Science.gov

Sample records for er stress-chop pathway

  1. High-density lipoprotein inhibits ox-LDL-induced adipokine secretion by upregulating SR-BI expression and suppressing ER Stress pathway.

    PubMed

    Song, Guohua; Wu, Xia; Zhang, Pu; Yu, Yang; Yang, Mingfeng; Jiao, Peng; Wang, Ni; Song, Haiming; Wu, You; Zhang, Xiangjian; Liu, Huaxia; Qin, Shucun

    2016-01-01

    Endoplasmic reticulum stress (ERS) in adipocytes can modulate adipokines secretion. The aim of this study was to explore the protective effect of high-density lipoprotein (HDL) on oxidized low-density lipoprotein (ox-LDL)-induced ERS-C/EBP homologous protein (CHOP) pathway-mediated adipokine secretion. Our results showed that serum adipokines, including visfatin, resistin and TNF-α, correlated inversely with serum HDL cholesterol level in patients with abdominal obesity. In vitro, like ERS inhibitor 4-phenylbutyric acid (PBA), HDL inhibited ox-LDL- or tunicamycin (TM, an ERS inducer)-induced increase in visfatin and resistin secretion. Moreover, HDL inhibited ox-LDL-induced free cholesterol (FC) accumulation in whole cell lysate and in the endoplasmic reticulum. Additionally, like PBA, HDL inhibited ox-LDL- or TM-induced activation of ERS response as assessed by the decreased phosphorylation of protein kinase-like ER kinase and eukaryotic translation initiation factor 2α and reduced nuclear translocation of activating transcription factor 6 as well as the downregulation of Bip and CHOP. Furthermore, HDL increased scavenger receptor class B type I (SR-BI) expression and SR-BI siRNA treatment abolished the inhibitory effects of HDL on ox-LDL-induced FC accumulation and CHOP upregulation. These data indicate that HDL may suppress ox-LDL-induced FC accumulation in adipocytes through upregulation of SR-BI, subsequently preventing ox-LDL-induced ER stress-CHOP pathway-mediated adipocyte inflammation. PMID:27468698

  2. High-density lipoprotein inhibits ox-LDL-induced adipokine secretion by upregulating SR-BI expression and suppressing ER Stress pathway

    PubMed Central

    Song, Guohua; Wu, Xia; Zhang, Pu; Yu, Yang; Yang, Mingfeng; Jiao, Peng; Wang, Ni; Song, Haiming; Wu, You; Zhang, Xiangjian; Liu, Huaxia; Qin, Shucun

    2016-01-01

    Endoplasmic reticulum stress (ERS) in adipocytes can modulate adipokines secretion. The aim of this study was to explore the protective effect of high-density lipoprotein (HDL) on oxidized low-density lipoprotein (ox-LDL)-induced ERS-C/EBP homologous protein (CHOP) pathway-mediated adipokine secretion. Our results showed that serum adipokines, including visfatin, resistin and TNF-α, correlated inversely with serum HDL cholesterol level in patients with abdominal obesity. In vitro, like ERS inhibitor 4-phenylbutyric acid (PBA), HDL inhibited ox-LDL- or tunicamycin (TM, an ERS inducer)-induced increase in visfatin and resistin secretion. Moreover, HDL inhibited ox-LDL-induced free cholesterol (FC) accumulation in whole cell lysate and in the endoplasmic reticulum. Additionally, like PBA, HDL inhibited ox-LDL- or TM-induced activation of ERS response as assessed by the decreased phosphorylation of protein kinase-like ER kinase and eukaryotic translation initiation factor 2α and reduced nuclear translocation of activating transcription factor 6 as well as the downregulation of Bip and CHOP. Furthermore, HDL increased scavenger receptor class B type I (SR-BI) expression and SR-BI siRNA treatment abolished the inhibitory effects of HDL on ox-LDL-induced FC accumulation and CHOP upregulation. These data indicate that HDL may suppress ox-LDL-induced FC accumulation in adipocytes through upregulation of SR-BI, subsequently preventing ox-LDL-induced ER stress-CHOP pathway-mediated adipocyte inflammation. PMID:27468698

  3. Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways

    PubMed Central

    Timmins, Jenelle M.; Ozcan, Lale; Seimon, Tracie A.; Li, Gang; Malagelada, Cristina; Backs, Johannes; Backs, Thea; Bassel-Duby, Rhonda; Olson, Eric N.; Anderson, Mark E.; Tabas, Ira

    2009-01-01

    ER stress–induced apoptosis is implicated in various pathological conditions, but the mechanisms linking ER stress–mediated signaling to downstream apoptotic pathways remain unclear. Using human and mouse cell culture and in vivo mouse models of ER stress–induced apoptosis, we have shown that cytosolic calcium resulting from ER stress induces expression of the Fas death receptor through a pathway involving calcium/calmodulin-dependent protein kinase IIγ (CaMKIIγ) and JNK. Remarkably, CaMKIIγ was also responsible for processes involved in mitochondrial-dependent apoptosis, including release of mitochondrial cytochrome c and loss of mitochondrial membrane potential. CaMKII-dependent apoptosis was also observed in a number of cultured human and mouse cells relevant to ER stress–induced pathology, including cultured macrophages, endothelial cells, and neuronal cells subjected to proapoptotic ER stress. Moreover, WT mice subjected to systemic ER stress showed evidence of macrophage mitochondrial dysfunction and apoptosis, renal epithelial cell apoptosis, and renal dysfunction, and these effects were markedly reduced in CaMKIIγ-deficient mice. These data support an integrated model in which CaMKII serves as a unifying link between ER stress and the Fas and mitochondrial apoptotic pathways. Our study also revealed what we believe to be a novel proapoptotic function for CaMKII, namely, promotion of mitochondrial calcium uptake. These findings raise the possibility that CaMKII inhibitors could be useful in preventing apoptosis in pathological settings involving ER stress–induced apoptosis. PMID:19741297

  4. ER trapping reveals Golgi enzymes continually revisit the ER through a recycling pathway that controls Golgi organization

    PubMed Central

    Sengupta, Prabuddha; Satpute-Krishnan, Prasanna; Seo, Arnold Y.; Burnette, Dylan T.; Patterson, George H.; Lippincott-Schwartz, Jennifer

    2015-01-01

    Whether Golgi enzymes remain localized within the Golgi or constitutively cycle through the endoplasmic reticulum (ER) is unclear, yet is important for understanding Golgi dependence on the ER. Here, we demonstrate that the previously reported inefficient ER trapping of Golgi enzymes in a rapamycin-based assay results from an artifact involving an endogenous ER-localized 13-kD FK506 binding protein (FKBP13) competing with the FKBP12-tagged Golgi enzyme for binding to an FKBP-rapamycin binding domain (FRB)-tagged ER trap. When we express an FKBP12-tagged ER trap and FRB-tagged Golgi enzymes, conditions precluding such competition, the Golgi enzymes completely redistribute to the ER upon rapamycin treatment. A photoactivatable FRB-Golgi enzyme, highlighted only in the Golgi, likewise redistributes to the ER. These data establish Golgi enzymes constitutively cycle through the ER. Using our trapping scheme, we identify roles of rab6a and calcium-independent phospholipase A2 (iPLA2) in Golgi enzyme recycling, and show that retrograde transport of Golgi membrane underlies Golgi dispersal during microtubule depolymerization and mitosis. PMID:26598700

  5. Inhibition of ER stress–associated IRE-1/XBP-1 pathway reduces leukemic cell survival

    PubMed Central

    Tang, Chih-Hang Anthony; Ranatunga, Sujeewa; Kriss, Crystina L.; Cubitt, Christopher L.; Tao, Jianguo; Pinilla-Ibarz, Javier A.; Del Valle, Juan R.; Hu, Chih-Chi Andrew

    2014-01-01

    Activation of the ER stress response is associated with malignant progression of B cell chronic lymphocytic leukemia (CLL). We developed a murine CLL model that lacks the ER stress–associated transcription factor XBP-1 in B cells and found that XBP-1 deficiency decelerates malignant progression of CLL-associated disease. XBP-1 deficiency resulted in acquisition of phenotypes that are disadvantageous for leukemic cell survival, including compromised BCR signaling capability and increased surface expression of sphingosine-1-phosphate receptor 1 (S1P1). Because XBP-1 expression requires the RNase activity of the ER transmembrane receptor IRE-1, we developed a potent IRE-1 RNase inhibitor through chemical synthesis and modified the structure to facilitate entry into cells to target the IRE-1/XBP-1 pathway. Treatment of CLL cells with this inhibitor (B-I09) mimicked XBP-1 deficiency, including upregulation of IRE-1 expression and compromised BCR signaling. Moreover, B-I09 treatment did not affect the transport of secretory and integral membrane-bound proteins. Administration of B-I09 to CLL tumor–bearing mice suppressed leukemic progression by inducing apoptosis and did not cause systemic toxicity. Additionally, B-I09 and ibrutinib, an FDA-approved BTK inhibitor, synergized to induce apoptosis in B cell leukemia, lymphoma, and multiple myeloma. These data indicate that targeting XBP-1 has potential as a treatment strategy, not only for multiple myeloma, but also for mature B cell leukemia and lymphoma. PMID:24812669

  6. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma.

    PubMed

    Syed, Deeba N; Lall, Rahul K; Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-12-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytotoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up-regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMP-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity. PMID:25016296

  7. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma

    PubMed Central

    Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-01-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up- regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16 days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMPK-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity. PMID:25016296

  8. Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation

    PubMed Central

    Datan, E; Roy, S G; Germain, G; Zali, N; McLean, J E; Golshan, G; Harbajan, S; Lockshin, R A; Zakeri, Z

    2016-01-01

    A virus that reproduces in a host without killing cells can easily establish a successful infection. Previously, we showed that dengue-2, a virus that threatens 40% of the world, induces autophagy, enabling dengue to reproduce in cells without triggering cell death. Autophagy further protects the virus-laden cells from further insults. In this study, we evaluate how it does so; we show that dengue upregulates host pathways that increase autophagy, namely endoplasmic reticulum (ER) stress and ataxia telangiectasia mutated (ATM) signaling followed by production of reactive oxygen species (ROS). Inhibition of ER stress or ATM signaling abrogates the dengue-conferred protection against other cell stressors. Direct inhibition of ER stress response in infected cells decreases autophagosome turnover, reduces ROS production and limits reproduction of dengue virus. Blocking ATM activation, which is an early response to infection, decreases transcription of ER stress response proteins, but ATM has limited impact on production of ROS and virus titers. Production of ROS determines only late-onset autophagy in infected cells and is not necessary for dengue-induced protection from stressors. Collectively, these results demonstrate that among the multiple autophagy-inducing pathways during infection, ER stress signaling is more important to viral replication and protection of cells than either ATM or ROS-mediated signaling. To limit virus production and survival of dengue-infected cells, one must address the earliest phase of autophagy, induced by ER stress. PMID:26938301

  9. FAM3A attenuates ER stress-induced mitochondrial dysfunction and apoptosis via CHOP-Wnt pathway.

    PubMed

    Song, Qing; Gou, Wen-Li; Zhang, Rong

    2016-03-01

    Endoplasmic reticulum (ER) stress is linked to several neurological disorders, and neuronal injury cascades initiated by excessive ER stress are mediated, in part, via mitochondrial dysfunction. In the present study, we identified FAM3A as an important regulator of ER stress-induced cell death in neuronal HT22 cells. The ER stress inductor tunicamycin (TM) significantly decreased the expression of FAM3A at both mRNA and protein levels, which was shown to be dependent on the induction of reactive oxygen species (ROS). Overexpression of FAM3A attenuated TM-induced apoptosis and activation of ER stress factors, but had no effect on ER calcium metabolism in HT22 cells. We also found decreased mitochondrial ROS generation, inhibited cytochrome c release and preserved mitochondrial membrane potential (MMP) in FAM3A overexpressed cells. In addition, the experiments using isolated mitochondria showed that overexpression of FAM3A attenuated mitochondrial swelling and loss of mitochondrial Ca(2+) buffering capacity after TM exposure. By using specific targeted small interfering RNA (siRNA) to knockdown the expression of the C/EBP homologous protein (CHOP), we found that FAM3A-induced protection and inhibition of ER stress was mediated by inverting TM-induced decrease of Wnt through the CHOP pathway. Our study demonstrates a pivotal role of FAM3A in protecting against TM-induced cytotoxicity via regulating CHOP-Wnt pathway, and suggests the therapeutic values of FAM3A overexpression against ER stress-associated neuronal injury. PMID:26939760

  10. A thrombospondin-dependent pathway for a protective ER stress response

    PubMed Central

    Lynch, Jeffrey M.; Maillet, Marjorie; Vanhoutte, Davy; Schloemer, Aryn; Sargent, Michelle A.; Blair, N. Scott; Lynch, Kaari A.; Okada, Tetsuya; Aronow, Bruce J.; Osinska, Hanna; Prywes, Ron; Lorenz, John N.; Mori, Kazutoshi; Lawler, Jack; Robbins, Jeffrey; Molkentin, Jeffery D.

    2012-01-01

    SUMMARY Thrombospondin (Thbs) proteins are induced in sites of tissue damage or active remodeling. The endoplasmic reticulum (ER) stress response is also prominently induced with disease where it regulates protein production and resolution of misfolded proteins. Here we describe a novel function for Thbs’ as ER resident effectors of an adaptive ER stress response. Thbs4 cardiac-specific transgenic mice were protected from myocardial injury while Thbs4−/− mice were sensitized to cardiac maladaptation. Thbs induction produced a unique profile of adaptive ER stress response factors and expansion of the ER and downstream vesicles. The type-3 repeat domain in Thbs’ bind the ER luminal domain of activating transcription factor 6α (Atf6α) to promote its nuclear shuttling. Thbs4−/−mice failed to show activation of Atf6α and other ER stress response factors with injury, and Thbs4-mediated protection was lost when Atf6α was deleted. Hence, Thbs’ can function inside the cell during disease/remodeling to augment ER function and protect through a mechanism involving regulation of Atf6α. PMID:22682248

  11. Dietary Fish Oil Inhibits Pro-Inflammatory and ER Stress Signalling Pathways in the Liver of Sows during Lactation.

    PubMed

    Gessner, Denise K; Gröne, Birthe; Couturier, Aline; Rosenbaum, Susann; Hillen, Sonja; Becker, Sabrina; Erhardt, Georg; Reiner, Gerald; Ringseis, Robert; Eder, Klaus

    2015-01-01

    Lactating sows have been shown to develop typical signs of an inflammatory condition in the liver during the transition from pregnancy to lactation. Hepatic inflammation is considered critical due to the induction of an acute phase response and the activation of stress signaling pathways like the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR), both of which impair animal's health and performance. Whether ER stress-induced UPR is also activated in the liver of lactating sows and whether dietary fish oil as a source of anti-inflammatory effects n-3 PUFA is able to attenuate hepatic inflammation and ER stress-induced UPR in the liver of sows is currently unknown. Based on this, two experiments with lactating sows were performed. The first experiment revealed that ER stress-induced UPR occurs also in the liver of sows during lactation. This was evident from the up-regulation of a set of genes regulated by the UPR and numerically increased phosphorylation of the ER stress-transducer PERK and PERK-mediated phosphorylation of eIF2α and IκB. The second experiment showed that fish oil inhibits ER stress-induced UPR in the liver of lactating sows. This was demonstrated by decreased mRNA levels of a number of UPR-regulated genes and reduced phosphorylation of PERK and PERK-mediated phosphorylation of eIF2α and IκB in the liver of the fish oil group. The mRNA levels of various nuclear factor-κB-regulated genes encoding inflammatory mediators and acute phase proteins in the liver of lactating sows were also reduced in the fish oil group. In line with this, the plasma levels of acute phase proteins were reduced in the fish oil group, although differences to the control group were not significant. In conclusion, ER stress-induced UPR is present in the liver of lactating sows and fish oil is able to inhibit inflammatory signaling pathways and ER stress-induced UPR in the liver. PMID:26351857

  12. Dietary Fish Oil Inhibits Pro-Inflammatory and ER Stress Signalling Pathways in the Liver of Sows during Lactation

    PubMed Central

    Gessner, Denise K.; Gröne, Birthe; Couturier, Aline; Rosenbaum, Susann; Hillen, Sonja; Becker, Sabrina; Erhardt, Georg; Reiner, Gerald; Ringseis, Robert; Eder, Klaus

    2015-01-01

    Lactating sows have been shown to develop typical signs of an inflammatory condition in the liver during the transition from pregnancy to lactation. Hepatic inflammation is considered critical due to the induction of an acute phase response and the activation of stress signaling pathways like the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR), both of which impair animal´s health and performance. Whether ER stress-induced UPR is also activated in the liver of lactating sows and whether dietary fish oil as a source of anti-inflammatory effects n-3 PUFA is able to attenuate hepatic inflammation and ER stress-induced UPR in the liver of sows is currently unknown. Based on this, two experiments with lactating sows were performed. The first experiment revealed that ER stress-induced UPR occurs also in the liver of sows during lactation. This was evident from the up-regulation of a set of genes regulated by the UPR and numerically increased phosphorylation of the ER stress-transducer PERK and PERK-mediated phosphorylation of eIF2α and IκB. The second experiment showed that fish oil inhibits ER stress-induced UPR in the liver of lactating sows. This was demonstrated by decreased mRNA levels of a number of UPR-regulated genes and reduced phosphorylation of PERK and PERK-mediated phosphorylation of eIF2α and IκB in the liver of the fish oil group. The mRNA levels of various nuclear factor-κB-regulated genes encoding inflammatory mediators and acute phase proteins in the liver of lactating sows were also reduced in the fish oil group. In line with this, the plasma levels of acute phase proteins were reduced in the fish oil group, although differences to the control group were not significant. In conclusion, ER stress-induced UPR is present in the liver of lactating sows and fish oil is able to inhibit inflammatory signaling pathways and ER stress-induced UPR in the liver. PMID:26351857

  13. ERRF is essential for Estrogen-Estrogen Receptor alpha signaling pathway in ER positive breast cancer cells.

    PubMed

    Luo, Ang; Zhang, Xuan

    2016-05-27

    Estrogen-Estrogen Receptor alpha (ERα) belongs to one of the most important signaling pathways controlling breast tissue development and progression of breast cancer. ERRF was recently identified as a candidate breast cancer associated protein and showed positive association with ERα status in clinical samples and cell lines. To further explore the relationship between ERRF and ERα, we studied whether ERRF plays any roles in estrogen-ERα pathway. Knockdown of ERRF in ER positive breast cancer cells T-47D and BT-474 reduced the level of p-AKT, p-MAPK, and phosphorylation of ERα at Ser 118 and Ser 167, and the transcriptional activity of ERα was inhibited as well. Further mechanism study proved ERRF to be an interacting partner of ERα. In total, these data revealed that ERRF is essential for the activity of E2-ERα pathway. PMID:27125460

  14. The PERK pathway independently triggers apoptosis and a Rac1/Slpr/JNK/Dilp8 signaling favoring tissue homeostasis in a chronic ER stress Drosophila model

    PubMed Central

    Demay, Y; Perochon, J; Szuplewski, S; Mignotte, B; Gaumer, S

    2014-01-01

    The endoplasmic reticulum (ER) has a major role in protein folding. The accumulation of unfolded proteins in the ER induces a stress, which can be resolved by the unfolded protein response (UPR). Chronicity of ER stress leads to UPR-induced apoptosis and in turn to an unbalance of tissue homeostasis. Although ER stress-dependent apoptosis is observed in a great number of devastating human diseases, how cells activate apoptosis and promote tissue homeostasis after chronic ER stress remains poorly understood. Here, using the Drosophila wing imaginal disc as a model system, we validated that Presenilin overexpression induces chronic ER stress in vivo. We observed, in this novel model of chronic ER-stress, a PERK/ATF4-dependent apoptosis requiring downregulation of the antiapoptotic diap1 gene. PERK/ATF4 also activated the JNK pathway through Rac1 and Slpr activation in apoptotic cells, leading to the expression of Dilp8. This insulin-like peptide caused a developmental delay, which partially allowed the replacement of apoptotic cells. Thanks to a novel chronic ER stress model, these results establish a new pathway that both participates in tissue homeostasis and triggers apoptosis through an original regulation. PMID:25299777

  15. Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway

    PubMed Central

    Wijdeven, Ruud H.; Janssen, Hans; Nahidiazar, Leila; Janssen, Lennert; Jalink, Kees; Berlin, Ilana; Neefjes, Jacques

    2016-01-01

    Autophagy is the main homeostatic pathway guiding cytosolic materials for degradation by the lysosome. Maturation of autophagosomes requires their transport towards the perinuclear region of the cell, with key factors underlying both processes still poorly understood. Here we show that transport and positioning of late autophagosomes depends on cholesterol by way of the cholesterol-sensing Rab7 effector ORP1L. ORP1L localizes to late autophagosomes and—under low-cholesterol conditions—contacts the ER protein VAP-A, forming ER-autophagosome contact sites, which prevent minus-end transport by the Rab7–RILP–dynein complex. ORP1L-mediated contact sites also inhibit localization of PLEKHM1 to Rab7. PLEKHM1, together with RILP, then recruits the homotypic fusion and vacuole protein-sorting (HOPS) complex for fusion of autophagosomes with late endosomes and lysosomes. Thus, ORP1L, via its liganding by lipids and the formation of contacts between autophagic vacuoles and the ER, governs the last steps in autophagy that lead to the lysosomal degradation of cytosolic material. PMID:27283760

  16. Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway.

    PubMed

    Wijdeven, Ruud H; Janssen, Hans; Nahidiazar, Leila; Janssen, Lennert; Jalink, Kees; Berlin, Ilana; Neefjes, Jacques

    2016-01-01

    Autophagy is the main homeostatic pathway guiding cytosolic materials for degradation by the lysosome. Maturation of autophagosomes requires their transport towards the perinuclear region of the cell, with key factors underlying both processes still poorly understood. Here we show that transport and positioning of late autophagosomes depends on cholesterol by way of the cholesterol-sensing Rab7 effector ORP1L. ORP1L localizes to late autophagosomes and-under low-cholesterol conditions-contacts the ER protein VAP-A, forming ER-autophagosome contact sites, which prevent minus-end transport by the Rab7-RILP-dynein complex. ORP1L-mediated contact sites also inhibit localization of PLEKHM1 to Rab7. PLEKHM1, together with RILP, then recruits the homotypic fusion and vacuole protein-sorting (HOPS) complex for fusion of autophagosomes with late endosomes and lysosomes. Thus, ORP1L, via its liganding by lipids and the formation of contacts between autophagic vacuoles and the ER, governs the last steps in autophagy that lead to the lysosomal degradation of cytosolic material. PMID:27283760

  17. An ER-Associated Pathway Defines Endosomal Architecture for Controlled Cargo Transport.

    PubMed

    Jongsma, Marlieke L M; Berlin, Ilana; Wijdeven, Ruud H M; Janssen, Lennert; Janssen, George M C; Garstka, Malgorzata A; Janssen, Hans; Mensink, Mark; van Veelen, Peter A; Spaapen, Robbert M; Neefjes, Jacques

    2016-06-30

    Through a network of progressively maturing vesicles, the endosomal system connects the cell's interior with extracellular space. Intriguingly, this network exhibits a bilateral architecture, comprised of a relatively immobile perinuclear vesicle "cloud" and a highly dynamic peripheral contingent. How this spatiotemporal organization is achieved and what function(s) it curates is unclear. Here, we reveal the endoplasmic reticulum (ER)-located ubiquitin ligase Ring finger protein 26 (RNF26) as the global architect of the entire endosomal system, including the trans-Golgi network (TGN). To specify perinuclear vesicle coordinates, catalytically competent RNF26 recruits and ubiquitinates the scaffold p62/sequestosome 1 (p62/SQSTM1), in turn attracting ubiquitin-binding domains (UBDs) of various vesicle adaptors. Consequently, RNF26 restrains fast transport of diverse vesicles through a common molecular mechanism operating at the ER membrane, until the deubiquitinating enzyme USP15 opposes RNF26 activity to allow vesicle release into the cell's periphery. By drawing the endosomal system's architecture, RNF26 orchestrates endosomal maturation and trafficking of cargoes, including signaling receptors, in space and time. PMID:27368102

  18. Nicotinamide ameliorates palmitate-induced ER stress in hepatocytes via cAMP/PKA/CREB pathway-dependent Sirt1 upregulation.

    PubMed

    Li, Jiaxin; Dou, Xiaobing; Li, Songtao; Zhang, Ximei; Zeng, Yong; Song, Zhenyuan

    2015-11-01

    Nicotinamide (NAM) is the amide of nicotinic acid and a predominant precursor for NAD(+) biosynthesis via the salvage pathway. Sirt1 is a NAD(+)-dependent deacetylase, playing an important role in regulating cellular functions. Although hepatoprotective effect of NAM has been reported, the underlying mechanism remains elusive. ER stress, induced by saturated fatty acids, in specific palmitate, plays a pathological role in the development of nonalcoholic fatty liver disease. This study aims to determine the effect of NAM on palmitate-induced ER stress in hepatocytes and to elucidate molecular mechanisms behind. Both HepG2 cells and primary mouse hepatocytes were exposed to palmitate (conjugated to BSA at a 2:1 M ratio), NAM, or their combination for different durations. Cellular NAD(+) level, Sirt1 expression/activity, ER stress, as well as cAMP/PKA/CREB pathway activation were determined. NAM increased Sirt1 expression and enzymatic activity, which contributes to the ameliorative effect of NAM on palmitate-triggered ER stress. NAM increased intracellular NAD(+) level in hepatocytes, however, blocking the salvage pathway, a pathway for NAD(+) synthesis from NAM, only partially prevented NAM-induced Sirt1 upregulation while completely prevented NAD+ increase in response to NAM. Further mechanistic investigations revealed that NAM elevated intracellular cAMP level via suppressing PDE activity, leading to downstream PKA and CREB activation. Importantly, cAMP/PKA/CREB pathway blockade abolished not only NAM-induced Sirt1 upregulation, but also its protective effect against ER stress. Our results demonstrate that NAM protects hepatocytes against palmitate-induced ER stress in hepatocytes via upregulating Sirt1. Activation of the cAMP/PKA/CREB pathway plays a key role in NAM-induced Sirt1 upregulation. PMID:26352206

  19. 4-Phenylbutyric acid reduces mutant-TGFBIp levels and ER stress through activation of ERAD pathway in corneal fibroblasts of granular corneal dystrophy type 2.

