can result if water causes hydrolysis of ether linkages. Water desorption studies are recommended to ascertain how water absorption affects epoxy paint.

  7. Cross-sectional analysis of W-cored Ni nanoparticle via focused ion beam milling with impregnation

    PubMed Central

    2014-01-01

    Tungsten and nickel bimetallic nanoparticle is synthesized by radio frequency thermal plasma process which belongs to the vapor phase condensation technology. The morphology and chemical composition of the synthesized particle were investigated using the conventional nanoparticle transmission electron microscopy (TEM) sample. A few part of them looked like core/shell structured particle, but ambiguities were caused by either TEM sample preparation or TEM analysis. In order to clarify whether a core/shell structure is developed for the particle, various methodologies were tried to prepare a cross-sectional TEM sample. Focused ion beam (FIB) milling was conducted for cold-compacted particles, dispersed particles on silicon wafer, and impregnated particles with epoxy which is compatible with electron beam. A sound cross-sectional sample was just obtained from cyanoacrylate impregnation and FIB milling procedure. A tungsten-cored nickel shell structure was precisely confirmed with aid of cross-sectional sample preparation method. PMID:25288920

  8. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.; Pater, R. H.

    1981-01-01

    High char yield epoxy using novel bisimide amines (BIA's) as curing agents with a state of the art epoxy resin was developed. Stoichiometric quantities of the epoxy resin and the BIA's were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designated IME's (imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by the bisimide amine cured expoxies (IME's) were considerably lower than the state of the art epoxies. The strain-to-failure of the control resin system was improved 25% by replacement of DDS with 6F-DDS. Each BIA containing resin exhibited twice the char yield of the control resin MY 720/DDS. Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems showed superior properties compared to the other Celion 6000/IME composite systems and state of the art graphite epoxy systems. The two systems exhibited excellent wet shear and flexural strengths and moduli at 300 and 350 F.

  9. Apparatus for coating and impregnating filament with resin

    DOEpatents

    Robinson, S.C.; Pollard, R.E.

    1986-12-17

    The present invention is directed to an apparatus for evenly coating and impregnating a filament with binder material. Dimension control and repeatability of the coating and impregnating characteristics are obtained with the apparatus.

  10. Thermoplastic impact property improvement in hybrid natural fibre epoxy composite bumper beam

    NASA Astrophysics Data System (ADS)

    Davoodi, M. M.; Sapuan, S. M.; Ali, Aidy; Ahmad, D.; Khalina, A.

    2010-05-01

    Utilization of thermoset resin as a bumper beam composite matrix is currently more dominated in car manufacturer suppliers, because of availability, easy processing, low material cost and production equipment investment. Moreover, low viscosity, shrinkage and excellent flow facilitate better fibre impregnation and proper surface resin wetting. Three-dimensional cross linking curing increase impact, creep and environmental stress cracking resistance properties. Low impact properties of natural fibre epoxy composite, are main issues in its employment for automotive structural components. Impact properties in epoxy composite bumper beam could be increased by modifying the resin, reinforcement and manufacturing process as well as geometry parameters such as cross section, thickness, added ribs and fixing method optimizations could strengthen impact resistance. There are two main methods, flexibilisation and toughening, as modifying the resin in order to improve the impact properties of epoxy composite, which form single phase or two-phase morphology to make modifier as epoxy or from separate phase to keep the thermo-mechanical properties. Liquid rubber, thermoplastic, core shell particle and rigid particle are different methods of toughening improvements. In this research, thermoplastic toughening has used to improve impact properties in hybrid natural fibre epoxy composite for automotive bumper beam and has achieved reasonable impact improvements.

  11. Air Force electrochemical impregnation process results

    NASA Technical Reports Server (NTRS)

    Miller, L. E.

    1978-01-01

    The status of the Air Force Electrochemical program was reviewed. The performance characteristics of the system was attributed to the use of an electrochemical impregnation process. The electrode improvements, the prototype equipment designs, and the actual construction of a production facility are discussed.

  12. What is Common in the Training of the Large Variety of Impregnated Corrector Magnets for the LHC

    NASA Astrophysics Data System (ADS)

    Ijspeert, Albert; Ten Kate, Herman

    2004-06-01

    The Large Hadron Collider (LHC) will be equipped with about 5000 superconducting corrector magnets of 10 different types, ranging from dipoles through quadrupoles, sextupoles and octupoles to decapoles and dodecapoles. Four wires are used with 2 copper/superconductor ratios. Magnet lengths range from 0.15 m to 1.4 m. However, the magnets are all epoxy-impregnated and wound with enameled monolithic wires. The paper highlights the features that are common in the training of all these different magnets and uses that to give some clues for the possible origin of the training.

  13. Effects of environmental exposure on fiber/epoxy interfacial shear strength

    SciTech Connect

    Gaur, U.; Miller, B. )

    1990-08-01

    A microbond technique for direct determination of fiber/resin interfacial shear strength in composites (Miller et al., 1987) has been used to investigate the influence of environmental conditions on adhesive bonding in certain systems. The small dimensions involved in the method facilitate uniform exposure and short exposure times. Significant changes in both average shear strength and in shear strength distributions are observed on exposing aramid/epoxy and glass/epoxy microbond assemblies to steam or hot water. Shear strength drops to a plateau value in both cases, the reduction being more drastic with the glass fiber. Vacuum drying restores shear strength completely in aramid/epoxy microassemblies, even when the surface of the aramid fiber has been chemically modified, but there is only partial regeneration of bond strength with the glass/epoxy system. 15 refs.

  14. A model of the thermal-spike mechanism in graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Adamson, M. J.

    1982-01-01

    The influence of a thermal spike on a moisture-saturated graphite/epoxy composite was studied in detail. A single thermal spike from 25 C to 132 C was found to produce damage as evidenced by a significant increase in the level of moisture saturation in the composite. Approximately half of this increase remained after a vacuum anneal at 150 C for 7 days, suggesting the presence of an irreversible damage component. Subsequent thermal spikes created less and less additional moisture absorption, with the cumulative effect being a maximum or limiting moisture capacity of the composite. These observations are explained in terms of a model previously developed to explain the reverse thermal effect of moisture absorption in epoxy and epoxy matrix composites. This model, based on the inverse temperature dependence of free volume, contributes an improved understanding of thermal-spike effects in graphite/epoxy composites.

  15. Instability of superconducting windings induced by cracking of impregnating materials

    NASA Astrophysics Data System (ADS)

    Miyamoto, H.; Nishijima, S.; Okada, T.

    Short, superconducting specimens simulating the structure of windings have been examined in order to investigate the instabilities of superconducting windings induced by heat generation due to wire movement, cracking or debonding of the impregnating material. The cryogenic properties of the impregnating materials were also measured. The results revealed the properties of the bobbin and the impregnation materials that are needed for stable superconducting magnets. The training behaviour of impregnated magnets was also studied. It was confirmed that the structure of the winding and the properties of the impregnating material are important factors in superconducting magnet stability.

  16. Characterization of catalyst-impregnated coal samples

    SciTech Connect

    Znaimer, S.; Gubanc, P.F.; Hulseman, R.A.

    1980-12-01

    The impregnation of sodium chloride into Illinois No. 6 bituminous HVC coal from an aqueous solution was studied. Atomic absorption, electrical conductivity, and BET surface area analyses were used to determine an effective diffusivity, partition coefficient, salt loading, and internal surface area. The diffusion data were found to fit Fick's law of diffusion for a sphere giving temperature and particle-size-dependent effective diffusivities ranging from 2 x 10/sup -8/ to 4 x 10/sup -7/ cm/sup 2//s. Partition coefficients averaged 1.35, which indicates that salt adsorption onto the coal surface has, at most, a minor effect on impregnation. An empirical correlation for salt loading was developed.

  17. Ion bombardment investigations of impregnated cathodes

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaobing; Gaertner, Georg

    2003-06-01

    Ion bombardment is one of the important factors limiting the performance of impregnated cathodes (=Ba dispenser cathodes) in high end television tubes or in colour monitor tubes. Hence, when designing a new gun with, e.g. higher electron beam current density, it is important also to model the influence of ion bombardment. Therefore, relations between basic parameters as a function of temperature need to be known quantitatively. In this paper, the emission slump of impregnated cathodes has been analyzed in a diode configuration in UHV with a differentially pumped Ar ion gun. The emission degeneration during and regeneration periods after ion bombardment have been investigated as function of cathode temperature, ion current and ion energy. One of the important results is, that the degeneration time coefficient is only weakly dependent on ion energy. The data matrix obtained can be used to improve the ion bombardment model applied in new electron gun design.

  18. Synthesis of polyoxometalate-loaded epoxy composites

    DOEpatents

    Anderson, Benjamin J

    2014-10-07

    The synthesis of a polyoxometalate-loaded epoxy uses a one-step cure by applying an external stimulus to release the acid from the polyoxometalate and thereby catalyze the cure reaction of the epoxy resin. Such polyoxometalate-loaded epoxy composites afford the cured epoxy unique properties imparted by the intrinsic properties of the polyoxometalate. For example, polyoxometalate-loaded epoxy composites can be used as corrosion resistant epoxy coatings, for encapsulation of electronics with improved dielectric properties, and for structural applications with improved mechanical properties.

  19. [Neutral and impregnated dressings and products].

    PubMed

    Nicodème, Marguerite; Rollot, Florence; Fromantin, Isabelle

    2016-01-01

    Dressings without active ingredients are adapted to each stage of healing, depending on their degree of moisture, their absorption capacity and their non-traumatic character. Impregnated and mechanical dressings are also available. They are indicated for preventing or treating a symptom or a complication, or for "boosting" healing, in the form of a sequential treatment. Understanding their composition enables their indications to be better targeted thereby improving the efficacy of the overall wound management. PMID:26763565

  20. Impregnated Netting Slows Infestation by Triatoma infestans

    PubMed Central

    Levy, Michael Z.; Quíspe-Machaca, Victor R.; Ylla-Velasquez, Jose L.; Waller, Lance A.; Richards, Jean M.; Rath, Bruno; Borrini-Mayori, Katty; del Carpio, Juan G. Cornejo; Cordova-Benzaquen, Eleazar; McKenzie, F. Ellis; Wirtz, Robert A.; Maguire, James H.; Gilman, Robert H.; Bern, Caryn

    2008-01-01

    We used sentinel animal enclosures to measure the rate of infestation by the Chagas disease vector, Triatoma infestans, in an urban community of Arequipa, Peru, and to evaluate the effect of deltamethrin-impregnated netting on that rate. Impregnated netting decreased the rate of infestation of sentinel enclosures (rate ratio, 0.23; 95% confidence interval, 0.13–0.38; P < 0.001), controlling for the density of surrounding vector populations and the distance of these to the sentinel enclosures. Most migrant insects were early-stage nymphs, which are less likely to carry the parasitic agent of Chagas disease, Trypanosoma cruzi. Spread of the vector in the city therefore likely precedes spread of the parasite. Netting was particularly effective against adult insects and late-stage nymphs; taking into account population structure, netting decreased the reproductive value of migrant populations from 443.6 to 40.5. Impregnated netting can slow the spread of T. infestans and is a potentially valuable tool in the control of Chagas disease. PMID:18840739

  1. Impregnated netting slows infestation by Triatoma infestans.

    PubMed

    Levy, Michael Z; Quíspe-Machaca, Victor R; Ylla-Velasquez, Jose L; Waller, Lance A; Richards, Jean M; Rath, Bruno; Borrini-Mayori, Katty; del Carpio, Juan G Cornejo; Cordova-Benzaquen, Eleazar; McKenzie, F Ellis; Wirtz, Robert A; Maguire, James H; Gilman, Robert H; Bern, Caryn

    2008-10-01

    We used sentinel animal enclosures to measure the rate of infestation by the Chagas disease vector, Triatoma infestans, in an urban community of Arequipa, Peru, and to evaluate the effect of deltamethrin-impregnated netting on that rate. Impregnated netting decreased the rate of infestation of sentinel enclosures (rate ratio, 0.23; 95% confidence interval, 0.13-0.38; P < 0.001), controlling for the density of surrounding vector populations and the distance of these to the sentinel enclosures. Most migrant insects were early-stage nymphs, which are less likely to carry the parasitic agent of Chagas disease, Trypanosoma cruzi. Spread of the vector in the city therefore likely precedes spread of the parasite. Netting was particularly effective against adult insects and late-stage nymphs; taking into account population structure, netting decreased the reproductive value of migrant populations from 443.6 to 40.5. Impregnated netting can slow the spread of T. infestans and is a potentially valuable tool in the control of Chagas disease. PMID:18840739

  2. Impregnated-electrode-type liquid metal ion source

    NASA Astrophysics Data System (ADS)

    Ishikawa, J.; Gotoh, Y.; Tsuji, H.; Takagi, T.

    We have developed an impregnated-electrode-type liquid metal ion source whose tip is a sintered-porous structure made of a refractory metal such as tungsten. By this structure the ratio of the liquid metal surface area facing the vacuum to the volume is low, which decreases useless metal evaporation from the surface. The maximum vapour pressure of the metal in operation for this ion source is 10 -1-10 0 Torr, which is 2-3 orders of magnitude higher than that for the needle type. Therefore, useful metal ions such as Ga +, Au +, Ag +, In +, Si 2+, Ge 2+, and Sb 2+ can be extracted from single element metals or alloys. The porous structure of the tip has also an effect on the positive control of the liquid metal flow rate to the tip head. Thus, a stable operation with a high current of a few hundreds of μA can be obtained together with a low current high brightness ion beam. Therefore, this ion source is suitable not only for microfocusing but also for a general use as a metal ion source.

  3. Multifunctional epoxy composites with natural Moroccan clays

    NASA Astrophysics Data System (ADS)

    Monsif, M.; Zerouale, A.; Kandri, N. Idrissi; Allali, F.; Sgarbossa, P.; Bartolozzi, A.; Tamburini, S.; Bertani, R.

    2016-05-01

    Two natural Moroccan clays, here firstly completely characterized, have been used as fillers without modification in epoxy composites. Mechanical properties resulted to be improved and a significant antibacterial activity is exhibited by the epoxy composite containing the C2 clay.

  4. Fracture, failure and compression behaviour of a 3D interconnected carbon aerogel (Aerographite) epoxy composite

    DOE PAGESBeta

    Chandrasekaran, S.; Liebig, W. V.; Mecklenberg, M.; Fiedler, B.; Smazna, D.; Adelung, R.; Schulte, K.

    2015-11-04

    Aerographite (AG) is a mechanically robust, lightweight synthetic cellular material, which consists of a 3D interconnected network of tubular carbon [1]. The presence of open channels in AG aids to infiltrate them with polymer matrices, thereby yielding an electrical conducting and lightweight composite. Aerographite produced with densities in the range of 7–15 mg/cm3 was infiltrated with a low viscous epoxy resin by means of vacuum infiltration technique. Detailed morphological and structural investigations on synthesized AG and AG/epoxy composite were performed by scanning electron microscopic techniques. Our present study investigates the fracture and failure of AG/epoxy composites and its energy absorptionmore » capacity under compression. The composites displayed an extended plateau region when uni-axially compressed, which led to an increase in energy absorption of ~133% per unit volume for 1.5 wt% of AG, when compared to pure epoxy. Preliminary results on fracture toughness showed an enhancement of ~19% in KIC for AG/epoxy composites with 0.45 wt% of AG. Furthermore, our observations of fractured surfaces under scanning electron microscope gives evidence of pull-out of arms of AG tetrapod, interface and inter-graphite failure as the dominating mechanism for the toughness improvement in these composites. These observations were consistent with the results obtained from photoelasticity experiments on a thin film AG/epoxy model composite.« less

  5. Fracture, failure and compression behaviour of a 3D interconnected carbon aerogel (Aerographite) epoxy composite

    SciTech Connect

    Chandrasekaran, S.; Liebig, W. V.; Mecklenberg, M.; Fiedler, B.; Smazna, D.; Adelung, R.; Schulte, K.

    2015-11-04

    Aerographite (AG) is a mechanically robust, lightweight synthetic cellular material, which consists of a 3D interconnected network of tubular carbon [1]. The presence of open channels in AG aids to infiltrate them with polymer matrices, thereby yielding an electrical conducting and lightweight composite. Aerographite produced with densities in the range of 7–15 mg/cm3 was infiltrated with a low viscous epoxy resin by means of vacuum infiltration technique. Detailed morphological and structural investigations on synthesized AG and AG/epoxy composite were performed by scanning electron microscopic techniques. Our present study investigates the fracture and failure of AG/epoxy composites and its energy absorption capacity under compression. The composites displayed an extended plateau region when uni-axially compressed, which led to an increase in energy absorption of ~133% per unit volume for 1.5 wt% of AG, when compared to pure epoxy. Preliminary results on fracture toughness showed an enhancement of ~19% in KIC for AG/epoxy composites with 0.45 wt% of AG. Furthermore, our observations of fractured surfaces under scanning electron microscope gives evidence of pull-out of arms of AG tetrapod, interface and inter-graphite failure as the dominating mechanism for the toughness improvement in these composites. These observations were consistent with the results obtained from photoelasticity experiments on a thin film AG/epoxy model composite.

  6. Fabrication and Characterization of Carbon Nanofiber Reinforced Shape Memory Epoxy (CNFR-SME) Composites

    NASA Astrophysics Data System (ADS)

    Wang, Jiuyang

    Shape memory polymers have a wide range of applications due to their ability to mechanically change shapes upon external stimulus, while their achievable composite counterparts prove even more versatile. An overview of literature on shape memory materials, fillers and composites was provided to pave a foundation for the materials used in the current study and their inherent benefits. This study details carbon nanofiber and composite fabrication and contrasts their material properties. In the first section, the morphology and surface chemistry of electrospun-poly(acrylonitrile)-based carbon nanofiber webs were tailored through various fabrication methods and impregnated with a shape memory epoxy. The morphologies, chemical compositions, thermal stabilities and electrical resistivities of the carbon nanofibers and composites were then characterized. In the second section, an overview of thermal, mechanical and shape memory characterization techniques for shape memory polymers and their composites was provided. Thermal and mechanical properties in addition to the kinetic and dynamic shape memory performances of neat epoxy and carbon nanofiber/epoxy composites were characterized. The various carbon nanofiber web modifications proved to have notable influence on their respective composite performances. The results from these two sections lead to an enhanced understanding of these carbon nanofiber reinforced shape memory epoxy composites and provided insight for future studies to tune these composites at will.

  7. Measuring the Electrical Properties of Epoxies

    NASA Technical Reports Server (NTRS)

    Sergent, J. E.

    1982-01-01

    Two techniques rapidly determine low-frequency resistivity of conductive epoxies and high-frequency dielectric properties of insulating epoxies. Conductive epoxy is molded in channels in plastic block. Four-point ohmmeter is used to apply current and sense voltage; it reads out resistance. Because mold has precise and stable dimensions, it produces accurate consistent measurements.

  8. New protective battle-dress impregnated against mosquito vector bites

    PubMed Central

    2010-01-01

    Background Mixing repellent and organophosphate (OP) insecticides to better control pyrethroid resistant mosquito vectors is a promising strategy developed for bed net impregnation. Here, we investigated the opportunity to adapt this strategy to personal protection in the form of impregnated clothes. Methods We compared standard permethrin impregnated uniforms with uniforms manually impregnated with the repellent KBR3023 alone and in combination with an organophosphate, Pirimiphos-Methyl (PM). Tests were carried out with Aedes aegypti, the dengue fever vector, at dusk in experimental huts. Results Results showed that the personal protection provided by repellent KBR3023-impregnated uniforms is equal to permethrin treated uniforms and that KBR3023/PM-impregnated uniforms are more protective. Conclusion The use of repellents alone or combined with OP on clothes could be promising for personal protection of military troops and travellers if residual activity of the repellents is extended and safety is verified. PMID:20809969

  9. Photovoltaic properties of PSi impregnated with eumelanin

    PubMed Central

    2012-01-01

    A bulk heterojunction of porous silicon and eumelanin, where the columnar pores of porous silicon are filled with eumelanin, is proposed as a new organic-inorganic hybrid material for photovoltaic applications. The addition of eumelanin, whose absorption in the near infrared region is significantly higher than porous silicon, should greatly enhance the light absorption capabilities of the empty porous silicon matrix, which are very low in the low energy side of the visible spectral range (from about 600 nm downwards). The experimental results show that indeed the photocarrier collection efficiency at longer wavelengths in eumelanin-impregnated samples is clearly higher with respect to empty porous silicon matrices. PMID:22776626

  10. METHOD OF IMPREGNATING A POROUS MATERIAL

    DOEpatents

    Steele, G.N.

    1960-06-01

    A method of impregnating a porous body with an inorganic uranium- containing salt is outlined and comprises dissolving a water-soluble uranium- containing salt in water; saturating the intercommunicating pores of the porous body with the salt solution; infusing ammonia gas into the intercommunicating pores of the body, the ammonia gas in water chemically reacting with the water- soluble uranium-containing salt in the water solvent to form a nonwater-soluble uranium-containing precipitant; and evaporating the volatile unprecipitated products from the intercommunicating pores whereby the uranium-containing precipitate is uniformly distributed in the intercommunicating peres of the porous body.

  11. Multilayer Impregnated Fibrous Thermal Insulation Tiles

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.; Rasky, Daniel J.; Szalai, Christine e.; Hsu, Ming-ta; Carroll, Joseph A.

    2007-01-01

    The term "secondary polymer layered impregnated tile" ("SPLIT") denotes a type of ablative composite-material thermal- insulation tiles having engineered, spatially non-uniform compositions. The term "secondary" refers to the fact that each tile contains at least two polymer layers wherein endothermic reactions absorb considerable amounts of heat, thereby helping to prevent overheating of an underlying structure. These tiles were invented to afford lighter-weight alternatives to the reusable thermal-insulation materials heretofore variously used or considered for use in protecting the space shuttles and other spacecraft from intense atmospheric-entry heating.

  12. Method of making thermally removable epoxies

    DOEpatents

    Loy, Douglas A.; Wheeler, David R.; Russick, Edward M.; McElhanon, James R.; Saunders, Randall S.

    2002-01-01

    A method of making a thermally-removable epoxy by mixing a bis(maleimide) compound to a monomeric furan compound containing an oxirane group to form a di-epoxy mixture and then adding a curing agent at temperatures from approximately room temperature to less than approximately 90.degree. C. to form a thermally-removable epoxy. The thermally-removable epoxy can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C. in a polar solvent. The epoxy material can be used in protecting electronic components that may require subsequent removal of the solid material for component repair, modification or quality control.

  13. Influence of impregnation method on metal retention of CCB-treated wood in slow pyrolysis process.

    PubMed

    Kinata, Silao Espérance; Loubar, Khaled; Bouslamti, Amine; Belloncle, Christophe; Tazerout, Mohand

    2012-09-30

    In the present work, the effects of copper, chromium and boron on the pyrolysis of wood and their distribution in the pyrolysis products were investigated. For this, the wood has been impregnated with chromium-copper-boron (CCB). In addition, to describe the effects of impregnation method, vacuum-pressure and dipping methods were also conducted. Thermogravimetric analysis (TGA) results show that an increase in the final residue and decrease in degradation temperature on both methods of treated wood compared to untreated wood. Then, slow pyrolysis experiments were carried out in a laboratory reactor. The mass balance of pyrolysis products is confirmed by TGA. Furthermore, the concentration of metals in the final residue is measured by inductively coupled plasma mass spectroscopy (ICP-MS). The results show that the final residue contains more than 45% of the initial amount of metal present in the treated wood. The phenomenon is more pronounced with vacuum-pressure treated wood. The heating values of pyrolysis products were analyzed. The heating value of charcoal obtained from treated and untreated wood is approximately same. But the heating value of tar from untreated wood is higher than the heating value of the tar from treated wood. PMID:22835770

  14. Epoxy Grout With Silica Thickener

    NASA Technical Reports Server (NTRS)

    Mcclung, C. E.

    1984-01-01

    Grout cures quickly, even in presence of hydraulic oil. Grout is mixture of aggregate particles, finely-divided silica, epoxy resin, and triethylenetetramine curing agent, with mixture containing about 85 percent silica and aggregate particle sand 15 percent resin and curing agent. Silica is thickening agent and keeps grout from sagging.

  15. Fire-retardant epoxy polymers

    NASA Technical Reports Server (NTRS)

    Akawie, R. I.; Bilow, N.; Giants, T. W.

    1978-01-01

    Phosphorus atoms in molecular structure of epoxies make them fire-retardant without degrading their adhesive strength. Moreover, polymers are transparent, unlike compounds that contain arsenic or other inorganics. They have been used to bond polyvinylfluoride and polyether sulfone films onto polyimide glass laminates.

  16. Characterisation of pore space geometry by 14C-PMMA impregnation - development work for in-situ studies

    NASA Astrophysics Data System (ADS)

    Kelokaski, M.; Sardini, P.; Möri, A.; Hellmuth, K.-H.; Siitari-Kauppi, M.

    2003-04-01

    The repository safety evaluation requires going from laboratory and surface-based field work underground to the repository level. Little is known about the changes of rock transport properties during sampling and decompression. Some recent investigations imply that non-conservative errors in transport properties derived from laboratory data may reach factors of 2--3. Recently at the Grimsel Test Site (GTS) progress with the in-situ resin impregnation using fluorescent dyes has been successful. During ten years time the PMMA method has been developed for characterisation of pore space geometry for low permeable granitic rocks. Rock matrices has been studied so far at laboratory circumstances. Impregnation with 14C-labelled methylmethacrylate (MMA) and autoradiography allows the investigation of the pattern of the spatial porosity distribution and quantitative measurement of mineral specific, local porosities. The quantitative petrography methods developed by University of Poitiers in combination with the PMMA method provide quantitative information on rock properties. The development of the PMMA method for in-situ to be tested at first at Grimsel Test Site and the necessary rock characterisation in the laboratory is reported here. The porosity parameters, hydraulic conductivity parameters, diffusive properties and mineralogical properties are measured with complementary methods. Highly conductive granite is impregnated with MMA using vacuum dried samples as well as water saturated ones. The intrusion pressure of MMA in water filled pores of different apertures will be the key point for the successful in-situ impregnation. Details of the development work will be given.

  17. Enhanced critical currents by high-pressure impregnation of 1-2-3 systems with normal conductors

    NASA Astrophysics Data System (ADS)

    Ortabasi, Ugur; Watson, J. H.; Black, James A.

    1990-10-01

    In this paper we present the preliminary analytical and experimental results of a novel low temperature metal impregnation method to increase the critical currents in thick film and bulk HTSC materials. The method described results in a structurally more controllable and effective microcomposite than the ones obtained with metal- and metal-oxide precursors. The physical procedure involves the infiltration of the interstices of the porous, fully treated superconductor with low-melting point, low T superconductor under high pressure. Deep penetration of the metal into the granular superconducting matrix creates large surface areas of strong Proximity Effect. Improved intergrain coupling increases the DC Josephson current and therefore J, the critical current. Prior to the experimental work a theoretical study was conducted. Indium was chosen as the impregnation material. Computations showed.that the infiltrated system should have at least a four orders higher critical current (4.47 x 104 A/cm2) as compared to the same array with vacuum barriers of 20A thickness between the grains (0.31 A/cm2). On the experimental side, high T, porous, 1-2-3 samples impregnated with gallium exhibited very low contact resistance (2. 1 x 10-6 cm2) at 85°K, a value about two orders of magnitude better than the 1-2-3 systems containing intergranular silver. Further experiments with indium impregnated samples are planned. This new low temperature method allows the manufacture of highly flexible wires and films when used with suitable substrates.

  18. Impregnation of Fenofibrate on mesoporous silica using supercritical carbon dioxide.

    PubMed

    Bouledjouidja, Abir; Masmoudi, Yasmine; Van Speybroeck, Michiel; Schueller, Laurent; Badens, Elisabeth

    2016-02-29

    Low oral bioavailability can be circumvented by the formulation of the poorly water soluble drug in ordered mesoporous silica (OMS-L-7). Fenofibrate is an orally administered, poorly water-soluble active pharmaceutical ingredient (API), used clinically to lower lipid levels. Fenofibrate was loaded into silica using two methods: incipient wetness and supercritical impregnation. This study investigates the impact of loading and the impact of varying supercritical carbon dioxide (scCO2) processing conditions. The objective is to enhance Fenofibrate loading into silica while reducing degree of the drug crystallinity, so as to increase the drug's dissolution rate and its bioavailability. The comparison of both impregnation processes was made in terms of impregnation yields and duration as well as physical characterization of the drug. While incipient wetness method led to a Fenofibrate loading up to 300 mgdrug/gsilica in 48 h of impregnation, the supercritical impregnation method yielded loading up to 485 mgdrug/gsilica in 120 min of impregnation duration, at 16 MPa and 308 K, with a low degree of crystallinity (about 1%) comparable to the crystallinity observed via the solvent method. In addition to the enhancement of impregnation efficiency, the supercritical route provides a solvent-free alternative for impregnation. PMID:26732521

  19. IMPREGNATION OF CONCRETE PIPE FOR CORROSION RESISTANCE AND STRENGTH IMPROVEMENT

    EPA Science Inventory

    The program was undertaken to field test concrete sewer pipe that had been impregnated with sulfur or hydrofluoric acid. This program was a follow-on to a previous laboratory study sponsored by EPA entitled, Impregnation of Concrete Pipe, 11024EQE 06/71. In a subsequent grant ext...

  20. Lessons from the experimental stage of the two-step vacuum-microwave method for histoprocessing.

    PubMed

    Bosch, M M; Wals-Paap, C H; Boon, M E

    1996-01-01

    The two-step vacuum-microwave method simplifies and shortens histoprocessing. Acting margins are small so that fine-tuning is required. Temperature, vacuum and time should be in perfect balance. If not, a "cooking" effect (too high temperature) can easily be detected in the epidermis of skin biopsies. An adverse vacuum effect (when vacuum is obtained too abruptly) produces clefts, first observed where different tissues are contiguous. When time is set too shortly, impregnation will be insufficient, which is best seen in kidney tissue. The lessons from these observations may help future users to be troubleshooters while installing their unit. PMID:9090992

  1. Reliability of mechanical properties for bulk superconductors with resin impregnation

    NASA Astrophysics Data System (ADS)

    Tomita, M.; Murakami, M.; Katagiri, K.

    2002-10-01

    We have studied the mechanical properties of Y-Ba-Cu-O rods with and without resin impregnation using a three-point bending test. The reliability of resin impregnation was evaluated using the Weibull distribution function. The Weibull coefficient for the resin-impregnated bulk was 16.03 at 77 K. In order to obtain more reliable data, the bending strengths were converted into the tensile strengths by considering a difference in the effective volume. It was confirmed that the tensile strengths of bulk YBCO could be enhanced by more than four times with resin impregnation. It was also confirmed that resin-impregnated Y-Ba-Cu-O exhibited a high Weibull coefficient and thus a high reliability for practical engineering applications.

  2. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  3. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1982-01-01

    Results of a program designed to develop tough imide modified epoxy (IME) resins cured by bisimide amine (BIA) hardeners are presented. State of the art epoxy resin, MY720, was used. Three aromatic bisimide amines and one aromatic aliphatic BIA were evaluated. BIA's derived from 6F anhydride (3,3 prime 4,4 prime-(hexafluoro isopropyl idene) bis (phthalic anhydride) and diamines, 3,3 prime-diam nodiphenyl sulfone (3,3 prime-DDS), 4,4 prime-diamino diphenyl sulfone (4,4 prime-DDS), 1.12-dodecane diamine (1,12-DDA) were used. BIA's were abbreviated 6F-3,3 prime-DDS, 6F-4,4 prime-DDS, 6F-3,3 prime-DDS-4,4 prime DDS, and 6F-3,3 prime-DDS-1,12-DDA corresponding to 6F anhydride and diamines mentioned. Epoxy resin and BIA's (MY720/6F-3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA and a 50:50 mixture of a BIA and parent diamine, MY720/6F-3,3 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA/3,3 prime-DDS were studied to determine effect of structure and composition. Effect of the addition of two commercial epoxies, glyamine 200 and glyamine 100 on the properties of several formulations was evaluated. Bisimide amine cured epoxies were designated IME's (imide modified epoxy). Physical, thermal and mechanical properties of these resins were determined. Moisture absorption in boiling water exhibited by several of the IME's was considerably lower than the state of the art epoxies (from 3.2% for the control and state of the art to 2.0 wt% moisture absorption). Char yields are increased from 20% for control and state of the art epoxies to 40% for IME resins. Relative toughness characteristics of IME resins were measured by 10 deg off axis tensile tests of Celion 6000/IME composites. Results show that IME's containing 6F-3,3 prime-DDS or 6F-3,3 prime-DDS-1,12-DDA improved the "toughness" characteristics of composites by about 35% (tensile strength), about 35% (intralaminar shear

  4. Evaluation of experimental epoxy monomers

    NASA Technical Reports Server (NTRS)

    Hodges, W. T.; St.clair, T. L.; Pratt, J. R.; Ficklin, R.

    1985-01-01

    Future generation aircraft need higher performance polymer matrices to fully achieve the weight savings possible with composite materials. New resins are being formulated in an effort to understand basic polymer behavior and to develop improved resins. Some polymer/curing agent combinations that could be useful are difficult to process. In the area of epoxies, a major problem is that some components have physical properties which make them difficult to utilize as matrix resins. A previous study showed that the use of ultrasonic energy can be advantageous in the mixing of curing agents into a standard epoxy resin, such as MY 720 (Ciba-Geigy designation). This work is expanded to include three novel epoxides.

  5. Flammability of Epoxy Resins Containing Phosphorus

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Thompson, C. M.; Smith, J. G.; Connell, J. W.; Hinkley, J. A.

    2005-01-01

    As part of a program to develop fire-resistant exterior composite structures for future subsonic commercial and general aviation aircraft, flame-retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured neat epoxy formulations were characterized by thermogravimetric analysis, propane torch test, elemental analysis, microscale combustion calorimetry, and fire calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness and compressive strength of several cured formulations showed no detrimental effect due to phosphorus content. The chemistry and properties of these new epoxy formulations are discussed.

  6. Epoxy resins in the construction industry.

    PubMed

    Spee, Ton; Van Duivenbooden, Cor; Terwoert, Jeroen

    2006-09-01

    Epoxy resins are used as coatings, adhesives, and in wood and concrete repair. However, epoxy resins can be highly irritating to the skin and are strong sensitizers. Some hardeners are carcinogenic. Based on the results of earlier Dutch studies, an international project on "best practices,"--Epoxy Code--with epoxy products was started. Partners were from Denmark, Germany, the Netherlands, and the UK. The "Code" deals with substitution, safe working procedures, safer tools, and skin protection. The feasibility of an internationally agreed "ranking system" for the health risks of epoxy products was studied. Such a ranking system should inform the user of the harmfulness of different epoxies and stimulate research on less harmful products by product developers. PMID:17119222

  7. Vacuum phenomenon.

    PubMed

    Yanagawa, Youichi; Ohsaka, Hiromichi; Jitsuiki, Kei; Yoshizawa, Toshihiko; Takeuchi, Ikuto; Omori, Kazuhiko; Oode, Yasumasa; Ishikawa, Kouhei

    2016-08-01

    This article describes the theory of the formation of the vacuum phenomenon (VP), the detection of the VP, the different medical causes, the different locations of the presentation of the VP, and the differential diagnoses. In the human body, the cavitation effect is recognized on radiological studies; it is called the VP. The mechanism responsible for the formation of the VP is as follows: if an enclosed tissue space is allowed to expand as a rebound phenomenon after an external impact, the volume within the enclosed space will increase. In the setting of expanding volume, the pressure within the space will decrease. The solubility of the gas in the enclosed space will decrease as the pressure of the space decreases. Decreased solubility allows a gas to leave a solution. Clinically, the pathologies associated with the VP have been reported to mainly include the normal joint motion, degeneration of the intervertebral discs or joints, and trauma. The frequent use of CT for trauma patients and the high spatial resolution of CT images might produce the greatest number of chances to detect the VP in trauma patients. The VP is observed at locations that experience a traumatic impact; thus, an analysis of the VP may be useful for elucidating the mechanism of an injury. When the VP is located in the abdomen, it is important to include perforation of the digestive tract in the differential diagnosis. The presence of the VP in trauma patients does not itself influence the final outcome. PMID:27147527

  8. High char imide-modified epoxy matrix resins. [for graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D.

    1979-01-01

    The synthesis of a class of bis(imide-amine) curing agents for epoxy matrix resins is discussed. Glass transition temperatures and char yield data of an epoxy cured with various bis(imide-amines) are presented. The room temperature and 350 F mechanical properties, and char yields of unidirectional graphite fiber laminates prepared with conventional epoxy and imide-modified epoxy resins are presented.

  9. Nonmetallic materials handbook. Volume 1: Epoxy materials

    NASA Technical Reports Server (NTRS)

    Podlaseck, S. E.

    1979-01-01

    Thermochemical and other properties data is presented for the following types of epoxy materials: adhesives, coatings finishes, inks, electrical insulation, encapsulants, sealants, composite laminates, tapes, and thermal insulators.

  10. Lightweight Forms for Epoxy/Aramid Ducts

    NASA Technical Reports Server (NTRS)

    Mix, E. W.; Anderson, A. N.; Bedford, Donald L., Sr.

    1986-01-01

    Aluminum mandrels easy to remove. Lightweight aluminum mandrel for shaping epoxy/aramid ducts simplifies and speeds production. In new process, glass-reinforced epoxy/aramid cloth wrapped on aluminum mandrel. Stainless-steel flanges and other hardware fitted on duct and held by simple tooling. Entire assembly placed in oven to cure epoxy. After curing, assembly placed in alkaline bath dissolves aluminum mandrel in about 4 hours. Epoxy/aramid shell ready for use as duct. Aluminum mandrel used to make ducts of various inside diameters up to 6 in. Standard aluminum forms used. Conventional tube-bending equipment produces requisite curves in mandrels.

