Sample records for equivalent material sensitivity

  1. [The effect of composition and structure of radiological equivalent materials on radiological equivalent].

    PubMed

    Wang, Y; Lin, D; Fu, T

    1997-03-01

    Morphology of inorganic material powders before and after being treated by ultrafine crush was observed by transformite electron microscope. The length and diameter of granules were measured. Polymers inorganic material powders before and after being treated by ultrafine crush were used for preparing radiological equivalent materials. Blending compatibility of inorganic meterials with polymer materials was observed by scanning electron microscope. CT values of tissue equivalent materials were measured by X-ray CT. Distribution of inorganic materials was examined. The compactness of materials was determined by the water absorbed method. The elastic module of materials was measured by laser speckle interferementry method. The results showed that the inorganic material powders treated by the ultrafine crush blent well with polymer and the distribution of these powders in the polymer was homogeneous. The equivalent errors of linear attenuation coefficients and CT values of equivalent materials were small. Their elastic modules increased one order of magnitude from 6.028 x 10(2) kg/cm2 to 9.753 x 10(3) kg/cm2. In addition, the rod inorganic material powders having rod granule blent easily with polymer. The present study provides a theoretical guidance and experimental basis for the design and synthesis of radiological equivalent materials.

  2. MUSCLE EQUIVALENT MATERIAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawashima, K.; Takaku, Y.; Inada, T.

    1961-01-01

    A tissue-equivalent material was constructed from the following components: polyethylene (CH/sub 2/)/sub n/, 71.4% (by weight), NaNO/sub 3/ 21.3%, Al/sub 2/O/sub 3/ 5.5%, and TiC/sub 2/ 1.8%. The attenuation coefficients of this solid compound, Mix. p in x or gamma rays (40kev --1.25 Mev), were shown to be equal to those of a section of pork loin (m. longissimus dorsi). Thus, Mix. p is concluded to be good phantom material for depth dose measuremeat and suitable material for walls of ionizatlon chambers. (Abstr. Japan Med., 2: No. 3, March 1962)

  3. Factorizing the motion sensitivity function into equivalent input noise and calculation efficiency.

    PubMed

    Allard, Rémy; Arleo, Angelo

    2017-01-01

    The photopic motion sensitivity function of the energy-based motion system is band-pass peaking around 8 Hz. Using an external noise paradigm to factorize the sensitivity into equivalent input noise and calculation efficiency, the present study investigated if the variation in photopic motion sensitivity as a function of the temporal frequency is due to a variation of equivalent input noise (e.g., early temporal filtering) or calculation efficiency (ability to select and integrate motion). For various temporal frequencies, contrast thresholds for a direction discrimination task were measured in presence and absence of noise. Up to 15 Hz, the sensitivity variation was mainly due to a variation of equivalent input noise and little variation in calculation efficiency was observed. The sensitivity fall-off at very high temporal frequencies (from 15 to 30 Hz) was due to a combination of a drop of calculation efficiency and a rise of equivalent input noise. A control experiment in which an artificial temporal integration was applied to the stimulus showed that an early temporal filter (generally assumed to affect equivalent input noise, not calculation efficiency) could impair both the calculation efficiency and equivalent input noise at very high temporal frequencies. We conclude that at the photopic luminance intensity tested, the variation of motion sensitivity as a function of the temporal frequency was mainly due to early temporal filtering, not to the ability to select and integrate motion. More specifically, we conclude that photopic motion sensitivity at high temporal frequencies is limited by internal noise occurring after the transduction process (i.e., neural noise), not by quantal noise resulting from the probabilistic absorption of photons by the photoreceptors as previously suggested.

  4. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    NASA Astrophysics Data System (ADS)

    Bero, M. A.; Abukassem, I.

    2009-05-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  5. Explosive materials equivalency, test methods and evaluation

    NASA Technical Reports Server (NTRS)

    Koger, D. M.; Mcintyre, F. L.

    1980-01-01

    Attention is given to concepts of explosive equivalency of energetic materials based on specific airblast parameters. A description is provided of a wide bandwidth high accuracy instrumentation system which has been used extensively in obtaining pressure time profiles of energetic materials. The object of the considered test method is to determine the maximum output from the detonation of explosive materials in terms of airblast overpressure and positive impulse. The measured pressure and impulse values are compared with known characteristics of hemispherical TNT data to determine the equivalency of the test material in relation to TNT. An investigation shows that meaningful comparisons between various explosives and a standard reference material such as TNT should be based upon the same parameters. The tests should be conducted under the same conditions.

  6. Equivalent-Continuum Modeling of Nano-Structured Materials

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2001-01-01

    A method has been developed for modeling structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with an equivalent-continuum model. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As an important example with direct application to the development and characterization of single-walled carbon nanotubes, the model has been applied to determine the effective continuum geometry of a graphene sheet. A representative volume element of the equivalent-continuum model has been developed with an effective thickness. This effective thickness has been shown to be similar to, but slightly smaller than, the interatomic spacing of graphite.

  7. Water-equivalent fiber radiation dosimeter with two scintillating materials

    PubMed Central

    Qin, Zhuang; Hu, Yaosheng; Ma, Yu; Lin, Wei; Luo, Xianping; Zhao, Wenhui; Sun, Weimin; Zhang, Daxin; Chen, Ziyin; Wang, Boran; Lewis, Elfed

    2016-01-01

    An inorganic scintillating material plastic optical fiber (POF) dosimeter for measuring ionizing radiation during radiotherapy applications is reported. It is necessary that an ideal dosimeter exhibits many desirable qualities, including water equivalence, energy independence, reproducibility, dose linearity. There has been much recent research concerning inorganic dosimeters. However, little reference has been made to date of the depth-dose characteristics of dosimeter materials. In the case of inorganic scintillating materials, they are predominantly non water-equivalent, with their effective atomic weight (Zeff) being typically much greater than that of water. This has been a barrier in preventing inorganic scintillating material dosimeter from being used in actual clinical applications. In this paper, we propose a parallel-paired fiber light guide structure to solve this problem. Two different inorganic scintillating materials are embedded separately in the parallel-paired fiber. It is shown that the information of water depth and absorbed dose at the point of measurement can be extracted by utilizing their different depth-dose properties. PMID:28018715

  8. Wave propagation in equivalent continuums representing truss lattice materials

    DOE PAGES

    Messner, Mark C.; Barham, Matthew I.; Kumar, Mukul; ...

    2015-07-29

    Stiffness scales linearly with density in stretch-dominated lattice meta-materials offering the possibility of very light yet very stiff structures. Current additive manufacturing techniques can assemble structures from lattice materials, but the design of such structures will require accurate, efficient simulation methods. Equivalent continuum models have several advantages over discrete truss models of stretch dominated lattices, including computational efficiency and ease of model construction. However, the development an equivalent model suitable for representing the dynamic response of a periodic truss in the small deformation regime is complicated by microinertial effects. This study derives a dynamic equivalent continuum model for periodic trussmore » structures suitable for representing long-wavelength wave propagation and verifies it against the full Bloch wave theory and detailed finite element simulations. The model must incorporate microinertial effects to accurately reproduce long wavelength characteristics of the response such as anisotropic elastic soundspeeds. Finally, the formulation presented here also improves upon previous work by preserving equilibrium at truss joints for simple lattices and by improving numerical stability by eliminating vertices in the effective yield surface.« less

  9. High precision test of the equivalence principle

    NASA Astrophysics Data System (ADS)

    Schlamminger, Stephan; Wagner, Todd; Choi, Ki-Young; Gundlach, Jens; Adelberger, Eric

    2007-05-01

    The equivalence principle is the underlying foundation of General Relativity. Many modern quantum theories of gravity predict violations of the equivalence principle. We are using a rotating torsion balance to search for a new equivalence principle violating, long range interaction. A sensitive torsion balance is mounted on a turntable rotating with constant angular velocity. On the torsion pendulum beryllium and titanium test bodies are installed in a composition dipole configuration. A violation of the equivalence principle would yield to a differential acceleration of the two materials towards a source mass. I will present measurements with a differential acceleration sensitivity of 3x10-15;m/s^2. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NWS07.B3.5

  10. Equivalent Electromagnetic Constants for Microwave Application to Composite Materials for the Multi-Scale Problem

    PubMed Central

    Fujisaki, Keisuke; Ikeda, Tomoyuki

    2013-01-01

    To connect different scale models in the multi-scale problem of microwave use, equivalent material constants were researched numerically by a three-dimensional electromagnetic field, taking into account eddy current and displacement current. A volume averaged method and a standing wave method were used to introduce the equivalent material constants; water particles and aluminum particles are used as composite materials. Consumed electrical power is used for the evaluation. Water particles have the same equivalent material constants for both methods; the same electrical power is obtained for both the precise model (micro-model) and the homogeneous model (macro-model). However, aluminum particles have dissimilar equivalent material constants for both methods; different electric power is obtained for both models. The varying electromagnetic phenomena are derived from the expression of eddy current. For small electrical conductivity such as water, the macro-current which flows in the macro-model and the micro-current which flows in the micro-model express the same electromagnetic phenomena. However, for large electrical conductivity such as aluminum, the macro-current and micro-current express different electromagnetic phenomena. The eddy current which is observed in the micro-model is not expressed by the macro-model. Therefore, the equivalent material constant derived from the volume averaged method and the standing wave method is applicable to water with a small electrical conductivity, although not applicable to aluminum with a large electrical conductivity. PMID:28788395

  11. Ignition Delay of Combustible Materials in Normoxic Equivalent Environments

    NASA Technical Reports Server (NTRS)

    McAllister, Sara; Fernandez-Pello, Carlos; Ruff, Gary; Urban, David

    2009-01-01

    Material flammability is an important factor in determining the pressure and composition (fraction of oxygen and nitrogen) of the atmosphere in the habitable volume of exploration vehicles and habitats. The method chosen in this work to quantify the flammability of a material is by its ease of ignition. The ignition delay time was defined as the time it takes a combustible material to ignite after it has been exposed to an external heat flux. Previous work in the Forced Ignition and Spread Test (FIST) apparatus has shown that the ignition delay in the currently proposed space exploration atmosphere (approximately 58.6 kPa and32% oxygen concentration) is reduced by 27% compared to the standard atmosphere used in the Space Shuttle and Space Station. In order to determine whether there is a safer environment in terms of material flammability, a series of piloted ignition delay tests using polymethylmethacrylate (PMMA) was conducted in the FIST apparatus to extend the work over a range of possible exploration atmospheres. The exploration atmospheres considered were the normoxic equivalents, i.e. reduced pressure conditions with a constant partial pressure of oxygen. The ignition delay time was seen to decrease as the pressure was reduced along the normoxic curve. The minimum ignition delay observed in the normoxic equivalent environments was nearly 30% lower than in standard atmospheric conditions. The ignition delay in the proposed exploration atmosphere is only slightly larger than this minimum. Interms of material flammability, normoxic environments with a higher pressure relative to the proposed pressure would be desired.

  12. Accuracy of the domain method for the material derivative approach to shape design sensitivities

    NASA Technical Reports Server (NTRS)

    Yang, R. J.; Botkin, M. E.

    1987-01-01

    Numerical accuracy for the boundary and domain methods of the material derivative approach to shape design sensitivities is investigated through the use of mesh refinement. The results show that the domain method is generally more accurate than the boundary method, using the finite element technique. It is also shown that the domain method is equivalent, under certain assumptions, to the implicit differentiation approach not only theoretically but also numerically.

  13. An epidermal equivalent assay for identification and ranking potency of contact sensitizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Susan, E-mail: S.Gibbs@VUMC.nl; Corsini, Emanuela; Spiekstra, Sander W.

    2013-10-15

    The purpose of this study was to explore the possibility of combining the epidermal equivalent (EE) potency assay with the assay which assesses release of interleukin-18 (IL-18) to provide a single test for identification and classification of skin sensitizing chemicals, including chemicals of low water solubility or stability. A protocol was developed using different 3D-epidermal models including in house VUMC model, epiCS® (previously EST1000™), MatTek EpiDerm™ and SkinEthic™ RHE and also the impact of different vehicles (acetone:olive oil 4:1, 1% DMSO, ethanol, water) was investigated. Following topical exposure for 24 h to 17 contact allergens and 13 non-sensitizers a robustmore » increase in IL-18 release was observed only after exposure to contact allergens. A putative prediction model is proposed from data obtained from two laboratories yielding 95% accuracy. Correlating the in vitro EE sensitizer potency data, which assesses the chemical concentration which results in 50% cytotoxicity (EE-EC{sub 50}) with human and animal data showed a superior correlation with human DSA{sub 05} (μg/cm{sup 2}) data (Spearman r = 0.8500; P value (two-tailed) = 0.0061) compared to LLNA data (Spearman r = 0.5968; P value (two-tailed) = 0.0542). DSA{sub 05} = induction dose per skin area that produces a positive response in 5% of the tested population Also a good correlation was observed for release of IL-18 (SI-2) into culture supernatants with human DSA{sub 05} data (Spearman r = 0.8333; P value (two-tailed) = 0.0154). This easily transferable human in vitro assay appears to be very promising, but additional testing of a larger chemical set with the different EE models is required to fully evaluate the utility of this assay and to establish a definitive prediction model. - Highlights: • A potential epidermal equivalent assay to label and classify sensitizers • Il-18 release distinguishes sensitizers from non sensitizers • IL-18 release can rank sensitizer

  14. Energy absorption buildup factors, exposure buildup factors and Kerma for optically stimulated luminescence materials and their tissue equivalence for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Singh, Vishwanath P.; Badiger, N. M.

    2014-11-01

    Optically stimulated luminescence (OSL) materials are sensitive dosimetric materials used for precise and accurate dose measurement for low-energy ionizing radiation. Low dose measurement capability with improved sensitivity makes these dosimeters very useful for diagnostic imaging, personnel monitoring and environmental radiation dosimetry. Gamma ray energy absorption buildup factors and exposure build factors were computed for OSL materials using the five-parameter Geometric Progression (G-P) fitting method in the energy range 0.015-15 MeV for penetration depths up to 40 mean free path. The computed energy absorption buildup factor and exposure buildup factor values were studied as a function of penetration depth and incident photon energy. Effective atomic numbers and Kerma relative to air of the selected OSL materials and tissue equivalence were computed and compared with that of water, PMMA and ICRU standard tissues. The buildup factors and kerma relative to air were found dependent upon effective atomic numbers. Buildup factors determined in the present work should be useful in radiation dosimetry, medical diagnostics and therapy, space dosimetry, accident dosimetry and personnel monitoring.

  15. Determination of noise equivalent reflectance for a multispectral scanner: A scanner sensitivity study

    NASA Technical Reports Server (NTRS)

    Gibbons, D. E.; Richard, R. R.

    1979-01-01

    The methods used to calculate the sensitivity parameter noise equivalent reflectance of a remote-sensing scanner are explored, and the results are compared with values measured over calibrated test sites. Data were acquired on four occasions covering a span of 4 years and providing various atmospheric conditions. One of the calculated values was based on assumed atmospheric conditions, whereas two others were based on atmospheric models. Results indicate that the assumed atmospheric conditions provide useful answers adequate for many purposes. A nomograph was developed to indicate sensitivity variations due to geographic location, time of day, and season.

  16. Material and morphology parameter sensitivity analysis in particulate composite materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyu; Oskay, Caglar

    2017-12-01

    This manuscript presents a novel parameter sensitivity analysis framework for damage and failure modeling of particulate composite materials subjected to dynamic loading. The proposed framework employs global sensitivity analysis to study the variance in the failure response as a function of model parameters. In view of the computational complexity of performing thousands of detailed microstructural simulations to characterize sensitivities, Gaussian process (GP) surrogate modeling is incorporated into the framework. In order to capture the discontinuity in response surfaces, the GP models are integrated with a support vector machine classification algorithm that identifies the discontinuities within response surfaces. The proposed framework is employed to quantify variability and sensitivities in the failure response of polymer bonded particulate energetic materials under dynamic loads to material properties and morphological parameters that define the material microstructure. Particular emphasis is placed on the identification of sensitivity to interfaces between the polymer binder and the energetic particles. The proposed framework has been demonstrated to identify the most consequential material and morphological parameters under vibrational and impact loads.

  17. SU-F-T-181: Proton Therapy Tissue-Equivalence of 3D Printed Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P; Craft, D; Followill, D

    Purpose: This work investigated the proton tissue-equivalence of various 3D printed materials. Methods: Three 3D printers were used to create 5 cm cubic phantoms made of different plastics with varying percentages of infill. White resin, polylactic acid (PLA), and NinjaFlex plastics were used. The infills ranged from 15% to 100%. Each phantom was scanned with a CT scanner to obtain the HU value. The relative linear stopping power (RLSP) was then determined using a multi-layer ion chamber in a 200 MeV proton beam. The RLSP was measured both parallel and perpendicular to the print direction for each material. Results: Themore » HU values of the materials ranged from lung-equivalent (−820 HU σ160) when using a low infill, to soft-tissue-equivalent 159 (σ12). The RLSP of the materials depended on the orientation of the beam relative to the print direction. When the proton beam was parallel to the print direction, the RLSP was generally higher than the RLSP in the perpendicular orientation, by up to 45%. This difference was smaller (less than 6%) for the materials with 100% infill. For low infill cubes irradiated parallel to the print direction, the SOBP curve showed extreme degradation of the beam in the distal region. The materials with 15–25% infill had wide-ranging agreement with a clinical HU-RLSP conversion curve, with some measurements falling within 1% of the curve and others deviating up to 45%. The materials with 100% infill all fell within 7% of the curve. Conclusion: While some materials tested fall within 1% of a clinical HU-RLSP curve, caution should be taken when using 3D printed materials with proton therapy, as the orientation of the beam relative to the print direction can result in a large change in RLSP. Further investigation is needed to measure how the infill pattern affects the material RLSP. This work was supported by PHS grant CA180803.« less

  18. Effects of selected materials and geometries on the beta dose equivalent rate in a tissue equivalent phantom immersed in infinite clouds of 133Xe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piltingsrud, H.V.; Gels, G.L.

    1986-06-01

    Most calculations of dose equivalent (D.E.) rates at 70-micron tissue depths in tissue equivalent (T.E.) phantoms from infinite clouds (radius exceeds maximum beta range in air) of /sup 133/Xe do not consider the possible effects of clothing overlays. Consequently, a series of measurements were made using a 1-mm-thick plastic scintillation detector assembly mounted in a tissue equivalent (T.E.) phantom with an overlay of 70 micron of T.E. material. This assembly was placed in an infinite cloud containing a known concentration of /sup 133/Xe. Material samples were placed at selected distances from the detector phantom, both individually and in various combinations.more » Pulse-height spectra resulting from beta radiations were converted to relative D.E. rates at a 70-micron tissue depth. The relative D.E. rates were reduced from values with no clothing cover by as little as 45% when placing a single thin nylon cloth 1 cm from the phantom, to 94% for a T-shirt material plus wool material plus denim placed 1/2, 1 and 3 cm, respectively, from the phantom. The results indicate that even loosely fitting clothing can have an important effect on reducing the D.E. rate. Close-fitting clothing appears to provide better protection.« less

  19. [Development and equivalence evaluation of spondee lists of mandarin speech test materials].

    PubMed

    Zhang, Hua; Wang, Shuo; Wang, Liang; Chen, Jing; Chen, Ai-ting; Guo, Lian-sheng; Zhao, Xiao-yan; Ji, Chen

    2006-06-01

    To edit the spondee (disyllable) word lists as a part of mandarin speech test materials (MSTM). These will be basic speech materials for routine tests in clinics and laboratories. Two groups of professionals (audiologists, Chinese and Mandarin scientists, linguistician and statistician) were set up at first. The editing principles were established after 3 round table meetings. Ten spondee lists, each with 50 words, were edited and recorded into cassettes. All lists were phonemically balanced (3-dimensions: vowels, consonants and Chinese tones). Seventy-three normal hearing college students were tested. The speech was presented by earphone monaurally. Three statistic methods were used for equivalent analysis. Related analysis showed that all lists were much related, except List 5. Cluster analysis showed that all ten lists could be classified as two groups. But Kappa test showed that the lists' homogeneity were not well. Spondee lists are one of the most routine speech test materials. Their editing, recording and equivalent evaluation are affected by many factors. This also needs multi-discipline cooperation. All lists edited in present study need future modification in recording and testing in order to be used clinically and in research. The phonemic balance should be kept.

  20. Shock Sensitivity of energetic materials

    NASA Technical Reports Server (NTRS)

    Kim, K.

    1980-01-01

    Viscoplastic deformation is examined as the principal source of hot energy. Some shock sensitivity data on a proposed model is explained. A hollow sphere model is used to approximate complex porous matrix of energetic materials. Two pieces of shock sensitivity data are qualitatively compared with results of the proposed model. The first is the p2 tau law. The second is the desensitization of energetic materials by a ramp wave applied stress. An approach to improve the model based on experimental observations is outlined.

  1. EQUIVALENCE BETWEEN SHORT-TIME BIPHASIC AND INCOMPRESSIBLE ELASTIC MATERIAL RESPONSES

    PubMed Central

    Ateshian, Gerard A.; Ellis, Benjamin J.; Weiss, Jeffrey A.

    2009-01-01

    Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response δt≪Δ2/‖C4‖||K||, where Δ is a characteristic dimension, C4 is the elasticity tensor and K is the hydraulic permeability tensor of the solid matrix. Certain notes of caution are provided with regard to implementation issues, particularly when finite element formulations of incompressible elasticity employ an uncoupled strain energy function consisting of additive deviatoric and volumetric components. PMID:17536908

  2. Equivalence between short-time biphasic and incompressible elastic material responses.

    PubMed

    Ateshian, Gerard A; Ellis, Benjamin J; Weiss, Jeffrey A

    2007-06-01

    Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response deltat

  3. On the sensitivity analysis of porous material models

    NASA Astrophysics Data System (ADS)

    Ouisse, Morvan; Ichchou, Mohamed; Chedly, Slaheddine; Collet, Manuel

    2012-11-01

    Porous materials are used in many vibroacoustic applications. Different available models describe their behaviors according to materials' intrinsic characteristics. For instance, in the case of porous material with rigid frame, and according to the Champoux-Allard model, five parameters are employed. In this paper, an investigation about this model sensitivity to parameters according to frequency is conducted. Sobol and FAST algorithms are used for sensitivity analysis. A strong parametric frequency dependent hierarchy is shown. Sensitivity investigations confirm that resistivity is the most influent parameter when acoustic absorption and surface impedance of porous materials with rigid frame are considered. The analysis is first performed on a wide category of porous materials, and then restricted to a polyurethane foam analysis in order to illustrate the impact of the reduction of the design space. In a second part, a sensitivity analysis is performed using the Biot-Allard model with nine parameters including mechanical effects of the frame and conclusions are drawn through numerical simulations.

  4. Development of Equivalent Material Properties of Microbump for Simulating Chip Stacking Packaging

    PubMed Central

    Lee, Chang-Chun; Tzeng, Tzai-Liang; Huang, Pei-Chen

    2015-01-01

    A three-dimensional integrated circuit (3D-IC) structure with a significant scale mismatch causes difficulty in analytic model construction. This paper proposes a simulation technique to introduce an equivalent material composed of microbumps and their surrounding wafer level underfill (WLUF). The mechanical properties of this equivalent material, including Young’s modulus (E), Poisson’s ratio, shear modulus, and coefficient of thermal expansion (CTE), are directly obtained by applying either a tensile load or a constant displacement, and by increasing the temperature during simulations, respectively. Analytic results indicate that at least eight microbumps at the outermost region of the chip stacking structure need to be considered as an accurate stress/strain contour in the concerned region. In addition, a factorial experimental design with analysis of variance is proposed to optimize chip stacking structure reliability with four factors: chip thickness, substrate thickness, CTE, and E-value. Analytic results show that the most significant factor is CTE of WLUF. This factor affects microbump reliability and structural warpage under a temperature cycling load and high-temperature bonding process. WLUF with low CTE and high E-value are recommended to enhance the assembly reliability of the 3D-IC architecture. PMID:28793495

  5. Identification of material constants for piezoelectric transformers by three-dimensional, finite-element method and a design-sensitivity method.

    PubMed

    Joo, Hyun-Woo; Lee, Chang-Hwan; Rho, Jong-Seok; Jung, Hyun-Kyo

    2003-08-01

    In this paper, an inversion scheme for piezoelectric constants of piezoelectric transformers is proposed. The impedance of piezoelectric transducers is calculated using a three-dimensional finite element method. The validity of this is confirmed experimentally. The effects of material coefficients on piezoelectric transformers are investigated numerically. Six material coefficient variables for piezoelectric transformers were selected, and a design sensitivity method was adopted as an inversion scheme. The validity of the proposed method was confirmed by step-up ratio calculations. The proposed method is applied to the analysis of a sample piezoelectric transformer, and its resonance characteristics are obtained by numerically combined equivalent circuit method.

  6. Measuring Child Poverty in South Africa: Sensitivity to the Choice of Equivalence Scale and an Updated Profile

    ERIC Educational Resources Information Center

    Streak, Judith Christine; Yu, Derek; Van der Berg, Servaas

    2009-01-01

    This paper offers evidence on the sensitivity of child poverty in South Africa to changes in the adult equivalence scale (AES) and updates the child poverty profile based on the Income and Expenditure Survey 2005/06. Setting the poverty line at the 40th percentile of households calculated with different AESs the scope and composition of child…

  7. The Stanford equivalence principle program

    NASA Technical Reports Server (NTRS)

    Worden, Paul W., Jr.; Everitt, C. W. Francis; Bye, M.

    1989-01-01

    The Stanford Equivalence Principle Program (Worden, Jr. 1983) is intended to test the uniqueness of free fall to the ultimate possible accuracy. The program is being conducted in two phases: first, a ground-based version of the experiment, which should have a sensitivity to differences in rate of fall of one part in 10(exp 12); followed by an orbital experiment with a sensitivity of one part in 10(exp 17) or better. The ground-based experiment, although a sensitive equivalence principle test in its own right, is being used for technology development for the orbital experiment. A secondary goal of the experiment is a search for exotic forces. The instrument is very well suited for this search, which would be conducted mostly with the ground-based apparatus. The short range predicted for these forces means that forces originating in the Earth would not be detectable in orbit. But detection of Yukawa-type exotic forces from a nearby large satellite (such as Space Station) is feasible, and gives a very sensitive and controllable test for little more effort than the orbiting equivalence principle test itself.

  8. MO-F-CAMPUS-I-03: Tissue Equivalent Material Phantom to Test and Optimize Coherent Scatter Imaging for Tumor Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albanese, K; Morris, R; Lakshmanan, M

    Purpose: To accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Methods: A breast phantom has been designed to assess the capability of coded aperture coherent x-ray scatter imaging system to classify different types of breast tissue (adipose, fibroglandular, tumor). The tissue-equivalent phantom was modeled as a hollow plastic cylinder containing multiple cylindrical and spherical inserts that can be positioned, rearranged, or removed to model different breast geometries. Each enclosure can be filled with a tissue-equivalent material and excised human tumors. In this study, beef and lard,more » placed inside 2-mm diameter plastic Nalgene containers, were used as surrogates for fibroglandular and adipose tissue, respectively. The phantom was imaged at 125 kVp, 40 mA for 10 seconds each with a 1-mm pencil beam. The raw data were reconstructed using a model-based reconstruction algorithm and yielded the location and form factor, or momentum transfer (q) spectrum of the materials that were imaged. The measured material form factors were then compared to the ground truth measurements acquired by x-ray diffraction (XRD) imaging. Results: The tissue equivalent phantom was found to accurately model different types of breast tissue by qualitatively comparing our measured form factors to those of adipose and fibroglandular tissue from literature. Our imaging system has been able to define the location and composition of the various materials in the phantom. Conclusion: This work introduces a new tissue equivalent phantom for testing and optimization of our coherent scatter imaging system for material classification. In future studies, the phantom will enable the use of a variety of materials including excised human tissue specimens in evaluating and optimizing our imaging system using pencil- and fan-beam geometries. United States Department of Homeland Security Duke

  9. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  10. Three Dimensional Distribution of Sensitive Field and Stress Field Inversion of Force Sensitive Materials under Constant Current Excitation.

    PubMed

    Zhao, Shuanfeng; Liu, Min; Guo, Wei; Zhang, Chuanwei

    2018-02-28

    Force sensitive conductive composite materials are functional materials which can be used as the sensitive material of force sensors. However, the existing sensors only use one-dimensional electrical properties of force sensitive conductive materials. Even in tactile sensors, the measurement of contact pressure is achieved by large-scale arrays and the units of a large-scale array are also based on the one-dimensional electrical properties of force sensitive materials. The main contribution of this work is to study the three-dimensional electrical properties and the inversion method of three-dimensional stress field of a force sensitive material (conductive rubber), which pushes the application of force sensitive material from one dimensional to three-dimensional. First, the mathematical model of the conductive rubber current field distribution under a constant force is established by the effective medium theory, and the current field distribution model of conductive rubber with different geometry, conductive rubber content and conductive rubber relaxation parameters is deduced. Secondly, the inversion method of the three-dimensional stress field of conductive rubber is established, which provides a theoretical basis for the design of a new tactile sensor, three-dimensional stress field and space force based on force sensitive materials.

  11. Cross Section Sensitivity and Propagated Errors in HZE Exposures

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.; Wilson, John W.; Blatnig, Steve R.; Qualls, Garry D.; Badavi, Francis F.; Cucinotta, Francis A.

    2005-01-01

    It has long been recognized that galactic cosmic rays are of such high energy that they tend to pass through available shielding materials resulting in exposure of astronauts and equipment within space vehicles and habitats. Any protection provided by shielding materials result not so much from stopping such particles but by changing their physical character in interaction with shielding material nuclei forming, hopefully, less dangerous species. Clearly, the fidelity of the nuclear cross-sections is essential to correct specification of shield design and sensitivity to cross-section error is important in guiding experimental validation of cross-section models and database. We examine the Boltzmann transport equation which is used to calculate dose equivalent during solar minimum, with units (cSv/yr), associated with various depths of shielding materials. The dose equivalent is a weighted sum of contributions from neutrons, protons, light ions, medium ions and heavy ions. We investigate the sensitivity of dose equivalent calculations due to errors in nuclear fragmentation cross-sections. We do this error analysis for all possible projectile-fragment combinations (14,365 such combinations) to estimate the sensitivity of the shielding calculations to errors in the nuclear fragmentation cross-sections. Numerical differentiation with respect to the cross-sections will be evaluated in a broad class of materials including polyethylene, aluminum and copper. We will identify the most important cross-sections for further experimental study and evaluate their impact on propagated errors in shielding estimates.

  12. Evaluation of the water-equivalence of plastic materials in low- and high-energy clinical proton beams

    NASA Astrophysics Data System (ADS)

    Lourenço, A.; Shipley, D.; Wellock, N.; Thomas, R.; Bouchard, H.; Kacperek, A.; Fracchiolla, F.; Lorentini, S.; Schwarz, M.; MacDougall, N.; Royle, G.; Palmans, H.

    2017-05-01

    The aim of this work was to evaluate the water-equivalence of new trial plastics designed specifically for light-ion beam dosimetry as well as commercially available plastics in clinical proton beams. The water-equivalence of materials was tested by computing a plastic-to-water conversion factor, {{H}\\text{pl,\\text{w}}} . Trial materials were characterized experimentally in 60 MeV and 226 MeV un-modulated proton beams and the results were compared with Monte Carlo simulations using the FLUKA code. For the high-energy beam, a comparison between the trial plastics and various commercial plastics was also performed using FLUKA and Geant4 Monte Carlo codes. Experimental information was obtained from laterally integrated depth-dose ionization chamber measurements in water, with and without plastic slabs with variable thicknesses in front of the water phantom. Fluence correction factors, {{k}\\text{fl}} , between water and various materials were also derived using the Monte Carlo method. For the 60 MeV proton beam, {{H}\\text{pl,\\text{w}}} and {{k}\\text{fl}} factors were within 1% from unity for all trial plastics. For the 226 MeV proton beam, experimental {{H}\\text{pl,\\text{w}}} values deviated from unity by a maximum of about 1% for the three trial plastics and experimental results showed no advantage regarding which of the plastics was the most equivalent to water. Different magnitudes of corrections were found between Geant4 and FLUKA for the various materials due mainly to the use of different nonelastic nuclear data. Nevertheless, for the 226 MeV proton beam, {{H}\\text{pl,\\text{w}}} correction factors were within 2% from unity for all the materials. Considering the results from the two Monte Carlo codes, PMMA and trial plastic #3 had the smallest {{H}\\text{pl,\\text{w}}} values, where maximum deviations from unity were 1%, however, PMMA range differed by 16% from that of water. Overall, {{k}\\text{fl}} factors were deviating more from unity than {{H

  13. Evaluation of the water-equivalence of plastic materials in low- and high-energy clinical proton beams.

    PubMed

    Lourenço, A; Shipley, D; Wellock, N; Thomas, R; Bouchard, H; Kacperek, A; Fracchiolla, F; Lorentini, S; Schwarz, M; MacDougall, N; Royle, G; Palmans, H

    2017-05-21

    The aim of this work was to evaluate the water-equivalence of new trial plastics designed specifically for light-ion beam dosimetry as well as commercially available plastics in clinical proton beams. The water-equivalence of materials was tested by computing a plastic-to-water conversion factor, [Formula: see text]. Trial materials were characterized experimentally in 60 MeV and 226 MeV un-modulated proton beams and the results were compared with Monte Carlo simulations using the FLUKA code. For the high-energy beam, a comparison between the trial plastics and various commercial plastics was also performed using FLUKA and Geant4 Monte Carlo codes. Experimental information was obtained from laterally integrated depth-dose ionization chamber measurements in water, with and without plastic slabs with variable thicknesses in front of the water phantom. Fluence correction factors, [Formula: see text], between water and various materials were also derived using the Monte Carlo method. For the 60 MeV proton beam, [Formula: see text] and [Formula: see text] factors were within 1% from unity for all trial plastics. For the 226 MeV proton beam, experimental [Formula: see text] values deviated from unity by a maximum of about 1% for the three trial plastics and experimental results showed no advantage regarding which of the plastics was the most equivalent to water. Different magnitudes of corrections were found between Geant4 and FLUKA for the various materials due mainly to the use of different nonelastic nuclear data. Nevertheless, for the 226 MeV proton beam, [Formula: see text] correction factors were within 2% from unity for all the materials. Considering the results from the two Monte Carlo codes, PMMA and trial plastic #3 had the smallest [Formula: see text] values, where maximum deviations from unity were 1%, however, PMMA range differed by 16% from that of water. Overall, [Formula: see text] factors were deviating more from unity than [Formula: see text] factors

  14. Material characteristics and equivalent circuit models of stacked graphene oxide for capacitive humidity sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Kook In; Lee, In Gyu; Hwang, Wan Sik, E-mail: mhshin@kau.ac.kr, E-mail: whwang@kau.ac.kr

    The oxidation properties of graphene oxide (GO) are systematically correlated with their chemical sensing properties. Based on an impedance analysis, the equivalent circuit models of the capacitive sensors are established, and it is demonstrated that capacitive operations are related to the degree of oxidation. This is also confirmed by X-ray diffraction and Raman analysis. Finally, highly sensitive stacked GO sensors are shown to detect humidity in capacitive mode, which can be useful in various applications requiring low power consumption.

  15. Equivalent circuit for VO{sub 2} phase change material film in reconfigurable frequency selective surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanphuang, Varittha; Ghalichechian, Nima; Nahar, Niru K.

    We developed equivalent circuits of phase change materials based on vanadium dioxide (VO{sub 2}) thin films. These circuits are used to model VO{sub 2} thin films for reconfigurable frequency selective surfaces (FSSs). This is important as it provides a way for designing complex structures. A reconfigurable FSS filter using VO{sub 2} ON/OFF switches is designed demonstrating −60 dB isolation between the states. This filter is used to provide the transmission and reflection responses of the FSS in the frequency range of 0.1–0.6 THz. The comparison between equivalent circuit and full-wave simulation shows excellent agreement.

  16. Energetic materials and methods of tailoring electrostatic discharge sensitivity of energetic materials

    DOEpatents

    Daniels, Michael A.; Heaps, Ronald J.; Wallace, Ronald S.; Pantoya, Michelle L.; Collins, Eric S.

    2016-11-01

    An energetic material comprising an elemental fuel, an oxidizer or other element, and a carbon nanofiller or carbon fiber rods, where the carbon nanofiller or carbon fiber rods are substantially homogeneously dispersed in the energetic material. Methods of tailoring the electrostatic discharge sensitivity of an energetic material are also disclosed.

  17. Radiation sensitive devices and systems for detection of radioactive materials and related methods

    DOEpatents

    Kotter, Dale K

    2014-12-02

    Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

  18. Calculation of Absorbed Dose in Target Tissue and Equivalent Dose in Sensitive Tissues of Patients Treated by BNCT Using MCNP4C

    NASA Astrophysics Data System (ADS)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Pooya, S. M. Hosseini

    Boron Neutron Capture Therapy (BNCT) is used for treatment of many diseases, including brain tumors, in many medical centers. In this method, a target area (e.g., head of patient) is irradiated by some optimized and suitable neutron fields such as research nuclear reactors. Aiming at protection of healthy tissues which are located in the vicinity of irradiated tissue, and based on the ALARA principle, it is required to prevent unnecessary exposure of these vital organs. In this study, by using numerical simulation method (MCNP4C Code), the absorbed dose in target tissue and the equiavalent dose in different sensitive tissues of a patiant treated by BNCT, are calculated. For this purpose, we have used the parameters of MIRD Standard Phantom. Equiavelent dose in 11 sensitive organs, located in the vicinity of target, and total equivalent dose in whole body, have been calculated. The results show that the absorbed dose in tumor and normal tissue of brain equal to 30.35 Gy and 0.19 Gy, respectively. Also, total equivalent dose in 11 sensitive organs, other than tumor and normal tissue of brain, is equal to 14 mGy. The maximum equivalent doses in organs, other than brain and tumor, appear to the tissues of lungs and thyroid and are equal to 7.35 mSv and 3.00 mSv, respectively.

  19. SU-D-BRC-04: Development of Proton Tissue Equivalent Materials for Calibration and Dosimetry Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olguin, E; Flampouri, S; Lipnharski, I

    Purpose: To develop new proton tissue equivalent materials (PTEM), urethane and fiberglass based, for proton therapy calibration and dosimetry studies. Existing tissue equivalent plastics are applicable only for x-rays because they focus on matching mass attenuation coefficients. This study aims to create new plastics that match mass stopping powers for proton therapy applications instead. Methods: New PTEMs were constructed using urethane and fiberglass resin materials for soft, fat, bone, and lung tissue. The stoichiometric analysis method was first used to determine the elemental composition of each unknown constituent. New initial formulae were then developed for each of the 4 PTEMsmore » using the new elemental compositions and various additives. Samples of each plastic were then created and exposed to a well defined proton beam at the UF Health Proton Therapy Institute (UFHPTI) to validate its mass stopping power. Results: The stoichiometric analysis method revealed the elemental composition of the 3 components used in creating the PTEMs. These urethane and fiberglass based resins were combined with additives such as calcium carbonate, aluminum hydroxide, and phenolic micro spheres to achieve the desired mass stopping powers and densities. Validation at the UFHPTI revealed adjustments had to be made to the formulae, but the plastics eventually had the desired properties after a few iterations. The mass stopping power, density, and Hounsfield Unit of each of the 4 PTEMs were within acceptable tolerances. Conclusion: Four proton tissue equivalent plastics were developed: soft, fat, bone, and lung tissue. These plastics match each of the corresponding tissue’s mass stopping power, density, and Hounsfield Unit, meaning they are truly tissue equivalent for proton therapy applications. They can now be used to calibrate proton therapy treatment planning systems, improve range uncertainties, validate proton therapy Monte Carlo simulations, and assess in-field and

  20. SU-E-T-424: Feasibility of 3D Printed Radiological Equivalent Customizable Tissue Like Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D; Ferreira, C; Ahmad, S

    Purpose: To investigate the feasibility of 3D printing CT# specific radiological equivalent tissue like materials. Methods: A desktop 3D printer was utilized to create a series of 3 cm x 3 cm x 2 cm PLA plastic blocks of varying fill densities. The fill pattern was selected to be hexagonal (Figure 1). A series of blocks was filled with paraffin and compared to a series filled with air. The blocks were evaluated with a “GE Lightspeed” 16 slice CT scanner and average CT# of the centers of the materials was determined. The attenuation properties of the subsequent blocks were alsomore » evaluated through their isocentric irradiation via “TrueBeam” accelerator under six beam energies. Blocks were placed upon plastic-water slabs of 4 cm in thickness assuring electronic equilibrium and data was collected via Sun Nuclear “Edge” diode detector. Relative changes in dose were compared with those predicted by Varian “Eclipse” TPS. Results: The CT# of 3D printed blocks was found to be a controllable variable. The fill material was able to narrow the range of variability in each sample. The attenuation of the block tracked with the density of the total fill structure. Assigned CT values in the TPS were seen to fall within an expected range predicted by the CT scans of the 3D printed blocks. Conclusion: We have demonstrated that it is possible to 3D print materials of varying tissue equivalencies, and that these materials have radiological properties that are customizable and predictable.« less

  1. Morphological effects on sensitivity of heterogeneous energetic materials

    NASA Astrophysics Data System (ADS)

    Roy, Sidhartha; Rai, Nirmal; Sen, Oishik; Udaykumar, H. S.

    2017-06-01

    The mesoscale physical response under shock loading in heterogeneous energetics is inherently linked to the microstructural characteristics. The current work demonstrates the connection between the microstructural features of porous energetic material and its sensitivity. A unified levelset based framework is developed to characterize the microstructures of a given sample. Several morphological metrics describing the mesoscale geometry of the materials are extracted using the current tool including anisotropy, tortuosity, surface to volume, nearest neighbors, size and curvature distributions. The relevant metrics among the ones extracted are identified and correlated to the mesoscale response of the energetic materials under shock loading. Two classes of problems are considered here: (a) field of idealized voids embedded in the HMX material and (b) real samples of pressed HMX. The effects of stochasticity associated with void arrangements on the sensitivity of the energetic material samples are shown. In summary, this work demonstrates the relationship between the mesoscale morphology and shock response of heterogeneous energetic materials using a levelset based framework.

  2. Experimental evaluation of the thermal properties of two tissue equivalent phantom materials.

    PubMed

    Craciunescu, O I; Howle, L E; Clegg, S T

    1999-01-01

    Tissue equivalent radio frequency (RF) phantoms provide a means for measuring the power deposition of various hyperthermia therapy applicators. Temperature measurements made in phantoms are used to verify the accuracy of various numerical approaches for computing the power and/or temperature distributions. For the numerical simulations to be accurate, the electrical and thermal properties of the materials that form the phantom should be accurately characterized. This paper reports on the experimentally measured thermal properties of two commonly used phantom materials, i.e. a rigid material with the electrical properties of human fat, and a low concentration polymer gel with the electrical properties of human muscle. Particularities of the two samples required the design of alternative measuring techniques for the specific heat and thermal conductivity. For the specific heat, a calorimeter method is used. For the thermal diffusivity, a method derived from the standard guarded comparative-longitudinal heat flow technique was used for both materials. For the 'muscle'-like material, the thermal conductivity, density and specific heat at constant pressure were measured as: k = 0.31 +/- 0.001 W(mK)(-1), p = 1026 +/- 7 kgm(-3), and c(p) = 4584 +/- 107 J(kgK)(-1). For the 'fat'-like material, the literature reports on the density and specific heat such that only the thermal conductivity was measured as k = 0.55 W(mK)(-1).

  3. Determination of tissue equivalent materials of a physical 8-year-old phantom for use in computed tomography

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Parisa; Miri Hakimabad, Hashem; Rafat Motavalli, Laleh

    2015-07-01

    This paper reports on the methodology applied to select suitable tissue equivalent materials of an 8-year phantom for use in computed tomography (CT) examinations. To find the appropriate tissue substitutes, first physical properties (physical density, electronic density, effective atomic number, mass attenuation coefficient and CT number) of different materials were studied. Results showed that, the physical properties of water and polyurethane (as soft tissue), B-100 and polyvinyl chloride (PVC) (as bone) and polyurethane foam (as lung) agree more with those of original tissues. Then in the next step, the absorbed doses in the location of 25 thermoluminescent dosimeters (TLDs) as well as dose distribution in one slice of phantom were calculated for original and these proposed materials by Monte Carlo simulation at different tube voltages. The comparisons suggested that at tube voltages of 80 and 100 kVp using B-100 as bone, water as soft tissue and polyurethane foam as lung is suitable for dosimetric study in pediatric CT examinations. In addition, it was concluded that by considering just the mass attenuation coefficient of different materials, the appropriate tissue equivalent substitutes in each desired X-ray energy range could be found.

  4. 33 CFR 155.120 - Equivalents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Equivalents. 155.120 Section 155.120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS General § 155.120 Equivalents...

  5. 33 CFR 155.120 - Equivalents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Equivalents. 155.120 Section 155.120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS General § 155.120 Equivalents...

  6. 33 CFR 155.120 - Equivalents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Equivalents. 155.120 Section 155.120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS General § 155.120 Equivalents...

  7. Whispering gallery mode resonators based on radiation-sensitive materials

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Ilchenko, Vladimir (Inventor); Handley, Timothy A. (Inventor)

    2005-01-01

    Whispering gallery mode (WGM) optical resonators formed of radiation-sensitive materials to allow for permanent tuning of their resonance frequencies in a controlled manner. Two WGM resonators may be cascaded to form a composite filter to produce a second order filter function where at least one WGM resonator is formed a radiation-sensitive material to allow for proper control in the overlap of the two filter functions.

  8. 46 CFR 133.09 - Equivalents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Equivalents. 133.09 Section 133.09 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS LIFESAVING SYSTEMS General § 133.09 Equivalents. When this part requires a particular fitting, material, or lifesaving appliance or arrangement...

  9. 46 CFR 133.09 - Equivalents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Equivalents. 133.09 Section 133.09 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS LIFESAVING SYSTEMS General § 133.09 Equivalents. When this part requires a particular fitting, material, or lifesaving appliance or arrangement...

  10. Transplanting Sensitized Kidney Transplant Patients With Equivalent Outcomes Utilizing Stringent HLA Crossmatching.

    PubMed

    Rohan, Vinayak S; Taber, David J; Moussa, Omar; Pilch, Nicole A; Denmark, Signe; Meadows, Holly B; McGillicuddy, John W; Chavin, Kenneth D; Baliga, Prabhakar K; Bratton, Charles F

    2017-02-01

    Elevated panel reactive antibody levels have been traditionally associated with increased acute rejection rate and decreased long-term graft survival after kidney transplant. In this study, our objective was to determine patient and allograft outcomes in sensitized kidney transplant recipients with advanced HLA antibody detection and stringent protein sequence epitope analyses. This was a subanalysis of a prospective, risk-stratified randomized controlled trial that compared interleukin 2 receptor antagonist to rabbit antithymocyte globulin induction in 200 kidney transplant recipients, examining outcomes based on panel reactive antibody levels of < 20% (low) versus ≥ 20% (high, sensitized). The study was conducted between February 2009 and July 2011. All patients underwent solid-phase single antigen bead assays to detect HLA antibodies and stringent HLA epitope analyses with protein sequence alignment for virtual crossmatching. Delayed graft function, acute rejection rates, and graft loss were the main outcomes measured. Both the low (134 patients) and high (66 patients) panel reactive antibody level cohorts had equivalent induction and maintenance immunosuppression. Patients in the high-level group were more likely to be female (P < .001), African American (P < .001), and received a kidney from a deceased donor (P = .004). Acute rejection rates were similar between the low (rate of 8%) and high (rate of 9%) panel reactive antibody groups (P = .783). Delayed graft function, borderline rejection, graft loss, and death were not different between groups. Multivariate analyses demonstrated delayed graft function to be the strongest predictor of acute rejection (odds ratio, 5.7; P = .005); panel reactive antibody level, as a continuous variable, had no significant correlation with acute rejection (C statistic, 0.48; P = .771). Appropriate biologic matching with single antigen bead assays and stringent epitope analyses provided excellent outcomes in sensitized

  11. Gas sensitive materials for gas detection and method of making

    DOEpatents

    Trakhtenberg, Leonid Israilevich; Gerasimov, Genrikh Nikolaevich; Gromov, Vladimir Fedorovich; Rozenberg, Valeriya Isaakovna

    2012-12-25

    A gas sensitive material comprising SnO2 nanocrystals doped with In2O3 and an oxide of a platinum group metal, and a method of making the same. The platinum group metal is preferably Pd, but also may include Pt, Ru, Ir, and combinations thereof. The SnO2 nanocrystals have a specific surface of 7 or greater, preferably about 20 m2/g, and a mean particle size of between about 10 nm and about 100 nm, preferably about 40 nm. A gas detection device made from the gas sensitive material deposited on a substrate, the gas sensitive material configured as a part of a current measuring circuit in communication with a heat source.

  12. A physical interpretation of softening of pressure-sensitive and anisotropic materials

    NASA Astrophysics Data System (ADS)

    Hu, W.; Wang, Z. R.

    2010-07-01

    Several new dynamic models are proposed to explain the mechanical behaviour of softening of pressure-sensitive and anisotropic materials at a macroscopic level. If a pressure-sensitive material is loaded by a force and a variable pressure or an anisotropic material is subjected to a load with a changeable loading direction relative to the material frame, their stress-strain relationships become more complicated. Mechanical behaviours of these stress-strain relationships have to cover the feature concerning the change of pressure or loading direction, i.e. mechanical properties of pressure-sensitive material corresponding to different pressure state or anisotropic material relating to different loading direction will play an important role in deciding their stress-strain relationships. Such shift of material properties due to the variable pressure or loading history may significantly expand the traditional concept of the stability of material deformation, and the second order of plastic work being negative may be a response of stable plastic deformation, which is commonly called softening.

  13. Application of Adjoint Methodology to Supersonic Aircraft Design Using Reversed Equivalent Areas

    NASA Technical Reports Server (NTRS)

    Rallabhandi, Sriram K.

    2013-01-01

    This paper presents an approach to shape an aircraft to equivalent area based objectives using the discrete adjoint approach. Equivalent areas can be obtained either using reversed augmented Burgers equation or direct conversion of off-body pressures into equivalent area. Formal coupling with CFD allows computation of sensitivities of equivalent area objectives with respect to aircraft shape parameters. The exactness of the adjoint sensitivities is verified against derivatives obtained using the complex step approach. This methodology has the benefit of using designer-friendly equivalent areas in the shape design of low-boom aircraft. Shape optimization results with equivalent area cost functionals are discussed and further refined using ground loudness based objectives.

  14. SU-E-T-353: Verification of Water Equivalent Thickness (WET) and Water Equivalent Spreadness (WES) of Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demez, N; Lee, T; Keppel, Cynthia

    Purpose: To verify calculated water equivalent thickness (WET) and water equivalent spreadness (WES) in various tissue equivalent media for proton therapy Methods: Water equivalent thicknesses (WET) of tissue equivalent materials have been calculated using the Bragg-Kleeman rule. Lateral spreadness and fluence reduction of proton beams both in those media were calculated using proton loss model (PLM) algorithm. In addition, we calculated lateral spreadness ratios with respect to that in water at the same WET depth and so the WES was defined. The WETs of those media for different proton beam energies were measured using MLIC (Multi-Layered Ionization Chamber). Also, fluencemore » and field sizes in those materials of various thicknesses were measured with ionization chambers and films Results: Calculated WETs are in agreement with measured WETs within 0.5%. We found that water equivalent spreadness (WES) is constant and the fluence and field size measurements verify that fluence can be estimated using the concept of WES. Conclusions: Calculation of WET based on the Bragg-Kleeman rule as well as the constant WES of proton beams for tissue equivalent phantoms can be used to predict fluence and field sizes at the depths of interest both in tissue equivalent media accurately for clinically available protonenergies.« less

  15. Experimental Evaluation of Equivalent-Fluid Models for Melamine Foam

    NASA Technical Reports Server (NTRS)

    Allen, Albert R.; Schiller, Noah H.

    2016-01-01

    Melamine foam is a soft porous material commonly used in noise control applications. Many models exist to represent porous materials at various levels of fidelity. This work focuses on rigid frame equivalent fluid models, which represent the foam as a fluid with a complex speed of sound and density. There are several empirical models available to determine these frequency dependent parameters based on an estimate of the material flow resistivity. Alternatively, these properties can be experimentally educed using an impedance tube setup. Since vibroacoustic models are generally sensitive to these properties, this paper assesses the accuracy of several empirical models relative to impedance tube measurements collected with melamine foam samples. Diffuse field sound absorption measurements collected using large test articles in a laboratory are also compared with absorption predictions determined using model-based and measured foam properties. Melamine foam slabs of various thicknesses are considered.

  16. Gas sensitive materials for gas detection and methods of making

    DOEpatents

    Trakhtenberg, Leonid Israilevich; Gerasimov, Genrikh Nikolaevich; Gromov, Vladimir Fedorovich; Rozenberg, Valeriya Isaakovna

    2014-07-15

    A gas sensitive material comprising SnO.sub.2 nanocrystals doped with In.sub.2O.sub.3 and an oxide of a platinum group metal, and a method of making the same. The platinum group metal is preferably Pd, but also may include Pt, Ru, Ir, and combinations thereof. The SnO.sub.2 nanocrystals have a specific surface of 7 or greater, preferably about 20 m2/g, and a mean particle size of between about 10 nm and about 100 nm, preferably about 40 nm. A gas detection device made from the gas sensitive material deposited on a substrate, the gas sensitive material configured as a part of a current measuring circuit in communication with a heat source.

  17. Equivalence principle and bound kinetic energy.

    PubMed

    Hohensee, Michael A; Müller, Holger; Wiringa, R B

    2013-10-11

    We consider the role of the internal kinetic energy of bound systems of matter in tests of the Einstein equivalence principle. Using the gravitational sector of the standard model extension, we show that stringent limits on equivalence principle violations in antimatter can be indirectly obtained from tests using bound systems of normal matter. We estimate the bound kinetic energy of nucleons in a range of light atomic species using Green's function Monte Carlo calculations, and for heavier species using a Woods-Saxon model. We survey the sensitivities of existing and planned experimental tests of the equivalence principle, and report new constraints at the level of between a few parts in 10(6) and parts in 10(8) on violations of the equivalence principle for matter and antimatter.

  18. Impact sensitivity of materials in contact with liquid and gaseous oxygen at high pressure

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1972-01-01

    As a result of the Apollo 13 incident, increased emphasis is being placed on materials compatibility in a high pressure GOX environment. It is known that in addition to impact sensitivity of materials, approximately adiabatic compression conditions can contrive to induce materials reactivity. Test runs at high pressure using the ABMA tester indicate the following: (1) The materials used in the tests showed an inverse relationship between thickness and impact sensitivity. (2) Several materials tested exhibited greater impact sensitivity in GOX than in LOX. (3) The impact sensitivity of the materials tested in GOX, at the pressures tested, showed enhanced impact sensitivity with higher pressure. (4) The rank ordering of the materials tested in LOX up to 1000 psia is the same as the rank ordering resulting from tests in LOX at 14.7 psia.

  19. IUS materials outgassing condensation effects on sensitive spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Mullen, C. R.; Shaw, C. G.; Crutcher, E. R.

    1982-01-01

    Four materials used on the inertial upper state (IUS) were subjected to vacuum conditions and heated to near-operational temperatures (93 to 316 C), releasing volatile materials. A fraction of the volatile materials were collected on 25 C solar cells, optical solar reflectors (OSR's) or aluminized Mylar. The contaminated surfaces were exposed to 26 equivalent sun hours of simulated solar ultraviolet (UV) radiation. Measurements of contamination deposit mass, structure, reflectance and effects on solar cell power output were made before and after UV irradiation. Standard total mass loss - volatile condensible materials (TML - VCM) tests were also performed. A 2500 A thick contaminant layer produced by EPDM rubber motor-case insulation outgassing increased the solar absorptance of the OSR's from 0.07 to 0.14, and to 0.18 after UV exposure. An 83,000 A layer caused an increase from 0.07 to 0.21, and then the 0.46 after UV exposure. The Kevlar-epoxy motor-case material outgassing condensation raised the absorptance from 0.07 to 0.13, but UV had no effect. Outgassing from multilayer insulation and carbon-carbon nozzle materials did not affect the solar absorptance of the OSR's.

