Science.gov

Sample records for equilateral triangular grids

  1. Implementations of the optimal multigrid algorithm for the cell-centered finite difference on equilateral triangular grids

    SciTech Connect

    Ewing, R.E.; Saevareid, O.; Shen, J.

    1994-12-31

    A multigrid algorithm for the cell-centered finite difference on equilateral triangular grids for solving second-order elliptic problems is proposed. This finite difference is a four-point star stencil in a two-dimensional domain and a five-point star stencil in a three dimensional domain. According to the authors analysis, the advantages of this finite difference are that it is an O(h{sup 2})-order accurate numerical scheme for both the solution and derivatives on equilateral triangular grids, the structure of the scheme is perhaps the simplest, and its corresponding multigrid algorithm is easily constructed with an optimal convergence rate. They are interested in relaxation of the equilateral triangular grid condition to certain general triangular grids and the application of this multigrid algorithm as a numerically reasonable preconditioner for the lowest-order Raviart-Thomas mixed triangular finite element method. Numerical test results are presented to demonstrate their analytical results and to investigate the applications of this multigrid algorithm on general triangular grids.

  2. Numerical Simulation of Flow Through Equilateral Triangular Duct Under Constant Wall Heat Flux Boundary Condition

    NASA Astrophysics Data System (ADS)

    Kumar, Rajneesh; Kumar, Anoop; Goel, Varun

    2016-06-01

    The force convective heat transfer in an equilateral triangular duct of different wall heat flux configurations was analysed for the laminar hydro-dynamically developed and thermally developing flow by the use of finite volume method. Unstructured meshing was generated by multi-block technique and set of governing equations were discretized using second-order accurate up-wind scheme and numerically solved by SIMPLE Algorithm. For ensuring accuracy, grid independence study was also done. Numerical methodology was verified by comparing results with previous work and predicted results showed good agreement with them (within error of ±5 %). The different combinations of constant heat flux boundary condition were analysed and their effect on heat transfer and fluid flow for different Reynolds number was also studied. The results of different combinations were compared with the case of force convective heat transfer in the equilateral triangular duct with constant heat flux on all three walls.

  3. Effective side length formula for resonant frequency of equilateral triangular microstrip antenna

    NASA Astrophysics Data System (ADS)

    Guney, Kerim; Kurt, Erhan

    2016-02-01

    A novel and accurate expression is obtained by employing the differential evolution algorithm for the effective side length (ESL) of the equilateral triangular microstrip antenna (ETMA). This useful formula allows the antenna engineers to accurately calculate the ESL of the ETMA. The computed resonant frequencies (RFs) show very good agreement with the experimental RFs when this accurate ESL formula is utilised for the computation of the RFs for the first five modes.

  4. 19F-NMR Study on the Equilateral Triangular Spin Tube CsCrF4

    NASA Astrophysics Data System (ADS)

    Matsui, Kazuki; Goto, Takayuki; Manaka, Hirotaka; Miura, Yoko

    In order to investigate the hyperfine coupling of three inequivalent 19F sites in the equilateral triangular spin-tube antiferromagnet CsCrF4, we have measured the temperature dependence of 19F-NMR Knight shift in the paramagnetic state above 20K. The hyperfine coupling constants for three F-sites were determined to be -0.170, 0.280 and -0.045 T/μB, and were found to be consistent with the observed spectra at 1.65K, where the system is possibly in the ordered state.

  5. A collapse surface for a perforated plate with an equilateral triangular array of penetrations

    SciTech Connect

    Gordon, J.L.; Jones, D.P.; Hutula, D.N.; Banas, D.

    1999-02-01

    This paper describes the development of incipient yield and subsequent collapse surfaces for a plate containing a large number of small circular penetrations arranged in an equilateral triangular array. The collapse surface developed here is appropriate for formulating a generic elastic-plastic flow theory for perforated materials. A unit cell is defined to characterize the mechanical response of an equilateral triangular array of penetrations. An elastic-perfectly plastic [EPP] finite element analysis [FEA] computer program is used to calculate the EPP response of the unit cell. A sufficient number of load cases are solved to define the complete incipient yield and collapse surfaces for the unit cell. A fourth order yield function is defined by squaring the Von Mises quadratic yield function and retaining only those terms that are required for the symmetry dictated by the triangular array. Curve fitting is used to determine the coefficients of the fourth order function to match the incipient yield and collapse data calculated for the unit cell by FEA. The incipient yield function in the plane of the plate incorporating the penetration pattern is shown to be almost rhomboidal in shape while the collapse curve is more elliptical. The fourth order yield function which passes through the incipient yield data possess regions where the surface is concave--a concern when developing a plasticity theory based on the function. Fitting the coefficients of the fourth order function to the collapse data results in a curve which is shown to be always convex thus having all positive outward normal vectors which is a required property for the development of plasticity flow theories.

  6. Shape optimization of staggered ribs in a rotating equilateral triangular cooling channel

    NASA Astrophysics Data System (ADS)

    Moon, Mi-Ae; Park, Min-Jung; Kim, Kwang-Yong

    2014-04-01

    A rotating equilateral triangular cooling channel with staggered square ribs inside the leading edge of a turbine blade has been optimized in this work based on surrogate modeling. The fluid flow and heat transfer in the channel have been analyzed using three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations under uniform heat flux condition. Shear stress transport turbulence model has been used as a turbulence closure. Computational results for area-averaged Nusselt number have been validated compared to the experimental data. The objectives related to the heat transfer rate and pressure drop has been linearly combined with a weighting factor to define the objective function. The angle of the rib, the rib pitch-to-hydraulic diameter ratio, and the rib width-to-hydraulic diameter ratio have been selected as the design variables. Twenty-two design points have been generated by Latin Hypercube sampling, and the values of the objective function have been calculated by the RANS analysis at these points. The surrogate model for the objective function has been constructed using the radial basis neural network method. Through the optimization, the objective function value has been improved by 21.5 % compared to that of the reference geometry.

  7. Mean streamwise velocity measurements in a triple jet of equilateral triangular configuration

    SciTech Connect

    Moustafa, G.H. . Coll. of Engineering); Sundararajan, T. . Dept. of Mechanical Engineering); Rathakrishnan, E. . Dept. of Aerospace Engineering)

    1993-09-01

    Multijet flows arise in several applications such as jet engine/rocket combustors, the thrust augmenting ejectors for VTOL/STOL aircraft, and industrial gas burners. In order to achieve proper combustion, thrust development, and reduction in the noise level, it is often desirable to control the inter-mixing between the jets and also the entrainment of the surrounding atmosphere. This, in turn, requires a detailed study of the behavior of high speed jets in multijet configuration. The situation of interest here is an array of three axisymmetric nozzles set in a common end wall with equal spacing in a triangular configuration. The reason why this particular configuration has been chosen is that it promotes bending of the jet axes toward each other, thus leading to greater mixing. In the present study, experiments have been conducted to investigate the effect of stagnation pressure ratio and nozzle spacing upon the mean flow characteristic of compressible jets in triangular configuration. The individual flow features of the vertex jet and the base twin jet are analyzed and their contributions to the axis switching as well as the overall triple jet behavior are highlighted.

  8. Static and Dynamical Properties of the Spin-1/2 Equilateral Triangular-Lattice Antiferromagnet Ba_{3}CoSb_{2}O_{9}.

    PubMed

    Ma, J; Kamiya, Y; Hong, Tao; Cao, H B; Ehlers, G; Tian, W; Batista, C D; Dun, Z L; Zhou, H D; Matsuda, M

    2016-02-26

    We present single-crystal neutron scattering measurements of the spin-1/2 equilateral triangular-lattice antiferromagnet Ba_{3}CoSb_{2}O_{9}. Besides confirming that the Co^{2+} magnetic moments lie in the ab plane for zero magnetic field and then determining all the exchange parameters of the minimal quasi-2D spin Hamiltonian, we provide conclusive experimental evidence of magnon decay through observation of intrinsic line broadening. Through detailed comparisons with the linear and nonlinear spin-wave theories, we also point out that the large-S approximation, which is conventionally employed to predict magnon decay in noncollinear magnets, is inadequate to explain our experimental observation. Thus, our results call for a new theoretical framework for describing excitation spectra in low-dimensional frustrated magnets under strong quantum effects. PMID:26967439

  9. Static and dynamical properties of the spin-1/2 equilateral triangular-lattice antiferromagnet Ba3CoSb2O9

    DOE PAGESBeta

    Ma, Jie; Kamiya, Yoshitomo; Hong, Tao; Cao, H. B.; Ehlers, Georg; Tian, Wei; Batista, C. D.; Dun, Z. L.; Zhou, H. D.; Matsuda, Masaaki

    2016-02-24

    We present single-crystal neutron scattering measurements of the spin-1/2 equilateral triangular-lattice antiferromagnet Ba3CoSb2O9. Besides confirming that the Co2+ magnetic moments lie in the ab plane for zero magnetic field and then determining all the exchange parameters of the minimal quasi-2D spin Hamiltonian, we provide conclusive experimental evidence of magnon decay through observation of intrinsic line broadening. Through detailed comparisons with the linear and nonlinear spin-wave theories, we also point out that the large-S approximation, which is conventionally employed to predict magnon decay in noncollinear magnets, is inadequate to explain our experimental observation. Hence, our results call for a new theoreticalmore » framework for describing excitation spectra in low-dimensional frustrated magnets under strong quantum effects.« less

  10. A Lie group approach to the Schrödinger equation for a particle in an equilateral triangular infinite well

    NASA Astrophysics Data System (ADS)

    Gaddah, Wajdi

    2013-09-01

    In this paper, we present Lie's method of using one-parameter groups of continuous transformations to find the exact solution to the Schrödinger equation for a particle confined in an equilateral triangle. A suitable Lie group transformation that leaves the Schrödinger equation in the complex-variable formulation invariant is determined by detection and then used to reduce the partial differential equation to an ordinary differential equation which admits the so-called group-invariant solution. This particular solution along with other symmetry transformations is used to generate the full solution that complies with Dirichlet boundary conditions. The eigenfunctions and eigenvalues obtained herein are in full agreement with those derived by other methods. Our approach has been presented in a simple manner in the hope that it will be beneficial at the undergraduate level.

  11. Self-Avoiding Walks over Adaptive Triangular Grids

    NASA Technical Reports Server (NTRS)

    Heber, Gerd; Biswas, Rupak; Gao, Guang R.; Saini, Subhash (Technical Monitor)

    1998-01-01

    In this paper, we present a new approach to constructing a "self-avoiding" walk through a triangular mesh. Unlike the popular approach of visiting mesh elements using space-filling curves which is based on a geometric embedding, our approach is combinatorial in the sense that it uses the mesh connectivity only. We present an algorithm for constructing a self-avoiding walk which can be applied to any unstructured triangular mesh. The complexity of the algorithm is O(n x log(n)), where n is the number of triangles in the mesh. We show that for hierarchical adaptive meshes, the algorithm can be easily parallelized by taking advantage of the regularity of the refinement rules. The proposed approach should be very useful in the run-time partitioning and load balancing of adaptive unstructured grids.

  12. The upwind control volume scheme for unstructured triangular grids

    NASA Technical Reports Server (NTRS)

    Giles, Michael; Anderson, W. Kyle; Roberts, Thomas W.

    1989-01-01

    A new algorithm for the numerical solution of the Euler equations is presented. This algorithm is particularly suited to the use of unstructured triangular meshes, allowing geometric flexibility. Solutions are second-order accurate in the steady state. Implementation of the algorithm requires minimal grid connectivity information, resulting in modest storage requirements, and should enhance the implementation of the scheme on massively parallel computers. A novel form of upwind differencing is developed, and is shown to yield sharp resolution of shocks. Two new artificial viscosity models are introduced that enhance the performance of the new scheme. Numerical results for transonic airfoil flows are presented, which demonstrate the performance of the algorithm.

  13. Factorizable Upwind Schemes: The Triangular Unstructured Grid Formulation

    NASA Technical Reports Server (NTRS)

    Sidilkover, David; Nielsen, Eric J.

    2001-01-01

    The upwind factorizable schemes for the equations of fluid were introduced recently. They facilitate achieving the Textbook Multigrid Efficiency (TME) and are expected also to result in the solvers of unparalleled robustness. The approach itself is very general. Therefore, it may well become a general framework for the large-scale, Computational Fluid Dynamics. In this paper we outline the triangular grid formulation of the factorizable schemes. The derivation is based on the fact that the factorizable schemes can be expressed entirely using vector notation. without explicitly mentioning a particular coordinate frame. We, describe the resulting discrete scheme in detail and present some computational results verifying the basic properties of the scheme/solver.

  14. Factorizable Upwind Schemes: the Triangular Unstructured Grid Formulation

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Sidilkover, David

    2001-01-01

    The upwind factorizable schemes for the equations of fluid was introduced recently. They facilitate achieving the Textbook Multigrid Efficiency (TME) and are expected also to result in the solvers of unparalleled robustness. The approach itself is very general. Therefore, it may well become a general framework for the large-scale Computational Fluid Dynamics. In this paper we outline the triangular grid formulation of the factorizable schemes. The derivation is based on the fact that the factorizable schemes can be expressed entirely using vector notation, without explicitly mentioning a particular coordinate frame. We describe the resulting discrete scheme in detail and present some computational results verifying the basic properties of the scheme/solver.

  15. Dynamic mesh adaption for triangular and tetrahedral grids

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Strawn, Roger

    1993-01-01

    The following topics are discussed: requirements for dynamic mesh adaption; linked-list data structure; edge-based data structure; adaptive-grid data structure; three types of element subdivision; mesh refinement; mesh coarsening; additional constraints for coarsening; anisotropic error indicator for edges; unstructured-grid Euler solver; inviscid 3-D wing; and mesh quality for solution-adaptive grids. The discussion is presented in viewgraph form.

  16. Self-Avoiding Walks Over Adaptive Triangular Grids

    NASA Technical Reports Server (NTRS)

    Heber, Gerd; Biswas, Rupak; Gao, Guang R.; Saini, Subhash (Technical Monitor)

    1999-01-01

    Space-filling curves is a popular approach based on a geometric embedding for linearizing computational meshes. We present a new O(n log n) combinatorial algorithm for constructing a self avoiding walk through a two dimensional mesh containing n triangles. We show that for hierarchical adaptive meshes, the algorithm can be locally adapted and easily parallelized by taking advantage of the regularity of the refinement rules. The proposed approach should be very useful in the runtime partitioning and load balancing of adaptive unstructured grids.

  17. Predicting natural-convection-dominated phase change problems by control volume unstructured triangular grid: Applications to the melting of pure metal

    SciTech Connect

    Hong, Z.C.; Liou, J.H.

    1998-02-20

    Control volume methods have recently been developed for fluid flow and heat transfer on unstructured meshes. In this study, the authors extend these methods to implement the solution of natural-convection-dominated melting of gallium by a fixed-grid method. A simple, robust, and reliable explicit numerical method (MAC method) is applied for an unstructured triangular grid. This investigation also applies the implicit SIMPLER method for an unstructured triangular grid. Results obtained from the unstructured triangular grid correlate well with the structured mesh computations and experimental data. Also, the feasibility of applying the triangular grid to complex geometric problems is demonstrated by calculating two different triangular domains.

  18. Analytic relations for reconstructing piecewise linear interfaces in triangular and tetrahedral grids

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; James, Ashley J.

    2006-05-01

    In volume of fluid methods for interfacial flow simulations, one essential process is the so-called interface reconstruction, in which an approximate interface is reconstructed from a given discrete volume fraction field. In [J. Comput. Phys. 164 (2000) 228-237], Scardovelli and Zaleski presented analytical relations connecting linear interfaces and volume fractions in rectangular grids. Here, we present analytical relations connecting linear interfaces and volume fractions in triangular and tetrahedral grids. For computing the volume of fluid in an arbitrary polygonal or polyhedral fluid element, we also cite some of the most efficient formulas for polygon area and polyhedron volume computations. Simple test cases show that this analytic method of interface reconstruction is about 18 times faster than an iterative method in two dimensions, and four to six times faster in three dimensions. The results can be in general applied to other fields as well.

  19. High-Order Hyperbolic Residual-Distribution Schemes on Arbitrary Triangular Grids

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2015-01-01

    In this paper, we construct high-order hyperbolic residual-distribution schemes for general advection-diffusion problems on arbitrary triangular grids. We demonstrate that the second-order accuracy of the hyperbolic schemes can be greatly improved by requiring the scheme to preserve exact quadratic solutions. We also show that the improved second-order scheme can be easily extended to third-order by further requiring the exactness for cubic solutions. We construct these schemes based on the LDA and the SUPG methodology formulated in the framework of the residual-distribution method. For both second- and third-order-schemes, we construct a fully implicit solver by the exact residual Jacobian of the second-order scheme, and demonstrate rapid convergence of 10-15 iterations to reduce the residuals by 10 orders of magnitude. We demonstrate also that these schemes can be constructed based on a separate treatment of the advective and diffusive terms, which paves the way for the construction of hyperbolic residual-distribution schemes for the compressible Navier-Stokes equations. Numerical results show that these schemes produce exceptionally accurate and smooth solution gradients on highly skewed and anisotropic triangular grids, including curved boundary problems, using linear elements. We also present Fourier analysis performed on the constructed linear system and show that an under-relaxation parameter is needed for stabilization of Gauss-Seidel relaxation.

  20. High-Order Residual-Distribution Schemes for Discontinuous Problems on Irregular Triangular Grids

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2016-01-01

    In this paper, we develop second- and third-order non-oscillatory shock-capturing hyperbolic residual distribution schemes for irregular triangular grids, extending our second- and third-order schemes to discontinuous problems. We present extended first-order N- and Rusanov-scheme formulations for hyperbolic advection-diffusion system, and demonstrate that the hyperbolic diffusion term does not affect the solution of inviscid problems for vanishingly small viscous coefficient. We then propose second- and third-order blended hyperbolic residual-distribution schemes with the extended first-order Rusanov-scheme. We show that these proposed schemes are extremely accurate in predicting non-oscillatory solutions for discontinuous problems. We also propose a characteristics-based nonlinear wave sensor for accurately detecting shocks, compression, and expansion regions. Using this proposed sensor, we demonstrate that the developed hyperbolic blended schemes do not produce entropy-violating solutions (unphysical stocks). We then verify the design order of accuracy of these blended schemes on irregular triangular grids.

  1. Analysis of triangular C-grid finite volume scheme for shallow water flows

    NASA Astrophysics Data System (ADS)

    Shirkhani, Hamidreza; Mohammadian, Abdolmajid; Seidou, Ousmane; Qiblawey, Hazim

    2015-08-01

    In this paper, a dispersion relation analysis is employed to investigate the finite volume triangular C-grid formulation for two-dimensional shallow-water equations. In addition, two proposed combinations of time-stepping methods with the C-grid spatial discretization are investigated. In the first part of this study, the C-grid spatial discretization scheme is assessed, and in the second part, fully discrete schemes are analyzed. Analysis of the semi-discretized scheme (i.e. only spatial discretization) shows that there is no damping associated with the spatial C-grid scheme, and its phase speed behavior is also acceptable for long and intermediate waves. The analytical dispersion analysis after considering the effect of time discretization shows that the Leap-Frog time stepping technique can improve the phase speed behavior of the numerical method; however it could not damp the shorter decelerated waves. The Adams-Bashforth technique leads to slower propagation of short and intermediate waves and it damps those waves with a slower propagating speed. The numerical solutions of various test problems also conform and are in good agreement with the analytical dispersion analysis. They also indicate that the Adams-Bashforth scheme exhibits faster convergence and more accurate results, respectively, when the spatial and temporal step size decreases. However, the Leap-Frog scheme is more stable with higher CFL numbers.

  2. Robust streamline tracing for the simulation of porous media flow on general triangular and quadrilateral grids

    NASA Astrophysics Data System (ADS)

    Matringe, Sébastien F.; Juanes, Ruben; Tchelepi, Hamdi A.

    2006-12-01

    Streamline methods for subsurface-flow simulation have received renewed attention as fast alternatives to traditional finite volume or finite element methods. Key aspects of streamline simulation are the accurate tracing of streamlines and the computation of travel time along individual streamlines. In this paper, we propose a new streamline tracing framework that enables the extension of streamline methods to unstructured grids composed of triangular or quadrilateral elements and populated with heterogeneous full-tensor coefficients. The proposed method is based on the mathematical framework of mixed finite element methods, which provides approximations of the velocity field that are especially suitable for streamline tracing. We identify and implement two classes of velocity spaces: the lowest-order Raviart-Thomas space (low-order tracing) and the Brezzi-Douglas-Marini space of order one (high-order tracing), both on triangles and quadrilaterals. We discuss the implementation of the streamline tracing method in detail, and we investigate the performance of the proposed tracing strategy by means of carefully designed test cases. We conclude that, for the same computational cost, high-order tracing is more accurate (smaller error in the time-of-flight) and robust (less sensitive to grid distortion) than low-order tracing.

  3. Preliminary design and manufacturing feasibility study for a machined Zircaloy triangular pitch fuel rod support system (grids) (AWBA development program)

    SciTech Connect

    Horwood, W A

    1981-07-01

    General design features and manufacturing operations for a high precision machined Zircaloy fuel rod support grid intended for use in advanced light water prebreeder or breeder reactor designs are described. The grid system consists of a Zircaloy main body with fuel rod and guide tube cells machined using wire EDM, a separate AM-350 stainless steel insert spring which fits into a full length T-slot in each fuel rod cell, and a thin (0.025'' or 0.040'' thick) wire EDM machined Zircaloy coverplate laser welded to each side of the grid body to retain the insert springs. The fuel rods are placed in a triangular pitch array with a tight rod-to-rod spacing of 0.063 inch nominal. Two dimples are positioned at the mid-thickness of the grid (single level) with a 90/sup 0/ included angle. Data is provided on the effectiveness of the manufacturing operations chosen for grid machining and assembly.

  4. Exponential characteristic nonlinear radiation transport method for unstructured grids of triangular cells

    SciTech Connect

    Mathews, K.A.; Brennan, C.R.

    1997-07-01

    The exponential characteristic (EC) method is one of a family of nonlinear spatial quadratures for discrete ordinates radiation transport that are positive and at least second-order accurate and provide accurate results for deep-penetration problems using coarse meshes. The authors use a split-cell methodology to adapt the method to unstructured grids of arbitrarily shaped and oriented triangular cells that provide efficient representation of curved surfaces. Exponential representations of the flux entering through a cell edge and of the scattering source within a cell are constructed to match average values and first moments passed from the adjacent cell (or from the boundary conditions) or obtained from the angular quadrature of the directional flux spatial moments in the previous iteration (or from an initial guess). The resulting one- and two-dimensional nonlinear rootsolving problems are efficiently solved using Newton`s method with an accurate starting approximation. Improved algorithms, presented here, have increased the efficiency of the method by a factor of 10 as compared to an initial report. The EC method now costs only twice as much per cell as does the linear characteristic method but can be accurate with many fewer cells. Numerical testing shows the EC method to be robust and effective.

  5. Unstructured viscous grid generation by advancing-front method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1993-01-01

    A new method of generating unstructured triangular/tetrahedral grids with high-aspect-ratio cells is proposed. The method is based on new grid-marching strategy referred to as 'advancing-layers' for construction of highly stretched cells in the boundary layer and the conventional advancing-front technique for generation of regular, equilateral cells in the inviscid-flow region. Unlike the existing semi-structured viscous grid generation techniques, the new procedure relies on a totally unstructured advancing-front grid strategy resulting in a substantially enhanced grid flexibility and efficiency. The method is conceptually simple but powerful, capable of producing high quality viscous grids for complex configurations with ease. A number of two-dimensional, triangular grids are presented to demonstrate the methodology. The basic elements of the method, however, have been primarily designed with three-dimensional problems in mind, making it extendible for tetrahedral, viscous grid generation.

  6. Improved second-order hyperbolic residual-distribution scheme and its extension to third-order on arbitrary triangular grids

    NASA Astrophysics Data System (ADS)

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2015-11-01

    In this paper, we construct second- and third-order hyperbolic residual-distribution schemes for general advection-diffusion problems on arbitrary triangular grids. We demonstrate that the accuracy of the second-order hyperbolic schemes in [J. Comput. Phys. 227 (2007) 315-352] and [J. Comput. Phys. 229 (2010) 3989-4016] can be greatly improved by requiring the scheme to preserve exact quadratic solutions. The improved second-order scheme can be easily extended to a third-order scheme by further requiring the exactness for cubic solutions. These schemes are constructed based on the SUPG methodology formulated in the framework of the residual-distribution method, and thus can be considered as economical and powerful alternatives to high-order finite-element methods. For both second- and third-order schemes, we construct a fully implicit solver by the exact residual Jacobian of the proposed second-order scheme, and demonstrate rapid convergence, typically with no more than 10-15 Newton iterations (and about 200-800 linear relaxations per Newton iteration), to reduce the residuals by ten orders of magnitude. We also demonstrate that these schemes can be constructed based on a separate treatment of the advective and diffusive terms, which paves the way for the construction of hyperbolic residual-distribution schemes for the compressible Navier-Stokes equations. Numerical results show that these schemes produce exceptionally accurate and smooth solution gradients on highly skewed and anisotropic triangular grids even for a curved boundary problem, without introducing curved elements. A quadratic reconstruction of the curved boundary normals and a high-order integration technique on curved boundaries are also provided in details.

  7. Exponential characteristic spatial quadrature for discrete ordinates radiation transport on an unstructured grid of triangular cells

    SciTech Connect

    Mathews, K.A.; Brennan, C.R.

    1995-12-31

    The exponential characteristic method is one of a family of nonlinear spatial quadratures which are positive and at least second order accurate. The authors initially developed the method in slab geometry, where it gave accurate results for deep penetration problems using coarse meshes. Characteristic methods are restricted to Cartesian geometries, so they next tested it with rectangular cells, where it was again a strong performer. Here the authors extend the method to unstructured grids of arbitrarily shaped and oriented triangles and report on its performance.

  8. The Generation of Random Equilateral Polygons

    NASA Astrophysics Data System (ADS)

    Alvarado, Sotero; Calvo, Jorge Alberto; Millett, Kenneth C.

    2011-04-01

    Freely jointed random equilateral polygons serve as a common model for polymer rings, reflecting their statistical properties under theta conditions. To generate equilateral polygons, researchers employ many procedures that have been proved, or at least are believed, to be random with respect to the natural measure on the space of polygonal knots. As a result, the random selection of equilateral polygons, as well as the statistical robustness of this selection, is of particular interest. In this research, we study the key features of four popular methods: the Polygonal Folding, the Crankshaft Rotation, the Hedgehog, and the Triangle Methods. In particular, we compare the implementation and efficacy of these procedures, especially in regards to the population distribution of polygons in the space of polygonal knots, the distribution of edge vectors, the local curvature, and the local torsion. In addition, we give a rigorous proof that the Crankshaft Rotation Method is ergodic.

  9. Resonant non-Gaussianity with equilateral properties

    SciTech Connect

    Gwyn, Rhiannon; Rummel, Markus; Westphal, Alexander E-mail: markus.rummel@desy.de

    2013-04-01

    We discuss the effect of superimposing multiple sources of resonant non-Gaussianity, which arise for instance in models of axion inflation. The resulting sum of oscillating shape contributions can be used to ''Fourier synthesize'' different non-oscillating shapes in the bispectrum. As an example we reproduce an approximately equilateral shape from the superposition of O(10) oscillatory contributions with resonant shape. This implies a possible degeneracy between the equilateral-type non-Gaussianity typical of models with non-canonical kinetic terms, such as DBI inflation, and an equilateral-type shape arising from a superposition of resonant-type contributions in theories with canonical kinetic terms. The absence of oscillations in the 2-point function together with the structure of resonant N-point functions give a constraint of f{sub NL}∼equilateral non-Gaussianity with resonant origin, but this constraint can be avoided when additional U(1)s are involved in the breaking of the shift symmetry. We comment on the questions arising from possible embeddings of this idea in a string theory setting.

  10. Displaying multimedia environmental partitioning by triangular diagrams

    SciTech Connect

    Lee, S.C.; Mackay, D.

    1995-11-01

    It is suggested that equilateral triangular diagrams are a useful method of depicting the equilibrium partitioning of organic chemicals among the three primary environmental media of the atmosphere, the hydrosphere, and the organosphere (natural organic matter and biotic lipids and waxes). The technique is useful for grouping chemicals into classes according to their partitioning tendencies, for depicting the incremental effects of substituents such as alkyl groups and chlorine, and for showing how partitioning changes in response to changes in temperature.

  11. Triangular laser resonators with astigmatic compensation.

    PubMed

    Skettrup, T; Meelby, T; Faerch, K; Frederiksen, S L; Pedersen, C

    2000-08-20

    The magnitudes and locations of the beam waists in both the sagittal and the tangential planes have been found by means of the ABCD matrix method for a triangular resonator. Equilateral and isosceles resonators are discussed, and curves are given from which resonators with astigmatism-free beams can be designed. A frequency-doubled triangular Nd ring laser has been constructed after this design, and it is demonstrated that this laser emits a single longitudinal mode with a circular TEM(00) Gaussian beam. PMID:18350014

  12. Equilateral non-Gaussianity from heavy fields

    SciTech Connect

    Gong, Jinn-Ouk; Pi, Shi; Sasaki, Misao E-mail: spi@apctp.org

    2013-11-01

    The effect of self-interactions of heavy scalar fields during inflation on the primordial non-Gaussianity is studied. We take a specific constant-turn quasi-single field inflation as an example. We derive an effective theory with emphasis on non-linear self-interactions of heavy fields and calculate the corresponding non-Gaussianity, which is of equilateral type and can be as relevant as those computed previously in the literature. We also derive the non-Gaussianity by directly using the in-in formalism, and verify the equivalence of these two approaches.

  13. Fourth class of convex equilateral polyhedron with polyhedral symmetry related to fullerenes and viruses

    PubMed Central

    Schein, Stan; Gayed, James Maurice

    2014-01-01

    The three known classes of convex polyhedron with equal edge lengths and polyhedral symmetry––tetrahedral, octahedral, and icosahedral––are the 5 Platonic polyhedra, the 13 Archimedean polyhedra––including the truncated icosahedron or soccer ball––and the 2 rhombic polyhedra reported by Johannes Kepler in 1611. (Some carbon fullerenes, inorganic cages, icosahedral viruses, geodesic structures, and protein complexes resemble these fundamental shapes.) Here we add a fourth class, “Goldberg polyhedra,” which are also convex and equilateral. We begin by decorating each of the triangular facets of a tetrahedron, an octahedron, or an icosahedron with the T vertices and connecting edges of a “Goldberg triangle.” We obtain the unique set of internal angles in each planar face of each polyhedron by solving a system of n equations and n variables, where the equations set the dihedral angle discrepancy about different types of edge to zero, and the variables are a subset of the internal angles in 6gons. Like the faces in Kepler’s rhombic polyhedra, the 6gon faces in Goldberg polyhedra are equilateral and planar but not equiangular. We show that there is just a single tetrahedral Goldberg polyhedron, a single octahedral one, and a systematic, countable infinity of icosahedral ones, one for each Goldberg triangle. Unlike carbon fullerenes and faceted viruses, the icosahedral Goldberg polyhedra are nearly spherical. The reasoning and techniques presented here will enable discovery of still more classes of convex equilateral polyhedra with polyhedral symmetry. PMID:24516137

  14. Heat transfer enhancement in a tube with equilateral triangle cross sectioned coiled wire inserts

    SciTech Connect

    Gunes, Sibel; Ozceyhan, Veysel; Buyukalaca, Orhan

    2010-09-15

    The heat transfer and pressure drop were experimentally investigated in a coiled wire inserted tube in turbulent flow regime. The coiled wire has equilateral triangular cross section and was inserted separately from the tube wall. The experiments were carried out with three different pitch ratios (P/D = 1, 2 and 3) and two different ratio of equilateral triangle length side to tube diameter (a/D = 0.0714 and 0.0892) at a distance (s) of 1 mm from the tube wall in the range of Reynolds number from 3500 to 27,000. Uniform heat flux was applied to the external surface of the tube and air was selected as fluid. The experimental results obtained from a smooth tube were compared with those from the studies in literature for validation of experimental set-up. The use of coiled wire inserts leads to a considerable increase in heat transfer and pressure drop over the smooth tube. The Nusselt number rises with the increase of Reynolds number and wire thickness and the decrease of pitch ratio. The highest overall enhancement efficiency of 36.5% is achieved for the wire with a/D = 0.0892 and P/D = 1 at Reynolds number of 3858. Consequently, the experimental results reveal that the best operating regime of all coiled wire inserts is detected at low Reynolds number, leading to more compact heat exchanger. (author)

  15. Feasibility demonstration of using wire electrical-discharge machining, abrasive flow honing, and laser spot welding to manufacture high-precision triangular-pitch Zircaloy-4 fuel-rod-support grids

    SciTech Connect

    Horwood, W.A.

    1982-05-01

    Results are reported supporting the feasibility of manufacturing high precision machined triangular pitch Zircaloy-4 fuel rod support grids for application in water cooled nuclear power reactors. The manufacturing processes investigated included wire electrical discharge machining of the fuel rod and guide tube cells in Zircaloy plate stock to provide the grid body, multistep pickling of the machined grid to provide smooth and corrosion resistant surfaces, and laser welding of thin Zircaloy cover plates to both sides of the grid body to capture separate AM-350 stainless steel insert springs in the grid body. Results indicated that dimensional accuracy better than +- 0.001 and +- 0.002 inch could be obtained on cell shape and position respectively after wire EDM and surface pickling. Results on strength, corrosion resistance, and internal quality of laser spot welds are provided.

  16. An Interactive Control Algorithm Used for Equilateral Triangle Formation with Robotic Sensors

    PubMed Central

    Li, Xiang; Chen, Hongcai

    2014-01-01

    This paper describes an interactive control algorithm, called Triangle Formation Algorithm (TFA), used for three neighboring robotic sensors which are distributed randomly to self-organize into and equilateral triangle (E) formation. The algorithm is proposed based on the triangular geometry and considering the actual sensors used in robotics. In particular, the stability of the TFA, which can be executed by robotic sensors independently and asynchronously for E formation, is analyzed in details based on Lyapunov stability theory. Computer simulations are carried out for verifying the effectiveness of the TFA. The analytical results and simulation studies indicate that three neighboring robots employing conventional sensors can self-organize into E formations successfully regardless of their initial distribution using the same TFAs. PMID:24759118

  17. Adaptive triangular mesh generation

    NASA Technical Reports Server (NTRS)

    Erlebacher, G.; Eiseman, P. R.

    1984-01-01

    A general adaptive grid algorithm is developed on triangular grids. The adaptivity is provided by a combination of node addition, dynamic node connectivity and a simple node movement strategy. While the local restructuring process and the node addition mechanism take place in the physical plane, the nodes are displaced on a monitor surface, constructed from the salient features of the physical problem. An approximation to mean curvature detects changes in the direction of the monitor surface, and provides the pulling force on the nodes. Solutions to the axisymmetric Grad-Shafranov equation demonstrate the capturing, by triangles, of the plasma-vacuum interface in a free-boundary equilibrium configuration.

  18. Triangular Helical Column for Centrifugal Countercurrent Chromatography.

    PubMed

    Ito, Yoichiro; Yu, Henry

    2009-01-01

    Effective column space and stationary phase retention have been improved by changing the configuration of the helical column originally used for toroidal coil countercurrent chromatography. The use of an equilateral triangular core for the helix column doubles effective column space and retains the stationary phase over 40% of the total column capacity without increasing the column pressure. The present results suggest that the stationary phase retention and the peak resolution will be further improved using new column designs fabricated by a new technology called "laser sintering for rapid prototyping." PMID:20046940

  19. A fast direct sampling algorithm for equilateral closed polygons

    NASA Astrophysics Data System (ADS)

    Cantarella, Jason; Duplantier, Bertrand; Shonkwiler, Clayton; Uehara, Erica

    2016-07-01

    Sampling equilateral closed polygons is of interest in the statistical study of ring polymers. Over the past 30 years, previous authors have proposed a variety of simple Markov chain algorithms (but have not been able to show that they converge to the correct probability distribution) and complicated direct samplers (which require extended-precision arithmetic to evaluate numerically unstable polynomials). We present a simple direct sampler which is fast and numerically stable, and analyze its runtime using a new formula for the volume of equilateral polygon space as a Dirichlet-type integral.

  20. Opening of triangular hole in triangular-shaped chemical vapor deposited hexagonal boron nitride crystal

    PubMed Central

    Sharma, Subash; Kalita, Golap; Vishwakarma, Riteshkumar; Zulkifli, Zurita; Tanemura, Masaki

    2015-01-01

    In-plane heterostructure of monolayer hexagonal boron nitride (h-BN) and graphene is of great interest for its tunable bandgap and other unique properties. Here, we reveal a H2-induced etching process to introduce triangular hole in triangular-shaped chemical vapor deposited individual h-BN crystal. In this study, we synthesized regular triangular-shaped h-BN crystals with the sizes around 2-10 μm on Cu foil by chemical vapor deposition (CVD). The etching behavior of individual h-BN crystal was investigated by annealing at different temperature in an H2:Ar atmosphere. Annealing at 900 °C, etching of h-BN was observed from crystal edges with no visible etching at the center of individual crystals. While, annealing at a temperature ≥950 °C, highly anisotropic etching was observed, where the etched areas were equilateral triangle-shaped with same orientation as that of original h-BN crystal. The etching process and well-defined triangular hole formation can be significant platform to fabricate planar heterostructure with graphene or other two-dimensional (2D) materials. PMID:25994455

  1. Opening of triangular hole in triangular-shaped chemical vapor deposited hexagonal boron nitride crystal.

    PubMed

    Sharma, Subash; Kalita, Golap; Vishwakarma, Riteshkumar; Zulkifli, Zurita; Tanemura, Masaki

    2015-01-01

    In-plane heterostructure of monolayer hexagonal boron nitride (h-BN) and graphene is of great interest for its tunable bandgap and other unique properties. Here, we reveal a H2-induced etching process to introduce triangular hole in triangular-shaped chemical vapor deposited individual h-BN crystal. In this study, we synthesized regular triangular-shaped h-BN crystals with the sizes around 2-10 μm on Cu foil by chemical vapor deposition (CVD). The etching behavior of individual h-BN crystal was investigated by annealing at different temperature in an H2:Ar atmosphere. Annealing at 900 °C, etching of h-BN was observed from crystal edges with no visible etching at the center of individual crystals. While, annealing at a temperature ≥ 950 °C, highly anisotropic etching was observed, where the etched areas were equilateral triangle-shaped with same orientation as that of original h-BN crystal. The etching process and well-defined triangular hole formation can be significant platform to fabricate planar heterostructure with graphene or other two-dimensional (2D) materials. PMID:25994455

  2. Opening of triangular hole in triangular-shaped chemical vapor deposited hexagonal boron nitride crystal

    NASA Astrophysics Data System (ADS)

    Sharma, Subash; Kalita, Golap; Vishwakarma, Riteshkumar; Zulkifli, Zurita; Tanemura, Masaki

    2015-05-01

    In-plane heterostructure of monolayer hexagonal boron nitride (h-BN) and graphene is of great interest for its tunable bandgap and other unique properties. Here, we reveal a H2-induced etching process to introduce triangular hole in triangular-shaped chemical vapor deposited individual h-BN crystal. In this study, we synthesized regular triangular-shaped h-BN crystals with the sizes around 2-10 μm on Cu foil by chemical vapor deposition (CVD). The etching behavior of individual h-BN crystal was investigated by annealing at different temperature in an H2:Ar atmosphere. Annealing at 900 °C, etching of h-BN was observed from crystal edges with no visible etching at the center of individual crystals. While, annealing at a temperature ≥950 °C, highly anisotropic etching was observed, where the etched areas were equilateral triangle-shaped with same orientation as that of original h-BN crystal. The etching process and well-defined triangular hole formation can be significant platform to fabricate planar heterostructure with graphene or other two-dimensional (2D) materials.

  3. Measured and predicted root-mean-square errors in square and triangular antenna mesh facets

    NASA Technical Reports Server (NTRS)

    Fichter, W. B.

    1989-01-01

    Deflection shapes of square and equilateral triangular facets of two tricot-knit, gold plated molybdenum wire mesh antenna materials were measured and compared, on the basis of root mean square (rms) differences, with deflection shapes predicted by linear membrane theory, for several cases of biaxial mesh tension. The two mesh materials contained approximately 10 and 16 holes per linear inch, measured diagonally with respect to the course and wale directions. The deflection measurement system employed a non-contact eddy current proximity probe and an electromagnetic distance sensing probe in conjunction with a precision optical level. Despite experimental uncertainties, rms differences between measured and predicted deflection shapes suggest the following conclusions: that replacing flat antenna facets with facets conforming to parabolically curved structural members yields smaller rms surface error; that potential accuracy gains are greater for equilateral triangular facets than for square facets; and that linear membrane theory can be a useful tool in the design of tricot knit wire mesh antennas.

  4. Trispectrum estimator in equilateral type non-Gaussian models

    SciTech Connect

    Mizuno, Shuntaro; Koyama, Kazuya E-mail: Kazuya.Koyama@port.ac.uk

    2010-10-01

    We investigate an estimator to measure the primordial trispectrum in equilateral type non-Gaussian models such as k-inflation, single field DBI inflation and multi-field DBI inflation models from Cosmic Microwave Background (CMB) anisotropies. The shape of the trispectrum whose amplitude is not constrained by the bispectrum in the context of effective theory of inflation and k-inflation is known to admit a separable form of the estimator for CMB anisotropies. We show that this shape is 87% correlated with the full quantum trispectrum in single field DBI inflation, while it is 33% correlated with the one in multi-field DBI inflation when curvature perturbation is originated from purely entropic contribution. This suggests that g{sub NL}{sup equil}, the amplitude of this particular shape, provides a reasonable measure of the non-Gaussianity from the trispectrum in equilateral non-Gaussian models. We relate model parameters such as the sound speed, c{sub s} and the transfer coefficient from entropy perturbations to the curvature perturbation, T{sub RS} with g{sub NL}{sup equil}, which enables us to constrain model parameters in these models once g{sub NL}{sup equil} is measured in WMAP and Planck.

  5. Cell-surface receptor control that depends on the size of a synthetic equilateral-triangular RNA-protein complex

    PubMed Central

    Fujita, Yoshihiko; Furushima, Rie; Ohno, Hirohisa; Sagawa, Fumihiko; Inoue, Tan

    2014-01-01

    A human cell surface displays many complex-structured receptors for receiving extracellular signals to regulate cellular functions. The use of precisely regulated signal-controls of the receptors could have possibilities beyond the current synthetic biology research that begins with the transfection of exogenous molecules to rewire intracellular circuits. However, by using a current ligand-receptor technique, the configuration of the artificially assembled cell surface molecules has been undefined because the assemblage is an unsystematic molecular clustering. Thus, the system bears improvements for precisely regulating receptor functions. We report here a new tool that refines stereochemically-controlled positioning of an assembled surface receptor. The tool performs rationally as an ON/OFF switch and is finely tunable so that a 3 to 6 nm size difference of the device precisely distinguishes the efficiency of apoptosis induced via cell-surface receptor binding. We discuss the potential use of the device in next-generation synthetic biology and in cell surface studies. PMID:25234354

  6. Scattering of electromagnetic waves from surfaces with conformal mapping: An example of a triangular plate

    NASA Astrophysics Data System (ADS)

    Chui, S. T.; Wang, Shubo; Chan, C. T.

    2016-03-01

    We discuss a way to exploit conformal mapping to study the response of a finite metallic film of arbitrary shape to an external electromagnetic field at finite frequencies. This provides a simple way to understand different physics issues and provides insights that include the issue of vorticity and eddy current and the nature of the divergent electric field at the boundaries and at corners. We study an example of an equilateral triangular plate and find good agreement with results obtained with traditional numerical techniques.

  7. Series of Reciprocal Triangular Numbers

    ERIC Educational Resources Information Center

    Bruckman, Paul; Dence, Joseph B.; Dence, Thomas P.; Young, Justin

    2013-01-01

    Reciprocal triangular numbers have appeared in series since the very first infinite series were summed. Here we attack a number of subseries of the reciprocal triangular numbers by methodically expressing them as integrals.

  8. On the chromatic number of a space with forbidden equilateral triangle

    SciTech Connect

    Zvonarev, A E; Raigorodskii, A M; Kharlamova, A A; Samirov, D V

    2014-09-30

    We improve the Frankl-Rödl estimate for the product of the numbers of edges in uniform hypergraphs with forbidden cardinalities of the intersection of edges. By using this estimate, we obtain explicit bounds for the chromatic number of a space with forbidden monochromatic equilateral triangles. Bibliography: 31 titles.

  9. Efficient triangular adaptive meshes for tsunami simulations

    NASA Astrophysics Data System (ADS)

    Behrens, J.

    2012-04-01

    With improving technology and increased sensor density for accurate determination of tsunamogenic earthquake source parameters and consecutively uplift distribution, real-time simulations of even near-field tsunami hazard appears feasible in the near future. In order to support such efforts a new generation of tsunami models is currently under development. These models comprise adaptively refined meshes, in order to save computational resources (in areas of low wave activity) and still represent the inherently multi-scale behavior of a tsunami approaching coastal waters. So far, these methods have been based on oct-tree quadrilateral refinement. The method introduced here is based on binary tree refinement on triangular grids. By utilizing the structure stemming from the refinement strategy, a very efficient method can be achieved, with a triangular mesh, able to accurately represent complex boundaries.

  10. Batten augmented triangular beam

    NASA Technical Reports Server (NTRS)

    Adams, Louis R.; Hedgepeth, John M.

    1986-01-01

    The BAT (Batten-Augmented Triangular) BEAM is characterized by battens which are buckled in the deployed state, thus preloading the truss. The preload distribution is determined, and the effects of various external loading conditions are investigated. The conceptual design of a deployer is described and loads are predicted. The influence of joint imperfections on effective member stiffness is investigated. The beam is assessed structurally.

  11. Congenital Triangular Alopecia.

    PubMed

    Yin Li, Vincent Chum; Yesudian, Paul Devakar

    2015-01-01

    Congenital triangular alopecia (CTA) also known as temporal triangular alopecia is a benign noncicatricial pattern of hair loss. It typically affects the frontotemporal region and rarely involves the temporoparietal or occipital scalp. It is a nonprogressive disorder that presents as a triangular, oval or lancet-shaped patch of alopecia. CTA can manifest at birth or develop later in life. The exact etiology of this condition remains unknown. Rarely, it may be associated with other disorders such as Down's syndrome and phakomatosis pigmentovascularis. The diagnosis is based on its distinct clinical appearance. Histologically, hair follicles are miniaturized and replaced by sparse vellus hair follicles. Tricoscopy using a polarized light handheld dermatoscope can be a useful diagnostic tool. CTA is often asymptomatic and remains unchanged throughout the life. No treatment is required. Surgical intervention with follicular unit hair transplantation can provide a satisfactory cosmetic result. In this paper, we have identified 126 cases of CTA in the published literature cited on PubMed between 1905 and 2015. From the available evidence, 79% of patients with CTA presented with unilateral hair loss, 18.5% with bilateral involvement and rarely, with occipital alopecia (2.5%). There was no gender predilection. These figures are entirely consistent with previously published data. Physicians should remember to consider CTA as a potential diagnosis in any patient presenting with a nonscarring alopecia in order to avoid unnecessary investigations and treatments. PMID:26180448

  12. Discretization formulas for unstructured grids

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1988-01-01

    The Galerkin weighted residual technique using linear triangular weight functions is employed to develop finite difference formula in cartesian coordinates for the Laplacian operator, first derivative operators and the function for unstructured triangular grids. The weighted residual coefficients associated with the weak formulation of the Laplacian operator are shown to agree with the Taylor series approach on a global average. In addition, a simple algorithm is presented to determine the Voronoi (finite difference) area of an unstructured grid.

  13. Invariants of triangular Lie algebras

    NASA Astrophysics Data System (ADS)

    Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman

    2007-07-01

    Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated.

  14. Multi-domain electromagnetic absorption of triangular quantum rings

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Thorgilsson, Gunnar; Gudmundsson, Vidar; Manolescu, Andrei

    2016-06-01

    We present a theoretical study of the unielectronic energy spectra, electron localization, and optical absorption of triangular core–shell quantum rings. We show how these properties depend on geometric details of the triangle, such as side thickness or corners’ symmetry. For equilateral triangles, the lowest six energy states (including spin) are grouped in an energy shell, are localized only around corner areas, and are separated by a large energy gap from the states with higher energy which are localized on the sides of the triangle. The energy levels strongly depend on the aspect ratio of the triangle sides, i.e., thickness/length ratio, in such a way that the energy differences are not monotonous functions of this ratio. In particular, the energy gap between the group of states localized in corners and the states localized on the sides strongly decreases with increasing the side thickness, and then slightly increases for thicker samples. With increasing the thickness the low-energy shell remains distinct but the spatial distribution of these states spreads. The behavior of the energy levels and localization leads to a thickness-dependent absorption spectrum where one transition may be tuned in the THz domain and a second transition can be tuned from THz to the infrared range of electromagnetic spectrum. We show how these features may be further controlled with an external magnetic field. In this work the electron–electron Coulomb repulsion is neglected.

  15. Evidence for triangular D3h symmetry in 12C.

    PubMed

    Marín-Lámbarri, D J; Bijker, R; Freer, M; Gai, M; Kokalova, Tz; Parker, D J; Wheldon, C

    2014-07-01

    We report a measurement of a new high spin Jπ=5- state at 22.4(2) MeV in 12C which fits very well to the predicted (ground state) rotational band of an oblate equilateral triangular spinning top with a D3h symmetry characterized by the sequence 0+, 2+, 3-, 4±, 5- with almost degenerate 4+ and 4- (parity doublet) states. Such a D3h symmetry was observed in triatomic molecules, and it is observed here for the first time in nuclear physics. We discuss a classification of other rotation-vibration bands in 12C such as the (0+) Hoyle band and the (1-) bending mode band and suggest measurements in search of the predicted ("missing") states that may shed new light on clustering in 12C and light nuclei. In particular, the observation (or nonobservation) of the predicted ("missing") states in the Hoyle band will allow us to conclude the geometrical arrangement of the three alpha particles composing the Hoyle state at 7.654 MeV in 12C. PMID:25032922

  16. Multi-domain electromagnetic absorption of triangular quantum rings.

    PubMed

    Sitek, Anna; Thorgilsson, Gunnar; Gudmundsson, Vidar; Manolescu, Andrei

    2016-06-01

    We present a theoretical study of the unielectronic energy spectra, electron localization, and optical absorption of triangular core-shell quantum rings. We show how these properties depend on geometric details of the triangle, such as side thickness or corners' symmetry. For equilateral triangles, the lowest six energy states (including spin) are grouped in an energy shell, are localized only around corner areas, and are separated by a large energy gap from the states with higher energy which are localized on the sides of the triangle. The energy levels strongly depend on the aspect ratio of the triangle sides, i.e., thickness/length ratio, in such a way that the energy differences are not monotonous functions of this ratio. In particular, the energy gap between the group of states localized in corners and the states localized on the sides strongly decreases with increasing the side thickness, and then slightly increases for thicker samples. With increasing the thickness the low-energy shell remains distinct but the spatial distribution of these states spreads. The behavior of the energy levels and localization leads to a thickness-dependent absorption spectrum where one transition may be tuned in the THz domain and a second transition can be tuned from THz to the infrared range of electromagnetic spectrum. We show how these features may be further controlled with an external magnetic field. In this work the electron-electron Coulomb repulsion is neglected. PMID:27102909

  17. Ising antiferromagnet on a finite triangular lattice with free boundary conditions

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Yeon

    2015-11-01

    The exact integer values for the density of states of the Ising model on an equilateral triangular lattice with free boundary conditions are evaluated up to L = 24 spins on a side for the first time by using the microcanonical transfer matrix. The total number of states is 2 N s = 2300 ≈ 2.037 × 1090 for L = 24, where N s = L( L+1)/2 is the number of spins. Classifying all 2300 spin states according to their energy values is an enormous work. From the density of states, the exact partition function zeros in the complex temperature plane of the triangular-lattice Ising model are evaluated. Using the density of states and the partition function zeros, we investigate the properties of the triangularlattice Ising antiferromagnet. The scaling behavior of the ground-state entropy and the form of the correlation length at T = 0 are studied for the triangular-lattice Ising antiferromagnet with free boundary conditions. Also, the scaling behavior of the Fisher edge singularity is investigated.

  18. Nonchaotic evolution of triangular configuration due to gravitational radiation reaction in the three-body problem

    NASA Astrophysics Data System (ADS)

    Yamada, Kei; Asada, Hideki

    2016-04-01

    Continuing work initiated in an earlier publication [H. Asada, Phys. Rev. D 80, 064021 (2009)], the gravitational radiation reaction to Lagrange's equilateral triangular solution of the three-body problem is investigated in an analytic method. The previous work is based on the energy balance argument, which is sufficient for a two-body system because the number of degrees of freedom (the semimajor axis and the eccentricity in quasi-Keplerian cases, for instance) equals that of the constants of motion such as the total energy and the orbital angular momentum. In a system with three (or more) bodies, however, the number of degrees of freedom is more than that of the constants of motion. Therefore, the present paper discusses the evolution of the triangular system by directly treating the gravitational radiation reaction force to each body. The perturbed equations of motion are solved by using the Laplace transform technique. It is found that the triangular configuration is adiabatically shrinking and is kept in equilibrium by increasing the orbital frequency due to the radiation reaction if the mass ratios satisfy the Newtonian stability condition. Long-term stability involving the first post-Newtonian corrections is also discussed.

  19. Micromagnetic simulations of 200-nm-diameter cobalt nanorings using a Reuleaux triangular geometry

    NASA Astrophysics Data System (ADS)

    Torres-Heredia, J. J.; López-Urías, F.; Muñoz-Sandoval, E.