  11. Cold-impregnated aluminium. A new source of nickel exposure.

    PubMed

    Lidén, C

    1994-07-01

    A new technique for finishing anodized aluminium was introduced during the 1980s--cold impregnation with nickel. Nickel is available on the surface of cold-impregnated aluminium, as shown by the dimethylglyoxime test. Chemical analysis with EDXA showed that nickel was in the form of NiSO4. A case of work-related allergic contact dermatitis in an engraver with nickel allergy is reported. It transpired that the patient was exposed to nickel in connection with aluminium. It is concluded that cold-impregnated aluminium is a new source of nickel exposure, probably previously unknown to dermatologists. PMID:7924288

  12. Drug loading of foldable commercial intraocular lenses using supercritical impregnation.

    PubMed

    Bouledjouidja, A; Masmoudi, Y; Sergent, M; Trivedi, V; Meniai, A; Badens, E

    2016-03-16

    The drug delivery through intraocular lenses (IOLs) allows the combination of cataract surgery act and postoperative treatment in a single procedure. In order to prepare such systems, "clean" supercritical CO2 processes are studied for loading commercial IOLs with ophthalmic drugs. Ciprofloxacin (CIP, an antibiotic) and dexamethasone 21-phosphate disodium (DXP, an anti-inflammatory drug) were impregnated into foldable IOLs made from poly-2-hydroxyethyl methacrylate (P-HEMA). A first pre-treatment step was conducted in order to remove absorbed conditioning physiological solution. Supercritical impregnations were then performed by varying the experimental conditions. In order to obtain transparent IOLs and avoid the appearance of undesirable foaming, it was necessary to couple slow pressurization and depressurization phases during supercritical treatments. The impregnation yields were determined through drug release studies. For both drugs, release studies show deep and reproducible impregnation for different diopters. For the system P-HEMA/CIP, a series of impregnations was performed to delimit the experimental range at two pressures (80 and 200 bar) in the presence or absence of ethanol as a co-solvent for two diopters (+5.0 D and +21.0 D). Increase in pressure in the absence of a co-solvent resulted in improved CIP impregnation. The addition of ethanol (5 mol%) produced impregnation yields comparable to those obtained at 200 bar without co-solvent. A response surface methodology based on experimental designs was used to study the influence of operating conditions on impregnation of IOLs (+21.0 D) in the absence of co-solvent. Two input variables with 5 levels each were considered; the pressure (80-200 bar) and the impregnation duration (30-240 min). CIP impregnation yields ranging between 0.92 and 3.83 μg CIP/mg IOL were obtained from these experiments and response surface indicated the pressure as a key factor in the process. The DXP impregnation in P-HEMA was

  13. Sticky superhydrophobic filter paper developed by dip-coating of fluorinated waterborne epoxy emulsion

    NASA Astrophysics Data System (ADS)

    Huang, Xiangxuan; Wen, Xiufang; Cheng, Jiang; Yang, Zhuoru

    2012-09-01

    A superhydrophobic and superoleophilic coating for oil filter paper was synthesized based on waterborne bisphenol-A novolac epoxy emulsion. The benzoic acid (BA) and maleic anhydride (MA) were used as modification agents to give the epoxy resin hydrophilic groups (carboxyl) and Cdbnd C double bonds. And the fluorinated waterborne epoxy emulsion was prepared by free radical solution polymerization of dodecafluoroheptyl methacrylate (DFMA) monomer. The covalent bound low free energy fluorinated chains in the monomer reduce the surface energy of solidification polymers sufficiently to give rise to superhydrophobic behavior while conserving superoleophilicity. Surfaces prepared show a sticky property, which exhibits a static water contact angle of 152° for a 5 μL droplet that does not slid off even when the sample is held upside down. This synthetic emulsion is simple and convenient as impregnating agent for filter paper, which can be considered as a suitable candidate for various substrates such as cotton textiles, E-glass and artificial fiber, and so on.

  14. Differences in interfacial bond strengths of graphite fiber-epoxy resin composites

    NASA Technical Reports Server (NTRS)

    Needles, H. L.

    1985-01-01

    The effect of epoxy-size and degree of cure on the interfacial bonding of an epoxy-amine-graphite fiber composite system is examined. The role of the fiber-resin interface in determining the overall mechanical properties of composites is poorly understood. A good interfacial adhesive bond is required to achieve maximum stress transfer to the fibers in composites, but at the same time some form of energy absorbing interfacial interaction is needed to achieve high fracture toughening. The incompatibility of these two processes makes it important to understand the nature and basic factors involved at the fiber-resin interface as stress is applied. The mechanical properties including interlaminar shear values for graphite fiber-resin composites are low compared to glass and boron-resin composites. These differences have been attributed to poor fiber-matrix adhesion. Graphite fibers are commonly subjected to post-treatments including application of organic sizing in order to improve their compatibility with the resin matrix and to protect the fiber tow from damage during processing and lay-up. In such processes, sized graphite fiber tow is impregnated with epoxy resin and then layed-up i nto the appropriate configuration. Following an extended ambient temperature cure, the graphite-resin composite structure is cured at elevated temperature using a programmed temperature sequence to cure and then cool the product.

  15. Note: Ultra-low birefringence dodecagonal vacuum glass cell

    NASA Astrophysics Data System (ADS)

    Brakhane, Stefan; Alt, Wolfgang; Meschede, Dieter; Robens, Carsten; Moon, Geol; Alberti, Andrea

    2015-12-01

    We report on an ultra-low birefringence dodecagonal glass cell for ultra-high vacuum applications. The epoxy-bonded trapezoidal windows of the cell are made of SF57 glass, which exhibits a very low stress-induced birefringence. We characterize the birefringence Δn of each window with the cell under vacuum conditions, obtaining values around 10-8. After baking the cell at 150 °C, we reach a pressure below 10-10 mbar. In addition, each window is antireflection coated on both sides, which is highly desirable for quantum optics experiments and precision measurements.

  16. Note: Ultra-low birefringence dodecagonal vacuum glass cell

    SciTech Connect

    Brakhane, Stefan Alt, Wolfgang; Meschede, Dieter; Robens, Carsten; Moon, Geol; Alberti, Andrea

    2015-12-15

    We report on an ultra-low birefringence dodecagonal glass cell for ultra-high vacuum applications. The epoxy-bonded trapezoidal windows of the cell are made of SF57 glass, which exhibits a very low stress-induced birefringence. We characterize the birefringence Δn of each window with the cell under vacuum conditions, obtaining values around 10{sup −8}. After baking the cell at 150 °C, we reach a pressure below 10{sup −10} mbar. In addition, each window is antireflection coated on both sides, which is highly desirable for quantum optics experiments and precision measurements.

  17. Fracture in Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Chavez-Garcia, Jose; Pham, John

    2013-01-01

    This paper describes the development of a novel technique to understand the failure mechanisms inside thermal protection materials. The focus of this research is on the class of materials known as phenolic impregnated carbon ablators. It has successfully flown on the Stardust spacecraft and is the thermal protection system material chosen for the Mars Science Laboratory and SpaceX Dragon spacecraft. Although it has good thermal properties, structurally, it is a weak material. To understand failure mechanisms in carbon ablators, fracture tests were performed on FiberForm(Registered TradeMark) (precursor), virgin, and charred ablator materials. Several samples of these materials were tested to investigate failure mechanisms at a microstructural scale. Stress-strain data were obtained simultaneously to estimate the tensile strength and toughness. It was observed that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred carbon ablators, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred carbon ablators showed greater strength values compared with FiberForm samples, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  18. Monoethanolamine Impregnation of Titanosilicate Zeolite ETS-10.

    PubMed

    Tanchuk, Brenden; Sawada, James A; Kuznicki, Steven M

    2015-03-01

    ETS-10, a mixed octahedral/tetrahedral titanosilicate molecular sieve, has a unique architecture where its 0.8 nm pores are lined exclusively with silicon which imparts a high degree of chemical stability, yet the anionic framework can be modified by cation exchange. In this work, the hydrogen-exchanged form of ETS-10 was impregnated with monoethanolamine and the thermal stability and CO2 adsorption characteristics were analyzed. The surface area of the material was characterized by N2 physisorption, the thermal stability of the material assessed through TG-MS experiments, the CO2 capacity was measured via static volumetric adsorption experiments, and the influence of moisture as a carbamate promoter was investigated through a series of gravimetric CO2 adsorption/desorption cycling experiments. Several measurements converge on ~7 wt% monoethanolamine loading which occupies about half of the available pore volume of the sieve. The results suggest that the monoethanolamine is so effectively retained by the molecular sieve that, while the amine is effectively immobilized, under both humid and dry process streams the monoethanolamine is either chemically or sterically hindered and is unable to react measurable quantities of CO2. PMID:26413705

  19. Fracture in Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Chavez-Garcia, Jose F.

    2011-01-01

    The thermal protection materials used for spacecraft heat shields are subjected to various thermal-mechanical loads during an atmospheric entry which can threaten the structural integrity of the system. This paper discusses the development of a novel technique to understand the failure mechanisms inside thermal protection materials. The focus of research is Phenolic Impregnated Carbon Ablator (PICA). It has successfully flown on the Stardust spacecraft and is the TPS material chosen for the Mars Science Laboratory (MSL) and Dragon spacecraft. Although PICA has good thermal properties, structurally, it is a weak material. In order to thoroughly understand failure in PICA, fracture tests were performed on FiberForm* (precursor of PICA), virgin and charred PICA materials. Several samples of these materials were tested to investigate failure mechanisms at a microstructural scale. Stress-strain data were obtained simultaneously to estimate the fracture toughness. It was found that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred PICA, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred PICA showed greater strength values compared to FiberForm coupons, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  20. Fracture in Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Chavez-Garcia, Jose F.

    2011-01-01

    The thermal protection materials used for spacecraft heat shields are subjected to various thermal-mechanical loads during an atmospheric reentry which can threaten the structural integrity of the system. This paper discusses the development of a novel technique to understand the failure mechanisms inside the thermal protection material, Phenolic Impregnated Carbon Ablator (PICA). PICA has successfully flown on the Stardust spacecraft and was the TPS material chosen for the Mars Science Laboratory (MSL), that will fly in 2011. Although PICA has good thermal properties, structurally, it is a weak material. To thoroughly understand failure in PICA, experiments were performed using FiberForm(Registered TradeMark) (precursor of PICA), virgin and furnace-charred PICA. Several small samples were tested inside an electron microscope to investigate the failure mechanisms. Micrographs were obtained before and after the failure in order to study crack initiation and growth. Videos were obtained to capture failure mechanisms in real time. Stress-strain data was obtained simultaneously for all the samples with the help of a data acquisition system, integrated to the mechanical stages. It was found that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred PICA, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred PICA showed greater strength values compared to FiberForm coupons, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  1. EPOXI at Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    A'Hearn, Michael F.; Belton, Michael J. S.; Delamere, W. Alan; Feaga, Lori M.; Hampton, Donald; Kissel, Jochen; Klaasen, Kenneth P.; McFadden, Jessica M.; Meech, Karen J.; Melosh, H. Jay; Schultz, Peter H.; Sunshine, Jessica M.; Thomas, Peter C.; Veverka, Joseph; Wellnitz, Dennis D.; Yeomans, Donald K.; Besse, Sebastien; Bodewits, Dennis; Bowling, Timothy J.; Carcish, Brian T.; Collins, Steven M.; Farnham, Tony F.; Groussin, Oliver; Hermalyn, Brendan; Kelley, Michael S.

    2011-01-01

    Understanding how comets work, i,e., what drives their activity, is crucial to using comets to study the early solar system. EPOXI flew past comet 103P/Hartley 2, one with an unusually small but very active nucleus. taking both images and spectra. Unlike large, relatively inactive nuclei, this nncleus is outgassing primarily due to CO2, which drags chnnks of ice out of the nnclens. It also shows significant differences in the relative abundance of volatiles from various parts of the nucleus.

  2. Ice adhesion on lubricant-impregnated textured surfaces.

    PubMed

    Subramanyam, Srinivas Bengaluru; Rykaczewski, Konrad; Varanasi, Kripa K

    2013-11-01

    Ice accretion is an important problem and passive approaches for reducing ice-adhesion are of great interest in various systems such as aircrafts, power lines, wind turbines, and oil platforms. Here, we study the ice-adhesion properties of lubricant-impregnated textured surfaces. Force measurements show ice adhesion strength on textured surfaces impregnated with thermodynamically stable lubricant films to be higher than that on surfaces with excess lubricant. Systematic ice-adhesion measurements indicate that the ice-adhesion strength is dependent on texture and decreases with increasing texture density. Direct cryogenic SEM imaging of the fractured ice surface and the interface between ice and lubricant-impregnated textured surface reveal stress concentrators and crack initiation sites that can increase with texture density and result in lowering adhesion strength. Thus, lubricant-impregnated surfaces have to be optimized to outperform state-of-the-art icephobic treatments. PMID:24070257

  3. REDFORD CORE MAKING MACHINE. RESIN IMPREGNATED SAND IS BLOWN INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REDFORD CORE MAKING MACHINE. RESIN IMPREGNATED SAND IS BLOWN INTO THE HEATED CORE BOX THAT SETS THE RESIN CREATING THE HARDENED CORE SHOWN HERE. - Southern Ductile Casting Company, Core Making, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  4. Reducing Sliding Friction with Liquid-Impregnated Surfaces

    NASA Astrophysics Data System (ADS)

    Habibi, Mohammad; Collier, C. Patrick; Boreyko, Jonathan; Nature Inspired Fluids; Interfaces Team; CenterNanophase Materials Sciences Team

    2015-11-01

    Liquid-impregnated surfaces are fabricated by infusing a lubricating liquid into the micro/nano roughness of a textured substrate, such that the surface is slippery for any deposited liquid immiscible with the lubricant. To date, liquid-impregnated surfaces have almost exclusively focused on repelling liquids by minimizing the contact angle hysteresis. Here, we demonstrate that liquid-impregnated surfaces are also capable of reducing sliding friction for solid objects. Ordered arrays of silicon micropillars were infused with lubricating liquids varying in viscosity by two orders of magnitude. Five test surfaces were used: two different micropillared surfaces with and without liquid infusion and a smooth, dry control surface. The static and kinetic coefficients of friction were measured using a polished aluminum cube as the sliding object. Compared to the smooth control surface, the sliding friction was reduced by at least a factor of two on the liquid-impregnated surfaces.

  5. Water transport into epoxy resins and composites

    SciTech Connect

    Tsou, H.S.

    1987-01-01

    The processing-property relationships were established for the epoxy system of tetraglycidyl 4,4'-diaminodiphenyl methane (TGDDM) cured with diaminodiphenyl sulfone (DDS). The TGDDM-DDS epoxy system was selected for analysis as the ensuing polymer matrix is most common in high-performance fiber-reinforced epoxy composites. Experiments on water transport in epoxy resins with varying compositions were performed and a relaxation-coupled transport behavior was observed in these epoxy resins. By post-curing vitrified epoxy resins, the additional free volume usually measured in them was removed and maximum water uptake was reduced. Since epoxy resins were in a quasi-equilibrium glassy state after the post-cure, Fick's law with a constant diffusion coefficient could adequately describe the water sorption behavior. A network formation model based on the branching theory was developed, taking into account the difference in reactivities of primary and secondary amines and the etherification reaction. Using this network formation model, water uptake in post-cured epoxy resins was found to be proportional to tertiary amine concentration.

  6. Thermoset epoxy polymers from renewable resources

    DOEpatents

    East, Anthony; Jaffe, Michael; Zhang, Yi; Catalani, Luiz H

    2009-11-17

    Novel thermoset epoxy polymers using the bisglycidyl ethers of anhydrosugars, such as isosorbide, isomannide, and isoidide, are disclosed. The bisglycidyl ethers are useful as substitutes for bisphenol A in the manufacture of thermoset epoxy ethers. The anhydrosugars are derived from renewable sources and the bisglycidyl ethers are not xenoestrogenic and the thermoset curing agents are likewise derived form renewable resources.

  7. Natural vacuum electronics

    NASA Technical Reports Server (NTRS)

    Leggett, Nickolaus

    1990-01-01

    The ambient natural vacuum of space is proposed as a basis for electron valves. Each valve is an electron controlling structure similiar to a vacuum tube that is operated without a vacuum sustaining envelope. The natural vacuum electron valves discussed offer a viable substitute for solid state devices. The natural vacuum valve is highly resistant to ionizing radiation, system generated electromagnetic pulse, current transients, and direct exposure to space conditions.

  8. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  9. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1984-01-01

    The results of a program designed to develop tough imide modified epoxy resins cured by bisimide amine (BIA) hardeners are described. State-of-the-art epoxides MY720 and DER383 were used, and four bismide amines were evaluated. These were the BIA's derived from the 6F anhydride (4,4'-(hexafluoroisopropylidene) bis(phthalic anhydride) and the diamines 3,3'-diaminodiphynyl sulfone, 4,4'-oxygianiline, 4,4'-methylene dianiline, and 1,12-dodecane diamine. A key intermediate, designated 6F anhydride, is required for the synthesis of the bisimide amines. Reaction parameters to synthesize a precursor to the 6F anhydride (6FHC) in high yields were investigated. The catalyst trifluoromethane sulfonic acid was studied. Although small scale runs yielded the 6FHC in 50 percent yield, efforts to ranslate these results to a larger scale synthesis gave the 6FHC in only 9 percent yield. Results show that the concept of using bisimide amine as curing agents to improve the toughness properties of epoxies is valid.

  10. A Model for Tow Impregnation and Consolidation for Partially Impregnated Thermoset Prepregs

    SciTech Connect

    John J. Gangloff Jr; Shatil Sinha; Suresh G. Advani

    2011-05-23

    The formation and transport of voids in composite materials remains a key research area in composite manufacturing science. Knowledge of how voids, resin, and fiber reinforcement propagate throughout a composite material continuum from green state to cured state during an automated tape layup process is key to minimizing defects induced by void-initiated stress concentrations under applied loads for a wide variety of composite applications. This paper focuses on modeling resin flow in a deforming fiber tow during an automated process of partially impregnated thermoset prepreg composite material tapes. In this work, a tow unit cell based model has been presented that determines the consolidation and impregnation of a thermoset prepreg tape under an input pressure profile. A parametric study has been performed to characterize the behavior of varying tow speed and compaction forces on the degree of consolidation. Results indicate that increased tow consolidation is achieved with slower tow speeds and higher compaction forces although the relationship is not linear. The overall modeling of this project is motivated to address optimization of the 'green state' composite properties and processing parameters to reduce or eliminate 'cured state' defects, such as porosity and de-lamination. This work is partially funded by the Department of Energy under Award number DE-EE0001367.

  11. Warping of unsymmetric cross-ply graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.

    1981-01-01

    Warping in unsymmetric graphite/epoxy laminates was studied with particular attention given to the change of residual stresses resulting from long term environmental exposure. Square, cured prepreg sheets were measured for edge deflection with a cathetometer, then quartered and remeasured. Two postcuring durations were then used, 7.5 and one hr at 177 C; varying cooldown rates after curing were used for other samples, and one set was stored in vacuum at 75 C. Maximum deflections and weight changes were measured periodically at room temperature. Average curvatures, the effect of postcure, and the effect of long-term exposure were determined. Larger panels exhibited cylindrical warping and smaller panels underwent anticlastic warping. The deflections were related to weight changes, i.e. moisture absorption, and the lower the moisture content, the higher the deflection. Relaxation of residual stresses at 75 C was neglibible after 220 days.

  12. Fiberglass epoxy laminate fatigue properties at 300 and 20 K

    NASA Technical Reports Server (NTRS)

    Toth, J. M., Jr.; Bailey, W. J.; Boyce, D. A.

    1985-01-01

    A subcritical liquid hydrogen orbital storage and supply experiment is being designed for flight in the Space Shuttle cargo bay. The Cryogenic Fluid Management Experiment (CFME) includes a liquid hydrogen tank supported in a vacuum jacket by two fiberglass epoxy composite trunnion mounts. The ability of the CFME to last for the required seven missions depends primarily on the fatigue life of the composite trunnions at cryogenic temperatures. To verify the trunnion design and test the performance of the composite material, fatigue property data at 300 and 20 K were obtained for the specific E-glass fabric/S-glass unidirectional laminate that will be used for the CFME trunnions. The fatigue life of this laminate was greater at 20 K than at 300 K, and was satisfactory for the intended application.

  13. Pyrolysis of phenolic impregnated carbon ablator (PICA).

    PubMed

    Bessire, Brody K; Lahankar, Sridhar A; Minton, Timothy K

    2015-01-28

    Molar yields of the pyrolysis products of thermal protection systems (TPSs) are needed in order to improve high fidelity material response models. The volatile chemical species evolved during the pyrolysis of a TPS composite, phenolic impregnated carbon ablator (PICA), have been probed in situ by mass spectrometry in the temperature range 100 to 935 °C. The relative molar yields of the desorbing species as a function of temperature were derived by fitting the mass spectra, and the observed trends are interpreted in light of the results of earlier mechanistic studies on the pyrolysis of phenolic resins. The temperature-dependent product evolution was consistent with earlier descriptions of three stages of pyrolysis, with each stage corresponding to a temperature range. The two main products observed were H2O and CO, with their maximum yields occurring at ∼350 °C and ∼450 °C, respectively. Other significant products were CH4, CO2, and phenol and its methylated derivatives; these products tended to desorb concurrently with H2O and CO, over the range from about 200 to 600 °C. H2 is presumed to be the main product, especially at the highest pyrolysis temperatures used, but the relative molar yield of H2 was not quantified. The observation of a much higher yield of CO than CH4 suggests the presence of significant hydroxyl group substitution on phenol prior to the synthesis of the phenolic resin used in PICA. The detection of CH4 in combination with the methylated derivatives of phenol suggests that the phenol also has some degree of methyl substitution. The methodology developed is suitable for real-time measurements of PICA pyrolysis and should lend itself well to the validation of nonequilibrium models whose aim is to simulate the response of TPS materials during atmospheric entry of spacecraft. PMID:25490209

  14. Fracture Resistance of Composite Fixed Partial Dentures Reinforced with Pre-impregnated and Non-impregnated Fibers

    PubMed Central

    Mosharraf, Ramin; Torkan, Sepideh

    2012-01-01

    Background and aims The mechanical properties of fiber-reinforced composite fixed partial dentures (FPDs) are af-fected by fiber impregnation. The aim of this in vitro study was to compare the fracture resistance of composite fixed partialdentures reinforced with pre-impregnated and non-impregnated fibers. Materials and methods Groups (n=5) of three-unit fiber-reinforced composite FPDs (23 mm in length) from maxillary second premolar to maxillary second molar were fabricated on two abutments with pontic width of 12 mm. One group was fabricated as the control group with composite (Gradia) and the other two groups were fabricated with composite (Gradia) reinforced with pre-impregnated fiber (Fibrex ribbon) and non-impregnated fiber (Fiber braid), respectively. The specimens were stored in distilled water for one week at 37°C and then tested in a universal testing machine by means of a three-point bending test. Statistical analysis consisted of one-way ANOVA and a post hoc Scheffé’s test for the test groups (α=0.05). Results Fracture resistance (N) differed significantly between the control group and the other two groups (P<0.001), but there were no statistically significant differences between the pre-impregnated and non-impregnated groups (P=0.565). The degree of deflection measured (mm) did not differ significantly between the three groups (P=0.397), yet the mean deflection measured in pre-impregnated group was twice as that in the other two groups. Conclusion Reinforcement of composite with fiber might considerably increase the fracture resistance of FPDs; how-ever, the type of the fiber used resulted in no significant difference in fracture resistance of FPD specimens. PMID:22991628

  15. Novel Diels-Alder based self-healing epoxies for aerospace composites

    NASA Astrophysics Data System (ADS)

    Coope, T. S.; Turkenburg, D. H.; Fischer, H. R.; Luterbacher, R.; van Bracht, H.; Bond, I. P.

    2016-08-01

    Epoxy resins containing Diels-Alder (DA) furan and maleimide moieties are presented with the capability to self-heal after exposure to an external heat source. A conventional epoxy amine system has been combined with furfuryl and maleimide functional groups in a two-step process, to avoid major side-reactions, and the concentration of a thermo-reversibly binding cross-linker was considered to balance thermoset and thermoplastic behaviours, and the subsequent self-healing performance. In the context of self-repair technologies an inbuilt ‘intrinsic’ self-healing system is deemed favourable as the healing agent can be placed in known ‘hot spot’ regions (i.e. skin-stringer run outs, ply drops and around drilled holes) where operational damage predominately occurs in load bearing aerospace structures. In this study, the mechanical and self-healing performance of furan functionalised epoxy resins containing varying amounts (10, 20, 30 or 40 pph) of bismaleimide were investigated using a bulk epoxy polymer tapered double cantilever beam test specimen geometry. Two forms, a thin film and a bulk material, were evaluated to account for future integration methods into fibre reinforced polymer (FRP) composites. The highest healing efficiency, with respect to the obtained initial load value, was observed from the 20 pph bulk material derivative. The polymers were successful in achieving consistent multiple (three) healing cycles when heated at 150 °C for 5 min. This novel investigated DA material exhibits favourable processing characteristics for FRP composites as preliminary studies have shown successful coextrution with reinforcing fibres to form free standing films and dry fibre impregnation.

  16. The RHIC vacuum systems

    NASA Astrophysics Data System (ADS)

    Burns, R.; Hseuh, H. C.; Lee, R. C.; McIntyre, G.; Pate, D.; Smart, L.; Sondericker, J.; Weiss, D.; Welch, K.

    2003-03-01

    There are three vacuum systems in RHIC: the insulating vacuum vessels housing the superconducting magnets, the cold beam tubes surrounded by the superconducting magnets, and the warm beam tube sections at the insertion regions and the experimental regions. These systems have a cumulative length over 10 km and a total volume over 3000 m 3. Conventional ultrahigh vacuum technology was used in the design and construction of the cold and warm beam vacuum systems with great success. The long and large insulating vacuum volumes without vacuum barriers require careful management of the welding and leak checking of the numerous helium line joints. There are about 1500 vacuum gauges and pumps serial-linked to eight PLCs distributed around RHIC, which allow the monitoring and control of these devices through Ethernet networks to remote control consoles. With the exception of helium leaks through the cryogenic valve boxes into the insulating vacuum volumes, the RHIC vacuum systems have performed well beyond expectations.

  17. Synthesis & Biological, Physical, & Adhesive Properties of Epoxy Sucroses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raw sugar was converted in two steps to epoxy allyl sucroses (EAS), epoxy crotyl sucroses (ECS), and epoxy methallyl sucroses (EMS) respectively, in 82, 91, and 91.5 % overall yields. EAS, ECS, and EMS are regio and diastereo isomeric epoxy monomers that are liquids at room temperature. The averag...

  18. Indian Vacuum Society: The Indian Vacuum Society

    NASA Astrophysics Data System (ADS)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of

  19. Mechanical behaviors of hyberbranched epoxy toughened bisphenol F epoxy resin for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Li, Jingwen; Wu, Zhixiong; Huang, Chuanjun; Huang, Rongjin; Li, Laifeng

    2014-01-01

    Epoxy resins have been widely employed in cryogenic engineering fields. In this work, bisphenol F epoxy resin was modified by an aromatic polyester hyperbranched epoxy resin (HTDE-2). Mechanical behaviors of the modified epoxy resins in terms of tensile properties and impact property were studied at both room and cryogenic temperatures. Moreover, the toughening mechanism was discussed by fracture surface morphology analysis. The results demonstrated that, the mechanical properties of composites initially increased until reaches the maximum value with increasing the mass content of the HTDE-2, and then decreased at both room temperature (RT) and 77K. Especially, the impact strength at 77 K was improved 40.7% compared with the pure epoxy matrix when 10 wt% HTDE-2 was introduced. The findings suggest that the HTDE-2 will be an effective toughener for the brittle bisphenol F epoxy resin for cryogenic applications.

  20. Epoxy Foam Encapsulants: Processing and Dielectric Characterization

    SciTech Connect

    Linda Domeier; Marion Hunter

    1999-01-01

    The dielectric performance of epoxy foams was investigated to determine if such materials might provide advantages over more standard polyurethane foams in the encapsulation of electronic assemblies. Comparisons of the dielectric characteristics of epoxy and urethane encapsulant foams found no significant differences between the two resin types and no significant difference between as-molded and machined foams. This study specifically evaluated the formulation and processing of epoxy foams using simple methylhydrosiloxanes as the flowing agent and compared the dielectric performance of those to urethane foams of similar density.

  1. Effect of nano-sized oxide particles on thermal and electrical properties of epoxy silica composites

    NASA Astrophysics Data System (ADS)

    Lee, Sang Heon; Choi, Yong

    2014-12-01

    Polymer matrix composites were fabricated using a modified injection molding technique in which nano-sized silicon oxides, titanium oxides, and aluminium oxides were contained. Nano-sized oxides were uniformly distributed in the composites produced by modified injection molding combining vacuum degassing and curing at a moderate temperature. The thermal decomposition and evaporation of the epoxy resin matrix depended on the composition of the composites. The relative permittivity of the nano-sized silicon carbide-epoxy composites increased from 5.16 to 5.37 by adding 2.0 wt % titanium oxide. The addition of titanium oxide of up to 2.0 wt % had little influence on the permittivity. The addition of 2.0 wt % of titanium oxide to epoxy resin showed the maximum thermal properties. Both the thermal conductivity and thermal diffusivity of the silicon oxide-epoxy composites tended to increase with titanium oxide content. The maximum thermal conductivity was observed in the composites with 2.0 wt % titanium oxide.

  2. Breakdown properties of epoxy nanodielectric

    SciTech Connect

    Tuncer, Enis; Cantoni, Claudia; More, Karren Leslie; James, David Randy; Polyzos, Georgios; Sauers, Isidor; Ellis, Alvin R

    2010-01-01

    Recent developments in polymeric dielectric nanocomposites have shown that these novel materials can improve design of high voltage (hv) components and systems. Some of the improvements can be listed as reduction in size (compact hv systems), better reliability, high energy density, voltage endurance, and multifunctionality. Nanodielectric systems demonstrated specific improvements that have been published in the literature by different groups working with electrical insulation materials. In this paper we focus on the influence of in-situ synthesized titanium dioxide (TiO{sub 2}) nanoparticles on the dielectric breakdown characteristics of an epoxy-based nanocomposite system. The in-situ synthesis of the particles creates small nanoparticles on the order of 10 nm with narrow size distribution and uniform particle dispersion in the matrix. The breakdown strength of the nanocomposite was studied as a function of TiO{sub 2} concentration at cryogenic temperatures. It was observed that between 2 and 6wt% yields high breakdown values for the nanodielectric.

  3. Impact resistance of composite fan blades. [fiber reinforced graphite and boron epoxy blades for STOL operating conditions

    NASA Technical Reports Server (NTRS)

    Premont, E. J.; Stubenrauch, K. R.

    1973-01-01

    The resistance of current-design Pratt and Whitney Aircraft low aspect ratio advanced fiber reinforced epoxy matrix composite fan blades to foreign object damage (FOD) at STOL operating conditions was investigated. Five graphite/epoxy and five boron/epoxy wide chord fan blades with nickel plated stainless steel leading edge sheath protection were fabricated and impact tested. The fan blades were individually tested in a vacuum whirlpit under FOD environments. The FOD environments were typical of those encountered in service operations. The impact objects were ice balls, gravel, stralings and gelatin simulated birds. Results of the damage sustained from each FOD impact are presented for both the graphite boron reinforced blades. Tests showed that the present design composite fan blades, with wrap around leading edge protection have inadequate FOD impact resistance at 244 m/sec (800 ft/sec) tip speed, a possible STOL operating condition.

  4. Mechanical properties of a filament-wound aramid fiber/epoxy composite for flywheel application

    SciTech Connect

    Hahn, H.T.; Chin, W.K.

    1982-02-01

    The purpose of this program was to determine the mechanical properties of a filament-wound Kevlar 49/epoxy composite in a simulated flywheel service environment. The temperature and vacuum chosen were 75/sup 0/C and 1 Pa, respectively. Specimens were preconditioned in the test environment for periods of 1 to 5 months before mechanical tests. The simulated service environment of 75/sup 0/C in vacuum has been found to have little effect on static and fatigue properties of the composite. The excellent retention of strength by individual fibers in the same environment provides added confidence. The composite is stable for a period of two years studied so far in the 75/sup 0/C/vacuum environment. However, the moisture desorption increases residual sresses and causes ply cracking in laminates. The composite is less sensitive to the environment than the fibers and the matrix by themselves. 53 figures, 11 tables.

  5. Optimizing process vacuum condensers

    SciTech Connect

    Lines, J.R.; Tice, D.W.

    1997-09-01

    Vacuum condensers play a critical role in supporting vacuum processing operations. Although they may appear similar to atmospheric units, vacuum condensers have their own special designs, considerations and installation needs. By adding vacuum condensers, precondensers and intercondensers, system cost efficiency can be optimized. Vacuum-condensing systems permit reclamation of high-value product by use of a precondenser, or reduce operating costs with intercondensers. A precondenser placed between the vacuum vessel and ejector system will recover valuable process vapors and reduce vapor load to an ejector system--minimizing the system`s capital and operating costs. Similarly, an intercondenser positioned between ejector stages can condense motive steam and process vapors and reduce vapor load to downstream ejectors as well as lower capital and operating costs. The paper describes vacuum condenser systems, types of vacuum condensers, shellside condensing, tubeside condensing, noncondensable gases, precondenser pressure drop, system interdependency, equipment installation, and equipment layout.

  6. Comparison of Efficacy and Cost of Iodine Impregnated Drape vs. Standard Drape in Cardiac Surgery: Study in 5100 Patients.

    PubMed

    Bejko, Jonida; Tarzia, Vincenzo; Carrozzini, Massimiliano; Gallo, Michele; Bortolussi, Giacomo; Comisso, Marina; Testolin, Luca; Guglielmi, Cosimo; De Franceschi, Marco; Bianco, Roberto; Gerosa, Gino; Bottio, Tomaso

    2015-10-01

    We sought to examine the efficacy in preventing surgical site infection (SSI) in cardiac surgery, using two different incise drapes (not iodine-impregnated and iodine-impregnated). A cost analysis was also considered. Between January 2008 and March 2015, 5100 consecutive cardiac surgery patients, who underwent surgery in our Institute, were prospectively collected. A total of 3320 patients received a standard not iodine-impregnated steri-drape (group A), and 1780 patients received Ioban(®) 2 drape (group B). We investigated, by a propensity matched analysis, whether the use of standard incise drape or iodine-impregnated drape would impact upon SSI rate. Totally, 808 patients for each group were matched for the available risk factors. Overall incidence of SSI was significantly higher in group A (6.5 versus 1.9 %) (p = 0.001). Superficial SSI incidence was significantly higher in group A (5.1 vs 1.6 %) (p = 0.002). Deep SSI resulted higher in group A (1.4 %) than in group B (0.4 %), although not significantly (p = 0.11). Consequently, the need for vacuum-assisted closure (VAC) therapy use resulted 4.3 % in group A versus 1.2 % in group B (p = 0.001). Overall costs for groups A and B were 12.494.912 € and 11.721.417 €, respectively. The Ioban(®) 2 offered totally 773.495 € cost savings compared to standard steri-drape. Ioban 2 drape assured a significantly lower incidence of SSI. Additionally, Ioban(®) 2 drape proved to be cost-effective in cardiac surgery. PMID:26374143

  7. Sealing Materials for Use in Vacuum at High Temperatures

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R.; Camarda, Charles J.; Lee Vaughn, Wallace

    2012-01-01

    Sealing materials that can be applied and left in place in vacuum over a wide range of temperatures (especially temperatures of a few thousand degrees Celsius) have been conceived and investigated for potential utility in repairing thermal-protection tiles on the space shuttles in orbit before returning to Earth. These materials are also adaptable to numerous terrestrial applications that involve vacuum processing and/or repair of structures that must withstand high temperatures. These materials can be formulated to have mechanical handling characteristics ranging from almost freely flowing liquid-like consistency through paste-like consistency to stiff puttylike consistency, and to retain these characteristics in vacuum until heated to high curing temperatures. A sealing material of this type can be formulated to be used in any of several different ways for example, to be impregnated into a high-temperature-fabric patch, impregnated into a high-temperature-fabric gasket for sealing a patch, applied under a patch, or applied alone in the manner of putty or wallboard compound. The sealing material must be formulated to be compatible with, and adhere to, the structural material(s) to be repaired. In general, the material consists of a vacuum-compatible liquid containing one or more dissolved compound(s) and/or mixed with suspended solid particles. Depending on the intended application, the liquid can be chosen to be of a compound that can remain in place in vacuum for a time long enough to be useful, and/or to evaporate or decompose in a controlled way to leave a useful solid residue behind. The evaporation rate is determined by proper choice of vapor pressure, application of heat, and/or application of ultraviolet light or other optical radiation. The liquid chosen for the original space shuttle application is a commercial silicone vacuum-pump oil.

  8. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-03-06

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  9. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-01-01

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  10. The Classical Vacuum.

    ERIC Educational Resources Information Center

    Boyer, Timothy H.

    1985-01-01

    The classical vacuum of physics is not empty, but contains a distinctive pattern of electromagnetic fields. Discovery of the vacuum, thermal spectrum, classical electron theory, zero-point spectrum, and effects of acceleration are discussed. Connection between thermal radiation and the classical vacuum reveals unexpected unity in the laws of…

  11. Physical aging in graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Kong, E. S. W.

    1983-01-01

    Sub-Tg annealing has been found to affect the properties of graphite/epoxy composites. The network epoxy studied was based on the chemistry of tetraglycidyl 4,4'-diamino-diphenyl methane (TGDDM) crosslinked by 4,4'-diamino-diphenyl sulfone (DDS). Differential scanning calorimetry, thermal mechanical analysis, and solid-state cross-polarized magic-angle-spinning nuclear magnetic resonance spectroscopy have been utilized in order to characterize this process of recovery towards thermodynamic equilibrium. The volume and enthalpy recovery as well as the 'thermoreversibility' aspects of the physical aging are discussed. This nonequilibrium and time-dependent behavior of network epoxies are considered in view of the increasingly wide applications of TGDDM-DDS epoxies as matrix materials of structural composites in the aerospace industry.