  20. Comparison of lead attenuation and lead hardening equivalence of materials used in respect of diagnostic X-ray shielding.

    PubMed

    Okunade, Akintunde Akangbe

    2002-12-01

    Present interest is in the shielding of diagnostic X-ray units. Numerical comparison has been made of the attenuation and hardening properties of lead and some particular alternative materials: steel, plate glass and gypsum wallboard. Results show, for particular choices of thickness, that lead and steel can be made to provide closely similar attenuation and spectral hardening, values of lead attenuation equivalent (LAE) and lead hardening equivalent (LHE) thicknesses being nearly the same. Significant differences in the attenuation and hardening properties of lead are found in comparison with plate glass and gypsum wallboard. LAE produces better matching of exposure for lead-plate glass and lead-gypsum wallboard than LHE.

  1. Dosimetric verification of the anisotropic analytical algorithm in lung equivalent heterogeneities with and without bone equivalent heterogeneities

    PubMed Central

    Ono, Kaoru; Endo, Satoru; Tanaka, Kenichi; Hoshi, Masaharu; Hirokawa, Yutaka

    2010-01-01

    Purpose: In this study, the authors evaluated the accuracy of dose calculations performed by the convolution∕superposition based anisotropic analytical algorithm (AAA) in lung equivalent heterogeneities with and without bone equivalent heterogeneities. Methods: Calculations of PDDs using the AAA and Monte Carlo simulations (MCNP4C) were compared to ionization chamber measurements with a heterogeneous phantom consisting of lung equivalent and bone equivalent materials. Both 6 and 10 MV photon beams of 4×4 and 10×10 cm2 field sizes were used for the simulations. Furthermore, changes of energy spectrum with depth for the heterogeneous phantom using MCNP were calculated. Results: The ionization chamber measurements and MCNP calculations in a lung equivalent phantom were in good agreement, having an average deviation of only 0.64±0.45%. For both 6 and 10 MV beams, the average deviation was less than 2% for the 4×4 and 10×10 cm2 fields in the water-lung equivalent phantom and the 4×4 cm2 field in the water-lung-bone equivalent phantom. Maximum deviations for the 10×10 cm2 field in the lung equivalent phantom before and after the bone slab were 5.0% and 4.1%, respectively. The Monte Carlo simulation demonstrated an increase of the low-energy photon component in these regions, more for the 10×10 cm2 field compared to the 4×4 cm2 field. Conclusions: The low-energy photon by Monte Carlo simulation component increases sharply in larger fields when there is a significant presence of bone equivalent heterogeneities. This leads to great changes in the build-up and build-down at the interfaces of different density materials. The AAA calculation modeling of the effect is not deemed to be sufficiently accurate. PMID:20879604

  2. Estimating raw material equivalents on a macro-level: comparison of multi-regional input-output analysis and hybrid LCI-IO.

    PubMed

    Schoer, Karl; Wood, Richard; Arto, Iñaki; Weinzettel, Jan

    2013-12-17

    The mass of material consumed by a population has become a useful proxy for measuring environmental pressure. The "raw material equivalents" (RME) metric of material consumption addresses the issue of including the full supply chain (including imports) when calculating national or product level material impacts. The RME calculation suffers from data availability, however, as quantitative data on production practices along the full supply chain (in different regions) is required. Hence, the RME is currently being estimated by three main approaches: (1) assuming domestic technology in foreign economies, (2) utilizing region-specific life-cycle inventories (in a hybrid framework), and (3) utilizing multi-regional input-output (MRIO) analysis to explicitly cover all regions of the supply chain. While the first approach has been shown to give inaccurate results, this paper focuses on the benefits and costs of the latter two approaches. We analyze results from two key (MRIO and hybrid) projects modeling raw material equivalents, adjusting the models in a stepwise manner in order to quantify the effects of individual conceptual elements. We attempt to isolate the MRIO gap, which denotes the quantitative impact of calculating the RME of imports by an MRIO approach instead of the hybrid model, focusing on the RME of EU external trade imports. While, the models give quantitatively similar results, differences become more pronounced when tracking more detailed material flows. We assess the advantages and disadvantages of the two approaches and look forward to ways to further harmonize data and approaches.

  3. Methodological questions of creating tissue-equivalent phantoms

    NASA Technical Reports Server (NTRS)

    Kolodkin, A. V.; Popov, V. I.; Sychkov, M. A.; Nikl, I.; Erdei, M.; Eyben, O.

    1974-01-01

    On the basis of analysis and generalization of literature data, the composition of tissue equivalent plastic was justified, parameters of a standard man were determined, plaster and metal forms were created for casting dummies, and an experimental model was produced from tissue equivalent material.

  4. Water equivalence of NIPAM based polymer gel dosimeters with enhanced sensitivity for x-ray CT

    NASA Astrophysics Data System (ADS)

    Gorjiara, Tina; Hill, Robin; Bosi, Stephen; Kuncic, Zdenka; Baldock, Clive

    2013-10-01

    Two new formulations of N-isopropylacrylamide (NIPAM) based three dimensional (3D) gel dosimeters have recently been developed with improved sensitivity to x-ray CT readout, one without any co-solvent and the other one with isopropanol co-solvent. The water equivalence of the NIPAM gel dosimeters was investigated using different methods to calculate their radiological properties including: density, electron density, number of electrons per grams, effective atomic number, photon interaction probabilities, mass attenuation and energy absorption coefficients, electron collisional, radiative and total mass stopping powers and electron mass scattering power. Monte Carlo modelling was also used to compare the dose response of these gel dosimeters with water for kilovoltage and megavoltage x-ray beams and for megavoltage electron beams. We found that the density and electron density of the co-solvent free gel dosimeter are more water equivalent with less than a 2.6% difference compared to a 5.7% difference for the isopropanol gel dosimeter. Both the co-solvent free and isopropanol solvent gel dosimeters have lower effective atomic numbers than water, differing by 2.2% and 6.5%, respectively. As a result, their photoelectric absorption interaction probabilities are up to 6% and 19% different from water, respectively. Compton scattering and pair production interaction probabilities of NIPAM gel with isopropanol differ by up to 10% from water while for the co-solvent free gel, the differences are 3%. Mass attenuation and energy absorption coefficients of the co-solvent free gel dosimeter and the isopropanol gel dosimeter are up to 7% and 19% lower than water, respectively. Collisional and total mass stopping powers of both gel dosimeters differ by less than 2% from those of water. The dose response of the co-solvent free gel dosimeter is water equivalent (with <1% discrepancy) for dosimetry of x-rays with energies <100 keV while the discrepancy increases (up to 5%) for the

  5. Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Newhauser, Wayne D.

    2009-03-01

    In proton therapy, the radiological thickness of a material is commonly expressed in terms of water equivalent thickness (WET) or water equivalent ratio (WER). However, the WET calculations required either iterative numerical methods or approximate methods of unknown accuracy. The objective of this study was to develop a simple deterministic formula to calculate WET values with an accuracy of 1 mm for materials commonly used in proton radiation therapy. Several alternative formulas were derived in which the energy loss was calculated based on the Bragg-Kleeman rule (BK), the Bethe-Bloch equation (BB) or an empirical version of the Bethe-Bloch equation (EBB). Alternative approaches were developed for targets that were 'radiologically thin' or 'thick'. The accuracy of these methods was assessed by comparison to values from an iterative numerical method that utilized evaluated stopping power tables. In addition, we also tested the approximate formula given in the International Atomic Energy Agency's dosimetry code of practice (Technical Report Series No 398, 2000, IAEA, Vienna) and stopping power ratio approximation. The results of these comparisons revealed that most methods were accurate for cases involving thin or low-Z targets. However, only the thick-target formulas provided accurate WET values for targets that were radiologically thick and contained high-Z material.

  6. Field-Sensitive Materials for Optical Applications

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Little, Mark

    2002-01-01

    The purpose of investigation is to develop the fundamental materials and fabrication technology for field-controlled spectrally active optics that are essential for industry, NASA, and DOD (Department of Defense) applications such as: membrane optics, filters for LIDARs (Light Detection and Ranging), windows for sensors and probes, telescopes, spectroscopes, cameras, light valves, light switches, flat-panel displays, etc. The proposed idea is based on the quantum-dots (QD) array or thin-film of field-sensitive Stark and Zeeman materials and the bound excitonic state of organic crystals that will offer optical adaptability and reconfigurability. Major tasks are the development of concept demonstration article and test data of field-controlled spectrally smart active optics (FCSAO) for optical multi-functional capabilities on a selected spectral range.

  7. Characterization of MOSFET dosimeter angular dependence in three rotational axes measured free-in-air and in soft-tissue equivalent material.

    PubMed

    Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika

    2013-09-01

    When performing dose measurements on an X-ray device with multiple angles of irradiation, it is necessary to take the angular dependence of metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters into account. The objective of this study was to investigate the angular sensitivity dependence of MOSFET dosimeters in three rotational axes measured free-in-air and in soft-tissue equivalent material using dental photon energy. Free-in-air dose measurements were performed with three MOSFET dosimeters attached to a carbon fibre holder. Soft tissue measurements were performed with three MOSFET dosimeters placed in a polymethylmethacrylate (PMMA) phantom. All measurements were made in the isocenter of a dental cone-beam computed tomography (CBCT) scanner using 5º angular increments in the three rotational axes: axial, normal-to-axial and tangent-to-axial. The measurements were referenced to a RADCAL 1015 dosimeter. The angular sensitivity free-in-air (1 SD) was 3.7 ± 0.5 mV/mGy for axial, 3.8 ± 0.6 mV/mGy for normal-to-axial and 3.6 ± 0.6 mV/mGy for tangent-to-axial rotation. The angular sensitivity in the PMMA phantom was 3.1 ± 0.1 mV/mGy for axial, 3.3 ± 0.2 mV/mGy for normal-to-axial and 3.4 ± 0.2 mV/mGy for tangent-to-axial rotation. The angular sensitivity variations are considerably smaller in PMMA due to the smoothing effect of the scattered radiation. The largest decreases from the isotropic response were observed free-in-air at 90° (distal tip) and 270° (wire base) in the normal-to-axial and tangent-to-axial rotations, respectively. MOSFET dosimeters provide us with a versatile dosimetric method for dental radiology. However, due to the observed variation in angular sensitivity, MOSFET dosimeters should always be calibrated in the actual clinical settings for the beam geometry and angular range of the CBCT exposure.

  8. Characterization of MOSFET dosimeter angular dependence in three rotational axes measured free-in-air and in soft-tissue equivalent material

    PubMed Central

    Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika

    2013-01-01

    When performing dose measurements on an X-ray device with multiple angles of irradiation, it is necessary to take the angular dependence of metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters into account. The objective of this study was to investigate the angular sensitivity dependence of MOSFET dosimeters in three rotational axes measured free-in-air and in soft-tissue equivalent material using dental photon energy. Free-in-air dose measurements were performed with three MOSFET dosimeters attached to a carbon fibre holder. Soft tissue measurements were performed with three MOSFET dosimeters placed in a polymethylmethacrylate (PMMA) phantom. All measurements were made in the isocenter of a dental cone-beam computed tomography (CBCT) scanner using 5º angular increments in the three rotational axes: axial, normal-to-axial and tangent-to-axial. The measurements were referenced to a RADCAL 1015 dosimeter. The angular sensitivity free-in-air (1 SD) was 3.7 ± 0.5 mV/mGy for axial, 3.8 ± 0.6 mV/mGy for normal-to-axial and 3.6 ± 0.6 mV/mGy for tangent-to-axial rotation. The angular sensitivity in the PMMA phantom was 3.1 ± 0.1 mV/mGy for axial, 3.3 ± 0.2 mV/mGy for normal-to-axial and 3.4 ± 0.2 mV/mGy for tangent-to-axial rotation. The angular sensitivity variations are considerably smaller in PMMA due to the smoothing effect of the scattered radiation. The largest decreases from the isotropic response were observed free-in-air at 90° (distal tip) and 270° (wire base) in the normal-to-axial and tangent-to-axial rotations, respectively. MOSFET dosimeters provide us with a versatile dosimetric method for dental radiology. However, due to the observed variation in angular sensitivity, MOSFET dosimeters should always be calibrated in the actual clinical settings for the beam geometry and angular range of the CBCT exposure. PMID:23520268

  9. Establishing Substantial Equivalence: Transcriptomics

    NASA Astrophysics Data System (ADS)

    Baudo, María Marcela; Powers, Stephen J.; Mitchell, Rowan A. C.; Shewry, Peter R.

    Regulatory authorities in Western Europe require transgenic crops to be substantially equivalent to conventionally bred forms if they are to be approved for commercial production. One way to establish substantial equivalence is to compare the transcript profiles of developing grain and other tissues of transgenic and conventionally bred lines, in order to identify any unintended effects of the transformation process. We present detailed protocols for transcriptomic comparisons of developing wheat grain and leaf material, and illustrate their use by reference to our own studies of lines transformed to express additional gluten protein genes controlled by their own endosperm-specific promoters. The results show that the transgenes present in these lines (which included those encoding marker genes) did not have any significant unpredicted effects on the expression of endogenous genes and that the transgenic plants were therefore substantially equivalent to the corresponding parental lines.

  10. Sensitivity of tire response to variations in material and geometric parameters

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Tanner, John A.; Peters, Jeanne M.

    1992-01-01

    A computational procedure is presented for evaluating the analytic sensitivity derivatives of the tire response with respect to material and geometric parameters of the tire. The tire is modeled by using a two-dimensional laminated anisotropic shell theory with the effects of variation in material and geometric parameters included. The computational procedure is applied to the case of uniform inflation pressure on the Space Shuttle nose-gear tire when subjected to uniform inflation pressure. Numerical results are presented showing the sensitivity of the different response quantities to variations in the material characteristics of both the cord and the rubber.

  11. Edge crack sensitivity of lightweight materials under different load conditions

    NASA Astrophysics Data System (ADS)

    Tsoupis, I.; Merklein, M.

    2016-11-01

    This study addresses the analysis of edge crack sensitivity of DP800 steel and AA5182 aluminum alloy in dependency of punching and machining operation as well as load case of subsequent forming. The inserting of a round hole by punching with defined punch-to- die-clearance, milling and drilling is compared. Subsequent forming is performed by standardized hole expansion test and by Nakajima-tests with three different specimen geometries. Local strain distribution at the surface for Nakajima-tests is measured by optical strain measurement technique and investigated in order to evaluate local deformation before failure. Additionally, resulting hole expansion ratio λ is determined. Significant higher X as well as local strain values ε max are achieved by machined holes. This is directly coupled to higher local formability and stretchability for both materials. Furthermore, the load condition has a strong impact on the edge crack sensitivity of the material. Prior failure is observed with changing stress conditions using different specimen geometries also influencing the reachable maximum failure strain. Higher edge crack sensitivity is observed for DP800, which is in good accordance to the material properties in terms of ductility and strength. These data in dependency of the process parameter can be used for the design of automotive components.

  12. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials

    NASA Astrophysics Data System (ADS)

    Zhang, Daliang; Zhu, Yihan; Liu, Lingmei; Ying, Xiangrong; Hsiung, Chia-En; Sougrat, Rachid; Li, Kun; Han, Yu

    2018-02-01

    High-resolution imaging of electron beam–sensitive materials is one of the most difficult applications of transmission electron microscopy (TEM). The challenges are manifold, including the acquisition of images with extremely low beam doses, the time-constrained search for crystal zone axes, the precise image alignment, and the accurate determination of the defocus value. We develop a suite of methods to fulfill these requirements and acquire atomic-resolution TEM images of several metal organic frameworks that are generally recognized as highly sensitive to electron beams. The high image resolution allows us to identify individual metal atomic columns, various types of surface termination, and benzene rings in the organic linkers. We also apply our methods to other electron beam–sensitive materials, including the organic-inorganic hybrid perovskite CH3NH3PbBr3.

  13. Sensitivity of the Boundary Plasma to the Plasma-Material Interface

    DOE PAGES

    Canik, John M.; Tang, X. -Z.

    2017-01-01

    While the sensitivity of the scrape-off layer and divertor plasma to the highly uncertain cross-field transport assumptions is widely recognized, the plasma is also sensitive to the details of the plasma-material interface (PMI) models used as part of comprehensive predictive simulations. Here in this paper, these PMI sensitivities are studied by varying the relevant sub-models within the SOLPS plasma transport code. Two aspects are explored: the sheath model used as a boundary condition in SOLPS, and fast particle reflection rates for ions impinging on a material surface. Both of these have been the study of recent high-fidelity simulation efforts aimedmore » at improving the understanding and prediction of these phenomena. It is found that in both cases quantitative changes to the plasma solution result from modification of the PMI model, with a larger impact in the case of the reflection coefficient variation. Finally, this indicates the necessity to better quantify the uncertainties within the PMI models themselves, and perform thorough sensitivity analysis to propagate these throughout the boundary model; this is especially important for validation against experiment, where the error in the simulation is a critical and less-studied piece of the code-experiment comparison.« less

  14. Missing data handling in non-inferiority and equivalence trials: A systematic review.

    PubMed

    Rabe, Brooke A; Day, Simon; Fiero, Mallorie H; Bell, Melanie L

    2018-05-25

    Non-inferiority (NI) and equivalence clinical trials test whether a new treatment is therapeutically no worse than, or equivalent to, an existing standard of care. Missing data in clinical trials have been shown to reduce statistical power and potentially bias estimates of effect size; however, in NI and equivalence trials, they present additional issues. For instance, they may decrease sensitivity to differences between treatment groups and bias toward the alternative hypothesis of NI (or equivalence). Our primary aim was to review the extent of and methods for handling missing data (model-based methods, single imputation, multiple imputation, complete case), the analysis sets used (Intention-To-Treat, Per-Protocol, or both), and whether sensitivity analyses were used to explore departures from assumptions about the missing data. We conducted a systematic review of NI and equivalence trials published between May 2015 and April 2016 by searching the PubMed database. Articles were reviewed primarily by 2 reviewers, with 6 articles reviewed by both reviewers to establish consensus. Of 109 selected articles, 93% reported some missing data in the primary outcome. Among those, 50% reported complete case analysis, and 28% reported single imputation approaches for handling missing data. Only 32% reported conducting analyses of both intention-to-treat and per-protocol populations. Only 11% conducted any sensitivity analyses to test assumptions with respect to missing data. Missing data are common in NI and equivalence trials, and they are often handled by methods which may bias estimates and lead to incorrect conclusions. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Assessment of doses caused by electrons in thin layers of tissue-equivalent materials, using MCNP.

    PubMed

    Heide, Bernd

    2013-10-01

    Absorbed doses caused by electron irradiation were calculated with Monte Carlo N-Particle transport code (MCNP) for thin layers of tissue-equivalent materials. The layers were so thin that the calculation of energy deposition was on the border of the scope of MCNP. Therefore, in this article application of three different methods of calculation of energy deposition is discussed. This was done by means of two scenarios: in the first one, electrons were emitted from the centre of a sphere of water and also recorded in that sphere; and in the second, an irradiation with the PTB Secondary Standard BSS2 was modelled, where electrons were emitted from an (90)Sr/(90)Y area source and recorded inside a cuboid phantom made of tissue-equivalent material. The speed and accuracy of the different methods were of interest. While a significant difference in accuracy was visible for one method in the first scenario, the difference in accuracy of the three methods was insignificant for the second one. Considerable differences in speed were found for both scenarios. In order to demonstrate the need for calculating the dose in thin small zones, a third scenario was constructed and simulated as well. The third scenario was nearly equal to the second one, but a pike of lead was assumed to be inside the phantom in addition. A dose enhancement (caused by the pike of lead) of ∼113 % was recorded for a thin hollow cylinder at a depth of 0.007 cm, which the basal-skin layer is referred to in particular. Dose enhancements between 68 and 88 % were found for a slab with a radius of 0.09 cm for all depths. All dose enhancements were hardly noticeable for a slab with a cross-sectional area of 1 cm(2), which is usually applied to operational radiation protection.

  16. Investigation of graphene-based nanoscale radiation sensitive materials

    NASA Astrophysics Data System (ADS)

    Robinson, Joshua A.; Wetherington, Maxwell; Hughes, Zachary; LaBella, Michael, III; Bresnehan, Michael

    2012-06-01

    Current state-of-the-art nanotechnology offers multiple benefits for radiation sensing applications. These include the ability to incorporate nano-sized radiation indicators into widely used materials such as paint, corrosion-resistant coatings, and ceramics to create nano-composite materials that can be widely used in everyday life. Additionally, nanotechnology may lead to the development of ultra-low power, flexible detection systems that can be embedded in clothing or other systems. Graphene, a single layer of graphite, exhibits exceptional electronic and structural properties, and is being investigated for high-frequency devices and sensors. Previous work indicates that graphene-oxide (GO) - a derivative of graphene - exhibits luminescent properties that can be tailored based on chemistry; however, exploration of graphene-oxide's ability to provide a sufficient change in luminescent properties when exposed to gamma or neutron radiation has not been carried out. We investigate the mechanisms of radiation-induced chemical modifications and radiation damage induced shifts in luminescence in graphene-oxide materials to provide a fundamental foundation for further development of radiation sensitive detection architectures. Additionally, we investigate the integration of hexagonal boron nitride (hBN) with graphene-based devices to evaluate radiation induced conductivity in nanoscale devices. Importantly, we demonstrate the sensitivity of graphene transport properties to the presence of alpha particles, and discuss the successful integration of hBN with large area graphene electrodes as a means to provide the foundation for large-area nanoscale radiation sensors.

  17. Two-photon sensitized recording materials for multilayer optical disk

    NASA Astrophysics Data System (ADS)

    Akiba, M.; Goto-Takahashi, E.; Takizawa, H.; Sasaki, T.; Mochizuki, H.; Mikami, T.; Kitahara, T.

    2010-06-01

    Two types of novel two-photon sensitized recording material writable at 405 nm and 522nm were developed. The fluorescent dye generation type (F-type) material consists of at least two-photon absorption dye (TPAD) and fluorescent dye precursor (FDP), which is non-fluorescent before two-photon recording and fluorescent after two-photon recording due to fluorescent dye generation. The fluorescence quench type (Q-type) material, on the other hand, consists of at least TPAD, fluorescent dye (FD) and fluorescent quencher precursor (QP), which is fluorescent before two-photon recording and the fluorescence intensity is reduced after two-photon recording at the recorded spot due to fluorescent quencher generation. Both types of material showed quadratic dependency of recording light intensity at 522 and 405 nm. A twenty-layer two-photon recording media was fabricated with the Q-type material, and two-photon recording and onephoton fluorescent signal readout was successfully conducted.

  18. Equivalent Skin Analysis of Wing Structures Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Liu, Youhua; Kapania, Rakesh K.

    2000-01-01

    An efficient method of modeling trapezoidal built-up wing structures is developed by coupling. in an indirect way, an Equivalent Plate Analysis (EPA) with Neural Networks (NN). Being assumed to behave like a Mindlin-plate, the wing is solved using the Ritz method with Legendre polynomials employed as the trial functions. This analysis method can be made more efficient by avoiding most of the computational effort spent on calculating contributions to the stiffness and mass matrices from each spar and rib. This is accomplished by replacing the wing inner-structure with an "equivalent" material that combines to the skin and whose properties are simulated by neural networks. The constitutive matrix, which relates the stress vector to the strain vector, and the density of the equivalent material are obtained by enforcing mass and stiffness matrix equities with rec,ard to the EPA in a least-square sense. Neural networks for the material properties are trained in terms of the design variables of the wing structure. Examples show that the present method, which can be called an Equivalent Skin Analysis (ESA) of the wing structure, is more efficient than the EPA and still fairly good results can be obtained. The present ESA is very promising to be used at the early stages of wing structure design.

  19. Equivalent-Continuum Modeling With Application to Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2002-01-01

    A method has been proposed for developing structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with equivalent-continuum models. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As important examples with direct application to the development and characterization of single-walled carbon nanotubes and the design of nanotube-based devices, the modeling technique has been applied to determine the effective-continuum geometry and bending rigidity of a graphene sheet. A representative volume element of the chemical structure of graphene has been substituted with equivalent-truss and equivalent continuum models. As a result, an effective thickness of the continuum model has been determined. This effective thickness has been shown to be significantly larger than the interatomic spacing of graphite. The effective thickness has been shown to be significantly larger than the inter-planar spacing of graphite. The effective bending rigidity of the equivalent-continuum model of a graphene sheet was determined by equating the vibrational potential energy of the molecular model of a graphene sheet subjected to cylindrical bending with the strain energy of an equivalent continuum plate subjected to cylindrical bending.

  20. Analysis of Deformation and Equivalent Stress during Biomass Material Compression Molding

    NASA Astrophysics Data System (ADS)

    Xu, Guiying; Wei, Hetao; Zhang, Zhien; Yu, Shaohui; Wang, Congzhe; Huang, Guowen

    2018-02-01

    Ansys is adopted to analyze mold deformation and stress field distribution rule during the process of compressing biomass under pressure of 20Mpa. By means of unit selection, material property setting, mesh partition, contact pair establishment, load and constraint applying, and solver setting, the stress and strain of overall mold are analyzed. Deformation and equivalent Stress of compression structure, base, mold, and compression bar were analyzed. We can have conclusions: The distribution of stress forced on compressor is not completely uniform, where the stress at base is slightly decreased; the stress and strain of compression bar is the largest, and stress concentration my occur at top of compression bar, which goes against compression bar service life; the overall deformation of main mold is smaller; although there is slight difference between upper and lower part, the overall variation is not obvious, but the stress difference between upper and lower part of main mold is extremely large so that reaches to 10 times; the stress and strain in base decrease in circular shape, but there is still stress concentration in ledge, which goes against service life; contact stress does not distribute uniformly, there is increasing or decreasing trend in adjacent parts, which is very large in some parts. in constructing both.

  1. Lumped-parameters equivalent circuit for condenser microphones modeling.

    PubMed

    Esteves, Josué; Rufer, Libor; Ekeom, Didace; Basrour, Skandar

    2017-10-01

    This work presents a lumped parameters equivalent model of condenser microphone based on analogies between acoustic, mechanical, fluidic, and electrical domains. Parameters of the model were determined mainly through analytical relations and/or finite element method (FEM) simulations. Special attention was paid to the air gap modeling and to the use of proper boundary condition. Corresponding lumped-parameters were obtained as results of FEM simulations. Because of its simplicity, the model allows a fast simulation and is readily usable for microphone design. This work shows the validation of the equivalent circuit on three real cases of capacitive microphones, including both traditional and Micro-Electro-Mechanical Systems structures. In all cases, it has been demonstrated that the sensitivity and other related data obtained from the equivalent circuit are in very good agreement with available measurement data.

  2. High pressure liquid and gaseous oxygen impact sensitivity evaluation of materials for use at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Bryan, C. J.

    1976-01-01

    The sensitivity of materials in contact with gaseous oxygen (GOX) or liquid oxygen (LOX) was examined. Specifically, the reactivity of materials when in contact with GOX or LOX if subjected to such stimuli as mechanical impact, adiabatic compression (pneumatic impact), or an electrical discharge in the form of a spark were examined. Generally, materials are more sensitive in gaseous oxygen than in liquid oxygen and impact sensitivity is known to increase with increasing pressure. Materials presently being used or considered for use in oxygen systems at KSC were evaluated. Results are given in tabular form.

  3. Dependence of equivalent thermal conductivity coefficients of single-wall carbon nanotubes on their chirality

    NASA Astrophysics Data System (ADS)

    Zarubin, V. S.; Sergeeva, E. S.

    2018-04-01

    Composite materials (composites) composed of a matrix and reinforcing components are currently widely used as structural materials for various engineering devices designed to operate under extreme thermal and mechanical loads. By modifying a composite with structure-sensitive inclusions such as single-wall carbon nanotubes, one can significantly improve the thermomechanical properties of the resulting material. The paper presents relationships obtained for the equivalent thermal conductivity coefficients of single-wall carbon nanotubes versus their chirality using a simulation model developed to simulate the heat transfer process through thermal conductivity in a transversely isotropic environment. With these coefficients, one can conventionally substitute a single-wall carbon nanotube with a continuous anisotropic fiber, thus allowing one to estimate the thermal properties of composites reinforced with objects of this sort by using the well-known models developed for fibered composites. The results presented here can be used to estimate the thermal properties of carbon nanotube-reinforced composites.

  4. Basis material decomposition method for material discrimination with a new spectrometric X-ray imaging detector

    NASA Astrophysics Data System (ADS)

    Brambilla, A.; Gorecki, A.; Potop, A.; Paulus, C.; Verger, L.

    2017-08-01

    Energy sensitive photon counting X-ray detectors provide energy dependent information which can be exploited for material identification. The attenuation of an X-ray beam as a function of energy depends on the effective atomic number Zeff and the density. However, the measured attenuation is degraded by the imperfections of the detector response such as charge sharing or pile-up. These imperfections lead to non-linearities that limit the benefits of energy resolved imaging. This work aims to implement a basis material decomposition method which overcomes these problems. Basis material decomposition is based on the fact that the attenuation of any material or complex object can be accurately reproduced by a combination of equivalent thicknesses of basis materials. Our method is based on a calibration phase to learn the response of the detector for different combinations of thicknesses of the basis materials. The decomposition algorithm finds the thicknesses of basis material whose spectrum is closest to the measurement, using a maximum likelihood criterion assuming a Poisson law distribution of photon counts for each energy bin. The method was used with a ME100 linear array spectrometric X-ray imager to decompose different plastic materials on a Polyethylene and Polyvinyl Chloride base. The resulting equivalent thicknesses were used to estimate the effective atomic number Zeff. The results are in good agreement with the theoretical Zeff, regardless of the plastic sample thickness. The linear behaviour of the equivalent lengths makes it possible to process overlapped materials. Moreover, the method was tested with a 3 materials base by adding gadolinium, whose K-edge is not taken into account by the other two materials. The proposed method has the advantage that it can be used with any number of energy channels, taking full advantage of the high energy resolution of the ME100 detector. Although in principle two channels are sufficient, experimental measurements show

  5. Sensitivity Characterization of Pressed Energetic Materials using Flyer Plate Mesoscale Simulations

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal; Udaykumar, H. S.

    Heterogeneous energetic materials like pressed explosives have complicated microstructure and contain various forms of heterogeneities such as pores, micro-cracks, energetic crystals etc. It is widely accepted that the presence of these heterogeneities can affect the sensitivity of these materials under shock load. The interaction of shock load with the microstructural heterogeneities may leads to the formation of local heated regions known as ``hot spots''. Chemical reaction may trigger at the hot spot regions depending on the hot spot temperature and the duration over which the temperature can be maintained before phenomenon like heat conduction, rarefaction waves withdraws energy from it. There are different mechanisms which can lead to the formation of hot spots including void collapse. The current work is focused towards the sensitivity characterization of two HMX based pressed energetic materials using flyer plate mesoscale simulations. The aim of the current work is to develop mesoscale numerical framework which can perform simulations by replicating the laboratory based flyer plate experiments. The current numerical framework uses an image processing approach to represent the microstructural heterogeneities incorporated in a massively parallel Eulerian code SCIMITAR3D. The chemical decomposition of HMX is modeled using Henson-Smilowitz reaction mechanism. The sensitivity characterization is aimed towards obtaining James initiation threshold curve and comparing it with the experimental results.

  6. 3-nitro-1,2,4-triazol-5-one: A less sensitive explosive

    DOEpatents

    Lee, Kien-Yin; Coburn, M.D.

    1987-01-30

    A less sensitive explosive, 3-nitro-1,2,4-triazol-5-one. The compound 3-nitro--1,2,4-triazol-5-one (NTO) has a crystal density of 1.93 g/cm/sup 3/ and calculated detonation velocity and pressure equivalent to those of RDX. It can be prepared in high yield from inexpensive starting materials in a safe synthesis. Results from initial small-scale sensitivity tests indicate that NTO is less sensitive than RDX and HMX in all respects. A 4.13 cm diameter, unconfined plate-dent test at 92% of crystal density gave the detonation pressure predicted for NTO by the BKW calculation. 3 tabs.

  7. 3-nitro-1,2,4-triazol-5-one, a less sensitive explosive

    DOEpatents

    Lee, Kien-Yin; Coburn, Michael D.

    1988-01-01

    A less sensitive explosive, 3-nitro-1,2,4-triazol-5-one. The compound 3-nitro-1,2,4-triazol-5-one (NTO) has a crystal density of 1.93 g/cm.sup.3 and calculated detonation velocity and pressure equivalent to those of RDX. It can be prepared in high yield from inexpensive starting materials in a safe synthesis. Results from initial small-scale sensitivity tests indicate that NTO is less sensitive than RDX and HMX in all respects. A 4.13 cm diameter, unconfined plate-dent test at 92% of crystal density gave the detonation pressure predicted for NTO by the BKW calculation.

  8. New infrared-sensitive photopolymer materials for information storage and processing

    NASA Astrophysics Data System (ADS)

    Nagtegaele, Patrice; Galstian, Tigran V.

    2001-11-01

    In response to the increasing demand of information systems, we need new materials with high performance for storage and processing applications. Available on the market optical storage materials present very useful characteristics but are still limited in the visible spectrum and are expansive. Recently, we have developed holographic polymer dispersed liquid crystal (H-PDLC) materials sensitive in the near infrared region (800 nm to 850 nm). These compounds are based on acrylate monomers and different liquid crystals (LC) and allow highly efficient in-situ recording of holographic optical elements using infra red lasers. Diffraction efficiency above 95% is demonstrated. Photosensitivity of the material, its dark ­development and photochemical stability of recorded gratings are investigated. The angular and spectral selectivities of gratings, recorded in these films are examined for recovering the refractive index modulation profile.

  9. 14 CFR 1213.107 - Preventing unauthorized release of sensitive but unclassified (SBU) information/material to the...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... sensitive but unclassified (SBU) information/material to the news media. 1213.107 Section 1213.107... INFORMATION MEDIA § 1213.107 Preventing unauthorized release of sensitive but unclassified (SBU) information/material to the news media. (a) All NASA SBU information requires accountability and approval for release...

  10. 14 CFR 1213.107 - Preventing unauthorized release of sensitive but unclassified (SBU) information/material to the...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... sensitive but unclassified (SBU) information/material to the news media. 1213.107 Section 1213.107... INFORMATION MEDIA § 1213.107 Preventing unauthorized release of sensitive but unclassified (SBU) information/material to the news media. (a) All NASA SBU information requires accountability and approval for release...

  11. 14 CFR 1213.107 - Preventing unauthorized release of sensitive but unclassified (SBU) information/material to the...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... sensitive but unclassified (SBU) information/material to the news media. 1213.107 Section 1213.107... INFORMATION MEDIA § 1213.107 Preventing unauthorized release of sensitive but unclassified (SBU) information/material to the news media. (a) All NASA SBU information requires accountability and approval for release...

  12. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    PubMed

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-07

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  13. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions

    PubMed Central

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-01-01

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient’s body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. Inmost cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy. PMID:20371908

  14. The Otto-engine-equivalent vehicle concept

    NASA Technical Reports Server (NTRS)

    Dowdy, M. W.; Couch, M. D.

    1978-01-01

    A vehicle comparison methodology based on the Otto-Engine Equivalent (OEE) vehicle concept is described. As an illustration of this methodology, the concept is used to make projections of the fuel economy potential of passenger cars using various alternative power systems. Sensitivities of OEE vehicle results to assumptions made in the calculational procedure are discussed. Factors considered include engine torque boundary, rear axle ratio, performance criteria, engine transient response, and transmission shift logic.

  15. Effective dose equivalent on the ninth Shuttle--Mir mission (STS-91)

    NASA Technical Reports Server (NTRS)

    Yasuda, H.; Badhwar, G. D.; Komiyama, T.; Fujitaka, K.

    2000-01-01

    Organ and tissue doses and effective dose equivalent were measured using a life-size human phantom on the ninth Shuttle-Mir Mission (STS-91, June 1998), a 9.8-day spaceflight at low-Earth orbit (about 400 km in altitude and 51.65 degrees in inclination). The doses were measured at 59 positions using a combination of thermoluminescent dosimeters of Mg(2)SiO(4):Tb (TDMS) and plastic nuclear track detectors (PNTD). In correcting the change in efficiency of the TDMS, it was assumed that reduction of efficiency is attributed predominantly to HZE particles with energy greater than 100 MeV nucleon(-1). A conservative calibration curve was chosen for determining LET from the PNTD track-formation sensitivities. The organ and tissue absorbed doses during the mission ranged from 1.7 to 2.7 mGy and varied by a factor of 1.6. The dose equivalent ranged from 3.4 to 5.2 mSv and varied by a factor of 1.5 on the basis of the dependence of Q on LET in the 1990 recommendations of the ICRP. The effective quality factor (Q(e)) varied from 1.7 to 2.4. The dose equivalents for several radiation-sensitive organs, such as the stomach, lung, gonad and breast, were not significantly different from the skin dose equivalent (H(skin)). The effective dose equivalent was evaluated as 4.1 mSv, which was about 90% of the H(skin).

  16. Test of the Equivalence Principle in an Einstein Elevator

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.

    2002-01-01

    The scientific goal of the experiment is to test the equality of gravitational and inertial mass (i.e., to test the Principle of Equivalence) by measuring the independence of the rate of fall of bodies from the composition of the falling body. The measurement is accomplished by measuring the relative displacement (or equivalently acceleration) of two falling bodies of different materials which are the proof masses of a differential accelerometer. The goal of the experiment is to measure the Eotvos ratio delta-g/g (differential acceleration/common acceleration) with an accuracy goal of a few parts in 10(exp 15). The estimated accuracy is about two orders of magnitude better than the present state of the art. The experiment is a null experiment in which a result different from zero will indicate a violation of the Equivalence Principle. The main goal of the study to be carried out under this grant is the flight definition of the experiment and bread boarding of critical components of the experiment that will enable us to be ready for the following phases of the project. The project involves an international cooperation in which the responsibility of the US side is the flight definition of the experimental facility while the responsibility of the non-US partners is the flight definition and laboratory prototyping of the differential acceleration detector. In summary, the experiment to be designed is for taking differential acceleration measurements with a high-sensitivity detector (the sensor) during free fall conditions lasting up to 30 s in a disturbance-free acceleration environment. The experiment strategy consists in letting the sensor free fall inside a few meters long (in the vertical direction) evacuated capsule that is falling simultaneously in the rarefied atmosphere after release from a helium balloon flying at a stratospheric altitude.

  17. An Energy-Equivalent d+/d− Damage Model with Enhanced Microcrack Closure-Reopening Capabilities for Cohesive-Frictional Materials

    PubMed Central

    Cervera, Miguel; Tesei, Claudia

    2017-01-01

    In this paper, an energy-equivalent orthotropic d+/d− damage model for cohesive-frictional materials is formulated. Two essential mechanical features are addressed, the damage-induced anisotropy and the microcrack closure-reopening (MCR) effects, in order to provide an enhancement of the original d+/d− model proposed by Faria et al. 1998, while keeping its high algorithmic efficiency unaltered. First, in order to ensure the symmetry and positive definiteness of the secant operator, the new formulation is developed in an energy-equivalence framework. This proves thermodynamic consistency and allows one to describe a fundamental feature of the orthotropic damage models, i.e., the reduction of the Poisson’s ratio throughout the damage process. Secondly, a “multidirectional” damage procedure is presented to extend the MCR capabilities of the original model. The fundamental aspects of this approach, devised for generic cyclic conditions, lie in maintaining only two scalar damage variables in the constitutive law, while preserving memory of the degradation directionality. The enhanced unilateral capabilities are explored with reference to the problem of a panel subjected to in-plane cyclic shear, with or without vertical pre-compression; depending on the ratio between shear and pre-compression, an absent, a partial or a complete stiffness recovery is simulated with the new multidirectional procedure. PMID:28772793

  18. Equivalent background speed in recovery from motion adaptation.

    PubMed

    Simpson, W A; Newman, A; Aasland, W

    1997-01-01

    We measured, in the same observers, (1) the detectability, d, of a small rotational jump following adaptation to rotational motion and (2) the detectability of the same jump when superimposed on one of several background rotation speeds. Following 90 s of motion adaptation the detectability of the jump was impaired, and sensitivity slowly recovered over the course of 60 s. The detectability of the jump was also impaired by the background speed in a way consistent with a quadratic form of Weber's law. We propose that motion adaptation impairs the detectability of the small jump because it is as if an equivalent background speed has been superimposed on the display. We measured the equivalent background by finding the real background speed that produced the same d' at each instant in the recovery from motion adaptation. The equivalent background started at approximately one to two thirds the speed of the adapting motion, declined rapidly, rose to a small peak at 30 s, then disappeared by 60 s. Since the equivalent background speed corresponds to the speed of the motion aftereffect, we have measured the time course of the motion aftereffect with objective psychophysics.

  19. An Earth-Based Equivalent Low Stretch Apparatus to Assess Material Flammability for Microgravity and Extraterrestrial Fire-Safety Applications

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Beeson, H.; Haas, J. P.

    2003-01-01

    The objective of this project is to modify the standard oxygen consumption (cone) calorimeter (described in ASTM E 1354 and NASA STD 6001 Test 2) to provide a reproducible bench-scale test environment that simulates the buoyant or ventilation flow that would be generated by or around a burning surface in a spacecraft or extraterrestrial gravity level. This apparatus will allow us to conduct normal gravity experiments that accurately and quantitatively evaluate a material's flammability characteristics in the real-use environment of spacecraft or extra-terrestrial gravitational acceleration. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone geometry with the sample burning in a ceiling fire configuration that provides a reproducible bench-scale test environment that simulates the buoyant or ventilation flow that would be generated by a flame in a spacecraft or extraterrestrial gravity level. Prototype unit testing results are presented in this paper. Ignition delay times and regression rates for PMMA are presented over a range of radiant heat flux levels and equivalent stretch rates which demonstrate the ability of ELSA to simulate key features of microgravity and extraterrestrial fire behavior.

  20. "Galileo Airborne Test Of Equivalence"-Gate

    NASA Astrophysics Data System (ADS)

    Nobili, A. M.; Unnikrishnan, C. S.; Suresh, D.

    A differential Galileo-type mass dropping experiment named GAL was proposed at the University of Pisa in 1986 and completed at CERN in 1992 (Carusotto et al., PRL 69, 1722) in order to test the Equivalence Principle by testing the Universality of Free Fall. The free falling mass was a disk made of two half disks of different composition; a violation of equivalence would produce an angular acceleration of the disk around its symmetry axis, which was measured with a modified Michelson interferometer. GATE -``Galileo Airborne Test of Equivalence'' is a variant of that experiment to be performed in parabolic flight on-board the ``Airbus A300 Zero-g'' aircraft of the European Space Agency (ESA). The main advantages of GATE with respect to GAL are the longer time of free fall and the absence of weight in the final stage of unlocking. The longer time of fall makes the signal stronger (the signal grows quadratically with the time of fall); unlocking at zero-g can significantly reduce spurious angular accelerations of the disk due to inevitable imperfections in the locking/unlocking mechanism, which turned out to be the limiting factor in GAL. A preliminary estimate indicates that GATE should be able to achieve a sensitivity η ≡ Δ g/g≃ 10-13, an improvement by about 3 orders of magnitude with respect to GAL and by about 1 order of magnitude with respect to the best result obtained with a slowly rotating torsion balance by the ``Eöt-Wash'' group at the University of Washington. Ground tests of the read-out and of the locking/unlocking disturbances can be carried out prior to the aircraft experiment. Locking/unlocking tests, retrieval tests, as well as tests of the aircraft environment can be performed onboard the Airbus A-300 in preparation for the actual experiment. The GATE experiment can be viewed as an Equivalence Principle test of intermediate sensitivity between torsion balance ground tests (10-12), balloon or micro-satellite (150 kg) tests (GREAT and μ SCOPE

  1. Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li-S and Na-S batteries.

    PubMed

    Ye, Hualin; Ma, Lu; Zhou, Yu; Wang, Lu; Han, Na; Zhao, Feipeng; Deng, Jun; Wu, Tianpin; Li, Yanguang; Lu, Jun

    2017-12-12

    Many problems associated with Li-S and Na-S batteries essentially root in the generation of their soluble polysulfide intermediates. While conventional wisdom mainly focuses on trapping polysulfides at the cathode using various functional materials, few strategies are available at present to fully resolve or circumvent this long-standing issue. In this study, we propose the concept of sulfur-equivalent cathode materials, and demonstrate the great potential of amorphous MoS 3 as such a material for room-temperature Li-S and Na-S batteries. In Li-S batteries, MoS 3 exhibits sulfur-like behavior with large reversible specific capacity, excellent cycle life, and the possibility to achieve high areal capacity. Most remarkably, it is also fully cyclable in the carbonate electrolyte under a relatively high temperature of 55 °C. MoS 3 can also be used as the cathode material of even more challenging Na-S batteries to enable decent capacity and good cycle life. Operando X-ray absorption spectroscopy (XAS) experiments are carried out to track the structural evolution of MoS 3 It largely preserves its chain-like structure during repetitive battery cycling without generating any free polysulfide intermediates.

  2. Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li–S and Na–S batteries

    PubMed Central

    Ye, Hualin; Ma, Lu; Zhou, Yu; Wang, Lu; Han, Na; Zhao, Feipeng; Deng, Jun; Wu, Tianpin; Li, Yanguang; Lu, Jun

    2017-01-01

    Many problems associated with Li–S and Na–S batteries essentially root in the generation of their soluble polysulfide intermediates. While conventional wisdom mainly focuses on trapping polysulfides at the cathode using various functional materials, few strategies are available at present to fully resolve or circumvent this long-standing issue. In this study, we propose the concept of sulfur-equivalent cathode materials, and demonstrate the great potential of amorphous MoS3 as such a material for room-temperature Li–S and Na–S batteries. In Li–S batteries, MoS3 exhibits sulfur-like behavior with large reversible specific capacity, excellent cycle life, and the possibility to achieve high areal capacity. Most remarkably, it is also fully cyclable in the carbonate electrolyte under a relatively high temperature of 55 °C. MoS3 can also be used as the cathode material of even more challenging Na–S batteries to enable decent capacity and good cycle life. Operando X-ray absorption spectroscopy (XAS) experiments are carried out to track the structural evolution of MoS3. It largely preserves its chain-like structure during repetitive battery cycling without generating any free polysulfide intermediates. PMID:29180431

  3. Differences between near-surface equivalent temperature and temperature trends for the Eastern United States. Equivalent temperature as an alternative measure of heat content

    USGS Publications Warehouse

    Davey, C.A.; Pielke, R.A.; Gallo, K.P.

    2006-01-01

    There is currently much attention being given to the observed increase in near-surface air temperatures during the last century. The proper investigation of heating trends, however, requires that we include surface heat content to monitor this aspect of the climate system. Changes in heat content of the Earth's climate are not fully described by temperature alone. Moist enthalpy or, alternatively, equivalent temperature, is more sensitive to surface vegetation properties than is air temperature and therefore more accurately depicts surface heating trends. The microclimates evident at many surface observation sites highlight the influence of land surface characteristics on local surface heating trends. Temperature and equivalent temperature trend differences from 1982-1997 are examined for surface sites in the Eastern U.S. Overall trend differences at the surface indicate equivalent temperature trends are relatively warmer than temperature trends in the Eastern U.S. Seasonally, equivalent temperature trends are relatively warmer than temperature trends in winter and are relatively cooler in the fall. These patterns, however, vary widely from site to site, so local microclimate is very important. ?? 2006 Elsevier B.V. All rights reserved.

  4. TNT equivalency of M10 propellant

    NASA Technical Reports Server (NTRS)

    Mcintyre, F. L.; Price, P.

    1978-01-01

    Peak, side-on blast overpressure and scaled, positive impulse have been measured for M10 single-perforated propellant, web size 0.018 inches, using configurations that simulate the handling of bulk material during processing and shipment. Quantities of 11.34, 22.7, 45.4, and 65.8 kg were tested in orthorhombic shipping containers and fiberboard boxes. High explosive equivalency values for each test series were obtained as a function of scaled distance by comparison to known pressure, arrival time and impulse characteristics for hemispherical TNT surface bursts. The equivalencies were found to depend significantly on scaled distance, with higher values of 150-100 percent (pressure) and 350-125 percent (positive impulse) for the extremes within the range from 1.19 to 3.57 m/cube root of kg. Equivalencies as low as 60-140 percent (pressure) and 30-75 percent (positive impulse) were obtained in the range of 7.14 to 15.8 m/cube root of kg. Within experimental error, both peak pressure and positive impulse scaled as a function of charge weight for all quantities tested in the orthorhombic configuration.

  5. Global sensitivity analysis of multiscale properties of porous materials

    NASA Astrophysics Data System (ADS)

    Um, Kimoon; Zhang, Xuan; Katsoulakis, Markos; Plechac, Petr; Tartakovsky, Daniel M.

    2018-02-01

    Ubiquitous uncertainty about pore geometry inevitably undermines the veracity of pore- and multi-scale simulations of transport phenomena in porous media. It raises two fundamental issues: sensitivity of effective material properties to pore-scale parameters and statistical parameterization of Darcy-scale models that accounts for pore-scale uncertainty. Homogenization-based maps of pore-scale parameters onto their Darcy-scale counterparts facilitate both sensitivity analysis (SA) and uncertainty quantification. We treat uncertain geometric characteristics of a hierarchical porous medium as random variables to conduct global SA and to derive probabilistic descriptors of effective diffusion coefficients and effective sorption rate. Our analysis is formulated in terms of solute transport diffusing through a fluid-filled pore space, while sorbing to the solid matrix. Yet it is sufficiently general to be applied to other multiscale porous media phenomena that are amenable to homogenization.

  6. Sensitivity of WallDYN material migration modeling to uncertainties in mixed-material surface binding energies

    DOE PAGES

    Nichols, J. H.; Jaworski, M. A.; Schmid, K.

    2017-03-09

    The WallDYN package has recently been applied to a number of tokamaks to self-consistently model the evolution of mixed-material plasma facing surfaces. A key component of the WallDYN model is the concentration-dependent surface sputtering rate, calculated using SDTRIM.SP. This modeled sputtering rate is strongly influenced by the surface binding energies (SBEs) of the constituent materials, which are well known for pure elements but often are poorly constrained for mixed-materials. This work examines the sensitivity of WallDYN surface evolution calculations to different models for mixed-material SBEs, focusing on the carbon/lithium/oxygen/deuterium system present in NSTX. A realistic plasma background is reconstructed frommore » a high density, H-mode NSTX discharge, featuring an attached outer strike point with local density and temperature of 4 × 10 20 m -3 and 4 eV, respectively. It is found that various mixed-material SBE models lead to significant qualitative and quantitative changes in the surface evolution profile at the outer divertor, with the highest leverage parameter being the C-Li binding model. Uncertainties of order 50%, appearing on time scales relevant to tokamak experiments, highlight the importance of choosing an appropriate mixed-material sputtering representation when modeling the surface evolution of plasma facing components. Lastly, these results are generalized to other fusion-relevant materials with different ranges of SBEs.« less

  7. Sensitivity of WallDYN material migration modeling to uncertainties in mixed-material surface binding energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, J. H.; Jaworski, M. A.; Schmid, K.

    The WallDYN package has recently been applied to a number of tokamaks to self-consistently model the evolution of mixed-material plasma facing surfaces. A key component of the WallDYN model is the concentration-dependent surface sputtering rate, calculated using SDTRIM.SP. This modeled sputtering rate is strongly influenced by the surface binding energies (SBEs) of the constituent materials, which are well known for pure elements but often are poorly constrained for mixed-materials. This work examines the sensitivity of WallDYN surface evolution calculations to different models for mixed-material SBEs, focusing on the carbon/lithium/oxygen/deuterium system present in NSTX. A realistic plasma background is reconstructed frommore » a high density, H-mode NSTX discharge, featuring an attached outer strike point with local density and temperature of 4 × 10 20 m -3 and 4 eV, respectively. It is found that various mixed-material SBE models lead to significant qualitative and quantitative changes in the surface evolution profile at the outer divertor, with the highest leverage parameter being the C-Li binding model. Uncertainties of order 50%, appearing on time scales relevant to tokamak experiments, highlight the importance of choosing an appropriate mixed-material sputtering representation when modeling the surface evolution of plasma facing components. Lastly, these results are generalized to other fusion-relevant materials with different ranges of SBEs.« less

  8. Local unitary equivalence of quantum states and simultaneous orthogonal equivalence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Naihuan, E-mail: jing@ncsu.edu; Yang, Min; Zhao, Hui, E-mail: zhaohui@bjut.edu.cn

    2016-06-15

    The correspondence between local unitary equivalence of bipartite quantum states and simultaneous orthogonal equivalence is thoroughly investigated and strengthened. It is proved that local unitary equivalence can be studied through simultaneous similarity under projective orthogonal transformations, and four parametrization independent algorithms are proposed to judge when two density matrices on ℂ{sup d{sub 1}} ⊗ ℂ{sup d{sub 2}} are locally unitary equivalent in connection with trace identities, Kronecker pencils, Albert determinants and Smith normal forms.

  9. Nuclear reaction measurements on tissue-equivalent materials and GEANT4 Monte Carlo simulations for hadrontherapy

    NASA Astrophysics Data System (ADS)

    De Napoli, M.; Romano, F.; D'Urso, D.; Licciardello, T.; Agodi, C.; Candiano, G.; Cappuzzello, F.; Cirrone, G. A. P.; Cuttone, G.; Musumarra, A.; Pandola, L.; Scuderi, V.

    2014-12-01

    When a carbon beam interacts with human tissues, many secondary fragments are produced into the tumor region and the surrounding healthy tissues. Therefore, in hadrontherapy precise dose calculations require Monte Carlo tools equipped with complex nuclear reaction models. To get realistic predictions, however, simulation codes must be validated against experimental results; the wider the dataset is, the more the models are finely tuned. Since no fragmentation data for tissue-equivalent materials at Fermi energies are available in literature, we measured secondary fragments produced by the interaction of a 55.6 MeV u-1 12C beam with thick muscle and cortical bone targets. Three reaction models used by the Geant4 Monte Carlo code, the Binary Light Ions Cascade, the Quantum Molecular Dynamic and the Liege Intranuclear Cascade, have been benchmarked against the collected data. In this work we present the experimental results and we discuss the predictive power of the above mentioned models.

  10. Highly Sensitive Measurements of 222Rn Diffusion and Emanation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuzel, Grzegorz

    Highly sensitive techniques for determination of the 222Rn emanation from solids and diffusion through different membranes are presented. 222Rn and its daughters are measured via the alpha decays in special proportional counters at the absolute sensitivity of {approx}30 {mu}Bq. Radon diffusion can be measured at the level of {approx}10-13 cm2/s. Several samples were examined, e.g. stainless steel, teflon, various gaskets (emanation and diffusion measurements) and tanks. A combination of measurements of the 222Rn diffusion and emanation of thin nylon foils (used in the Borexino experiment) allowed the determination of 226Ra in the materials of interest at the level of {approx}10-12more » g/g 238U-equivalent.« less

  11. Equivalent weight of humic acid from peat

    USGS Publications Warehouse

    Pommer, A.M.; Breger, I.A.

    1960-01-01

    By means of discontinuous titration, the equivalent weight of humic acid isolated from a peat was found to increase from 144 to 183 between the third and fifty-second day after the humic acid was dissolved. Infra-red studies showed that the material had probably condensed with loss of carbonyl groups. ?? 1960.