    2006-10-01

    Using micromagnetic simulations, we investigated the magnetic states and switching processes of Co nanorings with lateral dimensions of 200 nm. We propose a special geometry of nanorings that adopts different Reuleaux triangular shapes. Reuleaux's triangles (RT) combine both the equilateral triangle and circular geometries. We studied the magnetic spin configurations of individual nanorings by varying the thickness and geometry of the nanomagnets. Our results demonstrated that in most nanomagnets exhibiting a thickness of less than 4 nm, there exists an onion-type state, which precedes either a twisted, double twisted, or cardioid state, when studying the magnetization reversal process. The hysteresis loops and magnetic states found in these RTs are compared with circular nanorings.

  20. Application of the control volume mixed finite element method to a triangular discretization

    USGS Publications Warehouse

    Naff, R.L.

    2012-01-01

    A two-dimensional control volume mixed finite element method is applied to the elliptic equation. Discretization of the computational domain is based in triangular elements. Shape functions and test functions are formulated on the basis of an equilateral reference triangle with unit edges. A pressure support based on the linear interpolation of elemental edge pressures is used in this formulation. Comparisons are made between results from the standard mixed finite element method and this control volume mixed finite element method. Published 2011. This article is a US Government work and is in the public domain in the USA. ?? 2012 John Wiley & Sons, Ltd. This article is a US Government work and is in the public domain in the USA.

  1. Building Buildings with Triangular Numbers

    ERIC Educational Resources Information Center

    Pagni, David L.

    2006-01-01

    Triangular numbers are used to unravel a new sequence of natural numbers here-to-fore not appearing on the Encyclopedia of Integer Sequences website. Insight is provided on the construction of the sequence using "buildings" as a viewable model of the sequence entries. A step-by-step analysis of the sequence pattern reveals a method for generating…

  2. Position and velocity sensitivities at the triangular libration points in the restricted problem of three bodies when the bigger primary is an oblate body

    NASA Astrophysics Data System (ADS)

    Hassan, M. R.; Antia, H. M.; Bhatnagar, K. B.

    2013-07-01

    In this paper we have examined the stability of triangular libration points in the restricted problem of three bodies when the bigger primary is an oblate spheroid. Here we followed the time limit and computational process of Tuckness (Celest. Mech. Dyn. Mech. 61, 1-19, 1995) on the stability criteria given by McKenzie and Szebehely (Celest. Mech. 23, 223-229, 1981). In this study it was found that in comparison to other studies the value of the critical mass μ c has been reduced due to oblateness of the bigger primary, i.e. the range of stability of the equilateral triangular libration points reduced with the increase of the oblateness parameter I and hence the order of commensurability was increased.

  3. Improvement of Mode Distribution in a Triangular Prism Reverberation Chamber by QRS Diffuser

    NASA Astrophysics Data System (ADS)

    Rhee, Eugene; Rhee, Joong-Geun

    This paper presents the field uniformity characteristics in a triangular prism reverberation chamber that can be substituted for an open area test site or an anechoic chamber to measure electromagnetic interference. To improve size problems of a stirrer that is an official unit to generate a uniform field in the reverberation chamber, we suggest a diffuser of Quadratic Residue Sequence method. To validate the substitution of a diffuser for a stirrer, a diffuser is designed for 1-3GHz, and three types of equilateral triangular prism reverberation chambers are modeled. Afterwards, the field distributions in these three reverberation chambers are both simulated and tested. Using XFDTD 6. 2 of finite difference time domain method, field deviations of each structure are simulated and compared to each other. An evaluation of field uniformity is done by cumulative probability distribution which is specified in the IEC 61000-4-21. The result shows that the field uniformity in the chamber is within ±6dB tolerance and also within ±3dB standard deviation, which means a diffuser can satisfy the requirement of international standards.

  4. High precision triangular waveform generator

    DOEpatents

    Mueller, Theodore R.

    1983-01-01

    An ultra-linear ramp generator having separately programmable ascending and descending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  5. Ecotoxicological evaluation of tributyltin toxicity to the equilateral venus clam, Gomphina veneriformis (Bivalvia: Veneridae).

    PubMed

    Park, Kiyun; Kim, Rosa; Park, Jung Jun; Shin, Hyun Chool; Lee, Jung Sick; Cho, Hyeon Seo; Lee, Yeon Gyu; Kim, Jongkyu; Kwak, Inn-Sil

    2012-03-01

    Tributyltin (TBT) is the most common pesticide in marine and freshwater environments. To evaluate the potential ecological risk posed by TBT, we measured biological responses such as growth rate, gonad index, sex ratio, the percentage of intersex gonads, filtration rate, and gill abnormalities in the equilateral venus clam (Gomphina veneriformis). Additionally, the biochemical and molecular responses were evaluated in G. veneriformis exposed to various concentrations of TBT. The growth of G. veneriformis was significantly delayed in a dose-dependent manner after exposure to all tested TBT concentrations. After TBT was administered to G. veneriformis, the gonad index decreased and the sex balance was altered. The percentage of intersex gonads also increased significantly in treated females, whereas no intersex gonads were detected in the solvent control group. Additionally, intersex gonads were detected in male G. veneriformis specimens exposed to relatively high TBT concentrations (20 μg L⁻¹). The filtration rate was also reduced in a dose-dependent manner in TBT-exposed G. veneriformis. We also noted abnormal gill morphology in TBT-exposed G. veneriformis. Furthermore, increases in antioxidant enzyme activities were observed in TBT-exposed G. veneriformis clams, regardless of dosage. Vitellogenin gene expression also increased significantly in a dose-dependent manner in G. veneriformis exposed to TBT. These results provide valuable information regarding our understanding of the toxicology of TBT in G. veneriformis. Moreover, the responses of biological and molecular factors could be utilized as information for risk assessments and marine monitoring of TBT toxicity. PMID:22182740

  6. Hyperbolic Prismatic Grid Generation and Solution of Euler Equations on Prismatic Grids

    NASA Technical Reports Server (NTRS)

    Pandya, S. A.; Chattot, JJ; Hafez, M. M.; Kutler, Paul (Technical Monitor)

    1994-01-01

    A hyperbolic grid generation method is used to generate prismatic grids and an approach using prismatic grids to solve the Euler equations is presented. The theory of the stability and feasibility of the hyperbolic grid generation method is presented. The hyperbolic grid generation method of Steger et al for structured grids is applied to a three dimensional triangularized surface definition to generate a grid that is unstructured on each successive layer. The grid, however, retains structure in the body-normal direction and has a computational cell shaped like a triangular prism. In order to take advantage of the structure in the normal direction, a finite-volume scheme that treats the unknowns along the normal direction implicitly is introduced and the flow over a sphere is simulated.

  7. Unstructured grid methods for compressible flows

    NASA Technical Reports Server (NTRS)

    Morgan, K.; Peraire, J.; Peiro, J.

    1992-01-01

    The implementation of the finite element method on unstructured triangular grids is described and the development of centered finite element schemes for the solution of the compressible Euler equation on general triangular and tetrahedral grids is discussed. Explicit and implicit Lax-Wendroff type methods and a method based upon the use of explicit multistep timestepping are considered. In the latter case, the convergence behavior of the method is accelerated by the incorporation of a fully unstructured multigrid procedure. The advancing front method for generating unstructured grids of triangles and tetrahedra is described and the application of adaptive mesh techniques to both steady and transient flow analysis is illustrated.

  8. INTEGRATING A LINEAR INTERPOLATION FUNCTION ACROSS TRIANGULAR CELL BOUNDARIES

    SciTech Connect

    J. R. WISEMAN; J. S. BROCK

    2000-04-01

    Computational models of particle dynamics often exchange solution data with discretized continuum-fields using interpolation functions. These particle methods require a series expansion of the interpolation function for two purposes: numerical analysis used to establish the model's consistency and accuracy, and logical-coordinate evaluation used to locate particles within a grid. This report presents discrete-expansions for a linear interpolation function commonly used within triangular cell geometries. Discrete-expansions, unlike a Taylor's series, account for interpolation discontinuities across cell boundaries and, therefore, are valid throughout a discretized domain. Verification of linear discrete-expansions is demonstrated on a simple test problem.

  9. SU(2)–SU(4) Kondo Crossover and Emergent Electric Polarization in a Triangular Triple Quantum Dot

    NASA Astrophysics Data System (ADS)

    Koga, Mikito; Matsumoto, Masashige; Kusunose, Hiroaki

    2016-06-01

    We study an orbitally degenerate Kondo effect in a triangular triple quantum dot (TTQD), where the three dots are connected vertically with a single metallic lead through electron tunneling. Both spin and orbital degrees of freedom play an important role in the SU(4) Kondo effect. This is demonstrated by an equilateral TTQD Kondo system at half-filling, by Wilson's numerical renormalization group method. We show how an emergent electric polarization of the TTQD is associated with a crossover from SU(4) to SU(2) symmetry in the low-temperature state. A marked sign reversal of the electric polarization is generated by the fine-tuning of Kondo coupling with degenerate orbitals, which can be utilized to reveal orbital dynamics in the SU(4) Kondo effect.

  10. EFFICIENCY OF KRIGING ESTIMATION FOR SQUARE, TRIANGULAR, AND HEXAGONAL GRIDS

    EPA Science Inventory

    Although several researchers have pointed out some advantages and disadvantages of various soil sampling designs in the presence of spatial autocorrelation, a more detailed study is presented herein which examines the geometrical relationship of three sampling designs, namely the...

  11. Hamiltonian Paths Through Two- and Three-Dimensional Grids

    PubMed Central

    Mitchell, William F.

    2005-01-01

    This paper addresses the existence of Hamiltonian paths and cycles in two-dimensional grids consisting of triangles or quadrilaterals, and three-dimensional grids consisting of tetrahedra or hexahedra. The paths and cycles may be constrained to pass from one element to the next through an edge, through a vertex, or be unconstrained and pass through either. It was previously known that an unconstrained Hamiltonian path exists in a triangular grid under very mild conditions, and that there are triangular grids for which there is no through-edge Hamiltonian path. In this paper we prove that a through-vertex Hamiltonian cycle exists in any triangular or tetrahedral grid under very mild conditions, and that there exist quadrilateral and hexahedral grids for which no unconstrained Hamiltonian path exists. The existence proofs are constructive, and lead to an efficient algorithm for finding a through-vertex Hamiltonian cycle.

  12. The scalar bi-spectrum in the Starobinsky model: the equilateral case

    SciTech Connect

    Martin, Jérôme; Sriramkumar, L. E-mail: sriram@physics.iitm.ac.in

    2012-01-01

    While a featureless, nearly scale invariant, primordial scalar power spectrum fits the most recent Cosmic Microwave Background (CMB) data rather well, certain features in the spectrum are known to lead to a better fit to the data (although, the statistical significance of such results remains an open issue). In the inflationary scenario, one or more periods of deviations from slow roll are necessary in order to generate features in the scalar perturbation spectrum. Over the last couple of years, it has been recognized that such deviations from slow roll inflation can also result in reasonably large non-Gaussianities. The Starobinsky model involves the canonical scalar field and consists of a linear inflaton potential with a sudden change in the slope. The change in the slope causes a brief period of departure from slow roll which, in turn, results in a sharp rise in power, along with a burst of oscillations in the scalar spectrum for modes that leave the Hubble radius just before and during the period of fast roll. The hallmark of the Starobinsky model is that it allows the scalar power spectrum to be evaluated analytically in terms of the three parameters that describe the model, viz. the two slopes that describe the potential on either side of the discontinuity and the Hubble scale at the time when the field crosses the discontinuity. In this work, we evaluate the bi-spectrum of the scalar perturbations in the Starobinsky model in the equilateral limit. Remarkably, we find that, just as the power spectrum, all the different contributions to the the bi-spectrum too can be evaluated completely analytically and expressed in terms of the three paramaters that describe the model. We show that the quantity f{sub NL}, which characterizes the extent of non-Gaussianity, can be expressed purely in terms of the ratio of the two slopes on either side of the discontinuity in the potential. Further, we find that, for certain values of the parameters, f{sub NL} in the

  13. The use of digital technology in finding multiple paths to solve and extend an equilateral triangle task

    NASA Astrophysics Data System (ADS)

    Santos-Trigo, Manuel; Reyes-Rodriguez, Aaron

    2016-01-01

    Mathematical tasks are crucial elements for teachers to orient, foster and assess students' processes to comprehend and develop mathematical knowledge. During the process of working and solving a task, searching for or discussing multiple solution paths becomes a powerful strategy for students to engage in mathematical thinking. A simple task that involves the construction of an equilateral triangle is used to present and discuss multiple solution approaches that rely on a variety of concepts and ways of reasoning. To this end, the use of a Dynamic Geometry System (GeoGebra) became instrumental in constructing and exploring dynamic models of the task. These model explorations provided a means to generate novel mathematical results.

  14. Chaotic Dynamics in a Low-Energy Transfer Strategy to the Equilateral Equilibrium Points in the Earth-Moon System

    NASA Astrophysics Data System (ADS)

    Salazar, F. J. T.; Macau, E. E. N.; Winter, O. C.

    In the frame of the equilateral equilibrium points exploration, numerous future space missions will require maximization of payload mass, simultaneously achieving reasonable transfer times. To fulfill this request, low-energy non-Keplerian orbits could be used to reach L4 and L5 in the Earth-Moon system instead of high energetic transfers. Previous studies have shown that chaos in physical systems like the restricted three-body Earth-Moon-particle problem can be used to direct a chaotic trajectory to a target that has been previously considered. In this work, we propose to transfer a spacecraft from a circular Earth Orbit in the chaotic region to the equilateral equilibrium points L4 and L5 in the Earth-Moon system, exploiting the chaotic region that connects the Earth with the Moon and changing the trajectory of the spacecraft (relative to the Earth) by using a gravity assist maneuver with the Moon. Choosing a sequence of small perturbations, the time of flight is reduced and the spacecraft is guided to a proper trajectory so that it uses the Moon's gravitational force to finally arrive at a desired target. In this study, the desired target will be an orbit about the Lagrangian equilibrium points L4 or L5. This strategy is not only more efficient with respect to thrust requirement, but also its time transfer is comparable to other known transfer techniques based on time optimization.

  15. The evidence for synthesis of truncated triangular silver nanoplates in the presence of CTAB

    SciTech Connect

    He Xin; Zhao Xiujian Chen Yunxia; Feng Jinyang

    2008-04-15

    Truncated triangular silver nanoplates were prepared by a solution-phase approach, which involved the seed-mediated growth of silver nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) at 40 deg. C. The result of X-ray diffraction indicates that the as-prepared nanoparticles are made of pure face centered cubic silver. Transmission electron microscopy and atomic force microscopy studies show that the truncated triangular silver nanoplates, with edge lengths of 50 {+-} 5 nm and thicknesses of 27 {+-} 3 nm, are oriented differently on substrates of a copper grid and a fresh mica flake. The corners of these nanoplates are round. The selected area electron diffraction analysis reveals that the silver nanoplates are single crystals with an atomically flat surface. We determine the holistic morphology of truncated triangular silver nanoplates through the above measurements with the aid of computer-aided 3D perspective images.

  16. Triangular spectral elements for incompressible fluid flow

    NASA Technical Reports Server (NTRS)

    Mavriplis, C.; Vanrosendale, John

    1993-01-01

    We discuss the use of triangular elements in the spectral element method for direct simulation of incompressible flow. Triangles provide much greater geometric flexibility than quadrilateral elements and are better conditioned and more accurate when small angles arise. We employ a family of tensor product algorithms for triangles, allowing triangular elements to be handled with comparable arithmetic complexity to quadrilateral elements. The triangular discretizations are applied and validated on the Poisson equation. These discretizations are then applied to the incompressible Navier-Stokes equations and a laminar channel flow solution is given. These new triangular spectral elements can be combined with standard quadrilateral elements, yielding a general and flexible high order method for complex geometries in two dimensions.

  17. Kondo effects in a triangular triple quantum dot with lower symmetries

    NASA Astrophysics Data System (ADS)

    Oguri, A.; Amaha, S.; Nishikawa, Y.; Numata, T.; Shimamoto, M.; Hewson, A. C.; Tarucha, S.

    2011-05-01

    We study the low-energy properties and characteristic Kondo energy scale of a triangular triple quantum dot, connected to two non-interacting leads, in a wide parameter range of a gate voltage and distortions which lower the symmetry of an equilateral structure, using the numerical renormalization group approach. For large Coulomb interactions, the ground states with different characters can be classified according to the plateaus of Θ≡(δe-δo)(2/π), where δe and δo are the phase shifts for the even and odd partial waves. At these plateaus of Θ, both Θ and the occupation number Ntot≡(δe+δo)(2/π) take values close to integers, and thus the ground states can be characterized by these two integers. The Kondo effect with a local moment with total spin S=1 due to a Nagaoka mechanism appears on the plateau, which can be identified by Θ≃2.0 and Ntot≃4.0. For large distortions, however, the high-spin moment disappears through a singlet-triplet transition occurring within the four-electron region. It happens at a crossover to the adjacent plateaus for Θ≃0.0 and Θ≃4.0, and the two-terminal conductance has a peak in the transient regions. For weak distortions, the SU(4) Kondo effect also takes place for Ntot≃3.0. It appears as a sharp conductance valley between the S=1/2 Kondo ridges on both sides. We also find that the characteristic energy scale T* reflect these varieties of the Kondo effect. Particularly, T* is sensitive to the distribution of the charge and spin in the triangular triple dot.

  18. RF MEMS reconfigurable triangular patch antenna.

    SciTech Connect

    Nordquist, Christopher Daniel; Christodoulou, Christos George; Feldner, Lucas Matthew

    2005-01-01

    A Ka-band RF MEMS enabled frequency reconfigurable triangular microstrip patch antenna has been designed for monolithic integration with RF MEMS phase shifters to demonstrate a low-cost monolithic passive electronically scanned array (PESA). This paper introduces our first prototype reconfigurable triangular patch antenna currently in fabrication. The aperture coupled patch antenna is fabricated on a dual-layer quartz/alumina substrate using surface micromachining techniques.

  19. RF MEMS reconfigurable triangular patch antenna.

    SciTech Connect

    Christodoulou, Christos George; Nordquist, Christopher Daniel; Feldner, Lucas Matthew

    2005-07-01

    A Ka-band RF MEMS enabled frequency reconfigurable triangular microstrip patch antenna has been designed for monolithic integration with RF MEMS phase shifters to demonstrate a low-cost monolithic passive electronically scanned array (PESA). This paper introduces our first prototype reconfigurable triangular patch antenna currently in fabrication. The aperture coupled patch antenna is fabricated on a dual-layer quartz/alumina substrate using surface micromachining techniques.

  20. Triangular D3h Symmetry in the Rotation-Vibration Spectrum of 12C

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2015-02-01

    Our recent measurements of new states in 12C including the second 2+ at 10 MeV and the high spin 5- state at 22.4 MeV allow us to study the Rotation-Vibration spectrum of 12C from which evidence for a new (D3h) geometrical symmetry emerges. The data fit very well to the predicted (ground state) rotational band of an oblate equilateral triangular spinning top with a D3h symmetry characterized by the sequence of states: 0+, 2+, 3-, 4+/-, 5- with almost degenerate 4+ and 4- (parity doublet) states. Such a D3h symmetry was observed in triatomic molecules, and it is observed in 12C for the first time in nuclear physics. The triatomic like structure in nuclei is reminiscent of the discovery of diatomic α+14C structure in 18O. We discuss a classification of other rotation-vibration bands in 12C such as the (0+) Hoyle band and the (1-) bending mode band and suggest measurements in search of the predicted ("missing") states that may shed new light on clustering in 12C and light nuclei. In particular, the observation (or non observation) of the predicted ("missing") states in the Hoyle band will allow us to conclude the geometrical arrangement of the three alpha particles composing the Hoyle state at 7.654 MeV in 12C.

  1. A triangular thin shell finite element: Linear analysis

    NASA Technical Reports Server (NTRS)

    Thomas, G. R.; Gallagher, R. H.

    1975-01-01

    The formulation of the linear stiffness matrix for a doubly-curved triangular thin shell element, using a modified potential energy principle, is described. The strain energy component of the potential energy is expressed in terms of displacements and displacement gradients by use of consistent Koiter strain-displacement equations. The element inplane and normal displacement fields are approximated by complete cubic polynomials. The interelement displacement admissibility conditions are met in the global representation by imposition of constraint conditions on the interelement boundaries; the constraints represent the modification of the potential energy. Errors due to the nonzero strains under rigid body motion are shown to be of small importance for practical grid refinements through performance of extensive comparison analyses.

  2. Moving and adaptive grid methods for compressible flows

    NASA Technical Reports Server (NTRS)

    Trepanier, Jean-Yves; Camarero, Ricardo

    1995-01-01

    This paper describes adaptive grid methods developed specifically for compressible flow computations. The basic flow solver is a finite-volume implementation of Roe's flux difference splitting scheme or arbitrarily moving unstructured triangular meshes. The grid adaptation is performed according to geometric and flow requirements. Some results are included to illustrate the potential of the methodology.

  3. Structured background grids for generation of unstructured grids by advancing front method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1991-01-01

    A new method of background grid construction is introduced for generation of unstructured tetrahedral grids using the advancing-front technique. Unlike the conventional triangular/tetrahedral background grids which are difficult to construct and usually inadequate in performance, the new method exploits the simplicity of uniform Cartesian meshes and provides grids of better quality. The approach is analogous to solving a steady-state heat conduction problem with discrete heat sources. The spacing parameters of grid points are distributed over the nodes of a Cartesian background grid by interpolating from a few prescribed sources and solving a Poisson equation. To increase the control over the grid point distribution, a directional clustering approach is used. The new method is convenient to use and provides better grid quality and flexibility. Sample results are presented to demonstrate the power of the method.

  4. Localized lasing modes of triangular organic microlasers.

    PubMed

    Lafargue, C; Lebental, M; Grigis, A; Ulysse, C; Gozhyk, I; Djellali, N; Zyss, J; Bittner, S

    2014-11-01

    We investigated experimentally the ray-wave correspondence in organic microlasers of various triangular shapes. Triangular billiards are of interest since they are the simplest cases of polygonal billiards and the existence and properties of periodic orbits in triangles are not yet fully understood. The microlasers with symmetric shapes that were investigated exhibited states localized on simple periodic orbits, and their lasing characteristics like spectra and far-field distributions could be well explained by the properties of the periodic orbits. Furthermore, asymmetric triangles that do not feature simple periodic orbits were studied. Their lasing properties were found to be more complicated and could not be explained by periodic orbits. PMID:25493873

  5. Reducing quasilinear systems to block triangular form

    SciTech Connect

    Tunitsky, Dmitry V

    2013-03-31

    The paper is concerned with systems of n quasilinear partial differential equations of the first order with 2 independent variables. Using a geometric formalism for such equations, which goes back to Riemann, it is possible to assign a field of linear operators on an appropriate vector bundle to this type of quasilinear system. Several tests for a quasilinear system to be reducible to triangular or block triangular form are obtained in terms of this field; they supplement well known results on diagonalization and block diagonalization due to Haantjes and Bogoyavlenskij. Bibliography: 10 titles.

  6. Tunable configurational anisotropy of concave triangular nanomagnets

    NASA Astrophysics Data System (ADS)

    Nanayakkara, Kasuni; Vasil'evskii, Ivan S.; Eremin, Igor S.; Kolentsova, Olga S.; Kargin, Nikolay I.; Anferov, Alexander; Kozhanov, Alexander

    2016-06-01

    Shape and dimension variation effects on the configurational anisotropy and magnetization ground states of single domain triangular nano-magnets are investigated using micromagnetic simulations and magnetic force microscopy. We show that introducing concavity or elongating vertexes stabilize the Y magnetization ground states of triangular nanomagnets. A phenomenological model relating the magnetization anisotropy and triangle geometry parameters is developed. MFM imaging reveals shape defined buckle and Y ground states that are in good agreement with numeric simulations. Concavity and vertex extrusion allow for the form-ruled magnetization ground state engineering in the shapes with higher orders of symmetry.

  7. Domain decomposition by the advancing-partition method for parallel unstructured grid generation

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z. (Inventor); Banihashemi, legal representative, Soheila (Inventor)

    2012-01-01

    In a method for domain decomposition for generating unstructured grids, a surface mesh is generated for a spatial domain. A location of a partition plane dividing the domain into two sections is determined. Triangular faces on the surface mesh that intersect the partition plane are identified. A partition grid of tetrahedral cells, dividing the domain into two sub-domains, is generated using a marching process in which a front comprises only faces of new cells which intersect the partition plane. The partition grid is generated until no active faces remain on the front. Triangular faces on each side of the partition plane are collected into two separate subsets. Each subset of triangular faces is renumbered locally and a local/global mapping is created for each sub-domain. A volume grid is generated for each sub-domain. The partition grid and volume grids are then merged using the local-global mapping.

  8. Experimental study of photonic crystal triangular lattices

    NASA Astrophysics Data System (ADS)

    Qin, Ruhu; Qin, Bo; Jin, Chongjun

    1999-06-01

    Triangular lattice photonic crystal behaving in the electromagnetic zones constructed from fused silica cylinders in styrofoam is fabricated. The transmission spectra of the photonic crystal with and without defects are measured. On this basis, the defect modes of photonic crystal were studied, and the potential applications of the photonic crystal are discussed.

  9. Basic Employability Skills: A Triangular Design Approach

    ERIC Educational Resources Information Center

    Rosenberg, Stuart; Heimler, Ronald; Morote, Elsa-Sofia

    2012-01-01

    Purpose: This paper seeks to examine the basic employability skills needed for job performance, the reception of these skills in college, and the need for additional training in these skills after graduation. Design/methodology/approach: The research was based on a triangular design approach, in which the attitudes of three distinct groups--recent…

  10. Transport Code for Regular Triangular Geometry

    Energy Science and Technology Software Center (ESTSC)

    1993-06-09

    DIAMANT2 solves the two-dimensional static multigroup neutron transport equation in planar regular triangular geometry. Both regular and adjoint, inhomogeneous and homogeneous problems subject to vacuum, reflective or input specified boundary flux conditions are solved. Anisotropy is allowed for the scattering source. Volume and surface sources are allowed for inhomogeneous problems.

  11. Solutions to the Triangular Bicycle Flags Problem

    ERIC Educational Resources Information Center

    Hartweg, Kim

    2005-01-01

    Students in a fifth-grade general education class and a second-grade gifted class participated in the Triangular Bicycle Flags problem. The results indicated that providing students with geometric experiences at the correct van Hiele level is necessary for helping students move from one level of understanding to the next.

  12. Optimal parallel solution of sparse triangular systems

    NASA Technical Reports Server (NTRS)

    Alvarado, Fernando L.; Schreiber, Robert

    1990-01-01

    A method for the parallel solution of triangular sets of equations is described that is appropriate when there are many right-handed sides. By preprocessing, the method can reduce the number of parallel steps required to solve Lx = b compared to parallel forward or backsolve. Applications are to iterative solvers with triangular preconditioners, to structural analysis, or to power systems applications, where there may be many right-handed sides (not all available a priori). The inverse of L is represented as a product of sparse triangular factors. The problem is to find a factored representation of this inverse of L with the smallest number of factors (or partitions), subject to the requirement that no new nonzero elements be created in the formation of these inverse factors. A method from an earlier reference is shown to solve this problem. This method is improved upon by constructing a permutation of the rows and columns of L that preserves triangularity and allow for the best possible such partition. A number of practical examples and algorithmic details are presented. The parallelism attainable is illustrated by means of elimination trees and clique trees.

  13. Collisional diffusion in toroidal plasmas with elongation and triangularity

    SciTech Connect

    Martin, P.; Castro, E.; Haines, M. G.

    2007-05-15

    Collisional diffusion is analyzed for plasma tokamaks with different ellipticities and triangularities. Improved nonlinear equations for the families of magnetic surfaces are used here. Dimensionless average velocities are calculated as a function of the inductive electric field, elongation, triangularity, and Shafranov shift. Confinement has been found to depend significantly on triangularity.

  14. Computing jump conditions for the immersed interface method using triangular meshes

    NASA Astrophysics Data System (ADS)

    Xu, Sheng; Pearson, Glen D.

    2015-12-01

    The immersed interface method (IIM) can be employed to solve many interface problems on fixed Cartesian grids by incorporating necessary interface-induced Cartesian jump conditions into numerical schemes. In this paper, we present a method to compute the necessary Cartesian jump conditions from given principal jump conditions using triangular mesh representation of an interface. The triangular mesh representation is simpler and robuster than interface parametrization for a complex or non-smooth interface. We test our method by using the computed Cartesian jump conditions in the IIM to solve a Poisson equation subject to an interface with the shape of a sphere, cube, cylinder or cone. The results demonstrate the expected second-order accuracy of the solution in the infinity norm.

  15. High-precision triangular-waveform generator

    DOEpatents

    Mueller, T.R.

    1981-11-14

    An ultra-linear ramp generator having separately programmable ascending and decending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  16. Triangular Element For Analyzing Elasticity Of Laminates

    NASA Technical Reports Server (NTRS)

    Martin, C. Wayne; Lung, S. F.; Gupta, K. K.

    1991-01-01

    Flat triangular element developed for use in finite-element analyses of stress and strain in laminated plates made of such materials as plywood or advanced fiber/epoxy composite materials. Has multiple layers, each of which can have different isotropic or orthotropic elastic properties. Many such elements used in finite-element mesh to calculate stiffness of plate. Formulation of element straight-forward, and calculation of its stiffness matrix simple and fast.

  17. [Unilateral triangular lumbopelvic stabilization: indications and techniques].

    PubMed

    Hoffmann, M F; Dudda, M; Schildhauer, T A

    2013-11-01

    Operative fixation has become treatment of choice for unstable sacral fractures. Osteosynthesis for these fractures results in loss of reduction in up to 15%. Vertical sacral fractures involving the S1 facet joint (Isler 2 and 3) may lead to multidirectional instability. Multidirectional instability of the posterior pelvic ring and lumbopelvic junction may be stabilized and forces balanced by a so-called lumbopelvic triangular fixation. Lumbopelvic triangular fixation combines vertical fixation between the lumbar vertebral pedicle and the ilium, with horizontal fixation, as an iliosacral screw or a transiliacal plate osteosynthesis. The iliac screw is directed from the posterior superior iliac spine (PSIS) to the anterior inferior iliac spine (AIIS). Thereby, lumbopelvic fixation decreases the load to the sacrum and SI joint and transfers axial loads from the lumbar spine directly onto the ilium. Triangular lumbopelvic fixation allows early full weight bearing and therefore reduces prolonged immobilization. The placement of iliac screws may be a complex surgical procedure. Thus, the technique requires thorough surgical preparation and operative logistics. Wound-related complications may occur. Preexisting Morell-Lavalée lesions increase the risk for infection. Prominent implants cause local irritation and pain. Hardware prominence and pain are markedly reduced with screw head recession into the PSIS. PMID:24233083

  18. Application of a Sixth Order Generalized Stress Function To Determine Limit Loads for Plates with Triangular Penetration Patterns

    SciTech Connect

    J.L. Gordon; D.P. Jones

    2001-12-20

    The capabilities to obtain limit load solutions of plates with triangular penetration patterns using fourth order functions to represent the collapse surface has been presented in previous papers. These papers describe how equivalent solid plate elastic-perfectly plastic finite element capabilities are generated and demonstrated how such capabilities can be used to great advantage in the analysis of tubesheets in large heat exchanger applications. However, these papers have pointed out that although the fourth order functions can produce sufficient accuracy for many practical applications, there are situations where improvements in the accuracy of inplane and transverse shear are desirable. This paper investigates the use of a sixth order function to represent the collapse surface for improved accuracy of the inplane response. Explicit elastic-perfectly plastic finite element solutions are obtained for unit cells representing an infinite array of circular penetrations arranged in an equilateral triangular array. These cells are used to create a numerical representation of the complete collapse surfaces for a number of ligament efficiencies (h/P where h is the minimum ligament width and P is the distance between hole centers). Each collapse surface is then fit to a sixth order function that satisfies the periodicity of the hole pattern. Sixth-order collapse functions were developed for h/P values between .05 and .50. Accuracy of the sixth order and the fourth order functions are compared. It was found that the sixth order function is indeed more accurate, reducing the error from 12.2% for the fourth order function to less than 3% for the sixth order function.

  19. Three-dimensional surface grid generation for calculation of thermal radiation shape factors

    NASA Technical Reports Server (NTRS)

    Aly, Hany M.

    1992-01-01

    A technique is described to generate three dimensional surface grids suitable for calculating shape factors for thermal radiative heat transfer. The surface under consideration is approximated by finite triangular elements generated in a special manner. The grid is generated by dividing the surface into a two dimensional array of nodes. Each node is defined by its coordinates. Each set of four adjacent nodes is used to construct two triangular elements. Each triangular element is characterized by the vector representation of its vertices. Vector algebra is used to calculate all desired geometric properties of grid elements. The properties are used to determine the shape factor between the element and an area element in space. The grid generation can be graphically displayed using any software with three dimensional features. DISSPLA was used to view the grids.

  20. Vertex-Atom-Dependent Rectification in Triangular h-BNC/Triangular Graphene Heterojunctions

    NASA Astrophysics Data System (ADS)

    Wang, Lihua; Zhao, Jianguo; Zhang, Zizhen; Ding, Bingjun; Guo, Yong

    2016-08-01

    First-principles calculations have shown dramatically unexpected rectifying regularities in particular heterojunction configurations with triangular hexagonal boron-nitride-carbon ( h-BNC) and triangular graphene (TG) sandwiched between two armchair graphene nanoribbon electrodes. When the triangular h-BNC and TG are linked by vertex atoms of nitrogen and carbon (boron and carbon), forward (reverse) rectifying performance can be observed. Moreover, for a certain linking mode, the larger the elemental proportion p (where p = N_{{{boron}} + {{nitrogen}}} /N_{{{boron}} + {{nitrogen}} + {{carbon}}} ) in the h-BNC, the larger the ratio for forward (reverse) rectification. A mechanism for these rectification behaviors is suggested. The findings provide insights into control of rectification behaviors in TG-based nanodevices.

  1. Grid Work

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pointwise Inc.'s, Gridgen Software is a system for the generation of 3D (three dimensional) multiple block, structured grids. Gridgen is a visually-oriented, graphics-based interactive code used to decompose a 3D domain into blocks, distribute grid points on curves, initialize and refine grid points on surfaces and initialize volume grid points. Gridgen is available to U.S. citizens and American-owned companies by license.

  2. Psyplot: Visualizing rectangular and triangular Climate Model Data with Python

    NASA Astrophysics Data System (ADS)

    Sommer, Philipp

    2016-04-01

    The development and use of climate models often requires the visualization of geo-referenced data. Creating visualizations should be fast, attractive, flexible, easily applicable and easily reproducible. There is a wide range of software tools available for visualizing raster data, but they often are inaccessible to many users (e.g. because they are difficult to use in a script or have low flexibility). In order to facilitate easy visualization of geo-referenced data, we developed a new framework called "psyplot," which can aid earth system scientists with their daily work. It is purely written in the programming language Python and primarily built upon the python packages matplotlib, cartopy and xray. The package can visualize data stored on the hard disk (e.g. NetCDF, GeoTIFF, any other file format supported by the xray package), or directly from the memory or Climate Data Operators (CDOs). Furthermore, data can be visualized on a rectangular grid (following or not following the CF Conventions) and on a triangular grid (following the CF or UGRID Conventions). Psyplot visualizes 2D scalar and vector fields, enabling the user to easily manage and format multiple plots at the same time, and to export the plots into all common picture formats and movies covered by the matplotlib package. The package can currently be used in an interactive python session or in python scripts, and will soon be developed for use with a graphical user interface (GUI). Finally, the psyplot framework enables flexible configuration, allows easy integration into other scripts that uses matplotlib, and provides a flexible foundation for further development.

  3. MAGNETIC GRID

    DOEpatents

    Post, R.F.

    1960-08-01

    An electronic grid is designed employing magnetic forces for controlling the passage of charged particles. The grid is particularly applicable to use in gas-filled tubes such as ignitrons. thyratrons, etc., since the magnetic grid action is impartial to the polarity of the charged particles and, accordingly. the sheath effects encountered with electrostatic grids are not present. The grid comprises a conductor having sections spaced apart and extending in substantially opposite directions in the same plane, the ends of the conductor being adapted for connection to a current source.

  4. Use of dermoscopy in the diagnosis of temporal triangular alopecia*

    PubMed Central

    de Campos, Jullyene Gomes; Oliveira, Cláudia Marina Puga Barbosa; Romero, Sandra Adolfina Reyes; Klein, Ana Paula; Akel, Patricia Bandeira de Melo; Pinto, Giselle Martins

    2015-01-01

    Temporal triangular alopecia, also referred as congenital triangular alopecia, is an uncommon dermatosis of unknown etiology. It is characterized by a non-scarring, circumscribed alopecia often located unilaterally in the frontotemporal region. It usually emerges at ages 2-9 years. Alopecia areata is the main differential diagnosis, especially in atypical cases. Dermoscopy is a noninvasive procedure that helps distinguish temporal triangular alopecia from aloepecia areata. Such procedure prevents invasive diagnostic methods as well as ineffective treatments. PMID:25672312

  5. New plate and shell elements for NASTRAN. [development of higher order triangular plate-bending finite element

    NASA Technical Reports Server (NTRS)

    Narayanaswami, R.

    1973-01-01

    A new higher order triangular plate-bending finite element is presented which possesses high accuracy for practical mesh subdivisions and which uses only translations and rotations as grid point degrees of freedom. The element has 18 degrees of freedom, the transverse displacement and two rotations at the vertices and mid-side grid points of the triangle. The transverse displacement within the element is approximated by a quintic polynomial; the bending strains thus vary cubically within the element. Transverse shear flexibility is taken into account in the stiffness formulation. Two examples of static and dynamic analysis are included to show the behavior of the element.

  6. Triangularity effects on the collisional diffusion for elliptic tokamaks

    NASA Astrophysics Data System (ADS)

    Martín, Pablo; Castro, Enrique

    2015-09-01

    The effect of ellipticity and triangularity will be analyzed for axisymmetric tokamak in the collisional regime. Analytic forms for the magnetic field cross sections are taken from those derived recently by other authors. Analytic results can be obtained in elliptic plasmas with triangularity by using an special system of tokamak coordinates previously published. Our results show that triangularities smaller than 0.6 increase confinement for ellipticities in the range 1.2-2. This behavior happens for negative and positive triangularities, however this effect is stronger for negative than for positive triangularities. The maximum diffusion velocity is not obtained for zero triangularity, but for small negative triangularities. Ellipticity is also very important in confinement, but the effect of triangularity seems to be more important. High electric inductive fields increase confinement, though this field is difficult to modify once the tokamak has been built. The analytic form of the current produced by this field is like that of a weak Ware pinch with an additional factor, which weakens the effect by an order of magnitude. The dependence of the triangularity effect with the Shafranov shift is also analyzed.

  7. Ray tracing for point distribution in unstructured grid generation

    SciTech Connect

    Khamayseh, A.; Ortega, F.; Trease, H.

    1995-12-31

    We present a procedure by which grid points are generated on surfaces or within three-dimensional volumes to produce high quality unstructed grids for complex geometries. The virtue of this method is based on ray-tracing approach for curved polyhedra whose faces may lie on natural quadrics (planes, cylinders, cones, or spheres) or triangular faceted surfaces. We also present an efficient point location algorithm for identifying points relative to various regions with classification of inside/on/outside.

  8. Patch-fitting on triangular surface holes

    NASA Astrophysics Data System (ADS)

    Savva, A.; Stylianou, V.

    2014-11-01

    The human body is probably the best example of a complex deformable figure. To generate a realistic object is a complex task and some mathematical methods are necessary in order to assist solving this problem. Spline methods have dominated the area of modeling complex articulated figures. The most popular of these methods is NURBS (Non Uniform Rational B-Splines) which is used by the majority of figure modelers due to its ability to control the shape of a surface by applying weights on the control points defining the object and not by altering their positions. However, spline methods, such as NURBS, have a drawback in defining surfaces containing multiple branches. The resulting surface has an "n-sided hole" at the joint of n branches. This paper proposes a solution to the triangular holes problem, which however, can be generalized to solve the n-sided-hole problem. The method fits a Sabin triangular patch in the hole and then applies subdivision spline methods to generate smooth and closed surfaces.

  9. Ultracold quantum gases in triangular optical lattices

    NASA Astrophysics Data System (ADS)

    Becker, C.; Soltan-Panahi, P.; Kronjäger, J.; Dörscher, S.; Bongs, K.; Sengstock, K.

    2010-06-01

    Over recent years, exciting developments in the field of ultracold atoms confined in optical lattices have led to numerous theoretical proposals devoted to the quantum simulation of problems e.g. known from condensed matter physics. Many of those ideas demand experimental environments with non-cubic lattice geometries. In this paper, we report on the implementation of a versatile three-beam lattice allowing for the generation of triangular as well as hexagonal optical lattices. As an important step, the superfluid-Mott insulator (SF-MI) quantum phase transition has been observed and investigated in detail in this lattice geometry for the first time. In addition to this, we study the physics of spinor Bose-Einstein condensates (BEC) in the presence of the triangular optical lattice potential, especially spin changing dynamics across the SF-MI transition. Our results suggest that, below the SF-MI phase transition, a well-established mean-field model describes the observed data when renormalizing the spin-dependent interaction. Interestingly, this opens up new perspectives for a lattice-driven tuning of a spin dynamics resonance occurring through the interplay of the quadratic Zeeman effect and spin-dependent interaction. Finally, we discuss further lattice configurations that can be realized with our setup.

  10. The Grid

    SciTech Connect

    White, Vicky

    2003-05-21

    By now almost everyone has heard of 'The Grid', or 'Grid Computing' as it should more properly be described. There are frequent articles in both the popular and scientific press talking about 'The Grid' or about some specific Grid project. Run II Experiments, US-CMS, BTeV, the Sloane Digital Sky Survey and the Lattice QCD folks are all incorporating aspects of Grid Computing in their plans, and the Fermilab Computing Division is supporting and encouraging these efforts. Why are we doing this and what does it have to do with running a physics experiment or getting scientific results? I will explore some of these questions and try to give an overview, not so much of the technical aspects of Grid Computing, rather of what the phenomenon means for our field.

  11. Fibonacci Grids

    NASA Technical Reports Server (NTRS)

    Swinbank, Richard; Purser, James

    2006-01-01

    Recent years have seen a resurgence of interest in a variety of non-standard computational grids for global numerical prediction. The motivation has been to reduce problems associated with the converging meridians and the polar singularities of conventional regular latitude-longitude grids. A further impetus has come from the adoption of massively parallel computers, for which it is necessary to distribute work equitably across the processors; this is more practicable for some non-standard grids. Desirable attributes of a grid for high-order spatial finite differencing are: (i) geometrical regularity; (ii) a homogeneous and approximately isotropic spatial resolution; (iii) a low proportion of the grid points where the numerical procedures require special customization (such as near coordinate singularities or grid edges). One family of grid arrangements which, to our knowledge, has never before been applied to numerical weather prediction, but which appears to offer several technical advantages, are what we shall refer to as "Fibonacci grids". They can be thought of as mathematically ideal generalizations of the patterns occurring naturally in the spiral arrangements of seeds and fruit found in sunflower heads and pineapples (to give two of the many botanical examples). These grids possess virtually uniform and highly isotropic resolution, with an equal area for each grid point. There are only two compact singular regions on a sphere that require customized numerics. We demonstrate the practicality of these grids in shallow water simulations, and discuss the prospects for efficiently using these frameworks in three-dimensional semi-implicit and semi-Lagrangian weather prediction or climate models.

  12. Histological assessment of the triangular fibrocartilage complex.

    PubMed

    Semisch, M; Hagert, E; Garcia-Elias, M; Lluch, A; Rein, S

    2016-06-01

    The morphological structure of the seven components of triangular fibrocartilage complexes of 11 cadaver wrists of elderly people was assessed microscopically, after staining with Hematoxylin-Eosin and Elastica van Gieson. The articular disc consisted of tight interlaced fibrocartilage without blood vessels except in its ulnar part. Volar and dorsal radioulnar ligaments showed densely parallel collagen bundles. The subsheath of the extensor carpi ulnaris muscle, the ulnotriquetral and ulnolunate ligament showed mainly mixed tight and loose parallel tissue. The ulnolunate ligament contained tighter parallel collagen bundles and clearly less elastic fibres than the ulnotriquetral ligament. The ulnocarpal meniscoid had an irregular morphological composition and loose connective tissue predominated. The structure of the articular disc indicates a buffering function. The tight structure of radioulnar and ulnolunate ligaments reflects a central stabilizing role, whereas the ulnotriquetral ligament and ulnocarpal meniscoid have less stabilizing functions. PMID:26685153

  13. Micromagnetics of triangular thin film nanoelements

    NASA Astrophysics Data System (ADS)

    Stavrou, V. D.; Gergidis, L. N.; Markou, A.; Charalambopoulos, A.; Panagiotopoulos, I.

    2016-03-01

    The magnetization reversal in 330 nm triangular prism magnetic nanoelements with variable magnetocrystalline anisotropy (as that of partially chemically ordered FePt) is studied using Finite Elements micromagnetic calculations. The magnetization reversal characteristics under different values and directions of the uniaxial anisotropy and different directions of the applied external magnetic field are explored. The simulation results show that a wealth of reversal mechanisms is possible sensitively depending on the uniaxial magnetocrystalline anisotropy values and directions which may explain the different Magnetic Force Microscopy patterns obtained in such magnetic systems. In addition, the micromagnetic simulations reveal that interesting vortex-like formations can be produced and stabilized in large field ranges and in sizes that can be tuned by the magnetocrystalline anisotropy of the material.

  14. Maximum independent set on diluted triangular lattices.

    PubMed

    Fay, C W; Liu, J W; Duxbury, P M

    2006-05-01

    Core percolation and maximum independent set on random graphs have recently been characterized using the methods of statistical physics. Here we present a statistical physics study of these problems on bond diluted triangular lattices. Core percolation critical behavior is found to be consistent with the standard percolation values, though there are strong finite size effects. A transfer matrix method is developed and applied to find accurate values of the density and degeneracy of the maximum independent set on lattices of limited width but large length. An extrapolation of these results to the infinite lattice limit yields high precision results, which are tabulated. These results are compared to results found using both vertex based and edge based local probability recursion algorithms, which have proven useful in the analysis of hard computational problems, such as the satisfiability problem. PMID:16803003

  15. Sznajd Sociophysics Model on a Triangular Lattice

    NASA Astrophysics Data System (ADS)

    Chang, Iksoo

    The Sznajd sociophysics model is generalized on the triangular lattice with pure antiferromagnetic opinion and also with both ferromagnetic and antiferromagnetic opinions. The slogan of the trade union ``united we stand, divided we fall'' can be realized via the propagation of ferromagnetic opinion of adjacent people in the union, but the propagation of antiferromagnetic opinion can be observed among the third countries between two big super powers or among the family members of conflicting parents. Fixed points are found in both models. The distributions of relaxation time of the mixed model are dispersed and become closer to log-normal as the initial concentration of down spins approaches 0.5, whereas for pure antiferromagnetic spins, they are collapsed into one master curve, which is roughly log-normal. We do not see the phase transition in the model.

  16. Biological synthesis of triangular gold nanoprisms

    NASA Astrophysics Data System (ADS)

    Shankar, S. Shiv; Rai, Akhilesh; Ankamwar, Balaprasad; Singh, Amit; Ahmad, Absar; Sastry, Murali

    2004-07-01

    The optoelectronic and physicochemical properties of nanoscale matter are a strong function of particle size. Nanoparticle shape also contributes significantly to modulating their electronic properties. Several shapes ranging from rods to wires to plates to teardrop structures may be obtained by chemical methods; triangular nanoparticles have been synthesized by using a seeded growth process. Here, we report the discovery that the extract from the lemongrass plant, when reacted with aqueous chloroaurate ions, yields a high percentage of thin, flat, single-crystalline gold nanotriangles. The nanotriangles seem to grow by a process involving rapid reduction, assembly and room-temperature sintering of 'liquid-like' spherical gold nanoparticles. The anisotropy in nanoparticle shape results in large near-infrared absorption by the particles, and highly anisotropic electron transport in films of the nanotriangles.

  17. Thermodynamic Properties in Triangular-Lattice Superconductors

    NASA Astrophysics Data System (ADS)

    Ma, Xixiao; Qin, Ling; Zhao, Huaisong; Lan, Yu; Feng, Shiping

    2016-06-01

    The study of superconductivity arising from doping a Mott insulator has become a central issue in the area of superconductivity. Within the framework of the kinetic-energy-driven superconducting (SC) mechanism, we discuss the thermodynamic properties in the triangular-lattice cobaltate superconductors. It is shown that a sharp peak in the specific heat appears at the SC transition temperature T_c, and then the specific heat varies exponentially as a function of temperature for temperatures T

  18. Shuttle-launch triangular space station

    NASA Technical Reports Server (NTRS)

    Schneider, W. C. (Inventor); Berka, R. B. (Inventor); Kavanaugh, C. (Inventor); Nagy, K. (Inventor); Parish, R. C. (Inventor); Schliesing, J. A. (Inventor); Smith, P. D. (Inventor); Stebbins, F. J. (Inventor); Wesselski, C. J. (Inventor)

    1986-01-01

    A triangular space station deployable in orbit is described. The framework is comprized of three trusses, formed of a pair of generally planar faces consistine of foldable struts. The struts expand and lock into rigid structural engagement forming a repetition of equilater triangles and nonfolding diagonal struts interconnecting the two faces. The struts are joined together by node fittings. The framework can be packaged into a size and configuration transportable by a space shuttle. When deployed, the framework provides a large work/construction area and ample planar surface area for solar panels and thermal radiators. A plurity of modules are secured to the framework and then joined by tunnels to make an interconnected modular display. Thruster units for the space station orientation and altitude maintenance are provided.

  19. Network mechanisms of grid cells.

    PubMed

    Moser, Edvard I; Moser, May-Britt; Roudi, Yasser

    2014-02-01

    One of the major breakthroughs in neuroscience is the emerging understanding of how signals from the external environment are extracted and represented in the primary sensory cortices of the mammalian brain. The operational principles of the rest of the cortex, however, have essentially remained in the dark. The discovery of grid cells, and their functional organization, opens the door to some of the first insights into the workings of the association cortices, at a stage of neural processing where firing properties are shaped not primarily by the nature of incoming sensory signals but rather by internal self-organizing principles. Grid cells are place-modulated neurons whose firing locations define a periodic triangular array overlaid on the entire space available to a moving animal. The unclouded firing pattern of these cells is rare within the association cortices. In this paper, we shall review recent advances in our understanding of the mechanisms of grid-cell formation which suggest that the pattern originates by competitive network interactions, and we shall relate these ideas to new insights regarding the organization of grid cells into functionally segregated modules. PMID:24366126

  20. A discontinuous Galerkin method for the shallow water equations in spherical triangular coordinates

    NASA Astrophysics Data System (ADS)

    Läuter, Matthias; Giraldo, Francis X.; Handorf, Dörthe; Dethloff, Klaus

    2008-12-01

    A global model of the atmosphere is presented governed by the shallow water equations and discretized by a Runge-Kutta discontinuous Galerkin method on an unstructured triangular grid. The shallow water equations on the sphere, a two-dimensional surface in R3, are locally represented in terms of spherical triangular coordinates, the appropriate local coordinate mappings on triangles. On every triangular grid element, this leads to a two-dimensional representation of tangential momentum and therefore only two discrete momentum equations. The discontinuous Galerkin method consists of an integral formulation which requires both area (elements) and line (element faces) integrals. Here, we use a Rusanov numerical flux to resolve the discontinuous fluxes at the element faces. A strong stability-preserving third-order Runge-Kutta method is applied for the time discretization. The polynomial space of order k on each curved triangle of the grid is characterized by a Lagrange basis and requires high-order quadature rules for the integration over elements and element faces. For the presented method no mass matrix inversion is necessary, except in a preprocessing step. The validation of the atmospheric model has been done considering standard tests from Williamson et al. [D.L. Williamson, J.B. Drake, J.J. Hack, R. Jakob, P.N. Swarztrauber, A standard test set for numerical approximations to the shallow water equations in spherical geometry, J. Comput. Phys. 102 (1992) 211-224], unsteady analytical solutions of the nonlinear shallow water equations and a barotropic instability caused by an initial perturbation of a jet stream. A convergence rate of O(Δx) was observed in the model experiments. Furthermore, a numerical experiment is presented, for which the third-order time-integration method limits the model error. Thus, the time step Δt is restricted by both the CFL-condition and accuracy demands. Conservation of mass was shown up to machine precision and energy conservation

  1. Convergence Analysis of Triangular MAC Schemes for Two Dimensional Stokes Equations

    PubMed Central

    Wang, Ming; Zhong, Lin

    2015-01-01

    In this paper, we consider the use of H(div) elements in the velocity–pressure formulation to discretize Stokes equations in two dimensions. We address the error estimate of the element pair RT0–P0, which is known to be suboptimal, and render the error estimate optimal by the symmetry of the grids and by the superconvergence result of Lagrange inter-polant. By enlarging RT0 such that it becomes a modified BDM-type element, we develop a new discretization BDM1b–P0. We, therefore, generalize the classical MAC scheme on rectangular grids to triangular grids and retain all the desirable properties of the MAC scheme: exact divergence-free, solver-friendly, and local conservation of physical quantities. Further, we prove that the proposed discretization BDM1b–P0 achieves the optimal convergence rate for both velocity and pressure on general quasi-uniform grids, and one and half order convergence rate for the vorticity and a recovered pressure. We demonstrate the validity of theories developed here by numerical experiments. PMID:26041948

  2. Grid oscillators

    NASA Technical Reports Server (NTRS)

    Popovic, Zorana B.; Kim, Moonil; Rutledge, David B.

