Science.gov

Sample records for equivalent material sensitivity

  1. The effect of high-resolution parallel-hole collimator materials with a pixelated semiconductor SPECT system at equivalent sensitivities: Monte Carlo simulation studies

    NASA Astrophysics Data System (ADS)

    Lee, Young-Jin; Kim, Dae-Hong; Kim, Hee-Joung

    2014-04-01

    In nuclear medicine, the use of a pixelated semiconductor detector with cadmium telluride (CdTe) or cadmium zinc telluride (CdZnTe) is of growing interest for new devices. Especially, the spatial resolution can be improved by using a pixelated parallel-hole collimator with equal holes and pixel sizes based on the above-mentioned detector. High-absorption and high-stopping-power pixelated parallel-hole collimator materials are often chosen because of their good spatial resolution. Capturing more gamma rays, however, may result in decreased sensitivity with the same collimator geometric designs. Therefore, a trade-off between spatial resolution and sensitivity is very important in nuclear medicine imaging. The purpose of this study was to compare spatial resolutions using a pixelated semiconductor single photon emission computed tomography (SPECT) system with lead, tungsten, gold, and depleted uranium pixelated parallel-hole collimators at equal sensitivity. We performed a simulation study of the PID 350 (Ajat Oy Ltd., Finland) CdTe pixelated semiconductor detector (pixel size: 0.35 × 0.35 mm2) by using a Geant4 Application for Tomographic Emission (GATE) simulation. Spatial resolutions were measured with different collimator materials at equivalent sensitivities. Additionally, hot-rod phantom images were acquired for each source-to-collimator distance by using a GATE simulation. At equivalent sensitivities, measured averages of the full width at half maximum (FWHM) using lead, tungsten, and gold were 4.32, 2.93, and 2.23% higher than that of depleted uranium, respectively. Furthermore, for the full width at tenth maximum (FWTM), measured averages when using lead, tungsten, and gold were 6.29, 4.10, and 2.65% higher than that of depleted uranium, respectively. Although, the spatial resolution showed little differences among the different pixelated parallel-hole collimator materials, lower absorption and stopping power materials such as lead and tungsten had

  2. Explosive materials equivalency, test methods and evaluation

    NASA Technical Reports Server (NTRS)

    Koger, D. M.; Mcintyre, F. L.

    1980-01-01

    Attention is given to concepts of explosive equivalency of energetic materials based on specific airblast parameters. A description is provided of a wide bandwidth high accuracy instrumentation system which has been used extensively in obtaining pressure time profiles of energetic materials. The object of the considered test method is to determine the maximum output from the detonation of explosive materials in terms of airblast overpressure and positive impulse. The measured pressure and impulse values are compared with known characteristics of hemispherical TNT data to determine the equivalency of the test material in relation to TNT. An investigation shows that meaningful comparisons between various explosives and a standard reference material such as TNT should be based upon the same parameters. The tests should be conducted under the same conditions.

  3. Muscle-Equivalent Environmental Radiation Meter of Extreme Sensitivity.

    PubMed

    Kastner, J; Rose, J E; Shonka, F R

    1963-06-01

    A 16.5 liter spherical ion chamber was constructed of conducting muscle-equivalent plastic and filled to 760 mm-Hg with a muscle-equivalent gas. The use of the chamber for measurements of natural environmental backgrounds was made quite feasible with the aid of the recently developed Shonka vibrating quartz fiber electrometer. This instrument is routinely operable at the extremely high sensitivity of better than 5000 divisions per volt. This system, therefore, has made possible reproducible measurements of absorbed dose-rates of fractions of a micro-rad per hour without any need for the usual corrections for wall-effect, stopping power, and so forth. PMID:17794904

  4. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    NASA Astrophysics Data System (ADS)

    Bero, M. A.; Abukassem, I.

    2009-05-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  5. Wave propagation in equivalent continuums representing truss lattice materials

    SciTech Connect

    Messner, Mark C.; Barham, Matthew I.; Kumar, Mukul; Barton, Nathan R.

    2015-07-29

    Stiffness scales linearly with density in stretch-dominated lattice meta-materials offering the possibility of very light yet very stiff structures. Current additive manufacturing techniques can assemble structures consisting of these lattice materials, but the design of such structures will require accurate, efficient simulation techniques. Equivalent continuum models have several advantages over discrete truss models of stretch dominated lattices, including computational efficiency and ease of model construction. However, the development an equivalent model suitable for representing the dynamic response of a periodic truss is complicated by microinertial effects. This paper derives a dynamic equivalent continuum model for periodic truss structures and verifies it against detailed finite element simulations. The model must incorporate microinertial effects to accurately reproduce long-wavelength characteristics of the response such as anisotropic elastic soundspeeds. The formulation presented here also improves upon previous work by preserving equilibrium at truss joints for affine lattice deformation and by improving numerical stability by eliminating vertices in the effective yield surface.

  6. Equivalent-Continuum Modeling of Nano-Structured Materials

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2001-01-01

    A method has been developed for modeling structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with an equivalent-continuum model. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As an important example with direct application to the development and characterization of single-walled carbon nanotubes, the model has been applied to determine the effective continuum geometry of a graphene sheet. A representative volume element of the equivalent-continuum model has been developed with an effective thickness. This effective thickness has been shown to be similar to, but slightly smaller than, the interatomic spacing of graphite.

  7. Wave propagation in equivalent continuums representing truss lattice materials

    DOE PAGESBeta

    Messner, Mark C.; Barham, Matthew I.; Kumar, Mukul; Barton, Nathan R.

    2015-07-29

    Stiffness scales linearly with density in stretch-dominated lattice meta-materials offering the possibility of very light yet very stiff structures. Current additive manufacturing techniques can assemble structures consisting of these lattice materials, but the design of such structures will require accurate, efficient simulation techniques. Equivalent continuum models have several advantages over discrete truss models of stretch dominated lattices, including computational efficiency and ease of model construction. However, the development an equivalent model suitable for representing the dynamic response of a periodic truss is complicated by microinertial effects. This paper derives a dynamic equivalent continuum model for periodic truss structures and verifiesmore » it against detailed finite element simulations. The model must incorporate microinertial effects to accurately reproduce long-wavelength characteristics of the response such as anisotropic elastic soundspeeds. The formulation presented here also improves upon previous work by preserving equilibrium at truss joints for affine lattice deformation and by improving numerical stability by eliminating vertices in the effective yield surface.« less

  8. Water equivalent phantom materials for (192)Ir brachytherapy.

    PubMed

    Schoenfeld, Andreas A; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor

    2015-12-21

    Several solid phantom materials have been tested regarding their suitability as water substitutes for dosimetric measurements in brachytherapy with (192)Ir as a typical high energy photon emitter. The radial variations of the spectral photon fluence, of the total, primary and scattered photon fluence and of the absorbed dose to water in the transversal plane of the tested cylindrical phantoms surrounding a centric and coaxially arranged Varian GammaMed afterloading (192)Ir brachytherapy source were Monte-Carlo simulated in EGSnrc. The degree of water equivalence of a phantom material was evaluated by comparing the radial dose-to-water profile in the phantom material with that in water. The phantom size was varied over a large range since it influences the dose contribution by scattered photons with energies diminished by single and multiple Compton scattering. Phantom axis distances up to 10 cm were considered as clinically relevant. Scattered photons with energies reaching down into the 25 keV region dominate the photon fluence at source distances exceeding 3.5 cm.The tested phantom materials showed significant differences in the degree of water equivalence. In phantoms with radii up to 10 cm, RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, and Plastic Water LR phantoms show excellent water equivalence with dose deviations from a water phantom not exceeding 0.8%, while Original Plastic Water (as of 2015), Plastic Water (1995), Blue Water, polyethylene, and polystyrene show deviations up to 2.6%. For larger phantom radii up to 30 cm, the deviations for RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, and Plastic Water LR remain below 1.4%, while Original Plastic Water (as of 2015), Plastic Water (1995), Blue Water, polyethylene, and polystyrene produce deviations up to 8.1%. PMMA plays a separate role, with deviations up to 4.3% for radii not exceeding 10 cm, but below 1% for radii up to 30 cm.As suggested

  9. Water equivalent phantom materials for 192Ir brachytherapy

    NASA Astrophysics Data System (ADS)

    Schoenfeld, Andreas A.; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor

    2015-12-01

    Several solid phantom materials have been tested regarding their suitability as water substitutes for dosimetric measurements in brachytherapy with 192Ir as a typical high energy photon emitter. The radial variations of the spectral photon fluence, of the total, primary and scattered photon fluence and of the absorbed dose to water in the transversal plane of the tested cylindrical phantoms surrounding a centric and coaxially arranged Varian GammaMed afterloading 192Ir brachytherapy source were Monte-Carlo simulated in EGSnrc. The degree of water equivalence of a phantom material was evaluated by comparing the radial dose-to-water profile in the phantom material with that in water. The phantom size was varied over a large range since it influences the dose contribution by scattered photons with energies diminished by single and multiple Compton scattering. Phantom axis distances up to 10 cm were considered as clinically relevant. Scattered photons with energies reaching down into the 25 keV region dominate the photon fluence at source distances exceeding 3.5 cm. The tested phantom materials showed significant differences in the degree of water equivalence. In phantoms with radii up to 10 cm, RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, and Plastic Water LR phantoms show excellent water equivalence with dose deviations from a water phantom not exceeding 0.8%, while Original Plastic Water (as of 2015), Plastic Water (1995), Blue Water, polyethylene, and polystyrene show deviations up to 2.6%. For larger phantom radii up to 30 cm, the deviations for RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, and Plastic Water LR remain below 1.4%, while Original Plastic Water (as of 2015), Plastic Water (1995), Blue Water, polyethylene, and polystyrene produce deviations up to 8.1%. PMMA plays a separate role, with deviations up to 4.3% for radii not exceeding 10 cm, but below 1% for radii up to 30 cm. As suggested by

  10. Kinetic parameters of some tissue equivalent thermoluminescence materials

    NASA Astrophysics Data System (ADS)

    Kitis, G.; Furetta, C.; Prokic, M.; Prokic, V.

    2000-06-01

    The paper reports a study on the kinetic parameters of some thermoluminescent tissue equivalent materials recently prepared in Vinca Institute: Li2B4O7:Mn,Si, Li2B4O7:Cu, Li2B4O7:Cu,In and MgB4O7:Dy,Na. The kinetics parameters have been determined using several methods. The temperature lag effect, which could produce large errors in the parameters' determination when they are determined using high heating rates, has also been taken into consideration.

  11. Ignition Delay of Combustible Materials in Normoxic Equivalent Environments

    NASA Technical Reports Server (NTRS)

    McAllister, Sara; Fernandez-Pello, Carlos; Ruff, Gary; Urban, David

    2009-01-01

    Material flammability is an important factor in determining the pressure and composition (fraction of oxygen and nitrogen) of the atmosphere in the habitable volume of exploration vehicles and habitats. The method chosen in this work to quantify the flammability of a material is by its ease of ignition. The ignition delay time was defined as the time it takes a combustible material to ignite after it has been exposed to an external heat flux. Previous work in the Forced Ignition and Spread Test (FIST) apparatus has shown that the ignition delay in the currently proposed space exploration atmosphere (approximately 58.6 kPa and32% oxygen concentration) is reduced by 27% compared to the standard atmosphere used in the Space Shuttle and Space Station. In order to determine whether there is a safer environment in terms of material flammability, a series of piloted ignition delay tests using polymethylmethacrylate (PMMA) was conducted in the FIST apparatus to extend the work over a range of possible exploration atmospheres. The exploration atmospheres considered were the normoxic equivalents, i.e. reduced pressure conditions with a constant partial pressure of oxygen. The ignition delay time was seen to decrease as the pressure was reduced along the normoxic curve. The minimum ignition delay observed in the normoxic equivalent environments was nearly 30% lower than in standard atmospheric conditions. The ignition delay in the proposed exploration atmosphere is only slightly larger than this minimum. Interms of material flammability, normoxic environments with a higher pressure relative to the proposed pressure would be desired.

  12. Improved MAGIC gel for higher sensitivity and elemental tissue equivalent 3D dosimetry

    SciTech Connect

    Zhu Xuping; Reese, Timothy G.; Crowley, Elizabeth M.; El Fakhri, Georges

    2010-01-15

    Purpose: Polymer-based gel dosimeter (MAGIC type) is a preferable phantom material for PET range verification of proton beam therapy. However, improvement in elemental tissue equivalency (specifically O/C ratio) is very desirable to ensure realistic time-activity measurements. Methods: Glucose and urea was added to the original MAGIC formulation to adjust the O/C ratio. The dose responses of the new formulations were tested with MRI transverse relaxation rate (R2) measurements. Results: The new ingredients improved not only the elemental composition but also the sensitivity of the MAGIC gel. The O/C ratios of our new gels agree with that of soft tissue within 1%. The slopes of dose response curves were 1.6-2.7 times larger with glucose. The melting point also increased by 5 deg. C. Further addition of urea resulted in a similar slope but with an increased intercept and a decreased melting point. Conclusions: Our improved MAGIC gel formulations have higher sensitivity and better elemental tissue equivalency for 3D dosimetry applications involving nuclear reactions.

  13. Improved MAGIC gel for higher sensitivity and elemental tissue equivalent 3D dosimetry

    PubMed Central

    Zhu, Xuping; Reese, Timothy G.; Crowley, Elizabeth M.; El Fakhri, Georges

    2010-01-01

    Purpose: Polymer-based gel dosimeter (MAGIC type) is a preferable phantom material for PET range verification of proton beam therapy. However, improvement in elemental tissue equivalency (specifically O∕C ratio) is very desirable to ensure realistic time-activity measurements. Methods: Glucose and urea was added to the original MAGIC formulation to adjust the O∕C ratio. The dose responses of the new formulations were tested with MRI transverse relaxation rate (R2) measurements. Results: The new ingredients improved not only the elemental composition but also the sensitivity of the MAGIC gel. The O∕C ratios of our new gels agree with that of soft tissue within 1%. The slopes of dose response curves were 1.6–2.7 times larger with glucose. The melting point also increased by 5 °C. Further addition of urea resulted in a similar slope but with an increased intercept and a decreased melting point. Conclusions: Our improved MAGIC gel formulations have higher sensitivity and better elemental tissue equivalency for 3D dosimetry applications involving nuclear reactions. PMID:20175480

  14. Determination of noise equivalent reflectance for a multispectral scanner: A scanner sensitivity study

    NASA Technical Reports Server (NTRS)

    Gibbons, D. E.; Richard, R. R.

    1979-01-01

    The methods used to calculate the sensitivity parameter noise equivalent reflectance of a remote-sensing scanner are explored, and the results are compared with values measured over calibrated test sites. Data were acquired on four occasions covering a span of 4 years and providing various atmospheric conditions. One of the calculated values was based on assumed atmospheric conditions, whereas two others were based on atmospheric models. Results indicate that the assumed atmospheric conditions provide useful answers adequate for many purposes. A nomograph was developed to indicate sensitivity variations due to geographic location, time of day, and season.

  15. International ring trial of the epidermal equivalent sensitizer potency assay: reproducibility and predictive-capacity.

    PubMed

    Teunis, Marc A T; Spiekstra, Sander W; Smits, Mieke; Adriaens, Els; Eltze, Tobias; Galbiati, Valentina; Krul, Cyrille; Landsiedel, Robert; Pieters, Raymond; Reinders, Judith; Roggen, Erwin; Corsini, Emanuela; Gibbs, Susan

    2014-01-01

    This study describes the international ring trial of the epidermal-equivalent (EE) sensitizer potency assay. This assay does not distinguish a sensitizer from a non-sensitizer, but may classify known skin sensitizers according to their potency. It assesses the chemical concentration resulting in 50% cytotoxicity (EE-EC50) or the 2-fold increase in IL-1α (IL-1α2x). Four laboratories received 13 coded sensitizers. Reproducible results were obtained in each laboratory. A binary prediction model, EC50≥7 mg/ml=weak to moderate sensitizer and EC50<7 mg/ml=strong to extreme sensitizer had an accuracy of 77%. A superior EE (EC50 and IL-1α2x) correlation was observed with human in vivo DSA05 data compared to LLNA-EC3 data. Human in vivo NOEL and LLNA-EC3 data correlated to a similar extent to in vitro EE data. Our results indicate that this easily transferable EE potency assay is suitable for testing chemical allergens of unknown potencies and may now be ready for further validation, providing complementary potency information to other assays already undergoing validation for assessing skin sensitization potential. PMID:24535238

  16. Protective coatings for sensitive materials

    DOEpatents

    Egert, Charles M.

    1997-01-01

    An enhanced protective coating to prevent interaction between constituents of the environment and devices that can be damaged by those constituents. This coating is provided by applying a synergistic combination of diffusion barrier and physical barrier materials. These materials can be, for example, in the form of a plurality of layers of a diffusion barrier and a physical barrier, with these barrier layers being alternated. Further protection in certain instances is provided by including at least one layer of a getter material to actually react with one or more of the deleterious constituents. The coating is illustrated by using alternating layers of an organic coating (such as Parylene-C.TM.) as the diffusion barrier, and a metal coating (such as aluminum) as the physical barrier. For best results there needs to be more than one of at least one of the constituent layers.

  17. Protective coatings for sensitive materials

    DOEpatents

    Egert, C.M.

    1997-08-05

    An enhanced protective coating is disclosed to prevent interaction between constituents of the environment and devices that can be damaged by those constituents. This coating is provided by applying a synergistic combination of diffusion barrier and physical barrier materials. These materials can be, for example, in the form of a plurality of layers of a diffusion barrier and a physical barrier, with these barrier layers being alternated. Further protection in certain instances is provided by including at least one layer of a getter material to actually react with one or more of the deleterious constituents. The coating is illustrated by using alternating layers of an organic coating (such as Parylene-C{trademark}) as the diffusion barrier, and a metal coating (such as aluminum) as the physical barrier. For best results there needs to be more than one of at least one of the constituent layers. 4 figs.

  18. An epidermal equivalent assay for identification and ranking potency of contact sensitizers

    SciTech Connect

    Gibbs, Susan; Corsini, Emanuela; Spiekstra, Sander W.; Galbiati, Valentina; Fuchs, Horst W.; DeGeorge, George; Troese, Matthew; Hayden, Patrick; Deng, Wei; Roggen, Erwin

    2013-10-15

    The purpose of this study was to explore the possibility of combining the epidermal equivalent (EE) potency assay with the assay which assesses release of interleukin-18 (IL-18) to provide a single test for identification and classification of skin sensitizing chemicals, including chemicals of low water solubility or stability. A protocol was developed using different 3D-epidermal models including in house VUMC model, epiCS® (previously EST1000™), MatTek EpiDerm™ and SkinEthic™ RHE and also the impact of different vehicles (acetone:olive oil 4:1, 1% DMSO, ethanol, water) was investigated. Following topical exposure for 24 h to 17 contact allergens and 13 non-sensitizers a robust increase in IL-18 release was observed only after exposure to contact allergens. A putative prediction model is proposed from data obtained from two laboratories yielding 95% accuracy. Correlating the in vitro EE sensitizer potency data, which assesses the chemical concentration which results in 50% cytotoxicity (EE-EC{sub 50}) with human and animal data showed a superior correlation with human DSA{sub 05} (μg/cm{sup 2}) data (Spearman r = 0.8500; P value (two-tailed) = 0.0061) compared to LLNA data (Spearman r = 0.5968; P value (two-tailed) = 0.0542). DSA{sub 05} = induction dose per skin area that produces a positive response in 5% of the tested population Also a good correlation was observed for release of IL-18 (SI-2) into culture supernatants with human DSA{sub 05} data (Spearman r = 0.8333; P value (two-tailed) = 0.0154). This easily transferable human in vitro assay appears to be very promising, but additional testing of a larger chemical set with the different EE models is required to fully evaluate the utility of this assay and to establish a definitive prediction model. - Highlights: • A potential epidermal equivalent assay to label and classify sensitizers • Il-18 release distinguishes sensitizers from non sensitizers • IL-18 release can rank sensitizer potency

  19. 46 CFR 42.15-30 - Hatchways closed by weathertight covers of steel or other equivalent material fitted with gaskets...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... other equivalent material fitted with gaskets and clamping devices. 42.15-30 Section 42.15-30 Shipping... equivalent material fitted with gaskets and clamping devices. (a) Hatchway coamings. At positions 1 and 2 the... equivalent material fitted with gaskets and clamping devices shall be as specified in § 42.15-25(a)(1)....

  20. 46 CFR 42.15-30 - Hatchways closed by weathertight covers of steel or other equivalent material fitted with gaskets...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... other equivalent material fitted with gaskets and clamping devices. 42.15-30 Section 42.15-30 Shipping... equivalent material fitted with gaskets and clamping devices. (a) Hatchway coamings. At positions 1 and 2 the... equivalent material fitted with gaskets and clamping devices shall be as specified in § 42.15-25(a)(1)....

  1. Water equivalence of NIPAM based polymer gel dosimeters with enhanced sensitivity for x-ray CT

    NASA Astrophysics Data System (ADS)

    Gorjiara, Tina; Hill, Robin; Bosi, Stephen; Kuncic, Zdenka; Baldock, Clive

    2013-10-01

    Two new formulations of N-isopropylacrylamide (NIPAM) based three dimensional (3D) gel dosimeters have recently been developed with improved sensitivity to x-ray CT readout, one without any co-solvent and the other one with isopropanol co-solvent. The water equivalence of the NIPAM gel dosimeters was investigated using different methods to calculate their radiological properties including: density, electron density, number of electrons per grams, effective atomic number, photon interaction probabilities, mass attenuation and energy absorption coefficients, electron collisional, radiative and total mass stopping powers and electron mass scattering power. Monte Carlo modelling was also used to compare the dose response of these gel dosimeters with water for kilovoltage and megavoltage x-ray beams and for megavoltage electron beams. We found that the density and electron density of the co-solvent free gel dosimeter are more water equivalent with less than a 2.6% difference compared to a 5.7% difference for the isopropanol gel dosimeter. Both the co-solvent free and isopropanol solvent gel dosimeters have lower effective atomic numbers than water, differing by 2.2% and 6.5%, respectively. As a result, their photoelectric absorption interaction probabilities are up to 6% and 19% different from water, respectively. Compton scattering and pair production interaction probabilities of NIPAM gel with isopropanol differ by up to 10% from water while for the co-solvent free gel, the differences are 3%. Mass attenuation and energy absorption coefficients of the co-solvent free gel dosimeter and the isopropanol gel dosimeter are up to 7% and 19% lower than water, respectively. Collisional and total mass stopping powers of both gel dosimeters differ by less than 2% from those of water. The dose response of the co-solvent free gel dosimeter is water equivalent (with <1% discrepancy) for dosimetry of x-rays with energies <100 keV while the discrepancy increases (up to 5%) for the

  2. Derivation of Accident-Specific Material-at-Risk Equivalency Factors

    SciTech Connect

    Jason P. Andrus; Dr. Chad L. Pope

    2012-05-01

    A novel method for calculating material at risk (MAR) dose equivalency developed at the Idaho National Laboratory (INL) now allows for increased utilization of dose equivalency for facility MAR control. This method involves near-real time accounting for the use of accident and material specific release and transport. It utilizes all information from the committed effective dose equation and the five factor source term equation to derive dose equivalency factors which can be used to establish an overall facility or process MAR limit. The equivalency factors allow different nuclide spectrums to be compared for their respective dose consequences by relating them to a specific quantity of an identified reference nuclide. The ability to compare spectrums to a reference limit ensures that MAR limits are in fact bounding instead of attempting to establish a representative or bounding spectrum which may lead to unintended or unanalyzed configurations. This methodology is then coupled with a near real time material tracking system which allows for accurate and timely material composition information and corresponding MAR equivalency values. The development of this approach was driven by the complex nature of processing operations in some INL facilities. This type of approach is ideally suited for facilities and processes where the composition of the MAR and possible release mechanisms change frequently but in well defined fashions and in a batch-type nature.

  3. Remote Monitoring of Sensitive Nuclear Materials.

    SciTech Connect

    MacArthur, D. W.; Langner, D. C.

    2005-01-01

    Remote and/or unattended monitoring of safeguarded nuclear materials is a reasonably well-understood problem, and a number of well-developed measurement and data transmission technologies are available in this field. The advantages of remote monitoring - in terms of cost, time, and access requirements - have been widely documented. Even so, there are still some major challenges posed by remote/unattended monitoring, including (1) the culling of interesting events from very large data sets and (2) the authentication (by the inspector) of transmitted measurement data. In addition to these, remote/unattended monitoring of sensitive material brings another series of challenges. For examples, the host country may have concerns about information that could be released about the material itself. Not only could the material's characteristics be sensitive, but its location and movements could be as well. Although these issues are closely related to issues associated with measuring sensitive materials in an attended mode, they add another set of inspector needs and host requirements to the scenario. If a conceptual remote monitoring system for sensitive materials is created, three overlapping areas of concern can be seen. The first concern, primarily from the host's point of view, is that sensitive information must be protected without interfering in the efficient operation of the facility being monitored. The second concern, of particular interest to the inspector, is that it must be possible to authenticate the data, both during monitoring or measurement and after transmission. Finally, the third concern is that the verification system must be reliable and robust, which is a concern of both parties.

  4. Tissue equivalency of phantom materials for neutron dosimetry in proton therapy

    SciTech Connect

    Dowdell, Stephen; Clasie, Ben; Wroe, Andrew; Guatelli, Susanna; Metcalfe, Peter; Schulte, Reinhard; Rosenfeld, Anatoly

    2009-12-15

    Purpose: Previous Monte Carlo and experimental studies involving secondary neutrons in proton therapy have employed a number of phantom materials that are designed to represent human tissue. In this study, the authors determined the suitability of common phantom materials for dosimetry of secondary neutrons, specifically for pediatric and intracranial proton therapy treatments. Methods: This was achieved through comparison of the absorbed dose and dose equivalent from neutrons generated within the phantom materials and various ICRP tissues. The phantom materials chosen for comparison were Lucite, liquid water, solid water, and A150 tissue equivalent plastic. These phantom materials were compared to brain, muscle, and adipose tissues. Results: The magnitude of the doses observed were smaller than those reported in previous experimental and Monte Carlo studies, which incorporated neutrons generated in the treatment head. The results show that for both neutron absorbed dose and dose equivalent, no single phantom material gives agreement with tissue within 5% at all the points considered. Solid water gave the smallest mean variation with the tissues out of field where neutrons are the primary contributor to the total dose. Conclusions: Of the phantom materials considered, solid water shows best agreement with tissues out of field.

  5. Polyurethane as a base for a family of tissue equivalent materials

    SciTech Connect

    Griffith, R.V.

    1980-01-01

    Polyurethane was used as a base material for a wide variety of tissue simulating applications. The technique in fabrication is similar to that of epoxy, however, the end products are generally more flexible for use in applications where flexibility is valuable. The material can be fabricated with relatively small laboratory equipment. The use of polyurethane provides the dosimetrist with the capability of making specific, accurate, on-the-spot tissue equivalent formulations to meet situations which require immediate calibration and response.

  6. Material characteristics and equivalent circuit models of stacked graphene oxide for capacitive humidity sensors

    NASA Astrophysics Data System (ADS)

    Han, Kook In; Kim, Seung Du; Yang, Woo Seok; Kim, Hyeong Seok; Shin, Myunghun; Kim, Jong Pil; Lee, In Gyu; Cho, Byung Jin; Hwang, Wan Sik

    2016-03-01

    The oxidation properties of graphene oxide (GO) are systematically correlated with their chemical sensing properties. Based on an impedance analysis, the equivalent circuit models of the capacitive sensors are established, and it is demonstrated that capacitive operations are related to the degree of oxidation. This is also confirmed by X-ray diffraction and Raman analysis. Finally, highly sensitive stacked GO sensors are shown to detect humidity in capacitive mode, which can be useful in various applications requiring low power consumption.

  7. Measuring Child Poverty in South Africa: Sensitivity to the Choice of Equivalence Scale and an Updated Profile

    ERIC Educational Resources Information Center

    Streak, Judith Christine; Yu, Derek; Van der Berg, Servaas

    2009-01-01

    This paper offers evidence on the sensitivity of child poverty in South Africa to changes in the adult equivalence scale (AES) and updates the child poverty profile based on the Income and Expenditure Survey 2005/06. Setting the poverty line at the 40th percentile of households calculated with different AESs the scope and composition of child…

  8. SU-E-T-329: Tissue-Equivalent Phantom Materials for Neutron Dosimetry in Proton Therapy

    SciTech Connect

    Halg, R; Lomax, A; Clarke, S; Wieger, B; Pryser, E; Arghal, R; Pozzi, S; Bashkirov, V; Schulte, R; Schneider, U

    2014-06-01

    Purpose: To characterize tissue equivalence of phantom materials in terms of secondary neutron production and dose deposition from neutrons produced in radiation therapy phantom materials in the context of proton therapy using Monte Carlo simulations and measurements. Methods: In order to study the influence of material choice on neutron production in therapeutic proton beams, Monte Carlo simulations using the Geant4 and MCNPX-PoliMi transport codes were performed to generate the neutron fields produced by protons of 155 and 200 MeV. A simple irradiation geometry was used to investigate the effect of different materials. The proton beams were stopped in slab phantoms to study the production of secondary neutrons. The investigated materials were water, Lucite, and tissue-equivalent phantom materials (CIRS Inc., Norfolk, VA). Neutron energy spectra and absorbed dose by neutrons and their secondary particles were scored. In addition, simulations were performed for reference tissues (ICRP/ICRU) to assess tissue equivalence with respect to neutron generation and transport. In order to benchmark the simulation results, measurements were performed with a system developed at the University of Michigan; organic liquid scintillators were used to detect the neutron emissions from the irradiation of tissue-equivalent materials. Additionally, the MPPost code was used to calculate the scintillator response from the MCNPX-PoliMi output. Results: The simulated energy spectra and depth dose curves of the neutrons produced in different phantom materials showed similar shape. The differences of spectra and fluences between all studied materials and reference tissues were well within the achievable precision of neutron dosimetry. The shape of the simulated detector response of the liquid scintillators agreed well with measurements on the proton beamline. Conclusion: Based on Geant4 and MCNPX-PoliMi simulations, the investigated materials appear to be suitable to study the production

  9. Spacecraft Charging Sensitivity to Material Properties

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Edwards, David L.

    2015-01-01

    Evaluating spacecraft charging behavior of a vehicle in the space environment requires knowledge of the material properties relevant to the charging process. Implementing surface and internal charging models requires a user to specify a number of material electrical properties including electrical resistivity parameters (dark and radiation induced), dielectric constant, secondary electron yields, photoemission yields, and breakdown strength in order to correctly evaluate the electric discharge threat posed by the increasing electric fields generated by the accumulating charge density. In addition, bulk material mass density and/or chemical composition must be known in order to analyze radiation shielding properties when evaluating internal charging. We will first describe the physics of spacecraft charging and show how uncertainties in material properties propagate through spacecraft charging algorithms to impact the results obtained from charging models. We then provide examples using spacecraft charging codes to demonstrate their sensitivity to material properties. The goal of this presentation is to emphasize the importance in having good information on relevant material properties in order to best characterize on orbit charging threats.

  10. Thermoluminescence sensitivity of daily-use materials

    NASA Astrophysics Data System (ADS)

    Correcher, V.; Garcia-Guinea, J.; Rivera, T.

    The thermoluminescence (TL) response of silicon-rich daily-use materials, namely charoite (silicate gemstone), Spanish dental crown, phone chip and Spanish glass has been investigated. All the samples previously characterised by means of X-ray diffraction, electron microscopy associated with energy-dispersion and wavelength-dispersive spectrometry and X-ray fluorescence exhibit a reasonable sensitivity to ionising radiation. The preliminary results, based on their TL properties, allow us to speculate that these materials could be potentially of interest in situations where conventional dosimetric systems are not available. The dose dependence of the 400 nm TL emission of the studied samples displays a very good linearity in the range of 0.1-10 Gy.

  11. Field-Sensitive Materials for Optical Applications

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Little, Mark

    2002-01-01

    The purpose of investigation is to develop the fundamental materials and fabrication technology for field-controlled spectrally active optics that are essential for industry, NASA, and DOD (Department of Defense) applications such as: membrane optics, filters for LIDARs (Light Detection and Ranging), windows for sensors and probes, telescopes, spectroscopes, cameras, light valves, light switches, flat-panel displays, etc. The proposed idea is based on the quantum-dots (QD) array or thin-film of field-sensitive Stark and Zeeman materials and the bound excitonic state of organic crystals that will offer optical adaptability and reconfigurability. Major tasks are the development of concept demonstration article and test data of field-controlled spectrally smart active optics (FCSAO) for optical multi-functional capabilities on a selected spectral range.