  12. Quantitative determination of radio-opacity: equivalence of digital and film X-ray systems.

    PubMed

    Nomoto, R; Mishima, A; Kobayashi, K; McCabe, J F; Darvell, B W; Watts, D C; Momoi, Y; Hirano, S

    2008-01-01

    To evaluate the equivalence of a digital X-ray system (DenOptix) to conventional X-ray film in terms of the measured radio-opacity of known filled-resin materials and the suitability of attenuation coefficient for radio-opacity determination. Discs of five thicknesses (0.5-2.5mm) and step-wedges of each of three composite materials of nominal aluminum-equivalence of 50%, 200% and 450% were used. X-ray images of a set of discs (or step-wedge), an aluminum step-wedge, and a lead block were taken at 65 kV and 10 mA at a focus-film distance of 400 mm for 0.15s and 1.6s using an X-ray film or imaging plate. Radio-opacity was determined as equivalent aluminum thickness and attenuation coefficient. The logarithm of the individual optical density or gray scale value, corrected for background, was plotted against thickness, and the attenuation coefficient determined from the slope. The method of ISO 4049 was used for equivalent aluminum thickness. The equivalent aluminum thickness method is not suitable for materials of low radio-opacity, while the attenuation coefficient method could be used for all without difficulty. The digital system gave attenuation coefficients of greater precision than did film, but the use of automatic gain control (AGC) distorted the outcome unusably. Attenuation coefficient is a more precise and generally applicable approach to the determination of radio-opacity. The digital system was equivalent to film but with less noise. The use of AGC is inappropriate for such determinations.

  13. Increased Throughput and Sensitivity of Synchrotron-Based Characterization for Photovoltaic Materials

    DOE PAGES

    Morishige, Ashley E.; Laine, Hannu S.; Looney, Erin E.; ...

    2017-04-03

    Optimizing photovoltaic (PV) devices requires characterization and optimization across several length scales, from centimeters to nanometers. Synchrotron-based micro-X-ray fluorescence spectromicroscopy (μ-XRF) is a valuable link in the PV-related material and device characterization suite. μ-XRF maps of elemental distributions in PV materials have high spatial resolution and excellent sensitivity and can be measured on absorber materials and full devices. Recently, we implemented on-the-fly data collection (flyscan) at Beamline 2-ID-D at the Advanced Photon Source at Argonne National Laboratory, eliminating a 300 ms per-pixel overhead time. This faster scanning enables high-sensitivity (~10 14 atoms/cm 2), large-area (10 000s of μm 2), high-spatialmore » resolution (<;200 nm scale) maps to be completed within a practical scanning time. We specifically show that when characterizing detrimental trace metal precipitate distributions in multicrystalline silicon wafers for PV, flyscans can increase the productivity of μ-XRF by an order of magnitude. Additionally, flyscan μ-XRF mapping enables relatively large-area correlative microscopy. As an example, we map the transition metal distribution in a 50 μm-diameter laser-fired contact of a silicon solar cell before and after lasing. As a result, while we focus on μ-XRF of mc-Si wafers for PV, our results apply broadly to synchrotron-based mapping of PV absorbers and devices.« less

  14. Test of the Equivalence Principle in an Einstein Elevator

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.; Glashow, S.; Lorenzini, E. C.; Cosmo, M. L.; Cheimets, P.; Finkelstein, N.; Schneps, M.

    2004-01-01

    The scientific goal of the experiment is to test the equality of gravitational and inertial mass (i.e., to test the Principle of Equivalence) by measuring the independence of the rate of fall of bodies from the composition of the falling body. The measurement is accomplished by measuring the relative displacement (or equivalently acceleration) of two falling bodies of different materials which are the proof masses of a differential accelerometer. The goal of the experiment is to measure the Eoetvoes ratio sigma g/g (differential acceleration/common acceleration) with an accuracy goal of several parts in 10(exp 15). The estimated accuracy is about two orders of magnitude better than the present state of the art. The main goal of the study to be carried out under this grant is part of the flight definition of the experiment and laboratory testing of key components. The project involves an international cooperation in which the responsibility of the US side is the flight definition of the experimental facility while the responsibility of the non-US partners is the flight definition and laboratory prototyping of the differential acceleration detector.In summary, the experiment to be designed is for taking differential acceleration measurements with a high-sensitivity detector (the sensor) during free fall conditions lasting up to 30 s in a disturbance-free acceleration environment. The experiment strategy consists in letting the sensor free fall inside a few meters long (in the vertical direction) evacuated capsule that is falling simultaneously in the rarefied atmosphere after release from a helium balloon flying at a stratospheric altitude.

  15. Comparisons of LET distributions measured in low-earth orbit using tissue-equivalent proportional counters and the position-sensitive silicon-detector telescope (RRMD-III)

    NASA Technical Reports Server (NTRS)

    Doke, T.; Hayashi, T.; Borak, T. B.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Determinations of the LET distribution, phi(L), of charged particles within a spacecraft in low-Earth orbit have been made. One method used a cylindrical tissue-equivalent proportional counter (TEPC), with the assumption that for each measured event, lineal energy, y, is equal to LET and thus phi(L) = phi(y). The other was based on the direct measurement of LETs for individual particles using a charged-particle telescope consisting of position-sensitive silicon detectors called RRMD-III. There were differences of up to a factor of 10 between estimates of phi(L) using the two methods on the same mission. This caused estimates of quality factor to vary by a factor of two between the two methods.

  16. Computer simulations and models for the performance characteristics of spectrally equivalent X-ray beams in medical diagnostic radiology

    PubMed Central

    Okunade, Akintunde A.

    2007-01-01

    In order to achieve uniformity in radiological imaging, it is recommended that the concept of equivalence in shape (quality) and size (quantity) of clinical Xray beams should be used for carrying out the comparative evaluation of image and patient dose. When used under the same irradiation geometry, X-ray beams that are strictly or relatively equivalent in terms of shape and size will produce identical or relatively identical image quality and patient dose. Simple mathematical models and software program EQSPECT.FOR were developed for the comparative evaluation of the performance characteristics in terms of contrast (C), contrast to noise ratio (CNR) and figure-of-merit (FOM = CNR2/DOSE) for spectrally equivalent beams transmitted through filter materials referred to as conventional and k-edged. At the same value of operating potential (kVp), results show that spectrally equivalent beam transmitted through conventional filter with higher atomic number (Z-value) in comparison with that transmitted through conventional filter with lower Z-value resulted in the same value of C and FOM. However, in comparison with the spectrally equivalent beam transmitted through filter of lower Z-value, the beam through filter of higher Z-value produced higher value of CNR and DOSE at equal tube loading (mAs) and kVp. Under the condition of equivalence of spectrum, at scaled (or reduced) tube loading and same kVp, filter materials of higher Z-value can produce the same values of C, CNR, DOSE and FOM as filter materials of lower Z-value. Unlike the case of comparison of spectrally equivalent beam transmitted through one conventional filter and that through another conventional filter, it is not possible to derive simple mathematical formulations for the relative performance of spectrally equivalent beam transmitted through a given conventional filter material and that through kedge filter material. PMID:21224928

  17. Equivalence-Equivalence: Matching Stimuli with Same Discriminative Functions

    ERIC Educational Resources Information Center

    Carpentier, Franck; Smeets, Paul M.; Barnes-Holmes, Dermot

    2004-01-01

    Previous studies have shown that after being trained on A-B and A-C match-to-sample tasks, adults match not only same-class B and C stimuli (equivalence) but also BC compounds with same-class elements and with different-class elements (BC-BC). The assumption was that the BC-BC performances are based on matching equivalence and nonequivalence…

  18. New silver-halide-sensitized gelatin material: the influence of bleaches on holograms

    NASA Astrophysics Data System (ADS)

    Zhang, Weiping; Pang, Lin; Guo, Lurong

    1996-12-01

    A new high-resolution-silver-halide (HRSH-II) material was produced, which has proper initial hardness for fabricating silver halide sensitized gelatin (SHSG) holograms. That would avoid high noise by seeking the gelatin in hot water. With different alkali halide component in B solution and its concentration (the ratio B/A), experiments were presented about bleaching effect with R-10 on processing for SHSG derived from this new material. High diffraction efficiency, as high as 81%, was achieved. Some of the observations are discussed.

  19. SU-E-T-663: Radiation Properties of a Water-Equivalent Material Formulated Using the Stoichiometric Analysis Method in Heavy Charged Particle Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yohannes, I; Vasiliniuc, S; Hild, S

    2015-06-15

    Purpose: A material has been designed to be employed as water-equivalent in particle therapy using a previously established stoichiometric analysis method (SAM). After manufacturing, experimental verification of the material’s water-equivalent path length (WEPL) and analysis of its total inelastic nuclear interaction cross sections for proton beams were performed. Methods: Using the SAM, we optimized the material composed of three base materials, i.e., polyurethane, calcium carbonate and microspheres. From the elemental composition of the compound, electron density, linear attenuation coefficients, particle stopping powers and inelastic nuclear cross sections for protons using data from ICRU 63 were calculated. The calculations were thenmore » compared to Hounsfield units (HUs) measured with 350 mAs at 80, 100, 120 and 140 kV and the WEPLs measured with three different ions: proton (106.8 MeV/u), helium (107.93 MeV/u) and carbon (200.3 MeV/u). Results: The material’s measured HUs (0.7±3.0 to 2.6±6.2 HU) as well as its calculated relative electron density (1.0001) are in close agreement with water as reference. The WEPLs measured on a 20.00 mm thick target were 20.16±0.12, 20.29±0.12 and 20.38±0.12 mmH2O for proton, helium and carbon ions, respectively. Within measurement uncertainties, these values verified the calculated WEPLs of 20.28 mmH2O (proton), 20.28 mmH2O (helium) and 20.26 mmH2O (carbon). Moreover, the calculated proton inelastic cross sections of the material differed only by 0.89% (100 MeV/u) and 0.01% (200 MeV/u) when compared to water. Conclusion: The SAM is capable of optimizing material with defined properties, e.g., HU, electron density, WEPL and inelastic nuclear interaction cross section for particle therapy. Such material will have a wide range of applications amongst others absolute dosimetry. This work was supported by grant ZIM KF2137107AK4 from the German Federal Ministry for Economic Affairs and Energy.« less

  20. Equivalent Safety Basis for Evaluation of On-Site Packages for US DOE Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.C.

    Packages for transport of radioactive material within the boundaries of a Department of Energy facility (on-site) must conform to the requirements for packages shipped in normal commerce, or must provide equivalent safety. Equivalence is achieved if the frequency of severe on-site accidents, which could result in a release of radioactive material, is less than or equal to the frequency of Beyond-HAC accidents for packages in commerce. This is shown to be achieved it the rate of on-site accident is 22 per 100 MVM or lower. For equivalence to Normal Conditions of Transport, for on-site packages, appropriate, defensible Design Basis Conditionsmore » can be established and the ability of the package to meet the reduced requirements shown in the On-site Safety Assessment.« less

  1. Water-equivalence of gel dosimeters for radiology medical imaging.

    PubMed

    Valente, M; Vedelago, J; Chacón, D; Mattea, F; Velásquez, J; Pérez, P

    2018-03-08

    International dosimetry protocols are based on determinations of absorbed dose to water. Ideally, the phantom material should be water equivalent; that is, it should have the same absorption and scatter properties as water. This study presents theoretical, experimental and Monte Carlo modeling of water-equivalence of Fricke and polymer (NIPAM, PAGAT and itaconic acid ITABIS) gel dosimeters. Mass and electronic densities along with effective atomic number were calculated by means of theoretical approaches. Samples were scanned by standard computed tomography. Photon mass attenuation coefficients and electron stopping powers were examined. Theoretical, Monte Carlo and experimental results confirmed good water-equivalence for all gel dosimeters. Overall variations with respect to water in the low energy radiology range (up to 130 kVp) were found to be less than 3% in average. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. High sensitivity spectroscopic and thermal characterization of cooling efficiency for optical refrigeration materials

    NASA Astrophysics Data System (ADS)

    Melgaard, Seth D.; Seletskiy, Denis V.; Di Lieto, Alberto; Tonelli, Mauro; Sheik-Bahae, Mansoor

    2012-03-01

    Since recent demonstration of cryogenic optical refrigeration, a need for reliable characterization tools of cooling performance of different materials is in high demand. We present our experimental apparatus that allows for temperature and wavelength dependent characterization of the materials' cooling efficiency and is based on highly sensitive spectral differencing technique or two-band differential spectral metrology (2B-DSM). First characterization of a 5% w.t. ytterbium-doped YLF crystal showed quantitative agreement with the current laser cooling model, as well as measured a minimum achievable temperature (MAT) at 110 K. Other materials and ion concentrations are also investigated and reported here.

  3. Measurement of absorbed dose with a bone-equivalent extrapolation chamber.

    PubMed

    DeBlois, François; Abdel-Rahman, Wamied; Seuntjens, Jan P; Podgorsak, Ervin B

    2002-03-01

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to approximately 2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams.

  4. The damage equivalence of electrons, protons, alphas and gamma rays in rad-hard MOS devices

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Van Gunten, O.; Brucker, G. J.; Knudson, A. R.; Jordan, T. M.

    1983-01-01

    This paper reports on a study of damage equivalence in rad-hard MOS devices with 100,000 rads (SiO2) capability. Damage sensitivities for electrons of 1, 2, 3, 5, and 7 MeV, protons of 1, 3, 7, 22, and 40 MeV, 3.4-MeV alphas, and Co-60 gammas were measured and compared. Results indicated that qualitatively the same charge recombination effects occurred in hard oxide devices for doses of 100,000 rads (SiO2) as in soft oxide parts for doses of 1 to 4 krads (SiO2). Consequently, damage equivalency or non-equivalency depended on radiation type and energy. However, recovery effects, both during and after irradiation, controlled relative damage sensitivity and its dependency on total dose, dose rate, supply bias, gate bias, radiation type, and energy. Correction factors can be derived from these data or from similar tests of other hard oxide type, so as to properly evaluate the combined effects of the total space environment.

  5. Materials Testing in Long Cane Design: Sensitivity, Flexibility, and Transmission of Vibration

    ERIC Educational Resources Information Center

    Rodgers, Mark D.; Emerson, Robert Wall

    2005-01-01

    Different materials that are used in manufacturing long cane shafts were assessed for their ability to transmit vibration and their sensitivity to tactile information, flexibility, and durability. It was found that the less flexible a cane shaft is, the better it transmits vibrations that are useful for discriminating surface textures and that…

  6. Retinal sensitivity and choroidal thickness in high myopia.

    PubMed

    Zaben, Ahmad; Zapata, Miguel Á; Garcia-Arumi, Jose

    2015-03-01

    To estimate the association between choroidal thickness in the macular area and retinal sensitivity in eyes with high myopia. This investigation was a transversal study of patients with high myopia, all of whom had their retinal sensitivity measured with macular integrity assessment microperimetry. The choroidal thicknesses in the macular area were then measured by optical coherence tomography, and statistical correlations between their functionality and the anatomical structuralism, as assessed by both types of measurements, were analyzed. Ninety-six eyes from 77 patients with high myopia were studied. The patients had a mean age ± standard deviation of 38.9 ± 13.2 years, with spherical equivalent values ranging from -6.00 diopter to -20.00 diopter (8.74 ± 2.73 diopter). The mean central choroidal thickness was 159.00 ± 50.57. The mean choroidal thickness was directly correlated with sensitivity (r = 0.306; P = 0.004) and visual acuity but indirectly correlated with the spherical equivalent values and patient age. The mean sensitivity was not significantly correlated with the macular foveal thickness (r = -0.174; P = 0.101) or with the overall macular thickness (r = 0.103; P = 0.334); furthermore, the mean sensitivity was significantly correlated with visual acuity (r = 0.431; P < 0.001) and the spherical equivalent values (r = -0.306; P = 0.003). Retinal sensitivity in highly myopic eyes is directly correlated with choroidal thickness and does not seem to be associated with retinal thickness. Thus, in patients with high myopia, accurate measurements of choroidal thickness may provide more accurate information about this pathologic condition because choroidal thickness correlates to a greater degree with the functional parameters, patient age, and spherical equivalent values.

  7. XFEM with equivalent eigenstrain for matrix-inclusion interfaces

    NASA Astrophysics Data System (ADS)

    Benvenuti, Elena

    2014-05-01

    Several engineering applications rely on particulate composite materials, and numerical modelling of the matrix-inclusion interface is therefore a crucial part of the design process. The focus of this work is on an original use of the equivalent eigenstrain concept in the development of a simplified eXtended Finite Element Method. Key points are: the replacement of the matrix-inclusion interface by a coating layer with small but finite thickness, and its simulation as an inclusion with an equivalent eigenstrain. For vanishing thickness, the model is consistent with a spring-like interface model. The problem of a spherical inclusion within a cylinder is solved. The results show that the proposed approach is effective and accurate.

  8. Apples to Apples: Equivalent-Reliability Power Systems Across Diverse Resource Mix Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen, Gordon W; Frew, Bethany A; Sigler, Devon

    Electricity market research is highly price sensitive, and prices are strongly influenced by balance of supply and demand. This work looks at how to combine capacity expansion models and reliability assessment tools to assess equivalent-reliability power systems across diverse resource mix scenarios.

  9. Damage sensitivity investigations of EMI technique on different materials through coupled field analysis

    NASA Astrophysics Data System (ADS)

    Joshi, Bhrigu; Adhikari, Sailesh; Bhalla, Suresh

    2016-04-01

    This paper presents a comparative study through the piezoelectric coupled field analysis mode of finite element method (FEM) on detection of damages of varying magnitude, encompassing three different types of structural materials, using piezo impedance transducers. An aluminum block, a concrete block and a steel block of dimensions 48×48×10 mm were modelled in finite element software ANSYS. A PZT patch of 10×10×0.3 mm was also included in the model as surface bonded on the block. Coupled field analysis (CFA) was performed to obtain the admittance signatures of the piezo sensor in the frequency range of 0-250 kHz. The root mean square deviation (RMSD) index was employed to quantify the degree of variation of the signatures. It was found that concrete exhibited deviation in the signatures only with the change of damping values. However, the other two materials showed variation in the signatures even with changes in density and elasticity values in a small portion of the specimen. The comparative study shows that the PZT patches are more sensitive to damage detection in materials with low damping and the sensitivity typically decreases with increase in the damping.

  10. Sensitivity of acoustic nonlinearity parameter to the microstructural changes in cement-based materials

    NASA Astrophysics Data System (ADS)

    Kim, Gun; Kim, Jin-Yeon; Kurtis, Kimberly E.; Jacobs, Laurence J.

    2015-03-01

    This research experimentally investigates the sensitivity of the acoustic nonlinearity parameter to microcracks in cement-based materials. Based on the second harmonic generation (SHG) technique, an experimental setup using non-contact, air-coupled detection is used to receive the consistent Rayleigh surface waves. To induce variations in the extent of microscale cracking in two types of specimens (concrete and mortar), shrinkage reducing admixture (SRA), is used in one set, while a companion specimen is prepared without SRA. A 50 kHz wedge transducer and a 100 kHz air-coupled transducer are implemented for the generation and detection of nonlinear Rayleigh waves. It is shown that the air-coupled detection method provides more repeatable fundamental and second harmonic amplitudes of the propagating Rayleigh waves. The obtained amplitudes are then used to calculate the relative nonlinearity parameter βre, the ratio of the second harmonic amplitude to the square of the fundamental amplitude. The experimental results clearly demonstrate that the nonlinearity parameter (βre) is highly sensitive to the microstructural changes in cement-based materials than the Rayleigh phase velocity and attenuation and that SRA has great potential to avoid shrinkage cracking in cement-based materials.

  11. Controlling the Electrostatic Discharge Ignition Sensitivity of Composite Energetic Materials Using Carbon Nanotube Additives

    DTIC Science & Technology

    2014-08-10

    Electrostatic discharge Ignition Aluminum Thermites Energetic materials a b s t r a c t Powder energetic materials are highly sensitive to electrostatic...Fundamentals, in: Heat Conduction, Wiley, Hoboken, NJ, 2012. [12] Davin G. Piercey, Thomas M. Klapotke, Nanoscale aluminum metal oxide ( thermite ) reactions for...propagation velocity in thermites with a nanoscale oxidizer, Propellants Explos. Pyrotechn. 39 (3) (2014) 407 415. [18] Kevin Moore, Michelle L

  12. Phase sensitive thermography for quality assessment of giant magnetostrictive composite materials

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Law, Chiu T.; Elhajjar, Rani

    2017-04-01

    Giant magnetostrictive materials are increasingly proposed for smart material applications such as in sensors, actuators, and energy harvesting applications. In a composites form, the materials are combined in particle form with polymer matrix composites. Reviewing the literature on this topic, the reader observes a large amount of variability in the reported properties that are typically based on recording (overall or localized) strain and magnetic field with non-collocating strain gages and a gauss meter, i.e. far field measurements. Previously the linking of the microstructure in magnetostrictive composite to the spatial variability of the localized magnetostrictive response, a significant factor for the composite performance in sensing and acutuation, has not been received adequate attention. In this paper, a full-field phase-sensitive thermography method is proposed to use full-field infrared measurements to infer changes in the microstructure in magnetostrictive polymer composites under a cyclic magnetic field. The results show how defects in the material can be rapidly identified from the proposed approach in inspecting the manufactured smart composites.

  13. Highly sensitive ethanol chemical sensor based on Ni-doped SnO₂ nanostructure materials.

    PubMed

    Rahman, Mohammed M; Jamal, Aslam; Khan, Sher Bahadar; Faisal, M

    2011-10-15

    Due to potential applications of semiconductor transition doped nanostructure materials and the important advantages of synthesis in cost-effective and environmental concerns, a significant effort has been consummated for improvement of Ni-doped SnO(2) nanomaterials using hydrothermal technique at room conditions. The structural and optical properties of the low-dimensional (average diameter, 52.4 nm) Ni-doped SnO(2) nanostructures were demonstrated using various conventional techniques such as UV/visible spectroscopy, FT-IR spectroscopy, X-ray powder diffraction (XRD), and Field-emission scanning electron microscopy (FE-SEM). The calcined doped material is an attractive semiconductor nanoparticle for accomplishment in chemical sensing by simple I-V technique, where toxic chemical (ethanol) is used as a target chemical. Thin-film of Ni-doped SnO(2) nanostructure materials with conducting coating agents on silver electrodes (AgE, surface area, 0.0216 cm(2)) revealed higher sensitivity and repeatability. The calibration plot is linear (R, 0.8440) over the large dynamic range (1.0 nM-1.0 mM), where the sensitivity is approximately 2.3148 μA cm(-2) mM(-1) with a detection limit of 0.6 nM, based on signal/noise ratio in short response time. Consequently on the basis of the sensitive communication among structures, morphologies, and properties, it is exemplified that the morphologies and the optical characteristics can be extended to a large scale in doping nanomaterials and proficient chemical sensors applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. An efficient method to predict and include Bragg curve degradation due to lung-equivalent materials in Monte Carlo codes by applying a density modulation

    NASA Astrophysics Data System (ADS)

    Baumann, Kilian-Simon; Witt, Matthias; Weber, Uli; Engenhart-Cabillic, Rita; Zink, Klemens

    2017-05-01

    Sub-millimetre-sized heterogeneities such as lung parenchyma cause Bragg peak degradation which can lead to an underdose of the tumor and an overdose of healthy tissue when not accounted for in treatment planning. Since commonly used treatment-planning CTs do not resolve the fine structure of lungs, this degradation can hardly be considered. We present a mathematical model capable of predicting and describing Bragg peak degradation due to a lung-equivalent geometry consisting of sub-millimetre voxels filled with either lung tissue or air. The material characteristic ‘modulation power’ is introduced to quantify the Bragg peak degradation. A strategy was developed to transfer the modulating effects of such fine structures to rougher structures such as 2 mm thick CT voxels, which is the resolution of typically used CTs. This is done by using the modulation power to derive a density distribution applicable to these voxels. By replacing the previously used sub-millimetre voxels by 2 mm thick voxels filled with lung tissue and modulating the lung tissue’s density in each voxel individually, we were able to reproduce the Bragg peak degradation. Hence a solution is found to include Bragg curve degradation due to lung-equivalent materials in Monte Carlo-based treatment-planning systems.

  15. Advanced Life Support Equivalent System Mass Guidelines Document

    NASA Technical Reports Server (NTRS)

    Levri, Julie; Fisher, John W.; Jones, Harry W.; Drysdale, Alan E.; Ewert, Michael K.; Hanford, Anthony J.; Hogan, John A.; Joshi, Jitendri, A.; Vaccari, David A.

    2003-01-01

    This document is a viewgraph presentation which provides guidelines for performing an Equivalent System Mass (ESM) evaluation for trade study purposes. The document: 1) Defines ESM; 2) Explains how to calculate ESM; 3) Discusses interpretation of ESM results. The document is designed to provide detailed instructive material for researchers who are performing ESM evaluations for the first time.

  16. Tuned sensitivity towards H{sub 2}S and NH{sub 3} with Cu doped barium strontium titanate materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simion, C. E., E-mail: simion@infim.ro; Teodorescu, V. S.; Stănoiu, A.

    2014-11-05

    The different amount of Cu-doped Barium Strontium Titanate (BST) thick film materials have been tested for their gas-sensing performances towards NH{sub 3} and H{sub 2}S under dry and 50% relative humidity (RH) background conditions. The optimum NH{sub 3} sensitivity was attained with 0.1mol% Cu-doped BST whereas the selective detection of H{sub 2}S was highlighted using 5mol% Cu-doped BST material. No cross-sensitivity effects to CO, NO{sub 2}, CH{sub 4} and SO{sub 2} were observed for all tested materials operated at their optimum temperature (200°C) under humid conditions (50% RH). The presence of humidity clearly enhances the gas sensitivity to NH{sub 3}more » and H{sub 2}S detection.« less

  17. Validity of the Aluminum Equivalent Approximation in Space Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; Adams, Daniel O.; Wilson, John W.

    2009-01-01

    The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21 st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range I <= Z <= 28 (H -- Ni) and secondary neutrons through selected target materials. The coupling of the GCR extremes to HZETRN allows for the examination of the induced environment within the interior' of an idealized spacecraft

  18. Imaging of dental material by polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Dichtl, Sabine; Baumgartner, Angela; Hitzenberger, Christoph K.; Moritz, Andreas; Wernisch, Johann; Robl, Barbara; Sattmann, Harald; Leitgeb, Rainer; Sperr, Wolfgang; Fercher, Adolf F.

    1999-05-01

    Partial coherence interferometry (PCI) and optical coherence tomography (OCT) are noninvasive and noncontact techniques for high precision biometry and for obtaining cross- sectional images of biologic structures. OCT was initially introduced to depict the transparent tissue of the eye. It is based on interferometry employing the partial coherence properties of a light source with high spatial coherence ut short coherence length to image structures with a resolution of the order of a few microns. Recently this technique has been modified for cross section al imaging of dental and periodontal tissues. In vitro and in vivo OCT images have been recorded, which distinguish enamel, cemento and dentin structures and provide detailed structural information on clinical abnormalities. In contrast to convention OCT, where the magnitude of backscattered light as a function of depth is imaged, polarization sensitive OCT uses backscattered light to image the magnitude of the birefringence in the sample as a function of depth. First polarization sensitive OCT recordings show, that changes in the mineralization status of enamel or dentin caused by caries or non-caries lesions can result in changes of the polarization state of the light backscattered by dental material. Therefore polarization sensitive OCT might provide a new diagnostic imaging modality in clinical and research dentistry.

  19. 14 CFR 1213.107 - Preventing unauthorized release of sensitive but unclassified (SBU) information/material to the...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... but unclassified (SBU) information/material to the news media. 1213.107 Section 1213.107 Aeronautics... MEDIA § 1213.107 Preventing unauthorized release of sensitive but unclassified (SBU) information/material to the news media. (a) All NASA SBU information requires accountability and approval for release...

  20. Zonal disintegration of rocks around underground workings. Part II. Rock fracture simulated in equivalent materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shemyakin, E.I.; Fisenko, G.L.; Kurlenya, M.V.

    1987-05-01

    For a detailed testing of the effects discovered in situ, analysis of the patterns and origination conditions of fractured rock zones inside the bed around workings, and ways explosions affect the surrounding rocks, a program and a method of study on models of equivalent materials have been developed. The method of simulation on two- and three-dimensional models involved building in a solid or fissured medium a tunnel of a circular or arched cross section. The tests were done for elongate adit-type workings. At the first stage, three models were tested with different working support systems: anchor supports, concrete-spray supports andmore » no supports. Zone formation is shown and described. Tests were continued on two groups of three-dimensional models to bring the model closer to in situ conditions. The presence of gaping cracks and heavily fractured zones deep in the interior of the bed with a quasicylindrical symmetry indicates that the common views concerning the stressed-strained state of rocks around underground workings are at variance with the actual patterns of deformation and destruction of rocks near the workings in deep horizons.« less

  1. Sensitivity studies of pediatric material properties on juvenile lumbar spine responses using finite element analysis.

    PubMed

    Jebaseelan, D Davidson; Jebaraj, C; Yoganandan, Narayan; Rajasekaran, S; Kanna, Rishi M

    2012-05-01

    The objective of the study was to determine the sensitivity of material properties of the juvenile spine to its external and internal responses using a finite element model under compression, and flexion-extension bending moments. The methodology included exercising the 8-year-old juvenile lumbar spine using parametric procedures. The model included the vertebral centrum, growth plates, laminae, pedicles, transverse processes and spinous processes; disc annulus and nucleus; and various ligaments. The sensitivity analysis was conducted by varying the modulus of elasticity for various components. The first simulation was done using mean material properties. Additional simulations were done for each component corresponding to low and high material property variations. External displacement/rotation and internal stress-strain responses were determined under compression and flexion-extension bending. Results indicated that, under compression, disc properties were more sensitive than bone properties, implying an elevated role of the disc under this mode. Under flexion-extension moments, ligament properties were more dominant than the other components, suggesting that various ligaments of the juvenile spine play a key role in modulating bending behaviors. Changes in the growth plate stress associated with ligament properties explained the importance of the growth plate in the pediatric spine with potential implications in progressive deformities.

  2. Equivalent Dynamic Models.

    PubMed

    Molenaar, Peter C M

    2017-01-01

    Equivalences of two classes of dynamic models for weakly stationary multivariate time series are discussed: dynamic factor models and autoregressive models. It is shown that exploratory dynamic factor models can be rotated, yielding an infinite set of equivalent solutions for any observed series. It also is shown that dynamic factor models with lagged factor loadings are not equivalent to the currently popular state-space models, and that restriction of attention to the latter type of models may yield invalid results. The known equivalent vector autoregressive model types, standard and structural, are given a new interpretation in which they are conceived of as the extremes of an innovating type of hybrid vector autoregressive models. It is shown that consideration of hybrid models solves many problems, in particular with Granger causality testing.

  3. A formal and data-based comparison of measures of motor-equivalent covariation.

    PubMed

    Verrel, Julius

    2011-09-15

    Different analysis methods have been developed for assessing motor-equivalent organization of movement variability. In the uncontrolled manifold (UCM) method, the structure of variability is analyzed by comparing goal-equivalent and non-goal-equivalent variability components at the level of elemental variables (e.g., joint angles). In contrast, in the covariation by randomization (CR) approach, motor-equivalent organization is assessed by comparing variability at the task level between empirical and decorrelated surrogate data. UCM effects can be due to both covariation among elemental variables and selective channeling of variability to elemental variables with low task sensitivity ("individual variation"), suggesting a link between the UCM and CR method. However, the precise relationship between the notion of covariation in the two approaches has not been analyzed in detail yet. Analysis of empirical and simulated data from a study on manual pointing shows that in general the two approaches are not equivalent, but the respective covariation measures are highly correlated (ρ > 0.7) for two proposed definitions of covariation in the UCM context. For one-dimensional task spaces, a formal comparison is possible and in fact the two notions of covariation are equivalent. In situations in which individual variation does not contribute to UCM effects, for which necessary and sufficient conditions are derived, this entails the equivalence of the UCM and CR analysis. Implications for the interpretation of UCM effects are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. X-ray Sensitive Material

    DTIC Science & Technology

    2015-12-01

    The research resulted in a composite material that holds a quasi-permanent electric charge and rapidly discharges the electric charge upon X-ray...quasi-permanent electric charge and rapidly discharge the electric charge upon X-ray exposure. The composite material combined the properties of an...9 7. Schematic of Circuit for Recording Sample’s Capacitor Discharge ............... 12 8. Schematic of Circuit for

  5. Near infrared harvesting dye-sensitized solar cells enabled by rare-earth upconversion materials.

    PubMed

    Li, Deyang; Ågren, Hans; Chen, Guanying

    2018-02-01

    Dye-sensitized solar cells (DSSCs) have been deemed as promising alternatives to silicon solar cells for the conversion of clean sunlight energy into electricity. A major limitation to their conversion efficiency is their inability to utilize light in the infrared (IR) spectral range, which constitutes almost half the energy of the sun's radiation. This fact has elicited motivations and endeavors to extend the response wavelength of DSSCs to the IR range. Photon upconversion through rare-earth ions constitutes one of the most promising approaches toward the goal of converting near-IR (NIR) or IR light into visible or ultraviolet light, where DSSCs typically have high sensitivity. In the present review, we summarize recent progress based on the utilization of various upconversion materials and device structures to improve the performance of dye-sensitized solar cells.

  6. X-ray phase contrast imaging of the breast: Analysis of tissue simulating materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedantham, Srinivasan; Karellas, Andrew

    % of that of adipose tissue, the tissue-equivalent material better approximated the adipose tissue in terms of {mu}. Polymethyl methacrylate, a commonly used tissue substitute, exhibited {delta} greater than fibroglandular tissue by {approx}12%. The A-150 plastic closely approximated the skin. Several materials exhibited {delta} between that of adipose and fibroglandular tissue. However, there was an energy-dependent mismatch in terms of equivalent fibroglandular weight fraction between {delta} and {mu} for these materials. For microcalcifications, aluminum and calcium carbonate were observed to straddle the {delta} and {mu} of calcium oxalate and calcium hydroxyapatite. Aluminum oxide, commonly used to represent microcalcifications in the American College of Radiology recommended phantoms for accreditation exhibited {delta} greater than calcium hydroxyapatite by {approx}23%. Conclusions: A breast phantom comprising A-150 plastic to represent the skin, commercially available adipose and fibroglandular tissue-equivalent formulations to represent adipose and fibroglandular tissue, respectively, was found to be best suited for x-ray phase-sensitive imaging of the breast. Calcium carbonate or aluminum can be used to represent microcalcifications.« less

  7. Ignition delay of combustible materials in normoxic equivalent environments

    Treesearch

    Sara McAllister; Carlos Fernandez-Pello; Gary Ruff; David Urban

    2009-01-01

    Material flammability is an important factor in determining the pressure and composition (fraction of oxygen and nitrogen) of the atmosphere in the habitable volume of exploration vehicles and habitats. The method chosen in this work to quantify the flammability of a material is by its ease of ignition. The ignition delay time was defined as the time it takes a...

  8. Calculation of equivalent friction coefficient for castor seed by single screw press

    NASA Astrophysics Data System (ADS)

    Liu, R.; Xiao, Z.; Li, C.; Zhang, L.; Li, P.; Li, H.; Zhang, A.; Tang, S.; Sun, F.

    2017-08-01

    Based on the traction angle and transportation rate equation, castor beans were pressed by application of single screw under different cake diameter and different screw speed. The results showed that the greater the cake diameter and screw rotation speed, the greater the actual transmission rate was. The equivalent friction coefficient was defined and calculated as 0.4136, and the friction coefficients between press material and screw, bar cage were less than the equivalent friction coefficient value.

  9. Use of maxillofacial laboratory materials to construct a tissue-equivalent head phantom with removable titanium implantable devices for use in verification of the dose of intensity-modulated radiotherapy.

    PubMed

    Morris, K

    2017-06-01

    The dose of radiotherapy is often verified by measuring the dose of radiation at specific points within a phantom. The presence of high-density implant materials such as titanium, however, may cause complications both during calculation and delivery of the dose. Numerous studies have reported photon/electron backscatter and alteration of the dose by high-density implants, but we know of no evidence of a dosimetry phantom that incorporates high density implants or fixtures. The aim of the study was to design and manufacture a tissue-equivalent head phantom for use in verification of the dose in radiotherapy using a combination of traditional laboratory materials and techniques and 3-dimensional technology that can incorporate titanium maxillofacial devices. Digital designs were used together with Mimics® 18.0 (Materialise NV) and FreeForm® software. DICOM data were downloaded and manipulated into the final pieces of the phantom mould. Three-dimensional digital objects were converted into STL files and exported for additional stereolithography. Phantoms were constructed in four stages: material testing and selection, design of a 3-dimensional mould, manufacture of implants, and final fabrication of the phantom using traditional laboratory techniques. Three tissue-equivalent materials were found and used to successfully manufacture a suitable phantom with interchangeable sections that contained three versions of titanium maxillofacial implants. Maxillofacial and other materials can be used to successfully construct a head phantom with interchangeable titanium implant sections for use in verification of doses of radiotherapy. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  10. Resonance-induced sensitivity enhancement method for conductivity sensors

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Shih, Chi-yuan (Inventor); Li, Wei (Inventor); Zheng, Siyang (Inventor)

    2009-01-01

    Methods and systems for improving the sensitivity of a variety of conductivity sensing devices, in particular capacitively-coupled contactless conductivity detectors. A parallel inductor is added to the conductivity sensor. The sensor with the parallel inductor is operated at a resonant frequency of the equivalent circuit model. At the resonant frequency, parasitic capacitances that are either in series or in parallel with the conductance (and possibly a series resistance) is substantially removed from the equivalent circuit, leaving a purely resistive impedance. An appreciably higher sensor sensitivity results. Experimental verification shows that sensitivity improvements of the order of 10,000-fold are possible. Examples of detecting particulates with high precision by application of the apparatus and methods of operation are described.

  11. Controlling Explosive Sensitivity of Energy-Related Materials by Means of Production and Processing in Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Rodzevich, A. P.; Gazenaur, E. G.; Kuzmina, L. V.; Krasheninin, V. I.; Sokolov, P. N.

    2016-08-01

    The present work is one of the world first attempts to develop effective methods for controlling explosive sensitivity of energy-related materials with the help of weak electric (up to 1 mV/cm) and magnetic (0.001 T) fields. The resulting experimental data can be used for purposeful alternation of explosive materials reactivity, which is of great practical importance. The proposed technology of producing and processing materials in a weak electric field allows forecasting long-term stability of these materials under various energy impacts.

  12. Theory and application of equivalent transformation relationships between plane wave and spherical wave

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Yang, Zailin; Zhang, Jianwei; Yang, Yong

    2017-10-01

    Based on the governing equations and the equivalent models, we propose an equivalent transformation relationships between a plane wave in a one-dimensional medium and a spherical wave in globular geometry with radially inhomogeneous properties. These equivalent relationships can help us to obtain the analytical solutions of the elastodynamic issues in an inhomogeneous medium. The physical essence of the presented equivalent transformations is the equivalent relationships between the geometry and the material properties. It indicates that the spherical wave problem in globular geometry can be transformed into the plane wave problem in the bar with variable property fields, and its inverse transformation is valid as well. Four different examples of wave motion problems in the inhomogeneous media are solved based on the presented equivalent relationships. We obtain two basic analytical solution forms in Examples I and II, investigate the reflection behavior of inhomogeneous half-space in Example III, and exhibit a special inhomogeneity in Example IV, which can keep the traveling spherical wave in constant amplitude. This study implies that our idea makes solving the associated problem easier.

  13. Equivalence principles and electromagnetism

    NASA Technical Reports Server (NTRS)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  14. X-ray phase contrast imaging of the breast: Analysis of tissue simulating materials1

    PubMed Central

    Vedantham, Srinivasan; Karellas, Andrew

    2013-01-01

    material better approximated the adipose tissue in terms of μ. Polymethyl methacrylate, a commonly used tissue substitute, exhibited δ greater than fibroglandular tissue by ∼12%. The A-150 plastic closely approximated the skin. Several materials exhibited δ between that of adipose and fibroglandular tissue. However, there was an energy-dependent mismatch in terms of equivalent fibroglandular weight fraction between δ and μ for these materials. For microcalcifications, aluminum and calcium carbonate were observed to straddle the δ and μ of calcium oxalate and calcium hydroxyapatite. Aluminum oxide, commonly used to represent microcalcifications in the American College of Radiology recommended phantoms for accreditation exhibited δ greater than calcium hydroxyapatite by ∼23%. Conclusions: A breast phantom comprising A-150 plastic to represent the skin, commercially available adipose and fibroglandular tissue-equivalent formulations to represent adipose and fibroglandular tissue, respectively, was found to be best suited for x-ray phase-sensitive imaging of the breast. Calcium carbonate or aluminum can be used to represent microcalcifications. PMID:23556900

  15. SU-E-J-210: Characterizing Tissue Equivalent Materials for the Development of a Dual MRI-CT Heterogeneous Anthropomorphic Phantom Designed Specifically for MRI Guided Radiotherapy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinmann, A; Stafford, R; Yung, J

    Purpose: MRI guided radiotherapy (MRIgRT) is an emerging technology which will eventually require a proficient quality auditing system. Due to different principles in which MR and CT acquire images, there is a need for a multi-imaging-modality, end-to-end QA phantom for MRIgRT. The purpose of this study is to identify lung, soft tissue, and tumor equivalent substitutes that share similar human-like CT and MR properties (i.e. Hounsfield units and relaxation times). Methods: Materials of interested such as common CT QA phantom materials, and other proprietary gels/silicones from Polytek, SmoothOn, and CompositeOne were first scanned on a GE 1.5T Signa HDxT MR.more » Materials that could be seen on both T1-weighted and T2-weighted images were then scanned on a GE Lightspeed RT16 CT simulator and a GE Discovery 750HD CT scanner and their HU values were then measured. The materials with matching HU values of lung (−500 to −700HU), muscle (+40HU) and soft tissue (+100 to +300HU) were further scanned on GE 1.5T Signa HDx to measure their T1 and T2 relaxation times from varying parameters of TI and TE. Results: Materials that could be visualized on T1-weighted and T2-weighted images from a 1.5T MR unit and had an appropriate average CT number, −650, −685, 46,169, and 168 HUs were: compressed cork saturated with water, Polytek Platsil™ Gel-00 combined with mini styrofoam balls, radiotherapy bolus material, SmoothOn Dragon-Skin™ and SmoothOn Ecoflex™, respectively. Conclusion: Post processing analysis is currently being performed to accurately map T1 and T2 values for each material tested. From previous MR visualization and CT examinations it is expected that Dragon-Skin™, Ecoflex™ and bolus will have values consistent with tissue and tumor substitutes. We also expect compressed cork statured with water, and Polytek™-styrofoam combination to have approximate T1 and T2 values suitable for lung-equivalent materials.« less

  16. Monte Carlo simulation of a novel water-equivalent electronic portal imaging device using plastic scintillating fibers.

    PubMed

    Teymurazyan, A; Pang, G

    2012-03-01

    Most electronic portal imaging devices (EPIDs) developed so far use a thin Cu plate/phosphor screen to convert x-ray energies into light photons, while maintaining a high spatial resolution. This results in a low x-ray absorption and thus a low quantum efficiency (QE) of approximately 2-4% for megavoltage (MV) x-rays. A significant increase of QE is desirable for applications such as MV cone-beam computed tomography (MV-CBCT). Furthermore, the Cu plate/phosphor screen contains high atomic number (high-Z) materials, resulting in an undesirable over-response to low energy x-rays (due to photoelectric effect) as well as high energy x-rays (due to pair production) when used for dosimetric verification. Our goal is to develop a new MV x-ray detector that has a high QE and uses low-Z materials to overcome the obstacles faced by current MV x-ray imaging technologies. A new high QE and low-Z EPID is proposed. It consists of a matrix of plastic scintillating fibers embedded in a water-equivalent medium and coupled to an optically sensitive 2D active matrix flat panel imager (AMFPI) for image readout. It differs from the previous approach that uses segmented crystalline scintillators made of higher density and higher atomic number materials to detect MV x-rays. The plastic scintillating fibers are focused toward the x-ray source to avoid image blurring due to oblique incidence of off-axis x-rays. When MV x-rays interact with the scintillating fibers in the detector, scintillation light will be produced. The light photons produced in a fiber core and emitted within the acceptance angle of the fiber will be guided toward the AMFPI by total internal reflection. A Monte Carlo simulation has been used to investigate imaging and dosimetric characteristics of the proposed detector under irradiation of MV x-rays. Properties, such as detection efficiency, modulation transfer function, detective quantum efficiency (DQE), energy dependence of detector response, and water-equivalence of

  17. Using the Stimulus Equivalence Paradigm to Teach Course Material in an Undergraduate Rehabilitation Course

    ERIC Educational Resources Information Center

    Walker, Brooke D.; Rehfeldt, Ruth Anne; Ninness, Chris

    2010-01-01

    In 2 experiments, we examined whether the stimulus equivalence instructional paradigm could be used to teach relations among names, definitions, causes, and common treatments for disabilities using a selection-based intraverbal training format. Participants were pre- and posttested on vocal intraverbal relations and were trained using…

  18. 29 CFR 825.215 - Equivalent position.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Equivalent position. 825.215 Section 825.215 Labor....215 Equivalent position. (a) Equivalent position. An equivalent position is one that is virtually... responsibilities, which must entail substantially equivalent skill, effort, responsibility, and authority. (b...

  19. 29 CFR 825.215 - Equivalent position.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Equivalent position. 825.215 Section 825.215 Labor....215 Equivalent position. (a) Equivalent position. An equivalent position is one that is virtually... responsibilities, which must entail substantially equivalent skill, effort, responsibility, and authority. (b...

  20. 29 CFR 825.215 - Equivalent position.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Equivalent position. 825.215 Section 825.215 Labor....215 Equivalent position. (a) Equivalent position. An equivalent position is one that is virtually... responsibilities, which must entail substantially equivalent skill, effort, responsibility, and authority. (b...

  1. 29 CFR 825.215 - Equivalent position.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Equivalent position. 825.215 Section 825.215 Labor....215 Equivalent position. (a) Equivalent position. An equivalent position is one that is virtually... responsibilities, which must entail substantially equivalent skill, effort, responsibility, and authority. (b...

  2. 29 CFR 825.215 - Equivalent position.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Equivalent position. 825.215 Section 825.215 Labor....215 Equivalent position. (a) Equivalent position. An equivalent position is one that is virtually... responsibilities, which must entail substantially equivalent skill, effort, responsibility, and authority. (b...

  3. Multi-scale Modeling of the Impact Response of a Strain Rate Sensitive High-Manganese Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Önal, Orkun; Ozmenci, Cemre; Canadinc, Demircan

    2014-09-01

    A multi-scale modeling approach was applied to predict the impact response of a strain rate sensitive high-manganese austenitic steel. The roles of texture, geometry and strain rate sensitivity were successfully taken into account all at once by coupling crystal plasticity and finite element (FE) analysis. Specifically, crystal plasticity was utilized to obtain the multi-axial flow rule at different strain rates based on the experimental deformation response under uniaxial tensile loading. The equivalent stress - equivalent strain response was then incorporated into the FE model for the sake of a more representative hardening rule under impact loading. The current results demonstrate that reliable predictions can be obtained by proper coupling of crystal plasticity and FE analysis even if the experimental flow rule of the material is acquired under uniaxial loading and at moderate strain rates that are significantly slower than those attained during impact loading. Furthermore, the current findings also demonstrate the need for an experiment-based multi-scale modeling approach for the sake of reliable predictions of the impact response.

  4. 14 CFR § 1213.107 - Preventing unauthorized release of sensitive but unclassified (SBU) information/material to the...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... sensitive but unclassified (SBU) information/material to the news media. § 1213.107 Section § 1213.107 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION RELEASE OF INFORMATION TO NEWS AND.../material to the news media. (a) All NASA SBU information requires accountability and approval for release...

  5. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range

    PubMed Central

    Jin, Wei; Cao, Yingchun; Yang, Fan; Ho, Hoi Lut

    2015-01-01

    Photothermal interferometry is an ultra-sensitive spectroscopic means for trace chemical detection in gas- and liquid-phase materials. Previous photothermal interferometry systems used free-space optics and have limitations in efficiency of light–matter interaction, size and optical alignment, and integration into photonic circuits. Here we exploit photothermal-induced phase change in a gas-filled hollow-core photonic bandgap fibre, and demonstrate an all-fibre acetylene gas sensor with a noise equivalent concentration of 2 p.p.b. (2.3 × 10−9 cm−1 in absorption coefficient) and an unprecedented dynamic range of nearly six orders of magnitude. The realization of photothermal interferometry with low-cost near infrared semiconductor lasers and fibre-based technology allows a class of optical sensors with compact size, ultra sensitivity and selectivity, applicability to harsh environment, and capability for remote and multiplexed multi-point detection and distributed sensing. PMID:25866015

  6. Estimating equivalence with quantile regression

    USGS Publications Warehouse

    Cade, B.S.

    2011-01-01

    Equivalence testing and corresponding confidence interval estimates are used to provide more enlightened statistical statements about parameter estimates by relating them to intervals of effect sizes deemed to be of scientific or practical importance rather than just to an effect size of zero. Equivalence tests and confidence interval estimates are based on a null hypothesis that a parameter estimate is either outside (inequivalence hypothesis) or inside (equivalence hypothesis) an equivalence region, depending on the question of interest and assignment of risk. The former approach, often referred to as bioequivalence testing, is often used in regulatory settings because it reverses the burden of proof compared to a standard test of significance, following a precautionary principle for environmental protection. Unfortunately, many applications of equivalence testing focus on establishing average equivalence by estimating differences in means of distributions that do not have homogeneous variances. I discuss how to compare equivalence across quantiles of distributions using confidence intervals on quantile regression estimates that detect differences in heterogeneous distributions missed by focusing on means. I used one-tailed confidence intervals based on inequivalence hypotheses in a two-group treatment-control design for estimating bioequivalence of arsenic concentrations in soils at an old ammunition testing site and bioequivalence of vegetation biomass at a reclaimed mining site. Two-tailed confidence intervals based both on inequivalence and equivalence hypotheses were used to examine quantile equivalence for negligible trends over time for a continuous exponential model of amphibian abundance. ?? 2011 by the Ecological Society of America.

  7. 11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials

    PubMed Central

    Cao, Yiming; Saygili, Yasemin; Ummadisingu, Amita; Teuscher, Joël; Luo, Jingshan; Pellet, Norman; Giordano, Fabrizio; Zakeeruddin, Shaik Mohammed; Moser, Jacques -E.; Freitag, Marina; Hagfeldt, Anders; Grätzel, Michael

    2017-01-01

    Solid-state dye-sensitized solar cells currently suffer from issues such as inadequate nanopore filling, low conductivity and crystallization of hole-transport materials infiltrated in the mesoscopic TiO2 scaffolds, leading to low performances. Here we report a record 11% stable solid-state dye-sensitized solar cell under standard air mass 1.5 global using a hole-transport material composed of a blend of [Cu (4,4′,6,6′-tetramethyl-2,2′-bipyridine)2](bis(trifluoromethylsulfonyl)imide)2 and [Cu (4,4′,6,6′-tetramethyl-2,2′-bipyridine)2](bis(trifluoromethylsulfonyl)imide). The amorphous Cu(II/I) conductors that conduct holes by rapid hopping infiltrated in a 6.5 μm-thick mesoscopic TiO2 scaffold are crucial for achieving such high efficiency. Using time-resolved laser photolysis, we determine the time constants for electron injection from the photoexcited sensitizers Y123 into the TiO2 and regeneration of the Y123 by Cu(I) to be 25 ps and 3.2 μs, respectively. Our work will foster the development of low-cost solid-state photovoltaic based on transition metal complexes as hole conductors. PMID:28598436

  8. Effect of open hole on tensile failure properties of 2D triaxial braided textile composites and tape equivalents

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Anglin, Colin; Gaskin, David; Patrick, Mike

    1995-01-01

    The unnotched and notched (open hole) tensile strength and failure mechanisms of two-dimensional (2D) triaxial braided composites were examined. The effect of notch size and notch position were investigated. Damage initiation and propagation in notched and unnotched coupons were also examined. Theory developed to predict the normal stress distribution near an open hole and failure for tape laminated composites was evaluated for its applicability to triaxial braided textile composite materials. Four fiber architectures were considered with different combinations of braid angle, longitudinal and braider yam size, and percentage of longitudinal yarns. Tape laminates equivalent to textile composites were also constructed for comparison. Unnotched tape equivalents were stronger than braided textiles but exhibited greater notch sensitivity. Notched textiles and tape equivalents have roughly the same strength at large notch sizes. Two common damage mechanisms were found: braider yams cracking and near notch longitudinal yarn splitting. Cracking was found to initiate in braider yarns in unnotched and notched coupons, and propagate in the direction of the braider yarns until failure. Longitudinal yarn splitting occurred in three of four architectures that were longitudinally fiber dominated. Damage initiation stress decreased with increasing braid angle. No significant differences in prediction of near notch stress between measured and predicted stress were weak for textiles with large braid angle. Notch strength could not be predicted using existing anisotropic theory for braided textiles due to their insensitivity to notch.

  9. Performances of some low-cost counter electrode materials in CdS and CdSe quantum dot-sensitized solar cells.

    PubMed

    Jun, Hieng Kiat; Careem, Mohamed Abdul; Arof, Abdul Kariem

    2014-02-10

    Different counter electrode (CE) materials based on carbon and Cu2S were prepared for the application in CdS and CdSe quantum dot-sensitized solar cells (QDSSCs). The CEs were prepared using low-cost and facile methods. Platinum was used as the reference CE material to compare the performances of the other materials. While carbon-based materials produced the best solar cell performance in CdS QDSSCs, platinum and Cu2S were superior in CdSe QDSSCs. Different CE materials have different performance in the two types of QDSSCs employed due to the different type of sensitizers and composition of polysulfide electrolytes used. The poor performance of QDSSCs with some CE materials is largely due to the lower photocurrent density and open-circuit voltage. The electrochemical impedance spectroscopy performed on the cells showed that the poor-performing QDSSCs had higher charge-transfer resistances and CPE values at their CE/electrolyte interfaces.

  10. It Pays to Be Organized: Organizing Arithmetic Practice around Equivalent Values Facilitates Understanding of Math Equivalence

    ERIC Educational Resources Information Center

    McNeil, Nicole M.; Chesney, Dana L.; Matthews, Percival G.; Fyfe, Emily R.; Petersen, Lori A.; Dunwiddie, April E.; Wheeler, Mary C.

    2012-01-01

    This experiment tested the hypothesis that organizing arithmetic fact practice by equivalent values facilitates children's understanding of math equivalence. Children (M age = 8 years 6 months, N = 104) were randomly assigned to 1 of 3 practice conditions: (a) equivalent values, in which problems were grouped by equivalent sums (e.g., 3 + 4 = 7, 2…

  11. Large Nc equivalence and baryons

    NASA Astrophysics Data System (ADS)

    Blake, Mike; Cherman, Aleksey

    2012-09-01

    In the large Nc limit, gauge theories with different gauge groups and matter content sometimes turn out to be “large Nc equivalent,” in the sense of having a set of coincident correlation functions. Large Nc equivalence has mainly been explored in the glueball and meson sectors. However, a recent proposal to dodge the fermion sign problem of QCD with a quark number chemical potential using large Nc equivalence motivates investigating the applicability of large Nc equivalence to correlation functions involving baryon operators. Here we present evidence that large Nc equivalence extends to the baryon sector, under the same type of symmetry realization assumptions as in the meson sector, by adapting the classic Witten analysis of large Nc baryons.

  12. 20 CFR 404.1526 - Medical equivalence.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Medical equivalence. 404.1526 Section 404... INSURANCE (1950- ) Determining Disability and Blindness Medical Considerations § 404.1526 Medical equivalence. (a) What is medical equivalence? Your impairment(s) is medically equivalent to a listed...

  13. 20 CFR 404.1526 - Medical equivalence.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Medical equivalence. 404.1526 Section 404... INSURANCE (1950- ) Determining Disability and Blindness Medical Considerations § 404.1526 Medical equivalence. (a) What is medical equivalence? Your impairment(s) is medically equivalent to a listed...