  12. Three-dimensional measurement of preform impregnation in composites manufacturing

    NASA Astrophysics Data System (ADS)

    Nowak, Thomas; Chun, Jung-Hoon

    1992-12-01

    An experimental method of flow visualization during impregnation of fiber preforms has been developed. This method extends the visualization technique of making observations through transparent moulds by matching the refractive index of the fibers in the preform with that of the fluid used to simulate the resin system. Wetted portions of the preform then appear transparent while dry portions remain translucent. The desired level of fluid-fiber refractive index match was achieved using a monochromatic illumination source, thereby increasing image contrast between wet and dry regions of the preform and reducing noise within the wetted portion of the image. It has been shown that photometric data analysis can yield three-dimensional information on unsaturated flow from a single image. The technique is illustrated with results of experiments on impregnation of a preform made from unidirectional fabric. These results highlight the importance of local axial spreading of the flow front in radial impregnation of fiber tows with high fiber content.

  13. Electrical properties of epoxies and film resistors

    NASA Technical Reports Server (NTRS)

    Sergent, J. E.

    1976-01-01

    The reliability of hybrid microcircuits has been enhanced in recent years by the use of organic adhesives as a replacement for solder and eutectics. The epoxies have been the most effective and widely used material for this application. Methods for measuring the electrical and mechanical properties of epoxies are developed. Data are given for selected conductive adhesives at high and low frequencies. The temperature coefficients of resistance of thick film resistors are presented.

  14. Evaluation of atomic oxygen resistant protective coatings for fiberglass-epoxy composites in LEO

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Paulsen, Phillip E.; Brady, Joyce A.

    1989-01-01

    Fiberglass-epoxy composite masts are the prime structural members for the Space Station Freedom solar array. At the altitude where Space Station Freedom will operate, atomic oxygen atoms are the most predominant species. Atomic oxygen is highly reactive and has been shown to oxidize organic and some metallic materials. Tests with random and directed atomic oxygen exposure have shown that the epoxy is removed from the composite exposing brittle glass fibers which could be easily removed from the surface where they could contaminate Space Station Freedom Systems. Protection or fiber containment systems; inorganic based paints, aluminum braid, and a metal coating; were evaluated for resistance to atomic oxygen, vacuum ultraviolet radiation, thermal cycling, and mechanical flexing. All appeared to protect well against atomic oxygen and provide fiber containment except for the single aluminum braid covering. UV radiation resistance was acceptable and in general, thermal cycling and flexure had little to no effect on the mass loss rate for most coatings.

  15. Gallocyanin-chrome alum counterstaining of Golgi-Kopsch impregnations.

    PubMed

    Tieman, S B

    1983-05-01

    A simple technique is described for counterstaining Golgi-Kopsch impregnations. The sections are first stabilized by the method of Geisert and Updyke and then stained in 0.15% gallocyanin and 5% chromium potassium sulfate for 45 minutes at 55-60 C. The sections are then rinsed, dehydrated to 70% ethanol, cleared in terpineol, mounted and coverslipped. This procedure results in a light to medium blue stain of those cells not impregnated by the silver chromate. The major advantages of this procedure over earlier methods are: (1) the counterstain does not fade and (2) since no differentiation is required, many sections may be stained simultaneously. PMID:6195778

  16. Kinetics of fatigue cracks in iron in electrolytic hydrogen impregnation

    SciTech Connect

    Pokhmurskii, V.I.; Bilyi, L.M.

    1985-05-01

    Fatigue failure of metals is localized in the zone of plastic deformation at the tip of the developing crack. Crack development depends to a large extent upon the parameters of the deformed volume, the loading conditions, and features of the material microstructure. It may be assumed that the medium, especially a hydrogen-impregnating medium, leads to a change in the zone of plastic deformation and thereby influences the rate of fatigue crack growth. This work is devoted to a study of cyclic crack resistance and determination of the zone of plastic deformation of failure specimens of Armco iron under conditions of the action of a hydrogen-impregnating medium.

  17. Preparation and properties of polytetrafluoroethylene impregnated with rhenium oxides

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; Easter, R. W.

    1973-01-01

    The results of tests carried out to determine the properties of polytetrafluorethylene (PTFE) impregnated with rhenium oxides are presented. The tests included measurement of physical properties of the impregnated material and investigation of the effects of preparation process variables. Based on the latter tests a mechanism to describe the permeation process is postulated which identifies the rate controlling step to be diffusion of ReF6 molecules into the solid during the initial ReF6 soak. Physical property tests indicated that the electronic conductance is increased by many orders of magnitude while the desirable properties of the PTFE remain virtually unchanged.

  18. Wide-spectrum activity of a silver-impregnated fabric.

    PubMed

    Gerba, Charles P; Sifuentes, Laura Y; Lopez, Gerardo U; Abd-Elmaksoud, Sherif; Calabrese, Jesse; Tanner, Benjamin

    2016-06-01

    Fabrics, such as clothing, drapes, pillowcases, and bedsheets are potential sources of pathogenic bacteria and viruses. We found fabrics (ie, professional clothing, pillowcases, and lab coats) treated with a silver-impregnated material to be effective in significantly reducing a wide spectrum of ordinary and drug-resistant microorganisms, including Salmonella, methicillin-resistant Staphylococcus aureus, Propionibacterium acnes, Trichphyton mentagrophytes, and norovirus. Fabrics impregnated with antimicrobial agents help provide an additional barrier to the transport or reservoir of pathogens in health care environments. PMID:26827093

  19. Effect of space exposure of some epoxy matrix composites on their thermal expansion and mechanical properties (AO 138-8)

    NASA Technical Reports Server (NTRS)

    Jabs, Heinrich

    1991-01-01

    The experiment objectives are: to detect a variation of the coefficient of thermal expansion (CTE) of composite samples; to detect an evolution of mechanical properties; to compare the behavior of two epoxy resins. The CTE is measured by interferometric method in a vacuum chamber. The following mechanical tests are achieved on the samples: interlaminar shear strength; flexural strength; flatwise tensile strength. The results are reported.

  20. The modifications of epoxy resin and their crystalline polymer particle filled epoxies

    SciTech Connect

    Huei-Hsiung Wang

    1996-12-31

    The chemical linking of the modifier to the epoxy network was overcome by using Bisphenol A, 4,4`-diaminodiphenyl sulphone or benzophenone-tetracarboxylic dianhydride as a coupling agent between the PU and the epoxy oligomer. From the experimental results, it was shown that the values of fracture energy, G{sub IC} for PU-modified epoxy were dependent on the macroglycols and the coupling agents. Scanning electron microscopy and the glass transition temperature were used to assess the morphology and their compatibility of these modified epoxies. It revealed that the ether type (PTMG) of PU modified epoxy showed the present of an aggregated separated phase. However, the ester type (PBA) PU-modified epoxy resin showed a homogenous morphology. In addition, the {Beta}-relaxation of cured epoxy resin showed a more clear two-phase separation existed in Bis-A as a coupling agents. The additive of the semi-crystalline PBT powder was more efficient in fracture energies of epoxy network than that of the Nylon 6,6 powder.

  1. Development of novel single-wall carbon nanotube epoxy composite ply actuators

    NASA Astrophysics Data System (ADS)

    Yun, Yeo-Heung; Shanov, Vesselin; Schulz, Mark J.; Narasimhadevara, Suhasini; Subramaniam, Srinivas; Hurd, Douglas; Boerio, F. J.

    2005-12-01

    This paper describes a carbon nanotube epoxy ply material that has electrochemical actuation properties. The material was formed by dispersing single-wall carbon nanotubes in a solvent and then solution casting a thin paper using a mold and vacuum oven. In order to take advantage of the high elastic modulus of carbon nanotubes for actuation, epoxy as a chemically inert polymer is considered. An epoxy layer was cast on the surface of the nanotube paper to make a two-layer ply. A wet electrochemical actuator was formed by placing the nanotube epoxy ply in a 2 M NaCl electrolyte solution. Electrochemical impedance spectroscopy and cyclic voltammetry were carried out to characterize the electrochemical properties of the actuator. The voltage-current relationship and power to drive the actuator material were also determined. Compared to previous single-wall carbon nanotube buckypaper tape actuators, which had poor adhesion between the nanotubes and tape, and other nanotube-thermal plastic polymer actuators, which could not provide high strength, the epoxy based actuator has a higher elastic modulus and strength, which will be useful for future structural applications. This demonstrates that a polymer layer can reinforce nanotube paper, which is an important step in building a new structural material that actuates. Further work is under way to develop a solid electrolyte to allow dry actuation. Finally, these actuator plies will be laminated to build a carbon nanocomposite material. This smart structural material will have potential applications that range from use in robotic surgical tools to use as structures that change shape.

  2. Process for Preparing Epoxy-Reinforced Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B (Inventor)

    2016-01-01

    One-pot reaction process for preparing epoxy-reinforced monolithic silica aerogels comprising the reaction of at least one silicon compound selected from the group consisting of alkoxysilanes, orthosilicates and combination thereof in any ratio with effective amounts of an epoxy monomer and an aminoalkoxy silane to obtain an epoxy monomer-silica sol in solution, subsequently preparing an epoxy-monomer silica gel from said silica sol solution followed by initiating polymerization of the epoxy monomer to obtain the epoxy-reinforced monolithic silica aerogel.

  3. Physical aging and its influence on the reliability of network epoxies and epoxy-matrix composites

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1983-01-01

    The matrix-dominated physical and mechanical properties of a carbon fiber reinforced epoxy composite and a neat epoxy resin were found to be affected by sub-Tg annealing in nitrogen and dark atmosphere. Postcured specimens of Thornel 300 carbon-fiber/Fiberite 934 epoxy as well as Fiberite 934 epoxy resin were quenched from above Tg and given annealing at 140 C, 110 C, or 80 C, for time up to one-hundred thousand minutes. No weight loss was observed during annealing at these temperatures. Significant variations were found in density, modulus, hardness, damping, moisture absorption ability, thermal expansivity. Moisture-epoxy interactious were also studied. The kinetics of aging as well as the molecular aggregation during this densification process were monitored by differential scanning calorimetry, dynamic mechanical analysis, density gradient column, microhardness tester, Instron, and solid-state nuclear magnetic resonance spectroscopy.

  4. Simulation of the Vacuum Assisted Resin Transfer Molding (VARTM) process and the development of light-weight composite bridging

    NASA Astrophysics Data System (ADS)

    Robinson, Marc J.

    A continued desire for increased mobility in the aftermath of natural disasters, or on the battlefield, has lead to the need for improved light-weight bridging solutions. This research investigates the development of a carbon/epoxy composite bridging system to meet the needs for light-weight bridging. The research focuses on two main topics. The first topic is that of processing composite structures and the second is the design and testing of these structures. In recent years the Vacuum Assisted Resin Transfer Molding (VARTM) process has become recognized as a low-cost manufacturing alternative for large Fiber Reinforced Polymer (FRP) composite structures for civil, military, and aerospace applications. The success of the VARTM process (complete wet-out) is very sensitive to the resin injection strategy used and the proper placement of flow distribution materials and inlet and vacuum ports. Predicting the flow front pattern, the time required for infusing a part with resin, and the time required to bleed excess resin at the end of filling, is critical to ensure that the part will become completely impregnated and desired fiber volume fractions achieved prior to the resin gelling (initiation of cure). In order to eliminate costly trial and error experiments to determine the optimal infusion strategy, this research presents a simulation model which considers in-plane flow as well as flow through the thickness of the preform. In addition to resin filling, the current model is able to simulate the bleeding of resin at the end of filling to predict the required bleeding time to reach desired fiber volume fractions for the final part. In addition to processing, the second portion of the dissertation investigates the design and testing of composite bridge deck sections which also serve as short-span bridging for gaps up to 4 m in length. The research focuses on the design of a light-weight core material for bridge decking as well as proof loading of short-span bridge

  5. Leaching of Silver from Silver-Impregnated Food Storage Containers

    ERIC Educational Resources Information Center

    Hauri, James F.; Niece, Brian K.

    2011-01-01

    The use of silver in commercial products has proliferated in recent years owing to its antibacterial properties. Food containers impregnated with micro-sized silver promise long food life, but there is some concern because silver can leach out of the plastic and into the stored food. This laboratory experiment gives students the opportunity to…

  6. Optical Imaging of Water Condensation on Lubricant Impregnated Micropillar Arrays

    NASA Astrophysics Data System (ADS)

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2015-11-01

    We explored the condensation of water drops on a lubricant-impregnated surface, i.e., a micropillar patterned surface impregnated with a ionic liquid. Growing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. On a lubricant-impregnated hydrophobic micropillar array, different stages of condensation can be discriminated: - Nucleation on a lubricant surface. - Regular alignement between micropillars and formation of a three-phase contact line on a bottom of the substrate. - Deformation and bridging by coalescence, leading to a detachment of the drops from the bottom substrate to pillars'top faces. However, on a lubricant-impregnated hydrophilic micropillar array, the condensed water covers the micropillars by dewetting the lubricant. As a result, the surface loses its slippery property. Our results provide fundamental concepts how these solid/liquid hybrid surfaces can be applied for facile removal of condensed water, as well as necessity of the appropriate surface treatment. Financial support from ERC for the advanced grant 340391-SUPRO is gratefully acknowledged.

  7. Noncommercial fabrication of antibiotic-impregnated polymethylmethacrylate beads. Technical note.

    PubMed

    Flick, A B; Herbert, J C; Goodell, J; Kristiansen, T

    1987-10-01

    Antibiotic-impregnated polymethylmethacrylate (PMMA) beads were fabricated by means of injections in specially designed molds to produce small and large beads. In vitro concentrates from these beads for 30 days were found to release tobramycin in an exponential function. PMID:3652588

  8. Improved method facilitates debulking and curing of phenolic impregnated asbestos

    NASA Technical Reports Server (NTRS)

    Gaines, P.

    1966-01-01

    Workpieces covered with phenolic impregnated asbestos tape and then wrapped with a specified thickness of nylon yarn under pressure, are debulked and cured in a standard oven. This method of debulking and curing is used in the fabrication of ablative chambers for the Gemini and Apollo attitude control engines.

  9. Hollow cathodes with BaO impregnated, porous tungsten inserts and tips

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Weigand, A. J.

    1973-01-01

    The technology of impregnated materials is described and some inherently advantageous characteristics of impregnated cathodes are discussed. Thermionic emission measurements are presented for oxide coated and impregnated cathodes. Five cathode configurations with barium oxide impregnated porous tungsten inserts and/or tips have been fabricated and tested. Reliability, durability, and stability of operation are characterized. One of the cathodes has accumulated over 9000 operational hours, another has been cycled on and off more than 800 times.

  10. Vacuum pump aids ejectors

    SciTech Connect

    Nelson, R.E.

    1982-12-01

    The steam ejector/vacuum pump hybrid system has been operating satisfactorily since the summer of 1981. This system has essentially been as troublefree as the all-ejector system and, of course, has provided a substantial cost savings. Construction is currently under way to convert the vacuum system of another crude still which is equipped with steam ejectors and barometric condensers to the hybrid system of steam ejectors, surface condensers, and vacuum pumps. This current project is even more financially attractive because it allows a dirty water cooling tower which serves the barometric condensers to be shut down. Providing a vacuum for crude distillation vacuum towers with this hybrid system is by no means the only application of this technique. Any vacuum system consisting of all steam ejectors would be a candidate for this hybrid system and the resulting savings in energy.

  11. Vacuum leak detector

    NASA Technical Reports Server (NTRS)

    Kazokas, G. P. (Inventor)

    1975-01-01

    A leak detector for use with high vacuum seals as used in feedthroughs and hatch covers for manned spacecraft and vacuum systems is described. Two thermistors are used, one exposed directly to vacuum and the other exposed to a secondary chamber formed by the seal being monitored and a second auxiliary seal. Leakage into the secondary chamber causes an unbalance of an electrical bridge circuit in which the thermistors are connected.

  12. Impact and dynamic mechanical thermal properties of textile silk reinforced epoxy resin composites

    NASA Astrophysics Data System (ADS)

    Yang, K.; Guan, J.

    2016-07-01

    Silk fabric reinforced epoxy resin composites (SFRPs) were prepared using simple techniques of hand lay-up, hot-press and vacuum treatment, and a series of volume fractions of silk reinforcements were achieved. The impact properties and dynamic mechanical properties of SFRPs were investigated using a pendulum impact testing method and dynamic mechanical thermal analysis (DMTA). The results suggest that silk reinforcement could greatly enhance the mechanical performances of SFRPs. The impact strength reached a maximum of 71 kJ/m2 for 60%-silk SFRP, which demonstrated a potential of silk composites for defence and impact- resistant materials.

  13. Vacuum probe surface sampler

    NASA Technical Reports Server (NTRS)

    Zahlava, B. A. (Inventor)

    1973-01-01

    A vacuum probe surface sampler is described for rapidly sampling relatively large surface areas which possess relatively light loading densities of micro-organism, drug particles or the like. A vacuum head with a hollow handle connected to a suitable vacuum source is frictionally attached to a cone assembly terminating in a flared tip adapted to be passed over the surface to be sampled. A fine mesh screen carried by the vacuum head provides support for a membrane filter which collects the microorganisms or other particles. The head assembly is easily removed from the cone assembly without contacting the cone assembly with human hands.

  14. NSLS II Vacuum System

    SciTech Connect

    Ferreira, M.; Doom, L.; Hseuh, H.; Longo, C.; Settepani, P.; Wilson, K.; Hu, J.

    2009-09-13

    National Synchrotron Light Source II, being constructed at Brookhaven, is a 3-GeV, 500 mA, 3rd generation synchrotron radiation facility with ultra low emittance electron beams. The storage ring vacuum system has a circumference of 792 m and consists of over 250 vacuum chambers with a simulated average operating pressure of less than 1 x 10{sup -9} mbar. A summary of the update design of the vacuum system including girder supports of the chambers, gauges, vacuum pumps, bellows, beam position monitors and simulation of the average pressure will be shown. A brief description of the techniques and procedures for cleaning and mounting the chambers are given.

  15. Electrical properties of epoxies used in hybrid microelectronics

    NASA Technical Reports Server (NTRS)

    Stout, C. W.

    1976-01-01

    The electrical properties and basic characteristics of the structure of conductive epoxies were studied. The results of the experimental work performed to measure the electrical properties of epoxies are presented.

  16. RADIATION EFFECTS ON EPOXY CARBON FIBER COMPOSITE

    SciTech Connect

    Hoffman, E

    2008-05-30

    Carbon fiber-reinforced bisphenol-A epoxy matrix composite was evaluated for gamma radiation resistance. The composite was exposed to total gamma doses of 50, 100, and 200 Mrad. Irradiated and baseline samples were tested for tensile strength, hardness and evaluated using FTIR (Fourier transform infrared) spectroscopy and DSC (differential scanning calorimetry) for structural changes. Scanning electron microscopy was used to evaluate microstructural behavior. Mechanical testing of the composite bars revealed no apparent change in modulus, strain to failure, or fracture strength after exposures. However, testing of only the epoxy matrix revealed changes in hardness, thermal properties, and FTIR results with increasing gamma irradiation. The results suggest the epoxy within the composite can be affected by exposure to gamma irradiation.

  17. Free-volume characteristics of epoxies

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; Shultz, William J.; St.clair, Terry L.

    1992-01-01

    Positron annihilation spectroscopy was used to measure free-volume characteristics of selected epoxies. Fluorene resins, a new family of high-temperature thermosetting resins, were selected as the test medium. Experimental results indicate that the free-volume cell size V sub f varies with the molecular weight between the cross-links M sub c according to an equation of the form V sub f = AM sub c sup B, where A and B are structural constants. In two of the samples, the concentration of bulky fluorene groups was increased in the network backbone by replacement of some of the conventional bisphenol A epoxy resin with fluorene-derived epoxy resin. This resulted in an increase in their glass transition temperature for a given level of cross-linking. It was found that in these samples, the Doppler broadening of the annihilation peak decreases with the increasing fluorene content, presumably due to enhanced damping of the chain motions.

  18. Microwave assisted pultrusion of an epoxy composite

    SciTech Connect

    Methven, J.M.; Abidin, A.Z.

    1995-12-01

    A 6mm diameter cylindrical profile based on E-glass fibers and a BF{sub 3}-triamine-epoxy resin system has been manufactured by Microwave Assisted Pultrusion (MAP) using a single mode resonant microwave cavity operating in a TM{sub 010} mode at 2450 MHz. Power transfer is at least 70% and pulling speeds of more than 2m/minute have been achieved for a power input of about 800W. The results are consistent with earlier MAP studies using unsaturated polyesters, epoxies urethane acrylates and vinyl esters. The results provide a sound basis for proposing the use of this type of epoxy system as a material that is suitable for a high speed gel-cure pultrusion process that uses both a microwave heating cavity and a conventional pultrusion die.

  19. Physical aging in graphite epoxy composites

    NASA Technical Reports Server (NTRS)

    Kong, E. S. W.

    1981-01-01

    The matrix dominated mechanical behavior of a graphite epoxy composite was found to be affected by sub Tg annealing. Postcured + or - 45 deg 4S specimens of Thornel 300 graphite/Narmco 5208 epoxy were quenched from above Tg and given a sub Tg annealing at 140 C for times up to 10 to the 5th power min. The ultimate tensile strength, strain to break, and toughness of the composite material were found to decrease as functions of sub Tg annealing time. No weight loss was observed during the sub Tg annealing. The time dependent change in mechanical behavior is explained on the basis of free volume changes that are related to the physical aging of the nonequilibrium glassy network epoxy. The results imply possible changes in composite properties with service time.

  20. Free-volume characteristics of epoxies

    SciTech Connect

    Singh, J.J.; Eftekhari, A.; Shultz, W.J.; St.Clair, T.L.

    1992-09-01

    Positron annihilation spectroscopy was used to measure free-volume characteristics of selected epoxies. Fluorene resins, a new family of high-temperature thermosetting resins, were selected as the test medium. Experimental results indicate that the free-volume cell size V sub f varies with the molecular weight between the cross-links M sub c according to an equation of the form V sub f = AM sub c sup B, where A and B are structural constants. In two of the samples, the concentration of bulky fluorene groups was increased in the network backbone by replacement of some of the conventional bisphenol A epoxy resin with fluorene-derived epoxy resin. This resulted in an increase in their glass transition temperature for a given level of cross-linking. It was found that in these samples, the Doppler broadening of the annihilation peak decreases with the increasing fluorene content, presumably due to enhanced damping of the chain motions.

  1. Biodegradable Epoxy Networks Cured with Polypeptides

    NASA Astrophysics Data System (ADS)

    Nakamura, Shigeo; Kramer, Edward J.

    2006-03-01

    Epoxy resins are used widely for adhesives as well as coatings. However, once cured they are usually highly cross-linked and are not biodegradable. To obtain potentially biodegradable polypeptides that can cure with epoxy resins and achieve as good properties as the conventional phenol novolac hardeners, poly(succinimide-co-tyrosine) was synthesized by thermal polycondensation of L-aspartic acid and L-tyrosine with phosphoric acid under reduced pressure. The tyrosine/succinimide ratio in the polypeptide was always lower than the tyrosine/(aspartic acid) feed ratio and was influenced by the synthesis conditions. Poly(succinimide-tyrosine- phenylalanine) was also synthesized from L-aspartic acid, L- tyrosine and L-phenylalanine. The thermal and mechanical properties of epoxy resins cured with these polypeptides are comparable to those of similar resins cured with conventional hardeners. In addition, enzymatic degradability tests showed that Chymotrypsin or Subtilisin A could cleave cured films in an alkaline borate buffer.

  2. Chromium Ions Improve Moisure Resistance of Epoxy Resins

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; St. Clair, T. L.; Stoakley, D. M.; Singh, J. J.; Sprinkle, D. R.

    1986-01-01

    Broad spectrum of thermosetting epoxy resins used on commercial and military aircraft, primarily as composite matrices and adhesives. In new technique, chromium-ion containing epoxy with improved resistance to moisture produced where chromium ions believed to prevent absorption of water molecules by coordinating themselves to hydroxyl groups on epoxy chain. Anticipated that improved epoxy formulation useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft. Improvement made without sacrifice in mechanical properties of polymer.

  3. Thermal properties of epoxy composites filled with boric acid

    NASA Astrophysics Data System (ADS)

    Visakh, P. M.; Nazarenko, O. B.; Amelkovich, Yu A.; Melnikova, T. V.

    2015-04-01

    The thermal properties of epoxy composites filled with boric acid fine powder at different percentage were studied. Epoxy composites were prepared using epoxy resin ED-20, boric acid as flame-retardant filler, hexamethylenediamine as a curing agent. The prepared samples and starting materials were examined using methods of thermal analysis, scanning electron microscopy and infrared spectroscopy. It was found that the incorporation of boric acid fine powder enhances the thermal stability of epoxy composites.

  4. Effects of epoxy/hardener stoichiometry on structures and properties of a diethanolamine-cured epoxy encapsulant

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Xiao, M. Z.; Wu, Z.; Peng, K.; Han, C. M.; Xiang, W.; Dai, J. Y.

    2016-07-01

    For the epoxy encapsulant cured by diethanolamine, optimal epoxy/hardener stoichiometry could hardly be predicted due to the complex curing mechanisms. In this paper, the influences of stoichiometry were investigated by FTIR, DMA and tensile testing. The results showed that stoichiometry has a dominating effect on both Tg and tensile properties of the cured epoxy. The largest Tg , highest crosslink density as well as excellent ductility appeared in epoxy encapsulant cured with 14 wt% diethanolmine. When the content of diethanolamine was lower than 14 wt%, epoxy encapsulants showed smaller glycidyl conversion even with long-duration post-cure. Larger tensile strength and modulus were also observed in the glycidyl-rich epoxies, which could be explained by anti-plasticization effect. The amine-rich epoxy, however, had extremely high glycidyl conversion and presented brittle tensile behavior. A diethanolamine content of 12-14 wt% for the epoxy encapsulant is suggested to obtain optimal thermal and tensile properties.

  5. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  6. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  7. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  8. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under...

  9. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under...

  10. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under...

  11. Kevlar 49/Epoxy COPV Aging Evaluation

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Salem, Jonathan L.; Thesken, John C.; Russell, Richard W.; Littell, Justin; Ruggeri, Charles; Leifeste, Mark R.

    2008-01-01

    NASA initiated an effort to determine if the aging of Kevlar 49/Epoxy composite overwrapped pressure vessels (COPV) affected their performance. This study briefly reviews the history and certification of composite pressure vessels employed on NASA Orbiters. Tests to evaluate overwrap tensile strength changes compared 30 year old samples from Orbiter vessels to new Kevlar/Epoxy pressure vessel materials. Other tests include transverse compression and thermal analyses (glass transition and moduli). Results from these tests do not indicate a noticeable effect due to aging of the overwrap materials.

  12. Control of pore size in epoxy systems.

    SciTech Connect

    Sawyer, Patricia Sue; Lenhart, Joseph Ludlow; Lee, Elizabeth; Kallam, Alekhya; Majumdar, Partha; Dirk, Shawn M.; Gubbins, Nathan; Chisholm, Bret J.; Celina, Mathias Christopher; Bahr, James; Klein, Robert J.

    2009-01-01

    Both conventional and combinatorial approaches were used to study the pore formation process in epoxy based polymer systems. Sandia National Laboratories conducted the initial work and collaborated with North Dakota State University (NDSU) using a combinatorial research approach to produce a library of novel monomers and crosslinkers capable of forming porous polymers. The library was screened to determine the physical factors that control porosity, such as porogen loading, polymer-porogen interactions, and polymer crosslink density. We have identified the physical and chemical factors that control the average porosity, pore size, and pore size distribution within epoxy based systems.

  13. Electroactive polymer gels based on epoxy resin

    NASA Astrophysics Data System (ADS)

    Samui, A. B.; Jayakumar, S.; Jayalakshmi, C. G.; Pandey, K.; Sivaraman, P.

    2007-04-01

    Five types of epoxy gels have been synthesized from common epoxy resins and hardeners. Fumed silica and nanoclay, respectively, were used as fillers and butyl methacrylate/acrylamide were used as monomer(s) for making interpenetrating polymer networks (IPNs) in three compositions. Swelling study, tensile property evaluation, dynamic mechanical thermal analysis, thermo-gravimetric analysis, scanning electron microscopy and electroactive property evaluation were done. The gels have sufficient mechanical strength and the time taken for bending to 20° was found to be 22 min for forward bias whereas it was just 12 min for reverse bias.

  14. Interphase tailoring in graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Subramanian, R. V.; Sanadi, A. R.; Crasto, A. S.

    1988-01-01

    The fiber-matrix interphase in graphite fiber-epoxy matrix composites is presently modified through the electrodeposition of a coating of the polymer poly(styrene-comaleic anhydride), or 'SMA' on the graphite fibers; optimum conditions have been established for the achievement of the requisite thin, uniform coatings, as verified by SEM. A single-fiber composite test has shown the SMA coating to result in an interfacial shear strength to improve by 50 percent over commercially treated fibers without sacrifice in impact strength. It is suggested that the epoxy resin's superior penetration into the SMA interphase results in a tougher fiber/matrix interface which possesses intrinsic energy-absorbing mechanisms.

  15. Research on the melt impregnation of continuous carbon fiber reinforced nylon 66 composites

    NASA Astrophysics Data System (ADS)

    Jia, M. Y.; Li, C. X.; Xue, P.; Chen, K.; Chen, T. H.

    2016-07-01

    Impregnation mold of continuous carbon fiber reinforced thermoplastic composites was designed and built in the article. Based on the theory of fluid mechanics and Darcy's law, a model of the melt impregnation was also established. The influences of fiber bundle width and impregnation pins’ diameter on the impregnation degree were studied by numerical simulation. Continuous carbon fiber reinforced nylon 66 composites were prepared. The effects of coated angle and impregnation mold temperature on the mechanical properties of the composites were also described.The agreement between the experimental data and prediction by the model was found to be satisfactory.

  16. Working in a Vacuum

    ERIC Educational Resources Information Center

    Rathey, Allen

    2005-01-01

    In this article, the author discusses several myths about vacuum cleaners and offers tips on evaluating and purchasing this essential maintenance tool. These myths are: (1) Amps mean performance; (2) Everyone needs high-efficiency particulate air (HEPA): (3) Picking up a "bowling ball" shows cleaning power; (4) All vacuum bags are the same; (5)…

  17. Microfabricated triggered vacuum switch

    DOEpatents

    Roesler, Alexander W.; Schare, Joshua M.; Bunch, Kyle

    2010-05-11

    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  18. EVALUATION OF OVEN-CURED, SOLID CARBON/EPOXY COMPOSITES WITH VARIOUS POROSITY LEVELS

    SciTech Connect

    Stone, M. A.

    2009-03-03

    Cirrus has developed a strong core competency fabricating composite components using oven cure vacuum bag technology. When using this process, porosity levels must be carefully managed and effects of porosity well understood. Excessive porosity negatively affects material performance and reduces the effectiveness of the ultrasonic NDI method. This paper will present material characterization results from carbon/epoxy composite panels produced with various levels of porosity. Panels were inspected using two different ultrasonic methods. Panels were destructively tested to correlate static mechanical and physical properties to ultrasonic absorption coefficients. The goal of this work is to characterize material behavior to allow ultrasonic inspection in a manufacturing environment on vacuum bag oven-cured parts where porosity may be a factor.

  19. The effects of space radiation on a chemically modified graphite-epoxy composite material

    NASA Technical Reports Server (NTRS)

    Reed, S. M.; Herakovich, C. T.; Sykes, G. F.

    1986-01-01

    The effects of the space environment on the engineering properties and chemistry of a chemically modified T300/934 graphite-epoxy composite system are characterized. The material was subjected to 1.0 x 10 to the 10th power rads of 1.0 MeV electron irradiation under vacuum to simulate 30 years in geosynchronous earth orbit. Monotonic tension tests were performed at room temperature (75 F/24 C) and elevated temperature (250 F/121 C) on 4-ply unidirectional laminates. From these tests, inplane engineering and strength properties (E sub 1, E sub 2, Nu sub 12, G sub 12, X sub T, Y sub T) were determined. Cyclic tests were also performed to characterize energy dissipation changes due to irradiation and elevated temperature. Large diameter graphite fibers were tested to determine the effects of radiation on their stiffness and strength. No significant changes were observed. Dynamic-mechanical analysis demonstrated that the glass transition temperature was reduced by 50 F(28 C) after irradiation. Thermomechanical analysis showed the occurrence of volatile products generated upon heating of the irradiated material. The chemical modification of the epoxy did not aid in producing a material which was more radiation resistant than the standard T300/934 graphite-epoxy system. Irradiation was found to cause crosslinking and chain scission in the polymer. The latter produced low molecular weight products which plasticize the material at elevated temperatures and cause apparent material stiffening at low stresses at room temperature.

  20. Barium depletion study on impregnated cathodes and lifetime prediction

    NASA Astrophysics Data System (ADS)

    Roquais, J. M.; Poret, F.; le Doze, R.; Ricaud, J. L.; Monterrin, A.; Steinbrunn, A.

    2003-06-01

    In the thermionic cathodes used in cathode ray-tubes (CRTs), barium is the key element for the electronic emission. In the case of the dispenser cathodes made of a porous tungsten pellet impregnated with Ba, Ca aluminates, the evaporation of Ba determines the cathode lifetime with respect to emission performance in the CRT. The Ba evaporation results in progressive depletion of the impregnating material inside the pellet. In the present work, the Ba depletion with time has been extensively characterized over a large range of cathode temperature. Calculations using the depletion data allowed modeling of the depletion as a function of key parameters. The link between measured depletion and emission in tubes has been established, from which an end-of-life criterion was deduced. Taking modeling into account, predicting accelerated life-tests were performed using high-density maximum emission current (MIK).

  1. Electrochemical impregnation of nickel hydroxide in porous electrodes

    NASA Technical Reports Server (NTRS)

    Ho, Kuo-Chuan; Jorne, Jacob

    1987-01-01

    The electrochemical impregnation of nickel hydroxide in porous electrode was investigated both experimentally and theoretically. The loading level and plaque expansion were the most important parameters to be considered. The effects of applied current density, stirring, ratio of solution to electrode volume and pH were identified. A novel flow through electrochemical impregnation is proposed in which the electrolyte is forced through the porous nickel plaque. The thickening of the plaque can be reduced while maintaining high loading capacity. A mathematical model is presented which describes the transport of the nitrate, nickel and hydroxyl ions and the consecutive heterogeneous electrochemical reduction of nitrate and the homogeneous precipitation reaction of nickel hydroxide. The distributions of precipitation rate and active material within the porous electrode are obtained. A semiempirical model is also proposed which takes into account the plugging of the pores.

  2. Performance of Conformable Phenolic Impregnated Carbon Ablator in Aerothermal Environments

    NASA Technical Reports Server (NTRS)

    Thornton, Jeremy; Fan, Wendy; Stackpoole, Mairead; Kao, David; Skokova, Kristina; Chavez-Garcia, Jose

    2012-01-01

    Conformable Phenolic Impregnated Carbon Ablator, a cousin of Phenolic Impregnated Carbon Ablator (PICA), was developed at NASA Ames Research Center as a lightweight thermal protection system under the Fundamental Aeronautics Program. PICA is made using a brittle carbon substrate, which has a very low strain to failure. Conformable PICA is made using a flexible carbon substrate, a felt in this case. The flexible felt significantly increases the strain to failure of the ablator. PICA is limited by its thermal mechanical properties. Future NASA missions will require heatshields that are more fracture resistant than PICA and, as a result, NASA Ames is working to improve PICA's performance by developing conformable PICA to meet these needs. Research efforts include tailoring the chemistry of conformable PICA with varying amounts of additives to enhance mechanical properties and testing them in aerothermal environments. This poster shows the performance of conformable PICA variants in arc jets tests. Some mechanical and thermal properties will also be presented.

  3. Firming of fruit tissues by vacuum-infusion of pectin methylesterase: Visualisation of enzyme action.

    PubMed

    Guillemin, Anne; Guillon, Fabienne; Degraeve, Pascal; Rondeau, Corinne; Devaux, Marie-Françoise; Huber, Françoise; Badel, Eric; Saurel, Rémi; Lahaye, Marc

    2008-07-15

    Apple pieces were vacuum-impregnated with either a pectin methylesterase (PME) and calcium solution or with water prior to pasteurization. Pasteurized apple pieces impregnated with PME and calcium showed a significantly higher firmness. Moreover, solid state (13)C NMR spectroscopy of apple cell wall residues revealed an increase of their molecular rigidity. Exogenous PME addition involved a decrease from 82% to 45% of apple pectin degree of methyl-esterification. Microscopic observations of apple slices immunolabelled with antibodies specific for pectins showed that (i) demethyl-esterification was more intense in the cell wall region lining intercellular spaces (demonstrating a key role for these intercellular channels in the enzyme penetration in the tissue during vacuum-infusion) and that (ii) the number of calcium-dimerized deesterified homogalacturonan chains increased. The results corroborate the hypothesis that vacuum-impregnated PME action liberates free carboxyl groups along pectin chains that could interact with calcium, increasing the rigidity of pectins and finally the mechanical rigidity of apple tissue. PMID:26003360

  4. Characterization of Epoxy Functionalized Graphite Nanoparticles and the Physical Properties of Epoxy Matrix Nanocomposites

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Bauer, Jonathan L.; Maryanski, Michael J.; Heimann, Paula J.; Barlow, Jeremy P.; Gosau, Jan-Michael; Allred, Ronald E.

    2010-01-01

    This work presents a novel approach to the functionalization of graphite nanoparticles. The technique provides a mechanism for covalent bonding between the filler and matrix, with minimal disruption to the sp2 hybridization of the pristine graphene sheet. Functionalization proceeded by covalently bonding an epoxy monomer to the surface of expanded graphite, via a coupling agent, such that the epoxy concentration was measured as approximately 4 wt.%. The impact of dispersing this material into an epoxy resin was evaluated with respect to the mechanical properties and electrical conductivity of the graphite-epoxy nanocomposite. At a loading as low as 0.5 wt.%, the electrical conductivity was increased by five orders of magnitude relative to the base resin. The material yield strength was increased by 30% and Young s modulus by 50%. These results were realized without compromise to the resin toughness.

  5. The Application of Perfluorocarbons as Impregnants for Plastic Film Capacitors

    NASA Technical Reports Server (NTRS)

    Mauldin, G. H.

    1981-01-01

    A liquid impregnated, plastic film (wet) capacitor was developed that is thought to be the most reliable and space efficient capacitor of any type ever produced for high voltage, pulse discharge service. The initial design stores five times the energy of a premium quality dry capacitor of equivalent energy and reliability. The technology, as well as a production capacitor design using this technology are described.