  12. Equivalent circuit for VO{sub 2} phase change material film in reconfigurable frequency selective surfaces

    SciTech Connect

    Sanphuang, Varittha; Ghalichechian, Nima; Nahar, Niru K.; Volakis, John L.

    2015-12-21

    We developed equivalent circuits of phase change materials based on vanadium dioxide (VO{sub 2}) thin films. These circuits are used to model VO{sub 2} thin films for reconfigurable frequency selective surfaces (FSSs). This is important as it provides a way for designing complex structures. A reconfigurable FSS filter using VO{sub 2} ON/OFF switches is designed demonstrating −60 dB isolation between the states. This filter is used to provide the transmission and reflection responses of the FSS in the frequency range of 0.1–0.6 THz. The comparison between equivalent circuit and full-wave simulation shows excellent agreement.

  13. High sensitive materials in medical holographic microscopy

    NASA Astrophysics Data System (ADS)

    Osanlou, A.; Snashall, E.; Osanlou, O.; Osanlou, R.; Mirlis, E.; Shi, Lishen; Bjelkhagen, H.

    2015-02-01

    High sensitivity is defined in relation to the energy required to perform holographic recording. High sensitivity in silver halide materials is their main advantage over other similarly high resolving power holographic recording materials. This work reports progress on the development of silver halide based 'true colour holographic imaging', under a microscope. A thin layer of ultrafine grains of silver halide crystals of around 10 nm average diameter, dispersed in a colloid and coated on a substrate is used as the recording media. The significance of this method so far, is in its ability to produce 'true colour' three-dimensional images of specimen. The recordings have an appreciable depth, permitting the observer to scan through the image under a microscope, as one might with a real specimen sample. Current methods could perform ' True colour holographic imaging' directly under a microscope. The recording methodology has the potential for deeper complex and scattering media imaging, using very small pulses of appropriate laser wavelengths. The methodology, using novel nanosize panchromatic recording media consisting of dispersed fine nano grain crystals, could potentially revolutionise related medical imaging techniques. Future development of digital media will allow it to be utilized in this manner.

  14. Positron range in tissue-equivalent materials: experimental microPET studies

    NASA Astrophysics Data System (ADS)

    Alva-Sánchez, H.; Quintana-Bautista, C.; Martínez-Dávalos, A.; Ávila-Rodríguez, M. A.; Rodríguez-Villafuerte, M.

    2016-09-01

    In this work an experimental investigation was carried out to study the effect that positron range has over positron emission tomography (PET) scans through measurements of the line spread function (LSF) in tissue-equivalent materials. Line-sources consisted of thin capillary tubes filled with 18F, 13N or 68Ga water-solution inserted along the axis of symmetry of cylindrical phantoms constructed with the tissue-equivalent materials: lung (inhale and exhale), adipose tissue, solid water, trabecular and cortical bone. PET scans were performed with a commercial small-animal PET scanner and image reconstruction was carried out with filtered-backprojection. Line-source distributions were analyzed using radial profiles taken on axial slices from which the spatial resolution was determined through the full-width at half-maximum, tenth-maximum, twentieth-maximum and fiftieth-maximum. A double-Gaussian model of the LSFs was used to fit experimental data which can be incorporated into iterative reconstruction methods. In addition, the maximum activity concentration in the line-sources was determined from reconstructed images and compared to the known values for each case. The experimental data indicates that positron range in different materials has a strong effect on both spatial resolution and activity concentration quantification in PET scans. Consequently, extra care should be taken when computing standard-uptake values in PET scans, in particular when the radiopharmaceutical is taken up by different tissues in the body, and more even so with high-energy positron emitters.

  15. EQUIVALENCE BETWEEN SHORT-TIME BIPHASIC AND INCOMPRESSIBLE ELASTIC MATERIAL RESPONSES

    PubMed Central

    Ateshian, Gerard A.; Ellis, Benjamin J.; Weiss, Jeffrey A.

    2009-01-01

    Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response δt≪Δ2/‖C4‖||K||, where Δ is a characteristic dimension, C4 is the elasticity tensor and K is the hydraulic permeability tensor of the solid matrix. Certain notes of caution are provided with regard to implementation issues, particularly when finite element formulations of incompressible elasticity employ an uncoupled strain energy function consisting of additive deviatoric and volumetric components. PMID:17536908

  16. Low energy photon attenuation measurements of hydrophilic materials for tissue equivalent phantoms.

    PubMed

    Farquharson, M J; Spyrou, N M; al-Bahri, J; Highgate, D J

    1995-08-01

    The object of the study was to measure the linear attenuation coefficients of hydrophilic materials with the aim of investigating their suitability as tissue equivalent materials. Hydrophilic materials are used in the ophthalmic industry for the manufacture of soft contact lenses. Hydrophilic materials have the trade name "Biogel" and are commonly known as hydrogels. Two types of hydrophilic material were tested, ED4C (72% water uptake by weight) and EDIS (60% water uptake by weight). The measurements were obtained using gamma-ray photons of energy 59.5 keV, and x-ray photons of energies 44.23 and 17.44 keV. Measurements were made for material types ED4C and EDIS in both the dry and fully hydrated state. Measurements were also made on powdered samples of ED4C at different hydration levels using a photon energy of 17.44 keV and powdered samples of EDIS at different hydration levels using a photon energy of 59.5 keV. The precision of the measurements was approx. 1%. It was found that material ED4C has linear attenuation coefficients that closely match those of the calculated values for soft tissue across the range of energies used. PMID:7633393

  17. Modelling parallel assemblies of porous materials using the equivalent circuit method.

    PubMed

    Pieren, Reto; Heutschi, Kurt

    2015-02-01

    Recently, the accuracy of the parallel transfer matrix method (P-TMM) and the admittance sum method (ASM) in the prediction of the absorption properties of parallel assemblies of materials was investigated [Verdière, Panneton, Elkoun, Dupont, and Leclaire, J. Acoust. Soc. Am. 136, EL90-EL95 (2014)]. It was demonstrated that P-TMM is more versatile than ASM, as a larger variety of different backing configurations can be handled. Here it will be shown that the same universality is offered by the equivalent circuit method. PMID:25698040

  18. To probe the equivalence and opulence of nanocrystal and nanotube based dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Jyoti, Divya; Mohan, Devendra

    2016-05-01

    Dye-Sensitized solar cells based on TiO2 nanocrystal and TiO2 nanotubes have been fabricated by a simple sol-gel hydrothermal process and their performances have been compared. Current density and voltage (JV) characteristics and incident photon to current conversion efficiency (IPCE) plots have been set as criterion to check which one is better as a photoanode candidate in dye-sensitized solar cell. It has been observed that although open circuit voltage values for both type of cells do not differ much still, nanotube based dye-sensitized solar cells are more successful having an efficiency value of 7.28%.

  19. Positron range in tissue-equivalent materials: experimental microPET studies.

    PubMed

    Alva-Sánchez, H; Quintana-Bautista, C; Martínez-Dávalos, A; Ávila-Rodríguez, M A; Rodríguez-Villafuerte, M

    2016-09-01

    In this work an experimental investigation was carried out to study the effect that positron range has over positron emission tomography (PET) scans through measurements of the line spread function (LSF) in tissue-equivalent materials. Line-sources consisted of thin capillary tubes filled with (18)F, (13)N or (68)Ga water-solution inserted along the axis of symmetry of cylindrical phantoms constructed with the tissue-equivalent materials: lung (inhale and exhale), adipose tissue, solid water, trabecular and cortical bone. PET scans were performed with a commercial small-animal PET scanner and image reconstruction was carried out with filtered-backprojection. Line-source distributions were analyzed using radial profiles taken on axial slices from which the spatial resolution was determined through the full-width at half-maximum, tenth-maximum, twentieth-maximum and fiftieth-maximum. A double-Gaussian model of the LSFs was used to fit experimental data which can be incorporated into iterative reconstruction methods. In addition, the maximum activity concentration in the line-sources was determined from reconstructed images and compared to the known values for each case. The experimental data indicates that positron range in different materials has a strong effect on both spatial resolution and activity concentration quantification in PET scans. Consequently, extra care should be taken when computing standard-uptake values in PET scans, in particular when the radiopharmaceutical is taken up by different tissues in the body, and more even so with high-energy positron emitters. PMID:27494279

  20. Water equivalence of various materials for clinical proton dosimetry by experiment and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Al-Sulaiti, Leena; Shipley, David; Thomas, Russell; Kacperek, Andrzej; Regan, Patrick; Palmans, Hugo

    2010-07-01

    The accurate conversion of dose to various materials used in clinical proton dosimetry to dose-to-water is based on fluence correction factors, accounting for attenuation of primary protons and production of secondary particles due to non-elastic nuclear interactions. This work aims to investigate the depth dose distribution and the fluence correction with respect to water or graphite at water equivalent depths (WED) in different target materials relevant for dosimetry such as polymethyl methacrylate (PMMA), graphite, A-150, aluminium and copper at 60 and 200 MeV. This was done through a comparison between Monte Carlo simulation using MCNPX 2.5.0, analytical model calculations and experimental measurements at Clatterbridge Centre of Oncology (CCO) in a 60 MeV modulated and un-modulated proton beam. MCNPX simulations indicated small fluence corrections for all materials with respect to graphite and water in 60 and 200 MeV except for aluminium. The analytical calculations showed an increase in the fluence correction factor to a few percent for all materials with respect to water at 200 MeV. The experimental measurements for 60 MeV un-modulated beam indicated a good agreement with MCNPX. For the modulated beam the fluence correction factor was found to be decreasing below unity by up to few percent with depth for aluminium and copper but almost constant and unity for A-150.

  1. Nuclear reaction measurements on tissue-equivalent materials and GEANT4 Monte Carlo simulations for hadrontherapy

    NASA Astrophysics Data System (ADS)

    De Napoli, M.; Romano, F.; D'Urso, D.; Licciardello, T.; Agodi, C.; Candiano, G.; Cappuzzello, F.; Cirrone, G. A. P.; Cuttone, G.; Musumarra, A.; Pandola, L.; Scuderi, V.

    2014-12-01

    When a carbon beam interacts with human tissues, many secondary fragments are produced into the tumor region and the surrounding healthy tissues. Therefore, in hadrontherapy precise dose calculations require Monte Carlo tools equipped with complex nuclear reaction models. To get realistic predictions, however, simulation codes must be validated against experimental results; the wider the dataset is, the more the models are finely tuned. Since no fragmentation data for tissue-equivalent materials at Fermi energies are available in literature, we measured secondary fragments produced by the interaction of a 55.6 MeV u-1 12C beam with thick muscle and cortical bone targets. Three reaction models used by the Geant4 Monte Carlo code, the Binary Light Ions Cascade, the Quantum Molecular Dynamic and the Liege Intranuclear Cascade, have been benchmarked against the collected data. In this work we present the experimental results and we discuss the predictive power of the above mentioned models.

  2. Assessment of doses caused by electrons in thin layers of tissue-equivalent materials, using MCNP.

    PubMed

    Heide, Bernd

    2013-10-01

    Absorbed doses caused by electron irradiation were calculated with Monte Carlo N-Particle transport code (MCNP) for thin layers of tissue-equivalent materials. The layers were so thin that the calculation of energy deposition was on the border of the scope of MCNP. Therefore, in this article application of three different methods of calculation of energy deposition is discussed. This was done by means of two scenarios: in the first one, electrons were emitted from the centre of a sphere of water and also recorded in that sphere; and in the second, an irradiation with the PTB Secondary Standard BSS2 was modelled, where electrons were emitted from an (90)Sr/(90)Y area source and recorded inside a cuboid phantom made of tissue-equivalent material. The speed and accuracy of the different methods were of interest. While a significant difference in accuracy was visible for one method in the first scenario, the difference in accuracy of the three methods was insignificant for the second one. Considerable differences in speed were found for both scenarios. In order to demonstrate the need for calculating the dose in thin small zones, a third scenario was constructed and simulated as well. The third scenario was nearly equal to the second one, but a pike of lead was assumed to be inside the phantom in addition. A dose enhancement (caused by the pike of lead) of ∼113 % was recorded for a thin hollow cylinder at a depth of 0.007 cm, which the basal-skin layer is referred to in particular. Dose enhancements between 68 and 88 % were found for a slab with a radius of 0.09 cm for all depths. All dose enhancements were hardly noticeable for a slab with a cross-sectional area of 1 cm(2), which is usually applied to operational radiation protection. PMID:23576794

  3. Characterization of the water-equivalent material WTe for use in electron beam dosimetry

    NASA Astrophysics Data System (ADS)

    McEwen, M. R.; Du Sautoy, A. R.

    2003-07-01

    This paper describes the characterization of the water-equivalent material WTe (produced by St Bartholomew's Hospital, London). The use of epoxy resin phantoms offers a number of advantages over water for radiotherapy dosimetry in terms of robustness and ease of use, but the published uncertainties in the fluence corrections for such phantoms significantly increase the overall uncertainty in the measurement of absorbed dose to water at the reference point. Depth-ionization data were obtained in water and WTe for electron beams in the range 4 MeV to 16 MeV and it was found that the measured fluence in the WTe phantom was approximately 0.4% higher than in a water phantom at the same depth. For measurements only at the reference depth this difference was less, with the fluence in the WTe phantom being 0.2% higher. The standard uncertainty on this value is estimated to be +/-0.12%, which represents a significant improvement over previous measurements. It was also found that the range scaling factor is not equal to unity, as previously recommended for this material, but that the data was best fitted by the relation 1 mm WTe = 1.01 mm water (with an uncertainty of +/-0.2%). The results obtained confirm previous investigations of WTe as to its suitability for reference ion chamber dosimetry in the radiotherapy clinic. However, the recommendation is still to use a water phantom wherever possible.

  4. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions

    PubMed Central

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-01-01

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient’s body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. Inmost cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy. PMID:20371908

  5. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    PubMed

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-01

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy. PMID:20371908

  6. The Electric Mechanism of Surface Pretreatments for Dye-Sensitized Solar Cells Based on Internal Equivalent Resistance Analysis

    NASA Astrophysics Data System (ADS)

    Xu, Wei-Wei; Hu, Lin-Hua; Luo, Xiang-Dong; Liu, Pei-Sheng; Dai, Song-Yuan

    2012-01-01

    Based on the optimization of dye-sensitized solar cell (DSC) photoelectrodes pretreated with different methods such as electrodeposition, spin-coating and TiCl4 pretreatment, theoretical calculations are carried out to interpret the internal electric mechanism. The numerical values, including the series resistance Rs and the shunt resistance Rsh corresponding to the equivalent circuit model, are well evaluated and confirm that the DSC has good performance with a high Rsh and a low Rs due to good electrical contact and a low charge recombination after the different modifications. The I-V curves are fitted in the case without series resistance, and account for the role of Rs in the output characteristics. It is found that when Rs tends to the infinitesimal, the short-circuit current Isc, the open-circuit voltage Voc and the fill factor can be improved by almost 0.8-1.4, 2.9 and 2.1-6.8%, respectively.

  7. Accuracy of the domain method for the material derivative approach to shape design sensitivities

    NASA Technical Reports Server (NTRS)

    Yang, R. J.; Botkin, M. E.

    1987-01-01

    Numerical accuracy for the boundary and domain methods of the material derivative approach to shape design sensitivities is investigated through the use of mesh refinement. The results show that the domain method is generally more accurate than the boundary method, using the finite element technique. It is also shown that the domain method is equivalent, under certain assumptions, to the implicit differentiation approach not only theoretically but also numerically.

  8. Hypoxia-Sensitive Materials for Biomedical Applications.

    PubMed

    Yu, Jicheng; Zhang, Yuqi; Hu, Xiuli; Wright, Grace; Gu, Zhen

    2016-06-01

    Hypoxia is a typical hallmark of various diseases, including cancer, ischemic diseases, and stroke. It is also associated with the disease progression. Therefore, it is critical to develop an effective strategy to target the hypoxic region for diagnosis and treatment. In this review, we summarize recent progress in the development of hypoxia-responsive systems for imaging, sensing and therapy. Two types of hypoxia-sensitive systems, the hypoxia inducible factor-1 based systems and bioreductive molecule based systems, were reviewed with comments on their advantages and limitations. Future opportunities and challenges are also discussed in the end. PMID:26926694

  9. Measurements of radioactivity in Jamaican building materials and gamma dose equivalents in a prototype red mud house

    SciTech Connect

    Pinnock, W.R. )

    1991-11-01

    Concentrations of 226Ra, 232Th, and 40K measured in bauxite waste, local building materials, and soils are presented and used in model equations to estimate the effective gamma dose-equivalent increments over background in the center of a standard-sized room in a prototype house. Calculated and measured values compare reasonably well.

  10. On the sensitivity analysis of porous material models

    NASA Astrophysics Data System (ADS)

    Ouisse, Morvan; Ichchou, Mohamed; Chedly, Slaheddine; Collet, Manuel

    2012-11-01

    Porous materials are used in many vibroacoustic applications. Different available models describe their behaviors according to materials' intrinsic characteristics. For instance, in the case of porous material with rigid frame, and according to the Champoux-Allard model, five parameters are employed. In this paper, an investigation about this model sensitivity to parameters according to frequency is conducted. Sobol and FAST algorithms are used for sensitivity analysis. A strong parametric frequency dependent hierarchy is shown. Sensitivity investigations confirm that resistivity is the most influent parameter when acoustic absorption and surface impedance of porous materials with rigid frame are considered. The analysis is first performed on a wide category of porous materials, and then restricted to a polyurethane foam analysis in order to illustrate the impact of the reduction of the design space. In a second part, a sensitivity analysis is performed using the Biot-Allard model with nine parameters including mechanical effects of the frame and conclusions are drawn through numerical simulations.

  11. Using the Stimulus Equivalence Paradigm to Teach Course Material in an Undergraduate Rehabilitation Course

    ERIC Educational Resources Information Center

    Walker, Brooke D.; Rehfeldt, Ruth Anne; Ninness, Chris

    2010-01-01

    In 2 experiments, we examined whether the stimulus equivalence instructional paradigm could be used to teach relations among names, definitions, causes, and common treatments for disabilities using a selection-based intraverbal training format. Participants were pre- and posttested on vocal intraverbal relations and were trained using…

  12. Whispering gallery mode resonators based on radiation-sensitive materials

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Ilchenko, Vladimir (Inventor); Handley, Timothy A. (Inventor)

    2005-01-01

    Whispering gallery mode (WGM) optical resonators formed of radiation-sensitive materials to allow for permanent tuning of their resonance frequencies in a controlled manner. Two WGM resonators may be cascaded to form a composite filter to produce a second order filter function where at least one WGM resonator is formed a radiation-sensitive material to allow for proper control in the overlap of the two filter functions.

  13. Effective atomic numbers, water and tissue equivalence properties of human tissues, tissue equivalents and dosimetric materials for total electron interaction in the energy region 10 keV-1 GeV.

    PubMed

    Kurudirek, Murat

    2014-12-01

    Effective atomic numbers (Zeff) of 107 different materials of dosimetric interest have been calculated for total electron interactions in the wide energy region 10keV-1GeV. The stopping cross sections of elements and dosimetric materials were used to calculate Zeff of the materials. Differences (%) in Zeff relative to water have been calculated in the entire energy region to evaluate the water equivalency of the used materials. Moreover, the tissue equivalent materials have been compared with the tissues and dosimetric materials in terms of Zeff to reveal their ability to use as tissue substitutes. Possible conclusions were drawn based on the variation of Zeff through the entire energy region and water and tissue equivalency comparisons in terms of Zeff. PMID:25061891

  14. Nonlinear optical signal processing on multiwavelength sensitive materials.

    PubMed

    Azimipour, Mehdi; Pashaie, Ramin

    2013-11-01

    Exploiting salient features in the photodynamics of specific types of light sensitive materials, a new approach is presented for realization of parallel nonlinear operations with optics. We briefly review the quantum structure and mathematical models offered for the photodynamics of two multiwavelength sensitive materials, doped crystals of lithium niobate and thick layers of bacteriorhodopsin. Next, a special mode of these dynamics in each material is investigated and a graphical design procedure is offered to produce highly nonlinear optical responses that can be dynamically reshaped via applying minimum changes in the optical setup. PMID:24177084

  15. Gas sensitive materials for gas detection and method of making

    DOEpatents

    Trakhtenberg, Leonid Israilevich; Gerasimov, Genrikh Nikolaevich; Gromov, Vladimir Fedorovich; Rozenberg, Valeriya Isaakovna

    2012-12-25

    A gas sensitive material comprising SnO2 nanocrystals doped with In2O3 and an oxide of a platinum group metal, and a method of making the same. The platinum group metal is preferably Pd, but also may include Pt, Ru, Ir, and combinations thereof. The SnO2 nanocrystals have a specific surface of 7 or greater, preferably about 20 m2/g, and a mean particle size of between about 10 nm and about 100 nm, preferably about 40 nm. A gas detection device made from the gas sensitive material deposited on a substrate, the gas sensitive material configured as a part of a current measuring circuit in communication with a heat source.

  16. Gas sensitive materials for gas detection and methods of making

    SciTech Connect

    Trakhtenberg, Leonid Israilevich; Gerasimov, Genrikh Nikolaevich; Gromov, Vladimir Fedorovich; Rozenberg, Valeriya Isaakovna

    2014-07-15

    A gas sensitive material comprising SnO.sub.2 nanocrystals doped with In.sub.2O.sub.3 and an oxide of a platinum group metal, and a method of making the same. The platinum group metal is preferably Pd, but also may include Pt, Ru, Ir, and combinations thereof. The SnO.sub.2 nanocrystals have a specific surface of 7 or greater, preferably about 20 m2/g, and a mean particle size of between about 10 nm and about 100 nm, preferably about 40 nm. A gas detection device made from the gas sensitive material deposited on a substrate, the gas sensitive material configured as a part of a current measuring circuit in communication with a heat source.

  17. Determination of tissue equivalent materials of a physical 8-year-old phantom for use in computed tomography

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Parisa; Miri Hakimabad, Hashem; Rafat Motavalli, Laleh

    2015-07-01

    This paper reports on the methodology applied to select suitable tissue equivalent materials of an 8-year phantom for use in computed tomography (CT) examinations. To find the appropriate tissue substitutes, first physical properties (physical density, electronic density, effective atomic number, mass attenuation coefficient and CT number) of different materials were studied. Results showed that, the physical properties of water and polyurethane (as soft tissue), B-100 and polyvinyl chloride (PVC) (as bone) and polyurethane foam (as lung) agree more with those of original tissues. Then in the next step, the absorbed doses in the location of 25 thermoluminescent dosimeters (TLDs) as well as dose distribution in one slice of phantom were calculated for original and these proposed materials by Monte Carlo simulation at different tube voltages. The comparisons suggested that at tube voltages of 80 and 100 kVp using B-100 as bone, water as soft tissue and polyurethane foam as lung is suitable for dosimetric study in pediatric CT examinations. In addition, it was concluded that by considering just the mass attenuation coefficient of different materials, the appropriate tissue equivalent substitutes in each desired X-ray energy range could be found.

  18. Determination of impact sensitivity of materials at high pressures

    NASA Technical Reports Server (NTRS)

    Davis, L.; Pippen, D.; Stradling, J.; Whitaker, D.

    1972-01-01

    Compact device is used to determine impact sensitivity of material in static, high pressure, gaseous environment. It can also be instrumented to monitor and record pressure, temperature, and striker impact force. Device is used in conjunction with commercially available liquid oxygen impact tester which provides impact energy.

  19. Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation.

    PubMed

    Zhang, Rui; Newhauser, Wayne D

    2009-03-21

    In proton therapy, the radiological thickness of a material is commonly expressed in terms of water equivalent thickness (WET) or water equivalent ratio (WER). However, the WET calculations required either iterative numerical methods or approximate methods of unknown accuracy. The objective of this study was to develop a simple deterministic formula to calculate WET values with an accuracy of 1 mm for materials commonly used in proton radiation therapy. Several alternative formulas were derived in which the energy loss was calculated based on the Bragg-Kleeman rule (BK), the Bethe-Bloch equation (BB) or an empirical version of the Bethe-Bloch equation (EBB). Alternative approaches were developed for targets that were 'radiologically thin' or 'thick'. The accuracy of these methods was assessed by comparison to values from an iterative numerical method that utilized evaluated stopping power tables. In addition, we also tested the approximate formula given in the International Atomic Energy Agency's dosimetry code of practice (Technical Report Series No 398, 2000, IAEA, Vienna) and stopping power ratio approximation. The results of these comparisons revealed that most methods were accurate for cases involving thin or low-Z targets. However, only the thick-target formulas provided accurate WET values for targets that were radiologically thick and contained high-Z material. PMID:19218739

  20. Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation

    PubMed Central

    Zhang, Rui; Newhauser, Wayne D

    2014-01-01

    In proton therapy, the radiological thickness of a material is commonly expressed in terms of water equivalent thickness (WET) or water equivalent ratio (WER). However, the WET calculations required either iterative numerical methods or approximate methods of unknown accuracy. The objective of this study was to develop a simple deterministic formula to calculate WET values with an accuracy of 1 mm for materials commonly used in proton radiation therapy. Several alternative formulas were derived in which the energy loss was calculated based on the Bragg–Kleeman rule (BK), the Bethe–Bloch equation (BB) or an empirical version of the Bethe–Bloch equation (EBB). Alternative approaches were developed for targets that were ‘radiologically thin’ or ‘thick’. The accuracy of these methods was assessed by comparison to values from an iterative numerical method that utilized evaluated stopping power tables. In addition, we also tested the approximate formula given in the International Atomic Energy Agency's dosimetry code of practice (Technical Report Series No 398, 2000, IAEA, Vienna) and stopping power ratio approximation. The results of these comparisons revealed that most methods were accurate for cases involving thin or low-Z targets. However, only the thick-target formulas provided accurate WET values for targets that were radiologically thick and contained high-Z material. PMID:19218739

  1. Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Newhauser, Wayne D.

    2009-03-01

    In proton therapy, the radiological thickness of a material is commonly expressed in terms of water equivalent thickness (WET) or water equivalent ratio (WER). However, the WET calculations required either iterative numerical methods or approximate methods of unknown accuracy. The objective of this study was to develop a simple deterministic formula to calculate WET values with an accuracy of 1 mm for materials commonly used in proton radiation therapy. Several alternative formulas were derived in which the energy loss was calculated based on the Bragg-Kleeman rule (BK), the Bethe-Bloch equation (BB) or an empirical version of the Bethe-Bloch equation (EBB). Alternative approaches were developed for targets that were 'radiologically thin' or 'thick'. The accuracy of these methods was assessed by comparison to values from an iterative numerical method that utilized evaluated stopping power tables. In addition, we also tested the approximate formula given in the International Atomic Energy Agency's dosimetry code of practice (Technical Report Series No 398, 2000, IAEA, Vienna) and stopping power ratio approximation. The results of these comparisons revealed that most methods were accurate for cases involving thin or low-Z targets. However, only the thick-target formulas provided accurate WET values for targets that were radiologically thick and contained high-Z material.

  2. Friction, impact, and electrostatic discharge sensitivities of energetic materials

    SciTech Connect

    Wang, P.S.; Hall, G.F.

    1985-05-31

    Impact, friction, and electrostatic discharge sensitivities of energetic materials (explosives and pyrotechnics) used or manufactured at Mound were tested by the ''one-shot'' method. The Bruceton statistical method was used to derive 50% initiation levels, and the results were compared. The materials tested include: PETN, HMX, Plastic Bonded Explosives (PBX), CP, TATB, RX26BB, RX26BH, barium styphnate, LX-15, LX-16, Ti/KClO/sub 4/, TiH/sub 0.65//KClO/sub 4/, TiH/sub 1.65//KClO/sub 4/, Fe/KClO/sub 4/, TiH/sub 1.75//B/CaCrO/sub 4/, Ti/B/CaCrO/sub 4/, B/CaCrO/sub 4/, TiH/sub 0.65//2B, TiH/sub 0.65//3B, 2Ti/B, TiH/sub 1.67//2B, Ti/2B, TiH/sub 1/67//3B, Ti/B, and Ti/3B. Some samples were investigated for aging effects, physical variables, and the effect of manufacturing paramters on sensitivities. The results show that in both friction and impact tests, CP and barium styphnate are the most sensitive; TiH/sub 1.65/KClO/sub 4/, LX-15, TATB and its related materials are the least sensitive; and other materials such as PETN and HMX are in the mid-range. In the electrostatic tests of Ti-based pyrotechnics, a decrease of sensitivity with increasing hydrogen concentration was observed. 20 refs., 12 figs., 7 tabs.

  3. Calculation of Absorbed Dose in Target Tissue and Equivalent Dose in Sensitive Tissues of Patients Treated by BNCT Using MCNP4C

    NASA Astrophysics Data System (ADS)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Pooya, S. M. Hosseini

    Boron Neutron Capture Therapy (BNCT) is used for treatment of many diseases, including brain tumors, in many medical centers. In this method, a target area (e.g., head of patient) is irradiated by some optimized and suitable neutron fields such as research nuclear reactors. Aiming at protection of healthy tissues which are located in the vicinity of irradiated tissue, and based on the ALARA principle, it is required to prevent unnecessary exposure of these vital organs. In this study, by using numerical simulation method (MCNP4C Code), the absorbed dose in target tissue and the equiavalent dose in different sensitive tissues of a patiant treated by BNCT, are calculated. For this purpose, we have used the parameters of MIRD Standard Phantom. Equiavelent dose in 11 sensitive organs, located in the vicinity of target, and total equivalent dose in whole body, have been calculated. The results show that the absorbed dose in tumor and normal tissue of brain equal to 30.35 Gy and 0.19 Gy, respectively. Also, total equivalent dose in 11 sensitive organs, other than tumor and normal tissue of brain, is equal to 14 mGy. The maximum equivalent doses in organs, other than brain and tumor, appear to the tissues of lungs and thyroid and are equal to 7.35 mSv and 3.00 mSv, respectively.

  4. Sensitivity Analysis Of Technological And Material Parameters In Roll Forming

    NASA Astrophysics Data System (ADS)

    Gehring, Albrecht; Saal, Helmut

    2007-05-01

    Roll forming is applied for several decades to manufacture thin gauged profiles. However, the knowledge about this technology is still based on empirical approaches. Due to the complexity of the forming process, the main effects on profile properties are difficult to identify. This is especially true for the interaction of technological parameters and material parameters. General considerations for building a finite-element model of the roll forming process are given in this paper. A sensitivity analysis is performed on base of a statistical design approach in order to identify the effects and interactions of different parameters on profile properties. The parameters included in the analysis are the roll diameter, the rolling speed, the sheet thickness, friction between the tools and the sheet and the strain hardening behavior of the sheet material. The analysis includes an isotropic hardening model and a nonlinear kinematic hardening model. All jobs are executed parallel to reduce the overall time as the sensitivity analysis requires much CPU-time. The results of the sensitivity analysis demonstrate the opportunities to improve the properties of roll formed profiles by adjusting technological and material parameters to their optimum interacting performance.

  5. An Earth-Based Equivalent Low Stretch Apparatus to Assess Material Flammability for Microgravity and Extraterrestrial Fire-Safety Applications

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Beeson, H.; Haas, J. P.

    2003-01-01

    The objective of this project is to modify the standard oxygen consumption (cone) calorimeter (described in ASTM E 1354 and NASA STD 6001 Test 2) to provide a reproducible bench-scale test environment that simulates the buoyant or ventilation flow that would be generated by or around a burning surface in a spacecraft or extraterrestrial gravity level. This apparatus will allow us to conduct normal gravity experiments that accurately and quantitatively evaluate a material's flammability characteristics in the real-use environment of spacecraft or extra-terrestrial gravitational acceleration. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone geometry with the sample burning in a ceiling fire configuration that provides a reproducible bench-scale test environment that simulates the buoyant or ventilation flow that would be generated by a flame in a spacecraft or extraterrestrial gravity level. Prototype unit testing results are presented in this paper. Ignition delay times and regression rates for PMMA are presented over a range of radiant heat flux levels and equivalent stretch rates which demonstrate the ability of ELSA to simulate key features of microgravity and extraterrestrial fire behavior.

  6. Achieving tunable sensitivity in composite high-energy density materials

    NASA Astrophysics Data System (ADS)

    Rashkeev, Sergey; Tsyshevsky, Roman; Kuklja, Maija

    2015-06-01

    Laser irradiation provides a unique opportunity for selective, predictive, and controlled initiation of energetic materials. We propose a consistent micro-scale mechanism of photoexcitation at the interface, formed by a molecular energetic material and a metal oxide. A specific PETN-MgO model composite is used to illustrate and explain seemingly puzzling experiments on selective laser initiation of energetic materials, which reported that the presence of metal oxide additives triggered the photoinitiation by an unusually low energy. We suggest that PETN photodecomposition is catalyzed by oxygen vacancies (F0 centers) at the MgO surface. The proposed model suggests ways to tune sensitivity of energetic molecular materials to photoinitiation. Our quantum-chemical calculations suggest that the structural defects (e.g., oxygen vacancies) strongly interact with the molecular material (e.g., adsorbed energetic molecules) by inducing a charge transfer at the interface and hence play an imperative role in governing both energy absorption and energy release in the system. Our approach and conclusions provide a solid basis for novel design of energetic interfaces with desired properties and offers a new perspective in the field of explosive materials and devices.