  14. 20 CFR 404.1526 - Medical equivalence.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Medical equivalence. 404.1526 Section 404... INSURANCE (1950- ) Determining Disability and Blindness Medical Considerations § 404.1526 Medical equivalence. (a) What is medical equivalence? Your impairment(s) is medically equivalent to a listed...

  15. 20 CFR 404.1526 - Medical equivalence.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Medical equivalence. 404.1526 Section 404... INSURANCE (1950- ) Determining Disability and Blindness Medical Considerations § 404.1526 Medical equivalence. (a) What is medical equivalence? Your impairment(s) is medically equivalent to a listed...

  16. 20 CFR 404.1526 - Medical equivalence.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Medical equivalence. 404.1526 Section 404... INSURANCE (1950- ) Determining Disability and Blindness Medical Considerations § 404.1526 Medical equivalence. (a) What is medical equivalence? Your impairment(s) is medically equivalent to a listed...

  17. Information Leakage from Logically Equivalent Frames

    ERIC Educational Resources Information Center

    Sher, Shlomi; McKenzie, Craig R. M.

    2006-01-01

    Framing effects are said to occur when equivalent frames lead to different choices. However, the equivalence in question has been incompletely conceptualized. In a new normative analysis of framing effects, we complete the conceptualization by introducing the notion of information equivalence. Information equivalence obtains when no…

  18. What Do Contrast Threshold Equivalent Noise Studies Actually Measure? Noise vs. Nonlinearity in Different Masking Paradigms

    PubMed Central

    Baldwin, Alex S.; Baker, Daniel H.; Hess, Robert F.

    2016-01-01

    The internal noise present in a linear system can be quantified by the equivalent noise method. By measuring the effect that applying external noise to the system’s input has on its output one can estimate the variance of this internal noise. By applying this simple “linear amplifier” model to the human visual system, one can entirely explain an observer’s detection performance by a combination of the internal noise variance and their efficiency relative to an ideal observer. Studies using this method rely on two crucial factors: firstly that the external noise in their stimuli behaves like the visual system’s internal noise in the dimension of interest, and secondly that the assumptions underlying their model are correct (e.g. linearity). Here we explore the effects of these two factors while applying the equivalent noise method to investigate the contrast sensitivity function (CSF). We compare the results at 0.5 and 6 c/deg from the equivalent noise method against those we would expect based on pedestal masking data collected from the same observers. We find that the loss of sensitivity with increasing spatial frequency results from changes in the saturation constant of the gain control nonlinearity, and that this only masquerades as a change in internal noise under the equivalent noise method. Part of the effect we find can be attributed to the optical transfer function of the eye. The remainder can be explained by either changes in effective input gain, divisive suppression, or a combination of the two. Given these effects the efficiency of our observers approaches the ideal level. We show the importance of considering these factors in equivalent noise studies. PMID:26953796

  19. What Do Contrast Threshold Equivalent Noise Studies Actually Measure? Noise vs. Nonlinearity in Different Masking Paradigms.

    PubMed

    Baldwin, Alex S; Baker, Daniel H; Hess, Robert F

    2016-01-01

    The internal noise present in a linear system can be quantified by the equivalent noise method. By measuring the effect that applying external noise to the system's input has on its output one can estimate the variance of this internal noise. By applying this simple "linear amplifier" model to the human visual system, one can entirely explain an observer's detection performance by a combination of the internal noise variance and their efficiency relative to an ideal observer. Studies using this method rely on two crucial factors: firstly that the external noise in their stimuli behaves like the visual system's internal noise in the dimension of interest, and secondly that the assumptions underlying their model are correct (e.g. linearity). Here we explore the effects of these two factors while applying the equivalent noise method to investigate the contrast sensitivity function (CSF). We compare the results at 0.5 and 6 c/deg from the equivalent noise method against those we would expect based on pedestal masking data collected from the same observers. We find that the loss of sensitivity with increasing spatial frequency results from changes in the saturation constant of the gain control nonlinearity, and that this only masquerades as a change in internal noise under the equivalent noise method. Part of the effect we find can be attributed to the optical transfer function of the eye. The remainder can be explained by either changes in effective input gain, divisive suppression, or a combination of the two. Given these effects the efficiency of our observers approaches the ideal level. We show the importance of considering these factors in equivalent noise studies.

  20. PATHOGEN EQUIVALENCY COMMITTEE UPDATE: PFRP EQUIVALENCY DETERMINATIONS

    EPA Science Inventory

    This presentation will:

    Review the mandate of the Pathogen Equivalency Committee
    Review the PEC's current membership of 10
    Discuss how a typical application is evaluated
    Note where information can be found
    List present deliberations/applications and describe t...

  1. FAST TRACK COMMUNICATION: Phenomenology of the equivalence principle with light scalars

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Donoghue, John F.

    2010-10-01

    Light scalar particles with couplings of sub-gravitational strength, which can generically be called 'dilatons', can produce violations of the equivalence principle. However, in order to understand experimental sensitivities one must know the coupling of these scalars to atomic systems. We report here on a study of the required couplings. We give a general Lagrangian with five independent dilaton parameters and calculate the 'dilaton charge' of atomic systems for each of these. Two combinations are particularly important. One is due to the variations in the nuclear binding energy, with a sensitivity scaling with the atomic number as A-1/3. The other is due to electromagnetism. We compare limits on the dilaton parameters from existing experiments.

  2. Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose

    NASA Technical Reports Server (NTRS)

    Welton, Andrew; Lee, Kerry

    2010-01-01

    While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.

  3. Minimizing material damage using low temperature irradiation

    NASA Astrophysics Data System (ADS)

    Craven, E.; Hasanain, F.; Winters, M.

    2012-08-01

    Scientific advancements in healthcare driven both by technological breakthroughs and an aging and increasingly obese population have lead to a changing medical device market. Complex products and devices are being developed to meet the demands of leading edge medical procedures. Specialized materials in these medical devices, including pharmaceuticals and biologics as well as exotic polymers present a challenge for radiation sterilization as many of these components cannot withstand conventional irradiation methods. The irradiation of materials at dry ice temperatures has emerged as a technique that can be used to decrease the radiation sensitivity of materials. The purpose of this study is to examine the effect of low temperature irradiation on a variety of polymer materials, and over a range of temperatures from 0 °C down to -80 °C. The effectiveness of microbial kill is also investigated under each of these conditions. The results of the study show that the effect of low temperature irradiation is material dependent and can alter the balance between crosslinking and chain scission of the polymer. Low temperatures also increase the dose required to achieve an equivalent microbiological kill, therefore dose setting exercises must be performed under the environmental conditions of use.

  4. An all-solid-state perovskite-sensitized solar cell based on the dual function polyaniline as the sensitizer and p-type hole-transporting material

    NASA Astrophysics Data System (ADS)

    Xiao, Yaoming; Han, Gaoyi; Chang, Yunzhen; Zhou, Haihan; Li, Miaoyu; Li, Yanping

    2014-12-01

    High performance dual function of polyaniline (PANI) with brachyplast structure is synthesized by using a two-step cyclic voltammetry (CV) approach onto the fluorinated tin oxide (FTO) glass substrate, which acts as the sensitizer and p-type hole-transporting material (p-HTM) for the all-solid-state perovskite-sensitized solar cell (ass-PSSC) due to its π-π* transition and the localized polaron. The ass-PSSC based on the PANI delivers a photovoltaic conversion efficiency of 7.34%, and reduces from 7.34% to 6.71% after 1000 h, thereby 91.42% of the energy conversion efficiency is kept, indicating the device has a good long-term stability.

  5. Theoretical and experimental characterization of novel water-equivalent plastics in clinical high-energy carbon-ion beams.

    PubMed

    Lourenço, A; Wellock, N; Thomas, R; Homer, M; Bouchard, H; Kanai, T; MacDougall, N; Royle, G; Palmans, H

    2016-11-07

    Water-equivalent plastics are frequently used in dosimetry for experimental simplicity. This work evaluates the water-equivalence of novel water-equivalent plastics specifically designed for light-ion beams, as well as commercially available plastics in a clinical high-energy carbon-ion beam. A plastic- to-water conversion factor [Formula: see text] was established to derive absorbed dose to water in a water phantom from ionization chamber readings performed in a plastic phantom. Three trial plastic materials with varying atomic compositions were produced and experimentally characterized in a high-energy carbon-ion beam. Measurements were performed with a Roos ionization chamber, using a broad un-modulated beam of 11  ×  11 cm 2 , to measure the plastic-to-water conversion factor for the novel materials. The experimental results were compared with Monte Carlo simulations. Commercially available plastics were also simulated for comparison with the plastics tested experimentally, with particular attention to the influence of nuclear interaction cross sections. The measured [Formula: see text] correction increased gradually from 0% at the surface to 0.7% at a depth near the Bragg peak for one of the plastics prepared in this work, while for the other two plastics a maximum correction of 0.8%-1.3% was found. Average differences between experimental and numerical simulations were 0.2%. Monte Carlo results showed that for polyethylene, polystyrene, Rando phantom soft tissue and A-150, the correction increased from 0% to 2.5%-4.0% with depth, while for PMMA it increased to 2%. Water-equivalent plastics such as, Plastic Water, RMI-457, Gammex 457-CTG, WT1 and Virtual Water, gave similar results where maximum corrections were of the order of 2%. Considering the results from Monte Carlo simulations, one of the novel plastics was found to be superior in comparison with the plastic materials currently used in dosimetry, demonstrating that it is feasible to tailor

  6. Theoretical and experimental characterization of novel water-equivalent plastics in clinical high-energy carbon-ion beams

    NASA Astrophysics Data System (ADS)

    Lourenço, A.; Wellock, N.; Thomas, R.; Homer, M.; Bouchard, H.; Kanai, T.; MacDougall, N.; Royle, G.; Palmans, H.

    2016-11-01

    Water-equivalent plastics are frequently used in dosimetry for experimental simplicity. This work evaluates the water-equivalence of novel water-equivalent plastics specifically designed for light-ion beams, as well as commercially available plastics in a clinical high-energy carbon-ion beam. A plastic- to-water conversion factor {{H}\\text{pl,w}} was established to derive absorbed dose to water in a water phantom from ionization chamber readings performed in a plastic phantom. Three trial plastic materials with varying atomic compositions were produced and experimentally characterized in a high-energy carbon-ion beam. Measurements were performed with a Roos ionization chamber, using a broad un-modulated beam of 11  ×  11 cm2, to measure the plastic-to-water conversion factor for the novel materials. The experimental results were compared with Monte Carlo simulations. Commercially available plastics were also simulated for comparison with the plastics tested experimentally, with particular attention to the influence of nuclear interaction cross sections. The measured H\\text{pl,w}\\exp correction increased gradually from 0% at the surface to 0.7% at a depth near the Bragg peak for one of the plastics prepared in this work, while for the other two plastics a maximum correction of 0.8%-1.3% was found. Average differences between experimental and numerical simulations were 0.2%. Monte Carlo results showed that for polyethylene, polystyrene, Rando phantom soft tissue and A-150, the correction increased from 0% to 2.5%-4.0% with depth, while for PMMA it increased to 2%. Water-equivalent plastics such as, Plastic Water, RMI-457, Gammex 457-CTG, WT1 and Virtual Water, gave similar results where maximum corrections were of the order of 2%. Considering the results from Monte Carlo simulations, one of the novel plastics was found to be superior in comparison with the plastic materials currently used in dosimetry, demonstrating that it is feasible to tailor plastic

  7. The principle of equivalence reconsidered: assessing the relevance of the principle of equivalence in prison medicine.

    PubMed

    Jotterand, Fabrice; Wangmo, Tenzin

    2014-01-01

    In this article we critically examine the principle of equivalence of care in prison medicine. First, we provide an overview of how the principle of equivalence is utilized in various national and international guidelines on health care provision to prisoners. Second, we outline some of the problems associated with its applications, and argue that the principle of equivalence should go beyond equivalence to access and include equivalence of outcomes. However, because of the particular context of the prison environment, third, we contend that the concept of "health" in equivalence of health outcomes needs conceptual clarity; otherwise, it fails to provide a threshold for healthy states among inmates. We accomplish this by examining common understandings of the concepts of health and disease. We conclude our article by showing why the conceptualization of diseases as clinical problems provides a helpful approach in the delivery of health care in prison.

  8. 77 FR 60985 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of Three New Equivalent Methods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... Methods: Designation of Three New Equivalent Methods AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of three new equivalent methods for monitoring ambient air quality. SUMMARY... equivalent methods, one for measuring concentrations of PM 2.5 , one for measuring concentrations of PM 10...

  9. 78 FR 67360 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of Five New Equivalent Methods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... Methods: Designation of Five New Equivalent Methods AGENCY: Office of Research and Development; Environmental Protection Agency (EPA). ACTION: Notice of the designation of five new equivalent methods for...) has designated, in accordance with 40 CFR Part 53, five new equivalent methods, one for measuring...

  10. Sensitivity analysis of a wing aeroelastic response

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Eldred, Lloyd B.; Barthelemy, Jean-Francois M.

    1991-01-01

    A variation of Sobieski's Global Sensitivity Equations (GSE) approach is implemented to obtain the sensitivity of the static aeroelastic response of a three-dimensional wing model. The formulation is quite general and accepts any aerodynamics and structural analysis capability. An interface code is written to convert one analysis's output to the other's input, and visa versa. Local sensitivity derivatives are calculated by either analytic methods or finite difference techniques. A program to combine the local sensitivities, such as the sensitivity of the stiffness matrix or the aerodynamic kernel matrix, into global sensitivity derivatives is developed. The aerodynamic analysis package FAST, using a lifting surface theory, and a structural package, ELAPS, implementing Giles' equivalent plate model are used.

  11. Protective coatings for sensitive materials

    DOEpatents

    Egert, Charles M.

    1997-01-01

    An enhanced protective coating to prevent interaction between constituents of the environment and devices that can be damaged by those constituents. This coating is provided by applying a synergistic combination of diffusion barrier and physical barrier materials. These materials can be, for example, in the form of a plurality of layers of a diffusion barrier and a physical barrier, with these barrier layers being alternated. Further protection in certain instances is provided by including at least one layer of a getter material to actually react with one or more of the deleterious constituents. The coating is illustrated by using alternating layers of an organic coating (such as Parylene-C.TM.) as the diffusion barrier, and a metal coating (such as aluminum) as the physical barrier. For best results there needs to be more than one of at least one of the constituent layers.

  12. MCNP modelling of the wall effects observed in tissue-equivalent proportional counters.

    PubMed

    Hoff, J L; Townsend, L W

    2002-01-01

    Tissue-equivalent proportional counters (TEPCs) utilise tissue-equivalent materials to depict homogeneous microscopic volumes of human tissue. Although both the walls and gas simulate the same medium, they respond to radiation differently. Density differences between the two materials cause distortions, or wall effects, in measurements, with the most dominant effect caused by delta rays. This study uses a Monte Carlo transport code, MCNP, to simulate the transport of secondary electrons within a TEPC. The Rudd model, a singly differential cross section with no dependence on electron direction, is used to describe the energy spectrum obtained by the impact of two iron beams on water. Based on the models used in this study, a wall-less TEPC had a higher lineal energy (keV.micron-1) as a function of impact parameter than a solid-wall TEPC for the iron beams under consideration. An important conclusion of this study is that MCNP has the ability to model the wall effects observed in TEPCs.

  13. Development of materials and process technology for dual alloy disks

    NASA Technical Reports Server (NTRS)

    Marder, J. M.; Kortovich, C. S.

    1981-01-01

    Techniques for the preparation of dual alloy disks were developed and evaluated. Four material combinations were evaluated in the form of HIP consolidated and heat treated cylindrical and plate shapes in terms of elevated temperature tensile, stress rupture and low cycle fatigue properties. The process evaluation indicated that the pe-HIP AF-115 rim/loose powder Rene 95 hub combination offered the best overall range of mechanical properties for dual disk applications. The feasibility of this dual alloy concept for the production of more complex components was demonstrated by the scale up fabrication of a prototype CFM-56 disk made from this AF-115/Rene 95 combination. The hub alloy ultimate tensile strength was approximately 92 percent of the program goal of 1520 MPa (220 ksi) at 480 C (900 F) and the rim alloy stress rupture goal of 300 hours at 675 C (1250 F)/925 MPa (134 ksi) was exceeded by 200 hours. The low cycle fatigue properties were equivalent to those exhibited by HIP and heat treated alloys. There was an absence of rupture notch sensitivity in both alloys. The joint tensile properties were approximately 85 percent of the weaker of the two materials (Rene 95) and the stress rupture properties were equivalent to those of the weaker of the two materials (Rene 95).

  14. Determination of lead equivalent values according to IEC 61331-1:2014—Report and short guidelines for testing laboratories

    NASA Astrophysics Data System (ADS)

    Büermann, L.

    2016-09-01

    Materials used for the production of protective devices against diagnostic medical X-radiation described in the international standard IEC 61331-3 need to be specified in terms of their lead attenuation equivalent thickness according to the methods described in IEC 61331-1. In May 2014 the IEC published the second edition of these standards which contain improved methods for the determination of attenuation ratios and the corresponding lead attenuation equivalent thicknesses of lead-reduced or lead-free materials. These methods include the measurement of scattered photons behind the protective material which were hitherto neglected but are becoming more important because of the increasing use of lead-reduced or even lead-free materials. They can offer the same protective effect but are up to 20% lighter and also easier to dispose of. The new method is based on attenuation ratios measured with the so-called ``inverse broad beam condition''. Since the corresponding measurement procedure is new and in some respects more complex than the methods used in the past, it was regarded as being helpful to have a description of how such measurements can reliably be performed. This technical report describes in detail the attenuation ratio measurements and corresponding procedures for the lead equivalent determinations of sample materials using the method with the inverse broad beam condition as carried out at the Physikalisch-Technische Bundesanstalt (PTB). PTB still offers material testing and certification for the German responsible notified body. In addition to the description of the measurements at PTB, a short technical guide is provided for testing laboratories which intend to establish this kind of protective material certification. The guide includes technical recommendations for the testing equipment like X-ray facilities, reference lead sheets and radiation detectors; special procedures for the determination of the lead attenuation equivalent thickness; their

  15. Electrothermal Equivalent Three-Dimensional Finite-Element Model of a Single Neuron.

    PubMed

    Cinelli, Ilaria; Destrade, Michel; Duffy, Maeve; McHugh, Peter

    2018-06-01

    We propose a novel approach for modelling the interdependence of electrical and mechanical phenomena in nervous cells, by using electrothermal equivalences in finite element (FE) analysis so that existing thermomechanical tools can be applied. First, the equivalence between electrical and thermal properties of the nerve materials is established, and results of a pure heat conduction analysis performed in Abaqus CAE Software 6.13-3 are validated with analytical solutions for a range of steady and transient conditions. This validation includes the definition of equivalent active membrane properties that enable prediction of the action potential. Then, as a step toward fully coupled models, electromechanical coupling is implemented through the definition of equivalent piezoelectric properties of the nerve membrane using the thermal expansion coefficient, enabling prediction of the mechanical response of the nerve to the action potential. Results of the coupled electromechanical model are validated with previously published experimental results of deformation for squid giant axon, crab nerve fibre, and garfish olfactory nerve fibre. A simplified coupled electromechanical modelling approach is established through an electrothermal equivalent FE model of a nervous cell for biomedical applications. One of the key findings is the mechanical characterization of the neural activity in a coupled electromechanical domain, which provides insights into the electromechanical behaviour of nervous cells, such as thinning of the membrane. This is a first step toward modelling three-dimensional electromechanical alteration induced by trauma at nerve bundle, tissue, and organ levels.

  16. 77 FR 55832 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of a New Equivalent Method

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... Methods: Designation of a New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of a new equivalent method for monitoring ambient air quality. SUMMARY: Notice is... part 53, a new equivalent method for measuring concentrations of PM 2.5 in the ambient air. FOR FURTHER...

  17. Protective coatings for sensitive materials

    DOEpatents

    Egert, C.M.

    1997-08-05

    An enhanced protective coating is disclosed to prevent interaction between constituents of the environment and devices that can be damaged by those constituents. This coating is provided by applying a synergistic combination of diffusion barrier and physical barrier materials. These materials can be, for example, in the form of a plurality of layers of a diffusion barrier and a physical barrier, with these barrier layers being alternated. Further protection in certain instances is provided by including at least one layer of a getter material to actually react with one or more of the deleterious constituents. The coating is illustrated by using alternating layers of an organic coating (such as Parylene-C{trademark}) as the diffusion barrier, and a metal coating (such as aluminum) as the physical barrier. For best results there needs to be more than one of at least one of the constituent layers. 4 figs.

  18. Biological effects and equivalent doses in radiotherapy: A software solution

    PubMed Central

    Voyant, Cyril; Julian, Daniel; Roustit, Rudy; Biffi, Katia; Lantieri, Céline

    2013-01-01

    Background The limits of TDF (time, dose, and fractionation) and linear quadratic models have been known for a long time. Medical physicists and physicians are required to provide fast and reliable interpretations regarding delivered doses or any future prescriptions relating to treatment changes. Aim We, therefore, propose a calculation interface under the GNU license to be used for equivalent doses, biological doses, and normal tumor complication probability (Lyman model). Materials and methods The methodology used draws from several sources: the linear-quadratic-linear model of Astrahan, the repopulation effects of Dale, and the prediction of multi-fractionated treatments of Thames. Results and conclusions The results are obtained from an algorithm that minimizes an ad-hoc cost function, and then compared to an equivalent dose computed using standard calculators in seven French radiotherapy centers. PMID:24936319

  19. Impact sensitivity test of liquid energetic materials

    NASA Astrophysics Data System (ADS)

    Tiutiaev, A.; Dolzhikov, A.; Zvereva, I.

    2017-10-01

    This paper presents new experimental method for sensitivity evaluation at the impact. A large number of researches shown that the probability of explosion initiating of liquid explosives by impact depends on the chemical nature and the various external characteristics. But the sensitivity of liquid explosive in the presence of gas bubbles increases many times as compared with the liquid without gas bubbles. In this case local chemical reaction focus are formed as a result of compression and heating of the gas inside the bubbles. In the liquid as a result of convection, wave motion, shock, etc. gas bubbles are easily generated, it is necessary to develop methods for determining sensitivity of liquid explosives to impact and to research the explosives ignition with bubbles. For the experimental investigation, the well-known impact machine and the so-called appliance 1 were used. Instead of the metal cup in the standard method in this paper polyurethane foam cylindrical container with liquid explosive was used. Polyurethane foam cylindrical container is easily deforms by impact. A large number of tests with different liquid explosives were made. It was found that the test liquid explosive to impact in appliance 1 with polyurethane foam to a large extent reflect the real mechanical sensitivity due to the small loss of impact energy on the deformation of the metal cup, as well as the best differentiation liquid explosive sensitivity due to the higher resolution method.

  20. Label-free and pH-sensitive colorimetric materials for the sensing of urea

    NASA Astrophysics Data System (ADS)

    Li, Lu; Long, Yue; Gao, Jin-Ming; Song, Kai; Yang, Guoqiang

    2016-02-01

    This communication demonstrates a facile method for naked-eye detection of urea based on the structure color change of pH-sensitive photonic crystals. The insertion of urease provides excellent selectivity over other molecules. The detection of urea in different concentration ranges could be realized by changing the molar ratio between the functional monomer and cross-linker.This communication demonstrates a facile method for naked-eye detection of urea based on the structure color change of pH-sensitive photonic crystals. The insertion of urease provides excellent selectivity over other molecules. The detection of urea in different concentration ranges could be realized by changing the molar ratio between the functional monomer and cross-linker. Electronic supplementary information (ESI) available: Materials and chemicals, characterization, experimental details, and SEM images. See DOI: 10.1039/c5nr07690k

  1. High-sensitivity green resist material with organic solvent-free spin-coating and tetramethylammonium hydroxide-free water-developable processes for EB and EUV lithography

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2015-03-01

    We investigated the eco-friendly electron beam (EB) and extreme-ultraviolet (EUV) lithography using a high-sensitive negative type of green resist material derived from biomass to take advantage of organic solvent-free water spin-coating and tetramethylammonium hydroxide(TMAH)-free water-developable techniques. A water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB lithography was developed for environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of TMAH. The material design concept to use the water-soluble resist material with acceptable properties such as pillar patterns with less than 100 nm in high EB sensitivity of 10 μC/cm2 and etch selectivity with a silicon-based middle layer in CF4 plasma treatment was demonstrated for EB and EUV lithography.

  2. Active microwave water equivalence

    NASA Technical Reports Server (NTRS)

    Boyne, H. S.; Ellerbruch, D. A.

    1980-01-01

    Measurements of water equivalence using an active FM-CW microwave system were conducted over the past three years at various sites in Colorado, Wyoming, and California. The measurement method is described. Measurements of water equivalence and stratigraphy are compared with ground truth. A comparison of microwave, federal sampler, and snow pillow measurements at three sites in Colorado is described.

  3. Sample size determination for a three-arm equivalence trial of Poisson and negative binomial responses.

    PubMed

    Chang, Yu-Wei; Tsong, Yi; Zhao, Zhigen

    2017-01-01

    Assessing equivalence or similarity has drawn much attention recently as many drug products have lost or will lose their patents in the next few years, especially certain best-selling biologics. To claim equivalence between the test treatment and the reference treatment when assay sensitivity is well established from historical data, one has to demonstrate both superiority of the test treatment over placebo and equivalence between the test treatment and the reference treatment. Thus, there is urgency for practitioners to derive a practical way to calculate sample size for a three-arm equivalence trial. The primary endpoints of a clinical trial may not always be continuous, but may be discrete. In this paper, the authors derive power function and discuss sample size requirement for a three-arm equivalence trial with Poisson and negative binomial clinical endpoints. In addition, the authors examine the effect of the dispersion parameter on the power and the sample size by varying its coefficient from small to large. In extensive numerical studies, the authors demonstrate that required sample size heavily depends on the dispersion parameter. Therefore, misusing a Poisson model for negative binomial data may easily lose power up to 20%, depending on the value of the dispersion parameter.

  4. 46 CFR 110.20-1 - Equivalents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Equivalents. 110.20-1 Section 110.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Equivalents... engineering evaluations and tests to demonstrate the equivalence of the substitute. [CGD 94-108, 61 FR 28275...

  5. 46 CFR 110.20-1 - Equivalents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Equivalents. 110.20-1 Section 110.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Equivalents... engineering evaluations and tests to demonstrate the equivalence of the substitute. [CGD 94-108, 61 FR 28275...

  6. 46 CFR 110.20-1 - Equivalents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Equivalents. 110.20-1 Section 110.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Equivalents... engineering evaluations and tests to demonstrate the equivalence of the substitute. [CGD 94-108, 61 FR 28275...

  7. 46 CFR 110.20-1 - Equivalents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Equivalents. 110.20-1 Section 110.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Equivalents... engineering evaluations and tests to demonstrate the equivalence of the substitute. [CGD 94-108, 61 FR 28275...

  8. 46 CFR 110.20-1 - Equivalents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Equivalents. 110.20-1 Section 110.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Equivalents... engineering evaluations and tests to demonstrate the equivalence of the substitute. [CGD 94-108, 61 FR 28275...

  9. Classroom Activities for Introducing Equivalence Relations

    ERIC Educational Resources Information Center

    Brandt, Jim

    2013-01-01

    Equivalence relations and partitions are two interconnected ideas that play important roles in advanced mathematics. While students encounter the informal notion of equivalence in many courses, the formal definition of an equivalence relation is typically introduced in a junior level transition-to-proof course. This paper reports the results of a…

  10. Elastic airtight container for the compaction of air-sensitive materials

    NASA Astrophysics Data System (ADS)

    Shoulders, W. Taylor; Locke, Richard; Gaume, Romain M.

    2016-06-01

    We report on the design and fabrication of a simple and versatile elastic canister for the compaction and hot-pressing of air-sensitive materials. This device consists of a heated double-ended floating die assembly, enclosed in a compressible stainless steel bellows that allows the action of an external hydraulic press in a uniaxial motion. The enclosure is fitted with vacuum, gas, and electrical feedthroughs to allow for atmosphere control, heating, and in situ process monitoring. The overall chamber is compact enough to be portable and transferrable into and out of a standard laboratory glovebox, thus eliminating the problem of exposing samples to ambient atmosphere during loading and unloading. Our design has been tested up to 600 °C and 7500 kg-force applied load, conditions within which transparent ceramics of anhydrous halides can be produced.

  11. GEOSTEP: A gravitation experiment in Earth-orbiting satellite to test the Equivalence Principle

    NASA Astrophysics Data System (ADS)

    Bonneville, R.

    2003-10-01

    Testing the Equivalence Principle has been recognized by the scientific community as a short-term prime objective for fundamental physics in space. In 1994, a Phase 0/A study of the GEOSTEP mission has been initiated by CNES in order to design a space experiment to test the Equivalence Principle to an accuracy of 10 -17, with the constraint to be compatible with the small versatile platform PROTEUS under study. The GEOSTEP payload comprises a set of four differential accelerometers placed at cryogenic temperature on board a drag-free, 3-axis stabilized satellite in low-Earth orbit. Each accelerometer contains a pair of test masses A-A, A-B, A-C, B-C (inner mass - outer mass) made of three different materials A, B, C with decreasing densities. The accelerometer concept is the fully electrostatic levitation and read-out device proposed by ONERA, called SAGE (Space Accelerometer for Gravitation Experiment). The drag-free and attitude control system (DFACS) is monitored by the common-mode data of the accelerometers along their three axes, while the possible violation signal is detected by the differential-mode data along the longitudinal sensitive axis. The cryostat is a single chamber supercritical Helium dewar designed by CEA. Helium boiling off from the dewar feeds a set of proportional gas thrusters performing the DFACS. Error analysis and data processing preparation is managed by OCA/CERGA. The satellite will be on a 6 am - 6 pm near-polar, near-circular, Sun-synchronous orbit, at an altitude of 600 to 900 km, depending on the atmospheric density at the time of launch. GEOSTEP could be launched in 2002; the nominal mission duration is at least four months.

  12. Microchannel plate special nuclear materials sensor

    NASA Astrophysics Data System (ADS)

    Feller, W. B.; White, P. L.; White, P. B.; Siegmund, O. H. W.; Martin, A. P.; Vallerga, J. V.

    2011-10-01

    Nova Scientific Inc., is developing for the Domestic Nuclear Detection Office (DNDO SBIR #HSHQDC-08-C-00190), a solid-state, high-efficiency neutron detection alternative to 3He gas tubes, using neutron-sensitive microchannel plates (MCPs) containing 10B and/or Gd. This work directly supports DNDO development of technologies designed to detect and interdict nuclear weapons or illicit nuclear materials. Neutron-sensitized MCPs have been shown theoretically and more recently experimentally, to be capable of thermal neutron detection efficiencies equivalent to 3He gas tubes. Although typical solid-state neutron detectors typically have an intrinsic gamma sensitivity orders of magnitude higher than that of 3He gas detectors, we dramatically reduce gamma sensitivity by combining a novel electronic coincidence rejection scheme, employing a separate but enveloping gamma scintillator. This has already resulted in a measured gamma rejection ratio equal to a small 3He tube, without in principle sacrificing neutron detection efficiency. Ongoing improvements to the MCP performance as well as the coincidence counting geometry will be described. Repeated testing and validation with a 252Cf source has been underway throughout the Phase II SBIR program, with ongoing comparisons to a small commercial 3He gas tube. Finally, further component improvements and efforts toward integration maturity are underway, with the goal of establishing functional prototypes for SNM field testing.

  13. Simulation of High-Latitude Hydrological Processes in the Torne-Kalix Basin: PILPS Phase 2(e). 3; Equivalent Model Representation and Sensitivity Experiments

    NASA Technical Reports Server (NTRS)

    Bowling, Laura C.; Lettenmaier, Dennis P.; Nijssen, Bart; Polcher, Jan; Koster, Randal D.; Lohmann, Dag; Houser, Paul R. (Technical Monitor)

    2002-01-01

    The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS) Phase 2(e) showed that in cold regions the annual runoff production in Land Surface Schemes (LSSs) is closely related to the maximum snow accumulation, which in turn is controlled in large part by winter sublimation. To help further explain the relationship between snow cover, turbulent exchanges and runoff production, a simple equivalent model-(SEM) was devised to reproduce the seasonal and annual fluxes simulated by 13 LSSs that participated in PILPS Phase 2(e). The design of the SEM relates the annual partitioning of precipitation and energy in the LSSs to three primary parameters: snow albedo, effective aerodynamic resistance and evaporation efficiency. Isolation of each of the parameters showed that the annual runoff production was most sensitive to the aerodynamic resistance. The SEM was somewhat successful in reproducing the observed LSS response to a decrease in shortwave radiation and changes in wind speed forcings. SEM parameters derived from the reduced shortwave forcings suggested that increased winter stability suppressed turbulent heat fluxes over snow. Because winter sensible heat fluxes were largely negative, reductions in winter shortwave radiation imply an increase in annual average sensible heat.

  14. [On the Way to Culture-Sensitive Patient Information Materials: Results of a Focus Group Study].

    PubMed

    Ries, Zivile; Frank, Fabian; Bermejo, Isaac; Kalaitsidou, Chariklia; Zill, Jördis; Dirmaier, Jörg; Härter, Martin; Bengel, Jürgen; Hölzel, Lars

    2018-06-01

    This study was part of a double-blind randomised controlled trial aimed to evaluate the effects of culture-sensitive patient information materials (PIM) compared with standard translated material. The study aimed to obtain the data for the development of culture sensitive PIM about unipolar depression for the 4 largest migrant groups in Germany (Turkish, Polish, Russian and Italian migration background). A qualitative study using 4 manual-based focus groups (FG), one for each migrant group, with 29 participants (9 with a Turkish (TüG), 8 with a Polish (PoG), 5 with a Russian (RuG) and 7 with an Italian (ItG) migration background) was conducted. The discussions were recorded, transcribed and analyzed using qualitative content analysis. 7 categories were identified. For the (1.) development of a good culture-sensitive PIM an easy language, a clear structure, an assessable extent of information and the avoidance of stereotypes were highlighted cross-culturally in all four FG. RuG and PoG had the largest (2.) lack of information about the German health care system. Concerning the (3.) illness perception RuG named problems with recognizing and understanding depression. PoG, RuG and TüG thematized (4.) feared consequences of the illness and of professional helpseeking. ItG, PoG, RuG had fears concerning (5.) psychotropic drugs as a result from insufficient knowledge about medication. For (6.) doctor-patient relationship cultural specifics were identified in RuG and TüG and for (7.) migration or culture specific reasons for depression in RuG, ItG and TüG. Although the identified categories were relevant for all or for the majority of migrant groups, for most categories specific cultural aspects were discovered. These findings show the importance of a culture sensitive adaptation of PIM. © Georg Thieme Verlag KG Stuttgart · New York.

  15. To probe the equivalence and opulence of nanocrystal and nanotube based dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jyoti, Divya, E-mail: divyabathla17@gmail.com; Mohan, Devendra

    2016-05-06

    Dye-Sensitized solar cells based on TiO{sub 2} nanocrystal and TiO{sub 2} nanotubes have been fabricated by a simple sol-gel hydrothermal process and their performances have been compared. Current density and voltage (JV) characteristics and incident photon to current conversion efficiency (IPCE) plots have been set as criterion to check which one is better as a photoanode candidate in dye-sensitized solar cell. It has been observed that although open circuit voltage values for both type of cells do not differ much still, nanotube based dye-sensitized solar cells are more successful having an efficiency value of 7.28%.

  16. A preliminary study of a cryogenic equivalence principle experiment on Shuttle

    NASA Technical Reports Server (NTRS)

    Everitt, C. W. F.; Worden, P. W., Jr.

    1985-01-01

    The Weak Equivalence Principle is the hypothesis that all test bodies fall with the same acceleration in the same gravitational field. The current limit on violations of the Weak Equivalence Principle, measured by the ratio of the difference in acceleration of two test masses to their average acceleration, is about 3 parts in one-hundred billion. It is anticipated that this can be improved in a shuttle experiment to a part in one quadrillion. Topics covered include: (1) studies of the shuttle environment, including interference with the experiment, interfacing to the experiment, and possible alternatives; (2) numerical simulations of the proposed experiment, including analytic solutions for special cases of the mass motion and preliminary estimates of sensitivity and time required; (3) error analysis of several noise sources such as thermal distortion, gas and radiation pressure effects, and mechanical distortion; and (4) development and performance tests of a laboratory version of the instrument.

  17. Main factors in E-Learning for the Equivalency Education Program (E-LEEP)

    NASA Astrophysics Data System (ADS)

    Yel, M. B.; Sfenrianto

    2018-03-01

    There is a tremendous learning gap between formal education and non-formal education. E-Learning can facilitate non-formal education learners in improving the learning process. In this study, we present the main factors behind the E-learning for the Equivalency Education Program (E-LEEP) initiative in Indonesia. There are four main factors proposed, namely: standardization, learning materials, learning process, and learners’ characteristics. Each factor supports each other to achieve the learning process of E-LEEP in Indonesia. Although not yet proven, the E-learning should be developed followed the main factors for the non-formal education. This is because those factors can improve the quality of E-Learning for the Equivalency Education Program.

  18. Test of the Equivalence Principle in an Einstein Elevator

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.; Glashow, S.; Lorenzini, E. C.; Cosmo, M. L.; Cheimets, P. N.; Finkelstein, N.; Schneps, M.

    2005-01-01

    This Annual Report illustrates the work carried out during the last grant-year activity on the Test of the Equivalence Principle in an Einstein Elevator. The activity focused on the following main topics: (1) analysis and conceptual design of a detector configuration suitable for the flight tests; (2) development of techniques for extracting a small signal from data strings with colored and white noise; (3) design of the mechanism that spins and releases the instrument package inside the cryostat; and (4) experimental activity carried out by our non-US partners (a summary is shown in this report). The analysis and conceptual design of the flight-detector (point 1) was focused on studying the response of the differential accelerometer during free fall, in the presence of errors and precession dynamics, for various detector's configurations. The goal was to devise a detector configuration in which an Equivalence Principle violation (EPV) signal at the sensitivity threshold level can be successfully measured and resolved out of a much stronger dynamics-related noise and gravity gradient. A detailed analysis and comprehensive simulation effort led us to a detector's design that can accomplish that goal successfully.

  19. Saponification equivalent of dasamula taila.

    PubMed

    Saxena, R B

    1994-07-01

    Saponification equivalent values of Dasamula taila are very useful for the technical and analytical work. It gives the mean molecular weight of the glycerides and acids present in Dasamula Taila. Saponification equivalent values of Dasamula taila are reported in different packings.

  20. Gauge equivalence of the Gross Pitaevskii equation and the equivalent Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Radha, R.; Kumar, V. Ramesh

    2007-11-01

    In this paper, we construct an equivalent spin chain for the Gross-Pitaevskii equation with quadratic potential and exponentially varying scattering lengths using gauge equivalence. We have then generated the soliton solutions for the spin components S3 and S-. We find that the spin solitons for S3 and S- can be compressed for exponentially growing eigenvalues while they broaden out for decaying eigenvalues.

  1. SAPONIFICATION EQUIVALENT OF DASAMULA TAILA

    PubMed Central

    Saxena, R. B.

    1994-01-01

    Saponification equivalent values of Dasamula taila are very useful for the technical and analytical work. It gives the mean molecular weight of the glycerides and acids present in Dasamula Taila. Saponification equivalent values of Dasamula taila are reported in different packings. PMID:22556683

  2. BioProgrammable One, Two, and Three Dimensional Materials

    DTIC Science & Technology

    2017-01-18

    or three- dimensional architectures. The Mirkin group has used DNA-functionalized nanoparticles as “programmable atom equivalents (PAEs)” as material...with electron beam lithography to simultaneously control material structure at the nano- and macroscopic length scales. The Nguyen group has...synthesized and assembled small molecule-DNA hybrids (SMDHs) as part of programmable atom equivalents . The Rosi group identified design rules for using

  3. Highly sensitive molecular diagnosis of prostate cancer using surplus material washed off from biopsy needles

    PubMed Central

    Bermudo, R; Abia, D; Mozos, A; García-Cruz, E; Alcaraz, A; Ortiz, Á R; Thomson, T M; Fernández, P L

    2011-01-01

    Introduction: Currently, final diagnosis of prostate cancer (PCa) is based on histopathological analysis of needle biopsies, but this process often bears uncertainties due to small sample size, tumour focality and pathologist's subjective assessment. Methods: Prostate cancer diagnostic signatures were generated by applying linear discriminant analysis to microarray and real-time RT–PCR (qRT–PCR) data from normal and tumoural prostate tissue samples. Additionally, after removal of biopsy tissues, material washed off from transrectal biopsy needles was used for molecular profiling and discriminant analysis. Results: Linear discriminant analysis applied to microarray data for a set of 318 genes differentially expressed between non-tumoural and tumoural prostate samples produced 26 gene signatures, which classified the 84 samples used with 100% accuracy. To identify signatures potentially useful for the diagnosis of prostate biopsies, surplus material washed off from routine biopsy needles from 53 patients was used to generate qRT–PCR data for a subset of 11 genes. This analysis identified a six-gene signature that correctly assigned the biopsies as benign or tumoural in 92.6% of the cases, with 88.8% sensitivity and 96.1% specificity. Conclusion: Surplus material from prostate needle biopsies can be used for minimal-size gene signature analysis for sensitive and accurate discrimination between non-tumoural and tumoural prostates, without interference with current diagnostic procedures. This approach could be a useful adjunct to current procedures in PCa diagnosis. PMID:22009027

  4. MgO:Li,Ce,Sm as a high-sensitivity material for Optically Stimulated Luminescence dosimetry

    NASA Astrophysics Data System (ADS)

    Oliveira, Luiz C.; Yukihara, Eduardo G.; Baffa, Oswaldo

    2016-04-01

    The goal of this work was to investigate the relevant dosimetric and luminescent properties of MgO:Li3%,Ce0.03%,Sm0.03%, a newly-developed, high sensitivity Optically Stimulated Luminescence (OSL) material of low effective atomic number (Zeff = 10.8) and potential interest for medical and personal dosimetry. We characterized the thermoluminescence (TL), OSL, radioluminescence (RL), and OSL emission spectrum of this new material and carried out a preliminary investigation on the OSL signal stability. MgO:Li,Ce,Sm has a main TL peak at ~180 °C (at a heating rate of 5 °C/s) associated with Ce3+ and Sm3+ emission. The results indicate that the infrared (870 nm) stimulated OSL from MgO:Li,Ce,Sm has suitable properties for dosimetry, including high sensitivity to ionizing radiation (20 times that of Al2O3:C, under the measurement conditions) and wide dynamic range (7 μGy-30 Gy). The OSL associated with Ce3+ emission is correlated with a dominant, practically isolated peak at 180 °C. Fading of ~15% was observed in the first hour, probably due to shallow traps, followed by subsequent fading of 6-7% over the next 35 days. These properties, together with the characteristically fast luminescence from Ce3+, make this material also a strong candidate for 2D OSL dose mapping.

  5. MgO:Li,Ce,Sm as a high-sensitivity material for Optically Stimulated Luminescence dosimetry

    PubMed Central

    Oliveira, Luiz C.; Yukihara, Eduardo G.; Baffa, Oswaldo

    2016-01-01

    The goal of this work was to investigate the relevant dosimetric and luminescent properties of MgO:Li3%,Ce0.03%,Sm0.03%, a newly-developed, high sensitivity Optically Stimulated Luminescence (OSL) material of low effective atomic number (Zeff = 10.8) and potential interest for medical and personal dosimetry. We characterized the thermoluminescence (TL), OSL, radioluminescence (RL), and OSL emission spectrum of this new material and carried out a preliminary investigation on the OSL signal stability. MgO:Li,Ce,Sm has a main TL peak at ~180 °C (at a heating rate of 5 °C/s) associated with Ce3+ and Sm3+ emission. The results indicate that the infrared (870 nm) stimulated OSL from MgO:Li,Ce,Sm has suitable properties for dosimetry, including high sensitivity to ionizing radiation (20 times that of Al2O3:C, under the measurement conditions) and wide dynamic range (7 μGy–30 Gy). The OSL associated with Ce3+ emission is correlated with a dominant, practically isolated peak at 180 °C. Fading of ~15% was observed in the first hour, probably due to shallow traps, followed by subsequent fading of 6–7% over the next 35 days. These properties, together with the characteristically fast luminescence from Ce3+, make this material also a strong candidate for 2D OSL dose mapping. PMID:27076349

  6. Analytical and numerical construction of equivalent cables.

    PubMed

    Lindsay, K A; Rosenberg, J R; Tucker, G

    2003-08-01

    The mathematical complexity experienced when applying cable theory to arbitrarily branched dendrites has lead to the development of a simple representation of any branched dendrite called the equivalent cable. The equivalent cable is an unbranched model of a dendrite and a one-to-one mapping of potentials and currents on the branched model to those on the unbranched model, and vice versa. The piecewise uniform cable, with a symmetrised tri-diagonal system matrix, is shown to represent the canonical form for an equivalent cable. Through a novel application of the Laplace transform it is demonstrated that an arbitrary branched model of a dendrite can be transformed to the canonical form of an equivalent cable. The characteristic properties of the equivalent cable are extracted from the matrix for the transformed branched model. The one-to-one mapping follows automatically from the construction of the equivalent cable. The equivalent cable is used to provide a new procedure for characterising the location of synaptic contacts on spinal interneurons.

  7. Water and tissue equivalence properties of biological materials for photons, electrons, protons and alpha particles in the energy region 10 keV-1 GeV: a comparative study.

    PubMed

    Kurudirek, Murat

    2016-09-01

    To compare some biological materials in respect to the water and tissue equivalence properties for photon, electron, proton and alpha particle interactions as means of the effective atomic number (Zeff) and electron density (Ne). A Z-wise interpolation procedure has been adopted for calculation of Zeff using the mass attenuation coefficients for photons and the mass stopping powers for charged particles. At relatively low energies (100 keV-3 MeV), Zeff and Ne for photons and electrons were found to be constant while they vary much more for protons and alpha particles. In contrast, Zeff and Ne for protons and alpha particles were found to be constant after 3 MeV whereas for photons and electrons they were found to increase with the increasing energy. Also, muscle eq. liquid (with sucrose) have Zeff and Ne values close to the Muscle Skeletal (ICRP) and Muscle Striated (ICRU) within low relative differences below 9%. Muscle eq. liquid (without sucrose) have Zeff and Ne values close to the Muscle Skeletal (ICRP) and Muscle Striated (ICRU) with difference below 10%. The reported data should be useful in determining best water as well as tissue equivalent materials for photon, electron, proton and alpha particle interactions.

  8. On Structural Equation Model Equivalence.

    ERIC Educational Resources Information Center

    Raykov, Tenko; Penev, Spiridon

    1999-01-01

    Presents a necessary and sufficient condition for the equivalence of structural-equation models that is applicable to models with parameter restrictions and models that may or may not fulfill assumptions of the rules. Illustrates the application of the approach for studying model equivalence. (SLD)

  9. 46 CFR 169.109 - Equivalents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Equivalents. 169.109 Section 169.109 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS General Provisions § 169.109 Equivalents. Substitutes for a fitting, appliance, apparatus, or equipment, may be...

  10. 46 CFR 169.109 - Equivalents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Equivalents. 169.109 Section 169.109 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS General Provisions § 169.109 Equivalents. Substitutes for a fitting, appliance, apparatus, or equipment, may be...

  11. 46 CFR 175.540 - Equivalents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... safety management system is in place on board a vessel. The Commandant will consider the size and corporate structure of a vessel's company when determining the acceptability of an equivalent system... require engineering evaluations and tests to demonstrate the equivalence of the substitute. (b) The...

  12. Equivalent damage: A critical assessment

    NASA Technical Reports Server (NTRS)

    Laflen, J. R.; Cook, T. S.

    1982-01-01

    Concepts in equivalent damage were evaluated to determine their applicability to the life prediction of hot path components of aircraft gas turbine engines. Equivalent damage was defined as being those effects which influence the crack initiation life-time beyond the damage that is measured in uniaxial, fully-reversed sinusoidal and isothermal experiments at low homologous temperatures. Three areas of equivalent damage were examined: mean stress, cumulative damage, and multiaxiality. For each area, a literature survey was conducted to aid in selecting the most appropriate theories. Where possible, data correlations were also used in the evaluation process. A set of criteria was developed for ranking the theories in each equivalent damage regime. These criteria considered aspects of engine utilization as well as the theoretical basis and correlative ability of each theory. In addition, consideration was given to the complex nature of the loading cycle at fatigue critical locations of hot path components; this loading includes non-proportional multiaxial stressing, combined temperature and strain fluctuations, and general creep-fatigue interactions. Through applications of selected equivalent damage theories to some suitable data sets it was found that there is insufficient data to allow specific recommendations of preferred theories for general applications. A series of experiments and areas of further investigations were identified.

  13. Comparing appropriateness and equivalence of email interviews to phone interviews in qualitative research on reproductive decisions.

    PubMed

    Hershberger, Patricia E; Kavanaugh, Karen

    2017-10-01

    Despite an increasing use of qualitative email interviews by nurse researchers, there is little understanding about the appropriateness and equivalence of email interviews to other qualitative data collection methods, especially on sensitive topics research. The purpose is to describe our procedures for completing asynchronous, email interviews and to evaluate the appropriateness and equivalency of email interviews to phone interviews in two qualitative research studies that examined reproductive decisions. Content analysis guided the methodological appraisal of appropriateness and equivalency of in-depth, asynchronous email interviews to single phone interviews. Appropriateness was determined by: (a) participants' willingness to engage in email or phone interviews, (b) completing data collection in a timely period, and (c) participants' satisfaction with the interview. Equivalency was evaluated by: (a) completeness of the interview data, and (b) insight obtained from the data. Of the combined sample in the two studies (N=71), 31% of participants chose to participate via an email interview over a phone interview. The time needed to complete the email interviews averaged 27 to 28days and the number of investigator probe-participant response interchanges was 4 to 5cycles on average. In contrast, the phone interviews averaged 59 to 61min in duration. Most participants in both the email and phone interviews reported they were satisfied or very satisfied with their ability to express their true feelings throughout the interview. Regarding equivalence, 100% of the email and phone interviews provided insight into decision processes. Although insightful, two of the email and one phone interview had short answers or, at times, underdeveloped responses. Participants' quotes and behaviors cited within four published articles, a novel evaluation of equivalency, revealed that 20% to 37.5% of the citations about decision processes were from email participants, which is

  14. The Satellite Test of the Equivalence Principle (STEP)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    STEP will carry concentric test masses to Earth orbit to test a fundamental assumption underlying Einstein's theory of general relativity: that gravitational mass is equivalent to inertial mass. STEP is a 21st-century version of the test that Galileo is said to have performed by dropping a carnon ball and a musket ball simultaneously from the top of the Leaning Tower of Pisa to compare their accelerations. During the STEP experiment, four pairs of test masses will be falling around the Earth, and their accelerations will be measured by superconducting quantum interference devices (SQUIDS). The extended time sensitivity of the instruments will allow the measurements to be a million times more accurate than those made in modern ground-based tests.

  15. Monte Carlo Perturbation Theory Estimates of Sensitivities to System Dimensions

    DOE PAGES

    Burke, Timothy P.; Kiedrowski, Brian C.

    2017-12-11

    Here, Monte Carlo methods are developed using adjoint-based perturbation theory and the differential operator method to compute the sensitivities of the k-eigenvalue, linear functions of the flux (reaction rates), and bilinear functions of the forward and adjoint flux (kinetics parameters) to system dimensions for uniform expansions or contractions. The calculation of sensitivities to system dimensions requires computing scattering and fission sources at material interfaces using collisions occurring at the interface—which is a set of events with infinitesimal probability. Kernel density estimators are used to estimate the source at interfaces using collisions occurring near the interface. The methods for computing sensitivitiesmore » of linear and bilinear ratios are derived using the differential operator method and adjoint-based perturbation theory and are shown to be equivalent to methods previously developed using a collision history–based approach. The methods for determining sensitivities to system dimensions are tested on a series of fast, intermediate, and thermal critical benchmarks as well as a pressurized water reactor benchmark problem with iterated fission probability used for adjoint-weighting. The estimators are shown to agree within 5% and 3σ of reference solutions obtained using direct perturbations with central differences for the majority of test problems.« less

  16. Baseline Equivalence. WWC Standards Brief

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2017

    2017-01-01

    The What Works Clearinghouse (WWC) uses the term "baseline equivalence" when determining if the intervention group (those that received the intervention of interest) and the comparison group (those that did not receive the intervention) had characteristics that were similar enough ("equivalent") at the start of the study (at…

  17. 46 CFR 154.32 - Equivalents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Equivalents. 154.32 Section 154.32 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES General § 154.32 Equivalents. (a) A vessel that fails to...

  18. 46 CFR 154.32 - Equivalents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Equivalents. 154.32 Section 154.32 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES General § 154.32 Equivalents. (a) A vessel that fails to...

  19. 46 CFR 154.32 - Equivalents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Equivalents. 154.32 Section 154.32 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES General § 154.32 Equivalents. (a) A vessel that fails to...

  20. 46 CFR 154.32 - Equivalents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Equivalents. 154.32 Section 154.32 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES General § 154.32 Equivalents. (a) A vessel that fails to...

  1. 46 CFR 154.32 - Equivalents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Equivalents. 154.32 Section 154.32 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES General § 154.32 Equivalents. (a) A vessel that fails to...

  2. Colorado River basin sensitivity to disturbance impacts

    NASA Astrophysics Data System (ADS)

    Bennett, K. E.; Urrego-Blanco, J. R.; Jonko, A. K.; Vano, J. A.; Newman, A. J.; Bohn, T. J.; Middleton, R. S.

    2017-12-01

    The Colorado River basin is an important river for the food-energy-water nexus in the United States and is projected to change under future scenarios of increased CO2emissions and warming. Streamflow estimates to consider climate impacts occurring as a result of this warming are often provided using modeling tools which rely on uncertain inputs—to fully understand impacts on streamflow sensitivity analysis can help determine how models respond under changing disturbances such as climate and vegetation. In this study, we conduct a global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the Variable Infiltration Capacity (VIC) hydrologic model to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in VIC. Additionally, we examine sensitivities of basin-wide model simulations using an approach that incorporates changes in temperature, precipitation and vegetation to consider impact responses for snow-dominated headwater catchments, low elevation arid basins, and for the upper and lower river basins. We find that for the Colorado River basin, snow-dominated regions are more sensitive to uncertainties. New parameter sensitivities identified include runoff/evapotranspiration sensitivity to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI). Basin-wide streamflow sensitivities to precipitation, temperature and vegetation are variable seasonally and also between sub-basins; with the largest sensitivities for smaller, snow-driven headwater systems where forests are dense. For a major headwater basin, a 1ºC of warming equaled a 30% loss of forest cover, while a 10% precipitation loss equaled a 90% forest cover decline. Scenarios utilizing multiple disturbances led to unexpected results where changes could either magnify or diminish extremes, such as low and peak flows and streamflow timing

  3. A History of the Chemical Innovations in Silver-Halide Materials for Color PhotographyII. Color-Forming Development, Part 5. Coupler Innovations after the 1970's—Two-Equivalent Coupler and DIR Coupler

    NASA Astrophysics Data System (ADS)

    Oishi, Yasushi

    After the 1970's on, several manufacturers including Fuji Film, Konica and Agfa-Gevaert participated in innovating color photographic materials by adding their own coupler chemistry to the technological architecture built by Kodak before then. One area of their major advances was development of the couplers having a coupling-off organic group. One of their functional forms was two-equivalent coupler which made the dye-forming process efficient and made the photosensitive layers slim. And another was DIR coupler which improved dramatically the image quality of color negative materials. In this paper a historical overview of these innovations is constructed from the technical documents, mainly patents.