    1988-01-01

    Loading a two-dimensional grid with active devices offers a means of combining the power of solid-state oscillators in the microwave and millimeter-wave range. The grid structure allows a large number of negative resistance devices to be combined. This approach is attractive because the active devices do not require an external locking signal, and the combining is done in free space. In addition, the loaded grid is a planar structure amenable to monolithic integration. Measurements on a 25-MESFET grid at 9.7 GHz show power-combining and frequency-locking without an external locking signal, with an ERP of 37 W. Experimental far-field patterns agree with theoretical results obtained using reciprocity.

  3. Effect of grid system on finite element calculation

    NASA Technical Reports Server (NTRS)

    Lee, K. D.; Yen, S. M.

    1980-01-01

    Detailed parametric studies of the effect of grid system on finite element calculation for potential flows were made. These studies led to the formulation of a design criteria for optimum mesh system and the development of two methods to generate the optimum mesh system. The guidelines for optimum mesh system are: (1) the mesh structure should be regular; (2) the element should be as regular and equilateral as possible; (3) the distribution of size of element should be consistent with that of flow variables to insure maximum uniformity in error distribution; (4) for non-Dirichlet boundary conditions, smaller boundary elements or higher order interpolation functions should be used; and (5) the mesh should accommodate the boundary geometry as accurately as possible. The results of the parametric studies are presented.

  4. Second Cross-Sectional Study of Attainment of the Concepts "Equilateral Triangle,""Cutting Tool,""Noun," and "Tree" by Children Age 6 to 16 of City A. Technical Report No. 367.

    ERIC Educational Resources Information Center

    Klausmeier, Herbert J.; And Others

    For this study, the second in the cross sectional series, based on the Conceptual Learning and Development (CLD) model, assessment batteries were developed to determine each child's level of concept attainment and also the related use of the concepts "equilateral triangle,""cutting tool,""noun," and "tree." Batteries were designed as…

  5. Second Cross-Sectional Study of Attainment of the Concepts "Equilateral Triangle,""Cutting Tool,""Noun," and "Tree" by Children Age 6 to 16 of City B. Technical Report No. 347.

    ERIC Educational Resources Information Center

    Klausmeier, Herbert J.; And Others

    For this study, the second in the cross sectional series, based on the Conceptual Learning and Development (CLD) model, assessment batteries were developed to determine each child's level of attainment and related use of the concepts "equilateral triangle,""cutting tool,""noun," and "tree." Batteries were designed as paper-and-pencil tasks and…

  6. First Cross-Sectional Study of Attainment of the Concepts "Equilateral Triangle", "Cutting Tool" and "Noun" by Children 5 to 16 of City A. Report from the Program on Children's Learning and Development. Technical Report No. 287.

    ERIC Educational Resources Information Center

    Klausmeier, Herbert J.; And Others

    Theory and research regarding four levels of concept attainment and three uses of concepts as specified by the conceptual learning and development (CLD) model are described. Assessment batteries were developed to assess each child's level of concept attainment and also the related use of the concepts equilateral triangle, cutting tool, and noun.…

  7. Grid Computing

    NASA Astrophysics Data System (ADS)

    Foster, Ian

    2001-08-01

    The term "Grid Computing" refers to the use, for computational purposes, of emerging distributed Grid infrastructures: that is, network and middleware services designed to provide on-demand and high-performance access to all important computational resources within an organization or community. Grid computing promises to enable both evolutionary and revolutionary changes in the practice of computational science and engineering based on new application modalities such as high-speed distributed analysis of large datasets, collaborative engineering and visualization, desktop access to computation via "science portals," rapid parameter studies and Monte Carlo simulations that use all available resources within an organization, and online analysis of data from scientific instruments. In this article, I examine the status of Grid computing circa 2000, briefly reviewing some relevant history, outlining major current Grid research and development activities, and pointing out likely directions for future work. I also present a number of case studies, selected to illustrate the potential of Grid computing in various areas of science.

  8. Tests of Predictions of the Algebraic Cluster Model: the Triangular D 3h Symmetry of 12C

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2016-07-01

    A new theoretical approach to clustering in the frame of the Algebraic Cluster Model (ACM) has been developed. It predicts rotation-vibration structure with rotational band of an oblate equilateral triangular symmetric spinning top with a D 3h symmetry characterized by the sequence of states: 0+, 2+, 3-, 4±, 5- with a degenerate 4+ and 4- (parity doublet) states. Our measured new 2+ 2 in 12C allows the first study of rotation-vibration structure in 12C. The newly measured 5- state and 4- states fit very well the predicted ground state rotational band structure with the predicted sequence of states: 0+, 2+, 3-, 4±, 5- with almost degenerate 4+ and 4- (parity doublet) states. Such a D 3h symmetry is characteristic of triatomic molecules, but it is observed in the ground state rotational band of 12C for the first time in a nucleus. We discuss predictions of the ACM of other rotation-vibration bands in 12 C such as the (0+) Hoyle band and the (1-) bending mode with prediction of (“missing 3- and 4-”) states that may shed new light on clustering in 12C and light nuclei. In particular, the observation (or non observation) of the predicted (“missing”) states in the Hoyle band will allow us to conclude the geometrical arrangement of the three alpha particles composing the Hoyle state at 7.6542 MeV in 12C. We discuss proposed research programs at the Darmstadt S-DALINAC and at the newly constructed ELI-NP facility near Bucharest to test the predictions of the ACM in isotopes of carbon.

  9. Coherently Tunable Triangular Trefoil Phaseonium Metamaterial

    PubMed Central

    Nguyen, D. M.; Soci, Cesare; Ooi, C. H. Raymond

    2016-01-01

    Phaseonium is a three-level Λ quantum system, in which a coherent microwave and an optical control (pump) beams can be used to actively modulate the dielectric response. Here we propose a new metamaterial structure comprising of a periodic array of triangular phaseonium metamolecules arranged as a trefoil. We present a computational study of the spatial distribution of magnetic and electric fields of the probe light and the corresponding transmission and reflection, for various parameters of the optical and microwave beams. For specific values of the probing frequencies and control fields, the phaseonium can display either metallic or dielectric optical response. We find that, in the metallic regime, the phaseonium metamaterial structure supports extremely large transmission, with optical amplification at large enough intensity of the microwave thanks to strong surface plasmon coupling; while, in the dielectric regime without microwave excitation, the transmission bandwidth can be tuned by varying the control beam intensity. Implementation of such phaseonium metamaterial structure in solid-state systems, such as patterned crystals doped with rare-earth elements or dielectric matrices embedded with quantum dots, could enable a new class of actively tunable quantum metamaterials. PMID:26879520

  10. Coherently Tunable Triangular Trefoil Phaseonium Metamaterial

    NASA Astrophysics Data System (ADS)

    Nguyen, D. M.; Soci, Cesare; Ooi, C. H. Raymond

    2016-02-01

    Phaseonium is a three-level Λ quantum system, in which a coherent microwave and an optical control (pump) beams can be used to actively modulate the dielectric response. Here we propose a new metamaterial structure comprising of a periodic array of triangular phaseonium metamolecules arranged as a trefoil. We present a computational study of the spatial distribution of magnetic and electric fields of the probe light and the corresponding transmission and reflection, for various parameters of the optical and microwave beams. For specific values of the probing frequencies and control fields, the phaseonium can display either metallic or dielectric optical response. We find that, in the metallic regime, the phaseonium metamaterial structure supports extremely large transmission, with optical amplification at large enough intensity of the microwave thanks to strong surface plasmon coupling; while, in the dielectric regime without microwave excitation, the transmission bandwidth can be tuned by varying the control beam intensity. Implementation of such phaseonium metamaterial structure in solid-state systems, such as patterned crystals doped with rare-earth elements or dielectric matrices embedded with quantum dots, could enable a new class of actively tunable quantum metamaterials.

  11. Coherently Tunable Triangular Trefoil Phaseonium Metamaterial.

    PubMed

    Nguyen, D M; Soci, Cesare; Ooi, C H Raymond

    2016-01-01

    Phaseonium is a three-level Λ quantum system, in which a coherent microwave and an optical control (pump) beams can be used to actively modulate the dielectric response. Here we propose a new metamaterial structure comprising of a periodic array of triangular phaseonium metamolecules arranged as a trefoil. We present a computational study of the spatial distribution of magnetic and electric fields of the probe light and the corresponding transmission and reflection, for various parameters of the optical and microwave beams. For specific values of the probing frequencies and control fields, the phaseonium can display either metallic or dielectric optical response. We find that, in the metallic regime, the phaseonium metamaterial structure supports extremely large transmission, with optical amplification at large enough intensity of the microwave thanks to strong surface plasmon coupling; while, in the dielectric regime without microwave excitation, the transmission bandwidth can be tuned by varying the control beam intensity. Implementation of such phaseonium metamaterial structure in solid-state systems, such as patterned crystals doped with rare-earth elements or dielectric matrices embedded with quantum dots, could enable a new class of actively tunable quantum metamaterials. PMID:26879520

  12. Detail of front south wall section showing pediment with triangular ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of front south wall section showing pediment with triangular inset molding; camera facing north. - Mare Island Naval Shipyard, Old Administrative Offices, Eighth Street, north side between Railroad Avenue & Walnut Avenue, Vallejo, Solano County, CA

  13. 7. NORTH EXTERIOR SIDE SHOWING TRIANGULAR KNEE BRACE SUPPORTS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. NORTH EXTERIOR SIDE SHOWING TRIANGULAR KNEE BRACE SUPPORTS AND ENCLOSED PORCH SCREENED WINDOWS. VIEW TO SOUTH. - Big Creek Hydroelectric System, Powerhouse 8, Operator Cottage, Big Creek, Big Creek, Fresno County, CA

  14. Magnetoresistance measurement of permalloy thin film rings with triangular fins

    NASA Astrophysics Data System (ADS)

    Lai, Mei-Feng; Hsu, Chia-Jung; Liao, Chun-Neng; Chen, Ying-Jiun; Wei, Zung-Hang

    2010-01-01

    Magnetization reversals in permalloy rings controlled by nucleation sites using triangular fins at the same side and diagonal with respect to the field direction are demonstrated by magnetoresistance measurement and micromagnetic simulation. In the ring with triangular fins at the same side, there exists two-step reversal from onion to flux-closure state (or vortex state) and then from flux-closure (or vortex state) to reverse onion state; in the ring with diagonal triangular fins, one-step reversal occurs directly from onion to reverse onion state. The reversal processes are repeatable and controllable in contrast to an ideal ring without triangular fins where one-step and two-step reversals occur randomly in sweep-up and sweep-down processes.

  15. DETAIL VIEW OF LARGE BORE HOLE, SHOWING TRIANGULAR SHAPE FORMED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF LARGE BORE HOLE, SHOWING TRIANGULAR SHAPE FORMED BY CHISEL METHOD OF DRILLING - Granite Hill Plantation, Quarry No. 3, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  16. The emergence of grid cells: Intelligent design or just adaptation?

    PubMed

    Kropff, Emilio; Treves, Alessandro

    2008-01-01

    Individual medial entorhinal cortex (mEC) 'grid' cells provide a representation of space that appears to be essentially invariant across environments, modulo simple transformations, in contrast to multiple, rapidly acquired hippocampal maps; it may therefore be established gradually during rodent development. We explore with a simplified mathematical model the possibility that the self-organization of multiple grid fields into a triangular grid pattern may be a single-cell process, driven by firing rate adaptation and slowly varying spatial inputs. A simple analytical derivation indicates that triangular grids are favored asymptotic states of the self-organizing system, and computer simulations confirm that such states are indeed reached during a model learning process, provided it is sufficiently slow to effectively average out fluctuations. The interactions among local ensembles of grid units serve solely to stabilize a common grid orientation. Spatial information, in the real mEC network, may be provided by any combination of feedforward cortical afferents and feedback hippocampal projections from place cells, since either input alone is likely sufficient to yield grid fields. PMID:19021261

  17. A principle of economy predicts the functional architecture of grid cells.

    PubMed

    Wei, Xue-Xin; Prentice, Jason; Balasubramanian, Vijay

    2015-01-01

    Grid cells in the brain respond when an animal occupies a periodic lattice of 'grid fields' during navigation. Grids are organized in modules with different periodicity. We propose that the grid system implements a hierarchical code for space that economizes the number of neurons required to encode location with a given resolution across a range equal to the largest period. This theory predicts that (i) grid fields should lie on a triangular lattice, (ii) grid scales should follow a geometric progression, (iii) the ratio between adjacent grid scales should be √e for idealized neurons, and lie between 1.4 and 1.7 for realistic neurons, (iv) the scale ratio should vary modestly within and between animals. These results explain the measured grid structure in rodents. We also predict optimal organization in one and three dimensions, the number of modules, and, with added assumptions, the ratio between grid periods and field widths. PMID:26335200

  18. The Centre of Mass of a Triangular Plate

    ERIC Educational Resources Information Center

    Slusarenko, Viktor; Rojas, Roberto; Fuster, Gonzalo

    2008-01-01

    We present a derivation for the coordinates of the centre of mass--or centre of gravity--of a homogeneous triangular plate by using scaling and symmetry. We scale the triangular plate by a factor of 2 and divide its area into four plates identical to the original. By symmetry, we assert that the centre of mass of two identical masses lies at the…

  19. Electron mobility extraction in triangular gate-all-around Si nanowire junctionless nMOSFETs with cross-section down to 5 nm

    NASA Astrophysics Data System (ADS)

    Najmzadeh, Mohammad; Berthomé, Matthieu; Sallese, Jean-Michel; Grabinski, Wladek; Ionescu, Adrian M.

    2014-08-01

    In this paper, we report the first systematic study on electron mobility extraction in equilateral triangular gate-all-around Si nanowire junctionless nMOSFETs with cross-section down to 5 nm. 1 × 1019 cm-3 n-type channel doping, 5-20 nm Si nanowire width together with 2 nm SiO2 gate oxide thickness were used in the quasistationary TCAD device simulations of 100 nm long channel devices (VDS = 100 mV, T = 300 K). All the extensive studies were performed in strong accumulation regime, as a first step, using a constant electron mobility model (100 cm2/V s). The effects of non-uniform electron density due to corners and quantum confinement effects are investigated. Suppressing the bias-dependency of various key MOSFET parameters e.g. series resistance, by contact engineering, and the product of channel width and gate-channel capacitance, CWeff, by rounding the sharp corners, to improve the accuracy of mobility extraction in strong accumulation is addressed in details. A significant bias-dependent series resistance modulation is reported in GAA Si nanowire junctionless nMOSFETs, leading to a significant electron mobility extraction inaccuracy of ∼50% in strong accumulation regime.

  20. Chemical compounds isolated from Talinum triangulare (Portulacaceae).

    PubMed

    de Oliveira Amorim, Ana Paula; de Carvalho, Almir Ribeiro; Lopes, Norberto Peporine; Castro, Rosane Nora; de Oliveira, Marcia Cristina Campos; de Carvalho, Mário Geraldo

    2014-10-01

    This first phytochemical study of Talinum triangulare Leach (Portulacaceae), also known as 'cariru', which is a commonly consumed food in Northern Brazil, allowed the isolation and structural determination of four new compounds: one acrylamide, 3-N-(acryloyl, N-pentadecanoyl) propanoic acid (5), and three new phaeophytins named (15(1)S, 17R, 18R)-Ficuschlorin D acid (3(1),3(2)-didehydro-7-oxo-17(3)-O-phytyl-rhodochlorin-15-acetic acid), (13), Talichorin A (17R, 18R)-phaeophytin b-15(1)-hidroxy, 15(2),15(3)-acetyl-13(1)-carboxilic acid (14), and (15(1)S, 17R, 18R)-phaeophytin b peroxylactone or (15(1)S, 17R, 18R)-hydroperoxy-ficuschlorin D (16), together with twelve known compounds, including four phaeophytins (11,12, 15 and 17). The structures of the compounds were established on the basis of 1D and 2D NMR, IR, HRESI-MS spectra, including GC-MS, and HPLC-UV analysis, as well as comparisons with the literature data. The CD spectra data analysis were used to define the absolute configuration of phaeophytins 12 (13(2)R, 17R, 18R)-13(2)-hydroxyphaeophytin a, 13 and 16, 15 (15(1)S, 17R, 18R)-3(1),3(2)-didehydro-15(1)-hydroxyrhodochlorin-15-acetic acid δ-lactone-15(2)-methyl-17(3)-phytyl ester and 17 (17R, 18R)-purpurin 18-phytyl ester. PMID:24799228

  1. A 2D finite element wave equation solver based on triangular base elements

    NASA Astrophysics Data System (ADS)

    Van Eester, D.; Lerche, E.; Evrard, M.

    2009-11-01

    A finite element method based on the subdivision of the physical domain in triangular sub-domains in which simple local 'areale' coordinates are adopted is explored. The advantage of the method is that it straightforwardly allows grid refinement in regions where higher precision is required. The plasma model was kept simple for this 'proof-of-principle' exercise. Rather than accounting for the actual differential or integro-differential dielectric tensor, its locally uniform plasma equivalent was adopted for 3 possible choices: the cold plasma response, the full hot Stix/Swanson plasma tensor retaining all orders in finite Larmor radius (FLR) and the more common hot tensor, truncated at terms of second order in the Larmor radius.

  2. A 2D finite element wave equation solver based on triangular base elements

    SciTech Connect

    Van Eester, D.; Lerche, E.; Evrard, M.

    2009-11-26

    A finite element method based on the subdivision of the physical domain in triangular sub-domains in which simple local 'areale' coordinates are adopted is explored. The advantage of the method is that it straightforwardly allows grid refinement in regions where higher precision is required. The plasma model was kept simple for this 'proof-of-principle' exercise. Rather than accounting for the actual differential or integro-differential dielectric tensor, its locally uniform plasma equivalent was adopted for 3 possible choices: the cold plasma response, the full hot Stix/Swanson plasma tensor retaining all orders in finite Larmor radius (FLR) and the more common hot tensor, truncated at terms of second order in the Larmor radius.

  3. A multigrid method for steady Euler equations on unstructured adaptive grids

    NASA Technical Reports Server (NTRS)

    Riemslagh, Kris; Dick, Erik

    1993-01-01

    A flux-difference splitting type algorithm is formulated for the steady Euler equations on unstructured grids. The polynomial flux-difference splitting technique is used. A vertex-centered finite volume method is employed on a triangular mesh. The multigrid method is in defect-correction form. A relaxation procedure with a first order accurate inner iteration and a second-order correction performed only on the finest grid, is used. A multi-stage Jacobi relaxation method is employed as a smoother. Since the grid is unstructured a Jacobi type is chosen. The multi-staging is necessary to provide sufficient smoothing properties. The domain is discretized using a Delaunay triangular mesh generator. Three grids with more or less uniform distribution of nodes but with different resolution are generated by successive refinement of the coarsest grid. Nodes of coarser grids appear in the finer grids. The multigrid method is started on these grids. As soon as the residual drops below a threshold value, an adaptive refinement is started. The solution on the adaptively refined grid is accelerated by a multigrid procedure. The coarser multigrid grids are generated by successive coarsening through point removement. The adaption cycle is repeated a few times. Results are given for the transonic flow over a NACA-0012 airfoil.

  4. Field-design optimization with triangular heliostat pods

    NASA Astrophysics Data System (ADS)

    Domínguez-Bravo, Carmen-Ana; Bode, Sebastian-James; Heiming, Gregor; Richter, Pascal; Carrizosa, Emilio; Fernández-Cara, Enrique; Frank, Martin; Gauché, Paul

    2016-05-01

    In this paper the optimization of a heliostat field with triangular heliostat pods is addressed. The use of structures which allow the combination of several heliostats into a common pod system aims to reduce the high costs associated with the heliostat field and therefore reduces the Levelized Cost of Electricity value. A pattern-based algorithm and two pattern-free algorithms are adapted to handle the field layout problem with triangular heliostat pods. Under the Helio100 project in South Africa, a new small-scale Solar Power Tower plant has been recently constructed. The Helio100 plant has 20 triangular pods (each with 6 heliostats) whose positions follow a linear pattern. The obtained field layouts after optimization are compared against the reference field Helio100.

  5. Synthesis of triangular Au core-Ag shell nanoparticles

    SciTech Connect

    Rai, Akhilesh; Chaudhary, Minakshi; Ahmad, Absar; Bhargava, Suresh; Sastry, Murali . E-mail: msastry@tatachemicals.com

    2007-07-03

    In this paper, we demonstrate a simple and reproducible method for the synthesis of triangular Au core-Ag shell nanoparticles. The triangular gold core is obtained by the reduction of gold ions by lemongrass extract. Utilizing the negative charge on the gold nanotriangles, silver ions are bound to their surface and thereafter reduced by ascorbic acid under alkaline conditions. The thickness of the silver shell may be modulated by varying the pH of the reaction medium. The formation of the Au core-Ag shell triangular nanostructures has been followed by UV-vis-NIR Spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM) measurements. The sharp vertices of the triangles coupled with the core-shell structure is expected to have potential for application in surface enhanced Raman spectroscopy and in the sensitive detection of biomolecules.

  6. Higher-order electric multipole contributions to retarded non-additive three-body dispersion interaction energies between atoms: Equilateral triangle and collinear configurations

    SciTech Connect

    Salam, A.

    2013-12-28

    The theory of molecular quantum electrodynamics (QED) is used to calculate higher electric multipole contributions to the dispersion energy shift between three atoms or molecules arranged in a straight line or in an equilateral triangle configuration. As in two-body potentials, three-body dispersion interactions are viewed in the QED formalism to arise from exchange of virtual photons between coupled pairs of particles. By employing an interaction Hamiltonian that is quadratic in the electric displacement field means that third-order perturbation theory can be used to yield the energy shift for a particular combination of electric multipole polarizable species, with only six time-ordered diagrams needing to be summed over. Specific potentials evaluated include dipole-dipole-quadrupole (DDQ), dipole-quadrupole-quadrupole (DQQ), and dipole-dipole-octupole (DDO) terms. For the geometries of interest, near-zone limiting forms are found to exhibit an R{sup −11} dependence on separation distance for the DDQ interaction, and an R{sup −13} behaviour for DQQ and DDO shifts, agreeing with an earlier semi-classical computation. Retardation weakens the potential in each case by R{sup −1} in the far-zone. It is found that by decomposing the octupole moment into its irreducible components of weights-1 and -3 that the former contribution to the DDO potential may be taken to be a higher-order correction to the leading triple dipole energy shift.

  7. Algebraic turbulence models for the computation of two-dimensional high speed flows using unstructured grids

    NASA Technical Reports Server (NTRS)

    Rostand, Philippe

    1988-01-01

    The incorporation of algebraic turbulence models in a solver for the 2-D compressible Navier-Stokes equations using triangular grids is described. A practical way to use the Cebeci Smith model, and to modify it in separated regions is proposed. The ability of the model to predict high speed, perfect gas boundary layers is investigated from a numerical point of view.

  8. Direct Replacement of Arbitrary Grid-Overlapping by Non-Structured Grid

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing

    1994-01-01

    A new approach that uses nonstructured mesh to replace the arbitrarily overlapped structured regions of embedded grids is presented. The present methodology uses the Chimera composite overlapping mesh system so that the physical domain of the flowfield is subdivided into regions which can accommodate easily-generated grid for complex configuration. In addition, a Delaunay triangulation technique generates nonstructured triangular mesh which wraps over the interconnecting region of embedded grids. It is designed that the present approach, termed DRAGON grid, has three important advantages: eliminating some difficulties of the Chimera scheme, such as the orphan points and/or bad quality of interpolation stencils; making grid communication in a fully conservative way; and implementation into three dimensions is straightforward. A computer code based on a time accurate, finite volume, high resolution scheme for solving the compressible Navier-Stokes equations has been further developed to include both the Chimera overset grid and the nonstructured mesh schemes. For steady state problems, the local time stepping accelerates convergence based on a Courant - Friedrichs - Leury (CFL) number near the local stability limit. Numerical tests on representative steady and unsteady supersonic inviscid flows with strong shock waves are demonstrated.

  9. STATISTICAL PROPERTIES OF DESIGNS FOR SAMPLING CONTINUOUS FUNCTIONS IN TWO DIMENSIONS USING A TRIANGULAR GRID

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Environmental Monitoring and Assessment Program (EMAP) is a current initiative designed to identify and bound the extent, magnitude, and location of degradation or improvement in environmental condition. he proposed monitoring desi...

  10. 6. SOUTH EXTERIOR SIDE SHOWING TRIANGULAR KNEE BRACE SUPPORTS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. SOUTH EXTERIOR SIDE SHOWING TRIANGULAR KNEE BRACE SUPPORTS AND ENCLOSED PORCH SCREENED WINDOWS. ON BASIC FLOOR-PLAN FOR THE SIX-ROOM HOUSE THIS END WAS THE FRONT ENTRANCE. VIEW TO NORTH. - Big Creek Hydroelectric System, Powerhouse 8, Operator Cottage, Big Creek, Big Creek, Fresno County, CA

  11. Triangular congenital cataract morphology associated with prenatal methamphetamine exposure.

    PubMed

    Clarke, Michael E; Schloff, Susan; Bothun, Erick D

    2009-08-01

    Bilateral congenital cataracts are often characterized by morphology, etiology, and related conditions. We report a case of unique congenital cataracts with triangular morphology and associated prenatal methamphetamine exposure. Although this association is likely coincidental, the cataract's morphology in light of the specific timing of prenatal drug use deserves reporting. PMID:19464935

  12. Middle Passage in the Triangular Slave Trade: The West Indies

    ERIC Educational Resources Information Center

    Sawh, Ruth; Scales, Alice M.

    2006-01-01

    Our narrative focuses on the middle passage of the slave trade in the West Indies. Herein we describe why more men, women, and children were imported in the West Indies than other islands. Specifically, our aim was to address how slaves in the middle passage of the triangular slave trade were treated, how they sustained themselves, and how they…

  13. 14. INTERIOR, IN TRIANGULAR STORAGE AREA, IN SOUTHEAST AREA OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR, IN TRIANGULAR STORAGE AREA, IN SOUTHEAST AREA OF BUILDING (EAST OF LOCKER/OFFICE/HEAD AREA), LOOKING EAST-NORTHEAST. - Oakland Naval Supply Center, Pier Transit Shed, South of D Street between First & Second Streets, Oakland, Alameda County, CA

  14. Triangular Numbers, Gaussian Integers, and KenKen

    ERIC Educational Resources Information Center

    Watkins, John J.

    2012-01-01

    Latin squares form the basis for the recreational puzzles sudoku and KenKen. In this article we show how useful several ideas from number theory are in solving a KenKen puzzle. For example, the simple notion of triangular number is surprisingly effective. We also introduce a variation of KenKen that uses the Gaussian integers in order to…

  15. View of the demilune, a triangular piece of land that ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the demilune, a triangular piece of land that protected the rear of gorge wall of the fort. After the civil war, large earthen mounds were built in the demilune area. These mounds overlay four powder magazines and passageways to several gun emplacements. - Fort Pulaski, Cockspur Island, Savannah, Chatham County, GA

  16. Hierarchically triangular prism structured Co3O4: Self-supported fabrication and photocatalytic property

    EPA Science Inventory

    The formation of ammonium cobalt (II) phosphate was utilized to synthesize unprecedented 3D structures of Co3O4, triangular prisms and trunk-like structures, via a self-supported and organics-free method. The length of a triangular side of the prepared 3D triangular prisms is ~1...

  17. GridMan: A grid manipulation system

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.; Wang, Zhu

    1992-01-01

    GridMan is an interactive grid manipulation system. It operates on grids to produce new grids which conform to user demands. The input grids are not constrained to come from any particular source. They may be generated by algebraic methods, elliptic methods, hyperbolic methods, parabolic methods, or some combination of methods. The methods are included in the various available structured grid generation codes. These codes perform the basic assembly function for the various elements of the initial grid. For block structured grids, the assembly can be quite complex due to a large number of clock corners, edges, and faces for which various connections and orientations must be properly identified. The grid generation codes are distinguished among themselves by their balance between interactive and automatic actions and by their modest variations in control. The basic form of GridMan provides a much more substantial level of grid control and will take its input from any of the structured grid generation codes. The communication link to the outside codes is a data file which contains the grid or section of grid.

  18. Using adaptive sampling and triangular meshes for the processing and inversion of potential field data

    NASA Astrophysics Data System (ADS)

    Foks, Nathan Leon

    The interpretation of geophysical data plays an important role in the analysis of potential field data in resource exploration industries. Two categories of interpretation techniques are discussed in this thesis; boundary detection and geophysical inversion. Fault or boundary detection is a method to interpret the locations of subsurface boundaries from measured data, while inversion is a computationally intensive method that provides 3D information about subsurface structure. My research focuses on these two aspects of interpretation techniques. First, I develop a method to aid in the interpretation of faults and boundaries from magnetic data. These processes are traditionally carried out using raster grid and image processing techniques. Instead, I use unstructured meshes of triangular facets that can extract inferred boundaries using mesh edges. Next, to address the computational issues of geophysical inversion, I develop an approach to reduce the number of data in a data set. The approach selects the data points according to a user specified proxy for its signal content. The approach is performed in the data domain and requires no modification to existing inversion codes. This technique adds to the existing suite of compressive inversion algorithms. Finally, I develop an algorithm to invert gravity data for an interfacing surface using an unstructured mesh of triangular facets. A pertinent property of unstructured meshes is their flexibility at representing oblique, or arbitrarily oriented structures. This flexibility makes unstructured meshes an ideal candidate for geometry based interface inversions. The approaches I have developed provide a suite of algorithms geared towards large-scale interpretation of potential field data, by using an unstructured representation of both the data and model parameters.

  19. Three-dimensional hybrid grid generation using advancing front techniques

    NASA Technical Reports Server (NTRS)

    Steinbrenner, John P.; Noack, Ralph W.

    1995-01-01

    A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing fronts for both structured and unstructured grids. In this approach, structured grids are first generate independently around individual components of the geometry. Fronts are initialized on these structure grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria When no more viable structured cells exist further cells are advanced in an unstructured manner to close off the overall domain, resulting in a grid of 'hybrid' form. There are two primary advantages to the hybrid formulation. First, generating blocks with limited regard to topology eliminates the bottleneck encountered when a multiple block system is used to fully encapsulate a domain. Individual blocks may be generated free of external constraints, which will significantly reduce the generation time. Secondly, grid points near the body (presumably with high aspect ratio) will still maintain a structured (non-triangular or tetrahedral) character, thereby maximizing grid quality and solution accuracy near the surface.

  20. Improving mobile robot localization: grid-based approach

    NASA Astrophysics Data System (ADS)

    Yan, Junchi

    2012-02-01

    Autonomous mobile robots have been widely studied not only as advanced facilities for industrial and daily life automation, but also as a testbed in robotics competitions for extending the frontier of current artificial intelligence. In many of such contests, the robot is supposed to navigate on the ground with a grid layout. Based on this observation, we present a localization error correction method by exploring the geometric feature of the tile patterns. On top of the classical inertia-based positioning, our approach employs three fiber-optic sensors that are assembled under the bottom of the robot, presenting an equilateral triangle layout. The sensor apparatus, together with the proposed supporting algorithm, are designed to detect a line's direction (vertical or horizontal) by monitoring the grid crossing events. As a result, the line coordinate information can be fused to rectify the cumulative localization deviation from inertia positioning. The proposed method is analyzed theoretically in terms of its error bound and also has been implemented and tested on a customary developed two-wheel autonomous mobile robot.

  1. Regularized CT reconstruction on unstructured grid

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Lu, Yao; Ma, Xiangyuan; Xu, Yuesheng

    2016-04-01

    Computed tomography (CT) is an ill-posed problem. Reconstruction on unstructured grid reduces the computational cost and alleviates the ill-posedness by decreasing the dimension of the solution space. However, there was no systematic study on edge-preserving regularization methods for CT reconstruction on unstructured grid. In this work, we propose a novel regularization method for CT reconstruction on unstructured grid, such as triangular or tetrahedral meshes generated from the initial images reconstructed via analysis reconstruction method (e.g., filtered back-projection). The proposed regularization method is modeled as a three-term optimization problem, containing a weighted least square fidelity term motivated by the simultaneous algebraic reconstruction technique (SART). The related cost function contains two non-differentiable terms, which bring difficulty to the development of the fast solver. A fixed-point proximity algorithm with SART is developed for solving the related optimization problem, and accelerating the convergence. Finally, we compare the regularized CT reconstruction method to SART with different regularization methods. Numerical experiments demonstrated that the proposed regularization method on unstructured grid is effective to suppress noise and preserve edge features.

  2. [Echocardiograms of a monophasic triangular wave of the tricuspid valve].

    PubMed

    Tanimoto, M; Yamamoto, T; Makihata, S; Konishiike, A; Komasa, N; Kimura, S; Yamasaki, K; Sakuyama, K; Kawai, Y; Iwasaki, T

    1982-12-01

    The echocardiographic and clinical study was performed in six patients (three acute pulmonary embolism, one for each hypertensive cardiomyopathy, ischemic heart disease and primary pulmonary hypertension) who had a diastolic monophasic triangular pattern of the tricuspid valve echogram. Left-sided and right-sided IRT / square root R-R, ICT / square root R-R, PEP, Q-Mc and Q-Tc, and PEP / ET (IRT; isovolumic relaxation time, ICT; isovolumic contraction time, PEP; preejection time, Q-Mc or Q-Tc; interval of the Q wave of the ECG to the closing point of the mitral or tricuspid valve, and ET; ejection time) were measured from echocardiograms, and the comparisons of these parameters were made between two kinds of echogram with or without triangular pattern of the tricuspid valve. There were no significant differences in the left-sided parameters between the two kinds of echocardiograms. The mitral valve echogram showed a persistent M-shaped pattern irrespective of the pattern of the tricuspid valve. Right-sided IRT / square root R-R and ICT / square root R-R were significantly prolonged and Q-Tc was significantly shortened in the echogram with a triangular pattern of the tricuspid valve. Right ventricular (RV) catheterization was performed using a Swan-Ganz catheter in four patients with the triangular pattern of the tricuspid valve echogram. The mean pulmonary artery pressure ranged from 24 to 96 mmHg (40 mmHg on an average) and RV end-diastolic pressure from 8 to 17 mmHg (12 mmHg on An average). The possible explanation for the production of the triangular tricuspid valve echogram was an impaired early diastolic relaxation and increased stiffness of the RV due to the acute pressure overloading, resulting in a delayed opening and an early closing of the tricuspid valve. We conclude that a diastolic monophasic triangular pattern of the tricuspid valve echogram is a reflection of an impaired early diastolic relaxation and an increased end-diastolic stiffness of the RV

  3. Nurbs and grid generation

    SciTech Connect

    Barnhill, R.E.; Farin, G.; Hamann, B.

    1995-12-31

    This paper provides a basic overview of NURBS and their application to numerical grid generation. Curve/surface smoothing, accelerated grid generation, and the use of NURBS in a practical grid generation system are discussed.

  4. Highly efficient reflective Dammann grating with a triangular structure.

    PubMed

    Wang, Jin; Zhou, Changhe; Ma, Jianyong; Zong, Yonghong; Jia, Wei

    2016-07-01

    A highly efficient reflective Dammann grating with a triangular structure operating at 1064 nm wavelength under normal incidence for TE polarization is designed and fabricated. Rigorous coupled wave analysis and particle swarm optimization algorithms are adopted to design and analyze the properties. The triangular reflective grating could cancel the 0th order, and the mechanism is clarified by the simplified modal method. The gratings are fabricated by direct laser writing lithography. The diffraction efficiency of fabricated grating is more than 86% at 1064 nm wavelength (97.6% in theory). This reflective grating should be a useful optical element in the field of high-power lasers as well as other reflective applications. PMID:27409211

  5. Vibration of clamped right triangular thin plates: Accurate simplified solutions

    NASA Astrophysics Data System (ADS)

    Saliba, H. T.

    1994-12-01

    Use of the superposition techniques in the free-vibration analyses of thin plates, as they were first introduced by Gorman, has provided simple and effective solutions to a vast number of rectangular plate problems. The method has also been extended to nonrectangular plates such as triangular and trapezoidal plates. However, serious difficulties were encountered in some of these analyses. These difficulties were discussed and obviated in Salibra, 1990. This reference, however, dealt only with simple support conditions, leading to a simple, highly accurate, and very economical solution to the free-vibration problem of simply supported right angle triangular plates. The purpose of this Note is to show that the modified superposition method of Salibra, 1990 is also applicable to clamped-edge conditions. This is accomplished through the application of this method to the title problem.

  6. A Novel Triangular Shaped UWB Fractal Antenna Using Circular Slot

    NASA Astrophysics Data System (ADS)

    Shahu, Babu Lal; Pal, Srikanta; Chattoraj, Neela

    2016-03-01

    The article presents the design of triangular shaped fractal based antenna with circular slot for ultra wideband (UWB) application. The antenna is fed using microstrip line and has overall dimension of 24×24×1.6 mm3. The proposed antenna is covering the wide frequency bandwidth of 2.99-11.16 GHz and is achieved using simple fractal based triangular-circular geometries and asymmetrical ground plane. The antenna is designed and parametrical studies are performed using method of moment (MOM) based Full Wave Electromagnetic (EM) software Simulator Zeland IE3D. The prototype of proposed antenna is fabricated and tested to compare the simulated and measured results of various antenna parameters. The antenna has good impedance bandwidth, nearly constant gain and stable radiation pattern. Measured return loss shows fair agreement with simulated one. Also measured group delay variation obtained is less than 1.0 ns, which proves good time domain behavior of the proposed antenna.

  7. Data Grid Management Systems

    NASA Technical Reports Server (NTRS)

    Moore, Reagan W.; Jagatheesan, Arun; Rajasekar, Arcot; Wan, Michael; Schroeder, Wayne

    2004-01-01

    The "Grid" is an emerging infrastructure for coordinating access across autonomous organizations to distributed, heterogeneous computation and data resources. Data grids are being built around the world as the next generation data handling systems for sharing, publishing, and preserving data residing on storage systems located in multiple administrative domains. A data grid provides logical namespaces for users, digital entities and storage resources to create persistent identifiers for controlling access, enabling discovery, and managing wide area latencies. This paper introduces data grids and describes data grid use cases. The relevance of data grids to digital libraries and persistent archives is demonstrated, and research issues in data grids and grid dataflow management systems are discussed.

  8. Dual band triangular slotted stacked microstrip antenna for wireless applications

    NASA Astrophysics Data System (ADS)

    Singh, Vinod; Ali, Zakir; Singh, Ashutosh; Ayub, Shahanaz

    2013-06-01

    In this paper stacked configuration of microstrip antenna is used to produce dual wide band which is suitable for various wireless applications. Using triangular slot and stacking of foam substrate of dielectric constant 1, two bands of bandwidth 18.70% and 12.10% is obtained. The antenna is fed by coaxial probe feeding technique. The proposed patch antenna is designed on the foam substrate and simulated on the Zeland IE3D software.

  9. Triangular temporal alopecia: a rare case in adulthood.

    PubMed

    Jutla, Simran; Patel, Vikas; Rajpara, Anand

    2016-01-01

    Triangular temporal alopecia (TTA) is an asymptomatic, circumscribed, non-scarring form of alopecia that affects the temporal scalp. Although TTA is most often seen between ages two and nine, the condition has rarely been described in adults. If unrecognized, adulthood TTA can be misdiagnosed, leading to unnecessary steroid treatment. This case report describes TTA in an adult woman who had no prior history of alopecia. It also reviews the existing TTA literature, describing the diagnosis and management of this condition. PMID:27136639

  10. A Step-Wise Approach to Elicit Triangular Distributions

    NASA Technical Reports Server (NTRS)

    Greenberg, Marc W.

    2013-01-01

    Adapt/combine known methods to demonstrate an expert judgment elicitation process that: 1.Models expert's inputs as a triangular distribution, 2.Incorporates techniques to account for expert bias and 3.Is structured in a way to help justify expert's inputs. This paper will show one way of "extracting" expert opinion for estimating purposes. Nevertheless, as with most subjective methods, there are many ways to do this.

  11. Mott Insulating Ground State on a Triangular Surface Lattice

    SciTech Connect

    Weitering, H.; Shi, X.; Weitering, H.; Johnson, P.; Chen, J.; DiNardo, N.; DiNardo, N.; Kempa, K.

    1997-02-01

    Momentum-resolved direct and inverse photoemission spectra of the K/Si(111)-({radical}(3){times}{radical}(3))R30{degree}-B interface reveals the presence of strongly localized surface states. The K overlayer remains nonmetallic up to the saturation coverage. This system most likely presents the first experimental realization of a frustrated spin 1/2 Heisenberg antiferromagnet on a two-dimensional triangular lattice. {copyright} {ital 1997} {ital The American Physical Society}

  12. RNA folding on the 3D triangular lattice

    PubMed Central

    2009-01-01

    Background Difficult problems in structural bioinformatics are often studied in simple exact models to gain insights and to derive general principles. Protein folding, for example, has long been studied in the lattice model. Recently, researchers have also begun to apply the lattice model to the study of RNA folding. Results We present a novel method for predicting RNA secondary structures with pseudoknots: first simulate the folding dynamics of the RNA sequence on the 3D triangular lattice, next extract and select a set of disjoint base pairs from the best lattice conformation found by the folding simulation. Experiments on sequences from PseudoBase show that our prediction method outperforms the HotKnot algorithm of Ren, Rastegari, Condon and Hoos, a leading method for RNA pseudoknot prediction. Our method for RNA secondary structure prediction can be adapted into an efficient reconstruction method that, given an RNA sequence and an associated secondary structure, finds a conformation of the sequence on the 3D triangular lattice that realizes the base pairs in the secondary structure. We implemented a suite of computer programs for the simulation and visualization of RNA folding on the 3D triangular lattice. These programs come with detailed documentation and are accessible from the companion website of this paper at http://www.cs.usu.edu/~mjiang/rna/DeltaIS/. Conclusion Folding simulation on the 3D triangular lattice is effective method for RNA secondary structure prediction and lattice conformation reconstruction. The visualization software for the lattice conformations of RNA structures is a valuable tool for the study of RNA folding and is a great pedagogic device. PMID:19891777

  13. New triangular and quadrilateral plate-bending finite elements

    NASA Technical Reports Server (NTRS)

    Narayanaswami, R.

    1974-01-01

    A nonconforming plate-bending finite element of triangular shape and associated quadrilateral elements are developed. The transverse displacement is approximated within the element by a quintic polynomial. The formulation takes into account the effects of transverse shear deformation. Results of the static and dynamic analysis of a square plate, with edges simply supported or clamped, are compared with exact solutions. Good accuracy is obtained in all calculations.

  14. Effective Lateral Canthal Lengthening with Triangular Rotation Flap

    PubMed Central

    2016-01-01

    In Korea, lateral canthoplasty, along with medial epicanthoplasty, has become popular over the past years to widen the horizontal length of the palpebral fissure. However, the effect of the surgery differs greatly depending on the shape and structure of the eyes. If over-widened, complications such as eversion, scarring, and conjunctival exposure may occur. Thus, the author of this study suggests a more effective and safe method for lateral canthal lengthening that causes minimal complications. A total of 236 patients underwent lateral canthoplasty between July 2007 and December 2015. For each patient, a triangular flap 4–5 mm away from the lateral canthus was elevated and rotated 45 degrees laterally while the continuity of the lower eyelid gray line was maintained. A new lateral canthus was created by fixating the rotation flap to the lateral orbital rim with minimal skin trimming and tension-free sutures, preventing relapse and maintaining a triangular shape. In more than 95% of cases, effective and satisfactory extension was achieved. On average, a 3 mm extension of the lateral canthus was achieved. There were minor complications such as wound dehiscence, webbing, and scarring, which were easily corrected. The author not only extended the lateral canthus 3–4 mm laterally but also maintained the continuity of the gray line on the lower lid as a more natural-looking triangular shape, while minimizing complications such as webbing and conjunctival exposure. PMID:27462562

  15. Development of Negative Triangularity Plasmas in DIII-D

    NASA Astrophysics Data System (ADS)

    Walker, M. L.

    2015-11-01

    We report on development of DIII-D electron cyclotron heated discharges with controlled negative triangularity plasma shapes, to evaluate the effect on electron heat transport in L-mode plasmas, as reported on TCV. Analysis of TCV data found that negative triangularity exerts a stabilizing influence on the trapped electron mode, the dominant instability in the conditions of those experiments. Major objectives of the DIII-D development are producing complementary plasmas, one with negative and one with positive triangularity, approximately symmetric in major radial coordinate and having similar density and current profiles. Major constraints include selection of plasma parameters and toroidal field to optimize fluctuation diagnostic measurements while preventing transition from L- to H-mode and deposition of EC heating power near the q=1 surface to limit sawteeth. Issues discussed are definition of control scenarios by which the pair of shapes are accessed and their resulting controllability under the constraints imposed by DIII-D shaping control. Supported by US DOE under DE-FC02-04ER54698.

  16. DEM Based Modeling: Grid or TIN? The Answer Depends

    NASA Astrophysics Data System (ADS)

    Ogden, F. L.; Moreno, H. A.

    2015-12-01

    The availability of petascale supercomputing power has enabled process-based hydrological simulations on large watersheds and two-way coupling with mesoscale atmospheric models. Of course with increasing watershed scale come corresponding increases in watershed complexity, including wide ranging water management infrastructure and objectives, and ever increasing demands for forcing data. Simulations of large watersheds using grid-based models apply a fixed resolution over the entire watershed. In large watersheds, this means an enormous number of grids, or coarsening of the grid resolution to reduce memory requirements. One alternative to grid-based methods is the triangular irregular network (TIN) approach. TINs provide the flexibility of variable resolution, which allows optimization of computational resources by providing high resolution where necessary and low resolution elsewhere. TINs also increase required effort in model setup, parameter estimation, and coupling with forcing data which are often gridded. This presentation discusses the costs and benefits of the use of TINs compared to grid-based methods, in the context of large watershed simulations within the traditional gridded WRF-HYDRO framework and the new TIN-based ADHydro high performance computing watershed simulator.

  17. Grid generation for the solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.; Erlebacher, Gordon

    1987-01-01

    A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given.

  18. Accuracy of Gradient Reconstruction on Grids with High Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Thomas, James

    2008-01-01

    Gradient approximation methods commonly used in unstructured-grid finite-volume schemes intended for solutions of high Reynolds number flow equations are studied comprehensively. The accuracy of gradients within cells and within faces is evaluated systematically for both node-centered and cell-centered formulations. Computational and analytical evaluations are made on a series of high-aspect-ratio grids with different primal elements, including quadrilateral, triangular, and mixed element grids, with and without random perturbations to the mesh. Both rectangular and cylindrical geometries are considered; the latter serves to study the effects of geometric curvature. The study shows that the accuracy of gradient reconstruction on high-aspect-ratio grids is determined by a combination of the grid and the solution. The contributors to the error are identified and approaches to reduce errors are given, including the addition of higher-order terms in the direction of larger mesh spacing. A parameter GAMMA characterizing accuracy on curved high-aspect-ratio grids is discussed and an approximate-mapped-least-square method using a commonly-available distance function is presented; the method provides accurate gradient reconstruction on general grids. The study is intended to be a reference guide accompanying the construction of accurate and efficient methods for high Reynolds number applications

  19. Grid generation for the solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.; Erlebacher, Gordon

    1989-01-01

    A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given.

  20. Spatial services grid

    NASA Astrophysics Data System (ADS)

    Cao, Jian; Li, Qi; Cheng, Jicheng

    2005-10-01

    This paper discusses the concept, key technologies and main application of Spatial Services Grid. The technologies of Grid computing and Webservice is playing a revolutionary role in studying the spatial information services. The concept of the SSG (Spatial Services Grid) is put forward based on the SIG (Spatial Information Grid) and OGSA (open grid service architecture). Firstly, the grid computing is reviewed and the key technologies of SIG and their main applications are reviewed. Secondly, the grid computing and three kinds of SIG (in broad sense)--SDG (spatial data grid), SIG (spatial information grid) and SSG (spatial services grid) and their relationships are proposed. Thirdly, the key technologies of the SSG (spatial services grid) is put forward. Finally, three representative applications of SSG (spatial services grid) are discussed. The first application is urban location based services gird, which is a typical spatial services grid and can be constructed on OGSA (Open Grid Services Architecture) and digital city platform. The second application is region sustainable development grid which is the key to the urban development. The third application is Region disaster and emergency management services grid.

  1. Algebraic turbulence models for the computation of two-dimensional high-speed flows using unstructured grids

    NASA Technical Reports Server (NTRS)

    Rostand, Philippe

    1989-01-01

    The incorporation of algebraic turbulence models in a solver for the 2-D compressible Navier-Stokes equations using triangular grids is described. A practial way to use the Cebeci Smith model, and to modify it in separated regions is proposed. The ability of the model to predict high speed, perfect gas boundary layers is investigated from a numerical point of view.

  2. Solving the problem of non-stationary filtration of substance by the discontinuous Galerkin method on unstructured grids

    NASA Astrophysics Data System (ADS)

    Zhalnin, R. V.; Ladonkina, M. E.; Masyagin, V. F.; Tishkin, V. F.

    2016-06-01

    A numerical algorithm is proposed for solving the problem of non-stationary filtration of substance in anisotropic media by the Galerkin method with discontinuous basis functions on unstructured triangular grids. A characteristic feature of this method is that the flux variables are considered on the dual grid. The dual grid comprises median control volumes around the nodes of the original triangular grid. The flux values of the quantities on the boundary of an element are calculated with the help of stabilizing additions. For averaging the permeability tensor over the cells of the dual grid, the method of support operators is applied. The method is studied on the example of a two-dimensional boundary value problem. The convergence and approximation of the numerical method are analyzed, and results of mathematical modeling are presented. The numerical results demonstrate the applicability of this approach for solving problems of non-stationary filtration of substance in anisotropic media by the discontinuous Galerkin method on unstructured triangular grids.

  3. Validation of an Adaptive Triangular Discontinuous Galerkin Shallow Water Model for the 2011 Tohoku Tsunami

    NASA Astrophysics Data System (ADS)

    Vater, Stefan; Behrens, Jörn

    2016-04-01

    We apply a tsunami simulation framework, which is based on depth-integrated hydrodynamic model equations, to the 2011 Tohoku tsunami event. While this model has been previously validated for analytic test cases and laboratory experiments, here it is applied to earthquake sources which are based on seismic inversion. Simulated wave heights and runup at the coast are compared to actual measurements. The discretization is based on a second-order Runge-Kutta discontinuous Galerkin (RKDG) scheme on triangular grids and features a robust wetting and drying scheme for the simulation of inundation events at the coast. Adaptive mesh refinement enables the efficient computation of large domains, while at the same time it allows for high local resolution and geometric accuracy. This work is part of the ASCETE (Advanced Simulation of Coupled Earthquake and Tsunami Events) project, which aims at an improved understanding of the coupling between the earthquake and the generated tsunami event. In this course, a coupled simulation framework has been developed which couples physics-based rupture generation with the presented hydrodynamic tsunami propagation and inundation model.

  4. Hybrid Grid Generation Using NW Grid

    SciTech Connect

    Jones-Oliveira, Janet B.; Oliveira, Joseph S.; Trease, Lynn L.; Trease, Harold E.; B.K. Soni, J. Hauser, J.F. Thompson, P.R. Eiseman

    2000-09-01

    We describe the development and use of a hybrid n-dimensional grid generation system called NWGRID. The Applied Mathematics Group at Pacific Northwest National Laboratory (PNNL) is developing this tool to support the Laboratory's computational science efforts in chemistry, biology, engineering and environmental (subsurface and atmospheric) modeling. NWGRID is the grid generation system, which is designed for multi-scale, multi-material, multi-physics, time-dependent, 3-D, hybrid grids that are either statically adapted or evolved in time. NWGRID'S capabilities include static and dynamic grids, hybrid grids, managing colliding surfaces, and grid optimization[using reconnections, smoothing, and adaptive mesh refinement (AMR) algorithms]. NWGRID'S data structure can manage an arbitrary number of grid objects, each with an arbitrary number of grid attributes. NWGRID uses surface geometry to build volumes by using combinations of Boolean operators and order relations. Point distributions can be input, generated using either ray shooting techniques or defined point-by-point. Connectivity matrices are then generated automatically for all variations of hybrid grids.

  5. Supersolid Phase with Cold Polar Molecules on a Triangular Lattice

    SciTech Connect

    Pollet, L.; Picon, J. D.; Buechler, H. P.; Troyer, M.

    2010-03-26

    We study a system of heteronuclear molecules on a triangular lattice and analyze the potential of this system for the experimental realization of a supersolid phase. The ground state phase diagram contains superfluid, solid, and supersolid phases. At finite temperatures and strong interactions there is an additional emulsion region, in contrast with similar models with short-range interactions. We derive the maximal critical temperature T{sub c} and the corresponding entropy S/N=0.04(1) for supersolidity and find feasible experimental conditions for its realization.

  6. Modelling of Motion of Bodies Near Triangular Lagrangian Points

    NASA Astrophysics Data System (ADS)

    Bobrov, O. A.

    In this paper, we consider a system of three bodies connected by gravity, two of which are of comparable mass (the Sun and Jupiter), and the third is negligible and it is located in one of the triangular Lagrange points (restricted 3 - body problem). We used the equations of motion in a planar coordinate system that rotates together with massive bodies. Several programs have been written in the programming environment Pascal ABC, in order to build the trajectory of a small body, to indicate the osculating orbit around a massive body, to display equipotential surfaces.