    PubMed

    Choi, Seung-Il; Lee, Eunhee; Jeong, Jang Bin; Akuzum, Begum; Maeng, Yong-Sun; Kim, Tae-Im; Kim, Eung Kweon

    2016-09-01

    Granular corneal dystrophy type 2 (GCD2) is caused by a point mutation (R124H) in the transforming growth factor β-induced (TGFBI) gene. In GCD2 corneal fibroblasts, secretion of the accumulated mutant TGFBI-encoded protein (TGFBIp) is delayed via the endoplasmic reticulum (ER)/Golgi-dependent secretory pathway. However, ER stress as the pathogenic mechanism underlying GCD2 has not been fully characterized. The aim of this study was to confirm whether ER stress is linked to GCD2 pathogenesis and whether the chemical chaperone, 4-phenylbutyric acid (4-PBA), could be exploited as a therapy for GCD2. We found that the ER chaperone binding immunoglobulin protein (BiP) and the protein disulfide isomerase (PDI) were elevated in GCD2. Western bolt analysis also showed a significant increase in both the protein levels and the phosphorylation of the key ER stress kinases, inositol-requiring enzyme 1α (IRE1α) and double stranded RNA activated protein kinase (PKR)-like ER kinase, as well as in levels of their downstream targets, X box-binding protein 1 (XBP1) and activating transcription factor 4, respectively, in GCD2 corneal fibroblasts. GCD2 cells were found to be more susceptible to ER stress-induced cell death than were wild-type corneal fibroblasts. Treatment with 4-PBA considerably reduced the levels of BiP, IRE1α, and XBP1 in GCD2 cells; notably, 4-PBA treatment significantly reduced the levels of TGFBIp without change in TGFBI mRNA levels. In addition, TGFBIp levels were significantly reduced under ER stress and this reduction was considerably suppressed by the ubiquitin proteasome inhibitor MG132, indicating TGFBIp degradation via the ER-associated degradation pathway. Treatment with 4-PBA not only protected against the GCD2 cell death induced by ER stress but also significantly suppressed the MG132-mediated increase in TGFBIp levels under ER stress. Together, these results suggest that ER stress might comprise an important factor in GCD2 pathophysiology and

  20. Nickel chloride (NiCl2) induces endoplasmic reticulum (ER) stress by activating UPR pathways in the kidney of broiler chickens

    PubMed Central

    Guo, Hongrui; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Chen, Kejie; Deng, Jie

    2016-01-01

    It has been known that overexposure to Ni can induce nephrotoxicity. However, the mechanisms of underlying Ni nephrotoxicity are still elusive, and also Ni- and Ni compound-induced ER stress has been not reported in vivo at present. Our aim was to use broiler chickens as animal model to test whether the ER stress was induced and UPR was activated by NiCl2 in the kidney using histopathology, immunohistochemistry and qRT-PCR. Two hundred and eighty one-day-old broiler chickens were divided into 4 groups and fed on a control diet and the same basal diet supplemented with 300 mg/kg, 600mg/kg and 900mg/kg of NiCl2 for 42 days. We found that dietary NiCl2 in excess of 300 mg/kg induced ER stress, which was characterized by increasing protein and mRNA expression of ER stress markers, e.g., GRP78 and GRP94. Concurrently, all the three UPR pathways were activated by dietary NiCl2. Firstly, the PERK pathway was activated by increasing eIF2a and ATF4 mRNA expression. Secondly, the IRE1 pathway was activated duo to increase in IRE1 and XBP1 mRNA expression. And thirdly, the increase of ATF6 mRNA expression suggested that ATF6 pathway was activated. The findings clearly demonstrate that NiCl2 induces the ER stress through activating PERK, IRE1 and ATF6 UPR pathways, which is proved to be a kind of molecular mechanism of Ni- or/and Ni compound-induced nephrotoxicity. PMID:26956054

  1. Zinc deficiency mediates alcohol-induced apoptotic cell death in the liver of rats through activating ER and mitochondrial cell death pathways

    PubMed Central

    Sun, Qian; Zhong, Wei; Zhang, Wenliang; Li, Qiong; Sun, Xiuhua; Tan, Xiaobing; Sun, Xinguo; Dong, Daoyin

    2015-01-01

    Hepatic zinc deficiency has been well documented in alcoholic patients, but the mechanisms by which zinc deficiency mediates cell death have not been well defined. The objectives of this study were to determine whether alcohol perturbs subcellular zinc homeostasis and how organelle zinc depletion may link with cell death pathways. Wistar rats were pair-fed with the Lieber-DeCarli control or ethanol diet for 5 mo. Chronic alcohol exposure significantly reduced zinc level in isolated hepatic endoplasmic reticulum (ER) and mitochondria. Among the detected zinc transporters, ER Zrt/Irt-like protein (ZIP)13 and mitochondrial ZIP8, which transport zinc from ER and mitochondria to cytosol, were significantly increased. Mitochondrial zinc transporter (ZnT) 4, which transports zinc from cytosol to mitochondria, was also increased. ER phosphorylated eukaryotic initiation factor 2α, activating transcription factor 4, and C/EBP homologous protein were significantly upregulated, and mitochondrial cytochrome c release and Bax insertion were detected in association with caspase-3 activation and apoptotic cell death. To define the role of zinc deficiency in ER and mitochondrial stress, H4IIEC3 cells were treated with 3 μM N,N,N′,N′-tetrakis (2-pyridylmethyl) ethylenediamine for 6 h with or without supplementation with zinc or N-acetylcysteine (NAC). The results demonstrated that zinc deprivation induced caspase-3 activation and apoptosis in association with ER and mitochondria dysfunction, which were inhibited by zinc as low as 10 μM but not by 2 mM NAC. These results suggest that chronic ethanol exposure induced in ER and mitochondrial zinc deficiency might activate intrinsic cell death signaling pathway, which could not be effectively rescued by antioxidant treatment. PMID:25767260

  2. Molecular pathway of near-infrared laser phototoxicity involves ATF-4 orchestrated ER stress.

    PubMed

    Khan, Imran; Tang, Elieza; Arany, Praveen

    2015-01-01

    High power lasers are used extensively in medicine while lower power applications are popular for optical imaging, optogenetics, skin rejuvenation and a therapeutic modality termed photobiomodulation (PBM). This study addresses the therapeutic dose limits, biological safety and molecular pathway of near-infrared (NIR) laser phototoxicity. Increased erythema and tissue damage were noted in mice skin and cytotoxicity in cell cultures at phototoxic laser doses involving generation of reactive oxygen species (ROS) coupled with a rise in surface temperature (>45 °C). NIR laser phototoxicity results from Activating Transcription Factor-4 (ATF-4) mediated endoplasmic reticulum stress and autophagy. Neutralizations of heat or ROS and overexpressing ATF-4 were noted to rescue NIR laser phototoxicity. Further, NIR laser mediated phototoxicity was noted to be non-genotoxic and non-mutagenic. This study outlines the mechanism of NIR laser phototoxicity and the utility of monitoring surface temperature and ATF4 expression as potential biomarkers to develop safe and effective clinical applications. PMID:26030745

  3. Molecular pathway of near-infrared laser phototoxicity involves ATF-4 orchestrated ER stress

    PubMed Central

    Khan, Imran; Tang, Elieza; Arany, Praveen

    2015-01-01

    High power lasers are used extensively in medicine while lower power applications are popular for optical imaging, optogenetics, skin rejuvenation and a therapeutic modality termed photobiomodulation (PBM). This study addresses the therapeutic dose limits, biological safety and molecular pathway of near-infrared (NIR) laser phototoxicity. Increased erythema and tissue damage were noted in mice skin and cytotoxicity in cell cultures at phototoxic laser doses involving generation of reactive oxygen species (ROS) coupled with a rise in surface temperature (>45 °C). NIR laser phototoxicity results from Activating Transcription Factor-4 (ATF-4) mediated endoplasmic reticulum stress and autophagy. Neutralizations of heat or ROS and overexpressing ATF-4 were noted to rescue NIR laser phototoxicity. Further, NIR laser mediated phototoxicity was noted to be non-genotoxic and non-mutagenic. This study outlines the mechanism of NIR laser phototoxicity and the utility of monitoring surface temperature and ATF4 expression as potential biomarkers to develop safe and effective clinical applications. PMID:26030745

  4. HIV-1 gp120 induces type-1 programmed cell death through ER stress employing IRE1α, JNK and AP-1 pathway

    PubMed Central

    Shah, Ankit; Vaidya, Naveen K.; Bhat, Hari K.; Kumar, Anil

    2016-01-01

    The ER stress-mediated apoptosis has been implicated in several neurodegenerative diseases; however, its role in HIV/neuroAIDS remains largely unexplored. The present study was undertaken to assess the involvement and detailed mechanism of IRE1α pathway in HIV-1 gp120-mediated ER stress and its possible involvement in cell death. Various signaling molecules for IRE1α pathway were assessed using SVGA cells, primary astrocytes and gp120 transgenic mice, which demonstrated gp120-mediated increase in phosphorylated JNK, XBP-1 and AP-1 leading to upregulation of CHOP. Furthermore, HIV-1 gp120-mediated activation of IRE1α also increased XBP-1 splicing. The functional consequence of gp120-mediated ER stress was determined via assessment of gp120-mediated cell death using PI staining and MTT assay. The gp120-mediated cell death also involved caspase-9/caspase-3-mediated apoptosis. These findings were confirmed with the help of specific siRNA for IRE1α, JNK, AP-1, BiP and CHOP showing significant reduction in gp120-mediated CHOP expression. Additionally, silencing all the intermediates also reduced the gp120-mediated cell death and caspase-9/caspase-3 activation at differential levels. This study provides ER-stress as a novel therapeutic target in the management of gp120-mediated cell death and possibly in the treatment of neuroAIDS. PMID:26740125

  5. The PERK-eIF2α signaling pathway is involved in TCDD-induced ER stress in PC12 cells.

    PubMed

    Duan, Zhiqing; Zhao, Jianya; Fan, Xikang; Tang, Cuiying; Liang, Lingwei; Nie, Xiaoke; Liu, Jiao; Wu, Qiyun; Xu, Guangfei

    2014-09-01

    Studies have shown that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces apoptotic cell death in neuronal cells. However, whether this is the result of endoplasmic reticulum (ER) stress-mediated apoptosis remains unknown. In this study, we determined whether ER stress plays a role in the TCDD-induced apoptosis of pheochromocytoma (PC12) cells and primary neurons. PC12 cells were exposed to different TCDD concentrations (1, 10, 100, 200, or 500nM) for varying lengths of time (1, 3, 6, 12, or 24h). TCDD concentrations much higher than 10nM (100, 200, or 500nM) markedly increased glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP) levels, which are hallmarks of ER stress. We also evaluated the effects of TCDD on ER morphology in PC12 cells and primary neurons that were treated with different TCDD concentrations (1, 10, 50, or 200nM) for 24h. Ultrastructural ER alterations were observed with transmission electron microscopy in PC12 cells and primary neurons treated with high concentrations of TCDD. Furthermore, TCDD-induced ER stress significantly promoted the activation of the PKR-like ER kinase (PERK), a sensor for the unfolded protein response (UPR), and its downstream target eukaryotic translation initiation factor 2 α (eIF2α); in contrast, TCDD did not appear to affect inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6), two other UPR sensors. Importantly, TCDD significantly inhibited eIF2α phosphorylation and triggered apoptosis in PC12 cells after 6-24h of treatment. Salubrinal, which activates the PERK-eIF2α pathway, significantly enhanced eIF2α phosphorylation in PC12 cells and attenuated the TCDD-induced cell death. In contrast, knocking down eIF2α using small interfering RNA markedly enhanced TCDD-induced cell death. Together, these results indicate that the PERK-eIF2α pathway plays an important role in TCDD-induced ER stress and apoptosis in PC12 cells. PMID:24932542

  6. Dioscin promotes osteoblastic proliferation and differentiation via Lrp5 and ER pathway in mouse and human osteoblast-like cell lines

    PubMed Central

    2014-01-01

    Background Dioscin, a typical steroid saponin, is isolated from Dioscorea nipponica Makino and Dioscorea zingiberensis Wright. It has estrogenic activity and many studies have also reported that dioscorea plants have an effect in preventing and treating osteoporosis. However, the molecular mechanisms underlying their effect on osteoporosis treatment are poorly understood. Therefore, the present study aims to investigate the mechanism (s) by which dioscin promotes osteoblastic proliferation and differentiation in mouse pre-osteoblast like MC3T3-E1 cells and human osteoblast-like MG-63 cells. Results We found that dioscin (0.25 μg/ml, 0.5 μg/ml, and 1.0 μg/ml) promoted MC3T3-E1 cells and MG-63 cells proliferation and differentiation dose dependently. Western blot analysis results showed that estrogen receptor α (ER-α), estrogen receptor β (ER-β), β-catenin and Bcl-2 protein expression increased after MC3T3-E1 cells were treated with dioscin. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated that dioscin could increase the ratio of osteoprotegerin (OPG)/receptor activator of NF-κB ligand (RANKL) and up-regulate the level of Lrp5 and β-catenin. And by RNA interference analysis, we proved that the effect of dioscin increasing the ratio of OPG/RANKL was dependent on Lrp5 pathway. In addition, we also found that these effects of dioscin were abolished by ICI 182, 780 (100 nM), an antagonist of ER, indicating that an ER signaling pathway was also involved. We also found that dioscin (0.25 μg/ml, 0.5 μg/ml, and 1.0 μg/ml) induced MG-63 cells proliferation and differentiation in a dose-dependent manner. Western blot analysis results indicated that ER-α, ER-β and β-catenin protein expression increased after MG-63 cells were treated with dioscin. Conclusions The current study is the first to reveal that dioscin can promote osteoblasts proliferation and differentiation via Lrp5 and ER pathway. PMID:24742230

  7. Different fatty acids inhibit apoB100 secretion by different pathways: unique roles for ER stress, ceramide, and autophagy

    PubMed Central

    Caviglia, Jorge Matias; Gayet, Constance; Ota, Tsuguhito; Hernandez-Ono, Antonio; Conlon, Donna M.; Jiang, Hongfeng; Fisher, Edward A.; Ginsberg, Henry N.

    2011-01-01

    Although short-term incubation of hepatocytes with oleic acid (OA) stimulates secretion of apolipoprotein B100 (apoB100), exposure to higher doses of OA for longer periods inhibits secretion in association with induction of endoplasmic reticulum (ER) stress. Palmitic acid (PA) induces ER stress, but its effects on apoB100 secretion are unclear. Docosahexaenoic acid (DHA) inhibits apoB100 secretion, but its effects on ER stress have not been studied. We compared the effects of each of these fatty acids on ER stress and apoB100 secretion in McArdle RH7777 (McA) cells: OA and PA induced ER stress and inhibited apoB100 secretion at higher doses; PA was more potent because it also increased the synthesis of ceramide. DHA did not induce ER stress but was the most potent inhibitor of apoB100 secretion, acting via stimulation of autophagy. These unique effects of each fatty acid were confirmed when they were infused into C57BL6J mice. Our results suggest that when both increased hepatic secretion of VLDL apoB100 and hepatic steatosis coexist, reducing ER stress might alleviate hepatic steatosis but at the expense of increased VLDL secretion. In contrast, increasing autophagy might reduce VLDL secretion without causing steatosis. PMID:21719579

  8. Resolvin D1 reduces ER stress-induced apoptosis and triglyceride accumulation through JNK pathway in HepG2 cells.

    PubMed

    Jung, Tae Woo; Hwang, Hwan-Jin; Hong, Ho Cheol; Choi, Hae Yoon; Yoo, Hye Jin; Baik, Sei Hyun; Choi, Kyung Mook

    2014-06-25

    Research has indicated that stress on the endoplasmic reticulum (ER) of a cell affects the pathogenesis of metabolic disorders such as obesity, type 2 diabetes mellitus, and non-alcoholic fatty liver disease (NAFLD). Resolvins, a novel family derived from ω-3 polyunsaturated fatty acids, have anti-inflammatory and insulin sensitizing properties, and it has been suggested that they play a role in the amelioration of obesity-related metabolic dysfunctions. This study showed that pretreatment with resolvin D1 (RvD1) attenuated ER stress-induced apoptosis and also decreased caspase 3 activity in HepG2 cells. Furthermore, RvD1 significantly decreased tunicamycin-induced triglycerides accumulation as well as SREBP-1 expression. However, tunicamycin-induced ER stress markers were not significantly affected by RvD1 treatment. Moreover, RvD1 treatment did not affect the tunicamycin-induced expression of chaperones that assist protein folding in the ER. These results suggest that RvD1-conferred cellular protection may occur downstream of the ER stress. This was supported by the finding that RvD1 significantly inhibited tunicamycin-induced c-Jun N-terminal kinase (JNK) expression, although P38 and ERK1/2 phosphorylation were not affected. In addition, anisomycin, a JNK activator, increased caspase 3 activity and apoptosis as well as triglycerides accumulation and SREBP1 expression, and RvD1 treatment reversed these changes. In conclusion, RvD1 attenuated ER stress-induced hepatic steatosis and apoptosis via the JNK-mediated pathway. This study may provide insight into a novel underlying mechanism and a strategy for treating NAFLD. PMID:24784707

  9. An azaspirane derivative suppresses growth and induces apoptosis of ER-positive and ER-negative breast cancer cells through the modulation of JAK2/STAT3 signaling pathway.

    PubMed

    Sulaiman, Nurfarhanah Bte Syed; Mohan, Chakrabhavi Dhananjaya; Basappa, Salundi; Pandey, Vijay; Rangappa, Shobith; Bharathkumar, Hanumantharayappa; Kumar, Alan Prem; Lobie, Peter E; Rangappa, Kanchugarakoppal S

    2016-09-01

    Persistent activation of signal transducer and activator of transcription 3 (STAT3) is associated with the progression of a range of tumors. In this report, we present the anticancer activity of 2-(1-(4-(2-cyanophenyl)1-benzyl‑1H-indol-3-yl)-5-(4-methoxy-phenyl)-1-oxa-3-azaspiro(5,5)undecane (CIMO) against breast cancer cells. We observed that CIMO suppresses the proliferation of both estrogen receptor-negative (ER-) (BT-549, MDA-MB‑231) and estrogen receptor-positive (ER+) (MCF-7, and BT-474) breast cancer (BC) cells with IC50 of 3.05, 3.41, 4.12 and 4.19 µM, respectively, and without significantly affecting the viability of normal cells. CIMO was observed to mediate its anti-proliferative effect in ER- BC cells by inhibiting the phosphorylation of JAK2 and STAT3 proteins. Quantitative PCR analysis demonstrated that CIMO decreases the relative mRNA expression of genes that are involved in cell cycle progression (CCND1) and cell survival (BCL2, BCL-xL, BAD, CASP 3/7/9, and TP53). In addition, CIMO was observed to arrest BC cells at G0/G1 phase and of the cell cycle. Furthermore, CIMO suppressed BC cell migration and invasion with concordant regulation of genes involved in epithelial to mesechymal transition (CDH1, CDH2, OCLN and VIM). Thus, we report the utility of a synthetic azaspirane which targets the JAK-STAT pathway in ER- BC. PMID:27500741

  10. The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER

    PubMed Central

    Kim, Peter K.; Mullen, Robert T.; Schumann, Uwe; Lippincott-Schwartz, Jennifer

    2006-01-01

    Peroxisomes are ubiquitous organelles that proliferate under different physiological conditions and can form de novo in cells that lack them. The endoplasmic reticulum (ER) has been shown to be the source of peroxisomes in yeast and plant cells. It remains unclear, however, whether the ER has a similar role in mammalian cells and whether peroxisome division or outgrowth from the ER maintains peroxisomes in growing cells. We use a new in cellula pulse-chase imaging protocol with photoactivatable GFP to investigate the mechanism underlying the biogenesis of mammalian peroxisomes. We provide direct evidence that peroxisomes can arise de novo from the ER in both normal and peroxisome-less mutant cells. We further show that PEX16 regulates this process by being cotranslationally inserted into the ER and serving to recruit other peroxisomal membrane proteins to membranes. Finally, we demonstrate that the increase in peroxisome number in growing wild-type cells results primarily from new peroxisomes derived from the ER rather than by division of preexisting peroxisomes. PMID:16717127

  11. Apoptosis-linked gene-2 (ALG-2)/Sec31 interactions regulate endoplasmic reticulum (ER)-to-Golgi transport: a potential effector pathway for luminal calcium.

    PubMed

    Helm, Jared R; Bentley, Marvin; Thorsen, Kevin D; Wang, Ting; Foltz, Lauren; Oorschot, Viola; Klumperman, Judith; Hay, Jesse C

    2014-08-22

    Luminal calcium released from secretory organelles has been suggested to play a regulatory role in vesicle transport at several steps in the secretory pathway; however, its functional roles and effector pathways have not been elucidated. Here we demonstrate for the first time that specific luminal calcium depletion leads to a significant decrease in endoplasmic reticulum (ER)-to-Golgi transport rates in intact cells. Ultrastructural analysis revealed that luminal calcium depletion is accompanied by increased accumulation of intermediate compartment proteins in COPII buds and clusters of unfused COPII vesicles at ER exit sites. Furthermore, we present several lines of evidence suggesting that luminal calcium affected transport at least in part through calcium-dependent interactions between apoptosis-linked gene-2 (ALG-2) and the Sec31A proline-rich region: 1) targeted disruption of ALG-2/Sec31A interactions caused severe defects in ER-to-Golgi transport in intact cells; 2) effects of luminal calcium and ALG-2/Sec31A interactions on transport mutually required each other; and 3) Sec31A function in transport required luminal calcium. Morphological phenotypes of disrupted ALG-2/Sec31A interactions were characterized. We found that ALG-2/Sec31A interactions were not required for the localization of Sec31A to ER exit sites per se but appeared to acutely regulate the stability and trafficking of the cargo receptor p24 and the distribution of the vesicle tether protein p115. These results represent the first outline of a mechanism that connects luminal calcium to specific protein interactions regulating vesicle trafficking machinery. PMID:25006245

  12. Oleate protects beta-cells from the toxic effect of palmitate by activating pro-survival pathways of the ER stress response.

    PubMed

    Sargsyan, Ernest; Artemenko, Konstantin; Manukyan, Levon; Bergquist, Jonas; Bergsten, Peter

    2016-09-01

    Long-term exposure of beta cells to saturated fatty acids impairs insulin secretion and increases apoptosis. In contrast, unsaturated fatty acids protect beta-cells from the long-term negative effects of saturated fatty acids. We aimed to identify the mechanisms underlying this protective action of unsaturated fatty acids. To address the aim, insulin-secreting MIN6 cells were exposed to palmitate in the absence or presence of oleate and analyzed by using nano-LC MS/MS based proteomic approach. Important findings were validated by using alternative approaches. Proteomic analysis identified 34 proteins differentially expressed in the presence of palmitate compared to control samples. These proteins play a role in insulin processing, mitochondrial function, metabolism of biomolecules, calcium homeostasis, exocytosis, receptor signaling, ER protein folding, antioxidant activity and anti-apoptotic function. When oleate was also present during culture, expression of 15 proteins was different from the expression in the presence of palmitate alone. Most of the proteins affected by oleate are targets of the ER stress response and play a pro-survival role in beta cells such as protein folding and antioxidative defence. We conclude that restoration of pro-survival pathways of the ER stress response is a major mechanism underlying the protective effect of unsaturated fatty acids in beta-cells treated with saturated fatty acids. PMID:27344025

  13. Sigma-1Rs are upregulated via PERK/eIF2α/ATF4 pathway and execute protective function in ER stress.

    PubMed

    Mitsuda, Teruhiko; Omi, Tsubasa; Tanimukai, Hitoshi; Sakagami, Yukako; Tagami, Shinji; Okochi, Masayasu; Kudo, Takashi; Takeda, Masatoshi

    2011-11-25

    Sigma-1 receptors (Sig-1Rs) are the ER resident proteins. Sig-1Rs in the brain have been reported to be significantly reduced in patients with schizophrenia. The impediment of regulating Sig-1Rs expression levels increases the risk for schizophrenia. Thus elucidating the mechanism regulating Sig-1Rs expression might provide the strategy to prevent mental disorders. In this study, we have demonstrated that Sig-1Rs were transcriptionally upregulated by ATF4 in ER stress. Moreover, ATF4 directly bounds to the 5' flanking region of Sig-1R gene. The reporter activities using this region were enhanced in ER stress, or by ATF4 alone. The reporter activities with the pathogenic polymorphisms (GC-241-240TT, T-485A) were reduced. In addition, the processing of Caspase-4 was inhibited by Sig-1Rs. These results indicate that Sig-1Rs are transcriptionally upregulated via the PERK/eIF2α/ATF4 pathway and ameliolate cell death signaling. This study is the first report identifying the transcription factor regulating Sig-1Rs expression. PMID:22079628

  14. Induction of ER stress in response to oxygen-glucose deprivation of cortical cultures involves the activation of the PERK and IRE-1 pathways and of caspase-12

    PubMed Central

    Badiola, N; Penas, C; Miñano-Molina, A; Barneda-Zahonero, B; Fadó, R; Sánchez-Opazo, G; Comella, J X; Sabriá, J; Zhu, C; Blomgren, K; Casas, C; Rodríguez-Alvarez, J

    2011-01-01

    Disturbance of calcium homeostasis and accumulation of misfolded proteins in the endoplasmic reticulum (ER) are considered contributory components of cell death after ischemia. However, the signal-transducing events that are activated by ER stress after cerebral ischemia are incompletely understood. In this study, we show that caspase-12 and the PERK and IRE pathways are activated following oxygen-glucose deprivation (OGD) of mixed cortical cultures or neonatal hypoxia–ischemia (HI). Activation of PERK led to a transient phosphorylation of eIF2α, an increase in ATF4 levels and the induction of gadd34 (a subunit of an eIF2α-directed phosphatase). Interestingly, the upregulation of ATF4 did not lead to an increase in the levels of CHOP. Additionally, IRE1 activation was mediated by the increase in the processed form of xbp1, which would be responsible for the observed expression of edem2 and the increased levels of the chaperones GRP78 and GRP94. We were also able to detect caspase-12 proteolysis after HI or OGD. Processing of procaspase-12 was mediated by NMDA receptor and calpain activation. Moreover, our data suggest that caspase-12 activation is independent of the unfolded protein response activated by ER stress. PMID:21525936

  15. Possible Involvement of Multidrug-Resistant Hepatitis B Virus sW172* Truncation Variant in the ER Stress Signaling Pathway during Hepatocarcinogenesis.

    PubMed

    Zheng, Jiajia; Jiang, Suzhen; Lu, Fengmin

    2016-07-22

    We investigated the biological effect of hepatitis B virus (HBV) rtA181T/sW172* point mutation on HBsAg secretion and the potential mechanisms involved in hepatocarcinogenesis. Full-length HBV wild type (wt) and HBV rtA181T/sW172* expression plasmids were transfected into HepG2 cell lines or were injected into C57BL/6 mice. The extracellular and intracellular expression levels of HBsAg and HBeAg proteins, in mouse serum and liver tissues were detected by ELISA. The localization of the truncated protein was characterized in vitro. The mRNA expression of endoplasmic reticulum (ER) stress gene GRP78 was determined. HBsAg levels were significantly higher in both supernatant of cells transfected with HBV wt and serum of mice injected with HBV wt, compared with that of HBV rtA181T/sW172* mutant. The reversed trend was observed in intracellular cells and intrahepatic liver cells. Wild type S protein alone could rescue this dysfunction. HBV rtA181T/sW172* truncated surface proteins showed a more aggregated cytoplasmic pattern which were also localized to the ER in comparison with HBV wt. Furthermore, GRP78 mRNA expression was increased 72 h post-transfection in HBV rtA181T/sW172* cells relative to HBV wt cells (P = 0.0154). The HBV sW172* truncation variant has a defect on HBsAg secretion which can lead to surface protein retention in the ER, where it may contribute to hepatocarcinogenesis through activating the ER stress signaling pathway. PMID:26567840

  16. Traffic of Kv4 K+ channels mediated by KChIP1 is via a novel post-ER vesicular pathway

    PubMed Central

    Hasdemir, Burcu; Fitzgerald, Daniel J.; Prior, Ian A.; Tepikin, Alexei V.; Burgoyne, Robert D.

    2005-01-01

    The traffic of Kv4 K+ channels is regulated by the potassium channel interacting proteins (KChIPs). Kv4.2 expressed alone was not retained within the ER, but reached the Golgi complex. Coexpression of KChIP1 resulted in traffic of the channel to the plasma membrane, and traffic was abolished when mutations were introduced into the EF-hands with channel captured on vesicular structures that colocalized with KChIP1(2–4)-EYFP. The EF-hand mutant had no effect on general exocytic traffic. Traffic of Kv4.2 was coat protein complex I (COPI)–dependent, but KChIP1-containing vesicles were not COPII-coated, and expression of a GTP-loaded Sar1 mutant to block COPII function more effectively inhibited traffic of vesicular stomatitis virus glycoprotein (VSVG) than did KChIP1/Kv4.2 through the secretory pathway. Therefore, KChIP1seems to be targeted to post-ER transport vesicles, different from COPII-coated vesicles and those involved in traffic of VSVG. When expressed in hippocampal neurons, KChIP1 co-distributed with dendritic Golgi outposts; therefore, the KChIP1 pathway could play an important role in local vesicular traffic in neurons. PMID:16260497

  17. Interferon-gamma inducible protein 10 (IP10) induced cisplatin resistance of HCC after liver transplantation through ER stress signaling pathway.

    PubMed

    Geng, Wei; Lo, Chung-Mau; Ng, Kevin T P; Ling, Chang-Chun; Qi, Xiang; Li, Chang-Xian; Zhai, Yuan; Liu, Xiao-Bing; Ma, Yuen-Yuen; Man, Kwan

    2015-09-29

    Tumor recurrence remains an obstacle after liver surgery, especially in living donor liver transplantation (LDLT) for patients with hepatocellular carcinoma (HCC). The acute-phase liver graft injury might potentially induce poor response to chemotherapy in recurrent HCC after liver transplantation. We here intended to explore the mechanism and to identify a therapeutic target to overcome such chemoresistance. The associations among graft injury, overexpression of IP10 and multidrug resistant genes were investigated in a rat liver transplantation model, and further validated in clinical cohort. The role of IP10 on HCC cell proliferation and tumor growth under chemotherapy was studied both in vitro and in vivo. The underlying mechanism was revealed by detecting the activation of endoplasmic reticulum (ER) stress signaling pathways. Moreover, the effect of IP10 neutralizing antibody sensitizing cisplatin treatment was further explored. In rat liver transplantation model, significant up-regulation of IP10 associated with multidrug resistant genes was found in small-for-size liver graft. Clinically, high expression of circulating IP10 was significant correlated with tumor recurrence in HCC patients underwent LDLT. Overexpression of IP10 promoted HCC cell proliferation and tumor growth under cisplatin treatment by activation of ATF6/Grp78 signaling. IP10 neutralizing antibody sensitized cisplatin treatment in nude mice. The overexpression of IP10, which induced by liver graft injury, may lead to cisplatin resistance via ATF6/Grp78 ER stress signaling pathway. IP10 neutralizing antibody could be a potential adjuvant therapy to sensitize cisplatin treatment. PMID:26336986

  18. ESCRT-0 dysfunction compromises autophagic degradation of protein aggregates and facilitates ER stress-mediated neurodegeneration via apoptotic and necroptotic pathways

    PubMed Central

    Oshima, Ryuji; Hasegawa, Takafumi; Tamai, Keiichi; Sugeno, Naoto; Yoshida, Shun; Kobayashi, Junpei; Kikuchi, Akio; Baba, Toru; Futatsugi, Akira; Sato, Ikuro; Satoh, Kennichi; Takeda, Atsushi; Aoki, Masashi; Tanaka, Nobuyuki

    2016-01-01

    Endosomal sorting required for transport (ESCRT) complexes orchestrate endo-lysosomal sorting of ubiquitinated proteins, multivesicular body formation and autophagic degradation. Defects in the ESCRT pathway have been implicated in many neurodegenerative diseases, but the underlying molecular mechanisms that link them to neurodegeneration remain unknown. In this study, we showed that forebrain-specific ablation of ESCRT-0/Hrs induced marked hippocampal neuronal cell loss accompanied by the accumulation of ubiquitinated proteins, including α-synuclein, TDP-43 and huntingtin as well as the autophagic substrate SQSTM1/p62. Consistent with this, silencing of Hrs in cultured cells not only led to α-synuclein and TDP-43 accumulation in addition to impaired autophagic flux but also suppressed cell viability through the induction of ER stress followed by the activation of JNK and RIPK1, a key regulator of necroptosis. Moreover, necrostatin-1, a specific inhibitor of RIPK1, and pan-caspase inhibitors partially reduced the neurotoxicity in the Hrs-silenced cells. Altogether, these findings suggest that the disruption of ESCRT-0/Hrs in the nervous system compromises autophagic/lysosomal degradation of neurodegenerative disease-related proteins, which thereby triggers ER stress-mediated apoptotic and necroptotic cell death. PMID:27112194

  19. Insulin Protects Hepatic Lipotoxicity by Regulating ER Stress through the PI3K/Akt/p53 Involved Pathway Independently of Autophagy Inhibition

    PubMed Central

    Ning, Hua; Sun, Zongxiang; Liu, Yunyun; Liu, Lei; Hao, Liuyi; Ye, Yaxin; Feng, Rennan; Li, Jie; Li, Ying; Chu, Xia; Li, Songtao; Sun, Changhao

    2016-01-01

    The detrimental role of hepatic lipotoxicity has been well-implicated in the pathogenesis of NAFLD. Previously, we reported that inhibiting autophagy aggravated saturated fatty acid (SFA)-induced hepatotoxicity. Insulin, a physiological inhibitor of autophagy, is commonly increased within NAFLD mainly caused by insulin resistance. We therefore hypothesized that insulin augments the sensitivity of hepatocyte to SFA-induced lipotoxicity. The present study was conducted via employing human and mouse hepatocytes, which were exposed to SFAs, insulin, or their combination. Unexpectedly, our results indicated that insulin protected hepatocytes against SFA-induced lipotoxicity, based on the LDH, MTT, and nuclear morphological measurements, and the detection from cleaved-Parp-1 and -caspase-3 expressions. We subsequently clarified that insulin led to a rapid and short-period inhibition of autophagy, which was gradually recovered after 1 h incubation in hepatocytes, and such extent of inhibition was insufficient to aggravate SFA-induced lipotoxicity. The mechanistic study revealed that insulin-induced alleviation of ER stress contributed to its hepatoprotective role. Pre-treating hepatocytes with insulin significantly stimulated phosphorylated-Akt and reversed SFA-induced up-regulation of p53. Chemical inhibition of p53 by pifithrin-α robustly prevented palmitate-induced cell death. The PI3K/Akt pathway blockade by its special antagonist abolished the protective role of insulin against SFA-induced lipotoxicity and p53 up-regulation. Furthermore, we observed that insulin promoted intracellular TG deposits in hepatocytes in the present of palmitate. However, blocking TG accumulation via genetically silencing DGAT-2 did not prevent insulin-protected lipotoxicity. Our study demonstrated that insulin strongly protected against SFA-induced lipotoxicity in hepatocytes mechanistically through alleviating ER stress via a PI3K/Akt/p53 involved pathway but independently from autophagy

  20. Hepatitis B Virus Middle Protein Enhances IL-6 Production via p38 MAPK/NF-κB Pathways in an ER Stress-Dependent Manner

    PubMed Central

    Li, Yang-Xia; Ren, Yan-Li; Fu, Hai-Jing; Zou, Ling; Yang, Ying; Chen, Zhi

    2016-01-01

    During hepatitis B virus (HBV) infection, three viral envelope proteins of HBV are overexpressed in the endoplasmic reticulum (ER). The large S protein (LHBs) and truncated middle S protein (MHBst) have been documented to play roles in regulating host gene expression and contribute to hepatic disease development. As a predominant protein at the ultrastructural level in biopsy samples taken from viremic patients, the role of the middle S protein (MHBs) remains to be understood despite its high immunogenicity. When we transfected hepatocytes with an enhanced green fluorescent protein (EGFP)-tagged MHBs expressing plasmid, the results showed that expression of MHBs cause an upregulation of IL-6 at the message RNA and protein levels through activating the p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor-kappa B (NF-κB) pathways. The use of specific inhibitors of the signaling pathways can diminish this upregulation. The use of BAPTA-AM attenuated the stimulation caused by MHBs. We further found that MHBs accumulated in the endoplasmic reticulum and increased the amount of glucose regulated protein 78 (GRP78/BiP). Our results provide a possibility that MHBs could be involved in liver disease progression. PMID:27434097

  1. Effects of Er-Zhi-Wan on microarchitecture and regulation of Wnt/β-catenin signaling pathway in alveolar bone of ovariectomized rats.