  4. The mouse cochlea expresses a local hypothalamic-pituitary-adrenal equivalent signaling system and requires CRFR1 to establish normal hair cell innervation and cochlear sensitivity

    PubMed Central

    Graham, Christine E.; Vetter, Douglas E.

    2011-01-01

    Cells of the inner ear face constant metabolic and structural stress. Exposure to intense sound or certain drugs destroys cochlea hair cells, which in mammals do not regenerate. Thus, an endogenous stress response system may exist within the cochlea to protect it from everyday stressors. We recently described the existence of Corticotropin-Releasing Factor (CRF) in the mouse cochlea. The CRFR1 receptor is considered the primary and canonical target of CRF signaling, and systemically it plays an essential role in coordinating the body-wide stress response via activation of the hypothalamic-pituitary-adrenal (HPA) axis. Here we describe an essential role for CRFR1 in auditory system development and function, and offer the first description of a complete HPA equivalent signaling system resident within the cochlea. To reveal the role of CRFR1 activation in the cochlea, we have used mice carrying a null ablation of the CRFR1 gene. CRFR1−/− mice exhibited elevated auditory thresholds at all frequencies tested, indicating reduced sensitivity. Furthermore, our results suggest that CRFR1 has a developmental role affecting inner hair cell morphology and afferent and efferent synapse distribution. Given the role of HPA signaling in maintaining local homeostasis in other tissues, the presence of a cochlear HPA signaling system suggests important roles for CRFR1 activity in setting cochlear sensitivity, perhaps both neural and non-neural mechanisms. These data highlight the complex pleiotropic mechanisms modulated by CRFR1 signaling in the cochlea. PMID:21273411

  5. Waste Determination Equivalency - 12172

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposedmore » of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the

  6. Effect of electrode material and design on sensitivity and selectivity for high temperature impedancemetric NOx sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, L Y; Glass, R S; Novak, R F

    2009-09-23

    Solid-state electrochemical sensors using two different sensing electrode compositions, gold and strontium-doped lanthanum manganite (LSM), were evaluated for gas phase sensing of NO{sub x} (NO and NO{sub 2}) using an impedance-metric technique. An asymmetric cell design utilizing porous YSZ electrolyte exposed both electrodes to the test gas (i.e., no reference gas). Sensitivity to less than 5 ppm NO and response/recovery times (10-90%) less than 10 s were demonstrated. Using an LSM sensing electrode, virtual identical sensitivity towards NO and NO{sub 2} was obtained, indicating that the equilibrium gas concentration was measured by the sensing electrode. In contrast, for cells employingmore » a gold sensing electrode the NO{sub x} sensitivity varied depending on the cell design: increasing the amount of porous YSZ electrolyte on the sensor surface produced higher NO{sub 2} sensitivity compared to NO. In order to achieve comparable sensitivity for both NO and NO{sub 2}, the cell with the LSM sensing electrode required operation at a lower temperature (575 C) than the cell with the gold sensing electrode (650 C). The role of surface reactions are proposed to explain the differences in NO and NO{sub 2} selectivity using the two different electrode materials.« less

  7. 21 CFR 26.15 - Monitoring continued equivalence.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... COMMUNITY Specific Sector Provisions for Pharmaceutical Good Manufacturing Practices § 26.15 Monitoring continued equivalence. Monitoring activities for the purpose of maintaining equivalence shall include review... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Monitoring continued equivalence. 26.15 Section 26...

  8. 21 CFR 26.15 - Monitoring continued equivalence.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... COMMUNITY Specific Sector Provisions for Pharmaceutical Good Manufacturing Practices § 26.15 Monitoring continued equivalence. Monitoring activities for the purpose of maintaining equivalence shall include review... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Monitoring continued equivalence. 26.15 Section 26...

  9. 21 CFR 26.15 - Monitoring continued equivalence.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... COMMUNITY Specific Sector Provisions for Pharmaceutical Good Manufacturing Practices § 26.15 Monitoring continued equivalence. Monitoring activities for the purpose of maintaining equivalence shall include review... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Monitoring continued equivalence. 26.15 Section 26...

  10. Near infrared organic semiconducting materials for bulk heterojunction and dye-sensitized solar cells.

    PubMed

    Singh, Surya Prakash; Sharma, G D

    2014-06-01

    Dye sensitized solar cells (DSSCs) and bulk heterojunction (BHJ) solar cells have been the subject of intensive academic interest over the past two decades, and significant commercial effort has been directed towards this area with the vison of developing the next generation of low cost solar cells. Materials development has played a vital role in the dramatic improvement of both DSSC and BHJ solar cell performance in the recent years. Organic conjugated polymers and small molecules that absorb solar light in the visible and near infrared (NIR) regions represent a class of emering materials and show a great potential for the use of different optoelectronic devices such as DSSCs and BHJ solar cells. This account describes the emering class of near infrared (NIR) organic polymers and small molecules having donor and acceptors units, and explores their potential applications in the DSSCs and BHJ solar cells. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A formulation of tissue- and water-equivalent materials using the stoichiometric analysis method for CT-number calibration in radiotherapy treatment planning.

    PubMed

    Yohannes, Indra; Kolditz, Daniel; Langner, Oliver; Kalender, Willi A

    2012-03-07

    Tissue- and water-equivalent materials (TEMs) are widely used in quality assurance and calibration procedures, both in radiodiagnostics and radiotherapy. In radiotherapy, particularly, the TEMs are often used for computed tomography (CT) number calibration in treatment planning systems. However, currently available TEMs may not be very accurate in the determination of the calibration curves due to their limitation in mimicking radiation characteristics of the corresponding real tissues in both low- and high-energy ranges. Therefore, we are proposing a new formulation of TEMs using a stoichiometric analysis method to obtain TEMs for the calibration purposes. We combined the stoichiometric calibration and the basic data method to compose base materials to develop TEMs matching standard real tissues from ICRU Report 44 and 46. First, the CT numbers of six materials with known elemental compositions were measured to get constants for the stoichiometric calibration. The results of the stoichiometric calibration were used together with the basic data method to formulate new TEMs. These new TEMs were scanned to validate their CT numbers. The electron density and the stopping power calibration curves were also generated. The absolute differences of the measured CT numbers of the new TEMs were less than 4 HU for the soft tissues and less than 22 HU for the bone compared to the ICRU real tissues. Furthermore, the calculated relative electron density and electron and proton stopping powers of the new TEMs differed by less than 2% from the corresponding ICRU real tissues. The new TEMs which were formulated using the proposed technique increase the simplicity of the calibration process and preserve the accuracy of the stoichiometric calibration simultaneously.

  12. 46 CFR 161.002-17 - Equivalents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... test that provides a level of safety equivalent to that established by specific provisions of this... require engineering evaluations and tests to demonstrate the equivalence of the substitute. [CGD 94-108...

  13. 46 CFR 161.002-17 - Equivalents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... test that provides a level of safety equivalent to that established by specific provisions of this... require engineering evaluations and tests to demonstrate the equivalence of the substitute. [CGD 94-108...

  14. 46 CFR 161.002-17 - Equivalents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... test that provides a level of safety equivalent to that established by specific provisions of this... require engineering evaluations and tests to demonstrate the equivalence of the substitute. [CGD 94-108...

  15. 46 CFR 161.002-17 - Equivalents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... test that provides a level of safety equivalent to that established by specific provisions of this... require engineering evaluations and tests to demonstrate the equivalence of the substitute. [CGD 94-108...

  16. 46 CFR 161.002-17 - Equivalents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... test that provides a level of safety equivalent to that established by specific provisions of this... require engineering evaluations and tests to demonstrate the equivalence of the substitute. [CGD 94-108...

  17. Effects of culture-sensitive adaptation of patient information material on usefulness in migrants: a multicentre, blinded randomised controlled trial.

    PubMed

    Hölzel, Lars P; Ries, Zivile; Kriston, Levente; Dirmaier, Jörg; Zill, Jördis M; Rummel-Kluge, Christine; Niebling, Wilhelm; Bermejo, Isaac; Härter, Martin

    2016-11-23

    To evaluate the usefulness of culture-sensitive patient information material compared with standard translated material. Multicentre, double-blind randomised controlled trial. 37 primary care practices. 435 adult primary care patients with a migration background with unipolar depressive disorder or non-specific chronic low back pain were randomised. Patients who were unable to read in the language of their respective migration background were excluded. Sufficient data were obtained from 203 women and 106 men. The largest group was of Russian origin (202 patients), followed by those of Turkish (52), Polish (30) and Italian (25) origin. Intervention group: provision of culture-sensitive adapted material. provision of standard translated material. Primary outcome: patient-rated usefulness (USE) assessed immediately after patients received the material. patient-rated usefulness after 8 weeks and 6 months, symptoms of depression (PHQ-9), back pain (Back Pain Core Set) and quality of life (WHO-5) assessed at all time points. Usefulness was found to be significantly higher (t=1.708, one-sided p=0.04) in the intervention group (USE-score=65.08, SE=1.43), compared with the control group (61.43, SE=1.63), immediately after patients received the material, in the intention-to-treat analysis, with a mean difference of 3.65 (one-sided 95% lower confidence limit=0.13). No significant differences were found for usefulness at follow-up (p=0.16, p=0.71). No significant effect was found for symptom severity in depression (p=0.95, p=0.66, p=0.58), back pain (p=0.40, p=0.45, p=0.32) or quality of life (p=0.76, p=0.86, p=0.21), either immediately after receiving the material, or at follow-up (8 weeks; 6 months). Patients with a lower level of dominant society immersion benefited substantially and significantly more from the intervention than patients with a high level of immersion (p=0.005). Cultural adaptation of patient information material provides benefits over high quality

  18. 5 CFR 531.407 - Equivalent increase determinations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Equivalent increase determinations. 531... PAY UNDER THE GENERAL SCHEDULE Within-Grade Increases § 531.407 Equivalent increase determinations. (a) GS employees. For a GS employee, an equivalent increase is considered to occur at the time of any of...

  19. 5 CFR 531.407 - Equivalent increase determinations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Equivalent increase determinations. 531... PAY UNDER THE GENERAL SCHEDULE Within-Grade Increases § 531.407 Equivalent increase determinations. (a) GS employees. For a GS employee, an equivalent increase is considered to occur at the time of any of...

  20. Characterization of heat transfer in nutrient materials, part 2

    NASA Technical Reports Server (NTRS)

    Cox, J. E.; Bannerot, R. B.; Chen, C. K.; Witte, L. C.

    1973-01-01

    A thermal model is analyzed that takes into account phase changes in the nutrient material. The behavior of fluids in low gravity environments is discussed along with low gravity heat transfer. Thermal contact resistance in the Skylab food heater is analyzed. The original model is modified to include: equivalent conductance due to radiation, radial equivalent conductance, wall equivalent conductance, and equivalent heat capacity. A constant wall-temperature model is presented.

  1. High School Equivalency Testing in Arizona. Forum: Responding to Changes in High School Equivalency Testing

    ERIC Educational Resources Information Center

    Hart, Sheryl

    2015-01-01

    For decades, the state of Arizona has used the General Educational Development (GED) Test to award the Arizona High School Equivalency (HSE) Diploma, as the GED Test was the only test available, recognized and accepted in the United States as the measure by which adults could demonstrate the educational attainment equivalent to high school…

  2. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy.

    PubMed

    Zhang, Chi; Tang, Wei; Han, Changbao; Fan, Fengru; Wang, Zhong Lin

    2014-06-11

    Triboelectric nanogenerator (TENG) is a newly invented technology that is effective using conventional organic materials with functionalized surfaces for converting mechanical energy into electricity, which is light weight, cost-effective and easy scalable. Here, we present the first systematic analysis and comparison of EMIG and TENG from their working mechanisms, governing equations and output characteristics, aiming at establishing complementary applications of the two technologies for harvesting various mechanical energies. The equivalent transformation and conjunction operations of the two power sources for the external circuit are also explored, which provide appropriate evidences that the TENG can be considered as a current source with a large internal resistance, while the EMIG is equivalent to a voltage source with a small internal resistance. The theoretical comparison and experimental validations presented in this paper establish the basis of using the TENG as a new energy technology that could be parallel or possibly equivalently important as the EMIG for general power application at large-scale. It opens a field of organic nanogenerator for chemists and materials scientists who can be first time using conventional organic materials for converting mechanical energy into electricity at a high efficiency. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Application of the modified chi-square ratio statistic in a stepwise procedure for cascade impactor equivalence testing.

    PubMed

    Weber, Benjamin; Lee, Sau L; Delvadia, Renishkumar; Lionberger, Robert; Li, Bing V; Tsong, Yi; Hochhaus, Guenther

    2015-03-01

    Equivalence testing of aerodynamic particle size distribution (APSD) through multi-stage cascade impactors (CIs) is important for establishing bioequivalence of orally inhaled drug products. Recent work demonstrated that the median of the modified chi-square ratio statistic (MmCSRS) is a promising metric for APSD equivalence testing of test (T) and reference (R) products as it can be applied to a reduced number of CI sites that are more relevant for lung deposition. This metric is also less sensitive to the increased variability often observed for low-deposition sites. A method to establish critical values for the MmCSRS is described here. This method considers the variability of the R product by employing a reference variance scaling approach that allows definition of critical values as a function of the observed variability of the R product. A stepwise CI equivalence test is proposed that integrates the MmCSRS as a method for comparing the relative shapes of CI profiles and incorporates statistical tests for assessing equivalence of single actuation content and impactor sized mass. This stepwise CI equivalence test was applied to 55 published CI profile scenarios, which were classified as equivalent or inequivalent by members of the Product Quality Research Institute working group (PQRI WG). The results of the stepwise CI equivalence test using a 25% difference in MmCSRS as an acceptance criterion provided the best matching with those of the PQRI WG as decisions of both methods agreed in 75% of the 55 CI profile scenarios.

  4. Proposed Space Test of the New Equivalence Principle with Rotating Extended Bodies

    NASA Astrophysics Data System (ADS)

    Han, Feng-Tian; Wu, Qiu-Ping; Zhou, Ze-Bing; Zhang, Yuan-Zhong

    2014-11-01

    We propose a novel scheme for a space free-fall based test of the new equivalence principle (NEP) with two rotating extended bodies made of the same material. The measurement will be carried out by placing the two concentric spinning masses of very different momenta inside a differential electrostatic accelerometer in a drag-free compensated orbit. A difference in the forces necessary to maintain the common trajectory will be an indication of a violation of equivalence or the existence of spin-spin force between the rotating mass and the Earth. The conceptual design of the inertial sensor and its operation mode is presented. Details specific to the model and performance requirements are discussed by using up-to-date space technologies to test the NEP with an accuracy of better than 10-15.

  5. Finite element simulation and comparison of a shear strain and equivalent strain during ECAP and asymmetric rolling

    NASA Astrophysics Data System (ADS)

    Pesin, A.; Pustovoytov, D.; Shveyova, T.; Vafin, R.

    2017-12-01

    The level of a shear strain and equivalent strain plays a key role in terms of the possibility of using the asymmetric rolling process as a method of severe plastic deformation. Strain mode (pure shear or simple shear) can affect very strongly on the equivalent strain and the grain refinement of the material. This paper presents the results of FEM simulations and comparison of the equivalent strain in the aluminium alloy 5083 processed by a single-pass equal channel angular pressing (simple shear), symmetric rolling (pure shear) and asymmetric rolling (simultaneous pure and simple shear). The nonlinear effect of rolls speed ratio on the deformation characteristics during asymmetric rolling was found. Extremely high equivalent strain up to e=4.2 was reached during a single-pass asymmetric rolling. The influence of the shear strain on the level of equivalent strain is discussed. Finite element analysis of the deformation characteristics, presented in this study, can be used for optimization of the asymmetric rolling process as a method of severe plastic deformation.

  6. Comfort Contours: Inter-Axis Equivalence

    NASA Astrophysics Data System (ADS)

    Griefahn, B.; Bröde, P.

    1997-07-01

    Inter-axis equivalence for sinusoidal vibrations as stipulated by ISO/DIS 2631 for seated persons was studied by adjusting the acceleration of a horizontal sinusoidal test vibration (x∨y) until it caused equal sensation as a vertical sinusoidal reference motion of the same frequency. The reference vibrations consisted of sine waves ranging from 1·6 to 12·5Hz and were presented with three weighted accelerations ofazw=0·3, 0·6 and 1·2ms-2r.m.s. (reference contours). 26 subjects (15 men, 11 women, 20-55yrs, 153-187cm) participated in the respective experiments. Based on the three reference contours, predicted values for horizontal motions were calculated by using the weighting factors provided in ISO/DIS 2631. The International standard was confirmed insofar as the shape of the contours determined for horizontal motions was independent from vibration magnitudes as sensitivity to fore-and-aft and to lateral motions was similar. However, the accelerations adjusted for horizontal vibrations were considerably lower than predicted, suggesting that the weighing factors provided in ISO/DIS 2631 need to be corrected.

  7. Sensitivity of corneal biomechanical and optical behavior to material parameters using design of experiments method.

    PubMed

    Xu, Mengchen; Lerner, Amy L; Funkenbusch, Paul D; Richhariya, Ashutosh; Yoon, Geunyoung

    2018-02-01

    The optical performance of the human cornea under intraocular pressure (IOP) is the result of complex material properties and their interactions. The measurement of the numerous material parameters that define this material behavior may be key in the refinement of patient-specific models. The goal of this study was to investigate the relative contribution of these parameters to the biomechanical and optical responses of human cornea predicted by a widely accepted anisotropic hyperelastic finite element model, with regional variations in the alignment of fibers. Design of experiments methods were used to quantify the relative importance of material properties including matrix stiffness, fiber stiffness, fiber nonlinearity and fiber dispersion under physiological IOP. Our sensitivity results showed that corneal apical displacement was influenced nearly evenly by matrix stiffness, fiber stiffness and nonlinearity. However, the variations in corneal optical aberrations (refractive power and spherical aberration) were primarily dependent on the value of the matrix stiffness. The optical aberrations predicted by variations in this material parameter were sufficiently large to predict clinically important changes in retinal image quality. Therefore, well-characterized individual variations in matrix stiffness could be critical in cornea modeling in order to reliably predict optical behavior under different IOPs or after corneal surgery.

  8. Effect of annealing temperature and dopant concentration on the thermoluminescence sensitivity in LiF:Mg,Cu,Ag material.

    PubMed

    Yahyaabadi, Akram; Torkzadeh, Falamarz; Rezaei Ochbelagh, Dariush; Hosseini Pooya, Seyed Mahdi

    2018-04-24

    LiF:Mg,Cu,Ag is a new dosimetry material that is similar to LiF:Mg,Cu,P in terms of dosimetric properties. The effect of the annealing temperature in the range of 200 to 350°C on the thermoluminescence (TL) sensitivity and the glow curve structure of this material at different concentrations of silver (Ag) was investigated. It has been demonstrated that the optimum values of the annealing temperature and the Ag concentration are 240°C and 0.1 mol% for better sensitivity, respectively. The TL intensity decreases at annealing temperatures lower than 240°C or higher than 240°C, reaching a minimum at 300°C and then again increases for various Ag concentrations. It was observed that the glow curve structure altered and the area under the low temperature peak as well as the area under the main dosimetric peak decreased with increasing annealing temperature. The position of the main dosimetric peak moved in the direction of higher temperatures, but at 320 and 350°C annealing temperatures, it shifted to lower temperatures. It was also observed that the TL sensitivity could partially be recovered by a combined annealing procedure. Copyright © 2018 John Wiley & Sons, Ltd.

  9. An investigation of new methods for estimating parameter sensitivities

    NASA Technical Reports Server (NTRS)

    Beltracchi, Todd J.; Gabriele, Gary A.

    1989-01-01

    The method proposed for estimating sensitivity derivatives is based on the Recursive Quadratic Programming (RQP) method and in conjunction a differencing formula to produce estimates of the sensitivities. This method is compared to existing methods and is shown to be very competitive in terms of the number of function evaluations required. In terms of accuracy, the method is shown to be equivalent to a modified version of the Kuhn-Tucker method, where the Hessian of the Lagrangian is estimated using the BFS method employed by the RQP algorithm. Initial testing on a test set with known sensitivities demonstrates that the method can accurately calculate the parameter sensitivity.

  10. Mathematical model of the heat transfer process taking into account the consequences of nonlocality in structurally sensitive materials

    NASA Astrophysics Data System (ADS)

    Kuvyrkin, G. N.; Savelyeva, I. Y.; Kuvshynnikova, D. A.

    2018-04-01

    Creation of new materials based on nanotechnology is an important direction of modern materials science development. Materials obtained using nanotechnology can possess unique physical-mechanical and thermophysical properties, allowing their effective use in structures exposed to high-intensity thermomechanical effects. An important step in creation and use of new materials is the construction of mathematical models to describe the behavior of these materials in a wide range of changes under external effects. The model of heat conduction of structural-sensitive materials is considered with regard to the medium nonlocality effects. The relations of the mathematical model include an integral term describing the spatial nonlocality of the medium. A difference scheme, which makes it possible to obtain a numerical solution of the problem of nonstationary heat conduction with regard to the influence of the medium nonlocality on space, has been developed. The influence of the model parameters on the temperature distributions is analyzed.

  11. The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches.

    PubMed

    Stockman, A; Sharpe, L T; Fach, C

    1999-08-01

    We used two methods to estimate short-wave (S) cone spectral sensitivity. Firstly, we measured S-cone thresholds centrally and peripherally in five trichromats, and in three blue-cone monochromats, who lack functioning middle-wave (M) and long-wave (L) cones. Secondly, we analyzed standard color-matching data. Both methods yielded equivalent results, on the basis of which we propose new S-cone spectral sensitivity functions. At short and middle-wavelengths, our measurements are consistent with the color matching data of Stiles and Burch (1955, Optica Acta, 2, 168-181; 1959, Optica Acta, 6, 1-26), and other psychophysically measured functions, such as pi 3 (Stiles, 1953, Coloquio sobre problemas opticos de la vision, 1, 65-103). At longer wavelengths, S-cone sensitivity has previously been over-estimated.

  12. 7 CFR 1030.54 - Equivalent price.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Equivalent price. 1030.54 Section 1030.54 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Class Prices § 1030.54 Equivalent price. See § 1000.54. ...

  13. 49 CFR 38.2 - Equivalent facilitation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Equivalent facilitation. 38.2 Section 38.2 Transportation Office of the Secretary of Transportation AMERICANS WITH DISABILITIES ACT (ADA) ACCESSIBILITY SPECIFICATIONS FOR TRANSPORTATION VEHICLES General § 38.2 Equivalent facilitation. Departures from particular...

  14. Technical Note: Radiation properties of tissue- and water-equivalent materials formulated using the stoichiometric analysis method in charged particle therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yohannes, Indra; Vasiliniuc, Stefan; Hild, Sebastian

    Purpose: Five tissue- and water-equivalent materials (TEMs) mimicking ICRU real tissues have been formulated using a previously established stoichiometric analysis method (SAM) to be applied in charged particle therapy. The purpose of this study was an experimental verification of the TEMs-SAM against charged particle beam measurements and for different computed tomography (CT) scanners. The potential of the TEMs-SAM to be employed in the dosimetry was also investigated. Methods: Experimental verification with three CT scanners was carried out to validate the calculated Hounsfield units (HUs) of the TEMs. Water-equivalent path lengths (WEPLs) of the TEMs for proton (106.8 MeV/u), helium (107.93more » MeV/u), and carbon (200.3 MeV/u) ions were measured to be compared with the computed relative stopping powers. HU calibration curves were also generated. Results: Differences between the measured HUs of the TEMs and the calculated HUs of the ICRU real tissues for all CT scanners were smaller than 4 HU except for the skeletal tissues which deviated up to 21 HU. The measured WEPLs verified the calculated WEPLs of the TEMs (maximum deviation was 0.17 mm) and were in good agreement with the calculated WEPLs of the ICRU real tissues (maximum deviation was 0.23 mm). Moreover, the relative stopping powers converted from the measured WEPLs differed less than 0.8% and 1.3% from the calculated values of the SAM and the ICRU, respectively. Regarding the relative nonelastic cross section per unit of volume for 200 MeV protons, the ICRU real tissues were generally well represented by the TEMs except for adipose which differed 3.8%. Further, the HU calibration curves yielded the mean and the standard deviation of the errors not larger than 0.5% and 1.9%, respectively. Conclusions: The results of this investigation implied the potential of the TEMs formulated using the SAM to be employed for both, beam dosimetry and HU calibration in charged particle therapy.« less

  15. Development of Novel Polymeric Materials for Gene Therapy and pH-Sensitive Drug Delivery: Modeling, Synthesis, Characterization, and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Brian Curtis

    2002-01-01

    The underlying theme of this thesis is the use of polymeric materials in bioapplications. Chapters 2-5 either develop a fundamental understanding of current materials used for bioapplications or establish protocols and procedures used in characterizing and synthesizing novel materials. In chapters 6 and 7 these principles and procedures are applied to the development of materials to be used for gene therapy and drug delivery. Chapter one is an introduction to the ideas that will be necessary to understand the subsequent chapters, as well as a literature review of these topics. Chapter two is a paper that has been published inmore » the ''Journal of Controlled Release'' that examines the mechanism of drug release from a polymer gel, as well as experimental design suggestions for the evaluation of water soluble drug delivery systems. Chapter three is a paper that has been published in the ''Journal of Pharmaceutical Sciences'' that discusses the effect ionic salts have on properties of the polymer systems examined in chapter two. Chapter four is a paper published in the Materials Research Society Fall 2000 Symposium Series dealing with the design and synthesis of a pH-sensitive polymeric drug delivery device. Chapter five is a paper that has been published in the journal ''Biomaterials'' proposing a novel polymer/metal composite for use as a biomaterial in hip arthroplasty surgery. Chapter six is a paper that will appear in an upcoming volume of the Journal ''Biomaterials'' dealing with the synthesis of a novel water soluble cationic polymer with possible applications in non-viral gene therapy. Chapter seven is a paper that has been submitted to ''Macromolecules'' discussing several novel block copolymers based on poly(ethylene glycol) and poly(diethylamino ethyl methacrylate) that possess both pH-sensitive and temperature sensitive properties. Chapter eight contains a summary of the research contained in chapters 2-7 and proposes future research for the gene

  16. Strain Sensitivity in Single Walled Carbon Nanotubes for Multifunctional Materials

    NASA Technical Reports Server (NTRS)

    Heath, D. M. (Technical Monitor); Smits, Jan M., VI

    2005-01-01

    Single walled carbon nanotubes represent the future of structural aerospace vehicle systems due to their unparalleled strength characteristics and demonstrated multifunctionality. This multifunctionality rises from the CNT's unique capabilities for both metallic and semiconducting electron transport, electron spin polarizability, and band gap modulation under strain. By incorporating the use of electric field alignment and various lithography techniques, a single wall carbon nanotube (SWNT) test bed for measurement of conductivity/strain relationships has been developed. Nanotubes are deposited at specified locations through dielectrophoresis. The circuit is designed such that the central, current carrying section of the nanotube is exposed to enable atomic force microscopy and manipulation in situ while the transport properties of the junction are monitored. By applying this methodology to sensor development a flexible single wall carbon nanotube (SWNT) based strain sensitive device has been developed. Studies of tensile testing of the flexible SWNT device vs conductivity are also presented, demonstrating the feasibility of using single walled HiPCO (high-pressure carbon monoxide) carbon nanotubes as strain sensing agents in a multi-functional materials system.

  17. Development of active and sensitive material systems based on composites

    NASA Astrophysics Data System (ADS)

    Asanuma, Hiroshi

    2002-07-01

    This paper describes new concepts proposed by the author to realize active and sensitive structural material systems. Two examples of multifunctional composites were fabricated and evaluated in this study as follows: (1) An active laminate of aluminum plate (works as muscle), epoxy film (as insulator), unidirectional CFRP prepreg (as bone and blood vessel) and copper foil electrode (to apply voltage on CFRP) was made with an embedded optical fiber multiply fractured in the CFRP layer (works as nerve), of which curvature change could be effectively monitored with the fractured optical fiber. (2) A stainless steel fiber/aluminum active composite with embedded Ti oxide/Ti composite fiber was fabricated. The Ti oxide/Ti fiber could work as a sensor for temperature by removing a part of the oxide before embedment to make a metallic contact between the embedded titanium fiber and aluminum matrix to be able to generate thermal electromotive force, and also could work as a sensor for strain and as a heater for actuation. In the both cases, the outputs from their embedded sensors can be used to control their actuations.

  18. Measurements of neutron dose equivalent for a proton therapy center using uniform scanning proton beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Yuanshui; Liu Yaxi; Zeidan, Omar

    Purpose: Neutron exposure is of concern in proton therapy, and varies with beam delivery technique, nozzle design, and treatment conditions. Uniform scanning is an emerging treatment technique in proton therapy, but neutron exposure for this technique has not been fully studied. The purpose of this study is to investigate the neutron dose equivalent per therapeutic dose, H/D, under various treatment conditions for uniform scanning beams employed at our proton therapy center. Methods: Using a wide energy neutron dose equivalent detector (SWENDI-II, ThermoScientific, MA), the authors measured H/D at 50 cm lateral to the isocenter as a function of proton range,more » modulation width, beam scanning area, collimated field size, and snout position. They also studied the influence of other factors on neutron dose equivalent, such as aperture material, the presence of a compensator, and measurement locations. They measured H/D for various treatment sites using patient-specific treatment parameters. Finally, they compared H/D values for various beam delivery techniques at various facilities under similar conditions. Results: H/D increased rapidly with proton range and modulation width, varying from about 0.2 mSv/Gy for a 5 cm range and 2 cm modulation width beam to 2.7 mSv/Gy for a 30 cm range and 30 cm modulation width beam when 18 Multiplication-Sign 18 cm{sup 2} uniform scanning beams were used. H/D increased linearly with the beam scanning area, and decreased slowly with aperture size and snout retraction. The presence of a compensator reduced the H/D slightly compared with that without a compensator present. Aperture material and compensator material also have an influence on neutron dose equivalent, but the influence is relatively small. H/D varied from about 0.5 mSv/Gy for a brain tumor treatment to about 3.5 mSv/Gy for a pelvic case. Conclusions: This study presents H/D as a function of various treatment parameters for uniform scanning proton beams. For similar

  19. 7 CFR 1005.54 - Equivalent price.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Equivalent price. 1005.54 Section 1005.54 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Class Prices § 1005.54 Equivalent price. See § 1000.54. Uniform Prices ...

  20. 7 CFR 1006.54 - Equivalent price.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Equivalent price. 1006.54 Section 1006.54 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Class Prices § 1006.54 Equivalent price. See § 1000.54. Uniform Prices ...

  1. 7 CFR 1131.54 - Equivalent price.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Equivalent price. 1131.54 Section 1131.54 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Class Prices § 1131.54 Equivalent price. See § 1000.54. Uniform Prices ...

  2. 7 CFR 1007.54 - Equivalent price.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Equivalent price. 1007.54 Section 1007.54 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Class Prices § 1007.54 Equivalent price. See § 1000.54. Uniform Prices ...

  3. 7 CFR 1033.54 - Equivalent price.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Equivalent price. 1033.54 Section 1033.54 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Class Prices § 1033.54 Equivalent price. See § 1000.54. Producer Price Differential ...

  4. 7 CFR 1032.54 - Equivalent price.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Equivalent price. 1032.54 Section 1032.54 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Class Prices § 1032.54 Equivalent price. See § 1000.54. Producer Price Differential ...

  5. 7 CFR 1126.54 - Equivalent price.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Equivalent price. 1126.54 Section 1126.54 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Class Prices § 1126.54 Equivalent price. See § 1000.54. Producer Price Differential ...

  6. Testing the equivalence principle on cosmological scales

    NASA Astrophysics Data System (ADS)

    Bonvin, Camille; Fleury, Pierre

    2018-05-01

    The equivalence principle, that is one of the main pillars of general relativity, is very well tested in the Solar system; however, its validity is more uncertain on cosmological scales, or when dark matter is concerned. This article shows that relativistic effects in the large-scale structure can be used to directly test whether dark matter satisfies Euler's equation, i.e. whether its free fall is characterised by geodesic motion, just like baryons and light. After having proposed a general parametrisation for deviations from Euler's equation, we perform Fisher-matrix forecasts for future surveys like DESI and the SKA, and show that such deviations can be constrained with a precision of order 10%. Deviations from Euler's equation cannot be tested directly with standard methods like redshift-space distortions and gravitational lensing, since these observables are not sensitive to the time component of the metric. Our analysis shows therefore that relativistic effects bring new and complementary constraints to alternative theories of gravity.

  7. 7 CFR 1124.54 - Equivalent price.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Equivalent price. 1124.54 Section 1124.54 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Regulating Handling Class Prices § 1124.54 Equivalent price. See § 1000.54. Producer Price Differential ...

  8. 33 CFR 159.19 - Testing equivalency.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Testing equivalency. 159.19 Section 159.19 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Certification Procedures § 159.19 Testing equivalency. (a) If a test...

  9. Quantifying the accuracy of snow water equivalent estimates using broadband radar signal phase

    NASA Astrophysics Data System (ADS)

    Deeb, E. J.; Marshall, H. P.; Lamie, N. J.; Arcone, S. A.

    2014-12-01

    Radar wave velocity in dry snow depends solely on density. Consequently, ground-based pulsed systems can be used to accurately measure snow depth and snow water equivalent (SWE) using signal travel-time, along with manual depth-probing for signal velocity calibration. Travel-time measurements require a large bandwidth pulse not possible in airborne/space-borne platforms. In addition, radar backscatter from snow cover is sensitive to grain size and to a lesser extent roughness of layers at current/proposed satellite-based frequencies (~ 8 - 18 GHz), complicating inversion for SWE. Therefore, accurate retrievals of SWE still require local calibration due to this sensitivity to microstructure and layering. Conversely, satellite radar interferometry, which senses the difference in signal phase between acquisitions, has shown a potential relationship with SWE at lower frequencies (~ 1 - 5 GHz) because the phase of the snow-refracted signal is sensitive to depth and dielectric properties of the snowpack, as opposed to its microstructure and stratigraphy. We have constructed a lab-based, experimental test bed to quantify the change in radar phase over a wide range of frequencies for varying depths of dry quartz sand, a material dielectrically similar to dry snow. We use a laboratory grade Vector Network Analyzer (0.01 - 25.6 GHz) and a pair of antennae mounted on a trolley over the test bed to measure amplitude and phase repeatedly/accurately at many frequencies. Using ground-based LiDAR instrumentation, we collect a coordinated high-resolution digital surface model (DSM) of the test bed and subsequent depth surfaces with which to compare the radar record of changes in phase. Our plans to transition this methodology to a field deployment during winter 2014-2015 using precision pan/tilt instrumentation will also be presented, as well as applications to airborne and space-borne platforms toward the estimation of SWE at high spatial resolution (on the order of meters) over

  10. Equivalent Young's modulus of composite resin for simulation of stress during dental restoration.

    PubMed

    Park, Jung-Hoon; Choi, Nak-Sam

    2017-02-01

    For shrinkage stress simulation in dental restoration, the elastic properties of composite resins should be acquired beforehand. This study proposes a formula to measure the equivalent Young's modulus of a composite resin through a calculation scheme of the shrinkage stress in dental restoration. Two types of composite resins remarkably different in the polymerization shrinkage strain were used for experimental verification: the methacrylate-type (Clearfil AP-X) and the silorane-type (Filtek P90). The linear shrinkage strains of the composite resins were gained through the bonded disk method. A formula to calculate the equivalent Young's moduli of composite resin was derived on the basis of the restored ring substrate. Equivalent Young's moduli were measured for the two types of composite resins through the formula. Those values were applied as input to a finite element analysis (FEA) for validation of the calculated shrinkage stress. Both of the measured moduli through the formula were appropriate for stress simulation of dental restoration in that the shrinkage stresses calculated by the FEA were in good agreement within 3.5% with the experimental values. The concept of equivalent Young's modulus so measured could be applied for stress simulation of 2D and 3D dental restoration. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Role of Co-Sensitizers in Dye-Sensitized Solar Cells.

    PubMed

    Krishna, Narra Vamsi; Krishna, Jonnadula Venkata Suman; Mrinalini, Madoori; Prasanthkumar, Seelam; Giribabu, Lingamallu

    2017-12-08

    Co-sensitization is a popular route towards improved efficiency and stability of dye-sensitized solar cells (DSSCs). In this context, the power conversion efficiency (PCE) values of DSSCs incorporating Ru- and porphyrin-based dyes can be improved from 8-11 % to 11-14 % after the addition of additives, co-adsorbents, and co-sensitizers that reduce aggregation and charge recombination in the device. Among the three supporting material types, co-sensitizers play a major role to enhance the performance and stability of DSSCs, which is requried for commercialization. In this Minireview, we highlight the role co-sensitizers play in improving photovoltaic performance of devices containing Ru- and porphyrin-based sensitizers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans.

    PubMed Central

    Hansen, M T

    1978-01-01

    The complexity of the genome of Micrococcus radiodurans was determined to be (2.0 +/- 0.3) X 10(9) daltons by DNA renaturation kinetics. The number of genome equivalents of DNA per cell was calculated from the complexity and the content of DNA. A lower limit of four genome equivalents per cell was approached with decreasing growth rate. Thus, no haploid stage appeared to be realized in this organism. The replication time was estimated from the kinetics and amount of residual DNA synthesis after inhibiting initiation of new rounds of replication. From this, the redundancy of terminal genetic markers was calculated to vary with growth rate from four to approximately eight copies per cell. All genetic material, including the least abundant, is thus multiply represented in each cell. The potential significance of the maintenance in each cell of multiple gene copies is discussed in relation to the extreme radiation resistance of M. radiodurans. PMID:649572

  13. Removal of natural hormones in dairy farm wastewater using reactive and sorptive materials.

    PubMed

    Cai, Kai; Phillips, Debra H; Elliott, Christopher T; Muller, Marc; Scippo, Marie-Louise; Connolly, Lisa

    2013-09-01

    The objective of this study was to examine the oestrogen and androgen hormone removal efficiency of reactive (Connelly zero-valent iron (ZVI), Gotthart Maier ZVI) and sorptive (AquaSorb 101 granular activated carbon (GAC) and OrganoLoc PM-100 organoclay (OC)) materials from HPLC grade water and constructed wetland system (CWS) treated dairy farm wastewater. Batch test studies were performed and hormone concentration analysis carried out using highly sensitive reporter gene assays (RGAs). The results showed that hormonal interaction with these materials is selective for individual classes of hormones. Connelly ZVI and AquaSorb 101 GAC were more efficient in removing testosterone (Te) than 17β-estradiol (E2) and showed faster removal rates of oestrogen and androgen than the other materials. Gotthart Maier ZVI was more efficient in removing E2 than Te. OrganoLoc PM-100 OC achieved the lowest final concentration of E2 equivalent (EEQ) and provided maximum removal of both oestrogens and androgens. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. 46 CFR 128.210 - Class II vital systems-materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ENGINEERING: EQUIPMENT AND SYSTEMS Materials and Pressure Design § 128.210 Class II vital systems—materials... Commanding Officer, Marine Safety Center, if shown to provide a level of safety equivalent to materials in...

  15. 46 CFR 128.210 - Class II vital systems-materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ENGINEERING: EQUIPMENT AND SYSTEMS Materials and Pressure Design § 128.210 Class II vital systems—materials... Commanding Officer, Marine Safety Center, if shown to provide a level of safety equivalent to materials in...

  16. 46 CFR 128.210 - Class II vital systems-materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENGINEERING: EQUIPMENT AND SYSTEMS Materials and Pressure Design § 128.210 Class II vital systems—materials... Commanding Officer, Marine Safety Center, if shown to provide a level of safety equivalent to materials in...

  17. 46 CFR 128.210 - Class II vital systems-materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ENGINEERING: EQUIPMENT AND SYSTEMS Materials and Pressure Design § 128.210 Class II vital systems—materials... Commanding Officer, Marine Safety Center, if shown to provide a level of safety equivalent to materials in...

  18. 46 CFR 128.210 - Class II vital systems-materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ENGINEERING: EQUIPMENT AND SYSTEMS Materials and Pressure Design § 128.210 Class II vital systems—materials... Commanding Officer, Marine Safety Center, if shown to provide a level of safety equivalent to materials in...

  19. Reproducing Kernel Particle Method in Plasticity of Pressure-Sensitive Material with Reference to Powder Forming Process

    NASA Astrophysics Data System (ADS)

    Khoei, A. R.; Samimi, M.; Azami, A. R.

    2007-02-01

    In this paper, an application of the reproducing kernel particle method (RKPM) is presented in plasticity behavior of pressure-sensitive material. The RKPM technique is implemented in large deformation analysis of powder compaction process. The RKPM shape function and its derivatives are constructed by imposing the consistency conditions. The essential boundary conditions are enforced by the use of the penalty approach. The support of the RKPM shape function covers the same set of particles during powder compaction, hence no instability is encountered in the large deformation computation. A double-surface plasticity model is developed in numerical simulation of pressure-sensitive material. The plasticity model includes a failure surface and an elliptical cap, which closes the open space between the failure surface and hydrostatic axis. The moving cap expands in the stress space according to a specified hardening rule. The cap model is presented within the framework of large deformation RKPM analysis in order to predict the non-uniform relative density distribution during powder die pressing. Numerical computations are performed to demonstrate the applicability of the algorithm in modeling of powder forming processes and the results are compared to those obtained from finite element simulation to demonstrate the accuracy of the proposed model.

  20. Sensitivity Analysis of Wing Aeroelastic Responses

    NASA Technical Reports Server (NTRS)

    Issac, Jason Cherian

    1995-01-01

    Design for prevention of aeroelastic instability (that is, the critical speeds leading to aeroelastic instability lie outside the operating range) is an integral part of the wing design process. Availability of the sensitivity derivatives of the various critical speeds with respect to shape parameters of the wing could be very useful to a designer in the initial design phase, when several design changes are made and the shape of the final configuration is not yet frozen. These derivatives are also indispensable for a gradient-based optimization with aeroelastic constraints. In this study, flutter characteristic of a typical section in subsonic compressible flow is examined using a state-space unsteady aerodynamic representation. The sensitivity of the flutter speed of the typical section with respect to its mass and stiffness parameters, namely, mass ratio, static unbalance, radius of gyration, bending frequency, and torsional frequency is calculated analytically. A strip theory formulation is newly developed to represent the unsteady aerodynamic forces on a wing. This is coupled with an equivalent plate structural model and solved as an eigenvalue problem to determine the critical speed of the wing. Flutter analysis of the wing is also carried out using a lifting-surface subsonic kernel function aerodynamic theory (FAST) and an equivalent plate structural model. Finite element modeling of the wing is done using NASTRAN so that wing structures made of spars and ribs and top and bottom wing skins could be analyzed. The free vibration modes of the wing obtained from NASTRAN are input into FAST to compute the flutter speed. An equivalent plate model which incorporates first-order shear deformation theory is then examined so it can be used to model thick wings, where shear deformations are important. The sensitivity of natural frequencies to changes in shape parameters is obtained using ADIFOR. A simple optimization effort is made towards obtaining a minimum weight

  1. 42 CFR 440.335 - Benchmark-equivalent health benefits coverage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Benchmark-equivalent health benefits coverage. 440... and Benchmark-Equivalent Coverage § 440.335 Benchmark-equivalent health benefits coverage. (a) Aggregate actuarial value. Benchmark-equivalent coverage is health benefits coverage that has an aggregate...

  2. 42 CFR 440.335 - Benchmark-equivalent health benefits coverage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Benchmark-equivalent health benefits coverage. 440... and Benchmark-Equivalent Coverage § 440.335 Benchmark-equivalent health benefits coverage. (a) Aggregate actuarial value. Benchmark-equivalent coverage is health benefits coverage that has an aggregate...

  3. 10 CFR 474.3 - Petroleum-equivalent fuel economy calculation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Petroleum-equivalent fuel economy calculation. 474.3..., DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.3 Petroleum-equivalent fuel economy calculation. (a) The petroleum-equivalent fuel economy for an electric vehicle is...

  4. 10 CFR 474.3 - Petroleum-equivalent fuel economy calculation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Petroleum-equivalent fuel economy calculation. 474.3..., DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.3 Petroleum-equivalent fuel economy calculation. (a) The petroleum-equivalent fuel economy for an electric vehicle is...

  5. 10 CFR 474.3 - Petroleum-equivalent fuel economy calculation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Petroleum-equivalent fuel economy calculation. 474.3..., DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.3 Petroleum-equivalent fuel economy calculation. (a) The petroleum-equivalent fuel economy for an electric vehicle is...

  6. 10 CFR 474.3 - Petroleum-equivalent fuel economy calculation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Petroleum-equivalent fuel economy calculation. 474.3..., DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.3 Petroleum-equivalent fuel economy calculation. (a) The petroleum-equivalent fuel economy for an electric vehicle is...

  7. Effective Inertial Frame in an Atom Interferometric Test of the Equivalence Principle

    NASA Astrophysics Data System (ADS)

    Overstreet, Chris; Asenbaum, Peter; Kovachy, Tim; Notermans, Remy; Hogan, Jason M.; Kasevich, Mark A.

    2018-05-01

    In an ideal test of the equivalence principle, the test masses fall in a common inertial frame. A real experiment is affected by gravity gradients, which introduce systematic errors by coupling to initial kinematic differences between the test masses. Here we demonstrate a method that reduces the sensitivity of a dual-species atom interferometer to initial kinematics by using a frequency shift of the mirror pulse to create an effective inertial frame for both atomic species. Using this method, we suppress the gravity-gradient-induced dependence of the differential phase on initial kinematic differences by 2 orders of magnitude and precisely measure these differences. We realize a relative precision of Δ g /g ≈6 ×10-11 per shot, which improves on the best previous result for a dual-species atom interferometer by more than 3 orders of magnitude. By reducing gravity gradient systematic errors to one part in 1 013 , these results pave the way for an atomic test of the equivalence principle at an accuracy comparable with state-of-the-art classical tests.

  8. Explicating the Concept of Contrapositive Equivalence

    ERIC Educational Resources Information Center

    Dawkins, Paul Christian; Hub, Alec

    2017-01-01

    This paper sets forth a concept (Simon, 2017) of contrapositive equivalence and explores some related phenomena of learning through a case study of Hugo's learning in a teaching experiment guiding the reinvention of mathematical logic. Our proposed concept of contrapositive equivalence rests upon set-based meanings for mathematical categories and…

  9. Equivalent Mass of a Coil Spring.

    ERIC Educational Resources Information Center

    Ruby, Lawrence

    2000-01-01

    Finds that first-year college students can understand in detail the origin of the equivalent mass. Provides both a simple calculation derivation of this result as well as a noncalculus derivation. Argues that for every soft spring, the equivalent mass should be somewhere between m0/3 and m0/2. (CCM)

  10. Mapping Children's Understanding of Mathematical Equivalence

    ERIC Educational Resources Information Center

    Taylor, Roger S.; Rittle-Johnson, Bethany; Matthews, Percival G.; McEldoon, Katherine L.

    2009-01-01

    The focus of this research is to develop an initial framework for assessing and interpreting students' level of understanding of mathematical equivalence. Although this topic has been studied for many years, there has been no systematic development or evaluation of a valid measure of equivalence knowledge. A powerful method for accomplishing this…

  11. Testing of the European Union exposure-response relationships and annoyance equivalents model for annoyance due to transportation noises: The need of revised exposure-response relationships and annoyance equivalents model.

    PubMed

    Gille, Laure-Anne; Marquis-Favre, Catherine; Morel, Julien

    2016-09-01

    An in situ survey was performed in 8 French cities in 2012 to study the annoyance due to combined transportation noises. As the European Commission recommends to use the exposure-response relationships suggested by Miedema and Oudshoorn [Environmental Health Perspective, 2001] to predict annoyance due to single transportation noise, these exposure-response relationships were tested using the annoyance due to each transportation noise measured during the French survey. These relationships only enabled a good prediction in terms of the percentages of people highly annoyed by road traffic noise. For the percentages of people annoyed and a little annoyed by road traffic noise, the quality of prediction is weak. For aircraft and railway noises, prediction of annoyance is not satisfactory either. As a consequence, the annoyance equivalents model of Miedema [The Journal of the Acoustical Society of America, 2004], based on these exposure-response relationships did not enable a good prediction of annoyance due to combined transportation noises. Local exposure-response relationships were derived, following the whole computation suggested by Miedema and Oudshoorn [Environmental Health Perspective, 2001]. They led to a better calculation of annoyance due to each transportation noise in the French cities. A new version of the annoyance equivalents model was proposed using these new exposure-response relationships. This model enabled a better prediction of the total annoyance due to the combined transportation noises. These results encourage therefore to improve the annoyance prediction for noise in isolation with local or revised exposure-response relationships, which will also contribute to improve annoyance modeling for combined noises. With this aim in mind, a methodology is proposed to consider noise sensitivity in exposure-response relationships and in the annoyance equivalents model. The results showed that taking into account such variable did not enable to enhance both

  12. Equivalence of Szegedy's and coined quantum walks

    NASA Astrophysics Data System (ADS)

    Wong, Thomas G.

    2017-09-01

    Szegedy's quantum walk is a quantization of a classical random walk or Markov chain, where the walk occurs on the edges of the bipartite double cover of the original graph. To search, one can simply quantize a Markov chain with absorbing vertices. Recently, Santos proposed two alternative search algorithms that instead utilize the sign-flip oracle in Grover's algorithm rather than absorbing vertices. In this paper, we show that these two algorithms are exactly equivalent to two algorithms involving coined quantum walks, which are walks on the vertices of the original graph with an internal degree of freedom. The first scheme is equivalent to a coined quantum walk with one walk step per query of Grover's oracle, and the second is equivalent to a coined quantum walk with two walk steps per query of Grover's oracle. These equivalences lie outside the previously known equivalence of Szegedy's quantum walk with absorbing vertices and the coined quantum walk with the negative identity operator as the coin for marked vertices, whose precise relationships we also investigate.

  13. 7 CFR 1000.54 - Equivalent price.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Equivalent price. 1000.54 Section 1000.54 Agriculture... Prices § 1000.54 Equivalent price. If for any reason a price or pricing constituent required for computing the prices described in § 1000.50 is not available, the market administrator shall use a price or...

  14. Analysis and synthesis of bianisotropic metasurfaces by using analytical approach based on equivalent parameters

    NASA Astrophysics Data System (ADS)

    Danaeifar, Mohammad; Granpayeh, Nosrat

    2018-03-01

    An analytical method is presented to analyze and synthesize bianisotropic metasurfaces. The equivalent parameters of metasurfaces in terms of meta-atom properties and other specifications of metasurfaces are derived. These parameters are related to electric, magnetic, and electromagnetic/magnetoelectric dipole moments of the bianisotropic media, and they can simplify the analysis of complicated and multilayer structures. A metasurface of split ring resonators is studied as an example demonstrating the proposed method. The optical properties of the meta-atom are explored, and the calculated polarizabilities are applied to find the reflection coefficient and the equivalent parameters of the metasurface. Finally, a structure consisting of two metasurfaces of the split ring resonators is provided, and the proposed analytical method is applied to derive the reflection coefficient. The validity of this analytical approach is verified by full-wave simulations which demonstrate good accuracy of the equivalent parameter method. This method can be used in the analysis and synthesis of bianisotropic metasurfaces with different materials and in different frequency ranges by considering electric, magnetic, and electromagnetic/magnetoelectric dipole moments.

  15. Null result for violation of the equivalence principle with free-fall rotating gyroscopes

    NASA Astrophysics Data System (ADS)

    Luo, J.; Nie, Y. X.; Zhang, Y. Z.; Zhou, Z. B.

    2002-02-01

    The differential acceleration between a rotating mechanical gyroscope and a nonrotating one is directly measured by using a double free-fall interferometer, and no apparent differential acceleration has been observed at the relative level of 2×10-6. It means that the equivalence principle is still valid for rotating extended bodies, i.e., the spin-gravity interaction between the extended bodies has not been observed at this level. Also, to the limit of our experimental sensitivity, there is no observed asymmetrical effect or antigravity of the rotating gyroscopes as reported by Hayasaka et al.

  16. Grade Equivalents: We Report Them, You Should Too.

    ERIC Educational Resources Information Center

    Ligon, Glynn; Battaile, Richard

    In certain situations, grade equivalent scores are the most appropriate statistic available for reporting achievement test data. It is noted that testing practitioners have found that raw scores, normal curve equivalents, stanines, and standard scores are very useful. However, it is best to convert to either grade equivalents or percentiles before…

  17. Development of a Highly Sensitive Nested-PCR Procedure Using a Single Closed Tube for Detection of Erwinia amylovora in Asymptomatic Plant Material

    PubMed Central

    Llop, Pablo; Bonaterra, Anna; Peñalver, Javier; López, María M.

    2000-01-01

    A novel method, which involves a nested PCR in a single closed tube, was developed for the sensitive detection of Erwinia amylovora in plant material. The external and internal primer pairs used had different annealing temperatures and directed the amplification of a specific DNA fragment from plasmid pEA29. The procedure involved two consecutive PCRs, the first of which was performed at a higher annealing temperature that allowed amplification only by the external primer pair. Using pure cultures of E. amylovora, the sensitivity of the nested PCR in one tube was similar to that of a standard nested PCR in two tubes. The specificity and sensitivity were greater than those of standard PCR procedures that used a single primer pair. The presence of inhibitors in plant material, very common in E. amylovora hosts, is overcome with this system in combination with a simple DNA extraction protocol because it eliminates many of the inhibitory compounds. In addition, it needs a very small sample volume (1 μl of DNA extracted). With 83 samples of naturally infected material, this method achieved better results than any other PCR technique: standard PCR detected 55% of positive samples, two-tube nested PCR detected 71% of positive samples, and nested PCR in a single closed tube detected 78% of positive samples. When analyzing asymptomatic plant material, the number of positive samples detected by the developed nested PCR was also the highest, compared with the PCR protocols indicated previously (17, 20, and 25% of 251 samples analyzed, respectively). This method is proposed for the detection of endophytic and epiphytic populations of E. amylovora in epidemiological studies and for routine use in quarantine surveys, due to its high sensitivity, specificity, speed, and simplicity. PMID:10788384

  18. Response of a tissue equivalent proportional counter to neutrons

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Robbins, D. E.; Gibbons, F.; Braby, L. A.

    2002-01-01

    The absorbed dose as a function of lineal energy was measured at the CERN-EC Reference-field Facility (CERF) using a 512-channel tissue equivalent proportional counter (TEPC), and neutron dose equivalent response evaluated. Although there are some differences, the measured dose equivalent is in agreement with that measured by the 16-channel HANDI tissue equivalent counter. Comparison of TEPC measurements with those made by a silicon solid-state detector for low linear energy transfer particles produced by the same beam, is presented. The measurements show that about 4% of dose equivalent is delivered by particles heavier than protons generated in the conducting tissue equivalent plastic. c2002 Elsevier Science Ltd. All rights reserved.

  19. A comparative study between titania and zirconia as material for scattering layer in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Nursam, N. M.; Hidayat, J.; Shobih; Rosa, E. S.; Pranoto, L. M.

    2018-04-01

    The photoanode of dye-sensitized solar cells (DSSC) is typically composed of nanocrystalline titania (TiO2) layer that has been sensitized with light-absorbing dye molecules. Large portion of the light, however, could not be efficiently absorbed due to some physical reasons, such as TiO2 crystal size (typically 10-25 nm) that makes the photoanode remains partially transparent to the visible region in the solar spectrum. One of the ways to improve the light harvesting efficiency in DSSC could be achieved by employing an additional scattering layer over the TiO2 electron transport material. In this contribution, we evaluate the effect of light scattering properties on the performance of DSSC. Specifically, the light scattering properties provided from two different scattering materials, i.e. additional TiO2 scattering layer and zirconia (ZrO2) scattering layer, were compared. Both layers were deposited using screen printing technique under the same condition on top of 8 µm thick TiO2 photoanode layer. All samples subsequently received the same thermal annealing treatment at 500 °C and sensitized with ruthenium-based synthetic dyes. Our results revealed that the thickness of the scattering layer for both TiO2 and ZrO2 had a significant effect on the solar cell performance. The best photoconversion efficiency was achieved by samples that were coated with one screen-printing cycle, giving an overall efficiency of 3.50 % and 4.02% for TiO2 and ZrO2, respectively.