  7. Liquid Crystalline Networks Composed of Pentagonal, Square, and Triangular Cylinders

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Zeng, Xiangbing; Baumeister, Ute; Ungar, Goran; Tschierske, Carsten

    2005-01-01

    T-shaped molecules are designed in such a way that they self-organize into nanoscale liquid crystalline honeycombs based on polygons with any chosen number of sides. One of the phases reported here is a periodic organization of identical pentagonal cylinders; the other one is a structure composed of square-shaped and triangular cylinders in the ratio 2:1. These two different packing motifs represent duals of the same topological class. The generalization of the concept applied here allows the prediction of a whole range of unusual complex liquid crystalline phases.

  8. Triangular preconditioners for saddle point problems with a penalty term

    SciTech Connect

    Klawonn, A.

    1996-12-31

    Triangular preconditioners for a class of saddle point problems with a penalty term are considered. An important example is the mixed formulation of the pure displacement problem in linear elasticity. It is shown that the spectrum of the preconditioned system is contained in a real, positive interval, and that the interval bounds can be made independent of the discretization and penalty parameters. This fact is used to construct bounds of the convergence rate of the GMRES method used with an energy norm. Numerical results are given for GMRES and BI-CGSTAB.

  9. Efficient demagnetization protocol for the artificial triangular spin ice

    NASA Astrophysics Data System (ADS)

    Rodrigues, J. H.; Mól, L. A. S.; Moura-Melo, W. A.; Pereira, A. R.

    2013-08-01

    In this work, we study demagnetization protocols for an artificial spin ice in a triangular geometry. Our results show that a simple hysteresis-like process is very efficient in driving the system to its ground state, even for a relatively strong disorder in the system, confirming previous expectations. In addition, transitions between the magnetized state and the ground state were observed to be mediated by the creation and propagation of vertices that behave like magnetic monopoles pseudo-particles. This is an important step towards a more detailed experimental study of monopole-like excitations in artificial spin ice systems.

  10. Vibration of clamped right triangular thin plates: Accurate simplified solutions

    NASA Astrophysics Data System (ADS)

    Saliba, H. T.

    1994-12-01

    Use of the superposition techniques in the free-vibration analyses of thin plates, as they were first introduced by Gorman, has provided simple and effective solutions to a vast number of rectangular plate problems. A modified superposition method is presented that is a noticeable improvement over existing techniques. It deals only with simple support conditions, leading to a simple, highly accurate, and very economical solution to the free-vibration problem of simply-supported right angle triangular plates. The modified method is also applicable to clamped-edge conditions.

  11. Charge frustration in a triangular triple quantum dot.

    PubMed

    Seo, M; Choi, H K; Lee, S-Y; Kim, N; Chung, Y; Sim, H-S; Umansky, V; Mahalu, D

    2013-01-25

    We experimentally investigate the charge (isospin) frustration induced by a geometrical symmetry in a triangular triple quantum dot. We observe the ground-state charge configurations of sixfold degeneracy, the manifestation of the frustration. The frustration results in omnidirectional charge transport, and it is accompanied by nearby nontrivial triple degenerate states in the charge stability diagram. The findings agree with a capacitive interaction model. We also observe unusual transport by the frustration, which might be related to elastic cotunneling and the interference of trajectories through the dot. This work demonstrates a unique way of studying geometrical frustration in a controllable way. PMID:25166188

  12. Fuzzy Γ-Hyperideals in Γ-Hypersemirings by Using Triangular Norms

    PubMed Central

    Ersoy, B. A.; Davvaz, B.; Onar, S.; Leoreanu-Fotea, V.

    2014-01-01

    The concept of Γ-semihyperrings was introduced by Dehkordi and Davvaz as a generalization of semirings, semihyperrings, and Γ-semiring. In this paper, by using the notion of triangular norms, we define the concept of triangular fuzzy sub-Γ-semihyperrings as well as triangular fuzzy Γ-hyperideals of a Γ-semihyperring, and we study a few results in this respect. PMID:24967434

  13. Parallel grid population

    DOEpatents

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  14. Triangular Black Phosphorus Atomic Layers by Liquid Exfoliation.

    PubMed

    Seo, Soonjoo; Lee, Hyun Uk; Lee, Soon Chang; Kim, Yooseok; Kim, Hyeran; Bang, Junhyeok; Won, Jonghan; Kim, Youngjun; Park, Byoungnam; Lee, Jouhahn

    2016-01-01

    Few-layer black phosphorus (BP) is the most promising material among the two-dimensional materials due to its layered structure and the excellent semiconductor properties. Currently, thin BP atomic layers are obtained mostly by mechanical exfoliation of bulk BP, which limits applications in thin-film based electronics due to a scaling process. Here we report highly crystalline few-layer black phosphorus thin films produced by liquid exfoliation. We demonstrate that the liquid-exfoliated BP forms a triangular crystalline structure on SiO2/Si (001) and amorphous carbon. The highly crystalline BP layers are faceted with a preferred orientation of the (010) plane on the sharp edge, which is an energetically most favorable facet according to the density functional theory calculations. Our results can be useful in understanding the triangular BP structure for large-area applications in electronic devices using two-dimensional materials. The sensitivity and selectivity of liquid-exfoliated BP to gas vapor demonstrate great potential for practical applications as sensors. PMID:27026070

  15. Triangular Black Phosphorus Atomic Layers by Liquid Exfoliation

    NASA Astrophysics Data System (ADS)

    Seo, Soonjoo; Lee, Hyun Uk; Lee, Soon Chang; Kim, Yooseok; Kim, Hyeran; Bang, Junhyeok; Won, Jonghan; Kim, Youngjun; Park, Byoungnam; Lee, Jouhahn

    2016-03-01

    Few-layer black phosphorus (BP) is the most promising material among the two-dimensional materials due to its layered structure and the excellent semiconductor properties. Currently, thin BP atomic layers are obtained mostly by mechanical exfoliation of bulk BP, which limits applications in thin-film based electronics due to a scaling process. Here we report highly crystalline few-layer black phosphorus thin films produced by liquid exfoliation. We demonstrate that the liquid-exfoliated BP forms a triangular crystalline structure on SiO2/Si (001) and amorphous carbon. The highly crystalline BP layers are faceted with a preferred orientation of the (010) plane on the sharp edge, which is an energetically most favorable facet according to the density functional theory calculations. Our results can be useful in understanding the triangular BP structure for large-area applications in electronic devices using two-dimensional materials. The sensitivity and selectivity of liquid-exfoliated BP to gas vapor demonstrate great potential for practical applications as sensors.

  16. Honeycomb and triangular domain wall networks in heteroepitaxial systems.

    PubMed

    Elder, K R; Chen, Z; Elder, K L M; Hirvonen, P; Mkhonta, S K; Ying, S-C; Granato, E; Huang, Zhi-Feng; Ala-Nissila, T

    2016-05-01

    A comprehensive study is presented for the influence of misfit strain, adhesion strength, and lattice symmetry on the complex Moiré patterns that form in ultrathin films of honeycomb symmetry adsorbed on compact triangular or honeycomb substrates. The method used is based on a complex Ginzburg-Landau model of the film that incorporates elastic strain energy and dislocations. The results indicate that different symmetries of the heteroepitaxial systems lead to distinct types of domain wall networks and phase transitions among various surface Moiré patterns and superstructures. More specifically, the results show a dramatic difference between the phase diagrams that emerge when a honeycomb film is adsorbed on substrates of honeycomb versus triangular symmetry. It is also shown that in the small deformation limit, the complex Ginzburg-Landau model reduces to a two-dimensional sine-Gordon free energy form. This free energy can be solved exactly for one dimensional patterns and reveals the role of domains walls and their crossings in determining the nature of the phase diagrams. PMID:27155643

  17. Honeycomb and triangular domain wall networks in heteroepitaxial systems

    NASA Astrophysics Data System (ADS)

    Elder, K. R.; Chen, Z.; Elder, K. L. M.; Hirvonen, P.; Mkhonta, S. K.; Ying, S.-C.; Granato, E.; Huang, Zhi-Feng; Ala-Nissila, T.

    2016-05-01

    A comprehensive study is presented for the influence of misfit strain, adhesion strength, and lattice symmetry on the complex Moiré patterns that form in ultrathin films of honeycomb symmetry adsorbed on compact triangular or honeycomb substrates. The method used is based on a complex Ginzburg-Landau model of the film that incorporates elastic strain energy and dislocations. The results indicate that different symmetries of the heteroepitaxial systems lead to distinct types of domain wall networks and phase transitions among various surface Moiré patterns and superstructures. More specifically, the results show a dramatic difference between the phase diagrams that emerge when a honeycomb film is adsorbed on substrates of honeycomb versus triangular symmetry. It is also shown that in the small deformation limit, the complex Ginzburg-Landau model reduces to a two-dimensional sine-Gordon free energy form. This free energy can be solved exactly for one dimensional patterns and reveals the role of domains walls and their crossings in determining the nature of the phase diagrams.

  18. Triangular Black Phosphorus Atomic Layers by Liquid Exfoliation

    PubMed Central

    Seo, Soonjoo; Lee, Hyun Uk; Lee, Soon Chang; Kim, Yooseok; Kim, Hyeran; Bang, Junhyeok; Won, Jonghan; Kim, Youngjun; Park, Byoungnam; Lee, Jouhahn

    2016-01-01

    Few-layer black phosphorus (BP) is the most promising material among the two-dimensional materials due to its layered structure and the excellent semiconductor properties. Currently, thin BP atomic layers are obtained mostly by mechanical exfoliation of bulk BP, which limits applications in thin-film based electronics due to a scaling process. Here we report highly crystalline few-layer black phosphorus thin films produced by liquid exfoliation. We demonstrate that the liquid-exfoliated BP forms a triangular crystalline structure on SiO2/Si (001) and amorphous carbon. The highly crystalline BP layers are faceted with a preferred orientation of the (010) plane on the sharp edge, which is an energetically most favorable facet according to the density functional theory calculations. Our results can be useful in understanding the triangular BP structure for large-area applications in electronic devices using two-dimensional materials. The sensitivity and selectivity of liquid-exfoliated BP to gas vapor demonstrate great potential for practical applications as sensors. PMID:27026070

  19. SHIFT: a distributed runoff model using irregular triangular facets*1

    NASA Astrophysics Data System (ADS)

    Palacios-Vélez, Oscar Luis; Cuevas-Renaud, Baltasar

    1992-06-01

    SHIFT (Sistema HIdrológico de Facetas Triangulares) is a computational system that allows for the: (1) creation, editing and visualization of a watershed Digital Elevation Model (DEM), based on the Triangular Irregular Network (TIN) concepts; (2) input and interpolation of soil, river-bed, and rainfall data; and (3) calculation and routing of runoff in all the facets and reaches. The TIN DEM model is constructed from a set of points, where the slope changes abruptly. Afterwards, the drainage network is automatically identified and an interactive editor allows the addition or deletion of points to eliminate network discontinuities. Rainfall data are interpolated by means of a procedure based on the minimization of the bending energy of a thin plate. In order to calculate and route the runoff, the system determines the routing sequence of river segments and for each one: identifies the facets forming the contributing area; and determines a cascade of overland flow planes. Then, for each element and time interval, the system calculates the infiltration and routes the resultant runoff by a numerical solution of the kinematic wave equations. This information is saved and the user can see the hydrograph for any facet or reach.

  20. Triangular covariance factorizations for. Ph.D. Thesis. - Calif. Univ.

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.

    1976-01-01

    An improved computational form of the discrete Kalman filter is derived using an upper triangular factorization of the error covariance matrix. The covariance P is factored such that P = UDUT where U is unit upper triangular and D is diagonal. Recursions are developed for propagating the U-D covariance factors together with the corresponding state estimate. The resulting algorithm, referred to as the U-D filter, combines the superior numerical precision of square root filtering techniques with an efficiency comparable to that of Kalman's original formula. Moreover, this method is easily implemented and involves no more computer storage than the Kalman algorithm. These characteristics make the U-D method an attractive realtime filtering technique. A new covariance error analysis technique is obtained from an extension of the U-D filter equations. This evaluation method is flexible and efficient and may provide significantly improved numerical results. Cost comparisons show that for a large class of problems the U-D evaluation algorithm is noticeably less expensive than conventional error analysis methods.

  1. RKKY interaction in triangular MoS2 nanoflakes

    NASA Astrophysics Data System (ADS)

    Mastrogiuseppe, Diego; Avalos-Ovando, Oscar; Ulloa, Sergio

    Transition-metal dichalcogenides (TMDs), such as MoS2, possess unique electronic and optical properties, making them promising for optospintronics. Exfoliation and CVD growth processes produce nanoflakes of different shapes, often triangular with zigzag edges. Magnetic impurities in this material interact indirectly through the TMD conduction electrons/holes. Using an effective 3-orbital tight-binding model, we study the Ruderman-Kittel-Kasuya-Yosida interaction between magnetic impurities in p-doped triangular flakes with zigzag termination. We analyze the interaction as function of impurity separation along high symmetry directions in the nanoflake, considering hybridization to different Mo orbitals, and different fillings. The interaction is anisotropic for impurities in the interior of the flake. However, when impurities lie on the edges of the crystallite, the effective exchange is Ising-like, reflecting the presence of z2-orbitals associated with edge states. Other interactions are possible by selecting impurity positions and orbital character of the states in their neighborhood. Our results can be tested with local probes, such as spin-polarized STM Supported by NSF DMR-1508325.

  2. Adaptive grid finite element model of the tokamak scrapeoff layer

    SciTech Connect

    Kuprat, A.P.; Glasser, A.H.

    1995-07-01

    The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.

  3. Method of grid generation

    DOEpatents

    Barnette, Daniel W.

    2002-01-01

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  4. Dynamic Power Grid Simulation

    Energy Science and Technology Software Center (ESTSC)

    2015-09-14

    GridDyn is a part of power grid simulation toolkit. The code is designed using modern object oriented C++ methods utilizing C++11 and recent Boost libraries to ensure compatibility with multiple operating systems and environments.

  5. IPG Power Grid Overview

    NASA Technical Reports Server (NTRS)

    Hinke, Thomas

    2003-01-01

    This presentation will describe what is meant by grids and then cover the current state of the IPG. This will include an overview of the middleware that is key to the operation of the grid. The presentation will then describe some of the future directions that are planned for the IPG. Finally the presentation will conclude with a brief overview of the Global Grid Forum, which is a key activity that will contribute to the successful availability of grid components.

  6. Chimera Grid Tools

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert

    2005-01-01

    Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.

  7. 26 CFR 1.358-6 - Stock basis in certain triangular reorganizations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Stock basis in certain triangular reorganizations. 1.358-6 Section 1.358-6 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Effects on Shareholders and Security Holders § 1.358-6 Stock basis in certain triangular...

  8. Electron sharing and anion-π recognition in molecular triangular prisms.

    PubMed

    Schneebeli, Severin T; Frasconi, Marco; Liu, Zhichang; Wu, Yilei; Gardner, Daniel M; Strutt, Nathan L; Cheng, Chuyang; Carmieli, Raanan; Wasielewski, Michael R; Stoddart, J Fraser

    2013-12-01

    Stacking on a full belly: Triangular molecular prisms display electron sharing among their triangularly arranged naphthalenediimide (NDI) redox centers. Their electron-deficient cavities encapsulate linear triiodide anions, leading to the formation of supramolecular helices in the solid state. Chirality transfer is observed from the six chiral centers of the filled prisms to the single-handed helices. PMID:24227594

  9. The Preterm Infant's Use of Triangular Bids at Three Months, Adjusted Age: Two Case Studies

    ERIC Educational Resources Information Center

    Hansen, Ellen Saeter

    2011-01-01

    This article focuses on preterm infants' early triangular capacity, restricted to the use of triangular bids in interaction with their parents. An observational setting, the Lausanne Trilogue Play (LTP), is used for studying the patterns of interaction. This is an approach focusing on the family as a whole. These observations are part of a study…

  10. A METHOD OF TREATING UNSTRUCTURED CONCAVE CELLS IN STAGGERED-GRID LAGRANGIAN HYDRODYNAMICS

    SciTech Connect

    C. ROUSCULP; D. BURTON

    2000-12-01

    A method is proposed for the treatment of concave cells in staggered-grid Lagrangian hydrodynamics. The method is general enough to be applied to two- and three-dimensional unstructured cells. Instead of defining a cell-point as the geometric average of its nodes (a cell-center), the cell-point is that which equalizes the triangular/tetrahedral area/volume in two/three dimensions. Examples are given.

  11. Grid Architecture 2

    SciTech Connect

    Taft, Jeffrey D.

    2016-01-01

    The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.

  12. FermiGrid

    SciTech Connect

    Yocum, D.R.; Berman, E.; Canal, P.; Chadwick, K.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; /Fermilab

    2007-05-01

    As one of the founding members of the Open Science Grid Consortium (OSG), Fermilab enables coherent access to its production resources through the Grid infrastructure system called FermiGrid. This system successfully provides for centrally managed grid services, opportunistic resource access, development of OSG Interfaces for Fermilab, and an interface to the Fermilab dCache system. FermiGrid supports virtual organizations (VOs) including high energy physics experiments (USCMS, MINOS, D0, CDF, ILC), astrophysics experiments (SDSS, Auger, DES), biology experiments (GADU, Nanohub) and educational activities.

  13. Triangular flow in relativstic heavy ion collisions in an event-by-event hybrid approach

    NASA Astrophysics Data System (ADS)

    Petersen, Hannah; La Placa, Rolando; Bass, Steffen A.

    2012-09-01

    Triangular flow has been shown to be an interesting new observable to gain insights about the properties of hot and dense strongly interacting matter as it is produced in heavy ion collisions at RHIC and LHC. The potential of triangular flow for constraining the initial state granularity is explored by performing an explicit calculation of the triangularity and the final state anisotropic flow for initial states that exhibit different amounts of fluctuations. We present triangular flow results for Au+Au collisions at the highest RHIC energy calculated in a hybrid approach that includes a non-equilibrium initial evolution and an ideal hydrodynamic expansion with a hadronic afterburner in 3+1 dimensions. Triangular flow results for Pb+Pb collisions at LHC energies employing the same parameters that work at RHIC are compared to ALICE data. In addition, by comparing the hybrid approach calculation with a pure transport approach, the influence of viscosity is studied.

  14. A triangular thin shell finite element: Nonlinear analysis. [structural analysis

    NASA Technical Reports Server (NTRS)

    Thomas, G. R.; Gallagher, R. H.

    1975-01-01

    Aspects of the formulation of a triangular thin shell finite element which pertain to geometrically nonlinear (small strain, finite displacement) behavior are described. The procedure for solution of the resulting nonlinear algebraic equations combines a one-step incremental (tangent stiffness) approach with one iteration in the Newton-Raphson mode. A method is presented which permits a rational estimation of step size in this procedure. Limit points are calculated by means of a superposition scheme coupled to the incremental side of the solution procedure while bifurcation points are calculated through a process of interpolation of the determinants of the tangent-stiffness matrix. Numerical results are obtained for a flat plate and two curved shell problems and are compared with alternative solutions.

  15. Spin Fluctuations from Hertz to Terahertz on a Triangular Lattice.

    PubMed

    Nambu, Yusuke; Gardner, Jason S; MacLaughlin, Douglas E; Stock, Chris; Endo, Hitoshi; Jonas, Seth; Sato, Taku J; Nakatsuji, Satoru; Broholm, Collin

    2015-09-18

    The temporal magnetic correlations of the triangular-lattice antiferromagnet NiGa_{2}S_{4} are examined through 13 decades (10^{-13}-1 sec) using ultrahigh-resolution inelastic neutron scattering, muon spin relaxation, and ac and nonlinear susceptibility measurements. Unlike the short-ranged spatial correlations, the temperature dependence of the temporal correlations show distinct anomalies. The spin fluctuation rate decreases precipitously upon cooling towards T^{*}=8.5 K, but fluctuations on the microsecond time scale then persist in an anomalous dynamical regime for 4 K

  16. Quantum Paramagnet in a π Flux Triangular Lattice Hubbard Model.

    PubMed

    Rachel, Stephan; Laubach, Manuel; Reuther, Johannes; Thomale, Ronny

    2015-04-24

    We propose the π flux triangular lattice Hubbard model (π THM) as a prototypical setup to stabilize magnetically disordered quantum states of matter in the presence of charge fluctuations. The quantum paramagnetic domain of the π THM that we identify for intermediate Hubbard U is framed by a Dirac semimetal for weak coupling and by 120° Néel order for strong coupling. Generalizing the Klein duality from spin Hamiltonians to tight-binding models, the π THM maps to a Hubbard model which corresponds to the (J_{H},J_{K})=(-1,2) Heisenberg-Kitaev model in its strong coupling limit. The π THM provides a promising microscopic testing ground for exotic finite-U spin liquid ground states amenable to numerical investigation. PMID:25955072

  17. Spin Liquid in the Triangular Lattice Heisenberg Model

    NASA Astrophysics Data System (ADS)

    McCulloch, Ian; Saadatmand, Seyed

    We report the results of a large-scale numerical study of the spin-1/2 Heisenberg model on the triangular lattice, with nearest- and next-nearest neighbor interactions. Using SU(2)-invariant iDMRG for infinite cylinders, we focus on the YC12 structure (with a circumference of 12 sites), and obtain 4 candidate groundstates, corresponding to even/odd spinon sectors, each with linear and projective representations of the cylinder geometry. The momentum-resolved entanglement spectrum reveals the structure of the low-lying spinon excitations. Contrary to some recent works, we find no evidence for chiral symmetry breaking. Supported by the ARC Centre for Engineered Quantum Systems.

  18. Adaptive unstructured triangular mesh generation and flow solvers for the Navier-Stokes equations at high Reynolds number

    NASA Technical Reports Server (NTRS)

    Ashford, Gregory A.; Powell, Kenneth G.

    1995-01-01

    A method for generating high quality unstructured triangular grids for high Reynolds number Navier-Stokes calculations about complex geometries is described. Careful attention is paid in the mesh generation process to resolving efficiently the disparate length scales which arise in these flows. First the surface mesh is constructed in a way which ensures that the geometry is faithfully represented. The volume mesh generation then proceeds in two phases thus allowing the viscous and inviscid regions of the flow to be meshed optimally. A solution-adaptive remeshing procedure which allows the mesh to adapt itself to flow features is also described. The procedure for tracking wakes and refinement criteria appropriate for shock detection are described. Although at present it has only been implemented in two dimensions, the grid generation process has been designed with the extension to three dimensions in mind. An implicit, higher-order, upwind method is also presented for computing compressible turbulent flows on these meshes. Two recently developed one-equation turbulence models have been implemented to simulate the effects of the fluid turbulence. Results for flow about a RAE 2822 airfoil and a Douglas three-element airfoil are presented which clearly show the improved resolution obtainable.

  19. Adaptive unstructured triangular mesh generation and flow solvers for the Navier-Stokes equations at high Reynolds number

    NASA Astrophysics Data System (ADS)

    Ashford, Gregory A.; Powell, Kenneth G.

    1995-10-01

    A method for generating high quality unstructured triangular grids for high Reynolds number Navier-Stokes calculations about complex geometries is described. Careful attention is paid in the mesh generation process to resolving efficiently the disparate length scales which arise in these flows. First the surface mesh is constructed in a way which ensures that the geometry is faithfully represented. The volume mesh generation then proceeds in two phases thus allowing the viscous and inviscid regions of the flow to be meshed optimally. A solution-adaptive remeshing procedure which allows the mesh to adapt itself to flow features is also described. The procedure for tracking wakes and refinement criteria appropriate for shock detection are described. Although at present it has only been implemented in two dimensions, the grid generation process has been designed with the extension to three dimensions in mind. An implicit, higher-order, upwind method is also presented for computing compressible turbulent flows on these meshes. Two recently developed one-equation turbulence models have been implemented to simulate the effects of the fluid turbulence. Results for flow about a RAE 2822 airfoil and a Douglas three-element airfoil are presented which clearly show the improved resolution obtainable.

  20. A transient, quadratic nodal method for triangular-Z geometry

    SciTech Connect

    DeLorey, T.F.

    1993-06-01

    Many systematically-derived nodal methods have been developed for Cartesian geometry due to the extensive interest in Light Water Reactors. These methods typically model the transverse-integrated flux as either an analytic or low order polynomial function of position within the node. Recently, quadratic nodal methods have been developed for R-Z and hexagonal geometry. A static and transient quadratic nodal method is developed for triangular-Z geometry. This development is particularly challenging because the quadratic expansion in each node must be performed between the node faces and the triangular points. As a consequence, in the 2-D plane, the flux and current at the points of the triangles must be treated. Quadratic nodal equations are solved using a non-linear iteration scheme, which utilizes the corrected, mesh-centered finite difference equations, and forces these equations to match the quadratic equations by computing discontinuity factors during the solution. Transient nodal equations are solved using the improved quasi-static method, which has been shown to be a very efficient solution method for transient problems. Several static problems are used to compare the quadratic nodal method to the Coarse Mesh Finite Difference (CMFD) method. The quadratic method is shown to give more accurate node-averaged fluxes. However, it appears that the method has difficulty predicting node leakages near reactor boundaries and severe material interfaces. The consequence is that the eigenvalue may be poorly predicted for certain reactor configurations. The transient methods are tested using a simple analytic test problem, a heterogeneous heavy water reactor benchmark problem, and three thermal hydraulic test problems. Results indicate that the transient methods have been implemented correctly.

  1. The making of a Global Grid - Remembering my escape from flatland

    NASA Astrophysics Data System (ADS)

    Dutton, G.

    2016-04-01

    Quaternary Triangular Mesh (QTM) is a spherical subdivision scheme for encoding vector geodata across a planet as recursive triangular subdivisions of an octahedron. This model of location and its hierarchical coordinate system evolved from experiments with a hierarchical raster data structure for encoding terrain relief named DEPTH (Delta Encoded Polynomial Terrain Hierarchy). This 2D pyramid- type structure encoded attributes (surface elevations) explicitly and locations (grid cell indices) implicitly. The paper describes how DEPTH evolved into QTM through a global discrete data grid called Geodesic Elevation Model (GEM), which more resembled QTM than a raster model. It used DEPTH to encode surface elevations in a forest of geodesic triangular quadtrees instead of in a planar rectangular quadtree. All three models were designed to make limitations of data accuracy and scale explicit. DEPTH and GEM capture elevations as ranges of values that decrease as the structure densifies, and perform limited interpolation. QTM captures vector data by encoding spherical 2D locations to the extent that their positional accuracy, certainty, or precision warrant, but did not use DEPTH. This paper is a memoir that summarizes the thinking that went into these data models and explores how properties and deficiencies of one led to the other. It does not present any breakthroughs or new applications. Rather, it documents inventions that influenced subsequent developments of discrete global grids, and might still do so.

  2. Constrained CVT Meshes and a Comparison of Triangular Mesh Generators

    SciTech Connect

    Nguyen, Hoa; Burkardt, John; Gunzburger, Max; Ju, Lili; Saka, Yuki

    2009-01-01

    Mesh generation in regions in Euclidean space is a central task in computational science, and especially for commonly used numerical methods for the solution of partial differential equations, e.g., finite element and finite volume methods. We focus on the uniform Delaunay triangulation of planar regions and, in particular, on how one selects the positions of the vertices of the triangulation. We discuss a recently developed method, based on the centroidal Voronoi tessellation (CVT) concept, for effecting such triangulations and present two algorithms, including one new one, for CVT-based grid generation. We also compare several methods, including CVT-based methods, for triangulating planar domains. To this end, we define several quantitative measures of the quality of uniform grids. We then generate triangulations of several planar regions, including some having complexities that are representative of what one may encounter in practice. We subject the resulting grids to visual and quantitative comparisons and conclude that all the methods considered produce high-quality uniform grids and that the CVT-based grids are at least as good as any of the others.

  3. Understanding The Smart Grid

    SciTech Connect

    2007-11-15

    The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology

  4. Grid quality improvement by a grid adaptation technique

    NASA Technical Reports Server (NTRS)

    Lee, K. D.; Henderson, T. L.; Choo, Y. K.

    1991-01-01

    A grid adaptation technique is presented which improves grid quality. The method begins with an assessment of grid quality by defining an appropriate grid quality measure. Then, undesirable grid properties are eliminated by a grid-quality-adaptive grid generation procedure. The same concept has been used for geometry-adaptive and solution-adaptive grid generation. The difference lies in the definition of the grid control sources; here, they are extracted from the distribution of a particular grid property. Several examples are presented to demonstrate the versatility and effectiveness of the method.

  5. Navigation in Grid Space with the NAS Grid Benchmarks

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Hood, Robert; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    We present a navigational tool for computational grids. The navigational process is based on measuring the grid characteristics with the NAS Grid Benchmarks (NGB) and using the measurements to assign tasks of a grid application to the grid machines. The tool allows the user to explore the grid space and to navigate the execution at a grid application to minimize its turnaround time. We introduce the notion of gridscape as a user view of the grid and show how it can be me assured by NGB, Then we demonstrate how the gridscape can be used with two different schedulers to navigate a grid application through a rudimentary grid.

  6. Grid enabled Service Support Environment - SSE Grid

    NASA Astrophysics Data System (ADS)

    Goor, Erwin; Paepen, Martine

    2010-05-01

    The SSEGrid project is an ESA/ESRIN project which started in 2009 and is executed by two Belgian companies, Spacebel and VITO, and one Dutch company, Dutch Space. The main project objectives are the introduction of a Grid-based processing on demand infrastructure at the Image Processing Centre for earth observation products at VITO and the inclusion of Grid processing services in the Service Support Environment (SSE) at ESRIN. The Grid-based processing on demand infrastructure is meant to support a Grid processing on demand model for Principal Investigators (PI) and allow the design and execution of multi-sensor applications with geographically spread data while minimising the transfer of huge volumes of data. In the first scenario, 'support a Grid processing on demand model for Principal Investigators', we aim to provide processing power close to the EO-data at the processing and archiving centres. We will allow a PI (non-Grid expert user) to upload his own algorithm, as a process, and his own auxiliary data from the SSE Portal and use them in an earth observation workflow on the SSEGrid Infrastructure. The PI can design and submit workflows using his own processes, processes made available by VITO/ESRIN and possibly processes from other users that are available on the Grid. These activities must be user-friendly and not requiring detailed knowledge about the underlying Grid middleware. In the second scenario we aim to design, implement and demonstrate a methodology to set up an earth observation processing facility, which uses large volumes of data from various geographically spread sensors. The aim is to provide solutions for problems that we face today, like wasting bandwidth by copying large volumes of data to one location. We will avoid this by processing the data where they are. The multi-mission Grid-based processing on demand infrastructure will allow developing and executing complex and massive multi-sensor data (re-)processing applications more

  7. Securing smart grid technology

    NASA Astrophysics Data System (ADS)

    Chaitanya Krishna, E.; Kosaleswara Reddy, T.; Reddy, M. YogaTeja; Reddy G. M., Sreerama; Madhusudhan, E.; AlMuhteb, Sulaiman

    2013-03-01

    In the developing countries electrical energy is very important for its all-round improvement by saving thousands of dollars and investing them in other sector for development. For Growing needs of power existing hierarchical, centrally controlled grid of the 20th Century is not sufficient. To produce and utilize effective power supply for industries or people we should have Smarter Electrical grids that address the challenges of the existing power grid. The Smart grid can be considered as a modern electric power grid infrastructure for enhanced efficiency and reliability through automated control, high-power converters, modern communications infrastructure along with modern IT services, sensing and metering technologies, and modern energy management techniques based on the optimization of demand, energy and network availability and so on. The main objective of this paper is to provide a contemporary look at the current state of the art in smart grid communications as well as critical issues on smart grid technologies primarily in terms of information and communication technology (ICT) issues like security, efficiency to communications layer field. In this paper we propose new model for security in Smart Grid Technology that contains Security Module(SM) along with DEM which will enhance security in Grid. It is expected that this paper will provide a better understanding of the technologies, potential advantages and research challenges of the smart grid and provoke interest among the research community to further explore this promising research area.

  8. A principle of economy predicts the functional architecture of grid cells

    PubMed Central

    Wei, Xue-Xin; Prentice, Jason; Balasubramanian, Vijay

    2015-01-01

    Grid cells in the brain respond when an animal occupies a periodic lattice of ‘grid fields’ during navigation. Grids are organized in modules with different periodicity. We propose that the grid system implements a hierarchical code for space that economizes the number of neurons required to encode location with a given resolution across a range equal to the largest period. This theory predicts that (i) grid fields should lie on a triangular lattice, (ii) grid scales should follow a geometric progression, (iii) the ratio between adjacent grid scales should be √e for idealized neurons, and lie between 1.4 and 1.7 for realistic neurons, (iv) the scale ratio should vary modestly within and between animals. These results explain the measured grid structure in rodents. We also predict optimal organization in one and three dimensions, the number of modules, and, with added assumptions, the ratio between grid periods and field widths. DOI: http://dx.doi.org/10.7554/eLife.08362.001 PMID:26335200

  9. A Generalization of the Formula for the Triangular Number of the Sum and Product of Natural Numbers

    ERIC Educational Resources Information Center

    Asiru, M. A.

    2008-01-01

    This note generalizes the formula for the triangular number of the sum and product of two natural numbers to similar results for the triangular number of the sum and product of "r" natural numbers. The formula is applied to derive formula for the sum of an odd and an even number of consecutive triangular numbers.

  10. Solar cell grid patterns

    NASA Technical Reports Server (NTRS)

    Yasui, R. K.; Berman, P. A. (Inventor)

    1976-01-01

    A grid pattern is described for a solar cell of the type which includes a semiconductive layer doped to a first polarity and a top counter-doped layer. The grid pattern comprises a plurality of concentric conductive grids of selected geometric shapes which are centered about the center of the exposed active surface of the counter-doped layer. Connected to the grids is one or more conductors which extend to the cell's periphery. For the pattern area, the grids and conductors are arranged in the pattern to minimize the maximum distance which any injected majority carriers have to travel to reach any of the grids or conductors. The pattern has a multiaxes symmetry with respect to the cell center to minimize the maximum temperature differentials between points on the cell surface and to provide a more uniform temperature distribution across the cell face.

  11. Enhanced Elliptic Grid Generation

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    2007-01-01

    An enhanced method of elliptic grid generation has been invented. Whereas prior methods require user input of certain grid parameters, this method provides for these parameters to be determined automatically. "Elliptic grid generation" signifies generation of generalized curvilinear coordinate grids through solution of elliptic partial differential equations (PDEs). Usually, such grids are fitted to bounding bodies and used in numerical solution of other PDEs like those of fluid flow, heat flow, and electromagnetics. Such a grid is smooth and has continuous first and second derivatives (and possibly also continuous higher-order derivatives), grid lines are appropriately stretched or clustered, and grid lines are orthogonal or nearly so over most of the grid domain. The source terms in the grid-generating PDEs (hereafter called "defining" PDEs) make it possible for the grid to satisfy requirements for clustering and orthogonality properties in the vicinity of specific surfaces in three dimensions or in the vicinity of specific lines in two dimensions. The grid parameters in question are decay parameters that appear in the source terms of the inhomogeneous defining PDEs. The decay parameters are characteristic lengths in exponential- decay factors that express how the influences of the boundaries decrease with distance from the boundaries. These terms govern the rates at which distance between adjacent grid lines change with distance from nearby boundaries. Heretofore, users have arbitrarily specified decay parameters. However, the characteristic lengths are coupled with the strengths of the source terms, such that arbitrary specification could lead to conflicts among parameter values. Moreover, the manual insertion of decay parameters is cumbersome for static grids and infeasible for dynamically changing grids. In the present method, manual insertion and user specification of decay parameters are neither required nor allowed. Instead, the decay parameters are

  12. A grid amplifier

    NASA Technical Reports Server (NTRS)

    Kim, Moonil; Weikle, Robert M., II; Hacker, Jonathan B.; Delisio, Michael P.; Rutledge, David B.; Rosenberg, James J.; Smith, R. P.

    1991-01-01

    A 50-MESFET grid amplifier is reported that has a gain of 11 dB at 3.3 GHz. The grid isolates the input from the output by using vertical polarization for the input beam and horizontal polarization for the transmitted output beam. The grid unit cell is a two-MESFET differential amplifier. A simple calibration procedure allows the gain to be calculated from a relative power measurement. This grid is a hybrid circuit, but the structure is suitable for fabrication as a monolithic wafer-scale integrated circuit, particularly at millimeter wavelengths.

  13. Challenges facing production grids

    SciTech Connect

    Pordes, Ruth; /Fermilab

    2007-06-01

    Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.

  14. Low-cost Triangular Lattice Towers for Small Wind Turbines

    NASA Astrophysics Data System (ADS)

    Adhikari, Ram Chandra

    This thesis focuses on the study of low-cost steel and bamboo triangular lattice towers for small wind turbines. The core objective is to determine the material properties of bamboo and assess the feasibility of bamboo towers. Using the experimentally determined buckling resistance, elastic modulus, and Poisson's ratio, a 12 m high triangular lattice tower for a 500W wind turbine has been modeled as a tripod to formulate the analytical solutions for the stresses and tower deflections, which enables design of the tower based on buckling strength of tower legs. The tripod formulation combines the imposed loads, the base distance between the legs and tower height, and cross-sectional dimensions of the tower legs. The tripod model was used as a reference for the initial design of the bamboo tower and extended to finite element analysis. A 12 m high steel lattice tower was also designed for the same turbine to serve as a comparison to the bamboo tower. The primary result of this work indicates that bamboo is a valid structural material. The commercial software package ANSYS APDL was used to carry out the tower analysis, evaluate the validity of the tripod model, and extend the analysis for the tower design. For this purpose, a 12 m high steel lattice tower for a 500 W wind turbine was examined. Comparison of finite element analysis and analytical solution has shown that tripod model can be accurately used in the design of lattice towers. The tower designs were based on the loads and safety requirements of international standard for small wind turbine safety, IEC 61400-2. For connecting the bamboo sections in the lattice tower, a steel-bamboo adhesive joint combined with conventional lashing has been proposed. Also, considering the low durability of bamboo, periodic replacement of tower members has been proposed. The result of this study has established that bamboo could be used to construct cost-effective and lightweight lattice towers for wind turbines of 500 Watt

  15. Triangular lattice of carbon nanotube arrays for negative index of refraction and subwavelength lensing effect

    SciTech Connect

    Wang, Y.; Wang, X.; Rybczynski, J.; Wang, D.Z.; Kempa, K.; Ren, Z.F.

    2005-04-11

    Self-assembly of polystyrene microspheres has been utilized in a two-step masking technique to prepare triangular lattices of catalytic nanodots at low cost. Subsequent triangular lattices of aligned carbon nanotubes on a silicon substrate are achieved by plasma-enhanced chemical vapor deposition. Nickel is used both in the nanodots and in the secondary mask. The triangular lattices of carbon nanotube arrays as two-dimensional photonic crystals show higher geometrical symmetry than the hexagonal lattices previously reported, enabling broader applications including negative index of refraction and subwavelength lensing effect.

  16. Triangular dislocation: an analytical, artefact-free solution

    NASA Astrophysics Data System (ADS)

    Nikkhoo, Mehdi; Walter, Thomas R.

    2015-05-01

    Displacements and stress-field changes associated with earthquakes, volcanoes, landslides and human activity are often simulated using numerical models in an attempt to understand the underlying processes and their governing physics. The application of elastic dislocation theory to these problems, however, may be biased because of numerical instabilities in the calculations. Here, we present a new method that is free of artefact singularities and numerical instabilities in analytical solutions for triangular dislocations (TDs) in both full-space and half-space. We apply the method to both the displacement and the stress fields. The entire 3-D Euclidean space {R}3 is divided into two complementary subspaces, in the sense that in each one, a particular analytical formulation fulfils the requirements for the ideal, artefact-free solution for a TD. The primary advantage of the presented method is that the development of our solutions involves neither numerical approximations nor series expansion methods. As a result, the final outputs are independent of the scale of the input parameters, including the size and position of the dislocation as well as its corresponding slip vector components. Our solutions are therefore well suited for application at various scales in geoscience, physics and engineering. We validate the solutions through comparison to other well-known analytical methods and provide the MATLAB codes.

  17. Electric generator using a triangular diamagnetic levitating rotor system.

    PubMed

    Ho, Joe Nhut; Wang, Wei-Chih

    2009-02-01

    This paper describes a feasibility study of creating a small low friction and low maintenance generator using a diamagnetically stabilized levitating rotor. The planar rotor described in this paper uses a triangular configuration of magnets that generates emf by passing over coils placed below the rotor. Equations were developed to predict the generated emf from coils with two different coil geometries. Additionally, this paper provides a method for estimating optimal coil size and position for the planar rotor presented for both segmental arc and circular coils to obtain maximum power output. Experiments demonstrated that the emf generated in the coils matches well with the predicted wave forms for each case, and the optimization theory gives good prediction to outcome of induced waveforms. For the segmental arc coil design, the induced emf was 1.7 mV at a radial frequency of 21.8 rad/s. For the circular coil design, the emf was 1.25 mV at a radial frequency of 28.1 rad/s. PMID:19256668

  18. Agglomerative percolation on the Bethe lattice and the triangular cactus

    NASA Astrophysics Data System (ADS)

    Chae, Huiseung; Yook, Soon-Hyung; Kim, Yup

    2013-08-01

    Agglomerative percolation (AP) on the Bethe lattice and the triangular cactus is studied to establish the exact mean-field theory for AP. Using the self-consistent simulation method based on the exact self-consistent equations, the order parameter P∞ and the average cluster size S are measured. From the measured P∞ and S, the critical exponents βk and γk for k = 2 and 3 are evaluated. Here, βk and γk are the critical exponents for P∞ and S when the growth of clusters spontaneously breaks the Zk symmetry of the k-partite graph. The obtained values are β2 = 1.79(3), γ2 = 0.88(1), β3 = 1.35(5) and γ3 = 0.94(2). By comparing these exponents with those for ordinary percolation (β∞ = 1 and γ∞ = 1), we also find β∞ < β3 < β2 and γ∞ > γ3 > γ2. These results quantitatively verify the conjecture that the AP model belongs to a new universality class if the Zk symmetry is broken spontaneously, and the new universality class depends on k.

  19. Low-Reynolds number compressible flow around a triangular airfoil

    NASA Astrophysics Data System (ADS)

    Munday, Phillip; Taira, Kunihiko; Suwa, Tetsuya; Numata, Daiju; Asai, Keisuke

    2013-11-01

    We report on the combined numerical and experimental effort to analyze the nonlinear aerodynamics of a triangular airfoil in low-Reynolds number compressible flow that is representative of wings on future Martian air vehicles. The flow field around this airfoil is examined for a wide range of angles of attack and Mach numbers with three-dimensional direct numerical simulations at Re = 3000 . Companion experiments are conducted in a unique Martian wind tunnel that is placed in a vacuum chamber to simulate the Martian atmosphere. Computational findings are compared with pressure sensitive paint and direct force measurements and are found to be in agreement. The separated flow from the leading edge is found to form a large leading-edge vortex that sits directly above the apex of the airfoil and provides enhanced lift at post stall angles of attack. For higher subsonic flows, the vortical structures elongate in the streamwise direction resulting in reduced lift enhancement. We also observe that the onset of spanwise instability for higher angles of attack is delayed at lower Mach numbers. Currently at Mitsubishi Heavy Industries, Ltd., Nagasaki.

  20. Quantum electric-dipole liquid on a triangular lattice

    NASA Astrophysics Data System (ADS)

    Shen, Shi-Peng; Wu, Jia-Chuan; Song, Jun-Da; Sun, Xue-Feng; Yang, Yi-Feng; Chai, Yi-Sheng; Shang, Da-Shan; Wang, Shou-Guo; Scott, James F.; Sun, Young

    2016-02-01

    Geometric frustration and quantum fluctuations may prohibit the formation of long-range ordering even at the lowest temperature, and therefore liquid-like ground states could be expected. A good example is the quantum spin liquid in frustrated magnets. Geometric frustration and quantum fluctuations can happen beyond magnetic systems. Here we propose that quantum electric-dipole liquids, analogues of quantum spin liquids, could emerge in frustrated dielectrics where antiferroelectrically coupled electric dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite BaFe12O19 with geometric frustration represents a promising candidate for the proposed electric-dipole liquid. We present a series of experimental lines of evidence, including dielectric permittivity, heat capacity and thermal conductivity measured down to 66 mK, to reveal the existence of an unusual liquid-like quantum phase in BaFe12O19, characterized by itinerant low-energy excitations with a small gap. The possible quantum liquids of electric dipoles in frustrated dielectrics open up a fresh playground for fundamental physics.

  1. Morphological Transitions of Droplets Wetting a Series of Triangular Grooves.

    PubMed

    Dokowicz, Marcin; Nowicki, Waldemar

    2016-07-19

    Morphology and thermodynamics of a microdroplet deposited on a grooved inhomogeneous surface with triangular cross section of the grooves were studied by computer simulations with the use of Surface Evolver program. With increasing volume of the droplet, it initially spreads along the series of grooves assuming the filament-like morphology. After reaching a certain volume, the surface wetted by the droplet is reduced and the droplet assumes the bulge morphology or spreads over the surface bordering on the groove initially occupied (it can be either a neighboring groove or a flat surface). The character of the process is determined by the geometry of the edge of the inhomogeneity studied. The effect described also depends on the number of grooves G and the Young contact angle θY. The change in the shape of the droplet becomes more pronounced with decreasing θY and G. Above a certain number of grooves, in the range of contact angles studied (e.g., G > 6 if θY = 70° and G > 4 if θY = 75°), no morphological transition of the droplet was observed. PMID:27347695

  2. Fluid Interfaces of Triangular Containers in Reduced Gravity Environments

    NASA Technical Reports Server (NTRS)

    Guttromson, Jayleen; Manning, Robert; Collicott, Steven H.

    2002-01-01

    Capillary dominated fluid dynamics will be examined in a reduced-gravity environment onboard the KC-135; in particular, the behavior of the lower portion of the meniscus in triangular tank geometries. Seven clear acrylic tanks were constructed to view seven angles of the four geometries. Silicon oil with two different viscosities, 2cs and 5cs silicon oil, were used on different days of the flight. Six tanks and one control tank are filled with a certain viscosity fluid for each flight day. During each parabola, three tanks are tested at time. The experimental tanks are exchanged between parabola sets on the KC-135. The 60deg -60deg -60deg control tank is viewed throughout the flight. To gather data, two digital video cameras and one digital still camera are placed perpendicular the viewing surface. To provide a greater contrast in the meniscus, an EL backlighting sheet was used to backlight the tanks. These images and video are then digitized, passed through NASA's mini-tracker software, and compared to a theory published my M. M. Weislogel, "Fluid Interface Phenomena in a Low-Gravity Environment: Recent Results from Drop Tower Experimentation." By focusing on a lower portion of the meniscus and using longer periods of reduced gravity, this experiment may confirm that a stationary point exists on the fluid surface. This information will enable better designing of propellant management devices, especially satellite propellant refilling and gas venting. Also, biological and material processing systems in reduced gravity environments will benefit from this data.

  3. Quantum electric-dipole liquid on a triangular lattice

    PubMed Central

    Shen, Shi-Peng; Wu, Jia-Chuan; Song, Jun-Da; Sun, Xue-Feng; Yang, Yi-Feng; Chai, Yi-Sheng; Shang, Da-Shan; Wang, Shou-Guo; Scott, James F.; Sun, Young

    2016-01-01

    Geometric frustration and quantum fluctuations may prohibit the formation of long-range ordering even at the lowest temperature, and therefore liquid-like ground states could be expected. A good example is the quantum spin liquid in frustrated magnets. Geometric frustration and quantum fluctuations can happen beyond magnetic systems. Here we propose that quantum electric-dipole liquids, analogues of quantum spin liquids, could emerge in frustrated dielectrics where antiferroelectrically coupled electric dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite BaFe12O19 with geometric frustration represents a promising candidate for the proposed electric-dipole liquid. We present a series of experimental lines of evidence, including dielectric permittivity, heat capacity and thermal conductivity measured down to 66 mK, to reveal the existence of an unusual liquid-like quantum phase in BaFe12O19, characterized by itinerant low-energy excitations with a small gap. The possible quantum liquids of electric dipoles in frustrated dielectrics open up a fresh playground for fundamental physics. PMID:26843363

  4. A Compact Shape Descriptor for Triangular Surface Meshes

    PubMed Central

    Gao, Zhanheng; Yu, Zeyun; Pang, Xiaoli

    2014-01-01

    Three-dimensional shape-based descriptors have been widely used in object recognition and database retrieval. In the current work, we present a novel method called compact Shape-DNA (cShape-DNA) to describe the shape of a triangular surface mesh. While the original Shape-DNA technique provides an effective and isometric-invariant descriptor for surface shapes, the number of eigenvalues used is typically large. To further reduce the space and time consumptions, especially for large-scale database applications, it is of great interest to find a more compact way to describe an arbitrary surface shape. In the present approach, the standard Shape-DNA is first computed from the given mesh and then processed by surface area-based normalization and line subtraction. The proposed cShape-DNA descriptor is composed of some low frequencies of the discrete Fourier transform of the processed Shape-DNA. Several experiments are shown to illustrate the effectiveness and efficiency of the cShape-DNA method on 3D shape analysis, particularly on shape comparison and classification. PMID:24910467

  5. Critical frontier of the triangular Ising antiferromagnet in a field

    NASA Astrophysics Data System (ADS)

    Qian, Xiaofeng; Wegewijs, Maarten; Blöte, Henk W.

    2004-03-01

    We study the critical line of the triangular Ising antiferromagnet in an external magnetic field by means of a finite-size analysis of results obtained by transfer-matrix and Monte Carlo techniques. We compare the shape of the critical line with predictions of two different theoretical scenarios. Both scenarios, while plausible, involve assumptions. The first scenario is based on the generalization of the model to a vertex model, and the assumption that the exact analytic form of the critical manifold of this vertex model is determined by the zeroes of an O(2) gauge-invariant polynomial in the vertex weights. However, it is not possible to fit the coefficients of such polynomials of orders up to 10, such as to reproduce the numerical data for the critical points. The second theoretical prediction is based on the assumption that a renormalization mapping exists of the Ising model on the Coulomb gas, and analysis of the resulting renormalization equations. It leads to a shape of the critical line that is inconsistent with the first prediction, but consistent with the numerical data.

  6. Thermoviscoplastic analysis of fibrous periodic composites using triangular subvolumes

    NASA Technical Reports Server (NTRS)

    Walker, Kevin P.; Freed, Alan D.; Jordan, Eric H.

    1993-01-01

    The nonlinear viscoplastic behavior of fibrous periodic composites is analyzed by discretizing the unit cell into triangular subvolumes. A set of these subvolumes can be configured by the analyst to construct a representation for the unit cell of a periodic composite. In each step of the loading history, the total strain increment at any point is governed by an integral equation which applies to the entire composite. A Fourier series approximation allows the incremental stresses and strains to be determined within a unit cell of the periodic lattice. The nonlinearity arising from the viscoplastic behavior of the constituent materials comprising the composite is treated as fictitious body force in the governing integral equation. Specific numerical examples showing the stress distributions in the unit cell of a fibrous tungsten/copper metal matrix composite under viscoplastic loading conditions are given. The stress distribution resulting in the unit cell when the composite material is subjected to an overall transverse stress loading history perpendicular to the fibers is found to be highly heterogeneous, and typical homogenization techniques based on treating the stress and strain distributions within the constituent phases as homogeneous result in large errors under inelastic loading conditions.

  7. Collinear versus triangular geometry: A ternary fission study

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, K. R.; Balasubramaniam, M.; von Oertzen, W.

    2014-08-01

    We study in this work the preference of the arrangements of fragments leading to ternary fission. Earlier experimental investigations on this subject have established the fact that the emission of a third particle happens in a direction perpendicular to the direction of the fission axis. Recently, within the missing mass approach, it has been reported that for fragments of comparable masses, the so-called collinear cluster tripartition (CCT), collinear emission of the fragments occurs. The ternary potential energy surface (PES) of three-body fragmentation of Cf252 is studied. The PESs are calculated for the fragment arrangements starting from a collinear configuration to a triangular configuration by varying the angle between the end fragments with respect to the fragment positioned in the middle. Furthermore, the role of the positioning of the three fragments is analyzed. Our results indicate that there is a clear preference for an arrangement in which the lightest fragment is positioned in the middle. Furthermore, for all possible third fragments, collinear geometry is found to be favored over orthogonal geometry.

  8. Comparison of some isoparametric mappings for curved triangular spectral elements

    NASA Astrophysics Data System (ADS)

    Pasquetti, Richard

    2016-07-01

    Using the spectral element method (SEM), or more generally hp-finite elements (hp-FEM), it is possible to solve with high accuracy various kinds of problems governed by partial differential equations (PDEs), see e.g. [1,2]. However, as soon as the physical domain is not polygonal, the accuracy quickly deteriorates if curved elements are not implemented. This is the reason why various methods have been developed during the last decades, starting from the celebrated transfinite interpolation proposed for quadrangular elements in [3]. In this note we revisit this problem for triangular elements, based on the use of Fekete points for interpolations and of Gauss points for quadratures, i.e. when using the so-called Fekete-Gauss approximation. As detailed in [4], such an approach shows the so-called spectral accuracy. However, differently to the quadrangles based SEM, it does not involve diagonal mass matrices, see e.g. [5-7] and references herein for works trying to preserve this nice property that is especially useful when addressing evolution problems with an explicit time marching. In the frame of the Fekete-Gauss TSEM (T, for triangle), the present study clearly points out the importance of a good choice of the bending procedure by comparing different isoparametric mappings for the Poisson and Grad-Shafranov PDEs.

  9. Geometric grid generation

    NASA Technical Reports Server (NTRS)

    Ives, David

    1995-01-01

    This paper presents a highly automated hexahedral grid generator based on extensive geometrical and solid modeling operations developed in response to a vision of a designer-driven one day turnaround CFD process which implies a designer-driven one hour grid generation process.