  7. Investigation of graphene-based nanoscale radiation sensitive materials

    NASA Astrophysics Data System (ADS)

    Robinson, Joshua A.; Wetherington, Maxwell; Hughes, Zachary; LaBella, Michael, III; Bresnehan, Michael

    2012-06-01

    Current state-of-the-art nanotechnology offers multiple benefits for radiation sensing applications. These include the ability to incorporate nano-sized radiation indicators into widely used materials such as paint, corrosion-resistant coatings, and ceramics to create nano-composite materials that can be widely used in everyday life. Additionally, nanotechnology may lead to the development of ultra-low power, flexible detection systems that can be embedded in clothing or other systems. Graphene, a single layer of graphite, exhibits exceptional electronic and structural properties, and is being investigated for high-frequency devices and sensors. Previous work indicates that graphene-oxide (GO) - a derivative of graphene - exhibits luminescent properties that can be tailored based on chemistry; however, exploration of graphene-oxide's ability to provide a sufficient change in luminescent properties when exposed to gamma or neutron radiation has not been carried out. We investigate the mechanisms of radiation-induced chemical modifications and radiation damage induced shifts in luminescence in graphene-oxide materials to provide a fundamental foundation for further development of radiation sensitive detection architectures. Additionally, we investigate the integration of hexagonal boron nitride (hBN) with graphene-based devices to evaluate radiation induced conductivity in nanoscale devices. Importantly, we demonstrate the sensitivity of graphene transport properties to the presence of alpha particles, and discuss the successful integration of hBN with large area graphene electrodes as a means to provide the foundation for large-area nanoscale radiation sensors.

  8. Electrostatic Discharge Sensitivity and Electrical Conductivity of Composite Energetic Materials

    SciTech Connect

    Michael A. Daniels; Daniel J. Prentice; Chelsea Weir; Michelle L. Pantoya; Gautham Ramachandran; Tim Dallas

    2013-02-01

    Composite energetic material response to electrical stimuli was investigated and a correlation between electrical conductivity and ignition sensitivity was examined. The composites consisted of micrometer particle aluminum combined with another metal, metal oxide, or fluoropolymer. Of the nine tested mixtures, aluminum with copper oxide was the only mixture to ignite by electrostatic discharge with minimum ignition energy (MIE) of 25 mJ and an electrical conductivity of 1246.25 nS; two orders of magnitude higher than the next composite. This study showed a similar trend in MIE for ignition triggered by a discharged spark compared with a thermal hot wire source.

  9. Sensitivity to implant materials in patients undergoing total hip replacement.

    PubMed

    Granchi, Donatella; Cenni, Elisabetta; Trisolino, Giovanni; Giunti, Armando; Baldini, Nicola

    2006-05-01

    Sensitivity to implant materials is an unpredictable event, which may contribute to the process leading to the failure of the total hip replacement (THR). The aim of the current study was to investigate the informative power of skin testing in detecting the sensitization to the implant components in patients undergoing THR. A consecutive series of 223 patients was enrolled in the study, including 66 candidates to THR, 53 with stable implant, and 104 with THR loosening. The patch testing was performed by using the most relevant components of cobalt-based alloys (CoCrMo), Ti-based alloys (TiAlV), and bone cements. The frequency of positive patch testing in preimplant patients did not differ from that observed after THR. Patients with CoCrMo-failed implant showed a significant low frequency of nickel-positive skin reaction, while patients with TiAlV-THR had a high incidence of vanadium-positive patch testing. The panel of haptens showed a good performance in the identification of patients known to have a contact dermatitis. With regard to the THR outcome, patch testing was not able to discriminate between stable and failed implant. Sensitivity to at least one hapten, namely bone cement, as well as the positive medical history of hypersensitivity, influenced negatively the THR survival. Our results show the reliability of patch testing for investigating the sensitivity to implant components. The cause-effect relationship between sensitization and negative outcome cannot be established, but the shorter lifespan of THR in patients who have a positive patch testing supports the significant role of this event in contributing to the implant failure. PMID:16265661

  10. Deformation of rock: A pressure-sensitive, dilatant material

    NASA Astrophysics Data System (ADS)

    Ord, A.

    1991-12-01

    Permanent (plastic) deformation of rock materials in the brittle regime (cataclastic flow) is modelled here in terms of Mohr-Coulomb behaviour in which all three of the parameters cohesion, friction angle and dilation angle follow hardening (or softening) evolution laws with both plastic straining and increases in confining pressure. The physical basis for such behaviour is provided by a sequence of uniaxial shortening experiments performed by Edmond and Paterson (1972) at confining pressures up to 800 MPa on a variety of materials including Gosford sandstone and Carrara marble. These triaxial compression experiments are important for the large range of confining pressures covered, and for the careful recording of data during deformation, particularly volume change of the specimens. Both materials are pressure-sensitive and dilatant. It is therefore possible to derive from these experiments a set of material parameters which allow a preliminary description of the deformation behaviour in terms of a non-associated, Mohr-Coulomb constitutive model, thus providing the first constitutive modelling of geological materials in the brittle-ductile regime. These parameters are used as input to a finite difference, numerical code (FLAC) with the aim of investigating how closely this numerical model simulates real material behaviour upon breakdown of homogeneous deformation. The mechanical and macrostructural behaviour exhibited by the numerical model is in close agreement with the physical results in that the stress-strain curves are duplicated together with localization behaviour. The results of the modelling illustrate how the strength of the upper-crust may be described by two different but still pressure-dependent models: the linear shear stress/normal stress relationship of Amontons (that is, Byerlee's Law), and a non-linear, Mohr-Coulomb constitutive model. Both include parameters of friction and both describe brittle deformation behaviour. Consideration of the non

  11. A batteryless temperature sensor based on high temperature sensitive material

    NASA Astrophysics Data System (ADS)

    Bakkali, Asma; Pelegri-Sebastia, José; Laghmich, Youssef; Lyhyaoui, Abdelouahid

    2016-05-01

    The major challenge in wireless sensor networks is the reduction of energy consumption. Passive wireless sensor network is an attractive solution for measuring physical parameters in harsh environment for large range of applications requiring sensing devices with low cost of fabrication, small size and long term measurement stability. Batteryless temperature sensing techniques are an active research field. The approach developed in our work holds a promising future for temperature sensor applications in order to successfully reduce the energy consumption. The temperature sensor presented in this paper is based on the electromagnetic transduction principle using the integration of the high temperature sensitive material into a passive structure. Variation in temperature makes the dielectric constant of this material changing, and such modification induces variation in the resonant frequencies of high-Q whispering-gallery modes (WGM) in the millimeter-wave frequency range. Following the results achieved, the proposed device shows a linear response to the increasing temperature and these variations can be remotely detected from a radar interrogation. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  12. Characterization of MOSFET dosimeter angular dependence in three rotational axes measured free-in-air and in soft-tissue equivalent material

    PubMed Central

    Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika

    2013-01-01

    When performing dose measurements on an X-ray device with multiple angles of irradiation, it is necessary to take the angular dependence of metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters into account. The objective of this study was to investigate the angular sensitivity dependence of MOSFET dosimeters in three rotational axes measured free-in-air and in soft-tissue equivalent material using dental photon energy. Free-in-air dose measurements were performed with three MOSFET dosimeters attached to a carbon fibre holder. Soft tissue measurements were performed with three MOSFET dosimeters placed in a polymethylmethacrylate (PMMA) phantom. All measurements were made in the isocenter of a dental cone-beam computed tomography (CBCT) scanner using 5º angular increments in the three rotational axes: axial, normal-to-axial and tangent-to-axial. The measurements were referenced to a RADCAL 1015 dosimeter. The angular sensitivity free-in-air (1 SD) was 3.7 ± 0.5 mV/mGy for axial, 3.8 ± 0.6 mV/mGy for normal-to-axial and 3.6 ± 0.6 mV/mGy for tangent-to-axial rotation. The angular sensitivity in the PMMA phantom was 3.1 ± 0.1 mV/mGy for axial, 3.3 ± 0.2 mV/mGy for normal-to-axial and 3.4 ± 0.2 mV/mGy for tangent-to-axial rotation. The angular sensitivity variations are considerably smaller in PMMA due to the smoothing effect of the scattered radiation. The largest decreases from the isotropic response were observed free-in-air at 90° (distal tip) and 270° (wire base) in the normal-to-axial and tangent-to-axial rotations, respectively. MOSFET dosimeters provide us with a versatile dosimetric method for dental radiology. However, due to the observed variation in angular sensitivity, MOSFET dosimeters should always be calibrated in the actual clinical settings for the beam geometry and angular range of the CBCT exposure. PMID:23520268

  13. Characterization of MOSFET dosimeter angular dependence in three rotational axes measured free-in-air and in soft-tissue equivalent material.

    PubMed

    Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika

    2013-09-01

    When performing dose measurements on an X-ray device with multiple angles of irradiation, it is necessary to take the angular dependence of metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters into account. The objective of this study was to investigate the angular sensitivity dependence of MOSFET dosimeters in three rotational axes measured free-in-air and in soft-tissue equivalent material using dental photon energy. Free-in-air dose measurements were performed with three MOSFET dosimeters attached to a carbon fibre holder. Soft tissue measurements were performed with three MOSFET dosimeters placed in a polymethylmethacrylate (PMMA) phantom. All measurements were made in the isocenter of a dental cone-beam computed tomography (CBCT) scanner using 5º angular increments in the three rotational axes: axial, normal-to-axial and tangent-to-axial. The measurements were referenced to a RADCAL 1015 dosimeter. The angular sensitivity free-in-air (1 SD) was 3.7 ± 0.5 mV/mGy for axial, 3.8 ± 0.6 mV/mGy for normal-to-axial and 3.6 ± 0.6 mV/mGy for tangent-to-axial rotation. The angular sensitivity in the PMMA phantom was 3.1 ± 0.1 mV/mGy for axial, 3.3 ± 0.2 mV/mGy for normal-to-axial and 3.4 ± 0.2 mV/mGy for tangent-to-axial rotation. The angular sensitivity variations are considerably smaller in PMMA due to the smoothing effect of the scattered radiation. The largest decreases from the isotropic response were observed free-in-air at 90° (distal tip) and 270° (wire base) in the normal-to-axial and tangent-to-axial rotations, respectively. MOSFET dosimeters provide us with a versatile dosimetric method for dental radiology. However, due to the observed variation in angular sensitivity, MOSFET dosimeters should always be calibrated in the actual clinical settings for the beam geometry and angular range of the CBCT exposure. PMID:23520268

  14. Radiation sensitive devices and systems for detection of radioactive materials and related methods

    DOEpatents

    Kotter, Dale K

    2014-12-02

    Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

  15. Structural dynamics of electric machine stators: Modelling guidelines and identification of three-dimensional equivalent material properties for multi-layered orthotropic laminates

    NASA Astrophysics Data System (ADS)

    Millithaler, P.; Sadoulet-Reboul, É.; Ouisse, M.; Dupont, J.-B.; Bouhaddi, N.

    2015-07-01

    Simulating the dynamic behaviour of heterogeneous finite-element structures such as electric motors often requires to homogenise the models in the first place. Current homogenisation methods do not always imply computing an equivalent homogeneous material's elasticity matrix and are often restrained to specific uses. In this document, a novel approach of equivalent material identification is developed for multi-layered orthotropic structures. A finite-element model of a 3D stratified structure is created, as well as its equivalent homogeneous medium. The dynamic behaviour of the homogeneous structure with the equivalent material identified by the new method is compared at low frequencies to the reference stack and to equivalent materials created using other existing homogenisation techniques. It is shown that this approach is more accurate than existing reference homogenisation methods. Applied to the magnetic core's finite-element model of a real laminated electric machine stator, the method enables simulating the experimental behaviour with good accuracy, without need of time-consuming model updating procedures.

  16. Sensitivity to implant materials in patients with total knee arthroplasties.

    PubMed

    Granchi, Donatella; Cenni, Elisabetta; Tigani, Domenico; Trisolino, Giovanni; Baldini, Nicola; Giunti, Armando

    2008-04-01

    Materials used for total knee arthroplasty (TKA), may elicit an immune response whose role in the outcome of the arthroplasty is still unclear. The aim of this study was to evaluate the frequency of sensitization in patients who had undergone TKA, and the clinical impact of this event on the outcome of the implant. Ninety-four subjects were recruited, including 20 patients who had not yet undergone arthroplasty, 27 individuals who had a well-functioning TKA, and 47 patients with loosening of TKA components. Sensitization was detected by using patch testing including haptens representative of cobalt-based alloys (CoCrMo), titanium-based alloys (TiAlV), and bone cements. The frequency of positive skin reactions to metals increased significantly after TKA, either stable or loosened (No Implant 20%; Stable TKA 48.1%, p=0.05; Loosened TKA 59.6%, p=0.001, respectively). We found a higher frequency of positive patch testing to vanadium in patients who had a Stable TKA with at least one TiAlV component (39.1%, p=0.01). The medical history for metal allergy seems to be a risk factor, because the TKA failure was fourfold more likely in patients who had symptoms of metal hypersensitivity before TKA. The prognostic value was supported by survival analysis, because in these individuals the outcome of the implant was negatively influenced (the logrank test Chi square 5.1, p=0.02). This study confirms that in patients with a TKA the frequency of positive patch testing is higher than in the normal population, although no predictive value is attributable to the sensitization because patch testing was not able to discriminate between stable and loose implants. On the contrary, the presence of symptoms of metal allergy before implantation should be taken into account as a potential risk factor for TKA failure. PMID:18155140

  17. Impurity-sensitized luminescence of rare earth-doped materials

    SciTech Connect

    Smentek, Lidia . E-mail: smentek1@aol.com

    2005-02-15

    The accuracy of the theoretical model of impurity-sensitized luminescence in rare earth-doped materials presented here is adjusted to the demands of precise modern experimental techniques. The description is formulated within the double perturbation theory, and it is based on the assumption that electrostatic interactions between the subsystems that take part in the luminescence process are the most important ones. The amplitude of the energy transfer is determined by the contributions that represent the perturbing influence of the crystal-field potential and also electron correlation effects taken into account within the rare earth ions. In this way, the model is defined beyond the standard free ionic system and single configuration approximations. The new contributions to the energy transfer amplitude are expressed in the terms of effective tensor operators, and they contain the perturbing influence of various excited configurations. In order to maintain the high accuracy of the model, the radial integrals of all effective operators are defined within the so-called perturbed function approach. This means that they are evaluated for the complete radial basis sets of one electron functions of given symmetry, including the continuum.

  18. Strain Sensitivity in Single Walled Carbon Nanotubes for Multifunctional Materials

    NASA Technical Reports Server (NTRS)

    Heath, D. M. (Technical Monitor); Smits, Jan M., VI

    2005-01-01

    Single walled carbon nanotubes represent the future of structural aerospace vehicle systems due to their unparalleled strength characteristics and demonstrated multifunctionality. This multifunctionality rises from the CNT's unique capabilities for both metallic and semiconducting electron transport, electron spin polarizability, and band gap modulation under strain. By incorporating the use of electric field alignment and various lithography techniques, a single wall carbon nanotube (SWNT) test bed for measurement of conductivity/strain relationships has been developed. Nanotubes are deposited at specified locations through dielectrophoresis. The circuit is designed such that the central, current carrying section of the nanotube is exposed to enable atomic force microscopy and manipulation in situ while the transport properties of the junction are monitored. By applying this methodology to sensor development a flexible single wall carbon nanotube (SWNT) based strain sensitive device has been developed. Studies of tensile testing of the flexible SWNT device vs conductivity are also presented, demonstrating the feasibility of using single walled HiPCO (high-pressure carbon monoxide) carbon nanotubes as strain sensing agents in a multi-functional materials system.

  19. The evaluation of neutron and gamma ray dose equivalent distributions in patients and the effectiveness of shield materials for high energy photons radiotherapy facilities.

    PubMed

    Ghassoun, J; Senhou, N

    2012-04-01

    In this study, the MCNP5 code was used to model radiotherapy room of a medical linear accelerator operating at 18 MV and to evaluate the neutron and the secondary gamma ray fluences, the energy spectra and the dose equivalent distributions inside a liquid tissue-equivalent (TE) phantom. The obtained results were compared with measured data published in the literature. Moreover, the shielding effects of various neutron material shields on the radiotherapy room wall were also investigated. Our simulation results showed that paraffin wax containing boron carbide presents enough effectiveness to reduce both neutron and secondary gamma ray doses. PMID:22257567

  20. Polymeric variable optical attenuators based on magnetic sensitive stimuli materials

    NASA Astrophysics Data System (ADS)

    de Pedro, S.; Cadarso, V. J.; Ackermann, T. N.; Muñoz-Berbel, X.; Plaza, J. A.; Brugger, J.; Büttgenbach, S.; Llobera, A.

    2014-12-01

    Magnetically-actuable, polymer-based variable optical attenuators (VOA) are presented in this paper. The design comprises a cantilever which also plays the role of a waveguide and the input/output alignment elements for simple alignment, yet still rendering an efficient coupling. Magnetic properties have been conferred to these micro-opto-electromechanical systems (MOEMS) by implementing two different strategies: in the first case, a magnetic sensitive stimuli material (M-SSM) is obtained by a combination of polydimethylsiloxane (PDMS) and ferrofluid (FF) in ratios between 14.9 wt % and 29.9 wt %. An M-SSM strip under the waveguide-cantilever, defined with soft lithography (SLT), provides the required actuation capability. In the second case, specific volumes of FF are dispensed at the end of the cantilever tip (outside the waveguide) by means of inkjet printing (IJP), obtaining the required magnetic response while holding the optical transparency of the waveguide-cantilever. In the absence of a magnetic field, the waveguide-cantilever is aligned with the output fiber optics and thus the intrinsic optical losses can be obtained. Numerical simulations, validated experimentally, have shown that, for any cantilever length, the VOAs defined by IJP present lower intrinsic optical losses than their SLT counterparts. Under an applied magnetic field (Bapp), both VOA configurations experience a misalignment between the waveguide-cantilever and the output fiber optics. Thus, the proposed VOAs modulate the output power as a function of the cantilever displacement, which is proportional to Bapp. The experimental results for the three different waveguide-cantilever lengths and six different FF concentrations (three per technology) show maximum deflections of 220 µm at 29.9 wt % of FF for VOASLT and 250 µm at 22.3 wt % FF for VOAIJP, at 0.57 kG for both. These deflections provide maximum actuation losses of 16.1 dB and 18.9 dB for the VOASLT and VOAIJP

  1. Simulation of High-Latitude Hydrological Processes in the Torne-Kalix Basin: PILPS Phase 2(e). 3; Equivalent Model Representation and Sensitivity Experiments

    NASA Technical Reports Server (NTRS)

    Bowling, Laura C.; Lettenmaier, Dennis P.; Nijssen, Bart; Polcher, Jan; Koster, Randal D.; Lohmann, Dag; Houser, Paul R. (Technical Monitor)

    2002-01-01

    The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS) Phase 2(e) showed that in cold regions the annual runoff production in Land Surface Schemes (LSSs) is closely related to the maximum snow accumulation, which in turn is controlled in large part by winter sublimation. To help further explain the relationship between snow cover, turbulent exchanges and runoff production, a simple equivalent model-(SEM) was devised to reproduce the seasonal and annual fluxes simulated by 13 LSSs that participated in PILPS Phase 2(e). The design of the SEM relates the annual partitioning of precipitation and energy in the LSSs to three primary parameters: snow albedo, effective aerodynamic resistance and evaporation efficiency. Isolation of each of the parameters showed that the annual runoff production was most sensitive to the aerodynamic resistance. The SEM was somewhat successful in reproducing the observed LSS response to a decrease in shortwave radiation and changes in wind speed forcings. SEM parameters derived from the reduced shortwave forcings suggested that increased winter stability suppressed turbulent heat fluxes over snow. Because winter sensible heat fluxes were largely negative, reductions in winter shortwave radiation imply an increase in annual average sensible heat.

  2. Impact sensitivity of materials in contact with liquid and gaseous oxygen at high pressure

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1972-01-01

    As a result of the Apollo 13 incident, increased emphasis is being placed on materials compatibility in a high pressure GOX environment. It is known that in addition to impact sensitivity of materials, approximately adiabatic compression conditions can contrive to induce materials reactivity. Test runs at high pressure using the ABMA tester indicate the following: (1) The materials used in the tests showed an inverse relationship between thickness and impact sensitivity. (2) Several materials tested exhibited greater impact sensitivity in GOX than in LOX. (3) The impact sensitivity of the materials tested in GOX, at the pressures tested, showed enhanced impact sensitivity with higher pressure. (4) The rank ordering of the materials tested in LOX up to 1000 psia is the same as the rank ordering resulting from tests in LOX at 14.7 psia.

  3. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  4. Estimating raw material equivalents on a macro-level: comparison of multi-regional input-output analysis and hybrid LCI-IO.

    PubMed

    Schoer, Karl; Wood, Richard; Arto, Iñaki; Weinzettel, Jan

    2013-12-17

    The mass of material consumed by a population has become a useful proxy for measuring environmental pressure. The "raw material equivalents" (RME) metric of material consumption addresses the issue of including the full supply chain (including imports) when calculating national or product level material impacts. The RME calculation suffers from data availability, however, as quantitative data on production practices along the full supply chain (in different regions) is required. Hence, the RME is currently being estimated by three main approaches: (1) assuming domestic technology in foreign economies, (2) utilizing region-specific life-cycle inventories (in a hybrid framework), and (3) utilizing multi-regional input-output (MRIO) analysis to explicitly cover all regions of the supply chain. While the first approach has been shown to give inaccurate results, this paper focuses on the benefits and costs of the latter two approaches. We analyze results from two key (MRIO and hybrid) projects modeling raw material equivalents, adjusting the models in a stepwise manner in order to quantify the effects of individual conceptual elements. We attempt to isolate the MRIO gap, which denotes the quantitative impact of calculating the RME of imports by an MRIO approach instead of the hybrid model, focusing on the RME of EU external trade imports. While, the models give quantitatively similar results, differences become more pronounced when tracking more detailed material flows. We assess the advantages and disadvantages of the two approaches and look forward to ways to further harmonize data and approaches. PMID:24255968

  5. Flammability and sensitivity of materials in oxygen-enriched atmospheres

    SciTech Connect

    Stoltzfus, J.M.; Benz, F.J.; Stradling, J.S. )

    1989-01-01

    This book presents five papers on development and evaluation of test methods. It addresses the ignition and combustion of nonmetallic and metallic materials. Analysis and testing of oxygen systems are included.

  6. Materials with low DC magnetic susceptibility for sensitive magnetic measurements

    NASA Astrophysics Data System (ADS)

    Khatiwada, R.; Dennis, L.; Kendrick, R.; Khosravi, M.; Peters, M.; Smith, E.; Snow, W. M.

    2016-02-01

    Materials with very low DC magnetic susceptibility have many scientific applications. To our knowledge however, relatively little research has been conducted with the goal to produce a totally nonmagnetic material. This phrase in our case means after spatially averaging over macroscopic volumes, it possesses an average zero DC magnetic susceptibility. We report measurements of the DC magnetic susceptibility of three different types of nonmagnetic materials at room temperature: (I) solutions of paramagnetic salts and diamagnetic liquids, (II) liquid gallium-indium alloys and (III) pressed powder mixtures of tungsten and bismuth. The lowest measured magnetic susceptibility among these candidate materials is in the order of 10-9 cgs volume susceptibility units, about two orders of magnitude smaller than distilled water. In all cases, the measured concentration dependence of the magnetic susceptibility is consistent with that expected for the weighted sum of the susceptibilities of the separate components within experimental error. These results verify the well-known Wiedemann additivity law for the magnetic susceptibility of inert mixtures of materials and thereby realize the ability to produce materials with small but tunable magnetic susceptibility. For our particular scientific application, we are also looking for materials with the largest possible number of neutrons and protons per unit volume. The gallium-indium alloys fabricated and measured in this work possess to our knowledge the smallest ratio of volume magnetic susceptibility to nucleon number density per unit volume for a room temperature liquid, and the tungsten-bismuth pressed powder mixtures possess to our knowledge the smallest ratio of volume magnetic susceptibility to nucleon number density per unit volume for a room temperature solid. This ratio is a figure of merit for a certain class of precision experiments that search for possible exotic spin-dependent forces of Nature.

  7. Spectroscopic ellipsometry as a sensitive monitor of materials contamination

    NASA Technical Reports Server (NTRS)

    Hale, Jeffrey S.; Hilfiker, James N.; Spady, Blaine; Synowicki, R.; Woollam, John A.

    1995-01-01

    Spectroscopic ellipsometry is demonstrated to be extremely sensitive to contamination layers in the thickness range from 0.1 nm to 10 microns. In the present experiments we deposit either a thin lubricating oil (WD-40) or mineral oil continuously onto Ir, Cu, Al, Au, and V substrates from a bubbler, and monitor its thickness growth from sub-nanometer to tens of nanometers as a function of time. Re-evaporation of contaminant oils is also monitored in real-time by ellipsometry.

  8. An Earth-Based Equivalent Low Stretch Apparatus to Assess Material Flammability for Microgravity & Extraterrestrial Fire-Safety Applications

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Beeson, H.; Haas, J.

    2001-01-01

    One of the performance goals for NASA's enterprise of Human Exploration and Development of Space (HEDS) is to develop methods, data bases, and validating tests for material flammability characterization, hazard reduction, and fire detection/suppression strategies for spacecraft and extraterrestrial habitats. This work addresses these needs by applying the fundamental knowledge gained from low stretch experiments to the development of a normal gravity low stretch material flammability test method. The concept of the apparatus being developed uses the low stretch geometry to simulate the conditions of the extraterrestrial environment through proper scaling of the sample dimensions to reduce the buoyant stretch in normal gravity. The apparatus uses controlled forced-air flow to augment the low stretch to levels which simulate Lunar or Martian gravity levels. In addition, the effect of imposed radiant heat flux on material flammability can be studied with the cone heater. After breadboard testing, the apparatus will be integrated into NASA's White Sands Test Facility's Atmosphere-Controlled Cone Calorimeter for evaluation as a new materials screening test method.

  9. High precision laser processing of sensitive materials by Microjet

    NASA Astrophysics Data System (ADS)

    Sibailly, Ochelio D.; Wagner, Frank R.; Mayor, Laetitia; Richerzhagen, Bernold

    2003-11-01

    Material laser cutting is well known and widely used in industrial processes, including micro fabrication. An increasing number of applications require nevertheless a superior machining quality than can be achieved using this method. A possibility to increase the cut quality is to opt for the water-jet guided laser technology. In this technique the laser is conducted to the work piece by total internal reflection in a thin stable water-jet, comparable to the core of an optical fiber. The water jet guided laser technique was developed originally in order to reduce the heat damaged zone near the cut, but in fact many other advantages were observed due to the usage of a water-jet instead of an assist gas stream applied in conventional laser cutting. In brief, the advantages are three-fold: the absence of divergence due to light guiding, the efficient melt expulsion, and optimum work piece cooling. In this presentation we will give an overview on several industrial applications of the water-jet guided laser technique. These applications range from the cutting of CBN or ferrite cores to the dicing of thin wafers and the manufacturing of stencils, each illustrates the important impact of the water-jet usage.

  10. SU-E-J-210: Characterizing Tissue Equivalent Materials for the Development of a Dual MRI-CT Heterogeneous Anthropomorphic Phantom Designed Specifically for MRI Guided Radiotherapy Systems

    SciTech Connect

    Steinmann, A; Stafford, R; Yung, J; Followill, D

    2015-06-15

    Purpose: MRI guided radiotherapy (MRIgRT) is an emerging technology which will eventually require a proficient quality auditing system. Due to different principles in which MR and CT acquire images, there is a need for a multi-imaging-modality, end-to-end QA phantom for MRIgRT. The purpose of this study is to identify lung, soft tissue, and tumor equivalent substitutes that share similar human-like CT and MR properties (i.e. Hounsfield units and relaxation times). Methods: Materials of interested such as common CT QA phantom materials, and other proprietary gels/silicones from Polytek, SmoothOn, and CompositeOne were first scanned on a GE 1.5T Signa HDxT MR. Materials that could be seen on both T1-weighted and T2-weighted images were then scanned on a GE Lightspeed RT16 CT simulator and a GE Discovery 750HD CT scanner and their HU values were then measured. The materials with matching HU values of lung (−500 to −700HU), muscle (+40HU) and soft tissue (+100 to +300HU) were further scanned on GE 1.5T Signa HDx to measure their T1 and T2 relaxation times from varying parameters of TI and TE. Results: Materials that could be visualized on T1-weighted and T2-weighted images from a 1.5T MR unit and had an appropriate average CT number, −650, −685, 46,169, and 168 HUs were: compressed cork saturated with water, Polytek Platsil™ Gel-00 combined with mini styrofoam balls, radiotherapy bolus material, SmoothOn Dragon-Skin™ and SmoothOn Ecoflex™, respectively. Conclusion: Post processing analysis is currently being performed to accurately map T1 and T2 values for each material tested. From previous MR visualization and CT examinations it is expected that Dragon-Skin™, Ecoflex™ and bolus will have values consistent with tissue and tumor substitutes. We also expect compressed cork statured with water, and Polytek™-styrofoam combination to have approximate T1 and T2 values suitable for lung-equivalent materials.

  11. Establishing Substantial Equivalence: Transcriptomics

    NASA Astrophysics Data System (ADS)

    Baudo, María Marcela; Powers, Stephen J.; Mitchell, Rowan A. C.; Shewry, Peter R.

    Regulatory authorities in Western Europe require transgenic crops to be substantially equivalent to conventionally bred forms if they are to be approved for commercial production. One way to establish substantial equivalence is to compare the transcript profiles of developing grain and other tissues of transgenic and conventionally bred lines, in order to identify any unintended effects of the transformation process. We present detailed protocols for transcriptomic comparisons of developing wheat grain and leaf material, and illustrate their use by reference to our own studies of lines transformed to express additional gluten protein genes controlled by their own endosperm-specific promoters. The results show that the transgenes present in these lines (which included those encoding marker genes) did not have any significant unpredicted effects on the expression of endogenous genes and that the transgenic plants were therefore substantially equivalent to the corresponding parental lines.

  12. Sensitivity tests on leaded glove material, EMRTC Report FR-95-15: Final test report

    SciTech Connect

    Olson, D.; Davis, L.; Block-Bolten, A.

    1995-06-01

    Small-scale safety and characterization tests were performed on stored radioactive wastes. The materials tested were formed when leaded dry box gloves were exposed to nitric acid. The nitration products exhibited thermal and impact sensitivity which could lead to ignition of explosion. Water was used to separate the nitrated glove material into several fractions; only the insoluble fraction exhibited significant sensitivity to impact. Both the separated and mixed materials were thermally unstable. Self-heating occurred at about 80C or lower, depending on the quantity of material tested. The drop weight impact sensitivity of one sample was greater than that of trinitrotoluene. The electrostatic spark discharge sensitivity of the nitration products was measured to be less than for typical secondary explosives. No sensitivity to friction was measured. These results indicate that the nitrated gloves can probably be handled without extreme risk of ignition. Washing the nitrated materials was found to desensitize the materials, indicating that water could be used as a solvent when storing the materials.

  13. Sensitivity of tire response to variations in material and geometric parameters

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Tanner, John A.; Peters, Jeanne M.

    1992-01-01

    A computational procedure is presented for evaluating the analytic sensitivity derivatives of the tire response with respect to material and geometric parameters of the tire. The tire is modeled by using a two-dimensional laminated anisotropic shell theory with the effects of variation in material and geometric parameters included. The computational procedure is applied to the case of uniform inflation pressure on the Space Shuttle nose-gear tire when subjected to uniform inflation pressure. Numerical results are presented showing the sensitivity of the different response quantities to variations in the material characteristics of both the cord and the rubber.