  6. Insoluble polyelectrolyte and ion-exchange hollow fiber impregnated therewith

    NASA Technical Reports Server (NTRS)

    Rembaum, A. (Inventor)

    1977-01-01

    The number of quaternary sites and ion exchange capacity of a polyquaternary, cross linked, insoluble copolymer of a vinyl pyridine and a dihalo organic compound is increased by about 15-35% by reaction of the polymer with an amine followed by quaternization, if required. The polymer forms spontaneously in the presence of a substrate such as within the pores of a hollow fiber. The improved resin impregnated fiber may be utilized to remove ions from waste or process steams.

  7. Review of electrochemical impregnation for nickel cadmium cells. [aerospace applications

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1977-01-01

    A method of loading active material within the electrodes of nickel cadmium cells is examined. The basic process of electrochemical impregnation of these electrodes is detailed, citing the principle that when current is applied reactions occur which remove hydrogen ions from solution, making the interior of the plaque less acidic. Electrodes result which are superior in energy density, stability, and life. The technology is reviewed and illustrated with typical performance data. Recommendations are made for additional research and development.

  8. Reconstructing the infected aortic root with antibiotic impregnated biological glue.

    PubMed

    McGiffin, David C; Davies, James E; Kirklin, James K

    2014-05-01

    Prosthetic valve dehiscence and persistent infection are two complications following reconstruction of the aortic root in destructive endocarditis. A technique is described involving the principles of aggressive debridement, closure of large abscess cavities with biological material incorporating a slurry of antibiotic-impregnated biological sealant, and replacement of the aortic valve with an aortic allograft valve. This strategy appears to have been successful in preventing persistent endocarditis and valve dehiscence in a limited number of patients. PMID:24433228

  9. Housing protects laser in vacuum

    NASA Technical Reports Server (NTRS)

    Canali, V. G.

    1978-01-01

    Airtight housing encloses laser for easy alinement and operation in high-vacuum chamber. Beam is transmitted through window into vacuum chamber. Flexible line runs through vacuum chamber to outside, maintaining laser enclosure at atmospheric pressure.

  10. Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy-Alumina Composites

    NASA Astrophysics Data System (ADS)

    Giang, Thanhkieu; Kim, Jinhwan

    2016-06-01

    In a series of papers published recently, we clearly demonstrated that the most important factor governing the thermal conductivity of epoxy-Al2O3 composites is the backbone structure of the epoxy. In this study, three more epoxies based on diglycidyl ester-terminated liquid-crystalline epoxy (LCE) have been synthesized to draw conclusions regarding the effect of the epoxy backbone structure on the thermal conductivity of epoxy-alumina composites. The synthesized structures were characterized by proton nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy. Differential scanning calorimetry, thermogravimetric analysis, and optical microscopy were also employed to examine the thermal and optical properties of the synthesized LCEs and the cured composites. All three LCE resins exhibited typical liquid-crystalline behaviors: clear solid crystalline state below the melting temperature (T m), sharp crystalline melting at T m, and transition to nematic phase above T m with consequent isotropic phase above the isotropic temperature (T i). The LCE resins displayed distinct nematic liquid-crystalline phase over a wide temperature range and retained liquid-crystalline phase after curing, with high thermal conductivity of the resulting composite. The thermal conductivity values ranged from 3.09 W/m-K to 3.89 W/m-K for LCE-Al2O3 composites with 50 vol.% filler loading. The steric effect played a governing role in the difference. The neat epoxy resin thermal conductivity was obtained as 0.35 W/m-K to 0.49 W/m-K based on analysis using the Agari-Uno model. The results clearly support the objective of this study in that the thermal conductivity of the LCE-containing networks strongly depended on the epoxy backbone structure and the degree of ordering in the cured network.

  11. Cyanate Ester and Phthalonitrile Impregnated Carbon Ablative TPS

    NASA Technical Reports Server (NTRS)

    Boghozian, Tane; Stackpoole, Margaret M.; Gasch, Matt

    2016-01-01

    Phenolic resin has extensive heritage as a TPS (Thermal Protection Systems) material, however, alternative resin systems such as Cyanate Ester and Phthalonitrile may offer improved performance compared to state-of-the-art phenolic resin. These alternative resin systems may have higher char yield, higher char strength, lower thermal conductivity and improved mechanical properties. In current work at NASA Ames alternative resin systems were uniformly infused into fibrous substrates and preliminary properties characterized. The density of the cyanate ester infused in fibrous substrate ranged from 0.25-0.3 grams per cubic centimeter compared to PICA (Phenolic resin impregnated carbon ablative) having a density of approximately 0.25 grams per cubic centimeter. The density of Phthalonitrile varies from 0.22-0.25 grams per cubic centimeter. Initial formulations of these new resin systems were recently tested at the LARC HyMETs (Hypersonic Materials Environmental Test System) facility to evaluate their performance and data such as back face temperature, char yield, and recession are compared to PICA. Cyanate Ester and Phthalonitrile impregnated carbon ablative samples showed comparable performance to phenolic resin impregnated carbon ablative samples.

  12. Application of Silver Impregnated Iodine Adsorbent to Nuclear Facilities

    NASA Astrophysics Data System (ADS)

    Fukasawa, Tetsuo; Nakamura, Tomotaka; Kondo, Yoshikazu; Funabashi, Kiyomi

    Radioactive iodine is one of the most important nuclides to be prevented for release from nuclear facilities and many facilities have off-gas treatment systems to minimize the volatile nuclides dispersion to the environment. Silver impregnated inorganic adsorbents were known as inflammable and stable fixing materials for iodine and the authors started to develop 25 years ago a kind of inorganic adsorbent that has better capability compared with conventional ones. Aluminum oxide (Alumina) was selected as a carrier material and silver nitrate as an impregnated one. Pore diameters were optimized to avoid the influence of impurities such as humidity in the off-gas stream at lower temperatures. Experiments and improvements were alternately conducted for the new adsorbent. The tests were carried out in various conditions to confirm the performance of the developed adsorbent, which clarified its good ability to remove iodine. Silver nitrate impregnated alumina adsorbent (AgA) has about twice the capacity for iodine adsorption and higher iodine removal efficiency at relatively high humidity than conventional ones. The AgA chemically and stably fixes radioactive iodine and fits the storage and disposal of used adsorbent. AgA is now and will be applied to nuclear power plants, reprocessing plants, and research facilities.

  13. Mercury adsorption properties of sulfur-impregnated adsorbents

    USGS Publications Warehouse

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  14. Dispersion type zirconium matrix fuels fabricated by capillary impregnation method

    NASA Astrophysics Data System (ADS)

    Savchenko, A.; Konovalov, I.; Vatulin, A.; Morozov, A.; Orlov, V.; Uferov, O.; Ershov, S.; Laushkin, A.; Kulakov, G.; Maranchak, S.; Petrova, Z.

    2007-05-01

    Several novel dispersion fuel compositions with a high uranium content fuel (U9Mo, U5Zr5Nb, U3Si) and a zirconium alloy matrix with low melting point (1063-1133 K) have been developed at A.A. Bochvar Institute using a capillary impregnation fabrication method. The capillary impregnation method introduces fuel granules and granules of a zirconium alloy into a fuel element followed by a short-term anneal at a temperature above the melting temperature of alloy. The alloy melts down and under capillary forces moves into the joints between the fuel element components to form metallurgical bonds. The volume ratios between the components are: 55-65% fuel, 10-20% matrix, and 15-30% pores. Fuel elements produced by capillary impregnation method have a high uranium content (9-10 g cm-3) and a high thermal conductivity (18-22 W m-1 K-1), which, when used as PWR or BWR fuels allow the fuel temperature to be lowered to 723-773 K. They also feature porosity to accommodate swelling. The metallurgical fuel-cladding bond makes the fuel elements serviceable in power transients. The primary advantages for PWR, BWR and CANDU use of these fuels elements, would be the high uranium content, low fuel temperature and serviceability under transient conditions. Consideration is given to their applicability in Floating Nuclear Power Plants (FNPP) as well as for the feasibility of burning civil and weapon grade plutonium.

  15. Thermal modeling of an epoxy encapsulation process

    SciTech Connect

    Baca, R.G.; Schutt, J.A.

    1991-01-01

    The encapsulation of components is a widely used process at Sandia National Laboratories for packaging components to withstand structural loads. Epoxy encapsulants are also used for their outstanding dielectric strength characteristics. The production of high voltage assemblies requires the encapsulation of ceramic and electrical components (such as transformers). Separation of the encapsulant from internal contact surfaces or voids within the encapsulant itself in regions near the mold base have caused high voltage breakdown failures during production testing. In order to understand the failure mechanisms, a methodology was developed to predict both the thermal response and gel front progression of the epoxy the encapsulation process. A thermal model constructed with PATRAN Plus (1) and solved with the P/THERMAL (2) analysis system was used to predict the thermal response of the encapsulant. This paper discusses the incorporation of an Arrhenius kinetics model into Q/TRAN (2) to model the complex volumetric heat generation of the epoxy during the encapsulation process. As the epoxy begins to cure, it generates heat and shrinks. The total cure time of the encapsulant (transformation from a viscous liquid to solid) is dependent on both the initial temperature and the entire temperature history. Because the rate of cure is temperature dependent, the cure rate accelerates with a temperature increase and, likewise, the cure rate is quenched if the temperature is reduced. The temperature and conversion predictions compared well against experimental data. The thermal simulation results were used to modify the temperature cure process of the encapsulant and improve production yields.

  16. Some experiences with epoxy resin grouting compounds.

    PubMed

    Hosein, H R

    1980-07-01

    Epoxy resin systems are used in tiling and grouting in the construction industry. Because of the nature of the application, skin contact is the primary hazard. The most prevalent reaction was reddening of the forearms, followed by whole body reddening and loss of appetite, these latter two being associated with smoking while applying the resin. PMID:7415974

  17. Polymeric Additives For Graphite/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Nir, Z.

    1990-01-01

    Report describes experimental studies of properties of several graphite/epoxy composites containing polymeric additives as flexibilizing or toughening agents. Emphasizes effects of brominated polymeric additives (BPA's) with or without carboxy-terminated butadiene acrylonitrile rubber. Reviews effects of individual and combined additives on fracture toughnesses, environmental stabilities, hot/wet strengths, thermomechanical behaviors, and other mechanical properties of composites.

  18. Development of Graphite/Epoxy Corner Fittings

    NASA Technical Reports Server (NTRS)

    Faile, G.; Hollis, R.; Ledbetter, F.; Maldonado, J.; Sledd, J.; Stuckey, J.; Waggoner, G.; Engler, E.

    1986-01-01

    Report documents development project aimed at improving design and load-carrying ability of complicated corner fitting for optical bench. New fitting made of graphite filaments in epoxy-resin matrix. Composite material selected as replacement for titanium because lighter and dimensions change little with temperature variations.

  19. Vacuum deposition system

    SciTech Connect

    Austin, S.; Bark, D.

    1990-05-31

    The Physics Section vacuum deposition system is available for several types of thin film techniques. This vacuum evaporation system operates in the high vacuum range. The evaporation source is a resistive heating element, either a boat or a filament design. Coating is then line of sight from the source. Substrates to be coated can have a maximum diameter of 17 inches. At this time the variations in the thickness of the coatings can be controlled, by monitor, to within about 100 angstroms. The system diagrams follow the Operation Procedures and the Sample Coating Procedures provided in this document. 3 figs.

  20. Thermophoretic vacuum wand

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John

    2000-01-01

    A thermophoretic vacuum wand that is particularly suited for transporting articles in a cleanroom environment so that potential particle contaminants in the air do not become adhered to the surface of the article is described. The wand includes a housing having a platen with a front surface with suction port(s) through the platen; a vacuum source for applying a negative pressure to the suction port(s); and heating device for the object. Heating the article when it is held by the vacuum wand affords thermophoretic protection that effectively prevents particles in the air from depositing onto the article.

  1. Thermophoretic vacuum wand

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John

    2001-01-01

    A thermophoretic vacuum wand that is particularly suited for transporting articles in a cleanroom environment so that potential particle contaminants in the air do not become adhered to the surface of the article is described. The wand includes a housing having a platen with a front surface with suction port(s) through the platen; a vacuum source for applying a negative pressure to the suction port(s); and heating device for the object. Heating the article when it is held by the vacuum wand affords thermophoretic protection that effectively prevents particles in the air from depositing onto the article.

  2. Collapse of vacuum bubbles in a vacuum

    SciTech Connect

    Ng, Kin-Wang; Wang, Shang-Yung

    2011-02-15

    We revisit the dynamics of a false vacuum bubble in a background de Sitter spacetime. We find that there exists a large parameter space that allows the bubble to collapse into a black hole or to form a wormhole. This may have interesting implications for the creation of a baby universe in the laboratory, the string landscape where the bubble nucleation takes place among a plenitude of metastable vacua, and the inflationary physics.

  3. Chlorhexidine-impregnated PEM/THFM polymer exhibits superior activity to fluconazole-impregnated polymer against Candida albicans biofilm formation.

    PubMed

    Salim, N; Silikas, N; Satterthwaite, J D; Moore, C; Ramage, G; Rautemaa, R

    2013-02-01

    Biofilm-associated infections represent a major challenge for biomaterials. Methods to alter the chemical characteristics of biomaterials offer an attractive solution for enhanced microbial control. The aim of this study was to investigate the efficacy of a poly(ethyl methacrylate)/tetrahydrofurfuryl methacrylate (PEM/THFM) acrylic model impregnated with fluconazole (FLU) or chlorhexidine (CHX) in preventing Candida biofilm formation in vitro. PEM/THFM disks impregnated with CHX (n=50) or FLU (n=50) and drug-free control disks (n=50) were infected with Candida albicans ATCC 90028. Disks were incubated for 2, 7, 14, 21 or 28 days at 37 °C and the biofilm biomass and metabolic activity was quantified at each time point using crystal violet staining and XTT [2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide] reduction assay. FLU disks exhibited poor overall biofilm inhibitory characteristics, with mean metabolic and biomass inhibition of 12.6% and 8.8%, respectively. Conversely, CHX disks were highly effective, significantly inhibiting biofilm development by 75% (P ≤ 0.001) and its metabolism by 84% (P ≤ 0.001) for all time points tested. The notable efficacy of CHX against C. albicans biofilms is a promising outcome to overcome the side effects and poor relative activity of conventional antifungal agents against Candida biofilms. These findings indicate that impregnation of PEM/THFM with antimicrobials has potential as a treatment modality for denture stomatitis. PMID:23127479

  4. Determination of barium and calcium evaporation rates from impregnated tungsten dispenser cathodes

    NASA Astrophysics Data System (ADS)

    Jones, G. L.; Grant, J. T.

    The evaporation rates of barium and calcium from impregnated tungsten dispenser cathodes have been determined by both a vapor-collect method and line-of-sight mass spectrometry. Cathodes having molar ratios of BaO, CaO, and Al 2O 3 of 4:1:1, 5:3:2, and 1:1:1 have been studied. All measurements were conducted in ultrahigh vacuum. For the vapor-collect method, a W(110) collector was found to be suitable for monolayer growth. The procedure involved plotting the ratio of the adsorbate Auger peak-to-peak height to that from the collector as a function of collection time. Break-points in these plots characterized the collection of one monolayer of adsorbate. A geometrical correction then allowed the evaporation rates to be determined. Evaporation rates were determined at cathode temperatures of 1050, 1100, and 1150°C. For the line-of-sight mass spectrometry an Extranuclear quadrupole was used. The quadrupole was capable of measuring species up to 300 amu. Measurements with the quadrupole were made on a 5:3:2 and a 4:1:1 cathode. Results obtained using these two methods are compared.

  5. A Point Spread Function for the EPOXI Mission

    NASA Technical Reports Server (NTRS)

    Barry, Richard K.

    2010-01-01

    The Extrasolar Planet Observation Characterization and the Deep Impact Extended Investigation missions (EPOXI) are currently observing the transits of exoplanets, two comet nuclei at short range, and the Earth and Mars using the High Resolution Instrument (HRI) - a 0.3 m f/35 telescope on the Deep Impact probe. The HRI is in a permanently defocused state with the instrument pOint of focus about 0.6 cm before the focal plane due to the use of a reference flat mirror that took a power during ground thermal-vacuum testing. Consequently, the point spread function (PSF) covers approximately nine pixels FWHM and is characterized by a patch with three-fold symmetry due to the three-point support structures of the primary and secondary mirrors. The PSF is also strongly color dependent varying in shape and size with change in filtration and target color. While defocus is highly desirable for exoplanet transit observations to limit sensitivity to intra-pixel variation, it is suboptimal for observations of spatially resolved targets. Consequently, all images used in our analysis of such objects were deconvolved with an instrument PSF. The instrument PSF is also being used to optimize transit analysis. We discuss development and usage of an instrument PSF for these observations.

  6. High-current carbon-epoxy capillary cathode

    NASA Astrophysics Data System (ADS)

    Gleizer, J. Z.; Queller, T.; Bliokh, Yu.; Yatom, S.; Vekselman, V.; Krasik, Ya. E.; Bernshtam, V.

    2012-07-01

    The results of experiments on the reproducible generation of an electron beam having a high current density of up to 300 A/cm2 and a satisfactorily uniform cross-sectional distribution of current density in a ˜200 kV, ˜450 ns vacuum diode with a carbon-epoxy capillary cathode are presented. It was found that the source of the electrons is the plasma formed as a result of flashover inside the capillaries. It is shown that the plasma formation occurs at an electric field ≤15 kV/cm and that the cathode sustains thousands of pulses without degradation in its emission properties. Time- and space-resolved visible light observation and spectroscopy analyses were used to determine the cathode plasma's density, temperature, and expansion velocity. It was found that the density of the cathode plasma decreases rapidly in relation to the distance from the cathode. In addition, it was found that the main reason for the short-circuiting of the accelerating gap is the formation and expansion of the anode plasma. Finally, it was shown that when an external guiding magnetic field is present, the injection of the electron beam into the drift space with a current amplitude exceeding its critical value changes the radial distribution of the current density of the electron beam because the inner electrons are reflected from the virtual cathode.

  7. Vacuum Camera Cooler

    NASA Technical Reports Server (NTRS)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  8. Welding space vacuum technology

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry

    1991-01-01

    The objective was to assist the EH 42 Division in putting together a vacuum system that could attain the desired pressure and be large enough to accommodate the gas-metal arc (GMA) welding fixture apparatus. A major accomplishment was the design and fabrication of the controller/annunciator for the 4' by 8' system. It contains many safety features such as thermocouple set point relays that will only allow inlet and exit gas and vacuum valves to be operated at pre-selected system pressures, and a fail safe mode for power interruptions and operator mistakes. It is felt that significant progress was made in this research effort to weld in a vacuum environment. With continued efforts to increase the pump speeds for vacuum chambers and further studies on weld fixtures and gas inlet pressures, the NASA program will be successful.

  9. TFTR diagnostic vacuum controller

    SciTech Connect

    Olsen, D.; Persons, R.

    1981-01-01

    The TFTR diagnostic vacuum controller (DVC) provides in conjunction with the Central Instrumentation Control and Data Acquisition System (CICADA), control and monitoring for the pumps, valves and gauges associated with each individual diagnostic vacuum system. There will be approximately 50 systems on TFTR. Two standard versions of the controller (A and B) wil be provided in order to meet the requirements of two diagnostic manifold arrangements. All pump and valve sequencing, as well as protection features, will be implemented by the controller.

  10. Effect of autohydrolysis on the wettability, absorbility and further alkali impregnation of poplar wood chips.

    PubMed

    Xu, Ningpan; Liu, Wei; Hou, Qingxi; Wang, Peiyun; Yao, Zhirong

    2016-09-01

    Autohydrolysis with different severity factors was performed on poplar wood chips prior to pulping, and the wettability, absorbility and the following impregnation of NaOH solution for the poplar wood chips were then investigated. The results showed that after autohydrolysis pretreatment the porosity, shrinkage and fiber saturation point (FSP) of the poplar wood chips were increased, while the surface contact angle decreased as the severity factor was increased. The autohydrolyzed chips absorbed more NaOH in impregnation that resulted in a low NaOH concentration in the bulk impregnation liquor (i.e., the impregnation liquor outside wood chips), while the concentration in the entrapped liquor (i.e., the impregnation liquor inside wood chips) was increased. Autohydrolysis substantially improved the effectiveness of alkali impregnation. PMID:27259186

  11. Effect of calcination on Co-impregnated active carbon

    SciTech Connect

    Bekyarova, E.; Mehandjiev, D. . Inst. of General and Inorganic Chemistry)

    1993-11-01

    Active carbon (AC) from apricot shells with known characteristics has been impregnated with a 9.88% Co(NO[sub 3])[sub 2] [center dot] 6H[sub 2]O solution. The samples are destroyed in air at 200, 300, 400, and 550 C. The processes accompanying the thermal treatment are studied by DTA. Two processes are established during calcination of Co-impregnated active carbon: (i) destruction of the support as a result of oxidation catalyzed by the impregnated cobalt and (ii) interaction of the active phase (Co[sub 3]O[sub 4]) with the support (AC), during which Co[sub 3]O[sub 4] is reduced to CoO and Co. The presence of Co[sub 3]O[sub 4], and CoO phases is proved by X-ray measurements, while that of metal Co is established by magnetic measurements. The porous structure changes are investigated by adsorption studies. The characterization of the samples is performed by physical adsorption of N[sub 2] (77.4 K) and CO[sub 2] (273 K). The poresize distribution curves are plotted over the range 0.4--10 nm by the methods of Pierce (for the mesopores) and Medek (for the micropores). The micropore volume is determined by two independent methods: t/F method and D-R plot. The results from adsorption studies indicate a decrease of S[sub BET], V[sub mi], and, especially, the supermicropores of the samples.

  12. Chemical impregnation and sinter corrosion in plaques for nickelcadmium cells

    NASA Astrophysics Data System (ADS)

    Lomaniec, Jacob; Sokolov, Mordechai

    We propose a model of the chemical impregnation of sintered plaques which makes it possible to compute the number of impregnation cycles needed to obtain the required active material loading. The active material loading influences both cell capacity and cycle life. The model also allows the determination of the required degree of sinter corrosion during the impregnation process, and the amount of nickel in the negative active material. This nickel content influences the voltage depression in the cell discharge curve.

  13. Tensile properties of nanoclay reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Ku, H.; Trada, Mohan

    2013-08-01

    Kinetic epoxy resin was filled with nanoclay to increase tensile properties of the composite for civil and structural. This project manufactured samples with different percentages by weight of nanoclay in the composites in steps of 1 wt %, which were then post-cured in an oven. The samples were then subjected to tensile tests. The results showed that the composite with 3 wt % of nanoclay produced the highest yield and tensile strengths. However, the Young's modulus increased with increasing nanoparticulate loading. It is hoped that the discussion and results in this work would not only contribute towards the further development of nanoclay reinforced epoxy composites with enhanced material properties, but also provide useful information for the studies of fracture toughness, tensile properties and flexural properties of other composites.

  14. Synthesis of liquid crystalline epoxy monomers

    NASA Astrophysics Data System (ADS)

    Fabia, J.; Galina, H.; Mossety-Leszczak, B.; Ulanski, J.; Wojciechowski, Piotr; Wlochowicz, Andrzej

    2002-06-01

    A two-stage method of synthesis of liquid-crystalline diepoxy monomers has been developed. In the first stage, esterification of 4-hydroxyphenyl-4-hydroxybenzoate or 4,4'- biphenol or 4,4'-dihydroxyazobenzene was carried out using 4-penetenoic acid. The resulting olefinic precursors were oxidized with m-chloroperoxybenzoic acid to introduce the epoxy groups. The structure of products was confirmed by FT- IR and 1H NMR. Examinations on a polarization microscope with a hot plate confirmed the presence of mesomorphic phases in both the precursors and monomers. The phase transition temperatures were in the range of 73.5 (at cooling) to 128.0 degree(s)C for olefinic precursors and in the range 57.1 (at cooling) to 143 degree(s)C for epoxy compounds, as determined by DSC and thermo-optical analysis (TOA).

  15. Analysis of diaphragm forming of powder impregnated thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Cutolo, D.; Canonico, P.; Marchetti, M.; Porcari, A. M.

    A new technology for making thermoplastic prepreg uses a fiber impregnated thermoplastic (FIT) process. Fabric woven from FIT tow prepreg shows a great deal of drapability. A study has been conducted on diaphragm forming technology, using FIT woven fabric made of glass fibers and polyimide. A double curvature mold was used to form hemispherical parts by applying differential pressures across double polyimide diaphragms. Effects of forming rate, lay-up, and cross-section thickness have been investigated. Deformation of diaphragms has been also investigated.

  16. Laser-induced iodine desorption from impregnated polystyrene

    NASA Astrophysics Data System (ADS)

    Torres-Filho, A.; Leite, N. F.; Miranda, L. C. M.; Stempniak, R. A.

    1989-07-01

    The Ar+ laser-stimulated desorption of iodine molecules from an impregnated polystyrene film was investigated. The photoprocess induces a color change (from red to the transparent) and leaves in the film a marked print, which is related to the laser beam characteristics. The experimental data was fitted using a set of differential equations relating the time dependence of the film temperature and absorption coefficient. At low-power levels (<25 mW), the time evolution of the laser transmitted power could be well matched to the experimental data. The wavelength dependence of the marking process was also studied and the relative contribution of photodissociative and photothermal processes was inferred.

  17. Properties of powder-impregnated graphite/PEKK

    NASA Technical Reports Server (NTRS)

    Bucher, R. A.; Hinkley, J. A.

    1992-01-01

    Poly Ether Ketone Ketone (PEKK) powders were prepregged on AS4 (12K), IM7 (12K), and G30-500 (12K) carbon fibers and consolidated into unidirectional laminates. The preferred formulation of PEKK for the dry powder process was identified. Mechanical test data on panels prepared via the powder process agreed well with flex, short beam shear, and double cantilever beam values obtained previously on melt-impregnated material. IM7/PEKK composites showed superior mechanical properties to AS4/PEKK and G30-500/PEKK composites. Transverse flexural strength and fiber/resin contact angle correlated well as measures of the fiber/matrix interfacial strength.

  18. Glass/Epoxy Door Panel for Automobiles

    NASA Technical Reports Server (NTRS)

    Bauer, J. L. JR.

    1985-01-01

    Lightweight panel cost-effective. Integrally-molded intrusion strap key feature of composite outer door panel. Strap replaces bulky and heavy steel instrusion beam of conventional door. Standard steel inner panel used for demonstration purposes. Door redesigned to exploit advantages of composite outer panel thinner. Outer panel for automobilie door, made of glass/epoxy composite material, lighter than conventional steel door panel, meets same strength requirements, and less expensive.

  19. ISABELLE vacuum systems

    SciTech Connect

    Halama, H J

    1980-01-01

    The Intersecting Storage Accelerator (ISABELLE) consists of two rings having a circumference of 3.8 km each. In these rings superconducting magnets, held at 4 K, bend and focus the proton beam which is accelerated up to 400 GeV. Due to very different pressure requirements, ISABELLE has two completely independent vacuum systems. One, which operates at 1 x 10/sup -11/ Torr, provides a very clean environment for the circulating proton beam. Here only ion and titanium sublimation pumps are used to provide the vacuum. The other system maintains superconducting magnet vessels at a pressure below 1 x 10/sup -4/ Torr, since at this pressure the gas conduction becomes negligible. In this so-called insulating vacuum system, turbomolecular pumps pump the inadvertent small helium leaks. Other gases are cryocondensed on the cold surfaces of the cryogenic system. The basic element of ISABELLE known as Full Cell containing 45 meters of beam tube, 8 pumping stations, 8 superconducting magnets and complete instrumentation has been constructed, leak checked and tested. All design parameters have been achieved in both vacuum systems. The two vacuum systems are described with particular emphasis on the influence of superconducting magnets in the selection of materials and UHV components.

  20. Implementing a nationwide insecticide-impregnated bednet programme in The Gambia.

    PubMed

    Cham, M K; D'Alessandro, U; Todd, J; Bennett, S; Fegan, G; Cham, B A; Greenwood, B M

    1996-09-01

    Earlier studies in The Gambia suggested that the use of impregnated bednets might prove to be a useful malaria control strategy. Based on the results of these studies, in 1992 the Government of The Gambia was encouraged to initiate a National Impregnated Bednet Programme (NIBP) as part of the National Malaria Control Programme Strategy. This paper describes the implementation process/procedure of the NIBP. Evaluation results showed that, overall, 83% of the bednets surveyed has been impregnated, and 77% of children under the age of five years and 78% of women of childbearing age were reported to be sleeping under impregnated bednets. PMID:10160374

  1. Morphology development of rubber-modified epoxy thermosets

    SciTech Connect

    Kwon, O.; Ward, T.C.

    1996-12-31

    Epoxy thermosets have been widely used as high performance adhesives and matrix resins for composites due to their outstanding mechanical and thermal properties, such as high modulus and tensile strength, high glass transition temperature, high thermal stability, and moisture resistance. Incorporation of a secondary rubbery phase into the glassy epoxy matrix can improve impact and fracture toughness of epoxy thermosets without sacrificing the other desirable properties of the neat epoxy thermoset. During the curing process, the initial homogeneous solution of epoxy resin-curing agent-rubber generally forms rubber-rich and epoxy-rich phases by a phase separation process which is arrested by gelation or vitrification. The final morphology developed by the cure depends on relative rates of cure reaction and phase separation. Cure conditions and the initial rubber composition control the morphology of the system and thus control the mechanical properties of the system.

  2. Biobased Epoxy Nanocomposites Derived from Lignin-Based Monomers.

    PubMed

    Zhao, Shou; Abu-Omar, Mahdi M

    2015-07-13

    Biobased epoxy nanocomposites were synthesized based on 2-methoxy-4-propylphenol (dihydroeugenol, DHE), a molecule that has been obtained from the lignin component of biomass. To increase the content of hydroxyl groups, DHE was o-demethylated using aqueous HBr to yield propylcatechol (DHEO), which was subsequently glycidylated to epoxy monomer. Optimal conditions in terms of yield and epoxy equivalent weight were found to be 60 °C with equal NaOH/phenolic hydroxyl molar ratio. The structural evolution from DHE to cured epoxy was followed by (1)H NMR and Fourier transform infrared spectroscopy. The nano-montmorillonite modified DHEO epoxy exhibited improved storage modulus and thermal stability as determined from dynamic mechanical analysis and thermogravimetric analysis. This study widens the synthesis routes of biobased epoxy thermosets from lignin-based molecules. PMID:26135389

  3. Interconnected porous epoxy monoliths prepared by concentrated emulsion templating.

    PubMed

    Wang, Jianli; Du, Zhongjie; Li, Hangquan; Xiang, Aimin; Zhang, Chen

    2009-10-01

    Porous epoxy monoliths were prepared via a step polymerization in a concentrated emulsion stabilized by non-ionic emulsifiers and colloidal silica. A solution in 4-methyl-2-pentanon was used as the continuous phase, which contained glycidyl amino epoxy monomer (GAE), curing agent, and an emulsifier. An aqueous suspension of colloidal silica was used as the dispersed phase of the concentrated emulsion. After the continuous phase was completely polymerized, the dispersed phase was removed and a porous epoxy was obtained. An optimal HLB value of emulsifier for the GAE concentrated emulsion was determined. In addition, the morphology of the porous epoxy was observed by SEM. The effect of the colloidal silica, the emulsifier, the curing of the epoxy, and the volume fraction of the dispersed phase on the morphology of porous epoxy are systematically discussed. PMID:19595357

  4. Nature of the adhesion bond between epoxy adhesive and steel

    NASA Astrophysics Data System (ADS)

    Vettegren', V. I.; Mamalimov, R. I.; Savitskii, A. V.; Shcherbakov, I. P.; Sytov, V. V.; Sytov, V. A.

    2014-03-01

    The potential difference that appears in the epoxy resin located between two grade 3 steel plates is studied. One of them is stored in epoxy resin to reach equilibrium, and the second plate is coated with an asprepared mixture of epoxy resin with a hardener. It is found that the potential difference decreases in time because of charge transfer by Fe2+ ions through epoxy resin. The luminescence and infrared absorption spectra of the epoxy adhesive on the grade 3 steel surface are recorded. An analysis of these spectra shows that Fe2+ ions penetrate into the as-prepared mixture of epoxy resin with the hardener, and interact with CN groups in the mixture, and form coordination compounds. As a result, a diffusion layer saturated by the coordination compounds forms at the interface between the steel and the adhesive.

  5. Epoxy thermoset networks derived from vegetable oils and their blends

    NASA Astrophysics Data System (ADS)

    Ryu, Chang; Ravalli, Matthew

    2015-03-01

    Epoxidized vegetable oils (EVOs), such as epoxidized soybean oil and linseed oils were prepared by the partial oxidation of the unsaturated double bonds in vegetable oils and used as monomers for preparing epoxy thermoset materials based on the cationic polymerization. These EVOs have been used to prepare epoxy thermosets of different network densities by cationic polymerization using onium salt catalyst. The crosslinked epoxy thermosets provide an ideal platform to study the structure-property-relationships of networked polymers. In particular, rheological studies on the epoxidized vegetable oil thermosets have been performed to measure the molecular weights between crosslinks (Mx) in the epoxy thermosets and to ultimately elucidate the role of functionality of epoxy groups in EVO on the mechanical and thermophysical properties of the epoxy thermoset materials. NSF DMR POLYMERS 1308617.

  6. Evaluation of Double-Vacuum-Bag Process For Composite Fabrication

    NASA Technical Reports Server (NTRS)

    Hou, T. H.; Jensen, B. J.

    2004-01-01

    A non-autoclave vacuum bag process using atmospheric pressure alone that eliminates the need for external pressure normally supplied by an autoclave or a press is an attractive method for composite fabrication. This type of process does not require large capital expenditures for tooling and processing equipment. In the molding cycle (temperature/pressure profile) for a given composite system, the vacuum application point has to be carefully selected to achieve the final consolidated laminate net shape and resin content without excessive resin squeeze-out. The traditional single-vacuum- bag (SVB) process is best suited for molding epoxy matrix based composites because of their superior flow and the absence of reaction by-products or other volatiles. Other classes of materials, such as polyimides and phenolics, generate water during cure. In addition, these materials are commonly synthesized as oligomers using solvents to facilitate processability. Volatiles (solvents and reaction byproducts) management therefore becomes a critical issue. SVB molding, without additional pressure, normally fails to yield void-free quality composites for these classes of resin systems. A double-vacuum- bag (DVB) process for volatile management was envisioned, designed and built at the NASA Langley Research Center. This experimental DVB process affords superior volatiles management compared to the traditional SVB process. Void-free composites are consistently fabricated as measured by C-scan and optical photomicroscopy for high performance polyimide and phenolic resins.

  7. Rate dependent response and failure of a ductile epoxy and carbon fiber reinforced epoxy composite

    SciTech Connect

    Brown, Eric N; Rae, Philip J; Dattelbaum, Dana M; Stahl, David B

    2010-01-01

    An extensive characterization suite has been performed on the response and failure of a ductile epoxy 55A and uniaxial carbon fiber reinforced epoxy composite of IM7 fibers in 55A resin from the quasistatic to shock regime. The quasistatic and intermediate strain rate response, including elastic modulus, yield and failure have are characterized by quasistatic, SHPB, and DMA measurements as a function of fiber orientation and temperature. The high strain rate shock effect of fiber orientation in the composite and response of the pure resin are presented for plate impact experiments. It has previously been shown that at lower impact velocities the shock velocity is strongly dependent on fiber orientation but at higher impact velocity the in-plane and through thickness Hugoniots converge. The current results are compared with previous studies of the shock response of carbon fiber composites with more conventional brittle epoxy matrices. The spall response of the composite is measured and compared with quasistatic fracture toughness measurements.

  8. Improving Vacuum Cleaners

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Space Act Agreement between the Kirby company and Lewis Research Center, NASA technology was applied to a commercial vacuum cleaner product line. Kirby engineers were interested in advanced operational concepts, such as particle flow behavior and vibration, critical factors to improve vacuum cleaner performance. An evaluation of the company 1994 home care system, the Kirby G4, led to the refinement of the new G5 and future models. Under the cooperative agreement, Kirby had access to Lewis' holography equipment, which added insight into how long a vacuum cleaner fan would perform, as well as advanced computer software that can simulate the flow of air through fans. The collaboration resulted in several successes including fan blade redesign and continuing dialogue on how to improve air-flow traits in various nozzle designs.

  9. Strontium-impregnated bioabsorbable composite for osteoporotic fracture fixation.

    PubMed

    Wu, Chang-Chin; Kuo, Chih-Lin; Fan, Fang-Yu; Yang, Kai-Chiang

    2015-10-01

    Osteoporosis impairs the bone-healing process as well as bone fracture fixation. The intervention of osteoporosis is considered to be one part of bone fracture treatment. Thus, orthopedic fixators impregnated with antiosteoporosis regimens will improve fracture fixation in osteoporotic bone. In this study, the strontium (Sr) and calcium phosphate ceramic (CPC) were mixed first and then mixed with poly(ε-caprolactone) (PCL) to fabricate a bioactive and bioabsorbable bone fixators. The prepared Sr-CPC/PCL screws were implanted into the distal femur of ovariectomized rabbits. The results showed that Sr-CPC/PCL composite had the appropriate mechanical properties, good biocompatibility, and radio-opacity. The Sr addition created a porous structure and accelerated the degradation of bone screws, but the degradation products did not acidify the surrounding environment. For osteoporotic animals, favorable osteointegration around the Sr-CPC/PCL screws was found, and the total porosity of trabecular bone was decreased under the inspections of micro-computerized tomography. Compared with PCL or CPC/PCL screw, animals which received Sr-CPC/PCL were found to have better results in terms of trabecular number, thickness, and separation. This study reveals that the Sr-impregnated bone fixator improves osseointegration in osteoporotic animals. Sr-CPC/PCL composite is a good candidate material for osteofixation in osteoporotic patients. PMID:25847487

  10. Zinc impregnated cellulose nanocomposites: Synthesis, characterization and applications

    NASA Astrophysics Data System (ADS)

    Ali, Attarad; Ambreen, Sidra; Maqbool, Qaisar; Naz, Sania; Shams, Muhammad Fahad; Ahmad, Madiha; Phull, Abdul Rehman; Zia, Muhammad

    2016-11-01

    Nanocomposite materials have broad applicability due to synergistic effect of combined components. In present investigation, cellulose isolated from citrus peel waste is used as a supporting material; impregnation of zinc oxide nanoparticles via co-precipitation method. The characterization of nano composite is carried out through Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and Thermo-gravimetric analysis (TGA) resulting less than 10 μm cellulose fiber and approx. 50 nm ZnO NPs. Zinc oxide impregnated cellulose (ZnO-Cel) exhibited significant bacterial devastation property when compared to ZnO NPs or Cellulose via disc diffusion and colony forming unit methods. In addition, the ZnO-Cel exhibited significant total antioxidant, and minor DPPH free radical scavenging and total reducing power activities. The nano composite also showed time dependent increase in photocatalytic by effectively degrading methylene blue dye up to 69.5% under sunlight irradiation within 90 min. The results suggest effective utilization of cellulose obtained from citrus waste and synthesis of pharmacologically important nano-composites that can be exploited in wound dressing; defence against microbial attack and healing due to antioxidative property, furthermore can also be used for waste water treatment.