    PubMed

    Sun, Wei; Wang, Yuan-qin; Yan, Qi; Lu, Rui; Shi, Bin

    2014-02-01

    Recent studies have shown that Er-Zhi-Wan (EZW), a traditional Chinese medicine consisting of Herba Ecliptae (HE) and Fructus Ligustri Lucidi (FLL), had a definite antiosteoporotic effect on osteoporotic femur, but its effect on osteoporosis of alveolar bone remains unknown. In the present study, we investigated the effects of Er-Zhi-Wan (EZW) on the microarchitecture and the regulation of Wnt/β-catenin signaling pathway in the alveolar bone of ovariectomized rats. Thirty Sprague-Dawley rats were randomly divided into three groups: sham operation group (sham, n=10), ovariectomy (OVX) group (n=10), and OVX with EZW treatment group (EZW group, n=10). From one week after ovariectomy, EZW (100 mg/mL) or vehicle (distilled water) was fed (1 mL/100 g) once per day for 12 weeks until the sacrifice of the rats. The body weights were measured weekly. After sacrifice, the sera and mandible were collected and routinely prepared for the measurement of alveolar trabecular microarchitecture, serum levels of E2, bone-specific alkaline phosphatase (BALP) and tartrate-resistant acid phosphatase 5b (TRAP5b), as well as mandibular mRNA expression of Wnt/β-catenin signaling pathway molecules wnt3a, low-density lipoprotein receptor-related protein 5 (LRP5), β-catenin and dickkopf homolog 1 (DKK1). The results showed that EZW treatment significantly prevented the body weight gain, degradation of alveolar trabecular microarchitecture and alveolar bone loss in the OVX rats. Furthermore, we observed that EZW could increase the serum levels of E2 and BALP, and decrease levels of serum TRAP5b in EZW group compared with vehicle group. In addition, RT-PCR results revealed that EZW upregulated the expression levels of wnt3a, LRP5 and β-catenin, and reduced the expression of DKK1 in OVX rats. Taken together, our results suggested that EZW may have potential anti-osteoporotic effects on osteoporotic alveolar bone by stimulating Wnt/LRP5/β-catenin signaling pathway. PMID:24496689

  2. Transcriptome Analysis of Genes Regulated by Cholesterol Loading in Two Strains of Mouse Macrophages Associates Lysosome Pathway and ER Stress Response with Atherosclerosis Susceptibility

    PubMed Central

    Robinet, Peggy; Smith, Jonathan D.

    2013-01-01

    Cholesterol loaded macrophages in the arterial intima are the earliest histological evidence of atherosclerosis. Studies of mouse models of atherosclerosis have shown that the strain background can have a significant effect on lesion development. We have previously shown that DBA/2 ApoE−/− mice have aortic root lesions 10-fold larger than AKR ApoE−/−mice. The current study analyzes the response to cholesterol loading of macrophages from these two strains. Macrophages from the atherosclerosis susceptible DBA/2 strain had significantly higher levels of total and esterified cholesterol compared to atherosclerosis resistant AKR macrophages, while free cholesterol levels were higher in AKR cells. Gene expression profiles were obtained and data were analyzed for strain, cholesterol loading, and strain-cholesterol loading interaction effects by a fitted linear model. Pathway and transcriptional motif enrichment were identified by gene set enrichment analysis. In addition to observed strain differences in basal gene expression, we identified many transcripts whose expression was significantly altered in response to cholesterol loading, including P2ry13 and P2ry14, Trib3, Hyal1, Vegfa, Ccr5, Ly6a, and Ifit3. Eight pathways were significantly enriched in transcripts regulated by cholesterol loading, among which the lysosome and cytokine-cytokine receptor interaction pathways had the highest number of significantly regulated transcripts. Of the differentially regulated transcripts with a strain-cholesterol loading interaction effect, we identified three genes known to participate in the endoplasmic reticulum (ER) stress response, Ddit3, Trib3 and Atf4. These three transcripts were highly up-regulated by cholesterol in AKR and either down-regulated or unchanged in loaded DBA/2 macrophages, thus associating a robust ER stress response with atherosclerosis resistance. We identified significant transcripts with strain, loading, or strain-loading interaction effect that

  3. Transcriptome analysis of genes regulated by cholesterol loading in two strains of mouse macrophages associates lysosome pathway and ER stress response with atherosclerosis susceptibility.

    PubMed

    Berisha, Stela Z; Hsu, Jeffrey; Robinet, Peggy; Smith, Jonathan D

    2013-01-01

    Cholesterol loaded macrophages in the arterial intima are the earliest histological evidence of atherosclerosis. Studies of mouse models of atherosclerosis have shown that the strain background can have a significant effect on lesion development. We have previously shown that DBA/2 ApoE(-/-) mice have aortic root lesions 10-fold larger than AKR ApoE(-/-) mice. The current study analyzes the response to cholesterol loading of macrophages from these two strains. Macrophages from the atherosclerosis susceptible DBA/2 strain had significantly higher levels of total and esterified cholesterol compared to atherosclerosis resistant AKR macrophages, while free cholesterol levels were higher in AKR cells. Gene expression profiles were obtained and data were analyzed for strain, cholesterol loading, and strain-cholesterol loading interaction effects by a fitted linear model. Pathway and transcriptional motif enrichment were identified by gene set enrichment analysis. In addition to observed strain differences in basal gene expression, we identified many transcripts whose expression was significantly altered in response to cholesterol loading, including P2ry13 and P2ry14, Trib3, Hyal1, Vegfa, Ccr5, Ly6a, and Ifit3. Eight pathways were significantly enriched in transcripts regulated by cholesterol loading, among which the lysosome and cytokine-cytokine receptor interaction pathways had the highest number of significantly regulated transcripts. Of the differentially regulated transcripts with a strain-cholesterol loading interaction effect, we identified three genes known to participate in the endoplasmic reticulum (ER) stress response, Ddit3, Trib3 and Atf4. These three transcripts were highly up-regulated by cholesterol in AKR and either down-regulated or unchanged in loaded DBA/2 macrophages, thus associating a robust ER stress response with atherosclerosis resistance. We identified significant transcripts with strain, loading, or strain-loading interaction effect that

  4. Molybdenum induces pancreatic β-cell dysfunction and apoptosis via interdependent of JNK and AMPK activation-regulated mitochondria-dependent and ER stress-triggered pathways.

    PubMed

    Yang, Tsung-Yuan; Yen, Cheng-Chieh; Lee, Kuan-I; Su, Chin-Chuan; Yang, Ching-Yao; Wu, Chin-Ching; Hsieh, Shang-Shu; Ueng, Kwo-Chang; Huang, Chun-Fa

    2016-03-01

    Molybdenum (Mo), a well-known toxic environmental and industrial pollutant, causes adverse health effects and diseases in humans and has received attention as a potential risk factor for DM. However, the roles of Mo in the mechanisms of the toxicological effects in pancreatic β-cells are mostly unclear. In this study, the results revealed dysfunction of insulin secretion and apoptosis in the pancreatic β-cell-derived RIN-m5F cells and the isolated mouse islets in response to Mo. These effects were accompanied by a mitochondria-dependent apoptotic signals including a decreased in the MMP, an increase in cytochrome c release, and the activation of caspase cascades and PARP. In addition, ER stress was triggered as indicated by several key molecules of the UPR. Furthermore, exposure to Mo induced the activation of ERK1/2, JNK, AMPKα, and GSK3-α/β. Pretreatment with specific pharmacological inhibitors (in RIN-m5F cells and isolated mouse islets) of JNK (SP600125) and AMPK (Compound C) or transfection with si-RNAs (in RIN-m5F cells) specific to JNK and AMPKα effectively prevented the Mo-induced apoptosis and related signals, but inhibitors of ERK1/2 and GSK3-α/β (PD98059 and LiCl, respectively) did not reverse the Mo-induced effects. Additionally, both the inhibitors and specific si-RNAs could suppress the Mo-induced phosphorylation of JNK and AMPKα each other. Taken together, these results suggest that Mo exerts its cytotoxicity on pancreatic β-cells by inducing dysfunction and apoptosis via interdependent JNK and AMPK activation downstream-regulated mitochondrial-dependent and ER stress-triggered apoptosis pathways. PMID:26806093

  5. ESCRT components regulate the expression of the ER/Golgi calcium pump gene PMR1 through the Rim101/Nrg1 pathway in budding yeast.

    PubMed

    Zhao, Yunying; Du, Jingcai; Xiong, Bing; Xu, Huihui; Jiang, Linghuo

    2013-10-01

    The endosomal sorting complex required for transport (ESCRT) complexes function to form multivesicular bodies for sorting of proteins destined for the yeast vacuole or the mammalian lysosome. ESCRT components are well conserved in eukaryotes, and their mutations cause neurodegenerative diseases and other cellular pathologies in humans. PMR1 is the orthologous gene of two human genes for calcium pumps secretory pathway Ca(2+)-ATPase (SPCA1, ATP2C1) and sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA, ATP2A2), which are mutated in Hailey-Hailey and Darier genetic diseases, respectively. Here we show that deletion mutation of ESCRT components Snf7, Snf8, Stp22, Vps20, Vps25, Vps28, or Vps36 activates the calcium/calcineurin signaling in yeast cells, but surprisingly leads to a nearly 50% reduction in expression of the ER/Golgi calcium pump gene PMR1 independent of calcium stress. These ESCRT mutants are known to have a defect in Rim101 activation. Ectopic expression of a constitutively active form of Rim101 or further deletion of NRG1 in these mutants partially suppresses their calcium hypersensitivity. Deletion of NRG1 also completely rescues the expression of PMR1 in these mutants to the level of the wild type. Promoter mutagenesis, gel electrophoretic mobility shift assay, and chromatin immunoprecipitation analysis demonstrate that Nrg1 binds to two motifs in the PMR1 promoter. In addition, expression of PMR1 under the control of its promoters with mutated Nrg1-binding motifs suppresses the calcium hypersensitivity of these ESCRT mutants. Collectively, these data have uncovered a function of ESCRT components in regulating PMR1 expression through the Nrg1/Rim101 pathway. Our findings provide important clues for understanding human diseases related to calcium homeostasis. PMID:23933635

  6. ER-Dependent Ca++-mediated Cytosolic ROS as an Effector for Induction of Mitochondrial Apoptotic and ATM-JNK Signal Pathways in Gallic Acid-treated Human Oral Cancer Cells.

    PubMed

    Lu, Yao-Cheng; Lin, Meng-Liang; Su, Hong-Lin; Chen, Shih-Shun

    2016-02-01

    Release of calcium (Ca(++)) from the endoplasmic reticulum (ER) has been proposed to be involved in induction of apoptosis by oxidative stress. Using inhibitor of ER Ca(++) release dantrolene and inhibitor of mitochondrial Ca(++) uptake Ru-360, we demonstrated that Ca(++) release from the ER was associated with generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential, and apoptosis of human oral cancer (OC) cells induced by gallic acid (GA). Small interfering RNA-mediated suppression of protein kinase RNA-like endoplasmic reticulum kinase inhibited tunicamycin-induced induction of 78 kDa glucose-regulated protein, C/EBP homologous protein, pro-caspase-12 cleavage, cytosolic Ca(++) increase and apoptosis, but did not attenuate the increase in cytosolic Ca(++) level and apoptosis induced by GA. Ataxia telangiectasia mutated (ATM)-mediated c-Jun N-terminal kinase (JNK) phosphorylation and apoptosis by GA was blocked by dantrolene. The specificity of ROS-mediated ATM-JNK activation was confirmed by treatment with N-acetylcysteine, a ROS scavenger. Blockade of ATM activation by specific inhibitor KU55933, short hairpin RNA, or kinase-dead ATM overexpression suppressed JNK phosphorylation but did not completely inhibit cytosolic ROS production, mitochondrial cytochrome c release, pro-caspase-3 cleavage, and apoptosis induced by GA. Taken together, these results indicate that GA induces OC cell apoptosis by inducing the activation of mitochondrial apoptotic and ATM-JNK signal pathways, likely through ER Ca(++)-mediated ROS production. PMID:26851027

  7. TEMPERATURE-SENSITIVE, POST-TRANSLATIONAL REGULATION OF PLANT OMEGA-3 FATTY ACID DESATURASES IS MEDIATED BY THE ER-ASSOCIATED DEGRADATION PATHWAY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In plants, the endoplasmic reticulum (ER)-localized omega-3 fatty acid desaturases (Fad3s) increase the production of polyunsaturated fatty acids at cooler temperatures, but the FAD3 genes themselves are typically not upregulated during this adaptive response. Here, we expressed two closely related ...

  8. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    SciTech Connect

    Cao, Lei; Lei, Hui; Chang, Ming-Ze; Liu, Zhi-Qin; Bie, Xiao-Hua

    2015-07-10

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation.

  9. 5-Hydroxymethylfurfural protects against ER stress-induced apoptosis in GalN/TNF-α-injured L02 hepatocytes through regulating the PERK-eIF2α signaling pathway.

    PubMed

    Jiang, Ze-Qun; Ma, Yan-Xia; Li, Mu-Han; Zhan, Xiu-Qin; Zhang, Xu; Wang, Ming-Yan

    2015-12-01

    5-Hydroxymethylfurfural (5-HMF), a water-soluble compound extracted from wine-processed Fructus corni, is a novel hepatic protectant for treating acute liver injury. The present study was designed to investigate the protective effect of 5-HMF in human L02 hepatocytes injured by D-galactosamine (GalN) and tumor necrosis factor-α (TNF-α) in vitro and to explore the underlying mechanisms of action. Our results showed that 5-HMF caused significant increase in the viability of L02 cells injured by GalN/TNF-α, in accordance with a dose-dependent decrease in apoptotic cell death confirmed by morphological and flow cytometric analyses. Based on immunofluorescence and Western blot assays, we found that GalN/TNF-α induced ER stress in the cells, as indicated by the disturbance of intracellular Ca(2+) concentration, the activation of protein kinase RNA (PKR)-like ER kinase (PERK), phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α), and expression of ATF4 and CHOP proteins, which was reversed by 5-HMF pre-treatment in a dose-dependent manner. The anti-apoptotic effect of 5-HMF was further evidenced by balancing the expression of Bcl-2 family members. In addition, the knockdown of PERK suppressed the expression of phospho-PERK, phospho-eIF2α, ATF4, and CHOP, resulting in a significant decrease in cell apoptosis after the treatment with GalN/TNF-α. 5-HMF could enhance the effects of PERK knockdown, protecting the cells against the GalN/TNF-α insult. In conclusion, these findings demonstrate that 5-HMF can effectively protect GalN/TNF-α-injured L02 hepatocytes against ER stress-induced apoptosis through the regulation of the PERK-eIF2α signaling pathway, suggesting that it is a possible candidate for liver disease therapy. PMID:26721708

  10. Apoptosis of HeLa cells induced by a new targeting photosensitizer-based PDT via a mitochondrial pathway and ER stress

    PubMed Central

    Li, Donghong; Li, Lei; Li, Pengxi; Li, Yi; Chen, Xiangyun

    2015-01-01

    Photodynamic therapy (PDT) is emerging as a viable treatment for many cancers. To decrease the cutaneous photosensitivity induced by PDT, many attempts have been made to search for a targeting photosensitizer; however, few reports describe the molecular mechanism of PDT mediated by this type of targeting photosensitizer. The present study aimed to investigate the molecular mechanism of PDT induced by a new targeting photosensitizer (PS I), reported previously by us, on HeLa cells. Apoptosis is the primary mode of HeLa cell death in our system, and apoptosis occurs in a manner dependent on concentration, irradiation dose, and drug–light intervals. After endocytosis mediated by the folate receptor, PS I was primarily localized to the mitochondria and the endoplasmic reticulum (ER) of HeLa cells. PS I PDT resulted in rapid increases in intracellular reactive oxygen species (ROS) production and Ca2+ concentration, both of which reached a peak nearly simultaneously at 15 minutes, followed by the loss of mitochondrial membrane potential at 30 minutes, release of cytochrome c from mitochondria into the cytoplasm, downregulation of Bcl-2 expression, and upregulation of Bax expression. Meanwhile, activation of caspase-3, -9, and -12, as well as induction of C/EBP homologous protein (CHOP) and glucose-regulated protein (GRP78), in HeLa cells after PS I PDT was also detected. These results suggest that apoptosis of HeLa cells induced by PS I PDT is not only triggered by ROS but is also regulated by Ca2+ overload. Mitochondria and the ER serve as the subcellular targets of PS I PDT, the effective activation of which is responsible for PS I PDT-induced apoptosis in HeLa cells. PMID:25897245

  11. Ozone (O{sub 3}) elicits neurotoxicity in spinal cord neurons (SCNs) by inducing ER Ca{sup 2+} release and activating the CaMKII/MAPK signaling pathway

    SciTech Connect

    Li, Yun; Lin, Xiaowen; Zhao, XueJun; Xie, Juntian; JunNan, Wang; Sun, Tao; Fu, Zhijian

    2014-11-01

    Ozone (O{sub 3}) is widely used in the treatment of spinal cord related diseases. Excess or accumulation of this photochemical air can however be neurotoxic. In this study, in vitro cultured Wister rat spinal cord neurons (SCNs) were used to investigate the detrimental effects and underlying mechanisms of O{sub 3}. Ozone in a dose-dependent manner inhibited cell viability at a range of 20 to 500 μg/ml, with the dose at 40 μg/ml resulting in a decrease of cell viability to 75%. The cell death after O{sub 3} exposure was related to endoplasmic reticulum (ER) calcium (Ca{sup 2+}) release. Intracellular Ca{sup 2+} chelator, ER stabilizer (inositol 1,4,5-trisphosphate receptor (IP3R) antagonist and ryanodine receptor (RyR) antagonist) and calcium/calmodulin-dependent protein kinase II (CaMKII) antagonist could effectively block Ca{sup 2+} mobilization and inhibit cell death following 40 μg/ml O{sub 3} exposure. In addition, ER Ca{sup 2+} release due to O{sub 3} exposure enhanced phospho-p38 and phospho-JNK levels and apoptosis of SCNs through activating CaMKII. Based on these results, we confirm that ozone elicits neurotoxicity in SCNs via inducing ER Ca{sup 2+} release and activating CaMKII/MAPK signaling pathway. Therefore, physicians should get attention to the selection of treatment concentrations of oxygen/ozone. And, approaches, such as chelating intracellular Ca{sup 2+} and stabilizing neuronal Ca{sup 2+} homeostasis could effectively ameliorate the neurotoxicity of O{sub 3}. - Highlights: • Exposure to O{sub 3} can reduce the viability of SCNs and cause the cell death. • Exposure to O{sub 3} can trigger RyR and IP3R dependent intracellular Ca{sup 2+} release. • Exposure to O{sub 3} can enhance the phospho-CaMKII, phospho-JNK and phospho-p38 levels.

  12. Farnesol activates the intrinsic pathway of apoptosis and the ATF4-ATF3-CHOP cascade of ER stress in human T lymphoblastic leukemia Molt4 cells.

    PubMed

    Joo, Joung Hyuck; Ueda, Eiichiro; Bortner, Carl D; Yang, Xiao-Ping; Liao, Grace; Jetten, Anton M

    2015-10-01

    In this study, we demonstrate that treatment of T lymphoblastic leukemic Molt4 cells with farnesol activates the apoptosome via the intrinsic pathway of apoptosis. This induction was associated with changes in the level of intracellular potassium and calcium, the dissipation of the mitochondrial and plasma membrane potential, release of cytochrome c, activation of several caspases, and PARP cleavage. The induction of apoptosis by farnesol was inhibited by the addition of the pan-caspase inhibitor Z-VAD-fmk and by the exogenous expression of the anti-apoptotic protein Bcl2. Analysis of the gene expression profiles by microarray analysis revealed that farnesol increased the expression of several genes related to the unfolded protein response (UPR), including CHOP and CHAC1. This induction was associated with the activation of the PERK-eIF2α-ATF3/4 cascade, but not the XBP-1 branch of the UPR. Although farnesol induced activation of the ERK1/2, p38, and JNK pathways, inhibition of these MAPKs had little effect on farnesol-induced apoptosis or the induction of UPR-related genes. Our data indicate that the induction of apoptosis in leukemic cells by farnesol is mediated through a pathway that involves activation of the apoptosome via the intrinsic pathway and induction of the PERK-eIF2α-ATF3/4 cascade in a manner that is independent of the farnesol-induced activation of MAPKs. PMID:26275811

  13. Exendin-4 protects bone marrow-derived mesenchymal stem cells against oxygen/glucose and serum deprivation-induced apoptosis through the activation of the cAMP/PKA signaling pathway and the attenuation of ER stress

    PubMed Central

    HE, JIEQIONG; WANG, CHAO; SUN, YUNPENG; LU, BO; CUI, JINJIN; DONG, NANA; ZHANG, MAOMAO; LIU, YOUBING; YU, BO

    2016-01-01

    did not impair the cytoprotective effects of ex-4. Taken together, these findings suggest that ex-4 protects rat BM-MSCs from OGD-induced apoptosis through the activation of the PKA/cAMP pathway and the attenuation of the ER stress signaling pathway. Ex-4 may thus prove to be a therapeutic agent with the potential to improve the viability of MSCs in the ischemic milieu, and consequently, to optimize the therapeutic effects of MSC therapy in acute myocardial infarction. PMID:26935620

  14. MicroRNAs meet calcium: joint venture in ER proteostasis.

    PubMed

    Finger, Fabian; Hoppe, Thorsten

    2014-11-01

    The endoplasmic reticulum (ER) is a cellular compartment that has a key function in protein translation and folding. Maintaining its integrity is of fundamental importance for organism's physiology and viability. The dynamic regulation of intraluminal ER Ca(2+) concentration directly influences the activity of ER-resident chaperones and stress response pathways that balance protein load and folding capacity. We review the emerging evidence that microRNAs play important roles in adjusting these processes to frequently changing intracellular and environmental conditions to modify ER Ca(2+) handling and storage and maintain ER homeostasis. PMID:25372053

  15. Fluvoxamine alleviates ER stress via induction of Sigma-1 receptor.

    PubMed

    Omi, T; Tanimukai, H; Kanayama, D; Sakagami, Y; Tagami, S; Okochi, M; Morihara, T; Sato, M; Yanagida, K; Kitasyoji, A; Hara, H; Imaizumi, K; Maurice, T; Chevallier, N; Marchal, S; Takeda, M; Kudo, T

    2014-01-01

    We recently demonstrated that endoplasmic reticulum (ER) stress induces sigma-1 receptor (Sig-1R) expression through the PERK pathway, which is one of the cell's responses to ER stress. In addition, it has been demonstrated that induction of Sig-1R can repress cell death signaling. Fluvoxamine (Flv) is a selective serotonin reuptake inhibitor (SSRI) with a high affinity for Sig-1R. In the present study, we show that treatment of neuroblastoma cells with Flv induces Sig-1R expression by increasing ATF4 translation directly, through its own activation, without involvement of the PERK pathway. The Flv-mediated induction of Sig-1R prevents neuronal cell death resulting from ER stress. Moreover, Flv-induced ER stress resistance reduces the infarct area in mice after focal cerebral ischemia. Thus, Flv, which is used frequently in clinical practice, can alleviate ER stress. This suggests that Flv could be a feasible therapy for cerebral diseases caused by ER stress. PMID:25032855

  16. The role of ER stress in lipid metabolism and lipotoxicity.

    PubMed

    Han, Jaeseok; Kaufman, Randal J

    2016-08-01

    The endoplasmic reticulum (ER) is a cellular organelle important for regulating calcium homeostasis, lipid metabolism, protein synthesis, and posttranslational modification and trafficking. Numerous environmental, physiological, and pathological insults disturb ER homeostasis, referred to as ER stress, in which a collection of conserved intracellular signaling pathways, termed the unfolded protein response (UPR), are activated to maintain ER function for cell survival. However, excessive and/or prolonged UPR activation leads to initiation of self-destruction through apoptosis. Excessive accumulation of lipids and their intermediate products causes metabolic abnormalities and cell death, called lipotoxicity, in peripheral organs, including the pancreatic islets, liver, muscle, and heart. Because accumulating evidence links chronic ER stress and defects in UPR signaling to lipotoxicity in peripheral tissues, understanding the role of ER stress in cell physiology is a topic under intense investigation. In this review, we highlight recent findings that link ER stress and UPR signaling to the pathogenesis of peripheral organs due to lipotoxicity. PMID:27146479

  17. Tamoxifen Action in ER-Negative Breast Cancer

    PubMed Central

    Manna, Subrata; Holz, Marina K.

    2016-01-01

    Breast cancer is a highly heterogeneous disease. Tamoxifen is a selective estrogen receptor (ER) modulator and is mainly indicated for the treatment of breast cancer in postmenopausal women and postsurgery neoadjuvant therapy in ER-positive breast cancers. Interestingly, 5–10% of the ER-negative breast cancers have also shown sensitivity to tamoxifen treatment. The involvement of molecular markers and/or signaling pathways independent of ER signaling has been implicated in tamoxifen sensitivity in the ER-negative subgroup. Studies reveal that variation in the expression of estrogen-related receptor alpha, ER subtype beta, tumor microenvironment, and epigenetics affects tamoxifen sensitivity. This review discusses the background of the research on the action of tamoxifen that may inspire future studies to explore effective therapeutic strategies for the treatment of ER-negative and triple-negative breast cancers, the latter being an aggressive disease with worse clinical outcome. PMID:26989346

  18. ER-2 in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In this film clip, we see an ER-2 on its take off roll and climb as it departs from runway 22 at Edwards AFB, California. In 1981, NASA acquired its first ER-2 aircraft. The agency obtained a second ER-2 in 1989. These airplanes replaced two Lockheed U-2 aircraft, which NASA had used to collect scientific data since 1971. The U-2, and later the ER-2, were based at the Ames Research Center, Moffett Field, California, until 1997. In 1997, the ER-2 aircraft and their operations moved to NASA Dryden Flight Research Center, Edwards, California. Since the inaugural flight for this program, August 31, 1971, NASA U-2 and ER-2 aircraft have flown more than 4,000 data missions and test flights in support of scientific research conducted by scientists from NASA, other federal agencies, states, universities, and the private sector. NASA is currently using two ER-2 Airborne Science aircraft as flying laboratories. The aircraft, based at NASA Dryden, collect information about our surroundings, including Earth resources, celestial observations, atmospheric chemistry and dynamics, and oceanic processes. The aircraft also are used for electronic sensor research and development, satellite calibration, and satellite data validation. The ER-2 is a versatile aircraft well-suited to perform multiple mission tasks. It is 30 percent larger than the U-2 with a 20 feet longer wingspan and a considerably increased payload over the older airframe. The aircraft has four large pressurized experiment compartments and a high-capacity AC/DC electrical system, permitting it to carry a variety of payloads on a single mission. The modular design of the aircraft permits rapid installation or removal of payloads to meet changing mission requirements. The ER-2 has a range beyond 3,000 miles (4800 kilometers); is capable of long flight duration and can operate at altitudes up to 70,000 feet (21.3 kilometers) if required. Operating at an altitude of 65,000 feet (19.8 kilometers) the ER-2 acquires data

  19. Ire1 supports normal ER differentiation in developing Drosophila photoreceptors

    PubMed Central

    Xu, Zuyuan; Chikka, Madhusudana Rao; Xia, Hongai; Ready, Donald F.