  14. Photopolymer material sensitized by xanthene dyes for holographic recording using forbidden singlet–triplet electronic transitions

    NASA Astrophysics Data System (ADS)

    Shelkovnikov, Vladimir; Vasiljev, Evgeny; Russkih, Vladimlen; Berezhnaya, Viktoria

    2016-07-01

    A new holographic photopolymer material is developed. The photopolymer material is sensitized by dyes of xanthene and thioxanthene series which contain iodine and bromine heavy atoms. Holographic recording was carried out during excitation of forbidden singlet–triplet electron transitions of dyes. Thioerythrosin triethylammonium was identified as the most effective sensitizer among a number of tested dyes. The spectral absorption area of the singlet–triplet electronic transition of the dye is conveyed in the red spectral range from 600 to 700 nm. The sensitivity of the photopolymer material to radiation with 633 nm wavelength is 180 mJ cm‑2. Optimization of concentration of the main components of the photopolymer compositions was carried out in order to achieve maximum efficiency of holographic recording.

  15. Controlling the Electrostatic Discharge Ignition Sensitivity of Composite Energetic Materials Using Carbon Nanotube Additives

    SciTech Connect

    Kade H. Poper; Eric S. Collins; Michelle L. Pantoya; Michael Daniels

    2014-10-01

    Powder energetic materials are highly sensitive to electrostatic discharge (ESD) ignition. This study shows that small concentrations of carbon nanotubes (CNT) added to the highly reactive mixture of aluminum and copper oxide (Al + CuO) significantly reduces ESD ignition sensitivity. CNT act as a conduit for electric energy, bypassing energy buildup and desensitizing the mixture to ESD ignition. The lowest CNT concentration needed to desensitize ignition is 3.8 vol.% corresponding to percolation corresponding to an electrical conductivity of 0.04 S/cm. Conversely, added CNT increased Al + CuO thermal ignition sensitivity to a hot wire igniter.

  16. Sensitivity alteration of fiber Bragg grating sensors with additive micro-scale bi-material coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Xixi; Alemohammad, Hamidreza; Toyserkani, Ehsan

    2013-02-01

    This paper describes a combined fabrication method for creating a bi-material micro-scale coating on fiber Bragg grating (FBG) optical sensors using laser-assisted maskless microdeposition (LAMM) and electroless nickel plating. This bi-material coating alters the sensitivity of the sensor where it also acts as a protective layer. LAMM is used to coat bare FBGs with a 1-2 µm thick conductive silver layer followed by the electroless nickel plating process to increase layer thickness to a desired level ranging from 1 to 80 µm. To identify an optimum coating thickness and predict its effect on the sensor's sensitivity to force and temperature, an optomechanical model is developed in this study. According to the model if the thickness of the Ni layer is 30-50 µm, maximum temperature sensitivity is achieved. Our analytical and experimental results suggest that the temperature sensitivity of the coated FBG with 1 µm Ag and 33 µm Ni is almost doubled compared to a bare FBG with sensitivity of 0.011 ± 0.001 nm °C-1. In contrast, the force sensitivity is decreased; however, this sensitivity reduction is less than the values reported in the literature.

  17. Permeation tests of glove and clothing materials against sensitizing chemicals using diphenylmethane diisocyanate as an example.

    PubMed

    Mäkelä, Erja A; Henriks-Eckerman, Maj-Len; Ylinen, Katriina; Vuokko, Aki; Suuronen, Katri

    2014-08-01

    Diphenylmethane diisocyanate (MDI) is a sensitizing chemical that can cause allergic contact dermatitis and asthma. Protective gloves and clothing are necessary to prevent skin exposure. Breakthrough times are used for the selection of chemical protective gloves and clothing. In the EN 374-3:2003 European standard, breakthrough time is defined as the time in which the permeation reaches the rate of 1.0 µg min(-1) cm(-2) through the material. Such breakthrough times do not necessarily represent safe limits for sensitizing chemicals. We studied the permeation of 4,4'-MDI through eight glove materials and one clothing material. The test method was derived from the EN 374-3 and ASTM F 739 standards. All measured permeation rates were below 0.1 µg min(-1) cm(-2), and thus, the breakthrough times for all the tested materials were over 480min, when the definitions of EN 374-3 and ASTM F 739 for the breakthrough time were used. Based on the sensitizing capacity of MDI, we concluded that a cumulative permeation of 1.0 µg cm(-2) should be used as the end point of the breakthrough time determination for materials used for protection against direct contact with MDI. Using this criterion for the breakthrough time, seven tested materials were permeated in <480min (range: 23-406min). Affordable chemical protective glove materials that had a breakthrough time of over 75min were natural rubber, thick polyvinylchloride, neoprene-natural rubber, and thin and thick nitrile rubber. We suggest that the current definitions of breakthrough times in the standard requirements for protective materials should be critically evaluated as regards MDI and other sensitizing chemicals, or chemicals highly toxic via the skin. PMID:24936578

  18. Characterization of strain rate sensitivity in pharmaceutical materials using indentation creep analysis.

    PubMed

    Katz, Jeffrey M; Buckner, Ira S

    2013-02-14

    Understanding how a material's response to stress changes as the stress is applied at different rates is important in predicting performance of pharmaceutical powders during tablet compression. Widely used methods for determining strain rate sensitivity (SRS) are empirically based and can often provide inconsistent or misleading results. Indentation creep data, collected during hardness tests on compacts formed from several common tableting excipients, were used to predict each material's relative sensitivity to changes in strain rate. Linear relationships between Ln(indentation hardness) and Ln(strain rate) were observed for all materials tested. The slope values taken from these relationships were compared to traditional strain rate sensitivity estimates based on in-die Heckel analysis. Overall, the results from the two methods were quite similar, but several advantages were evident in the creep data. The most notable advantage was the ability to characterize strain rate sensitivity derived from plastic behavior with little influence of elastic deformation. For example, two grades of corn starch had very similar creep behavior, but their yield pressures were affected very differently when the compaction rate was increased. This inconsistency was related to the difference in the viscoelastic recovery exhibited by these two materials. This new method promises to allow a better understanding of strain rate effects observed during tablet manufacturing. PMID:22985770

  19. Materials Testing in Long Cane Design: Sensitivity, Flexibility, and Transmission of Vibration

    ERIC Educational Resources Information Center

    Rodgers, Mark D.; Emerson, Robert Wall

    2005-01-01

    Different materials that are used in manufacturing long cane shafts were assessed for their ability to transmit vibration and their sensitivity to tactile information, flexibility, and durability. It was found that the less flexible a cane shaft is, the better it transmits vibrations that are useful for discriminating surface textures and that…

  20. Polarization-sensitive effects of solgel materials containing various chiral media.

    PubMed

    Tao, Wei-dong; Bai, Gui-ru; Lu, Zu-kang

    2004-04-15

    The polarization-sensitive effects of solgel materials containing various chiral media were measured experimentally. The results show that the solgel material displays optical activity when it contains organic chiral molecules and manifests depolarization when it contains inorganic chiral microcrystals with a particle size of 70 microm. Solgel material containing glass powder that also has a particle size of 70 microm displays a polarization held characteristic (i.e., the polarization of the output light is the same as that of the input light). PMID:15119408

  1. Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials

    NASA Astrophysics Data System (ADS)

    Kattamis, Nicholas T.; Purnick, Priscilla E.; Weiss, Ron; Arnold, Craig B.

    2007-10-01

    Laser forward transfer processes incorporating thin absorbing films can be used to deposit robust organic and inorganic materials but the deposition of more delicate materials has remained elusive due to contamination and stress induced during the transfer process. Here, we present the approach to high resolution patterning of sensitive materials by incorporating a thick film polymer absorbing layer that is able to dissipate shock energy through mechanical deformation. Multiple mechanisms for transfer as a function of incident laser energy are observed and we show viable and contamination-free deposition of living mammalian embryonic stem cells.

  2. Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials

    SciTech Connect

    Kattamis, Nicholas T.; Purnick, Priscilla E.; Weiss, Ron; Arnold, Craig B.

    2007-10-22

    Laser forward transfer processes incorporating thin absorbing films can be used to deposit robust organic and inorganic materials but the deposition of more delicate materials has remained elusive due to contamination and stress induced during the transfer process. Here, we present the approach to high resolution patterning of sensitive materials by incorporating a thick film polymer absorbing layer that is able to dissipate shock energy through mechanical deformation. Multiple mechanisms for transfer as a function of incident laser energy are observed and we show viable and contamination-free deposition of living mammalian embryonic stem cells.

  3. High sensitivity spectroscopic and thermal characterization of cooling efficiency for optical refrigeration materials

    NASA Astrophysics Data System (ADS)

    Melgaard, Seth D.; Seletskiy, Denis V.; Di Lieto, Alberto; Tonelli, Mauro; Sheik-Bahae, Mansoor

    2012-03-01

    Since recent demonstration of cryogenic optical refrigeration, a need for reliable characterization tools of cooling performance of different materials is in high demand. We present our experimental apparatus that allows for temperature and wavelength dependent characterization of the materials' cooling efficiency and is based on highly sensitive spectral differencing technique or two-band differential spectral metrology (2B-DSM). First characterization of a 5% w.t. ytterbium-doped YLF crystal showed quantitative agreement with the current laser cooling model, as well as measured a minimum achievable temperature (MAT) at 110 K. Other materials and ion concentrations are also investigated and reported here.

  4. The interactive effects of pH, surface tension, and solution density for flotation systems for separation of equivalent-density materials: separation of ABS from HIPS

    SciTech Connect

    Karvelas, D.E.; Jody, B.J.; Pomykala, J.A.; Daniels, E.J.

    1996-07-01

    This paper presents the results of research being conducted at Argonne National Laboratory, to develop a cost-effective and environmentally acceptable process for the separation of high-value plastics from discarded household appliances. The process under development has separated high-purity (greater than 99.5%) acrylonitrile-butadiene-styrene (ABS) and high-impact polystyrene (HIPS) from commingled plastics generated by appliance-shredding and metal recovery operations. Plastics of similar densities, such as ABS and HIPS are further separated by using a chemical solution. By controlling the surface tension, the density and the temperature of the chemical solution, we are able to selectively float/separate plastics that have equivalent densities. In laboratory-scale tests, this technique has proven highly effective in recovering high-purity plastics materials from discarded household appliances and other obsolete durable goods. A pilot plant is under construction to demonstrate and assess the technical and economic performance of this process. In this paper, we examine the technical and economic issues that affect the recovery and separation of plastics and provide an update on Argonne`s plastics separation research and development activities.

  5. Substrate-anchored and degradation-sensitive anti-inflammatory coatings for implant materials

    NASA Astrophysics Data System (ADS)

    Wu, Duo; Chen, Xingyu; Chen, Tianchan; Ding, Chunmei; Wu, Wei; Li, Jianshu

    2015-06-01

    Implant materials need to be highly biocompatible to avoid inflammation in clinical practice. Although biodegradable polymeric implants can eliminate the need for a second surgical intervention to remove the implant materials, they may produce acidic degradation products in vivo and cause non-bacterial inflammation. Here we show the strategy of “substrate-anchored and degradation-sensitive coatings” for biodegradable implants. Using poly(lactic acid)/hydroxyapatite as an implant material model, we constructed a layer-by-layer coating using pH-sensitive star polymers and dendrimers loaded with an anti-inflammatory drug, which was immobilised through a hydroxyapatite-anchored layer. The multifunctional coating can effectively suppress the local inflammation caused by the degradation of implant materials for at least 8 weeks in vivo. Moreover, the substrate-anchored coating is able to modulate the degradation of the substrate in a more homogeneous manner. The “substrate-anchored and degradation-sensitive coating” strategy therefore exhibits potential for the design of various self-anti-inflammatory biodegradable implant materials.

  6. Substrate-anchored and degradation-sensitive anti-inflammatory coatings for implant materials

    PubMed Central

    Wu, Duo; Chen, Xingyu; Chen, Tianchan; Ding, Chunmei; Wu, Wei; Li, Jianshu

    2015-01-01

    Implant materials need to be highly biocompatible to avoid inflammation in clinical practice. Although biodegradable polymeric implants can eliminate the need for a second surgical intervention to remove the implant materials, they may produce acidic degradation products in vivo and cause non-bacterial inflammation. Here we show the strategy of “substrate-anchored and degradation-sensitive coatings” for biodegradable implants. Using poly(lactic acid)/hydroxyapatite as an implant material model, we constructed a layer-by-layer coating using pH-sensitive star polymers and dendrimers loaded with an anti-inflammatory drug, which was immobilised through a hydroxyapatite-anchored layer. The multifunctional coating can effectively suppress the local inflammation caused by the degradation of implant materials for at least 8 weeks in vivo. Moreover, the substrate-anchored coating is able to modulate the degradation of the substrate in a more homogeneous manner. The “substrate-anchored and degradation-sensitive coating” strategy therefore exhibits potential for the design of various self-anti-inflammatory biodegradable implant materials. PMID:26077243

  7. High sensitivity piezomagnetic force microscopy for quantitative probing of magnetic materials at the nanoscale.

    PubMed

    Chen, Qian Nataly; Ma, Feiyue; Xie, Shuhong; Liu, Yuanming; Proksch, Roger; Li, Jiangyu

    2013-07-01

    Accurate scanning probing of magnetic materials at the nanoscale is essential for developing and characterizing magnetic nanostructures, yet quantitative analysis is difficult using the state of the art magnetic force microscopy, and has limited spatial resolution and sensitivity. In this communication, we develop a novel piezomagnetic force microscopy (PmFM) technique, with the imaging principle based on the detection of magnetostrictive response excited by an external magnetic field. In combination with the dual AC resonance tracking (DART) technique, the contact stiffness and energy dissipation of the samples can be simultaneously mapped along with the PmFM phase and amplitude, enabling quantitative probing of magnetic materials and structures at the nanoscale with high sensitivity and spatial resolution. PmFM has been applied to probe magnetic soft discs and cobalt ferrite thin films, demonstrating it as a powerful tool for a wide range of magnetic materials. PMID:23720016

  8. Plutonium 239 Equivalency Calculations

    SciTech Connect

    Wen, J

    2011-05-31

    This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

  9. Differential Sensitivity Theory applied to the MESA2D code for multi-material problems

    SciTech Connect

    Henninger, R.J.; Maudlin, P.J.; Harstad, E.N.

    1996-05-01

    The technique called Differential Sensitivity Theory (DST) is extended to the multi-component system of equations solved by the MESA2D hydrocode. DST uses adjoint techniques to determine exact sensitivity derivatives, i.e., if R is a calculation result of interest (response R) and {alpha}{sub i} is a calculation input (parameter {alpha}{sub i}), then {partial_derivative}R/{partial_derivative}{alpha}{sub i} is defined as the sensitivity. The advantage of using DST is that for an n-parameter problem {ital all} n sensitivities can be obtained by integrating the solutions from only {ital two} calculations, a MESA calculation and its corresponding adjoint calculation using an Adjoint Continuum Mechanics (ACM) code. Previous papers have described application of the technique to one-dimensional, single-material problems. This work presents the derivation and solution of the additional adjoint equations for the purpose of computing sensitivities for two-dimensional, multi-component problems. As an example, results for a multi-material flyer plate impact problem featuring an oblique impact are given. {copyright} {ital 1996 American Institute of Physics.}

  10. Differential Sensitivity Theory applied to the MESA2D code for multi-material problems

    NASA Astrophysics Data System (ADS)

    Henninger, R. J.; Maudlin, P. J.; Harstad, E. N.

    1996-05-01

    The technique called Differential Sensitivity Theory (DST) is extended to the multi-component system of equations solved by the MESA2D hydrocode. DST uses adjoint techniques to determine exact sensitivity derivatives, i.e., if R is a calculation result of interest (response R) and αi is a calculation input (parameter αi), then ∂R/∂αi is defined as the sensitivity. The advantage of using DST is that for an n-parameter problem all n sensitivities can be obtained by integrating the solutions from only two calculations, a MESA calculation and its corresponding adjoint calculation using an Adjoint Continuum Mechanics (ACM) code. Previous papers have described application of the technique to one-dimensional, single-material problems. This work presents the derivation and solution of the additional adjoint equations for the purpose of computing sensitivities for two-dimensional, multi-component problems. As an example, results for a multi-material flyer plate impact problem featuring an oblique impact are given.

  11. Differential sensitivity theory applied to the MESA2D code for multi-material problems

    SciTech Connect

    Henninger, R.J.; Maudlin, P.J.; Harstad, E.N.

    1995-09-01

    The technique called Differential Sensitivity Theory (DST) is extended to the multi-component system of equations solved by the MESA2D hydrocode. DST uses adjoint techniques to determine exact sensitivity derivatives, i.e., if R is a calculation result of interest (response R) and {alpha}{sub i} is a calculation input (parameter {alpha}{sub i}), then {partial_derivative}R/{partial_derivative}{alpha}{sub i} is defined as the sensitivity. The advantage of using DST is that for an n-parameter problem all n sensitivities can be obtained by integrating the solutions from only two calculations, a MESA calculation and its corresponding adjoint calculation using an Adjoint Continuum Mechanics (ACM) code. Previous papers have described application of the technique to one-dimensional, single-material problems. This work presents the derivation and solution of the additional adjoint equations for the purpose of computing sensitivities for two-dimensional, multi-component problems. As an example, results for a multi-material flyer plate impact problem featuring an oblique impact are given.

  12. Sensing materials with a concurrent sensitivity: design, synthesis and application in multisensory systems

    NASA Astrophysics Data System (ADS)

    Lvova, Larisa; Pomarico, Giuseppe; Spiridonov, Igor; Mednova, Olga; Kirsanov, Dmitry; Legin, Andrey; Di Natale, Corrado; D'Amico, Arnaldo; Paolesse, Roberto

    2011-09-01

    A series of novel sensing materials with concurrent sensitivity, namely the porphyrins [free-base, Mn(III) and Fe(III) complexes], functionalized with crown-ether or aza-crown (cyclam) pendant groups, were synthesized and tested as ionophores for polymeric membrane electrodes. Several aspects were studied in order to evaluate the functionality and the desired sensitivity of resulting crown-porphyrins hyphenated ionophores, among them the nature and the size of crown fragment cavity, the length of the alkyl pendant incorporating the crown-ether unit, the presence and the nature of central metal ion both in porphyrin and crown macrocycles.

  13. Laser Ablation/Ionisation Mass Spectrometry: Sensitive and Quantitative Chemical Depth Profiling of Solid Materials.

    PubMed

    Riedo, Andreas; Grimaudo, Valentine; Moreno-García, Pavel; Neuland, Maike B; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2016-01-01

    Direct quantitative and sensitive chemical analysis of solid materials with high spatial resolution, both in lateral and vertical direction is of high importance in various fields of analytical research, ranging from in situ space research to the semiconductor industry. Accurate knowledge of the chemical composition of solid materials allows a better understanding of physical and chemical processes that formed/altered the material and allows e.g. to further improve these processes. So far, state-of-the-art techniques such as SIMS, LA-ICP-MS or GD-MS have been applied for chemical analyses in these fields of research. In this report we review the current measurement capability and the applicability of our Laser Ablation/Ionisation Mass Spectrometer (instrument name LMS) for the chemical analysis of solids with high spatial resolution. The most recent chemical analyses conducted on various solid materials, including e.g. alloys, fossils and meteorites are discussed. PMID:27131112

  14. Ultra-sensitive immunoassay biosensors using hybrid plasmonic-biosilica nanostructured materials.

    PubMed

    Yang, Jing; Zhen, Le; Ren, Fanghui; Campbell, Jeremy; Rorrer, Gregory L; Wang, Alan X

    2015-08-01

    We experimentally demonstrate an ultra-sensitive immunoassay biosensor using diatom biosilica with self-assembled plasmonic nanoparticles. As the nature-created photonic crystal structures, diatoms have been adopted to enhance surface plasmon resonances of metal nanoparticles on the surfaces of diatom frustules and to increase the sensitivity of surface-enhanced Raman scattering (SERS). In this study, a sandwich SERS immunoassay is developed based on the hybrid plasmonic-biosilica nanostructured materials that are functionalized with goat anti-mouse IgG. Our experimental results show that diatom frustules improve the detection limit of mouse IgG to 10 pg/mL, which is ˜100× better than conventional colloidal SERS sensors on flat glass. Ultra-sensitive immunoassay biosensor using diatom biosilica with self-assembled plasmonic nanoparticles. PMID:25256544

  15. Mechanical behavior of a fluid-sensitive material during liquid diffusion

    NASA Astrophysics Data System (ADS)

    Widiastuti, Indah; Sbarski, Igor; Masood, S. H.

    2014-05-01

    This paper described the analytical study that we performed in an attempt to understand the combined effect of liquid diffusion and temperature on the mechanical response of viscoelastic liquid-sensitive material. A constitutive equation for linear viscoelasticity, which includes the effect of liquid diffusion, is used to model the mechanical response of a fluid-sensitive polymer such as PLA-based bioplastic. The viscoelastic characteristics which represent material degradation due to liquid diffusion were expressed using a creep-based formulation represented by Burger's model. Creep experiment data were fitted to the Burgers model to provide a liquid content-dependent set of input data for subsequent time-dependent analysis. Further, analytical solutions for stresses and deformations were obtained from the corresponding elastic solution by applying the Correspondence Principle, using previously defined material characteristics. Spatial and time variations of stress and deformation were evaluated to give a precise description of the material behavior under hygroscopic conditions. We propose a stress concentration factor to take into account the liquid diffusion-induced stress that may result in a failure of an application. The results emphasize the importance of considering liquid diffusion and viscoelastic properties in the design of components using liquid-absorbable material.

  16. Sensitivity Characterization of Pressed Energetic Materials using Flyer Plate Mesoscale Simulations

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal; Udaykumar, H. S.

    Heterogeneous energetic materials like pressed explosives have complicated microstructure and contain various forms of heterogeneities such as pores, micro-cracks, energetic crystals etc. It is widely accepted that the presence of these heterogeneities can affect the sensitivity of these materials under shock load. The interaction of shock load with the microstructural heterogeneities may leads to the formation of local heated regions known as ``hot spots''. Chemical reaction may trigger at the hot spot regions depending on the hot spot temperature and the duration over which the temperature can be maintained before phenomenon like heat conduction, rarefaction waves withdraws energy from it. There are different mechanisms which can lead to the formation of hot spots including void collapse. The current work is focused towards the sensitivity characterization of two HMX based pressed energetic materials using flyer plate mesoscale simulations. The aim of the current work is to develop mesoscale numerical framework which can perform simulations by replicating the laboratory based flyer plate experiments. The current numerical framework uses an image processing approach to represent the microstructural heterogeneities incorporated in a massively parallel Eulerian code SCIMITAR3D. The chemical decomposition of HMX is modeled using Henson-Smilowitz reaction mechanism. The sensitivity characterization is aimed towards obtaining James initiation threshold curve and comparing it with the experimental results.

  17. Effect of electrode material and design on sensitivity and selectivity for high temperature impedancemetric NOx sensors

    SciTech Connect

    Woo, L Y; Glass, R S; Novak, R F; Visser, J H

    2009-09-23

    Solid-state electrochemical sensors using two different sensing electrode compositions, gold and strontium-doped lanthanum manganite (LSM), were evaluated for gas phase sensing of NO{sub x} (NO and NO{sub 2}) using an impedance-metric technique. An asymmetric cell design utilizing porous YSZ electrolyte exposed both electrodes to the test gas (i.e., no reference gas). Sensitivity to less than 5 ppm NO and response/recovery times (10-90%) less than 10 s were demonstrated. Using an LSM sensing electrode, virtual identical sensitivity towards NO and NO{sub 2} was obtained, indicating that the equilibrium gas concentration was measured by the sensing electrode. In contrast, for cells employing a gold sensing electrode the NO{sub x} sensitivity varied depending on the cell design: increasing the amount of porous YSZ electrolyte on the sensor surface produced higher NO{sub 2} sensitivity compared to NO. In order to achieve comparable sensitivity for both NO and NO{sub 2}, the cell with the LSM sensing electrode required operation at a lower temperature (575 C) than the cell with the gold sensing electrode (650 C). The role of surface reactions are proposed to explain the differences in NO and NO{sub 2} selectivity using the two different electrode materials.

  18. Comments on TNT Equivalence

    SciTech Connect

    Cooper, P.W.

    1994-07-01

    The term ``TNT Equivalence`` is used throughout the explosives and related industries to compare the effects of the output of a given explosive to that of TNT. This is done for technical design reasons in scaling calculation such as for the prediction of blast waves, craters, and structural response, and is also used as a basis for government regulations controlling the shipping, handling and storage of explosive materials, as well as for the siting and design of explosive facilities. TNT equivalence is determined experimentally by several different types of tests, the most common of which include: plate dent, ballistic mortar, trauzl, sand crush, and air blast. All of these tests do not necessarily measure the same output property of the sample explosive. As examples of this, some tests depend simply upon the CJ pressure, some depend upon the PV work in the CJ zone and in the Taylor wave behind the CJ plane, some are functions of the total work which includes that from secondary combustion in the air mixing region of the fireball and are acutely effected by the shape of the pressure-time profile of the wave. Some of the tests incorporate systematic errors which are not readily apparent, and which have a profound effect upon skewing the resultant data. Further, some of the tests produce different TNT Equivalents for the same explosive which are a function of the conditions at which the test is run. This paper describes the various tests used, discusses the results of each test and makes detailed commentary on what the test is actually measuring, how the results may be interpreted, and if and how these results can be predicted by first principals based calculations. Extensive data bases are referred to throughout the paper and used in examples for each point in the commentaries.

  19. High pressure liquid and gaseous oxygen impact sensitivity evaluation of materials for use at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Bryan, C. J.

    1976-01-01

    The sensitivity of materials in contact with gaseous oxygen (GOX) or liquid oxygen (LOX) was examined. Specifically, the reactivity of materials when in contact with GOX or LOX if subjected to such stimuli as mechanical impact, adiabatic compression (pneumatic impact), or an electrical discharge in the form of a spark were examined. Generally, materials are more sensitive in gaseous oxygen than in liquid oxygen and impact sensitivity is known to increase with increasing pressure. Materials presently being used or considered for use in oxygen systems at KSC were evaluated. Results are given in tabular form.

  20. Label-free and pH-sensitive colorimetric materials for the sensing of urea

    NASA Astrophysics Data System (ADS)

    Li, Lu; Long, Yue; Gao, Jin-Ming; Song, Kai; Yang, Guoqiang

    2016-02-01

    This communication demonstrates a facile method for naked-eye detection of urea based on the structure color change of pH-sensitive photonic crystals. The insertion of urease provides excellent selectivity over other molecules. The detection of urea in different concentration ranges could be realized by changing the molar ratio between the functional monomer and cross-linker.This communication demonstrates a facile method for naked-eye detection of urea based on the structure color change of pH-sensitive photonic crystals. The insertion of urease provides excellent selectivity over other molecules. The detection of urea in different concentration ranges could be realized by changing the molar ratio between the functional monomer and cross-linker. Electronic supplementary information (ESI) available: Materials and chemicals, characterization, experimental details, and SEM images. See DOI: 10.1039/c5nr07690k

  1. Sensitivity of hydrological performance assessment analysis to variations in material properties, conceptual models, and ventilation models

    SciTech Connect

    Sobolik, S.R.; Ho, C.K.; Dunn, E.; Robey, T.H.; Cruz, W.T.

    1996-07-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface- based and underground testing. Analyses have been performed to support the design of an Exploratory Studies Facility (ESF) and the design of the tests performed as part of the characterization process, in order to ascertain that they have minimal impact on the natural ability of the site to isolate waste. The information in this report pertains to sensitivity studies evaluating previous hydrological performance assessment analyses to variation in the material properties, conceptual models, and ventilation models, and the implications of this sensitivity on previous recommendations supporting ESF design. This document contains information that has been used in preparing recommendations for Appendix I of the Exploratory Studies Facility Design Requirements document.

  2. Sensitivity of acoustic nonlinearity parameter to the microstructural changes in cement-based materials

    NASA Astrophysics Data System (ADS)

    Kim, Gun; Kim, Jin-Yeon; Kurtis, Kimberly E.; Jacobs, Laurence J.

    2015-03-01

    This research experimentally investigates the sensitivity of the acoustic nonlinearity parameter to microcracks in cement-based materials. Based on the second harmonic generation (SHG) technique, an experimental setup using non-contact, air-coupled detection is used to receive the consistent Rayleigh surface waves. To induce variations in the extent of microscale cracking in two types of specimens (concrete and mortar), shrinkage reducing admixture (SRA), is used in one set, while a companion specimen is prepared without SRA. A 50 kHz wedge transducer and a 100 kHz air-coupled transducer are implemented for the generation and detection of nonlinear Rayleigh waves. It is shown that the air-coupled detection method provides more repeatable fundamental and second harmonic amplitudes of the propagating Rayleigh waves. The obtained amplitudes are then used to calculate the relative nonlinearity parameter βre, the ratio of the second harmonic amplitude to the square of the fundamental amplitude. The experimental results clearly demonstrate that the nonlinearity parameter (βre) is highly sensitive to the microstructural changes in cement-based materials than the Rayleigh phase velocity and attenuation and that SRA has great potential to avoid shrinkage cracking in cement-based materials.

  3. Development of high Sensitivity Materials for Applications in Magneto-Mechanical Torque Sensor

    SciTech Connect

    Yuping Shen

    2003-08-05

    The Matteucci effect, which mainly manifests itself as the change of magnetization of a material with torsional stress, is currently of great technological interest because of the search for magnetic torque sensors. Magnetic torque sensors are important to future improvements of automobiles and industrial robots. It is well known that the magnetic state of a material depends on both the external magnetic field and external stress which causes strain and change in magnetization of the material. The former phenomenon has been well understood in both theory and application. However, the magnetic state dependence of stress is not adequately understood and the experimental data is of limited extent. In this project, the Matteucci effect in iron, cobalt, nickel and permalloy rods has been documented when they were in magnetic remanence status along the axis and nickel ring when they were in remanence status along the circumference. The effect of annealing on the magnetomechanical effect in nickel and the temperature dependence of the magnetomechanical sensitivity has also been examined. Factors related to the sensitivity at equilibrium condition have been theoretically developed. it is found in the experiments that the mechanism of magnetic domain wall movement plays an important role rather than the domain rotation. A higher sensitivity was found by domain wall movement mechanism than that by domain rotation mechanism. However, the domain wall movement will result in more hysteresis than domain wall rotation. The dynamic process of Matteucci effect of iron, cobalt, permally, especially as-fabricated and annealed nickel rods have been examined. A tentative explanation for the difference of these in terms of magnetic domain configuration and domain wall movement was given. As a result, another method of configuring and processing magnetic domains to get a linear magnetomechanical response other than that suggested by Garshelis, which was the basic method before the

  4. Equivalence principles and electromagnetism

    NASA Technical Reports Server (NTRS)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  5. Terrestrial bitumen analogue of orgueil organic material demonstrates high sensitivity to usual HF-HCl treatment

    NASA Technical Reports Server (NTRS)

    Korochantsev, A. V.; Nikolaeva, O. V.

    1993-01-01

    The relationship between the chemical composition and the interlayer spacing (d002) of organic materials (OM's) is known for various terrestrial OM's. We improved this general trend by correlation with corresponding trend of natural solid bitumens (asphaltite-kerite-anthraxolite) up to graphite. Using the improved trend we identified bitumen analogs of carbonaceous chondrite OM's residued after HF-HCl treatment. Our laboratory experiment revealed that these analogs and, hence, structure and chemical composition of carbonaceous chondrite OM's are very sensitive to the HF-HCl treatment. So, usual extraction of OM from carbonaceous chondrites may change significantly structural and chemical composition of extracted OM.

  6. Study on The Response Improvement of A Linear Actuator Using Temperature-Sensitive Magnetic Material

    NASA Astrophysics Data System (ADS)

    Hirata, Katsuhiro; Kanzaki, Yasunori; Ota, Tomohiro; Yamaguchi, Tadashi; Kawase, Yoshihiro

    We have been studying a linear actuator for the thermostatic switch using temperature-sensitive magnetic material (TSMM). In this paper, the effect of the geometry of TSMM on response time is investigated by computing the dynamic characteristics of the actuator employing the 3-D finite element method coupled with the equations of magnetic field, heat transfer and motion. As a result, it is found that the response of the actuator is greatly improved. The validity of the computation is clarified though the comparison with the measurement of a prototype.

  7. Sensitive absorption measurements in bulk material and coatings using a photothermal and a photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Fieberg, S.; Waasem, N.; Kühnemann, F.; Buse, K.

    2014-02-01

    Bulk and surface absorption in lithium triborate (LBO) and lithium niobate (LiNbO3) are measured using two sensitive measurement techniques, a photoacoustic spectrometer (PAS) and a photothermal common-path interferometer (PCI). As pump light sources, optical parametric oscillators are employed, covering the wavelength ranges 212 - 2500 nm (PAS) and 1460 - 1900 nm and 2460 - 3900 nm (PCI). The spectrometers are used to measure absorption spectra of optical materials across this wide spectral range and to compare the methods in the shared wavelength regime.