  11. Diffusion impregnation of alloys under conditions of complex formation

    SciTech Connect

    Pavlina, V.S.; Matychak, Y.S.

    1985-05-01

    In most cases, diffusion impregnation of alloys with elements for the purpose of improving their service properties occurs with chemical interaction with the constituents of the base. Such processes are described within the limits of the model of reaction diffusion, assuming the formation and growth of new continuous layers by the Fick equation. At the same time, instantaneous reaction of the elements is assumed, as the result of which the rate of the whole process is limited by diffusion. Together with this, diffusion processes and chemical transformations occur simultaneously, as the result of which continuous phases are not formed (internal oxidation, nitriding, etc.). The purpose of this work was an analytical investigation of diffusion impregnation by element A from a constant source of a flat specimen initially uniformly alloyed with a mobile impurity B. The model presented makes it possible to investigate the initial stage of homogeneous formation of complexes and to reveal their influence on the kinetics of redistribution of the diffusing elements.

  12. Impact properties of shear thickening fluid impregnated foams

    NASA Astrophysics Data System (ADS)

    Soutrenon, M.; Michaud, V.

    2014-03-01

    Concentrated colloidal suspensions of silica particles in polyethylene glycol exhibit a shear thickening behavior: above a critical shear rate in a confined environment, they show a steep increase of viscosity. This reversible transition from a low to a high viscosity state is associated with a large energy absorption that could be harnessed for impact protection. As these suspensions are liquid at rest, however, shear thickening fluids (STFs) are difficult to use in practical applications. Furthermore, their specific rheological properties exist within a narrow range of concentration, so they tend to disappear when the material is in contact with air and humidity. In this work, a soft foam scaffold was impregnated with STF to provide a three-dimensional shape to the assembly at rest, while a silicone was cast around it to serve as a physical barrier to the external environment. A method to quickly impregnate the foam was proposed. Impact tests were carried out on the STF/foam/silicone composite pads using a free fall impact tower. Compared to rubber or pure silicone, larger energy absorptions, up to 85%, were observed, which could be repeated for multiple impacts. The transmitted shock waves were also reduced, showing the potential of this system for impact protection of structures.

  13. Cobalt Ions Improve the Strength of Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St. Clair, A. K.

    1986-01-01

    Technique developed for improving mechanical strength of epoxy resins by adding cobalt ions in form of tris(acetylacetonato)cobalt (III) complex. Solid cast disks prepared from cobalt ion-containing epoxy resins tested for flexural strength and stiffness. Incorporation of cobalt ions into epoxies increased flexural strength of resins by 10 to 95 percent. Suitable resins for this technique include any liquid or solid TGMDA resins. Improved epoxy formulation proves useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft.

  14. Toughened epoxy resin system and a method thereof

    DOEpatents

    Janke, Christopher J.; Dorsey, George F.; Havens, Stephen J.; Lopata, Vincent J.

    1998-01-01

    Mixtures of epoxy resins with cationic initiators are curable under high energy ionizing radiation such as electron beam radiation, X-ray radiation, and gamma radiation. The composition of this process consists of an epoxy resin, a cationic initiator such as a diaryliodonium or triarylsulfonium salt of specific anions, and a toughening agent such as a thermoplastic, hydroxy-containing thermoplastic oligomer, epoxy-containing thermoplastic oligomer, reactive flexibilizer, rubber, elastomer, or mixture thereof. Cured compositions have high glass transition temperatures, good mechanical properties, and good toughness. These properties are comparable to those of similar thermally cured epoxies.

  15. Toughened epoxy resin system and a method thereof

    DOEpatents

    Janke, C.J.; Dorsey, G.F.; Havens, S.J.; Lopata, V.J.

    1998-03-10

    Mixtures of epoxy resins with cationic initiators are curable under high energy ionizing radiation such as electron beam radiation, X-ray radiation, and gamma radiation. The composition of this process consists of an epoxy resin, a cationic initiator such as a diaryliodonium or triarylsulfonium salt of specific anions, and a toughening agent such as a thermoplastic, hydroxy-containing thermoplastic oligomer, epoxy-containing thermoplastic oligomer, reactive flexibilizer, rubber, elastomer, or mixture thereof. Cured compositions have high glass transition temperatures, good mechanical properties, and good toughness. These properties are comparable to those of similar thermally cured epoxies.

  16. Space environmental effects on graphite-epoxy compressive properties and epoxy tensile properties

    NASA Technical Reports Server (NTRS)

    Fox, Derek J.; Sykes, George F., Jr.; Herakovich, Carl T.

    1987-01-01

    This study characterizes the effects of electron radiation and temperature on a graphite-epoxy composite material. Compressive properties of the T300/934 material system were obtained at -250 F (-157 C), room temperature, and 250 F (121 C). Tensile specimens of the Fiberite 934 epoxy resin were fabricated and tested at room temperature and 250 F (121 C). Testing was conducted in the baseline (nonirradiated) and irradiated conditions. The radiation exposure was designed to simulate 30 year, worst-case exposure in geosynchronous Earth orbit. Mechanical properties tended to degrade at elevated temperature and improve at cryogenic temperature. Irradiation generally degraded properties at all temperatures.

  17. Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G (Inventor)

    2013-01-01

    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.

  18. K-130 Cyclotron vacuum system

    NASA Astrophysics Data System (ADS)

    Yadav, R. C.; Bhattacharya, S.; Bhole, R. B.; Roy, Anindya; Pal, Sarbajit; Mallik, C.; Bhandari, R. K.

    2012-11-01

    The vacuum system for K-130 cyclotron has been operational since 1977. It consists of two sub-systems, main vacuum system and beam line vacuum system. The main vacuum system is designed to achieve and maintain vacuum of about 1 × 10-6 mbar inside the 23 m3 volume of acceleration chamber comprising the Resonator tank and the Dee tank. The beam line vacuum system is required for transporting the extracted beam with minimum loss. These vacuum systems consist of diffusion pumps backed by mechanical pumps like roots and rotary pumps. The large vacuum pumps and valves of the cyclotron vacuum system were operational for more than twenty five years. In recent times, problems of frequent failures and maintenance were occurring due to aging and lack of appropriate spares. Hence, modernisation of the vacuum systems was taken up in order to ensure a stable high voltage for radio frequency system and the extraction system. This is required for efficient acceleration and transportation of high intensity ion beam. The vacuum systems have been upgraded by replacing several pumps, valves, gauges and freon units. The relay based control system for main vacuum system has also been replaced by PLC based state of the art control system. The upgraded control system enables inclusion of additional operational logics and safety interlocks into the system. The paper presents the details of the vacuum system and describes the modifications carried out for improving the performance and reliability of the vacuum system.

  19. Motor Brush Testing for Mars and Vacuum

    NASA Technical Reports Server (NTRS)

    Noon, Don E.

    1999-01-01

    Brush motors have been qualified and flown successfully on Mars missions, but upcoming missions require longer life and higher power. A test program was therefore undertaken to identify the best brush material for operation in the Mars atmosphere. Six different brush materials were used in 18 identical motors and operated under various load conditions for a period of four weeks in low-pressure CO2. All motors performed acceptably, with accumulated motor revolutions between 98 and 144 million revolutions, depending on load. A proprietary silver-graphite material from Superior Carbon (SG54-27) appears to be the best choice for long life, but even the stock copper-graphite brushes performed reliably with acceptable wear. The motors from the CO2 test were then cleaned and run in vacuum for 2 weeks. The difference in results was dramatic, with 5 motors failing catastrophically and wear rates increasing by orders of magnitude for the SG54-27 material. Three brush materials survived the test with no failures: SG54-27 with a proprietary Ball Aerospace impregnation, a silver-graphite-molybdenum disulfide material from Superior Carbon (SG59), and a copper sulfide-graphite material also from Superior Carbon (BG91).

  20. VACUUM SEALING MEANS FOR LOW VACUUM PRESSURES

    DOEpatents

    Milleron, N.

    1962-06-12

    S>A vacuum seal is designed in which the surface tension of a thin layer of liquid metal of low vapor pressure cooperates with adjacent surfaces to preclude passages of gases across pressure differentials as low as 10/sup -8/ mm Hg. Mating contiguous surfaces composed of copper, brass, stainless steel, nickel, molybdenum, tungsten, tantalum, glass, quartz, and/or synthetic mica are disposed to provide a maximum tolerance, D, expressed by 2 gamma /P/sub 1/, where gamma is the coefflcient of the surface tension of the metal sealant selected in dynes/cm/sub 2/. Means for heating the surfaces remotely is provided where temperatures drop below about 250 deg C. A sealant consisting of an alloy of gallium, indium, and tin, among other combinations tabulated, is disposed therebetween after treating the surfaces to improve wettability, as by ultrasonic vibrations, the surfaces and sealants being selected according to the anticipated experimental conditions of use. (AEC)

  1. Langmuir vacuum and superconductivity

    NASA Astrophysics Data System (ADS)

    Veklenko, B. A.

    2012-06-01

    It is shown that, in the "jelly" model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  2. Langmuir vacuum and superconductivity

    SciTech Connect

    Veklenko, B. A.

    2012-06-15

    It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  3. Vacuum ultraviolet holography

    NASA Technical Reports Server (NTRS)

    Bjorklund, G. C.; Harris, S. E.; Young, J. F.

    1974-01-01

    We report the first demonstration of holographic techniques in the vacuum ultraviolet spectral region. Holograms were produced with coherent 1182-A radiation. The holograms were recorded in polymethyl methacrylate and examined with an electron microscope. A holographic grating with a fringe spacing of 386 A was produced and far-field Fraunhofer holograms of submicron particles were recorded.

  4. Sorption vacuum trap

    NASA Technical Reports Server (NTRS)

    Barrington, A. E.; Caruso, A. J.

    1970-01-01

    Modified sorption trap for use in high vacuum systems contains provisions for online regeneration of sorbent material. Trap is so constructed that it has a number of encapsulated resistance heaters and a valving and pumping device for removing gases from heated sorbing material. Excessive downtime is eliminated with this trap.

  5. Vacuum arc deposition devices

    SciTech Connect

    Boxman, R.L.; Zhitomirsky, V.N.

    2006-02-15

    The vacuum arc is a high-current, low-voltage electrical discharge which produces a plasma consisting of vaporized and ionized electrode material. In the most common cathodic arc deposition systems, the arc concentrates at minute cathode spots on the cathode surface and the plasma is emitted as a hypersonic jet, with some degree of contamination by molten droplets [known as macroparticles (MPs)] of the cathode material. In vacuum arc deposition systems, the location and motion of the cathode spots are confined to desired surfaces by an applied magnetic field and shields around undesired surfaces. Substrates are mounted on a holder so that they intercept some portion of the plasma jet. The substrate often provides for negative bias to control the energy of depositing ions and heating or cooling to control the substrate temperature. In some systems, a magnetic field is used to guide the plasma around an obstacle which blocks the MPs. These elements are integrated with a deposition chamber, cooling, vacuum gauges and pumps, and power supplies to produce a vacuum arc deposition system.

  6. Vacuum ultraviolet holography

    NASA Technical Reports Server (NTRS)

    Bjorklund, G. C.; Harris, S. E.; Young, J. F.

    1974-01-01

    The authors report the first demonstration of holographic techniques in the vacuum ultraviolet spectral region. Holograms were produced with coherent 1182 A radiation. The holograms were recorded in polymethyl methacrylate and read out with an electron microscope. A holographic grating with a fringe spacing of 836 A was produced and far-field Fraunhofer holograms of sub-micron particles were recorded.

  7. Various unique vacuum holders

    SciTech Connect

    Gregar, J.S.

    1992-12-01

    Glassblowers use vacuum holding devices to support a flat plate in the glassflowing lathe to seal onto the end of, or inside of, a glass cylinder. Glassblowing blowhose swivels tend to leak; a rotating union from the hydraulics industry is better. Various graphite holder designs are described.

  8. Vacuum Kundt waves

    NASA Astrophysics Data System (ADS)

    McNutt, David; Milson, Robert; Coley, Alan

    2013-03-01

    We discuss the invariant classification of vacuum Kundt waves using the Cartan-Karlhede algorithm and determine the upper bound on the number of iterations of the Karlhede algorithm to classify the vacuum Kundt waves (Collins (1991 Class. Quantum Grav. 8 1859-69), Machado Ramos (1996 Class. Quantum Grav. 13 1589)). By choosing a particular coordinate system we partially construct the canonical coframe used in the classification to study the functional dependence of the invariants arising at each iteration of the algorithm. We provide a new upper bound, q ⩽ 4, and show that this bound is sharp by analyzing the subclass of Kundt waves with invariant count beginning with (0, 1,…) to show that the class with invariant count (0, 1, 3, 4, 4) exists. This class of vacuum Kundt waves is shown to be unique as the only set of metrics requiring the fourth covariant derivatives of the curvature. We conclude with an invariant classification of the vacuum Kundt waves using a suite of invariants.

  9. Tara vacuum system

    SciTech Connect

    Post, R.S.; Brindza, P.; Goodrich, P.; Gaudreau, M.P.

    1985-11-01

    The Tara tandem mirror experiment vacuum system will be discussed including system design, specifications, and performance required for plug thermal barrier operation. A detailed description of the major pumpig systems, reflux control, plasma pumping, measurement and control, fast gas handling and quality control procedures will be presented. Data from the two 5 month periods of operation will be presented.

  10. Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites

    NASA Astrophysics Data System (ADS)

    Fasanella, Nicholas A.; Sundararaghavan, Veera

    2016-05-01

    The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.

  11. Studies of Lubricating Materials in Vacuum

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Johnson, R. L.; Swikert, M. A.

    1964-01-01

    Lubricating materials for use in a vacuum environment have been the subject of a series of experimental investigations. Evaporation properties were evaluated for solid polymeric compositions. Friction and wear studies explored the behavior during sliding contact for series of polymeric compositions, binary alloys containing soft film-forming phases, complex alloys with film-forming materials, and a burnished MoS2 film. Friction and wear experiments were conducted at 10(exp-9)mm Hg with a 3/16-inch-radius-hemisphere rider specimen sliding on the flat surface of a rotating 2-1/2-inch-diameter disk specimen with materials that had low rates of evaporation. The influence of fillers in polytetrafluoroethylene (PTFE) on decomposition during vacuum friction studies was determined with a mass spectrometer. A real advantage in reducing decomposition and improving friction wear properties is gained by adding fillers (e.g., copper) that improve thermal conductivity through the composite materials. A polyimide and an epoxy-MoS2 composition material were found to have better friction and wear properties than PTFE compositions. A series of alloys (cast binary as well as more complex alloys) that contained microinclusions of potential film-forming material was studied. These materials replaced the normal surface oxides as they were worn away on sliding contact. Iron sulfide, nickel oxide, and tin are typical film-forming materials employed and were demonstrated to be effective in inhibiting surface welding and reducing friction. A burnished MoS2 film applied to type 440-C stainless steel in argon with a rotating soft wire brush had good endurance properties but somewhat higher friction than commercially available bonded films. An oil film applied to the burnished MoS2 markedly reduced its endurance life.

  12. 21 CFR 529.1003 - Flurogestone acetate-impregnated vaginal sponge.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Flurogestone acetate-impregnated vaginal sponge... § 529.1003 Flurogestone acetate-impregnated vaginal sponge. (a) Specifications. Each vaginal sponge... ewes during their normal breeding season. (2) Limitations. Using applicator provided, insert...

  13. 21 CFR 529.1003 - Flurogestone acetate-impregnated vaginal sponge.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Flurogestone acetate-impregnated vaginal sponge... § 529.1003 Flurogestone acetate-impregnated vaginal sponge. (a) Specifications. Each vaginal sponge... ewes during their normal breeding season. (2) Limitations. Using applicator provided, insert...

  14. Kl-impregnated Oyster Shells as a Solid Catalyst for Soybean Oil Transesterificaton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research on inexpensive and green catalysts is needed for economical production of biodiesel. The goal of the research was to test KI-impregnated oyster shell as a solid catalyst for transesterification of soybean oil. Specific objectives were to characterize KI-impregnated oyster shell, determine t...

  15. IN-FLIGHT CAPTURE OF ELEMENTAL MERCURY BY A CHLORINE-IMPREGNATED ACTIVATED CARBON

    EPA Science Inventory

    The paper discusses the in-flight capture of elemental mercury (Hgo) by a chlorine (C1)-impregnated activated carbon. Efforts to develop sorbents for the control of Hg emissions have demonstrated that C1-impregnation of virgin activated carbons using dilute solutions of hydrogen ...

  16. Impregnating unconsolidated pyroclastic sequences: A tool for detailed facies analysis

    NASA Astrophysics Data System (ADS)

    Klapper, Daniel; Kueppers, Ulrich; Castro, Jon M.; Pacheco, Jose M. R.; Dingwell, Donald B.

    2010-05-01

    The interpretation of volcanic eruptions is usually derived from direct observation and the thorough analysis of the deposits. Processes in vent-proximal areas are usually not directly accessible or likely to be obscured. Hence, our understanding of proximal deposits is often limited as they were produced by the simultaneous events stemming from primary eruptive, transportative, and meteorological conditions. Here we present a method that permits for a direct and detailed quasi in-situ investigation of loose pyroclastic units that are usually analysed in the laboratory for their 1) grain-size distribution, 2) componentry, and 3) grain morphology. As the clast assembly is altered during sampling, the genesis of a stratigraphic unit and the relative importance of the above mentioned deposit characteristics is hard to achieve. In an attempt to overcome the possible loss of information during conventional sampling techniques, we impregnated the cleaned surfaces of proximal, unconsolidated units of the 1957-58 Capelinhos eruption on Faial, Azores. During this basaltic, emergent eruption, fluxes in magma rise rate led to a repeated build-up and collapse of tuff cones and consequently to a shift between phreatomagmatic and magmatic eruptive style. The deposits are a succession of generally parallel bedded, cm- to dm-thick layers with a predominantly ashy matrix. The lapilli content is varying gradually; the content of bombs is enriched in discrete layers without clear bomb sags. The sample areas have been cleaned and impregnated with two-component glue (EPOTEK 301). For approx. 10 * 10 cm, a volume of mixed glue of 20 ml was required. Using a syringe, this low-viscosity, transparent glue could be easily applied on the target area. We found that the glue permeated the deposit as deep as 5 mm. After > 24 h, the glue was sufficiently dry to enable the sample to be laid open. This impregnation method renders it possible to cut and polish the sample and investigate grain

  17. Impregnating unconsolidated pyroclastic sequences: A tool for detailed facies analysis

    NASA Astrophysics Data System (ADS)

    Klapper, D.; Kueppers, U.; Castro, J. M.

    2009-12-01

    The interpretation of volcanic eruptions is usually derived from direct observation and the thorough analysis of the deposits. Processes in vent-proximal areas are usually not directly accessible or likely to be obscured. Hence, our understanding of proximal deposits is often limited as they were produced by the simultaneous events stemming from primary eruptive, transportative, and meteorological conditions. Here we present a method that permits for a direct and detailed quasi in-situ investigation of loose pyroclastic units that are usually analysed in the laboratory for their 1) grain-size distribution, 2) componentry, and 3) grain morphology. As the clast assembly is altered during sampling, the genesis of a stratigraphic unit and the relative importance of the above mentioned deposit characteristics is hard to achieve. In an attempt to overcome the possible loss of information during conventional sampling techniques, we impregnated the cleaned surfaces of proximal, unconsolidated units of the 1957-58 Capelinhos eruption on Faial, Azores. During this basaltic, emergent eruption, fluxes in magma rise rate led to a repeated build-up and collapse of tuff cones and consequently to a shift between phreatomagmatic and magmatic eruptive style. The deposits are a succession of generally parallel bedded, cm- to dm-thick layers with a predominantly ashy matrix. The lapilli content is varying gradually; the content of bombs is enriched in discrete layers without clear bomb sags. The sample areas have been cleaned and impregnated with a two-component glue (EPOTEK 301). For approx. 10 * 10 cm, a volume of mixed glue of 20 ml was required. This low-viscosity, transparent glue allowed for an easy application on the target area by means of a syringe and permeated the deposit as deep as 5 mm. After > 24 h, the glue was sufficiently dry to enable the sample to be laid open. This impregnation method renders it possible to cut and polish the sample and investigate grain

  18. Demonstrations with a Vacuum: Old Demonstrations for New Vacuum Pumps.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1989-01-01

    Explains mechanisms of 19th-century vacuum pumps. Describes demonstrations using the pump including guinea and feather tube, aurora tube, electric egg, Gassiots cascade, air mill, bell in vacuum, density and buoyancy of air, fountain in vacuum, mercury shower, palm and bladder glasses, Bacchus demonstration, pneumatic man-lifter, and Magdeburg…

  19. The fabrication, testing and delivery of boron/epoxy and graphite/epoxy nondestructive test standards

    NASA Technical Reports Server (NTRS)

    Pless, W. M.; Lewis, W. H.

    1971-01-01

    A description is given of the boron/epoxy and graphite/epoxy nondestructive test standards which were fabricated, tested and delivered to the National Aeronautics and Space Administration. Detailed design drawings of the standards are included to show the general structures and the types and location of simulated defects built into the panels. The panels were laminates with plies laid up in the 0 deg, + or - 45 deg, and 90 deg orientations and containing either titanium substrates or interlayered titanium perforated shims. Panel thickness was incrementally stepped from 2.36 mm (0.093 in.) to 12.7 mm (0.500 in.) for the graphite/epoxy standards, and from 2.36 mm (0.093 in.) to 6.35 mm (0.25 in.) for the boron/epoxy standards except for the panels with interlayered shims which were 2.9 mm (0.113 in.) maximum thickness. The panel internal conditions included defect free regions, resin variations, density/porosity variations, cure variations, delaminations/disbonds at substrate bondlines and between layers, inclusions, and interlayered shims. Ultrasonic pulse echo C-scan and low-kilovoltage X-ray techniques were used to evaluate and verify the internal conditions of the panels.

  20. Thermal Expansion and Swelling of Cured Epoxy Resin Used in Graphite/Epoxy Composite

    NASA Technical Reports Server (NTRS)

    Adamson, M. J.

    1979-01-01

    The thermal expansion and swelling of resin material as influenced by variations in temperature during moisture absorption is discussed. Comparison measurements using composites constructed of graphite fibers and each of two epoxy resin matrices are included. Polymer theory relative to these findings is discussed and modifications are proposed.

  1. Tritium handling in vacuum systems

    SciTech Connect

    Gill, J.T.; Coffin, D.O.

    1986-10-01

    This report provides a course in Tritium handling in vacuum systems. Topics presented are: Properties of Tritium; Tritium compatibility of materials; Tritium-compatible vacuum equipment; and Tritium waste treatment.

  2. Characteristics of scandate-impregnated cathodes with sub-micron scandia-doped matrices

    NASA Astrophysics Data System (ADS)

    Yuan, Haiqing; Gu, Xin; Pan, Kexin; Wang, Yiman; Liu, Wei; Zhang, Ke; Wang, Jinshu; Zhou, Meiling; Li, Ji

    2005-09-01

    We describe in this paper scandate-impregnated cathodes with sub-micron scandia-doped tungsten matrices having an improved uniformity of the Sc distribution. The scandia-doped tungsten powders were made by both liquid-solid doping and liquid-liquid doping methods on the basis of previous research. By improving pressing, sintering and impregnating procedures, we have obtained scandate-impregnated cathodes with a good uniformity of the Sc 2O 3- distribution. The porosity of the sub-micron structure matrix and content of impregnants inside the matrix are similar to those of conventionally impregnated cathodes. Space charge limited current densities of more than 30 A/cm 2 at 850 °C b have been obtained in a reproducible way. The current density continuously increases during the first 2000 h life test at 950 °C b with a dc load of 2 A/cm 2 and are stable for at least 3000 h.

  3. Production of epoxy compounds from olefinic compounds

    SciTech Connect

    Gelbein, A.P.; Kwon, J.T.

    1985-01-29

    Chlorine and tertiary alkanol dissolved in an inert organic solvent are reacted with aqueous alkali to produce tertiary alkyl hypochlorite which is recovered in the organic solvent and reacted with water and olefinically unsaturated compound to produce chlorohydrin and tertiary alkanol. Chlorohydrin and tertiary alkanol recovered in the organic solvent are contacted with aqueous alkali to produce the epoxy compound, and tertiary alkanol recovered in the organic solvent is recycled to hypochlorite production. The process may be integrated with the electrolytic production of chlorine, with an appropriate treatment of the recycle aqueous stream when required.

  4. Large fracture toughness boron-epoxy composites

    NASA Technical Reports Server (NTRS)

    Atkins, A. G.

    1975-01-01

    The high tensile strengths of strong interfacial bonding may be combined with the large fracture toughness of weak interfacial bonding in brittle fiber/brittle matrix composites by intermittently coating the filaments before layup so as to have random alternate weak and strong regions. Appropriate coating materials enable Cook-Gordon Mode I interfacial debonding to take place, which produces very long pull-out lengths with an associated large contribution to toughness. Unidirectional boron-epoxy composites have been so made which have toughnesses greater than 200 kJ/sq m while retaining rule of mixtures tensile strengths. Similar trends have been observed for crossply layups.

  5. Microwave impregnation of porous materials with thermal energy storage materials

    DOEpatents

    Benson, D.K.; Burrows, R.W.

    1993-04-13

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  6. Microwave impregnation of porous materials with thermal energy storage materials

    DOEpatents

    Benson, David K.; Burrows, Richard W.

    1993-01-01

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  7. Turbulent drag reduction over air- and liquid- impregnated surfaces

    NASA Astrophysics Data System (ADS)

    Rosenberg, Brian J.; Van Buren, Tyler; Fu, Matthew K.; Smits, Alexander J.

    2016-01-01

    Results on turbulent skin friction reduction over air- and liquid-impregnated surfaces are presented for aqueous Taylor-Couette flow. The surfaces are fabricated by mechanically texturing the inner cylinder and chemically modifying the features to make them either non-wetting with respect to water (air-infused, or superhydrophobic case), or wetting with respect to an oil that is immiscible with water (liquid-infused case). The drag reduction, which remains fairly constant over the Reynolds number range tested (100 ≤ Reτ ≤ 140), is approximately 10% for the superhydrophobic surface and 14% for the best liquid-infused surface. Our results suggest that liquid-infused surfaces may enable robust drag reduction in high Reynolds number turbulent flows without the shortcomings associated with conventional superhydrophobic surfaces, namely, failure under conditions of high hydrodynamic pressure and turbulent flow fluctuations.

  8. Nature of the plasticity of porous tungsten impregnated with copper

    SciTech Connect

    Susanina, G.P.; Antsiforov, P.N.; Glavatskaya, N.I.; Smirnov, V.P.; Zasimchuk, E.E.

    1985-06-01

    The authors undertake an analysis of the plasticity of two types of pseudoalloys used for production of electrical contacts: porous tungsten impregnated with copper (B1) and technical purity tungsten (B2). Samples were subjected to static tension at high temperatures. A chart presents the character of the temperature relationship to strength and plasticity of averaged samples of B1 and B2. Analysis of fractograms of the structure of the surfaces of rupture leads the authors to conclude that the workability of the pseudoalloy at close to room temperature is related to local deformation of copper in the areas of maximum applied stress, while at higher temperatures the material loses plasticity as result of the propagation of brittle microcracks due to high porosity.

  9. Development of metal oxide impregnated stilbite thick film ethanol sensor

    NASA Astrophysics Data System (ADS)

    Mahabole, M. P.; Lakhane, M. A.; Choudhari, A. L.; Khairnar, R. S.

    2016-05-01

    This paper presents the study of the sensing efficiency of Titanium oxide/ Stilbite and Copper oxide /Stilbite composites towards detection of hazardous pollutants like ethanol. Stilbite based composites are prepared by physically mixing zeolite with metal oxides namely TiO2 and CuO with weight ratios of 25:75, 50:50 and 75:25. The resulting sensor materials are characterized by X-ray diffraction and Fourier Transform Infrared Spectroscopy techniques. Composite sensors are fabricated in the form of thick film by using screen printing technique. The effect of metal oxide concentration on various ethanol sensing parameters such as operating temperature, maximum uptake capacity and response/recovery time are investigated. The results indicate that metal oxide impregnated stilbite composites have great potential as low temperature ethanol sensor.

  10. Investigation of Performance Envelope for Phenolic Impregnated Carbon Ablator (PICA)

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Prabhu, Dinesh; Milos, Frank S.; Stackpoole, Mairead

    2016-01-01

    The present work provides the results of a short exploratory study on the performance of Phenolic Impregnated Carbon Ablator, or PICA, at high heat flux and pressure in an arcjet facility at NASA Ames Research Center. The primary objective of the study was to explore the thermal response of PICA at cold-wall heat fluxes well in excess of 1500 W/cm (exp 2). Based on the results of a series of flow simulations, multiple PICA samples were tested at an estimated cold wall heat flux and stagnation pressure of 1800 W/cm (exp 2) and 130 kPa, respectively. All samples survived the test, and no failure was observed either during or after the exposure. The results indicate that PICA has a potential to perform well at environments with significantly higher heat flux and pressure than it has currently been flown.

  11. Microwave impregnation of porous materials with thermal energy storage materials

    SciTech Connect

    Benson, D.K.; Burrows, R.W.

    1992-12-31

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  12. A radiation hard vacuum switch

    DOEpatents

    Boettcher, G.E.

    1988-07-19

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction. 3 figs.

  13. Large boron--epoxy filament-wound pressure vessels

    NASA Technical Reports Server (NTRS)

    Jensen, W. M.; Bailey, R. L.; Knoell, A. C.

    1973-01-01

    Advanced composite material used to fabricate pressure vessel is prepeg (partially cured) consisting of continuous, parallel boron filaments in epoxy resin matrix arranged to form tape. To fabricate chamber, tape is wound on form which must be removable after composite has been cured. Configuration of boron--epoxy composite pressure vessel was determined by computer program.

  14. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Vinyl epoxy ester. 721.3140 Section 721.3140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3140 Vinyl epoxy ester. (a)...

  15. Respiratory effects of exposure of shipyard workers to epoxy paints.

    PubMed Central

    Rempel, D; Jones, J; Atterbury, M; Balmes, J

    1991-01-01

    Epoxy resin systems have been associated with occupational asthma in several case reports, but medical publications contain little on the potential adverse respiratory effects of these chemicals in exposed worker populations. To further evaluate the association of workplace exposure to epoxy paints and respiratory dysfunction, the cross workshift changes in pulmonary function and symptoms of 32 shipyard painters exposed to epoxy paints were compared with 28 shipyard painters not exposed to epoxy paints. The prevalence of lower respiratory tract symptoms was significantly higher among painters exposed to epoxy paints compared with controls. Among exposed painters the mean cross workshift change in forced expiratory volume in one second (FEV1) (-3.4%) was greater than the decrement in the non-exposed group (-1.4%). A significant linear relation was seen between % decrement in FEV1 and hours of exposure to epoxy paints. This study suggests that epoxy resin coatings as used by shipyard painters are associated with increased lower respiratory tract symptoms and acute decrements in FEV1. Adequate respiratory protection and medical surveillance programmes should be established in workplaces where exposure to epoxy resin systems occurs. PMID:1954156

  16. 40 CFR 721.320 - Acrylamide-substituted epoxy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.320 Acrylamide-substituted epoxy. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylamide-substituted epoxy (PMN...

  17. 40 CFR 721.320 - Acrylamide-substituted epoxy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.320 Acrylamide-substituted epoxy. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylamide-substituted epoxy (PMN...

  18. Carbonation of epoxy methyl soyate at atmospheric pressure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbonated methyl soyates were prepared from epoxy methyl soyate by the introduction of carbon dioxide at the oxirane position. Carbonation was performed with carbon dioxide gas by sparging carbon dioxide through the epoxy esters at atmospheric pressure in the presence of tetrabutylammonium bromide...

  19. [The efficacy of alphamethrin-impregnated ear tags against ticks].

    PubMed

    Schröder, J; van Schalkwyk, P C

    1989-06-01

    The efficacy of 3 kinds of alphamethrin-impregnated ear tags was tested against natural Amblyomma hebraeum, Boophilus decoloratus, Rhipicephalus appendiculatus, and Rhipicephalus evertsi evertsi infestations of cattle. One type of ear tag was also tested in combination with a tail band of similar material. Ticks were counted macroscopically on their predilection sites. Counts of B. decoloratus, R. appendiculatus, and R. e. evertsi on all trial animals diminished steadily during the first 7d after application of the devices. Counts on untreated control cattle had returned to their pre-treatment levels by Day 14 in the case of B. decoloratus, and by Day 21 for R. appendiculatus. R. e. evertsi did not regain their pre-treatment numbers during the trial period on the controls, but did so on one of the treated groups. This temporary drop could be interpreted as being the result of pyrethroid contamination from the hands of the investigators at the time of applying the ear tags, but did not interfere with the assessment of the effect of the tags. None of the forms of treatment showed acceptable efficacy against B. decoloratus. Ear tags alone were not very effective against R. e. evertsi, but the numbers of these ticks on the perineum were diminished by the use of tail bands. Two kinds of ear tags showed superior efficacy against R. appendiculatus, and in the case of these, one ear tag appeared to be as effective as two. The effect against A. hebraeum was evidently influenced by the distribution of the impregnated devices. Two types of ear tags were used alone and had no effect.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2607535

  20. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  1. Insertion device vacuum system designs

    SciTech Connect

    Hoyer, E.

    1988-05-01

    Synchrotron light source insertion device vacuum systems now in operation and systems proposed for the future are reviewed. An overview of insertion devices is given and four generic vacuum chamber designs, transition section design and pumping considerations are discussed. Examples of vacuum chamber systems are presented.

  2. Portable vacuum object handling device

    DOEpatents

    Anderson, Gordon H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object.

  3. Surge-damping vacuum valve

    DOEpatents

    Bullock, Jack C.; Kelly, Benjamin E.

    1980-01-01

    A valve having a mechanism for damping out flow surges in a vacuum system which utilizes a slotted spring-loaded disk positioned adjacent the valve's vacuum port. Under flow surge conditions, the differential pressure forces the disk into sealing engagement with the vacuum port, thereby restricting the flow path to the slots in the disk damping out the flow surge.

  4. Processing, properties and applications of composites using powder-coated epoxy towpreg technology

    NASA Technical Reports Server (NTRS)

    Bayha, T. D.; Osborne, P. P.; Thrasher, T. P.; Hartness, J. T.; Johnston, N. J.; Marchello, J. M.; Hugh, M. K.

    1993-01-01

    Composite manufacturing using the current prepregging technology of impregnating liquid resin into three-dimensionally reinforced textile preforms can be a costly and difficult operation. Alternatively, using polymer in the solid form, grinding it into a powder, and then depositing it onto a carbon fiber tow prior to making a textile preform is a viable method for the production of complex textile shapes. The powder-coated towpreg yarn is stable, needs no refrigeration, contains no solvents and is easy to process into various woven and braided preforms for later consolidation into composite structures. NASA's Advanced Composites Technology (ACT) program has provided an avenue for developing the technology by which advanced resins and their powder-coated preforms may be used in aircraft structures. Two-dimensional braiding and weaving studies using powder-coated towpreg have been conducted to determine the effect of resin content, towpreg size and twist on textile composite properties. Studies have been made to customize the towpreg to reduce friction and bulk factor. Processing parameters have been determined for three epoxy resin systems on eight-harness satin fabric, and on more advanced 3-D preform architectures for the downselected resin system. Processing effects and the resultant mechanical properties of these textile composites will be presented and compared.

  5. Tritium waste control: October 1980-March 1981. [Catalytic exchange detritiation; fixation of aqueous tritiated wastes in polymer impregnated concrete

    SciTech Connect

    Lamberger, P.H.; Rogers, M.L.

    1981-10-19

    The Combined Electrolysis Catalytic Exchange (CECE) pilot system was operated for 88 days and processed over 500 liters of tritiated water. Two complete electrolysis systems, each using a General Electric Company solid polymer electrolyte (SPE) cell, have been built. One of these is being used for the 10 Ci/ml tritiated water test and the other as a control with nontritiated water. The first SPE failed after seven weeks of exposure to the 10 Ci/ml water. A new SPE was installed and has been operated for eight weeks without failure at 10 Ci/ml. Analyses for 10 types of impurities were made on each of 15 Effluent Recovery System (ERS) liquid waste samples. A pilot-scale system for removal of these impurities has been designed and is being built. Gas generation rates caused by radiolysis of tritium waste materials were determined for polymer and nonpolymer impregenated tritiated concrete, and fixated and nonfixated tritiated waste vacuum pump oil. The construction of the new addition to the liquid waste handling facility was completed. The inert-atmosphere gloveboxes and other equipment are being installed for the polystyrene impregnated, tritiated-concrete wastewater process. The study of tritium release from representative burial packages was continued. The two wastewater drums which have the highest tritium release (29.8 mCi and 98.2 mCi) also contain the highest amounts of tritium, originally 34,480 Ci and 52,128 Ci, respectively. The tritium release from the polymer-impregnated, tritiated concrete (PITC) and the control (non-PITC) remain too low to be illustrated on the current figures.