    2016-01-01

    ABSTRACT The endoplasmic reticulum (ER) serves virtually all aspects of cell physiology and, by pathways that are incompletely understood, is dynamically remodeled to meet changing cell needs. Inositol-requiring enzyme 1 (Ire1), a conserved core protein of the unfolded protein response (UPR), participates in ER remodeling and is particularly required during the differentiation of cells devoted to intense secretory activity, so-called ‘professional’ secretory cells. Here, we characterize the role of Ire1 in ER differentiation in the developing Drosophila compound eye photoreceptors (R cells). As part of normal development, R cells take a turn as professional secretory cells with a massive secretory effort that builds the photosensitive membrane organelle, the rhabdomere. We find rough ER sheets proliferate as rhabdomere biogenesis culminates, and Ire1 is required for normal ER differentiation. Ire1 is active early in R cell development and is required in anticipation of peak biosynthesis. Without Ire1, the amount of rough ER sheets is strongly reduced and the extensive cortical ER network at the rhabdomere base, the subrhabdomere cisterna (SRC), fails. Instead, ER proliferates in persistent and ribosome-poor tubular tangles. A phase of Ire1 activity early in R cell development thus shapes dynamic ER. PMID:26787744

  20. ER signaling is activated to protect human HaCaT keratinocytes from ER stress induced by environmental doses of UVB

    SciTech Connect

    Mera, Kentaro; Kawahara, Ko-ichi; Tada, Ko-ichi; Kawai, Kazuhiro; Hashiguchi, Teruto; Maruyama, Ikuro; Kanekura, Takuro

    2010-06-25

    Proteins are folded properly in the endoplasmic reticulum (ER). Various stress such as hypoxia, ischemia and starvation interfere with the ER function, causing ER stress, which is defined by the accumulation of unfolded protein (UP) in the ER. ER stress is prevented by the UP response (UPR) and ER-associated degradation (ERAD). These signaling pathways are activated by three major ER molecules, ATF6, IRE-1 and PERK. Using HaCaT cells, we investigated ER signaling in human keratinocytes irradiated by environmental doses of ultraviolet B (UVB). The expression of Ero1-L{alpha}, an upstream signaling molecule of ER stress, decreased at 1-4 h after 10 mJ/cm{sup 2} irradiation, indicating that the environmental dose of UVB-induced ER stress in HaCaT cells, without growth retardation. Furthermore, expression of intact ATF6 was decreased and it was translocated to the nuclei. The expression of XBP-1, a downstream molecule of IRE-1, which is an ER chaperone whose expression is regulated by XBP-1, and UP ubiquitination were induced by 10 mJ/cm{sup 2} UVB at 4 h. PERK, which regulates apoptosis, was not phosphorylated. Our results demonstrate that UVB irradiation generates UP in HaCaT cells and that the UPR and ERAD systems are activated to protect cells from UVB-induced ER stress. This is the first report to show ER signaling in UVB-irradiated keratinocytes.

  1. Untangling the web: Mechanisms underlying ER network formation

    PubMed Central

    Goyal, Uma; Blackstone, Craig

    2013-01-01

    The ER is a continuous membrane system consisting of the nuclear envelope, flat sheets often studded with ribosomes, and a polygonal network of highly-curved tubules extending throughout the cell. Although protein and lipid biosynthesis, protein modification, vesicular transport, Ca2+dynamics, and protein quality control have been investigated in great detail, mechanisms that generate the distinctive architecture of the ER have been uncovered only recently. Several protein families including the reticulons and REEPs/DP1/Yop1p harbor hydrophobic hairpin domains that shape high-curvature ER tubules and mediate intramembrane protein interactions. Members of the atlastin/RHD3/Sey1p family of dynamin-related GTPases interact with the ER-shaping proteins and mediate the formation of three-way junctions responsible for the polygonal structure of the tubular ER network, with Lunapark proteins acting antagonistically. Additional classes of tubular ER proteins including some REEPs and the M1 spastin ATPase interact with the microtubule cytoskeleton. Flat ER sheets possess a different complement of proteins such as p180, CLIMP-63 and kinectin implicated in shaping, cisternal stacking and cytoskeletal interactions. The ER is also in constant motion, and numerous signaling pathways as well as interactions among cytoskeletal elements, the plasma membrane, and organelles cooperate to position and shape the ER dynamically. Finally, many proteins involved in shaping the ER network are mutated in the most common forms of hereditary spastic paraplegia, indicating a particular importance for proper ER morphology and distribution in large, highly-polarized cells such as neurons. PMID:23602970

  2. ER – the key to the highway

    PubMed Central

    Stefano, Giovanni; Hawes, Chris; Brandizzi, Federica

    2014-01-01

    The endoplasmic reticulum (ER) is the key organelle at the start of the secretory pathway and the list of its functions is continually growing. The ER organization as a tubular/cisternal network at the cortex of plant cells has recently been shown to be governed by the membrane tubulation proteins of the reticulon family working alongside plant atlastin homologues, members of the RHD3 group of proteins. Such a network has intimate connections with other organelles such as peroxisomes via peroxules, chloroplasts, Golgi bodies and at the cell cortex to the plasma membrane with cytoskeleton at so called “anchor/contact sites”. The ER network is by no means static displaying a range of different movements and acting as a sub-cellular highway supports the motility of organelles such as peroxisomes, mitochondria and Golgi bodies plus the transport of macromolecules such as viral movement proteins, nucleocapsid proteins and RNA. Here we highlight recent and exciting discoveries on the maintenance of the ER structure and its role on movement and biology of other organelles. PMID:25259957

  3. Soluble tyrosinase is an endoplasmic reticulum (ER)-associated degradation substrate retained in the ER by calreticulin and BiP/GRP78 and not calnexin.

    PubMed

    Popescu, Costin I; Paduraru, Crina; Dwek, Raymond A; Petrescu, Stefana M

    2005-04-01

    Tyrosinase is a type I membrane protein regulating the pigmentation process in humans. Mutations of the human tyrosinase gene cause the tyrosinase negative type I oculocutaneous albinism (OCAI). Some OCAI mutations were shown to delete the transmembrane domain or to affect its hydrophobic properties, resulting in soluble tyrosinase mutants that are retained in the endoplasmic reticulum (ER). To understand the specific mechanisms involved in the ER retention of soluble tyrosinase, we have constructed a tyrosinase mutant truncated at its C-terminal end and investigated its maturation process. The mutant is retained in the ER, and it is degraded through the proteasomal pathway. We determined that the mannose trimming is required for an efficient degradation process. Moreover, this soluble ER-associated degradation substrate is stopped at the ER quality control checkpoint with no requirements for an ER-Golgi recycling pathway. Co-immmunoprecipitation experiments showed that soluble tyrosinase interacts with calreticulin and BiP/GRP78 (and not calnexin) during its ER transit. Expression of soluble tyrosinase in calreticulin-deficient cells resulted in the export of soluble tyrosinase of the ER, indicating the calreticulin role in ER retention. Taken together, these data show that OCAI soluble tyrosinase is an ER-associated degradation substrate that, unlike other albino tyrosinases, associates with calreticulin and BiP/GRP78. The lack of specificity for calnexin interaction reveals a novel role for calreticulin in OCAI albinism. PMID:15677452

  4. A novel role of c-FLIP protein in regulation of ER stress response.

    PubMed

    Conti, Silvia; Petrungaro, Simonetta; Marini, Elettra Sara; Masciarelli, Silvia; Tomaipitinca, Luana; Filippini, Antonio; Giampietri, Claudia; Ziparo, Elio

    2016-09-01

    Cellular-Flice-like inhibitory protein (c-FLIP) is an apoptosis modulator known to inhibit the extrinsic apoptotic pathway thus blocking Caspase-8 processing in the Death Inducing Signalling Complex (DISC). We previously demonstrated that c-FLIP localizes at the endoplasmic reticulum (ER) and that c-FLIP-deficient mouse embryonic fibroblasts (MEFs) display an enlarged ER morphology. In the present study, we have addressed the consequences of c-FLIP ablation in the ER stress response by investigating the effects of pharmacologically-induced ER stress in Wild Type (WT) and c-FLIP-/- MEFs. Surprisingly, c-FLIP-/- MEFs were found to be strikingly more resistant than WT MEFs to ER stress-mediated apoptosis. Analysis of Unfolded Protein Response (UPR) pathways revealed that Pancreatic ER Kinase (PERK) and Inositol-Requiring Enzyme 1 (IRE1) branch signalling is compromised in c-FLIP-/- cells when compared with WT cells. We found that c-FLIP modulates the PERK pathway by interfering with the activity of the serine threonine kinase AKT. Indeed, c-FLIP-/- MEFs display higher levels of active AKT than WT MEFs upon ER stress, while treatment with a specific AKT inhibitor of c-FLIP-/- MEFs subjected to ER stress restores the PERK but not the IRE1 pathway. Importantly, the AKT inhibitor or dominant negative AKT transfection sensitizes c-FLIP-/- cells to ER stress-induced cell death while the expression of a constitutively active AKT reduces WT cells sensitivity to ER stress-induced death. Thus, our results demonstrate that c-FLIP modulation of AKT activity is crucial in controlling PERK signalling and sensitivity to ER stress, and highlight c-FLIP as a novel molecular player in PERK and IRE1-mediated ER stress response. PMID:27267061

  5. USP14 inhibits ER-associated degradation via interaction with IRE1{alpha}

    SciTech Connect

    Nagai, Atsushi; Kadowaki, Hisae; Maruyama, Takeshi; Takeda, Kohsuke; Nishitoh, Hideki Ichijo, Hidenori

    2009-02-20

    Accumulation of unfolded proteins within the endoplasmic reticulum (ER) lumen induces ER stress. Eukaryotic cells possess the ER quality control systems, the unfolded protein response (UPR), to adapt to ER stress. IRE1{alpha} is one of the ER stress receptors and mediates the UPR. Here, we identified ubiquitin specific protease (USP) 14 as a binding partner of IRE1{alpha}. USP14 interacted with the cytoplasmic region of IRE1{alpha}, and the endogenous interaction between USP14 and IRE1{alpha} was inhibited by ER stress. Overexpression of USP14 inhibited the ER-associated degradation (ERAD) pathway, and USP14 depletion by small interfering RNA effectively activated ERAD. These findings suggest that USP14 is a novel player in the UPR by serving as a physiological inhibitor of ERAD under the non-stressed condition.

  6. Return to sender: use of Plasmodium ER retrieval sequences to study protein transport in the infected erythrocyte and predict putative ER protein families.

    PubMed

    Külzer, Simone; Gehde, Nina; Przyborski, Jude M

    2009-06-01

    We have investigated how knowledge of endoplasmic reticulum (ER) retrieval signals can be used to study specific trafficking pathways in the malaria-infected erythrocyte. We show that addition of various lumenal ER retrieval signals to soluble green fluorescent protein (GFP) chimaera causes retrieval of the fusion protein in the parasite's ER. In contrast, adding these signals to the C-terminus of a membrane bound protein does not affect its eventual sub-cellular localization. This demonstrates proof of principle that ER retrieval signals can be used to study the solubility state of Plasmodium falciparum proteins during their transport to the host erythrocyte. Furthermore, using our knowledge of ER retrieval signals, we identify Plasmodium ER protein families and assign putative functions to them. PMID:19294420

  7. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy.

    PubMed

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng

    2015-10-15

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. PMID:26253462

  8. ER-α36, a novel isoform of ER-α66, is commonly over-expressed in apocrine and adenoid cystic carcinomas of the breast

    PubMed Central

    Vranic, Semir; Gatalica, Zoran; Deng, Hao; Frkovic-Grazio, Snjezana; Lee, Lisa M J; Gurjeva, Olga; Wang, Zhao-Yi

    2012-01-01

    Background ER-α36 is a novel 36 kDa isoform of the full-length oestrogen receptor alpha (ER-α66). ER-α36 primarily localises to the cytoplasm and the plasma membrane, and responds to membrane-initiated oestrogen and antioestrogen signalling pathways. Aim To examine the expression of ER-α36 in apocrine and adenoid cystic carcinoma of the breast, both of which are consistently ER-α66 negative and currently lack effective targeted therapeutic options. Methods 19 pure apocrine carcinomas (17 invasive and two in-situ carcinomas) and 11 adenoid cystic carcinomas of the breast were evaluated for ER-α36 expression, along with expressions of ER-α66, progesterone receptor (PR) and androgen receptor (AR) using immunohistochemical methods. Results All pure apocrine carcinomas showed a characteristic steroid receptor expression profile (ER-α66 and PR negative, AR strongly positive). ER-α36 expression was detected in 18/19 pure apocrine carcinomas (94.7%, 95% CI 75.1 to 98.7) in predominantly membranous and cytoplasmic distribution. When positive, pure apocrine carcinomas uniformly (100% of cells) expressed ER-α36. All adenoid cystic carcinomas were uniformly negative for all three classic steroid receptors, but ER-α36 was detected in 8/11 cases (72.7%, 95% CI 42.8 to 90) with the similar sub-cellular pattern of expression as in the pure apocrine carcinomas. When positive, adenoid cystic carcinomas expressed ER-α36 in the majority of cells (average 76%). Conclusion ER-α36, a novel isoform of ER-α66, is frequently over-expressed in apocrine and adenoid cystic carcinomas of the breast. These results indicate a potential for a novel targeted treatment in these cancers. PMID:21045236

  9. When supply does not meet demand-ER stress and plant programmed cell death

    PubMed Central

    Williams, Brett; Verchot, Jeanmarie; Dickman, Martin B.

    2014-01-01

    The endoplasmic reticulum (ER) is the central organelle in the eukaryotic secretory pathway. The ER functions in protein synthesis and maturation and is crucial for proper maintenance of cellular homeostasis and adaptation to adverse environments. Acting as a cellular sentinel, the ER is exquisitely sensitive to changing environments principally via the ER quality control machinery. When perturbed, ER-stress triggers a tightly regulated and highly conserved, signal transduction pathway known as the unfolded protein response (UPR) that prevents the dangerous accumulation of unfolded/misfolded proteins. In situations where excessive UPR activity surpasses threshold levels, cells deteriorate and eventually trigger programmed cell death (PCD) as a way for the organism to cope with dysfunctional or toxic signals. The programmed cell death that results from excessive ER stress in mammalian systems contributes to several important diseases including hypoxia, neurodegeneration, and diabetes. Importantly, hallmark features and markers of cell death that are associated with ER stress in mammals are also found in plants. In particular, there is a common, conserved set of chaperones that modulate ER cell death signaling. Here we review the elements of plant cell death responses to ER stress and note that an increasing number of plant-pathogen interactions are being identified in which the host ER is targeted by plant pathogens to establish compatibility. PMID:24926295

  10. Ge Nanocluster Enhanced Er Photoluminescence

    NASA Astrophysics Data System (ADS)

    Guzman, Julian; Chrzan, Daryl C.; Haller, Eugene E.

    2010-03-01

    We investigated the enhancement of the Er^3+ photoluminescence (PL) at 1540 nm by the incorporation of Ge nanoclusters into Er-doped silica using ion beams. We found that the Er^3+ PL enhancement is due to the presence of Ge and not to the radiation damage from the ion-implantation process. We determined that the Er^3+ PL depends on the Ge content, postgrowth annealing, and crystallinity of the Ge nanoclusters. Furthermore, we observed that the Er^3+ PL signal is maximized after annealing at 685 C for 1 h. This is the temperature at which Ge nanoclusters begin to crystallize. Transmission electron microscopy studies were conducted to determine the size distribution of the Ge nanoclusters. Moreover, extended X-ray absorption fine structure measurements performed at the Ge-K and Er-LIII edges revealed that there is negligible Ge-Er bonding. This suggests that Er is either fully oxidized or that it is not located in the Ge nanoclusters. Therefore, we believe that the energy transfer process from the Ge nanoclusters to the Er ions occurs through a non-optical resonant dipole transfer (F"orster ProcessfootnotetextT. F"orster, Discuss. Faraday Soc. 27, 7 (1959). similar to what has been proposed for the Si nanocrystal case.footnotetextM. Fujii, M. Yoshida, S. Hayashi, and K. Yamamoto, J. Appl. Phys. 84, 4525 (1998).

  11. Protein folding in the ER.

    SciTech Connect

    Stevens, F. J.; Argon, Y.; Biosciences Division; Univ. of Chicago

    1999-10-01

    The endoplasmic reticulum (ER) is a major protein folding compartment for secreted, plasma membrane and organelle proteins. Each of these newly-synthesized polypeptides folds in a deterministic process, affected by the unique conditions that exist in the ER. An understanding of protein folding in the ER is a fundamental biomolecular challenge at two levels. The first level addresses how the amino acid sequence programs that polypeptide to efficiently arrive at a particular fold out of a multitude of alternatives, and how different sequences obtain similar folds. At the second level are the issues introduced by folding not in the cytosol, but in the ER, including the risk of aggregation in a molecularly crowded environment, accommodation of post-translational modifications and the compatibility with subsequent intracellular trafficking. This review discusses both the physicochemical and cell biological constraints of folding, which are the challenges that the ER molecular chaperones help overcome.

  12. ER stress induces NLRP3 inflammasome activation and hepatocyte death

    PubMed Central

    Lebeaupin, C; Proics, E; de Bieville, C H D; Rousseau, D; Bonnafous, S; Patouraux, S; Adam, G; Lavallard, V J; Rovere, C; Le Thuc, O; Saint-Paul, M C; Anty, R; Schneck, A S; Iannelli, A; Gugenheim, J; Tran, A; Gual, P; Bailly-Maitre, B

    2015-01-01

    inflammation-mediated liver injury in chronic liver diseases. Inhibition of ER-dependent inflammasome activation and cell death pathways may represent a potential therapeutic approach in chronic liver diseases. PMID:26355342

  13. Genome-wide association studies identify four ER negative-specific breast cancer risk loci.

    PubMed

    Garcia-Closas, Montserrat; Couch, Fergus J; Lindstrom, Sara; Michailidou, Kyriaki; Schmidt, Marjanka K; Brook, Mark N; Orr, Nick; Rhie, Suhn Kyong; Riboli, Elio; Feigelson, Heather S; Le Marchand, Loic; Buring, Julie E; Eccles, Diana; Miron, Penelope; Fasching, Peter A; Brauch, Hiltrud; Chang-Claude, Jenny; Carpenter, Jane; Godwin, Andrew K; Nevanlinna, Heli; Giles, Graham G; Cox, Angela; Hopper, John L; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Dicks, Ed; Howat, Will J; Schoof, Nils; Bojesen, Stig E; Lambrechts, Diether; Broeks, Annegien; Andrulis, Irene L; Guénel, Pascal; Burwinkel, Barbara; Sawyer, Elinor J; Hollestelle, Antoinette; Fletcher, Olivia; Winqvist, Robert; Brenner, Hermann; Mannermaa, Arto; Hamann, Ute; Meindl, Alfons; Lindblom, Annika; Zheng, Wei; Devillee, Peter; Goldberg, Mark S; Lubinski, Jan; Kristensen, Vessela; Swerdlow, Anthony; Anton-Culver, Hoda; Dörk, Thilo; Muir, Kenneth; Matsuo, Keitaro; Wu, Anna H; Radice, Paolo; Teo, Soo Hwang; Shu, Xiao-Ou; Blot, William; Kang, Daehee; Hartman, Mikael; Sangrajrang, Suleeporn; Shen, Chen-Yang; Southey, Melissa C; Park, Daniel J; Hammet, Fleur; Stone, Jennifer; Veer, Laura J Van't; Rutgers, Emiel J; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Peto, Julian; Schrauder, Michael G; Ekici, Arif B; Beckmann, Matthias W; Dos Santos Silva, Isabel; Johnson, Nichola; Warren, Helen; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Marme, Federick; Schneeweiss, Andreas; Sohn, Christof; Truong, Therese; Laurent-Puig, Pierre; Kerbrat, Pierre; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Lichtner, Peter; Lochmann, Magdalena; Justenhoven, Christina; Ko, Yon-Dschun; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Greco, Dario; Heikkinen, Tuomas; Ito, Hidemi; Iwata, Hiroji; Yatabe, Yasushi; Antonenkova, Natalia N; Margolin, Sara; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Balleine, Rosemary; Tseng, Chiu-Chen; Berg, David Van Den; Stram, Daniel O; Neven, Patrick; Dieudonné, Anne-Sophie; Leunen, Karin; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Peterlongo, Paolo; Peissel, Bernard; Bernard, Loris; Olson, Janet E; Wang, Xianshu; Stevens, Kristen; Severi, Gianluca; Baglietto, Laura; McLean, Catriona; Coetzee, Gerhard A; Feng, Ye; Henderson, Brian E; Schumacher, Fredrick; Bogdanova, Natalia V; Labrèche, France; Dumont, Martine; Yip, Cheng Har; Taib, Nur Aishah Mohd; Cheng, Ching-Yu; Shrubsole, Martha; Long, Jirong; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Tollenaar, Robertus A E M; Seynaeve, Caroline M; Kriege, Mieke; Hooning, Maartje J; van den Ouweland, Ans M W; van Deurzen, Carolien H M; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Balasubramanian, Sabapathy P; Cross, Simon S; Reed, Malcolm W R; Signorello, Lisa; Cai, Qiuyin; Shah, Mitul; Miao, Hui; Chan, Ching Wan; Chia, Kee Seng; Jakubowska, Anna; Jaworska, Katarzyna; Durda, Katarzyna; Hsiung, Chia-Ni; Wu, Pei-Ei; Yu, Jyh-Cherng; Ashworth, Alan; Jones, Michael; Tessier, Daniel C; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Vincent, Daniel; Bacot, Francois; Ambrosone, Christine B; Bandera, Elisa V; John, Esther M; Chen, Gary K; Hu, Jennifer J; Rodriguez-Gil, Jorge L; Bernstein, Leslie; Press, Michael F; Ziegler, Regina G; Millikan, Robert M; Deming-Halverson, Sandra L; Nyante, Sarah; Ingles, Sue A; Waisfisz, Quinten; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Gibson, Lorna; Müller-Myhsok, Bertram; Schmutzler, Rita K; Hein, Rebecca; Dahmen, Norbert; Beckmann, Lars; Aaltonen, Kirsimari; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Turnbull, Clare; Rahman, Nazneen; Meijers-Heijboer, Hanne; Uitterlinden, Andre G; Rivadeneira, Fernando; Olswold, Curtis; Slager, Susan; Pilarski, Robert; Ademuyiwa, Foluso; Konstantopoulou, Irene; Martin, Nicholas G; Montgomery, Grant W; Slamon, Dennis J; Rauh, Claudia; Lux, Michael P; Jud, Sebastian M; Bruning, Thomas; Weaver, Joellen; Sharma, Priyanka; Pathak, Harsh; Tapper, Will; Gerty, Sue; Durcan, Lorraine; Trichopoulos, Dimitrios; Tumino, Rosario; Peeters, Petra H; Kaaks, Rudolf; Campa, Daniele; Canzian, Federico; Weiderpass, Elisabete; Johansson, Mattias; Khaw, Kay-Tee; Travis, Ruth; Clavel-Chapelon, Françoise; Kolonel, Laurence N; Chen, Constance; Beck, Andy; Hankinson, Susan E; Berg, Christine D; Hoover, Robert N; Lissowska, Jolanta; Figueroa, Jonine D; Chasman, Daniel I; Gaudet, Mia M; Diver, W Ryan; Willett, Walter C; Hunter, David J; Simard, Jacques; Benitez, Javier; Dunning, Alison M; Sherman, Mark E; Chenevix-Trench, Georgia; Chanock, Stephen J; Hall, Per; Pharoah, Paul D P; Vachon, Celine; Easton, Douglas F; Haiman, Christopher A; Kraft, Peter

    2013-04-01

    Estrogen receptor (ER)-negative tumors represent 20-30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry. The etiology and clinical behavior of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differences in genetic predisposition. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies (6,514 cases and 41,455 controls), genotyped using a custom Illumina array, iCOGS, developed by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1 (MDM4, P = 2.1 × 10(-12) and LGR6, P = 1.4 × 10(-8)), 2p24.1 (P = 4.6 × 10(-8)) and 16q12.2 (FTO, P = 4.0 × 10(-8)), were associated with ER-negative but not ER-positive breast cancer (P > 0.05). These findings provide further evidence for distinct etiological pathways associated with invasive ER-positive and ER-negative breast cancers. PMID:23535733

  14. Loss of Clcc1 results in ER stress, misfolded protein accumulation, and neurodegeneration.

    PubMed

    Jia, Yichang; Jucius, Thomas J; Cook, Susan A; Ackerman, Susan L

    2015-02-18

    Folding of transmembrane and secretory proteins occurs in the lumen of the endoplasmic reticulum (ER) before transportation to the cell surface and is monitored by the unfolded protein response (UPR) signaling pathway. The accumulation of unfolded proteins in the ER activates the UPR that restores ER homeostasis by regulating gene expression that leads to an increase in the protein-folding capacity of the ER and a decrease in the ER protein-folding load. However, prolonged UPR activity has been associated with cell death in multiple pathological conditions, including neurodegeneration. Here, we report a spontaneous recessive mouse mutation that causes progressive cerebellar granule cell death and peripheral motor axon degeneration. By positional cloning, we identify the mutation in this strain as a retrotransposon insertion in the Clcc1 gene, which encodes a putative chloride channel localized to the ER. Furthermore, we demonstrate that the C3H/HeSnJ inbred strain has late onset cerebellar degeneration due to this mutation. Interestingly, acute knockdown of Clcc1 expression in cultured cells increases sensitivity to ER stress. In agreement, GRP78, the major HSP70 family chaperone in the ER, is upregulated in Clcc1-deficient granule cells in vivo, and ubiquitinated proteins accumulate in these neurons before their degeneration. These data suggest that disruption of chloride homeostasis in the ER disrupts the protein-folding capacity of the ER, leading to eventual neuron death. PMID:25698737

  15. Genome-wide association studies identify four ER negative–specific breast cancer risk loci

    PubMed Central

    Garcia-Closas, Montserrat; Couch, Fergus J; Lindstrom, Sara; Michailidou, Kyriaki; Schmidt, Marjanka K; Brook, Mark N; orr, Nick; Rhie, Suhn Kyong; Riboli, Elio; Feigelson, Heather s; Le Marchand, Loic; Buring, Julie E; Eccles, Diana; Miron, Penelope; Fasching, Peter A; Brauch, Hiltrud; Chang-Claude, Jenny; Carpenter, Jane; Godwin, Andrew K; Nevanlinna, Heli; Giles, Graham G; Cox, Angela; Hopper, John L; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Dicks, Ed; Howat, Will J; Schoof, Nils; Bojesen, Stig E; Lambrechts, Diether; Broeks, Annegien; Andrulis, Irene L; Guénel, Pascal; Burwinkel, Barbara; Sawyer, Elinor J; Hollestelle, Antoinette; Fletcher, Olivia; Winqvist, Robert; Brenner, Hermann; Mannermaa, Arto; Hamann, Ute; Meindl, Alfons; Lindblom, Annika; Zheng, Wei; Devillee, Peter; Goldberg, Mark S; Lubinski, Jan; Kristensen, Vessela; Swerdlow, Anthony; Anton-Culver, Hoda; Dörk, Thilo; Muir, Kenneth; Matsuo, Keitaro; Wu, Anna H; Radice, Paolo; Teo, Soo Hwang; Shu, Xiao-Ou; Blot, William; Kang, Daehee; Hartman, Mikael; Sangrajrang, Suleeporn; Shen, Chen-Yang; Southey, Melissa C; Park, Daniel J; Hammet, Fleur; Stone, Jennifer; Veer, Laura J Van’t; Rutgers, Emiel J; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Peto, Julian; Schrauder, Michael G; Ekici, Arif B; Beckmann, Matthias W; Silva, Isabel dos Santos; Johnson, Nichola; Warren, Helen; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Marme, Federick; Schneeweiss, Andreas; Sohn, Christof; Truong, Therese; Laurent-Puig, Pierre; Kerbrat, Pierre; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Lichtner, Peter; Lochmann, Magdalena; Justenhoven, Christina; Ko, Yon-Dschun; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Greco, Dario; Heikkinen, Tuomas; Ito, Hidemi; Iwata, Hiroji; Yatabe, Yasushi; Antonenkova, Natalia N; Margolin, Sara; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Balleine, Rosemary; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Neven, Patrick; Dieudonné, Anne-Sophie; Leunen, Karin; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Peterlongo, Paolo; Peissel, Bernard; Bernard, Loris; Olson, Janet E; Wang, Xianshu; Stevens, Kristen; Severi, Gianluca; Baglietto, Laura; Mclean, Catriona; Coetzee, Gerhard A; Feng, Ye; Henderson, Brian E; Schumacher, Fredrick; Bogdanova, Natalia V; Labrèche, France; Dumont, Martine; Yip, Cheng Har; Taib, Nur Aishah Mohd; Cheng, Ching-Yu; Shrubsole, Martha; Long, Jirong; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Tollenaar, Robertus A E M; Seynaeve, Caroline M; Kriege, Mieke; Hooning, Maartje J; Van den Ouweland, Ans M W; Van Deurzen, Carolien H M; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Balasubramanian, Sabapathy P; Cross, Simon S; Reed, Malcolm W R; Signorello, Lisa; Cai, Qiuyin; Shah, Mitul; Miao, Hui; Chan, Ching Wan; Chia, Kee Seng; Jakubowska, Anna; Jaworska, Katarzyna; Durda, Katarzyna; Hsiung, Chia-Ni; Wu, Pei-Ei; Yu, Jyh-Cherng; Ashworth, Alan; Jones, Michael; Tessier, Daniel C; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Vincent, Daniel; Bacot, Francois; Ambrosone, Christine B; Bandera, Elisa V; John, Esther M; Chen, Gary K; Hu, Jennifer J; Rodriguez-gil, Jorge L; Bernstein, Leslie; Press, Michael F; Ziegler, Regina G; Millikan, Robert M; Deming-Halverson, Sandra L; Nyante, Sarah; Ingles, Sue A; Waisfisz, Quinten; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Gibson, Lorna; Müller-Myhsok, Bertram; Schmutzler, Rita K; Hein, Rebecca; Dahmen, Norbert; Beckmann, Lars; Aaltonen, Kirsimari; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Turnbull, Clare; Rahman, Nazneen; Meijers-Heijboer, Hanne; Uitterlinden, Andre G; Rivadeneira, Fernando; Olswold, Curtis; Slager, Susan; Pilarski, Robert; Ademuyiwa, Foluso; Konstantopoulou, Irene; Martin, Nicholas G; Montgomery, Grant W; Slamon, Dennis J; Rauh, Claudia; Lux, Michael P; Jud, Sebastian M; Bruning, Thomas; Weaver, Joellen; Sharma, Priyanka; Pathak, Harsh; Tapper, Will; Gerty, Sue; Durcan, Lorraine; Trichopoulos, Dimitrios; Tumino, Rosario; Peeters, Petra H; Kaaks, Rudolf; Campa, Daniele; Canzian, Federico; Weiderpass, Elisabete; Johansson, Mattias; Khaw, Kay-Tee; Travis, Ruth; Clavel-Chapelon, Françoise; Kolonel, Laurence N; Chen, Constance; Beck, Andy; Hankinson, Susan E; Berg, Christine D; Hoover, Robert N; Lissowska, Jolanta; Figueroa, Jonine D

    2013-01-01

    Estrogen receptor (ER)-negative tumors represent 20–30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry1. The etiology2 and clinical behavior3 of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differences in genetic predisposition4. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies (6,514 cases and 41,455 controls), genotyped using a custom Illumina array, iCOGS, developed by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1 (MDM4, P = 2.1 × 10−12 and LGR6, P = 1.4 × 10−8), 2p24.1 (P = 4.6 × 10−8) and 16q12.2 (FTO, P = 4.0 × 10−8), were associated with ER-negative but not ER-positive breast cancer (P > 0.05). These findings provide further evidence for distinct etiological pathways associated with invasive ER-positive and ER-negative breast cancers. PMID:23535733

  16. Evidence that endoplasmic reticulum (ER) stress and caspase-4 activation occur in human neutrophils

    SciTech Connect

    Binet, Francois; Chiasson, Sonia; Girard, Denis

    2010-01-01

    Apoptosis can result from activation of three major pathways: the extrinsic, the intrinsic, and the most recently identified endoplasmic reticulum (ER) stress-mediated pathway. While the two former pathways are known to be operational in human polymorphonuclear neutrophils (PMNs), the existence of the ER stress-mediated pathway, generally involving caspase-4, has never been reported in these cells. Recently, we have documented that arsenic trioxide (ATO) induced apoptosis in human PMNs by a mechanism that needs to be further investigated. In this study, using immunofluorescence and electron microscopy, we present evidence of ER alterations in PMNs activated by the ER stress inducer arsenic trioxide (ATO). Several key players of the unfolded protein response, including GRP78, GADD153, ATF6, XBP1 and eIF2{alpha} are expressed and activated in PMNs treated with ATO or other ER stress inducers. Although caspase-4 is expressed and activated in neutrophils, treatment with a caspase-4 inhibitor did not attenuate the pro-apoptotic effect of ATO at a concentration that reverses caspase-4 processing and activation. Our results demonstrate for the first time that the ER stress-mediated apoptotic pathway operates in human neutrophils.