  8. Materials, Interfaces, and Photon Confiement in Dye-Sensitized Solar Cells

    SciTech Connect

    Lee, B.; Hwang, D.; Guo, P. J.; Ho, S. T.; Buchholtz, D. B.; Wang, C. Y.; Chang, R.P.H.

    2010-11-18

    A series of experiments have been carried out to study the effects of materials quality, surface and interfacial modification, and photon confinement on standard dye-sensitized solar cells. For these studies, both physical and optical characterization of the materials has been performed in detail. In addition, DC and AC impedance measurements along with kinetic charge-transport modeling of experimental results have yielded information on how to systematically optimize the cell efficiency. The same kinetic model has been used to interpret the results of a series of experiments on interfacial modification studies using fluorine etching in combination with TiCl{sub 4} surface treatment. By using specially designed photonic crystals to confine the photons in the cells, it is shown that the best cell efficiency can be further increased by about 13%.

  9. Sensitivity Analysis of Material Microstructure Effects on Predicted Crack Paths Using Finite Element Simulations

    NASA Astrophysics Data System (ADS)

    Jacob, Anaïs; Mehmanparast, Ali

    2016-07-01

    The effects of microstructure, grain and grain boundary (GB) properties on predicted damage paths and indicative crack propagation direction have been examined for a polycrystalline material using mesoscale finite element simulations. Numerical analyses were carried out on a compact tension specimen geometry containing granular mesh structures with random grain shapes and sizes of average diameter 100μm. Nanoindentation tests were performed to investigate the dependency of mesoscale hardness measurements on the indentation location with respect to grain and GB regions. Finite element results have shown that under tensile loading conditions, the predicted damage paths are very sensitive to the granular mesh structure, GB properties and individual grain properties. Furthermore, finite element results have revealed that the cracking mode (i.e., transgranular/intergranular) and maximum crack deviation angle are strongly dependent on the material microstructures employed in simulations.

  10. Recent advances in alternative counter electrode materials for Co-mediated dye-sensitized solar cells.

    PubMed

    Yun, Sining; Liu, Yanfang; Zhang, Taihong; Ahmad, Shahzada

    2015-07-28

    Recently, considerable attention has been paid to dye-sensitized solar cells (DSSCs) which are based on Co(2+)/Co(3+) redox shuttles, because of their unparalleled merits including higher redox potential, reduced corrosiveness towards metallic conductors, low costs and high power conversion efficiencies (PCE) (13%). The counter electrode (CE) is an essential component in DSSCs, and plays a crucial role in catalyzing Co(3+) ion reduction in Co-based DSSCs. In this mini-review, we review recent developments in CE materials for Co-mediated DSSCs including: noble metal platinum (Pt), carbon materials, transition metal compounds (TMCs), polymers, and their corresponding hybrids, highlighting important contributions worldwide that promise low cost, efficient, and robust Co-mediated DSSC systems. Additionally, the crucial challenges associated with employing these low-cost CE catalysts for Co-based redox couples in DSSCs are stressed. PMID:26132719

  11. A material sensitivity study on the accuracy of deformable organ registration using linear biomechanical models

    SciTech Connect

    Chi, Y.; Liang, J.; Yan, D.

    2006-02-15

    Model-based deformable organ registration techniques using the finite element method (FEM) have recently been investigated intensively and applied to image-guided adaptive radiotherapy (IGART). These techniques assume that human organs are linearly elastic material, and their mechanical properties are predetermined. Unfortunately, the accurate measurement of the tissue material properties is challenging and the properties usually vary between patients. A common issue is therefore the achievable accuracy of the calculation due to the limited access to tissue elastic material constants. In this study, we performed a systematic investigation on this subject based on tissue biomechanics and computer simulations to establish the relationships between achievable registration accuracy and tissue mechanical and organ geometrical properties. Primarily we focused on image registration for three organs: rectal wall, bladder wall, and prostate. The tissue anisotropy due to orientation preference in tissue fiber alignment is captured by using an orthotropic or a transversely isotropic elastic model. First we developed biomechanical models for the rectal wall, bladder wall, and prostate using simplified geometries and investigated the effect of varying material parameters on the resulting organ deformation. Then computer models based on patient image data were constructed, and image registrations were performed. The sensitivity of registration errors was studied by perturbating the tissue material properties from their mean values while fixing the boundary conditions. The simulation results demonstrated that registration error for a subvolume increases as its distance from the boundary increases. Also, a variable associated with material stability was found to be a dominant factor in registration accuracy in the context of material uncertainty. For hollow thin organs such as rectal walls and bladder walls, the registration errors are limited. Given 30% in material uncertainty

  12. Light manipulating vector polyphotochromatic behavior in organic polarization-sensitive materials

    NASA Astrophysics Data System (ADS)

    Chaganava, Irakli; Kilosanidze, Barbara; Kakauridze, George

    2015-09-01

    The phenomenon of vector polyphotochromism within a wide spectral range is revealed in organic polarization-sensitive materials when material is illuminated with linearly polarized actinic light. The effect has a purely vector nature, while the transmission spectrum of the exposed material essentially changes in case of observing between crossed polarizers and the change in the spectrum unambiguously depends on the energy exposure. A significant dependence of the kinetic of the vector polyphotochromism induction on the power density of linearly polarized actinic light (445 nm) is shown for probing beam of 635 nm. It is also shown that the kinetics of the effect depends on the degree of integration of the component molecules of the material by the cohesion of both ways the electrostatic forces (by use mineral electrolytes and polyelectrolytes) and the covalent bonds (azopolymers based on different chromophores), as well as on the photosensitive layer thickness and the concentration of the chromophore. The mechanism of the phenomenon is discussed. Considering the fact that the change in the spectral characteristics occurs throughout the full visible range, this effect may be used for creating the spectrally selective dynamic polarization holographic gratings, displays based on new physical principles, and also for creating modulators and dynamic polarization spectral filters controlled by light.

  13. Contaminant tailing in highly heterogeneous porous formations: Sensitivity on model selection and material properties

    NASA Astrophysics Data System (ADS)

    Maghrebi, Mahdi; Jankovic, Igor; Weissmann, Gary S.; Matott, L. Shawn; Allen-King, Richelle M.; Rabideau, Alan J.

    2015-12-01

    Coupled impacts of slow advection, diffusion and sorption were investigated using two heterogeneity models that differ in structure and in the mathematical framework that was used to simulate flow and transport and to quantify contaminant tailing. Both models were built using data from a highly heterogeneous exposure of the Borden Aquifer at a site located 2 km north-west of the Stanford-Waterloo experimental site at Canadian Forces Base Borden, Ontario, Canada. The inclusions-based model used a simplified representation of the different materials found at the site, while the second model was based on transitional probability geostatistics of the formation. These two models were used to investigate sensitivity of contaminant tailing on model selection and on geometric and material properties. While simulations were based on data collected at Borden, models were exercised beyond the geometric and material properties that characterize the site. Various realizations have identified very low conductive silty clay, found at volume fraction of 23.4%, as the material with dominant influence on tailing, and vertical diffusion in and out of low conductive units, affected by sorption, as the dominant transport mechanism causing tailing. The two models yielded almost identical transport results when vertical correlation lengths of silty clay were matched. Several practical implications relevant for characterization of low conductive units were identified and briefly discussed.

  14. On the sensitivity of terahertz gyrotron based systems for remote detection of concealed radioactive materials

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Sprangle, P.; Semenov, V. E.; Dorozhkina, D. S.; Glyavin, M. Yu

    2012-06-01

    This paper analyzes some features of systems intended to remotely detect concealed radioactive materials by using a focused THz radiation. This concept is based on possibility to focus high-power THz radiation in a small spot where the wave field exceeds the breakdown threshold. However, in the absence of any sources of ionization, the probability to have in this breakdown-prone volume any seed electrons is very low. Thus, high breakdown rate in a series of THz pulses will indicate the presence of concealed radioactive materials in the vicinity of a focused wave beam. The goal of the present paper is to determine by using the statistical theory THz pulse duration required for reliable initiation of the discharge. Then, the detectable mass of the radioactive material is determined as the function of distance and of the THz wave power and pulse duration. Lastly, possible benefits from using pulse compressors, which shorten the pulse duration but increase the wave power and, hence, the breakdown-prone volume, are analyzed. It is shown that the use of pulse compressors can significantly improve the sensitivity of THz gyrotron based systems for remote detection of concealed radioactive materials.

  15. Optimal nondestructive test design for maximum sensitivity and minimal redundancy for applications in material characterization

    NASA Astrophysics Data System (ADS)

    Notghi, Bahram; Brigham, John C.

    2013-12-01

    An approach to nondestructive test (NDT) design for material characterization and damage identification in structural components, and more generally in solid continua, is presented and numerically tested. The proposed NDT design approach is based on maximizing a measure of the sensitivity of the test responses to changes in the material properties of the structure while also maximizing a measure of the difference in the response components. As such, the optimally designed NDT provides significant improvement in the ability to solve subsequent inverse characterization problems by extracting the maximum amount of non-redundant information from the system to increase the inverse solution observability. The NDT design approach is theoretically able to include any and all possible design aspects, such as the placement of sensors and actuators and determination of actuation frequency, among others. Through simulated test problems based on the characterization of damage in aluminum structural components utilizing steady-state dynamic surface excitation and localized measurements of displacement, the proposed NDT design approach is shown to provide NDT designs with significantly higher measurement sensitivity as well as lower information redundancy when compared to alternate test approaches. More importantly, the optimized NDT methods are shown to provide consistent and significant improvement in the ability to accurately inversely characterize variations in the Young’s modulus distributions for the simulated test cases considered.

  16. Waste Determination Equivalency - 12172

    SciTech Connect

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposed of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the

  17. Nanoporous framework materials interfaced with mechanical sensors for highly-sensitive chemical sensing.

    SciTech Connect

    Lee, Jin-Hwan; Skinner, Jack L.; Houk, Ronald J. T.; Fischer, Roland A.; Robinson, Alex Lockwood; Allendorf, Mark D.; Yusenko, Kirill; Meilikhov, Mikhail; Hesketh, Peter J.; Venkatasubramanian, Anandram; Thornberg, Steven Michael

    2010-04-01

    We will describe how novel nanoporous framework materials (NFM) such as metal-organic frameworks (MOFs) can be interfaced with common mechanical sensors, such as surface acoustic wave (SAW), microcantilever array, and quartz crystal microbalance (QCM) devices, and subsequently be used to provide selectivity and sensitivity to a broad range of analytes including explosives, nerve agents, and volatile organic compounds (VOCs). NFM are highly ordered, crystalline materials with considerable synthetic flexibility resulting from the presence of both organic and inorganic components within their structure. Chemical detection using micro-electro-mechanical-systems (MEMS) devices (i.e. SAWs, microcantilevers) requires the use of recognition layers to impart selectivity. Unlike traditional organic polymers, which are dense, the nanoporosity and ultrahigh surface areas of NFM allow for greater analyte uptake and enhance transport into and out of the sensing layer. This enhancement over traditional coatings leads to improved response times and greater sensitivity, while their ordered structure allows chemical tuning to impart selectivity. We describe here experiments and modeling aimed at creating NFM layers tailored to the detection of water vapor, explosives, CWMD, and volatile organic compound (VOCs), and their integration with the surfaces of MEMS devices. Molecular simulation shows that a high degree of chemical selectivity is feasible. For example, a suite of MOFs can select for strongly interacting organics (explosives, CWMD) vs. lighter volatile organics at trace concentrations. At higher gas pressures, the CWMD are deselected in favor of the volatile organics. We will also demonstrate the integration of various NFM on the surface of microcantiliver arrays, QCM crystals, and SAW devices, and describe new synthetic methods developed to improve the quality of NFM coatings. Finally, MOF-coated MEMS devices show how temperature changes can be tuned to improve response

  18. PATHOGEN EQUIVALENCY COMMITTEE UPDATE: PFRP EQUIVALENCY DETERMINATIONS

    EPA Science Inventory

    This presentation will:

    Review the mandate of the Pathogen Equivalency Committee
    Review the PEC's current membership of 10
    Discuss how a typical application is evaluated
    Note where information can be found
    List present deliberations/applications and describe t...

  19. Superconducting Gamma/Neutron Spectrometer Task 1 Completion Report Evaluation of Candidate Neutron-Sensitive Materials

    SciTech Connect

    Bell, Z.W.; Lamberti, V.E.

    2002-06-20

    A review of the scientific literature regarding boron- and lithium-containing compounds was completed. Information such as Debye temperature, heat capacity, superconductivity properties, physical and chemical characteristics, commercial availability, and recipes for synthesis was accumulated and evaluated to develop a list of neutron-sensitive materials likely to perform properly in the spectrometer. The best candidate borides appear to be MgB{sub 2} (a superconductor with T{sub c} = 39 K), B{sub 6}Si, B{sub 4}C, and elemental boron; all are commercially available. Among the lithium compounds are LiH, LiAl, Li{sub 12}Si{sub 7}, and Li{sub 7}Sn{sub 2}. These materials have or are expected to have high Debye temperatures and sufficiently low heat capacities at 100 mK to produce a useful signal. The responses of {sup 10}B and {sup 6}Li to a fission neutron spectrum were also estimated. These demonstrated that the contribution of scattering events is no more than 3% in a boron-based system and 1.5% in a lithium-based system. This project is concerned with the development of materials for use in a cryogenic neutron spectrometer and is complementary to work in progress by Labov at LLNL to develop a cryogenic gamma ray spectrometer. Refrigeration to 100 mK lowers the heat capacity of these materials to the point that the energy of absorbed gamma and x rays, nuclei scattered by fast neutrons, and ions from (n, {alpha}) reactions produce a measurable heat pulse, from which the energy of the incident radiation may be deduced. The objective of this project is the discovery, fabrication, and testing of candidate materials with which a cryogenic neutron spectrometer may be realized.

  20. Mapping Proxy Sensitivity: A New Technique for Compositional Analysis of Cultured Biominerals and Inorganically Precipitated Materials

    NASA Astrophysics Data System (ADS)

    Gagnon, A. C.; DePaolo, D. J.; DeYoreo, J.; Spero, H. J.; Russell, A. D.

    2011-12-01

    Mineral composition is controlled by a host of environmental factors during precipitation. To build accurate paleo-reconstructions we need to separate the impact of each parameter on proxy behavior and use these data to build a chemical-scale understanding of mineral growth. Biomineral culture and inorganic precipitation experiments, where growth parameters can be manipulated independently, are uniquely suited to calibrate proxies and probe mechanism. Culture and precipitation experiments often involve overgrowth of an initial material. For example, seed crystals are used to control mineralogy and avoid nucleation during inorganic precipitation, while culture experiments in marine organisms typically start with wild specimens. New growth corresponding to the experimental conditions must be resolved from the initial material. Separation is typically achieved using microanalysis, skeletal dissection, or estimates of the initial mass and composition. Each approach imposes limits on the accuracy, precision or types of materials that can be analyzed. Slow growth rates and complicated geometries can make these techniques especially challenging when applied to biominerals. We present a method of compositional analysis for use in biological culture and inorganic growth experiments that overcomes many of these challenges. This method relies on growth in a mixed element stable isotope spike, requires neither the initial mass nor the initial composition to be known, harnesses the precision and sensitivity of bulk analysis, and applies even when it is impossible to physically identify newly grown material. Error analysis suggests this method can significantly improve the precision of metal/calcium measurements in experimentally grown material compared to current methods. Furthermore, the method can isolate different events through time, separating, for example, the impact of day and night cycles on biomineral composition. We will present metal/calcium ratios measured using the

  1. Sensitive Detection of ssDNA Using an LRET-Based Upconverting Nanohybrid Material.

    PubMed

    Jesu Raj, Joe Gerald; Quintanilla, Marta; Mahmoud, Khaled A; Ng, Andy; Vetrone, Fiorenzo; Zourob, Mohammed

    2015-08-26

    Water-dispersible, optical hybrid nanoparticles are preferred materials for DNA biosensing due to their biocompatibility. Upconverting nanoparticles are highly desirable optical probes in sensors and bioimaging owing to their sharp emission intensity in the visible region. We herein report a highly sensitive ss-DNA detection based on an energy transfer system that uses a nanohybrid material synthesized by doping NaYF4:Tm(3+)/Yb(3+) upconverting nanoparticles (UCNPs) on silica coated polystyrene-co-acrylic acid (PSA) nanoparticles (PSA/SiO2) as the donor, and gold nanoparticles (AuNPs) decorated with Ir(III) complex as the acceptor. UCNPs tagged on PSA/SiO2 and the cyclometalated Ir(III)/AuNP conjugates were then linked through the ss-DNA sequence. Sequential addition of the target DNA to the probe molecular beacon complex resulted in the separation of the optical nanohybrid material and the quencher, leading to a measurable increase in the blue fluorescence emission intensity. Our results have shown a linear relationship between the fluorescence intensity and target DNA concentration down to the picomolar. PMID:26280649

  2. Molecular-level engineering of THz/IR-sensitive materials for future biological sensing application

    NASA Astrophysics Data System (ADS)

    Woolard, Dwight; Recine, Gregory; Bykhovski, Alexei; Zhang, Weidong

    2010-08-01

    While the unique spectral information associated with chemical and biological molecules within the terahertz frequency regime (~ 3.0-3.0 millimeters) motivates its use for practical sensing applications, limiting factors at the macroscale (weak spectral absorption, broad line widths and masking geometrical effects introduced by the samples) provides motivation for man-engineered sensing materials that allow for the transduction of the spectral information about target molecules from the nanoscale. This brief letter will overview work being performed by our research group to define molecular-level functionality that will be useful for realizing "THz/IR-sensitive" materials. Here the goal is to define switchable molecular components that when incorporated into larger DNA-based nanoscaffolds lead to THz and/or IR regime electronic and/or photonic material properties that are dictated in a predictable manner by novel functionality paradigms. In particular, theoretical modeling and design studies are being performed to engineer organic and biological switches that can be incorporated into DNA-based architectures that enable the precise extraction of nanoscale information (e.g., composition, dynamics, conformation) through electronic/photonic transformations to the macroscale. Hence, these studies seek to define new spectral-based sensing modalities useful for characterizing bio-molecules

  3. Compact Detection System for High Sensitivity Hydrogen Profiling of Materials by Nuclear Reaction Analysis

    SciTech Connect

    Marble, Daniel Keith; Urban, Ben; Pacheco, Jose

    2009-03-10

    Hydrogen is a ubiquitous contaminant that is known to have dramatic effects on the electrical, chemical, and mechanical properties of many types of materials in even minute quantities. Thus, the detection of hydrogen in materials is of major importance. Nuclear Reaction Analysis (NRA) is a powerful technique for nondestructive profiling hydrogen in materials. However, NRA has found only limited use in many applications because of poor sensitivity due to cosmic ray background (CSRB). Most attempts to eliminate CSRB to achieve ppm detection levels using higher energy nuclear reactions or tons of passive shielding are not compatible with commercial ion beam analysis space and equipment requirements Zimmerman, et al. have previously reported upon a coincidence detector that meets IBA space requirements and reduces the cosmic ray background, but the detector suffers from lower detection efficiency and small sample size. We have replaced the BGO well detector in the Zimmerman coincidence detection scheme with a larger Nal well detector and used faster timing electronics to produce a detector that can handle larger samples with higher detection efficiency, and still eliminate cosmic ray background.

  4. Equivalence of Dirac formulations

    NASA Astrophysics Data System (ADS)

    Joyce, William P.; Martin, Jeremy G.

    2002-06-01

    We construct general Dirac theories in both ⊗ ℓ(3, 1) and ⊗ ℓ(1, 3) using a first order left acting Dirac operator. Any two such theories are equivalent provided they have the same dimension. We also show that every 16- or 8-dimensional real Dirac theory in ℓ(3, 1) is equivalent to some (complex) Dirac theory in ⊗ ℓ(1, 3). As an immediate consequence of this we have that the Hestenes and original Dirac formulations are equivalent.

  5. A History of the Chemical Innovations in Silver-Halide Materials for Color PhotographyII. Color-Forming Development, Part 5. Coupler Innovations after the 1970's—Two-Equivalent Coupler and DIR Coupler

    NASA Astrophysics Data System (ADS)

    Oishi, Yasushi

    After the 1970's on, several manufacturers including Fuji Film, Konica and Agfa-Gevaert participated in innovating color photographic materials by adding their own coupler chemistry to the technological architecture built by Kodak before then. One area of their major advances was development of the couplers having a coupling-off organic group. One of their functional forms was two-equivalent coupler which made the dye-forming process efficient and made the photosensitive layers slim. And another was DIR coupler which improved dramatically the image quality of color negative materials. In this paper a historical overview of these innovations is constructed from the technical documents, mainly patents.

  6. Versatile, high sensitivity, and automatized angular dependent vectorial Kerr magnetometer for the analysis of nanostructured materials

    NASA Astrophysics Data System (ADS)

    Teixeira, J. M.; Lusche, R.; Ventura, J.; Fermento, R.; Carpinteiro, F.; Araujo, J. P.; Sousa, J. B.; Cardoso, S.; Freitas, P. P.

    2011-04-01

    Magneto-optical Kerr effect (MOKE) magnetometry is an indispensable, reliable, and one of the most widely used techniques for the characterization of nanostructured magnetic materials. Information, such as the magnitude of coercive fields or anisotropy strengths, can be readily obtained from MOKE measurements. We present a description of our state-of-the-art vectorial MOKE magnetometer, being an extremely versatile, accurate, and sensitivity unit with a low cost and comparatively simple setup. The unit includes focusing lenses and an automatized stepper motor stage for angular dependent measurements. The performance of the magnetometer is demonstrated by hysteresis loops of Co thin films displaying uniaxial anisotropy induced on growth, MnIr/CoFe structures exhibiting the so called exchange bias effect, spin valves, and microfabricated flux guides produced by optical lithography.

  7. Structural and multi-scale rheophysical investigation of diphasic magneto-sensitive materials based on biopolymers.

    PubMed

    Roger, Stéphane; Sang, Yan Yip Cheung; Bee, Agnès; Perzynski, Régine; Di Meglio, Jean Marc; Ponton, Alain

    2015-08-01

    We present a structural and a multi-scale rheophysical investigation of magneto-sensitive materials based on biopolymers, namely aqueous solutions of sodium alginate incorporating magnetic maghemite nanoparticles, functionalized with adsorbed negative citrate ions. The large alginate ionic strength impacts the structure and the rheology of these nanocomposites in zero magnetic field. In given physico-chemical conditions, the system is fluid and homogeneous on macroscopic scales while it is diphasic on microscopic ones, containing micro-droplets coming from the demixion of the system. These micro-droplets are liquid and deformable under magnetic field. Their under-field elongation and their zero-field relaxation are directly observed by optical microscopy to determine their interfacial tension, their magnetic susceptibility and their internal viscosity. A structural analysis of the solutions of alginate chains and of the phase-separated mixtures of alginate and nanoparticles by Small Angle Scattering completes the local description of the system. PMID:26264396

  8. Elastic airtight container for the compaction of air-sensitive materials.

    PubMed

    Shoulders, W Taylor; Locke, Richard; Gaume, Romain M

    2016-06-01

    We report on the design and fabrication of a simple and versatile elastic canister for the compaction and hot-pressing of air-sensitive materials. This device consists of a heated double-ended floating die assembly, enclosed in a compressible stainless steel bellows that allows the action of an external hydraulic press in a uniaxial motion. The enclosure is fitted with vacuum, gas, and electrical feedthroughs to allow for atmosphere control, heating, and in situ process monitoring. The overall chamber is compact enough to be portable and transferrable into and out of a standard laboratory glovebox, thus eliminating the problem of exposing samples to ambient atmosphere during loading and unloading. Our design has been tested up to 600 °C and 7500 kg-force applied load, conditions within which transparent ceramics of anhydrous halides can be produced. PMID:27370471

  9. Ignition Sensitivity and Electrical Conductivity of a Composite Energetic Material with Conductive Nanofillers

    SciTech Connect

    Eric S. Collins; Brandon R. Skelton; Michelle L. Pantoya; Fahmida Irin; Micah J. Green; Michael A. Daniels

    2014-12-01

    The safe handling of powdered composite energetic materials requires an understanding of their response to electrostatic ignition stimuli. A binary composite comprised of Al and polytetrafluoroethylene (PTFE) was tailored for ESD ignition sensitivity with varied concentrations of highly conductive nanofillers. The goal was to control the ESD ignition response of the Al+PTFE with small concentrations of nanofillers that may not significantly affect the overall combustion performance of the mixture. The nanofillers examined include carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs). Adding CNTs created percolation at a lower volumetric percentage than GNPs and were found to be the controlling nanofiller, creating percolation for the mixture containing both CNTs and GNPs. Various mixing methods were examined. Ignition was achieved only for adding nanofillers at a volumetric percentage and mixing method that led to a bulk conductivity of approximately 5x10-3 ?S/cm.

  10. Elastic airtight container for the compaction of air-sensitive materials

    NASA Astrophysics Data System (ADS)

    Shoulders, W. Taylor; Locke, Richard; Gaume, Romain M.

    2016-06-01

    We report on the design and fabrication of a simple and versatile elastic canister for the compaction and hot-pressing of air-sensitive materials. This device consists of a heated double-ended floating die assembly, enclosed in a compressible stainless steel bellows that allows the action of an external hydraulic press in a uniaxial motion. The enclosure is fitted with vacuum, gas, and electrical feedthroughs to allow for atmosphere control, heating, and in situ process monitoring. The overall chamber is compact enough to be portable and transferrable into and out of a standard laboratory glovebox, thus eliminating the problem of exposing samples to ambient atmosphere during loading and unloading. Our design has been tested up to 600 °C and 7500 kg-force applied load, conditions within which transparent ceramics of anhydrous halides can be produced.

  11. NEXAFS Sensitivity to Bond Lengths in Complex Molecular Materials: A Study of Crystalline Saccharides.

    PubMed

    Gainar, Adrian; Stevens, Joanna S; Jaye, Cherno; Fischer, Daniel A; Schroeder, Sven L M

    2015-11-12

    Detailed analysis of the C K near-edge X-ray absorption fine structure (NEXAFS) spectra of a series of saccharides (fructose, xylose, glucose, galactose, maltose monohydrate, α-lactose monohydrate, anhydrous β-lactose, cellulose) indicates that the precise determination of IPs and σ* shape resonance energies is sensitive enough to distinguish different crystalline saccharides through the variations in their average C-OH bond lengths. Experimental data as well as FEFF8 calculations confirm that bond length variations in the organic solid state of 10(-2) Å can be experimentally detected, opening up the possibility to use NEXAFS for obtaining incisive structural information for molecular materials, including noncrystalline systems without long-range order such as dissolved species in solutions, colloids, melts, and similar amorphous phases. The observed bond length sensitivity is as good as that originally reported for gas-phase and adsorbed molecular species. NEXAFS-derived molecular structure data for the condensed phase may therefore be used to guide molecular modeling as well as to validate computationally derived structure models for such systems. Some results indicate further analytical value in that the σ* shape resonance analysis may distinguish hemiketals from hemiacetals (i.e., derived from ketoses and aldoses) as well as α from β forms of otherwise identical saccharides. PMID:26459024

  12. Sensitive determination of carbendazim in orange juice by electrode modified with hybrid material.

    PubMed

    Razzino, Claudia A; Sgobbi, Lívia F; Canevari, Thiago C; Cancino, Juliana; Machado, Sergio A S

    2015-03-01

    This paper describes the application of a glassy carbon electrode modified with a thin film of mesoporous silica/multiwalled carbon nanotubes for voltammetric determination of the fungicide carbendazim (CBZ). The hybrid material, (SiO2/MWCNT), was obtained by a sol-gel process using HF as the catalyst. The amperometric response to CBZ was measured at +0.73 V vs. Ag/AgCl by square wave voltammetry at pH 8.0. SiO2/MWCNT/GCE responded to CBZ in the linear range from 0.2 to 4.0 μmol L(-1). The calculated detection limit was 0.056 μmol L(-1), obtained using statistical methods. The SiO2/MWCNT/GCE sensor presented as the main characteristics high sensitivity, low detection limit and robustness, allowing CBZ determination in untreated real samples. In addition, this strategy afforded remarkable selectivity for CBZ against ascorbic and citric acid which are the main compounds of the orange juice. The excellent sensitivity and selectivity yielded feasible application for CBZ detection in orange juice sample. PMID:25306358

  13. Silver nanocube aggregation gradient materials in search for total internal reflection with high phase sensitivity.

    PubMed

    König, Tobias A F; Ledin, Petr A; Russell, Michael; Geldmeier, Jeffrey A; Mahmoud, Mahmoud A; El-Sayed, Mostafa A; Tsukruk, Vladimir V

    2015-03-12

    We fabricated monolayer coatings of a silver nanocube aggregation to create a step-wise optical strip by applying different surface pressures during slow Langmuir-Blodgett deposition. The varying amount of randomly distributed nanocube aggregates with different surface coverages in gradient manner due to changes in surface pressure allows for continuous control of the polarization sensitive absorption of the incoming light over a broad optical spectrum. Optical characterization under total internal reflection conditions combined with electromagnetic simulations reveal that the broadband light absorption depends on the relative orientation of the nanoparticles to the polarization of the incoming light. By using computer simulations, we found that the electric field vector of the s-polarized light interacts with the different types of silver nanocube aggregations to excite different plasmonic resonances. The s-polarization shows dramatic changes of the plasmonic resonances at different angles of incidence (shift of 64 nm per 10° angle of incidence). With a low surface nanocube coverage (from 5% to 20%), we observed a polarization-selective high absorption of 80% (with an average 75%) of the incoming light over a broad optical range in the visible region from 400 nm to 700 nm. This large-area gradient material with location-dependent optical properties can be of particular interest for broadband light absorption, phase-sensitive sensors, and imaging. PMID:25707955

  14. Mesostructured tin oxide as sensitive material for C(2)H(5)OH sensor.

    PubMed

    Wang, Yu-De; Ma, Chun-Lai; Wu, Xing-Hui; Sun, Xiao-Dan; Li, Heng-De

    2002-07-01

    Mesostructured tin oxide with high specific surface area was synthesized using cationic surfactant (cetyltrimethylammonium bromide, CTAB: CH(3)(CH(2))(15)N(+)(CH(3))(3)Br(-)) as the organic template and hydrous tin chloride (SnCl(4).5H(2)O) and NH(4)OH as the inorganic precursors under acidic conditions at ambient temperature. Thermogravimetric analysis (TGA), Fourier transformed infrared (FTIR), X-ray diffraction analysis (XRD), X-ray photoelectron spectrum (XPS) and N(2)-sorption isotherms were used to characterize the mesostructured tin oxide that was formed at room temperature as well as calcined at different temperature. The surface area of mesostructured tin oxide calcined at 400 degrees C is 136 m(2) g(-1). The indirect heating sensor using this material as sensitive body was fabricated on an alumna tube with Au electrodes and platinum wires. Electrical and sensing properties of such a sensor were investigated. It was found that the mesostructured tin oxide with high surface area had higher sensitivity to C(2)H(5)OH and selectivity to gasoline than commercial sample of polycrystalline tin(IV) oxide. PMID:18968691

  15. A simple and sensitive method to analyze genotoxic impurity hydrazine in pharmaceutical materials.

    PubMed

    Wang, Jenny; Yang, Samuel; Zhang, Kelly

    2016-07-15

    Hydrazine (N2H4) is a known genotoxic impurity that typically needs to be controlled down to low ppm level in pharmaceutical development. Hydrazine, however, is a challenging molecule to analyze using conventional analytical techniques due to its physical and chemical properties (e.g. lack of chromophore, absence of any carbon atom, low molecular weight, high polarity and volatility). Additionally, analysis in pharmaceutical samples commonly encounters significant interference from matrix components that greatly overshadow the response of hydrazine. This work describes a simple, accurate and sensitive reversed-phase liquid chromatography-UV derivatization method for determination of trace amount hydrazine in pharmaceutical materials featuring three prominent strategies to address the problems associated with hydrazine analysis. First, the derivatization reaction attaches chromophores to hydrazine, which greatly increases its sensitivity by UV-vis detection. Secondly, the derivatization reaction generates a lambda max that is well-shifted away from the absorption wavelengths of pharmaceutical matrix interferences. Thirdly, from a separation standpoint, the derivatization further removes matrix interference effects through chromatography by achieving higher resolution of the derivative product from the active pharmaceutical ingredient (API) and its related impurities for accurate quantitation for trace level of genotoxic impurities (GTIs). 2-Hydroxy-1-Naphthalaldehyde (HNA) was chosen as the derivatizing reagent, and the resulting hydrazone product has a maximum UV absorbance at wavelength of 406/424nm which is in the visible range. Since most drug substance and impurities have UV absorbance ranging from 190 to 380nm, interference from the matrix was minimized and the appropriate selectivity was obtained, the detection limit is 0.25ppm (0.25μg/g API). This method was validated and applied as a generic method to determine hydrazine for pharmaceutical process control

  16. Proposal of Novel Method to Measure Young’s Modulus of Materials Using Change in Motional Capacitance of the Electrical Equivalent Circuit of Quartz-Crystal Tuning-Fork Tactile Sensor at Resonance

    NASA Astrophysics Data System (ADS)

    Hideaki Itoh,; Naoki Hatakeyama,

    2010-07-01

    We propose a novel method to measure the Young’s modulus of materials using the change in motional capacitance of the electrical equivalent circuit of a quartz-crystal tuning-fork tactile sensor at resonance before and after the sensor’s base coming into contact with materials with different Young’s moduli, such as silicon rubbers and plastics. How to measure the Young’s modulus of materials using the change in motional capacitance is investigated experimentally and theoretically. By our calculation of motional capacitance and from contact experiments on silicon rubbers and plastics, we found that there was a possibility to measure the Young’s modulus of materials using the relationship between the change in motional capacitance and their Young’s modulus.