  20. The innate oxygen dependant immune pathway as a sensitive parameter to predict the performance of biological graft materials.

    PubMed

    Bryan, Nicholas; Ashwin, Helen; Smart, Neil; Bayon, Yves; Scarborough, Nelson; Hunt, John A

    2012-09-01

    Clinical performance of a biomaterial is decided early after implantation as leukocytes interrogate the graft throughout acute inflammation. High degrees of leukocyte activation lead to poor material/patient compliance, accelerated degeneration and graft rejection. A number reactive oxygen species (ROS) are released by leukocytes throughout their interaction with a material, which can be used as a sensitive measure of leukocyte activation. The aim of this study was to compare leukocyte activation by commercially available biologic surgical materials and define the extent manufacturing variables influence down-stream ROS response. Chemiluminescence assays were performed using modifications to a commercially available kit (Knight Scientific, UK). Whole blood was obtained from 4 healthy human adults at 7 day intervals for 4 weeks, combined with Adjuvant K, Pholasin (a highly sensitive ROS excitable photoprotein) and biomaterial, and incubated for 60 min with continuous chemiluminescent measurements. Leukocyte ROS inducers fMLP and PMA were added as controls. Xeno- and allogeneic dermal and small intestinal submucosal (SIS) derived biomaterials were produced commercially (Surgisis Biodesign™, Alloderm(®), Strattice(®)Firm & Pliable & Permacol™) or fabricated in house to induce variations in decellularisation and cross-linking. Statistics were performed using Waller-Duncan post hoc ranking. Materials demonstrated significant differences in leukocyte activation as a function of decellularisation reagent and tissue origin. The data demonstrated SIS was significantly more pro-inflammatory than dermis. Additionally it was deduced that SDS during decellularisation induced pro-inflammatory changes to dermal materials. Furthermore, it was possible to conclude inter-patient variation in leukocyte response. The in vitro findings were validated in vivo which confirmed the chemiluminescence observations, highlighting the potential for translation of this technique as a

  1. Determination of Dynamic Recrystallization Process by Equivalent Strain

    NASA Astrophysics Data System (ADS)

    Qin, Xiaomei; Deng, Wei

    Based on Tpнoвckiй's displacement field, equivalent strain expression was derived. And according to the dynamic recrystallization (DRX) critical strain, DRX process was determined by equivalent strain. It was found that equivalent strain distribution in deformed specimen is inhomogeneous, and it increases with increasing true strain. Under a certain true strain, equivalent strains at the center, demisemi radius or on tangential plane just below the surface of the specimen are higher than the true strain. Thus, micrographs at those positions can not exactly reflect the true microstructures under the certain true strain. With increasing strain rate, the initial and finish time of DRX decrease. The frozen microstructures of 20Mn23AlV steel with the experimental condition validate the feasibility of predicting DRX process by equivalent strain.

  2. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli.

    PubMed

    Zhu, Xinna; Tan, Zaigao; Xu, Hongtao; Chen, Jing; Tang, Jinlei; Zhang, Xueli

    2014-07-01

    Reducing equivalents are an important cofactor for efficient synthesis of target products. During metabolic evolution to improve succinate production in Escherichia coli strains, two reducing equivalent-conserving pathways were activated to increase succinate yield. The sensitivity of pyruvate dehydrogenase to NADH inhibition was eliminated by three nucleotide mutations in the lpdA gene. Pyruvate dehydrogenase activity increased under anaerobic conditions, which provided additional NADH. The pentose phosphate pathway and transhydrogenase were activated by increased activities of transketolase and soluble transhydrogenase SthA. These data suggest that more carbon flux went through the pentose phosphate pathway, thus leading to production of more reducing equivalent in the form of NADPH, which was then converted to NADH through soluble transhydrogenase for succinate production. Reverse metabolic engineering was further performed in a parent strain, which was not metabolically evolved, to verify the effects of activating these two reducing equivalent-conserving pathways for improving succinate yield. Activating pyruvate dehydrogenase increased succinate yield from 1.12 to 1.31mol/mol, whereas activating the pentose phosphate pathway and transhydrogenase increased succinate yield from 1.12 to 1.33mol/mol. Activating these two pathways in combination led to a succinate yield of 1.5mol/mol (88% of theoretical maximum), suggesting that they exhibited a synergistic effect for improving succinate yield. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Optimized mounting of a polyethylene naphthalate scintillation material in a radiation detector.

    PubMed

    Nakamura, Hidehito; Yamada, Tatsuya; Shirakawa, Yoshiyuki; Kitamura, Hisashi; Shidara, Zenichiro; Yokozuka, Takayuki; Nguyen, Philip; Kanayama, Masaya; Takahashi, Sentaro

    2013-10-01

    Polyethylene naphthalate (PEN) has great potential as a scintillation material for radiation detection. Here the optimum mounting conditions to maximize the light collection efficiency from PEN in a radiation detector are discussed. To this end, we have determined light yields emitted from irradiated PEN for various optical couplings between the substrate and the photodetector, and for various substrate surface treatments. The results demonstrate that light extraction from PEN is more sensitive to the optical couplings due to its high refractive index. We also assessed the extent of radioactive impurities in PEN as background sources and found that the impurities are equivalent to the environmental background level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Highly Sensitive Determination of the Polaron-Induced Optical Absorption of Organic Charge-Transport Materials

    NASA Astrophysics Data System (ADS)

    Rabe, T.; Görrn, P.; Lehnhardt, M.; Tilgner, M.; Riedl, T.; Kowalsky, W.

    2009-04-01

    We examine polaron-induced absorption in organic transport materials using a highly sensitive measurement technique. A hole only device is embedded into a low-loss TE2 waveguide structure, and the current induced change of the waveguide absorption is measured. The exemplary study of 2,2',7,7'-tetrakis(N,N-diphenylamine)-9,9'-spiro-bifluorene (S-TAD) reveals a very low polaron absorption cross section of σp≤2.6×10-18cm2 for 560 nm ≤λ≤660nm. The accuracy of this data is unsurpassed by other techniques used for the unambiguous study of polaronic species in organic thin films.

  5. Affordance Equivalences in Robotics: A Formalism

    PubMed Central

    Andries, Mihai; Chavez-Garcia, Ricardo Omar; Chatila, Raja; Giusti, Alessandro; Gambardella, Luca Maria

    2018-01-01

    Automatic knowledge grounding is still an open problem in cognitive robotics. Recent research in developmental robotics suggests that a robot's interaction with its environment is a valuable source for collecting such knowledge about the effects of robot's actions. A useful concept for this process is that of an affordance, defined as a relationship between an actor, an action performed by this actor, an object on which the action is performed, and the resulting effect. This paper proposes a formalism for defining and identifying affordance equivalence. By comparing the elements of two affordances, we can identify equivalences between affordances, and thus acquire grounded knowledge for the robot. This is useful when changes occur in the set of actions or objects available to the robot, allowing to find alternative paths to reach goals. In the experimental validation phase we verify if the recorded interaction data is coherent with the identified affordance equivalences. This is done by querying a Bayesian Network that serves as container for the collected interaction data, and verifying that both affordances considered equivalent yield the same effect with a high probability. PMID:29937724

  6. SU-E-T-130: Dosimetric Evaluation of Tissue Equivalent Gel Dosimeter Using Saccharide in Radiotherapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Y; Lee, D; Jung, H

    2014-06-01

    Purpose: In this study, the dose responses of the MAGIC gel with various concentrations and type of saccharide are examined to clarify the roles of mono and disaccharide in the polymerization process. Then we focused on the tissue equivalence and dose sensitivity of MAGIC gel dosimeters. Methods: The gel is composed of HPLC, 8% gelatin, 2 × 10-3 M L-ascorbic acid, 1.8 × 10-2 M hydroquinone, 8 × 10-5 M copper(II)sulfate and 9% methacrylic acid, new polymer gels are synthesized by adding glucose(monosaccharide), sucrose(disaccharide) and urea in the concentration range of 5∼35%. For irradiation of the gel, cesium-137 gamma-ray irradiatormore » was used, radiation dose was delivered from 5∼50 Gy. MRI images of the gel were acquired by using a 3.0 T MRI system. Results: When saccharide and urea were added, the O/C, O/N and C/N ratios agreed with those of soft tissue with 1.7%. The dose-response of glucose and sucrose gel have slope-to-intercept ratio of 0.044 and 0.283 respectively. The slope-to-ratio is one important determinant of gel sensitivity. R-square values of glucose and sucrose gel dosimeters were 0.984 and 0.994 respectively. Moreover when urea were added, the slope-to-intercept ratio is 0.044 and 0.073 respectively. R-square values of mono and disaccharide gel were 0.973 and 0.989 respectively. When a saccharide is added into the MAGIC gel dosimeter, dose sensitivity is increased. However when urea were added, dose sensitivity is slightly decreased. Conclusion: In this study, it was possible to obtain the following conclusions by looking at the dose response characteristics after adding mono-, di-saccharide and urea to a MAGIC gel dosimeter. Saccharide was a tendency of increasing dose sensitivity with disaccharide. Sa.ccharide is cost effective, safe, soft tissue equivalent, and can be used under various experimental conditions, making it a suitable dosimeter for some radiotherapy applications.« less

  7. Investigation of Thermal Interface Materials Using Phase-Sensitive Transient Thermoreflectance Technique: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, X.; King, C.; DeVoto, D.

    2014-08-01

    With increasing power density in electronics packages/modules, thermal resistances at multiple interfaces are a bottleneck to efficient heat removal from the package. In this work, the performance of thermal interface materials such as grease, thermoplastic adhesives and diffusion-bonded interfaces are characterized using the phase-sensitive transient thermoreflectance technique. A multi-layer heat conduction model was constructed and theoretical solutions were derived to obtain the relation between phase lag and the thermal/physical properties. This technique enables simultaneous extraction of the contact resistance and bulk thermal conductivity of the TIMs. With the measurements, the bulk thermal conductivity of Dow TC-5022 thermal grease (70 tomore » 75 um bondline thickness) was 3 to 5 W/(m-K) and the contact resistance was 5 to 10 mm2-K/W. For the Btech thermoplastic material (45 to 80 μm bondline thickness), the bulk thermal conductivity was 20 to 50 W/(m-K) and the contact resistance was 2 to 5 mm2-K/W. Measurements were also conducted to quantify the thermal performance of diffusion-bonded interface for power electronics applications. Results with the diffusion-bonded sample showed that the interfacial thermal resistance is more than one order of magnitude lower than those of traditional TIMs, suggesting potential pathways to efficient thermal management.« less

  8. Delay Discounting Rates Are Temporally Stable in an Equivalent Present Value Procedure Using Theoretical and Area under the Curve Analyses

    ERIC Educational Resources Information Center

    Harrison, Justin; McKay, Ryan

    2012-01-01

    Temporal discounting rates have become a popular dependent variable in social science research. While choice procedures are commonly employed to measure discounting rates, equivalent present value (EPV) procedures may be more sensitive to experimental manipulation. However, their use has been impeded by the absence of test-retest reliability data.…

  9. Sensitization to fragrance materials in Indonesian cosmetics.

    PubMed

    Roesyanto-Mahadi, I D; Geursen-Reitsma, A M; van Joost, T; van den Akker, T W

    1990-04-01

    2 different groups of patients were patch tested with 2 test series (A and B) containing extracts of fragrance raw materials, traditionally used in Indonesian cosmetics. Series A consisted of diluted extracts of commercially available Indonesian fragrances. Series B consisted of extracts prepared in our department from corresponding indigenous flowers and fruits. Group 1 consisted of 32 patients positive to fragrance-mix, of whom 8 (25%) had positive tests to 1 or more of the different extracts of fragrance raw materials. Reactions were observed to extracts of: Rosa hybrida Hort (7); Canangium odoratum Baill (5); Citrus aurantifolia Swingle (4); Jasminum sambac Ait (2). 6 of the 8 patients had reactions to 1 or more of the components of fragrance-mix: oakmoss (3); cinnamic alcohol (2), isoeugenol (1); cinnamic aldehyde (1) and geraniol (1). Group 2 consisted of 159 patients patch tested on suspicion of contact dermatitis, who were fragrance-mix negative. Only 2 (1.2%) had a positive patch test to the extracts of fragrance raw materials. Specimens taken (as is) from the flowers and citrus fruits (being the basis sources of the fragrance raw materials) were less antigenic. The use of additional test series in Indonesia to detect allergy to traditional cosmetics and perfumes merits further investigation.

  10. Obtaining an equivalent beam

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1990-01-01

    In modeling a complex structure the researcher was faced with a component that would have logical appeal if it were modeled as a beam. The structure was a mast of a robot controlled gantry crane. The structure up to this point already had a large number of degrees of freedom, so the idea of conserving grid points by modeling the mast as a beam was attractive. The researcher decided to make a separate problem of of the mast and model it in three dimensions with plates, then extract the equivalent beam properties by setting up the loading to simulate beam-like deformation and constraints. The results could then be used to represent the mast as a beam in the full model. A comparison was made of properties derived from models of different constraints versus manual calculations. The researcher shows that the three-dimensional model is ineffective in trying to conform to the requirements of an equivalent beam representation. If a full 3-D plate model were used in the complete representation of the crane structure, good results would be obtained. Since the attempt is to economize on the size of the model, a better way to achieve the same results is to use substructuring and condense the mast to equivalent end boundary and intermediate mass points.

  11. Photoelectrochemical characteristics of dye-sensitized solar cells incorporating innovative and inexpensive materials

    NASA Astrophysics Data System (ADS)

    Harlow, Lisa Jean

    The use of energy is going to continue to increase rapidly due to population and economic advances occurring throughout the world. The most widely used energies produce carbon dioxide during their combustion and have finite limits on how much of these resources are available. A strong push to utilizing renewable energy is necessary to keep up with the demand. The only renewable energy that has unlimited supply is solar. Our goal is to find cost-effective alternatives to historically the most extensively used materials in dye-sensitized solar cells. In order to rely on efficiency changes coinciding with the introduction of a new component, a standard baseline of performance is necessary to establish. A reproducible fabrication procedure composed of standard materials was instituted; the efficiency parameters exhibited a less than 10% standard deviation for any set of solar cells. Any modifications to the cell components would be apparent in the change in efficiency. Our cell modifications focused on economical alternatives to the electrolyte, the counter electrode and the chromophore. Solution-based electrolytes were replaced with a non-volatile ionic liquid, 1-methyl-3-propylimidazolium iodide, and then a poly(imidazole-functionalized) silica nanoparticle. Solid-state electrolytes reduce or prevent leakage and could ease manufacturing in large-scale devices. Platinum has been the counter electrode catalyst primarily used with the iodide/triiodide redox couple, but is a rare metal making it rather costly. We reduce platinum loading by introducing a novel counter electrode that employs platinum nanoparticles embedded on a graphene nanoplatelet paper. The highly conductive carbon base also negates the use of the expensive conductive substrate necessary for the platinum catalyst, further reducing cost. We also study the differences in transitioning from ruthenium polypyridyls to iron-based chromophores in dye-sensitized solar cells. Iron introduces low-lying ligand

  12. Direct observation of back energy transfer in blue phosphorescent materials for organic light emitting diodes by time-resolved optical waveguide spectroscopy.

    PubMed

    Hirayama, H; Sugawara, Y; Miyashita, Y; Mitsuishi, M; Miyashita, T

    2013-02-25

    We demonstrate a high-sensitive transient absorption technique for detection of excited states in an organic thin film by time-resolved optical waveguide spectroscopy. By using a laser beam as a probe light, we detect small change in the transient absorbance which is equivalent to 10 -7 absorbance unit in a conventional method. This technique was applied to organic thin films of blue phosphorescent materials for organic light emitting diodes. We directly observed the back energy transfer from emitting guest molecules to conductive host molecules.

  13. FROM CONCEPT TO EQUIVALENCY: THE 503 REGULATIONS AND THE PATHOGEN EQUIVALENCY COMMITTEE

    EPA Science Inventory

    Since its creation in 1985, the Pathogen Equivalency Committee (PEC) has been reviewing innovative and alternative sludge disinfection technologies with regards to their abilities to protect human health and the environment. The PEC is charged to make recommendations on whether t...

  14. Frequency Response of an Aircraft Wing with Discrete Source Damage Using Equivalent Plate Analysis

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, T.; Eldred, Lloyd B.

    2007-01-01

    An equivalent plate procedure is developed to provide a computationally efficient means of matching the stiffness and frequencies of flight vehicle wing structures for prescribed loading conditions. Several new approaches are proposed and studied to match the stiffness and first five natural frequencies of the two reference models with and without damage. One approach divides the candidate reference plate into multiple zones in which stiffness and mass can be varied using a variety of materials including aluminum, graphite-epoxy, and foam-core graphite-epoxy sandwiches. Another approach places point masses along the edge of the stiffness-matched plate to tune the natural frequencies. Both approaches are successful at matching the stiffness and natural frequencies of the reference plates and provide useful insight into determination of crucial features in equivalent plate models of aircraft wing structures.

  15. Two phase modeling of the influence of plastic strain on the magnetic and magnetostrictive behaviors of ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Hubert, Olivier; Lazreg, Said

    2017-02-01

    A growing interest of automotive industry in the use of high performance steels is observed. These materials are obtained thanks to complex manufacturing processes whose parameters fluctuations lead to strong variations of microstructure and mechanical properties. The on-line magnetic non-destructive monitoring is a relevant response to this problem but it requires fast models sensitive to different parameters of the forming process. The plastic deformation is one of these important parameters. Indeed, ferromagnetic materials are known to be sensitive to stress application and especially to plastic strains. In this paper, a macroscopic approach using the kinematic hardening is proposed to model this behavior, considering a plastic strained material as a two phase system. Relationship between kinematic hardening and residual stress is defined in this framework. Since stress fields are multiaxial, an uniaxial equivalent stress is calculated and introduced inside the so-called magneto-mechanical multidomain modeling to represent the effect of plastic strain. The modeling approach is complemented by many experiments involving magnetic and magnetostrictive measurements. They are carried out with or without applied stress, using a dual-phase steel deformed at different levels. The main interest of this material is that the mechanically hard phase, soft phase and the kinematic hardening can be clearly identified thanks to simple experiments. It is shown how this model can be extended to single phase materials.

  16. The improvement of the method of equivalent cross section in HTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, J.; Li, F.

    The Method of Equivalence Cross-Sections (MECS) is a combined transport-diffusion method. By appropriately adjusting the diffusion coefficient of homogenized absorber region, the diffusion theory could yield satisfactory results for the full core model with strong neutron absorber material, for example the control rod in High temperature gas cooled reactor (HTR). Original implementation of MECS based on 1-D cell transport model has some limitation on accuracy and applicability, a new implementation of MECS based on 2-D transport model are proposed and tested in this paper. This improvement can extend the MECS to the calculation of twin small absorber ball system whichmore » have a non-circular boring in graphite reflector and different radial position. A least-square algorithm for the calculation of equivalent diffusion coefficient is adopted, and special treatment for diffusion coefficient for higher energy group is proposed in the case that absorber is absent. Numerical results to adopt MECS into control rod calculation in HTR are encouraging. However, there are some problems left. (authors)« less

  17. Distinguishing Provenance Equivalence of Earth Science Data

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt; Yesha, Ye; Halem, M.

    2010-01-01

    Reproducibility of scientific research relies on accurate and precise citation of data and the provenance of that data. Earth science data are often the result of applying complex data transformation and analysis workflows to vast quantities of data. Provenance information of data processing is used for a variety of purposes, including understanding the process and auditing as well as reproducibility. Certain provenance information is essential for producing scientifically equivalent data. Capturing and representing that provenance information and assigning identifiers suitable for precisely distinguishing data granules and datasets is needed for accurate comparisons. This paper discusses scientific equivalence and essential provenance for scientific reproducibility. We use the example of an operational earth science data processing system to illustrate the application of the technique of cascading digital signatures or hash chains to precisely identify sets of granules and as provenance equivalence identifiers to distinguish data made in an an equivalent manner.

  18. SU-C-207A-05: Feature Based Water Equivalent Path Length (WEPL) Determination for Proton Radiography by the Technique of Time Resolved Dose Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, R; Jee, K; Sharp, G

    Purpose: Studies show that WEPL can be determined from modulated dose rate functions (DRF). However, the previous calibration method based on statistics of the DRF is sensitive to energy mixing of protons due to scattering through different materials (termed as range mixing here), causing inaccuracies in the determination of WEPL. This study intends to explore time-domain features of the DRF to reduce the effect of range mixing in proton radiography (pRG) by this technique. Methods: An amorphous silicon flat panel (PaxScan™ 4030CB, Varian Medical Systems, Inc., Palo Alto, CA) was placed behind phantoms to measure DRFs from a proton beammore » modulated by a specially designed modulator wheel. The performance of two methods, the previously used method based on the root mean square (RMS) and the new approach based on time-domain features of the DRF, are compared for retrieving WEPL and RSP from pRG of a Gammex phantom. Results: Calibration by T{sub 80} (the time point for 80% of the major peak) was more robust to range mixing and produced WEPL with improved accuracy. The error of RSP was reduced from 8.2% to 1.7% for lung equivalent material, with the mean error for all other materials reduced from 1.2% to 0.7%. The mean error of the full width at half maximum (FWHM) of retrieved inserts was decreased from 25.85% to 5.89% for the RMS and T{sub 80} method respectively. Monte Carlo simulations in simplified cases also demonstrated that the T{sub 80} method is less sensitive to range mixing than the RMS method. Conclusion: WEPL images have been retrieved based on single flat panel measured DRFs, with inaccuracies reduced by exploiting time-domain features as the calibration parameter. The T{sub 80} method is validated to be less sensitive to range mixing and can thus retrieve the WEPL values in proximity of interfaces with improved numerical and spatial accuracy for proton radiography.« less

  19. Precision measurement and modeling of superconducting magnetic bearings for the satellite test of the equivalence principle

    NASA Astrophysics Data System (ADS)

    Sapilewski, Glen Alan

    The Satellite Test of the Equivalence Principle (STEP) is a modern version of Galileo's experiment of dropping two objects from the leaning tower of Pisa. The Equivalence Principle states that all objects fall with the same acceleration, independent of their composition. The primary scientific objective of STEP is to measure a possible violation of the Equivalence Principle one million times better than the best ground based tests. This extraordinary sensitivity is made possible by using cryogenic differential accelerometers in the space environment. Critical to the STEP experiment is a sound fundamental understanding of the behavior of the superconducting magnetic linear bearings used in the accelerometers. We have developed a theoretical bearing model and a precision measuring system with which to validate the model. The accelerometers contain two concentric hollow cylindrical test masses, of different materials, each levitated and constrained to axial motion by a superconducting magnetic bearing. Ensuring that the bearings satisfy the stringent mission specifications requires developing new testing apparatus and methods. The bearing is tested using an actively-controlled table which tips it relative to gravity. This balances the magnetic forces from the bearing against a component of gravity. The magnetic force profile of the bearing can be mapped by measuring the tilt necessary to position the test mass at various locations. An operational bearing has been built and is being used to verify the theoretical levitation models. The experimental results obtained from the bearing test apparatus were inconsistent with the previous models used for STEP bearings. This led to the development of a new bearing model that includes the influence of surface current variations in the bearing wires and the effect of the superconducting transformer. The new model, which has been experimentally verified, significantly improves the prediction of levitation current, accurately

  20. Design and experimental verification of an equivalent forebody to produce disturbances equivalent to those of a forebody with flowing inlets

    NASA Technical Reports Server (NTRS)

    Haynes, Davy A.; Miller, David S.; Klein, John R.; Louie, Check M.

    1988-01-01

    A method by which a simple equivalent faired body can be designed to replace a more complex body with flowing inlets has been demonstrated for supersonic flow. An analytically defined, geometrically simple faired inlet forebody has been designed using a linear potential code to generate flow perturbations equivalent to those produced by a much more complex forebody with inlets. An equivalent forebody wind-tunnel model was fabricated and a test was conducted in NASA Langley Research Center's Unitary Plan Wind Tunnel. The test Mach number range was 1.60 to 2.16 for angles of attack of -4 to 16 deg. Test results indicate that, for the purposes considered here, the equivalent forebody simulates the original flowfield disturbances to an acceptable degree of accuracy.

  1. Sensitivity and Switching Delay in Trigger Circuits; SENSIBILITA E RITARDO ENI CIRCUITI A SCATTO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Lotto, I.; Stanchi, L.

    The problem of regeneration in trigger circuits is studied, particularly in relation to switching delay and switching time. The factors that affect the speed, such as the threshold as a function of the input signal duration, are examined. The sensitivity of the circuit is also discussed. The characteristics of the dipole equivalent to a trigger circuit are determined, and the switching delay and switching rise time are examined using considerable simplifications (circuits with constant parameters) and graphical methods. For the particular case of a transistor circuit, the equation of the equivalent circuit is derived taking into account the nonlinearity ofmore » the parameters. This equation is processed by means of an analog computer. Using experimental data, the circuits are classified according to their sensitivity and the switching delay. A merit figure is obtained for synthetically evaluating different circuits and optimizing circuit sensitivity and speed. (auth)« less

  2. Ceramics for Molten Materials Transfer

    NASA Technical Reports Server (NTRS)

    Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.

    2009-01-01

    The paper reviews the main issues associated with molten materials transfer and handling on the lunar surface during the operation of a hig h temperature electrowinning cell used to produce oxygen, with molten iron and silicon as byproducts. A combination of existing technolog ies and purposely designed technologies show promise for lunar exploi tation. An important limitation that requires extensive investigation is the performance of refractory currently used for the purpose of m olten metal containment and transfer in the lunar environment associa ted with electrolytic cells. The principles of a laboratory scale uni t at a scale equivalent to the production of 1 metric ton of oxygen p er year are introduced. This implies a mass of molten materials to be transferred consistent with the equivalent of 1kg regolithlhr proces sed.

  3. 21 CFR 26.45 - Monitoring continued equivalence.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... COMMUNITY Specific Sector Provisions for Medical Devices § 26.45 Monitoring continued equivalence. Monitoring activities will be carried out in accordance with § 26.69. ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Monitoring continued equivalence. 26.45 Section 26...

  4. 21 CFR 26.45 - Monitoring continued equivalence.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... COMMUNITY Specific Sector Provisions for Medical Devices § 26.45 Monitoring continued equivalence. Monitoring activities will be carried out in accordance with § 26.69. ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Monitoring continued equivalence. 26.45 Section 26...

  5. 21 CFR 26.45 - Monitoring continued equivalence.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... COMMUNITY Specific Sector Provisions for Medical Devices § 26.45 Monitoring continued equivalence. Monitoring activities will be carried out in accordance with § 26.69. ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Monitoring continued equivalence. 26.45 Section 26...

  6. 21 CFR 26.45 - Monitoring continued equivalence.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... COMMUNITY Specific Sector Provisions for Medical Devices § 26.45 Monitoring continued equivalence. Monitoring activities will be carried out in accordance with § 26.69. ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Monitoring continued equivalence. 26.45 Section 26...

  7. 49 CFR 37.105 - Equivalent service standard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Equivalent service standard. 37.105 Section 37.105 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Acquisition of Accessible Vehicles by Private Entities § 37.105 Equivalent service standard...

  8. Green Power Equivalency Calculator

    EPA Pesticide Factsheets

    Use this calculator to translate your green power use from kilowatt-hours to more understandable terms, such as the equivalent number of average American homes it could power or miles an electric car could drive.

  9. Terrestrial bitumen analogue of orgueil organic material demonstrates high sensitivity to usual HF-HCl treatment

    NASA Technical Reports Server (NTRS)

    Korochantsev, A. V.; Nikolaeva, O. V.

    1993-01-01

    The relationship between the chemical composition and the interlayer spacing (d002) of organic materials (OM's) is known for various terrestrial OM's. We improved this general trend by correlation with corresponding trend of natural solid bitumens (asphaltite-kerite-anthraxolite) up to graphite. Using the improved trend we identified bitumen analogs of carbonaceous chondrite OM's residued after HF-HCl treatment. Our laboratory experiment revealed that these analogs and, hence, structure and chemical composition of carbonaceous chondrite OM's are very sensitive to the HF-HCl treatment. So, usual extraction of OM from carbonaceous chondrites may change significantly structural and chemical composition of extracted OM.

  10. The equivalent depth of burst for impact cratering

    NASA Technical Reports Server (NTRS)

    Holsapple, K. A.

    1980-01-01

    The concept of modeling an impact cratering event with an explosive event with the explosive buried at some equivalent depth of burst (d.o.b.) is discussed. Various and different ways to define this equivalent d.o.b. are identified. Recent experimental results for a dense quartz sand are used to determine the equivalent d.o.b. for various conditions of charge type, event size, and impact conditions. The results show a decrease in equivalent d.o.b. with increasing energy for fixed impact velocity and a decrease in equivalent d.o.b. with increasing velocity for fixed energy. The values for an iron projectile are on the order of 2-3 projectile radii for energy equal to one ton of TNT, decreasing to about 1.5 radii at a megaton of TNT. The dependence on projectile and target mass density matches that included in common jet-penetration formulas for projectile densities greater than target densities and for the higher energies.

  11. Carbonaceous materials and their advances as a counter electrode in dye-sensitized solar cells: challenges and prospects.

    PubMed

    Kouhnavard, Mojgan; Ludin, Norasikin Ahmad; Ghaffari, Babak V; Sopian, Kamarozzaman; Ikeda, Shoichiro

    2015-05-11

    Dye-sensitized solar cells (DSSCs) serve as low-costing alternatives to silicon solar cells because of their low material and fabrication costs. Usually, they utilize Pt as the counter electrode (CE) to catalyze the iodine redox couple and to complete the electric circuit. Given that Pt is a rare and expensive metal, various carbon materials have been intensively investigated because of their low costs, high surface areas, excellent electrochemical stabilities, reasonable electrochemical activities, and high corrosion resistances. In this feature article, we provide an overview of recent studies on the electrochemical properties and photovoltaic performances of carbon-based CEs (e.g., activated carbon, nanosized carbon, carbon black, graphene, graphite, carbon nanotubes, and composite carbon). We focus on scientific challenges associated with each material and highlight recent advances achieved in overcoming these obstacles. Finally, we discuss possible future directions for this field of research aimed at obtaining highly efficient DSSCs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nano-particle doped hydroxyapatite material evaluation using spectroscopic polarization sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Strąkowska, Paulina; Trojanowski, Michał; Gardas, Mateusz; Głowacki, Maciej J.; Kraszewski, Maciej; Strąkowski, Marcin R.

    2015-03-01

    Bio-ceramics such as hydroxyapatite (HAp) are widely used materials in medical applications, especially as an interface between implants and living tissues. There are many ways of creating structures from HAp like electrochemical assisted deposition, biomimetic, electrophoresis, pulsed laser deposition or sol-gel processing. Our research is based on analyzing the parameters of the sol-gel method for creating thin layers of HAp. In order to achieve this, we propose to use Optical Coherence Tomography (OCT) for non-destructive and non-invasive evaluation. Our system works in the IR spectrum range, which is helpful due to the wide range of nanocomposites being opaque in the VIS range. In order to use our method we need to measure two samples, one which is a reference HAp solution and second: a similar HAp solution with nanoparticles introduced inside. We use silver nanoparticles below 300 nm. The aim of this research is to analyze the concentration and dispersion of nanodopants in the bio-ceramic matrix. Furthermore, the quality of the HAp coating and deposition process repetition have been monitored. For this purpose the polarization sensitive OCT with additional spectroscopic analysis is being investigated. Despite the other methods, which are suitable for nanocomposite materials evaluation, the OCT with additional features seems to be one of the few which belong to the NDE/NDT group. Here we are presenting the OCT system for evaluation of the HAp with nano-particles, as well as HAp manufacturing process. A brief discussion on the usefulness of OCT for bio-ceramics materials examination is also being presented.

  13. Dose Equivalents for Antipsychotic Drugs: The DDD Method.

    PubMed

    Leucht, Stefan; Samara, Myrto; Heres, Stephan; Davis, John M

    2016-07-01

    Dose equivalents of antipsychotics are an important but difficult to define concept, because all methods have weaknesses and strongholds. We calculated dose equivalents based on defined daily doses (DDDs) presented by the World Health Organisation's Collaborative Center for Drug Statistics Methodology. Doses equivalent to 1mg olanzapine, 1mg risperidone, 1mg haloperidol, and 100mg chlorpromazine were presented and compared with the results of 3 other methods to define dose equivalence (the "minimum effective dose method," the "classical mean dose method," and an international consensus statement). We presented dose equivalents for 57 first-generation and second-generation antipsychotic drugs, available as oral, parenteral, or depot formulations. Overall, the identified equivalent doses were comparable with those of the other methods, but there were also outliers. The major strength of this method to define dose response is that DDDs are available for most drugs, including old antipsychotics, that they are based on a variety of sources, and that DDDs are an internationally accepted measure. The major limitations are that the information used to estimate DDDS is likely to differ between the drugs. Moreover, this information is not publicly available, so that it cannot be reviewed. The WHO stresses that DDDs are mainly a standardized measure of drug consumption, and their use as a measure of dose equivalence can therefore be misleading. We, therefore, recommend that if alternative, more "scientific" dose equivalence methods are available for a drug they should be preferred to DDDs. Moreover, our summary can be a useful resource for pharmacovigilance studies. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel - I. Theory

    DOE PAGES

    Williams, Mark L.; Lee, Deokjung; Choi, Sooyoung

    2015-03-04

    A new methodology has been developed to treat resonance self-shielding in doubly heterogeneous very high temperature gas-cooled reactor systems in which the fuel compact region of a reactor lattice consists of small fuel grains dispersed in a graphite matrix. This new method first homogenizes the fuel grain and matrix materials using an analytically derived disadvantage factor from a two-region problem with equivalence theory and intermediate resonance method. This disadvantage factor accounts for spatial self-shielding effects inside each grain within the framework of an infinite array of grains. Then the homogenized fuel compact is self-shielded using a Bondarenko method to accountmore » for interactions between the fuel compact regions in the fuel lattice. In the final form of the equations for actual implementations, the double-heterogeneity effects are accounted for by simply using a modified definition of a background cross section, which includes geometry parameters and cross sections for both the grain and fuel compact regions. With the new method, the doubly heterogeneous resonance self-shielding effect can be treated easily even with legacy codes programmed only for a singly heterogeneous system by simple modifications in the background cross section for resonance integral interpolations. This paper presents a detailed derivation of the new method and a sensitivity study of double-heterogeneity parameters introduced during the derivation. The implementation of the method and verification results for various test cases are presented in the companion paper.« less

  15. A material sensitivity study on the accuracy of deformable organ registration using linear biomechanical models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Y.; Liang, J.; Yan, D.

    2006-02-15

    Model-based deformable organ registration techniques using the finite element method (FEM) have recently been investigated intensively and applied to image-guided adaptive radiotherapy (IGART). These techniques assume that human organs are linearly elastic material, and their mechanical properties are predetermined. Unfortunately, the accurate measurement of the tissue material properties is challenging and the properties usually vary between patients. A common issue is therefore the achievable accuracy of the calculation due to the limited access to tissue elastic material constants. In this study, we performed a systematic investigation on this subject based on tissue biomechanics and computer simulations to establish the relationshipsmore » between achievable registration accuracy and tissue mechanical and organ geometrical properties. Primarily we focused on image registration for three organs: rectal wall, bladder wall, and prostate. The tissue anisotropy due to orientation preference in tissue fiber alignment is captured by using an orthotropic or a transversely isotropic elastic model. First we developed biomechanical models for the rectal wall, bladder wall, and prostate using simplified geometries and investigated the effect of varying material parameters on the resulting organ deformation. Then computer models based on patient image data were constructed, and image registrations were performed. The sensitivity of registration errors was studied by perturbating the tissue material properties from their mean values while fixing the boundary conditions. The simulation results demonstrated that registration error for a subvolume increases as its distance from the boundary increases. Also, a variable associated with material stability was found to be a dominant factor in registration accuracy in the context of material uncertainty. For hollow thin organs such as rectal walls and bladder walls, the registration errors are limited. Given 30% in material

  16. Equivalency Programmes (EPs) for Promoting Lifelong Learning

    ERIC Educational Resources Information Center

    Haddad, Caroline, Ed.

    2006-01-01

    Equivalency programmes (EPs) refers to alternative education programmes that are equivalent to the formal education system in terms of curriculum and certification, policy support mechanisms, mode of delivery, staff training, and other support activities such as monitoring, evaluation and assessment. The development of EPs is potentially an…

  17. Toward Worldwide Hepcidin Assay Harmonization: Identification of a Commutable Secondary Reference Material.

    PubMed

    van der Vorm, Lisa N; Hendriks, Jan C M; Laarakkers, Coby M; Klaver, Siem; Armitage, Andrew E; Bamberg, Alison; Geurts-Moespot, Anneke J; Girelli, Domenico; Herkert, Matthias; Itkonen, Outi; Konrad, Robert J; Tomosugi, Naohisa; Westerman, Mark; Bansal, Sukhvinder S; Campostrini, Natascia; Drakesmith, Hal; Fillet, Marianne; Olbina, Gordana; Pasricha, Sant-Rayn; Pitts, Kelly R; Sloan, John H; Tagliaro, Franco; Weykamp, Cas W; Swinkels, Dorine W

    2016-07-01

    Absolute plasma hepcidin concentrations measured by various procedures differ substantially, complicating interpretation of results and rendering reference intervals method dependent. We investigated the degree of equivalence achievable by harmonization and the identification of a commutable secondary reference material to accomplish this goal. We applied technical procedures to achieve harmonization developed by the Consortium for Harmonization of Clinical Laboratory Results. Eleven plasma hepcidin measurement procedures (5 mass spectrometry based and 6 immunochemical based) quantified native individual plasma samples (n = 32) and native plasma pools (n = 8) to assess analytical performance and current and achievable equivalence. In addition, 8 types of candidate reference materials (3 concentrations each, n = 24) were assessed for their suitability, most notably in terms of commutability, to serve as secondary reference material. Absolute hepcidin values and reproducibility (intrameasurement procedure CVs 2.9%-8.7%) differed substantially between measurement procedures, but all were linear and correlated well. The current equivalence (intermeasurement procedure CV 28.6%) between the methods was mainly attributable to differences in calibration and could thus be improved by harmonization with a common calibrator. Linear regression analysis and standardized residuals showed that a candidate reference material consisting of native lyophilized plasma with cryolyoprotectant was commutable for all measurement procedures. Mathematically simulated harmonization with this calibrator resulted in a maximum achievable equivalence of 7.7%. The secondary reference material identified in this study has the potential to substantially improve equivalence between hepcidin measurement procedures and contributes to the establishment of a traceability chain that will ultimately allow standardization of hepcidin measurement results. © 2016 American Association for Clinical Chemistry.

  18. Estimating Equivalency of Explosives Through A Thermochemical Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maienschein, J L

    2002-07-08

    The Cheetah thermochemical computer code provides an accurate method for estimating the TNT equivalency of any explosive, evaluated either with respect to peak pressure or the quasi-static pressure at long time in a confined volume. Cheetah calculates the detonation energy and heat of combustion for virtually any explosive (pure or formulation). Comparing the detonation energy for an explosive with that of TNT allows estimation of the TNT equivalency with respect to peak pressure, while comparison of the heat of combustion allows estimation of TNT equivalency with respect to quasi-static pressure. We discuss the methodology, present results for many explosives, andmore » show comparisons with equivalency data from other sources.« less

  19. Platinum-free, carbon-based materials as efficient counter electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Widiyandari, Hendri; Prasetio, Adi; Purwanto, Agus; Subagio, Agus; Hidayat, Rachmat

    2018-06-01

    The electrocatalytic potential of carbon materials makes them the most viable candidate to replace Pt as a counter electrode (CE) in dye-sensitized solar cells (DSSCs). In this research, we report our study using graphite, CNT/graphite composite, CNT, and Pt-based CEs in DSSCs. The electrochemical impedance spectroscopy (EIS) measurement showed that the CNT-based CE (CNT-CE) has the lowest charge transport resistance (R ct) compared with graphite and the CNT/graphite composite. The photovoltaic performance measurement showed that the CNT-CE resulted in a short-circuit photocurrent density (J sc) of 3.59 mA·cm‑2 whereas the Pt-based CE (Pt-CE) resulted in a J sc of 2.76 mA·cm‑2.

  20. On the correct choice of equivalent circuit for fitting bulk impedance data of ionic/electronic conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernández, Miguel A.; Masó, Nahum; West, Anthony R.

    Bulk conductivity data of ionically and electronically conducting solid electrolytes and electronic ceramics invariably show a frequency dependence that cannot be modelled by a single-valued resistor. To model this, common practice is to add a constant phase element (CPE) in parallel with the bulk resistance. To fit experimental data on a wide variety of materials, however, it is also essential to include the limiting, high frequency permittivity of the material in the equivalent circuit. Failure to do so can lead to incorrect values for the sample resistance and CPE parameters and to an inappropriate circuit for materials that are electricallymore » heterogeneous.« less

  1. 42 CFR 457.430 - Benchmark-equivalent health benefits coverage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Benchmark-equivalent health benefits coverage. 457... STATES State Plan Requirements: Coverage and Benefits § 457.430 Benchmark-equivalent health benefits coverage. (a) Aggregate actuarial value. Benchmark-equivalent coverage is health benefits coverage that has...

  2. 42 CFR 457.430 - Benchmark-equivalent health benefits coverage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Benchmark-equivalent health benefits coverage. 457... STATES State Plan Requirements: Coverage and Benefits § 457.430 Benchmark-equivalent health benefits coverage. (a) Aggregate actuarial value. Benchmark-equivalent coverage is health benefits coverage that has...

  3. 42 CFR 457.430 - Benchmark-equivalent health benefits coverage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Benchmark-equivalent health benefits coverage. 457... STATES State Plan Requirements: Coverage and Benefits § 457.430 Benchmark-equivalent health benefits coverage. (a) Aggregate actuarial value. Benchmark-equivalent coverage is health benefits coverage that has...

  4. 42 CFR 440.335 - Benchmark-equivalent health benefits coverage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Benchmark-equivalent health benefits coverage. 440.335 Section 440.335 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND... and Benchmark-Equivalent Coverage § 440.335 Benchmark-equivalent health benefits coverage. (a...

  5. 42 CFR 440.335 - Benchmark-equivalent health benefits coverage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Benchmark-equivalent health benefits coverage. 440.335 Section 440.335 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND... and Benchmark-Equivalent Coverage § 440.335 Benchmark-equivalent health benefits coverage. (a...

  6. 49 CFR 538.8 - Gallon Equivalents for Gaseous Fuels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Gallon Equivalents for Gaseous Fuels. 538.8... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MANUFACTURING INCENTIVES FOR ALTERNATIVE FUEL VEHICLES § 538.8 Gallon Equivalents for Gaseous Fuels. The gallon equivalent of gaseous fuels, for purposes...

  7. 49 CFR 538.8 - Gallon Equivalents for Gaseous Fuels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Gallon Equivalents for Gaseous Fuels. 538.8... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MANUFACTURING INCENTIVES FOR ALTERNATIVE FUEL VEHICLES § 538.8 Gallon Equivalents for Gaseous Fuels. The gallon equivalent of gaseous fuels, for purposes...

  8. Testing equivalence of mediating models of income, parenting, and school readiness for white, black, and Hispanic children in a national sample.

    PubMed

    Raver, C Cybele; Gershoff, Elizabeth T; Aber, J Lawrence

    2007-01-01

    This paper examines complex models of the associations between family income, material hardship, parenting, and school readiness among White, Black, and Hispanic 6-year-olds, using the Early Childhood Longitudinal Study-Kindergarten Cohort (ECLS-K). It is critical to test the universality of such complex models, particularly given their implications for intervention, prevention, and public policy. Therefore this study asks: Do measures and models of low income and early school readiness indicators fit differently or similarly for White, Black, and Hispanic children? Measurement equivalence of material hardship, parent stress, parenting behaviors, child cognitive skills, and child social competence is first tested. Model equivalence is then tested by examining whether category membership in a race/ethnic group moderates associations between predictors and young children's school readiness.

  9. EPA Region 1 Environmentally Sensitive Areas

    EPA Pesticide Factsheets

    This coverage represents polygon equivalents of environmentally sensitive areas (ESA) in EPA Region I. ESAs were developed as part of an EPA headquarters initiative based on reviews of various regulatory and guidance documents, as well as phone interviews with federal/state/local government agencies and private organizations. ESAs include, but are not limited to, wetlands, biological resources, habitats, national parks, archaeological/historic sites, natural heritage areas, tribal lands, drinking water intakes, marinas/boat ramps, wildlife areas, etc.

  10. Optimizing Equivalence-Based Instruction: Effects of Training Protocols on Equivalence Class Formation

    ERIC Educational Resources Information Center

    Fienup, Daniel M.; Wright, Nicole A.; Fields, Lanny

    2015-01-01

    Two experiments evaluated the effects of the simple-to-complex and simultaneous training protocols on the formation of academically relevant equivalence classes. The simple-to-complex protocol intersperses derived relations probes with training baseline relations. The simultaneous protocol conducts all training trials and test trials in separate…

  11. Two-photon equivalent weighting of spatial excimer laser beam profiles

    NASA Astrophysics Data System (ADS)

    Eva, Eric; Bauer, Harry H.; Metzger, K.; Pfeiffer, A.

    2001-04-01

    Damage in optical materials for semiconductor lithography applications caused by exposure to 248 or 193 nm light is usually two-photon driven, hence it is a nonlinear function of incident intensity. Materials should be tested with flat- topped temporal and spatial laser beam profiles to facilitate interpretation of data, but in reality this is hard to achieve. Sandstrom provided a formula that approximates any given temporal pulse shape with a two- photon equivalent rectangular pulse (Second Symposium on 193 nm Lithography, Colorado Springs 1997). Known as the integral-square pulse duration, this definition has been embraced as an industry standard. Originally faced with the problem of comparing results obtained with pseudo-Gaussian spatial profiles to literature data, we found that a general solution for arbitrarily inhomogeneous spatial beam profiles exists which results in a definition much similar to Sandstrom's. In addition, we proved the validity of our approach in experiments with intentionally altered beam profiles.

  12. PACCE: Perl Algorithm to Compute Continuum and Equivalent Widths

    NASA Astrophysics Data System (ADS)

    Riffel, Rogério; Borges Vale, Tibério

    2011-05-01

    PACCE (Perl Algorithm to Compute continuum and Equivalent Widths) computes continuum and equivalent widths. PACCE is able to determine mean continuum and continuum at line center values, which are helpful in stellar population studies, and is also able to compute the uncertainties in the equivalent widths using photon statistics.

  13. Teleparallel equivalent of Lovelock gravity

    NASA Astrophysics Data System (ADS)

    González, P. A.; Vásquez, Yerko

    2015-12-01

    There is a growing interest in modified gravity theories based on torsion, as these theories exhibit interesting cosmological implications. In this work inspired by the teleparallel formulation of general relativity, we present its extension to Lovelock gravity known as the most natural extension of general relativity in higher-dimensional space-times. First, we review the teleparallel equivalent of general relativity and Gauss-Bonnet gravity, and then we construct the teleparallel equivalent of Lovelock gravity. In order to achieve this goal, we use the vielbein and the connection without imposing the Weitzenböck connection. Then, we extract the teleparallel formulation of the theory by setting the curvature to null.

  14. Optimum structural sizing of conventional cantilever and joined wing configurations using equivalent beam models

    NASA Technical Reports Server (NTRS)

    Hajela, P.; Chen, J. L.

    1986-01-01

    The present paper describes an approach for the optimum sizing of single and joined wing structures that is based on representing the built-up finite element model of the structure by an equivalent beam model. The low order beam model is computationally more efficient in an environment that requires repetitive analysis of several trial designs. The design procedure is implemented in a computer program that requires geometry and loading data typically available from an aerodynamic synthesis program, to create the finite element model of the lifting surface and an equivalent beam model. A fully stressed design procedure is used to obtain rapid estimates of the optimum structural weight for the beam model for a given geometry, and a qualitative description of the material distribution over the wing structure. The synthesis procedure is demonstrated for representative single wing and joined wing structures.

  15. Single crystal Ce doped scintillator material with garnet structure sensitive to gamma ray and neutron radiation

    NASA Astrophysics Data System (ADS)

    Solodovnikov, D.; Weber, M. H.; Haven, D. T.; Lynn, K. G.

    2012-08-01

    A mixed garnet scintillator host material is obtained from the melt—Yttrium Gadolinium Gallium Aluminum Garnet (YGGAG). In addition to the high thermal and chemical stability and radiation hardness found in garnet crystals, it offers sensitivity to neutrons due to the presence of Gd atoms, has lower melting temperature than yttrium aluminum garnet, and similar crystallization behavior suitable for growth of large volume crystals. Crystals of YGGAG doped with Ce of 10×10×10 mm3 have already demonstrated energy resolution of 10% at 662 keV.

  16. 10 CFR 474.3 - Petroleum-equivalent fuel economy calculation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Petroleum-equivalent fuel economy calculation. 474.3 Section 474.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ELECTRIC AND HYBRID VEHICLE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.3 Petroleum-equivalent fuel economy calculation. (a) The...

  17. Dark matter and the equivalence principle

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua A.; Gradwohl, Ben-Ami

    1993-01-01

    A survey is presented of the current understanding of dark matter invoked by astrophysical theory and cosmology. Einstein's equivalence principle asserts that local measurements cannot distinguish a system at rest in a gravitational field from one that is in uniform acceleration in empty space. Recent test-methods for the equivalence principle are presently discussed as bases for testing of dark matter scenarios involving the long-range forces between either baryonic or nonbaryonic dark matter and ordinary matter.

  18. Assessing Measurement Equivalence in Ordered-Categorical Data

    ERIC Educational Resources Information Center

    Elosua, Paula

    2011-01-01

    Assessing measurement equivalence in the framework of the common factor linear models (CFL) is known as factorial invariance. This methodology is used to evaluate the equivalence among the parameters of a measurement model among different groups. However, when dichotomous, Likert, or ordered responses are used, one of the assumptions of the CFL is…

  19. Higher-order gravity and the classical equivalence principle

    NASA Astrophysics Data System (ADS)

    Accioly, Antonio; Herdy, Wallace

    2017-11-01

    As is well known, the deflection of any particle by a gravitational field within the context of Einstein’s general relativity — which is a geometrical theory — is, of course, nondispersive. Nevertheless, as we shall show in this paper, the mentioned result will change totally if the bending is analyzed — at the tree level — in the framework of higher-order gravity. Indeed, to first order, the deflection angle corresponding to the scattering of different quantum particles by the gravitational field mentioned above is not only spin dependent, it is also dispersive (energy-dependent). Consequently, it violates the classical equivalence principle (universality of free fall, or equality of inertial and gravitational masses) which is a nonlocal principle. However, contrary to popular belief, it is in agreement with the weak equivalence principle which is nothing but a statement about purely local effects. It is worthy of note that the weak equivalence principle encompasses the classical equivalence principle locally. We also show that the claim that there exists an incompatibility between quantum mechanics and the weak equivalence principle, is incorrect.

  20. Why were Matrix Mechanics and Wave Mechanics considered equivalent?

    NASA Astrophysics Data System (ADS)

    Perovic, Slobodan

    A recent rethinking of the early history of Quantum Mechanics deemed the late 1920s agreement on the equivalence of Matrix Mechanics and Wave Mechanics, prompted by Schrödinger's 1926 proof, a myth. Schrödinger supposedly failed to prove isomorphism, or even a weaker equivalence ("Schrödinger-equivalence") of the mathematical structures of the two theories; developments in the early 1930s, especially the work of mathematician von Neumann provided sound proof of mathematical equivalence. The alleged agreement about the Copenhagen Interpretation, predicated to a large extent on this equivalence, was deemed a myth as well. In response, I argue that Schrödinger's proof concerned primarily a domain-specific ontological equivalence, rather than the isomorphism or a weaker mathematical equivalence. It stemmed initially from the agreement of the eigenvalues of Wave Mechanics and energy-states of Bohr's Model that was discovered and published by Schrödinger in his first and second communications of 1926. Schrödinger demonstrated in this proof that the laws of motion arrived at by the method of Matrix Mechanics are satisfied by assigning the auxiliary role to eigenfunctions in the derivation of matrices (while he only outlined the reversed derivation of eigenfunctions from Matrix Mechanics, which was necessary for the proof of both isomorphism and Schrödinger-equivalence of the two theories). This result was intended to demonstrate the domain-specific ontological equivalence of Matrix Mechanics and Wave Mechanics, with respect to the domain of Bohr's atom. And although the mathematical equivalence of the theories did not seem out of the reach of existing theories and methods, Schrödinger never intended to fully explore such a possibility in his proof paper. In a further development of Quantum Mechanics, Bohr's complementarity and Copenhagen Interpretation captured a more substantial convergence of the subsequently revised (in light of the experimental results) Wave

  1. A restricted proof that the weak equivalence principle implies the Einstein equivalence principle

    NASA Technical Reports Server (NTRS)

    Lightman, A. P.; Lee, D. L.

    1973-01-01

    Schiff has conjectured that the weak equivalence principle (WEP) implies the Einstein equivalence principle (EEP). A proof is presented of Schiff's conjecture, restricted to: (1) test bodies made of electromagnetically interacting point particles, that fall from rest in a static, spherically symmetric gravitational field; (2) theories of gravity within a certain broad class - a class that includes almost all complete relativistic theories that have been found in the literature, but with each theory truncated to contain only point particles plus electromagnetic and gravitational fields. The proof shows that every nonmentric theory in the class (every theory that violates EEP) must violate WEP. A formula is derived for the magnitude of the violation. It is shown that WEP is a powerful theoretical and experimental tool for constraining the manner in which gravity couples to electromagnetism in gravitation theories.

  2. [INVITED] Highly sensitive LSPR based photonic crystal fiber sensor with embodiment of nanospheres in different material domain

    NASA Astrophysics Data System (ADS)

    Paul, D.; Biswas, R.

    2018-05-01

    We report a highly sensitive Localized surface plasmon resonance (LSPR) based photonic crystal fiber (PCF) sensor by embedding an array of gold nanospheres into the first layer of air-holes of PCF. We present a comprehensive analysis on the basis of progressive variation of refractive indices of analytes as well as sizes of the nanospheres. In the proposed sensing scheme, refractive indices of the analytes have been changed from 1 to 1.41(RIU), accompanied by alteration of the sizes of nanospheres ranging 40-70 nm. The entire study has been executed in the context of different material based PCFs (viz. phosphate and crown) and the corresponding results have been analyzed and compared. We observe a declining trend in modal loss in each set of PCFs with increment of RI of the analyte. Lower loss has been observed in case of crown based PCF. The sensor shows highest sensitivity ∼27,000 nm/RIU for crown based PCF for nanosphere of 70 nm with average wavelength interrogation sensitivity ∼5333.53 nm/RIU. In case of phosphate based PCF, highest sensitivity is found to be ∼18,000 nm/RIU with an average interrogation sensitivity ∼4555.56 nm/RIU for 40 nm of Au nanosphere. Moreover, the additional sensing parameters have been observed to highlight the better design of the modelled LSPR based photonic crystal fiber sensor. As such, the resolution (R), limit of detection (LOD) and sensitivity (S) of the proposed sensor in each case (viz. phosphate and crown PCF) have been discussed by using wavelength interrogation technique. The proposed study provides a basis for detailed investigation of LSPR phenomenon for PCF utilizing noble metal nanospheres (AuNPs).

  3. PATHOGEN EQUIVALENCY COMMITTEE (PEC)

    EPA Science Inventory

    The U.S. Environmental Protection Agency created the PEC in 1985 to make recommendations to EPA and State managers on the equivalency of unproven sewage sludge disinfection technologies/processes to either a Process to Significantly Reduce Pathogens (PSRP) or a Process to Further...