  17. Coordination of Endoplasmic Reticulum (ER) Signaling During Maize Seed Development

    SciTech Connect

    Boston, Rebecca S.

    2010-11-20

    Seed storage reserves represent one of the most important sources of renewable fixed carbon and nitrogen found in nature. Seeds are well-adapted for diverting metabolic resources to synthesize storage proteins as well as enzymes and structural proteins needed for their transport and packaging into membrane bound storage protein bodies. Our underlying hypothesis is that the endoplasmic reticulum (ER) stress response provides the critical cellular control of metabolic flux required for optimal accumulation of storage reserves in seeds. This highly conserved response is a cellular mechanism to monitor the protein folding environment of the ER and restore homeostasis in the presence of unfolded or misfolded proteins. In seeds, deposition of storage proteins in protein bodies is a highly specialized process that takes place even in the presence of mutant proteins that no longer fold and package properly. The capacity of the ER to deposit these aberrant proteins in protein bodies during a period that extends several weeks provides an excellent model for deconvoluting the ER stress response of plants. We have focused in this project on the means by which the ER senses and responds to functional perturbations and the underlying intracellular communication that occurs among biosynthetic, trafficking and degradative pathways for proteins during seed development.

  18. Interleukin-1 receptor-associated kinase-2 (IRAK2) is a critical mediator of endoplasmic reticulum (ER) stress signaling.

    PubMed

    Benosman, Samir; Ravanan, Palaniyandi; Correa, Ricardo G; Hou, Ying-Chen; Yu, Minjia; Gulen, Muhammet Fatih; Li, Xiaoxia; Thomas, James; Cuddy, Michael; Matsuzawa, Yasuko; Sano, Renata; Diaz, Paul; Matsuzawa, Shu-ichi; Reed, John C

    2013-01-01

    Endoplasmic reticulum (ER) stress occurs when unfolded proteins accumulate in the lumen of the organelle, triggering signal transduction events that contribute either to cellular adaptation and recovery or alternatively to cellular dysfunction and death. ER stress has been implicated in numerous diseases. To identify novel modulators of ER stress, we undertook a siRNA library screen of the kinome, revealing Interleukin-1 Receptor-Associated Kinase-2 (IRAK2) as a contributor to unfolded protein response (UPR) signaling and ER stress-induced cell death. Knocking down expression of IRAK2 (but not IRAK1) in cultured mammalian cells suppresses ER stress-induced expression of the pro-apoptotic transcription factor CHOP and activation of stress kinases. Similarly, RNAi-mediated silencing of the IRAK family member Tube (but not Pelle) suppresses activation of stress kinase signaling induced by ER stress in Drosophila cells. The action of IRAK2 maps to the IRE1 pathway, rather than the PERK or ATF6 components of the UPR. Interestingly, ER stress also induces IRAK2 gene expression in an IRE1/XBP1-dependent manner, suggesting a mutually supporting amplification loop involving IRAK2 and IRE1. In vivo, ER stress induces Irak2 expression in mice. Moreover, Irak2 gene knockout mice display defects in ER stress-induced CHOP expression and IRE1 pathway signaling. These findings demonstrate an unexpected linkage of the innate immunity machinery to UPR signaling, revealing IRAK2 as a novel amplifier of the IRE1 pathway. PMID:23724040

  19. Interleukin-1 Receptor-Associated Kinase-2 (IRAK2) Is a Critical Mediator of Endoplasmic Reticulum (ER) Stress Signaling

    PubMed Central

    Correa, Ricardo G.; Hou, Ying-Chen; Yu, Minjia; Gulen, Muhammet Fatih; Li, Xiaoxia; Thomas, James; Cuddy, Michael; Matsuzawa, Yasuko; Sano, Renata; Diaz, Paul; Matsuzawa, Shu-ichi; Reed, John C.

    2013-01-01

    Endoplasmic reticulum (ER) stress occurs when unfolded proteins accumulate in the lumen of the organelle, triggering signal transduction events that contribute either to cellular adaptation and recovery or alternatively to cellular dysfunction and death. ER stress has been implicated in numerous diseases. To identify novel modulators of ER stress, we undertook a siRNA library screen of the kinome, revealing Interleukin-1 Receptor-Associated Kinase-2 (IRAK2) as a contributor to unfolded protein response (UPR) signaling and ER stress-induced cell death. Knocking down expression of IRAK2 (but not IRAK1) in cultured mammalian cells suppresses ER stress-induced expression of the pro-apoptotic transcription factor CHOP and activation of stress kinases. Similarly, RNAi-mediated silencing of the IRAK family member Tube (but not Pelle) suppresses activation of stress kinase signaling induced by ER stress in Drosophila cells. The action of IRAK2 maps to the IRE1 pathway, rather than the PERK or ATF6 components of the UPR. Interestingly, ER stress also induces IRAK2 gene expression in an IRE1/XBP1-dependent manner, suggesting a mutually supporting amplification loop involving IRAK2 and IRE1. In vivo, ER stress induces Irak2 expression in mice. Moreover, Irak2 gene knockout mice display defects in ER stress-induced CHOP expression and IRE1 pathway signaling. These findings demonstrate an unexpected linkage of the innate immunity machinery to UPR signaling, revealing IRAK2 as a novel amplifier of the IRE1 pathway. PMID:23724040

  20. Plasma membrane localization and function of the estrogen receptor α variant (ER46) in human endothelial cells

    PubMed Central

    Li, Lei; Haynes, M. Page; Bender, Jeffrey R.

    2003-01-01

    Estrogen receptor (ER) α variants have been identified in an array of nonendothelial cells. We previously demonstrated that estrogen rapidly induces nitric oxide release via a phosphatidylinositol 3-kinase/Akt/endothelial nitric-oxide synthase (eNOS) pathway in EA.hy926 cells (immortalized human endothelial cells), which express a 46-kDa ER. We now confirm that, due to alternative splicing, the 46-kDa endothelial cell protein (ER46) is an amino-terminal truncated product of full-length ERα (ER66). ER46 is expressed in the plasma membrane, cytosol, and nucleus of resting, estrogen-deprived cells. Flow cytometric and immunofluorescence microscopic analyses demonstrated that the ER46 C but not N terminus is Ab-accessible in the plasma membrane. Inhibition of palmitoylation with tunicamycin and [3H]palmitic acid labeling demonstrated an estrogen-induced, palmitoylation-dependent plasma membrane ER46 recruitment, with reorganization into caveolae. In reconstituted, estrogen-stimulated COS-7 (ER-null) cells, membrane ER46 more efficiently triggered membrane eNOS phosphorylation than ER66. Conversely, ER66 more efficiently mediated estrogen response element reporter-gene transactivation than ER46. These results demonstrate that ER46 is localized and further dynamically targeted to the plasma membrane in a palmitoylation-dependent manner. ER46 more efficiently modulates membrane-initiated estrogen actions, including eNOS activation, than full-length ER66. These findings may have important implications in vascular-specific targeting of estrogen receptor agonists. PMID:12682286

  1. Multiple Domains in PEX16 Mediate Its Trafficking and Recruitment of Peroxisomal Proteins to the ER.

    PubMed

    Hua, Rong; Gidda, Satinder K; Aranovich, Alexander; Mullen, Robert T; Kim, Peter K

    2015-08-01

    Peroxisomes rely on a diverse array of mechanisms to ensure the specific targeting of their protein constituents. Peroxisomal membrane proteins (PMPs), for instance, are targeted by at least two distinct pathways: directly to peroxisomes from their sites of synthesis in the cytosol or indirectly via the endoplasmic reticulum (ER). However, the extent to which each PMP targeting pathway is involved in the maintenance of pre-existing peroxisomes is unclear. Recently, we showed that human PEX16 plays a critical role in the ER-dependent targeting of PMPs by mediating the recruitment of two other PMPs, PEX3 and PMP34, to the ER. Here, we extend these results by carrying out a comprehensive mutational analysis of PEX16 aimed at gaining insights into the molecular targeting signals responsible for its ER-to-peroxisome trafficking and the domain(s) involved in PMP recruitment function at the ER. We also show that the recruitment of PMPs to the ER by PEX16 is conserved in plants. The implications of these results in terms of the function of PEX16 and the role of the ER in peroxisome maintenance in general are discussed. PMID:25903784

  2. Ames ER-2 ozone measurements

    NASA Technical Reports Server (NTRS)

    Pearson, R., Jr.; Vedder, James F.; Starr, W. L.

    1990-01-01

    The objective of this research is to study ozone (O3) in the stratosphere. Measurements of the ozone mixing ratio at 1 s intervals are obtained with an ultraviolet photometer which flies on the ER-2 aircraft. The photometer determines the amount of ozone in air by measuring the transmission of ultraviolet light through a fixed path with and without ambient O3 present.

  3. ERS-1 SAR data processing

    NASA Technical Reports Server (NTRS)

    Leung, K.; Bicknell, T.; Vines, K.

    1986-01-01

    To take full advantage of the synthetic aperature radar (SAR) to be flown on board the European Space Agency's Remote Sensing Satellite (ERS-1) (1989) and the Canadian Radarsat (1990), the implementation of a receiving station in Alaska is being studied to gather and process SAR data pertaining in particular to regions within the station's range of reception. The current SAR data processing requirement is estimated to be on the order of 5 minutes per day. The Interim Digital Sar Processor (IDP) which was under continual development through Seasat (1978) and SIR-B (1984) can process slightly more than 2 minutes of ERS-1 data per day. On the other hand, the Advanced Digital SAR Processore (ADSP), currently under development for the Shuttle Imaging Radar C (SIR-C, 1988) and the Venus Radar Mapper, (VMR, 1988), is capable of processing ERS-1 SAR data at a real time rate. To better suit the anticipated ERS-1 SAR data processing requirement, both a modified IDP and an ADSP derivative are being examined. For the modified IDP, a pipelined architecture is proposed for the mini-computer plus array processor arrangement to improve throughout. For the ADSP derivative, a simplified version is proposed to enhance ease of implementation and maintainability while maintaing real time throughput rates. These processing systems are discussed and evaluated.

  4. ERS Focus On: Educating Boys

    ERIC Educational Resources Information Center

    Clarke, Suzanne

    2007-01-01

    This issue of "Focus On" examines where boys are underachieving and some possible reasons for their under-achievement, including biological and environmental factors. It also offers strategies that teachers can employ in their classrooms in order to address the educational needs of boys. Books in Brief; Web Resources; and Related ERS Resources are…

  5. Sorting nexin 17 regulates ApoER2 recycling and reelin signaling.

    PubMed

    Sotelo, Pablo; Farfán, Pamela; Benitez, María Luisa; Bu, Guojun; Marzolo, María-Paz

    2014-01-01

    ApoER2 is a member of the low density-lipoprotein receptor (LDL-R) family. As a receptor for reelin, ApoER2 participates in neuronal migration during development as well as synaptic plasticity and survival in the adult brain. A previous yeast two-hybrid screen showed that ApoER2 is a binding partner of sorting nexin 17 (SNX17) - a cytosolic adaptor protein that regulates the trafficking of several membrane proteins in the endosomal pathway, including LRP1, P-selectin and integrins. However, no further studies have been performed to investigate the role of SNX17 in ApoER2 trafficking and function. In this study, we present evidence based on GST pull-down and inmunoprecipitation assays that the cytoplasmic NPxY endocytosis motif of ApoER2 interacts with the FERM domain of SNX17. SNX17 stimulates ApoER2 recycling in different cell lines including neurons without affecting its endocytic rate and also facilitates the transport of ApoER2 from the early endosomes to the recycling endosomes. The reduction of SNX17 was associated with accumulation of an ApoER2 carboxy-terminal fragment (CTF). In addition, in SNX17 knockdown cells, constitutive ApoER2 degradation was not modified, whereas reelin-induced ApoER2 degradation was increased, implying that SNX17 is a regulator of the receptor's half-life. Finally, in SNX17 silenced hippocampal and cortical neurons, we underscored a positive role of this endosomal protein in the development of the dendritic tree and reelin signaling. Overall, these results establish the role of SNX17 in ApoER2 trafficking and function and aid in identifying new links between endocytic trafficking and receptor signaling. PMID:24705369

  6. Sorting Nexin 17 Regulates ApoER2 Recycling and Reelin Signaling

    PubMed Central

    Sotelo, Pablo; Farfán, Pamela; Benitez, María Luisa; Bu, Guojun; Marzolo, María-Paz

    2014-01-01

    ApoER2 is a member of the low density-lipoprotein receptor (LDL-R) family. As a receptor for reelin, ApoER2 participates in neuronal migration during development as well as synaptic plasticity and survival in the adult brain. A previous yeast two-hybrid screen showed that ApoER2 is a binding partner of sorting nexin 17 (SNX17) - a cytosolic adaptor protein that regulates the trafficking of several membrane proteins in the endosomal pathway, including LRP1, P-selectin and integrins. However, no further studies have been performed to investigate the role of SNX17 in ApoER2 trafficking and function. In this study, we present evidence based on GST pull-down and inmunoprecipitation assays that the cytoplasmic NPxY endocytosis motif of ApoER2 interacts with the FERM domain of SNX17. SNX17 stimulates ApoER2 recycling in different cell lines including neurons without affecting its endocytic rate and also facilitates the transport of ApoER2 from the early endosomes to the recycling endosomes. The reduction of SNX17 was associated with accumulation of an ApoER2 carboxy-terminal fragment (CTF). In addition, in SNX17 knockdown cells, constitutive ApoER2 degradation was not modified, whereas reelin-induced ApoER2 degradation was increased, implying that SNX17 is a regulator of the receptor's half-life. Finally, in SNX17 silenced hippocampal and cortical neurons, we underscored a positive role of this endosomal protein in the development of the dendritic tree and reelin signaling. Overall, these results establish the role of SNX17 in ApoER2 trafficking and function and aid in identifying new links between endocytic trafficking and receptor signaling. PMID:24705369

  7. Monomerization and ER Relocalization of GRASP Is a Requisite for Unconventional Secretion of CFTR.

    PubMed

    Kim, Jiyoon; Noh, Shin Hye; Piao, He; Kim, Dong Hee; Kim, Kuglae; Cha, Jeong Seok; Chung, Woo Young; Cho, Hyun-Soo; Kim, Joo Young; Lee, Min Goo

    2016-07-01

    Induction of endoplasmic reticulum (ER)-to-Golgi blockade or ER stress induces Golgi reassembly stacking protein (GRASP)-mediated, Golgi-independent unconventional cell-surface trafficking of the folding-deficient ΔF508-cystic fibrosis transmembrane conductance regulator (CFTR). However, molecular mechanisms underlying this process remain elusive. Here, we show that phosphorylation-dependent dissociation of GRASP homotypic complexes and subsequent relocalization of GRASP to the ER play a critical role in the unconventional secretion of CFTR. Immunolocalization analyses of mammalian cells revealed that the Golgi protein GRASP55 was redistributed to the ER by stimuli that induce unconventional secretion of ΔF508-CFTR, such as induction of ER-to-Golgi blockade by the Arf1 mutant. Notably, the same stimuli also induced phosphorylation of regions near the C-terminus of GRASP55 and dissociation of GRASP homomultimer complexes. Furthermore, phosphorylation-mimicking mutations of GRASP55 induced the monomerization and ER relocalization of GRASP55, and these changes were nullified by phosphorylation-inhibiting mutations. These results provide mechanistic insights into how GRASP accesses the ER-retained ΔF508-CFTR and mediates the ER stress-induced unconventional secretion pathway. PMID:27062250

  8. Two-quasiparticle structures and isomers in {sup 168}Er, {sup 170}Er, and {sup 172}Er.

    SciTech Connect

    Dracoulis, G. D.; Lane, G. J.; Kondev, F. G.; Watanabe, H.; Seweryniak, D.; Zhu, S.; Carpenter, M. P.; Chiara, C. J.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Stefanescu, I.; Australian National Univ.; RIKEN; Univ. of Maryland

    2010-05-01

    The stable and neutron-rich isotopes 168Er, 170Er, and 172Er have been studied with Gammasphere using inelastic excitation with energetic 136Xe beams. The previously assigned structures based on the proposed K?=4- isomeric intrinsic states in both 168Er and 170Er have been re-evaluated and an equivalent band identified in 172Er. In 170Er, the identification of a K?=6- band with transitions close in energy to those of the 4- band leads to a modified interpretation, since the overlap would have compromised previous analyses. The gK-gR values for the 4- bands deduced from the in-band ?-ray intensities for the sequence of isotopes suggest a predominantly two-neutron configuration in 168Er, an equally mixed two-neutron, two-proton configuration in 170Er, and a two-proton configuration in 172Er. A comprehensive decay scheme for the previously proposed 6+ isomer in 172Er has also been established, as well as band structures built on this isomer that closely resemble the 6+ and 7- two-neutron structures known in the isotone 174Yb. The implied K hindrances are discussed. The main decay path of the 6+ isomer occurs through the newly identified 4- isomer. The measured lifetimes of the 4- and 6+ isomers in 172Er are 57(3) and 822(90) ns, respectively. Multiquasiparticle calculations support the suggested configuration changes across the isotopic chain.

  9. Completion report for Well Cluster ER-20-6

    SciTech Connect

    1998-02-01

    The Well Cluster ER-20-6 drilling and completion project was conducted during February, March, and April of 1996 in support of the Nevada Environmental Restoration Project at the Nevada Test Site (NTS), Nye County, Nevada. This project is part of the DOE`s Underground Test Area (UGTA) subproject at the NTS. The primary UGTA tasks include collecting geological, geophysical, and hydrological data from new and existing wells to define groundwater quality as well as pathways and rates of groundwater migration at the NTS. A program of drilling wells near the sites of selected underground nuclear tests (near-field drilling) was implemented as part of the UGTA subproject to obtain site-specific data on the nature and extent of migration of radionuclides produced by an underground nuclear explosion. The ER-20-6 near-field drilling project was originally planned to be very similar to that recently conducted at Well Cluster ER-20-5, which was designed to obtain data on the existing hydrologic regime near the site of an underground nuclear explosion (IT, 1995; IT, 1996a). However, after further consideration of the goals of the near-field drilling program and the characteristics of the BULLION site, the TWG recommended that the ER-20-6 project be redesigned to accommodate a forced-gradient experiment. This proposed experiment is expected to yield more realistic estimates of transport parameters than can be deduced from sampling and testing natural groundwater flow systems.

  10. NOD1 and NOD2 signalling links ER stress with inflammation.

    PubMed

    Keestra-Gounder, A Marijke; Byndloss, Mariana X; Seyffert, Núbia; Young, Briana M; Chávez-Arroyo, Alfredo; Tsai, April Y; Cevallos, Stephanie A; Winter, Maria G; Pham, Oanh H; Tiffany, Connor R; de Jong, Maarten F; Kerrinnes, Tobias; Ravindran, Resmi; Luciw, Paul A; McSorley, Stephen J; Bäumler, Andreas J; Tsolis, Renée M

    2016-04-21

    Endoplasmic reticulum (ER) stress is a major contributor to inflammatory diseases, such as Crohn disease and type 2 diabetes. ER stress induces the unfolded protein response, which involves activation of three transmembrane receptors, ATF6, PERK and IRE1α. Once activated, IRE1α recruits TRAF2 to the ER membrane to initiate inflammatory responses via the NF-κB pathway. Inflammation is commonly triggered when pattern recognition receptors (PRRs), such as Toll-like receptors or nucleotide-binding oligomerization domain (NOD)-like receptors, detect tissue damage or microbial infection. However, it is not clear which PRRs have a major role in inducing inflammation during ER stress. Here we show that NOD1 and NOD2, two members of the NOD-like receptor family of PRRs, are important mediators of ER-stress-induced inflammation in mouse and human cells. The ER stress inducers thapsigargin and dithiothreitol trigger production of the pro-inflammatory cytokine IL-6 in a NOD1/2-dependent fashion. Inflammation and IL-6 production triggered by infection with Brucella abortus, which induces ER stress by injecting the type IV secretion system effector protein VceC into host cells, is TRAF2, NOD1/2 and RIP2-dependent and can be reduced by treatment with the ER stress inhibitor tauroursodeoxycholate or an IRE1α kinase inhibitor. The association of NOD1 and NOD2 with pro-inflammatory responses induced by the IRE1α/TRAF2 signalling pathway provides a novel link between innate immunity and ER-stress-induced inflammation. PMID:27007849

  11. NASA ER-2: Flying Laboratory for Earth Science Studies

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2007-01-01

    This viewgraph presentation gives an overview of the NASA ER-2 aircraft. The contents include: 1) ER-2 Specifications; 2) ER-2 Basic Configuration; 3) ER-2 Payload Areas: Nose Area; 4) ER-2 Payload Areas: SuperPod Fore and Aftbody; 5) ER-2 Payload Areas: SuperPod Midbody; 6) ER-2 Payload Areas: Q-Bay; 7) ER-2 Payload Areas: Q-Bay Hatch Designs; 8) ER-2 Payload Areas: External Pods; 9) ER-2 Electrical/Control Interface; 10) ER-2 Typical Flight Profile; 11) Tropical Composition, Cloud and Climate Coupling TC-4; 12) TC-4 Timeline; 13) TC4 Area of Interest; 14) ER-2 TC4 Payload; 15) A/C ready for fuel; 16) ER-2 Pilot being suited; 17) ER-2 Taxing; 18) ER-2 Pilot post flight debrief; and 19) NASA ER-2: Flying Laboratory for Earth Science Studies and Remote Sensing.

  12. Ptc1p regulates cortical ER inheritance via Slt2p.

    PubMed

    Du, Yunrui; Walker, Lee; Novick, Peter; Ferro-Novick, Susan

    2006-10-01

    Studies in the yeast Saccharomyces cerevisiae have shown that the inheritance of endoplasmic reticulum (ER), mitochondria, and vacuoles involves the capture of a tubular structure at the bud tip. Ptc1p, a serine/threonine phosphatase, has previously been shown to regulate mitochondrial inheritance by an unknown mechanism. Ptc1p regulates the high osmolarity glycerol mitogen-activated protein kinase (MAPK) pathway and has also been implicated in the cell wall integrity (CWI) MAPK pathway. Here we show that the loss of Ptc1p or the Ptc1p binding protein, Nbp2p, causes a prominent delay in the delivery of ER tubules to the periphery of daughter cells and results in a dramatic increase in the level of phosphorylated Slt2p, the MAPK in the CWI pathway. Either loss of Slt2p or inhibition of the CWI pathway by addition of sorbitol, suppresses the ER inheritance defect in the ptc1Delta and nbp2Delta mutants. Our findings indicate that Ptc1p and Nbp2p regulate ER inheritance through the CWI MAPK pathway by modulating the MAPK, Slt2p. PMID:16977319

  13. COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport

    SciTech Connect

    Wang, Ying-Nai; Wang, Hongmei; Yamaguchi, Hirohito; Lee, Hong-Jen; Lee, Heng-Huan; Hung, Mien-Chie

    2010-09-03

    Research highlights: {yields} ARF1 activation is involved in the EGFR transport to the ER and the nucleus. {yields} Assembly of {gamma}-COP coatomer mediates EGFR transport to the ER and the nucleus. {yields} Golgi-to-ER retrograde trafficking regulates nuclear transport of EGFR. -- Abstract: Emerging evidence indicates that cell surface receptors, such as the entire epidermal growth factor receptor (EGFR) family, have been shown to localize in the nucleus. A retrograde route from the Golgi to the endoplasmic reticulum (ER) is postulated to be involved in the EGFR trafficking to the nucleus; however, the molecular mechanism in this proposed model remains unexplored. Here, we demonstrate that membrane-embedded vesicular trafficking is involved in the nuclear transport of EGFR. Confocal immunofluorescence reveals that in response to EGF, a portion of EGFR redistributes to the Golgi and the ER, where its NH{sub 2}-terminus resides within the lumen of Golgi/ER and COOH-terminus is exposed to the cytoplasm. Blockage of the Golgi-to-ER retrograde trafficking by brefeldin A or dominant mutants of the small GTPase ADP-ribosylation factor, which both resulted in the disassembly of the coat protein complex I (COPI) coat to the Golgi, inhibit EGFR transport to the ER and the nucleus. We further find that EGF-dependent nuclear transport of EGFR is regulated by retrograde trafficking from the Golgi to the ER involving an association of EGFR with {gamma}-COP, one of the subunits of the COPI coatomer. Our findings experimentally provide a comprehensive pathway that nuclear transport of EGFR is regulated by COPI-mediated vesicular trafficking from the Golgi to the ER, and may serve as a general mechanism in regulating the nuclear transport of other cell surface receptors.

  14. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics.

    PubMed

    Bravo, Roberto; Gutierrez, Tomás; Paredes, Felipe; Gatica, Damián; Rodriguez, Andrea E; Pedrozo, Zully; Chiong, Mario; Parra, Valentina; Quest, Andrew F G; Rothermel, Beverly A; Lavandero, Sergio

    2012-01-01

    Endoplasmic reticulum (ER) stress activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. The molecular mechanisms responsible for execution of the cell death program are relatively well characterized, but the metabolic events taking place during the adaptive phase of ER stress remain largely undefined. Here we discuss emerging evidence regarding the metabolic changes that occur during the onset of ER stress and how ER influences mitochondrial function through mechanisms involving calcium transfer, thereby facilitating cellular adaptation. Finally, we highlight how dysregulation of ER-mitochondrial calcium homeostasis during prolonged ER stress is emerging as a novel mechanism implicated in the onset of metabolic disorders. PMID:22064245

  15. Proteolysis in the secretory pathway

    SciTech Connect

    Guzowski, D.E.; Bienkowski, R.S.

    1987-05-01

    Many secretory proteins are degraded intracellularly rather than secreted, however the location of this catabolic process is not known. The authors have tested the hypothesis that the degradation occurs in the organelles of the secretory pathway. Slices of rat liver were incubated with (/sup 14/C)leucine for 3 h and then incubated under chase conditions for 30 min. The tissue was homogenized and the Golgi apparatus, smooth endoplasmic reticulum (sER) and rough endoplasmic reticulum (rER) were isolated by ultracentrifugation on a discontinuous sucrose gradient. The organelles were incubated in 0.3M sucrose-50 mM citrate (pH 4) for 8-12 h at 37 C; control samples were incubated at 4 C. Percent degradation was calculated as the amount of acid soluble radioactivity released relative to total radioactivity in the sample. Proteolysis in the organelles incubated at 37 C was as follows: Golgi: 15-25%; sER: 10-20%; rER: 10-20%. Proteolysis at 4 C was negligible in all cases. These results support the hypothesis that the compartments of the secretory pathway are capable of degrading newly synthesized secretory proteins.