  17. Proposal of Novel Method to Measure Young's Modulus of Materials Using Change in Motional Capacitance of the Electrical Equivalent Circuit of Quartz-Crystal Tuning-Fork Tactile Sensor at Resonance

    NASA Astrophysics Data System (ADS)

    Itoh, Hideaki; Hatakeyama, Naoki

    2010-07-01

    We propose a novel method to measure the Young's modulus of materials using the change in motional capacitance of the electrical equivalent circuit of a quartz-crystal tuning-fork tactile sensor at resonance before and after the sensor's base coming into contact with materials with different Young's moduli, such as silicon rubbers and plastics. How to measure the Young's modulus of materials using the change in motional capacitance is investigated experimentally and theoretically. By our calculation of motional capacitance and from contact experiments on silicon rubbers and plastics, we found that there was a possibility to measure the Young's modulus of materials using the relationship between the change in motional capacitance and their Young's modulus.

  18. 14 CFR 1213.107 - Preventing unauthorized release of sensitive but unclassified (SBU) information/material to the...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... sensitive but unclassified (SBU) information/material to the news media. 1213.107 Section 1213.107 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION RELEASE OF INFORMATION TO NEWS AND.../material to the news media. (a) All NASA SBU information requires accountability and approval for...

  19. 14 CFR 1213.107 - Preventing unauthorized release of sensitive but unclassified (SBU) information/material to the...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... sensitive but unclassified (SBU) information/material to the news media. 1213.107 Section 1213.107 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION RELEASE OF INFORMATION TO NEWS AND.../material to the news media. (a) All NASA SBU information requires accountability and approval for...

  20. 14 CFR 1213.107 - Preventing unauthorized release of sensitive but unclassified (SBU) information/material to the...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... sensitive but unclassified (SBU) information/material to the news media. 1213.107 Section 1213.107 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION RELEASE OF INFORMATION TO NEWS AND.../material to the news media. (a) All NASA SBU information requires accountability and approval for...

  1. Single-material solvent-sensitive actuator from poly(ionic liquid) inverse opals based on gradient dewetting.

    PubMed

    Wu, Hua; Kuang, Minxuan; Cui, Liying; Tian, Di; Wang, Minghui; Luan, Guoyou; Wang, Jingxia; Jiang, Lei

    2016-05-01

    A novel and reversible single-material solvent-sensitive actuator was developed from poly(ionic liquid) inverse opals based on a gradient wetting/dewetting process combining the strong hydrogen bonding interaction between the solvent and polymer. This study will provide an important insight for the design and fabrication of novel-type solvent-actuator materials. PMID:27055537

  2. 14 CFR 1213.107 - Preventing unauthorized release of sensitive but unclassified (SBU) information/material to the...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... sensitive but unclassified (SBU) information/material to the news media. 1213.107 Section 1213.107 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION RELEASE OF INFORMATION TO NEWS AND.../material to the news media. (a) All NASA SBU information requires accountability and approval for...

  3. LCF on turbogenerator rotors and coil retaining rings: material characterization and sensitivity analyses

    NASA Astrophysics Data System (ADS)

    Olmi, G.; Freddi, A.

    2010-06-01

    Turbogenerator rotors and coil retaining rings (CRRs) are highly loaded components typically subjected to LCF at any machine switch-on and switch-off. The present study aims at LCF characterization of two widely applied steels, 26 NiCrMoV 14 5 (for rotor manufacturing) and 18Mn18Cr (for CRR). Material anisotropy is also considered by performing an extended experimental campaign on specimens machined along different (tangential and radial) directions from trial components. The experimental tests, carried out with the use of a novel testing-constraining device for misalignment auto-compensation and with an original methodology for strain controlling, led to the determination of static, cyclic and fatigue curves for all the investigated cases. The research was completed by sensitivity analyses on the adopted models, thus determining fatigue curve tolerance bands, and by a statistical Analysis of Variance to compare the LCF performance of the different materials along the two considered machining directions. Results showed a significantly better performance of 18Mn18Cr and a weak anisotropy effect, remarkable just at the highest strain values, on a reduced portion of the LCF life range.

  4. Amplitude-sensitive modulation thermography to measure moisture in building materials

    NASA Astrophysics Data System (ADS)

    Wild, Walter; Buescher, Konstantin A.; Wiggenhauser, Herbert

    1998-03-01

    There have been reports about moisture detection in building walls by reflective IR-thermography. Typically, only limited results could be obtained because of the emission coefficient variations, leaking radiation or inhomogeneous illumination of the object. In addition, the quantitative relation between remission spectra and the moisture has often been unclear. Reflectometry uses constant excitation illumination which is recorded by the IR camera. With the use of the 'lock-in-technology' a low frequency modulated signal of an IR radiation source is coupled with the thermo camera and a frequency and phase sensitive signal from the thermal images can be derived. The advantage is, that emission coefficient dependencies are eliminated and that leaking radiation does not have any influence on the measured signal. The selective water measurement is possible, because there is an interference filter mounted in front of the radiator which has its transmission maximum at the wavelength of an absorption band of water. The area investigated is therefore illuminated under well defined circumstances and quantitative moisture measurement on the surface of building materials becomes a possibility. The illumination modulation is done with a sine wave to facilitate the calculation of the temporal intensity behavior of the amplitude signal. Subsequently, the amplitude image is used to determine the distribution and the level of moisture quantitatively. Point measurements in the laboratory were carried out on several building materials with changing moisture levels. It could be shown that this method successfully eliminates disturbing contributions to the measured signal like surface effects or leaking radiation.

  5. Investigation of Thermal Interface Materials Using Phase-Sensitive Transient Thermoreflectance Technique: Preprint

    SciTech Connect

    Feng, X.; King, C.; DeVoto, D.; Mihalic, M.; Narumanchi, S.

    2014-08-01

    With increasing power density in electronics packages/modules, thermal resistances at multiple interfaces are a bottleneck to efficient heat removal from the package. In this work, the performance of thermal interface materials such as grease, thermoplastic adhesives and diffusion-bonded interfaces are characterized using the phase-sensitive transient thermoreflectance technique. A multi-layer heat conduction model was constructed and theoretical solutions were derived to obtain the relation between phase lag and the thermal/physical properties. This technique enables simultaneous extraction of the contact resistance and bulk thermal conductivity of the TIMs. With the measurements, the bulk thermal conductivity of Dow TC-5022 thermal grease (70 to 75 um bondline thickness) was 3 to 5 W/(m-K) and the contact resistance was 5 to 10 mm2-K/W. For the Btech thermoplastic material (45 to 80 μm bondline thickness), the bulk thermal conductivity was 20 to 50 W/(m-K) and the contact resistance was 2 to 5 mm2-K/W. Measurements were also conducted to quantify the thermal performance of diffusion-bonded interface for power electronics applications. Results with the diffusion-bonded sample showed that the interfacial thermal resistance is more than one order of magnitude lower than those of traditional TIMs, suggesting potential pathways to efficient thermal management.

  6. Undoped and doped poly(tetraphenylbenzidine) as sensitive material for an impedimetric nitrogen dioxide gas dosimeter

    SciTech Connect

    Marr, I.; Moos, R.; Neumann, K.; Thelakkat, M.

    2014-09-29

    This article presents a nitrogen dioxide (NO{sub 2}) detecting gas dosimeter based on poly(tetraphenylbenzidine) poly(TPD) as nitrogen oxide (NO{sub x}) sensitive layer. Gas dosimeters are suitable devices to determine reliably low levels of analytes over a long period of time. During NO{sub x} exposure, the analyte molecules are accumulated irreversibly in the sensing layer of the dosimeter enhancing the conductivity of the hole conducting poly(TPD), which can be measured by impedance spectroscopy. Due to their possibility for low cost production by simple printing techniques and very good physical, photochemical, and electrochemical properties, poly(TPD)s are suitable for application in gas dosimeters operated at room temperature. We studied the effect of doping with a Co(III)-complex in combination with a conducting salt on the dosimeter behavior. Compared to the undoped material, a strong influence of the doping can be observed: the conductivity of the sensing material increases significantly, the noise of the signal decreases and an unwanted recovery of the sensor signal can be prevented, leading to a NO{sub x} detection limit <10 ppm.

  7. Enhanced power conversion efficiency of dye-sensitized solar cells assisted with phosphor materials

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Min; Kim, Dong In; Hwang, Ki-Hwan; Nam, Sang Hun; Boo, Jin-Hyo

    2016-07-01

    Theoretically dye-sensitized solar cells (DSSCs) are high efficiency solar cells. However, DSSCs have lower power conversion efficiency (PCE) than silicon based solar cells. In this study, we use scattering layer and phosphor materials, such as ZrO2 and Zn2SiO4:Mn (Green), to enhance the PCE of DSSCs. The scattering layer and phosphor materials were prepared and used as an effective scattering layer on the transparent TiO2 photoelectrode through the doctor blade method. We confirmed that the scattering layer improves the PCE and J sc due to the enhancement of light harvesting by increasing the scattering and absorbance in the visible range. Under sun illumination AM 1.5 conditions, the PCE of the mesoporous TiO2 based DSSCs was 5.18%. The PCE of the DSSCs with ZrO2 scattering layer was 5.61% and Zn2SiO4:Mn as the scattering layer was enhanced to 5.72%. In order to compare the change in optical properties, DSSCs were measured by EQE, reflectance and PCE. At the same time, FE-SEM and XRD were used to confirm the structural changes in each layer. [Figure not available: see fulltext.

  8. Nano-particle doped hydroxyapatite material evaluation using spectroscopic polarization sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Strąkowska, Paulina; Trojanowski, Michał; Gardas, Mateusz; Głowacki, Maciej J.; Kraszewski, Maciej; Strąkowski, Marcin R.

    2015-03-01

    Bio-ceramics such as hydroxyapatite (HAp) are widely used materials in medical applications, especially as an interface between implants and living tissues. There are many ways of creating structures from HAp like electrochemical assisted deposition, biomimetic, electrophoresis, pulsed laser deposition or sol-gel processing. Our research is based on analyzing the parameters of the sol-gel method for creating thin layers of HAp. In order to achieve this, we propose to use Optical Coherence Tomography (OCT) for non-destructive and non-invasive evaluation. Our system works in the IR spectrum range, which is helpful due to the wide range of nanocomposites being opaque in the VIS range. In order to use our method we need to measure two samples, one which is a reference HAp solution and second: a similar HAp solution with nanoparticles introduced inside. We use silver nanoparticles below 300 nm. The aim of this research is to analyze the concentration and dispersion of nanodopants in the bio-ceramic matrix. Furthermore, the quality of the HAp coating and deposition process repetition have been monitored. For this purpose the polarization sensitive OCT with additional spectroscopic analysis is being investigated. Despite the other methods, which are suitable for nanocomposite materials evaluation, the OCT with additional features seems to be one of the few which belong to the NDE/NDT group. Here we are presenting the OCT system for evaluation of the HAp with nano-particles, as well as HAp manufacturing process. A brief discussion on the usefulness of OCT for bio-ceramics materials examination is also being presented.

  9. Equivalent Neutral Wind

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Tang, Wenqing

    1996-01-01

    The definition of equivalent neutral wind and the rationale for using it as the geophysical product of a spaceborne scatterometer are reviewed. The differences between equivalent neutral wind and actual wind, which are caused by atmospheric density stratification, are demonstrated with measurements at selected locations. A method of computing this parameter from ship and buoy measurements is described and some common fallacies in accounting for the effects of atmospheric stratification on wind shear are discussed. The computer code for the model to derive equivalent neutral wind is provided.

  10. Photoelectrochemical characteristics of dye-sensitized solar cells incorporating innovative and inexpensive materials

    NASA Astrophysics Data System (ADS)

    Harlow, Lisa Jean

    The use of energy is going to continue to increase rapidly due to population and economic advances occurring throughout the world. The most widely used energies produce carbon dioxide during their combustion and have finite limits on how much of these resources are available. A strong push to utilizing renewable energy is necessary to keep up with the demand. The only renewable energy that has unlimited supply is solar. Our goal is to find cost-effective alternatives to historically the most extensively used materials in dye-sensitized solar cells. In order to rely on efficiency changes coinciding with the introduction of a new component, a standard baseline of performance is necessary to establish. A reproducible fabrication procedure composed of standard materials was instituted; the efficiency parameters exhibited a less than 10% standard deviation for any set of solar cells. Any modifications to the cell components would be apparent in the change in efficiency. Our cell modifications focused on economical alternatives to the electrolyte, the counter electrode and the chromophore. Solution-based electrolytes were replaced with a non-volatile ionic liquid, 1-methyl-3-propylimidazolium iodide, and then a poly(imidazole-functionalized) silica nanoparticle. Solid-state electrolytes reduce or prevent leakage and could ease manufacturing in large-scale devices. Platinum has been the counter electrode catalyst primarily used with the iodide/triiodide redox couple, but is a rare metal making it rather costly. We reduce platinum loading by introducing a novel counter electrode that employs platinum nanoparticles embedded on a graphene nanoplatelet paper. The highly conductive carbon base also negates the use of the expensive conductive substrate necessary for the platinum catalyst, further reducing cost. We also study the differences in transitioning from ruthenium polypyridyls to iron-based chromophores in dye-sensitized solar cells. Iron introduces low-lying ligand

  11. Tuned sensitivity towards H{sub 2}S and NH{sub 3} with Cu doped barium strontium titanate materials

    SciTech Connect

    Simion, C. E. Teodorescu, V. S.; Stănoiu, A.; Sackmann, A.; Ruşti, C. F.; Piticescu, R. M.

    2014-11-05

    The different amount of Cu-doped Barium Strontium Titanate (BST) thick film materials have been tested for their gas-sensing performances towards NH{sub 3} and H{sub 2}S under dry and 50% relative humidity (RH) background conditions. The optimum NH{sub 3} sensitivity was attained with 0.1mol% Cu-doped BST whereas the selective detection of H{sub 2}S was highlighted using 5mol% Cu-doped BST material. No cross-sensitivity effects to CO, NO{sub 2}, CH{sub 4} and SO{sub 2} were observed for all tested materials operated at their optimum temperature (200°C) under humid conditions (50% RH). The presence of humidity clearly enhances the gas sensitivity to NH{sub 3} and H{sub 2}S detection.

  12. Development of a Strain Rate Sensitive Ice Material Model for Hail Ice Impact Simulation

    NASA Astrophysics Data System (ADS)

    Tippmann, Jeffery Dwayne

    A strain rate sensitive ice material model for hail ice impact simulation has been developed using previously measured ice compressive strength at impact strain rates. Simulations were conducted in Abaqus/Explicit and were compared to experimental tests of simulated hail ice impacts on a force measurement bar apparatus. The force history during the ice impact event studied shows agreement between the simulation results and the experimental data. The overall trend of peak force versus kinetic energy was also compared, showing a strong correlation. The scatter in the measured ice compressive strength data was incorporated in the modeling approach and was found to represent the scatter in the sphere impact experimental test data. Observations of the failure progression of simulated hail impact were made using high speed video images during impact tests. The simulation-predicted failure progression was found to qualitatively match with the failure behavior exhibited by actual ice spheres, thereby indicating that the model represents some of the basic physics and phenomena that govern ice impacts.

  13. An all-solid-state perovskite-sensitized solar cell based on the dual function polyaniline as the sensitizer and p-type hole-transporting material

    NASA Astrophysics Data System (ADS)

    Xiao, Yaoming; Han, Gaoyi; Chang, Yunzhen; Zhou, Haihan; Li, Miaoyu; Li, Yanping

    2014-12-01

    High performance dual function of polyaniline (PANI) with brachyplast structure is synthesized by using a two-step cyclic voltammetry (CV) approach onto the fluorinated tin oxide (FTO) glass substrate, which acts as the sensitizer and p-type hole-transporting material (p-HTM) for the all-solid-state perovskite-sensitized solar cell (ass-PSSC) due to its π-π* transition and the localized polaron. The ass-PSSC based on the PANI delivers a photovoltaic conversion efficiency of 7.34%, and reduces from 7.34% to 6.71% after 1000 h, thereby 91.42% of the energy conversion efficiency is kept, indicating the device has a good long-term stability.

  14. Equivalent Colorings with "Maple"

    ERIC Educational Resources Information Center

    Cecil, David R.; Wang, Rongdong

    2005-01-01

    Many counting problems can be modeled as "colorings" and solved by considering symmetries and Polya's cycle index polynomial. This paper presents a "Maple 7" program link http://users.tamuk.edu/kfdrc00/ that, given Polya's cycle index polynomial, determines all possible associated colorings and their partitioning into equivalence classes. These…

  15. The Interaction Equivalency Theorem

    ERIC Educational Resources Information Center

    Miyazoe, Terumi; Anderson, Terry

    2010-01-01

    This paper examines the key issues regarding The Interaction Equivalency Theorem posited by Anderson (2003a), which consists of the three interaction elements found in formal education courses among teacher, student, and content. It first examines the core concepts of the theorem and argues that two theses of different dimensions can be…

  16. PATHOGEN EQUIVALENCY COMMITTEE (PEC)

    EPA Science Inventory

    The U.S. Environmental Protection Agency created the PEC in 1985 to make recommendations to EPA and State managers on the equivalency of unproven sewage sludge disinfection technologies/processes to either a Process to Significantly Reduce Pathogens (PSRP) or a Process to Further...

  17. Five Equivalent d Orbitals

    ERIC Educational Resources Information Center

    Pauling, Linus; McClure, Vance

    1970-01-01

    Amplifies and clarifies a previous paper on pyramidal d orbitals. Discusses two sets of pyramid d orbitals with respect to their maximum bond strength and their symmetry. Authors described the oblate and prolate pentagonal antiprisms arising from the two sets of five equivalent d orbitals. (RR)

  18. Role of cage material, working style and hearing sensitivity in perception of animal care noise.

    PubMed

    Voipio, H-M; Nevalainen, T; Halonen, P; Hakumäki, M; Björk, E

    2006-10-01

    During daily care, laboratory animals are exposed to a variety of sounds which may have effects on welfare and also cause physiological and behavioural changes. So far, almost no attention has been paid to individual sounds or the sound level caused by animal care or the sound level inside the animal cage. In this study, sounds from selected rat care procedures were recorded: pulling cage out of the rack, placing it onto a table and replacing the cage back into the rack; with measurements made inside the rat cage and in the adjacent cage. Diet was poured into the food hopper and sounds were recorded inside the cage and also the adjacent cage. The work was repeated in a calm and also in a hurried style, using stainless steel and polycarbonate cages. Finally, the sounds produced by running tap water were recorded. Differences between rat and human hearing were compared using novel species-specific sound level weightings: R-weighting for rats dB(R) and H-weighting for human dB(H). Hurried work with steel caused sound exposure levels exceeding 90 dB(R) when the cages were placed into the rack and about 80 dB(R) when pulling them out of the rack or placing onto a table. With polycarbonate, the levels were 10-15 dB(R) lower. Unhurried calm working produced lower sound exposure levels than hurried working in many procedures. When the procedures were repeated with measurements in the adjacent cage, the sound exposure levels were lower, but the results were similar. Pouring food pellets into a hopper above the rat's head caused 15 dB(R) higher sound exposure levels than pouring food to an adjacent cage. In general, humans hear these sounds about 10-15 dB louder than rats. In conclusion, cage material, working style and hearing sensitivity all have an impact on the sound exposure level in the rodent cage. With correct working methods, high sound levels can be efficiently avoided in most cases. PMID:17018211

  19. Sensitive solid-state optical sensible materials for photothermal determination of trace metals

    NASA Astrophysics Data System (ADS)

    Nedosekin, D. A.; Saranchina, N. V.; Mokhova, O. V.; Ageeva, E. V.; Gavrilenko, N. A.; Proskurnin, M. A.; Mokrousov, G. M.

    2008-01-01

    Methods of photothermal (thermal-lens) determination of iron and mercury on the basis of solid polymer matrices with immobilized reagents are developed. These methods combine selective and efficient preconcentration of trace elements to be analyzed on a transparent polymer matrix, the sensitivity of determination with the reliable and traceable photometric procedures and highly sensitive thermal-lens detection (enhanced in polymers compared to solutions). The advantage of this approach is in the use of sensitive organic reagents previously developed for spectrophotometry. In this study, transparent polymethacrylate matrices modified with copper dithizonate and 1,10-phenanthroline were applied to the determination of mercury(II) and iron(II), respectively.

  20. Sensitivity analysis of the non-linear dynamic viscoplastic response of 2-d structures with respect to material parameters

    NASA Technical Reports Server (NTRS)

    Kulkarni, Makarand; Noor, Ahmed K.

    1995-01-01

    A computational procedure is presented for evaluating the sensitivity coefficients of the viscoplastic response of structures subjected to dynamic loading. A state of plane stress is assumed to exist in the structure, a velocity strain-Cauchy stress formulation is used, and the geometric non-linearities arising from large strains are incorporated. The Jaumann rate is used as a frame indifferent stress rate. The material model is chosen to be isothermal viscoplasticity, and an associated flow rule is used with a von Mises effective stress. The equations of motion emanating from a finite element semi-discretization are integrated using an explicit central difference scheme with an implicit stress update. The sensitivity coefficients are evaluated using a direct differentiation approach. Since the domain of integration is the current configuration, the sensitivity coefficients of the spatial derivatives of the shape functions must be included. Numerical results are presented for a thin plate with a central cutout subjected to an in-plane compressive loading. The sensitivity coefficients are generated by evaluating the derivatives of the response quantities with respect to Young's modulus, and two of the material parameters characterizing the viscoplastic response. Time histories of the response and sensitivity coefficients, and spatial distributions at selected times are presented.

  1. Experimental Evaluation of Equivalent-Fluid Models for Melamine Foam

    NASA Technical Reports Server (NTRS)

    Allen, Albert R.; Schiller, Noah H.

    2016-01-01

    Melamine foam is a soft porous material commonly used in noise control applications. Many models exist to represent porous materials at various levels of fidelity. This work focuses on rigid frame equivalent fluid models, which represent the foam as a fluid with a complex speed of sound and density. There are several empirical models available to determine these frequency dependent parameters based on an estimate of the material flow resistivity. Alternatively, these properties can be experimentally educed using an impedance tube setup. Since vibroacoustic models are generally sensitive to these properties, this paper assesses the accuracy of several empirical models relative to impedance tube measurements collected with melamine foam samples. Diffuse field sound absorption measurements collected using large test articles in a laboratory are also compared with absorption predictions determined using model-based and measured foam properties. Melamine foam slabs of various thicknesses are considered.

  2. Establishing Substantial Equivalence: Metabolomics

    NASA Astrophysics Data System (ADS)

    Beale, Michael H.; Ward, Jane L.; Baker, John M.

    Modern ‘metabolomic’ methods allow us to compare levels of many structurally diverse compounds in an automated fashion across a large number of samples. This technology is ideally suited to screening of populations of plants, including trials where the aim is the determination of unintended effects introduced by GM. A number of metabolomic methods have been devised for the determination of substantial equivalence. We have developed a methodology, using [1H]-NMR fingerprinting, for metabolomic screening of plants and have applied it to the study of substantial equivalence of field-grown GM wheat. We describe here the principles and detail of that protocol as applied to the analysis of flour generated from field plots of wheat. Particular emphasis is given to the downstream data processing and comparison of spectra by multivariate analysis, from which conclusions regarding metabolome changes due to the GM can be assessed against the background of natural variation due to environment.

  3. Heating Rate Sensitive Multi-Shape Memory Polypropylene: A Predictive Material.

    PubMed

    Hoeher, Robin; Raidt, Thomas; Katzenberg, Frank; Tiller, Joerg C

    2016-06-01

    Here we report on a novel type of smart material that is capable of specifically responding to the changing rate of an environmental signal. This is shown on the example of lightly cross-linked syndiotactic polypropylene that reacts to a temperature increase by adapting its shape change according to the applied heating rate. In general, a material with such properties can be used to predict a system failure when used in a defined environment and is therefore called "predictive material". PMID:27203229

  4. Synthesis of one-molecule-thick single-crystalline nanosheets of energetic material for high-sensitive force sensor

    PubMed Central

    Yang, Guangcheng; Hu, Hailong; Zhou, Yong; Hu, Yingjie; Huang, Hui; Nie, Fude; Shi, Weimei

    2012-01-01

    Energetic material is a reactive substance that contains a great amount of potential energy, which is extremely sensitive to external stimuli like force. In this work, one-molecule-thick single-crystalline nanosheets of energetic material were synthesized. Very small force applied on the nanosheet proves to lead to the rotation of the tilted nitro groups, and subsequently change of current of the nanosheet. We apply this principle to design high-sensitive force sensor. A theoretical model of force-current dependence was established based on the nanosheets' molecular packing structure model that was well supported with the high resolution XPS, AFM analysis results. An ultra-low-force with range of several picoNewton to several nanoNewton can be measured by determination of corresponding current value. PMID:23019519

  5. Nanoparticles of Al 2O 3:Cr as a sensitive thermoluminescent material for high exposures of gamma rays irradiations

    NASA Astrophysics Data System (ADS)

    Salah, Numan; Khan, Zishan H.; Habib, Sami S.

    2011-02-01

    Aluminum Oxide (Al 2O 3) doped with proper activators is a highly sensitive phosphor commonly used for radiation dosimetry using thermoluminescence (TL) technique. Nanoparticles of this material activated with Chromium (Cr) have been synthesized using the propellant chemical combustion technique and studied for their TL response. They were characterized by X-ray diffraction and scanning electron microscope. The synthesized material has spherical nanoparticles with grain size around 25 nm. These nanoparticles were exposed to heavy doses from γ-rays of 137Cs. The TL glow curves show a prominent peak at around 474 K. This peak is found to be sensitive for high exposures of γ-rays and has linear response in the range of 100 Gy-20 kGy without showing saturation. This remarkable result suggests that Al 2O 3:Cr nanoparticles might be used for the dosimetry of food and seed irradiations.

  6. Wurtzite copper-zinc-tin sulfide as a superior counter electrode material for dye-sensitized solar cells

    PubMed Central

    2013-01-01

    Wurtzite and kesterite Cu2ZnSnS4 (CZTS) nanocrystals were employed as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). Compared to kesterite CZTS, the wurtzite CZTS exhibited higher electrocatalytic activity for catalyzing reduction of iodide electrolyte and better conductivity. Accordingly, the DSSC with wurtzite CZTS CE generated higher power conversion efficiency (6.89%) than that of Pt (6.23%) and kesterite CZTS (4.89%) CEs. PMID:24191954

  7. Wurtzite copper-zinc-tin sulfide as a superior counter electrode material for dye-sensitized solar cells.

    PubMed

    Kong, Jun; Zhou, Zheng-Ji; Li, Mei; Zhou, Wen-Hui; Yuan, Sheng-Jie; Yao, Rong-Yue; Zhao, Yang; Wu, Si-Xin

    2013-01-01

    Wurtzite and kesterite Cu2ZnSnS4 (CZTS) nanocrystals were employed as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). Compared to kesterite CZTS, the wurtzite CZTS exhibited higher electrocatalytic activity for catalyzing reduction of iodide electrolyte and better conductivity. Accordingly, the DSSC with wurtzite CZTS CE generated higher power conversion efficiency (6.89%) than that of Pt (6.23%) and kesterite CZTS (4.89%) CEs. PMID:24191954

  8. Wurtzite copper-zinc-tin sulfide as a superior counter electrode material for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kong, Jun; Zhou, Zheng-Ji; Li, Mei; Zhou, Wen-Hui; Yuan, Sheng-Jie; Yao, Rong-Yue; Zhao, Yang; Wu, Si-Xin

    2013-11-01

    Wurtzite and kesterite Cu2ZnSnS4 (CZTS) nanocrystals were employed as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). Compared to kesterite CZTS, the wurtzite CZTS exhibited higher electrocatalytic activity for catalyzing reduction of iodide electrolyte and better conductivity. Accordingly, the DSSC with wurtzite CZTS CE generated higher power conversion efficiency (6.89%) than that of Pt (6.23%) and kesterite CZTS (4.89%) CEs.

  9. STUDY OF THERMAL SENSITIVITY AND THERMAL EXPLOSION VIOLENCE OF ENERGETIC MATERIALS IN THE LLNL ODTX SYSTEM

    SciTech Connect

    HSU, P C; Hust, G; May, C; Howard, M; Chidester, S K; Springer, H K; Maienschein, J L

    2011-08-03

    Some energetic materials may explode at fairly low temperatures and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults for safe handling and storage of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory can measure times to explosion, lowest explosion temperatures, and determine kinetic parameters of energetic materials. Samples of different configurations can be tested in the system. The ODTX testing can also generate useful data for determining thermal explosion violence of energetic materials. We also performed detonation experiments of LX-10 in aluminum anvils to determine the detonation violence and validated the Zerilli Armstrong aluminum model. Results of the detonation experiments agreed well with the model prediction.

  10. Decay Kinetics of UV-Sensitive Materials: An Introductory Chemistry Experiment

    ERIC Educational Resources Information Center

    Via, Garrhett; Williams, Chelsey; Dudek, Raymond; Dudek, John

    2015-01-01

    First-order kinetic decay rates can be obtained by measuring the time-dependent reflection spectra of ultraviolet-sensitive objects as they returned from their excited, colored state back to the ground, colorless state. In this paper, a procedure is described which provides an innovative and unique twist on standard, undergraduate, kinetics…

  11. Dye-sensitized solar cells based on multichromophoric supramolecular light-harvesting materials.

    PubMed

    Panda, Dillip K; Goodson, Flynt S; Ray, Shuvasree; Saha, Sourav

    2014-05-25

    Multichromophoric dye-sensitized solar cells (DSSCs) comprised of a supramolecular zinc-phthalocyanineperyleneimide (ZnPc···PMI) dyad convert light to electrical energy with much higher power conversion efficiency (PCE = 2.3%) and incident-photon-to-current-efficiency (IPCE = ca. 40%) than the devices made of individual dyes. PMID:24409457

  12. Development of Novel Polymeric Materials for Gene Therapy and pH-Sensitive Drug Delivery: Modeling, Synthesis, Characterization, and Analysis

    SciTech Connect

    Brian Curtis Anderson

    2002-08-27

    The underlying theme of this thesis is the use of polymeric materials in bioapplications. Chapters 2-5 either develop a fundamental understanding of current materials used for bioapplications or establish protocols and procedures used in characterizing and synthesizing novel materials. In chapters 6 and 7 these principles and procedures are applied to the development of materials to be used for gene therapy and drug delivery. Chapter one is an introduction to the ideas that will be necessary to understand the subsequent chapters, as well as a literature review of these topics. Chapter two is a paper that has been published in the ''Journal of Controlled Release'' that examines the mechanism of drug release from a polymer gel, as well as experimental design suggestions for the evaluation of water soluble drug delivery systems. Chapter three is a paper that has been published in the ''Journal of Pharmaceutical Sciences'' that discusses the effect ionic salts have on properties of the polymer systems examined in chapter two. Chapter four is a paper published in the Materials Research Society Fall 2000 Symposium Series dealing with the design and synthesis of a pH-sensitive polymeric drug delivery device. Chapter five is a paper that has been published in the journal ''Biomaterials'' proposing a novel polymer/metal composite for use as a biomaterial in hip arthroplasty surgery. Chapter six is a paper that will appear in an upcoming volume of the Journal ''Biomaterials'' dealing with the synthesis of a novel water soluble cationic polymer with possible applications in non-viral gene therapy. Chapter seven is a paper that has been submitted to ''Macromolecules'' discussing several novel block copolymers based on poly(ethylene glycol) and poly(diethylamino ethyl methacrylate) that possess both pH-sensitive and temperature sensitive properties. Chapter eight contains a summary of the research contained in chapters 2-7 and proposes future research for the gene therapy and

  13. Study of thermal sensitivity and thermal explosion violence of energetic materials in the LLNL ODTX system

    NASA Astrophysics Data System (ADS)

    Hsu, P. C.; Hust, G.; Zhang, M. X.; Lorenz, T. K.; Reynolds, J. G.; Fried, L.; Springer, H. K.; Maienschein, J. L.