  10. Internet 2 Access Grid.

    ERIC Educational Resources Information Center

    Simco, Greg

    2002-01-01

    Discussion of the Internet 2 Initiative, which is based on collaboration among universities, businesses, and government, focuses on the Access Grid, a Computational Grid that includes interactive multimedia within high-speed networks to provide resources to enable remote collaboration among the research community. (Author/LRW)

  11. Security for grids

    SciTech Connect

    Humphrey, Marty; Thompson, Mary R.; Jackson, Keith R.

    2005-08-14

    Securing a Grid environment presents a distinctive set of challenges. This paper groups the activities that need to be secured into four categories: naming and authentication; secure communication; trust, policy, and authorization; and enforcement of access control. It examines the current state of the art in securing these processes and introduces new technologies that promise to meet the security requirements of Grids more completely.

  12. Adaptive gridding strategies for Free-Lagrangian calculations of low speed flows

    NASA Astrophysics Data System (ADS)

    Fritts, Martin J.

    1988-01-01

    Free-Lagrangian methods have been employed in two-dimensional simulations of the long-term evolution of fluid instabilities for low speed flows. For example, calculations of the Rayleigh-Taylor instability have proceeded through the inversion and mixing of two fluid layers and simulations of droplet deformations have continued well beyond droplet shattering. The freedom to choose grid connections permits several important benefits for these calculations. 1. Mass conservation is enforced for all individual fluid elements. 2. Vertex movement is always Lagrangian. 3. Grid adjustments can be made automatically, with no user intervention. 4. Grid connections may be selected to ensure accuracy in the difference equations. 5. Adaptive gridding schemes are local, adding and deleting vertices as dictated by local accuracy estimators. 6. Any geometric configuration may be easily gridded, for any vertex distribution on the boundaries or in the interior of the fluids. This paper will review some two-dimensional results, with the emphasis on the adaptive gridding algorithms and the accuracy of the resultant difference templates for the mathematical operators. The relation of the triangular mesh to the Voronoi mesh will be explored, particularly for the case when they are dual meshes. Three-dimensional algorithms for adaptive gridding will be presented which are exact analogues to the two-dimensional case. Gridding efficiencies will be discussed for several schemes.

  13. Data Grid Implementations

    SciTech Connect

    Moore, Reagan W.; Studham, Ronald S.; Rajasekar, Arcot; Watson, Chip; Stockinger, Heinz; Kunszt, Peter; Charlie Catlett and Ian Foster

    2002-02-27

    Data grids link distributed, heterogeneous storage resources into a coherent data management system. From a user perspective, the data grid provides a uniform name space across the underlying storage systems, while supporting retrieval and storage of files. In the high energy physics community, at least six data grids have been implemented for the storage and distribution of experimental data. Data grids are also being used to support projects as diverse as digital libraries (National Library of Medicine Visible Embryo project), federation of multiple astronomy sky surveys (NSF National Virtual Observatory project), and integration of distributed data sets (Long Term Ecological Reserve). Data grids also form the core interoperability mechanisms for creating persistent archives, in which data collections are migrated to new technologies over time. The ability to provide a uniform name space across multiple administration domains is becoming a critical component of national-scale, collaborative projects.

  14. The SIM astronmetric grid

    NASA Technical Reports Server (NTRS)

    Swartz, R.

    2002-01-01

    The Space Interferometry Mission (SIM) is fundamentally a one-dimensional instrument with a 15-degree field-of-regard. Mission objectives require a global reference grid of thousands of well-understood stars with positions known to 4 microarcseconds which will be used to establish the instrument baseline vector during scientific observations. This accuracy will be achieved by frequently observing a set of stars throughout the mission and performing a global fit of the observations to determine position, proper motion and parallax for each star. Each star will be observed approximately 200 times with about 6.5 stars per single instrument field on the sky. We describe the nature of the reference grid, the candidate objects, and the results of simulations demonstrating grid performance, including estimates of the grid robustness when including effects such as instrument drift and possible contamination of the grid star sample by undetected binaries.

  15. Two-dimensional orthogonal DCT expansion in triangular and trapezoid regions

    NASA Astrophysics Data System (ADS)

    Pei, Soo-Chang; Ding, Jian-Jiun; Lee, Tzu-Heng Henry

    2010-07-01

    It is known that the 2-D DCT basis is complete and orthogonal in a rectangular region. In this paper, we introduce the way to generate the complete and orthogonal 2-D DCT basis in a trapezoid region or a triangular region without using the complicated Gram-Schmidt method. Moreover, since a polygon can be decomposed several triangular regions, the proposed method is also suitable for the polygonal region. Our algorithm can much generalize the JPEG algorithm. Instead of dividing an image into 8 by 8 blocks, we can divide an image into trapezoid or triangular regions and then transform and code each of them. In addition to the DCT basis, our method can also be used for generating the 2-D complete and orthogonal DFT basis, KLT basis, Legendre basis, Hadamard (Walsh) basis, and polynomial basis in the trapezoid and triangular regions.

  16. Modelling and simulation of parallel triangular triple quantum dots (TTQD) by using SIMON 2.0

    NASA Astrophysics Data System (ADS)

    Fathany, Maulana Yusuf; Fuada, Syifaul; Lawu, Braham Lawas; Sulthoni, Muhammad Amin

    2016-04-01

    This research presents analysis of modeling on Parallel Triple Quantum Dots (TQD) by using SIMON (SIMulation Of Nano-structures). Single Electron Transistor (SET) is used as the basic concept of modeling. We design the structure of Parallel TQD by metal material with triangular geometry model, it is called by Triangular Triple Quantum Dots (TTQD). We simulate it with several scenarios using different parameters; such as different value of capacitance, various gate voltage, and different thermal condition.

  17. Error estimates of triangular finite elements under a weak angle condition

    NASA Astrophysics Data System (ADS)

    Mao, Shipeng; Shi, Zhongci

    2009-08-01

    In this note, by analyzing the interpolation operator of Girault and Raviart given in [V. Girault, P.A. Raviart, Finite element methods for Navier-Stokes equations, Theory and algorithms, in: Springer Series in Computational Mathematics, Springer-Verlag, Berlin,1986] over triangular meshes, we prove optimal interpolation error estimates for Lagrange triangular finite elements of arbitrary order under the maximal angle condition in a unified and simple way. The key estimate is only an application of the Bramble-Hilbert lemma.

  18. Optimization Of A Computational Grid

    NASA Technical Reports Server (NTRS)

    Pearce, Daniel G.

    1993-01-01

    In improved method of generation of computational grid, grid-generation process decoupled from definition of geometry. Not necessary to redefine boundary. Instead, continuous boundaries in physical domain specified, and then grid points in computational domain mapped onto continuous boundaries.

  19. Reliability and flexural behavior of triangular and T-reinforced concrete beams

    NASA Astrophysics Data System (ADS)

    Al-Ansari, Mohammed S.

    2015-12-01

    The paper studied the behavior of reinforced concrete triangular and T-beams. Three reinforced concrete beams were tested experimentally and analyzed analytically using the finite element method. Their reliability was also assessed using the reliability index approach. The results showed that the finite element vertical displacements compared well with those obtained experimentally. They also showed that the vertical displacements obtained using the finite element method were larger than those obtained experimentally. This is a strong indication that the finite element results were conservative and reliable. The results showed that the triangular beams exhibited higher ductility at failure than did the T-beam. The plastic deformations at failure of the triangular beams were higher than that of the T-beam. This is a strong indication of the higher ductility of the triangular beams compared to the T-beam. Triangular beams exhibited smaller cracks than did T-beams for equal areas of steel and concrete. The design moment strengths M c computed using the American Concrete Institute (ACI) design formulation were safe and close to those computed using experimental results. The experimental results validated the reliability analysis results, which stated that the triangular beams are more reliable than T-beams for equal areas of steel and concrete.

  20. Decentral Smart Grid Control

    NASA Astrophysics Data System (ADS)

    Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk

    2015-01-01

    Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals.

  1. Dorsal Tear of Triangular Fibrocartilage Complex: Clinical Features and Treatment.

    PubMed

    Abe, Yukio; Moriya, Atsushi; Tominaga, Yasuhiro; Yoshida, Koji

    2016-03-01

    Background Several different triangular fibrocartilage complex (TFCC) tear patterns have been classified through the use of wrist arthroscopy. A tear of the dorsal aspect of the TFCC has been previously reported, but it is not included in Palmer original classification. Our purpose was to describe this type of tear pattern along with the clinical presentation. Methods An isolated dorsal TFCC tear was encountered in seven wrists of six patients (three men and three women; average age was 31 years). All patients were evaluated by physical exam, X-ray, plain axial computed tomography with pronation, neutral and supination position, magnetic resonance imaging (MRI) with coronal, sagittal, and axial section and arthroscopy. Results The clinical findings varied and included the following: tenderness at the dorsoulnar aspect of the wrist was positive in all wrists, fovea sign was positive in five wrists, and tenderness at the dorsal aspect of the distal radioulnar joint was present in one wrist. Pain with forearm rotation was positive in all wrists. The ulnar head ballottement test induced pain in all wrists, whereas dorsal instability of the ulnar head was present in one wrist with this test. The ulnocarpal stress test was positive in five wrists. Axial and sagittal images on MRI revealed the dorsal tear in five wrists. All wrists were treated with an arthroscopic capsular repair. The final functional outcome at an average follow-up of 16.1 months was four excellent and one good wrist according to the modified Mayo wrist score. Conclusions The aim of this article is to describe our experiences with tears involving the dorsal aspect of the TFCC, which may be misdiagnosed if the surgeon is not cognizant of this injury. Type of study/level of evidence Diagnostic/level IV. PMID:26855835

  2. Ground-state properties of quantum triangular ice

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.

    2016-03-01

    Motivated by recent quantum Monte Carlo (QMC) simulations of the quantum Kagome ice model by Juan Carrasquilla et al., [Nat. Commun., 6, 7421 (2015), 10.1038/ncomms8421], we study the ground-state properties of this model on the triangular lattice. In the presence of a magnetic field h , the Hamiltonian possesses competing interactions between a Z2-invariant easy-axis ferromagnetic interaction J±± and a frustrated Ising term Jz. As in the U(1)-invariant model, we obtain four classical distinctive phases, however, the classical phases in the Z2-invariant model are different. They are as follows: a fully polarized (FP) ferromagnet for large h , an easy-axis canted ferromagnet (CFM) with broken Z2 symmetry for small h and dominant J±±, a ferrosolid phase with broken translational and Z2 symmetries for small h and dominant Jz, and two lobes with m ==±1 /6 for small h and dominant Jz. We show that quantum fluctuations are suppressed in this model, hence the large-S expansion gives an accurate picture of the ground-state properties. When quantum fluctuations are introduced, we show that the ferrosolid state is the ground state in the dominant Ising limit at zero magnetic field. It remains robust for Jz→∞ . With nonzero magnetic field the classical lobes acquire a finite magnetic susceptibility with no Sz order. We present the trends of the ground-state energy and the magnetizations. We also present a detail analysis of the CFM.

  3. Arthroscopic Foveal Repair of the Triangular Fibrocartilage Complex

    PubMed Central

    Atzei, Andrea; Luchetti, Riccardo; Braidotti, Federica

    2015-01-01

    Background Foveal disruption of the triangular fibrocartilage complex (TFCC) is associated with distal radioulnar joint (DRUJ) instability. TFCC fixation onto the fovea is the suitable treatment, which is not achieved by conventional arthroscopic techniques. We describe an all-inside arthroscopic technique that uses a suture anchor through distal DRUJ arthroscopy for foveal repair of the TFCC. Materials and Methods Forty-eight patients with TFCC foveal tear and DRUJ instability were selected according to the Atzei–European Wrist Arthroscopy Society (EWAS) algorithm of treatment. Retrospective evaluation included pain, DRUJ instability, range of motion (ROM), grip strength, Modified Mayo Wrist Score (MMWS), and the Disabilities of the Arm, Shoulder, and Hand (DASH) Score. Description of Technique DRUJ arthroscopy was performed to débride the TFCC and the foveal area. Under arthroscopic guidance, a suture anchor was inserted via the distal foveal portal to repair the TFCC onto the fovea. Sutures were tied on the radiocarpal surface of the TFCC. Postoperative immobilization of forearm rotation was maintained for 4 weeks. Heavy tasks were allowed after 3 months. Results After a mean follow-up of 33 months, pain improved significantly but remained moderate in four patients, severe in one. DRUJ instability resolved in 44 patients. Wrist ROM increased. Grip strength, MMWS, and DASH score improved significantly. Excellent and good MMWS equaled 83.3%. Forty-one patients (85.5%) resumed previous work and sport activities. As a postoperative complication, five patients experienced neuroapraxia of the dorsal sensory branch of the ulnar nerve (DSBUN) with full spontaneous recovery. Conclusions With appropriate indications and patient selection, arthroscopic foveal repair of the TFCC may restore DRUJ stability and provide satisfactory results without significant complications. PMID:25709875

  4. Energy levels of double triangular graphene quantum dots

    SciTech Connect

    Liang, F. X.; Jiang, Z. T. Zhang, H. Y.; Li, S.; Lv, Z. T.

    2014-09-28

    We investigate theoretically the energy levels of the coupled double triangular graphene quantum dots (GQDs) based on the tight-binding Hamiltonian model. The double GQDs including the ZZ-type, ZA-type, and AA-type GQDs with the two GQDs having the zigzag or armchair boundaries can be coupled together via different interdot connections, such as the direct coupling, the chains of benzene rings, and those of carbon atoms. It is shown that the energy spectrum of the coupled double GQDs is the amalgamation of those spectra of the corresponding two isolated GQDs with the modification triggered by the interdot connections. The interdot connection is inclined to lift up the degeneracies of the energy levels in different degree, and as the connection changes from the direct coupling to the long chains, the removal of energy degeneracies is suppressed in ZZ-type and AA-type double GQDs, which indicates that the two coupled GQDs are inclined to become decoupled. Then we consider the influences on the spectra of the coupled double GQDs induced by the electric fields applied on the GQDs or the connection, which manifests as the global spectrum redistribution or the local energy level shift. Finally, we study the symmetrical and asymmetrical energy spectra of the double GQDs caused by the substrates supporting the two GQDs, clearly demonstrating how the substrates affect the double GQDs' spectrum. This research elucidates the energy spectra of the coupled double GQDs, as well as the mechanics of manipulating them by the electric field and the substrates, which would be a significant reference for designing GQD-based devices.

  5. The DESY Grid Centre

    NASA Astrophysics Data System (ADS)

    Haupt, A.; Gellrich, A.; Kemp, Y.; Leffhalm, K.; Ozerov, D.; Wegner, P.

    2012-12-01

    DESY is one of the world-wide leading centers for research with particle accelerators, synchrotron light and astroparticles. DESY participates in LHC as a Tier-2 center, supports on-going analyzes of HERA data, is a leading partner for ILC, and runs the National Analysis Facility (NAF) for LHC and ILC in the framework of the Helmholtz Alliance, Physics at the Terascale. For the research with synchrotron light major new facilities are operated and built (FLASH, PETRA-III, and XFEL). DESY furthermore acts as Data-Tier1 centre for the Neutrino detector IceCube. Established within the EGI-project DESY operates a grid infrastructure which supports a number of virtual Organizations (VO), incl. ATLAS, CMS, and LHCb. Furthermore, DESY hosts some of HEP and non-HEP VOs, such as the HERA experiments and ILC as well as photon science communities. The support of the new astroparticle physics VOs IceCube and CTA is currently set up. As the global structure of the grid offers huge resources which are perfect for batch-like computing, DESY has set up the National Analysis Facility (NAF) which complements the grid to allow German HEP users for efficient data analysis. The grid infrastructure and the NAF use the same physics data which is distributed via the grid. We call the conjunction of grid and NAF the DESY Grid Centre. In the contribution to CHEP2012 we will in depth discuss the conceptional and operational aspects of our multi-VO and multi-community Grid Centre and present the system setup. We will in particular focus on the interplay of Grid and NAF and present experiences of the operations.

  6. Trends in life science grid: from computing grid to knowledge grid

    PubMed Central

    Konagaya, Akihiko

    2006-01-01

    Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community. PMID:17254294

  7. Properties of plane discrete Poisson-Voronoi tessellations on triangular tiling formed by the Kolmogorov-Johnson-Mehl-Avrami growth of triangular islands

    NASA Astrophysics Data System (ADS)

    Korobov, A.

    2011-08-01

    Discrete uniform Poisson-Voronoi tessellations of two-dimensional triangular tilings resulting from the Kolmogorov-Johnson-Mehl-Avrami (KJMA) growth of triangular islands have been studied. This shape of tiles and islands, rarely considered in the field of random tessellations, is prompted by the birth-growth process of Ir(210) faceting. The growth mode determines a triangular metric different from the Euclidean metric. Kinetic characteristics of tessellations appear to be metric sensitive, in contrast to area distributions. The latter have been studied for the variant of nuclei growth to the first impingement in addition to the conventional case of complete growth. Kiang conjecture works in both cases. The averaged number of neighbors is six for all studied densities of random tessellations, but neighbors appear to be mainly different in triangular and Euclidean metrics. Also, the applicability of the obtained results for simulating birth-growth processes when the 2D nucleation and impingements are combined with the 3D growth in the particular case of similar shape and the same orientation of growing nuclei is briefly discussed.

  8. Grid Computing Education Support

    SciTech Connect

    Steven Crumb

    2008-01-15

    The GGF Student Scholar program enabled GGF the opportunity to bring over sixty qualified graduate and under-graduate students with interests in grid technologies to its three annual events over the three-year program.

  9. Space Development Grid Portal

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    2004-01-01

    This viewgraph presentation provides information on the development of a portal to provide secure and distributed grid computing for Payload Operations Integrated Center and Mission Control Center ground services.

  10. IDL Grid Web Portal

    NASA Astrophysics Data System (ADS)

    Massimino, P.; Costa, A.

    2008-08-01

    Image Data Language is a software for data analysis, visualization and cross-platform application development. The potentiality of IDL is well-known in the academic scientific world, especially in the astronomical environment where thousands of procedures are developed by using IDL. The typical use of IDL is the interactive mode but it is also possible to run IDL programs that do not require any interaction with the user, submitting them in batch or background modality. Through the interactive mode the user immediately receives images or other data produced in the running phase of the program; in batch or background mode, the user will have to wait for the end of the program, sometime for many hours or days to obtain images or data that IDL produced as output: in fact in Grid environment it is possible to access to or retrieve data only after completion of the program. The work that we present gives flexibility to IDL procedures submitted to the Grid computer infrastructure. For this purpose we have developed an IDL Grid Web Portal to allow the user to access the Grid and to submit IDL programs granting a full job control and the access to images and data generated during the running phase, without waiting for their completion. We have used the PHP technology and we have given the same level of security that Grid normally offers to its users. In this way, when the user notices that the intermediate program results are not those expected, he can stop the job, change the parameters to better satisfy the computational algorithm and resubmit the program, without consuming the CPU time and other Grid resources. The IDL Grid Web Portal allows you to obtain IDL generated images, graphics and data tables by using a normal browser. All conversations from the user and the Grid resources occur via Web, as well as authentication phases. The IDL user has not to change the program source much because the Portal will automatically introduce the appropriate modification before

  11. Implementing Production Grids

    NASA Technical Reports Server (NTRS)

    Johnston, William E.; Ziobarth, John (Technical Monitor)

    2002-01-01

    We have presented the essence of experience gained in building two production Grids, and provided some of the global context for this work. As the reader might imagine, there were a lot of false starts, refinements to the approaches and to the software, and several substantial integration projects (SRB and Condor integrated with Globus) to get where we are today. However, the point of this paper is to try and make it substantially easier for others to get to the point where Information Power Grids (IPG) and the DOE Science Grids are today. This is what is needed in order to move us toward the vision of a common cyber infrastructure for science. The author would also like to remind the readers that this paper primarily represents the actual experiences that resulted from specific architectural and software choices during the design and implementation of these two Grids. The choices made were dictated by the criteria laid out in section 1. There is a lot more Grid software available today that there was four years ago, and various of these packages are being integrated into IPG and the DOE Grids. However, the foundation choices of Globus, SRB, and Condor would not be significantly different today than they were four years ago. Nonetheless, if the GGF is successful in its work - and we have every reason to believe that it will be - then in a few years we will see that the 28 functions provided by these packages will be defined in terms of protocols and MIS, and there will be several robust implementations available for each of the basic components, especially the Grid Common Services. The impact of the emerging Web Grid Services work is not yet clear. It will likely have a substantial impact on building higher level services, however it is the opinion of the author that this will in no way obviate the need for the Grid Common Services. These are the foundation of Grids, and the focus of almost all of the operational and persistent infrastructure aspects of Grids.

  12. Calculation of Inter-Subchannel Turbulent Mixing Rate and Heat Transfer in a Triangular-Arrayed Rod Bundle Using Direct Numerical Simulation

    SciTech Connect

    Yudov, Yury V.

    2006-07-01

    The direct numerical simulation, extended to boundary - fitted coordinate, has been carried out for a fully-developed turbulent flow thermal hydraulics in a triangular rod bundle. The rod bundle is premised to be an infinite array. The spacer grid effects are ignored. The purpose of this work is to verify DNS methodology to be applied for deriving coefficients for inter-subchannel turbulent mixing and heat transfer on a rod. These coefficients are incorporated in subchannel analysis codes. To demonstrate the validity of this methodology, numerical calculation was performed for the bundle with the pitch to diameter ratio 1.2, at friction Reynolds number of 600 and Prandtl number of 1. The results for the hydraulic parameters are compared with published DNS data, and the results for the heat exchange coefficients -- with those obtained using semi-empirical correlations. (authors)

  13. Random array grid collimator

    DOEpatents

    Fenimore, E.E.

    1980-08-22

    A hexagonally shaped quasi-random no-two-holes touching grid collimator. The quasi-random array grid collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasng throughput by elimination of a substrate. The presentation invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  14. Computational study of triangular waveform oscillation mode to the temperature distribution of a heated wall impinged by a synthetic jet

    NASA Astrophysics Data System (ADS)

    Harinaldi, Rhakasywi, Damora; Defriadi, Rikko

    2012-06-01

    This research is a continuation of synthetic jet characteristics investigation over convective cooling of impinging jet model. The synthetic jet cooling uses an air flowing in a vertical direction into the heated wall. This model uses an oscilating membrane to push and pull the air from and to the cavity. The purpose of this model of synthetic jet is to create vortices pair to come out from nozzle which will accelerate the heat transfer process occurring at the wall. This heat transfer enhancement principle has became the basis to simulate an alternative cooling system in order to substitute the conventional fan cooling in electronic devices due to its advantage for having a small form factor and low noise. The investigation is conducted in the computational work. In this research, the synthetic jet prototype model was simulated to examine the distribution of heat flow on the walls using a mathematical turbulent model k-ω SST. Meshing order was elements Tet/Hybrid and type Tgrid and the number of grid was more than 233.886 in order to ensure detail discretization and more accurate calculation results. This simulation used a triangular waveform as it excitation source. The frequencies of excitation were 80 Hz, 120 Hz, 160 Hz and the amplitude was 1 m/s. Using this variation, the main goal is to increase the heat transfer coefficient generated by the synthetic jet blow.

  15. Beyond grid security

    NASA Astrophysics Data System (ADS)

    Hoeft, B.; Epting, U.; Koenig, T.

    2008-07-01

    While many fields relevant to Grid security are already covered by existing working groups, their remit rarely goes beyond the scope of the Grid infrastructure itself. However, security issues pertaining to the internal set-up of compute centres have at least as much impact on Grid security. Thus, this talk will present briefly the EU ISSeG project (Integrated Site Security for Grids). In contrast to groups such as OSCT (Operational Security Coordination Team) and JSPG (Joint Security Policy Group), the purpose of ISSeG is to provide a holistic approach to security for Grid computer centres, from strategic considerations to an implementation plan and its deployment. The generalised methodology of Integrated Site Security (ISS) is based on the knowledge gained during its implementation at several sites as well as through security audits, and this will be briefly discussed. Several examples of ISS implementation tasks at the Forschungszentrum Karlsruhe will be presented, including segregation of the network for administration and maintenance and the implementation of Application Gateways. Furthermore, the web-based ISSeG training material will be introduced. This aims to offer ISS implementation guidance to other Grid installations in order to help avoid common pitfalls.

  16. Design of a triangular platform piezoresistive affinity microcantilever sensor for biochemical sensing applications

    NASA Astrophysics Data System (ADS)

    Mathew, Ribu; Sankar, A. Ravi

    2015-05-01

    Microcantilever platforms with integrated piezoresistors have found versatile applications in the field of clinical analysis and diagnostics. Even though treatise encompasses numerous design details of the cantilever based biochemical sensors, a majority of them focus on the generic slender rectangular cantilever platform mainly due to its evolution from the atomic force microscope (AFM). The reported designs revolve around the aspects of dimensional optimization and variations with respect to the combination of materials for the composite structure. In this paper, a triangular cantilever platform is shown to have better performance metrics than the reported generic slender rectangular and the square cantilever platforms with integrated piezoresistors for biochemical sensing applications. The selection and optimization of the triangular cantilever platform is carried out in two stages. In the first stage, the preliminary selection of the cantilever shape is performed based on the initial design obtained by analytical formulae and numerical simulations. The second stage includes the geometrical optimization of the triangular cantilever platform and the integrated piezoresistor. The triangular cantilever platform shows a better performance in terms of the figure of merit (FoM), \\psi = ≤ft(Δ R/R\\right)f02 and the measurement bandwidth. The simulation results show that the magnitude of ψ of the triangular platform is 77.21% and 65.64% higher than that of the slender rectangular and the square cantilever platforms respectively. Moreover, the triangular platform exhibits a measurement bandwidth that is 70.91% and 2.04 times higher than that of the slender rectangular and square cantilever structures respectively. For a better understanding of the 2D nature of the stress generated on the cantilever platform due to the surface stress, its spatial profile has been extracted and depicted graphically. Finally, a set of design rules are provided for optimizing the

  17. Using Grid Benchmarks for Dynamic Scheduling of Grid Applications

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Hood, Robert

    2003-01-01

    Navigation or dynamic scheduling of applications on computational grids can be improved through the use of an application-specific characterization of grid resources. Current grid information systems provide a description of the resources, but do not contain any application-specific information. We define a GridScape as dynamic state of the grid resources. We measure the dynamic performance of these resources using the grid benchmarks. Then we use the GridScape for automatic assignment of the tasks of a grid application to grid resources. The scalability of the system is achieved by limiting the navigation overhead to a few percent of the application resource requirements. Our task submission and assignment protocol guarantees that the navigation system does not cause grid congestion. On a synthetic data mining application we demonstrate that Gridscape-based task assignment reduces the application tunaround time.

  18. Exploring Hypersonic, Unstructured-Grid Issues through Structured Grids

    NASA Technical Reports Server (NTRS)

    Mazaheri, Ali R.; Kleb, Bill

    2007-01-01

    Pure-tetrahedral unstructured grids have been shown to produce asymmetric heat transfer rates for symmetric problems. Meanwhile, two-dimensional structured grids produce symmetric solutions and as documented here, introducing a spanwise degree of freedom to these structured grids also yields symmetric solutions. The effects of grid skewness and other perturbations of structured-grids are investigated to uncover possible mechanisms behind the unstructured-grid solution asymmetries. By using controlled experiments around a known, good solution, the effects of particular grid pathologies are uncovered. These structured-grid experiments reveal that similar solution degradation occurs as for unstructured grids, especially for heat transfer rates. Non-smooth grids within the boundary layer is also shown to produce large local errors in heat flux but do not affect surface pressures.

  19. Near-Body Grid Adaption for Overset Grids

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Pulliam, Thomas H.

    2016-01-01

    A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.

  20. Grid generation strategies for turbomachinery configurations

    NASA Astrophysics Data System (ADS)

    Lee, K. D.; Henderson, T. L.

    1991-01-01

    Turbomachinery flow fields involve unique grid generation issues due to their geometrical and physical characteristics. Several strategic approaches are discussed to generate quality grids. The grid quality is further enhanced through blending and adapting. Grid blending smooths the grids locally through averaging and diffusion operators. Grid adaptation redistributes the grid points based on a grid quality assessment. These methods are demonstrated with several examples.

  1. Recent Development in the CESE Method for the Solution of the Navier-Stokes Equations Using Unstructured Triangular or Tetrahedral Meshes With High Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Chang, Chau-Lyan; Yen, Joseph C.

    2013-01-01

    In the multidimensional CESE development, triangles and tetrahedra turn out to be the most natural building blocks for 2D and 3D spatial meshes. As such the CESE method is compatible with the simplest unstructured meshes and thus can be easily applied to solve problems with complex geometries. However, because the method uses space-time staggered stencils, solution decoupling may become a real nuisance in applications involving unstructured meshes. In this paper we will describe a simple and general remedy which, according to numerical experiments, has removed any possibility of solution decoupling. Moreover, in a real-world viscous flow simulation near a solid wall, one often encounters a case where a boundary with high curvature or sharp corner is surrounded by triangular/tetrahedral meshes of extremely high aspect ratio (up to 106). For such an extreme case, the spatial projection of a space-time compounded conservation element constructed using the original CESE design may become highly concave and thus its centroid (referred to as a spatial solution point) may lie far outside of the spatial projection. It could even be embedded beyond a solid wall boundary and causes serious numerical difficulties. In this paper we will also present a new procedure for constructing conservation elements and solution elements which effectively overcomes the difficulties associated with the original design. Another difficulty issue which was addressed more recently is the wellknown fact that accuracy of gradient computations involving triangular/tetrahedral grids deteriorates rapidly as the aspect ratio of grid cells increases. The root cause of this difficulty was clearly identified and several remedies to overcome it were found through a rigorous mathematical analysis. However, because of the length of the current paper and the complexity of mathematics involved, this new work will be presented in another paper.

  2. GRIDS: Grid-Scale Rampable Intermittent Dispatchable Storage

    SciTech Connect

    2010-09-01

    GRIDS Project: The 12 projects that comprise ARPA-E’s GRIDS Project, short for “Grid-Scale Rampable Intermittent Dispatchable Storage,” are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.

  3. Reference installation for the German grid initiative D-Grid

    NASA Astrophysics Data System (ADS)

    Buehler, W.; Dulov, O.; Garcia, A.; Jejkal, T.; Jrad, F.; Marten, H.; Mol, X.; Nilsen, D.; Schneider, O.

    2010-04-01

    The D-Grid reference installation is a test platform for the German grid initiative. The main task is to create the grid prototype for software and hardware components needed in the D-Grid community. For each grid-related task field different alternative middleware is included. With respect to changing demands from the community, new versions of the reference installation are released every six months.

  4. Arc Length Based Grid Distribution For Surface and Volume Grids

    NASA Technical Reports Server (NTRS)

    Mastin, C. Wayne

    1996-01-01

    Techniques are presented for distributing grid points on parametric surfaces and in volumes according to a specified distribution of arc length. Interpolation techniques are introduced which permit a given distribution of grid points on the edges of a three-dimensional grid block to be propagated through the surface and volume grids. Examples demonstrate how these methods can be used to improve the quality of grids generated by transfinite interpolation.

  5. Triangularity and dipole asymmetry in relativistic heavy ion collisions

    SciTech Connect

    Teaney, Derek; Yan Li

    2011-06-15

    We introduce a cumulant expansion to parametrize possible initial conditions in relativistic heavy ion collisions. We show that the cumulant expansion converges and that it can systematically reproduce the results of Glauber type initial conditions. At third order in the gradient expansion the cumulants characterize the triangularity and the dipole asymmetry of the initial entropy distribution. We show that for midperipheral collisions the orientation angle of the dipole asymmetry {psi}{sub 1,3} has a 20% preference out of plane. This leads to a small net v{sub 1} out of plane. In peripheral and midcentral collisions the orientation angles {psi}{sub 1,3} and {psi}{sub 3,3} are strongly correlated, but this correlation disappears towards central collisions. We study the ideal hydrodynamic response to these cumulants and determine the associated v{sub 1}/{epsilon}{sub 1} and v{sub 3}/{epsilon}{sub 3} for a massless ideal gas equation of state. The space time development of v{sub 1} and v{sub 3} is clarified with figures. These figures show that v{sub 1} and v{sub 3} develop toward the edge of the nucleus, and consequently the final spectra are more sensitive to the viscous dynamics of freezeout. The hydrodynamic calculations for v{sub 3} are provisionally compared to Alver and Roland fit of STAR inclusive two-particle correlation functions. Finally, we propose to measure the v{sub 1} associated with the dipole asymmetry and the correlations between {psi}{sub 1,3} and {psi}{sub 3,3} by measuring a two-particle correlation with respect to the participant plane . The hydrodynamic prediction for this correlation function is several times larger than a correlation currently measured by the STAR collaboration . This experimental measurement would provide

  6. Parallel implicit unstructured grid Euler solvers

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.

    1994-01-01

    A mesh-vertex finite volume scheme for solving the Euler equations on triangular unstructured meshes is implemented on an MIMD (multiple instruction/multiple data stream) parallel computer. An explicit four-stage Runge-Kutta scheme is used to solve two-dimensional flow problems. A family of implicit schemes is also developed to solve these problems, where the linear system that arises at each time step is solved by a preconditioned GMRES algorithm. Two partitioning strategies are employed, one that partitions triangles and the other that partitions vertices. The choice of the preconditioner in a distributed memory setting is discussed. All the methods are compared both in terms of elapsed times and convergence rates. It is shown that the implicit schemes offer adequate parallelism at the expense of minimal sequential overhead. The use of a global coarse grid to further minimize this overhead is also investigated. The schemes are implemented on a distributed memory parallel computer, the iPSC/860.

  7. Parallel implicit unstructured grid Euler solvers

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.

    1994-01-01

    A mesh-vertex finite volume scheme for solving the Euler equations on triangular unstructured meshes is implemented on a multiple-instruction/multiple-data stream parallel computer. An explicit four-stage Runge-Kutta scheme is used to solve two-dimensional flow problems. A family of implicit schemes is also developed to solve these problems, where the linear system that arises at each time step is solved by a preconditioned GMRES algorithm. Two partitioning strategies are employed: one that partitions triangles and the other that partitions vertices. The choice of the preconditioner in a distributed memory setting is discussed. All of the methods are compared both in terms of elapsed times and convergence rates. It is shown that the implicit schemes offer adequate parallelism at the expense of minimal sequential overhead. The use of a global coarse grid to further minimize this overhead is also investigated. The schemes are implemented on a distributed memory parallel computer, the Intel iPSC/860.

  8. A mixed volume grid approach for the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Jorgenson, Philip C. E.

    1996-01-01

    An approach for solving the compressible Euler and Navier-Stokes equations upon meshes composed of nearly arbitrary polyhedra is described. Each polyhedron is constructed from an arbitrary number of triangular and quadrilateral face elements, allowing the unified treatment of tetrahedral, prismatic, pyramidal, and hexahedral cells, as well the general cut cells produced by Cartesian mesh approaches. The basics behind the numerical approach and the resulting data structures are described. The accuracy of the mixed volume grid approach is assessed by performing a grid refinement study upon a series of hexahedral, tetrahedral, prismatic, and Cartesian meshes for an analytic inviscid problem. A series of laminar validation cases are made, comparing the results upon differing grid topologies to each other, to theory, and experimental data. A computation upon a prismatic/tetrahedral mesh is made simulating the laminar flow over a wall/cylinder combination.

  9. Unstructured Grids on NURBS Surfaces

    NASA Technical Reports Server (NTRS)

    Samareh-Abolhassani, Jamshid

    1993-01-01

    A simple and efficient computational method is presented for unstructured surface grid generation. This method is built upon an advancing front technique combined with grid projection. The projection technique is based on a Newton-Raphson method. This combined approach has been successfully implemented for structured and unstructured grids. In this paper, the implementation for unstructured grid is discussed.

  10. The Benefits of Grid Networks

    ERIC Educational Resources Information Center

    Tennant, Roy

    2005-01-01

    In the article, the author talks about the benefits of grid networks. In speaking of grid networks the author is referring to both networks of computers and networks of humans connected together in a grid topology. Examples are provided of how grid networks are beneficial today and the ways in which they have been used.

  11. Smart Grid Integration Laboratory

    SciTech Connect

    Troxell, Wade

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of

  12. Theoretical lift and drag of thin triangular wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Brown, Clinton E

    1946-01-01

    A method is derived for calculating the lift and the drag due to lift of point-forward triangular wings and a restricted series of sweptback wings at supersonic speeds. The elementary or "supersonic sources" solution of the linearized equation of motion is used to find the potential function of a line of doublets. The flow about the triangular flat plate is then obtained by a surface distribution of these doublet lines. The lift-curve slope of triangular wings is found to be a function of the ratio of the tangent of the apex angle to the tangent of the Mach angle. As the apex angle approaches and becomes greater than the Mach angle, the lift coefficient of the triangular wing becomes equal to that of a two-dimensional supersonic airfoil at the same Mach number. The drag coefficient due to lift of triangular wings with leading edges well behind the Mach cone is shown to be close to that of elliptically loaded wings of the same aspect ratio in subsonic flight. The resultant force on wings with leading edges outside the Mach cone, however, is shown to act normal to the surfaces and thus an induced drag equal to the lift times the angle of attack is obtained.

  13. GridLAB-D/SG

    Energy Science and Technology Software Center (ESTSC)

    2011-08-30

    GridLAB-D is a new power system simulation tool that provides valuable information to users who design and operate electric power transmission and distribution systems, and to utilities that wish to take advantage of the latest smart grid technology. This special release of GridLAB-D was developed to study the proposed Smart Grid technology that is used by Battelle Memorial Institute in the AEP gridSMART demonstration project in Northeast Columbus, Ohio.

  14. Thermodynamical properties of triangular quantum wires: entropy, specific heat, and internal energy

    NASA Astrophysics Data System (ADS)

    Khordad, R.

    2016-07-01

    In the present work, thermodynamical properties of a GaAs quantum wire with equilateral triangle cross section are studied. First, the energy levels of the system are obtained by solving the Schrödinger equation. Second, the Tsallis formalism is applied to obtain entropy, internal energy, and specific heat of the system. We have found that the specific heat and entropy have certain physically meaningful values, which mean thermodynamic properties cannot take any continuous value, unlike classical thermodynamics in which they are considered as continuous quantities. Maximum of entropy increases with increasing the wire size. The specific heat is zero at special temperatures. Specific heat decreases with increasing temperature. There are several peaks in specific heat, and these are dependent on quantum wire size.

  15. Electromagnetic selection rules in the triangular α-cluster model of 12C

    NASA Astrophysics Data System (ADS)

    Stellin, G.; Fortunato, L.; Vitturi, A.

    2016-08-01

    After recapitulating the procedure to find the bands and the states occurring in the {{ D }}3h alpha-cluster model of 12C in which the clusters are placed at the vertexes of an equilateral triangle, we obtain the selection rules for electromagnetic transitions. While the alpha-cluster structure leads to the cancellation of E1 transitions, the approximations carried out in deriving the rotational-vibrational Hamiltonian lead to the disappearance of M1 transitions. Furthermore, although in general the lowest active modes are E2, E3, ... and M2, M3, ..., the cancellation of M2, M3 and M5 transitions between certain bands also occur as a result of the application of group theoretical techniques drawn from molecular physics. These implications can be very relevant for the spectroscopic analysis of γ-ray spectra of 12C.

  16. An Approach for Dynamic Grids

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Liou, Meng-Sing; Hindman, Richard G.

    1994-01-01

    An approach is presented for the generation of two-dimensional, structured, dynamic grids. The grid motion may be due to the motion of the boundaries of the computational domain or to the adaptation of the grid to the transient, physical solution. A time-dependent grid is computed through the time integration of the grid speeds which are computed from a system of grid speed equations. The grid speed equations are derived from the time-differentiation of the grid equations so as to ensure that the dynamic grid maintains the desired qualities of the static grid. The grid equations are the Euler-Lagrange equations derived from a variational statement for the grid. The dynamic grid method is demonstrated for a model problem involving boundary motion, an inviscid flow in a converging-diverging nozzle during startup, and a viscous flow over a flat plate with an impinging shock wave. It is shown that the approach is more accurate for transient flows than an approach in which the grid speeds are computed using a finite difference with respect to time of the grid. However, the approach requires significantly more computational effort.

  17. A new method for the determination of flow directions and upslope areas in grid digital elevation models

    NASA Astrophysics Data System (ADS)

    Tarboton, David G.

    A new procedure for the representation of flow directions and calculation of upslope areas using rectangular grid digital elevation models is presented. The procedure is based on representing flow direction as a single angle taken as the steepest downward slope on the eight triangular facets centered at each grid point. Upslope area is then calculated by proportioning flow between two downslope pixels according to how close this flow direction is to the direct angle to the downslope pixel. This procedure offers improvements over prior procedures that have restricted flow to eight possible directions (introducing grid bias) or proportioned flow according to slope (introducing unrealistic dispersion). The new procedure is more robust than prior procedures based on fitting local planes while retaining a simple grid based structure. Detailed algorithms are presented and results are demonstrated through test examples and application to digital elevation data sets.

  18. Complex Volume Grid Generation Through the Use of Grid Reusability

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1997-01-01

    This paper presents a set of surface and volume grid generation techniques which reuse existing surface and volume grids. These methods use combinations of data manipulations to reduce grid generation time, improve grid characteristics, and increase the capabilities of existing domain discretization software. The manipulation techniques utilize physical and computational domains to produce basis function on which to operate and modify grid character and smooth grids using Trans-Finite Interpolation, a vector interpolation method and parametric re-mapping technique. With these new techniques, inviscid grids can be converted to viscous grids, multiple zone grid adaption can be performed to improve CFD solver efficiency, and topological changes to improve modeling of flow fields can be done simply and quickly. Examples of these capabilities are illustrated as applied to various configurations.

  19. NREL Smart Grid Projects

    SciTech Connect

    Hambrick, J.

    2012-01-01

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

  20. Multi-Dimensional Spectral Difference Method for Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Vinokur, Marcel

    2005-01-01

    A new, high-order, conservative, and efficient method for conservation laws on unstructured grids is developed. It combines the best features of structured and unstructured grid methods to attain computational efficiency and geometric flexibility; it utilizes the concept of discontinuous and high-order local representations to achieve conservation and high accuracy; and it is based on the finite-difference formulation for simplicity. Universal reconstructions are obtained by distributing unknowns in a geometrically similar manner for all unstructured cells. Placements of the unknown and flux points with various order of accuracy are given for the line, triangular and tetrahedral elements. The data structure of the new method permits an optimum use of cache memory, resulting in further computational efficiency on modern computers. A new pointer system is developed that reduces memory requirements and simplifies programming for any order of accuracy. Numerical solutions are presented and compared with the exact solutions for wave propagation problems in both two and three dimensions to demonstrate the capability of the method. Excellent agreement has been found. The method is simpler and more efficient than previous discontinuous Galerkin and spectral volume methods for unstructured grids.

  1. An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    1999-01-01

    An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.

  2. OMEGA: The operational multiscale environment model with grid adaptivity

    SciTech Connect

    Bacon, D.P.

    1995-07-01

    This review talk describes the OMEGA code, used for weather simulation and the modeling of aerosol transport through the atmosphere. Omega employs a 3D mesh of wedge shaped elements (triangles when viewed from above) that adapt with time. Because wedges are laid out in layers of triangular elements, the scheme can utilize structured storage and differencing techniques along the elevation coordinate, and is thus a hybrid of structured and unstructured methods. The utility of adaptive gridding in this moded, near geographic features such as coastlines, where material properties change discontinuously, is illustrated. Temporal adaptivity was used additionally to track moving internal fronts, such as clouds of aerosol contaminants. The author also discusses limitations specific to this problem, including manipulation of huge data bases and fixed turn-around times. In practice, the latter requires a carefully tuned optimization between accuracy and computation speed.

  3. Characterisation and determination of in vitro antioxidant potential of betalains from Talinum triangulare (Jacq.) Willd.

    PubMed

    Swarna, J; Lokeswari, T S; Smita, M; Ravindhran, R

    2013-12-15

    Talinum triangulare (Jacq.) Willd is an erect, succulent, perennial herb belonging to the family Portulacaceae. Under extreme environmental conditions, the plant produces betalain pigments which get accumulated in the stem region. Hence, in the present study, the betaxanthin and betacyanin patterns from different samples of T. triangulare have been investigated by applying high-performance liquid chromatography photo-diode array detection (HPLC-PDA) coupled with positive ion electro-spray mass spectrometry. Two betacyanins and two betaxanthins were identified in aqueous methanolic extract of flower, stem and leaf. Betanin, isobetanin, immonium conjugates of betalamic acid with dopamine and tyrosine were elucidated. The total betalain content was estimated by photometric analysis. In vitro antioxidant activity for the betalain extract determined by various methods revealed potent scavenging ability. The current work may possibly be considered beneficial in utilisation of the plant T. triangulare as a natural colourant in food and beverage industries. PMID:23993629

  4. Interpreting medium ring canonical conformers by a triangular plane tessellation of the macrocycle

    NASA Astrophysics Data System (ADS)

    Khalili, Pegah; Barnett, Christopher B.; Naidoo, Kevin J.

    2013-05-01

    Cyclic conformational coordinates are essential for the distinction of molecular ring conformers as the use of Cremer-Pople coordinates have illustrated for five- and six-membered rings. Here, by tessellating medium rings into triangular planes and using the relative angles made between triangular planes we are able to assign macrocyclic pucker conformations into canonical pucker conformers such as chairs, boats, etc. We show that the definition is straightforward compared with other methods popularly used for small rings and that it is computationally simple to implement for complex macrocyclic rings. These cyclic conformational coordinates directly couple to the motion of individual nodes of a ring. Therefore, they are useful for correlating the physical properties of macrocycles with their ring pucker and measuring the dynamic ring conformational behavior. We illustrate the triangular tessellation, assignment, and pucker analysis on 7- and 8-membered rings. Sets of canonical states are given for cycloheptane and cyclooctane that have been previously experimentally analysed.

  5. Density matrix renormalization group study of triangular Kitaev-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Sota, Shigetoshi; Sjinjo, Kazuya; Shirakawa, Tomonori; Tohyama, Takami; Yunoki, Seiji

    2015-03-01

    Topological insulator has been one of the most active subjects in the current condensed matter physics. For most of topological insulators electron correlations are considered to be not essential. However, in the case where electron correlations are strong, novel phases such as a spin liquid phase can emerge in competition with a spin-orbit coupling. Here, using the density matrix renormalization group method, we investigate magnetic phase of a triangular Kitaev-Heisenberg (quantum compass) model that contains a spin-orbital interaction and spin frustration in the antiferromagnetic region. The triangular Kitaev-Heisenberg model is regarded as a dual model of the honeycomb Kitaev-Heisenberg model that is usually employed to discuss A2CuO3 (A=Na, K). Systematically calculating ground state energy, entanglement entropy, entanglement spectrum, and spin-spin correlation functions, we discuss the duality between the triangular and the honeycomb Kitaev-Heisenberg model as well as the ground state magnetic phases.

  6. Synthesis of highly crystalline rhombohedral BN triangular nanoplates via a convenient solid state reaction

    SciTech Connect

    Bao Keyan; Yu Fengyang; Shi Liang; Liu Shuzhen; Hu Xiaobo; Cao Jie; Qian Yitai

    2009-04-15

    Highly crystalline rhombohedral boron nitride (r-BN) with regular triangular shapes were synthesized on a large scale in a stainless steel autoclave using B{sub 2}O{sub 3} and NaNH{sub 2} as reactants at 600 deg. C for 6 h. The as-prepared BN triangular nanoplates have an average edge length of 400 nm and the thickness of about 60 nm. The photoluminescence measurements reveal that the r-BN products show strong yellow-green emission. The as-prepared r-BN has potential optical and optoelectronic applications in high temperature devices due to its excellent thermal stability and anti-oxidation properties. - Graphical abstract: Rhombohedral BN triangular nanoplates were synthesized at 600 deg. C. The products exhibit excellent luminescence, thermal stability and anti-oxidation properties; they are expected to become good candidates for optical and optoelectronic devices.

  7. Mechanical Properties of 3-D Printed Cellular Foams with triangular cells

    NASA Astrophysics Data System (ADS)

    Bunga, Pratap Kumar

    In the present work, poly lactic acid (PLA) is used as a model system to investigate the mechanical behavior of 3-D printed foams with triangular cells. Solid PLA tension and compression specimens and foams made of PLA were fabricated using fused deposition 3-D printing technique. The solid PLA tension specimens were characterized for their densities and found to be about 10% lower in density as compared to their bulk counter parts. The triangular foams had a relative density of about 64%. The relationships between the structure of the foams and its deformation behavior under compression along two in-plane directions were characterized. Furthermore, simple finite element models were developed to understand the observed deformation behavior of triangular foams.

  8. On Modeling and Analysis of MIMO Wireless Mesh Networks with Triangular Overlay Topology

    DOE PAGESBeta

    Cao, Zhanmao; Wu, Chase Q.; Zhang, Yuanping; Shiva, Sajjan G.; Gu, Yi

    2015-01-01

    Multiple input multiple output (MIMO) wireless mesh networks (WMNs) aim to provide the last-mile broadband wireless access to the Internet. Along with the algorithmic development for WMNs, some fundamental mathematical problems also emerge in various aspects such as routing, scheduling, and channel assignment, all of which require an effective mathematical model and rigorous analysis of network properties. In this paper, we propose to employ Cartesian product of graphs (CPG) as a multichannel modeling approach and explore a set of unique properties of triangular WMNs. In each layer of CPG with a single channel, we design a node coordinate scheme thatmore » retains the symmetric property of triangular meshes and develop a function for the assignment of node identity numbers based on their coordinates. We also derive a necessary-sufficient condition for interference-free links and combinatorial formulas to determine the number of the shortest paths for channel realization in triangular WMNs.« less

  9. Extended particle swarm optimisation method for folding protein on triangular lattice.

    PubMed

    Guo, Yuzhen; Wu, Zikai; Wang, Ying; Wang, Yong

    2016-02-01

    In this study, the authors studied the protein structure prediction problem by the two-dimensional hydrophobic-polar model on triangular lattice. Particularly the non-compact conformation was modelled to fold the amino acid sequence into a relatively larger triangular lattice, which is more biologically realistic and significant than the compact conformation. Then protein structure prediction problem was abstracted to match amino acids to lattice points. Mathematically, the problem was formulated as an integer programming and they transformed the biological problem into an optimisation problem. To solve this problem, classical particle swarm optimisation algorithm was extended by the single point adjustment strategy. Compared with square lattice, conformations on triangular lattice are more flexible in several benchmark examples. They further compared the authors' algorithm with hybrid of hill climbing and genetic algorithm. The results showed that their method was more effective in finding solution with lower energy and less running time. PMID:26816397

  10. Transformation of design formulae for feed line of triangular microstrip antenna

    NASA Astrophysics Data System (ADS)

    Mathur, Monika; Singh, Ghanshyam; Bhatnagar, S. K.; Swami, Swati; Vats, Abhijat

    2016-03-01

    In wireless communication system microstrip antenna is the key component. Popular shapes of patch for microstrip are rectangular, triangular and circular. A new transformation design formulae for feed line of rectangular microstrip antenna by using equivalent design concept were presented by the authors. That says one designed antenna for a given frequency on any substrate can be transformed into another substrate material for the same design frequency by simply multiply a factor ψ to the all dimensions of patch, length of feed line and some power of ψ for feed line width (where ψ is the square root of the ratio of dielectric constants of those two designs). This paper presents that the same formulae of that rectangular transformation feed line can also be applicable for triangular shape microstrip antenna transformation. The process was repeated for the triangular shape patch microstrip antenna as applied for rectangular shape and the simulation results were surprisingly the same for it by applying the same transformation formulae.

  11. Damping in Pitch and Roll of Triangular Wings at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Brown, Clinton E; Adams, Mac C

    1948-01-01

    A method is derived for calculating the damping coefficients in pitch and roll for a series of triangular wings and a restricted series of sweptback wings at supersonic speeds. The elementary "supersonic source" solution of the linearized equation of motion is used to find the potential function of a line of doublets, and the flows are obtained by surface distributions of these doublet lines. The damping derivatives for triangular wings are found to be a function of the ratio of the tangent of the apex angle to the tangent of the Mach angle. As this ratio becomes equal to and greater than 1.0 for triangular wings, the damping derivatives, in pitch and in roll, become constant. The damping derivative in roll becomes equal to one-half the value calculated for an infinite rectangular wing, and the damping derivative in pitch for pitching about the apex becomes equal to 3.375 times that of an infinite rectangular wing.

  12. Complete band gaps and deaf bands of triangular and honeycomb water-steel phononic crystals

    NASA Astrophysics Data System (ADS)

    Hsiao, Fu-Li; Khelif, Abdelkrim; Moubchir, Hanane; Choujaa, Abdelkrim; Chen, Chii-Chang; Laude, Vincent

    2007-02-01

    Phononic crystals with triangular and honeycomb lattices are investigated experimentally and theoretically. They are composed of arrays of steel cylinders immersed in water. The measured transmission spectra reveal the existence of complete band gaps but also of deaf bands. Band gaps and deaf bands are identified by comparing band structure computations, obtained by a periodic-boundary finite element method, with transmission simulations, obtained using the finite difference time domain method. The appearance of flat bands and the polarization of the associated eigenmodes is also discussed. Triangular and honeycomb phononic crystals with equal cylinder diameter and smallest spacing are compared. As previously obtained with air-solid phononic crystals, it is found that the first complete band gap opens for the honeycomb lattice but not for the triangular lattice, thanks to symmetry reduction.

  13. Information Power Grid Posters

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    2003-01-01

    This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.

  14. The Computing Grids

    NASA Astrophysics Data System (ADS)

    Govoni, P.