  16. ER-Golgi network– a future target for anti-cancer therapy

    PubMed Central

    Wlodkowic, Donald; Skommer, Joanna; McGuinness, Dagmara; Hillier, Chris; Darzynkiewicz, Zbigniew

    2009-01-01

    Tumor cell demise is an important event in the elimination of abnormal malignant cells and provides an important mechanism of natural tumor suppression. Abnormalities incapacitating these finely tuned processes provide a strong advantage for cancer clones to succeed in evading both the physiological control systems and therapeutic intervention. Expanding our knowledge of the molecular “cross-talks” that regulate tumor cell demise is crucial in guiding the successful design of future anti-cancer therapeutics. Although currently available data indicate that elimination of malignant cells often depends on classical apoptotic pathways (mitochondrial and/or death receptor pathways), the evidence is mounting that alternative apoptotic and non-apoptotic pathways may effectively contribute to tumor cell death. The assumption that every organelle is capable of sensing, amplificating and executing cell death is also a relatively novel and unexplored concept. As recently shown, the secretory pathway can be actively involved in sensing stress stimuli and possibly even initiating and propagating cell death signaling. Experimental evidence indicates that ER and Golgi apparatus can activate both pro-survival (recovery) mechanisms as well as cell suicide programs if the stress-signaling threshold is exceeded. It is thus conceivable that the fragile balance of protein trafficking between various subcellular compartments provides an exceptional therapeutic opportunity. Interestingly, a growing number of reports recognize novel therapeutic targets, including proteins in control of endoplasmic reticulum (ER) and Golgi homeostasis. Further studies are, however, needed to elucidate precise signaling pathways emanating from ER-Golgi compartment. Development of more potent and selective small-molecule drugs that activate ER-Golgi mediated cell demise is also needed. As the interest in the role of ER-Golgi network during cancer cell death has been gaining momentum, we attempt here to

  17. Increased ER–mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress

    PubMed Central

    Bravo, Roberto; Vicencio, Jose Miguel; Parra, Valentina; Troncoso, Rodrigo; Munoz, Juan Pablo; Bui, Michael; Quiroga, Clara; Rodriguez, Andrea E.; Verdejo, Hugo E.; Ferreira, Jorge; Iglewski, Myriam; Chiong, Mario; Simmen, Thomas; Zorzano, Antonio; Hill, Joseph A.; Rothermel, Beverly A.; Szabadkai, Gyorgy; Lavandero, Sergio

    2011-01-01

    Increasing evidence indicates that endoplasmic reticulum (ER) stress activates the adaptive unfolded protein response (UPR), but that beyond a certain degree of ER damage, this response triggers apoptotic pathways. The general mechanisms of the UPR and its apoptotic pathways are well characterized. However, the metabolic events that occur during the adaptive phase of ER stress, before the cell death response, remain unknown. Here, we show that, during the onset of ER stress, the reticular and mitochondrial networks are redistributed towards the perinuclear area and their points of connection are increased in a microtubule-dependent fashion. A localized increase in mitochondrial transmembrane potential is observed only in redistributed mitochondria, whereas mitochondria that remain in other subcellular zones display no significant changes. Spatial re-organization of these organelles correlates with an increase in ATP levels, oxygen consumption, reductive power and increased mitochondrial Ca2+ uptake. Accordingly, uncoupling of the organelles or blocking Ca2+ transfer impaired the metabolic response, rendering cells more vulnerable to ER stress. Overall, these data indicate that ER stress induces an early increase in mitochondrial metabolism that depends crucially upon organelle coupling and Ca2+ transfer, which, by enhancing cellular bioenergetics, establishes the metabolic basis for the adaptation to this response. PMID:21628424

  18. Unfolded protein response-induced ERdj3 secretion links ER stress to extracellular proteostasis

    PubMed Central

    Genereux, Joseph C; Qu, Song; Zhou, Minghai; Ryno, Lisa M; Wang, Shiyu; Shoulders, Matthew D; Kaufman, Randal J; Lasmézas, Corinne I; Kelly, Jeffery W; Wiseman, R Luke

    2015-01-01

    The Unfolded Protein Response (UPR) indirectly regulates extracellular proteostasis through transcriptional remodeling of endoplasmic reticulum (ER) proteostasis pathways. This remodeling attenuates secretion of misfolded, aggregation-prone proteins during ER stress. Through these activities, the UPR has a critical role in preventing the extracellular protein aggregation associated with numerous human diseases. Here, we demonstrate that UPR activation also directly influences extracellular proteostasis through the upregulation and secretion of the ER HSP40 ERdj3/DNAJB11. Secreted ERdj3 binds misfolded proteins in the extracellular space, substoichiometrically inhibits protein aggregation, and attenuates proteotoxicity of disease-associated toxic prion protein. Moreover, ERdj3 can co-secrete with destabilized, aggregation-prone proteins in a stable complex under conditions where ER chaperoning capacity is overwhelmed, preemptively providing extracellular chaperoning of proteotoxic misfolded proteins that evade ER quality control. This regulated co-secretion of ERdj3 with misfolded clients directly links ER and extracellular proteostasis during conditions of ER stress. ERdj3 is, to our knowledge, the first metazoan chaperone whose secretion into the extracellular space is regulated by the UPR, revealing a new mechanism by which UPR activation regulates extracellular proteostasis. PMID:25361606

  19. p53 and Translation Attenuation Regulate Distinct Cell Cycle Checkpoints during Endoplasmic Reticulum (ER) Stress*

    PubMed Central

    Thomas, Sally E.; Malzer, Elke; Ordóñez, Adriana; Dalton, Lucy E.; van ′t Wout, Emily F. A.; Liniker, Elizabeth; Crowther, Damian C.; Lomas, David A.; Marciniak, Stefan J.

    2013-01-01

    Cell cycle checkpoints ensure that proliferation occurs only under permissive conditions, but their role in linking nutrient availability to cell division is incompletely understood. Protein folding within the endoplasmic reticulum (ER) is exquisitely sensitive to energy supply and amino acid sources because deficiencies impair luminal protein folding and consequently trigger ER stress signaling. Following ER stress, many cell types arrest within the G1 phase, although recent studies have identified a novel ER stress G2 checkpoint. Here, we report that ER stress affects cell cycle progression via two classes of signal: an early inhibition of protein synthesis leading to G2 delay involving CHK1 and a later induction of G1 arrest associated both with the induction of p53 target genes and loss of cyclin D1. We show that substitution of p53/47 for p53 impairs the ER stress G1 checkpoint, attenuates the recovery of protein translation, and impairs induction of NOXA, a mediator of cell death. We propose that cell cycle regulation in response to ER stress comprises redundant pathways invoked sequentially first to impair G2 progression prior to ultimate G1 arrest. PMID:23341460

  20. ER/Golgi Intermediates Acquire Golgi Enzymes by Brefeldin a–Sensitive Retrograde Transport in Vitro

    PubMed Central

    Lin, Chung-Chih; Love, Harold D.; Gushue, Jennifer N.; Bergeron, John J.M.; Ostermann, Joachim

    1999-01-01

    Secretory proteins exit the ER in transport vesicles that fuse to form vesicular tubular clusters (VTCs) which move along microtubule tracks to the Golgi apparatus. Using the well-characterized in vitro approach to study the properties of Golgi membranes, we determined whether the Golgi enzyme NAGT I is transported to ER/Golgi intermediates. Secretory cargo was arrested at distinct steps of the secretory pathway of a glycosylation mutant cell line, and in vitro complementation of the glycosylation defect was determined. Complementation yield increased after ER exit of secretory cargo and was optimal when transport was blocked at an ER/Golgi intermediate step. The rapid drop of the complementation yield as secretory cargo progresses into the stack suggests that Golgi enzymes are preferentially targeted to ER/Golgi intermediates and not to membranes of the Golgi stack. Two mechanisms for in vitro complementation could be distinguished due to their different sensitivities to brefeldin A (BFA). Transport occurred either by direct fusion of preexisting transport intermediates with ER/Golgi intermediates, or it occurred as a BFA-sensitive and most likely COP I–mediated step. Direct fusion of ER/Golgi intermediates with cisternal membranes of the Golgi stack was not observed under these conditions. PMID:10613904

  1. Human Peroxin PEX3 Is Co-translationally Integrated into the ER and Exits the ER in Budding Vesicles.

    PubMed

    Mayerhofer, Peter U; Bañó-Polo, Manuel; Mingarro, Ismael; Johnson, Arthur E

    2016-02-01

    The long-standing paradigm that all peroxisomal proteins are imported post-translationally into pre-existing peroxisomes has been challenged by the detection of peroxisomal membrane proteins (PMPs) inside the endoplasmic reticulum (ER). In mammals, the mechanisms of ER entry and exit of PMPs are completely unknown. We show that the human PMP PEX3 inserts co-translationally into the mammalian ER via the Sec61 translocon. Photocrosslinking and fluorescence spectroscopy studies demonstrate that the N-terminal transmembrane segment (TMS) of ribosome-bound PEX3 is recognized by the signal recognition particle (SRP). Binding to SRP is a prerequisite for targeting of the PEX3-containing ribosome•nascent chain complex (RNC) to the translocon, where an ordered multistep pathway integrates the nascent chain into the membrane adjacent to translocon proteins Sec61α and TRAM. This insertion of PEX3 into the ER is physiologically relevant because PEX3 then exits the ER via budding vesicles in an ATP-dependent process. This study identifies early steps in human peroxisomal biogenesis by demonstrating sequential stages of PMP passage through the mammalian ER. PMID:26572236

  2. Electronic state of Er in sputtered AlN:Er films determined by magnetic measurements

    SciTech Connect

    Narang, V.; Seehra, M. S.; Korakakis, D.

    2014-12-07

    The optoelectronic and piezoelectric properties of AlN:Er thin films have been of great recent interest for potential device applications. In this work, the focus is on the electronic state of Er in AlN:Er thin films prepared by reactive magnetron sputtering on (001) p-type Si substrate. X-ray diffraction shows that Er doping expands the lattice and the AlN:Er film has preferential c-plane orientation. To determine whether Er in AlN:Er is present as Er metal, Er{sub 2}O{sub 3}, or Er{sup 3+} substituting for Al{sup 3+}, detailed measurements and analysis of the temperature dependence (2 K–300 K) of the magnetization M at a fixed magnetic field H along with the M vs. H data at 2 K up to H = 90 kOe are presented. The presence of Er{sub 2}O{sub 3} and Er metal is ruled out since their characteristic magnetic transitions are not observed in the AlN:Er sample. Instead, the observed M vs. T and M vs. H variations are consistent with Er present as Er{sup 3+} substituting for Al{sup 3+} in AlN:Er at a concentration x = 1.08% in agreement with x = 0.94% ± 0.20% determined using x-ray photoelectron spectroscopy (XPS). The larger size of Er{sup 3+} vs. Al{sup 3+}explains the observed lattice expansion of AlN:Er.

  3. ER to synapse trafficking of NMDA receptors

    PubMed Central

    Horak, Martin; Petralia, Ronald S.; Kaniakova, Martina; Sans, Nathalie

    2014-01-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. There are three distinct subtypes of ionotropic glutamate receptors (GluRs) that have been identified including 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid receptors (AMPARs), N-methyl-D-aspartate receptors (NMDARs) and kainate receptors. The most common GluRs in mature synapses are AMPARs that mediate the fast excitatory neurotransmission and NMDARs that mediate the slow excitatory neurotransmission. There have been large numbers of recent reports studying how a single neuron regulates synaptic numbers and types of AMPARs and NMDARs. Our current research is centered primarily on NMDARs and, therefore, we will focus in this review on recent knowledge of molecular mechanisms occurring (1) early in the biosynthetic pathway of NMDARs, (2) in the transport of NMDARs after their release from the endoplasmic reticulum (ER); and (3) at the plasma membrane including excitatory synapses. Because a growing body of evidence also indicates that abnormalities in NMDAR functioning are associated with a number of human psychiatric and neurological diseases, this review together with other chapters in this issue may help to enhance research and to gain further knowledge of normal synaptic physiology as well as of the etiology of many human brain diseases. PMID:25505872

  4. ER to synapse trafficking of NMDA receptors.

    PubMed

    Horak, Martin; Petralia, Ronald S; Kaniakova, Martina; Sans, Nathalie

    2014-01-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. There are three distinct subtypes of ionotropic glutamate receptors (GluRs) that have been identified including 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid receptors (AMPARs), N-methyl-D-aspartate receptors (NMDARs) and kainate receptors. The most common GluRs in mature synapses are AMPARs that mediate the fast excitatory neurotransmission and NMDARs that mediate the slow excitatory neurotransmission. There have been large numbers of recent reports studying how a single neuron regulates synaptic numbers and types of AMPARs and NMDARs. Our current research is centered primarily on NMDARs and, therefore, we will focus in this review on recent knowledge of molecular mechanisms occurring (1) early in the biosynthetic pathway of NMDARs, (2) in the transport of NMDARs after their release from the endoplasmic reticulum (ER); and (3) at the plasma membrane including excitatory synapses. Because a growing body of evidence also indicates that abnormalities in NMDAR functioning are associated with a number of human psychiatric and neurological diseases, this review together with other chapters in this issue may help to enhance research and to gain further knowledge of normal synaptic physiology as well as of the etiology of many human brain diseases. PMID:25505872

  5. Regulation of the transcriptome by ER stress: non-canonical mechanisms and physiological consequences

    PubMed Central

    Arensdorf, Angela M.; Diedrichs, Danilo; Rutkowski, D. Thomas

    2013-01-01

    The mammalian unfolded protein response (UPR) is propagated by three ER-resident transmembrane proteins, each of which initiates a signaling cascade that ultimately culminates in production of a transcriptional activator. The UPR was originally characterized as a pathway for upregulating ER chaperones, and a comprehensive body of subsequent work has shown that protein synthesis, folding, oxidation, trafficking, and degradation are all transcriptionally enhanced by the UPR. However, the global reach of the UPR extends to genes involved in diverse physiological processes having seemingly little to do with ER protein folding, and this includes a substantial number of mRNAs that are suppressed by stress rather than stimulated. Through multiple non-canonical mechanisms emanating from each of the UPR pathways, the cell dynamically regulates transcription and mRNA degradation. Here we highlight these mechanisms and their increasingly appreciated impact on physiological processes. PMID:24348511

  6. TIMP4 Modulates ER-α Signalling in MCF7 Breast Cancer Cells.

    PubMed

    Pruefer, F; Vazquez-Santillan, K; Munoz-Galindo, L; Cruz-Colin, J L; Maldonado, V; Melendez-Zajgla, J

    2016-01-01

    Tissue inhibitor of metalloprotease 4 (TIMP4) contributes to poor prognosis in breast and other tumours. However, the mechanisms of how TIMP4 influences breast cancer cell behaviour are unknown. Our aim was to explore the signalling pathways modulated by TIMP4 in breast cancer cells. Human recombinant TIMP4 was added to MCF7 breast cancer cells and RNASeq was performed. TIMP4 RNASeq results were validated by RT-PCR. Network analyses of TIMP4-exposed cells showed that ER-α, HIF1A and TGF-β signalling were activated, whereas FOXO3 signalling was downregulated. ER-α protein levels were increased and concordantly, promoters of TIMP4-upregulated genes were significantly enriched in oestrogen-binding sites. We concluded that TIMP4 modulates multiple signalling pathways relevant in cancer in MCF7 cells, including the ER-α cascade. PMID:27187039

  7. UBV photometry of ER Vulpeculae

    NASA Astrophysics Data System (ADS)

    Srivastava, R. K.; Padalia, T. D.; Srivastava, J. B.

    1991-08-01

    UBV photometry of the RS CVn-type eclipsing binary system ER Vulpeculae has been presented. The period comes out to be 0.698093d. The average depths of primary and secondary minima are, respectively, 0.21 and 0.12m. The colors at various phases have been given. A dip is seen around phase 0.73P as was seen in the observations of Arevalo et al. (1988). Large scatter is present in the observations as noticed earlier, and may be due to activity of the components.

  8. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics

    PubMed Central

    Bravo, Roberto; Gutierrez, Tomás; Paredes, Felipe; Gatica, Damián; Rodriguez, Andrea E.; Pedrozo, Zully; Chiong, Mario; Parra, Valentina; Quest, Andrew F.G.; Rothermel, Beverly A.; Lavandero, Sergio

    2014-01-01

    Endoplasmic reticulum (ER) stress activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. The molecular mechanisms responsible for execution of the cell death program are relatively well characterized, but the metabolic events taking place during the adaptive phase of ER stress remain largely undefined. Here we discuss emerging evidence regarding the metabolic changes that occur during the onset of ER stress and how ER influences mitochondrial function through mechanisms involving calcium transfer, thereby facilitating cellular adaptation. Finally, we highlight how dysregulation of ER–mitochondrial calcium homeostasis during prolonged ER stress is emerging as a novel mechanism implicated in the onset of metabolic disorders. PMID:22064245

  9. Completion report for Well Cluster ER-20-5

    SciTech Connect

    1997-03-01

    The Well Cluster ER-20-5 drilling and completion project was conducted for the US Department of Energy, Nevada Operations Office (DOE/NV), in support of the Nevada Environmental Restoration Project at the Nevada Test Site (NTS) in Nye County, Nevada. Its primary tasks include collecting geological, geophysical, hydrological, and water chemistry data from new and existing wells to define groundwater quality in addition to pathways and rates of groundwater migration. A program of drilling wells near the sites of selected underground nuclear tests (near-field drilling) was implemented to obtain site-specific data about the nature and extent of migration of radionuclides that might have been produced by an underground nuclear explosion. Well Cluster ER-20-5 is the first near-field drilling project initiated at the NTS. This document presents construction data and summarizes the scientific data gathered during the drilling and well-installation phases for all three holes drilled at Well Cluster ER-20-5. Some of this information is preliminary and unprocessed, but was released so that drilling, geotechnical, well design, and completion data could be rapidly disseminated. Additional information about water levels, aquifer testing, and groundwater sampling will be reported after any of this work is performed. Any additional geologic and/or geophysical investigations conducted for this project is described in one or more analysis and interpretation reports. The lithologic and stratigraphic logs, however, are provided in final form.

  10. ER and PR signaling nodes during mammary gland development

    PubMed Central

    2012-01-01

    The ovarian hormones estrogen and progesterone orchestrate postnatal mammary gland development and are implicated in breast cancer. Most of our understanding of the molecular mechanisms of estrogen receptor (ER) and progesterone receptor (PR) signaling stems from in vitro studies with hormone receptor-positive cell lines. They have shown that ER and PR regulate gene transcription either by binding to DNA response elements directly or via other transcription factors and recruiting co-regulators. In addition they cross-talk with other signaling pathways through nongenomic mechanisms. Mouse genetics combined with tissue recombination techniques have provided insights about the action of these two hormones in vivo. It has emerged that hormones act on a subset of mammary epithelial cells and relegate biological functions to paracrine factors. With regards to hormonal signaling in breast carcinomas, global gene expression analyses have led to the identification of gene expression signatures that are characteristic of ERα-positive tumors that have stipulated functional studies of hitherto poorly understood transcription factors. Here, we highlight what has been learned about ER and PR signaling nodes in these different systems and attempt to lay out in which way the insights may converge. PMID:22809143

  11. Luminescence and Thermal Properties of Er:GSGG and Yb,Er:GSGG Laser Crystals

    NASA Astrophysics Data System (ADS)

    Sun, Dun-Lu; Luo, Jian-Qiao; Xiao, Jing-Zhong; Zhang, Qing-Li; Chen, Jia-Kang; Liu, Wen-Peng; Kang, Hong-Xiang; Yin, Shao-Tang

    2012-05-01

    Er3+-doped and Yb3+/Er3+ co-doped Gd3Sc2Ga3O12 (abbreviated as Er:GSGG and Yb,Er:GSGG, respectively) laser crystals are investigated by using a combination of spectroscopic measurements and thermal characterizations. An absorption peak of Yb,Er:GSGG crystal shifts to 970 nm and its absorption band broadens obviously, which makes the crystal suitable for pumping by a 970 nm laser diode (LD). This crystal also exhibits a shorter lifetime of a lower laser level, a larger emission cross section and higher thermal conductivity than those of Er:GSGG. All these factors suggest that Yb3+/Er3+ co-doping has a positive effect on improving the spectroscopic and thermal performances in GSGG based laser crystals, and imply that double-doped Yb,Er:GSGG crystal is a potential candidate as an excellent LD pumped 2.79 μm laser material.

  12. ER-stress in Alzheimer's disease: turning the scale?

    PubMed

    Endres, Kristina; Reinhardt, Sven

    2013-01-01

    Pathogenic mechanisms of Alzheimer's disease (AD) are intensely investigated as it is the most common form of dementia and burdens society by its costs and social demands. While key molecules such as A-beta peptides and tau have been identified decades ago, it is still enigmatic what drives the disease in its sporadic manifestation. Synthesis of A-beta peptides as well as phosphorylation of tau proteins comprise normal cellular functions and occur in principle in the healthy as well as in dementia-affected persons. Dyshomeostasis of Amyloid Precursor Protein (APP) cleavage, energy metabolism or kinase/phosphatase activity due to stressors has been suggested as a trigger of the disease. One way for cells to escape stress based on dysfunction of ER is the unfolded protein response - the UPR. This pathway is composed out of three different routes that differ in proteins involved, targets and consequences for cell fate: activation of transmembrane ER resident kinases IRE1-alpha and PERK or monomerization of membrane-anchored activating transcription factor 6 (ATF6) induce activation of versatile transcription factors (XBP-1, eIF2-alpha/ATF4 and ATF6 P50). These bind to specific DNA sequences on target gene promoters and on one hand attenuate general ER-prone protein synthesis and on the other equip the cell with tools to de-stress. If cells fail in stress compensation, this signaling also is able to evoke apoptosis. In this review we summarized knowledge on how APP processing and phosphorylation of tau might be influenced by ER-stress signaling. In addition, we depicted the effects UPR itself seems to have on molecules closely related to AD and describe what is known about UPR in AD animal models as well as in human patients. PMID:24319643

  13. Decay of /sup 150/Er

    SciTech Connect

    Moltz, D.M.; Toth, K.S.; Ellis-Akovali, Y.A.; Cole, J.D.

    1982-09-01

    A new activity, T/sub 1/2/ = 20 +- 2 sec, was observed in /sup 12/C bombardments of /sup 144/Sm. Only one ..gamma.. ray, 476.0 +- 0.1 keV, was found to be associated with this nuclide. We identify the new isotope as /sup 150/Er and propose that it decays mainly to one level in /sup 150/Ho at an excitation energy of approx.476 keV by an allowed ..beta.. transition which connects states with the following configurations: O/sup +/(..pi..h/sub 11/2/, ..pi..h/sub 11/2/)..-->..1/sup +/(..pi..h/sub 11/2/,..nu..h/sub 9/2/). As part of the investigation, the decay properties of the high- and low-spin /sup 150/Ho isomers were reexamined.

  14. Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death

    SciTech Connect

    Apostolou, Andria; Shen Yuxian; Liang Yan; Luo Jun; Fang Shengyun

    2008-08-01

    The accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress that initiates the unfolded protein response (UPR). UPR activates both adaptive and apoptotic pathways, which contribute differently to disease pathogenesis. To further understand the functional mechanisms of UPR, we identified 12 commonly UPR-upregulated genes by expression microarray analysis. Here, we describe characterization of Armet/MANF, one of the 12 genes whose function was not clear. We demonstrated that the Armet/MANF protein was upregulated by various forms of ER stress in several cell lines as well as by cerebral ischemia of rat. Armet/MANF was localized in the ER and Golgi and was also a secreted protein. Silencing Armet/MANF by siRNA oligos in HeLa cells rendered cells more susceptible to ER stress-induced death, but surprisingly increased cell proliferation and reduced cell size. Overexpression of Armet/MANF inhibited cell proliferation and improved cell viability under glucose-free conditions and tunicamycin treatment. Based on its inhibitory properties for both proliferation and cell death we have demonstrated, Armet is, thus, a novel secreted mediator of the adaptive pathway of UPR.

  15. Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma.

    PubMed

    Ma, Xiao-Hong; Piao, Sheng-Fu; Dey, Souvik; McAfee, Quentin; Karakousis, Giorgos; Villanueva, Jessie; Hart, Lori S; Levi, Samuel; Hu, Janice; Zhang, Gao; Lazova, Rossitza; Klump, Vincent; Pawelek, John M; Xu, Xiaowei; Xu, Wei; Schuchter, Lynn M; Davies, Michael A; Herlyn, Meenhard; Winkler, Jeffrey; Koumenis, Constantinos; Amaravadi, Ravi K

    2014-03-01

    Melanomas that result from mutations in the gene encoding BRAF often become resistant to BRAF inhibition (BRAFi), with multiple mechanisms contributing to resistance. While therapy-induced autophagy promotes resistance to a number of therapies, especially those that target PI3K/mTOR signaling, its role as an adaptive resistance mechanism to BRAFi is not well characterized. Using tumor biopsies from BRAF(V600E) melanoma patients treated either with BRAFi or with combined BRAF and MEK inhibition, we found that BRAFi-resistant tumors had increased levels of autophagy compared with baseline. Patients with higher levels of therapy-induced autophagy had drastically lower response rates to BRAFi and a shorter duration of progression-free survival. In BRAF(V600E) melanoma cell lines, BRAFi or BRAF/MEK inhibition induced cytoprotective autophagy, and autophagy inhibition enhanced BRAFi-induced cell death. Shortly after BRAF inhibitor treatment in melanoma cell lines, mutant BRAF bound the ER stress gatekeeper GRP78, which rapidly expanded the ER. Disassociation of GRP78 from the PKR-like ER-kinase (PERK) promoted a PERK-dependent ER stress response that subsequently activated cytoprotective autophagy. Combined BRAF and autophagy inhibition promoted tumor regression in BRAFi-resistant xenografts. These data identify a molecular pathway for drug resistance connecting BRAFi, the ER stress response, and autophagy and provide a rationale for combination approaches targeting this resistance pathway. PMID:24569374

  16. Ternary Dy-Er-Al magnetic refrigerants

    DOEpatents

    Gschneidner, Jr., Karl A.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant.

  17. Are Wnts Retrogradely Transported to the ER?

    PubMed

    Tang, Bor Luen

    2016-11-01

    A recent report showed that Drosophila miR-307a initiates endoplasmic reticulum (ER) stress in wingless (wg)-expressing cells by suppression of the evolutionarily conserve Wnt secretion factor Wntless (Wls). Interestingly, the authors noted that wg has a putative C-terminal dilysine motif (KKVY), which is required for its apparent retrograde Golgi-to-ER transport. Wls suppression resulted in ER stress, which was phenocopied by several other manipulations that impaired wg secretion in flies, as well as Wnt5a secretion in mammalian cells. The authors surmised that their data "reveals a previously unknown Golgi-to-ER retrograde route of wg, and elucidates a correlation between Wnt secretion and ER stress." However, there are obvious caveats to this interpretation, as ER stress resulting from Wnt secretion impairment could be readily explained by its inability to leave the ER, and not resulting from Golgi-to-ER retrograde transport. J. Cell. Physiol. 231: 2315-2316, 2016. © 2016 Wiley Periodicals, Inc. PMID:26916992

  18. BOREAS Level-0 ER-2 Aerial Photography

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Dominquez, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the ER-2 and other aerial photography was collected to provide finely detailed and spatially extensive documentation of the condition of the primary study sites. The ER-2 aerial photography consists of color-IR transparencies collected during flights in 1994 and 1996 over the study areas.

  19. Ternary Dy-Er-Al magnetic refrigerants

    DOEpatents

    Gschneidner, K.A. Jr.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant. 29 figs.

  20. Enhanced recovery pathway for thoracic surgery in the UK

    PubMed Central

    Solli, Piergiorgio

    2016-01-01

    Background Enhanced recovery (ER) refers to a combination of perioperative interventions designed to minimise the impact of surgery on patients’ recovery in order to reduce postoperative complications and to allow an early discharge reducing hospital costs. Methods An ER protocol was established at our institution following a review of the best evidence available. We introduced a multi-disciplinary integrated perioperative pathway by engaging with every person involved, including the patients themselves. The programme was monitored using specifically-designed patients related outcome measures (PROMs). Results One-hundred and fifty-four ER patients were compared with 171 controls from the year before ER was introduced. There was an 80% increase in same-day admissions, with a net gain of more than 300 patient bed-days. The ER group had a significantly higher number of procedures performed by video assisted thoracoscopic surgery (VATS) (ER, 32.9% vs. 9.4%, P=0.0001) and a lower rate of admission to the intensive care unit (ER, 5.8% versus 12.9%, P=0.04). Patients on the ER programme had a significantly reduced postoperative length of stay (mean ER, 5.2 vs. 11.7 days, P<0.0001). Patient satisfaction was higher in the ER group after a patient survey. The project resulted in a net saving of £214,000 for the Trust for the 2013/2014 financial year. We were also able to increase the number of patients who underwent thoracic surgery in 2013/2014 by 30% (159 patients) compared with 2012/2013. Conclusions The ER pathway has proven to be a safe perioperative management strategy to improve patient satisfaction and to reduce the length of hospital stay and cost after major thoracic surgery, without increasing morbidity or mortality. PMID:26941974

  1. Estrogen stimulates expression of chicken hepatic vitellogenin II and very low-density apolipoprotein II through ER-α.

    PubMed

    Li, Jun; Leghari, Imdad H; He, Bin; Zeng, Weidong; Mi, Yuling; Zhang, Caiqiao

    2014-08-01

    Steroid hormones and their receptors play pivotal roles throughout vertebrate reproduction and development. Egg formation in avian species is a prime example. The synthesis of egg yolk proteins by the liver is highly dependent on estrogen. Two major components of the yolk protein precursors, vitellogenin II (VTG II) and very low-density apolipoprotein II (ApoVLDL II), are synthesized in the liver of hens under estrogen stimulation and are subsequently transferred via the blood to the developing oocytes. Estrogen-inducible transcription can be mediated through estrogen receptors (ERs) (ER-α and ER-β) or through G protein-coupled receptor 30 (GPR30), but the exact participation of the individual receptor is not clear. Here, we determine the relative contribution of each transduction pathway in the synthesis of VTG II and ApoVLDL II in the hepatocytes by using selective compounds that are known to specifically interact with each of the ERs and GPR30. 17β-Estradiol and propyl pyrazole triol (PPT, ER-α agonist) induced increase in VTG II and ApoVLDL II mRNA expressions in a dose-dependent manner. A high concentration of diarylpropionitrile (DPN, which preferentially motivates ER-β) slightly stimulated the expression of VTG II and ApoVLDL II mRNAs. However, G-1 (a GPR30 agonist) failed to display any stimulating role. Methyl-piperidino-pyrazole (a highly selective ER-α antagonist) fully blocked the expression of both yolk precursors, which were upregulated by 17β-estradiol, PPT, and DPN. Considering that DPN can also provoke the action of ER-α at high concentration, this excludes the participation of ER-β and supports the role of ER-α. The aforementioned results indicate that estrogen stimulates the expression of VTG II and ApoVLDL II mRNAs predominantly through ER-α in the chicken liver. PMID:24938798

  2. IRE1-RACK1 axis orchestrates ER stress preconditioning-elicited cytoprotection from ischemia/reperfusion injury in liver.

    PubMed

    Liu, Dong; Liu, Xing; Zhou, Ti; Yao, William; Zhao, Jun; Zheng, Zhigang; Jiang, Wei; Wang, Fengsong; Aikhionbare, Felix O; Hill, Donald L; Emmett, Nerimah; Guo, Zhen; Wang, Dongmei; Yao, Xuebiao; Chen, Yong

    2016-04-01

    Endoplasmic reticulum (ER) stress is involved in ischemic preconditioning that protects various organs from ischemia/reperfusion (I/R) injury. We established an in vivo ER stress preconditioning model in which tunicamycin was injected into rats before hepatic I/R. The hepatic I/R injury, demonstrated by serum aminotransferase level and the ultra-structure of the liver, was alleviated by administration of tunicamycin, which induced ER stress in rat liver by activating inositol-requiring enzyme 1 (IRE1) and upregulating 78 kDa glucose-regulated protein (GRP78). The proteomic identification for IRE1 binders revealed interaction and cooperation among receptor for activated C kinase 1 (RACK1), phosphorylated AMPK, and IRE1 under ER stress conditions in a spatiotemporal manner. Furthermore, in vitro ER stress preconditioning was induced by thapsigargin and tunicamycin in L02 and HepG2 cells. Surprisingly, BCL2 was found to be phosphorylated by IRE1 under ER stress conditions to prevent apoptotic process by activation of autophagy. In conclusion, ER stress preconditioning protects against hepatic I/R injury, which is orchestrated by IRE1-RACK1 axis through the activation of BCL2. Our findings provide novel insights into the molecular pathways underlying ER stress preconditioning-elicited cytoprotective effect against hepatic I/R injury. PMID:26711306

  3. Facilitative plasma membrane transporters function during ER transit

    PubMed Central

    Takanaga, Hitomi; Frommer, Wolf B.