    2014-05-01

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 °C) and the violence from thermal explosion may cause significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. Recent ODTX experimental data are reported in the paper.

  14. Stability of functional equivalence and stimulus equivalence: effects of baseline reversals.

    PubMed Central

    Wirth, Oliver; Chase, Philip N

    2002-01-01

    Functional equivalence and stimulus equivalence classes were established, reversed, and tested for stability with college students. Functional stimulus classes were established using a task in which students were trained to say nonsense words in the presence of arbitrarily assigned sets of symbols. Computer-controlled speech-recognition technology was used to record and analyze students' vocal responses for accuracy. After the establishment of stimulus classes was demonstrated with a transfer-of-function test, the effects of reversing selected baseline simple discriminations were assessed during an additional transfer-of-function test and a follow-up test that occurred several weeks later. With the same students, stimulus equivalence classes were established and demonstrated with computerized matching-to-sample procedures. The effects of reversing selected baseline conditional discriminations also were assessed during a postreversal equivalence test and a follow-up test. Both functional stimulus classes and stimulus equivalence were sensitive to contingency reversals, but the reversals with stimulus equivalence closses affected stimulus class organization whereas reversals with functional stimulus classes did not. Follow-up performances were largely consistent with the original baseline contingencies. The similarities and differences between stimulus equivalence and functional equivalence are related to the specific contingencies that select responding in the presence of the stimuli that form the classes. PMID:11831781

  15. A light sensitive self-assembled nanogel as a tecton for protein patterning materials.

    PubMed

    Nishimura, Tomoki; Takara, Masahiro; Mukai, Sada-atsu; Sawada, Shin-ichi; Sasaki, Yoshihiro; Akiyoshi, Kazunari

    2016-01-21

    A self-assembled nanogel is constructed from light-sensitive cholesteryl pullulan (Ls-CHP) by using photo-labile ortho-nitrobenzyl (o-NB) units. The nanogel-based film is obtained by evaporation of an Ls-CHP nanogel solution. Exposure of the resulting nanogel-based film to light with a mask resulted in a patterned film that can encapsulate FITC-insulin. PMID:26610266

  16. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study.

    PubMed

    Fagan, M J; Julian, S; Siddall, D J; Mohsen, A M

    2002-01-01

    If patient-specific finite element models of the spine could be developed, they would offer enormous opportunities in the diagnosis and management of back problems. Several generic models have been developed in the past, but there has been very little detailed examination of the sensitivity of these models' characteristics to the input parameters. This relationship must be thoroughly understood if representative patient-specific models are to be realized and used with confidence. In particular, the performance of the intervertebral discs are central to any spine model and need detailed investigation first. A generic non-linear model of an intervertebral disc was developed and subjected to compressive, flexion and torsional loading regimes. The effects of both material and geometric non-linearities were investigated for the three loading schemes and the results compared with experimental data. The basic material properties of the fibres, annulus and nucleus were then varied and the effects on the stiffness, annulus bulge and annulus stresses analysed. The results showed that the non-linear geometry assumption had a significant effect on the compression characteristics, whereas the non-linear material option did not. In contrast, the material non-linearity was more important for the flexural and torsional loading schemes. Thus, the inclusion of non-linear material and geometry analysis options in finite element models of intervertebral discs is necessary to predict in vivo load-deflection characteristics accurately. When the influence of the material properties was examined in detail, it was found that the fibre properties did not have a significant effect on the compressive stiffness of the disc but did affect the flexural and torsional stiffnesses by up to +/-20 per cent. All loading modes were sensitive to the annulus properties with stiffnesses varying by up to +/-16 per cent. The model also revealed that for a particular compressive deformation or flexural or

  17. Thermal performance sensitivity studies in support of material modeling for extended storage of used nuclear fuel

    SciTech Connect

    Cuta, Judith M.; Suffield, Sarah R.; Fort, James A.; Adkins, Harold E.

    2013-08-15

    The work reported here is an investigation of the sensitivity of component temperatures of a storage system, including fuel cladding temperatures, in response to age-related changes that could degrade the design-basis thermal behavior of the system. Three specific areas of interest were identified for this study. • degradation of the canister backfill gas from pure helium to a mixture of air and helium, resulting from postulated leakage due to stress corrosion cracking (SCC) of canister welds • changes in surface emissivity of system components, resulting from corrosion or other aging mechanisms, which could cause potentially significant changes in temperatures and temperature distributions, due to the effect on thermal radiation exchange between components • changes in fuel and basket temperatures due to changes in fuel assembly position within the basket cells in the canister The purpose of these sensitivity studies is to provide a realistic example of how changes in the physical properties or configuration of the storage system components can affect temperatures and temperature distributions. The magnitudes of these sensitivities can provide guidance for identifying appropriate modeling assumptions for thermal evaluations extending long term storage out beyond 50, 100, 200, and 300 years.

  18. Improving the sensitivity of J coupling measurements in solids with application to disordered materials

    NASA Astrophysics Data System (ADS)

    Guerry, Paul; Brown, Steven P.; Smith, Mark E.

    2016-05-01

    It has been shown previously that for magic angle spinning (MAS) solid state NMR the refocused INADEQUATE spin-echo (REINE) experiment can usefully quantify scalar (J) couplings in disordered solids. This paper focuses on the two z filter components in the original REINE pulse sequence, and investigates by means of a product operator analysis and fits to density matrix simulations the effects that their removal has on the sensitivity of the experiment and on the accuracy of the extracted J couplings. The first z filter proves unnecessary in all the cases investigated here and removing it increases the sensitivity of the experiment by a factor ˜1.1-2.0. Furthermore, for systems with broad isotropic chemical shift distributions (namely whose full widths at half maximum are greater than 30 times the mean J coupling strength), the second z filter can also be removed, thus allowing whole-echo acquisition and providing an additional √2 gain in sensitivity. Considering both random and systematic errors in the values obtained, J couplings determined by fitting the intensity modulations of REINE experiments carry an uncertainty of 0.2-1.0 Hz (˜1-10 %).

  19. Carbonaceous materials and their advances as a counter electrode in dye-sensitized solar cells: challenges and prospects.

    PubMed

    Kouhnavard, Mojgan; Ludin, Norasikin Ahmad; Ghaffari, Babak V; Sopian, Kamarozzaman; Ikeda, Shoichiro

    2015-05-11

    Dye-sensitized solar cells (DSSCs) serve as low-costing alternatives to silicon solar cells because of their low material and fabrication costs. Usually, they utilize Pt as the counter electrode (CE) to catalyze the iodine redox couple and to complete the electric circuit. Given that Pt is a rare and expensive metal, various carbon materials have been intensively investigated because of their low costs, high surface areas, excellent electrochemical stabilities, reasonable electrochemical activities, and high corrosion resistances. In this feature article, we provide an overview of recent studies on the electrochemical properties and photovoltaic performances of carbon-based CEs (e.g., activated carbon, nanosized carbon, carbon black, graphene, graphite, carbon nanotubes, and composite carbon). We focus on scientific challenges associated with each material and highlight recent advances achieved in overcoming these obstacles. Finally, we discuss possible future directions for this field of research aimed at obtaining highly efficient DSSCs. PMID:25925421

  20. Local unitary equivalence of quantum states and simultaneous orthogonal equivalence

    NASA Astrophysics Data System (ADS)

    Jing, Naihuan; Yang, Min; Zhao, Hui

    2016-06-01

    The correspondence between local unitary equivalence of bipartite quantum states and simultaneous orthogonal equivalence is thoroughly investigated and strengthened. It is proved that local unitary equivalence can be studied through simultaneous similarity under projective orthogonal transformations, and four parametrization independent algorithms are proposed to judge when two density matrices on ℂd1 ⊗ ℂd2 are locally unitary equivalent in connection with trace identities, Kronecker pencils, Albert determinants and Smith normal forms.

  1. A magnetic-piezoelectric smart material-structure utilizing magnetic force interaction to optimize the sensitivity of current sensing

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Chen; Chung, Tien-Kan; Lai, Chen-Hung; Wang, Chieh-Min

    2016-01-01

    This paper presents a magnetic-piezoelectric smart material-structure using a novel magnetic-force-interaction approach to optimize the sensitivity of conventional piezoelectric current sensing technologies. The smart material-structure comprises a CuBe-alloy cantilever beam, a piezoelectric PZT sheet clamped to the fixed end of the beam, and an NdFeB permanent magnet mounted on the free end of the beam. When the smart material-structure is placed close to an AC conductor, the magnet on the beam of the smart structure experiences an alternating magnetic attractive and repulsive force produced by the conductor. Thus, the beam vibrates and subsequently generates a strain in the PZT sheet. The strain produces a voltage output because of the piezoelectric effect. The magnetic force interaction is specifically enhanced through the optimization approach (i.e., achieved by using SQUID and machining method to reorient the magnetization to different directions to maximize the magnetic force interaction). After optimizing, the beam's vibration amplitude is significantly enlarged and, consequently, the voltage output is substantially increased. The experimental results indicated that the smart material-structure optimized by the proposed approach produced a voltage output of 4.01 Vrms with a sensitivity of 501 m Vrms/A when it was placed close to a conductor with a current of 8 A at 60 Hz. The optimized voltage output and sensitivity of the proposed smart structure were approximately 316 % higher than those (1.27 Vrms with 159 m Vrms/A) of representative piezoelectric-based current sensing technologies presented in other studies. These improvements can significantly enable the development of more self-powered wireless current sensing applications in the future.

  2. ORNL IntelligentFreight Initiative:Enhanced End-to-End Supply Chain Visibility of Security Sensitive Hazardous Materials

    SciTech Connect

    Walker, Randy M.; Shankar, Mallikarjun; Gorman, Bryan L.

    2009-01-01

    In the post September 11, 2001 (9/11) world the federal government has increased its focus on the manufacturing, distributing, warehousing, and transporting of hazardous materials. In 2002, Congress mandated that the Transportation Security Agency (TSA) designate a subset of hazardous materials that could pose a threat to the American public when transported in sufficiently large quantities. This subset of hazardous materials, which could be weaponized or subjected to a nefarious terrorist act, was designated as Security Sensitive Hazardous Materials (SSHM). Radioactive materials (RAM) were of special concern because actionable intelligence had revealed that Al Qaeda desired to develop a homemade nuclear device or a dirty bomb to use against the United States (US) or its allies.1 Because of this clear and present danger, it is today a national priority to develop and deploy technologies that will provide for visibility and real-time exception notification of SSHM and Radioactive Materials in Quantities of Concern (RAMQC) in international commerce. Over the past eight years Oak Ridge National Laboratory (ORNL) has been developing, implementing, and deploying sensor-based technologies to enhance supply chain visibility. ORNL s research into creating a model for shipments, known as IntelligentFreight, has investigated sensors and sensor integration methods at numerous testbeds throughout the national supply chain. As a result of our research, ORNL believes that most of the information needed by supply chain partners to provide shipment visibility and exceptions-based reporting already exists but is trapped in numerous proprietary or agency-centric databases.

  3. The oxygen sensitivity/compatibility ranking of several materials by different test methods

    NASA Technical Reports Server (NTRS)

    Lockhart, Billy J.; Bryan, Coleman J.; Hampton, Michael D.

    1989-01-01

    Eleven materials were evaluated for oxygen compatibility using the following test methods: heat of combustion (ASTM D 2015), liquid oxygen impact (ASTM D 2512), pneumatic impact (ASTM G 74), gaseous mechanical impact (ASTM G 86), autogenous ignition temperature by pressurized differential scanning calorimeter, and the determination of the 50 percent reaction level in liquid oxygen using silicon carbide as a reaction enhancer. The eleven materials evaluated were: Teflon TFE, Vespel SP-21, Krytox 240AC, Viton PLV5010B, Fluorel E2160, Kel F 81, Fluorogold, Fluorogreen E-600, Rulon A, Garlock 8573, nylon 6/6.

  4. Establishing Substantial Equivalence: Proteomics

    NASA Astrophysics Data System (ADS)

    Lovegrove, Alison; Salt, Louise; Shewry, Peter R.

    Wheat is a major crop in world agriculture and is consumed after processing into a range of food products. It is therefore of great importance to determine the consequences (intended and unintended) of transgenesis in wheat and whether genetically modified lines are substantially equivalent to those produced by conventional plant breeding. Proteomic analysis is one of several approaches which can be used to address these questions. Two-dimensional PAGE (2D PAGE) remains the most widely available method for proteomic analysis, but is notoriously difficult to reproduce between laboratories. We therefore describe methods which have been developed as standard operating procedures in our laboratory to ensure the reproducibility of proteomic analyses of wheat using 2D PAGE analysis of grain proteins.

  5. Near-infrared laser ablation of poly tetrafluoroethylene (Teflon) sensitized by nanoenergetic materials

    SciTech Connect

    Yang Yanqiang; Wang Shufeng; Sun Zhaoyong; Dlott, Dana D.

    2004-08-30

    Laser ablation of Teflon doped with size-selected (30-250 nm) Al nanoparticles is studied. Unlike pure Teflon, which requires a vacuum-ultraviolet or femtosecond excimer laser for ablation, this sensitized Teflon can be ablated with a near-infrared laser. Using 100 ps duration pulses, near-infrared ablation thresholds are lower by about a factor of 10 from excimer ablation of pure Teflon. A mechanism is discussed that involves Teflon decomposition by spherical shock fronts originating at each irradiated nanoparticle. Studies of the distance dependence of this process as a function of particle diameter and oxide layer thickness suggest ways of optimizing the ablation process.

  6. Development of novel polymeric materials for gene therapy and pH-sensitive drug delivery: Modeling, synthesis, characterization, and analysis

    NASA Astrophysics Data System (ADS)

    Anderson, Brian Curtis

    The aim of this work was to obtain a fundamental understanding of drug release mechanisms from polymers that undergo thermoreversible gelation and to synthesize new polymers based on these that exhibit both pH and temperature sensitivity. Novel block and random copolymers with cationic character have been developed for drug delivery and gene therapy applications. The development of these materials began with a study of the mechanism of drug release from poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) block copolymers. This study revealed the release rates of drugs from water-soluble hydrogels composed of the PEO-PPO-PEO block copolymer PluronicRTM F127 was dictated almost solely by the rate of interfacial dissolution at the water/gel interface. A setup was designed to measure drug release from such soluble systems in order to avoid confounding hydrodynamic effects as a result of shear on the delicate polymer/gel interface. This study was followed by a complementary analysis of the effect ionic salts play in the phase transitions and drug release profiles in aqueous F127 solutions. In an attempt to incorporate pH sensitivity into such drug release systems, several block copolymers of poly(N,N-diethylaminoethyl methacrylate) (PDEAEM), PEO and PPO were synthesized via anionic polymerization. Diblock materials (PEO-b-PDEAEM), either with or without a carboxylic acid endcap, were synthesized and characterized. Tablet dissolution experiments demonstrated pH-sensitivity in their drug release profiles relative to PEO tablets. Pentablock materials (PDEAEM-b-PEO-b-PPO- b-PEO-b-PDEAEM) were synthesized that maintain the thermoreversible gelation and micellization properties of F127 while introducing pH-dependent release from aqueous gels of the copolymer. This is the first example of non-crosslinked materials that exhibit both pH- and temperature-sensitive behavior. Using a similar synthesis route, random copolymers of PDEAEM and poly(poly(ethylene glycol) methyl

  7. Identification of strain-rate and thermal sensitive material model with an inverse method

    NASA Astrophysics Data System (ADS)

    Peroni, L.; Scapin, M.; Peroni, M.

    2010-06-01

    This paper describes a numerical inverse method to extract material strength parameters from the experimental data obtained via mechanical tests at different strainrates and temperatures. It will be shown that this procedure is particularly useful to analyse experimental results when the stress-strain fields in the specimen cannot be correctly described via analytical models. This commonly happens in specimens with no regular shape, in specimens with a regular shape when some instability phenomena occur (for example the necking phenomena in tensile tests that create a strongly heterogeneous stress-strain fields) or in dynamic tests (where the strain-rate field is not constant due to wave propagation phenomena). Furthermore the developed procedure is useful to take into account thermal phenomena generally affecting high strain-rate tests due to the adiabatic overheating related to the conversion of plastic work. The method presented requires strong effort both from experimental and numerical point of view, anyway it allows to precisely identify the parameters of different material models. This could provide great advantages when high reliability of the material behaviour is necessary. Applicability of this method is particularly indicated for special applications in the field of aerospace engineering, ballistic, crashworthiness studies or particle accelerator technologies, where materials could be submitted to strong plastic deformations at high-strain rate in a wide range of temperature. Thermal softening effect has been investigated in a temperature range between 20°C and 1000°C.

  8. IR and green femtosecond laser machining of heat sensitive materials for medical devices at micrometer scale

    NASA Astrophysics Data System (ADS)

    Stolberg, Klaus; Friedel, Susanna; Kremser, Bert; Roehner, Markus

    2014-03-01

    In medical device manufacturing there is an increasing interest to enhance machining of biocompatible materials on a micrometer scale. Obviously there is a trend to generate smaller device structures like cavities, slits or total size of the device to address new applications. Another trend points to surface modification, which allows controlling selective growth of defined biological cell types on medical implants. In both cases it is interesting to establish machining methods with minimized thermal impact, because biocompatible materials often show degradation of mechanical properties under thermal treatment. Typical examples for this effect is embrittlement of stainless steel at the edge of a cutting slit, which is caused by oxidation and phase change. Also for Nitinol (NiTi alloy) which is used as another stent material reduction of shape-memory behavior is known if cutting temperature is too high. For newest biodegradable materials like Polylactic acid (PLA) based polymers, lowest thermal impact is required due to PLA softening point (65°C) and melting temperature (~170 °C ). Laser machining with ultra-short pulse lasers is a solution for this problem. In our work we demonstrate a clean laser cut of NiTi and PLA based polymers with a high repetition-rate 1030 nm, 400-800 fs laser source at a pulse energy of up to 50 μJ and laser repetition rate of up to 500 kHz.

  9. Materials-of-Construction Radiation Sensitivity for a Fission Surface Power Convertor

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Geng, Steven M.; Niedra, Janis M.; Sayir, Ali; Shin, Eugene E.; Sutter, James K.; Thieme, Lanny G.

    2007-01-01

    A fission reactor combined with a free-piston Stirling convertor is one of many credible approaches for producing electrical power in space applications. This study assumes dual-opposed free-piston Stirling engines/linear alternators that will operate nominally at 825 K hot-end and 425 K cold-end temperatures. The baseline design options, temperature profiles, and materials of construction discussed here are based on historical designs as well as modern convertors operating at lower power levels. This notional design indicates convertors primarily made of metallic components that experience minimal change in mechanical properties for fast neutron fluences less than 10(sup 20) neutrons per square centimeter. However, these radiation effects can impact the magnetic and electrical properties of metals at much lower fluences than are crucial for mechanical property integrity. Moreover, a variety of polymeric materials are also used in common free-piston Stirling designs for bonding, seals, lubrication, insulation and others. Polymers can be affected adversely by radiation doses as low as 10(sup 5) - 10(sup 10) rad. Additionally, the absorbing dose rate, radiation hardness, and the resulting effect (either hardening or softening) varies depending on the nature of the particular polymer. The classes of polymers currently used in convertor fabrication are discussed along possible substitution options. Thus, the materials of construction of prototypic Stirling convertor engines have been considered and the component materials susceptible to damage at the lowest neutron fluences have been identified.

  10. The sensitivity of energetic materials to friction, impact, and electrostatic stimuli

    SciTech Connect

    Vannet, M.D.

    1992-09-24

    Friction, impact, and electrostatic tests were conducted on materials that had not previously been tested at Mound, including PETN, BTF, HNS-IV, and pyrotechnic and thermite powders. Results are presented. Tables and charts including previous results are also included. 6 figs, 8 refs, 8 tabs.

  11. Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique

    NASA Astrophysics Data System (ADS)

    Godin, T.; Fromager, M.; Cagniot, E.; Porée, F.; Catunda, T.; Moncorgé, R.; Aït-Ameur, K.

    2012-06-01

    We present a detailed study of the Baryscan technique, a new efficient alternative to the widespread Z-scan technique which has been demonstrated [Opt. Lett. 36:8, 2011] to reach among the highest sensitivity levels. This method is based upon the measurement of optical nonlinearities by means of beam centroid displacements with a position sensitive detector and is able to deal with any kind of lensing effect. This technique is applied here to measure pump-induced electronic refractive index changes (population lens), which can be discriminated from parasitic thermal effects by using a time-resolved Baryscan experiment. This method is validated by evaluating the polarizability variation at the origin of the population lens observed in the reference Cr3+:GSGG laser material.

  12. MgO:Li,Ce,Sm as a high-sensitivity material for Optically Stimulated Luminescence dosimetry

    PubMed Central

    Oliveira, Luiz C.; Yukihara, Eduardo G.; Baffa, Oswaldo

    2016-01-01

    The goal of this work was to investigate the relevant dosimetric and luminescent properties of MgO:Li3%,Ce0.03%,Sm0.03%, a newly-developed, high sensitivity Optically Stimulated Luminescence (OSL) material of low effective atomic number (Zeff = 10.8) and potential interest for medical and personal dosimetry. We characterized the thermoluminescence (TL), OSL, radioluminescence (RL), and OSL emission spectrum of this new material and carried out a preliminary investigation on the OSL signal stability. MgO:Li,Ce,Sm has a main TL peak at ~180 °C (at a heating rate of 5 °C/s) associated with Ce3+ and Sm3+ emission. The results indicate that the infrared (870 nm) stimulated OSL from MgO:Li,Ce,Sm has suitable properties for dosimetry, including high sensitivity to ionizing radiation (20 times that of Al2O3:C, under the measurement conditions) and wide dynamic range (7 μGy–30 Gy). The OSL associated with Ce3+ emission is correlated with a dominant, practically isolated peak at 180 °C. Fading of ~15% was observed in the first hour, probably due to shallow traps, followed by subsequent fading of 6–7% over the next 35 days. These properties, together with the characteristically fast luminescence from Ce3+, make this material also a strong candidate for 2D OSL dose mapping. PMID:27076349

  13. Furazans with Azo Linkages: Stable CHNO Energetic Materials with High Densities, Highly Energetic Performance, and Low Impact and Friction Sensitivities.

    PubMed

    Qu, Yanyang; Zeng, Qun; Wang, Jun; Ma, Qing; Li, Hongzhen; Li, Haibo; Yang, Guangcheng

    2016-08-22

    Various highly energetic azofurazan derivatives were synthesized by simple and efficient chemical routes. These nitrogen-rich materials were fully characterized by FTIR spectroscopy, elemental analysis, multinuclear NMR spectroscopy, and high-resolution mass spectrometry. Four of them were further confirmed structurally by single-crystal X-ray diffraction. These compounds exhibit high densities, ranging from 1.62 g cm(-3) up to a remarkably high 2.12 g cm(-3) for nitramine-substituted azofurazan DDAzF (2), which is the highest yet reported for an azofurazan-based CHNO energetic compound and is a consequence of the formation of strong intermolecular hydrogen-bonding networks. From the heats of formation, calculated with Gaussian 09, and the experimentally determined densities, the energetic performances (detonation pressure and velocities) of the materials were ascertained with EXPLO5 v6.02. The results suggest that azofurazan derivatives exhibit excellent detonation properties (detonation pressures of 21.8-46.1 GPa and detonation velocities of 6602-10 114 m s(-1) ) and relatively low impact and friction sensitivities (6.0-80 J and 80-360 N, respectively). In particular, they have low electrostatic spark sensitivities (0.13-1.05 J). These properties, together with their high nitrogen contents, make them potential candidates as mechanically insensitive energetic materials with high-explosive performance. PMID:27439332

  14. MgO:Li,Ce,Sm as a high-sensitivity material for Optically Stimulated Luminescence dosimetry

    NASA Astrophysics Data System (ADS)

    Oliveira, Luiz C.; Yukihara, Eduardo G.; Baffa, Oswaldo

    2016-04-01

    The goal of this work was to investigate the relevant dosimetric and luminescent properties of MgO:Li3%,Ce0.03%,Sm0.03%, a newly-developed, high sensitivity Optically Stimulated Luminescence (OSL) material of low effective atomic number (Zeff = 10.8) and potential interest for medical and personal dosimetry. We characterized the thermoluminescence (TL), OSL, radioluminescence (RL), and OSL emission spectrum of this new material and carried out a preliminary investigation on the OSL signal stability. MgO:Li,Ce,Sm has a main TL peak at ~180 °C (at a heating rate of 5 °C/s) associated with Ce3+ and Sm3+ emission. The results indicate that the infrared (870 nm) stimulated OSL from MgO:Li,Ce,Sm has suitable properties for dosimetry, including high sensitivity to ionizing radiation (20 times that of Al2O3:C, under the measurement conditions) and wide dynamic range (7 μGy–30 Gy). The OSL associated with Ce3+ emission is correlated with a dominant, practically isolated peak at 180 °C. Fading of ~15% was observed in the first hour, probably due to shallow traps, followed by subsequent fading of 6–7% over the next 35 days. These properties, together with the characteristically fast luminescence from Ce3+, make this material also a strong candidate for 2D OSL dose mapping.

  15. MgO:Li,Ce,Sm as a high-sensitivity material for Optically Stimulated Luminescence dosimetry.

    PubMed

    Oliveira, Luiz C; Yukihara, Eduardo G; Baffa, Oswaldo

    2016-01-01

    The goal of this work was to investigate the relevant dosimetric and luminescent properties of MgO:Li3%,Ce0.03%,Sm0.03%, a newly-developed, high sensitivity Optically Stimulated Luminescence (OSL) material of low effective atomic number (Zeff = 10.8) and potential interest for medical and personal dosimetry. We characterized the thermoluminescence (TL), OSL, radioluminescence (RL), and OSL emission spectrum of this new material and carried out a preliminary investigation on the OSL signal stability. MgO:Li,Ce,Sm has a main TL peak at ~180 °C (at a heating rate of 5 °C/s) associated with Ce(3+) and Sm(3+) emission. The results indicate that the infrared (870 nm) stimulated OSL from MgO:Li,Ce,Sm has suitable properties for dosimetry, including high sensitivity to ionizing radiation (20 times that of Al2O3:C, under the measurement conditions) and wide dynamic range (7 μGy-30 Gy). The OSL associated with Ce(3+) emission is correlated with a dominant, practically isolated peak at 180 °C. Fading of ~15% was observed in the first hour, probably due to shallow traps, followed by subsequent fading of 6-7% over the next 35 days. These properties, together with the characteristically fast luminescence from Ce(3+), make this material also a strong candidate for 2D OSL dose mapping. PMID:27076349

  16. Generalization of the slip line field theory for temperature sensitive visco-plastic materials

    NASA Astrophysics Data System (ADS)

    Paesold, Martin; Peters, Max; Regenauer-Lieb, Klaus; Veveakis, Manolis; Bassom, Andrew

    2015-04-01

    Geological processes can be a combination of various effects such as heat production or consumption, chemical reactions or fluid flow. These individual effects are coupled to each other via feedbacks and the mathematical analysis becomes challenging due to these interdependencies. Here, we concentrate solely on thermo-mechanical coupling and a main result of this work is that the coupling can depend on material parameters and boundary conditions and the coupling is more or less pronounced depending on theses parameters. The transitions from weak to strong coupling can be studied in the context of a bifurcation analysis. classically, Material instabilities in solids are approached as material bifurcations of a rate-independent, isothermal, elasto-plastic solid. However, previous research has shown that temperature and deformation rate are important factors and are fully coupled with the mechanical deformation. Early experiments in steel revealed a distinct pattern of localized heat dissipation and plastic deformation known as heat lines. Further, earth materials, soils, rocks and ceramics are known to be greatly influenced by temperature with strain localization being strongly affected by thermal loading. In this work, we provide a theoretical framework for the evolution of plastic deformation for such coupled systems, with a two-pronged approach to the prediction of localized failure. First, slip line field theory is employed to predict the geometry of the failure patterns and second, failure criteria are derived from an energy bifurcation analysis. The bifurcation analysis is concerned with the local energy balance of a material and compares the effects of heat diffusion terms and heat production terms where the heat production is due to mechanical processes. Commonly, the heat is produced locally along the slip lines and if the heat production outweighs diffusion the material is locally weakened which eventually leads to failure. The effect of diffusion and heat

  17. Self-Enhanced Ultrasensitive Photoelectrochemical Biosensor Based on Nanocapsule Packaging Both Donor-Acceptor-Type Photoactive Material and Its Sensitizer.

    PubMed

    Zheng, Ying-Ning; Liang, Wen-Bin; Xiong, Cheng-Yi; Yuan, Ya-Li; Chai, Ya-Qin; Yuan, Ruo

    2016-09-01

    In this work, a self-enhanced ultrasensitive photoelectrochemical (PEC) biosensor was established based on a functionalized nanocapsule packaging both donor-acceptor-type photoactive material and its sensitizer. The functionalized nanocapsule with self-enhanced PEC responses was achieved first by packaging both the donor-acceptor-type photoactive material (poly{4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl}, PTB7-Th) and its sensitizer (nano-C60, fullerene) in poly(ethylene glycol) (PEG) to form a nanocapsule, which significantly enhanced PEC signal and stability of the PEC biosensor. Moreover, a quadratic enzymes-assisted target recycling amplification strategy was introduced to the system for ultrasensitive determination. Compared with other established PEC biosensors, our proposed self-enhanced approach showed higher effectivity, accuracy, sensitivity, and convenience without any addition of coreactant or sensitizers into the testing electrolyte for photocurrent amplification and performed excellent analytical properties for microRNA estimation down to femtomole level with microRNA-141 as a model. Additionally, the proposed PEC biosensor was employed for estimation of microRNA in different cancer cells and pharmacodynamic evaluation in cancer cells. This self-enhanced PEC strategy has laid the foundation for fabrication of simple, effective, and ultrasensitive PEC diagnostic devices, leading to the possibility for early diagnosis, timely stage estimation, and accurate prognosis judgment of disease. PMID:27513736

  18. Carbon nanohorns as integrative materials for efficient dye-sensitized solar cells.

    PubMed

    Costa, Rubén D; Feihl, Sebastian; Kahnt, Axel; Gambhir, Sanjeev; Officer, David L; Wallace, Gordon G; Lucio, María Isabel; Herrero, María Antonia; Vázquez, Ester; Syrgiannis, Zois; Prato, Maurizio; Guldi, Dirk M

    2013-12-01

    Different nanocarbons, that is, single-wall carbon nanotubes, graphene, single-wall carbon nanohorns (SWCNHs), and their respective oxidized analogs have been used to fabricate novel doped TiO2 electrodes for DSSCs. Our results indicate that all of the nanocarbons significantly enhance the device characteristics when compared to standard TiO2 electrodes. Overall, our most outstanding finding is that SWCNH derivatives are also a plausible material for developing highly-efficient DSSCs. PMID:23996616

  19. Temperature sensitivity of CO2, CH4, CO, and H2 emissions during photodegradation of plant material

    NASA Astrophysics Data System (ADS)

    Lee, H.; Throop, H. L.; Rahn, T.