  4. Calibrating Nonlinear Soil Material Properties for Seismic Analysis Using Soil Material Properties Intended for Linear Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spears, Robert Edward; Coleman, Justin Leigh

    2015-08-01

    Seismic analysis of nuclear structures is routinely performed using guidance provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998).” This document, which is currently under revision, provides detailed guidance on linear seismic soil-structure-interaction (SSI) analysis of nuclear structures. To accommodate the linear analysis, soil material properties are typically developed as shear modulus and damping ratio versus cyclic shear strain amplitude. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain SSI analysis. To accommodate the nonlinear analysis, a more appropriate form of the soil material properties includes shear stressmore » and energy absorbed per cycle versus shear strain. Ideally, nonlinear soil model material properties would be established with soil testing appropriate for the nonlinear constitutive model being used. However, much of the soil testing done for SSI analysis is performed for use with linear analysis techniques. Consequently, a method is described in this paper that uses soil test data intended for linear analysis to develop nonlinear soil material properties. To produce nonlinear material properties that are equivalent to the linear material properties, the linear and nonlinear model hysteresis loops are considered. For equivalent material properties, the shear stress at peak shear strain and energy absorbed per cycle should match when comparing the linear and nonlinear model hysteresis loops. Consequently, nonlinear material properties are selected based on these criteria.« less

  5. FROM CONCEPT TO EQUIVALENCY: THE 503 REGULATIONS AND THE PATHOGEN EQUIVALENCY COMMITTEE (PAPER)

    EPA Science Inventory

    Since its creation in 1985, the Pathogen Equivalency Committee (PEC) has been reviewing innovative and alternative sludge disinfection technologies with regards to their abilities to protect human health and the environment. The PEC is charged to make recommendations on whether t...

  6. Applicability of the lattice Boltzmann method to determine the ohmic resistance in equivalent resistor connections

    NASA Astrophysics Data System (ADS)

    Espinoza-Andaluz, Mayken; Barzola, Julio; Guarochico-Moreira, Víctor H.; Andersson, Martin

    2017-12-01

    Knowing the ohmic resistance in the materials allow to know in advance its electrical behavior when a potential difference is applied, and therefore the prediction of the electrical performance can be achieved in a most certain manner. Although the Lattice Boltzmann method (LBM) has been applied to solve several physical phenomena in complex geometries, it has only been used to describe the fluid phase, but applicability studies of LBM on the solid-electric-conducting material have not been carried out yet. The purpose of this paper is to demonstrate the accuracy of calculating the equivalent resistor connections using LBM. Several series and parallel resistor connections are effected. All the computations are carried out with 3D models, and the domain materials are designed by the authors.

  7. Testing the equivalence principle on a trampoline

    NASA Astrophysics Data System (ADS)

    Reasenberg, Robert D.; Phillips, James D.

    2001-07-01

    We are developing a Galilean test of the equivalence principle in which two pairs of test mass assemblies (TMA) are in free fall in a comoving vacuum chamber for about 0.9 s. The TMA are tossed upward, and the process repeats at 1.2 s intervals. Each TMA carries a solid quartz retroreflector and a payload mass of about one-third of the total TMA mass. The relative vertical motion of the TMA of each pair is monitored by a laser gauge working in an optical cavity formed by the retroreflectors. Single-toss precision of the relative acceleration of a single pair of TMA is 3.5×10-12 g. The project goal of Δg/g = 10-13 can be reached in a single night's run, but repetition with altered configurations will be required to ensure the correction of systematic error to the nominal accuracy level. Because the measurements can be made quickly, we plan to study several pairs of materials.

  8. Terahertz artificial material based on integrated metal-rod-array for phase sensitive fluid detection.

    PubMed

    You, Borwen; Chen, Ching-Yu; Yu, Chin-Ping; Liu, Tze-An; Hattori, Toshiaki; Lu, Ja-Yu

    2017-04-17

    A terahertz artificial material composed of metal rod array is experimentally investigated on its transmission spectral property and successfully incorporated into microfluidics as a miniaturized terahertz waveguide with an extended optical-path-length for label-free fluidic sensing. Theoretical and experimental characterizations of terahertz transmission spectra show that the wave guidance along the metal rod array originates from the resonance of transverse-electric-polarized waves within the metal rod slits. The extended optical path length along three layers of metal-rod-array enables terahertz waves sufficiently overlapping the fluid molecules embedded among the rods, leading to strongly enhanced phase change by approximately one order of magnitude compared with the blank metal-parallel-plate waveguide. Based on the enhanced phase sensitivity, three kinds of colorless liquid analytes, namely, acetone, methanol, and ethanol, with different dipole moments are identified in situ using the metal-rod-array-based microfluidic sensor. The detection limit in molecular amounts of a liquid analyte is experimentally demonstrated to be less than 0.1 mmol, corresponding to 2.7 μmol/mm2. The phase sensitive terahertz metal-rod-array-based sensor potentially has good adaptability in lab-chip technology for various practical applications, such as industrial toxic fluid detection and medical breath inspection.

  9. Mania and Behavioral Equivalents: A Preliminary Study

    ERIC Educational Resources Information Center

    Sturmey, Peter; Laud, Rinita B.; Cooper, Christopher L.; Matson, Johnny L.; Fodstad, Jill C.

    2010-01-01

    Previous research has failed to address the possibility of behavioral equivalents in people with ID and mania. The relationship between a measure of mania and possible behavioral equivalents was assessed in 693 adults, most with severe or profound ID, living in a large residential setting. The mania subscale of the DASH-II proved to be a…

  10. Tissue Equivalent Phantom Design for Characterization of a Coherent Scatter X-ray Imaging System

    NASA Astrophysics Data System (ADS)

    Albanese, Kathryn Elizabeth

    Scatter in medical imaging is typically cast off as image-related noise that detracts from meaningful diagnosis. It is therefore typically rejected or removed from medical images. However, it has been found that every material, including cancerous tissue, has a unique X-ray coherent scatter signature that can be used to identify the material or tissue. Such scatter-based tissue-identification provides the advantage of locating and identifying particular materials over conventional anatomical imaging through X-ray radiography. A coded aperture X-ray coherent scatter spectral imaging system has been developed in our group to classify different tissue types based on their unique scatter signatures. Previous experiments using our prototype have demonstrated that the depth-resolved coherent scatter spectral imaging system (CACSSI) can discriminate healthy and cancerous tissue present in the path of a non-destructive x-ray beam. A key to the successful optimization of CACSSI as a clinical imaging method is to obtain anatomically accurate phantoms of the human body. This thesis describes the development and fabrication of 3D printed anatomical scatter phantoms of the breast and lung. The purpose of this work is to accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Tissue-equivalent anatomical phantoms were designed to assess the capability of the CACSSI system to classify different types of breast tissue (adipose, fibroglandular, malignant). These phantoms were 3D printed based on DICOM data obtained from CT scans of prone breasts. The phantoms were tested through comparison of measured scatter signatures with those of adipose and fibroglandular tissue from literature. Tumors in the phantom were modeled using a variety of biological tissue including actual surgically excised benign and malignant tissue specimens. Lung based phantoms have also been printed for future

  11. Sensitive strata in Bootlegger Cove Formation

    USGS Publications Warehouse

    Olsen, Harold W.

    1989-01-01

    Sensitivity magnitudes are interpreted from remolded strength values in recent subsurface geologic, geotechnical, and geochemical data from the Bootlegger Cove Formation adjacent to the Turnagain Heights Landslide. The results show that strata composed of highly sensitive clays occur in both the middle and lower zones of the formation, and that between these strata the clays are generally of low-to-medium sensitivity. The most sensitive stratum is in the middle zone between two sand layers, and its sensitivity increases from both clay-sand interfaces to a maximum at the center of the stratum. The pore fluid chemistry of the highly sensitive materials differs from that in the materials of low to medium sensitivity only in their concentrations of organic carbon, chloride, bicarbonate, and sulfate. The total dissolved solids concentration is low, and the ratio of monovalent to divalent cations is very high throughout the middle and lower zones of the formation. Of the known causes of high and extremely high sensitivities, only organic and/or anionic dispersants are consistent with these findings.

  12. 46 CFR Appendix A to Part 154 - Equivalent Stress

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Equivalent Stress A Appendix A to Part 154 Shipping...—Equivalent Stress I. Equivalent stress (σ c) is calculated by the following formula or another formula... normal stress in “x” direction. σy=total normal stress in “y” direction. τxy=total shear stress in “xy...

  13. 46 CFR Appendix A to Part 154 - Equivalent Stress

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Equivalent Stress A Appendix A to Part 154 Shipping...—Equivalent Stress I. Equivalent stress (σ c) is calculated by the following formula or another formula... normal stress in “x” direction. σy=total normal stress in “y” direction. τxy=total shear stress in “xy...

  14. 46 CFR Appendix A to Part 154 - Equivalent Stress

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Equivalent Stress A Appendix A to Part 154 Shipping...—Equivalent Stress I. Equivalent stress (σ c) is calculated by the following formula or another formula... normal stress in “x” direction. σy=total normal stress in “y” direction. τxy=total shear stress in “xy...

  15. 46 CFR Appendix A to Part 154 - Equivalent Stress

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Equivalent Stress A Appendix A to Part 154 Shipping...—Equivalent Stress I. Equivalent stress (σ c) is calculated by the following formula or another formula... normal stress in “x” direction. σy=total normal stress in “y” direction. τxy=total shear stress in “xy...

  16. 46 CFR Appendix A to Part 154 - Equivalent Stress

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Equivalent Stress A Appendix A to Part 154 Shipping...—Equivalent Stress I. Equivalent stress (σ c) is calculated by the following formula or another formula... normal stress in “x” direction. σy=total normal stress in “y” direction. τxy=total shear stress in “xy...

  17. 20 CFR 332.5 - Equivalent of full-time work.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Equivalent of full-time work. 332.5 Section... INSURANCE ACT MILEAGE OR WORK RESTRICTIONS AND STAND-BY OR LAY-OVER RULES § 332.5 Equivalent of full-time work. An employee who has the equivalent of full-time work with respect to service on days within a...

  18. 20 CFR 332.5 - Equivalent of full-time work.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true Equivalent of full-time work. 332.5 Section... INSURANCE ACT MILEAGE OR WORK RESTRICTIONS AND STAND-BY OR LAY-OVER RULES § 332.5 Equivalent of full-time work. An employee who has the equivalent of full-time work with respect to service on days within a...

  19. 20 CFR 332.5 - Equivalent of full-time work.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Equivalent of full-time work. 332.5 Section... INSURANCE ACT MILEAGE OR WORK RESTRICTIONS AND STAND-BY OR LAY-OVER RULES § 332.5 Equivalent of full-time work. An employee who has the equivalent of full-time work with respect to service on days within a...

  20. 20 CFR 332.5 - Equivalent of full-time work.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Equivalent of full-time work. 332.5 Section... INSURANCE ACT MILEAGE OR WORK RESTRICTIONS AND STAND-BY OR LAY-OVER RULES § 332.5 Equivalent of full-time work. An employee who has the equivalent of full-time work with respect to service on days within a...

  1. 20 CFR 332.5 - Equivalent of full-time work.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Equivalent of full-time work. 332.5 Section... INSURANCE ACT MILEAGE OR WORK RESTRICTIONS AND STAND-BY OR LAY-OVER RULES § 332.5 Equivalent of full-time work. An employee who has the equivalent of full-time work with respect to service on days within a...

  2. Effect of a new desensitizing material on human dentin permeability.

    PubMed

    Rusin, Richard P; Agee, Kelli; Suchko, Michael; Pashley, David H

    2010-06-01

    Resin-modified glass ionomers (RMGI) have demonstrated clinical success providing immediate and long-term relief from root sensitivity. RMGIs have been recently introduced as paste-liquid systems for convenience of clinical usage. The objective of this study was to measure the ability of a new paste-liquid RMGI to reduce fluid flow through human dentin, compared to an established single-bottle nanofilled total etch resin adhesive indicated for root desensitization. Dentin permeability was measured on human crown sections on etched dentin, presenting a model for the exposed tubules typical of root sensitivity, and permitting measurement of the maximum permeability. In the first two groups, the etched dentin was coated with either the RMGI or adhesive, and permeability measured on the coated dentin. In a third group, a smear layer was created on the dentin with sandpaper, then the specimens were coated with the RMGI; permeability was measured on the smeared and coated dentin. Specimens from each group were sectioned and examined via scanning electron microscopy (SEM). Both the resin adhesive and the new paste-liquid RMGI protective material significantly reduced fluid flow through dentin, and exhibited excellent seal on dentin with either open tubules or smear-layer occluded tubules. The RMGI infiltrated the smear layer with resin during placement, penetrated dentin tubules, and formed resin tags. The RMGI was equivalent to the adhesive in its ability to reduce fluid flow and seal dentin. It is therefore concluded that the new RMGI and the adhesive show the potential to offer excellent sensitivity relief on exposed root dentin. Copyright (c) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Composite material hollow antiresonant fibers.

    PubMed

    Belardi, Walter; De Lucia, Francesco; Poletti, Francesco; Sazio, Pier J

    2017-07-01

    We study novel designs of hollow-core antiresonant fibers comprising multiple materials in their core-boundary membrane. We show that these types of fibers still satisfy an antiresonance condition and compare their properties to those of an ideal single-material fiber with an equivalent thickness and refractive index. As a practical consequence of this concept, we discuss the first realization and characterization of a composite silicon/glass-based hollow antiresonant fiber.

  4. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy

    NASA Astrophysics Data System (ADS)

    Hälg, R. A.; Besserer, J.; Boschung, M.; Mayer, S.; Lomax, A. J.; Schneider, U.

    2014-05-01

    In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.

  5. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy.

    PubMed

    Hälg, R A; Besserer, J; Boschung, M; Mayer, S; Lomax, A J; Schneider, U

    2014-05-21

    In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.

  6. Testing Equivalence of Mediating Models of Income, Parenting, and School Readiness for White, Black, and Hispanic Children in a National Sample

    PubMed Central

    Raver, C. Cybele; Gershoff, Elizabeth T.; Aber, J. Lawrence

    2010-01-01

    This paper examines complex models of the associations between family income, material hardship, parenting, and school readiness among White, Black, and Hispanic 6-year-olds, using the Early Childhood Longitudinal Study – Kindergarten Cohort (ECLS – K). It is critical to test the universality of such complex models, particularly given their implications for intervention, prevention, and public policy. Therefore this study asks: Do measures and models of low income and early school readiness indicators fit differently or similarly for White, Black, and Hispanic children? Measurement equivalence of material hardship, parent stress, parenting behaviors, child cognitive skills, and child social competence is first tested. Model equivalence is then tested by examining whether category membership in a race/ethnic group moderates associations between predictors and young children’s school readiness. PMID:17328695

  7. An electro-optical and electron injection study of benzothiazole-based squaraine dyes as efficient dye-sensitized solar cell materials: a first principles study.

    PubMed

    Al-Fahdan, Najat Saeed; Asiri, Abdullah M; Irfan, Ahmad; Basaif, Salem A; El-Shishtawy, Reda M

    2014-12-01

    Squaraine dyes have attracted significant attention in many areas of daily life from biomedical imaging to semiconducting materials. Moreover, these dyes are used as photoactive materials in the field of solar cells. In the present study, we investigated the structural, electronic, photophysical, and charge transport properties of six benzothiazole-based squaraine dyes (Cis-SQ1-Cis-SQ3 and Trans-SQ1-Trans-SQ3). The effect of electron donating (-OCH3) and electron withdrawing (-COOH) groups was investigated intensively. Ground state geometry and frequency calculations were performed by applying density functional theory (DFT) at B3LYP/6-31G** level of theory. Absorption spectra were computed in chloroform at the time-dependent DFT/B3LYP/6-31G** level of theory. The driving force of electron injection (ΔG (inject)), relative driving force of electron injection (ΔG r (inject)), electronic coupling constants (|VRP|) and light harvesting efficiency (LHE) of all six compounds were calculated and compared with previously studied sensitizers. The ΔG (inject), ΔG r (inject) and |VRP| of all six compounds revealed that these sensitizers would be efficient dye-sensitized solar cell materials. Cis/Trans-SQ3 exhibited superior LHE as compared to other derivatives. The Cis/Trans geometric effect was studied and discussed with regard to electro-optical and charge transport properties.

  8. Synthesis of zinc chlorophyll materials for dye-sensitized solar cell applications

    NASA Astrophysics Data System (ADS)

    Erten-Ela, Sule; Vakuliuk, Olena; Tarnowska, Anna; Ocakoglu, Kasim; Gryko, Daniel T.

    2015-01-01

    To design sensitizers for dye sensitized solar cells (DSSCs), a series of zinc chlorins with different substituents were synthesized. Novel zinc methyl 3-devinyl-3-hydroxymethyl-20-phenylacetylenylpyropheophorbide-a (ZnChl-1), zinc methyl 20-bromo-3-devinyl-3-hydroxymethylpyropheophorbide-a (ZnChl-2), zinc methyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (ZnChl-3), zinc propyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (ZnChl-4) were synthesized and their photovoltaic performances were evaluated in dye-sensitized solar cells. Photoelectrodes with a 7 μm thick nanoporous layer and a 5 μm thick light-scattering layer were used to fabricate dye sensitized solar cells. The best efficiency was obtained with ZnChl-2 sensitizer. ZnChl-2 gave a Jsc of 3.5 mA/cm2, Voc of 412 mV, FF of 0.56 and an overall conversion efficiency of 0.81 at full sun (1000 W m-2).

  9. Five Equivalent d Orbitals

    ERIC Educational Resources Information Center

    Pauling, Linus; McClure, Vance

    1970-01-01

    Amplifies and clarifies a previous paper on pyramidal d orbitals. Discusses two sets of pyramid d orbitals with respect to their maximum bond strength and their symmetry. Authors described the oblate and prolate pentagonal antiprisms arising from the two sets of five equivalent d orbitals. (RR)

  10. The Dye Sensitized Photoelectrosynthesis Cell (DSPEC) for Solar Water Splitting and CO2 Reduction

    NASA Astrophysics Data System (ADS)

    Meyer, Thomas; Alibabaei, Leila; Sherman, Benjamin; Sheridan, Matthew; Ashford, Dennis; Lapides, Alex; Brennaman, Kyle; Nayak, Animesh; Roy, Subhangi; Wee, Kyung-Ryang; Gish, Melissa; Meyer, Jerry; Papanikolas, John

    The dye-sensitized photoelectrosynthesis cell (DSPEC) integrates molecular level light absorption and catalysis with the bandgap properties of stable oxide materials such as TiO2 and NiO. Excitation of surface-bound chromophores leads to excited state formation and rapid electron or hole injection into the conduction or valence bands of n or p-type oxides. Addition of thin layers of TiO2 or NiO on the surfaces of mesoscopic, nanoparticle films of semiconductor or transparent conducting oxides to give core/shell structures provides a basis for accumulating multiple redox equivalents at catalysts for water oxidation or CO2 reduction. UNC EFRC Center for Solar Fuels, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001011.

  11. Sensitivity of ambient dose equivalent to the concentration of cobalt impurity present in stainless steel

    NASA Astrophysics Data System (ADS)

    Shetty, N.; Olsovcova, V.; Versaci, R.

    2018-06-01

    Stainless steels contain nickel in large amounts (about 8 %) to improve its corrosion and heat resistance. Traces of cobalt are present in nickel, which are hard to separate because of its chemical similarity. Therefore, cobalt content in steel is restricted to a maximum of 2 parts per mille for applications in nuclear industry, as natural cobalt (composed of 100% Co-59) transmutes into highly radioactive Co-60 by absorbing a thermal neutron. Co-60 has a rather long half-life of 5.3 years decaying to stable Ni-60 by emitting 2 gammas of 1.17 MeV and 1.33 MeV during the process. These hard gammas will be mostly responsible for the dose rates seen in the next few tens of years. Therefore, it is important to consider the activation of cobalt in steel and estimate the dose contributed by it. Monte Carlo simulations are performed where stainless steel samples with different cobalt concentrations are irradiated with thermal and epithermal neutrons. The ambient dose equivalent, H*(10), from irradiated samples is found to be linearly proportional to the concentration of cobalt. This paper explains the motivation, the procedure, and the detailed results of the simulations.

  12. Establishing Substantial Equivalence: Metabolomics

    NASA Astrophysics Data System (ADS)

    Beale, Michael H.; Ward, Jane L.; Baker, John M.

    Modern ‘metabolomic’ methods allow us to compare levels of many structurally diverse compounds in an automated fashion across a large number of samples. This technology is ideally suited to screening of populations of plants, including trials where the aim is the determination of unintended effects introduced by GM. A number of metabolomic methods have been devised for the determination of substantial equivalence. We have developed a methodology, using [1H]-NMR fingerprinting, for metabolomic screening of plants and have applied it to the study of substantial equivalence of field-grown GM wheat. We describe here the principles and detail of that protocol as applied to the analysis of flour generated from field plots of wheat. Particular emphasis is given to the downstream data processing and comparison of spectra by multivariate analysis, from which conclusions regarding metabolome changes due to the GM can be assessed against the background of natural variation due to environment.

  13. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    NASA Astrophysics Data System (ADS)

    Bennett, Katrina E.; Urrego Blanco, Jorge R.; Jonko, Alexandra; Bohn, Theodore J.; Atchley, Adam L.; Urban, Nathan M.; Middleton, Richard S.

    2018-01-01

    The Colorado River Basin is a fundamentally important river for society, ecology, and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent, and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model. We combine global sensitivity analysis with a space-filling Latin Hypercube Sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach. We find that snow-dominated regions are much more sensitive to uncertainties in VIC parameters. Although baseflow and runoff changes respond to parameters used in previous sensitivity studies, we discover new key parameter sensitivities. For instance, changes in runoff and evapotranspiration are sensitive to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI) in the VIC model. It is critical for improved modeling to narrow uncertainty in these parameters through improved observations and field studies. This is important because LAI and albedo are anticipated to change under future climate and narrowing uncertainty is paramount to advance our application of models such as VIC for water resource management.

  14. Repeated folding stress-induced morphological changes in the dermal equivalent.

    PubMed

    Arai, Koji Y; Sugimoto, Mami; Ito, Kanako; Ogura, Yuki; Akutsu, Nobuko; Amano, Satoshi; Adachi, Eijiro; Nishiyama, Toshio

    2014-11-01

    Repeated mechanical stresses applied to the same region of the skin are thought to induce morphological changes known as wrinkle. However, the underlying mechanisms are not fully understood. To study the mechanisms, we examined effects of repeated mechanical stress on the dermal equivalent. We developed a novel device to apply repeated folding stress to the dermal equivalent. After applying the mechanical stress, morphological changes of the dermal equivalent and expression of several genes related to extracellular matrix turn over and cell contraction were examined. The repeated folding stress induced a noticeable decrease in the width of the dermal equivalent. The mechanical stress altered orientations of collagen fibrils. Hydroxyproline contents, dry weights and cell viability of the dermal equivalents were not affected by the mechanical stress. On the other hand, Rho-associated coiled-coil-containing kinase (ROCK) specific inhibitor Y27632 completely suppressed the decrease in the width of the dermal equivalent. The present results revealed that either degradation of collagen or changes in the number of cells were not responsible for the decrease in the width of the dermal equivalent and indicate that the repeated mechanical stress induces unidirectional contraction in the dermal equivalent through the RhoA-ROCK signaling pathway. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. A Highly Sensitive Assay Using Synthetic Blood Containing Test Microbes for Evaluation of the Penetration Resistance of Protective Clothing Material under Applied Pressure.

    PubMed

    Shimasaki, Noriko; Hara, Masayuki; Kikuno, Ritsuko; Shinohara, Katsuaki

    2016-01-01

    To prevent nosocomial infections caused by even either Ebola virus or methicillin-resistant Staphylococcus aureus (MRSA), healthcare workers must wear the appropriate protective clothing which can inhibit contact transmission of these pathogens. Therefore, it is necessary to evaluate the performance of protective clothing for penetration resistance against infectious agents. In Japan, some standard methods were established to evaluate the penetration resistance of protective clothing fabric materials under applied pressure. However, these methods only roughly classified the penetration resistance of fabrics, and the detection sensitivity of the methods and the penetration amount with respect to the relationship between blood and the pathogen have not been studied in detail. Moreover, no standard method using bacteria for evaluation is known. Here, to evaluate penetration resistance of protective clothing materials under applied pressure, the detection sensitivity and the leak amount were investigated by using synthetic blood containing bacteriophage phi-X174 or S. aureus. And the volume of leaked synthetic blood and the amount of test microbe penetration were simultaneously quantified. Our results showed that the penetration detection sensitivity achieved using a test microbial culture was higher than that achieved using synthetic blood at invisible leak level pressures. This finding suggested that there is a potential risk of pathogen penetration even when visual leak of contaminated blood through the protective clothing was not observed. Moreover, at visible leak level pressures, it was found that the amount of test microbe penetration varied at least ten-fold among protective clothing materials classified into the same class of penetration resistance. Analysis of the penetration amount revealed a significant correlation between the volume of penetrated synthetic blood and the amount of test microbe penetration, indicating that the leaked volume of synthetic

  16. Development of a direct experimental test for any violation of the equivalence principle by the weak interaction

    NASA Technical Reports Server (NTRS)

    Parker, P. D. M.

    1981-01-01

    Violation of the equivalence principle by the weak interaction is tested. Any variation of the weak interaction coupling constant with gravitational potential, i.e., a spatial variation of the fundamental constants is investigated. The level of sensitivity required for such a measurement is estimated on the basis of the size of a change in the gravitational potential which is accessible. The alpha particle spectrum is analyzed, and the counting rate was improved by a factor of approximately 100.

  17. The Sensitivity of the Midlatitude Moist Isentropic Circulation on Both Sides of the Climate Model Hierarchy

    NASA Astrophysics Data System (ADS)

    Fajber, R. A.; Kushner, P. J.; Laliberte, F. B.

    2017-12-01

    In the midlatitude atmosphere, baroclinic eddies are able to raise warm, moist air from the surface into the midtroposphere where it condenses and warms the atmosphere through latent heating. This coupling between dynamics and moist thermodynamics motivates using a conserved moist thermodynamic variable, such as the equivalent potential temperature, to study the midlatitude circulation and associated heat transport since it implicitly accounts for latent heating. When the equivalent potential temperature is used to zonally average the circulation, the moist isentropic circulation takes the form of a single cell in each hemisphere. By utilising the statistical transformed Eulerian mean (STEM) circulation we are able to parametrize the moist isentropic circulation in terms of second order dynamic and moist thermodynamic statistics. The functional dependence of the STEM allows us to analytically calculate functional derivatives that reveal the spatially varying sensitivity of the moist isentropic circulation to perturbations in different statistics. Using the STEM functional derivatives as sensitivity kernels we interpret changes in the moist isentropic circulation from two experiments: surface heating in an idealised moist model, and a climate change scenario in a comprehensive atmospheric general circulation model. In both cases we find that the changes in the moist isentropic circulation are well predicted by the functional sensitivities, and that the total heat transport is more sensitive to changes in dynamical processes driving local changes in poleward heat transport than it is to thermodynamic and/or radiative processes driving changes to the distribution of equivalent potential temperature.

  18. Convective Heat Transfer Scaling of Ignition Delay and Burning Rate with Heat Flux and Stretch Rate in the Equivalent Low Stretch Apparatus

    NASA Technical Reports Server (NTRS)

    Olson, Sandra

    2011-01-01

    To better evaluate the buoyant contributions to the convective cooling (or heating) inherent in normal-gravity material flammability test methods, we derive a convective heat transfer correlation that can be used to account for the forced convective stretch effects on the net radiant heat flux for both ignition delay time and burning rate. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone heater to minimize buoyant effects while at the same time providing a forced stagnation flow on the sample, which ignites and burns as a ceiling fire. Ignition delay and burning rate data is correlated with incident heat flux and convective heat transfer and compared to results from other test methods and fuel geometries using similarity to determine the equivalent stretch rates and thus convective cooling (or heating) rates for those geometries. With this correlation methodology, buoyant effects inherent in normal gravity material flammability test methods can be estimated, to better apply the test results to low stretch environments relevant to spacecraft material selection.

  19. Aeroallergen sensitization and allergic disease phenotypes in Asia.

    PubMed

    Tham, Elizabeth Huiwen; Lee, Alison Joanne; Bever, Hugo Van

    2016-09-01

    Allergic diseases are on the rise in Asia. Aeroallergen exposure is a strong risk factor for sensitization, development and severity of atopic diseases, especially in the Asian paediatric population. Geographical and seasonal variations in aeroallergen sensitization are seen even within Asian countries and changes in aeroallergen sensitization patterns have been observed over time. Some possible reasons include climate change as well as rapid urbanization and improved sanitation which follow socioeconomic development. House dust mite allergy is present in up to 90% of Asian atopic patients, far exceeding that which is seen in Western populations which report prevalences of only 50% to 70%. Pollen and animal dander affect less than 10% of Asian patients as compared to 40-70% of individuals with asthma and allergic rhinitis living in the West, a burden almost equivalent to the dust mite burden in those regions. There is thus a pressing need for preventive measures to reduce dust mite sensitization in Asian children today.

  20. The STEP mission - Satellite test of the equivalence principle

    NASA Technical Reports Server (NTRS)

    Atzei, A.; Swanson, P.; Anselmi, A.

    1992-01-01

    The STEP experiment is a joint ESA/NASA mission candidate for selection as the next medium science project in the ESA scientific program. ESA and NASA have undertaken a joint feasibility study of STEP. The principles of STEP and details of the mission are presented and the mission and spacecraft are described. The primary objective of STEP is to measure differences in the rate of fall of test masses of different compositions to one part in 10 exp 17 of the total gravitational acceleration, a factor of 10 exp 8 improvement in sensitivity over previous experiments. STEP constitutes a comparison of gravitational and inertial mass or a test of the weak equivalence principle (WEP). A test of WEP that is six orders of magnitude more accurate than previous tests will reveal whether the underlying structure of the universe is filled with undiscovered small forces, necessitating a fundamental change in our theories of matter on all scales.

  1. Results of an integrated structure/control law design sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    1989-01-01

    A design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations is discussed. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changes in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient than finite difference methods for the computation of the equivalent sensitivity information.

  2. The cross-cultural equivalence of participation instruments: a systematic review.

    PubMed

    Stevelink, S A M; van Brakel, W H

    2013-07-01

    Concepts such as health-related quality of life, disability and participation may differ across cultures. Consequently, when assessing such a concept using a measure developed elsewhere, it is important to test its cultural equivalence. Previous research suggested a lack of cultural equivalence testing in several areas of measurement. This paper reviews the process of cross-cultural equivalence testing of instruments to measure participation in society. An existing cultural equivalence framework was adapted and used to assess participation instruments on five categories of equivalence: conceptual, item, semantic, measurement and operational equivalence. For each category, several aspects were rated, resulting in an overall category rating of 'minimal/none', 'partial' or 'extensive'. The best possible overall study rating was five 'extensive' ratings. Articles were included if the instruments focussed explicitly on measuring 'participation' and were theoretically grounded in the ICIDH(-2) or ICF. Cross-validation articles were only included if it concerned an adaptation of an instrument developed in a high or middle-income country to a low-income country or vice versa. Eight cross-cultural validation studies were included in which five participation instruments were tested (Impact on Participation and Autonomy, London Handicap Scale, Perceived Impact and Problem Profile, Craig Handicap Assessment Reporting Technique, Participation Scale). Of these eight studies, only three received at least two 'extensive' ratings for the different categories of equivalence. The majority of the cultural equivalence ratings given were 'partial' and 'minimal/none'. The majority of the 'none/minimal' ratings were given for item and measurement equivalence. The cross-cultural equivalence testing of the participation instruments included leaves much to be desired. A detailed checklist is proposed for designing a cross-validation study. Once a study has been conducted, the checklist can

  3. Improved Equivalent Linearization Implementations Using Nonlinear Stiffness Evaluation

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Muravyov, Alexander A.

    2001-01-01

    This report documents two new implementations of equivalent linearization for solving geometrically nonlinear random vibration problems of complicated structures. The implementations are given the acronym ELSTEP, for "Equivalent Linearization using a STiffness Evaluation Procedure." Both implementations of ELSTEP are fundamentally the same in that they use a novel nonlinear stiffness evaluation procedure to numerically compute otherwise inaccessible nonlinear stiffness terms from commercial finite element programs. The commercial finite element program MSC/NASTRAN (NASTRAN) was chosen as the core of ELSTEP. The FORTRAN implementation calculates the nonlinear stiffness terms and performs the equivalent linearization analysis outside of NASTRAN. The Direct Matrix Abstraction Program (DMAP) implementation performs these operations within NASTRAN. Both provide nearly identical results. Within each implementation, two error minimization approaches for the equivalent linearization procedure are available - force and strain energy error minimization. Sample results for a simply supported rectangular plate are included to illustrate the analysis procedure.

  4. On equivalent characterizations of convexity of functions

    NASA Astrophysics Data System (ADS)

    Gkioulekas, Eleftherios

    2013-04-01

    A detailed development of the theory of convex functions, not often found in complete form in most textbooks, is given. We adopt the strict secant line definition as the definitive definition of convexity. We then show that for differentiable functions, this definition becomes logically equivalent with the first derivative monotonicity definition and the tangent line definition. Consequently, for differentiable functions, all three characterizations are logically equivalent.

  5. Characterisation of neutron-sensitive bubble detectors for application in the measurement of jet aircrew exposure to natural background radiation.

    PubMed

    Tume, P; Lewis, B J; Bennett, L G; Cousins, T

    1998-01-01

    A survey of the natural background dose equivalent received by Canadian Forces aircrew was conducted using neutron-sensitive bubble detectors (BDs) as the primary detection tool. Since this study was a new application for these detectors, the BD response to neutron dose equivalent (RD) was extended from thermal to 500 MeV in neutron energy. Based upon the extended RD, it was shown that the manufacturer's calibration can be scaled by 1.5 +/- 0.5 to give a BD sensitivity that takes into account recently recommended fluence-to-neutron dose equivalent conversion functions and the cosmogenic neutron spectrum encountered at jet altitudes. An investigation of the effects of systematic bias caused by the cabin environment (i.e., temperature, pressure and relative humidity) on the in-flight measurements was also conducted. Both simulated and actual aircraft climate tests indicated that the detectors are insensitive to the pressure and relative humidity variations encountered during routine jet aircraft operations. Long term conditioning tests also confirmed that the BD-PND model of detector is sensitive to variations in temperature to within +/- 20%. As part of the testing process, the in-flight measurements also demonstrated that the neutron dose equivalent is distributed uniformly throughout a Boeing 707 jet aircraft, indicating that both pilots and flight attendants are exposed to the same neutron field intensity to within experimental uncertainty.

  6. Radiation Sensitization in Cancer Therapy.

    ERIC Educational Resources Information Center

    Greenstock, Clive L.

    1981-01-01

    Discusses various aspects of radiation damage to biological material, including free radical mechanisms, radiation sensitization and protection, tumor hypoxia, mechanism of hypoxic cell radiosensitization, redox model for radiation modification, sensitizer probes of cellular radiation targets, pulse radiolysis studies of free radical kinetics,…

  7. Experimental demonstration of a multi-wavelength distributed feedback semiconductor laser array with an equivalent chirped grating profile based on the equivalent chirp technology.

    PubMed

    Li, Wangzhe; Zhang, Xia; Yao, Jianping

    2013-08-26

    We report, to the best of our knowledge, the first realization of a multi-wavelength distributed feedback (DFB) semiconductor laser array with an equivalent chirped grating profile based on equivalent chirp technology. All the lasers in the laser array have an identical grating period with an equivalent chirped grating structure, which are realized by nonuniform sampling of the gratings. Different wavelengths are achieved by changing the sampling functions. A multi-wavelength DFB semiconductor laser array is fabricated and the lasing performance is evaluated. The results show that the equivalent chirp technology is an effective solution for monolithic integration of a multi-wavelength laser array with potential for large volume fabrication.

  8. Simulation-Based Prediction of Equivalent Continuous Noises during Construction Processes

    PubMed Central

    Zhang, Hong; Pei, Yun

    2016-01-01

    Quantitative prediction of construction noise is crucial to evaluate construction plans to help make decisions to address noise levels. Considering limitations of existing methods for measuring or predicting the construction noise and particularly the equivalent continuous noise level over a period of time, this paper presents a discrete-event simulation method for predicting the construction noise in terms of equivalent continuous level. The noise-calculating models regarding synchronization, propagation and equivalent continuous level are presented. The simulation framework for modeling the noise-affected factors and calculating the equivalent continuous noise by incorporating the noise-calculating models into simulation strategy is proposed. An application study is presented to demonstrate and justify the proposed simulation method in predicting the equivalent continuous noise during construction. The study contributes to provision of a simulation methodology to quantitatively predict the equivalent continuous noise of construction by considering the relevant uncertainties, dynamics and interactions. PMID:27529266

  9. Simulation-Based Prediction of Equivalent Continuous Noises during Construction Processes.

    PubMed

    Zhang, Hong; Pei, Yun

    2016-08-12

    Quantitative prediction of construction noise is crucial to evaluate construction plans to help make decisions to address noise levels. Considering limitations of existing methods for measuring or predicting the construction noise and particularly the equivalent continuous noise level over a period of time, this paper presents a discrete-event simulation method for predicting the construction noise in terms of equivalent continuous level. The noise-calculating models regarding synchronization, propagation and equivalent continuous level are presented. The simulation framework for modeling the noise-affected factors and calculating the equivalent continuous noise by incorporating the noise-calculating models into simulation strategy is proposed. An application study is presented to demonstrate and justify the proposed simulation method in predicting the equivalent continuous noise during construction. The study contributes to provision of a simulation methodology to quantitatively predict the equivalent continuous noise of construction by considering the relevant uncertainties, dynamics and interactions.

  10. Safer energetic materials by a nanotechnological approach

    NASA Astrophysics Data System (ADS)

    Siegert, Benny; Comet, Marc; Spitzer, Denis

    2011-09-01

    Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity.Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity. Electronic supplementary information (ESI) available: Experimental details for the preparation of the V2O5@CNF/Al nanothermite; X-ray diffractogram of the V2O5@CNF/Al combustion residue; installation instructions and source code for the nt-timeline program. See DOI: 10.1039/c1nr10292c

  11. Lattice study of planar equivalence: The quark condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armoni, Adi; Lucini, Biagio; Patella, Agostino

    2008-08-15

    We study quenched SU(N) gauge theories with fermions in the two-index symmetric, antisymmetric and the adjoint representations. Our main motivation is to check whether at large number of colors those theories become nonperturbatively equivalent. We prove the equivalence assuming that the charge-conjugation symmetry is not broken in pure Yang-Mills theory. We then carry out a quenched lattice simulation of the quark condensate in the symmetric, antisymmetric and the adjoint representations for SU(2), SU(3), SU(4), SU(6), and SU(8). We show that the data support the equivalence and discuss the size of subleading corrections.

  12. Equivalent Colorings with "Maple"

    ERIC Educational Resources Information Center

    Cecil, David R.; Wang, Rongdong

    2005-01-01

    Many counting problems can be modeled as "colorings" and solved by considering symmetries and Polya's cycle index polynomial. This paper presents a "Maple 7" program link http://users.tamuk.edu/kfdrc00/ that, given Polya's cycle index polynomial, determines all possible associated colorings and their partitioning into equivalence classes. These…

  13. 20 CFR 416.926 - Medical equivalence for adults and children.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Medical equivalence for adults and children. 416.926 Section 416.926 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL SECURITY... § 416.926 Medical equivalence for adults and children. (a) What is medical equivalence? Your impairment...

  14. 20 CFR 416.926 - Medical equivalence for adults and children.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Medical equivalence for adults and children. 416.926 Section 416.926 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL SECURITY... § 416.926 Medical equivalence for adults and children. (a) What is medical equivalence? Your impairment...

  15. 20 CFR 416.926 - Medical equivalence for adults and children.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Medical equivalence for adults and children. 416.926 Section 416.926 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL SECURITY... § 416.926 Medical equivalence for adults and children. (a) What is medical equivalence? Your impairment...

  16. 20 CFR 416.926 - Medical equivalence for adults and children.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Medical equivalence for adults and children. 416.926 Section 416.926 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL SECURITY... § 416.926 Medical equivalence for adults and children. (a) What is medical equivalence? Your impairment...

  17. 20 CFR 416.926 - Medical equivalence for adults and children.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Medical equivalence for adults and children. 416.926 Section 416.926 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL SECURITY... § 416.926 Medical equivalence for adults and children. (a) What is medical equivalence? Your impairment...

  18. Singlet oxygen sensitizing materials based on porous silicone: photochemical characterization, effect of dye reloading and application to water disinfection with solar reactors.

    PubMed

    Manjón, Francisco; Santana-Magaña, Montserrat; García-Fresnadillo, David; Orellana, Guillermo

    2010-06-01

    Photogeneration of singlet molecular oxygen ((1)O(2)) is applied to organic synthesis (photooxidations), atmosphere/water treatment (disinfection), antibiofouling materials and in photodynamic therapy of cancer. In this paper, (1)O(2) photosensitizing materials containing the dyes tris(4,4'-diphenyl-2,2'-bipyridine)ruthenium(II) (1, RDB(2+)) or tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) (2, RDP(2+)), immobilized on porous silicone (abbreviated RDB/pSil and RDP/pSil), have been produced and tested for waterborne Enterococcus faecalis inactivation using a laboratory solar simulator and a compound parabolic collector (CPC)-based solar photoreactor. In order to investigate the feasibility of its reuse, the sunlight-exposed RDP/pSil sensitizing material (RDP/pSil-a) has been reloaded with RDP(2+) (RDP/pSil-r). Surprisingly, results for bacteria inactivation with the reloaded material have demonstrated a 4-fold higher efficiency compared to those of either RDP/pSil-a, unused RDB/pSil and the original RDP/pSil. Surface and bulk photochemical characterization of the new material (RDP/pSil-r) has shown that the bactericidal efficiency enhancement is due to aggregation of the silicone-supported photosensitizer on the surface of the polymer, as evidenced by confocal fluorescence lifetime imaging microscopy (FLIM). Photogenerated (1)O(2) lifetimes in the wet sensitizer-doped silicone have been determined to be ten times longer than in water. These facts, together with the water rheology in the solar reactor and the interfacial production of the biocidal species, account for the more effective disinfection observed with the reloaded photosensitizing material. These results extend and improve the operational lifetime of photocatalytic materials for point-of-use (1)O(2)-mediated solar water disinfection.

  19. Comparing the effect of a desensitizing material and a self-etch adhesive on dentin sensitivity after periodontal surgery: a randomized clinical trial

    PubMed Central

    Hajizadeh, Hila; Majidinia, Sara; Moeintaghavi, Amir; Ghavamnasiri, Marjaneh

    2017-01-01

    Objectives This double-blind randomized placebo-controlled clinical trial evaluated the ability of a desensitizing agent and a self-etch adhesive on cervical dentin sensitivity (CDS) after periodontal surgery. Materials and Methods Ninety hypersensitive teeth of 13 subjects were included in the study. After periodontal surgery, the teeth of each posterior sextant treated with one of the following materials: G1: Clearfil S3 Bond (Kuraray Dental), G2: Gluma Desensitizer (Heraeus Kulzer), and G3: placebo (water). The sensitivity was assessed using evaporative stimuli before treatment (baseline, T0), 1 day after treatment (T1), after 1 week (T2), and after 1 month (T3) according to visual analog scale (VAS). Results Following the treatment, all the 3 groups showed significant reduction of CDS in T1 compared to T0. Reduction of CDS between T1 and T2 was observed only in G1 but there was no significant difference between T2 and T3 in this group. Although we observed a significant difference in T3 compared to T1 and T2 in G2 and G3, comparison of treatment groups in each assessment time showed a significant difference only in T3. According to paired comparison, this was due to the difference between G2 and G3. Conclusions Dentin sensitivity following periodontal surgery will decrease spontaneously over time, but treating the sensitive teeth with Gluma Desensitizer and Clearfil S3 Bond can have some benefits. PMID:28808633

  20. Safer energetic materials by a nanotechnological approach.

    PubMed

    Siegert, Benny; Comet, Marc; Spitzer, Denis

    2011-09-01

    Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity.

  1. Silver nanocube aggregation gradient materials in search for total internal reflection with high phase sensitivity

    NASA Astrophysics Data System (ADS)

    König, Tobias A. F.; Ledin, Petr A.; Russell, Michael; Geldmeier, Jeffrey A.; Mahmoud, Mahmoud. A.; El-Sayed, Mostafa A.; Tsukruk, Vladimir V.

    2015-03-01

    We fabricated monolayer coatings of a silver nanocube aggregation to create a step-wise optical strip by applying different surface pressures during slow Langmuir-Blodgett deposition. The varying amount of randomly distributed nanocube aggregates with different surface coverages in gradient manner due to changes in surface pressure allows for continuous control of the polarization sensitive absorption of the incoming light over a broad optical spectrum. Optical characterization under total internal reflection conditions combined with electromagnetic simulations reveal that the broadband light absorption depends on the relative orientation of the nanoparticles to the polarization of the incoming light. By using computer simulations, we found that the electric field vector of the s-polarized light interacts with the different types of silver nanocube aggregations to excite different plasmonic resonances. The s-polarization shows dramatic changes of the plasmonic resonances at different angles of incidence (shift of 64 nm per 10° angle of incidence). With a low surface nanocube coverage (from 5% to 20%), we observed a polarization-selective high absorption of 80% (with an average 75%) of the incoming light over a broad optical range in the visible region from 400 nm to 700 nm. This large-area gradient material with location-dependent optical properties can be of particular interest for broadband light absorption, phase-sensitive sensors, and imaging.We fabricated monolayer coatings of a silver nanocube aggregation to create a step-wise optical strip by applying different surface pressures during slow Langmuir-Blodgett deposition. The varying amount of randomly distributed nanocube aggregates with different surface coverages in gradient manner due to changes in surface pressure allows for continuous control of the polarization sensitive absorption of the incoming light over a broad optical spectrum. Optical characterization under total internal reflection conditions

  2. A general approach to DNA-programmable atom equivalents.

    PubMed

    Zhang, Chuan; Macfarlane, Robert J; Young, Kaylie L; Choi, Chung Hang J; Hao, Liangliang; Auyeung, Evelyn; Liu, Guoliang; Zhou, Xiaozhu; Mirkin, Chad A

    2013-08-01

    Nanoparticles can be combined with nucleic acids to programme the formation of three-dimensional colloidal crystals where the particles' size, shape, composition and position can be independently controlled. However, the diversity of the types of material that can be used is limited by the lack of a general method for preparing the basic DNA-functionalized building blocks needed to bond nanoparticles of different chemical compositions into lattices in a controllable manner. Here we show that by coating nanoparticles protected with aliphatic ligands with an azide-bearing amphiphilic polymer, followed by the coupling of DNA to the polymer using strain-promoted azide-alkyne cycloaddition (also known as copper-free azide-alkyne click chemistry), nanoparticles bearing a high-density shell of nucleic acids can be created regardless of nanoparticle composition. This method provides a route to a virtually endless class of programmable atom equivalents for DNA-based colloidal crystallization.

  3. LLNL Small-Scale Friction sensitivity (BAM) Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, L.R.; Foltz, M.F.

    1996-06-01

    Small-scale safety testing of explosives, propellants and other energetic materials, is done to determine their sensitivity to various stimuli including friction, static spark, and impact. Testing is done to discover potential handling problems for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing {open_quotes}BAM{close_quotes} Small-Scale Friction Test, and the methods used to determine the friction sensitivity pertinent to handling energetic materials. The accumulated data for the materials tested is not listed here - that information is in a database. Included is, however, a short list ofmore » (1) materials that had an unusual response, and (2), a few {open_quotes}standard{close_quotes} materials representing the range of typical responses usually seen.« less

  4. [Generalization of money-handling though training in equivalence relationships].

    PubMed

    Vives-Montero, Carmen; Valero-Aguayo, Luis; Ascanio, Lourdes

    2011-02-01

    This research used a matching-to-sample procedure and equivalence learning process with language and verbal tasks. In the study, an application of the equivalence relationship of money was used with several kinds of euro coins presented. The sample consisted of 16 children (8 in the experimental group and 8 in the control group) aged 5 years. The prerequisite behaviors, the identification of coins and the practical use of different euro coins, were assessed in the pre and post phases for both groups. The children in the experimental group performed an equivalence task using the matching-to-sample procedure. This consisted of a stimulus sample and four matching stimuli, using a series of euro coins with equivalent value in each set. The children in the control group did not undergo this training process. The results showed a large variability in the children's data of the equivalence tests. The experimental group showed the greatest pre and post changes in the statistically significant data. They also showed a greater generalization in the identification of money and in the use of euro coins than the control group. The implications for educational training and the characteristics of the procedure used here for coin equivalence are discussed.

  5. An equivalent viscoelastic model for rock mass with parallel joints

    NASA Astrophysics Data System (ADS)

    Li, Jianchun; Ma, Guowei; Zhao, Jian

    2010-03-01

    An equivalent viscoelastic medium model is proposed for rock mass with parallel joints. A concept of "virtual wave source (VWS)" is proposed to take into account the wave reflections between the joints. The equivalent model can be effectively applied to analyze longitudinal wave propagation through discontinuous media with parallel joints. Parameters in the equivalent viscoelastic model are derived analytically based on longitudinal wave propagation across a single rock joint. The proposed model is then verified by applying identical incident waves to the discontinuous and equivalent viscoelastic media at one end to compare the output waves at the other end. When the wavelength of the incident wave is sufficiently long compared to the joint spacing, the effect of the VWS on wave propagation in rock mass is prominent. The results from the equivalent viscoelastic medium model are very similar to those determined from the displacement discontinuity method. Frequency dependence and joint spacing effect on the equivalent viscoelastic model and the VWS method are discussed.

  6. Equivalent Mass versus Life Cycle Cost for Life Support Technology Selection

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2003-01-01

    The decision to develop a particular life support technology or to select it for flight usually depends on the cost to develop and fly it. Other criteria - performance, safety, reliability, crew time, and risk - are considered, but cost is always an important factor. Because launch cost accounts for most of the cost of planetary missions, and because launch cost is directly proportional to the mass launched, equivalent mass has been used instead of cost to select life support technology. The equivalent mass of a life support system includes the estimated masses of the hardware and of the pressurized volume, power supply, and cooling system that the hardware requires. The equivalent mass is defined as the total payload launch mass needed to provide and support the system. An extension of equivalent mass, Equivalent System Mass (ESM), has been established for use in Advanced Life Support. A crew time mass-equivalent and sometimes other non-mass factors are added to equivalent mass to create ESM. Equivalent mass is an estimate of the launch cost only. For earth orbit rather than planetary missions, the launch cost is usually exceeded by the cost of Design, Development, Test, and Evaluation (DDT&E). Equivalent mass is used only in life support analysis. Life Cycle Cost (LCC) is much more commonly used. LCC includes DDT&E, launch, and operations costs. Since LCC includes launch cost, it is always a more accurate cost estimator than equivalent mass. The relative costs of development, launch, and operations vary depending on the mission design, destination, and duration. Since DDT&E or operations may cost more than launch, LCC may give a more accurate cost ranking than equivalent mass. To be sure of identifying the lowest cost technology for a particular mission, we should use LCC rather than equivalent mass.

  7. Equivalent Mass versus Life Cycle Cost for Life Support Technology Selection

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2003-01-01

    The decision to develop a particular life support technology or to select it for flight usually depends on the cost to develop and fly it. Other criteria such as performance, safety, reliability, crew time, and technical and schedule risk are considered, but cost is always an important factor. Because launch cost would account for much of the cost of a future planetary mission, and because launch cost is directly proportional to the mass launched, equivalent mass has been used instead of cost to select advanced life support technology. The equivalent mass of a life support system includes the estimated mass of the hardware and of the spacecraft pressurized volume, power supply, and cooling system that the hardware requires. The equivalent mass of a system is defined as the total payload launch mass needed to provide and support the system. An extension of equivalent mass, Equivalent System Mass (ESM), has been established for use in the Advanced Life Support project. ESM adds a mass-equivalent of crew time and possibly other cost factors to equivalent mass. Traditional equivalent mass is strictly based on flown mass and reflects only the launch cost. ESM includes other important cost factors, but it complicates the simple flown mass definition of equivalent mass by adding a non-physical mass penalty for crew time that may exceed the actual flown mass. Equivalent mass is used only in life support analysis. Life Cycle Cost (LCC) is much more commonly used. LCC includes DDT&E, launch, and operations costs. For Earth orbit rather than planetary missions, the launch cost is less than the cost of Design, Development, Test, and Evaluation (DDTBE). LCC is a more inclusive cost estimator than equivalent mass. The relative costs of development, launch, and operations vary depending on the mission destination and duration. Since DDTBE or operations may cost more than launch, LCC gives a more accurate relative cost ranking than equivalent mass. To select the lowest cost

  8. Metric equivalence assessment in cross-cultural research: using an example of the Center for Epidemiological Studies--Depression Scale.

    PubMed

    Kim, Miyong; Han, Hae-Ra; Phillips, Linda

    2003-01-01

    Metric equivalence is a quantitative way to assess cross-cultural equivalences of translated instruments by examining the patterns of psychometric properties based on cross-cultural data derived from both versions of the instrument. Metric equivalence checks at item and instrument levels can be used as a valuable tool to refine cross-cultural instruments. Korean and English versions of the Center for Epidemiological Studies-Depression Scale (CES-D) were administered to 154 Korean Americans and 151 Anglo Americans to illustrate approaches to assessing their metric equivalence. Inter-item and item-total correlations, Cronbach's alpha coefficients, and factor analysis were used for metric equivalence checks. The alpha coefficient for the Korean-American sample was 0.85 and 0.92 for the Anglo American sample. Although all items of the CES-D surpassed the desirable minimum of 0.30 in the Anglo American sample, four items did not meet the standard in the Korean American sample. Differences in average inter-item correlations were also noted between the two groups (0.25 for Korean Americans and 0.37 for Anglo Americans). Factor analysis identified two factors for both groups, and factor loadings showed similar patterns and congruence coefficients. Results of the item analysis procedures suggest the possibility of bias in certain items that may influence the sensitivity of the Korean version of the CES-D. These item biases also provide a possible explanation for the alpha differences. Although factor loadings showed similar patterns for the Korean and English versions of the CES-D, factorial similarity alone is not sufficient for testing the universality of the structure underlying an instrument.

  9. Quantifying the Combined Effect of Radiation Therapy and Hyperthermia in Terms of Equivalent Dose Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kok, H. Petra, E-mail: H.P.Kok@amc.uva.nl; Crezee, Johannes; Franken, Nicolaas A.P.