    2010-01-01

    Although biochemical studies suggested a high permeability of the endoplasmic reticulum (ER) membrane for small molecules, proteomics identified few specialized ER transporters. To test functionality of transporters during ER passage, we tested whether glucose transporters (GLUTs, SGLTs) destined for the plasma membrane are active during ER transit. HepG2 cells were characterized by low-affinity ER transport activity, suggesting that ER uptake is protein mediated. The much-reduced capacity of HEK293T cells to take up glucose across the plasma membrane correlated with low ER transport. Ectopic expression of GLUT1, -2, -4, or -9 induced GLUT isoform-specific ER transport activity in HEK293T cells. In contrast, the Na+-glucose cotransporter SGLT1 mediated efficient plasma membrane glucose transport but no detectable ER uptake, probably because of lack of a sufficient sodium gradient across the ER membrane. In conclusion, we demonstrate that GLUTs are sufficient for mediating ER glucose transport en route to the plasma membrane. Because of the low volume of the ER, trace amounts of these uniporters contribute to ER solute import during ER transit, while uniporters and cation-coupled transporters carry out export from the ER, together potentially explaining the low selectivity of ER transport. Expression levels and residence time of transporters in the ER, as well as their coupling mechanisms, could be key determinants of ER permeability.—Takanaga, H., Frommer, W. B. Facilitative plasma membrane transporters function during ER transit. PMID:20354141

  4. Targeting the ER-autophagy system in the trabecular meshwork to treat glaucoma.

    PubMed

    Stothert, Andrew R; Fontaine, Sarah N; Sabbagh, Jonathan J; Dickey, Chad A

    2016-03-01

    A major drainage network involved in aqueous humor dynamics is the conventional outflow pathway, which is gated by the trabecular meshwork (TM). The TM acts as a molecular sieve, providing resistance to aqueous outflow, which is responsible for regulating intraocular pressure (IOP). If the TM is damaged, aqueous outflow is impaired, IOP increases and glaucoma can manifest. Mutations in the MYOC gene cause hereditary primary open-angle glaucoma (POAG) by promoting the abnormal amyloidosis of the myocilin protein in the endoplasmic reticulum (ER), leading to ER stress-induced TM cell death. Myocilin accumulation is observed in approximately 70-80% of all glaucoma cases suggesting that environmental or other genetic factors may also promote myocilin toxicity. For example, simply preventing myocilin glycosylation is sufficient to promote its abnormal accretion. These myocilin amyloids are unique as there are no other known pathogenic proteins that accumulate within the ER of TM cells and cause toxicity. Moreover, this pathogenic accumulation only kills TM cells, despite expression of this protein in other cell types, suggesting that another modifier exclusive to the TM participates in the proteotoxicity of myocilin. ER autophagy (reticulophagy) is one of the pathways essential for myocilin clearance that can be impacted dramatically by aging and other environmental factors such as nutrition. This review will discuss the link between myocilin and autophagy, evaluating the role of this degradation pathway in glaucoma as well as its potential as a therapeutic target. PMID:26302411

  5. Bridges between mitochondrial oxidative stress, ER stress and mTOR signaling in pancreatic β cells.

    PubMed

    Wang, Jing; Yang, Xin; Zhang, Jingjing

    2016-08-01

    Pancreatic β cell dysfunction, i.e., failure to provide insulin in concentrations sufficient to control blood sugar, is central to the etiology of all types of diabetes. Current evidence implicates mitochondrial oxidative stress and endoplasmic reticulum (ER) stress in pancreatic β cell loss and impaired insulin secretion. Oxidative and ER stress are interconnected so that misfolded proteins induce reactive oxygen species (ROS) production; likewise, oxidative stress disturbs the ER redox state thereby disrupting correct disulfide bond formation and proper protein folding. mTOR signaling regulates many metabolic processes including protein synthesis, cell growth, survival and proliferation. Oxidative stress inhibits mTORC1, which is considered an important suppressor of mitochondrial oxidative stress in β cells, and ultimately, controls cell survival. The interplay between ER stress and mTORC1 is complicated, since the unfolded protein response (UPR) activation can occur upstream or downstream of mTORC1. Persistent activation of mTORC1 initiates protein synthesis and UPR activation, while in the later phase induces ER stress. Chronic activation of ER stress inhibits Akt/mTORC1 pathway, while under particular settings, acute activation of UPR activates Akt-mTOR signaling. Thus, modulating mitochondrial oxidative stress and ER stress via mTOR signaling may be an approach that will effectively suppress obesity- or glucolipotoxicity-induced metabolic disorders such as insulin resistance and type 2 diabetes mellitus (T2DM). In this review, we focus on the regulations between mTOR signaling and mitochondrial oxidative or ER stress in pancreatic β cells. PMID:27185188

  6. Coordination of stress, Ca2+, and immunogenic signaling pathways by PERK at the endoplasmic reticulum.

    PubMed

    van Vliet, Alexander R; Garg, Abhishek D; Agostinis, Patrizia

    2016-07-01

    The endoplasmic reticulum (ER) is the main coordinator of intracellular Ca2+ signaling, protein synthesis, and folding. The ER is also implicated in the formation of contact sites with other organelles and structures, including mitochondria, plasma membrane (PM), and endosomes, thereby orchestrating through interorganelle signaling pathways, a variety of cellular responses including Ca2+ homeostasis, metabolism, and cell death signaling. Upon loss of its folding capacity, incited by a number of stress signals including those elicited by various anticancer therapies, the unfolded protein response (UPR) is launched to restore ER homeostasis. The ER stress sensor protein kinase RNA-like ER kinase (PERK) is a key mediator of the UPR and its role during ER stress has been largely recognized. However, growing evidence suggests that PERK may govern signaling pathways through UPR-independent functions. Here, we discuss emerging noncanonical roles of PERK with particular relevance for the induction of danger or immunogenic signaling and interorganelle communication. PMID:26872313

  7. Amyotrophic lateral sclerosis (ALS)-associated VAPB-P56S inclusions represent an ER quality control compartment

    PubMed Central

    2013-01-01

    Background Protein aggregation and the formation of intracellular inclusions are a central feature of many neurodegenerative disorders, but precise knowledge about their pathogenic role is lacking in most instances. Here we have characterized inclusions formed in transgenic mice carrying the P56S mutant form of VAPB that causes various motor neuron syndromes including ALS8. Results Inclusions in motor neurons of VAPB-P56S transgenic mice are characterized by the presence of smooth ER-like tubular profiles, and are immunoreactive for factors that operate in the ER associated degradation (ERAD) pathway, including p97/VCP, Derlin-1, and the ER membrane chaperone BAP31. The presence of these inclusions does not correlate with signs of axonal and neuronal degeneration, and axotomy leads to their gradual disappearance, indicating that they represent reversible structures. Inhibition of the proteasome and knockdown of the ER membrane chaperone BAP31 increased the size of mutant VAPB inclusions in primary neuron cultures, while knockdown of TEB4, an ERAD ubiquitin-protein ligase, reduced their size. Mutant VAPB did not codistribute with mutant forms of seipin that are associated with an autosomal dominant motor neuron disease, and accumulate in a protective ER derived compartment termed ERPO (ER protective organelle) in neurons. Conclusions The data indicate that the VAPB-P56S inclusions represent a novel reversible ER quality control compartment that is formed when the amount of mutant VAPB exceeds the capacity of the ERAD pathway and that isolates misfolded and aggregated VAPB from the rest of the ER. The presence of this quality control compartment reveals an additional level of flexibility of neurons to cope with misfolded protein stress in the ER. PMID:24252306

  8. Multiple Pathways for Protein Transport to Peroxisomes

    PubMed Central

    Kim, P.K.; Hettema, E.H.

    2015-01-01

    Peroxisomes are unique among the organelles of the endomembrane system. Unlike other organelles that derive most if not all of their proteins from the ER (endoplasmic reticulum), peroxisomes contain dedicated machineries for import of matrix proteins and insertion of membrane proteins. However, peroxisomes are also able to import a subset of their membrane proteins from the ER. One aspect of peroxisome biology that has remained ill defined is the role the various import pathways play in peroxisome maintenance. In this review, we discuss the available data on matrix and membrane protein import into peroxisomes. PMID:25681696

  9. ER Screenings Could Help Prevent Suicide

    MedlinePlus

    ... fullstory_158246.html ER Screenings Could Help Prevent Suicide: Study Checking patients for risk factors should be ... News) -- Routine screening of emergency room patients for suicide risk might be an effective way to prevent ...

  10. Edible Pot Sends Toddlers to Colorado ERs

    MedlinePlus

    ... html Edible Pot Sends Toddlers to Colorado ERs Cannabis-laced candy, baked goods look irresistible to kids, ... became the first two states to legalize recreational marijuana. Shortly after, a sharp increase occurred in the ...

  11. Environmental release summary (ERS) database CY 1997

    SciTech Connect

    Gleckler, B.P.

    1998-07-01

    This report discusses the Environmental Release Summary (ERS) database. The current needs of the Effluent and Environmental database is continually modified to fulfill monitoring (EEM) program (managed by Waste Management Federal Services of Hanford, Incorporated, Air and Water Services Organization). Changes are made to accurately calculate current releases, to affect how past releases are calculated. This document serves as a snap-shot of the database and software for the CY-1997 data and releases. This document contains all of the relevant data for calculating radioactive-airborne and liquid effluent. The ERS database is the official repository for the CY-1997 ERS release reports and the settings used to generate those reports. As part of the Tri-Party Agreement, FDH is committed to provide a hard copy of the ERS database for Washington State Department of Ecology, upon request. This document also serves as that hard copy for the last complete calendar year.

  12. FIRE_ACE_ER2_MAS

    Atmospheric Science Data Center

    2015-10-28

    ... First ISCCP Regional Experiment (FIRE) Arctic Cloud Experiment (ACE) NASA ER-2 Moderate Resolution Imaging ... SSFR Location:  Northern Alaska Arctic Ocean Spatial Coverage:  Fairbanks, Alaska and the surrounding ...

  13. Decreased vitamin B12 availability induces ER stress through impaired SIRT1-deacetylation of HSF1

    PubMed Central

    Ghemrawi, R; Pooya, S; Lorentz, S; Gauchotte, G; Arnold, C; Gueant, J-L; Battaglia-Hsu, S-F

    2013-01-01

    Vitamin B12 (cobalamin) is a key determinant of S-adenosyl methionine (SAM)-dependent epigenomic cellular regulations related to methylation/acetylation and its deficiency produces neurodegenerative disorders by elusive mechanisms. Sirtuin 1 deacetylase (SIRT1) triggers cell response to nutritional stress through endoplasmic reticulum (ER) stress. Recently, we have established a N1E115 dopaminergic cell model by stable expression of a transcobalamin–oleosin chimera (TO), which impairs cellular availability of vitamin B12, decreases methionine synthase activity and SAM level, and reduces cell proliferation. In contrast, oleosin-transcobalamin chimera (OT) does not modify the phenotype of transfected cells. Presently, the impaired cellular availability of vitamin B12 in TO cells activated irreversible ER stress pathways, with increased P-eIF-2α, P-PERK, P-IRE1α, ATF6, ATF4, decreased chaperon proteins and increased pro-apoptotic markers, CHOP and cleaved caspase 3, through reduced SIRT1 expression and consequently greater acetylation of heat-shock factor protein 1 (HSF1). Adding either B12, SIRT1, or HSF1 activators as well as overexpressing SIRT1 or HSF1 dramatically reduced the activation of ER stress pathways in TO cells. Conversely, impairing SIRT1 and HSF1 by siRNA, expressing a dominant negative form of HSF1, or adding a SIRT1 inhibitor led to B12-dependent ER stress in OT cells. Addition of B12 abolished the activation of stress transducers and apoptosis, and increased the expression of protein chaperons in OT cells subjected to thapsigargin, a strong ER stress stimulator. AdoX, an inhibitor of methyltransferase activities, produced similar effects than decreased B12 availability on SIRT1 and ER stress by a mechanism related to increased expression of hypermethylated in cancer 1 (HIC1). Taken together, these data show that cellular vitamin B12 has a strong modulating influence on ER stress in N1E115 dopaminergic cells. The impaired cellular availability in

  14. Roles of the ER-α36-EGFR/HER2 positive regulatory loops in tamoxifen resistance.

    PubMed

    Yin, Li; Wang, Zhao-Yi

    2016-07-01

    Tamoxifen provided a successful treatment for ER-positive breast cancer for the past four decades. However, most breast tumors are eventually resistant to tamoxifen therapy. Extensive researches were conducted to understand the molecular mechanisms involved in tamoxifen resistance, and have revealed that multiple signaling molecules and pathways such as EGFR and HER2 are involved in tamoxifen resistance. Currently, the mechanisms by which tamoxifen sensitive breast cancer cells acquire these signaling pathways and develop tamoxifen resistance have not been elucidated. The identification of ER-α36, a variant of ER-α, that is able to mediate agonist activity of tamoxifen provided great insights into the underlying mechanisms of tamoxifen resistance. In this review, we will discuss the biological function and the possible underlying mechanisms of ER-α36 in tamoxifen resistance and specifically illustrate a novel cross-talk mechanism; positive regulatory loops between the ER-α36 and EGFR/HER2 in tamoxifen resistance. The function and the underlying mechanisms of ER-α36 in tamoxifen resistance of the breast cancer stem/progenitor cells will also be discussed. Finally, we will postulate a novel approach to restore tamoxifen sensitivity in tamoxifen resistant breast cancer cells. PMID:26884313

  15. Characterization of the ER-Targeted Low Affinity Ca(2+) Probe D4ER.

    PubMed

    Greotti, Elisa; Wong, Andrea; Pozzan, Tullio; Pendin, Diana; Pizzo, Paola

    2016-01-01

    Calcium ion (Ca(2+)) is a ubiquitous intracellular messenger and changes in its concentration impact on nearly every aspect of cell life. Endoplasmic reticulum (ER) represents the major intracellular Ca(2+) store and the free Ca(2+) concentration ([Ca(2+)]) within its lumen ([Ca(2+)]ER) can reach levels higher than 1 mM. Several genetically-encoded ER-targeted Ca(2+) sensors have been developed over the last years. However, most of them are non-ratiometric and, thus, their signal is difficult to calibrate in live cells and is affected by shifts in the focal plane and artifactual movements of the sample. On the other hand, existing ratiometric Ca(2+) probes are plagued by different drawbacks, such as a double dissociation constant (Kd) for Ca(2+), low dynamic range, and an affinity for the cation that is too high for the levels of [Ca(2+)] in the ER lumen. Here, we report the characterization of a recently generated ER-targeted, Förster resonance energy transfer (FRET)-based, Cameleon probe, named D4ER, characterized by suitable Ca(2+) affinity and dynamic range for monitoring [Ca(2+)] variations within the ER. As an example, resting [Ca(2+)]ER have been evaluated in a known paradigm of altered ER Ca(2+) homeostasis, i.e., in cells expressing a mutated form of the familial Alzheimer's Disease-linked protein Presenilin 2 (PS2). The lower Ca(2+) affinity of the D4ER probe, compared to that of the previously generated D1ER, allowed the detection of a conspicuous, more clear-cut, reduction in ER Ca(2+) content in cells expressing mutated PS2, compared to controls. PMID:27598166

  16. Topography over South America from ERS altimetry

    NASA Technical Reports Server (NTRS)

    Brenner, Anita; Frey, Herb; DiMarzio, John; Tsaoussi, Lucia

    1997-01-01

    The results of the surface topography mapping of South America during the ERS-1 geodetic mission are presented. The altimeter waveforms, the range measurement, and the internal and Doppler range corrections were obtained. The atmospheric corrections and solid tides were calculated. Comparisons between Shuttle laser altimetry and ERS-1 altimetry grid showed good agreement. Satellite radar altimetry data can be used to improve the topographic knowledge of regions for which only poor elevation data currently exist.

  17. Arctigenin alleviates ER stress via activating AMPK

    PubMed Central

    Gu, Yuan; Sun, Xiao-xiao; Ye, Ji-ming; He, Li; Yan, Shou-sheng; Zhang, Hao-hao; Hu, Li-hong; Yuan, Jun-ying; Yu, Qiang

    2012-01-01

    Aim: To investigate the protective effects of arctigenin (ATG), a phenylpropanoid dibenzylbutyrolactone lignan from Arctium lappa L (Compositae), against ER stress in vitro and the underlying mechanisms. Methods: A cell-based screening assay for ER stress regulators was established. Cell viability was measured using MTT assay. PCR and Western blotting were used to analyze gene and protein expression. Silencing of the CaMKKβ, LKB1, and AMPKα1 genes was achieved by RNA interference (RNAi). An ATP bioluminescent assay kit was employed to measure the intracellular ATP levels. Results: ATG (2.5, 5 and 10 μmol/L) inhibited cell death and unfolded protein response (UPR) in a concentration-dependent manner in cells treated with the ER stress inducer brefeldin A (100 nmol/L). ATG (1, 5 and 10 μmol/L) significantly attenuated protein synthesis in cells through inhibiting mTOR-p70S6K signaling and eEF2 activity, which were partially reversed by silencing AMPKα1 with RNAi. ATG (1-50 μmol/L) reduced intracellular ATP level and activated AMPK through inhibiting complex I-mediated respiration. Pretreatment of cells with the AMPK inhibitor compound C (25 μmol/L) rescued the inhibitory effects of ATG on ER stress. Furthermore, ATG (2.5 and 5 μmol/L) efficiently activated AMPK and reduced the ER stress and cell death induced by palmitate (2 mmol/L) in INS-1 β cells. Conclusion: ATG is an effective ER stress alleviator, which protects cells against ER stress through activating AMPK, thus attenuating protein translation and reducing ER load. PMID:22705729

  18. Recent Advances with ER Targeted Intrabodies.

    PubMed

    Marschall, Andrea L J; Dübel, Stefan; Böldicke, Thomas

    2016-01-01

    ER intrabodies are recombinant antibody fragments produced and retained in the endoplasmatic reticulum (ER) of a cell or an organism with the purpose to induce phenotypes generated by interfering with the intracellular processing or by changing the location of the recognized antigen. The most common application is the generation of functional knockdowns of membrane proteins, which cannot reach their natural location on the cell surface when they are retained in the ER by the intrabody. Phenotypes generated by interfering with the secretion of extracellular or plasma proteins can be analyzed in a similar way. So far, most ER intrabody studies relied on scFv fragments subcloned from hybridoma lines. Recently, several large international research consortia have started to provide antibodies, with the final goal to cover substantial parts of the human proteome. For practical reasons of throughput and effort, in these consortia the most appropriate method to generate the necessary large numbers of monoclonal antibodies is in vitro selection, typically employing phage or yeast display. These methods provide the antibody genes right from the start, thereby facilitating the application of ER antibody approaches. On the other end, the first transgenic mice expressing an ER intrabody has recently been described. This moves the ER intrabody approach finally to level with classic in vivo knockout strategies - but also offers novel capabilities to the researchers. Promising new perspectives may originate from the fact that the knockdown is restricted to the protein level, that a graded knockdown strength can be achieved, or that the targeting of individual posttranslational modifications will be possible with previously impossible specificity. Finally, the link of today's high throughput recombinant antibody generation to a knock down phenotype is now possible with a single cloning step. It can therefore be expected that we will see a much quicker growth of the number of

  19. Involvement of TR3/Nur77 translocation to the endoplasmic reticulum in ER stress-induced apoptosis

    SciTech Connect

    Liang Bin; Song Xuhong; Liu Gefei; Li Rui; Xie Jianping; Xiao Lifeng; Du Mudan; Zhang Qiaoxia; Xu Xiaoyuan; Gan Xueqiong; Huang Dongyang . E-mail: huangdy@stu.edu.cn

    2007-08-01

    Nuclear orphan receptor TR3/Nur77/NGFI-B is a novel apoptotic effector protein that initiates apoptosis largely by translocating from the nucleus to the mitochondria, causing the release of cytochrome c. However, it is possible that TR3 translocates to other organelles. The present study was designed to determine the intracellular localization of TR3 following CD437-induced nucleocytoplasmic translocation and the mechanisms involved in TR3-induced apoptosis. In human neuroblastoma SK-N-SH cells and human esophageal squamous carcinoma EC109 and EC9706 cells, 5 {mu}M CD437 induced translocation of TR3 to the endoplasmic reticulum (ER). This distribution was confirmed by immunofluorescence analysis, subcellular fractionation analysis and coimmunoprecipitation analysis. The translocated TR3 interacted with ER-targeting Bcl-2; initiated an early release of Ca{sup 2+} from ER; resulted in ER stress and induced apoptosis through ER-specific caspase-4 activation, together with induction of mitochondrial stress and subsequent activation of caspase-9. Our results identified a novel distribution of TR3 in the ER and defined two parallel mitochondrial- and ER-based pathways that ultimately result in apoptotic cell death.

  20. Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo.

    PubMed

    Vaccaro, Alexandra; Patten, Shunmoogum A; Aggad, Dina; Julien, Carl; Maios, Claudia; Kabashi, Edor; Drapeau, Pierre; Parker, J Alex

    2013-07-01

    C. elegans and D. rerio expressing mutant TAR DNA Binding Protein 43 (TDP-43) are powerful in vivo animal models for the genetics and pharmacology of amyotrophic lateral sclerosis (ALS). Using these small-animal models of ALS, we previously identified methylene blue (MB) as a potent suppressor of TDP-43 toxicity. Consequently here we investigated how MB might exert its neuroprotective properties and found that it acts through reduction of the endoplasmic reticulum (ER) stress response. We tested other compounds known to be active in the ER unfolded protein response in worms and zebrafish expressing mutant human TDP-43 (mTDP-43). We identified three compounds: salubrinal, guanabenz and a new structurally related compound phenazine, which also reduced paralysis, neurodegeneration and oxidative stress in our mTDP-43 models. Using C. elegans genetics, we showed that all four compounds act as potent suppressors of mTDP-43 toxicity through reduction of the ER stress response. Interestingly, these compounds operate through different branches of the ER unfolded protein pathway to achieve a common neuroprotective action. Our results indicate that protein-folding homeostasis in the ER is an important target for therapeutic development in ALS and other TDP-43-related neurodegenerative diseases. PMID:23567652

  1. Sphingomyelin synthase-related protein SMSr controls ceramide homeostasis in the ER.

    PubMed

    Vacaru, Ana M; Tafesse, Fikadu G; Ternes, Philipp; Kondylis, Vangelis; Hermansson, Martin; Brouwers, Jos F H M; Somerharju, Pentti; Rabouille, Catherine; Holthuis, Joost C M

    2009-06-15

    Ceramides are central intermediates of sphingolipid metabolism with critical functions in cell organization and survival. They are synthesized on the cytosolic surface of the endoplasmic reticulum (ER) and transported by ceramide transfer protein to the Golgi for conversion to sphingomyelin (SM) by SM synthase SMS1. In this study, we report the identification of an SMS1-related (SMSr) enzyme, which catalyses the synthesis of the SM analogue ceramide phosphoethanolamine (CPE) in the ER lumen. Strikingly, SMSr produces only trace amounts of CPE, i.e., 300-fold less than SMS1-derived SM. Nevertheless, blocking its catalytic activity causes a substantial rise in ER ceramide levels and a structural collapse of the early secretory pathway. We find that the latter phenotype is not caused by depletion of CPE but rather a consequence of ceramide accumulation in the ER. Our results establish SMSr as a key regulator of ceramide homeostasis that seems to operate as a sensor rather than a converter of ceramides in the ER. PMID:19506037

  2. Paradoxical effects of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) activator gingerol on NG115-401L neuronal cells: failure to augment ER Ca(2+) uptake and protect against ER stress-induced cell death.

    PubMed

    Zhang, Changfeng; Bose, Diptiman D; Thomas, David W

    2015-09-01

    Perturbation of endoplasmic reticulum (ER) Ca(2+) homeostasis and ER stress are thought to underlie a spectrum of defects encompassing major societal diseases such as diabetes and neurodegeneration. In this report we used the NG115-401L neuronal cell line to test the hypothesis that neuroprotection against ER stress may be conferred by pharmacological stimulation of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) pumps. We report that the SERCA activator gingerol stimulates SR microsomal Ca(2+)-ATPase activity and restores enzymatic function in the presence of potent SERCA blockers. Yet, enzyme protection in isolated membranes does not extend to protection from ER stress in intact NG115-401L cells. Surprisingly, gingerol not only failed to protect cells from SERCA blocker-induced ER stress and cell death, the compound itself potently induced cell death. Also, we report that gingerol failed to augment ER Ca(2+) uptake, a result contradictory to what has been observed in muscle. Unexpectedly, gingerol discharged ER Ca(2+) stores and coupled robustly to Ca(2+) influx pathways. These observations suggest that gingerol is not acting as a traditional SERCA blocker as thapsigargin mediated ER Ca(2+) store depletion fails to stimulate Ca(2+) influx in the NG115-401L cell phenotype. Moreover, cell death induced by gingerol, in contrast to the classic SERCA inhibitors, is not accompanied by increases in reactive oxygen species production or enzymatic caspase activity. These results argue for a finer regulatory control on SERCA function with gingerol's actions revealing potentially novel routes of coupling altered pump regulation to the assembly of functional Ca(2+) influx units and activation of cell death pathways. PMID:26033206

  3. Curcumin inhibits lipolysis via suppression of ER stress in adipose tissue and prevents hepatic insulin resistance.

    PubMed

    Wang, Lulu; Zhang, Bangling; Huang, Fang; Liu, Baolin; Xie, Yuan

    2016-07-01

    Curcumin is natural polyphenol with beneficial effects on lipid and glucose metabolism and this study aimed to investigate the effects of curcumin on lipolysis and hepatic insulin resistance. Endoplasmic reticulum (ER) stress and lipolysis signaling in adipose and FFA influx, lipid deposits, and glucose production in liver were examined. Palmitate challenge and high-fat diet feeding evoked ER stress-associated lipolysis with cAMP accumulation in adipose tissue. Curcumin treatment inhibited adipose tissue ER stress by dephosphorylation of inositol-requiring enzyme 1α and eukaryotic initiation factor 2α and reduced cAMP accumulation by preserving phosphodiesterase 3B induction. Knockdown of mitogen-activated protein kinase α1/2α with siRNAs diminished such effects of curcumin. As a result from downregulation of cAMP, curcumin blocked protein kinase (PK)A/hormone-sensitive lipase lipolysis signaling, and thereby reduced glycerol and FFA release from adipose tissue. Curcumin reduced FFA influx into the liver by blocking FFA trafficking, and then prevented diacylglycerol deposits and PKCε translocation in the liver, resultantly improving insulin action in the suppression of hepatic gluconeogenesis. Curcumin decreased adipose lipolysis by attenuating ER stress through the cAMP/PKA pathway, reduced FFA influx into the liver by blocking FFA trafficking, and thereby improved insulin sensitivity to inhibit hepatic glucose production. These findings suggested a novel pathway of curcumin to prevent lipid deposits and insulin resistance in liver by beneficial regulation of adipose function. PMID:27220352

  4. Crocin protects PC12 cells against MPP(+)-induced injury through inhibition of mitochondrial dysfunction and ER stress.

    PubMed

    Zhang, Guo-Feng; Zhang, Yi; Zhao, Gang

    2015-10-01

    The molecular machinery that mediates neuronal injury in neurodegenerative conditions such as Parkinson's disease (PD) remains to be fully deciphered, which will hopefully provide novel therapeutic targets for these disorders. Crocin, one of the water-soluble carotenoids isolated from the Crocus sativus L (saffron) stigma, has been reported to exert therapeutic potential in many disease models. Here, we establish an in vitro PD model using 1-methyl-4-phenylpyridinium (MPP(+))-injured PC12 cells to investigate the protective effects of crocin. Crocin treatment significantly attenuated MPP(+)-induced cell injury and apoptosis with little toxicity, and these protective effects were still observed even if crocin treatment was delayed to 6 h after injury. Crocin also inhibited MPP(+)-induced mitochondrial dysfunction, as evidenced by preservation of mitochondrial membrane potential (MMP) and ATP synthesis, which correlates with suppressed endoplasmic reticulum (ER) stress through inhibiting ER chaperone and ER related apoptotic factors. In addition, ER calcium release and morphological changes in ER lumen after MPP(+) exposure were all partially prevented by crocin. By using specific targeted small interfering RNA (siRNA) to knockdown the expression of the C/EBP homologous protein (CHOP), we found that crocin-induced protection and inhibition of ER stress was mediated by inverting MPP(+)-induced decrease of Wnt through the CHOP pathway. Our study demonstrates a pivotal role of ER stress in mediating PD related neuronal injury via the regulation of CHOP-Wnt pathway, and suggests the therapeutic values of crocin against ER stress-associated cytotoxicity. PMID:26209153

  5. The expression status of TRX, AR, and cyclin D1 correlates with clinicopathological characteristics and ER status in breast cancer

    PubMed Central

    Huang, Weisun; Nie, Weiwei; Zhang, Wenwen; Wang, Yanru; Zhu, Aiyu; Guan, Xiaoxiang

    2016-01-01

    Background The ER signaling pathway plays a critical role in breast cancer. ER signaling pathway-related proteins, such as TRX, AR, and cyclin D1, may have an important function in breast cancer. However, the ways that they influence breast cancer development and progression are still unclear. Patients and methods A total of 101 Chinese female patients diagnosed with invasive ductal breast adenocarcinoma were retrospectively enrolled in the study. The expression levels of TRX, AR, and cyclin D1 were detected by immunohistochemistry and analyzed via correlation with clinicopathological characteristics and the expression status of ER, PR, and HER2. Results The expression status of TRX, AR, and cyclin D1 was not associated with the patient’s age, menopausal status, tumor size, or histological differentiation (P>0.05), but was positively correlated with ER and PR (P<0.001, respectively). Most (66/76, 86.8) TRX-positive patients were also HER2-positive (P=0.003). Of AR- or cyclin D1-positive patients, most had relatively earlier I–II tumor stage (P=0.005 and P=0.047, respectively) and no metastatic lymph node involvement (P=0.008 and P=0.005, respectively). Conclusion TRX was found to be positively correlated with ER and PR expression, whereas it was negatively correlated with HER2 expression. In addition, we found that the positive expression of AR and cyclin D1 was correlated with lower TNM stage and fewer metastatic lymph nodes, and it was more common in ER-positive breast cancer than in the basal-like subtype. This may indicate that AR and cyclin D1 are good predictive and prognostic factors and closely interact with ER signaling pathway. Further studies will be necessary to investigate the response and clinical outcomes of treatment targeting TRX, AR, and cyclin D1. PMID:27499632

  6. Mechanisms of oestrogen receptor (ER) gene regulation in breast cancer.

    PubMed

    Carroll, J S

    2016-07-01

    Most breast cancers are driven by a transcription factor called oestrogen receptor (ER). Understanding the mechanisms of ER activity in breast cancer has been a major research interest and recent genomic advances have revealed extraordinary insights into how ER mediates gene transcription and what occurs during endocrine resistance. This review discusses our current understanding on ER activity, with an emphasis on several evolving, but important areas of ER biology. PMID:26884552

  7. Angiopoietin-1 attenuates angiotensin II-induced ER stress in glomerular endothelial cells via a Tie2 receptor/ERK1/2-p38 MAPK-dependent mechanism.