    2010-12-01

    Recent studies suggest that photochemical breakdown (hereafter ‘photodegradation’) of plant material by ultraviolet (UV) radiation may circumvent biotic decomposition and contribute up to 33% of decomposition in arid and semiarid ecosystems. Current knowledge of UV effects on the breakdown of plant-derived carbon compounds such as cellulose and lignin is limited. Several other observations showed that photodegradation of plant material not only produces CO2, but also produces CO and CH4. These observations also suggested that the gas production may be sensitive to temperature. We established a laboratory experiment to test the temperature sensitivity of greenhouse gases (CO2 and CH4) and indirect greenhouse gases (CO and H2) during photodegradation of plant material. The photochemical reaction was induced using a 300 W Xenon lamp solar simulator in a closed quartz chamber connected to a high resolution Wavelength-Scanned Cavity Ringdown Spectroscopy CO2-CH4 analyzer and a reduced compound photometer CO and H2 gas chromatograph. We attached a water bath connected to a chiller/heater below the chamber to control chamber temperatures at 15, 25, 35, 45, and 55°C. We compared emission rates from two artificial materials that were high in lignin and cellulose (basswood sheet and high cellulose content filter paper, respectively) and leaves of two plant species (honey mesquite and little bluestem grass). The rate of CO2 and CO emissions from photodegradation of plant material ranged from 3-70 μg CO2-C m-2 hr-1 and 2-30 μg CO-C m-2 hr-1 and were positively correlated to temperature for all materials (magnitude of fluxes: basswood > mesquite = grass > filter paper). In contrast, the rate of CH4 and H2 ranged from 0-0.4 μg CH4-C m-2 hr-1 and 0-0.4 μg H2 m-2 hr-1, but the temperature responses varied among materials. For instance, the rate of CH4 and H2 emissions were positively correlated with temperature during photodegradation of basswood, but they were negatively

  20. High-resolution setup for measuring wavelength sensitivity of photoyellowing of translucent materials

    SciTech Connect

    Vaskuri, Anna Kärhä, Petri; Heikkilä, Anu

    2015-10-15

    Polystyrene and many other materials turn yellow when exposed to ultraviolet (UV) radiation. All photodegradation mechanisms including photoyellowing are functions of the exposure wavelength, which can be described with an action spectrum. In this work, a new high-resolution transmittance measurement setup based on lasers has been developed for measuring color changes, such as the photoyellowing of translucent materials aged with a spectrograph. The measurement setup includes 14 power-stabilized laser lines between 325 nm and 933 nm wavelengths, of which one at a time is directed on to the aged sample. The power transmitted through the sample is measured with a silicon detector utilizing an integrating sphere. The sample is mounted on a high-resolution XY translation stage. Measurement at various locations aged with different wavelengths of exposure radiation gives the transmittance data required for acquiring the action spectrum. The combination of a UV spectrograph and the new high-resolution transmittance measurement setup enables a novel method for studying the UV-induced ageing of translucent materials with a spectral resolution of 3–8 nm, limited by the adjustable spectral bandwidth range of the spectrograph. These achievements form a significant improvement over earlier methods.

  1. High-resolution setup for measuring wavelength sensitivity of photoyellowing of translucent materials

    NASA Astrophysics Data System (ADS)

    Vaskuri, Anna; Kärhä, Petri; Heikkilä, Anu; Ikonen, Erkki

    2015-10-01

    Polystyrene and many other materials turn yellow when exposed to ultraviolet (UV) radiation. All photodegradation mechanisms including photoyellowing are functions of the exposure wavelength, which can be described with an action spectrum. In this work, a new high-resolution transmittance measurement setup based on lasers has been developed for measuring color changes, such as the photoyellowing of translucent materials aged with a spectrograph. The measurement setup includes 14 power-stabilized laser lines between 325 nm and 933 nm wavelengths, of which one at a time is directed on to the aged sample. The power transmitted through the sample is measured with a silicon detector utilizing an integrating sphere. The sample is mounted on a high-resolution XY translation stage. Measurement at various locations aged with different wavelengths of exposure radiation gives the transmittance data required for acquiring the action spectrum. The combination of a UV spectrograph and the new high-resolution transmittance measurement setup enables a novel method for studying the UV-induced ageing of translucent materials with a spectral resolution of 3-8 nm, limited by the adjustable spectral bandwidth range of the spectrograph. These achievements form a significant improvement over earlier methods.

  2. Sensitivity of high strain rate of structural elements in relation to dynamics properties of material

    NASA Astrophysics Data System (ADS)

    Kruszka, Leopold; Vorobiov, Iurii S.; Ovcharova, Nataliia Iu.

    2015-09-01

    Protective structures such as process chambers, protective boxes, facing elements of vehicles, personal protection equipment, motors cases etc. widely used in modern technology has been tested in the following project. Under the influence of impact loads, the three-dimensional dynamic stress-strain state with finite dynamic displacements and deformations has arised. The deformations occur in the elastic- plastic stage. In the analysis of the high-rate deformations, the dynamic properties of the materials, which are determined based on experimental data should be taken into account. The dynamic stress state of structural elements depends essentially on the dynamic properties of the materials used. The problem is solved using the finite element method, which takes into account the specifics of the process. Boundary conditions in the element nodes must satisfy the equality movement as well as derivatives. The formed function allows to describe continuous and smooth stress changes. The numerical analysis of the dynamic stress-strain state of structural elements under impact loads, takes into account different dynamic properties of the materials. A series of numerical calculations allows to reveal the features of high-rate deformation elements of protective structures and makes recommendations to improve their dynamic strength under different loading conditions.

  3. 33 CFR 155.120 - Equivalents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Equivalents. 155.120 Section 155.120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS General § 155.120...

  4. 33 CFR 155.120 - Equivalents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Equivalents. 155.120 Section 155.120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS General § 155.120...

  5. 33 CFR 155.120 - Equivalents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Equivalents. 155.120 Section 155.120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS General § 155.120...

  6. Equivalent weight of humic acid from peat

    USGS Publications Warehouse

    Pommer, A.M.; Breger, I.A.

    1960-01-01

    By means of discontinuous titration, the equivalent weight of humic acid isolated from a peat was found to increase from 144 to 183 between the third and fifty-second day after the humic acid was dissolved. Infra-red studies showed that the material had probably condensed with loss of carbonyl groups. ?? 1960.

  7. 33 CFR 155.120 - Equivalents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Equivalents. 155.120 Section 155.120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS General § 155.120...

  8. 33 CFR 155.120 - Equivalents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Equivalents. 155.120 Section 155.120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS General § 155.120...

  9. Dose equivalent neutron dosimeter

    DOEpatents

    Griffith, Richard V.; Hankins, Dale E.; Tomasino, Luigi; Gomaa, Mohamed A. M.

    1983-01-01

    A neutron dosimeter is disclosed which provides a single measurements indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer containing conversion material such as .sup.6 Li and .sup.10 B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet. The density of conversion material in the radiator layer is of an amount which is chosen so that the density of tracks produced in the detecting sheet is proportional to the biological damage done by neutrons, regardless of whether the tracks are produced as the result of moderate energy neutrons striking the radiator layer or as the result of higher energy neutrons striking the sheet of track etch material.

  10. Strain-rate sensitivity of foam materials: A numerical study using 3D image-based finite element model

    NASA Astrophysics Data System (ADS)

    Sun, Yongle; Li, Q. M.; Withers, P. J.

    2015-09-01

    Realistic simulations are increasingly demanded to clarify the dynamic behaviour of foam materials, because, on one hand, the significant variability (e.g. 20% scatter band) of foam properties and the lack of reliable dynamic test methods for foams bring particular difficulty to accurately evaluate the strain-rate sensitivity in experiments; while on the other hand numerical models based on idealised cell structures (e.g. Kelvin and Voronoi) may not be sufficiently representative to capture the actual structural effect. To overcome these limitations, the strain-rate sensitivity of the compressive and tensile properties of closed-cell aluminium Alporas foam is investigated in this study by means of meso-scale realistic finite element (FE) simulations. The FE modelling method based on X-ray computed tomography (CT) image is introduced first, as well as its applications to foam materials. Then the compression and tension of Alporas foam at a wide variety of applied nominal strain-rates are simulated using FE model constructed from the actual cell geometry obtained from the CT image. The stain-rate sensitivity of compressive strength (collapse stress) and tensile strength (0.2% offset yield point) are evaluated when considering different cell-wall material properties. The numerical results show that the rate dependence of cell-wall material is the main cause of the strain-rate hardening of the compressive and tensile strengths at low and intermediate strain-rates. When the strain-rate is sufficiently high, shock compression is initiated, which significantly enhances the stress at the loading end and has complicated effect on the stress at the supporting end. The plastic tensile wave effect is evident at high strain-rates, but shock tension cannot develop in Alporas foam due to the softening associated with single fracture process zone occurring in tensile response. In all cases the micro inertia of individual cell walls subjected to localised deformation is found to

  11. Efficient Natural Dye-Sensitized Solar Cells Based on Spin-Coated TiO2 Anode Materials

    NASA Astrophysics Data System (ADS)

    Yu, Xiao-Hong; Sun, Zhao-Zong; Lian, Jie; Li, Yi-Tan; Chen, Yan-Xue; Gao, Shang; Wang, Xiao; Wang, Ying-Shun; Zhao, Ming-Lin

    2013-11-01

    TiO2 anode materials are prepared on ITO glass by spin-coated method. Dye-sensitized solar cells are assembled with these anodes and natural dyes extracted from radix ophiopogonis by different solvents. The formation and characterization of anode materials are confirmed by field-emission scanning electron microscopy, x-ray diffraction, UV-visible absorption spectroscopy. Photovoltaic testing results show that energy conversion efficiency could reach 1.67% with fill factor of 0.51, open-circuit voltage of 457 mV, and short-circuit photocurrent density of 7.2 mA/cm2. The short-circuit photocurrent density can reach 7.6 mA/cm2 with efficiency of 1.33.

  12. Equivalence of superspace groups

    PubMed Central

    van Smaalen, Sander; Campbell, Branton J.; Stokes, Harold T.

    2013-01-01

    An algorithm is presented which determines the equivalence of two settings of a (3 + d)-dimensional superspace group (d = 1, 2, 3). The algorithm has been implemented as a web tool on , providing the transformation of any user-given superspace group to the standard setting of this superspace group in . It is shown how the standard setting of a superspace group can be directly obtained by an appropriate transformation of the external-space lattice vectors (the basic structure unit cell) and a transformation of the internal-space lattice vectors (new modulation wavevectors are linear combinations of old modulation wavevectors plus a three-dimensional reciprocal-lattice vector). The need for non-standard settings in some cases and the desirability of employing standard settings of superspace groups in other cases are illustrated by an analysis of the symmetries of a series of compounds, comparing published and standard settings and the transformations between them. A compilation is provided of standard settings of compounds with two- and three-dimensional modulations. The problem of settings of superspace groups is discussed for incommensurate composite crystals and for chiral superspace groups. PMID:23250064

  13. Comparisons of LET Distributions for Protons with Energies between50 and 200 MeV Determined Using a Spherical Tissue-EquivalentProportional Counter (TEPC) and a Position-Sensitive Silicon Spectrometer(RRMD-III)

    SciTech Connect

    Borak, Thomas B.; Doke, Tadayoshi; Fuse, T.; Guetersloh, StephenB.; Heilbronn, Lawrence H.; Hara, K.; Moyers, Michael; Suzuki, S.; Taddei, Phillip; Terasawa, K.; Zeitlin, Cary J.

    2004-12-01

    Experiments have been performed to measure the response of a spherical tissue-equivalent proportional counter (TEPC) and a silicon-based LET spectrometer (RRMD-III) to protons with energies ranging from 50 200 MeV. This represents a large portion of the energy distribution for trapped protons encountered by astronauts in low-Earth orbit. The beam energies were obtained using plastic polycarbonate degraders with a monoenergetic beam that was extracted from a proton synchrotron. The LET spectrometer provided excellent agreement with the expected LET distribution emerging from the energy degraders. The TEPC cannot measure the LET distribution directly. However, the frequency mean value of lineal energy, y bar f, provided a good approximation to LET. This is in contrast to previous results for high-energy heavy ions wherey barf underestimated LET, whereas the dose-averaged lineal energy, y barD, provided a good approximation to LET.

  14. Reciprocal space mapping of epitaxial materials using position-sensitive x-ray detection

    SciTech Connect

    Lee, S.R.; Doyle, B.L.; Drummond, T.J.; Medernach, J.W.; Schneider, R.P. Jr.

    1994-10-01

    Reciprocal space mapping can be efficiently carried out using a position-sensitive x-ray detector (PSD) coupled to a traditional double-axis diffractometer. The PSD offers parallel measurement of the total scattering angle of all diffracted x-rays during a single rocking-curve scan. As a result, a two-dimensional reciprocal space map can be made in a very short time similar to that of a one-dimensional rocking-curve scan. Fast, efficient reciprocal space mapping offers numerous routine advantages to the x-ray diffraction analyst. Some of these advantages are the explicit differentiation of lattice strain from crystal orientation effects in strain-relaxed heteroepitaxial layers; the nondestructive characterization of the size, shape and orientation of nanocrystalline domains in ordered-alloy epilayers; and the ability to measure the average size and shape of voids in porous epilayers. Here, the PSD-based diffractometer is described, and specific examples clearly illustrating the advantages of complete reciprocal space analysis are presented.

  15. Evaluating the Sensitivity of Agricultural Model Performance to Different Climate Inputs: Supplemental Material

    NASA Technical Reports Server (NTRS)

    Glotter, Michael J.; Ruane, Alex C.; Moyer, Elisabeth J.; Elliott, Joshua W.

    2015-01-01

    Projections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled and observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources reanalysis, reanalysis that is bias corrected with observed climate, and a control dataset and compared with observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by non-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. Some issues persist for all choices of climate inputs: crop yields appear to be oversensitive to precipitation fluctuations but under sensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves.

  16. The Otto-engine-equivalent vehicle concept

    NASA Technical Reports Server (NTRS)

    Dowdy, M. W.; Couch, M. D.

    1978-01-01

    A vehicle comparison methodology based on the Otto-Engine Equivalent (OEE) vehicle concept is described. As an illustration of this methodology, the concept is used to make projections of the fuel economy potential of passenger cars using various alternative power systems. Sensitivities of OEE vehicle results to assumptions made in the calculational procedure are discussed. Factors considered include engine torque boundary, rear axle ratio, performance criteria, engine transient response, and transmission shift logic.

  17. The use of hydrogenous material for sensitizing pMOS dosimeters to neutrons

    SciTech Connect

    Kronenberg, S.; Brucker, G.J.

    1995-02-01

    This paper is concerned with the application of PMOS dosimeters to measuring neutron dose by the use of hydrogenous materials to convert incident neutron flux to recoil protons. These latter charged particles can generate electron-hole pairs, and consequently, charge trapping takes place at the MOS interfaces, and threshold voltage shifts are produced. The use of PMOS devices for measuring gamma doses has been described extensively in the literature. Clearly, if measurable voltage shifts could be generated in a MOS device by neutrons, then a radiation detection instrument containing two MOS devices, back to back, with hydrogenous shields, and one MOS dosimeter without a converter would allow 4{pi} measurements of neutron and gamma doses to be made. The results obtained in this study indicate that paraffin or polyethylene will convert incident, 2.82 MeV neutrons to recoil protons, which subsequently cause measurable voltage shifts.

  18. Note: high sensitivity self-bias magnetoelectric sensor with two different magnetostrictive materials.

    PubMed

    Chen, Lei; Li, Ping; Wen, Yumei; Zhu, Yong

    2013-06-01

    The self-bias magnetoelectric (ME) sensor is designed, fabricated, and characterized for detecting weak ac magnetic-field. The two different magnetostrictive materials produce the gradient of magnetization, resulting in an internal magnetic field and a strong ME response. At zero-biased dc magnetic field, a low-frequency ME voltage coefficient (dVME∕dHac) of 22.11 mV∕Oe is achieved, which is 17.69 times higher than that of the previous magnets∕0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) sensor. Furthermore, the ME voltage coefficient reaches 2.73 V∕Oe at resonance. The induced ME voltage shows an excellent linear relationship to ac magnetic field when field amplitude varies from ~10(-7) Oe to 1 Oe. PMID:23822388

  19. Biomonitoring Equivalents for triclosan.

    PubMed

    Krishnan, Kannan; Gagné, Michelle; Nong, Andy; Aylward, Lesa L; Hays, Sean M

    2010-10-01

    Recent efforts worldwide have resulted in a growing database of measured concentrations of chemicals in blood and urine samples taken from the general population. However, few tools exist to assist in the interpretation of the measured values in a health risk context. Biomonitoring Equivalents (BEs) are defined as the concentration or range of concentrations of a chemical or its metabolite(s) in a biological medium (blood, urine, or other medium) consistent with an existing health-based exposure guideline, and are derived by integrating available data on pharmacokinetics with existing chemical risk assessments. This study reviews available health-based exposure guidance values for triclosan based on recent evaluations from the United States Environmental Protection Agency (US EPA), the European Commission's Scientific Committee on Consumer Products (EC SCCP) and the Australian National Industrial Chemicals Notification and Assessment Scheme (NICNAS). BE values corresponding to the reference dose (RfD) or margin of safety (MOS) targets from these agencies were derived based on kinetic data (urinary excretion and plasma clearance) from human studies and measured blood concentration data in animal studies. Estimated BE values for urinary total triclosan (free plus conjugates) corresponding to the US EPA RfD and the EC-identified margin of safety target from the NOAEL are 6.4 and 2.6 mg/L, respectively (corresponding to 8.3 and 3.3mg/g creatinine, respectively). Plasma BE values corresponding to the US EPA, EC, and Australian NICNAS values are 0.3, 0.9, and 0.4 mg/L, respectively. These values may be used as screening tools for evaluation of population biomonitoring data for triclosan in a risk assessment context. PMID:20541577

  20. Ageing of nickel used as sensitive material for early detection of sudomotor dysfunction

    NASA Astrophysics Data System (ADS)

    Ayoub, Hanna; Lair, Virginie; Griveau, Sophie; Galtayries, Anouk; Brunswick, Philippe; Bedioui, Fethi; Cassir, Michel

    2012-01-01

    The surface ageing of nickel electrodes was studied in the frame of the development of non-invasive biomedical devices, dedicated to the detection of sudomotor dysfunction manifested by an alteration of the ionic balance in human sweat. In this kind of technology, low voltage potentials with variable amplitudes are applied to nickel electrodes, placed on skin regions with a high density of sweat glands, and the electrical responses are measured. The trick is that nickel electrodes play alternately the role of anode and cathode, thus the analysis of the temporal evolution of the physico-chemical properties of nickel is of prime importance to ensure the good performance of the device. Electrochemical measurements coupled to surface chemical characterizations (X-ray photoelectron spectroscopy (XPS), Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS)) were performed on pure Ni samples, immersed in buffered chloride solutions mimicking human sweat. The shapes of voltammograms, recorded in a restricted anodic potential range, show that the nickel surface was gradually passivated as a function of the number of scans. This was confirmed by XPS data, with the formation of a 1 nm thick duplex layer composed by nickel hydroxide (outermost layer) and nickel oxide (inner layer). In a negative extended potential range, though the electrochemical behavior of electrodes was not modified upon cycling the potential, XPS data show that the inner layer was thickening, indicating a surface degradation of the nickel electrode. Below pitting potentials, adsorbed chloride was only hardly detected by XPS, and the surface composition of the nickel samples was similar after treatments in chloride or chloride-free buffered solutions. In a larger potential range enabling to reach the breakdown potential, the highly chemically sensitive ToF-SIMS characterization pointed out that the surface concentration of adsorbed chloride was higher in pits than elsewhere on the surface sample.

  1. Experimental study of temperature-sensitive chitosan/β-glycerophosphate embolic material in embolizing the basicranial rete mirabile in swines

    PubMed Central

    NING, XIANBIN; ZHAO, CHANGFU; PANG, JINFENG; DING, ZHAOYI; WANG, YUBO; XU, KAN; CHEN, HAO; LI, BINGWEI; LUO, QI

    2015-01-01

    The aim of the present study was to evaluate the feasibility of the non-adhesive temperature-sensitive liquid embolic material, chitosan/β-glycerophosphate (C/GP), in embolizing the basicranial rete mirabile (REM) in a swine model of cerebral arteriovenous malformation (cAVM). A total of 24 domestic swines were used as the experimental animals, among which 12 pigs underwent direct embolization of one side of the REM, while the other 12 pigs underwent embolization of the bilateral REM following anastomosis of the carotid artery and jugular vein. A super-selective microcatheter was introduced into the REM during the embolization procedure, and the C/GP hydrogel was injected until an image of the REM disappeared in the angiography examination. Further angiography examinations were performed after 2 and 6 weeks, and histological examination of the REM was performed after 6 weeks. Of the 24 domestic swines, 23 cases underwent successful thrombosis. Convulsions occurred in one case and that pig died during the embolization procedure. Following embolization, the angiography observations revealed that the embolized REM was no longer able to be developed, and adhesion of the microcatheter tip with the embolic agent did not occur. In addition, no apparent revascularization was observed in the angiography examinations performed at weeks 2 and 6. Therefore, the current preliminary study indicated that use of the non-adhesive temperature-sensitive embolic material was feasible for the embolization of cAVM; thus, C/GP may be used as an ideal embolic material for the treatment of cAVM. PMID:26170955

  2. Equivalence Principle and Gravitational Redshift

    SciTech Connect

    Hohensee, Michael A.; Chu, Steven; Mueller, Holger; Peters, Achim

    2011-04-15

    We investigate leading order deviations from general relativity that violate the Einstein equivalence principle in the gravitational standard model extension. We show that redshift experiments based on matter waves and clock comparisons are equivalent to one another. Consideration of torsion balance tests, along with matter-wave, microwave, optical, and Moessbauer clock tests, yields comprehensive limits on spin-independent Einstein equivalence principle-violating standard model extension terms at the 10{sup -6} level.

  3. Assessing the Cultural in Culturally Sensitive Printed Patient Education Materials for Chinese Americans with Type 2 Diabetes

    PubMed Central

    Ho, Evelyn Y.; Tran, Henrietta; Chesla, Catherine A.

    2014-01-01

    Type 2 diabetes affects Chinese Americans at an alarming rate. To address this health disparity, research in the area of cultural sensitivity and health literacy provide useful guidelines for creating culturally appropriate health education. In this article, we use discourse analysis to examine a group of locally-available, Chinese and English language diabetes print documents from a surface and deep structure level of culture. First, we compared these documents to research findings about printed health information to determine if and how these documents apply current best practices for health literacy and culturally appropriate health communication. Second, we examined how diabetes as a disease and diabetes management is being constructed. The printed materials addressed surface level culture through the use of Chinese language, pictures, foods and exercises. From a deeper cultural level, the materials constructed diabetes management as a matter of measurement and control that contrasted with previous research suggesting an alternative construction of balance. A nuanced assessment of both surface and deeper levels of culture is essential for creating health education materials that are more culturally appropriate and can lead to increase health literacy and improved health outcomes. PMID:24446839

  4. Efficiency enhancement in dye-sensitized solar cells with down conversion material ZnO: Eu3+, Dy3+

    NASA Astrophysics Data System (ADS)

    Yao, Nannan; Huang, Jinzhao; Fu, Ke; Liu, Shiyou; E, Dong; Wang, Yanhao; Xu, Xijin; Zhu, Min; Cao, Bingqiang

    2014-12-01

    The down conversion (DC) material ZnO: Eu3+, Dy3+ are synthesized by precipitation method and used to prepare the photo anode of dye-sensitized solar cells (DSSCs). The effects of down conversion material on the photoelectric performance of the DSSC were characterized by the X-ray diffraction (XRD), photoluminescence (PL), scanning electron microscope (SEM), current-voltage (I-V) curve, incident-photon-to-current conversion efficiency (IPCE) and UV-vis-NIR absorption spectroscopy. In this paper, Eu3+, Dy3+ codoped ZnO excited by from UV to blue light converts blue to red light emission, corresponding to the absorption region of the dye (N719). At the concentration 1.75% of ZnO: Eu3+, Dy3+ (weight ratio of DC to TiO2), the short-circuit current density and conversion efficiency of the DSSCs reached to the optimal values: 8.92 mA cm-2 and 4.48%, about 212% and 245% higher than with pure TiO2 and about 91.4% and 105% higher than with TiO2/graphene (G) structure, respectively. The research result reveals that the application of DC material can improve the efficiency of DSSCs.

  5. Assessing the cultural in culturally sensitive printed patient-education materials for Chinese Americans with type 2 diabetes.

    PubMed

    Ho, Evelyn Y; Tran, Henrietta; Chesla, Catherine A

    2015-01-01

    Type 2 diabetes affects Chinese Americans at an alarming rate. To address this health disparity, research in the area of cultural sensitivity and health literacy provides useful guidelines for creating culturally appropriate health education. In this article, we use discourse analysis to examine a group of locally available, Chinese- and English-language diabetes print documents from a surface level and deep structure level of culture. First, we compared these documents to research findings about printed health information to determine whether and how these documents apply current best practices for health literacy and culturally appropriate health communication. Second, we examined how diabetes as a disease and diabetes management is being constructed. The printed materials addressed surface level culture through the use of Chinese language, pictures, foods, and exercises. From a deeper cultural level, the materials constructed diabetes management as a matter of measurement and control that contrasted with previous research suggesting an alternative construction of balance. A nuanced assessment of both surface and deeper levels of culture is essential for creating health education materials that are more culturally appropriate and can lead to increased health literacy and improved health outcomes. PMID:24446839

  6. Estimating equivalence with quantile regression.

    PubMed

    Cade, Brian S

    2011-01-01

    Equivalence testing and corresponding confidence interval estimates are used to provide more enlightened statistical statements about parameter estimates by relating them to intervals of effect sizes deemed to be of scientific or practical importance rather than just to an effect size of zero. Equivalence tests and confidence interval estimates are based on a null hypothesis that a parameter estimate is either outside (inequivalence hypothesis) or inside (equivalence hypothesis) an equivalence region, depending on the question of interest and assignment of risk. The former approach, often referred to as bioequivalence testing, is often used in regulatory settings because it reverses the burden of proof compared to a standard test of significance, following a precautionary principle for environmental protection. Unfortunately, many applications of equivalence testing focus on establishing average equivalence by estimating differences in means of distributions that do not have homogeneous variances. I discuss how to compare equivalence across quantiles of distributions using confidence intervals on quantile regression estimates that detect differences in heterogeneous distributions missed by focusing on means. I used one-tailed confidence intervals based on inequivalence hypotheses in a two-group treatment-control design for estimating bioequivalence of arsenic concentrations in soils at an old ammunition testing site and bioequivalence of vegetation biomass at a reclaimed mining site. Two-tailed confidence intervals based both on inequivalence and equivalence hypotheses were used to examine quantile equivalence for negligible trends over time for a continuous exponential model of amphibian abundance. PMID:21516905

  7. Preparation, characterization and gas sensitivity of polypyrrole/γ-Fe{sub 2}O{sub 3} hybrid materials

    SciTech Connect

    Geng, Lina; Wu, Shihua

    2013-10-15

    Graphical abstract: - Highlights: • PPy/γ-Fe{sub 2}O{sub 3} hybrid materials were prepared by sol–gel polymerization in situ. • Different reactant molar ratios resulted in different microstructures of γ-Fe{sub 2}O{sub 3} and molecular weights of PPy. • PPy/γ-Fe{sub 2}O{sub 3} hybrids had selectivity for NH{sub 3} gases at low temperatures (<100 °C). • The sensing mechanism was suggested to be related to the existence of p–n heterojunctions in the PPy/γ-Fe{sub 2}O{sub 3} hybrid material. - Abstract: Polypyrrole (PPy)/γ-Fe{sub 2}O{sub 3} hybrid materials were prepared by sol–gel polymerization in situ and characterized by Fourier transform infrared (FT-IR), X-ray powder diffraction (XRD), thermogravimetric and differential thermal analysis (TG–DTA) and high-resolution transmission electron microscope (HRTEM). The gas sensitivities in CO, H{sub 2}, NH{sub 3}, ethanol or acetone atmospheres were determined at 30 °C, 60 °C and 90 °C. FT-IR and XRD patterns suggest that ferric oxide in the hybrids was γ-Fe{sub 2}O{sub 3}, with a diameter of approximately 5 nm. TG–DTA and HRTEM analyses showed that different reactant molar ratios of pyrrole monomer: Fe(NO{sub 3}){sub 3}·9H{sub 2}O resulted in different microstructures of γ-Fe{sub 2}O{sub 3} and molecular weights of PPy. An increased amount of Fe(NO{sub 3}){sub 3}·9H{sub 2}O increased the degree of uniformity of the molecular weight of PPy and resulted in a change of γ-Fe{sub 2}O{sub 3} microstructure from granular to stick particles. The results of gas sensitivities showed that the PPy/γ-Fe{sub 2}O{sub 3} hybrids exhibited high sensitivity to NH{sub 3} at mild operating temperature (<100 °C). Furthermore, the sensing mechanism was also discussed.

  8. Temperature sensitivity of CO2, CH4, CO, and H2 release during photodegradation of organic material

    NASA Astrophysics Data System (ADS)

    Lee, H.; Rahn, T.; Throop, H.

    2012-04-01

    Recent studies suggest that photochemical breakdown (hereafter 'photodegradation') of plant material by ultraviolet (UV) radiation may circumvent biotic decomposition and account for as much as a third of decomposition in arid and semiarid ecosystems. Current knowledge of the mechanism by which UV breaks down plant-derived carbon compounds such as cellulose and lignin is limited. Previous studies suggest that photodegradation may not only release CO2, but also CO and CH4, and that gas production may be sensitive to temperature. We established a laboratory experiment to test the temperature sensitivity of greenhouse gases (CO2 and CH4) and indirect greenhouse gases (CO and H2) during photodegradation of plant material. The photochemical reaction was induced using a 300 W xenon lamp solar simulator in a closed quartz chamber connected to a high resolution wavelength-scanned cavity ringdown spectrometer for CO2-CH4 and a reduced compound photometer gas chromatograph for CO and H2. The temperature was controlled using a water bath connected to a chiller/heater below the chamber to control chamber temperatures at 15, 25, 35, 45, and 55°C. We compared emission rates from two artificial materials that were high in lignin (basswood sheet) and cellulose (filter paper) and leaves of four species of plant litter collected from their native habitats in the southwestern U.S.: dried leaflets of velvet mesquite, culms and leaves of Indian ricegrass (C4 grass) and little bluestem grass (C3 grass), and piñon pine needles. The rates of CO2 and CO emissions from photodegradation ranged from 3-67 μmol CO2-C m-2 hr-1 and 2-34 μmol CO-C m-2 hr-1 and were positively correlated to temperature for all materials (magnitude of fluxes: basswood > leaf materials > filter paper). In contrast, the rate of CH4 and H2 ranged from 0-0.5 μmol CH4-C m-2 hr-1 and 0-4 μmol H2 m-2 hr-1, but the temperature responses varied among materials. For instance, the rate of CH4 and H2 emissions were

  9. Temperature sensitivity of CO2, CH4, CO, and H2 release during photodegradation of organic material

    NASA Astrophysics Data System (ADS)

    Lee, H.; Rahn, T.; Throop, H. L.

    2012-12-01

    Recent studies suggest that photochemical breakdown (hereafter 'photodegradation') of plant material by ultraviolet (UV) radiation may circumvent biotic decomposition and account for as much as a third of decomposition in arid and semiarid ecosystems. Current knowledge of the mechanism by which UV breaks down plant-derived carbon compounds such as cellulose and lignin is limited. Previous studies suggest that photodegradation may not only release CO2, but also CO and CH4, and that gas production may be sensitive to temperature. We established a laboratory experiment to test the temperature sensitivity of greenhouse gases (CO2 and CH4) and indirect greenhouse gases (CO and H2) during photodegradation of plant material. The photochemical reaction was induced using a 300 W xenon lamp solar simulator in a closed quartz chamber connected to a high resolution wavelength-scanned cavity ringdown spectrometer for CO2-CH4 and a reduced compound photometer gas chromatograph for CO and H2. The temperature was controlled using a water bath connected to a chiller/heater below the chamber to control chamber temperatures at 15, 25, 35, 45, and 55°C. We compared emission rates from two artificial materials that were high in lignin (basswood sheet) and cellulose (filter paper) and leaves of four species of plant litter collected from their native habitats in the southwestern U.S.: dried leaflets of velvet mesquite, culms and leaves of Indian ricegrass (C4 grass) and little bluestem grass (C3 grass), and piñon pine needles. The rates of CO2 and CO emissions from photodegradation ranged from 3-67 μmol CO2-C m-2 hr-1 and 2-34 μmol CO-C m-2 h-1 and were positively correlated to temperature for all materials (magnitude of fluxes: basswood > leaf materials > filter paper). In contrast, the rate of CH4 and H2 ranged from 0-0.5 μmol CH4-C m-2 hr-1 and 0-4 μmol H2 m-2 hr-1, but the temperature responses varied among materials. For instance, the rate of CH4 and H2 emissions were

  10. Biomechanics of chiasmal compression: Sensitivity of the mechanical behaviors of nerve fibers to variations in material property and geometry

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofei; Neely, Andrew J.; McIlwaine, Gawn G.; Lueck, Christian J.

    2016-05-01

    The mechanism of bitemporal hemianopia is still unclear. Previous research suggested that the nerve fiber packing pattern may contribute to the selective damage of nasal (crossed) nerve fibers. Numerical models were built using finite element modeling to study the biomechanics of optic nerve fibers. The sensitivity of the mechanical behaviors of the nerve fibers to variations of five parameters in the nerve fiber model were investigated using design of experiments (DOE). Results show that the crossing angle is a very significant factor that affects a wide range of responses of the model. The strain difference between the crossed and the uncrossed nerve fibers may account for the phenomenon of bitemporal hemianopia. This work also highlights the need for more accurate material properties of the tissues in the model and an improved understanding of the microstructure of the optic chiasm.