    2009-12-01

    Since the beginning of the millennium, High Energy Physics research institutions like CERN and INFN pioneered several projects aimed at exploiting the synergy among computing power, storage and network resources, and creating an infrastructure of distributed computing on a worldwide scale. In the year 2000, after the Monarch project [ http://monarc.web.cern.ch/MONARC/], DataGrid started [ http://eu-datagrid.web.cern.ch/eu-datagrid/] aimed at providing High Energy Physics with the computing power needed for the LHC enterprise. This program evolved into the EU DataGrid project, that implemented the first actual prototype of a Grid middleware running on a testbed environment. The next step consisted in the application to the LHC experiments, with the LCG project [ http://lcg.web.cern.ch/LCG/], in turn followed by the EGEE [ http://www.eu-egee.org/] and EGEE II programs.

  15. Interactive surface grid generation

    NASA Technical Reports Server (NTRS)

    Luh, Raymond Ching-Chung; Pierce, Lawrence E.; Yip, David

    1991-01-01

    This paper describes a surface grid generation tool called S3D. It is the result of integrating a robust and widely applicable interpolation technique with the latest in workstation technology. Employing the use of a highly efficient and user-friendly graphical interface, S3D permits real-time interactive analyses of surface geometry data and facilitates the construction of surface grids for a wide range of applications in Computational Fluid Dynamics (CFD). The design objectives are for S3D to be stand-alone and easy to use so that CFD analysts can take a hands-on approach toward most if not all of their surface grid generation needs. Representative examples of S3D applications are presented in describing the various elements involved in the process.

  16. Characterization of PSD of activated carbons by using slit and triangular pore geometries

    NASA Astrophysics Data System (ADS)

    Azevedo, D. C. S.; Rios, R. B.; López, R. H.; Torres, A. E. B.; Cavalcante, C. L.; Toso, J. P.; Zgrablich, G.

    2010-06-01

    A mixed geometry model for activated carbons, representing the porous space as a collection of an undetermined proportion of slit and triangular pores, is developed, evaluated theoretically and applied to the characterization of a controlled series of samples of activated carbon obtained from the same precursor material. A method is proposed for the determination of the Pore Size Distribution (PSD) for such a mixed geometry model, leading to the unique determination of the proportion of pores of the two geometries fitting adsorption data. By using the Grand Canonical Monte Carlo (GCMC) simulation method in the continuum space, families of N2 adsorption isotherms are generated both for slit and triangular geometry corresponding to different pore sizes. The problem of the uniqueness in the determination of the PSD by fitting an adsorption isotherm using the mixed geometry model is then discussed and the effects of the addition of triangular pores on the PSD are analyzed by performing a test where the adsorption isotherm corresponding to the known PSD is generated and used as the "experimental" isotherm. It is found that a pure slit geometry model would widen the PSD and shift it to smaller sizes, whereas a pure triangular geometry model would produce the opposite effect. The slit and triangular geometry families of isotherms are finally used to the fit experimental N 2 adsorption data corresponding to a family of activated carbons obtained from coconut shells through a one-step chemical activation process with phosphoric acid in air, allowing for the determination of the micropore volume, the proportion of slit and triangular pores and the PSD corresponding to the mixed geometry. The same experimental data were fit using both the conventional slit pore model and the mixed geometry model. From the analysis of the effect of different preparation procedures on the resulting PSDs, it is concluded that the proposed mixed geometry model may probably better capture the

  17. GridPV Toolbox

    Energy Science and Technology Software Center (ESTSC)

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feedermore » on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.« less

  18. GridPV Toolbox

    SciTech Connect

    Broderick, Robert; Quiroz, Jimmy; Grijalva, Santiago; Reno, Matthew; Coogan, Kyle

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.

  19. Modulation instability in a triangular three-core coupler with a negative-index material channel

    NASA Astrophysics Data System (ADS)

    Shafeeque Ali, A. K.; Nithyanandan, K.; Porsezian, K.; Maimistov, Andrei I.

    2016-03-01

    A theoretical investigation of the modulation instability (MI) in the three core triangular oppositely directed coupler with negative index material channel is presented. This class of couplers have an effective feedback mechanism due to the opposite directionality of the phase velocities in the negative and positive index channels. It is found that the MI in the nonlinear three core triangular oppositely directed coupler is significantly influenced by the ratio of the forward- to backward-propagating wave power and nonlinearity. Also, in the case of the normal dispersion regime a threshold-like behavior is observed, whereas this behavior is not identified in the anomalous dispersion regime. For the asymmetric case (h\

  20. Invariants of triangular Lie algebras with one nil-independent diagonal element

    NASA Astrophysics Data System (ADS)

    Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman

    2007-08-01

    The invariants of solvable triangular Lie algebras with one nil-independent diagonal element are studied exhaustively. Bases of the invariant sets of all such algebras are constructed using an original algebraic algorithm based on Cartan's method of moving frames and the special technique developed for triangular and closed algebras in Boyko et al (J. Phys. A: Math. Theor. 2007 40 7557). The conjecture of Tremblay and Winternitz (J. Phys. A: Math. Gen. 2001 34 9085) on the number and form of elements in the bases is completed and proved.

  1. Controllable galvanic synthesis of triangular Ag-Pd alloy nanoframes for efficient electrocatalytic methanol oxidation.

    PubMed

    Xu, Lin; Luo, Zhimin; Fan, Zhanxi; Yu, Sijia; Chen, Junze; Liao, Yusen; Xue, Can

    2015-06-01

    Triangular Ag-Pd alloy nanoframes were successfully synthesized through galvanic replacement by using Ag nanoprisms as sacrificial templates. The ridge thickness of the Ag-Pd alloy nanoframes could be readily tuned by adjusting the amount of the Pd source during the reaction. These obtained triangular Ag-Pd alloy nanoframes exhibit superior electrocatalytic activity for the methanol oxidation reaction as compared with the commercial Pd/C catalyst due to the alloyed Ag-Pd composition as well as the hollow-framed structures. This work would be highly impactful in the rational design of future bimetallic alloy nanostructures with high catalytic activity for fuel cell systems. PMID:25925988

  2. Current density and poloidal magnetic field for toroidal elliptic plasmas with triangularity

    SciTech Connect

    Martin, P.; Haines, M.G.; Castro, E.

    2005-08-15

    Changes in the poloidal magnetic field around a tokamak magnetic surface due to different values of triangularity and ellipticity are analyzed in this paper. The treatment here presented allows the determination of the poloidal magnetic field from knowledge of the toroidal current density. Different profiles of these currents are studied. Improvements in the analytic forms of the magnetic surfaces have also been found. The treatment has been performed using a recent published system of coordinates. Suitable analytic equations have been used for the elliptic magnetic surfaces with triangularity and Shafranov shift.

  3. The solution of the two-dimensional incompressible flow equations on unstructured triangular meshes

    NASA Astrophysics Data System (ADS)

    Williams, Morgan

    1993-05-01

    A numerical method for calculating two-dimensional turbulent incompressible flow on unstructured triangular meshes is developed. A primitive variable formulation is used. The Helmholtz pressure equation algorithm is used to enforce the velocity continuity relation for incompressible flow. A careful treatment of the pressure dissipation model is presented. A standard k-epsilon turbulence model with wall functions is used to provide closure for the governing equations. A backward-facing step turbulent flow is calculated using an unstructured triangular mesh, and the results are compared to experimental and computational data.

  4. Effects of Shannon entropy and electric field on polaron in RbCl triangular quantum dot

    NASA Astrophysics Data System (ADS)

    M, Tiotsop; A, J. Fotue; S, C. Kenfack; N, Issofa; H, Fotsin; L, C. Fai

    2016-04-01

    In this paper, the time evolution of the quantum mechanical state of a polaron is examined using the Pekar type variational method on the condition of the electric-LO-phonon strong-coupling and polar angle in RbCl triangular quantum dot. We obtain the eigenenergies, and the eigenfunctions of the ground state, and the first excited state respectively. This system in a quantum dot can be treated as a two-level quantum system qubit and the numerical calculations are performed. The effects of Shannon entropy and electric field on the polaron in the RbCl triangular quantum dot are also studied.

  5. Magnetic Flux Effect on a Kondo-Induced Electric Polarization in a Triangular Triple Quantum Dot

    NASA Astrophysics Data System (ADS)

    Koga, Mikito; Matsumoto, Masashige; Kusunose, Hiroaki

    2014-08-01

    A magnetic flux effect is studied theoretically on an electric polarization induced by the Kondo effect in a triangular triple-quantum-dot system, where one of the three dots is connected to a metallic lead. This electric polarization exhibits an Aharonov-Bohm oscillation as a function of the magnetic flux penetrating through the triangular loop. The numerical renormalization group analysis reveals how the oscillation pattern depends on the Kondo coupling of a local spin with lead electrons, which is sensitive to the point contact with the lead. It provides an experimental implication that the Kondo effect is the origin of the emergent electric polarization.

  6. Kondo-induced electric polarization modulated by magnetic flux through a triangular triple quantum dot

    NASA Astrophysics Data System (ADS)

    Koga, M.; Matsumoto, M.; Kusunose, H.

    2015-03-01

    The Kondo effect plays an important role in emergence of electric polarization in a triangular triple-quantum-dot system, where one of the three dots is point-contacted with a single lead, and a magnetic flux penetrates through the triangular loop. The Kondo-induced electric polarization exhibits an Aharonov-Bohm type oscillation as a function of the magnetic flux. Our theoretical study shows various oscillation patterns associated with the field-dependent mixing of twofold orbitally degenerate ground states and their sensitivity to the point contact.

  7. Essential Grid Workflow Monitoring Elements

    SciTech Connect

    Gunter, Daniel K.; Jackson, Keith R.; Konerding, David E.; Lee,Jason R.; Tierney, Brian L.

    2005-07-01

    Troubleshooting Grid workflows is difficult. A typicalworkflow involves a large number of components networks, middleware,hosts, etc. that can fail. Even when monitoring data from all thesecomponents is accessible, it is hard to tell whether failures andanomalies in these components are related toa given workflow. For theGrid to be truly usable, much of this uncertainty must be elim- inated.We propose two new Grid monitoring elements, Grid workflow identifiersand consistent component lifecycle events, that will make Gridtroubleshooting easier, and thus make Grids more usable, by simplifyingthe correlation of Grid monitoring data with a particular Gridworkflow.

  8. Distributed Accounting on the Grid

    NASA Technical Reports Server (NTRS)

    Thigpen, William; Hacker, Thomas J.; McGinnis, Laura F.; Athey, Brian D.

    2001-01-01

    By the late 1990s, the Internet was adequately equipped to move vast amounts of data between HPC (High Performance Computing) systems, and efforts were initiated to link together the national infrastructure of high performance computational and data storage resources together into a general computational utility 'grid', analogous to the national electrical power grid infrastructure. The purpose of the Computational grid is to provide dependable, consistent, pervasive, and inexpensive access to computational resources for the computing community in the form of a computing utility. This paper presents a fully distributed view of Grid usage accounting and a methodology for allocating Grid computational resources for use on a Grid computing system.

  9. Accuracy Analysis for Finite-Volume Discretization Schemes on Irregular Grids

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2010-01-01

    A new computational analysis tool, downscaling test, is introduced and applied for studying the convergence rates of truncation and discretization errors of nite-volume discretization schemes on general irregular (e.g., unstructured) grids. The study shows that the design-order convergence of discretization errors can be achieved even when truncation errors exhibit a lower-order convergence or, in some cases, do not converge at all. The downscaling test is a general, efficient, accurate, and practical tool, enabling straightforward extension of verification and validation to general unstructured grid formulations. It also allows separate analysis of the interior, boundaries, and singularities that could be useful even in structured-grid settings. There are several new findings arising from the use of the downscaling test analysis. It is shown that the discretization accuracy of a common node-centered nite-volume scheme, known to be second-order accurate for inviscid equations on triangular grids, degenerates to first order for mixed grids. Alternative node-centered schemes are presented and demonstrated to provide second and third order accuracies on general mixed grids. The local accuracy deterioration at intersections of tangency and in flow/outflow boundaries is demonstrated using the DS tests tailored to examining the local behavior of the boundary conditions. The discretization-error order reduction within inviscid stagnation regions is demonstrated. The accuracy deterioration is local, affecting mainly the velocity components, but applies to any order scheme.

  10. Enabling Campus Grids with Open Science Grid Technology

    NASA Astrophysics Data System (ADS)

    Weitzel, Derek; Bockelman, Brian; Fraser, Dan; Pordes, Ruth; Swanson, David

    2011-12-01

    The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condor clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.

  11. Changing from computing grid to knowledge grid in life-science grid.

    PubMed

    Talukdar, Veera; Konar, Amit; Datta, Ayan; Choudhury, Anamika Roy

    2009-09-01

    Grid computing has a great potential to become a standard cyber infrastructure for life sciences that often require high-performance computing and large data handling, which exceeds the computing capacity of a single institution. Grid computer applies the resources of many computers in a network to a single problem at the same time. It is useful to scientific problems that require a great number of computer processing cycles or access to a large amount of data.As biologists,we are constantly discovering millions of genes and genome features, which are assembled in a library and distributed on computers around the world.This means that new, innovative methods must be developed that exploit the re-sources available for extensive calculations - for example grid computing.This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing a "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. By extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community. PMID:19579217

  12. APEC Smart Grid Initiative

    SciTech Connect

    Bloyd, Cary N.

    2012-03-01

    This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.

  13. Unlocking the smart grid

    SciTech Connect

    Rokach, Joshua Z.

    2010-10-15

    The country has progressed in a relatively short time from rotary dial phones to computers, cell phones, and iPads. With proper planning and orderly policy implementation, the same will happen with the Smart Grid. Here are some suggestions on how to proceed. (author)

  14. NSTAR Smart Grid Pilot

    SciTech Connect

    Rabari, Anil; Fadipe, Oloruntomi

    2014-03-31

    NSTAR Electric & Gas Corporation (“the Company”, or “NSTAR”) developed and implemented a Smart Grid pilot program beginning in 2010 to demonstrate the viability of leveraging existing automated meter reading (“AMR”) deployments to provide much of the Smart Grid functionality of advanced metering infrastructure (“AMI”), but without the large capital investment that AMI rollouts typically entail. In particular, a central objective of the Smart Energy Pilot was to enable residential dynamic pricing (time-of-use “TOU” and critical peak rates and rebates) and two-way direct load control (“DLC”) by continually capturing AMR meter data transmissions and communicating through customer-sited broadband connections in conjunction with a standardsbased home area network (“HAN”). The pilot was supported by the U.S. Department of Energy’s (“DOE”) through the Smart Grid Demonstration program. NSTAR was very pleased to not only receive the funding support from DOE, but the guidance and support of the DOE throughout the pilot. NSTAR is also pleased to report to the DOE that it was able to execute and deliver a successful pilot on time and on budget. NSTAR looks for future opportunities to work with the DOE and others in future smart grid projects.

  15. Efficient grid generation

    NASA Technical Reports Server (NTRS)

    Seki, Rycichi

    1989-01-01

    Because the governing equations in fluid dynamics contain partial differentials and are too difficult in most cases to solve analytically, these differentials are generally replaced by finite difference terms. These terms contain terms in the solution at nearby states. This procedure discretizes the field into a finite number of states. These states, when plotted, form a grid, or mesh, of points. It is at these states, or field points, that the solution is found. The optimum choice of states, the x, y, z coordinate values, minimizes error and computational time. But the process of finding these states is made more difficult by complex boundaries, and by the need to control step size differences between the states, that is, the need to control the spacing of field points. One solution technique uses a different set of state variables, which define a different coordinate system, to generate the grid more easily. A new method, developed by Dr. Joseph Steger, combines elliptic and hyperbolic partial differential equations into a mapping function between the physical and computational coordinate systems. This system of equations offers more control than either equation provides alone. The Steger algorithm was modified in order to allow bodies with stronger concavities to be used, offering the possibility of generating a single grid about multiple bodies. Work was also done on identifying areas where grid breakdown occurs.

  16. Grid generation research at OSU

    NASA Technical Reports Server (NTRS)

    Nakamura, S.

    1992-01-01

    In the last two years, effort was concentrated on: (1) surface modeling; (2) surface grid generation; and (3) 3-D flow space grid generation. The surface modeling shares the same objectives as the surface modeling in computer aided design (CAD), so software available in CAD can in principle be used for solid modeling. Unfortunately, however, the CAD software cannot be easily used in practice for grid generation purposes, because they are not designed to provide appropriate data base for grid generation. Therefore, we started developing a generalized surface modeling software from scratch, that provides the data base for the surface grid generation. Generating surface grid is an important step in generating a 3-D space for flow space. To generate a surface grid on a given surface representation, we developed a unique algorithm that works on any non-smooth surfaces. Once the surface grid is generated, a 3-D space can be generated. For this purpose, we also developed a new algorithm, which is a hybrid of the hyperbolic and the elliptic grid generation methods. With this hybrid method, orthogonality of the grid near the solid boundary can be easily achieved without introducing empirical fudge factors. Work to develop 2-D and 3-D grids for turbomachinery blade geometries was performed, and as an extension of this research we are planning to develop an adaptive grid procedure with an interactive grid environment.

  17. A Computer Program for the Reactivity and Kinetic Parameters for Two-Dimensional Triangular Geometry by Transport Perturbation Theory.

    Energy Science and Technology Software Center (ESTSC)

    1990-04-25

    Version 00 TPTRIA calculates reactivity, effective delayed neutron fractions and mean generation time for two-dimensional triangular geometry on the basis of neutron transport perturbation theory. DIAMANT2 (also designated as CCC-414), is a multigroup two-dimensional discrete ordinates transport code system for triangular and hexagonal geometry which calculates direct and adjoint angular fluxes.

  18. Application of an unstructured grid flow solver to planes, trains and automobiles

    NASA Technical Reports Server (NTRS)

    Spragle, Gregory S.; Smith, Wayne A.; Yadlin, Yoram

    1993-01-01

    Rampant, an unstructured flow solver developed at Fluent Inc., is used to compute three-dimensional, viscous, turbulent, compressible flow fields within complex solution domains. Rampant is an explicit, finite-volume flow solver capable of computing flow fields using either triangular (2d) or tetrahedral (3d) unstructured grids. Local time stepping, implicit residual smoothing, and multigrid techniques are used to accelerate the convergence of the explicit scheme. The paper describes the Rampant flow solver and presents flow field solutions about a plane, train, and automobile.

  19. Current Grid operation and future role of the Grid

    NASA Astrophysics Data System (ADS)

    Smirnova, O.

    2012-12-01

    Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place

  20. 76 FR 28890 - Treatment of Property Used To Acquire Parent Stock or Securities in Certain Triangular...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... regulations or proposed regulations, as applicable, and collectively, the 2008 regulations). 73 FR 30301 (TD... Internal Revenue Service 26 CFR Part 1 RIN 1545-BG96 Treatment of Property Used To Acquire Parent Stock or Securities in Certain Triangular Reorganizations Involving Foreign Corporations AGENCY: Internal...

  1. Reconstruction using 'triangular approximation' of bone grafts for orbital blowout fractures.

    PubMed

    Saiga, Atsuomi; Mitsukawa, Nobuyuki; Yamaji, Yoshihisa

    2015-10-01

    There are many orbital wall reconstruction materials that can be used in surgery for orbital blowout fractures. We consider autogenous bone grafts to have the best overall characteristics among these materials and use thinned, inner cortical tables of the ilium. A bone bender is normally used to shape the inner iliac table to match the orbital shape. Since orbital walls curve three-dimensionally, processing of bone grafts is not easy and often requires much time and effort. We applied a triangular approximation method to the processing of bone grafts. Triangular approximation is a concept used in computer graphics for polygon processing. In this method, the shape of an object is represented as combinations of polygons, mainly triangles. In this study, the inner iliac table was used as a bone graft, and cuts or scores were made to create triangular sections. These triangular sections were designed three-dimensionally so that the shape of the resulting graft approximated to the three-dimensional orbital shape. This method was used in 12 patients with orbital blowout fractures, which included orbital floor fractures, medial wall fractures, and combined inferior and medial wall fractures. In all patients, bone grafts conformed to the orbital shape and good results were obtained. This simple method uses a reasonable and easy-to-understand approach and is useful in the treatment of bone defects in orbital blowout fractures when using a hard graft material. PMID:26297418

  2. Non-linear stability around the triangular libration points. [in earth-moon system

    NASA Technical Reports Server (NTRS)

    Mckenzie, R.; Szebehely, V.

    1981-01-01

    The configuration space around the triangular libration points in the Earth-Moon system is partitioned according to the stability of the motion. The regions around L4 and L5 are established where particles placed with zero initial velocity will librate. The complexity of the partitioning is revealed.

  3. A Simple Approximation for the Symbol Error Rate of Triangular Quadrature Amplitude Modulation

    NASA Astrophysics Data System (ADS)

    Duy, Tran Trung; Kong, Hyung Yun

    In this paper, we consider the error performance of the regular triangular quadrature amplitude modulation (TQAM). In particular, using an accurate exponential bound of the complementary error function, we derive a simple approximation for the average symbol error rate (SER) of TQAM over Additive White Gaussian Noise (AWGN) and fading channels. The accuracy of our approach is verified by some simulation results.

  4. Generation of triangular waveforms based on a microwave photonic filter with negative coefficient.

    PubMed

    Li, Wei; Wang, Wen Ting; Sun, Wen Hui; Wang, Wei Yu; Zhu, Ning Hua

    2014-06-16

    We report a novel approach to generating full-duty-cycle triangular waveforms based on a microwave photonic filter (MPF) with negative coefficient. It is known that the Fourier series expansion of a triangular waveform has only odd-order harmonics. In this work, the undesired even-order harmonics are suppressed by the MPF that has a periodic transmission response. A triangular waveform at fundamental frequency can be generated by setting the bias of a Mach-Zehnder modulator (MZM) at quadrature point. However, it is found that a broadband 90° microwave phase shifter has to be used after photodetection to adjust the phases of odd-order harmonics. Alternatively, a frequency doubling triangular waveform can be generated by setting the bias of the MZM at maximum or minimum transmission point. This approach is more promising because the broadband microwave phase shifter is no longer required in this case but it is more power consuming. The proposed approach is theoretically analyzed and experimentally verified. PMID:24977593

  5. Improved fusion performance in low-q, low triangularity plasmas with negative central magnetic shear

    SciTech Connect

    Strait, E.J.; Casper, T.N.; Chu, M.S.

    1996-07-01

    Fusion performance in DIII-D low-q single-null divertor discharges has doubled as a result of improved confinement and stability, achieved through modification of pressure and current density profiles. These discharges extend the regime of neoclassical core confinement associated with negative or weak central magnetic shear to plasmas with the low safety factor (q{sub 95}{approximately}3) and triangularity ({delta}{approximately}0.3) anticipated in future tokamaks such as ITER. Energy confinement times exceed the ITER-89P L- mode scaling law by up to a factor of 4, and are almost twice as large as in previous single-null cases with 3{le}q{sub 95}{le}4. The normalized beta [{beta}(aB/I)] reaches values as high as 4, comparable to the best previous single-null discharges. Although high triangularity allows a larger plasma current, the fusion gain in these low triangularity plasmas is similar to that of high triangularity double-null plasmas at the same plasma current. These results are encouraging for advanced performance operation in ITER and for D-T experiments in JET.

  6. Investigation of localization of DNA molecules using triangular metal electrodes with varying separation

    NASA Astrophysics Data System (ADS)

    Prasad, D. Nagendra; Ghonge, Sudarshan; Banerjee, Souri

    2016-04-01

    In this paper we investigate the effect of separation of triangular metal electrodes with both convex and concave geometries, on the localization of suspended DNA molecules under the combined effect of dielectrophoresis and AC electro-osmosis through simulations using COMSOL Multiphysics. Trapping points are realized within the electrodes which are found to vary with the separation of the electrodes.

  7. Arthroscopic repair of peripheral triangular fibrocartilage complex tears with suture welding: a technical report.

    PubMed

    Badia, Alejandro; Jiménez, Alexis

    2006-10-01

    This report presents a method of arthroscopic repair of the peripheral triangular fibrocartilage complex tears that replaces traditional suture knots with ultrasonic welding of sutures. This will help eliminate potential causes of ulnar-sided wrist discomfort during the postoperative period. PMID:17027791

  8. Augmenting data rate performance for higher order modulation in triangular index profile multicore fiber interconnect

    NASA Astrophysics Data System (ADS)

    Mishra, Jitendra K.; Priye, Vishnu; Rahman, B. M. A.

    2016-07-01

    A triangular profile multicore fiber (MCF) optical interconnect (OI) is investigated to augment performance that typically degrades at high data rates for higher order modulation in a short reach transmission system. Firstly, probability density functions (PDFs) variation with inter-core crosstalk is calculated for 8-core MCF OI with different index profile in the core and it was observed that the triangular profile MCF OI is the most crosstalk tolerant. Next, symbol error probability (SEP) for higher order quadrature phase shift keying (QPSK) modulated signal due to inter-core crosstalk is analytically obtained and their dependence on typical characteristic parameters are examined. Further, numerical simulations are carried out to compare the error performance of QPSK for step index and triangular index MCF OI by generating eye diagram at 40 Gbps per channel. Finally, it is shown that MCF OI with triangular index profile supporting QPSK has double spectral efficiency with tolerable trade off in SEP as compared with those of binary phase shift keying (BPSK) at high data rates which is scalable up to 5 Tbps.

  9. Focus and enlarge the enhancement region of local electric field by overlapping Ag triangular nanoplates

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Hong; Zhu, Jian; Li, Jian-Jun; Zhao, Jun-Wu

    2016-01-01

    The local electric field enhancements of overlapping Ag triangular nanoplates are investigated using the discrete dipole approximate (DDA) method. The enhancement region of local electric field in the gap could be focused and enlarged by adjusting the thickness and the number of layers of the nanoplates. For the double-layer Ag triangular nanoplates, with the thickness increasing, the electric field enhancements transform from near the corners to the center of the gap gradually and the intensities get stronger. The largest "hot spot volume" appears as the thickness increases to 20 nm. The plasmonic coupling between the two nanoplates leads to the surface charges accumulating on the surfaces adjoining the gap. The variation of the surface charges due to the increase of the thickness should be responsible for this phenomenon. For the multilayer Ag triangular nanoplates, the enhancement region enlarges as the number of layers increases. And the "hot spot volume" could reach about 72% of the total volume of the middle gap when the number of layers is 6. The large volume of the intense electric field enhancements obtained in overlapping Ag triangular nanoplates provide potential for surface-enhanced Raman scattering (SERS) and surface enhancement fluorescence (SEF) applications. Figures s1-4 are available in electronic form only at http://www.epjap.org

  10. Algebraic Bethe Ansatz for Open XXX Model with Triangular Boundary Matrices

    NASA Astrophysics Data System (ADS)

    Belliard, Samuel; Crampé, Nicolas; Ragoucy, Eric

    2013-05-01

    We consider an open XXX spin chain with two general boundary matrices whose entries obey a relation, which is equivalent to the possibility to put simultaneously the two matrices in a upper-triangular form. We construct Bethe vectors by means of a generalized algebraic Bethe ansatz. As usual, the method uses Bethe equations and provides transfer matrix eigenvalues.

  11. The J1-J2 Heisenberg model on the triangular lattice

    NASA Astrophysics Data System (ADS)

    McCulloch, Ian; Saadatmand, Seyed; Powell, Ben

    2015-03-01

    We study the J1-J2 spin-1/2 Heisenberg model on triangular cylinders using non-abelian DMRG techniques. This model exhibits a rich phase diagram in the J1-J2 plane with a quasi-long-range 120° order, valence-bond crystal and columnar phases. ARC Centre for Engineered Quantum Systems.

  12. A simple method for understanding the triangular growth patterns of transition metal dichalcogenide sheets

    NASA Astrophysics Data System (ADS)

    Zhu, Siya; Wang, Qian

    2015-10-01

    Triangular nanoflake growth patterns have been commonly observed in synthesis of transition metal dichalcogenide sheets and their hybrid structures. Triangular nanoflakes not only show exceptional properties, but also can serve as building blocks for two or three dimensional structures. In this study, taking the MoS2 system as a test case, we propose a Matrix method to understand the mechanism of such unique growth pattern. Nanoflakes with different edge types are mathematically described with configuration matrices, and the total formation energy is calculated as the sum of the edge formation energies and the chemical potentials of sulfur and molybdenum. Based on energetics, we find that three triangular patterns with the different edge configurations are energetically more favorable in different ranges of the chemical potential of sulfur, which are in good agreement with experimental observations. Our algorithm has high efficiency and can deal with nanoflakes in microns which are beyond the ability of ab-initio method. This study not only elucidates the mechanism of triangular nanoflake growth patterns in experiment, but also provides a clue to control the geometric configurations in synthesis.

  13. A simple method for understanding the triangular growth patterns of transition metal dichalcogenide sheets

    SciTech Connect

    Zhu, Siya; Wang, Qian

    2015-10-15

    Triangular nanoflake growth patterns have been commonly observed in synthesis of transition metal dichalcogenide sheets and their hybrid structures. Triangular nanoflakes not only show exceptional properties, but also can serve as building blocks for two or three dimensional structures. In this study, taking the MoS{sub 2} system as a test case, we propose a Matrix method to understand the mechanism of such unique growth pattern. Nanoflakes with different edge types are mathematically described with configuration matrices, and the total formation energy is calculated as the sum of the edge formation energies and the chemical potentials of sulfur and molybdenum. Based on energetics, we find that three triangular patterns with the different edge configurations are energetically more favorable in different ranges of the chemical potential of sulfur, which are in good agreement with experimental observations. Our algorithm has high efficiency and can deal with nanoflakes in microns which are beyond the ability of ab-initio method. This study not only elucidates the mechanism of triangular nanoflake growth patterns in experiment, but also provides a clue to control the geometric configurations in synthesis.

  14. A grid spacing control technique for algebraic grid generation methods

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Kudlinski, R. A.; Everton, E. L.

    1982-01-01

    A technique which controls the spacing of grid points in algebraically defined coordinate transformations is described. The technique is based on the generation of control functions which map a uniformly distributed computational grid onto parametric variables defining the physical grid. The control functions are smoothed cubic splines. Sets of control points are input for each coordinate directions to outline the control functions. Smoothed cubic spline functions are then generated to approximate the input data. The technique works best in an interactive graphics environment where control inputs and grid displays are nearly instantaneous. The technique is illustrated with the two-boundary grid generation algorithm.

  15. Optical Film for LED with Triangular-Pyramidal Array Using Size-Reducible Embossing Method

    NASA Astrophysics Data System (ADS)

    Liu, C. F.; Pan, C. T.; Liu, K. H.; Chen, Y. C.; Chen, J. L.; Huang, J. C.

    2011-12-01

    This study presents a modified hot-embossing process to fabricate micro-triangular-pyramidal array (MTPA). First, a tungsten (W) steel mold (as the first mold) is manufactured by precision machining including optical projection grinding, lapping, and polishing processes. The dimension of a triangular pyramid with acute angle of 85° on the W-steel mold is about 300 μm in width and 139 μm in height. The pitch between two triangular-pyramidal tips is about 170 μm. Then, only the portion of the tip area of the triangular-pyramidal patterns is transferred on bulk metallic glass (BMG, Mg58Cu31Y11) using this modified multi-step hot-embossing method to reduce the pattern size. With a position-adjustable mechanism, size-reduced concaved-shaped MTPA can be selectively formed, used as the secondary mold. In this way, not only can the size of triangular-pyramidal patterns on W-steel mold be reduced down on BMG, but also the tool arc between each triangular-pyramid on W-steel mold caused by machine tool can be eliminated. This is based on the fact that amorphous glass alloys contain no dislocation that can be responsible for yielding in crystalline materials. Thus, BMG is expected to be strong and hard enough to be used as a mold material. Then the secondary mold is used to emboss convex-shaped MTPA on PolymethylMethacrylate (PMMA) optical film. Experiments with different embossing times and embossing pressures are conducted and discussed. Large-sized triangular-pyramidal array on the W-steel mold has been successfully and selectively miniaturized on BMG, and then transferred on PMMA. Finally, this optical film of PMMA with MTPA is packaged on light-emitting diode (LED) to improve its lighting uniformity and luminance. In comparison with commercial 3M™ optical film (3M™ Vikuiti™ TBEF2-T-65i), the film with MTPA shows a good optical performance.

  16. Spectral methods on arbitrary grids

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David

    1995-01-01

    Stable and spectrally accurate numerical methods are constructed on arbitrary grids for partial differential equations. These new methods are equivalent to conventional spectral methods but do not rely on specific grid distributions. Specifically, we show how to implement Legendre Galerkin, Legendre collocation, and Laguerre Galerkin methodology on arbitrary grids.

  17. Ion Engine Grid Gap Measurements

    NASA Technical Reports Server (NTRS)

    Soulas, Gerge C.; Frandina, Michael M.

    2004-01-01

    A simple technique for measuring the grid gap of an ion engine s ion optics during startup and steady-state operation was demonstrated with beam extraction. The grid gap at the center of the ion optics assembly was measured with a long distance microscope that was focused onto an alumina pin that protruded through the center accelerator grid aperture and was mechanically attached to the screen grid. This measurement technique was successfully applied to a 30 cm titanium ion optics assembly mounted onto an NSTAR engineering model ion engine. The grid gap and each grid s movement during startup from room temperature to both full and low power were measured. The grid gaps with and without beam extraction were found to be significantly different. The grid gaps at the ion optics center were both significantly smaller than the cold grid gap and different at the two power levels examined. To avoid issues associated with a small grid gap during thruster startup with titanium ion optics, a simple method was to operate the thruster initially without beam extraction to heat the ion optics. Another possible method is to apply high voltage to the grids prior to igniting the discharge because power deposition to the grids from the plasma is lower with beam extraction than without. Further testing would be required to confirm this approach.

  18. Grid Interaction Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The mission of the Grid Interaction Technical Team (GITT) is to support a transition scenario to large scale grid-connected vehicle charging with transformational technology, proof of concept and information dissemination. The GITT facilitates technical coordination and collaboration between vehicle-grid connectivity and communication activities among U.S. DRIVE government and industry partners.

  19. Data Structure and Parallel Decomposition Considerations on a Fibonacci Grid

    NASA Technical Reports Server (NTRS)

    Michalakes, John; Purser,James; Swinbank, Richard

    1999-01-01

    The Fibonacci grid, proposed by Swinbank and Purser (see companion abstract), provides attractive properties for global numerical atmospheric prediction by offering an optimally homogeneous, geometrically regular, and approximately isotropic discretization, with only the polar regions requiring special numerical treatment. It is a mathematical idealization, applied to the sphere, of the multi-spiral patterns often found in botanical structures, such as in pine cones and sunflower heads. Computationally, it is natural to organize the domain, into zones, in each of which the same pair, or triple, of "Fibonacci spirals" dominate. But the further subdivision of such zones into "tiles" of a shape and size suitable for distribution to the processors of a massively parallel computer requires very careful consideration if the subsequent spatial computations along the respective spirals, especially those computations (such as compact differencing schemes) that involve recursion, can be implemented in an efficient "load-balanced "manner without requiring excessive amounts of inter-processor communications. In this paper we show how certain "number theoretic" properties of the Fibonacci sequence (whose numbers prescribe the multiplicity of successive spirals) may be exploited in the decomposition of grid zones into tidy arrangements of triangular grid tiles, each tile possessing one side approximately parallel to the constant-latitude zone boundary. We also describe how the spatially recursive processes may be decomposed across such a tiling, and the directionality of the recursions reversed on alternate grid lines, to ensure a very high degree of load balancing throughout the execution of the computations required for one time step of a global model.

  20. Balanced Central Schemes for the Shallow Water Equations on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron

    2004-01-01

    We present a two-dimensional, well-balanced, central-upwind scheme for approximating solutions of the shallow water equations in the presence of a stationary bottom topography on triangular meshes. Our starting point is the recent central scheme of Kurganov and Petrova (KP) for approximating solutions of conservation laws on triangular meshes. In order to extend this scheme from systems of conservation laws to systems of balance laws one has to find an appropriate discretization of the source terms. We first show that for general triangulations there is no discretization of the source terms that corresponds to a well-balanced form of the KP scheme. We then derive a new variant of a central scheme that can be balanced on triangular meshes. We note in passing that it is straightforward to extend the KP scheme to general unstructured conformal meshes. This extension allows us to recover our previous well-balanced scheme on Cartesian grids. We conclude with several simulations, verifying the second-order accuracy of our scheme as well as its well-balanced properties.

  1. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    SciTech Connect

    2012-02-08

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.

  2. Multi-frequency excitation of stiffened triangular plates for large amplitude oscillations

    NASA Astrophysics Data System (ADS)

    Askari, H.; Saadatnia, Z.; Esmailzadeh, E.; Younesian, D.

    2014-10-01

    Free and forced vibrations of triangular plate are investigated. Diverse types of stiffeners were attached onto the plate to suppress the undesirable large-amplitude oscillations. The governing equation of motion for a triangular plate, based on the von Kármán theory, is developed and the nonlinear ordinary differential equation of the system using Galerkin approach is obtained. Closed-form expressions for the free undamped and large-amplitude vibration of an orthotropic triangular elastic plate are presented using the two well-known analytical methods, namely, the energy balance method and the variational approach. The frequency responses in the closed-form are presented and their sensitivities with respect to the initial amplitudes are studied. An error analysis is performed and the vibration behavior, as well as the accuracy of the solution methods, is evaluated. Different types of the stiffened triangular plates are considered in order to cover a wide range of practical applications. Numerical simulations are carried out and the validity of the solution procedure is explored. It is demonstrated that the two methods of energy balance and variational approach have been quite straightforward and reliable techniques to solve those nonlinear differential equations. Subsequently, due to the importance of multiple resonant responses in engineering design, multi-frequency excitations are considered. It is assumed that three periodic forces are applied to the plate in three specific positions. The multiple time scaling method is utilized to obtain approximate solutions for the frequency resonance cases. Influences of different parameters, namely, the position of applied forces, geometry and the number of stiffeners on the frequency response of the triangular plates are examined.

  3. The negative triangularity tokamak: stability limits and prospects as a fusion energy system

    NASA Astrophysics Data System (ADS)

    Medvedev, S. Yu.; Kikuchi, M.; Villard, L.; Takizuka, T.; Diamond, P.; Zushi, H.; Nagasaki, K.; Duan, X.; Wu, Y.; Ivanov, A. A.; Martynov, A. A.; Poshekhonov, Yu. Yu.; Fasoli, A.; Sauter, O.

    2015-06-01

    The paper discusses edge stability, beta limits and power handling issues for negative triangularity tokamaks. The edge magnetohydrodynamic stability is the most crucial item for power handling. For the case of negative triangularity the edge stability picture is quite different from that for conventional positive triangularity tokamaks: the second stability access is closed for localized Mercier/ballooning modes due to the absence of a magnetic well, and nearly internal kink modes set the pedestal height limit to be weakly sensitive to diamagnetic stabilization just above the margin of the localized mode Mercier criterion violation. While a negative triangularity tokamak is thought to have a low beta limit with its magnetic hill property, it is found that plasmas with reactor-relevant values of normalized beta βN > 3 can be stable to global kink modes without wall stabilization with appropriate core pressure profile optimization against localized mode stability, and also with increased magnetic shear in the outer half-radius. The beta limit is set by the n = 1 mode for the resulting flat pressure profile. The wall stabilization is very inefficient due to strong coupling between external and internal modes. The n > 1 modes are increasingly internal when approaching the localized mode limit, and set a lower beta in the case of the peaked pressure profile leading to a Mercier unstable core. With the theoretical predictions supported by experiments, a negative triangularity tokamak would become a prospective fusion energy system with other advantages including a larger separatrix wetted area, more flexible divertor configuration design, wider trapped particle-free scrape-off layer, lower background magnetic field for internal poloidal field coils, and larger pumping conductance from the divertor room.

  4. Smart Grid Demonstration Project

    SciTech Connect

    Miller, Craig; Carroll, Paul; Bell, Abigail

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and

  5. Gridded electron reversal ionizer

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor)

    1993-01-01

    A gridded electron reversal ionizer forms a three dimensional cloud of zero or near-zero energy electrons in a cavity within a filament structure surrounding a central electrode having holes through which the sample gas, at reduced pressure, enters an elongated reversal volume. The resultant negative ion stream is applied to a mass analyzer. The reduced electron and ion space-charge limitations of this configuration enhances detection sensitivity for material to be detected by electron attachment, such as narcotic and explosive vapors. Positive ions may be generated by generating electrons having a higher energy, sufficient to ionize the target gas and pulsing the grid negative to stop the electron flow and pulsing the extraction aperture positive to draw out the positive ions.

  6. 76 FR 1153 - Atlantic Grid Operations A LLC, Atlantic Grid Operations B LLC, Atlantic Grid Operations C LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... Energy Regulatory Commission Atlantic Grid Operations A LLC, Atlantic Grid Operations B LLC, Atlantic Grid Operations C LLC, Atlantic Grid Operations D LLC and Atlantic Grid Operations E LLC; Notice of... (Commission) Rules of Practice and Procedure, 18 CFR 385.207, and Order No. 679,\\1\\ Atlantic Grid Operations...

  7. TRMM Gridded Text Products

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2007-01-01

    NASA's Tropical Rainfall Measuring Mission (TRMM) has many products that contain instantaneous or gridded rain rates often among many other parameters. However, these products because of their completeness can often seem intimidating to users just desiring surface rain rates. For example one of the gridded monthly products contains well over 200 parameters. It is clear that if only rain rates are desired, this many parameters might prove intimidating. In addition, for many good reasons these products are archived and currently distributed in HDF format. This also can be an inhibiting factor in using TRMM rain rates. To provide a simple format and isolate just the rain rates from the many other parameters, the TRMM product created a series of gridded products in ASCII text format. This paper describes the various text rain rate products produced. It provides detailed information about parameters and how they are calculated. It also gives detailed format information. These products are used in a number of applications with the TRMM processing system. The products are produced from the swath instantaneous rain rates and contain information from the three major TRMM instruments: radar, radiometer, and combined. They are simple to use, human readable, and small for downloading.

  8. Wireless Communications in Smart Grid

    NASA Astrophysics Data System (ADS)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  9. Grid generation for turbomachinery problems

    NASA Technical Reports Server (NTRS)

    Steinhoff, J.; Reddy, K. C.

    1986-01-01

    The development of a computer code to generate numerical grids for complex internal flow systems such as the fluid flow inside the space shuttle main engine is outlined. The blending technique for generating a grid for stator-rotor combination at a particular radial section is examined. The computer programs which generate these grids are listed in the Appendices. These codes are capable of generating grids at different cross sections and thus providng three dimensional stator-rotor grids for the turbomachinery of the space shuttle main engine.

  10. 3D Structured Grid Adaptation

    NASA Technical Reports Server (NTRS)

    Banks, D. W.; Hafez, M. M.

    1996-01-01

    Grid adaptation for structured meshes is the art of using information from an existing, but poorly resolved, solution to automatically redistribute the grid points in such a way as to improve the resolution in regions of high error, and thus the quality of the solution. This involves: (1) generate a grid vis some standard algorithm, (2) calculate a solution on this grid, (3) adapt the grid to this solution, (4) recalculate the solution on this adapted grid, and (5) repeat steps 3 and 4 to satisfaction. Steps 3 and 4 can be repeated until some 'optimal' grid is converged to but typically this is not worth the effort and just two or three repeat calculations are necessary. They also may be repeated every 5-10 time steps for unsteady calculations.

  11. Progress in Grid Generation: From Chimera to DRAGON Grids

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Kao, Kai-Hsiung

    1994-01-01

    Hybrid grids, composed of structured and unstructured grids, combines the best features of both. The chimera method is a major stepstone toward a hybrid grid from which the present approach is evolved. The chimera grid composes a set of overlapped structured grids which are independently generated and body-fitted, yielding a high quality grid readily accessible for efficient solution schemes. The chimera method has been shown to be efficient to generate a grid about complex geometries and has been demonstrated to deliver accurate aerodynamic prediction of complex flows. While its geometrical flexibility is attractive, interpolation of data in the overlapped regions - which in today's practice in 3D is done in a nonconservative fashion, is not. In the present paper we propose a hybrid grid scheme that maximizes the advantages of the chimera scheme and adapts the strengths of the unstructured grid while at the same time keeps its weaknesses minimal. Like the chimera method, we first divide up the physical domain by a set of structured body-fitted grids which are separately generated and overlaid throughout a complex configuration. To eliminate any pure data manipulation which does not necessarily follow governing equations, we use non-structured grids only to directly replace the region of the arbitrarily overlapped grids. This new adaptation to the chimera thinking is coined the DRAGON grid. The nonstructured grid region sandwiched between the structured grids is limited in size, resulting in only a small increase in memory and computational effort. The DRAGON method has three important advantages: (1) preserving strengths of the chimera grid; (2) eliminating difficulties sometimes encountered in the chimera scheme, such as the orphan points and bad quality of interpolation stencils; and (3) making grid communication in a fully conservative and consistent manner insofar as the governing equations are concerned. To demonstrate its use, the governing equations are

  12. Smart Grid Risk Management

    NASA Astrophysics Data System (ADS)

    Abad Lopez, Carlos Adrian

    Current electricity infrastructure is being stressed from several directions -- high demand, unreliable supply, extreme weather conditions, accidents, among others. Infrastructure planners have, traditionally, focused on only the cost of the system; today, resilience and sustainability are increasingly becoming more important. In this dissertation, we develop computational tools for efficiently managing electricity resources to help create a more reliable and sustainable electrical grid. The tools we present in this work will help electric utilities coordinate demand to allow the smooth and large scale integration of renewable sources of energy into traditional grids, as well as provide infrastructure planners and operators in developing countries a framework for making informed planning and control decisions in the presence of uncertainty. Demand-side management is considered as the most viable solution for maintaining grid stability as generation from intermittent renewable sources increases. Demand-side management, particularly demand response (DR) programs that attempt to alter the energy consumption of customers either by using price-based incentives or up-front power interruption contracts, is more cost-effective and sustainable in addressing short-term supply-demand imbalances when compared with the alternative that involves increasing fossil fuel-based fast spinning reserves. An essential step in compensating participating customers and benchmarking the effectiveness of DR programs is to be able to independently detect the load reduction from observed meter data. Electric utilities implementing automated DR programs through direct load control switches are also interested in detecting the reduction in demand to efficiently pinpoint non-functioning devices to reduce maintenance costs. We develop sparse optimization methods for detecting a small change in the demand for electricity of a customer in response to a price change or signal from the utility

  13. GridTool: A surface modeling and grid generation tool

    NASA Technical Reports Server (NTRS)

    Samareh-Abolhassani, Jamshid

    1995-01-01

    GridTool is designed around the concept that the surface grids are generated on a set of bi-linear patches. This type of grid generation is quite easy to implement, and it avoids the problems associated with complex CAD surface representations and associated surface parameterizations. However, the resulting surface grids are close to but not on the original CAD surfaces. This problem can be alleviated by projecting the resulting surface grids onto the original CAD surfaces. GridTool is designed primary for unstructured grid generation systems. Currently, GridTool supports VGRID and FELISA systems, and it can be easily extended to support other unstructured grid generation systems. The data in GridTool is stored parametrically so that once the problem is set up, one can modify the surfaces and the entire set of points, curves and patches will be updated automatically. This is very useful in a multidisciplinary design and optimization process. GridTool is written entirely in ANSI 'C', the interface is based on the FORMS library, and the graphics is based on the GL library. The code has been tested successfully on IRIS workstations running IRIX4.0 and above. The memory is allocated dynamically, therefore, memory size will depend on the complexity of geometry/grid. GridTool data structure is based on a link-list structure which allows the required memory to expand and contract dynamically according to the user's data size and action. Data structure contains several types of objects such as points, curves, patches, sources and surfaces. At any given time, there is always an active object which is drawn in magenta, or in their highlighted colors as defined by the resource file which will be discussed later.

  14. Application of a lower-upper implicit scheme and an interactive grid generation for turbomachinery flow field simulations

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Soh, Woo-Yung; Yoon, Seokkwan

    1989-01-01

    A finite-volume lower-upper (LU) implicit scheme is used to simulate an inviscid flow in a turbine cascade. This approximate factorization scheme requires only the inversion of sparse lower and upper triangular matrices, which can be done efficiently without extensive storage. As an implicit scheme it allows a large time step to reach the steady state. An interactive grid generation program (TURBO), which is being developed, is used to generate grids. This program uses the control point form of algebraic grid generation which uses a sparse collection of control points from which the shape and position of coordinate curves can be adjusted. A distinct advantage of TURBO compared with other grid generation programs is that it allows the easy change of local mesh structure without affecting the grid outside the domain of dependence. Sample grids are generated by TURBO for a compressor rotor blade and a turbine cascade. The turbine cascade flow is simulated by using the LU implicit scheme on the grid generated by TURBO.

  15. Application of a lower-upper implicit scheme and an interactive grid generation for turbomachinery flow field simulations

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Soh, Woo-Yung; Yoon, Seokkwan

    1989-01-01

    A finite-volume lower-upper (LU) implicit scheme is used to simulate an inviscid flow in a tubine cascade. This approximate factorization scheme requires only the inversion of sparse lower and upper triangular matrices, which can be done efficiently without extensive storage. As an implicit scheme it allows a large time step to reach the steady state. An interactive grid generation program (TURBO), which is being developed, is used to generate grids. This program uses the control point form of algebraic grid generation which uses a sparse collection of control points from which the shape and position of coordinate curves can be adjusted. A distinct advantage of TURBO compared with other grid generation programs is that it allows the easy change of local mesh structure without affecting the grid outside the domain of independence. Sample grids are generated by TURBO for a compressor rotor blade and a turbine cascade. The turbine cascade flow is simulated by using the LU implicit scheme on the grid generated by TURBO.

  16. Multi-Resolution Unstructured Grid-Generation for Geophysical Applications on the Sphere

    NASA Technical Reports Server (NTRS)

    Engwirda, Darren

    2015-01-01

    An algorithm for the generation of non-uniform unstructured grids on ellipsoidal geometries is described. This technique is designed to generate high quality triangular and polygonal meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric and ocean simulation, and numerical weather predication. Using a recently developed Frontal-Delaunay-refinement technique, a method for the construction of high-quality unstructured ellipsoidal Delaunay triangulations is introduced. A dual polygonal grid, derived from the associated Voronoi diagram, is also optionally generated as a by-product. Compared to existing techniques, it is shown that the Frontal-Delaunay approach typically produces grids with near-optimal element quality and smooth grading characteristics, while imposing relatively low computational expense. Initial results are presented for a selection of uniform and non-uniform ellipsoidal grids appropriate for large-scale geophysical applications. The use of user-defined mesh-sizing functions to generate smoothly graded, non-uniform grids is discussed.

  17. Grid Cell Responses in 1D Environments Assessed as Slices through a 2D Lattice.

    PubMed

    Yoon, KiJung; Lewallen, Sam; Kinkhabwala, Amina A; Tank, David W; Fiete, Ila R

    2016-03-01

    Grid cells, defined by their striking periodic spatial responses in open 2D arenas, appear to respond differently on 1D tracks: the multiple response fields are not periodically arranged, peak amplitudes vary across fields, and the mean spacing between fields is larger than in 2D environments. We ask whether such 1D responses are consistent with the system's 2D dynamics. Combining analytical and numerical methods, we show that the 1D responses of grid cells with stable 1D fields are consistent with a linear slice through a 2D triangular lattice. Further, the 1D responses of comodular cells are well described by parallel slices, and the offsets in the starting points of the 1D slices can predict the measured 2D relative spatial phase between the cells. From these results, we conclude that the 2D dynamics of these cells is preserved in 1D, suggesting a common computation during both types of navigation behavior. PMID:26898777

  18. Flow simulation on generalized grids

    SciTech Connect

    Koomullil, R.P.; Soni, B.K.; Huang, Chi Ti

    1996-12-31

    A hybrid grid generation methodology and flow simulation on grids having an arbitrary number of sided polygons is presented. A hyperbolic type marching scheme is used for generating structured grids near the solid boundaries. A local elliptic solver is utilized for smoothing the grid lines and for avoiding grid line crossing. A new method for trimming the overlaid structured grid is presented. Delaunay triangulation is employed to generate an unstructured grid in the regions away from the body. The structured and unstructured grid regions are integrated together to form a single grid for the flow solver. An edge based data structure is used to store the grid information to ease the handling of general polygons. Integral form of the Navier-Stokes equations makes up the governing equations. A Roe averaged Riemann solver is utilized to evaluate the numerical flux at cell faces. Higher order accuracy is achieved by applying Taylor`s series expansion to the conserved variables, and the gradient is calculated by using Green`s theorem. For the implicit scheme, the sparse matrix resulting from the linearization is solved using GMRES method. The flux Jacobians are calculated numerically or by an approximate analytic method. Results are presented to validate the current methodology.

  19. Evaluating the Information Power Grid using the NAS Grid Benchmarks

    NASA Technical Reports Server (NTRS)

    VanderWijngaartm Rob F.; Frumkin, Michael A.

    2004-01-01

    The NAS Grid Benchmarks (NGB) are a collection of synthetic distributed applications designed to rate the performance and functionality of computational grids. We compare several implementations of the NGB to determine programmability and efficiency of NASA's Information Power Grid (IPG), whose services are mostly based on the Globus Toolkit. We report on the overheads involved in porting existing NGB reference implementations to the IPG. No changes were made to the component tasks of the NGB can still be improved.