  6. Toughening of epoxy resins by epoxidized soybean oil

    SciTech Connect

    Frischinger, I.; Dirlikov, S.

    1993-12-31

    Homogeneous mixtures of a liquid rubber based on prepolymers of epoxidized soybean oil with amines, diglycidyl ether of bisphenol A epoxy resins, and commercial diamines form, under certain conditions, two-phase thermosetting materials that consist of a rigid epoxy matrix and randomly distributed small rubbery soybean particles (0.1-5 {mu}m). These two-phase thermosets have improved toughness, similar to that of other rubber-modified epoxies, low water absorption, and low sodium content. In comparison to the unmodified thermosets, the two-phase thermosets exhibit slightly lower glass-transition temperatures and Young`s moduli, but their dielectric properties do not change. The epoxidized soybean oil is available at a price below that of commercial epoxy resins and appears very attractive for epoxy toughening on an industrial scale. 15 refs., 17 figs., 6 tabs.

  7. Cationic cure kinetics of a polyoxometalate loaded epoxy nanocomposite

    SciTech Connect

    Anderson, Benjamin J.

    2012-08-06

    The reaction cure kinetics of a novel polyoxometalate (POM) loaded epoxy nanocomposite is described. The POM is dispersed in the epoxy resin up to volume fractions of 0.1. Differential scanning calorimetry measurements show the cure of the epoxy resin to be sensitive to the POM loading. A kinetics study of the cure exotherm confirms that POM acts as a catalyst promoting cationic homopolymerization of the epoxy resin. The cure reaction is shown to propagate through two cure regimes. A fast cure at short time is shown to be propagation by the activated chain end (ACE) mechanism. A slow cure at long time is shown to be propagation by the activated monomer (AM) mechanism. The activation energies for the fast and slow cure regimes agree well with other epoxy based systems that have been confirmed to propagate by the ACE and AM mechanisms.

  8. Fiber-optic epoxy composite cure sensor. II. Performance characteristics

    NASA Astrophysics Data System (ADS)

    Lam, Kai-Yuen; Afromowitz, Martin A.

    1995-09-01

    The performance of a fiber-optic epoxy composite cure sensor, as previously proposed, depends on the optical properties and the reaction kinetics of the epoxy. The reaction kinetics of a typical epoxy system are presented. It is a third-order autocatalytic reaction with a peak observed in each isothermal reaction-rate curve. A model is derived to describe the performance characteristics of the epoxy cure sensor. If a composite coupon is cured at an isothermal temperature, the sensor signal can be used to predict the time when the gel point occurs and to monitor the cure process. The sensor is also shown to perform well in nonstoichiometric epoxy matrices. In addition the sensor can detect the end of the cure without calibration.

  9. Physical aging of linear and network epoxy resins

    NASA Technical Reports Server (NTRS)

    Kong, E. S.-W.; Wilkes, G. L.; Mcgrath, J. E.; Banthia, A. K.; Mohajer, Y.; Tant, M. R.

    1981-01-01

    Network and linear epoxy resins principally based on the diglycidyl ether of bisphenol-A and its oligomers are prepared and studied using diamine and anhydride crosslinking agents. Rubber modified epoxies and a carbon fiber reinforced composite are also investigated. All materials display time-dependent changes when stored at temperatures below the glass transition temperature after quenching (sub-T/g/ annealing). Solvent sorption experiments initiated after different sub-T(g) annealing times demonstrate that the rate of solvent uptake can be indirectly related to the free volume of the epoxy resins. Residual thermal stresses and water are found to have little effect on the physical aging process, which affects the sub-T(g) properties of uniaxial carbon fiber reinforced epoxy material. Finally, the importance of the recovery phenomenon which affects the durability of epoxy glasses is considered.

  10. Method for epoxy foam production using a liquid anhydride

    DOEpatents

    Celina, Mathias

    2012-06-05

    An epoxy resin mixture with at least one epoxy resin of between approximately 50 wt % and 100 wt %, an anhydride cure agent of between approximately 0 wt % and approximately 50 wt %, a tert-butoxycarbonyl anhydride foaming agent of between proximately 0.1-20 wt %, a surfactant and an imidazole or similar catalyst of less than approximately 2 wt %, where the resin mixture is formed from at least one epoxy resin with a 1-10 wt % tert-butoxycarbonyl anhydride compound and an imidazole catalyst at a temperature sufficient to keep the resin in a suitable viscosity range, the resin mixture reacting to form a foaming resin which in the presence of an epoxy curative can then be cured at a temperature greater than 50.degree. C. to form an epoxy foam.

  11. From waste to functional additive: toughening epoxy resin with lignin.

    PubMed

    Liu, Wanshuang; Zhou, Rui; Goh, Hwee Li Sally; Huang, Shu; Lu, Xuehong

    2014-04-23

    A novel approach to toughen epoxy resin with lignin, a common waste material from the pulp and paper industry, is presented in this article. First, carboxylic acid-functionalized alkali lignin (AL-COOH) was prepared and subsequently incorporated into anhydride-cured epoxy networks via a one-pot method. The results of mechanical tests show that covalent incorporation of rigid AL-COOH into epoxy networks can significantly toughen the epoxy matrix without deteriorating its tensile strength and modulus. The addition of 1.0 wt % AL-COOH gives increases of 68 and 164% in the critical stress intensity factor (K(IC)) and critical strain energy release rate (G(IC)), respectively, relative to that of neat epoxy. This article opens up the possibility of utilizing low-cost and renewable lignin feedstocks as effective toughening agents for thermoset polymers. PMID:24660855

  12. Insights into Epoxy Network Nanostructural Heterogeneity Using AFM-IR.

    PubMed

    Morsch, Suzanne; Liu, Yanwen; Lyon, Stuart B; Gibbon, Simon R

    2016-01-13

    The first direct observation of a chemically heterogeneous nanostructure within an epoxy resin is reported. Epoxy resins comprise the matrix component of many high performance composites, coatings and adhesives, yet the molecular network structure that underpins the performance of these industrially essential materials is not well understood. Internal nodular morphologies have repeatedly been reported for epoxy resins analyzed using SEM or AFM, yet the origin of these features remains a contentious subject, and epoxies are still commonly assumed to be chemically homogeneous. Uniquely, in this contribution we use the recently developed AFM-IR technique to eliminate previous differences in interpretation, and establish that nodule features correspond to heterogeneous network connectivity within an epoxy phenolic formulation. PMID:26694687

  13. Solar heated vacuum flask

    SciTech Connect

    Posnansky, M.

    1980-04-08

    The wall of a protective jacket of a vacuum flask, containing a double-walled vessel whose walls are permeable to solar radiation , includes parts capable of being swung open. These parts and a wall part situated between them each have a reflective coating. The reflective surfaces of these coatings, viewed in crosssection, extend along a parabola when the movable wall parts are opened out, so that incident solar radiation is collected in the core zone of the vessel. A solar-radiation absorbing member may be disposed in this core zone, E.G., a metal tube having a black outer surface. Liquid contents of such a vacuum flask can be heated by means of solar energy.

  14. Compact vacuum insulation embodiments

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  15. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  16. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  17. Compact vacuum insulation embodiments

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  18. Vacuum tool manipulator

    DOEpatents

    Zollinger, William T.

    1993-01-01

    Apparatus for manipulating a vacuum hose in a reactor vessel comprises a housing with two opposing openings, an arm carried by the housing and deployable from a stowed position essentially completely within the housing to an extended position where the arm extends through the two openings in a generally horizontal position. The arm preferably has a two-fingered gripping device for gripping the vacuum hose but may carry a different end effector such as a grinding wheel. The fingers are opened and closed by one air cylinder. A second air cylinder extends the device. A third air cylinder within the housing pivotally pulls the opposing end of the arm into the housing via a pivoting member pivotally connected between the third air cylinder shaft and the arm.

  19. An automated vacuum system

    SciTech Connect

    Atkins, W.H. ); Vaughn, G.D. ); Bridgman, C. )

    1991-01-01

    Software tools available with the Ground Test Accelerator (GTA) control system provide the capability to express a control problem as a finite state machine. System states and transitions are expressed in terms of accelerator parameters and actions are taken based on state transitions. This is particularly useful for sequencing operations which are modal in nature or are unwieldy when implemented with conventional programming. State diagrams are automatically translated into code which is executed by the control system. These tools have been applied to the vacuum system for the GTA accelerator to implement automatic sequencing of operations. With a single request, the operator may initiate a complete pump-down sequence. He can monitor the progress and is notified if an anomaly occurs requiring intervention. The operator is not required to have detailed knowledge of the vacuum system and is protected from taking inappropriate actions. 1 ref., 6 figs.

  20. Can vacuum energy gravitate?

    NASA Astrophysics Data System (ADS)

    Prasad Datta, Dhurjati

    1995-03-01

    In this essay we discuss an interesting recent development in semiclassical gravity. Using an improved Born-Oppenheimer approximation, the semiclassical reduction of the Wheeler-DeWitt equation turns out to give important insights into the nature and the level of validity of the semi-classical Einstein equations (SCEE). Back reactions from the quantized matter fields in SCEE are shown to be completely determined by adiabatically induced geometricU(N) gauge potentials. The finite energy from the vacuum polarization, in particular, is found to be intimately related to the ‘magnetic’ type geometric gauge potential. As a result the vacuum energy in a universe emerging from a ‘source-free’ flat simply-connected superspace is gauge equivalent to zero, leading to some dramatic consequences.

  1. Integrated structure vacuum tube

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Kerwin, W. J. (Inventor)

    1976-01-01

    High efficiency, multi-dimensional thin film vacuum tubes suitable for use in high temperature, high radiation environments are described. The tubes are fabricated by placing thin film electrode members in selected arrays on facing interior wall surfaces of an alumina substrate envelope. Cathode members are formed using thin films of triple carbonate. The photoresist used in photolithography aids in activation of the cathodes by carbonizing and reacting with the reduced carbonates when heated in vacuum during forming. The finely powdered triple carbonate is mixed with the photoresist used to delineate the cathode locations in the conventional solid state photolithographic manner. Anode and grid members are formed using thin films of refractory metal. Electron flow in the tubes is between grid elements from cathode to anode as in a conventional three-dimensional tube.

  2. Vacuum tool manipulator

    DOEpatents

    Zollinger, W.T.

    1993-11-23

    Apparatus for manipulating a vacuum hose in a reactor vessel comprises a housing with two opposing openings, an arm carried by the housing and deployable from a stowed position essentially completely within the housing to an extended position where the arm extends through the two openings in a generally horizontal position. The arm preferably has a two-fingered gripping device for gripping the vacuum hose but may carry a different end effector such as a grinding wheel. The fingers are opened and closed by one air cylinder. A second air cylinder extends the device. A third air cylinder within the housing pivotally pulls the opposing end of the arm into the housing via a pivoting member pivotally connected between the third air cylinder shaft and the arm. 6 figures.

  3. The LHC Vacuum System

    NASA Astrophysics Data System (ADS)

    Gröbner, O.

    1997-05-01

    The Large Hadron Collider (LHC) at CERN, involves two proton storage rings with colliding beams of 7 TeV. The machine will be housed in the existing LEP tunnel and requires 16 m long superconducting bending magnets. The vacuum chamber will be the inner wall of the cryostat and hence at the temperature of the magnet cold bore, i.e. at 1.9 K and therefore a very good cryo-pump. To reduce the cryogenic power consumption, the heat load from synchrotron radiation and from the image currents in the vacuum chamber will be absorbed on a 'beam screen', which operates between 5 and 20 K, inserted in the magnet cold bore. The design pressure necessary for operation must provide a lifetime of many days and a stringent requirement comes from the power deposition in the superconducting magnet coils due to protons scattered on the residual gas which could lead to a magnet quench. Cryo-pumping of gas on the cold surfaces provides the necessary low gas densities but it must be ensured that the vapour pressure of cryo-sorbed molecules, of which H2 and He would be the most critical species, remains within acceptable limits. The room temperature sections of the LHC, specifically in the experiments, the vacuum must be stable against ion induced desorption and ISR-type 'pressure bumps'.

  4. Design, fabrication, and test of a graphite/epoxy metering truss. [as applied to the LST

    NASA Technical Reports Server (NTRS)

    Oken, S.; Skoumal, D. E.

    1975-01-01

    A graphite/epoxy metering truss as applied to the large space telescope was investigated. A full-scale truss was designed, fabricated and tested. Tests included static limit loadings, a modal survey and thermal-vacuum distortion evaluation. The most critical requirement was the demonstration of the dimensional stability provided by the graphite/epoxy truss concept. Crucial to the attainment of this objective was the ability to make very sophisticated thermal growth measurements which was provided by a seven beam laser interferometer. The design of the basic truss elements were tuned to provide the high degree of dimensional stability and stiffness required by the truss. The struts and spider assembly were fabricated with Fiberite's AS/934 and HMS/934 broadgoods. The rings utilized T300 graphite fabricate with the same materials. The predicted performance of the truss was developed using the NASTRAN program. These results showed conformance with the critical stiffness and thermal distortion requirements and correlated well with the test results.

  5. Electrical properties of epoxy/silver nanocomposites

    NASA Astrophysics Data System (ADS)

    Gonon, P.; Boudefel, A.

    2006-01-01

    We investigated the electrical properties of nanocomposites made of epoxy resin filled with 70-nm-sized silver particles. These composites were studied for the fabrication of integrated capacitors in electronics packaging. The dc conductivity was studied as a function of the filler concentration and as a function of temperature. We also studied the ac conductivity and the permittivity in the 10-1-105 Hz range as a function of the filler concentration. Experimental properties were analyzed using standard percolation theories. The dc conductivity varies as (φ-φc)t, where φ is the filler concentration, φc is the percolation threshold, and t is the dc critical exponent. A very low percolation threshold is obtained (φc=1%) which is believed to be related to a segregated distribution of the fillers in the epoxy matrix. We also measured a very high dc critical exponent (t=5) probably related to the interparticle electrical contact. A universal scaling law is observed for σ(ω) and ɛ(ω). Above a cutoff frequency (ωc, which scales with the dc conductivity as ωc~σdcq) the conductivity and the permittivity follow the universal power laws (σ~ωu and V~ω-v) with critical exponents taking nonstandard values (q=0.83-0.98, u=0.79, and v=0.03).

  6. Ultrasonic mixing of epoxy curing agents

    NASA Technical Reports Server (NTRS)

    Hodges, W. T.; St.clair, T. L.

    1983-01-01

    A new technique for mixing solid curing agents into liquid epoxy resins using ultrasonic energy was developed. This procedure allows standard curing agents such as 4,4 prime-diaminodiphenyl sulfone (4,4 prime-DDS) and its 3,3 prime-isomer, (3,3 prime-DDS) to be mixed without prior melting of the curing agent. It also allows curing agents such as 4,4 prime-diaminodiphenyl sulfone (4,4 prime-DDS) and its 3,3 prime-isomer, (3,3 prime-DDS) to be mixed without prior melting of the curing agent. It also allows curing agents with very high melt temperatures such as 4,4 prime-diaminobenzophenone (4,4 prime-DABP) (242 C) to be mixed without premature curing. Four aromatic diamines were ultrasonically blended into MY-720 epoxy resin. These were 4,4 prime-DDS; 3,3 prime-DDA; 4,4 prime-DABP and 3,3 prime-DABP. Unfilled moldings were cast and cured for each system and their physical and mechanical properties compared.

  7. Epoxy Crosslinked Silica Aerogels (X-Aerogels)

    NASA Technical Reports Server (NTRS)

    fabrizio, Eve; Ilhan, Faysal; Meador, Mary Ann; Johnston, Chris; Leventis, Nicholas

    2004-01-01

    NASA is interested in the development of strong lightweight materials for the dual role of thermal insulator and structural component for space vehicles; freeing more weight for useful payloads. Aerogels are very-low density materials (0.010 to 0.5 g/cc) that, due to high porosity (meso- and microporosity), can be, depending on the chemical nature of the network, ideal thermal insulators (thermal conductivity approx. 15 mW/mK). However, aerogels are extremely fragile. For practical application of aerogels, one must increase strength without compromising the physical properties attributed to low density. This has been achieved by templated growth of an epoxy polymer layer that crosslinks the "pearl necklace" network of nanoparticles: the framework of a typical silica aerogel. The requirement for conformal accumulation of the epoxy crosslinker is reaction both with the surface of silica and with itself. After cross-linking, the strength of a typical aerogel monolith increases by a factor of 200, in the expense of only a 2-fold increase in density. Strength is increased further by coupling residual unreacted epoxides with diamine.

  8. Vapor-Gas Bubble Evolution and Growth in Extremely Viscous Fluids Under Vacuum

    NASA Technical Reports Server (NTRS)

    Kizito, John; Balasubramaniam, R.; Nahra, Henry; Agui, Juan; Truong, Duc

    2008-01-01

    Formation of vapor and gas bubbles and voids is normal and expected in flow processes involving extremely viscous fluids in normal gravity. Practical examples of extremely viscous fluids are epoxy-like filler materials before the epoxy fluids cure to their permanent form to create a mechanical bond between two substrates. When these fluids flow with a free liquid interface exposed to vacuum, rapid bubble expansion process may ensue. Bubble expansion might compromise the mechanical bond strength. The potential sources for the origin of the gases might be incomplete out-gassing process prior to filler application; regasification due to seal leakage in the filler applicator; and/or volatiles evolved from cure reaction products formed in the hardening process. We embarked on a study that involved conducting laboratory experiments with imaging diagnostics in order to deduce the seriousness of bubbling caused by entrained air and volatile fluids under space vacuum and low gravity environment. We used clear fluids with the similar physical properties as the epoxy-like filler material to mimic the dynamics of bubbles. Another aspect of the present study was to determine the likelihood of bubbling resulting from dissolved gases nucleating from solution. These experimental studies of the bubble expansion are compared with predictions using a modified Rayleigh- Plesset equation, which models the bubble expansion.

  9. Air bearing vacuum seal assembly

    DOEpatents

    Booth, Rex

    1978-01-01

    An air bearing vacuum seal assembly capable of rotating at the speed of several thousand revolutions per minute using an air cushion to prevent the rotating and stationary parts from touching, and a two stage differential pumping arrangement to maintain the pressure gradient between the air cushion and the vacuum so that the leak rate into the vacuum is, for example, less than 1 .times. 10.sup.-4 Pa m.sup.3 /s. The air bearing vacuum seal has particular application for mounting rotating targets to an evacuated accelerator beam tube for bombardment of the targets with high-power charged particle beams in vacuum.

  10. Effect of Co-60 gamma radiation on the mechanical properties of epoxy blends and epoxy-graphite fiber interface

    SciTech Connect

    Netravali, A.N.; Manji, A. )

    1991-06-01

    The effect of Co-60 gamma radiation of up to 100 Mrads on an IM6-G graphite fiber-epoxy interface was studied using the single-fiber-composite (SFC) technique. Flexible epoxy blends were formulated using DGEBA based and polyglycol diepoxide epoxies which were cured with aliphatic and aromatic curing agents. Bulk epoxy specimens and graphite fibers were tension tested to obtain their tensile properties. The fragment length distribution from SFC tests, single fiber strength data, and a Monte Carlo simulation of Poisson/Weibull model for fiber strength and flaws were used to obtain the effective interfacial shear strength values. The results indicate that while graphite fiber strength is not affected by radiation, the tensile properties of the epoxies used are adversely affected by the radiation. The interfacial shear strength, however, increases significantly with the radiation dose. 36 refs.

  11. JET divertor coils, manufacture, assembly and testing

    NASA Astrophysics Data System (ADS)

    Dolgetta, N.; Bertolini, E.; D'Urzo, C.; Last, J. R.; Laurenti, A.; Presle, P.; Sannazzaro, G.; Tait, J.; Tesini, A.

    1994-07-01

    Four coils have been built and installed in the JET vacuum vessel to produce divertor plasmas. The coils are copper with glass epoxy insulation and are enclosed in vacuum tight Inconel cases. At the coil contractor's factory, the coil parts were manufactured and process techniques qualified. In the JET vacuum vessel the conductor bars were brazed to form the coils, which were inserted in the casings and impregnated and cured with epoxy resin.

  12. Understand vacuum-system fundamentals

    SciTech Connect

    Martin, G.R. ); Lines, J.R. ); Golden, S.W. )

    1994-10-01

    Crude vacuum unit heavy vacuum gas-oil (HVGO) yield is significantly impacted by ejector-system performance, especially at conditions below 20 mmHg absolute pressure. A deepcut vacuum unit, to reliably meet the yields, calls for proper design of all the major pieces of equipment. Ejector-system performance at deepcut vacuum column pressures may be independently or concurrently affected by: atmospheric column overflash, stripper performance or cutpoint; vacuum column top temperature and heat balance; light vacuum gas-oil (LVGO) pumparound entrainment to the ejector system; cooling-water temperature; motive steam pressure; non-condensible loading, either air leakage or cracked light-end hydrocarbons; condensible hydrocarbons; intercondenser or aftercondenser fouling ejector internal erosion or product build-up; and system vent back pressure. The paper discusses gas-oil yields; ejector-system fundamentals; condensers; vacuum-system troubleshooting; process operations; and a case study of deepcut operations.

  13. Electrical performance of nanostructured strontium-doped lanthanum manganite impregnated onto yttria-stabilized zirconia backbone

    NASA Astrophysics Data System (ADS)

    Ju, Jiangwei; Lin, Jie; Wang, Yusu; Zhang, Yanxiang; Xia, Changrong

    2016-01-01

    Strontium-doped lanthanum manganite (LSM) nanoparticles are deposited onto porous yttria-stabilized zirconia frameworks via an ion impregnation/infiltration process. The apparent conductivity of the impregnated LSM nanostructure is investigated regarding the fabricating parameters including LSM loading, heat treatment temperature, heating rate, and annealing at 750 °C for 400 h. Besides, the conductivity, the intrinsic conductivity as well as Bruggeman factor of the impregnated LSM is estimated from the apparent conductivity using the analytical model for the three-dimensional impregnate network. The conductivity increases with LSM loading while the interfacial polarization resistance exhibits the lowest value at an optimal loading of about 5 vol.%, which corresponds to the largest three-phase boundary as predicted using the numerical infiltration methodology. At the optimal loading, the area specific ohmic resistance of the impregnated LSM is about 0.032 Ω cm2 at 700 °C for a typical impregnated cathode of 30 μm thick. It is only 5.5% of the cathode interfacial polarization resistance and 3.3% of the total resistance for a single cell consisting of a Ni-YSZ support, a 10 μm thick electrolyte and a 30 μm thick cathode, demonstrating that the ohmic resistance is negligible in the LSM impregnated cathode for SOFCs.

  14. Experimental studies of graphite-epoxy and boron-epoxy angle ply laminates in shear

    NASA Technical Reports Server (NTRS)

    Weller, T.

    1977-01-01

    The nonlinear/inelastic response under inplane shear of a large variety of graphite-epoxy and boron-epoxy angle-ply laminates was tested. Their strength allowables were obtained and the mechanisms which govern their mode of failure were determined. Two types of specimens for the program were chosen, tested, and evaluated: shear panels stabilized by an aluminum honeycomb core and shear tubes. A modified biaxially compression/tension loaded picture frame was designed and utilized in the test program with the shear panels. The results obtained with this test technique categorically prefer the shear panels, rather than the tubes, for adequate and satisfactory experimental definition of the objectives. Test results indicate the existence of a so-called core-effect which ought to be considered when reducing experimental data for weak in shear laminates.

  15. Tension fatigue of glass/epoxy and graphite/epoxy tapered laminates

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.; Obrien, T. Kevin; Salpekar, Satish A.

    1990-01-01

    Symmetric tapered laminates with internally dropped plies were tested with two different layups and two materials, S2/SP250 glass/epoxy and IM6/1827I graphite/epoxy. The specimens were loaded in cyclic tension until they delaminated unstably. Each combination of material and layup had a unique failure mode. Calculated values of strain energy release rate, G, from a finite element analysis model of delamination along the taper, and for delamination from a matrix ply crack, were used with mode I fatigue characterization data from tests of the tested materials to calculate expected delamination onset loads. Calculated values were compared to the experimental results. The comparison showed that when the calculated G was chosen according to the observed delamination failures, the agreement between the calculated and measured delamination onset loads was reasonable for each combination of layup and material.

  16. Tension fatigue of glass/epoxy and graphite/epoxy tapered laminates

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.; O'Brien, T. Kevin; Salpekar, Satish A.

    1990-01-01

    Symmetric tapered laminates with internally dropped plies were tested with two different layups and two materials, S2/SP250 glass/epoxy and IM6/18271 graphite/epoxy. The specimens were loaded in cyclic tension until they delaminated unstably. Each combination of material and layup had a unique failure mode. Calculated values of strain energy release rate, G, from a finite element analysis model of delamination along the taper, and for delamination from a matrix ply crack, were used with mode I fatigue characterization data from tests of the tested materials to calculate expected delamination onset loads. Calculated values were compared to the experimental results. The comparison showed that when the calculated G was chosen according to the observed delamination failures, the agreement between the calculated and measured delamination onset loads was reasonable for each combination of layup and material.

  17. Progress toward Making Epoxy/Carbon-Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Tiano, Thomas; Roylance, Margaret; Gassner, John; Kyle, William

    2008-01-01

    A modicum of progress has been made in an effort to exploit single-walled carbon nanotubes as fibers in epoxy-matrix/fiber composite materials. Two main obstacles to such use of carbon nanotubes are the following: (1) bare nanotubes are not soluble in epoxy resins and so they tend to agglomerate instead of becoming dispersed as desired; and (2) because of lack of affinity between nanotubes and epoxy matrices, there is insufficient transfer of mechanical loads between the nanotubes and the matrices. Part of the effort reported here was oriented toward (1) functionalization of single-walled carbon nanotubes with methyl methacrylate (MMA) to increase their dispersability in epoxy resins and increase transfer of mechanical loads and (2) ultrasonic dispersion of the functionalized nanotubes in tetrahydrofuran, which was used as an auxiliary solvent to aid in dispersing the functionalized nanotubes into a epoxy resin. In another part of this effort, poly(styrene sulfonic acid) was used as the dispersant and water as the auxiliary solvent. In one experiment, the strength of composite of epoxy with MMA-functionalized-nanotubes was found to be 29 percent greater than that of a similar composite of epoxy with the same proportion of untreated nanotubes.

  18. The failure mode of natural silk epoxy triggered composite tubes

    NASA Astrophysics Data System (ADS)

    Eshkour, R. A.; Ariffin, A. K.; Zulkifli, R.; Sulong, A. B.; Azhari, C. H.

    2012-09-01

    In this study the quasi static compression test over natural silk epoxy triggered composite tubes has been carried out, the natural silk epoxy composite tubes consist of 24 layer of woven natural silk as reinforcement and thermoset epoxy resin as matrix which both of them i e natural silk and epoxy have excellent mechanical properties More over the natural silk have better moisture resistance in comparison with other natural reinforcements, the length of tubes are 50, 80 and 120 mm The natural silk epoxy composite tubes are associated with an external trigger which includes 4 steel pieces welded on downside flat plate fixture The hand lay up fabrication method has been used to make the natural silk epoxy composite tubes Instron universal testing machine with 250 KN load capacity has been employed to accomplish this investigation The failure modes of natural silk epoxy triggered composite tubes has been investigated by representative photographs which has been taken by a high resolution camera(12 2 Mp) during the quasi static compression test, from the photographs is observed the failure modes is progressive local buckling

  19. Iron-impregnated granular activated carbon for arsenic removal from drinking water

    NASA Astrophysics Data System (ADS)

    Chang, Qigang

    A new multi-step iron impregnation method was developed in this study to impregnate GAC with a high amount of iron that possesses desired characteristics: stable, even distribution, and high arsenic adsorption capacity. Research was carried out to investigate the impact of the amount of impregnated iron on arsenic adsorption properties: capacity, affinity, and kinetics. Fe-GACs were characterized in terms of the amount, stability, distribution, morphology, and species of impregnated iron. It was found that a high amount of iron was stably impregnated in GAC. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis demonstrated that the impregnated iron was evenly distributed on the internal surface of GAC. Impregnated iron formed nano-size particles and existed in both crystalline (akaganeite) and amorphous iron. Arsenic adsorption tests were conducted using Fe-GACs with iron content of 1.64--28.90% in a low arsenic concentration that is typical for drinking water treatment. The amount of impregnated iron affects arsenic maximum adsorption capacity (qm) but has little impact on the Langmuir constant h (the affinity of adsorbent for adsorbate). The qm for both As(V) and As(III) adsorptions increased significantly with increase of the amount of impregnated iron up to 13.59%. Further increase of iron amounts caused a gradual decrease of qm for As(V). BET analysis indicated impregnated iron possesses the highest surface area at iron content of 13.59%. A new second-order kinetic model was developed to investigate the impact of the amounts of impregnated iron on arsenic adsorption kinetics. With iron content increased from 1.64% to 28.90%, the intrinsic adsorption rate constants reduced from 4.6x10-2 1/hr to 1.18x10 -3 1/hr, which indicates that impregnated iron slows arsenic intraparticle diffusion rate in Fe-GAC. The decreased arsenic intraparticle diffusion rate was most likely caused by reduced pore size of Fe-GACs. Column tests were

  20. Polymers in a Vacuum

    SciTech Connect

    Deutsch, J. M.

    2007-12-07

    In a variety of situations, isolated polymer molecules are found in a vacuum, and here we examine their properties. Angular momentum conservation is shown to significantly alter the average size of a chain and its conservation is only broken slowly by thermal radiation. For an ideal chain, the time autocorrelation for monomer position oscillates with a period proportional to chain length. The oscillations and damping are analyzed in detail. Short-range repulsive interactions suppress oscillations and speed up relaxation, but stretched chains still show damped oscillatory correlations.

  1. Flow and Compaction During the Vacuum Assisted Resin Transfer Molding Process

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Hubert, Pascal; Song, Xiao-Lan; Cano, Roberto J.; Loos, Alfred C.; Pipes, R. Byron

    2001-01-01

    The flow of an epoxy resin and compaction behavior of carbon fiber preform during vacuum- assisted resin transfer molding (VARTM) infiltration was measured using an instrumented tool. Composite panels were fabricated by the VARTM process using SAERTEX(R)2 multi-axial non- crimp carbon fiber fabric and the A.T.A.R.D. SI-ZG-5A epoxy resin. Resin pressure and preform thickness variation was measured during infiltration. The effects of the resin on the compaction behavior of the preform were measured. The local preform compaction during the infiltration is a combination of wetting and spring-back deformations. Flow front position computed by the 3DINFIL model was compared with the experimental data.

  2. Effect of modified aminosilane interfaces in glass/epoxy composites

    SciTech Connect

    Porter, C.E.; Blum, F.D.

    1996-10-01

    The effects of the interfacial modification of glass/epoxy composites have been studied using 3-point bending tests. Hydrolyzed {gamma}-aminopropyltriethyoxysilane APS and {gamma}-aminobutyltriethoxysilane (ABS) were separately adsorbed onto E-glass and the treated fibers were then used in composites that used both a diglycidyl ether of bisphenol A and a diglycidyl ether of polypropylene epoxy matrix. Mechanical tests were used to characterize the flexural strength of the composite as a function of the silane coupling agent and the flexibility of the epoxy used.

  3. Affinity Adsorbents Based on Carriers Activated by Epoxy-compounds

    NASA Astrophysics Data System (ADS)

    Klyashchitskii, B. A.; Kuznetsov, P. V.

    1984-10-01

    The review is devoted to the synthesis and applications of affinity adsorbents based on carriers activated by epoxy-compounds. The methods for the introduction of epoxy-groups into carriers of different chemical types are discussed and conditions for the immobilisation of three-dimensional spacers and low-molecular-weight and polymeric ligands on carriers containing epoxy-groups are considered. Data are presented on the properties and applications of adsorbents of this type in affinity chromatography. The bibliography includes 144 references.

  4. Epoxy bond and stop etch fabrication method

    DOEpatents

    Simmons, Jerry A.; Weckwerth, Mark V.; Baca, Wes E.

    2000-01-01

    A class of epoxy bond and stop etch (EBASE) microelectronic fabrication techniques is disclosed. The essence of such techniques is to grow circuit components on top of a stop etch layer grown on a first substrate. The first substrate and a host substrate are then bonded together so that the circuit components are attached to the host substrate by the bonding agent. The first substrate is then removed, e.g., by a chemical or physical etching process to which the stop etch layer is resistant. EBASE fabrication methods allow access to regions of a device structure which are usually blocked by the presence of a substrate, and are of particular utility in the fabrication of ultrafast electronic and optoelectronic devices and circuits.

  5. Epoxy coatings over latex block fillers

    SciTech Connect

    Vincent, L.D.

    1997-12-01

    Failures of polymerized epoxy coatings applied over latex/acrylic block fillers continue to plague owners of commercial buildings, particularly those with high architectural content such as condominiums, high rise offices, etc. Water treatment facilities in paper mills are especially prone to this problem. The types of failures include delamination of the topcoats, blisters in both the block fillers and the topcoats and disintegration of the block filler itself. While the problem is well known, the approach to a solution is not. A study of several coatings manufacturer`s Product Data Sheets shows a wide variance in the recommendations for what are purportedly generically equivalent block fillers. While one manufacturer might take an essentially architectural approach, another will take a heavy-duty industrial approach. To the specifying architect or engineer who has little training in the complexities of protective coating systems, this presents a dilemma. Who does he believe? What does he specify? To whom can he turn for independent advice?

  6. Contactless optoelectronic technique for monitoring epoxy cure.

    PubMed

    Cusano, A; Buonocore, V; Breglio, G; Calabrò, A; Giordano, M; Cutolo, A; Nicolais, L

    2000-03-01

    We describe a novel noninvasive optical technique to monitor the refractive-index variation in an epoxy-based resin that is due to the polymerization process. This kind of resin is widely used in polymer matrix composites. It is well known that the process of fabricating a thermoset-based composite involves mass and heat transfer coupled with irreversible chemical reactions that induce physical changes. To improve the quality and the reliability of these materials, monitoring the cure and optimization of the manufacturing process are of key importance. We discuss the basic operating principles of an optical system based on angle deflection measurements and present typical cure-monitoring results obtained from optical characterization. The method provides a flexible, high-sensitivity, material-independent, low-cost, noninvasive tool for monitoring real-time refractive-index variation. PMID:18337994

  7. Measurement of damping of graphite epoxy materials

    NASA Technical Reports Server (NTRS)

    Crocker, M. J.

    1985-01-01

    The design of an experiment to measure the damping of a cylindrical graphite-epoxy specimen with a three point support and a knife edge support is described as well as equipment used in tests conducted to determine the influence of the support at the two ends of the specimen and to simulate an idealized free-free boundary condition at the two edges. A curve fitting technique is being used to process the frequency response data obtained. Experiments conducted on the thin plate specimen also reveal the influence of the end support condition on the damping ratio of the specimen. The damping ratio values measured for both specimens appear to be strongly influenced by the shape of the specimen and appear to depend on length and fiber orientation as well as the presence of discontinuities such as sharp bends, corners, and notches.

  8. R&D ERL: Vacuum

    SciTech Connect

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the {approx}10{sup -9} torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2{sup o}K is reduced to low 10{sup -11} torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The

  9. Usefulness of palladium impregnated magnetite nanoparticles for polyphenol determination.

    PubMed

    Godoy-Navajas, Juan; Aguilar-Caballos, María Paz; Gómez-Hens, Agustina

    2016-07-01

    Palladium impregnated magnetite nanoparticles (Pd-Fe3O4NPs) have been synthesized and used as reusable catalyst for the fluorometric determination of polyphenols in wines. The method is based on the decrease of the indocyanine green fluorescence, which is ascribed to its oxidation by dissolved oxygen in the presence of the nanoparticles, and the inhibition of the fluorescence decrease by polyphenols, which is proportional to the polyphenol concentration. The dynamic range of the calibration graph is 0.1-10.0µM gallic acid, which was chosen as model analyte, and the detection limit is 0.02µM. Precision data, expressed as relative standard deviation, ranged between 3.3% and 5.4%. The method was applied to the analysis of several wine samples, obtaining recovery values in the range of 79.7-102.0%. The results obtained were compared with those obtained using the Folin-Ciocalteu and laccase methods, finding that Pd-Fe3O4NPs provide a better selectivity than the first method and show a catalytic behavior similar to that of laccase. PMID:27154689

  10. Vacuum vapor deposition

    NASA Technical Reports Server (NTRS)

    Poorman, Richard M. (Inventor); Weeks, Jack L. (Inventor)

    1995-01-01

    A method and apparatus is described for vapor deposition of a thin metallic film utilizing an ionized gas arc directed onto a source material spaced from a substrate to be coated in a substantial vacuum while providing a pressure differential between the source and the substrate so that, as a portion of the source is vaporized, the vapors are carried to the substrate. The apparatus includes a modified tungsten arc welding torch having a hollow electrode through which a gas, preferably inert, flows and an arc is struck between the electrode and the source. The torch, source, and substrate are confined within a chamber within which a vacuum is drawn. When the arc is struck, a portion of the source is vaporized and the vapors flow rapidly toward the substrate. A reflecting shield is positioned about the torch above the electrode and the source to ensure that the arc is struck between the electrode and the source at startup. The electrode and the source may be confined within a vapor guide housing having a duct opening toward the substrate for directing the vapors onto the substrate.

  11. MOLECULAR VACUUM PUMP

    DOEpatents

    Eckberg, E.E.

    1960-09-27

    A multiple molecular vacuum pump capable of producing a vacuum of the order of 10/sup -9/ mm Hg is described. The pump comprises a casing of an aggregate of paired and matched cylindrical plates, a recessed portion on one face of each plate concentrically positioned formed by a radially extending wall and matching the similarly recessed portion of its twin plate of that pair of plates and for all paired and matched plates; a plurality of grooves formed in the radially extending walls of each and all recesses progressing in a spiral manner from their respective starting points out at the periphery of the recess inwardly to the central area; a plurality of rotors rotatably mounted to closely occupy the spaces as presented by the paired and matched recesses between all paired plates; a hollowed drive-shaft perforated at points adjacent to the termini of all spiral grooves; inlet ports at the starting points of all grooves and through all plates at common points to each respectively; and a common outlet passage presented by the hollow portion of the perforated hollowed drive-shaft of the molecular pump. (AEC)

  12. Fabrication of Impregnated-Electrode-Type Polyatomic Ion Source with Ionic Liquid

    SciTech Connect

    Takeuchi, Mitsuaki; Ryuto, Hiromichi; Takaoka, Gikan H.