    2014-03-01

    Purpose: To develop a method to quantify the therapeutic effect of radiosensitization by hyperthermia; to this end, a numerical method was proposed to convert radiation therapy dose distributions with hyperthermia to equivalent dose distributions without hyperthermia. Methods and Materials: Clinical intensity modulated radiation therapy plans were created for 15 prostate cancer cases. To simulate a clinically relevant heterogeneous temperature distribution, hyperthermia treatment planning was performed for heating with the AMC-8 system. The temperature-dependent parameters α (Gy{sup −1}) and β (Gy{sup −2}) of the linear–quadratic model for prostate cancer were estimated from the literature. No thermal enhancement was assumed for normalmore » tissue. The intensity modulated radiation therapy plans and temperature distributions were exported to our in-house-developed radiation therapy treatment planning system, APlan, and equivalent dose distributions without hyperthermia were calculated voxel by voxel using the linear–quadratic model. Results: The planned average tumor temperatures T90, T50, and T10 in the planning target volume were 40.5°C, 41.6°C, and 42.4°C, respectively. The planned minimum, mean, and maximum radiation therapy doses were 62.9 Gy, 76.0 Gy, and 81.0 Gy, respectively. Adding hyperthermia yielded an equivalent dose distribution with an extended 95% isodose level. The equivalent minimum, mean, and maximum doses reflecting the radiosensitization by hyperthermia were 70.3 Gy, 86.3 Gy, and 93.6 Gy, respectively, for a linear increase of α with temperature. This can be considered similar to a dose escalation with a substantial increase in tumor control probability for high-risk prostate carcinoma. Conclusion: A model to quantify the effect of combined radiation therapy and hyperthermia in terms of equivalent dose distributions was presented. This model is particularly instructive to estimate the potential effects of interaction from

  10. Students' Conceptions of Models of Fractions and Equivalence

    ERIC Educational Resources Information Center

    Jigyel, Karma; Afamasaga-Fuata'i, Karoline

    2007-01-01

    A solid understanding of equivalent fractions is considered a steppingstone towards a better understanding of operations with fractions. In this article, 55 rural Australian students' conceptions of equivalent fractions are presented. Data collected included students' responses to a short written test and follow-up interviews with three students…

  11. 21 CFR 610.9 - Equivalent methods and processes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Equivalent methods and processes. 610.9 Section 610.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL BIOLOGICAL PRODUCTS STANDARDS General Provisions § 610.9 Equivalent methods and processes...

  12. 21 CFR 610.9 - Equivalent methods and processes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Equivalent methods and processes. 610.9 Section 610.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL BIOLOGICAL PRODUCTS STANDARDS General Provisions § 610.9 Equivalent methods and processes...

  13. Design of beta-domain swapping, alpha/beta-protein, environmentally sensitive coiled coil and peptide functionalized titania materials

    NASA Astrophysics Data System (ADS)

    Nagarkar, Radhika P.

    2009-12-01

    The objective of this dissertation is to apply rational peptide design to fabricate nanomaterials via self-assembly. This has been demonstrated in structurally diverse systems with an aim of deciphering the underlying principles governing how sequence affects the peptide's ability to adopt a specific secondary structure and ultimate material properties that are realized from the association of these secondary structural elements. Several amyloidogenic proteins have been shown to self-assemble into fibrils using a mechanism known as domain swapping. Here, discreet units of secondary structure are exchanged among discreet proteins during self-assembly to form extended networks with precise three dimensional organization. The possibility of using these mechanisms to design peptides capable of controlled assembly and fibril formation leading to materials with targeted properties is explored. By altering the placement of a beta-turn sequence that varies the size and location of the exchanged strand, twisting, non-twisting and laminated fibrillar nanostructures are obtained. Hydrogels prepared from these strand swapping beta-hairpins have varied rheological properties due to differences in their fibrillar nanostructures. In a second distinct design, alpha/beta-proteins are used to prepare environmentally sensitive hydrogels. Here, multiple distinct motifs for structural integrity and dynamic response within a single self-assembling peptide allow the amyloid-like fibrils formed to controllably alter their nano-topography in response to an external stimulus such as temperature. The development of these self-assembling alpha/beta-protein motifs also necessitated the design of pH sensitive antiparallel coiled coils. Exploring the basic principles responsible for pH dependent conformational changes in coiled coils can lead to new insights in the control of protein structure and function. Lastly, this dissertation discusses the interface between biomolecules and inorganic

  14. Ensuring Cross-Cultural Equivalence in Translation of Research Consents and Clinical Documents

    PubMed Central

    Lee, Cheng-Chih; Li, Denise; Arai, Shoshana; Puntillo, Kathleen

    2010-01-01

    The aim of this article is to describe a formal process used to translate research study materials from English into traditional Chinese characters. This process may be useful for translating documents for use by both research participants and clinical patients. A modified Brislin model was used as the systematic translation process. Four bilingual translators were involved, and a Flaherty 3-point scale was used to evaluate the translated documents. The linguistic discrepancies that arise in the process of ensuring cross-cultural congruency or equivalency between the two languages are presented to promote the development of patient-accessible cross-cultural documents. PMID:18948451

  15. Synthesized tissue-equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions.

    PubMed

    Ianniello, Carlotta; de Zwart, Jacco A; Duan, Qi; Deniz, Cem M; Alon, Leeor; Lee, Jae-Seung; Lattanzi, Riccardo; Brown, Ryan

    2018-07-01

    To explore the use of polyvinylpyrrolidone (PVP) for simulated materials with tissue-equivalent dielectric properties. PVP and salt were used to control, respectively, relative permittivity and electrical conductivity in a collection of 63 samples with a range of solute concentrations. Their dielectric properties were measured with a commercial probe and fitted to a 3D polynomial in order to establish an empirical recipe. The material's thermal properties and MR spectra were measured. The empirical polynomial recipe (available at https://www.amri.ninds.nih.gov/cgi-bin/phantomrecipe) provides the PVP and salt concentrations required for dielectric materials with permittivity and electrical conductivity values between approximately 45 and 78, and 0.1 to 2 siemens per meter, respectively, from 50 MHz to 4.5 GHz. The second- (solute concentrations) and seventh- (frequency) order polynomial recipe provided less than 2.5% relative error between the measured and target properties. PVP side peaks in the spectra were minor and unaffected by temperature changes. PVP-based phantoms are easy to prepare and nontoxic, and their semitransparency makes air bubbles easy to identify. The polymer can be used to create simulated material with a range of dielectric properties, negligible spectral side peaks, and long T 2 relaxation time, which are favorable in many MR applications. Magn Reson Med 80:413-419, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. The PRIDE (Partnership to Improve Diabetes Education) Toolkit: Development and Evaluation of Novel Literacy and Culturally Sensitive Diabetes Education Materials.

    PubMed

    Wolff, Kathleen; Chambers, Laura; Bumol, Stefan; White, Richard O; Gregory, Becky Pratt; Davis, Dianne; Rothman, Russell L

    2016-02-01

    Patients with low literacy, low numeracy, and/or linguistic needs can experience challenges understanding diabetes information and applying concepts to their self-management. The authors designed a toolkit of education materials that are sensitive to patients' literacy and numeracy levels, language preferences, and cultural norms and that encourage shared goal setting to improve diabetes self-management and health outcomes. The Partnership to Improve Diabetes Education (PRIDE) toolkit was developed to facilitate diabetes self-management education and support. The PRIDE toolkit includes a comprehensive set of 30 interactive education modules in English and Spanish to support diabetes self-management activities. The toolkit builds upon the authors' previously validated Diabetes Literacy and Numeracy Education Toolkit (DLNET) by adding a focus on shared goal setting, addressing the needs of Spanish-speaking patients, and including a broader range of diabetes management topics. Each PRIDE module was evaluated using the Suitability Assessment of Materials (SAM) instrument to determine the material's cultural appropriateness and its sensitivity to the needs of patients with low literacy and low numeracy. Reading grade level was also assessed using the Automated Readability Index (ARI), Coleman-Liau, Flesch-Kincaid, Fry, and SMOG formulas. The average reading grade level of the materials was 5.3 (SD 1.0), with a mean SAM of 91.2 (SD 5.4). All of the 30 modules received a "superior" score (SAM >70%) when evaluated by 2 independent raters. The PRIDE toolkit modules can be used by all members of a multidisciplinary team to assist patients with low literacy and low numeracy in managing their diabetes. © 2015 The Author(s).

  17. Hawking radiation, Unruh radiation, and the equivalence principle.

    PubMed

    Singleton, Douglas; Wilburn, Steve

    2011-08-19

    We compare the response function of an Unruh-DeWitt detector for different space-times and different vacua and show that there is a detailed violation of the equivalence principle. In particular comparing the response of an accelerating detector to a detector at rest in a Schwarzschild space-time we find that both detectors register thermal radiation, but for a given, equivalent acceleration the fixed detector in the Schwarzschild space-time measures a higher temperature. This allows one to locally distinguish the two cases. As one approaches the horizon the two temperatures have the same limit so that the equivalence principle is restored at the horizon. © 2011 American Physical Society

  18. Equivalent Dipole Vector Analysis for Detecting Pulmonary Hypertension

    NASA Technical Reports Server (NTRS)

    Harlander, Matevz; Salobir, Barbara; Toplisek, Janez; Schlegel, Todd T.; Starc, Vito

    2010-01-01

    Various 12-lead ECG criteria have been established to detect right ventricular hypertrophy as a marker of pulmonary hypertension (PH). While some criteria offer good specificity they lack sensitivity because of a low prevalence of positive findings in the PH population. We hypothesized that three-dimensional equivalent dipole (ED) model could serve as a better detection tool of PH. We enrolled: 1) 17 patients (12 female, 5 male, mean age 57 years, range 19-79 years) with echocardiographically detected PH (systolic pulmonary arterial pressure greater than 35 mmHg) and no significant left ventricular disease; and 2) 19 healthy controls (7 female, 12 male, mean age 44, range 31-53 years) with no known heart disease. In each subject we recorded a 5-minute high-resolution 12-lead conventional ECG and constructed principal signals using singular value decomposition. Assuming a standard thorax dimension of an adult person with homogenous and isotropic distribution of thorax conductance, we determined moving equivalent dipoles (ED), characterized by the 3D location in the thorax, dipolar strength and the spatial orientation, in time intervals of 5 ms. We used the sum of all ED vectors in the second half of the QRS complex to derive the amplitude of the right-sided ED vector (RV), if the orientation of ED was to the right side of the thorax, and in the first half the QRS to derive the amplitude of the left-sided vector (LV), if the orientation was leftward. Finally, the parameter RV/LV ratio was determined over an average of 256 complexes. The groups differed in age and gender to some extent. There was a non-significant trend toward higher RV in patients with PH (438 units 284) than in controls (280 plus or minus 140) (p = 0.066) but the overlap was such that RV alone was not a good predictor of PH. On the other hand, the RV/LV ratio was a better predictor of PH, with 11/17 (64.7%) of PH patients but only in 1/19 (5.3%) control subjects having RV/LV ratio greater than or

  19. 40 CFR 790.85 - Submission of equivalence data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Submission of equivalence data. 790.85... Test Rules § 790.85 Submission of equivalence data. If EPA requires in a test rule promulgated under... exemption applicant must submit the following data: (a) The chemical identity of each technical-grade...

  20. Three-dimensional solutions for the thermal buckling and sensitivity derivatives of temperature-sensitive multilayered angle-ply plates

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Burton, W. S.

    1992-01-01

    Analytic three-dimensional thermoelasticity solutions are presented for the thermal buckling of multilayered angle-ply composite plates with temperature-dependent thermoelastic properties. Both the critical temperatures and the sensitivity derivatives are computed. The sensitivity derivatives measure the sensitivity of the buckling response to variations in the different lamination and material parameters of the plate. The plates are assumed to have rectangular geometry and an antisymmetric lamination with respect to the middle plane. The temperature is assumed to be independent of the surface coordinates, but has an arbitrary symmetric variation through the thickness of the plate. The prebuckling deformations are accounted for. Numerical results are presented, for plates subjected to uniform temperature increase, showing the effects of temperature-dependent material properties on the prebuckling stresses, critical temperatures, and their sensitivity derivatives.

  1. Inertia and Double Bending of Light from Equivalence

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr.

    2010-01-01

    Careful examination of light paths in an accelerated reference frame, with use of Special Relativity, can account fully for the observed bending of light in a gravitational field, not just half of it as reported in 1911. This analysis also leads to a Machian formulation of inertia similar to the one proposed by Einstein in 1912 and later derived from gravitational field equations in Minkowsky Space by Sciama in 1953. There is a clear inference from equivalence that there is some type of inertial mass increase in a gravitational field. It is the purpose of the current paper to suggest that equivalence provides a more complete picture of gravitational effects than previously thought, correctly predicting full light bending, and that since the theory of inertia is derivable from equivalence, any theory based on equivalence must take account of it. Einstein himself clearly was not satisfied with the status of inertia in GRT, as our quotes have shown. Many have tried to account for inertia and met with less than success, for example Davidson s integration of Sciama s inertia into GRT but only for a steady state cosmology [10], and the Machian gravity theory of Brans and Dicke [11]. Yet Mach s idea hasn t gone away, and now it seems that it cannot go away without also disposing of equivalence.

  2. Assessing the cultural in culturally sensitive printed patient-education materials for Chinese Americans with type 2 diabetes.

    PubMed

    Ho, Evelyn Y; Tran, Henrietta; Chesla, Catherine A

    2015-01-01

    Type 2 diabetes affects Chinese Americans at an alarming rate. To address this health disparity, research in the area of cultural sensitivity and health literacy provides useful guidelines for creating culturally appropriate health education. In this article, we use discourse analysis to examine a group of locally available, Chinese- and English-language diabetes print documents from a surface level and deep structure level of culture. First, we compared these documents to research findings about printed health information to determine whether and how these documents apply current best practices for health literacy and culturally appropriate health communication. Second, we examined how diabetes as a disease and diabetes management is being constructed. The printed materials addressed surface level culture through the use of Chinese language, pictures, foods, and exercises. From a deeper cultural level, the materials constructed diabetes management as a matter of measurement and control that contrasted with previous research suggesting an alternative construction of balance. A nuanced assessment of both surface and deeper levels of culture is essential for creating health education materials that are more culturally appropriate and can lead to increased health literacy and improved health outcomes.

  3. Assessing the Cultural in Culturally Sensitive Printed Patient Education Materials for Chinese Americans with Type 2 Diabetes

    PubMed Central

    Ho, Evelyn Y.; Tran, Henrietta; Chesla, Catherine A.

    2014-01-01

    Type 2 diabetes affects Chinese Americans at an alarming rate. To address this health disparity, research in the area of cultural sensitivity and health literacy provide useful guidelines for creating culturally appropriate health education. In this article, we use discourse analysis to examine a group of locally-available, Chinese and English language diabetes print documents from a surface and deep structure level of culture. First, we compared these documents to research findings about printed health information to determine if and how these documents apply current best practices for health literacy and culturally appropriate health communication. Second, we examined how diabetes as a disease and diabetes management is being constructed. The printed materials addressed surface level culture through the use of Chinese language, pictures, foods and exercises. From a deeper cultural level, the materials constructed diabetes management as a matter of measurement and control that contrasted with previous research suggesting an alternative construction of balance. A nuanced assessment of both surface and deeper levels of culture is essential for creating health education materials that are more culturally appropriate and can lead to increase health literacy and improved health outcomes. PMID:24446839

  4. Transmission Electron Microscopy of Vacuum Sensitive, Radiation Sensitive, and Structurally Delicate Materials

    NASA Astrophysics Data System (ADS)

    Levin, Barnaby

    The transmission electron microscope (TEM) is a powerful tool for characterizing the nanoscale and atomic structure of materials, offering insights into their fundamental physical properties. However, TEM characterization requires very thin samples of material to be placed in a high vacuum environment, and exposed to electron radiation. The high vacuum will induce some materials to evaporate or sublimate, preventing them from being accurately characterized, radiation may damage the sample, causing mass loss, or altering its structure, and structurally delicate samples may collapse and break apart when they are thinned for TEM imaging. This dissertation discusses three different projects in which each of these three difficulties pose challenges to TEM characterization of samples. Firstly, we outline strategies for minimizing radiation damage when characterizing materials in TEM at atomic resolution. We consider types of radiation damage, such as vacancy enhanced displacement, that are not included in some previous discussions of beam damage, and we consider how to minimize damage when using new imaging techniques such as annular bright-field scanning TEM. Our methodology emphasizes the general principle that variation of both signal strength and damage cross section must be considered when choosing an experimental electron beam voltage to minimize damage. Secondly, we consider samples containing sulfur, which is prone to sublimation in high vacuum. TEM is routinely used to attempt to characterize the sulfur distribution in lithium-sulfur battery electrodes, but sublimation artifacts can give misleading results. We demonstrate that sulfur sublimation can be suppressed by using cryogenic TEM to characterize sulfur at very low temperatures, or by using the recently developed airSEM to characterize sulfur without exposing it to vacuum. Finally, we discuss the characterization of aging cadmium yellow paint from early 20th century art masterpieces. The binding medium

  5. The transfer of Cfunc contextual control through equivalence relations.

    PubMed

    Perez, William F; Fidalgo, Adriana P; Kovac, Roberta; Nico, Yara C

    2015-05-01

    Derived relational responding is affected by contextual stimuli (Cfunc) that select specific stimulus functions. The present study investigated the transfer of Cfunc contextual control through equivalence relations by evaluating both (a) the maintenance of Cfunc contextual control after the expansion of a relational network, and (b) the establishment of novel contextual stimuli by the transfer of Cfunc contextual control through equivalence relations. Initially, equivalence relations were established and contingencies were arranged so that colors functioned as Cfunc stimuli controlling participants' key-pressing responses in the presence of any stimulus from a three-member equivalence network. To investigate the first research question, the three-member equivalence relations were expanded to five members and the novel members were presented with the Cfunc stimuli in the key-pressing task. To address the second goal of this study, the colors (Cfunc) were established as equivalent to certain line patterns. The transfer of contextual cue function (Cfunc) was tested replacing the colored backgrounds with line patterns in the key-pressing task. Results suggest that the Cfunc contextual control was transferred to novel stimuli that were added to the relational network. In addition, the line patterns indirectly acquired the contextual cue function (Cfunc) initially established for the colored backgrounds. The conceptual and applied implications of Cfunc contextual control are discussed. © Society for the Experimental Analysis of Behavior.

  6. Equivalent dose and effective dose from stray radiation during passively scattered proton radiotherapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Fontenot, Jonas; Taddei, Phillip; Zheng, Yuanshui; Mirkovic, Dragan; Jordan, Thomas; Newhauser, Wayne

    2008-03-01

    Proton therapy reduces the integral therapeutic dose required for local control in prostate patients compared to intensity-modulated radiotherapy. One proposed benefit of this reduction is an associated decrease in the incidence of radiogenic secondary cancers. However, patients are also exposed to stray radiation during the course of treatment. The purpose of this study was to quantify the stray radiation dose received by patients during proton therapy for prostate cancer. Using a Monte Carlo model of a proton therapy nozzle and a computerized anthropomorphic phantom, we determined that the effective dose from stray radiation per therapeutic dose (E/D) for a typical prostate patient was approximately 5.5 mSv Gy-1. Sensitivity analysis revealed that E/D varied by ±30% over the interval of treatment parameter values used for proton therapy of the prostate. Equivalent doses per therapeutic dose (HT/D) in specific organs at risk were found to decrease with distance from the isocenter, with a maximum of 12 mSv Gy-1 in the organ closest to the treatment volume (bladder) and 1.9 mSv Gy-1 in the furthest (esophagus). Neutrons created in the nozzle predominated effective dose, though neutrons created in the patient contributed substantially to the equivalent dose in organs near the proton field. Photons contributed less than 15% to equivalent doses.

  7. Theoretical and empirical investigations of KCl:Eu2+ for nearly water-equivalent radiotherapy dosimetry

    PubMed Central

    Zheng, Yuanshui; Han, Zhaohui; Driewer, Joseph P.; Low, Daniel A.; Li, H. Harold

    2010-01-01

    Purpose: The low effective atomic number, reusability, and other computed radiography-related advantages make europium doped potassium chloride (KCl:Eu2+) a promising dosimetry material. The purpose of this study is to model KCl:Eu2+ point dosimeters with a Monte Carlo (MC) method and, using this model, to investigate the dose responses of two-dimensional (2D) KCl:Eu2+ storage phosphor films (SPFs). Methods: KCl:Eu2+ point dosimeters were irradiated using a 6 MV beam at four depths (5–20 cm) for each of five square field sizes (5×5–25×25 cm2). The dose measured by KCl:Eu2+ was compared to that measured by an ionization chamber to obtain the magnitude of energy dependent dose measurement artifact. The measurements were simulated using DOSXYZnrc with phase space files generated by BEAMnrcMP. Simulations were also performed for KCl:Eu2+ films with thicknesses ranging from 1 μm to 1 mm. The work function of the prototype KCl:Eu2+ material was determined by comparing the sensitivity of a 150 μm thick KCl:Eu2+ film to a commercial BaFBr0.85I0.15:Eu2+-based SPF with a known work function. The work function was then used to estimate the sensitivity of a 1 μm thick KCl:Eu2+ film. Results: The simulated dose responses of prototype KCl:Eu2+ point dosimeters agree well with measurement data acquired by irradiating the dosimeters in the 6 MV beam with varying field size and depth. Furthermore, simulations with films demonstrate that an ultrathin KCl:Eu2+ film with thickness of the order of 1 μm would have nearly water-equivalent dose response. The simulation results can be understood using classic cavity theories. Finally, preliminary experiments and theoretical calculations show that ultrathin KCl:Eu2+ film could provide excellent signal in a 1 cGy dose-to-water irradiation. Conclusions: In conclusion, the authors demonstrate that KCl:Eu2+-based dosimeters can be accurately modeled by a MC method and that 2D KCl:Eu2+ films of the order of 1 μm thick would have

  8. Evidence for montmorillonite or its compositional equivalent in Columbia Hills, Mars

    USGS Publications Warehouse

    Clark, B. C.; Arvidson, R. E.; Gellert, Ralf; Morris, R.V.; Ming, D. W.; Richter, L.; Ruff, S.W.; Michalski, J.R.; Farrand, W. H.; Yen, A. S.; Herkenhoff, K. E.; Li, R.; Squyres, S. W.; Schroder, C.; Klingelhofer, G.; Bell, J.F.

    2007-01-01

    During its exploration of the Columbia Hills, the Mars Exploration Rover "Spirit" encountered several similar samples that are distinctly different from Martian meteorites and known Gusev crater soils, rocks, and sediments. Occurring in a variety of contexts and locations, these "Independence class" samples are rough-textured, iron-poor (equivalent FeO ??? 4 wt%), have high Al/Si ratios, and often contain unexpectedly high concentrations of one or more minor or trace elements (including Cr, Ni, Cu, Sr, and Y). Apart from accessory minerals, the major component common to these samples has a compositional profile of major and minor elements which is similar to the smectite montmorillonite, implicating this mineral, or its compositional equivalent. Infrared thermal emission spectra do not indicate the presence of crystalline smectite. One of these samples was found spatially associated with a ferric sulfate-enriched soil horizon, possibly indicating a genetic relationship between these disparate types of materials. Compared to the nearby Wishstone and Watchtower class rocks, major aqueous alteration involving mineral dissolution and mobilization with consequent depletions of certain elements is implied for this setting and may be undetectable by remote sensing from orbit because of the small scale of the occurrences and obscuration by mantling with soil and dust. Copyright 2007 by the American Geophysical Union.

  9. Motor equivalence during multi-finger accurate force production

    PubMed Central

    Mattos, Daniela; Schöner, Gregor; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2014-01-01

    We explored stability of multi-finger cyclical accurate force production action by analysis of responses to small perturbations applied to one of the fingers and inter-cycle analysis of variance. Healthy subjects performed two versions of the cyclical task, with and without an explicit target. The “inverse piano” apparatus was used to lift/lower a finger by 1 cm over 0.5 s; the subjects were always instructed to perform the task as accurate as they could at all times. Deviations in the spaces of finger forces and modes (hypothetical commands to individual fingers) were quantified in directions that did not change total force (motor equivalent) and in directions that changed the total force (non-motor equivalent). Motor equivalent deviations started immediately with the perturbation and increased progressively with time. After a sequence of lifting-lowering perturbations leading to the initial conditions, motor equivalent deviations were dominating. These phenomena were less pronounced for analysis performed with respect to the total moment of force with respect to an axis parallel to the forearm/hand. Analysis of inter-cycle variance showed consistently higher variance in a subspace that did not change the total force as compared to the variance that affected total force. We interpret the results as reflections of task-specific stability of the redundant multi-finger system. Large motor equivalent deviations suggest that reactions of the neuromotor system to a perturbation involve large changes of neural commands that do not affect salient performance variables, even during actions with the purpose to correct those salient variables. Consistency of the analyses of motor equivalence and variance analysis provides additional support for the idea of task-specific stability ensured at a neural level. PMID:25344311

  10. 40 CFR 790.85 - Submission of equivalence data.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sought. The exact type of identifying data required will be specified in the test rule, but may include... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Submission of equivalence data. 790.85... Test Rules § 790.85 Submission of equivalence data. If EPA requires in a test rule promulgated under...

  11. 40 CFR 790.85 - Submission of equivalence data.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sought. The exact type of identifying data required will be specified in the test rule, but may include... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Submission of equivalence data. 790.85... Test Rules § 790.85 Submission of equivalence data. If EPA requires in a test rule promulgated under...

  12. Mechanical Equivalent of Heat--Software for a Thermistor

    ERIC Educational Resources Information Center

    Boleman, Michael

    2008-01-01

    The Mechanical Equivalent of Heat Apparatus from PASCO scientific provides the means for doing a simple experiment to determine the mechanical equivalent of heat, "J." A necessary step of this experiment is to determine the temperature of an aluminum cylinder. By measuring the resistance of a thermistor embedded in the cylinder, one is able to…

  13. Mirror-Image Equivalence and Interhemispheric Mirror-Image Reversal

    PubMed Central

    Corballis, Michael C.

    2018-01-01

    Mirror-image confusions are common, especially in children and in some cases of neurological impairment. They can be a special impediment in activities such as reading and writing directional scripts, where mirror-image patterns (such as b and d) must be distinguished. Treating mirror images as equivalent, though, can also be adaptive in the natural world, which carries no systematic left-right bias and where the same object or event can appear in opposite viewpoints. Mirror-image equivalence and confusion are natural consequences of a bilaterally symmetrical brain. In the course of learning, mirror-image equivalence may be established through a process of symmetrization, achieved through homotopic interhemispheric exchange in the formation of memory circuits. Such circuits would not distinguish between mirror images. Learning to discriminate mirror-image discriminations may depend either on existing brain asymmetries, or on extensive learning overriding the symmetrization process. The balance between mirror-image equivalence and mirror-image discrimination may nevertheless be precarious, with spontaneous confusions or reversals, such as mirror writing, sometimes appearing naturally or as a manifestation of conditions like dyslexia. PMID:29706878

  14. Mirror-Image Equivalence and Interhemispheric Mirror-Image Reversal.

    PubMed

    Corballis, Michael C

    2018-01-01

    Mirror-image confusions are common, especially in children and in some cases of neurological impairment. They can be a special impediment in activities such as reading and writing directional scripts, where mirror-image patterns (such as b and d ) must be distinguished. Treating mirror images as equivalent, though, can also be adaptive in the natural world, which carries no systematic left-right bias and where the same object or event can appear in opposite viewpoints. Mirror-image equivalence and confusion are natural consequences of a bilaterally symmetrical brain. In the course of learning, mirror-image equivalence may be established through a process of symmetrization, achieved through homotopic interhemispheric exchange in the formation of memory circuits. Such circuits would not distinguish between mirror images. Learning to discriminate mirror-image discriminations may depend either on existing brain asymmetries, or on extensive learning overriding the symmetrization process. The balance between mirror-image equivalence and mirror-image discrimination may nevertheless be precarious, with spontaneous confusions or reversals, such as mirror writing, sometimes appearing naturally or as a manifestation of conditions like dyslexia.

  15. Equivalence relations in individuals with language limitations and mental retardation.

    PubMed Central

    O'Donnell, Jennifer; Saunders, Kathryn J

    2003-01-01

    The study of equivalence relations exhibited by individuals with mental retardation and language limitations holds the promise of providing information of both theoretical and practical significance. We reviewed the equivalence literature with this population, defined in terms of subjects having moderate, severe, or profound mental retardation. The literature includes 55 such individuals, most of whom showed positive outcomes on equivalence tests. The results to date suggest that naming skills are not necessary for positive equivalence test outcomes. Thus far, however, relatively few subjects with minimal language have been studied. Moreover, we suggest that the scientific contributions of studies in this area would be enhanced with better documentation of language skills and other subject characteristics. With recent advances in laboratory procedures for establishing the baseline performances necessary for equivalence tests, this research area is poised for rapid growth. PMID:13677612

  16. USEPA PATHOGEN EQUIVALENCY COMMITTEE RETREAT

    EPA Science Inventory

    The Pathogen Equivalency Committee held its retreat from September 20-21, 2005 at Hueston Woods State Park in College Corner, Ohio. This presentation will update the PEC’s membership on emerging pathogens, analytical methods, disinfection techniques, risk analysis, preparat...

  17. Visual Equivalence and Amodal Completion in Cuttlefish

    PubMed Central

    Lin, I-Rong; Chiao, Chuan-Chin

    2017-01-01

    Modern cephalopods are notably the most intelligent invertebrates and this is accompanied by keen vision. Despite extensive studies investigating the visual systems of cephalopods, little is known about their visual perception and object recognition. In the present study, we investigated the visual processing of the cuttlefish Sepia pharaonis, including visual equivalence and amodal completion. Cuttlefish were trained to discriminate images of shrimp and fish using the operant conditioning paradigm. After cuttlefish reached the learning criteria, a series of discrimination tasks were conducted. In the visual equivalence experiment, several transformed versions of the training images, such as images reduced in size, images reduced in contrast, sketches of the images, the contours of the images, and silhouettes of the images, were used. In the amodal completion experiment, partially occluded views of the original images were used. The results showed that cuttlefish were able to treat the training images of reduced size and sketches as the visual equivalence. Cuttlefish were also capable of recognizing partially occluded versions of the training image. Furthermore, individual differences in performance suggest that some cuttlefish may be able to recognize objects when visual information was partly removed. These findings support the hypothesis that the visual perception of cuttlefish involves both visual equivalence and amodal completion. The results from this research also provide insights into the visual processing mechanisms used by cephalopods. PMID:28220075

  18. The Discounted Method and Equivalence of Average Criteria for Risk-Sensitive Markov Decision Processes on Borel Spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavazos-Cadena, Rolando, E-mail: rcavazos@uaaan.m; Salem-Silva, Francisco, E-mail: frsalem@uv.m

    2010-04-15

    This note concerns discrete-time controlled Markov chains with Borel state and action spaces. Given a nonnegative cost function, the performance of a control policy is measured by the superior limit risk-sensitive average criterion associated with a constant and positive risk sensitivity coefficient. Within such a framework, the discounted approach is used (a) to establish the existence of solutions for the corresponding optimality inequality, and (b) to show that, under mild conditions on the cost function, the optimal value functions corresponding to the superior and inferior limit average criteria coincide on a certain subset of the state space. The approach ofmore » the paper relies on standard dynamic programming ideas and on a simple analytical derivation of a Tauberian relation.« less

  19. Applicability of the single equivalent point dipole model to represent a spatially distributed bio-electrical source

    NASA Technical Reports Server (NTRS)

    Armoundas, A. A.; Feldman, A. B.; Sherman, D. A.; Cohen, R. J.

    2001-01-01

    Although the single equivalent point dipole model has been used to represent well-localised bio-electrical sources, in realistic situations the source is distributed. Consequently, position estimates of point dipoles determined by inverse algorithms suffer from systematic error due to the non-exact applicability of the inverse model. In realistic situations, this systematic error cannot be avoided, a limitation that is independent of the complexity of the torso model used. This study quantitatively investigates the intrinsic limitations in the assignment of a location to the equivalent dipole due to distributed electrical source. To simulate arrhythmic activity in the heart, a model of a wave of depolarisation spreading from a focal source over the surface of a spherical shell is used. The activity is represented by a sequence of concentric belt sources (obtained by slicing the shell with a sequence of parallel plane pairs), with constant dipole moment per unit length (circumferentially) directed parallel to the propagation direction. The distributed source is represented by N dipoles at equal arc lengths along the belt. The sum of the dipole potentials is calculated at predefined electrode locations. The inverse problem involves finding a single equivalent point dipole that best reproduces the electrode potentials due to the distributed source. The inverse problem is implemented by minimising the chi2 per degree of freedom. It is found that the trajectory traced by the equivalent dipole is sensitive to the location of the spherical shell relative to the fixed electrodes. It is shown that this trajectory does not coincide with the sequence of geometrical centres of the consecutive belt sources. For distributed sources within a bounded spherical medium, displaced from the sphere's centre by 40% of the sphere's radius, it is found that the error in the equivalent dipole location varies from 3 to 20% for sources with size between 5 and 50% of the sphere's radius

  20. A pendulum experiment on added mass and equivalence.

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell; Neill, Douglas; Livelybrooks, Dean

    2005-11-01

    The concept of added mass in fluid mechanics has been known for many years. A familiar example is the accelerated motion of a sphere through an inviscid fluid which has an added mass of one-half the mass of the fluid displaced. This result is widely used in quantum fluids; for example giving a finite mass to a trapped electron in superfluid helium-4, which is a free electron in a bubble about 36 Angstroms in diameter. A derivation of this result is contained in Landau-Lifshitz ``Fluid Mechanics'', Section 12. The period of oscillation of a simple pendulum in a vacuum is independent of the mass because of the principle of equivalence of gravitational and inertial masses. In a fluid however, both buoyancy and added mass enter the problem. We present results of experiments of simple pendulums of different materials oscillating in various fluids. The results agree closely with the results obtained for the added mass in inviscid fluids, as expected.

  1. Can the Equivalent Sphere Model Approximate Organ Doses in Space?

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2007-01-01

    For space radiation protection it is often useful to calculate dose or dose,equivalent in blood forming organs (BFO). It has been customary to use a 5cm equivalent sphere to. simulate the BFO dose. However, many previous studies have concluded that a 5cm sphere gives very different dose values from the exact BFO values. One study [1] . concludes that a 9 cm sphere is a reasonable approximation for BFO'doses in solar particle event environments. In this study we use a deterministic radiation transport [2] to investigate the reason behind these observations and to extend earlier studies. We take different space radiation environments, including seven galactic cosmic ray environments and six large solar particle events, and calculate the dose and dose equivalent in the skin, eyes and BFO using their thickness distribution functions from the CAM (Computerized Anatomical Man) model [3] The organ doses have been evaluated with a water or aluminum shielding of an areal density from 0 to 20 g/sq cm. We then compare with results from the equivalent sphere model and determine in which cases and at what radius parameters the equivalent sphere model is a reasonable approximation. Furthermore, we address why the equivalent sphere model is not a good approximation in some cases. For solar particle events, we find that the radius parameters for the organ dose equivalent increase significantly with the shielding thickness, and the model works marginally for BFO but is unacceptable for the eye or the skin. For galactic cosmic rays environments, the equivalent sphere model with an organ-specific constant radius parameter works well for the BFO dose equivalent, marginally well for the BFO dose and the dose equivalent of the eye or the skin, but is unacceptable for the dose of the eye or the skin. The ranges of the radius parameters are also being investigated, and the BFO radius parameters are found to be significantly, larger than 5 cm in all cases, consistent with the conclusion of

  2. The Interface Between Chemical and Oxide Materials in the DSPEC

    NASA Astrophysics Data System (ADS)

    Meyer, Thomas; Alibabaei, Leila; Sherman, Benjamin; Sheridan, Matthew; Ashford, Dennis; Lapides, Alex; Brennaman, Kyle; Nayak, Animesh; Roy, Subhangi

    Significant challenges exist for both chemical and oxide materials in the Dye Sensitized Photoelectrosynthesis Cell (DSPEC) for water oxidation or CO2 reduction. They arise from light absorption, the energetics of electron or hole injection, the accumulation of multiple redox equivalents at catalysts for water oxidation or water/CO2 reduction in competition with back electron transfer, and sustained, long term performance. These challenges are being met by the use of a variety of chromophores (metal complexes, organic dyes, porphyrins), broad application of nanoparticle mesoscopic oxide films, atomic layer deposition (ALD) to prepare core/shell and stabilizing overlayer structures, and recent advances in the molecular catalysis of water oxidation and CO2 reduction. UNC EFRC Center for Solar Fuels, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001011.

  3. The Medial Stitch in Transosseous-Equivalent Rotator Cuff Repair: Vertical or Horizontal Mattress?

    PubMed

    Montanez, Anthony; Makarewich, Christopher A; Burks, Robert T; Henninger, Heath B

    2016-09-01

    Despite advances in surgical technique, rotator cuff repair retears continue to occur at rates of 10%, 22%, and 57% for small, medium, and large tears, respectively. A common mode of failure in transosseous-equivalent rotator cuff repairs is tissue pullout of the medial mattress stitch. While the medial mattress stitch has been studied extensively, no studies have evaluated a vertical mattress pattern placed near the musculotendinous junction in comparison with a horizontal mattress pattern. Vertical mattress stitches will have higher load to failure and lower gapping compared with horizontal mattress stitches in a transosseous-equivalent rotator cuff repair. Controlled laboratory study. Double-row transosseous-equivalent rotator cuff repairs were performed in 9 pairs of human male cadaveric shoulders (mean age ± SD, 58 ± 10 years). One shoulder in each pair received a medial-row suture pattern using a vertical mattress stitch, and the contralateral shoulder received a horizontal mattress. Specimens were mounted in a materials testing machine and tested in uniaxial tensile deformation for cyclic loading (500 cycles at 1 Hz to 1.0 MPa of effective stress), followed by failure testing carried out at a rate of 1 mm/s. Construct gapping and applied loads were monitored continuously throughout the testing. Vertical mattress sutures were placed in 5 right and 4 left shoulders. Peak cyclic gapping did not differ between vertical (mean ± SD, 2.8 ± 1.1 mm) and horizontal mattress specimens (3.0 ± 1.2 mm) (P = .684). Vertical mattress sutures failed at higher loads compared with horizontal mattress sutures (568.9 ± 140.3 vs 451.1 ± 174.3 N; P = .025); however, there was no significant difference in failure displacement (8.0 ± 1.6 vs 6.0 ± 2.1 mm; P = .092). Failure stiffness did not differ between the suture patterns (P = .204). In transosseous-equivalent rotator cuff repairs near the musculotendinous junction, a vertical mattress suture used as the medial stitch

  4. Periodic equivalence ratio modulation method and apparatus for controlling combustion instability

    DOEpatents

    Richards, George A.; Janus, Michael C.; Griffith, Richard A.

    2000-01-01

    The periodic equivalence ratio modulation (PERM) method and apparatus significantly reduces and/or eliminates unstable conditions within a combustion chamber. The method involves modulating the equivalence ratio for the combustion device, such that the combustion device periodically operates outside of an identified unstable oscillation region. The equivalence ratio is modulated between preselected reference points, according to the shape of the oscillation region and operating parameters of the system. Preferably, the equivalence ratio is modulated from a first stable condition to a second stable condition, and, alternatively, the equivalence ratio is modulated from a stable condition to an unstable condition. The method is further applicable to multi-nozzle combustor designs, whereby individual nozzles are alternately modulated from stable to unstable conditions. Periodic equivalence ratio modulation (PERM) is accomplished by active control involving periodic, low frequency fuel modulation, whereby low frequency fuel pulses are injected into the main fuel delivery. Importantly, the fuel pulses are injected at a rate so as not to affect the desired time-average equivalence ratio for the combustion device.

  5. A pendulum experiment on added mass and the principle of equivalence

    NASA Astrophysics Data System (ADS)

    Neill, Douglas; Livelybrooks, Dean; Donnelly, Russell J.

    2007-03-01

    The concept of added mass in fluid mechanics has been known for many years. A familiar example is the accelerated motion of a sphere through an ideal (inviscid and irrotational) fluid, which has an added mass equal to one-half the mass of the fluid displaced. The period of oscillation of a simple pendulum in a vacuum is independent of its mass because of the equivalence of gravitational and inertial masses. In contrast, in a fluid both buoyancy and added mass affect the period. We present experimental results on simple pendula of different materials oscillating in various fluids. The results agree fairly well with the results obtained for the added mass in an ideal fluid.

  6. Sequential time interleaved random equivalent sampling for repetitive signal.

    PubMed

    Zhao, Yijiu; Liu, Jingjing

    2016-12-01

    Compressed sensing (CS) based sampling techniques exhibit many advantages over other existing approaches for sparse signal spectrum sensing; they are also incorporated into non-uniform sampling signal reconstruction to improve the efficiency, such as random equivalent sampling (RES). However, in CS based RES, only one sample of each acquisition is considered in the signal reconstruction stage, and it will result in more acquisition runs and longer sampling time. In this paper, a sampling sequence is taken in each RES acquisition run, and the corresponding block measurement matrix is constructed using a Whittaker-Shannon interpolation formula. All the block matrices are combined into an equivalent measurement matrix with respect to all sampling sequences. We implemented the proposed approach with a multi-cores analog-to-digital converter (ADC), whose ADC cores are time interleaved. A prototype realization of this proposed CS based sequential random equivalent sampling method has been developed. It is able to capture an analog waveform at an equivalent sampling rate of 40 GHz while sampled at 1 GHz physically. Experiments indicate that, for a sparse signal, the proposed CS based sequential random equivalent sampling exhibits high efficiency.

  7. Money for health: the equivalent variation of cardiovascular diseases.

    PubMed

    Groot, Wim; Van Den Brink, Henriëtte Maassen; Plug, Erik

    2004-09-01

    This paper introduces a new method to calculate the extent to which individuals are willing to trade money for improvements in their health status. An individual welfare function of income (WFI) is applied to calculate the equivalent income variation of health impairments. We believe that this approach avoids various drawbacks of alternative willingness-to-pay methods. The WFI is used to calculate the equivalent variation of cardiovascular diseases. It is found that for a 25 year old male the equivalent variation of a heart disease ranges from 114,000 euro to 380,000 euro depending on the welfare level. This is about 10,000 euro - 30,000 euro for an additional life year. The equivalent variation declines with age and is about the same for men and women. The estimates further vary by discount rate chosen. The estimates of the equivalent variation are generally higher than the money spent on most heart-related medical interventions per QALY. The cost-benefit analysis shows that for most interventions the value of the health benefits exceeds the costs. Heart transplants seem to be too costly and only beneficial if patients are young.

  8. Biological equivalence between LDR and PDR in cervical cancer: multifactor analysis using the linear-quadratic model

    PubMed Central

    Bravo, Isabel; Pirraco, Rui

    2011-01-01

    Purpose The purpose of this work was the biological comparison between Low Dose Rate (LDR) and Pulsed Dose Rate (PDR) in cervical cancer regarding the discontinuation of the afterloading system used for the LDR treatments at our Institution since December 2009. Material and methods In the first phase we studied the influence of the pulse dose and the pulse time in the biological equivalence between LDR and PDR treatments using the Linear Quadratic Model (LQM). In the second phase, the equivalent dose in 2 Gy/fraction (EQD2) for the tumor, rectum and bladder in treatments performed with both techniques was evaluated and statistically compared. All evaluated patients had stage IIB cervical cancer and were treated with External Beam Radiotherapy (EBRT) plus two Brachytherapy (BT) applications. Data were collected from 48 patients (26 patients treated with LDR and 22 patients with PDR). Results In the analyses of the influence of PDR parameters in the biological equivalence between LDR and PDR treatments (Phase 1), it was calculated that if the pulse dose in PDR was kept equal to the LDR dose rate, a small the-rapeutic loss was expected. If the pulse dose was decreased, the therapeutic window became larger, but a correction in the prescribed dose was necessary. In PDR schemes with 1 hour interval between pulses, the pulse time did not influence significantly the equivalent dose. In the comparison between the groups treated with LDR and PDR (Phase 2) we concluded that they were not equivalent, because in the PDR group the total EQD2 for the tumor, rectum and bladder was smaller than in the LDR group; the LQM estimated that a correction in the prescribed dose of 6% to 10% was ne-cessary to avoid therapeutic loss. Conclusions A correction in the prescribed dose was necessary; this correction should be achieved by calculating the PDR dose equivalent to the desired LDR total dose. PMID:23346123

  9. Estimation of resist sensitivity for extreme ultraviolet lithography using an electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyama, Tomoko Gowa, E-mail: ohyama.tomoko@qst.go.jp; Oshima, Akihiro; Tagawa, Seiichi, E-mail: tagawa@sanken.osaka-u.ac.jp

    2016-08-15

    It is a challenge to obtain sufficient extreme ultraviolet (EUV) exposure time for fundamental research on developing a new class of high sensitivity resists for extreme ultraviolet lithography (EUVL) because there are few EUV exposure tools that are very expensive. In this paper, we introduce an easy method for predicting EUV resist sensitivity by using conventional electron beam (EB) sources. If the chemical reactions induced by two ionizing sources (EB and EUV) are the same, the required absorbed energies corresponding to each required exposure dose (sensitivity) for the EB and EUV would be almost equivalent. Based on this theory, wemore » calculated the resist sensitivities for the EUV/soft X-ray region. The estimated sensitivities were found to be comparable to the experimentally obtained sensitivities. It was concluded that EB is a very useful exposure tool that accelerates the development of new resists and sensitivity enhancement processes for 13.5 nm EUVL and 6.x nm beyond-EUVL (BEUVL).« less

  10. Internal noise sources limiting contrast sensitivity.

    PubMed

    Silvestre, Daphné; Arleo, Angelo; Allard, Rémy

    2018-02-07

    Contrast sensitivity varies substantially as a function of spatial frequency and luminance intensity. The variation as a function of luminance intensity is well known and characterized by three laws that can be attributed to the impact of three internal noise sources: early spontaneous neural activity limiting contrast sensitivity at low luminance intensities (i.e. early noise responsible for the linear law), probabilistic photon absorption at intermediate luminance intensities (i.e. photon noise responsible for de Vries-Rose law) and late spontaneous neural activity at high luminance intensities (i.e. late noise responsible for Weber's law). The aim of this study was to characterize how the impact of these three internal noise sources vary with spatial frequency and determine which one is limiting contrast sensitivity as a function of luminance intensity and spatial frequency. To estimate the impact of the different internal noise sources, the current study used an external noise paradigm to factorize contrast sensitivity into equivalent input noise and calculation efficiency over a wide range of luminance intensities and spatial frequencies. The impact of early and late noise was found to drop linearly with spatial frequency, whereas the impact of photon noise rose with spatial frequency due to ocular factors.

  11. Toward quantitative estimation of material properties with dynamic mode atomic force microscopy: a comparative study.

    PubMed

    Ghosal, Sayan; Gannepalli, Anil; Salapaka, Murti

    2017-08-11

    In this article, we explore methods that enable estimation of material properties with the dynamic mode atomic force microscopy suitable for soft matter investigation. The article presents the viewpoint of casting the system, comprising of a flexure probe interacting with the sample, as an equivalent cantilever system and compares a steady-state analysis based method with a recursive estimation technique for determining the parameters of the equivalent cantilever system in real time. The steady-state analysis of the equivalent cantilever model, which has been implicitly assumed in studies on material property determination, is validated analytically and experimentally. We show that the steady-state based technique yields results that quantitatively agree with the recursive method in the domain of its validity. The steady-state technique is considerably simpler to implement, however, slower compared to the recursive technique. The parameters of the equivalent system are utilized to interpret storage and dissipative properties of the sample. Finally, the article identifies key pitfalls that need to be avoided toward the quantitative estimation of material properties.

  12. Estimating neutron dose equivalent rates from heavy ion reactions around 10 MeV amu(-1) using the PHITS code.

    PubMed

    Iwamoto, Yosuke; Ronningen, R M; Niita, Koji

    2010-04-01

    It has been sometimes necessary for personnel to work in areas where low-energy heavy ions interact with targets or with beam transport equipment and thereby produce significant levels of radiation. Methods to predict doses and to assist shielding design are desirable. The Particle and Heavy Ion Transport code System (PHITS) has been typically used to predict radiation levels around high-energy (above 100 MeV amu(-1)) heavy ion accelerator facilities. However, predictions by PHITS of radiation levels around low-energy (around 10 MeV amu(-1)) heavy ion facilities to our knowledge have not yet been investigated. The influence of the "switching time" in PHITS calculations of low-energy heavy ion reactions, defined as the time when the JAERI Quantum Molecular Dynamics model (JQMD) calculation stops and the Generalized Evaporation Model (GEM) calculation begins, was studied using neutron energy spectra from 6.25 MeV amu(-1) and 10 MeV amu(-1) (12)C ions and 10 MeV amu(-1) (16)O ions incident on a copper target. Using a value of 100 fm c(-1) for the switching time, calculated neutron energy spectra obtained agree well with the experimental data. PHITS was then used with the switching time of 100 fm c(-1) to simulate an experimental study by Ohnesorge et al. by calculating neutron dose equivalent rates produced by 3 MeV amu(-1) to 16 MeV amu(-1) (12)C, (14)N, (16)O, and (20)Ne beams incident on iron, nickel and copper targets. The calculated neutron dose equivalent rates agree very well with the data and follow a general pattern which appears to be insensitive to the heavy ion species but is sensitive to the target material.

  13. The Equivalence Principle Experiment for Spin-Polarized Bodies

    NASA Astrophysics Data System (ADS)

    Hsieh, Chang-Huain; Jen, Pin-Yun; Ko, Kai-Li; Li, Keh-Yann; Ni, Wei-Tou; Pan, Sheau-Shi; Shih, Yung-Hui; Tyan, Rong-Jung

    We perform an equivalence principle experiment for a magnetically shielded spin-polarized body of Dy6Fe23. We use a single-pan mass comparator to compare the spin-polarized body with an unpolarized group of masses. The equivalence of spin-up and spin-down positions is good to (1.1 ±7.8)×10-9 in earth gravitational field.

  14. A New Test Method for Material Flammability Assessment in Microgravity and Extraterrestrial Environments

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Beeson, H. D.; Haas, J. P.; Baas, J. S.

    2004-01-01

    The standard oxygen consumption (cone) calorimeter (described in ASTM E 1354 and NASA STD 6001 Test 2) is modified to provide a bench-scale test environment that simulates the low velocity buoyant or ventilation flow generated by or around a burning surface in a spacecraft or extraterrestrial gravity level. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone geometry with the sample burning in a ceiling fire (stagnation flow) configuration. For a fixed radiant flux, ignition delay times for characterization material PMMA are shown to decrease by a factor of three at low stretch, demonstrating that ignition delay times determined from normal cone tests significantly underestimate the risk in microgravity. The critical heat flux for ignition is found to be lowered at low stretch as the convective cooling is reduced. At the limit of no stretch, any heat flux that exceeds the surface radiative loss at the surface ignition temperature is sufficient for ignition. Regression rates for PMMA increase with heat flux and stretch rate, but regression rates are much more sensitive to heat flux at the low stretch rates, where a modest increase in heat flux of 25 kW/m2 increases the burning rates by an order of magnitude. The global equivalence ratio of these flames is very fuel rich, and the quantity of CO produced in this configuration is significantly higher than standard cone tests. These results [2] demonstrate the ELSA apparatus allows us to conduct normal gravity experiments that accurately and quantifiably evaluate a material s flammability characteristics in the real-use environment of spacecraft or extra-terrestrial gravitational acceleration. These results also demonstrate that current NASA STD 6001 Test 2 (standard cone) is not conservative since it evaluates materials flammability with a much higher inherent buoyant convective flow.

  15. Calculation of water equivalent ratio of several dosimetric materials in proton therapy using FLUKA code and SRIM program.

    PubMed

    Akbari, Mahmoud Reza; Yousefnia, Hassan; Mirrezaei, Ehsan

    2014-08-01

    Water equivalent ratio (WER) was calculated for different proton energies in polymethyl methacrylate (PMMA), polystyrene (PS) and aluminum (Al) using FLUKA and SRIM codes. The results were compared with analytical, experimental and simulated SEICS code data obtained from the literature. The biggest difference between the codes was 3.19%, 1.9% and 0.67% for Al, PMMA and PS, respectively. FLUKA and SEICS had the greatest agreement (≤0.77% difference for PMMA and ≤1.08% difference for Al, respectively) with the experimental data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Estimation of beam material random field properties via sensitivity-based model updating using experimental frequency response functions

    NASA Astrophysics Data System (ADS)

    Machado, M. R.; Adhikari, S.; Dos Santos, J. M. C.; Arruda, J. R. F.

    2018-03-01

    Structural parameter estimation is affected not only by measurement noise but also by unknown uncertainties which are present in the system. Deterministic structural model updating methods minimise the difference between experimentally measured data and computational prediction. Sensitivity-based methods are very efficient in solving structural model updating problems. Material and geometrical parameters of the structure such as Poisson's ratio, Young's modulus, mass density, modal damping, etc. are usually considered deterministic and homogeneous. In this paper, the distributed and non-homogeneous characteristics of these parameters are considered in the model updating. The parameters are taken as spatially correlated random fields and are expanded in a spectral Karhunen-Loève (KL) decomposition. Using the KL expansion, the spectral dynamic stiffness matrix of the beam is expanded as a series in terms of discretized parameters, which can be estimated using sensitivity-based model updating techniques. Numerical and experimental tests involving a beam with distributed bending rigidity and mass density are used to verify the proposed method. This extension of standard model updating procedures can enhance the dynamic description of structural dynamic models.

  17. Development and testing of culturally sensitive patient information material for Turkish, Polish, Russian and Italian migrants with depression or chronic low back pain (KULTINFO): study protocol for a double-blind randomized controlled trial.

    PubMed

    Hölzel, Lars P; Ries, Zivile; Zill, Jördis M; Kriston, Levente; Dirmaier, Jörg; Härter, Martin; Bermejo, Isaac

    2014-07-04

    Many of the approximately 15 million people with a migration background living in Germany (19% of the population) are inadequately reached by existing healthcare provision. In the literature, the necessity for cultural adaptation of information material for patients with a migration background is often cited as a measure for improving healthcare.In this study, culturally sensitive information material will be developed and evaluated for patients with a migration background and depression or chronic low back pain. In this respect, it will be examined whether culturally sensitive information material is judged as more useful by the patients than standard translated patient information without cultural adaptation. The implementation and evaluation of culturally sensitive patient information material will occur in the framework of a double-blind randomized controlled parallel-group study in four study centres in Germany. Primary care patients with a Turkish, Polish, Russian or Italian migration background with a diagnosis of depressive disorder or chronic low back pain will be included and randomly allocated to the intervention group or the control group. In the intervention group, culturally sensitive patient information will be handed to the patient at the end of the physician consultation, while in the control group, standard translated patient information material will be provided. The patients will be surveyed by means of questionnaires following the consultation as well as after 8 weeks and 6 months. In addition to the primary outcome (subjective usefulness), several patient- and physician-rated secondary outcomes will be considered. The study will provide an empirical answer to the question of whether persons with a migration background perceive culturally sensitive patient information material as more useful than translated information material without cultural adaptation. Deutsches Register Klinischer Studien (DRKS-ID) DRKS00004241 and Universal Trial Number

  18. Equivalent statistics and data interpretation.

    PubMed

    Francis, Gregory

    2017-08-01

    Recent reform efforts in psychological science have led to a plethora of choices for scientists to analyze their data. A scientist making an inference about their data must now decide whether to report a p value, summarize the data with a standardized effect size and its confidence interval, report a Bayes Factor, or use other model comparison methods. To make good choices among these options, it is necessary for researchers to understand the characteristics of the various statistics used by the different analysis frameworks. Toward that end, this paper makes two contributions. First, it shows that for the case of a two-sample t test with known sample sizes, many different summary statistics are mathematically equivalent in the sense that they are based on the very same information in the data set. When the sample sizes are known, the p value provides as much information about a data set as the confidence interval of Cohen's d or a JZS Bayes factor. Second, this equivalence means that different analysis methods differ only in their interpretation of the empirical data. At first glance, it might seem that mathematical equivalence of the statistics suggests that it does not matter much which statistic is reported, but the opposite is true because the appropriateness of a reported statistic is relative to the inference it promotes. Accordingly, scientists should choose an analysis method appropriate for their scientific investigation. A direct comparison of the different inferential frameworks provides some guidance for scientists to make good choices and improve scientific practice.

  19. 30 CFR 90.206 - Approved sampling devices; equivalent concentrations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved sampling devices; equivalent... LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-COAL MINERS WHO HAVE EVIDENCE OF THE DEVELOPMENT OF PNEUMOCONIOSIS Sampling Procedures § 90.206 Approved sampling devices; equivalent...

  20. 40 CFR 133.105 - Treatment equivalent to secondary treatment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Treatment equivalent to secondary treatment. 133.105 Section 133.105 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS SECONDARY TREATMENT REGULATION § 133.105 Treatment equivalent to secondary treatment...