  20. Smooth, seamless, and structured grid generation with flexibility in resolution distribution on a sphere based on conformal mapping and the spring dynamics method

    NASA Astrophysics Data System (ADS)

    Iga, Shin-ichi

    2015-09-01

    A generation method for smooth, seamless, and structured triangular grids on a sphere with flexibility in resolution distribution is proposed. This method is applicable to many fields that deal with a sphere on which the required resolution is not uniform. The grids were generated using the spring dynamics method, and adjustments were made using analytical functions. The mesh topology determined its resolution distribution, derived from a combination of conformal mapping factors: polar stereographic projection (PSP), Lambert conformal conic projection (LCCP), and Mercator projection (MP). Their combination generated, for example, a tropically fine grid that had a nearly constant high-resolution belt around the equator, with a gradual decrease in resolution distribution outside of the belt. This grid can be applied to boundary-less simulations of tropical meteorology. The other example involves a regionally fine grid with a nearly constant high-resolution circular region and a gradually decreasing resolution distribution outside of the region. This is applicable to regional atmospheric simulations without grid nesting. The proposed grids are compatible with computer architecture because they possess a structured form. Each triangle of the proposed grids was highly regular, implying a high local isotropy in resolution. Finally, the proposed grids were examined by advection and shallow water simulations.

  1. Adventures in Computational Grids

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Sometimes one supercomputer is not enough. Or your local supercomputers are busy, or not configured for your job. Or you don't have any supercomputers. You might be trying to simulate worldwide weather changes in real time, requiring more compute power than you could get from any one machine. Or you might be collecting microbiological samples on an island, and need to examine them with a special microscope located on the other side of the continent. These are the times when you need a computational grid.

  2. TASMANIAN Sparse Grids Module

    SciTech Connect

    and Drayton Munster, Miroslav Stoyanov

    2013-09-20

    Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library that provides a command line interface via text files ad a MATLAB interface via the command line tool.

  3. TASMANIAN Sparse Grids Module

    Energy Science and Technology Software Center (ESTSC)

    2013-09-20

    Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library thatmore » provides a command line interface via text files ad a MATLAB interface via the command line tool.« less

  4. The Volume Grid Manipulator (VGM): A Grid Reusability Tool

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1997-01-01

    This document is a manual describing how to use the Volume Grid Manipulation (VGM) software. The code is specifically designed to alter or manipulate existing surface and volume structured grids to improve grid quality through the reduction of grid line skewness, removal of negative volumes, and adaption of surface and volume grids to flow field gradients. The software uses a command language to perform all manipulations thereby offering the capability of executing multiple manipulations on a single grid during an execution of the code. The command language can be input to the VGM code by a UNIX style redirected file, or interactively while the code is executing. The manual consists of 14 sections. The first is an introduction to grid manipulation; where it is most applicable and where the strengths of such software can be utilized. The next two sections describe the memory management and the manipulation command language. The following 8 sections describe simple and complex manipulations that can be used in conjunction with one another to smooth, adapt, and reuse existing grids for various computations. These are accompanied by a tutorial section that describes how to use the commands and manipulations to solve actual grid generation problems. The last two sections are a command reference guide and trouble shooting sections to aid in the use of the code as well as describe problems associated with generated scripts for manipulation control.

  5. Holliday Triangle Hunter (HolT Hunter): Efficient Software for Identifying Low Strain DNA Triangular Configurations

    SciTech Connect

    Sherman, W.B.

    2012-04-16

    Synthetic DNA nanostructures are typically held together primarily by Holliday junctions. One of the most basic types of structures possible to assemble with only DNA and Holliday junctions is the triangle. To date, however, only equilateral triangles have been assembled in this manner - primarily because it is difficult to figure out what configurations of Holliday triangles have low strain. Early attempts at identifying such configurations relied upon calculations that followed the strained helical paths of DNA. Those methods, however, were computationally expensive, and failed to find many of the possible solutions. I have developed a new approach to identifying Holliday triangles that is computationally faster, and finds well over 95% of the possible solutions. The new approach is based on splitting the problem into two parts. The first part involves figuring out all the different ways that three featureless rods of the appropriate length and diameter can weave over and under one another to form a triangle. The second part of the computation entails seeing whether double helical DNA backbones can fit into the shape dictated by the rods in such a manner that the strands can cross over from one domain to the other at the appropriate spots. Structures with low strain (that is, good fit between the rods and the helices) on all three edges are recorded as promising for assembly.

  6. A novel simulation algorithm on ultrasonic image based on triangular planar transducers

    NASA Astrophysics Data System (ADS)

    Li, Yaqin; Wang, Xuan; Li, Shigao; Zhang, Cong; Sun, Kaiqiong

    2015-12-01

    Calculation of ultrasonic field based on medical transducers is often done by applying acoustics and using the Tupholestetpanishen method of calculation. The calculation is based on spatial impulse response; the spatial impulse response has only been determined analytical for a few geometries and using apodization over the transducer surface generally make its impossible to find the response analytically. A popular approach to find the general field is thus to split the aperture into small rectangles, and then sum the weighted response from each of these. The problem with triangular is their poor fit apertures which do not have straight edges, such as circular and oval shapes. In order to solve the problem, a novel algorithm based on triangular be proposed in the paper, the simulation of ultrasonic field based on the algorithm can be improved obviously.

  7. Discovery of the K4 Structure Formed by a Triangular π Radical Anion.

    PubMed

    Mizuno, Asato; Shuku, Yoshiaki; Suizu, Rie; Matsushita, Michio M; Tsuchiizu, Masahisa; Reta Mañeru, Daniel; Illas, Francesc; Robert, Vincent; Awaga, Kunio

    2015-06-24

    The K4 structure was theoretically predicted for trivalent chemical species, such as sp(2) carbon. However, since attempts to synthesize the K4 carbon have not succeeded, this allotrope has been regarded as a crystal form that might not exist in nature. In the present work, we carried out electrochemical crystallization of the radical anion salts of a triangular molecule, naphthalene diimide (NDI)-Δ, using various electrolytes. X-ray crystal analysis of the obtained crystals revealed the K4 structure, which was formed by the unique intermolecular π overlap directed toward three directions from the triangular-shape NDI-Δ radical anions. Electron paramagnetic resonance and static magnetic measurements confirmed the radical anion state of NDI-Δ and indicated an antiferromagnetic intermolecular interaction with the Weiss constant of θ = -10 K. The band structure calculation suggested characteristic features of the present material, such as a metallic ground state, Dirac cones, and flat bands. PMID:26062073

  8. Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies

    PubMed Central

    Dalapati, Sasanka; Addicoat, Matthew; Jin, Shangbin; Sakurai, Tsuneaki; Gao, Jia; Xu, Hong; Irle, Stephan; Seki, Shu; Jiang, Donglin

    2015-01-01

    Covalent organic frameworks (COFs) are an emerging class of highly ordered porous polymers with many potential applications. They are currently designed and synthesized through hexagonal and tetragonal topologies, limiting the access to and exploration of new structures and properties. Here, we report that a triangular topology can be developed for the rational design and synthesis of a new class of COFs. The triangular topology features small pore sizes down to 12 Å, which is among the smallest pores for COFs reported to date, and high π-column densities of up to 0.25 nm−2, which exceeds those of supramolecular columnar π-arrays and other COF materials. These crystalline COFs facilitate π-cloud delocalization and are highly conductive, with a hole mobility that is among the highest reported for COFs and polygraphitic ensembles. PMID:26178865

  9. Numerical accuracy of linear triangular finite elements in modeling multi-holed structures

    SciTech Connect

    Sullivan, R.M.; Griffen, J.E.

    1980-06-01

    A study has been performed to quantify the accuracy of linear triangular finite elements for modeling temperature and stress fields in structures with multiple holes. The purpose of the study was to evaluate the use of these elements for the analysis of HTGR fuel blocks, which may contain up to 325 holes. Since an accurate full scale analysis was not feasible with existing methods, a representative small scale benchmark problem containing only seven holes was selected. The finite element codes used in this study were TEPC-2D for thermal analysis and SAFIRE for stress analysis. It was concluded that linear triangular finite elements are too inefficient for this application. An accurate analysis of stresses in HTGR fuel blocks will require the use of higher order elements, such as the 8-node quadrilaterals in the new TWOD code.

  10. Spin-Chirality-Driven Ferroelectricity on a Perfect Triangular Lattice Antiferromagnet

    SciTech Connect

    Mitamura, H.; Watanuki, R.; Kaneko, Koji; Onozaki, N.; Amou, Y.; Kittaka, S.; Kobayashi, Riki; Shimura, Y.; Yamamoto, I.; Suzuki, K.; Chi, Songxue; Sakakibara, T.

    2014-10-01

    Magnetic field (B) variation of the electrical polarization Pc ( ∥c) of the perfect triangular lattice antiferromagnet RbFe(MoO4)2 is examined up to the saturation point of the magnetization for B⊥c. Pc is observed only in phases for which chirality is predicted in the in-plane magnetic structures. No strong anomaly is observed in Pc at the field at which the spin modulation along the c axis, and hence the spin helicity, exhibits a discontinuity to the commensurate state. These results indicate that the ferroelectricity in this compound originates predominantly from the spin chirality, the explanation of which would require a new mechanism for magnetoferroelectricity. Lastly, the obtained field-temperature phase diagrams of ferroelectricity well agree with those theoretically predicted for the spin chirality of a Heisenberg spin triangular lattice antiferromagnet.

  11. Spin-Chirality-Driven Ferroelectricity on a Perfect Triangular Lattice Antiferromagnet

    DOE PAGESBeta

    Mitamura, H.; Watanuki, R.; Kaneko, Koji; Onozaki, N.; Amou, Y.; Kittaka, S.; Kobayashi, Riki; Shimura, Y.; Yamamoto, I.; Suzuki, K.; et al

    2014-10-01

    Magnetic field (B) variation of the electrical polarization Pc ( ∥c) of the perfect triangular lattice antiferromagnet RbFe(MoO4)2 is examined up to the saturation point of the magnetization for B⊥c. Pc is observed only in phases for which chirality is predicted in the in-plane magnetic structures. No strong anomaly is observed in Pc at the field at which the spin modulation along the c axis, and hence the spin helicity, exhibits a discontinuity to the commensurate state. These results indicate that the ferroelectricity in this compound originates predominantly from the spin chirality, the explanation of which would require a newmore » mechanism for magnetoferroelectricity. Lastly, the obtained field-temperature phase diagrams of ferroelectricity well agree with those theoretically predicted for the spin chirality of a Heisenberg spin triangular lattice antiferromagnet.« less

  12. New Evidence for the Social Embeddedness of Infants’ Early Triangular Capacities

    PubMed Central

    McHale, James; Fivaz-Depeursinge, Elisabeth; Dickstein, Susan; Robertson, Janet; Daley, Matthew

    2009-01-01

    Infants appear to be active participants in complex interactional sequences with their parents far earlier than previously theorized. In this report, we document the capacity of 3-month-old infants to share attention with two partners (mothers and fathers) simultaneously, and trace links between this capacity and early family group-level dynamics. During comprehensive evaluations of the family’s emergent coparenting alliance completed in 113 homes, we charted infants’ eye gaze patterns during two different mother-father-infant assessment paradigms. Triangular capacities (operationalized as the frequency of rapid multishift gaze transitions between parents during interactions) were stable across interaction context. Infants exhibiting more advanced triangular capacities belonged to families showing evidence of better coparental adjustment. Theoretical and practice implications of these findings are discussed. PMID:19130787

  13. Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies

    NASA Astrophysics Data System (ADS)

    Dalapati, Sasanka; Addicoat, Matthew; Jin, Shangbin; Sakurai, Tsuneaki; Gao, Jia; Xu, Hong; Irle, Stephan; Seki, Shu; Jiang, Donglin

    2015-07-01

    Covalent organic frameworks (COFs) are an emerging class of highly ordered porous polymers with many potential applications. They are currently designed and synthesized through hexagonal and tetragonal topologies, limiting the access to and exploration of new structures and properties. Here, we report that a triangular topology can be developed for the rational design and synthesis of a new class of COFs. The triangular topology features small pore sizes down to 12 Å, which is among the smallest pores for COFs reported to date, and high π-column densities of up to 0.25 nm-2, which exceeds those of supramolecular columnar π-arrays and other COF materials. These crystalline COFs facilitate π-cloud delocalization and are highly conductive, with a hole mobility that is among the highest reported for COFs and polygraphitic ensembles.

  14. Suture welding for arthroscopic repair of peripheral triangular fibrocartilage complex tears.

    PubMed

    Badia, Alejandro; Khanchandani, Prakash

    2007-03-01

    This report presents a method of arthroscopic repair of the peripheral triangular fibrocartilage tears by using ultrasonic suture welding technique, thus avoiding the need for traditional suture knots. This technique eliminates the potential causes of ulnar-sided wrist discomfort especially during the postoperative period. Twenty-three patients (9 women and 14 men; mean age, 35 years; range, 18-52 years) were operated during a 1-year period in 2001 for Palmer grade 1B triangular fibrocartilage complex tear and followed up for 17 months. At the final follow-up, the average wrist arc of motion was as follows: extension, 65 degrees; flexion, 56 degrees; supination, 80 degrees; pronation, 78 degrees; radial deviation, 12 degrees; and ulnar deviation, 25 degrees. Grip strength measured with a dynamometer (Jamar) averaged 81% of the contralateral side at the final evaluation (range, 53%-105%). PMID:17536524

  15. Apex-angle-dependent resonances in triangular split-ring resonators

    NASA Astrophysics Data System (ADS)

    Burnett, Max A.; Fiddy, Michael A.

    2016-02-01

    Along with other frequency selective structures (Pendry et al. in IEEE Trans Microw Theory Tech 47(11):2075-2084, 1999) (circles and squares), triangular split-ring resonators (TSRRs) only allow frequencies near the center resonant frequency to propagate. Further, TSRRs are attractive due to their small surface area (Vidhyalakshmi et al. in Stopband characteristics of complementary triangular split ring resonator loaded microstrip line, 2011), comparatively, and large quality factors ( Q) as previously investigated by Gay-Balmaz et al. (J Appl Phys 92(5):2929-2936, 2002). In this work, we examine the effects of varying the apex angle on the resonant frequency, the Q factor, and the phase shift imparted by the TSRR element within the GHz frequency regime.

  16. Symmetric Z2 spin liquids and their neighboring phases on triangular lattice

    NASA Astrophysics Data System (ADS)

    Lu, Yuan-Ming

    2016-04-01

    Motivated by recent numerical discovery of a gapped spin liquid phase in spin-1 /2 triangular-lattice J1-J2 Heisenberg model, we classify symmetric Z2 spin liquids on triangular lattice in the Abrikosov-fermion representation. We find 20 phases with distinct spinon symmetry quantum numbers, eight of which have their counterparts in the Schwinger-boson representation. Among them we identify two promising candidates (#1 and #20), which can realize a gapped Z2 spin liquid with up to next nearest neighbor mean-field amplitudes. We analyze their neighboring magnetic orders and valence bond solid patterns, and find one state (#20) that is connected to 120-degree Neel order by a continuous quantum phase transition. We also identify gapped nematic Z2 spin liquids in the neighborhood of the symmetric states and find three promising candidates (#1, #6, and #20).

  17. Light trapping at Dirac point in 2D triangular Archimedean-like lattice photonic crystal.

    PubMed

    Mao, Qiuping; Xie, Kang; Hu, Lei; Li, Qian; Zhang, Wei; Jiang, Haiming; Hu, Zhijia; Wang, Erlei

    2016-04-20

    Optical cavities and waveguides are critical parts of modern optical devices. Traditionally, optical cavities and waveguides rely on photonic bandgaps, or total internal reflection, to achieve light trapping. It has been reported that a novel light trapping, which exists in triangular and honeycomb lattices, is attributed to the so-called Dirac point. Our analysis reveals that 2D triangular Archimedean-like lattice photonic crystals also can support this Dirac mode with similar characteristics. This is a new type of localized mode with a different algebraic field profile at a different specified Dirac frequency, which is also beyond any complete photonic bandgap. The new wave localization has different features and can be applied to the design of new optical devices. PMID:27140119

  18. Triangular Ag-Pd alloy nanoprisms: rational synthesis with high-efficiency for electrocatalytic oxygen reduction.

    PubMed

    Xu, Lin; Luo, Zhimin; Fan, Zhanxi; Zhang, Xiao; Tan, Chaoliang; Li, Hai; Zhang, Hua; Xue, Can

    2014-10-21

    We report the generation of triangular Ag-Pd alloy nanoprisms through a rationally designed synthetic strategy based on silver nanoprisms as sacrificial templates. The galvanic replacement between Ag nanoprisms and H2PdCl4 along with co-reduction of Ag(+)/Pd(2+) is responsible for the formation of final prismatic Ag-Pd alloy nanostructures. Significantly, these Ag-Pd alloy nanoprisms exhibited superior electrocatalytic activity for the oxygen reduction reaction (ORR) as compared with the commercial Pd/C catalyst. Such a high catalytic activity is attributed to not only the alloyed Ag-Pd composition but also the dominant {111} facets of the triangular Ag-Pd nanoprisms. This work demonstrates the rational design of bimetallic alloy nanostructures with control of selective crystal facets that are critical to achieve high catalytic activity for fuel cell systems. PMID:25155648

  19. Tailoring graphene magnetism by zigzag triangular holes: A first-principles thermodynamics study

    DOE PAGESBeta

    Khan, Muhammad Ejaz; Zhang, P.; Sun, Yi -Yang; Zhang, S. B.; Kim, Yong -Hyun

    2016-03-30

    In this study, we discuss the thermodynamic stability and magnetic property of zigzag triangular holes (ZTHs) in graphene based on the results of first-principles density functional theory calculations. We find that ZTHs with hydrogen-passivated edges in mixed sp2/sp3 configurations (z211) could be readily available at experimental thermodynamic conditions, but ZTHs with 100% sp2 hydrogen-passivation (z1) could be limitedly available at high temperature and ultra-high vacuum conditions. Graphene magnetization near the ZTHs strongly depends on the type and the size of the triangles. While metallic z1 ZTHs exhibit characteristic edge magnetism due to the same-sublattice engineering, semiconducting z211 ZTHs do showmore » characteristic corner magnetism when the size is small < 2 nm. Our findings could be useful for experimentally tailoring metal-free carbon magnetism by simply fabricating triangular holes in graphene.« less

  20. Surface enhanced Raman scattering, antibacterial and antifungal active triangular gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Smitha, S. L.; Gopchandran, K. G.

    2013-02-01

    Shape controlled syntheses of gold nanoparticles have attracted a great deal of attention as their optical, electronic, magnetic and biological properties are strongly dependent on the size and shape of the particles. Here is a report on the surface enhanced Raman scattering (SERS) activity of Cinnamomum zeylanicum leaf broth reduced gold nanoparticles consisting of triangular and spherical like particles, using 2-aminothiophenol (2-ATP) and crystal violet (CV) as probe molecules. Nanoparticles prepared with a minimum leaf broth concentration, having a greater number of triangular like particles exhibit a SERS activity of the order of 107. The synthesized nanoparticles exhibit efficient antibacterial activity against the tested gram negative bacterium Escherichia coli and gram positive bacterium Staphylococcus aureus. Investigations on the antifungal activity of the synthesized nanoparticles against Aspergillus niger and Fusarium oxysporum positive is also discussed.

  1. Tailoring graphene magnetism by zigzag triangular holes: A first-principles thermodynamics study

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Ejaz; Zhang, P.; Sun, Yi-Yang; Zhang, S. B.; Kim, Yong-Hyun

    2016-03-01

    We discuss the thermodynamic stability and magnetic property of zigzag triangular holes (ZTHs) in graphene based on the results of first-principles density functional theory calculations. We find that ZTHs with hydrogen-passivated edges in mixed sp2/sp3 configurations (z211) could be readily available at experimental thermodynamic conditions, but ZTHs with 100% sp2 hydrogen-passivation (z1) could be limitedly available at high temperature and ultra-high vacuum conditions. Graphene magnetization near the ZTHs strongly depends on the type and the size of the triangles. While metallic z1 ZTHs exhibit characteristic edge magnetism due to the same-sublattice engineering, semiconducting z211 ZTHs do show characteristic corner magnetism when the size is small <2 nm. Our findings could be useful for experimentally tailoring metal-free carbon magnetism by simply fabricating triangular holes in graphene.

  2. Linear-phase approximation in the triangular facet near-field physical optics computer program

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Hodges, R. E.

    1990-01-01

    Analyses of reflector antenna surfaces use a computer program based on a discrete approximation of the radiation integral. The calculation replaces the actual surface with a triangular facet representation; the physical optics current is assumed to be constant over each facet. Described here is a method of calculation using linear-phase approximation of the surface currents of parabolas, ellipses, and shaped subreflectors and compares results with a previous program that used a constant-phase approximation of the triangular facets. The results show that the linear-phase approximation is a significant improvement over the constant-phase approximation, and enables computation of 100 to 1,000 lambda reflectors within a reasonable time on a Cray computer.

  3. Uniform Strain Elements for Three-Node Triangular and Four-Node Tetrahedral Meshes

    SciTech Connect

    Dohrmann, C.R.; Heinstein, M.W.; Jung, J.; Key, S.W.; Witkowski, W.R.

    1999-03-02

    A family of uniform strain elements is presented for three-node triangular and four-node tetrahedral meshes. The elements use the linear interpolation functions of the original mesh, but each element is associated with a single node. As a result, a favorable constraint ratio for the volumetric response is obtained for problems in solid mechanics. The uniform strain elements do not require the introduction of additional degrees of freedom and their performance is shown to be significantly better than that of three-node triangular or four-node tetrahedral elements. In addition, nodes inside the boundary of the mesh are observed to exhibit superconvergent behavior for a set of example problems.

  4. Research of photonic-assisted triangular-shaped pulses generation based on quadrupling RF modulation

    NASA Astrophysics Data System (ADS)

    Yuan, Jin; Ning, Ti-gang; Li, Jing; Li, Yue-qin; Chen, Hong-yao; Zhang, Chan

    2015-05-01

    We propose an approach to generate optical triangular-shaped pulse train with tunable repetition rate using quadrupling radio frequency (RF) modulation and optical grating dispersion-induced power fading. In this work, a piece of chirped fiber Bragg grating (FBG) is employed as the dispersive media to remove the undesired 8th harmonic in optical intensity. Thus, the generated harmonics of optical intensity can be corresponding to the first two Fourier components of typical periodic triangular pulses. This work also analyzes the impacts of the extinction ratio and the bias voltage drift on the harmonic distortion suppression ratio. After that, the value of the extinction ratio and the range of the bias voltage drift can be obtained. The advantage of this proposal is that it can generate high order frequency-multiplexed optical pulses train which can be applied in all optical signal processing and other fields.

  5. Strong uniaxial magnetic anisotropy in triangular wave-like ferromagnetic NiFe thin films

    NASA Astrophysics Data System (ADS)

    Ki, Sanghoon; Dho, Joonghoe

    2015-05-01

    Triangular wave-like NiFe films were synthesized on m-plane Al2O3 with a triangularly rippled surface and their uniaxial magnetic anisotropies were investigated as a function of the average wavelength (λ). The ratio of the oscillation height to λ was approximately maintained at ˜0.133. A large magnetic anisotropy energy of 80-150 kJ/m3, which is up to ten times larger than the reported values, was observed with the variation of λ. The increasing tendency of the anisotropy energy with decreasing λ is likely due to a change in the shape anisotropy, while the anisotropy energy generated by surface magnetic charges slightly increased with increasing λ.

  6. Novel S = 3/2 Triangular Antiferromagnet Ag2CrO2 with Metallic Conductivity

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Takayama-Muromachi, Eiji; Isobe, Masaaki

    2011-12-01

    A novel metallic silver chromate, Ag2CrO2, was synthesized using a high-pressure technique. Ag2CrO2 crystallizes in trigonal symmetry with lattice parameters of a = 2.9271(1) Å and c = 8.6721(4) Å. The structure consists of CrO2 and double Ag layers stacked alternately along the c-axis. The former realizes an S = 3/2 triangular-lattice Heisenberg system, while the latter provides itinerant electrons. Ag2CrO2 exhibits an antiferromagnetic long-range order at TN = 24 K with the weak ferromagnetic moment. The resistivity shows a sudden drop at TN, suggesting a large s--d interaction (RKKY interaction) between the Cr 3d localized spins on the triangular lattice and the Ag 5s itinerant electrons. The RKKY interaction is responsible for releasing the magnetic frustration and the three-dimensional long-range ordering at TN.

  7. Detecting one-mode communities in bipartite networks by bipartite clustering triangular

    NASA Astrophysics Data System (ADS)

    Cui, Yaozu; Wang, Xingyuan

    2016-09-01

    In this paper, an algorithm is proposed to detect one-mode community structures in bipartite networks, and to deduce which one-mode community structures are weighted. After analyzing the topological properties in bipartite networks, bipartite clustering triangular is introduced. First, bipartite networks are projected into two weighted one-mode networks by bipartite clustering triangular. Then all the maximal sub-graphs from two one-mode weighted networks are extracted and the maximal sub-graphs are merged together using a weighted clustering threshold. In addition, the proposed algorithm successfully finds overlapping vertices between one-mode communities. Experimental results using some real-world network data shows that the performance of the proposed algorithm is satisfactory.

  8. A cubic triangular element with local continuity - An application in potential flow

    NASA Astrophysics Data System (ADS)

    Wu, E.-R.

    1981-08-01

    A triangular element is developed using a complete third-degree polynomial as the interpolation function. The nodal variables include the function and its first-order derivatives. A local continuity condition, which implements the conservation of the normal gradients of the interpolation function along the three boundaries of the element, is provided as a remedy for the nonconformity of the first-order derivatives in conventional elements with zeroth order continuity. The element is applied to potential flow problems. Numerical results for the flow over a cylinder and the flow through a draft tube elbow of a hydraulic turbine confirm the validity and the accuracy of this new cubic element. A comparison of this element with a triangular element with zeroth order continuity is made by checking their differences from an analytical solution for the flow over the cylinder. This element appears to be more accurate than the element with zeroth order continuity.

  9. Successful reconstruction after resection of malignant skin tumor on triangular fossa using anterior auricular bilobed flap.

    PubMed

    Fujioka, Masaki; Hayashida, Kenji; Morooka, Sin; Saijo, Hiroto

    2015-10-01

    Reconstruction of surgical defects is challenging, especially when they are localized in an anterior surface. The authors present two patients with a malignant skin neoplasm localized in the triangular fossa. Each tumor was removed and the cartilage-exposing wound was reconstructed using an anterior auricular bilobed flap. The donor site of the flap was primarily closed. The viability of the flap was favorable without complications and with excellent esthetic results. There are various surgical procedures for reconstruction of the anterior auricle. Among them, an anterior auricular bilobed flap can be performed quickly, has minimal associated morbidity and yields a favorable outcome. We believe that this technique is an effective option, especially for the triangular fossa skin defect resurfacing. PMID:25893369

  10. Ground-state properties of a triangular triple quantum dot connected to superconducting leads

    NASA Astrophysics Data System (ADS)

    Oguri, Akira; Sato, Izumi; Shimamoto, Masashi; Tanaka, Yoichi

    2015-03-01

    We study ground-state properties of a triangular triple quantum dot connected to two superconducting (SC) leads. In this system orbital motion along the triangular configuration causes various types of quantum phases, such as the SU(4) Kondo state and the Nagaoka ferromagnetic mechanism, depending on the electron filling. The ground state also evolves as the Cooper pairs penetrate from the SC leads. We describe the phase diagram in a wide range of the parameter space, varying the gate voltage, the couplings between the dots and leads, and also the Josephson phase between the SC gaps. The results are obtained in the limit of large SC gap, carrying out exact diagonalization of an effective Hamiltonian. We also discuss in detail a classification of the quantum states according to the fixed point of the Wilson numerical renormalization group (NRG). Furthermore, we show that the Bogoliubov zero-energy excitation determines the ground state of a π Josephson junction at small electron fillings.

  11. Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies.

    PubMed

    Dalapati, Sasanka; Addicoat, Matthew; Jin, Shangbin; Sakurai, Tsuneaki; Gao, Jia; Xu, Hong; Irle, Stephan; Seki, Shu; Jiang, Donglin

    2015-01-01

    Covalent organic frameworks (COFs) are an emerging class of highly ordered porous polymers with many potential applications. They are currently designed and synthesized through hexagonal and tetragonal topologies, limiting the access to and exploration of new structures and properties. Here, we report that a triangular topology can be developed for the rational design and synthesis of a new class of COFs. The triangular topology features small pore sizes down to 12 Å, which is among the smallest pores for COFs reported to date, and high π-column densities of up to 0.25 nm(-2), which exceeds those of supramolecular columnar π-arrays and other COF materials. These crystalline COFs facilitate π-cloud delocalization and are highly conductive, with a hole mobility that is among the highest reported for COFs and polygraphitic ensembles. PMID:26178865

  12. A grid quality manipulation system

    NASA Technical Reports Server (NTRS)

    Lu, Ning; Eiseman, Peter R.

    1991-01-01

    A grid quality manipulation system is described. The elements of the system are the measures by which quality is assessed, the computer graphic display of those measures, and the local grid manipulation to provide a response to the viewed quality indication. The display is an overlaid composite where the region is first covered with colors to reflect the values of the quality indicator, the grid is then placed on top of those colors, and finally a control net is placed on top of everything. The net represents the grid in terms of the control point form of algebraic grid generation. As a control point is moved, both the grid and the colored quality measures also move. This is a real time dynamic action so that the consequences of the manipulation are continuously seen.

  13. Prepares Overset Grids for Processing

    Energy Science and Technology Software Center (ESTSC)

    1998-04-22

    Many large and complex computational problems require multiple, structured, generically overlapped (overset) grids to obtain numerical solutions in a timely manner. BREAKUP significantly reduces required compute times by preparing overset grids for processing on massively parallel computers. BREAKUP subdivides the original grids for use on a user-specified number of parallel processors. Grid-to-grid and intragrid communications are maintained in the parallel environment via connectivity tables generated by BREAKUP. The subgrids are formed to be statically loadmore » balanced and to incur a minimum of communication between the subgrids. When the output of BREAKUP is submitted to an appropriately modified flow solver, subgrid solutions will be updated simultaneously. This contrasts to the much less efficient solution method of updating each original grid sequentially as done in the past.« less

  14. Topological phase transitions on a triangular optical lattice with non-Abelian gauge fields

    NASA Astrophysics Data System (ADS)

    Iskin, M.

    2016-03-01

    We study the mean-field BCS-BEC evolution of a uniform Fermi gas on a single-band triangular lattice and construct its ground-state phase diagrams, showing a wealth of topological quantum phase transitions between gapped and gapless superfluids that are induced by the interplay of an out-of-plane Zeeman field and a generic non-Abelian gauge field.

  15. Isotropic negative effective permeability in the visible range produced by clusters of plasmonic triangular nanoprisms

    NASA Astrophysics Data System (ADS)

    Morits, Dmitry; Simovski, Constantin

    2011-12-01

    In this paper we suggest and study a design solution of metamaterial made of raspberry-like clusters of silver triangular nanoprisms. We show that this design theoretically allows one to obtain isotropic negative effective permeability in the visible range even taking into account real dissipative losses in silver. To estimate the magnetic response of the structure two independent methods are used. The study is presented in view of prospective for isotropic doubly-negative metamaterials operating in the visible range.

  16. Noncircular Triangularity and Ellipticity-Induced Alfvén Eigenmodes Observed in JT-60U

    NASA Astrophysics Data System (ADS)

    Kramer, G. J.; Saigusa, M.; Ozeki, T.; Kusama, Y.; Kimura, H.; Oikawa, T.; Tobita, K.; Fu, G. Y.; Cheng, C. Z.

    1998-03-01

    For the first time noncircular triangularity induced Alfvén eigenmodes (NAE) were observed in combined ion cyclotron resonance frequency and neutral beam injection heated plasmas. Ellipticity induced Alfvén eigenmodes (EAE) and toroidicity-induced Alfvén eigenmodes (TAE) were also observed in those plasmas. The threshold beta of the energetic ions for exciting the NAE modes was found to be similar to that for exciting TAE modes.

  17. Triangular Ag-Pd alloy nanoprisms: rational synthesis with high-efficiency for electrocatalytic oxygen reduction

    NASA Astrophysics Data System (ADS)

    Xu, Lin; Luo, Zhimin; Fan, Zhanxi; Zhang, Xiao; Tan, Chaoliang; Li, Hai; Zhang, Hua; Xue, Can

    2014-09-01

    We report the generation of triangular Ag-Pd alloy nanoprisms through a rationally designed synthetic strategy based on silver nanoprisms as sacrificial templates. The galvanic replacement between Ag nanoprisms and H2PdCl4 along with co-reduction of Ag+/Pd2+ is responsible for the formation of final prismatic Ag-Pd alloy nanostructures. Significantly, these Ag-Pd alloy nanoprisms exhibited superior electrocatalytic activity for the oxygen reduction reaction (ORR) as compared with the commercial Pd/C catalyst. Such a high catalytic activity is attributed to not only the alloyed Ag-Pd composition but also the dominant {111} facets of the triangular Ag-Pd nanoprisms. This work demonstrates the rational design of bimetallic alloy nanostructures with control of selective crystal facets that are critical to achieve high catalytic activity for fuel cell systems.We report the generation of triangular Ag-Pd alloy nanoprisms through a rationally designed synthetic strategy based on silver nanoprisms as sacrificial templates. The galvanic replacement between Ag nanoprisms and H2PdCl4 along with co-reduction of Ag+/Pd2+ is responsible for the formation of final prismatic Ag-Pd alloy nanostructures. Significantly, these Ag-Pd alloy nanoprisms exhibited superior electrocatalytic activity for the oxygen reduction reaction (ORR) as compared with the commercial Pd/C catalyst. Such a high catalytic activity is attributed to not only the alloyed Ag-Pd composition but also the dominant {111} facets of the triangular Ag-Pd nanoprisms. This work demonstrates the rational design of bimetallic alloy nanostructures with control of selective crystal facets that are critical to achieve high catalytic activity for fuel cell systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03600j

  18. Ganglion Cyst Associated with Triangular Fibrocartilage Complex Tear That Caused Ulnar Nerve Compression

    PubMed Central

    Cinar, Can; Tasdelen, Neslihan

    2015-01-01

    Summary: Ganglions are the most frequently seen soft-tissue tumors in the hand. Nerve compression due to ganglion cysts at the wrist is rare. We report 2 ganglion cysts arising from triangular fibrocartilage complex, one of which caused ulnar nerve compression proximal to the Guyon's canal, leading to ulnar neuropathy. Ganglion cysts seem unimportant, and many surgeons refrain from performing a general hand examination. PMID:25878929

  19. Ganglion cyst associated with triangular fibrocartilage complex tear that caused ulnar nerve compression.

    PubMed

    Bingol, Ugur Anil; Cinar, Can; Tasdelen, Neslihan

    2015-03-01

    Ganglions are the most frequently seen soft-tissue tumors in the hand. Nerve compression due to ganglion cysts at the wrist is rare. We report 2 ganglion cysts arising from triangular fibrocartilage complex, one of which caused ulnar nerve compression proximal to the Guyon's canal, leading to ulnar neuropathy. Ganglion cysts seem unimportant, and many surgeons refrain from performing a general hand examination. PMID:25878929

  20. Elastic-plastic analysis using a triangular ring element in NASTRAN

    NASA Technical Reports Server (NTRS)

    Chen, P. C. T.

    1980-01-01

    An elastic plastic triangular ring element is implemented in NASTRAN computer program. The plane strain problem of partially plastic thick walled cylinder under internal pressure is solved and compared with the earlier finite difference solution. A very good agreement has been reached. In order to demonstrate its application to more general problems, an overloaded thread problem for the British Standard Buttress is examined. The maximum axial and principal stresses are located and their values are determined as functions of loadings.

  1. Giant Kerr nonlinearity via tunneling induced double dark resonances in triangular quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Tian, Si-Cong; Wan, Ren-Gang; Tong, Cun-Zhu; Fu, Xi-Hong; Cao, Jun-Sheng; Ning, Yong-Qiang

    2015-12-01

    A scheme for giant Kerr nonlinearity via tunneling in triangular triple quantum dot molecules is proposed. In such a system, the linear absorption and the Kerr nonlinearity depend critically on the energy splitting of the excited states and the tunneling intensity. With proper parameters, giant Kerr nonlinearity accompanied by vanishing absorption can be realized. The enhancement of Kerr nonlinearity is attributed to the interacting double dark resonances induced by the tunneling between the quantum dots, requiring no extra coupling laser fields.

  2. Smart Grid Enabled EVSE

    SciTech Connect

    None, None

    2014-10-15

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  3. LDCM Grid Prototype (LGP)

    NASA Technical Reports Server (NTRS)

    Weinstein, Beth; Lubelczyk, Jeff

    2006-01-01

    The LGP successfully demonstrated that grid technology could be used to create a collaboration among research scientists, their science development machines, and distributed data to create a science production system in a nationally distributed environment. Grid technology provides a low cost and effective method of enabling production of science products by the science community. To demonstrate this, the LGP partnered with NASA GSFC scientists and used their existing science algorithms to generate virtual Landsat-like data products using distributed data resources. LGP created 48 output composite scenes with 4 input scenes each for a total of 192 scienes processed in parallel. The demonstration took 12 hours, which beat the requirement by almost 50 percent, well within the LDCM requirement to process 250 scenes per day. The LGP project also showed the successful use of workflow tools to automate the processing. Investing in this technology has led to funding for a ROSES ACCESS proposal. The proposal intends to enable an expert science user to produce products from a number of similar distributed instrument data sets using the Land Cover Change Community-based Processing and Analysis System (LC-ComPS) Toolbox. The LC-ComPS Toolbox is a collection of science algorithms that enable the generation of data with ground resolution on the order of Landsat-class instruments.

  4. Grid-Enabled Measures

    PubMed Central

    Moser, Richard P.; Hesse, Bradford W.; Shaikh, Abdul R.; Courtney, Paul; Morgan, Glen; Augustson, Erik; Kobrin, Sarah; Levin, Kerry; Helba, Cynthia; Garner, David; Dunn, Marsha; Coa, Kisha

    2011-01-01

    Scientists are taking advantage of the Internet and collaborative web technology to accelerate discovery in a massively connected, participative environment —a phenomenon referred to by some as Science 2.0. As a new way of doing science, this phenomenon has the potential to push science forward in a more efficient manner than was previously possible. The Grid-Enabled Measures (GEM) database has been conceptualized as an instantiation of Science 2.0 principles by the National Cancer Institute with two overarching goals: (1) Promote the use of standardized measures, which are tied to theoretically based constructs; and (2) Facilitate the ability to share harmonized data resulting from the use of standardized measures. This is done by creating an online venue connected to the Cancer Biomedical Informatics Grid (caBIG®) where a virtual community of researchers can collaborate together and come to consensus on measures by rating, commenting and viewing meta-data about the measures and associated constructs. This paper will describe the web 2.0 principles on which the GEM database is based, describe its functionality, and discuss some of the important issues involved with creating the GEM database, such as the role of mutually agreed-on ontologies (i.e., knowledge categories and the relationships among these categories— for data sharing). PMID:21521586

  5. Grid Task Execution

    NASA Technical Reports Server (NTRS)

    Hu, Chaumin

    2007-01-01

    IPG Execution Service is a framework that reliably executes complex jobs on a computational grid, and is part of the IPG service architecture designed to support location-independent computing. The new grid service enables users to describe the platform on which they need a job to run, which allows the service to locate the desired platform, configure it for the required application, and execute the job. After a job is submitted, users can monitor it through periodic notifications, or through queries. Each job consists of a set of tasks that performs actions such as executing applications and managing data. Each task is executed based on a starting condition that is an expression of the states of other tasks. This formulation allows tasks to be executed in parallel, and also allows a user to specify tasks to execute when other tasks succeed, fail, or are canceled. The two core components of the Execution Service are the Task Database, which stores tasks that have been submitted for execution, and the Task Manager, which executes tasks in the proper order, based on the user-specified starting conditions, and avoids overloading local and remote resources while executing tasks.

  6. On unstructured grids and solvers

    NASA Technical Reports Server (NTRS)

    Barth, T. J.

    1990-01-01

    The fundamentals and the state-of-the-art technology for unstructured grids and solvers are highlighted. Algorithms and techniques pertinent to mesh generation are discussed. It is shown that grid generation and grid manipulation schemes rely on fast multidimensional searching. Flow solution techniques for the Euler equations, which can be derived from the integral form of the equations are discussed. Sample calculations are also provided.

  7. Local rules for protein folding on a triangular lattice and generalized hydrophobicity in the HP model

    SciTech Connect

    Agarwala, R.; Batzoglou, S.; Dancik, V.

    1997-06-01

    We consider the problem of determining the three-dimensional folding of a protein given its one-dimensional amino acid sequence. We use the HP model for protein folding proposed by Dill, which models protein as a chain of amino acid residues that are either hydrophobic or polar, and hydrophobic interactions are the dominant initial driving force for the protein folding. Hart and Istrail gave approximation algorithms for folding proteins on the cubic lattice under HP model. In this paper, we examine the choice of a lattice by considering its algorithmic and geometric implications and argue that triangular lattice is a more reasonable choice. We present a set of folding rules for a triangular lattice and analyze the approximation ratio which they achieve. In addition, we introduce a generalization of the HP model to account for residues having different levels of hydrophobicity. After describing the biological foundation for this generalization, we show that in the new model we are able to achieve similar constant factor approximation guarantees on the triangular lattice as were achieved in the standard HP model. While the structures derived from our folding rules are probably still far from biological reality, we hope that having a set of folding rules with different properties will yield more interesting folds when combined.

  8. Sample size determination for the non-randomised triangular model for sensitive questions in a survey.

    PubMed

    Tian, Guo-Liang; Tang, Man-Lai; Zhenqiu Liu; Ming Tan; Tang, Nian-Sheng

    2011-06-01

    Sample size determination is an essential component in public health survey designs on sensitive topics (e.g. drug abuse, homosexuality, induced abortions and pre or extramarital sex). Recently, non-randomised models have been shown to be an efficient and cost effective design when comparing with randomised response models. However, sample size formulae for such non-randomised designs are not yet available. In this article, we derive sample size formulae for the non-randomised triangular design based on the power analysis approach. We first consider the one-sample problem. Power functions and their corresponding sample size formulae for the one- and two-sided tests based on the large-sample normal approximation are derived. The performance of the sample size formulae is evaluated in terms of (i) the accuracy of the power values based on the estimated sample sizes and (ii) the sample size ratio of the non-randomised triangular design and the design of direct questioning (DDQ). We also numerically compare the sample sizes required for the randomised Warner design with those required for the DDQ and the non-randomised triangular design. Theoretical justification is provided. Furthermore, we extend the one-sample problem to the two-sample problem. An example based on an induced abortion study in Taiwan is presented to illustrate the proposed methods. PMID:19221169

  9. Robust band gap and half-metallicity in graphene with triangular perforations

    NASA Astrophysics Data System (ADS)

    Gregersen, Søren Schou; Power, Stephen R.; Jauho, Antti-Pekka

    2016-06-01

    Ideal graphene antidot lattices are predicted to show promising band gap behavior (i.e., EG≃500 meV) under carefully specified conditions. However, for the structures studied so far this behavior is critically dependent on superlattice geometry and is not robust against experimentally realistic disorders. Here we study a rectangular array of triangular antidots with zigzag edge geometries and show that their band gap behavior qualitatively differs from the standard behavior which is exhibited, e.g., by rectangular arrays of armchair-edged triangles. In the spin unpolarized case, zigzag-edged antidots give rise to large band gaps compared to armchair-edged antidots, irrespective of the rules which govern the existence of gaps in armchair-edged antidot lattices. In addition the zigzag-edged antidots appear more robust than armchair-edged antidots in the presence of geometrical disorder. The inclusion of spin polarization within a mean-field Hubbard approach gives rise to a large overall magnetic moment at each antidot due to the sublattice imbalance imposed by the triangular geometry. Half-metallic behavior arises from the formation of spin-split dispersive states near the Fermi energy, reducing the band gaps compared to the unpolarized case. This behavior is also found to be robust in the presence of disorder. Our results highlight the possibilities of using triangular perforations in graphene to open electronic band gaps in systems with experimentally realistic levels of disorder, and furthermore, of exploiting the strong spin dependence of the system for spintronic applications.

  10. Domain growth kinetics in the isosceles triangular Ising antiferromagnet CoNb2O6

    NASA Astrophysics Data System (ADS)

    Kobayashi, S.; Okano, H.; Jogetsu, T.; Miyamoto, J.; Mitsuda, S.

    2004-04-01

    We have studied the domain-growth kinetics of fourfold-degenerate antiferromagnetic (AF) and threefold-degenerate ferrimagnetic states in the isosceles triangular Ising antiferromagnet CoNb2O6 by ac susceptibility measurements and Monte Carlo simulations. In both magnetic phases ac susceptibility after the field quench is found to decrease with time according to the power-growth law with an universal growth exponent n=0.21±0.01. The prefactor in the power-growth law suggests that the zero-field growth of the AF state is strongly suppressed by the application of magnetic fields along the direction perpendicular to the frustrated isosceles-triangular lattice. Monte Carlo results show the unusual domain growth dominated by the reversal of the free magnetic spins near favorable domain walls where the exchange field is effectively canceled out due to the isosceles triangular geometry of spins. The obtained domain configuration strongly supports our neutron-diffraction results that revealed the temporal shift of the magnetic Bragg peak position during the growth.

  11. Tunable ionic transport for a triangular nanochannel in a polymeric nanofluidic system.

    PubMed

    Kim, Bumjoo; Heo, Joonseong; Kwon, Hyukjin J; Cho, Seong J; Han, Jongyoon; Kim, Sung Jae; Lim, Geunbae

    2013-01-22

    Recently, tremendous engineering applications utilizing new physics of nanoscale electrokinetics have been reported and their basic fundamentals are actively researched. In this work, we first report a simple and economic but reliable nanochannel fabrication technique, leading to a heterogeneously charged triangular nanochannel. The nanochannel utilized the elasticity of PDMS when it bonded with a micrometer-scale structure on a substrate. Second, we successfully demonstrated novel ionic transportations by tweaking the micrometer structures: (1) the transition of nonlinear ionic conductance depending on the nanochannel properties and (2) the ionic field-effect transistor. Nanochannel conductance has two distinguishable nonlinear regimes called the "surface-charge-governed" and the "geometry-governed" regime and its only individual overlooks were frequently reported. However, the transition between two regimes by adjusting nanochannel properties has not been reported due to the difficulty of functional nanochannel fabrication. In addition, a gate voltage was comfortably applied to the triangular nanochannel so that the field-effect ion transportation was reliably achieved. Therefore, presenting triangular nanochannels have critical advantages over its heterogeneous and tunable surface properties and thus, could be an effective means as an active fundamental to control and manipulate the ion-electromigration through a nanofluidic system. PMID:23244067

  12. Anisotropic spin model of strong spin-orbit-coupled triangular antiferromagnets

    NASA Astrophysics Data System (ADS)

    Li, Yao-Dong; Wang, Xiaoqun; Chen, Gang

    2016-07-01

    Motivated by the recent experimental progress on the strong spin-orbit-coupled rare-earth triangular antiferromagnet, we analyze the highly anisotropic spin model that describes the interaction between the spin-orbit-entangled Kramers' doublet local moments on the triangular lattice. We apply the Luttinger-Tisza method, the classical Monte Carlo simulation, and the self-consistent spin wave theory to analyze the anisotropic spin Hamiltonian. The classical phase diagram includes the 120∘ state and two distinct stripe-ordered phases. The frustration is very strong and significantly suppresses the ordering temperature in the regimes close to the phase boundary between two ordered phases. Going beyond the semiclassical analysis, we include the quantum fluctuations of the spin moments within a self-consistent Dyson-Maleev spin-wave treatment. We find that the strong quantum fluctuations melt the magnetic order in the frustrated regions. We explore the magnetic excitations in the three different ordered phases as well as in strong magnetic fields. Our results provide a guidance for the future theoretical study of the generic model and are broadly relevant for strong spin-orbit-coupled triangular antiferromagnets such as YbMgGaO4, RCd3P3 , RZn3P3 , RCd3As3 , RZn3As3 , and R2O2CO3 .

  13. A triangular model of dimensionless runoff producing rainfall hyetographs in Texas

    USGS Publications Warehouse

    Asquith, W.H.; Bumgarner, J.R.; Fahlquist, L.S.

    2003-01-01

    A synthetic triangular hyetograph for a large data base of Texas rainfall and runoff is needed. A hyetograph represents the temporal distribution of rainfall intensity at a point or over a watershed during a storm. Synthetic hyetographs are estimates of the expected time distribution for a design storm and principally are used in small watershed hydraulic structure design. A data base of more than 1,600 observed cumulative hyetographs that produced runoff from 91 small watersheds (generally less than about 50 km2) was used to provide statistical parameters for a simple triangular shaped hyetograph model. The model provides an estimate of the average hyetograph in dimensionless form for storm durations of 0 to 24 hours and 24 to 72 hours. As a result of this study, the authors concluded that the expected dimensionless cumulative hyetographs of 0 to 12 hour and 12 to 24 hour durations were sufficiently similar to be combined with minimal information loss. The analysis also suggests that dimensionless cumulative hyetographs are independent of the frequency level or return period of total storm depth and thus are readily used for many design applications. The two triangular hyetographs presented are intended to enhance small watershed design practice in applicable parts of Texas.

  14. Tunable multi-wavelength polymer laser based on a triangular-lattice photonic crystal structure

    NASA Astrophysics Data System (ADS)

    Huang, Wenbin; Pu, Donglin; Qiao, Wen; Wan, Wenqiang; Liu, Yanhua; Ye, Yan; Wu, Shaolong; Chen, Linsen

    2016-08-01

    A continuously tunable multi-wavelength polymer laser based on a triangular-lattice photonic crystal cavity is demonstrated. The triangular-lattice resonator was initially fabricated through multiple interference exposure and was then replicated into a low refractive index polymer via UV-nanoimprinting. The blend of a blue-emitting conjugated polymer and a red-emitting one was used as the gain medium. Three periods in the scalene triangular-lattice structure yield stable tri-wavelength laser emission (625.5 nm, 617.4 nm and 614.3 nm) in six different directions. A uniformly aligned liquid crystal (LC) layer was incorporated into the cavity as the top cladding layer. Upon heating, the orientation of LC molecules and thus the effective refractive index of the lasing mode changes which continuously shifts the lasing wavelength. A maximum tuning range of 12.2 nm was observed for the lasing mode at 625.5 nm. This tunable tri-wavelength polymer laser is simple constructed and cost-effective. It may find application in the fields of biosensors and photonic integrated circuits.

  15. Visualization of the birth of an optical vortex using diffraction from a triangular aperture.

    PubMed

    Mourka, A; Baumgartl, J; Shanor, C; Dholakia, K; Wright, E M

    2011-03-28

    The study and application of optical vortices have gained significant prominence over the last two decades. An interesting challenge remains the determination of the azimuthal index (topological charge) ℓ of an optical vortex beam for a range of applications. We explore the diffraction of such beams from a triangular aperture and observe that the form of the resultant diffraction pattern is dependent upon both the magnitude and sign of the azimuthal index and this is valid for both monochromatic and broadband light fields. For the first time we demonstrate that this behavior is related not only to the azimuthal index but crucially the Gouy phase component of the incident beam. In particular, we explore the far field diffraction pattern for incident fields incident upon a triangular aperture possessing non-integer values of the azimuthal index ℓ. Such fields have a complex vortex structure. We are able to infer the birth of a vortex which occurs at half-integer values of ℓ and explore its evolution by observations of the diffraction pattern. These results demonstrate the extended versatility of a triangular aperture for the study of optical vortices. PMID:21451601

  16. OGC and Grid Interoperability in enviroGRIDS Project

    NASA Astrophysics Data System (ADS)

    Gorgan, Dorian; Rodila, Denisa; Bacu, Victor; Giuliani, Gregory; Ray, Nicolas

    2010-05-01

    EnviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is a 4-years FP7 Project aiming to address the subjects of ecologically unsustainable development and inadequate resource management. The project develops a Spatial Data Infrastructure of the Black Sea Catchment region. The geospatial technologies offer very specialized functionality for Earth Science oriented applications as well as the Grid oriented technology that is able to support distributed and parallel processing. One challenge of the enviroGRIDS project is the interoperability between geospatial and Grid infrastructures by providing the basic and the extended features of the both technologies. The geospatial interoperability technology has been promoted as a way of dealing with large volumes of geospatial data in distributed environments through the development of interoperable Web service specifications proposed by the Open Geospatial Consortium (OGC), with applications spread across multiple fields but especially in Earth observation research. Due to the huge volumes of data available in the geospatial domain and the additional introduced issues (data management, secure data transfer, data distribution and data computation), the need for an infrastructure capable to manage all those problems becomes an important aspect. The Grid promotes and facilitates the secure interoperations of geospatial heterogeneous distributed data within a distributed environment, the creation and management of large distributed computational jobs and assures a security level for communication and transfer of messages based on certificates. This presentation analysis and discusses the most significant use cases for enabling the OGC Web services interoperability with the Grid environment and focuses on the description and implementation of the most promising one. In these use cases we give a special attention to issues such as: the relations between computational grid and

  17. Dorsoradial avulsion of the triangular fibrocartilage complex with an avulsion fracture of the sigmoid notch of the radius.