    2011-01-07

    Three types of ionic liquid ion source characterized by needle-type, capillary-needle-type and impregnated-electrode-type emitters were fabricated and demonstrated. The ion emission of a pure ionic liquid was demonstrated for the capillary-needle- and impregnated-electrode-type emitters. The emission stability of the impregnated-electrode-type emitter is currently insufficient for the shallow implantation of carbon due to occasional discharge. However, the impregnated-electrode-type emitter showed the largest emission current of 14 {mu}A at 6 kV among these emitters. This was considered to be caused by the relatively high feedability of the ionic liquid obtained from the emitter tip made of porous copper.

  13. Fundamental studies of methyl iodide adsorption in DABCO impregnated activated carbons.

    PubMed

    Herdes, Carmelo; Prosenjak, Claudia; Román, Silvia; Müller, Erich A

    2013-06-11

    Methyl iodide capture from a water vapor stream using 1,4-diazabicyclo[2.2.2]octane (DABCO)-impregnated activated carbons is, for the first time, fundamentally described here on the atomic level by means of both molecular dynamics and grand canonical Monte Carlo simulations. A molecular dynamics annealing strategy was adopted to mimic the DABCO experimental impregnation procedure in a selected slitlike carbon pore. Predictions, restricted to the micropore region, are made about the adsorption isotherms of methyl iodide, water, and nitrogen on both impregnated and bare activated carbon models. Experimental and simulated nitrogen adsorption isotherms are compared for the validation of the impregnation strategy. Selectivity analyses of the preferential adsorption toward methyl iodide over water are also reported. These simulated adsorption isotherms sum up to previous experimental studies to provide an enhanced picture for this adsorption system of widespread use at nuclear plant HVAC facilities for the capture of radioactive iodine compounds. PMID:23679202

  14. Portable vacuum object handling device

    DOEpatents

    Anderson, G.H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object. 1 fig.

  15. Vacuum leak detector and method

    DOEpatents

    Edwards, Jr., David

    1983-01-01

    Apparatus and method for detecting leakage in a vacuum system involves a moisture trap chamber connected to the vacuum system and to a pressure gauge. Moisture in the trap chamber is captured by freezing or by a moisture adsorbent to reduce the residual water vapor pressure therein to a negligible amount. The pressure gauge is then read to determine whether the vacuum system is leaky. By directing a stream of carbon dioxide or helium at potentially leaky parts of the vacuum system, the apparatus can be used with supplemental means to locate leaks.

  16. Low partial discharge vacuum feedthrough

    NASA Technical Reports Server (NTRS)

    Benham, J. W.; Peck, S. R.

    1979-01-01

    Relatively discharge free vacuum feedthrough uses silver-plated copper conductor jacketed by carbon filled silicon semiconductor to reduce concentrated electric fields and minimize occurrence of partial discharge.

  17. Application of Silver and Silver Oxide Nanoparticles Impregnated on Activated Carbon to the Degradation of Bromate.

    PubMed

    Choi, J S; Lee, H; Park, Y K; Kim, S J; Kim, B J; An, K H; Kim, B H; Jung, S C

    2016-05-01

    Silver and silver oxide nanoparticles were impregnated on the surface of powdered activated carbon (PAC) using a single-step liquid phase plasma (LPP) method. Spherical silver and silver oxide nanoparticles of 20 to 100 nm size were dipersed evenly on the surface of PAC. The impregnated PAC exhibited a higher activity for the decomposition of bromate than bare PAC. The XPS, Raman and EDX analyses showed that the Ag/PAC composites synthesized by the LPP process. PMID:27483780

  18. Ion-exchange chromatographic separation of anions on hydrated bismuth oxide impregnated papers

    SciTech Connect

    Dabral, S.K.; Muktawat, K.P.S.; Rawat, J.P.

    1988-04-01

    A comparative study of the chromatographic behavior of anions, iodide, sulfide, phosphate, arsenate, arsenite, vanadate, chromate, dichromate, thiosulfate, thiocyanate, ferricyanide and ferrocyanide on papers impregnated with hydrated bismuth oxide and untreated Whatman no.1 paper has been made by employing identical aqueous, non-aqueous and mixed solvent system. Sharp and compact spots were obtained with impregnated papers whereas the opposite applied to plain papers. Various analytically important binary and ternary separations are reported.

  19. Development and evaluation of silver-impregnated amniotic membrane as an antimicrobial burn dressing.

    PubMed

    Singh, Rita; Kumar, Devendra; Kumar, Pawan; Chacharkar, Madhukar P

    2008-01-01

    Silver has been widely used as an antimicrobial agent in burn wound care. A number of dressings containing silver have been developed using textiles, polyurethane films, foams, hydrogels, and hydrocolloids. However, biological-derived wound dressings have been advocated for their ability to more effectively promote healing and regulation of evaporation and exudation at the wound site. An antimicrobial burn dressing was developed by impregnation of silver on the amniotic membrane. The dressing was assessed for antimicrobial effectiveness and physical properties of relevance to clinical performance. Silver-impregnated dressings exhibited antimicrobial activity in contact for 5 days. An in vitro evaluation of the microbicidal efficacy of the silver-impregnated dressing was performed using Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans with different contamination level. More than 95% reduction in viable counts was observed in 2 to 4 hours. The release of silver from the dressings was observed for up to 4 days. Moisture vapor transmission rate was 1037 +/- 38 g/m2/24 hr for silver-impregnated dressings and 1024 +/- 44 g/m2/24 hr for amniotic membrane. The fluid absorption by the silver-impregnated dressings was comparable to the amniotic membranes. The total fluid handling capacity of the silver-impregnated amniotic membrane dressing examined ranged from 4 to 6.6 g/10 cm2 in 24 to 96 hours. The silver-impregnated amniotic membranes also provided an effective barrier to bacterial penetration. The study has demonstrated the ability of silver-impregnated amniotic membrane to combat microbial infection and its ideal physical characteristics for clinical use as a burn wound dressing. PMID:18182899

  20. Magnetism in graphene oxide induced by epoxy groups

    SciTech Connect

    Lee, Dongwook; Seo, Jiwon; Zhu, Xi; Su, Haibin; Cole, Jacqueline M.

    2015-04-27

    We have engineered magnetism in graphene oxide. Our approach transforms graphene into a magnetic insulator while maintaining graphene's structure. Fourier transform infrared spectroscopy spectra reveal that graphene oxide has various chemical groups (including epoxy, ketone, hydroxyl, and C-O groups) on its surface. Destroying the epoxy group with heat treatment or chemical treatment diminishes magnetism in the material. Local density approximation calculation results well reproduce the magnetic moments obtained from experiments, and these results indicate that the unpaired spin induced by the presence of epoxy groups is the origin of the magnetism. The calculation results also explain the magnetic properties, which are generated by the interaction between separated magnetic regions and domains. Our results demonstrate tunable magnetism in graphene oxide based on controlling the epoxy group with heat or chemical treatment.

  1. Study on cationic photopolymerization reaction of epoxy polysiloxane

    NASA Astrophysics Data System (ADS)

    Sun, F.; Jiang, S. L.; Liu, J.

    2007-11-01

    The effects of epoxy monomers, concentration of photoinitiator and radical photoinitiators on the photosensitive properties of cationic phopolymerization system with a novel epoxy polysiloxane oligomer (CEPS) were investigated via a gel yield method. The results showed that among the tested epoxy monomers, the reactivity of ERL-4221 with cycloaliphatic epoxy groups was the highest. The optimum concentration of diaryldiodonium salt (SR-1012) was determined as 4-5 wt.%. Increasing the amounts of ERL-4221 in the CEPS cationic photopolymerization system, UV-curing rate increased. Radical photoinitiators with ArC dbnd O structure possessed sensitization capacity to the cationic photoinitiator SR-1012. The photosensitivity of the CEPS system could be up to 165 mJ/cm 2. Adding a small amount of IPA and BP could greatly improve the photosensitivity of CEPS cationic photosensitive system. The optimal quantity of isopropanol added to the system was not more than 2 wt.%.

  2. Method of making superhydrophobic/superoleophilic paints, epoxies, and composites

    DOEpatents

    Simpson, John T.; Hunter, Scott Robert

    2016-05-10

    Superhydrophobic paints and epoxies comprising superoleophilic particles and surfaces and methods of making the same are described. The superoleophilic particles can include porous particles having a hydrophobic coating layer deposited thereon. superoleophilic particles.

  3. Thermal and mechanical properties of advanced impregnation materials for HTS cables and coils

    NASA Astrophysics Data System (ADS)

    Bagrets, N.; Otten, S.; Weiss, K.-P.; Kario, A.; Goldacker, W.

    2015-12-01

    In the growing field of high-temperature superconducting (HTS) applications, finding an appropriate impregnation material for cables and coils remains a challenging task. In HTS cables and coils, tapes have to be able to withstand mechanical loads during operation. Impregnation is playing a role as mechanical stabilization. However, material properties usually change significantly when going to low temperatures which can decrease performance of superconducting devices. For example, a large mismatch in thermal expansion between a conductor and impregnation material at low temperatures can lead to delamination and to degradation of the critical current. Impregnation materials can insulate tapes thermally which can lead to damage of the superconducting device in case of quench. Thus, thermal conductivity is an important property which is responsible for the temperature distribution in a superconducting cable or in a coil. Due to Lorentz forces acting on structural materials in a superconducting device, the mechanical properties of these materials should be investigated at operating temperatures of this device. Therefore, it is important to identify an advanced impregnation material meeting all specific requirements. In this paper, thermal and mechanical properties of impregnation material candidates with added fillers are presented in a temperature range from 300 K to 4 K.

  4. The effect of silver impregnation of surgical scrub suits on surface bacterial contamination.

    PubMed

    Freeman, A I; Halladay, L J; Cripps, P

    2012-06-01

    Silver-impregnated fabrics are widely used for their antibacterial and antifungal effects, including for clinical clothing such as surgical scrub suits (scrubs). This study investigated whether silver impregnation reduces surface bacterial contamination of surgical scrubs during use in a veterinary hospital. Using agar contact plates, abdominal and lumbar areas of silver-impregnated nylon or polyester/cotton scrubs were sampled for surface bacterial contamination before (0 h) and after 4 and 8h of use. The number of bacterial colonies on each contact plate was counted after 24 and 48 h incubation at 37°C. Standard basic descriptive statistics and mixed-effects linear regression were used to investigate the association of possible predictors of the level of bacterial contamination of the scrubs with surface bacterial counts. Silver-impregnated scrubs had significantly lowered bacterial colony counts (BCC) at 0 h compared with polyester/cotton scrubs. However, after 4 and 8h of wear, silver impregnation had no effect on BCC. Scrub tops with higher BCC at 0 h had significantly higher BCC at 4 and 8h, suggesting that contamination present at 0 h persisted during wear. Sampling from the lumbar area was associated with lower BCC at all three time points. Other factors (contamination of the scrub top with a medication/drug, restraint of patients, working in the anaesthesia recovery area) also affected BCC at some time points. Silver impregnation appeared to be ineffective in reducing bacterial contamination of scrubs during use in a veterinary hospital. PMID:22015140

  5. Fabrication of graphite/epoxy cases for orbit insertion motors

    NASA Technical Reports Server (NTRS)

    Schmidt, W. W.

    1973-01-01

    The fabrication procedures are described for filament-wound rocket motor cases, approximately 26.25 inches long by 25.50 inches diameter, utilizing graphite fibers. The process utilized prepreg tape which consists of Fortafil 4-R fibers in the E-759 epoxy resin matrix. This fabrication effect demonstrated an ability to fabricate high quality graphite/epoxy rocket motor cases in the 26.25 inch by 25.50 inch size range.

  6. Exit Presentation: Infrared Thermography on Graphite/Epoxy

    NASA Technical Reports Server (NTRS)

    Comeaux, Kayla

    2010-01-01

    This slide presentation reports on the internship project that was accomplished during the summer of 2010. The objectives of the project were to: (1) Simulate Flash Thermography on Graphite/Epoxy Flat Bottom hole Specimen and thin void specimens, (2) Obtain Flash Thermography data on Graphite/Epoxy flat bottom hole specimens, (3) Compare experimental results with simulation results, Compare Flat Bottom Hole Simulation with Thin Void Simulation to create a graph to determine size of IR Thermography detected defects

  7. Epoxy Nanocomposites—Curing Rheokinetics, Wetting and Adhesion to Fibers

    NASA Astrophysics Data System (ADS)

    Ilyin, S. O.; Kotomin, S. V.; Kulichikhin, V. G.

    2010-06-01

    Epoxy nanocomposites considered as challenging polymeric matrix for advanced reinforced plastics. Nanofillers change rheokinetics of epoxy resin curing, affect wetting and adhesion to aramid and carbon fibers. In all cases extreme dependence of adhesive strength vs filler content in the binder was observed. New experimental techniques were developed to study wettability and fiber-matrix adhesion interaction, using yarn penetration path length, aramid fiber knot pull-up test and electrical admittance of the fracture surface of CFRP.

  8. Epoxy Nanocomposites - Curing Rheokinetics, Wetting and Adhesion to Fibers

    SciTech Connect

    Ilyin, S. O.; Kotomin, S. V.; Kulichikhin, V. G.

    2010-06-02

    Epoxy nanocomposites considered as challenging polymeric matrix for advanced reinforced plastics. Nanofillers change rheokinetics of epoxy resin curing, affect wetting and adhesion to aramid and carbon fibers. In all cases extreme dependence of adhesive strength vs filler content in the binder was observed. New experimental techniques were developed to study wettability and fiber-matrix adhesion interaction, using yarn penetration path length, aramid fiber knot pull-up test and electrical admittance of the fracture surface of CFRP.

  9. Control Dewar Secondary Vacuum Container

    SciTech Connect

    Rucinski, R.; /Fermilab

    1993-10-04

    This engineering note provides background information regarding the control dewar secondary vacuum container. The secondary vacuum container has it's origin with the CDP control dewar design. The name secondary vacuum container replaced the CDP term 'Watt can' which was named after Bob Watt (SLAC), a PAC/DOE review committee member who participated in a review of CDP and recommended a secondary vacuum enclosure. One of the most fragile parts of the control dewar design is the ceramic electrical feed throughs located in the secondary vacuum container. The secondary vacuum container is provided to guard against potential leaks in these ceramic insulating feed throughs. The secondary vacuum container has a pumping line separate from the main solenoid/control dewar insulating vacuum. This pumping line is connected to the inlet of the turbo pump for initial pumpdown. Under normal operation the container is isolated. Should a feedthrough develop a small leak, alternate pumping arrangements for the secondary vacuum container could be arranged. The pressure in the secondary vacuum container should be kept in a range that the breakdown voltage is kept at a maximum. The breakdown voltage is known to be a function of pressure and is described by a Paschen curve. I cannot find a copy of the curve at this time, but from what I remember, the breakdown voltage is a minimum somewhere around 10-3 torr. Ideally the pressure in the secondary vacuum can should be kept very low, around 10 E-6 or 10 E-7 torr for maximum breakdown voltage. If however a leak developed and this was not possible, then one could operate at a pressure higher than the minima point.

  10. THERMOCOUPLE VACUUM GAUGE

    DOEpatents

    Price, G.W.

    1954-08-01

    A protector device is described for use in controlling the pressure within a cyclotron. In particular, an electrical circuit functions to actuate a vacuum pump when a predetermined low pressure is reached and disconnect the pump when the pressure increases abcve a certain value. The principal feature of the control circuit lies in the use of a voltage divider network at the input to a relay control tube comprising two parallel, adjustable resistances wherein one resistor is switched into the circuit when the relay connects the pump to a power source. With this arrangement the relay is energized at one input level received from a sensing element within the cyclotron chamber and is de-energized when a second input level, representing the higher pressure limit, is reached.

  11. ULTRA HIGH VACUUM VALVE

    DOEpatents

    Fry, W.A.

    1962-05-29

    A valve for high vacuum applications such as the CStellarator where chamber pressures as low as 2 x 10/sup -10/ mm Hg are necessary is designed with a line-of-sight path through the valve for visual inspection of the contents of reactants in such chambers. The valve comprises a turnable resilient metal ball having an aperture therethrough, means for selectively turning the ball to rotate the axis of its line-of-sight path, and soft, deformable opposing orifices that are movable relatively toward said ball to seal with opposite ball surfaces upon said movement of said axis of said line-of-sight path. The valve also includes a bellows seal connected between said orifices and internal actuating means that eliminates the requirement for gasketed turnable valve closing stems. (AEC)

  12. Duality and the vacuum

    NASA Astrophysics Data System (ADS)

    Allen, Theodore J.

    1993-04-01

    We examine the issue of duality both in electrodynamics and in Kalb-Ramond scalar axion systems. In D space-time dimensions the dual abelian theories of ( p -1)- and ( D - p - 1)-form potentials have vacua classified by the dimensions of the cohomology spaces Hp - 1(( D - 1) M) or HD - p -( (D - 1)M) , respectively. The vacua are characterized by topological charges which are expectation values for generalized "Wilson loop" operators around non-trivial cycles. In certain instances the vacua exhibit a theta angle parametrization much as in QCD. The relation of axionic hair and discrete gauge hair is analyzed in the topologically massive Kalb-Ramond theory. If there are no fundamental strings in the theory, axionic charge is replaced by an irrelevant vacuum angle.

  13. Pseudoredundant vacuum energy

    SciTech Connect

    Batra, Puneet; Hinterbichler, Kurt; Hui, Lam; Kabat, Daniel

    2008-08-15

    We discuss models that can account for today's dark energy. The underlying cosmological constant may be Planck scale but starts as a redundant coupling which can be eliminated by a field redefinition. The observed vacuum energy arises when the redundancy is explicitly broken, say by a nonminimal coupling to curvature. We give a recipe for constructing models, including R+1/R-type models, that realize this mechanism and satisfy all solar system constraints on gravity. A similar model, based on Gauss-Bonnet gravity, provides a technically natural explanation for dark energy and exhibits an interesting seesaw behavior: a large underlying cosmological constant gives rise to both low- and high-curvature solutions. Such models could be statistically favored in the string landscape.

  14. Comparisons of NDT Methods to Inspect Cork and Cork filled Epoxy Bands

    NASA Technical Reports Server (NTRS)

    Lingbloom, Mike

    2007-01-01

    Sheet cork and cork filled epoxy provide external insulation for the Reusable Solid Rocket Motor (RSRM) on the Nation's Space Transportation System (STS). Interest in the reliability of the external insulation bonds has increased since the Columbia incident. A non-destructive test (NDT) method that will provide the best inspection for these bonds has been under evaluation. Electronic Shearography has been selected as the primary NDT method for inspection of these bond lines in the RSRM production flow. ATK Launch Systems Group has purchased an electronic shearography system that includes a vacuum chamber that is used for evaluation of test parts and custom vacuum windows for inspection of full-scale motors. Although the electronic shearography technology has been selected as the primary method for inspection of the external bonds, other technologies that exist continue to be investigated. The NASA/Marshall Space Flight Center (MSFC) NDT department has inspected several samples for comparison with electronic shearography with various inspections systems in their laboratory. The systems that were evaluated are X-ray backscatter, terahertz imaging, and microwave imaging. The samples tested have some programmed flaws as well as some flaws that occurred naturally during the sample making process. These samples provide sufficient flaw variation for the evaluation of the different inspection systems. This paper will describe and compare the basic functionality, test method and test results including dissection for each inspection technology.

  15. Investigation of the effects of cobalt ions on epoxy properties

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Stoakley, D. M.

    1986-01-01

    The effects of Co(acac)sub x complexes on MY-720 epoxy properties have been investigated. It appears that Co2(+) ions form antibonding or nonbonding orbitals which increase the free volume and also reduce the cohesiveness of the host epoxy. The effects of Co2(+) ions, on the other hand, seem to result in increased Cohesiveness of the epoxy. The experimental values of magnetic moments of both types of ions in MY-720 suggest that the orbital momentum contributions of the (3d) electrons are partially conserved, though the effect is more pronounced for Co2(+) ions. The coordination environment of the cobalt ions in the host epoxy does not appear to be uniquely defined. These results indicate that the effects of metal ions on resin properties cannot be easily predicted on the basis of ligand field theory argument alone. Complex interactions between metal ions and host epoxy molecular structure suggest the desirability of parallel experimental investigations of electronic, magnetic, and mechanical properties of metal ion-containing epoxy samples for comparison with theory.

  16. Abdominal intrauterine vacuum aspiration.

    PubMed

    Tjalma, W A A

    2014-01-01

    Evaluating and "cleaning" of the uterine cavity is probably the most performed operation in women. It is done for several reasons: abortion, evaluation of irregular bleeding in premenopausal period, and postmenopausal bleeding. Abortion is undoubtedly the number one procedure with more than 44 million pregnancies terminated every year. This procedure should not be underestimated and a careful preoperative evaluation is needed. Ideally a sensitive pregnancy test should be done together with an ultrasound in order to confirm a uterine pregnancy, excluding extra-uterine pregnancy, and to detect genital and/or uterine malformations. Three out of four abortions are performed by surgical methods. Surgical methods include a sharp, blunt, and suction curettage. Suction curettage or vacuum aspiration is the preferred method. Despite the fact that it is a relative safe procedure with major complications in less than one percent of cases, it is still responsible for 13% of all maternal deaths. All the figures have not declined in the last decade. Trauma, perforation, and bleeding are a danger triage. When there is a perforation, a laparoscopy should be performed immediately, in order to detect intra-abdominal lacerations and bleeding. The bleeding should be stopped as soon as possible in order to not destabilize the patient. When there is a perforation in the uterus, this "entrance" can be used to perform the curettage. This is particularly useful if there is trauma of the isthmus and uterine wall, and it is difficult to identify the uterine canal. A curettage is a frequent performed procedure, which should not be underestimated. If there is a perforation in the uterus, then this opening can safely be used for vacuum aspiration. PMID:25134300

  17. Albumin impregnated vascular grafts: albumin resorption and tissue reactions.

    PubMed

    Cziperle, D J; Joyce, K A; Tattersall, C W; Henderson, S C; Cabusao, E B; Garfield, J D; Kim, D U; Duhamel, R C; Greisler, H P

    1992-01-01

    This study aimed to determine the kinetics of albumin resorption from and the healing of two types of albumin impregnated Vasculour II (Bard Cardiovascular) Dacron grafts (ACG-A and ACG-B) using whole blood preclotted Vasculour II Dacron grafts (without albumin) as controls (PCC). Prostheses measuring 4 mm ID x 50 mm length were implanted in the aortoiliac position in 24 dogs (ACG-A n = 12, ACG-B n = 24, PCC n = 12) and explanted after 1, 2 4, and 6 months. Platelet count, platelet aggregometry to 10(-5) M ADP, prothrombin time (PT), and partial thromboplastin time (PTT) were determined preoperatively and at explantation. Sections of the explanted grafts were assayed for human albumin by immunohistochemical techniques utilizing a rabbit polyclonal mono-specific antibody for human albumin followed by the addition of a biotinylated goat anti-rabbit IgG. Immunoperoxidase staining was then performed using Avidin D horse-radish peroxidase. Histology of the grafts (light microscopy, scanning electron microscopy, and transmission electron microscopy) as well as percent thrombus free surface area (TFSA) by computerized planimetry were also determined. Seven of 48 grafts were occluded (85.4% patency) with no difference among the three groups. Platelet aggregometry was not predictive of graft patency. No change in PT or PTT occurred nor was there any difference among the three groups. Retained albumin was detected in every one-month explant but not beyond that time, with the sensitivity for detecting human albumin in this assay being 20 mg albumin per gram of Dacron. All ACG explants at one month revealed inner capsular fibrin coagula not present in PCC specimens.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1388174

  18. Synthesis and characterization of aluminosilicate catalyst impregnated by nickel oxide

    NASA Astrophysics Data System (ADS)

    Maulida, Iffana Dani; Sriatun, Taslimah

    2015-09-01

    Aluminosilicate as a catalyst has been synthesized by pore-engineering using CetylTrimethylAmmonium-Bromide (CTAB) as templating agent. It can produce bigger aluminosilicate pore therefore it will be more suitable for bulky molecule. The aims of this research are to synthesize aluminosilicate supported by Nickel, using CTAB surfactant as templating agent for larger pore radius than natural zeolite and characterize the synthesis product, consist of total acid sites and surface area characteristic. This research has been done with following steps. First, making sodium silicate and sodium aluminate. Second, aluminosilicate was synthesized by direct methods, calcined at 550, 650 and 750°C variation temperature, characterized product by X-RD and FTIR spectrometer. Third, NiCl2 was impregnated to the aluminosilicate that has the best cristallinity and main TO4 functional groups product (550 sample). Variation of NiCl2:aluminosilicate (w/w) ratio were 25%:75%, 50%:50% and 75%:25%. Last but not least characterization of catalytic properties was performed. It comprised total acidity test (gravimetric method) and Surface Area Analyzer. The result shows that the product synthesized by direct method at 550oC calcination temperature has the best cristallinity and main functional groups of TO4. The highest total acid sites was 31.6 mmole/g (Imp-A sample). Surface Area Analyzer shows that Imp-B sample has the best pore distribution and highest total pore volume and specific surface area with value 32.424 cc/g and 46.8287 m2/g respectively. We can draw the conclusion that the most potential catalyst is Imp-A sample compared to Imp-B and Imp-C because it has the highest total acid sites. However the most effective catalyst used for product selectivity was Imp-B sample among all samples.

  19. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, John D.; Gross, Mark E.

    1997-01-01

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  20. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, J.D.; Gross, M.E.

    1997-10-28

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  1. Vacuum Ampoule Isolates Corrosive Materials

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Debnam, W. J.; Taylor, R.

    1983-01-01

    Quartz vacuum ampoule confines corrosive sample wafer between two quartz plugs inserted in quartz tube. One quartz plug is window for measuring sample thermodynamic properties while laser pulse entering other quartz plug heats sample to molten state. Confinement of sample in vacuum prevents contamination of measurement system by hot corrosive vapors and any interference by preferential evaporation of melt.

  2. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  3. Quantum vacuum, inertia and gravitation

    NASA Astrophysics Data System (ADS)

    Jaekel, Marc-Thierry; Lambrecht, Astrid; Reynaud, Serge

    2002-11-01

    Since the early developments of quantum theory, vacuum has been recognized to be filled with irreducible zero-point field fluctuations. The corresponding very large energy density, as predicted by quantum theory, conflicts however, with observation of gravitational phenomena on macroscopic scales, a paradox also associated with the cosmological constant problem. This vacuum catastrophe has led to the common view that vacuum fluctuations should not be taken into account as a source of inertia or gravitation. Vacuum fluctuations however, produce observable mechanical effects, like Casimir forces, which are now accurately measured and agree with theoretical predictions. Vacuum fluctuations can also be shown, within the standard framework of quantum theory, to induce effects on motion in vacuum, and to lead to a contribution of Casimir energy to inertia, in conformity with the principles of relativity. Here, we advocate that paradoxes which emerge in an acute way when confronting quantum and relativity theories should rather be considered as positive hints, as they allow to raise questions about relativity of motion in quantum vacuum amenable to experimental confrontation, and also to reconsider the role of vacuum with respect to gravitation.

  4. Purifying Aluminum by Vacuum Distillation

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  5. Multipurpose Vacuum Induction Processing System

    NASA Astrophysics Data System (ADS)

    Govindaraju, M.; Kulkarni, Deepak; Balasubramanian, K.

    2012-11-01

    Multipurpose vacuum processing systems are cost effective; occupy less space, multiple functional under one roof and user friendly. A multipurpose vacuum induction system was designed, fabricated and installed in a record time of 6 months time at NFTDC Hyderabad. It was designed to function as a) vacuum induction melting/refining of oxygen free electronic copper/pure metals, b) vacuum induction melting furnace for ferrous materials c) vacuum induction melting for non ferrous materials d) large vacuum heat treatment chamber by resistance heating (by detachable coil and hot zone) e) bottom discharge vacuum induction melting system for non ferrous materials f) Induction heat treatment system and g) directional solidification /investment casting. It contains provision for future capacity addition. The attachments require to manufacture multiple shaped castings and continuous rod casting can be added whenever need arises. Present capacity is decided on the requirement for 10years of development path; presently it has 1.2 ton liquid copper handling capacity. It is equipped with provision for capacity addition up to 2 ton liquid copper handling capacity in future. Provision is made to carry out the capacity addition in easy steps quickly. For easy operational maintenance and troubleshooting, design was made in easily detachable sections. High vacuum system is also is detachable, independent and easily movable which is first of its kind in the country. Detailed design parameters, advantages and development history are presented in this paper.

  6. Vacuum enhanced cutaneous biopsy instrument

    DOEpatents

    Collins, Joseph

    2000-01-01

    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  7. Cosmology with decaying vacuum energy

    SciTech Connect

    Freese, K.; Adams, F.; Frieman, J.; Mottola, E.

    1987-09-01

    Motivated by recent attempts to solve the cosmological constant problem, we examine the observational consequences of a vacuum energy density which decays in time. For all times later than t approx. 1 sec, the ratio of the vacuum to the total energy density of the universe must be small. Although the vacuum cannot provide the ''missing mass'' required to close the universe today, its presence earlier in the history of the universe could have important consequences. We discuss restrictions on the vacuum energy arising from primordial nucleosynthesis, the microwave and gamma ray background spectra, and galaxy formation. A small vacuum component at the era of nucleosynthesis, 0.01 < rho/sub vac//rho/sup rad/ < 0.1, increase the number of allowed neutino species to N/sup nu/ > 5, but in some cases would severely distort the microwave spectrum. 9 refs., 3 figs.

  8. Effects of Nanofillers on the Thermo-Mechanical Properties and Chemical Resistivity of Epoxy Nanocomposites.

    PubMed

    Atchudan, Raji; Pandurangan, Arumugam; Joo, Jin

    2015-06-01

    MWCNTs was synthesized using Ni-Cr/MgO by CVD method and were purified. The purified MWCNT was used as a filler material for the fabrication of epoxy nanocomposites. The epoxy nanocomposites with different amount (wt% = 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0) of nanofillers (CB, SiO2 and MWCNTs) were prepared by casting method. The effects of nanofillers on the properties of neat epoxy matrix were well studied. The thermal properties of nanocomposites were studied using DSC, TGA and flame retardant, and also the mechanical properties such as tensile strength, flexural strength, compressive strength, impact strength, determination of hardness and chemical resistance were studied extensively. Based on the experiment's results, 2 wt% MWCNTs loading in epoxy resin showed the highest improvement in tensile strength, as compared to neat epoxy and to other epoxy systems (CB/epoxy, SiO2/epoxy). Improvements in tensile strength, glass transition temperature and decomposition temperature were observed by the addition of MWCNTs. The mechanical properties of the epoxy nanocomposites were improved due to the interfacial bonding between the MWCNTs and epoxy resin. Strain hardening behavior was higher for MWCNT/epoxy nanocomposites compared with CB/epoxy and SiO2/epoxy nanocomposites. The investigation of thermal and mechanical properties reveals that the incorporation of MWCNTs into the epoxy nanocomposites increases its thermal stability to a great extent. Discrete increase of glass transition temperature of nanocomposites is linearly dependent on MWCNTs content. Due to strong interfacial bonding between MWCNTs and epoxy resin, the chemical resistivity of MWCNT/epoxy nanocomposites is superior to neat epoxy and other epoxy systems. PMID:26369037

  9. The effect of preparation under vacuum and microwave drying on the mechanical properties of porcelain ceramic foam via polymeric sponge method

    NASA Astrophysics Data System (ADS)

    Shahatha, S. H.; Mohammed, M. A.

    2016-04-01

    In this paper was demonstrated the effect of preparation condition under vacuum and microwave drying on the mechanical properties of porcelain ceramic foam. The study was based on five different polymeric foam templates with thickness ranging from 0.5 to 4 cm. The templates were impregnated in ceramic slurry with solid loading ranging from 35 to 55 wt. % under vacuum pressure 10-1 Torr and then sintered to 1250°C. Effects of polymeric foam template thickness and solid loading quantity were evaluated based on porosity, density and mechanical properties (compressive and flexural strengths) of the ceramic foam.

  10. The Gambian National Impregnated Bednet Programme: evaluation of the 1994 cost recovery trial.

    PubMed

    Müller, O; Cham, K; Jaffar, S; Greenwood, B

    1997-06-01

    Following the success of a controlled trial of insecticide-impregnated bednets in reducing mortality in children. The Gambia started a National Impregnated Bednet Programme (NIBP) in 1992. The objectives of this programme were to introduce impregnated bednets into all primary health care (PHC) villages and to establish a system of cost recovery over a three-year period. During the initial phase of the programme, when insecticide was given out free, a high uptake was achieved. However, after small user charges were introduced in 1993, coverage dropped to a low level. In 1994, different systems of insecticide distribution and permethrin formulations were tried in an attempt to improve coverage. A nationwide cross-sectional survey carried out during the 1994 rainy season measured coverage by distribution channel, as well as the knowledge, attitudes and practices of health workers and villagers during the intervention. Overall, only 16% of bednets were impregnated in 1994, compared to 80% when the insecticide was offered free of charge in previous years. Lack of money was the major reason given by villagers for not impregnating their bednets in 1994. Use of impregnated bednets was higher in areas where the sale of permethrin emulsion by village health workers was supplemented by the sale of insecticide in individual packages through shops. In villages where insecticide was distributed free to women with small children through governmental mother and child health (MCH) services, higher levels of coverage were achieved among women and young children than in villages where other distribution systems were used. We conclude that the sale of insecticide through the private sector may increase bednet impregnation rates in African communities, and that the free distribution of insecticide through MCH services may be an effective way of targeting young children, the group most at risk of malaria. PMID:9194251

  11. CO2 adsorption properties of char produced from brown coal impregnated with alcohol amine solutions.

    PubMed

    Baran, Paweł; Zarębska, Katarzyna; Czuma, Natalia

    2016-07-01

    Carbon dioxide (CO2) emission reduction is critical to mitigating climate change. Power plants for heating and industry are significant sources of CO2 emissions. There is a need for identifying and developing new, efficient methods to reduce CO2 emissions. One of the methods used is flue gas purification by CO2 capture through adsorption. This study aimed to develop CO2 adsorbent out of modified brown coal impregnated with solutions of first-, second-, and third-order amines. Low-temperature nitrogen adsorption isotherms and CO2 isotherms were measured for the prepared samples. The results of experiments unexpectedly revealed that CO2 sorption capacity decreased after impregnation. Due to lack of strait trends in CO2 sorption capacity decrease, the results were closely analyzed to find the reason for the inconsistencies. It was revealed that different amines represent different affinities for CO2 and that the size and structure of impregnating factor has influence on the CO2 sorption capacity of impregnated material. The character of a support was also noticeable as well for impregnation results as for the affinity to CO2. The influence of amine concentration used was investigated along with the comparison on how the theoretical percentage of the impregnation on the support influenced the results. The reaction mechanism of tertiary amine was taken into consideration in connection to no presence of water vapor during the experiments. Key findings were described in the work and provide a strong basis for further studies on CO2 adsorption on amine-impregnated support. PMID:27317051

  12. Coating Properties which Increase the Vacuum Flashover Strength of Insulators.

    NASA Astrophysics Data System (ADS)

    Leiker, Gary Robert

    The surface flashover strengths in vacuum for several common insulators, including Lexan, Lucite, polyethylene, Macor, quartz, alumina, and an alumina-filled epoxy, have been increased using a vacuum spark discharge treatment. Analysis of the treated surfaces using Electron Spectroscopy for Chemical Analysis (ESCA) show them to be coated with a thin hydrocarbon/metal oxide layer. The formation of this high-flashover coating is strongly dependent on the amount of water vapor in the chamber during treatment. Measurements of the secondary electron emission coefficient (SEEC) show that the treated surfaces produce many more secondary electrons at energies of a few keV than do untreated samples. In current theories of electrical breakdown, an avalanche of monoenergetic secondary electrons along the dielectric surface from the cathode to the anode is believed to cause gas desorption and initiate a surface flashover. A new theory is proposed in which the monoenergetic nature of this secondary electron avalanche is destroyed due to electron -gas molecule collisions before the onset of breakdown. This phenomenon, coupled with the larger number of secondaries produced at high energies, could lead to a modified charge distribution on the surface of the treated insulators, which delays the breakdown process.

  13. Viscoelastic properties of graphene-based epoxy resins

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Fierro, Annalisa; Rosolia, Salvatore; Raimondo, Marialuigia; Lafdi, Khalid; Guadagno, Liberata

    2015-12-01

    In this paper the viscoelastic properties of an epoxy resin filled with graphene-based nanoparticles have been investigated in the liquid state, before curing, by means of a rotational rheometer equipped with a parallel plate geometry. Exfoliated graphite was prepared using traditional acid intercalation followed by a sudden treatment at high temperature (900°C). The percentage of exfoliated graphite was found to be 56%. The epoxy matrix was prepared by mixing a tetrafunctional precursor with a reactive diluent which produces a significant decrease in the viscosity of the epoxy precursor so that the dispersion step of nanofillers in the matrix can easily occur. The hardener agent, the 4,4-diaminodiphenyl sulfone (DDS), was added at a stoichiometric concentration with respect to all the epoxy rings. The inclusion of the partially exfoliated graphite (pEG) in the formulated epoxy mixture significantly modifies the rheological behaviour of the mixture itself. The epoxy mixture, indeed, shows a Newtonian behaviour while, at 3 wt % pEG content, the complex viscosity of the nanocomposite clearly shows a shear thinning behaviour with η* values much higher at the lower frequencies. The increase in complex viscosity with the increasing of the partially exfoliated graphite content was mostly caused by a dramatic increase in the storage modulus. All the graphene-based epoxy mixtures were cured by a two-stage curing cycles: a first isothermal stage was carried out at the lower temperature of 125°C for 1 hour while the second isothermal stage was performed at the higher temperature of 200°C for 3 hours. The mechanical properties of the cured nanocomposites show high values in the storage modulus and glass transition temperature.

  14. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  15. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  16. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  17. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  18. Evaluation of inter-laminar shear strength of GFRP composed of bonded glass/polyimide tapes and cyanate-ester/epoxy blended resin for ITER TF coils

    NASA Astrophysics Data System (ADS)

    Hemmi, T.; Nishimura, A.; Matsui, K.; Koizumi, N.; Nishijima, S.; Shikama, T.

    2014-01-01

    The insulation system of the ITER TF coils consists of multi-layer glass/polyimide tapes impregnated a cyanate-ester/epoxy resin. The ITER TF coils are required to withstand an irradiation of 10 MGy from gamma-ray and neutrons since the ITER TF coils is exposed by fast neutron (>0.1 MeV) of 1022 n/m2 during the ITER operation. Cyanate-ester/epoxy blended resins and bonded glass/polyimide tapes are developed as insulation materials to realize the required radiation-hardness for the insulation of the ITER TF coils. To evaluate the radiation-hardness of the developed insulation materials, the inter-laminar shear strength (ILSS) of glass-fiber reinforced plastics (GFRP) fabricated using developed insulation materials is measured as one of most important mechanical properties before/after the irradiation in a fission reactor of JRR-3M. As a result, it is demonstrated that the GFRPs using the developed insulation materials have a sufficient performance to apply for the ITER TF coil insulation.

  19. Evaluation of inter-laminar shear strength of GFRP composed of bonded glass/polyimide tapes and cyanate-ester/epoxy blended resin for ITER TF coils

    SciTech Connect

    Hemmi, T.; Matsui, K.; Koizumi, N.; Nishimura, A.; Nishijima, S.; Shikama, T.

    2014-01-27

    The insulation system of the ITER TF coils consists of multi-layer glass/polyimide tapes impregnated a cyanate-ester/epoxy resin. The ITER TF coils are required to withstand an irradiation of 10 MGy from gamma-ray and neutrons since the ITER TF coils is exposed by fast neutron (>0.1 MeV) of 10{sup 22} n/m{sup 2} during the ITER operation. Cyanate-ester/epoxy blended resins and bonded glass/polyimide tapes are developed as insulation materials to realize the required radiation-hardness for the insulation of the ITER TF coils. To evaluate the radiation-hardness of the developed insulation materials, the inter-laminar shear strength (ILSS) of glass-fiber reinforced plastics (GFRP) fabricated using developed insulation materials is measured as one of most important mechanical properties before/after the irradiation in a fission reactor of JRR-3M. As a result, it is demonstrated that the GFRPs using the developed insulation materials have a sufficient performance to apply for the ITER TF coil insulation.

  20. Vacuum plasma spray coating

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  1. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  2. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  3. NCSX Vacuum Vessel Fabrication

    SciTech Connect

    Viola, M. E.; Brown, T.; Heitzenroeder, P.; Malinowski, F.; Reiersen, W.; Sutton, L.; Goranson, P.; Nelson, B.; Cole, M.; Manuel, M.; McCorkle, D.

    2005-10-07

    The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in conjunction with the Oak Ridge National Laboratory (ORNL). The goal of this experiment is to develop a device which has the steady state properties of a traditional stellarator along with the high performance characteristics of a tokamak. A key element of this device is its highly shaped Inconel 625 vacuum vessel. This paper describes the manufacturing of the vessel. The vessel is being fabricated by Major Tool and Machine, Inc. (MTM) in three identical 120º vessel segments, corresponding to the three NCSX field periods, in order to accommodate assembly of the device. The port extensions are welded on, leak checked, cut off within 1" of the vessel surface at MTM and then reattached at PPPL, to accommodate assembly of the close-fitting modular coils that surround the vessel. The 120º vessel segments are formed by welding two 60º segments together. Each 60º segment is fabricated by welding ten press-formed panels together over a collapsible welding fixture which is needed to precisely position the panels. The vessel is joined at assembly by welding via custom machined 8" (20.3 cm) wide spacer "spool pieces." The vessel must have a total leak rate less than 5 X 10-6 t-l/s, magnetic permeability less than 1.02μ, and its contours must be within 0.188" (4.76 mm). It is scheduled for completion in January 2006.

  4. Vacuum energy and cosmological evolution

    NASA Astrophysics Data System (ADS)

    Solà, Joan

    2014-07-01

    An expanding universe is not expected to have a static vacuum energy density. The so-called cosmological constant Λ should be an approximation, certainly a good one for a fraction of a Hubble time, but it is most likely a temporary description of a true dynamical vacuum energy variable that is evolving from the inflationary epoch to the present day. We can compare the evolving vacuum energy with a Casimir device where the parallel plates slowly move apart ("expand"). The total vacuum energy density cannot be measured, only the effect associated to the presence of the plates, and then also their increasing separation with time. In the universe there is a nonvanishing spacetime curvature R as compared to Minkowskian spacetime that is changing with the expansion. The vacuum energy density must change accordingly, and we naturally expect δΛ˜R˜H2. A class of dynamical vacuum models that trace such rate of change can be constructed. They are compatible with the current cosmological data, and conveniently extended can account for the complete cosmic evolution from the inflationary epoch till the present days. These models are very close to the ΛCDM model for the late universe, but very different from it at the early times. Traces of the inherent vacuum dynamics could be detectable in our recent past.

  5. Vacuum Brazing of Accelerator Components

    NASA Astrophysics Data System (ADS)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  6. Vacuum type D initial data

    NASA Astrophysics Data System (ADS)

    García-Parrado Gómez-Lobo, Alfonso

    2016-09-01

    A vacuum type D initial data set is a vacuum initial data set of the Einstein field equations whose data development contains a region where the space–time is of Petrov type D. In this paper we give a systematic characterisation of a vacuum type D initial data set. By systematic we mean that the only quantities involved are those appearing in the vacuum constraints, namely the first fundamental form (Riemannian metric) and the second fundamental form. Our characterisation is a set of conditions consisting of the vacuum constraints and some additional differential equations for the first and second fundamental forms These conditions can be regarded as a system of partial differential equations on a Riemannian manifold and the solutions of the system contain all possible regular vacuum type D initial data sets. As an application we particularise our conditions for the case of vacuum data whose data development is a subset of the Kerr solution. This has applications in the formulation of the nonlinear stability problem of the Kerr black hole.

  7. Vacuum applications of metal foams

    NASA Technical Reports Server (NTRS)

    Kendall, B. R. F.

    1980-01-01

    Several vacuum applications of copper foams in the density range 2-5% and pore sizes of 0.5-0.7 mm are discussed, such as a foreline hydrocarbon trap in a mechanical vacuum pump, a molecular-flow resistor, a diffuser, and a water injector. Other suggested applications include the use of foam copper in the form of an externally heated plug to remove traces of oxygen from inert gases bled into a vacuum system through a stainless steel line and the use of the porous surface for minimizing release of secondary electrons from electrodes in the path of charged particle beams.

  8. HESYRL storage ring vacuum system

    SciTech Connect

    Li, G.; Pang, Y.; Wang, Y.; Zhou, H.; Zhang, Z.; Jiang, D.; Xu, B.; Xu, S.

    1988-09-30

    The Storage Ring Vacuum System of the Synchrotron Radiation source project of HESYRL (Hefei Synchrotron Radiation Laboratory) in USTC, Hefei, Anhui, China, will be completed this year. Since the designed beam current of the 800 MeV electron storage ring is 300 mA, synchrotron radiation and hence high photon stimulated degassing will occur in the vacuum chamber. In order to get the stored beam lifetime of several hours, the pressure must be maintained at 10/sup -8/ approx.10/sup -9/ Torr. The gas desorption from synchrotron radiation and thermal outgas has been calculated. The UHV system of the storage ring and vacuum pretreatment methods are described in this paper.

  9. Elemental mercury adsorption on sulfur-impregnated porous carbon - a review.

    PubMed

    Reddy, K Suresh Kumar; Shoaibi, Ahmed Al; Srinivasakannan, C

    2014-01-01

    The presence of elemental mercury in wellhead natural gas is an important industrial problem, since even low levels of mercury can damage cryogenic aluminium heat exchangers and other plant equipment. Mercury present in the natural gas stream will also dramatically shorten the useful life of precious metal catalysts. The present work reviews the overall process of elemental mercury removal in practice using non-regenerative adsorbents (e.g. sulfur-impregnated porous carbon), addressing the various influencing parameters such as the method of sulfur impregnation, the impregnation temperature, the sulfur to carbon ratio, the impregnation time, the impact of flue gas constituents, the effect of processing temperature, and the nature of any carbon-containing functional groups present. The distribution of elemental sulfur is found to be the key to developing an effective adsorbent, rather than quantity of sulfur impregnated. Modifying or developing an adsorbent for elemental mercury removal from natural gas needs a detail physical and chemical characteristics assessment of the adsorbent. PMID:24600836

  10. Optimization of high temperature sulfur impregnation on activated carbon for permanent sequestration of elemental mercury vapors

    SciTech Connect

    Liu, W.; Vidic, R.D.; Brown, T.D.

    2000-02-01

    Following previous success with the use of activated carbon impregnated with sulfur at elevated temperatures for elemental mercury control, possible improvements in the impregnation procedure were evaluated in this study. Adsorbents prepared by thoroughly mixing sulfur and activated carbon in the furnace at the initial sulfur-to-carbon ratio (SCR) ranging from 4:1 to 1:2 showed similar adsorptive behavior in a fixed-bed system. Maintaining a stagnant inert atmosphere during the impregnation process improves sulfur deposition resulting in the enhanced dynamic capacity of the adsorbent when compared to other sulfur impregnated carbons. The fate of spent adsorbents was assessed using a toxicity characteristics leaching procedure (TCLP). Although mercury concentration in all leachates was below the TCLP limit, virgin activated carbon lost a significant fraction of the adsorbed elemental mercury during storage, while no loss was observed for sulfur-impregnated carbons. This finding suggests that virgin activated carbon may not be appropriate adsorbent for permanent sequestration of anthropogenic elemental mercury emissions.

  11. Fractionation of oil palm frond hemicelluloses by water or alkaline impregnation and steam explosion.

    PubMed

    Sabiha-Hanim, Saleh; Mohd Noor, Mohd Azemi; Rosma, Ahmad

    2015-01-22

    Steam explosion of oil palm frond has been carried out under different temperatures between 180 and 210°C for 4 min (severity of 2.96-3.84) after impregnation of the frond chips with water or KOH solution. The effects of impregnation and steam explosion conditions of oil palm fronds on the water soluble fraction and insoluble fraction were investigated. The maximum yield of hemicelluloses in water soluble fractions recovered was 23.49% and 25.33% for water and KOH impregnation, treated with steam explosion at temperature of 210°C (severity of 3.84) with a fractionation efficiency of 77.30% and 83.32%, respectively. Under this condition, the water insoluble fractions contained celluloses at 60.83% and 64.80% for water and KOH impregnation, respectively. The steam explosion temperature of 210°C for 4 min (logR(o) 3.84) was found to be the best condition in the extraction of hemicelluloses from OPF for both types of impregnation. PMID:25439929

  12. Phosphate adsorption on aluminum-impregnated mesoporous silicates: surface structure and behavior of adsorbents.

    PubMed

    Shin, Eun Woo; Han, James S; Jang, Min; Min, Soo-Hong; Park, Jae Kwang; Rowell, Roger M

    2004-02-01

    Phosphorus from excess fertilizers and detergents ends up washing into lakes, creeks, and rivers. This overabundance of phosphorus causes excessive aquatic plant and algae growth and depletes the dissolved oxygen supply in the water. In this study, aluminum-impregnated mesoporous adsorbents were tested for their ability to remove phosphate from water. The surface structure of the materials was investigated with X-ray diffraction (XRD), a N2 adsorption-desorption technique, Fourier transform-infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS) to understand the effect of surface properties on the adsorption behavior of phosphate. The mesoporous materials were loaded with Al components by reaction with surface silanol groups. In the adsorption test, the Al-impregnated mesoporous materials showed fast adsorption kinetics as well as high adsorption capacities, compared with activated alumina. The uniform mesopores of the Al-impregnated mesoporous materials caused the diffusion rate in the adsorption process to increase, which in turn caused the fast adsorption kinetics. High phosphate adsorption capacities of the Al-impregnated mesoporous materials were attributed to not only the increase of surface hydroxyl density on Al oxide due to well-dispersed impregnation of Al components but also the decrease in stoichiometry of surface hydroxyl ions to phosphate by the formation of monodentate surface complexes. PMID:14968882

  13. Toughening Mechanisms in Silica-Filled Epoxy Nanocomposites

    NASA Astrophysics Data System (ADS)

    Patel, Binay S.

    Epoxies are widely used as underfill resins throughout the microelectronics industry to mechanically couple and protect various components of flip-chip assemblies. Generally rigid materials largely surround underfill resins. Improving the mechanical and thermal properties of epoxy resins to better match those of their rigid counterparts can help extend the service lifetime of flip-chip assemblies. Recently, researchers have demonstrated that silica nanoparticles are effective toughening agents for lightly-crosslinked epoxies. Improvements in the fracture toughness of silica-filled epoxy nanocomposites have primarily been attributed to two toughening mechanisms: particle debonding with subsequent void growth and matrix shear banding. Various attempts have been made to model the contribution of these toughening mechanisms to the overall fracture energy observed in silica-filled epoxy nanocomposites. However, disparities still exist between experimental and modeled fracture energy results. In this dissertation, the thermal, rheological and mechanical behavior of eight different types of silica-filled epoxy nanocomposites was investigated. Each nanocomposite consisted of up to 10 vol% of silica nanoparticles with particle sizes ranging from 20 nm to 200 nm, with a variety of surface treatments and particle structures. Fractographical analysis was conducted with new experimental approaches in order to accurately identify morphological evidence for each proposed toughening mechanism. Overall, three major insights into the fracture behavior of real world silica-filled epoxy nanocomposites were established. First, microcracking was observed as an essential toughening mechanism in silica-filled epoxy nanocomposites. Microcracking was observed on the surface and subsurface of fractured samples in each type of silica-filled epoxy nanocomposite. The additional toughening contribution of microcracking to overall fracture energy yielded excellent agreement between experimental

  14. High-performance fiber/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Chiao, T. T.; Hamstad, M. A.; Jessop, E. S.; Toland, R. H.

    1978-01-01

    Activities described include: (1) determining the applicability of an ultrahigh-strength graphite fiber to composite pressure vessels; (2) defining the fatigue performance of thin-titanium-lined, high-strength graphite/epoxy pressure vessel; (3) selecting epoxy resin systems suitable for filament winding; (4) studying the fatigue life potential of Kevlar 49/epoxy pressure vessels; and (5) developing polymer liners for composite pressure vessels. Kevlar 49/epoxy and graphite fiber/epoxy pressure vessels, 10.2 cm in diameter, some with aluminum liners and some with alternation layers of rubber and polymer were fabricated. To determine liner performance, vessels were subjected to gas permeation tests, fatigue cycling, and burst tests, measuring composite performance, fatigue life, and leak rates. Both the metal and the rubber/polymer liner performed well. Proportionately larger pressure vessels (20.3 and 38 cm in diameter) were made and subjected to the same tests. In these larger vessels, line leakage problems with both liners developed the causes of the leaks were identified and some solutions to such liner problems are recommended.

  15. Electron beam curing of epoxy resins by cationic polymerization

    SciTech Connect

    Janke, C.J.; Dorsey, G.F.; Havens, S.J.; Lopata, V.J.

    1995-10-01

    Preliminary investigations have determined that conventional epoxy resins can be cured at selectable temperatures with high glass transition temperatures (essentially the same as with thermal curing), while still exhibiting equivalent or comparable mechanical properties. A cationic photoinitiator at a concentration of 1--3 parts per hundred of the epoxy resin is required for this process. Gamma cell screening of cationic photoinitiators with bisphenol A, bisphenol F, and cycloaliphatic epoxies demonstrated that diaryliodonium salts of weakly nucleophilic anions such as hexafluoroantimonate are most effective. Diaryliodonium salts were also found to be most effective initiators for the cationic polymerization of epoxy resins when a high energy/power electron beam accelerator was used as the source of ionizing radiation. For example Dow Tactix 123 (bisphenol A epoxy) containing 3 phr (4-octyloxyphenyl)phenyliodonium hexafluoroantimonate was irradiated at a total dosage of 100 kGy. Glass transition temperature (tan delta) of the cured material as determined by dynamic mechanical analysis was 182 C as compared to 165 C thermally cured material.

  16. Fiber-Reinforced Reactive Nano-Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Zhong, Wei-Hong

    2011-01-01

    An ultra-high-molecular-weight polyethylene/ matrix interface based on the fabrication of a reactive nano-epoxy matrix with lower surface energy has been improved. Enhanced mechanical properties versus pure epoxy on a three-point bend test include: strength (25 percent), modulus (20 percent), and toughness (30 percent). Increased thermal properties include higher Tg (glass transition temperature) and stable CTE (coefficient of thermal expansion). Improved processability for manufacturing composites includes faster wetting rates on macro-fiber surfaces, lower viscosity, better resin infusion rates, and improved rheological properties. Improved interfacial adhesion properties with Spectra fibers by pullout tests include initial debonding force of 35 percent, a maximum pullout force of 25 percent, and energy to debond at 65 percent. Improved mechanical properties of Spectra fiber composites (tensile) aging resistance properties include hygrothermal effects. With this innovation, high-performance composites have been created, including carbon fibers/nano-epoxy, glass fibers/nano-epoxy, aramid fibers/ nano-epoxy, and ultra-high-molecularweight polyethylene fiber (UHMWPE).

  17. New thermal and microbial resistant metal-containing epoxy polymers.

    PubMed

    Ahamad, Tansir; Alshehri, Saad M

    2010-01-01

    A series of metal-containing epoxy polymers have been synthesized by the condensation of epichlorohydrin (1-chloro-2,3-epoxy propane) with Schiff base metal complexes in alkaline medium. Schiff base was initially prepared by the reaction of 2,6 dihydroxy 1-napthaldehyde and o-phenylenediamine in 1 : 2 molar ratio and then with metal acetate. All the synthesized compounds were characterized by elemental, spectral, and thermal analysis. The physicochemical properties, viz., epoxy value, hydroxyl content, and chlorine content [mol/100 g] were measured by standard procedures. The antimicrobial activities of these metal-containing epoxy polymers were carried out by using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods against S. aureus, B. subtilis (Gram-positive bacteria), and E. coli, P. aeruginosa (Gram-negative bacteria). It was found that the ECu(II) showed higher antibacterial activity than other metal-chelated epoxy resin while EMn(II) exhibited reduced antibacterial activity against all bacteria. PMID:20689716

  18. New Thermal and Microbial Resistant Metal-Containing Epoxy Polymers

    PubMed Central

    Ahamad, Tansir; Alshehri, Saad M.

    2010-01-01

    A series of metal-containing epoxy polymers have been synthesized by the condensation of epichlorohydrin (1-chloro-2,3-epoxy propane) with Schiff base metal complexes in alkaline medium. Schiff base was initially prepared by the reaction of 2,6 dihydroxy 1-napthaldehyde and o-phenylenediamine in 1  :  2 molar ratio and then with metal acetate. All the synthesized compounds were characterized by elemental, spectral, and thermal analysis. The physicochemical properties, viz., epoxy value, hydroxyl content, and chlorine content [mol/100 g] were measured by standard procedures. The antimicrobial activities of these metal-containing epoxy polymers were carried out by using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods against S. aureus, B. subtilis (Gram-positive bacteria), and E. coli, P. aeruginosa (Gram-negative bacteria). It was found that the ECu(II) showed higher antibacterial activity than other metal-chelated epoxy resin while EMn(II) exhibited reduced antibacterial activity against all bacteria. PMID:20689716

  19. Epoxy nanocomposites based on high temperature pyridinium-modified clays.

    PubMed

    Zhang, Qingxin; Naito, Kimiyoshi; Qi, Ben; Kagawa, Yutaka

    2009-01-01

    Polymer/clay nanocomposites are generally fabricated by thermal curing or melt compounding at elevated temperatures, however the thermal stability of common alkyl ammonium treated clays is poor and decomposition occurs inevitably during high temperature processing. In this study, we modified clays with an aromatic pyridinium salt. Thermogravimetric analysis (TGA) showed that the onset degradation temperature (Td(onset)) and maximum decomposition temperature (Td(max)) of the pyridinium treatment clays was up to 310 and 457 degrees C respectively implying high thermal stability. The thermal decomposition behaviour of the pyridinium modified clays was discussed. A series of epoxy/clay nanocomposites were synthesized using a diglycidyl ether of bisphenol A (DGEBA) epoxy and diethyltoluene diamine (DETDA). The morphology of epoxy/clay nanocomposites was characterized with wide angle X-ray diffraction (WAXD) and transmission electron microscope (TEM), and intercalated structures were observed. The storage modulus of epoxy was increased but glass transition temperature was decreased with clay incorporation. The effects of clays on glass transition temperature (Tg) of epoxy were also discussed. PMID:19441298

  20. 10 T generation by an epoxy impregnated GdBCO insert coil for the 25 T-cryogen-free superconducting magnet

    NASA Astrophysics Data System (ADS)

    Awaji, Satoshi; Oguro, Hidetoshi; Watanabe, Kazuo; Hanai, Satoshi; Miyazaki, Hiroshi; Tosaka, Taizo; Ioka, Shigeru; Fujita, Shinji; Daibo, Masanori; Iijima, Yasuhiro

    2016-05-01

    A GdBa2Cu3O y (Gd123) insert coil for the 25 T cryogen-free superconducting magnet was constructed, installed and tested. We succeeded in the generation of 10 T using a Gd123 insert coil without a background field. The temperature of the Gd123 coil increased from 4.5 K gradually and reached about 5.5 K, when the magnet was energized with 0.036 A/s, which corresponds to a 1 hour energizing mode. The calculated and measured central magnetic fields are 10.61 T and 10.15 T, respectively, because of the magnetization current effect in RE123 tape. The maximum heat load by the AC-losses estimated from the temperature rise is about 3 W, which is consistent with the slab model combined with tape stacking effect.

  1. Covariant Electrodynamics in Vacuum

    NASA Astrophysics Data System (ADS)

    Wilhelm, H. E.

    1990-05-01

    The generalized Galilei covariant Maxwell equations and their EM field transformations are applied to the vacuum electrodynamics of a charged particle moving with an arbitrary velocity v in an inertial frame with EM carrier (ether) of velocity w. In accordance with the Galilean relativity principle, all velocities have absolute meaning (relative to the ether frame with isotropic light propagation), and the relative velocity of two bodies is defined by the linear relation uG = v1 - v2. It is shown that the electric equipotential surfaces of a charged particle are compressed in the direction parallel to its relative velocity v - w (mechanism for physical length contraction of bodies). The magnetic field H(r, t) excited in the ether by a charge e moving uniformly with velocity v is related to its electric field E(r, t) by the equation H=ɛ0(v - w)xE/[ 1 +w • (t>- w)/c20], which shows that (i) a magnetic field is excited only if the charge moves relative to the ether, and (ii) the magnetic field is weak if v - w is not comparable to the velocity of light c0 . It is remarkable that a charged particle can excite EM shock waves in the ether if |i> - w > c0. This condition is realizable for anti-parallel charge and ether velocities if |v-w| > c0- | w|, i.e., even if |v| is subluminal. The possibility of this Cerenkov effect in the ether is discussed for terrestrial and galactic situations

  2. Space-age vacuum cleaning

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1978-01-01

    Varied concepts for brushes and air handling remove dirt more effectively. Vacuum-cleaning techniques may be used in combination. Many of these concepts, while not appropriate for household cleaning, may find use in industry, research, and medicine.

  3. Vacuum system pump down analysis

    SciTech Connect

    Rohrdanz, D.R.

    1990-08-01

    My assignment on the SP-100 Vacuum Vessel Vacuum System Team was to perform a transient pump down analysis for the vacuum vessel that will house the SP-100 reactor during testing. Pump down time was calculated for air and helium. For all cases the proposed vacuum system will be able to pump down the vessel within the required time. The use of a larger rotary piston pump (DUO250) improves the pump down time by 35 minutes and therefore should be considered. The 6-inch duct for the roughing line is optimal, however, because all cases are well below the 24 hour time frame, the 4-inch duct is sufficient. The use of the single turbomolecular pump during pump down is sufficient. A pump down with helium in the vessel and a helium inleakage delays the time to achieve the base pressure marginally and is acceptable.

  4. [Endoscopic vacuum-assisted closure].

    PubMed

    Wedemeyer, J; Lankisch, T

    2013-03-01

    Anastomotic leakage in the upper and lower intestinal tract is associated with high morbidity and mortality. Within the last 10 years endoscopic treatment options have been accepted as sufficient treatment option of these surgical complications. Endoscopic vacuum assisted closure (E-VAC) is a new innovative endoscopic therapeutic option in this field. E-VAC transfers the positive effects of vacuum assisted closure (VAC) on infected cutaneous wounds to infected cavities that can only be reached endoscopically. A sponge connected to a drainage tube is endoscopically placed in the leakage and a continuous vacuum is applied. Sponge and vacuum allow removal of infected fluids and promote granulation of the leakage. This results in clean wound grounds and finally allows wound closure. Meanwhile the method was also successfully used in the treatment of necrotic pancreatitis. PMID:23430199

  5. IRIS Leaves Thermal Vacuum Chamber

    NASA Video Gallery

    This video shows the transportation of the IRIS observatory from the thermal vacuum chamber back to the clean tent for final testing and preparations for delivery to the launch site at Vandenberg A...

  6. Vacuum lamination of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1982-01-01

    Vacuum lamination of terrestrial photovoltaic modules is a new high volume process requiring new equipment and newly develop materials. Equipment development, materials research, and some research in related fields and testing methods are discussed.

  7. ETV Program Report: Coatings for Wastewater Collection Systems - Standard Cement Materials, Epoxy Coating 4553

    EPA Science Inventory

    The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Ma...

  8. Surface studies of thermionic cathodes and the mechanism of operation of an impregnated tungsten cathode

    NASA Technical Reports Server (NTRS)

    Forman, R.

    1976-01-01

    The surface properties of conventional impregnated cathodes were investigated by the use of Auger spectroscopy and work function measurements, and these were compared with a synthesized barium or barium oxide coated tungsten surface. The barium and barium oxide coated surfaces were prepared by evaporating barium onto a tungsten surface that can be heated to elevated temperatures. Multilayer or monolayer coverages can be investigated using this technique. The results of this study show that the surface of an impregnated tungsten cathode is identical to that observed for a synthesized monolayer or partial monolayer of barium on partially oxidized tungsten, using the criteria of identical Auger patterns and work functions. Desorption measurements of barium from a tungsten surface were also made. These results in conjunction with Auger and work function data were interpreted to show that throughout most of its life an impregnated cathode operating in the range of 1100 C has a partial monolayer rather than a monolayer of barium on its surface.

  9. Dielectric properties of transformer paper impregnated by mineral oil based magnetic fluid

    NASA Astrophysics Data System (ADS)

    Timko, M.; Kopčanský, P.; Marton, K.; Tomčo, L.; Koneracká, M.

    2010-01-01

    The influence of combined magnetic and electric field on permittivity of transformer paper used in power transformers was observed. Transformer paper was impregnated by pure transformer oil ITO 100 and magnetic fluids based on transformer oil ITO 100 with different concentrations of magnetite nanoparticles. The measurements were carried out with help of high precision capacitance bridge. The electric intensity between circular planar electrodes was in the region of weak electric field (E > 106 V/m). The increase of electric permittivity of transformer paper impregnated by magnetic fluid opposite pure transformer paper was observed. The experiments showed that permittivity of insulator system consisting of pure transformer paper and impregnated transformer paper naturally depends on number of paper layers. The magnetodielectric effect was found to be dependent on magnetite nanoparticles concentration in magnetic fluids.

  10. Study on pyrolysis characteristics of lignocellulosic biomass impregnated with ammonia source.

    PubMed

    Li, Kai; Zhu, Changpeng; Zhang, Liqiang; Zhu, Xifeng

    2016-06-01

    The current study presents the pyrolysis characteristics of rice husk impregnated with different kinds of ammonia source (ammonium acetate, urea, ammonium sulfate and ammonium dihydrogen phosphate) in a fixed bed reactor. The introduction of ammonia source in pyrolysis process achieved the conversation from carbonyl compounds to nitrogenous heterocyclic compounds. The liquid product of urea-impregnated biomass has higher content of nitrogenous heterocyclic compounds (8.35%) and phenols (30.4%). For ammonium sulfate and ammonium dihydrogen phosphate-impregnated biomass, the quantity of compounds in liquid products reduces remarkably, and the gas products are rich in CO and H2. All the solid products of pyrolysis have great potential application in biochar-based fertilizer and activated carbon for their high N content. PMID:26967337

  11. Nanoindentation Study of Resin Impregnated Sandstone and Early-Age Cement Paste Specimens

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Fonteyn, M. T. J.; Hughes, J.; Pearce, C.

    Nanoindentation testing requires well prepared samples with a good surface finish. Achieving a good surface finish is difficult for heterogeneous materials, particularly those with weak and fragile structures/phases, which are easily damaged or lost during preparation. The loss of weak structures can be drastically reduced by impregnating the sample with a resin before cutting and polishing. This technique is commonly used in SEM microscopy but has not been used for nanoindentation-testing before. This paper reports an investigation to extract micro-mechanical properties of different phases in resin impregnated sandstone and 1-day hydrated cement samples. The results appeared to show that it is feasible to use resin impregnated specimens for nanoindentation study of both materials.

  12. Solvent impregnated resin for isolation of U(VI) from industrial wastes

    SciTech Connect

    Karve, M.; Rajgor, R.V.

    2008-07-01

    A solid-phase extraction method based upon impregnation of Cyanex 302 (bis(2,4,4- trimethylpentyl)mono-thio-phosphinic acid) on Amberlite XAD-2 resin is proposed for isolation of U(VI) from uranmicrolite ore tailing samples and industrial effluent samples. U(VI) was sorbed from nitric acid media on the solvent-impregnated resin (SIR) and was recovered completely with 1.0 M HCl. Based upon sorption behavior of U(VI) with Cyanex 302, it was quantitatively sorbed on the SIR in a dynamic method, while the other metal ions were not sorbed by the modified resin. The preparation of impregnated resin is simple, based upon physical interaction of the extractant and solid support, has good sorption capacity for U(VI), and is also reliable for detection of traces of U(VI). (authors)

  13. Removal of sulphur mustard, sarin and simulants on impregnated silica nanoparticles.

    PubMed

    Saxena, Amit; Srivastava, Avanish K; Singh, Beer; Goyal, Anshu

    2012-04-15

    Silica nanoparticles of diameter, 24-75 nm and surface area, 875 m(2)/g were synthesized using aero-gel route. Thereafter, nanoparticles were impregnated with reactive chemicals, and used as reactive adsorbent to study the removal of toxic nerve and blister chemical warfare agents and their simulants from solutions. Trichloroisocyanuric acid impregnated silica nanoparticles showed the best performance and indicated physisorption followed by chemisorption/degradation of toxicants. This indicated their suitability as universal decontaminant for nerve and blister agents. This system showed a decrease in t(1/2) from 1210 to 2.8 min for the removal of king of chemical warfare agents, i.e., sulphur mustard. Hydrolysis, dehydrohalogenation and oxidation reactions were found to be the route of degradation of toxicants over impregnated silica nanoparticles. PMID:21871717

  14. Antibiotic-Impregnated Bone Grafts in Orthopaedic and Trauma Surgery: A Systematic Review of the Literature

    PubMed Central

    Anagnostakos, Konstantinos; Schröder, Katrin

    2012-01-01

    There exist several options for local antibiotic therapy in orthopaedic and trauma surgery. Over the past years, the use of antibiotic-impregnated bone grafts (AIBGs) has become a popular procedure in the treatment of bone and joint infections. A major advantage of AIBGs involves the possibility of impregnation of various antibiotics depending on the sensitivity profile of the causative organism, whereas an additional surgery with removal of the antibiotic carrier is not necessary, as in the use of antibiotic-loaded bone cement. However, generalized conclusions cannot be clearly drawn from the existing literature due to differences of bone used, impregnation method, antibiotics, their doses, laboratory circumstances, or clinical indications. The present work reviews the literature regarding this topic and sheds some light onto the choice of bone and antibiotics, manufacturing details, and clinical experience. PMID:22899933

  15. Electrochemical properties of a lithium-impregnated metal foam anode for thermal batteries

    NASA Astrophysics Data System (ADS)

    Choi, Yu-Song; Yu, Hye-Ryeon; Cheong, Hae-Won

    2015-02-01

    Lithium-impregnated metal foam anodes (LIMFAs) are fabricated and investigated. The LIMFAs are prepared by the impregnation of lithium into molten-salt-coated nickel metal foam. A single cell with the LIMFA exhibits a specific capacity of 3009 As g-1. For comparison, a single cell with a LiSi alloy anode is also discharged, demonstrating a specific capacity of 1050 As g-1. These significant improvements can be attributed to the large amount of lithium impregnated into the metal foam as well as the molten lithium holding capability of the foam. Due to their excellent electrochemical properties, LIMFAs are suitable for use in thermal batteries.

  16. A novel method for the modification of zinc powder by ultrasonic impregnation in cerium nitrate solution.

    PubMed

    Zhu, Liqun; Zhang, Hui

    2008-04-01

    This work is devoted to an extensive study of cerium deposits distributed directly on zinc particles by simple impregnation or ultrasonic impregnation for the modification of zinc powder. Meantime, the characterization of modified zinc powder and the influence of ultrasound parameters in the modification process upon the dendritic growth, the corrosion behavior and the cyclic performance of zinc are investigated using scanning electron microscopy, energy dispersion spectrometry, potentiostatic polarization, potentiodynamic polarization and cyclic voltammetry. Compared with simple impregnation, the assistance of ultrasonic irradiation is found to have a significant effect on the sedimentary state and favorable properties of cerium deposits in a protective way. Besides the cyclic voltammetry measurements display that the application of ultrasound also improves the cyclic performance of zinc electrode containing modified zinc powder mainly because the cerium deposits formed under ultrasonic irradiation can greatly hinder the dissolution and diffusion of the oxidation product of zinc in the electrolyte and effectively favor the capacity maintenance of zinc electrode. PMID:18024152

  17. Selective Catalytic Oxidation of Hydrogen Sulfide on Activated Carbons Impregnated with Sodium Hydroxide

    SciTech Connect

    Schwartz, Viviane; Baskova, Svetlana; Armstrong, Timothy R.

    2009-01-01

    Two activated carbons of different origin were impregnated with the solution of sodium hydroxide (NaOH) of various concentrations up to 10 wt %, and the effect of impregnation on the catalytic performance of the carbons was evaluated. The catalytic activity was analyzed in terms of the capacity of carbons for hydrogen sulfide (H2S) conversion and removal from hydrogen-rich fuel streams and the emission times of H2S and the products of its oxidation [e.g., sulfur dioxide (SO2) and carbonyl sulfide (COS)]. The results of impregnation showed a significant improvement in the catalytic activity of both carbons proportional to the amount of NaOH introduced. NaOH introduces hydroxyl groups (OH-) on the surface of the activated carbon that increase its surface reactivity and its interaction with sulfur-containing compounds.

  18. Development of nitrocellulose membrane filters impregnated with different biosynthesized silver nanoparticles applied to water purification.

    PubMed

    Fernández, Jorge G; Almeida, César A; Fernández-Baldo, Martín A; Felici, Emiliano; Raba, Julio; Sanz, María I

    2016-01-01

    Bactericidal water filters were developed. For this purpose, nitrocellulose membrane filters were impregnated with different biosynthesized silver nanoparticles. Silver nanoparticles (AgNPs) from Aspergillus niger (AgNPs-Asp), Cryptococcus laurentii (AgNPs-Cry) and Rhodotorula glutinis (AgNPs-Rho) were used for impregnating nitrocellulose filters. The bactericidal properties of these nanoparticles against Escherichia coli, Enterococcus faecalis and Pseudomona aeruginosa were successfully demonstrated. The higher antimicrobial effect was observed for AgNPs-Rho. This fact would be related not only to the smallest particles, but also to polysaccharides groups that surrounding these particles. Moreover, in this study, complete inhibition of bacterial growth was observed on nitrocellulose membrane filters impregnated with 1 mg L(-1) of biosynthesized AgNPs. This concentration was able to reduce the bacteria colony count by over 5 orders of magnitude, doing suitable for a water purification device. PMID:26695258

  19. Dielectric insulation characteristics of liquid-nitrogen-impregnated laminated paper-insulated cable

    SciTech Connect

    Suzuki, H.; Ishihara, K.; Akita, S. )

    1992-10-01

    This paper reports that the electric characteristics and insulation design strength of a liquid-nitrogen-impregnated synthetic insulation was considered. It found to detect the impregnation of liquid nitrogen by measuring the electrostatic capacitance of the cable [epsilon] [center dot] tan [delta] an index of the dielectric loss, was 0.31% for cellulose paper and 0.18% for semisynthetic paper, PPLP and OPPL. It is found that the decline of the thickness dependence of the breakdown strength of the liquid-nitrogen-impregnated insulating cable is steeper than that of the OF cables. It is possible to design the insulation strength of the 66 kV cable to 10 kV/mm.

  20. Life Model of Hollow Cathodes Using a Barium Calcium Aluminate Impregnated Tungsten Emitter

    NASA Technical Reports Server (NTRS)

    Kovaleski, S. D.; Burke, Tom (Technical Monitor)

    2001-01-01

    Hollow cathodes with barium calcium aluminate impregnated tungsten emitters for thermionic emission are widely used in electric propulsion. These high current, low power cathodes are employed in ion thrusters, Hall thrusters, and on the International Space Station in plasma contactors. The requirements on hollow cathode life are growing more stringent with the increasing use of electric propulsion technology. The life limiting mechanism that determines the entitlement lifetime of a barium impregnated thermionic emission cathode is the evolution and transport of barium away from the emitter surface. A model is being developed to study the process of barium transport and loss from the emitter insert in hollow cathodes. The model accounts for the production of barium through analysis of the relevant impregnate chemistry. Transport of barium through the approximately static gas is also being treated. Finally, the effect of temperature gradients within the cathode are considered.