    PubMed

    Morisawa, Y; Nakamura, T; Tazaki, K

    2007-12-01

    We report two extremely rare cases of dorsal radial avulsion injury of the triangular fibrocartilage complex accompanied by an avulsion fracture of the sigmoid notch of the radius. Anatomical reduction of the bone fragment in conjunction with reattachment of the dorsal portion of the radioulnar ligament to the radial sigmoid notch were necessary to restore stability of the distal radioulnar joint and tension of the triangular fibrocartilage proper. PMID:17993436

  18. Grid Generation Techniques Utilizing the Volume Grid Manipulator

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1998-01-01

    This paper presents grid generation techniques available in the Volume Grid Manipulation (VGM) code. The VGM code is designed to manipulate existing line, surface and volume grids to improve the quality of the data. It embodies an easy to read rich language of commands that enables such alterations as topology changes, grid adaption and smoothing. Additionally, the VGM code can be used to construct simplified straight lines, splines, and conic sections which are common curves used in the generation and manipulation of points, lines, surfaces and volumes (i.e., grid data). These simple geometric curves are essential in the construction of domain discretizations for computational fluid dynamic simulations. By comparison to previously established methods of generating these curves interactively, the VGM code provides control of slope continuity and grid point-to-point stretchings as well as quick changes in the controlling parameters. The VGM code offers the capability to couple the generation of these geometries with an extensive manipulation methodology in a scripting language. The scripting language allows parametric studies of a vehicle geometry to be efficiently performed to evaluate favorable trends in the design process. As examples of the powerful capabilities of the VGM code, a wake flow field domain will be appended to an existing X33 Venturestar volume grid; negative volumes resulting from grid expansions to enable flow field capture on a simple geometry, will be corrected; and geometrical changes to a vehicle component of the X33 Venturestar will be shown.

  19. From the grid to the smart grid, topologically

    NASA Astrophysics Data System (ADS)

    Pagani, Giuliano Andrea; Aiello, Marco

    2016-05-01

    In its more visionary acceptation, the smart grid is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the smart grid a reality will the distribution grid have to be upgraded? We assume a positive answer to the question and we consider the lower layers of medium and low voltage to be the most affected by the change. In our previous work, we analyzed samples of the Dutch distribution grid (Pagani and Aiello, 2011) and we considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains (Pagani and Aiello, 2014). In this paper, we take an extra important step by defining a methodology for evolving any existing physical power grid to a good smart grid model, thus laying the foundations for a decision support system for utilities and governmental organizations. In doing so, we consider several possible evolution strategies and apply them to the Dutch distribution grid. We show how increasing connectivity is beneficial in realizing more efficient and reliable networks. Our proposal is topological in nature, enhanced with economic considerations of the costs of such evolutions in terms of cabling expenses and economic benefits of evolving the grid.

  20. NAS Grid Benchmarks: A Tool for Grid Space Exploration

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; VanderWijngaart, Rob F.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    We present an approach for benchmarking services provided by computational Grids. It is based on the NAS Parallel Benchmarks (NPB) and is called NAS Grid Benchmark (NGB) in this paper. We present NGB as a data flow graph encapsulating an instance of an NPB code in each graph node, which communicates with other nodes by sending/receiving initialization data. These nodes may be mapped to the same or different Grid machines. Like NPB, NGB will specify several different classes (problem sizes). NGB also specifies the generic Grid services sufficient for running the bench-mark. The implementor has the freedom to choose any specific Grid environment. However, we describe a reference implementation in Java, and present some scenarios for using NGB.

  1. The Open Science Grid

    SciTech Connect

    Pordes, Ruth; Kramer, Bill; Olson, Doug; Livny, Miron; Roy, Alain; Avery, Paul; Blackburn, Kent; Wenaus, Torre; Wurthwein, Frank; Gardner, Rob; Wilde, Mike; /Chicago U. /Indiana U.

    2007-06-01

    The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. OSG provides support for and evolution of the infrastructure through activities that cover operations, security, software, troubleshooting, addition of new capabilities, and support for existing and engagement with new communities. The OSG SciDAC-2 project provides specific activities to manage and evolve the distributed infrastructure and support its use. The innovative aspects of the project are the maintenance and performance of a collaborative (shared & common) petascale national facility over tens of autonomous computing sites, for many hundreds of users, transferring terabytes of data a day, executing tens of thousands of jobs a day, and providing robust and usable resources for scientific groups of all types and sizes. More information can be found at the OSG web site: www.opensciencegrid.org.

  2. TIGER: Turbomachinery interactive grid generation

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.; Shih, Ming-Hsin; Janus, J. Mark

    1992-01-01

    A three dimensional, interactive grid generation code, TIGER, is being developed for analysis of flows around ducted or unducted propellers. TIGER is a customized grid generator that combines new technology with methods from general grid generation codes. The code generates multiple block, structured grids around multiple blade rows with a hub and shroud for either C grid or H grid topologies. The code is intended for use with a Euler/Navier-Stokes solver also being developed, but is general enough for use with other flow solvers. TIGER features a silicon graphics interactive graphics environment that displays a pop-up window, graphics window, and text window. The geometry is read as a discrete set of points with options for several industrial standard formats and NASA standard formats. Various splines are available for defining the surface geometries. Grid generation is done either interactively or through a batch mode operation using history files from a previously generated grid. The batch mode operation can be done either with a graphical display of the interactive session or with no graphics so that the code can be run on another computer system. Run time can be significantly reduced by running on a Cray-YMP.

  3. Grid generation using classical techniques

    NASA Technical Reports Server (NTRS)

    Moretti, G.

    1980-01-01

    A brief historical review of conformal mapping and its applications to problems in fluid mechanics and electromagnetism is presented. The use of conformal mapping as a grid generator is described. The philosophy of the 'closed form' approach and its application to a Neumann problem is discussed. Karman-Trefftz mappings and grids for ablated, three dimensional bodies are also discussed.

  4. LAPS Grid generation and adaptation

    NASA Astrophysics Data System (ADS)

    Pagliantini, Cecilia; Delzanno, Gia Luca; Guo, Zehua; Srinivasan, Bhuvana; Tang, Xianzhu; Chacon, Luis

    2011-10-01

    LAPS uses a common-data framework in which a general purpose grid generation and adaptation package in toroidal and simply connected domains is implemented. The initial focus is on implementing the Winslow/Laplace-Beltrami method for generating non-overlapping block structured grids. This is to be followed by a grid adaptation scheme based on Monge-Kantorovich optimal transport method [Delzanno et al., J. Comput. Phys,227 (2008), 9841-9864], that equidistributes application-specified error. As an initial set of applications, we will lay out grids for an axisymmetric mirror, a field reversed configuration, and an entire poloidal cross section of a tokamak plasma reconstructed from a CMOD experimental shot. These grids will then be used for computing the plasma equilibrium and transport in accompanying presentations. A key issue for Monge-Kantorovich grid optimization is the choice of error or monitor function for equi-distribution. We will compare the Operator Recovery Error Source Detector (ORESD) [Lapenta, Int. J. Num. Meth. Eng,59 (2004) 2065-2087], the Tau method and a strategy based on the grid coarsening [Zhang et al., AIAA J,39 (2001) 1706-1715] to find an ``optimal'' grid. Work supported by DOE OFES.

  5. Structured and unstructured grid generation.

    PubMed

    Thompson, J F; Weatherill, N P

    1992-01-01

    Current techniques in composite-block-structured grid generation and unstructured grid generation for general 3D geometries are summarized, including both algebraic and elliptic generation procedures for the former and Delaunay tessellations for the latter. Citations of relevant theory are given. Examples of applications for several geometries are included. PMID:1424687

  6. Intelligent automated surface grid generation

    NASA Technical Reports Server (NTRS)

    Yao, Ke-Thia; Gelsey, Andrew

    1995-01-01

    The goal of our research is to produce a flexible, general grid generator for automated use by other programs, such as numerical optimizers. The current trend in the gridding field is toward interactive gridding. Interactive gridding more readily taps into the spatial reasoning abilities of the human user through the use of a graphical interface with a mouse. However, a sometimes fruitful approach to generating new designs is to apply an optimizer with shape modification operators to improve an initial design. In order for this approach to be useful, the optimizer must be able to automatically grid and evaluate the candidate designs. This paper describes and intelligent gridder that is capable of analyzing the topology of the spatial domain and predicting approximate physical behaviors based on the geometry of the spatial domain to automatically generate grids for computational fluid dynamics simulators. Typically gridding programs are given a partitioning of the spatial domain to assist the gridder. Our gridder is capable of performing this partitioning. This enables the gridder to automatically grid spatial domains of wide range of configurations.

  7. Some Observations on Grid Convergence

    NASA Technical Reports Server (NTRS)

    Salas, manuel D.

    2006-01-01

    It is claimed that current practices in grid convergence studies, particularly in the field of external aerodynamics, are flawed. The necessary conditions to properly establish grid convergence are presented. A theoretical model and a numerical example are used to demonstrate these ideas.

  8. DNS of vibrating grid turbulence

    NASA Astrophysics Data System (ADS)

    Khujadze, G.; Oberlack, M.

    Direct numerical simulation of the turbulence generated at a grid vibrating normally to itself using spectral code [1] is presented. Due to zero mean shear there is no production of turbulence apart from the grid. Action of the grid is mimiced by the function implemented in the middle of the simulation box:f_i (x_1 ,x_2 ) = {n^2 S}/2left\\{ {left| {{δ _{i3} }/4\\cos left( {{2π }/Mx_1 } right)\\cos left. {left( {{2π }/Mx_2 } right)} right|} right.sin (nt) + {β _i }/4} right\\}, where M is the mesh size, S/2 - amplitude or stroke of the grid, n - frequency. β i are random numbers with uniform distribution. The simulations were performed for the following parameters: x 1, x 2 ∈ [-π; π], x 3 ∈ [-2π; 2π]; Re = nS 2/? = 1000; S/M = 2; Numerical grid: 128 × 128 × 256.

  9. DNS of vibrating grid turbulence

    NASA Astrophysics Data System (ADS)

    Khujadze, G.; Oberlack, M.

    Direct numerical simulation of the turbulence generated at a grid vibrating normally to itself using spectral code [1] is presented. Due to zero mean shear there is no production of turbulence apart from the grid. Action of the grid is mimiced by the function implemented in the middle of the simulation box:f_i (x_1 ,x_2 ) = {n^2 S}/2left{ {left| {{δ _{i3} }/4\\cos left( {{2π }/Mx_1 } right)\\cos left. {left( {{2π }/Mx_2 } right)} right|} right.sin (nt) + {β _i }/4} right}, where M is the mesh size, S/2 - amplitude or stroke of the grid, n - frequency. β i are random numbers with uniform distribution. The simulations were performed for the following parameters: x 1, x 2 ∈ [-π; π], x 3 ∈ [-2π; 2π]; Re = nS 2/? = 1000; S/M = 2; Numerical grid: 128 × 128 × 256.

  10. Grid Integration Studies: Data Requirements, Greening the Grid

    SciTech Connect

    Katz, Jessica

    2015-06-01

    A grid integration study is an analytical framework used to evaluate a power system with high penetration levels of variable renewable energy (VRE). A grid integration study simulates the operation of the power system under different VRE scenarios, identifying reliability constraints and evaluating the cost of actions to alleviate those constraints. These VRE scenarios establish where, how much, and over what timeframe to build generation and transmission capacity, ideally capturing the spatial diversity benefits of wind and solar resources. The results help build confidence among policymakers, system operators, and investors to move forward with plans to increase the amount of VRE on the grid.

  11. Single grid accelerator for an ion thrustor

    NASA Technical Reports Server (NTRS)

    Margosian, P. M.; Nakanishi, S. (Inventor)

    1973-01-01

    A single grid accelerator system for an ion thrustor is discussed. A layer of dielectric material is interposed between this metal grid and the chamber containing an ionized propellant for protecting the grid against sputtering erosion.

  12. Optimizing solar-cell grid geometry

    NASA Technical Reports Server (NTRS)

    Crossley, A. P.

    1969-01-01

    Trade-off analysis and mathematical expressions calculate optimum grid geometry in terms of various cell parameters. Determination of the grid geometry provides proper balance between grid resistance and cell output to optimize the energy conversion process.

  13. A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations

    NASA Astrophysics Data System (ADS)

    Ke, Rihuan; Ng, Michael K.; Sun, Hai-Wei

    2015-12-01

    In this paper, we study the block lower triangular Toeplitz-like with tri-diagonal blocks system which arises from the time-fractional partial differential equation. Existing fast numerical solver (e.g., fast approximate inversion method) cannot handle such linear system as the main diagonal blocks are different. The main contribution of this paper is to propose a fast direct method for solving this linear system, and to illustrate that the proposed method is much faster than the classical block forward substitution method for solving this linear system. Our idea is based on the divide-and-conquer strategy and together with the fast Fourier transforms for calculating Toeplitz matrix-vector multiplication. The complexity needs O (MNlog2 ⁡ M) arithmetic operations, where M is the number of blocks (the number of time steps) in the system and N is the size (number of spatial grid points) of each block. Numerical examples from the finite difference discretization of time-fractional partial differential equations are also given to demonstrate the efficiency of the proposed method.

  14. MHD Natural Convective Flow in an Isosceles Triangular Cavity Filled with Porous Medium due to Uniform/Non-Uniform Heated Side Walls

    NASA Astrophysics Data System (ADS)

    Javed, Tariq; Siddiqui, Muhammad Arshad; Mehmood, Ziafat; Pop, Ioan

    2015-10-01

    In this article, numerical simulations are carried out for fluid flow and heat transfer through natural convection in an isosceles triangular cavity under the effects of uniform magnetic field. The cavity is of cold bottom wall and uniformly/non-uniformly heated side walls and is filled with isotropic porous medium. The governing Navier Stoke's equations are subjected to Penalty finite element method to eliminate pressure term and Galerkin weighted residual method is applied to obtain the solution of the reduced equations for different ranges of the physical parameters. The results are verified as grid independent and comparison is made as a limiting case with the results available in literature, and it is shown that the developed code is highly accurate. Computations are presented in terms of streamlines, isotherms, local Nusselt number and average Nusselt number through graphs and tables. It is observed that, for the case of uniform heating side walls, strength of circulation of streamlines gets increased when Rayleigh number is increased above critical value, but increase in Hartmann number decreases strength of streamlines circulations. For non-uniform heating case, it is noticed that heat transfer rate is maximum at corners of bottom wall.

  15. National Smart Water Grid

    SciTech Connect

    Beaulieu, R A

    2009-07-13

    The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US

  16. Exact Integrations of Polynomials and Symmetric Quadrature Formulas over Arbitrary Polyhedral Grids

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Vinokur, Marcel

    1997-01-01

    This paper is concerned with two important elements in the high-order accurate spatial discretization of finite volume equations over arbitrary grids. One element is the integration of basis functions over arbitrary domains, which is used in expressing various spatial integrals in terms of discrete unknowns. The other consists of quadrature approximations to those integrals. Only polynomial basis functions applied to polyhedral and polygonal grids are treated here. Non-triangular polygonal faces are subdivided into a union of planar triangular facets, and the resulting triangulated polyhedron is subdivided into a union of tetrahedra. The straight line segment, triangle, and tetrahedron are thus the fundamental shapes that are the building blocks for all integrations and quadrature approximations. Integrals of products up to the fifth order are derived in a unified manner for the three fundamental shapes in terms of the position vectors of vertices. Results are given both in terms of tensor products and products of Cartesian coordinates. The exact polynomial integrals are used to obtain symmetric quadrature approximations of any degree of precision up to five for arbitrary integrals over the three fundamental domains. Using a coordinate-free formulation, simple and rational procedures are developed to derive virtually all quadrature formulas, including some previously unpublished. Four symmetry groups of quadrature points are introduced to derive Gauss formulas, while their limiting forms are used to derive Lobatto formulas. Representative Gauss and Lobatto formulas are tabulated. The relative efficiency of their application to polyhedral and polygonal grids is detailed. The extension to higher degrees of precision is discussed.

  17. Triangular Nests!

    ERIC Educational Resources Information Center

    Powell, R. I.

    2002-01-01

    Shows how integer-sided triangles can be nested, each nest having a single enclosing isosceles triangle. Brings to light what can be seen as a relatively simple generalization of Pythagoras' theorem, a result that should be readily accessible to many secondary school pupils. (Author/KHR)

  18. High energy collimating fine grids

    NASA Technical Reports Server (NTRS)

    Arrieta, Victor M.; Tuffias, Robert H.; Laferla, Raffaele

    1995-01-01

    The objective of this project was to demonstrate the fabrication of extremely tight tolerance collimating grids using a high-Z material, specifically tungsten. The approach taken was to fabricate grids by a replication method involving the coating of a silicon grid substrate with tungsten by chemical vapor deposition (CVD). A negative of the desired grid structure was fabricated in silicon using highly wafering techniques developed for the semiconductor industry and capable of producing the required tolerances. Using diamond wafering blades, a network of accurately spaced slots was machined into a single-crystal silicon surface. These slots were then filled with tungsten by CVD, via the hydrogen reduction of tungsten hexafluoride. Following tungsten deposition, the silicon negative was etched away to leave the tungsten collimating grid structure. The project was divided into five tasks: (1) identify materials of construction for the replica and final collimating grid structures; (2) identify and implement a micromachining technique for manufacturing the negative collimator replicas (performed by NASA/JPL); (3) develop a CVD technique and processing parameters suitable for the complete tungsten densification of the collimator replicas; (4) develop a chemical etching technique for the removal of the collimator replicas after the tungsten deposition process; and (5) fabricate and deliver tungsten collimating grid specimens.

  19. GridOPTICS Software System

    SciTech Connect

    Akyol, Bora A; Ciraci, PNNL Selim; Gibson, PNNL Tara; Rice, PNNL Mark; Sharma, PNNL Poorva; Yin, PNNL Jian; Allwardt, PNNL Craig; PNNL,

    2014-02-24

    GridOPTICS Software System (GOSS) is a middleware that facilitates creation of new, modular and flexible operational and planning platforms that can meet the challenges of the next generation power grid. GOSS enables Department of Energy, power system utilities, and vendors to build better tools faster. GOSS makes it possible to integrate Future Power Grid Initiative software products/prototypes into existing power grid software systems, including the PNNL PowerNet and EIOC environments. GOSS is designed to allow power grid applications developed for different underlying software platforms installed in different utilities to communicate with ease. This can be done in compliance with existing security and data sharing policies between the utilities. GOSS not only supports one-to-one data transfer between applications, but also publisher/subscriber scheme. To support interoperability requirements of future EMS, GOSS is designed for CIM compliance. In addition to this, it supports authentication and authorization capabilities to protect the system from cyber threats. In summary, the contributions of the GOSS middleware are as follows: • A platform to support future EMS development. • A middleware that promotes interoperability between power grid applications. • A distributed architecture that separates data sources from power grid applications. • Support for data exchange with either one-to-one or publisher/subscriber interfaces. • An authentication and authorization scheme for limiting the access to data between utilities.

  20. A Java commodity grid kit.

    SciTech Connect

    von Laszewski, G.; Foster, I.; Gawor, J.; Lane, P.; Mathematics and Computer Science

    2001-07-01

    In this paper we report on the features of the Java Commodity Grid Kit. The Java CoG Kit provides middleware for accessing Grid functionality from the Java framework. Java CoG Kit middleware is general enough to design a variety of advanced Grid applications with quite different user requirements. Access to the Grid is established via Globus protocols, allowing the Java CoG Kit to communicate also with the C Globus reference implementation. Thus, the Java CoG Kit provides Grid developers with the ability to utilize the Grid, as well as numerous additional libraries and frameworks developed by the Java community to enable network, Internet, enterprise, and peer-to peer computing. A variety of projects have successfully used the client libraries of the Java CoG Kit to access Grids driven by the C Globus software. In this paper we also report on the efforts to develop server side Java CoG Kit components. As part of this research we have implemented a prototype pure Java resource management system that enables one to run Globus jobs on platforms on which a Java virtual machine is supported, including Windows NT machines.

  1. GridOPTICS Software System

    Energy Science and Technology Software Center (ESTSC)

    2014-02-24

    GridOPTICS Software System (GOSS) is a middleware that facilitates creation of new, modular and flexible operational and planning platforms that can meet the challenges of the next generation power grid. GOSS enables Department of Energy, power system utilities, and vendors to build better tools faster. GOSS makes it possible to integrate Future Power Grid Initiative software products/prototypes into existing power grid software systems, including the PNNL PowerNet and EIOC environments. GOSS is designed to allowmore » power grid applications developed for different underlying software platforms installed in different utilities to communicate with ease. This can be done in compliance with existing security and data sharing policies between the utilities. GOSS not only supports one-to-one data transfer between applications, but also publisher/subscriber scheme. To support interoperability requirements of future EMS, GOSS is designed for CIM compliance. In addition to this, it supports authentication and authorization capabilities to protect the system from cyber threats. In summary, the contributions of the GOSS middleware are as follows: • A platform to support future EMS development. • A middleware that promotes interoperability between power grid applications. • A distributed architecture that separates data sources from power grid applications. • Support for data exchange with either one-to-one or publisher/subscriber interfaces. • An authentication and authorization scheme for limiting the access to data between utilities.« less

  2. Grid Visualization Tool

    NASA Technical Reports Server (NTRS)

    Chouinard, Caroline; Fisher, Forest; Estlin, Tara; Gaines, Daniel; Schaffer, Steven

    2005-01-01

    The Grid Visualization Tool (GVT) is a computer program for displaying the path of a mobile robotic explorer (rover) on a terrain map. The GVT reads a map-data file in either portable graymap (PGM) or portable pixmap (PPM) format, representing a gray-scale or color map image, respectively. The GVT also accepts input from path-planning and activity-planning software. From these inputs, the GVT generates a map overlaid with one or more rover path(s), waypoints, locations of targets to be explored, and/or target-status information (indicating success or failure in exploring each target). The display can also indicate different types of paths or path segments, such as the path actually traveled versus a planned path or the path traveled to the present position versus planned future movement along a path. The program provides for updating of the display in real time to facilitate visualization of progress. The size of the display and the map scale can be changed as desired by the user. The GVT was written in the C++ language using the Open Graphics Library (OpenGL) software. It has been compiled for both Sun Solaris and Linux operating systems.

  3. Symbolic Constraint Maintenance Grid

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    Version 3.1 of Symbolic Constraint Maintenance Grid (SCMG) is a software system that provides a general conceptual framework for utilizing pre-existing programming techniques to perform symbolic transformations of data. SCMG also provides a language (and an associated communication method and protocol) for representing constraints on the original non-symbolic data. SCMG provides a facility for exchanging information between numeric and symbolic components without knowing the details of the components themselves. In essence, it integrates symbolic software tools (for diagnosis, prognosis, and planning) with non-artificial-intelligence software. SCMG executes a process of symbolic summarization and monitoring of continuous time series data that are being abstractly represented as symbolic templates of information exchange. This summarization process enables such symbolic- reasoning computing systems as artificial- intelligence planning systems to evaluate the significance and effects of channels of data more efficiently than would otherwise be possible. As a result of the increased efficiency in representation, reasoning software can monitor more channels and is thus able to perform monitoring and control functions more effectively.

  4. National transmission grid study

    SciTech Connect

    Abraham, Spencer

    2003-05-31

    The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE’s Policy Office Electricity Modeling System (POEMS). DOE’s analysis, presented in Section 2, confirms the central role of the nation’s transmission system in lowering costs to consumers through increased trade. More importantly, DOE’s analysis also confirms the results of previous studies, which show that transmission bottlenecks and related transmission system market practices are adding hundreds of millions of dollars to consumers’ electricity bills each year. A more detailed technical overview of the use of POEMS is provided in Appendix A. DOE led an extensive, open, public input process and heard a wide range of comments and recommendations that have all been considered.1 More than 150 participants registered for three public workshops held in Detroit, MI (September 24, 2001); Atlanta, GA (September 26, 2001); and Phoenix, AZ (September 28, 2001).

  5. Buildings-to-Grid Technical Opportunities: From the Grid Perspective

    SciTech Connect

    Kropski, Ben; Pratt, Rob

    2014-03-28

    This paper outlines the nature of the power grid, lists challenges and barriers to the implementation of a transactive energy ecosystem, and provides concept solutions to current technological impediments.

  6. Augmented heat transfer in a triangular duct by using multiple swirling jets

    SciTech Connect

    Hwang, J.J.; Cheng, C.S.

    1999-08-01

    In the modern gas turbine design, the trend is toward high inlet gas temperature (1400--1500 C) for improving thermal efficiency and power density. Here, measurements of detailed heat transfer coefficients on two principal walls of a triangular duct with a swirling flow are undertaken by using a transient liquid crystal technique. The vertex corners of the triangular duct are 45, 45, and 90 deg. The swirl-motioned airflow is induced by an array of tangential jets on the side entries. The effects of flow Reynolds number (8600 {le} Re {le} 21,000) and the jet inlet angle ({alpha} = 75, 45, and 30 deg) are examined. Flow visualization by using smoke injection is conducted for better understanding the complicated flow phenomena in the swirling-flow channel. Results show that the heat transfer for {alpha} = 75 deg is enhanced mainly by the wall jets as well as the impinging jets; while the mechanisms of heat transfer enhancement for {alpha} = 45 and 30 deg could be characterized as the swirling-flow cooling. On the bottom wall, jets at {alpha} = 75 deg produce the best wall-averaged heat transfer due to the strongest wall-jet effect among the three angles ({alpha}) investigated. On the target wall, however, the heat transfer enhancements by swirling flow ({alpha} = 45 and 30 deg) are slightly higher than those by impinging jets ({alpha} = 75 deg). Correlations for wall-averaged Nusselt number for the bottom and target walls of the triangular duct are developed in terms of the flow Reynolds number for different jet inlet angles.

  7. Thermal degradation mechanism of triangular Ag@SiO2 nanoparticles.

    PubMed

    Gangishetty, Mahesh K; Scott, Robert W J; Kelly, Timothy L

    2016-06-14

    Triangular silver nanoparticles are promising materials for light harvesting applications because of their strong plasmon bands; these absorption bands are highly tunable, and can be varied over the entire visible range based on the particle size. A general concern with these materials is that they are unstable at elevated temperatures. When thermally annealed, they suffer from changes to the particle morphology, which in turn affects their optical properties. Because of this stability issue, these materials cannot be used in applications requiring elevated temperatures. In order to address this problem, it is important to first understand the degradation mechanism. Here, we measure the changes in particle morphology, oxidation state, and coordination environment of Ag@SiO2 nanotriangles caused by thermal annealing. UV-vis spectroscopy and TEM reveal that upon annealing the Ag@SiO2 nanotriangles in air, the triangular cores are truncated and smaller nanoparticles are formed. Ag K-edge X-ray absorption spectroscopy (XANES and EXAFS) shows that the small particles consist of Ag(0), and that there is a decrease in the Ag-Ag coordination number with an increase in the annealing temperature. We hypothesize that upon annealing Ag in air, it is first oxidized to AgxO, after which it subsequently decomposes back to well-dispersed Ag(0) nanoparticles. In contrast, when the Ag@SiO2 nanotriangles are annealed in N2, since there is no possibility of oxidation, no small particles are formed. Instead, the triangular core rearranges to form a disc-like shape. PMID:26875498

  8. Geometric Triangular Chiral Hexagon Crystal-Like Complexes Organization in Pathological Tissues Biological Collision Order

    PubMed Central

    Díaz, Jairo A.; Jaramillo, Natalia A.; Murillo, Mauricio F.

    2007-01-01

    The present study describes and documents self-assembly of geometric triangular chiral hexagon crystal like complex organizations (GTCHC) in human pathological tissues.The authors have found this architectural geometric expression at macroscopic and microscopic levels mainly in cancer processes. This study is based essentially on macroscopic and histopathologic analyses of 3000 surgical specimens: 2600 inflammatory lesions and 400 malignant tumours. Geometric complexes identified photographically at macroscopic level were located in the gross surgical specimen, and these areas were carefully dissected. Samples were taken to carry out histologic analysis. Based on the hypothesis of a collision genesis mechanism and because it is difficult to carry out an appropriate methodological observation in biological systems, the authors designed a model base on other dynamic systems to obtain indirect information in which a strong white flash wave light discharge, generated by an electronic device, hits over the lines of electrical conductance structured in helicoidal pattern. In their experimental model, the authors were able to reproduce and to predict polarity, chirality, helicoid geometry, triangular and hexagonal clusters through electromagnetic sequential collisions. They determined that similar events among constituents of extracelular matrix which drive and produce piezoelectric activity are responsible for the genesis of GTCHC complexes in pathological tissues. This research suggests that molecular crystals represented by triangular chiral hexagons derived from a collision-attraction event against collagen type I fibrils emerge at microscopic and macroscopic scales presenting a lateral assembly of each side of hypertrophy helicoid fibers, that represent energy flow in cooperative hierarchically chiral electromagnetic interaction in pathological tissues and arises as a geometry of the equilibrium in perturbed biological systems. Further interdisciplinary studies must

  9. A microcomputer program for energy assessment and aggregation using the triangular probability distribution

    USGS Publications Warehouse

    Crovelli, R.A.; Balay, R.H.

    1991-01-01

    A general risk-analysis method was developed for petroleum-resource assessment and other applications. The triangular probability distribution is used as a model with an analytic aggregation methodology based on probability theory rather than Monte-Carlo simulation. Among the advantages of the analytic method are its computational speed and flexibility, and the saving of time and cost on a microcomputer. The input into the model consists of a set of components (e.g. geologic provinces) and, for each component, three potential resource estimates: minimum, most likely (mode), and maximum. Assuming a triangular probability distribution, the mean, standard deviation, and seven fractiles (F100, F95, F75, F50, F25, F5, and F0) are computed for each component, where for example, the probability of more than F95 is equal to 0.95. The components are aggregated by combining the means, standard deviations, and respective fractiles under three possible siutations (1) perfect positive correlation, (2) complete independence, and (3) any degree of dependence between these two polar situations. A package of computer programs named the TRIAGG system was written in the Turbo Pascal 4.0 language for performing the analytic probabilistic methodology. The system consists of a program for processing triangular probability distribution assessments and aggregations, and a separate aggregation routine for aggregating aggregations. The user's documentation and program diskette of the TRIAGG system are available from USGS Open File Services. TRIAGG requires an IBM-PC/XT/AT compatible microcomputer with 256kbyte of main memory, MS-DOS 3.1 or later, either two diskette drives or a fixed disk, and a 132 column printer. A graphics adapter and color display are optional. ?? 1991.

  10. Partitioning a chordal graph into transitive subgraphs for parallel sparse triangular solution

    SciTech Connect

    Peyton, B.W.; Pothen, A.; Yuan, Xiaoqing

    1992-12-01

    A recent approach for solving sparse triangular systems of equations on massively parallel computers employs a factorization of the triangular coefficient matrix to obtain a representation of its inverse in product form. The number of general communication steps required by this approach is proportional to the number of factors in the factorization. The triangular matrix can be symmetrically permuted to minimize the number of factors over suitable classes of permutations, and thereby the complexity of the parallel algorithm can be minimized. Algorithms for minimizing the number of factors over several classes of permutations have been considered in earlier work. Let F = L+L{sup T} denote the symmetric filled matrix corresponding to a Cholesky factor L, and let G{sub F} denote the adjacency graph of F. In this paper we consider the problem of minirriizing the number of factors over all permutations which preserve the structure of G{sub F}. The graph model of this problem is to partition the vertices G{sub F} into the fewest transitively closed subgraphs over all perfect elimination orderings while satisfying a certain precedence relationship. The solution to this chordal graph partitioning problem can be described by a greedy scheme which eliminates a largest permissible subgraph at each step. Further, the subgraph eliminated at each step can be characterized in terms of lengths of chordless paths in the current elimination graph. This solution relies on several results concerning transitive perfect elimination orderings introduced in this paper. We describe a partitioning algorithm with {Omicron}({vert_bar}V{vert_bar} + {vert_bar}E{vert_bar}) time and space complexity.

  11. Partitioning a chordal graph into transitive subgraphs for parallel sparse triangular solution

    SciTech Connect

    Peyton, B.W. ); Pothen, A. . Dept. of Computer Science); Yuan, Xiaoqing )

    1992-12-01

    A recent approach for solving sparse triangular systems of equations on massively parallel computers employs a factorization of the triangular coefficient matrix to obtain a representation of its inverse in product form. The number of general communication steps required by this approach is proportional to the number of factors in the factorization. The triangular matrix can be symmetrically permuted to minimize the number of factors over suitable classes of permutations, and thereby the complexity of the parallel algorithm can be minimized. Algorithms for minimizing the number of factors over several classes of permutations have been considered in earlier work. Let F = L+L[sup T] denote the symmetric filled matrix corresponding to a Cholesky factor L, and let G[sub F] denote the adjacency graph of F. In this paper we consider the problem of minirriizing the number of factors over all permutations which preserve the structure of G[sub F]. The graph model of this problem is to partition the vertices G[sub F] into the fewest transitively closed subgraphs over all perfect elimination orderings while satisfying a certain precedence relationship. The solution to this chordal graph partitioning problem can be described by a greedy scheme which eliminates a largest permissible subgraph at each step. Further, the subgraph eliminated at each step can be characterized in terms of lengths of chordless paths in the current elimination graph. This solution relies on several results concerning transitive perfect elimination orderings introduced in this paper. We describe a partitioning algorithm with [Omicron]([vert bar]V[vert bar] + [vert bar]E[vert bar]) time and space complexity.

  12. Variational Monte Carlo study of chiral spin liquid in quantum antiferromagnet on the triangular lattice

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Jun; Gong, Shou-Shu; Sheng, D. N.

    2016-08-01

    By using Gutzwiller projected fermionic wave functions and variational Monte Carlo technique, we study the spin-1 /2 Heisenberg model with the first-neighbor (J1), second-neighbor (J2), and additional scalar chiral interaction JχSi.(Sj×Sk) on the triangular lattice. In the nonmagnetic phase of the J1-J2 triangular model with 0.08 ≲J2/J1≲0.16 , recent density-matrix renormalization group (DMRG) studies [Zhu and White, Phys. Rev. B 92, 041105(R) (2015), 10.1103/PhysRevB.92.041105 and Hu, Gong, Zhu, and Sheng, Phys. Rev. B 92, 140403(R) (2015), 10.1103/PhysRevB.92.140403] find a possible gapped spin liquid with the signal of a competition between a chiral and a Z2 spin liquid. Motivated by the DMRG results, we consider the chiral interaction JχSi.(Sj×Sk) as a perturbation for this nonmagnetic phase. We find that with growing Jχ, the gapless U(1) Dirac spin liquid, which has the best variational energy for Jχ=0 , exhibits the energy instability towards a gapped spin liquid with nontrivial magnetic fluxes and nonzero chiral order. We calculate topological Chern number and ground-state degeneracy, both of which identify this flux state as the chiral spin liquid with fractionalized Chern number C =1 /2 and twofold topological degeneracy. Our results indicate a positive direction to stabilize a chiral spin liquid near the nonmagnetic phase of the J1-J2 triangular model.

  13. A quantum fidelity study of the anisotropic next-nearest-neighbour triangular lattice Heisenberg model

    NASA Astrophysics Data System (ADS)

    Thesberg, Mischa; Sørensen, Erik S.

    2014-10-01

    Ground- and excited-state quantum fidelities in combination with generalized quantum fidelity susceptibilites, obtained from exact diagonalizations, are used to explore the phase diagram of the anisotropic next-nearest-neighbour triangular Heisenberg model. Specifically, the J‧ - J2 plane of this model, which connects the J1 - J2 chain and the anisotropic triangular lattice Heisenberg model, is explored using these quantities. Through the use of a quantum fidelity associated with the first excited-state, in addition to the conventional ground-state fidelity, the BKT-type transition and Majumdar-Ghosh point of the J1 - J2 chain (J‧ = 0) are found to extend into the J‧ - J2 plane and connect with points on the J2 = 0 axis thereby forming bounded regions in the phase diagram. These bounded regions are then explored through the generalized quantum fidelity susceptibilities χρ, χ120\\circ , χD and χCAF which are associated with the spin stiffness, 120° spiral order parameter, dimer order parameter and collinear antiferromagnetic order parameter respectively. These quantities are believed to be extremely sensitive to the underlying phase and are thus well suited for finite-size studies. Analysis of the fidelity susceptibilities suggests that the J‧, J2 ≪ J phase of the anisotropic triangular model is either a collinear antiferromagnet or possibly a gapless disordered phase that is directly connected to the Luttinger phase of the J1 - J2 chain. Furthermore, the outer region is dominated by incommensurate spiral physics as well as dimer order.

  14. Peak axial-velocity decay with multi-element rectangular and triangular nozzles

    NASA Technical Reports Server (NTRS)

    Groesbeck, D. E.; Vonglahn, U. H.; Huff, R. G.

    1972-01-01

    The aircraft noise created by the impingement of engine exhaust jet of STOL aircraft with externally blown flaps is discussed. It was determined that the jet-flap interaction noise can be lowered by reducing the impinging velocity of the jet. The reduction must occur at a specific distance from the flap to be effective. The peak axial-velocity decay obtained with rectangular and triangular single element mixer nozzles is presented. Equations are developed for estimating the peak axial velocity decay curves for a wide range of nozzle configurations.

  15. Hofstadter problem on the honeycomb and triangular lattices: Bethe ansatz solution

    NASA Astrophysics Data System (ADS)

    Kohmoto, M.; Sedrakyan, A.

    2006-06-01

    We consider Bloch electrons on the honeycomb lattice under a uniform magnetic field with 2πp/q flux per cell. It is shown that the problem factorizes to two triangular lattices. Treating magnetic translations as a Heisenberg-Weyl group and by the use of its irreducible representation on the space of theta functions, we find a nested set of Bethe equations, which determine the eigenstates and energy spectrum. The Bethe equations have simple form which allows us to consider them further in the limit p,q→∞ by the technique of thermodynamic Bethe ansatz and analyze the Hofstadter problem for the irrational flux.

  16. Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model

    NASA Astrophysics Data System (ADS)

    Cirilo António, N.; Manojlović, N.; Salom, I.

    2014-12-01

    We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.

  17. Size dependence of melting of GaN nanowires with triangular cross sections

    SciTech Connect

    Wang, Zhiguo; Zu, Xiaotao; Gao, Fei; Weber, William J.

    2007-02-15

    Molecular dynamics simulations have been used to study the melting of GaN nanowires with triangular cross-sections. The curve of the potential energy, along with the atomic configuration is used to monitor the phase transition. The thermal stability of GaN nanowires is dependent on the size of the nanowires. The melting temperature of the GaN nanowires increases with the increasing of area cross-section of the nanowires to a saturation value. An interesting result is that of the nanowires start to melt from the edges, then the surface, and extends to the inner regions of nanowires as temperature increases.

  18. Topological Aspects of Symmetry Breaking in Triangular-Lattice Ising Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Smerald, Andrew; Korshunov, Sergey; Mila, Frédéric

    2016-05-01

    Using a specially designed Monte Carlo algorithm with directed loops, we investigate the triangular lattice Ising antiferromagnet with coupling beyond the nearest neighbors. We show that the first-order transition from the stripe state to the paramagnet can be split, giving rise to an intermediate nematic phase in which algebraic correlations coexist with a broken symmetry. Furthermore, we demonstrate the emergence of several properties of a more topological nature such as fractional edge excitations in the stripe state, the proliferation of double domain walls in the nematic phase, and the Kasteleyn transition between them. Experimental implications are briefly discussed.

  19. Global Stability and the Magnetic Phase Diagram of a Geometrically-Frustrated Triangular Lattice Antiferromagnet

    SciTech Connect

    Fishman, Randy Scott; Haraldsen, Jason T

    2011-01-01

    While a magnetic phase may be both locally stable and globally unstable, global stability always implies local stability. The distinction between local and global stability is studied on a geometrically-frustrated triangular lattice antiferromagnet with easy axis, single-ion anisotropy D along the z axis. Whereas the critical value Dloc c for local stability may be discontinuous across a phase boundary, the critical value Dglo c Dloc c for global stability must be continuous. We demonstrate this behavior across the phase boundary between collinear 3 and 4 sublattice phases that are stable for large D.

  20. Arthroscopic Trans-osseous Suture of Peripheral Triangular Fibrocartilage Complex Tear.

    PubMed

    Jegal, Midum; Heo, Kang; Kim, Jong Pil

    2016-10-01

    The importance of foveal repair of the triangular fibrocartilage complex (TFCC) on stability of the distal radioulnar joint (DRUJ) has been emphasized with increasing knowledge of the anatomy and biomechanics of the TFCC and DRUJ. Although both open and arthroscopic techniques have been described for improving DRUJ stability, there has been a marked evolution of arthroscopic TFCC repair technique with successful clinical outcome. Recently, an arthroscopic trans-osseous technique has been described to repair foveal tears of the TFCC. The advantage of the technique is that it allows for anatomical repair of both the superficial and deep layers. This article describes the details of this novel technique. PMID:27595945

  1. Exact results for the site-dilute antiferromagnetic Ising model on finite triangular lattices

    NASA Astrophysics Data System (ADS)

    Farach, H. A.; Creswick, R. J.; Poole, C. P., Jr.

    1988-04-01

    Exact analytical and numerical results for the site-diluted antiferromagnetic Ising model on the triangular lattice (AFIT) are presented. For infinitesimal dilution the change in the free energy of the system is related to the distribution of local fields, and it is shown that for a frustrated system such as the AFIT, dilution lowers the entropy per spin. For lattices of finite size and dilution the transfer matrix for the partition function is evaluated numerically. The entropy per spin shows a marked minimum near a concentration of spins x=0.70, in some disagreement with earlier transfer-matrix results.

  2. Z2-vortex lattice in the ground state of the triangular Kitaev-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Daghofer, Maria; Rousochatzakis, Ioannis; Roessler, Ulrich K.; van den Brink, Jeroen

    2013-03-01

    Investigating the classical Kitaev-Heisenberg Hamiltonian on a triangular lattice, we establish the presence of an incommensurate non-coplanar magnetic phase, which is identified as a lattice of Z2 vortices. The vortices, topological point defects in the SO(3) order parameter of the nearby Heisenberg antiferromagnet, are not thermally excited but due to the spin-orbit coupling and arise at temperature T --> 0 . This Z2-vortex lattice is stable in a parameter regime relevant to iridates. We show that in the other, strongly anisotropic, limit a robust nematic phase emerges. Sponsored by the DFG (Emmy-Noether program).

  3. Phase Diagram of a Geometrically-Frustrated Triangular-Lattice Antiferromagnet in a Magnetic Field

    SciTech Connect

    Fishman, Randy Scott

    2011-01-01

    The magnetic phase diagram of a geometrically-frustrated triangular-lattice antiferromagnet is evaluated as a function of external magnetic field and anisotropy using a trial spin state built from harmonics of a fundamental ordering wavevector. A non-collinear incommensurate state, observed to be chiral and ferroelectric in CuFeO2, is sandwiched between a collinear state with 4 sublattices (SLs) and a 5-SL state. Chiral and non-collinear 5-SL states are predicted to appear at fields above and below the collinear 5-SL states.

  4. Damping in Pitch and Roll of Triangular Wings at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Brown, Clinton E; Adams, Mac C

    1948-01-01

    The expressions for the damping derivatives in pitch and roll of triangular wings are derived by means of the linearized theory. In the method used, the wing is represented by an unknown distribution of doublets. An integral equation containing the unknown distribution is set up and solved by analogy with known incompressible flow relations. It is pointed out that the results may be used to obtain damping coefficients of a limited series of sweptback wings, the most interesting of which are the so-called "arrow wings."

  5. Numerical simulation of polarization beam splitter with triangular lattice of multi-walled carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Wu, Xingxing; Yun, Maojin; Wang, Mei; Liu, Chao; Li, Kai; Qin, Xiheng; Kong, Weijin; Dong, Lifeng

    2015-12-01

    A kind of polarization beam splitter with triangular lattice of multi-walled carbon nanotube arrays is designed and simulated. In the employed structure transverse-electric (TE) light is confined in the line defect with photonic band gap effect, while transverse-magnetic (TM) light is guided through it with extremely low diffraction. The performance of the designed polarization beam splitter is evaluated by utilizing optical properties of multi-walled carbon nanotubes, finite element modeling of wave propagation and transmission through periodic arrays. Simulation results indicate that the designed polarization beam splitter has low loss and less cross talk, and thereby may have practical applications in the integrated optical field.

  6. Ferromagnetism and d+id superconductivity in 1/2 doped correlated systems on triangular lattice

    NASA Astrophysics Data System (ADS)

    Ye, Bing; Mesaros, Andrej; Ran, Ying

    We investigate the quantum phase diagrams of t-J model on triangular lattice at 1/2 doping with various lattice sizes by using a combination of density matrix renormalization group (DMRG), variational Monte Carlo and quantum field theories. To sharply distinguish different phases, we calculated the symmetry quantum numbers of the ground state wave functions, and the results are further confirmed by looking into correlation functions. Our results show there is a first order phase transition from ferromagnetism to d+id superconductor, with the transition taking place at J / t = 0 . 4 +/- 0 . 2 .

  7. LIMS2 mutations are associated with a novel muscular dystrophy, severe cardiomyopathy and triangular tongues.

    PubMed

    Chardon, Jodi Warman; Smith, A C; Woulfe, J; Pena, E; Rakhra, K; Dennie, C; Beaulieu, C; Huang, Lijia; Schwartzentruber, J; Hawkins, C; Harms, M B; Dojeiji, S; Zhang, M; Majewski, J; Bulman, D E; Boycott, K M; Dyment, D A

    2015-12-01

    Limb girdle muscular dystrophy (LGMD) is a heterogeneous group of genetic disorders leading to progressive muscle degeneration and often associated with cardiac complications. We present two adult siblings with childhood-onset of weakness progressing to a severe quadriparesis with the additional features of triangular tongues and biventricular cardiac dysfunction. Whole exome sequencing identified compound heterozygous missense mutations that are predicted to be pathogenic in LIMS2. Biopsy of skeletal muscle demonstrated disrupted immunostaining of LIMS2. This is the first report of mutations in LIMS2 and resulting disruption of the integrin linked kinase (ILK)-LIMS-parvin complex associated with LGMD. PMID:25589244

  8. Bound magneto-polaron in triangular quantum dot qubit under an electric field

    NASA Astrophysics Data System (ADS)

    Fotue, A. J.; Issofa, N.; Tiotsop, M.; Kenfack, S. C.; Tabue Djemmo, M. P.; Wirngo, A. V.; Fotsin, H.; Fai, L. C.

    2016-02-01

    In this paper, we examine the time evolution of the quantum mechanical state of a magnetopolaron using the Pekar type variational method on the electric-LO-phonon strong coupling in a triangular quantum dot with Coulomb impurity. We obtain the Eigen energies and the Eigen functions of the ground state and the first excited state, respectively. This system in a quantum dot is treated as a two-level quantum system qubit and numerical calculations are done. The Shannon entropy and the expressions relating the period of oscillation and the electron-LO-phonon coupling strength, the Coulomb binding parameter and the polar angle are derived.

  9. Comparable studies of magnetic properties of Ising spins-5/2 and 3/2 systems on decorated square and triangular lattices

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Jabar, A.; Benyoussef, A.; Hamedoun, M.

    2016-07-01

    In this work, we have studied and compared the magnetic properties of Ising spins-5/2 and 3/2 systems on decorated square and triangular lattices using the Monte Carlo simulations. The transition temperature of the two-dimensional decorated square and triangular lattices has been obtained. The effect of the exchange interactions and crystal field on the magnetization is investigated. The magnetic coercive field and saturation magnetization of the two-dimensional decorated square and triangular lattices have been obtained.

  10. The effect of visible-light intensity on shape evolution and antibacterial properties of triangular silver nanostructures

    NASA Astrophysics Data System (ADS)

    Ashkarran, Ali Akbar

    2016-08-01

    Triangular silver nanostructures represent a novel class of nanomaterials with tunable surface plasmon resonance (SPR). By controlling the size and geometry of these structures, their SPR peaks could be tuned from the visible to the near-infrared region with numerous applications in optoelectronic, sensors, nanomedicine and specially cancer diagnosis and treatment. In this study, triangular silver nanostructures were prepared by photoinducing of spherical silver nanoparticles (NPs) with an average diameter of 10 nm. Transmission electron microscopy (TEM) and ultra violet visible (UV-Vis) spectroscopy were used to characterize silver triangles. We have found that uniform triangular silver nanostructures can be obtained using an appropriate visible-light illumination to the primary spherical silver NPs. TEM images indicated that formation of triangular structures depends on the intensity of light source. The effect of intensity of visible-light source on the geometry and size distribution of silver triangles was investigated. It was found that formation of triangular structures in addition to their size and shape evolution strongly depends on the intensity of the light illumination. Furthermore, a comparative study on the antibacterial activities of silver triangles of different sizes reveals that silver triangles experience a size-dependent interaction with the gram-negative Escherichia coli bacteria.

  11. Smart Wire Grid: Resisting Expectations

    SciTech Connect

    Ramsay, Stewart; Lowe, DeJim

    2014-03-03

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  12. Smart Wire Grid: Resisting Expectations

    ScienceCinema

    Ramsay, Stewart; Lowe, DeJim

    2014-04-09

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  13. Parallel Power Grid Simulation Toolkit

    SciTech Connect

    Smith, Steve; Kelley, Brian; Banks, Lawrence; Top, Philip; Woodward, Carol

    2015-09-14

    ParGrid is a 'wrapper' that integrates a coupled Power Grid Simulation toolkit consisting of a library to manage the synchronization and communication of independent simulations. The included library code in ParGid, named FSKIT, is intended to support the coupling multiple continuous and discrete even parallel simulations. The code is designed using modern object oriented C++ methods utilizing C++11 and current Boost libraries to ensure compatibility with multiple operating systems and environments.

  14. Reinventing Batteries for Grid Storage

    ScienceCinema

    Banerjee, Sanjoy

    2013-05-29

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  15. Multi baseline Grid Software Correlator

    NASA Astrophysics Data System (ADS)

    Moritaka, Kimura; Nakajima, Junichi; Kondo, Tetsuro

    Software VLBI correlation is regarded as a solution for next generation VLBI. With a flexibility of the software correlation programming, appropriate scientific correlations by scientists are possible as well as the post processing. As the first experiment to handle Gbps VLBI data, multi baseline Grid correlator have been developing at CRL. The performance of software correlation adopted multi CPUs, SIMD architectures and Grid computing technology has nearly reached hardware correlator performance.

  16. Reinventing Batteries for Grid Storage

    SciTech Connect

    Banerjee, Sanjoy

    2012-01-01

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  17. A new 3D grid method for accurate electronic structure calculation of polyatomic molecules: The Voronoi-cell finite difference method

    NASA Astrophysics Data System (ADS)

    Son, Sang-Kil; Chu, Shih-I.

    2008-05-01

    We introduce a new computational method on unstructured grids in the three-dimensional (3D) spaces to investigate the electronic structure of polyatomic molecules. The Voronoi-cell finite difference (VFD) method realizes a simple discrete Laplacian operator on unstructured grids based on Voronoi cells and their natural neighbors. The feature of unstructured grids enables us to choose intuitive pictures for an optimal molecular grid system. The new VFD method achieves highly adaptability by the Voronoi-cell diagram and yet simplicity by the finite difference scheme. It has no limitation in local refinement of grids in the vicinity of nuclear positions and provides an explicit expression at each grid without any integration. This method augmented by unstructured molecular grids is suitable for solving the Schr"odinger equation with the realistic 3D Coulomb potentials regardless of symmetry of molecules. For numerical examples, we test accuracies for electronic structures of one-electron polyatomic systems: linear H2^+ and triangular H3^++. We also extend VFD to the density functional theory (DFT) for many-electron polyatomic molecules.

  18. AstroGrid-D: Grid technology for astronomical science

    NASA Astrophysics Data System (ADS)

    Enke, Harry; Steinmetz, Matthias; Adorf, Hans-Martin; Beck-Ratzka, Alexander; Breitling, Frank; Brüsemeister, Thomas; Carlson, Arthur; Ensslin, Torsten; Högqvist, Mikael; Nickelt, Iliya; Radke, Thomas; Reinefeld, Alexander; Reiser, Angelika; Scholl, Tobias; Spurzem, Rainer; Steinacker, Jürgen; Voges, Wolfgang; Wambsganß, Joachim; White, Steve

    2011-02-01

    We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites (Section 2.1), and advanced applications for specific scientific purposes (Section 2.2), such as a connection to robotic telescopes (Section 2.2.3). We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.

  19. Deflection, Frequency, and Stress Characteristics of Rectangular, Triangular, and Step Profile Microcantilevers for Biosensors

    PubMed Central

    Ansari, Mohd Zahid; Cho, Chongdu

    2009-01-01

    This study presents the deflection, resonant frequency and stress results of rectangular, triangular, and step profile microcantilevers subject to surface stress. These cantilevers can be used as the sensing element in microcantilever biosensors. To increase the overall sensitivity of microcantilever biosensors, both the deflection and the resonant frequency of the cantilever should be increased. The effect of the cantilever profile change and the cantilever cross-section shape change is first investigated separately and then together. A finite element code ANSYS Multiphysics is used and solid finite elements cantilever models are solved. A surface stress of 0.05 N/m was applied to the top surface of the cantilevers. The cantilevers are made of silicon with elastic modulus 130 GPa and Poisson’s ratio 0.28. To show the conformity of this study, the numerical results are compared against their analytical ones. Results show that triangular and step cantilevers have better deflection and frequency characteristics than rectangular ones. PMID:22454571

  20. Elliptic and triangular flow of heavy flavor in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Nahrgang, Marlene; Aichelin, Jörg; Bass, Steffen; Gossiaux, Pol Bernard; Werner, Klaus

    2015-01-01

    We investigate the elliptic and the triangular flow of heavy mesons in ultrarelativistic heavy-ion collisions at the BNL Relativistic Heavy-Ion Collider and the CERN Large Hadron Collider (LHC) . The dynamics of heavy quarks is coupled to the locally thermalized and fluid dynamically evolving quark-gluon plasma. The elliptic flow of D mesons and the centrality dependence measured at the LHC is well reproduced for purely collisional and bremsstrahlung interactions. Due to the event-by-event fluctuating initial conditions from the EPOS2 model, the D meson triangular flow is predicted to be nonzero at √{s }=200 GeV and √{s }=2.76 TeV. We study the centrality dependence and quantify the contributions stemming from flow of the light bulk event and the hadronization process. The flow coefficients as responses to the initial eccentricities behave differently for heavy mesons than for light hadrons due to their inertia. Higher-order flow coefficients of heavy flavor become important in order to quantify the degree of thermalization.