    PubMed

    Bi, Xiao; Niu, Jianying; Ding, Wei; Zhang, Minmin; Yang, Min; Gu, Yong

    2016-06-15

    Research has indicated that endoplasmic reticulum (ER) stress in endothelial cells affects vascular pathologies and induces cellular dysfunction and apoptosis. Angiopoietin1 (Angpt1) has been shown to have therapeutic potential in some vascular diseases, including chronic kidney disease. This study showed that Angpt1 is a powerful factor that attenuated ER stress-induced cellular dysfunction and apoptosis in glomerular endothelial cells (GEnCs). Furthermore, Angpt1 significantly decreased the angiotensin II (Ang II)-induced expression of the ER stress response proteins GRP78, GRP94, p-PERK and CHOP. These results suggest that the Angpt1-mediated cellular protection may occur downstream of the ER stress response. In addition, both specific inhibitors and siRNAs for Tie2 reversed these changes, implying the importance of Tie2 receptor activation in the signalling pathways that prevent ER stress. The protective effects of Angpt1 are related to the activation of two downstream signalling pathways, ERK1/2 and p38 MAPK. The inhibition of these pathways with specific inhibitors, PD98059 and SB203580, respectively, partially increased the expression of chaperones that assist in folding proteins in the ER and reduce the protective effects of Angpt1. In conclusion, Angpt1 attenuated ER stress-induced cellular dysfunction and apoptosis via the Tie2 receptor/ERK1/2-p38 MAPK pathways in GEnCs. This study may provide insights into a novel underlying mechanism and a strategy for alleviating ER stress-induced injury. PMID:27033326

  8. GSK-3β-dependent downregulation of γ-taxilin and αNAC merge to regulate ER stress responses

    PubMed Central

    Hotokezaka, Y; Katayama, I; van Leyen, K; Nakamura, T

    2015-01-01

    The signaling pathway leading to the endoplasmic reticulum (ER) stress responses has not been fully elucidated. Here we showed that glycogen synthase kinase-3β (GSK-3β)-dependent downregulation of γ-taxilin and nascent polypeptide-associated complex α-subunit (αNAC) mediates hypoxia-induced unfolded protein responses (UPRs) and the subsequent apoptotic and autophagic pathways. The degradation of γ-taxilin or αNAC was sufficient to initiate UPRs in normoxic cells. However, the ER stress signaling pathways initiated by γ-taxilin or αNAC were distinct, triggering different ER stress sensors and activating different downstream pathways. Hypoxia caused GSK-3β-dependent tau hyperphosphorylation and cleavage in neuronal cells, but γ-taxilin ablation induced tau hyperphosphorylation alone and αNAC ablation induced neither changes. Notably, downregulation of γ-taxilin and αNAC occurs in the brain of patients with Alzheimer's disease. These results suggest that GSK-3β-dependent downregulation of γ-taxilin and αNAC, which differently activate the UPRs, merge to regulate hypoxia-induced ER stress responses and provide a new insight into the pathogenesis of neurodegenerative diseases. PMID:25880086

  9. The ER-Membrane Transport System Is Critical for Intercellular Trafficking of the NSm Movement Protein and Tomato Spotted Wilt Tospovirus.

    PubMed

    Feng, Zhike; Xue, Fan; Xu, Min; Chen, Xiaojiao; Zhao, Wenyang; Garcia-Murria, Maria J; Mingarro, Ismael; Liu, Yong; Huang, Ying; Jiang, Lei; Zhu, Min; Tao, Xiaorong

    2016-02-01

    Plant viruses move through plasmodesmata to infect new cells. The plant endoplasmic reticulum (ER) is interconnected among cells via the ER desmotubule in the plasmodesma across the cell wall, forming a continuous ER network throughout the entire plant. This ER continuity is unique to plants and has been postulated to serve as a platform for the intercellular trafficking of macromolecules. In the present study, the contribution of the plant ER membrane transport system to the intercellular trafficking of the NSm movement protein and Tomato spotted wilt tospovirus (TSWV) is investigated. We showed that TSWV NSm is physically associated with the ER membrane in Nicotiana benthamiana plants. An NSm-GFP fusion protein transiently expressed in single leaf cells was trafficked into neighboring cells. Mutations in NSm that impaired its association with the ER or caused its mis-localization to other subcellular sites inhibited cell-to-cell trafficking. Pharmacological disruption of the ER network severely inhibited NSm-GFP trafficking but not GFP diffusion. In the Arabidopsis thaliana mutant rhd3 with an impaired ER network, NSm-GFP trafficking was significantly reduced, whereas GFP diffusion was not affected. We also showed that the ER-to-Golgi secretion pathway and the cytoskeleton transport systems were not involved in the intercellular trafficking of TSWV NSm. Importantly, TSWV cell-to-cell spread was delayed in the ER-defective rhd3 mutant, and this reduced viral infection was not due to reduced replication. On the basis of robust biochemical, cellular and genetic analysis, we established that the ER membrane transport system serves as an important direct route for intercellular trafficking of NSm and TSWV. PMID:26863622

  10. The ER-Membrane Transport System Is Critical for Intercellular Trafficking of the NSm Movement Protein and Tomato Spotted Wilt Tospovirus

    PubMed Central

    Feng, Zhike; Xue, Fan; Xu, Min; Chen, Xiaojiao; Zhao, Wenyang; Garcia-Murria, Maria J.; Mingarro, Ismael; Liu, Yong; Huang, Ying; Jiang, Lei; Zhu, Min; Tao, Xiaorong

    2016-01-01

    Plant viruses move through plasmodesmata to infect new cells. The plant endoplasmic reticulum (ER) is interconnected among cells via the ER desmotubule in the plasmodesma across the cell wall, forming a continuous ER network throughout the entire plant. This ER continuity is unique to plants and has been postulated to serve as a platform for the intercellular trafficking of macromolecules. In the present study, the contribution of the plant ER membrane transport system to the intercellular trafficking of the NSm movement protein and Tomato spotted wilt tospovirus (TSWV) is investigated. We showed that TSWV NSm is physically associated with the ER membrane in Nicotiana benthamiana plants. An NSm-GFP fusion protein transiently expressed in single leaf cells was trafficked into neighboring cells. Mutations in NSm that impaired its association with the ER or caused its mis-localization to other subcellular sites inhibited cell-to-cell trafficking. Pharmacological disruption of the ER network severely inhibited NSm-GFP trafficking but not GFP diffusion. In the Arabidopsis thaliana mutant rhd3 with an impaired ER network, NSm-GFP trafficking was significantly reduced, whereas GFP diffusion was not affected. We also showed that the ER-to-Golgi secretion pathway and the cytoskeleton transport systems were not involved in the intercellular trafficking of TSWV NSm. Importantly, TSWV cell-to-cell spread was delayed in the ER-defective rhd3 mutant, and this reduced viral infection was not due to reduced replication. On the basis of robust biochemical, cellular and genetic analysis, we established that the ER membrane transport system serves as an important direct route for intercellular trafficking of NSm and TSWV. PMID:26863622

  11. Regional uptake an variations in orthopaedic enhanced recovery pathways in knee and hip total arthroplasty.

    PubMed

    Mawdsley, M J; Baker, P N; Desai, A; Green, R N; Jevons, L

    2016-05-01

    The use of enhanced recovery (ER) pathways for hip and knee arthroplasty has increased over the last decade, and the adoption within orthopaedics is becoming more common. We have demonstrated a regional variation and institutional inconsistency of uptake and delivery of ER pathways in our region. Units that have a unified pathway were more likely to have consistency in treatment and early analgesia for patients. We would advocate that units use an agreed enhanced recovery pathway to optimise patient recovery from hip and knee arthroplasties. PMID:27400490

  12. The unfolded protein response (UPR) pathway in Cryptococcus

    PubMed Central

    Cheon, Seon Ah; Jung, Kwang-Woo; Bahn, Yong-Sun; Kang, Hyun Ah

    2014-01-01

    Unique and evolutionarily conserved signaling pathways allow an organism to sense, respond to, and adapt to internal and external environmental cues at its biological niche. In eukaryotic cells, the unfolded protein response (UPR) pathway regulates endoplasmic reticulum (ER) homeostasis upon exposure to environmental changes causing ER stress. The UPR pathway of Cryptococcus neoformans, an opportunistic fungal pathogen, which causes life-threatening meningoencephalitis in immunocompromised individuals, consists of the evolutionarily conserved Ire1 kinase, a unique bZIP transcription factor, Hxl1, and the ER-resident molecular chaperone Kar2/BiP. Although the Cryptococcus UPR pathway regulates ER stress, antifungal drug resistance, and virulence in an Ire1/Hxl1-dependent manner, Ire1 has Hxl1-independent roles in capsule biosynthesis and thermotolerance. In this review, we highlight the conserved and unique features of the Cryptococcus UPR pathway compared with other fungal UPR systems and its importance in the pathogenesis of cryptococcosis and discuss future challenges in this field. PMID:24504058

  13. ARM CLASIC ER2 CRS/EDOP

    SciTech Connect

    Gerald Heymsfield

    2010-12-20

    Data was taken with the NASA ER-2 aircraft with the Cloud Radar System and other instruments in conjunction with the DOE ARM CLASIC field campaign. The flights were near the SGP site in north Central Oklahoma and targeted small developing convection. The CRS is a 94 GHz nadir pointing Doppler radar. Also on board the ER-2 was the Cloud Physics Lidar (CPL). Seven science flights were conducted but the weather conditions did not cooperate in that there was neither developing convection, or there was heavy rain.

  14. Ultrastructural features of the early secretory pathway in Trichoderma reesei.

    PubMed

    Nykänen, Marko; Birch, Debra; Peterson, Robyn; Yu, Hong; Kautto, Liisa; Gryshyna, Anna; Te'o, Junior; Nevalainen, Helena

    2016-05-01

    We have systematically analysed the ultrastructure of the early secretory pathway in the Trichoderma reesei hyphae in the wild-type QM6a, cellulase-overexpressing Rut-C30 strain and a Rut-C30 transformant BV47 overexpressing a recombinant BiP1-VenusYFP fusion protein with an endoplasmic reticulum (ER) retention signal. The hyphae were studied after 24 h of growth using transmission electron microscopy, confocal microscopy and quantitative stereological techniques. All three strains exhibited different spatial organisation of the ER at 24 h in both a cellulase-inducing medium and a minimal medium containing glycerol as a carbon source (non-cellulase-inducing medium). The wild-type displayed a number of ER subdomains including parallel tubular/cisternal ER, ER whorls, ER-isolation membrane complexes with abundant autophagy vacuoles and dense bodies. Rut-C30 and its transformant BV47 overexpressing the BiP1-VenusYFP fusion protein also contained parallel tubular/cisternal ER, but no ER whorls; also, there were very few autophagy vacuoles and an increasing amount of punctate bodies where particularly the recombinant BiP1-VenusYFP fusion protein was localised. The early presence of distinct strain-specific features such as the dominance of ER whorls in the wild type and tub/cis ER in Rut-C30 suggests that these are inherent traits and not solely a result of cellular response mechanisms by the high secreting mutant to protein overload. PMID:26699139

  15. Dissociation of NSC606985 induces atypical ER-stress and cell death in prostate cancer cells.

    PubMed

    Wang, Liping; Fu, Pengcheng; Zhao, Yuan; Wang, Guo; Yu, Richard; Wang, Xin; Tang, Zehai; Imperato-McGinley, Julianne; Zhu, Yuan-Shan

    2016-08-01

    Castration-resistant prostate cancer (CRPC) is a major cause of prostate cancer (Pca) death. Chemotherapy is able to improve the survival of CRPC patients. We previously found that NSC606985 (NSC), a highly water-soluble camptothecin analog, induced cell death in Pca cells via interaction with topoisomerase 1 and activation of the mitochondrial apoptotic pathway. To further elucidate the role of NSC, we studied the effect of NSC on ER-stress and its association with NSC-induced cell death in Pca cells. NSC produced a time- and dose-dependent induction of GRP78, CHOP and XBP1s mRNA, and CHOP protein expression in Pca cells including DU145, indicating an activation of ER-stress. However, unlike conventional ER-stress in which GRP78 protein is increased, NSC produced a time- and dose-dependent U-shape change in GRP78 protein in DU145 cells. The NSC-induced decrease in GRP78 protein was blocked by protease inhibitors, N-acetyl-L-leucyl-L-leucylnorleucinal (ALLN), a lysosomal protease inhibitor, and epoxomicin (EPO), a ubiquitin-protease inhibitor. ALLN, but not EPO, also partially inhibited NSC-induced cell death. However, both 4-PBA and TUDCA, two chemical chaperons that effectively reduced tunicamycin-induced ER-stress, failed to attenuate NSC-induced GRP78, CHOP and XBP1s mRNA expression and cell death. Moreover, knockdown of NSC induction of CHOP expression using a specific siRNA had no effect on NSC-induced cytochrome c release and NSC-induced cell death. These results suggest that NSC produced an atypical ER-stress that is dissociated from NSC-induced activation of the mitochondrial apoptotic pathway and NSC-induced cell death in DU145 prostate cancer cells. PMID:27277821

  16. Iron depletion increases manganese uptake and potentiates apoptosis through ER stress

    PubMed Central

    Seo, Young Ah; Li, Yuan; Wessling-Resnick, Marianne

    2013-01-01

    Iron deficiency is a risk factor for manganese (Mn) accumulation. Excess Mn promotes neurotoxicity but the mechanisms involved and whether iron depletion might affect these pathways is unknown. To study Mn intoxication in vivo, iron deficient and control rats were intranasally instilled with 60 mg MnCl2/kg over 3 weeks. TUNEL staining of olfactory tissue revealed that Mn exposure induced apoptosis and that iron deficiency potentiated this effect. In vitro studies using the dopaminergic SH-SY5Y cell line confirmed that Mn-induced apoptosis was enhanced by iron depletion using the iron chelator desferrioxamine. Mn has been reported to induce apoptosis through endoplasmic reticulum stress. In SH-SY5Y cells, Mn exposure induced the ER stress genes glucose regulated protein 94 (GRP94) and C/EBP homologous protein (CHOP). Increased phosphorylation of the eukaryotic translation initiation factor 2α (phospho-eIF2α) was also observed. These effects were accompanied by the activation of ER resident enzyme caspase-12, and the downstream apoptotic effector caspase-3 was also activated. All of the Mn-induced responses were enhanced by DFO treatment. Inhibitors of ER stress and caspases significantly blocked Mn-induced apoptosis and its potentiation by DFO, indicating that ER stress and subsequent caspase activation underlie cell death. Taken together, these data reveal that Mn induces neuronal cell death through ER stress and the UPR response pathway and that this apoptotic effect is potentiated by iron deficiency most likely through upregulation of DMT1. PMID:23764342

  17. 20 CFR 228.10 - Computation of the tier I annuity component for a widow(er), disabled widow(er), remarried widow...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Computation of the tier I annuity component for a widow(er), disabled widow(er), remarried widow(er), and a surviving divorced spouse. 228.10... component for a widow(er), disabled widow(er), remarried widow(er), and a surviving divorced spouse....

  18. 20 CFR 228.10 - Computation of the tier I annuity component for a widow(er), disabled widow(er), remarried widow...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Computation of the tier I annuity component for a widow(er), disabled widow(er), remarried widow(er), and a surviving divorced spouse. 228.10... component for a widow(er), disabled widow(er), remarried widow(er), and a surviving divorced spouse....

  19. 20 CFR 228.10 - Computation of the tier I annuity component for a widow(er), disabled widow(er), remarried widow...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Computation of the tier I annuity component for a widow(er), disabled widow(er), remarried widow(er), and a surviving divorced spouse. 228.10... component for a widow(er), disabled widow(er), remarried widow(er), and a surviving divorced spouse....

  20. 20 CFR 228.10 - Computation of the tier I annuity component for a widow(er), disabled widow(er), remarried widow...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true Computation of the tier I annuity component for a widow(er), disabled widow(er), remarried widow(er), and a surviving divorced spouse. 228.10... component for a widow(er), disabled widow(er), remarried widow(er), and a surviving divorced spouse....

  1. 20 CFR 228.10 - Computation of the tier I annuity component for a widow(er), disabled widow(er), remarried widow...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Computation of the tier I annuity component for a widow(er), disabled widow(er), remarried widow(er), and a surviving divorced spouse. 228.10... component for a widow(er), disabled widow(er), remarried widow(er), and a surviving divorced spouse....

  2. Low temperature properties of some Er-rich intermetallic compounds

    SciTech Connect

    K.A. Gshneidner,jr; A.O. Pecharsky; L.Hale; V.K. Pecharsky

    2004-09-30

    The low temperature volumetric heat capacity ({approx}3.5 to 350 K) and magnetic susceptibility ({approx}4 to 320 K) of Er{sub 3}Rh, Er{sub 3}Ir, Er{sub 3}Pt, Er{sub 2}Al, and Er{sub 2}Sn have been measured. All of the compounds order antiferromagnetically (or ferrimagnetically), and most exhibit more than one magnetic ordering transition. The volumetric heat capacities in general are smaller than those of the prototype magnetic regenerator materials, except for Er{sub 3}Ir in the 12 to 14 K temperature range.

  3. ER stress contributes to alpha-naphthyl isothiocyanate-induced liver injury with cholestasis in mice.

    PubMed

    Yao, Xiaomin; Li, Yue; Cheng, Xiaoyan; Li, Hongwei

    2016-06-01

    Endoplasmic reticulum (ER) stress is involved in the development of several liver diseases and tumors. This study investigated the underlying mechanisms of α-naphthyl isothiocyanate (ANIT)-induced liver injury with cholestasis in mice and found ER stress contributes to the injury. All animals were randomly divided into three groups. In the ANIT-intoxicated group, mice were intragastrically given 100mg/kg ANIT (dissolved in corn oil), while the other groups received an equal volume of vehicle as control. After 24 and 48h of ANIT administration, blood samples and liver tissues of all animals were collected for serum biochemistry and hepatic histopathological examinations to evaluate liver injuries with cholestasis. Hepatocellular apoptosis was assessed by the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. The expression of hepatic ER stress-related markers was determined by real-time PCR, immunohistochemical assay and Western blot. ANIT was found to significantly induce liver injury with cholestasis compared with control mice as evidenced by the increase of serum transaminases and total bilirubin (TBil), and histopathological changes in mice. ANIT remarkably induced hepatocellular apoptosis, upregulated the expression of caspase-9 and cytochrome c, and inhibited the gene and protein expression of proliferating cell nuclear antigen (PCNA). The gene expression of ER stress-related markers, including glucose-regulated protein 78 (GRP78), protein kinase R-like ER kinase (PERK), eukaryotic initiation factor 2α (eIF2α), inositol requiring enzyme-1α (IRE-1α) and activating transcription factor 6 (ATF6) was upregulated by ANIT in mice. ANIT also upregulated the protein expression of GRP78 and activated the phosphorylation of IRE1. These results suggested that ANIT induced liver injury with cholestasis partly due to its ability to activate the ER stress pathway. PMID:27173049

  4. Anticancer compound Oplopantriol A kills cancer cells through inducing ER stress and BH3 proteins Bim and Noxa

    PubMed Central

    Jin, H R; Liao, Y; Li, X; Zhang, Z; Zhao, J; Wang, C-Z; Huang, W-H; Li, S-P; Yuan, C-S; Du, W

    2014-01-01

    Oplopantriol-A (OPT) is a natural polyyne from Oplopanax horridus. We show here that OPT preferentially kills cancer cells and inhibits tumor growth. We demonstrate that OPT-induced cancer cell death is mediated by excessive endoplasmic reticulum (ER) stress. Decreasing the level of ER stress either by inactivating components of the unfolded protein response (UPR) pathway or by expression of ER chaperone protein glucose-regulated protein 78 (GRP78) decreases OPT-induced cell death. We show that OPT induces the accumulation of ubiquitinated proteins and the stabilization of unstable proteins, suggesting that OPT functions, at least in part, through interfering with the ubiquitin/proteasome pathway. In support of this, inhibition of protein synthesis significantly decreased the accumulation of ubiquitinated proteins, which is correlated with significantly decreased OPT-induced ER stress and cell death. Finally, we show that OPT treatment significantly induced the expression of BH3-only proteins, Noxa and Bim. Knockdown of both Noxa and Bim significantly blocked OPT-induced cell death. Taken together, our results suggest that OPT is a potential new anticancer agent that induces cancer cell death through inducing ER stress and BH3 proteins Noxa and Bim. PMID:24763047

  5. Microcystin-LR induced developmental toxicity and apoptosis in zebrafish (Danio rerio) larvae by activation of ER stress response.

    PubMed

    Qi, Mei; Dang, Yao; Xu, Qinglong; Yu, Liqin; Liu, Chunsheng; Yuan, Yongchao; Wang, Jianghua

    2016-08-01

    Recent studies have demonstrated that cyanobacteria-derived Microcystin-LR (MC-LR) can cause developmental toxicity and trigger apoptosis in zebrafish (Danio rerio) larvae, but the underlying mechanisms remain largely unknown. In this study, we tested the hypothesis that the mechanism by which MC-LR induces developmental toxicity is through activation of endoplasmic reticulum (ER) stress. MC-LR (4.0 μM) exposure through submersion caused serious developmental toxicity, such as malformation, growth delay and decreased heart rates in zebrafish larvae, which could be inhibited by ER stress blocker, tauroursodeoxycholic acid (TUDCA, 20 μM). Meanwhile, acridine orange (AO) staining showed TUDCA could rescue cell apoptosis in heart area in zebrafish larvae resulted by MC-LR exposure. Real-time polymerase chain reaction (real-time PCR) analysis demonstrated that MC-LR induced activation of ER stress which consequently triggered apoptosis in zebrafish larvae. Protein expression examined by western blot indicated that MC-LR could activate MAPK8/Bcl-2/Bax pathway and caspase-dependent apoptotic pathway in zebrafish larva and the effects were mitigated by inhibition of ER stress. Taken together, the results observed in this study suggested that ER stress plays a critical role in developmental toxicity and apoptosis in zebrafish embryos exposed to MC-LR. PMID:27219292

  6. Activation of volume-sensitive outwardly rectifying chloride channel by ROS contributes to ER stress and cardiac contractile dysfunction: involvement of CHOP through Wnt.

    PubMed

    Shen, M; Wang, L; Wang, B; Wang, T; Yang, G; Shen, L; Wang, T; Guo, X; Liu, Y; Xia, Y; Jia, L; Wang, X

    2014-01-01

    Endoplasmic reticulum (ER) stress occurring in stringent conditions is critically involved in cardiomyocytes apoptosis and cardiac contractile dysfunction (CCD). However, the molecular machinery that mediates cardiac ER stress and subsequent cell death remains to be fully deciphered, which will hopefully provide novel therapeutic targets for these disorders. Here, we establish tunicamycin-induced model of cardiomyocyte ER stress, which effectively mimicks pathological stimuli to trigger CCD. Tunicamycin activates volume-sensitive outward rectifying Cl(-) currents. Blockade of the volume-sensitive outwardly rectifying (VSOR) Cl(-) channel by 4,4'-diisothiocya-natostilbene-2,2'-disulfonic acid (DIDS), a non-selective Cl(-) channel blocker, and 4-(2-butyl-6,7-dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid (DCPIB), a selective VSOR Cl(-) channel blocker, improves cardiac contractility, which correlates with suppressed ER stress through inhibiting the canonical GRP78/eIF2α/ATF4 and XBP1 pathways, and promotes survival of cardiomyocytes by inverting tunicamycin-induced decrease of Wnt through the CHOP pathway. VSOR activation of tunicamycin-treated cardiomyocytes is attributed to increased intracellular levels of reactive oxygen species (ROS). Our study demonstrates a pivotal role of ROS/VSOR in mediating ER stress and functional impairment of cardiomyocytes via the CHOP-Wnt pathway, and suggests the therapeutic values of VSOR Cl(-) channel blockers against ER stress-associated cardiac anomalies. PMID:25412307

  7. Activation of volume-sensitive outwardly rectifying chloride channel by ROS contributes to ER stress and cardiac contractile dysfunction: involvement of CHOP through Wnt

    PubMed Central

    Shen, M; Wang, L; Wang, B; Wang, T; Yang, G; Shen, L; Wang, T; Guo, X; Liu, Y; Xia, Y; Jia, L; Wang, X

    2014-01-01

    Endoplasmic reticulum (ER) stress occurring in stringent conditions is critically involved in cardiomyocytes apoptosis and cardiac contractile dysfunction (CCD). However, the molecular machinery that mediates cardiac ER stress and subsequent cell death remains to be fully deciphered, which will hopefully provide novel therapeutic targets for these disorders. Here, we establish tunicamycin-induced model of cardiomyocyte ER stress, which effectively mimicks pathological stimuli to trigger CCD. Tunicamycin activates volume-sensitive outward rectifying Cl− currents. Blockade of the volume-sensitive outwardly rectifying (VSOR) Cl− channel by 4,4'-diisothiocya-natostilbene-2,2'-disulfonic acid (DIDS), a non-selective Cl− channel blocker, and 4-(2-butyl-6,7-dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid (DCPIB), a selective VSOR Cl− channel blocker, improves cardiac contractility, which correlates with suppressed ER stress through inhibiting the canonical GRP78/eIF2α/ATF4 and XBP1 pathways, and promotes survival of cardiomyocytes by inverting tunicamycin-induced decrease of Wnt through the CHOP pathway. VSOR activation of tunicamycin-treated cardiomyocytes is attributed to increased intracellular levels of reactive oxygen species (ROS). Our study demonstrates a pivotal role of ROS/VSOR in mediating ER stress and functional impairment of cardiomyocytes via the CHOP-Wnt pathway, and suggests the therapeutic values of VSOR Cl− channel blockers against ER stress-associated cardiac anomalies. PMID:25412307

  8. ER stress drives Lipocalin 2 upregulation in prostate cancer cells in an NF-κB-dependent manner

    PubMed Central

    2011-01-01

    Background Tumor cells adapt to endoplasmic reticulum (ER) stress through a set of conserved intracellular pathways, as part of a process termed the unfolded protein response (UPR). The expression of UPR genes/proteins correlates with increasing progression and poor clinical outcome of several tumor types, including prostate cancer. UPR signaling can activate NF-κB, a master regulator of transcription of pro-inflammatory, tumorigenic cytokines. Previous studies have shown that Lipocalin 2 (Lcn2) is upregulated in several epithelial cancers, including prostate cancer, and recently Lcn2 was implicated as a key mediator of breast cancer progression. Here, we hypothesize that the tumor cell UPR regulates Lcn2 production. Methods We interrogated Lcn2 regulation in murine and human prostate cancer cells undergoing pharmacological and physiological ER stress, and tested UPR and NF-κB dependence by using pharmacological inhibitors of these signaling pathways. Results Induction of ER stress using thapsigargin (Tg), a canonical pharmacologic ER stress inducer, or via glucose deprivation, a physiologic ER stressor present in the tumor microenvironment, upregulates LCN2 production in murine and human prostate cancer cells. Inhibition of the UPR using 4-phenylbutyric acid (PBA) dramatically decreases Lcn2 transcription and translation. Inhibition of NF-κB in prostate cancer cells undergoing Tg-mediated ER stress by BAY 11-7082 abrogates Lcn2 upregulation. Conclusions We conclude that the UPR activates Lcn2 production in prostate cancer cells in an NF-κB-dependent manner. Our results imply that the observed upregulation of Lipocalin 2 in various types of cancer cells may be the direct consequence of concomitant UPR activation, and that the ER stress/Lipocalin 2 axis is a potential new target for intervention in cancer progression. PMID:21649922

  9. The transitional ER defines a boundary for quality control in the secretion of tsO45 VSV glycoprotein.

    PubMed

    Mezzacasa, Anna; Helenius, Ari

    2002-11-01

    Quality control in the secretory pathway limits forward transport of newly synthesized cargo proteins to those that have acquired their fully folded conformation. To determine which organelles participate in this conformation-dependent sorting process, we analyzed the trafficking of the temperature-sensitive, thermo-reversible folding mutant of vesicular stomatitis virus glycoprotein (tsO45 G protein) in VERO cells. Using temperature blocks, the G protein could be localized to the ER (39.5 degrees C), to the vesiculo-tubular clusters (VTCs, 15 degrees C), and to the trans-Golgi network (TGN, 20 degrees C). To localize the G protein specifically to ER exit sites, we incubated cells at 10 degrees C. The exit sites contained Sec13p, a COPII component, and were devoid of calnexin and other ER chaperones. We found that if the G protein in the exit sites was misfolded by a temperature shift from 10 degrees C to 39.5 degrees C, it failed to enter the VTCs. Instead, it was returned to the reticular ER where it associated with calnexin. However, if the G protein was in the VTCs or beyond, its folding status no longer affected further transport. The observations indicate that quality control took place in the ER and in the ER transitional elements, but not in the VTCs or the Golgi complex. The results provide a way to discriminate biochemically between exit sites and VTCs, two related structures that are difficult to distinguish from each other. PMID:12383349

  10. The QuEChERS revolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The technique of QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) is only 7 years old, yet it is revolutionizing the manner in which multiresidue, multiclass pesticide analysis (and perhaps beyond) is performed. Columnist Ron Majors sits down with inventors Steve Lehotay and Michelangelo An...

  11. Creating Smart-er Cities: An Overview

    ERIC Educational Resources Information Center

    Allwinkle, Sam; Cruickshank, Peter

    2011-01-01

    The following offers an overview of what it means for cities to be "smart." It draws the supporting definitions and critical insights into smart cities from a series of papers presented at the 2009 Trans-national Conference on Creating Smart(er) Cities. What the papers all have in common is their desire to overcome the all too often…

  12. European Space Agency, ERS-1 program

    NASA Technical Reports Server (NTRS)

    Haskell, A.

    1983-01-01

    The objectives selected for ERS-1 which are primarily intended to facilitate the exploitation of coastal oceans, including ice infested waters, and to facilitate the development of improved global weather information through the provision of information on the weather conditions over the oceans of the word are outlined. Additionally, land objectives will be addressed using the synthetic aperture radar incorporated in the payload.

  13. Vesicular Transport of Progeny Parvovirus Particles through ER and Golgi Regulates Maturation and Cytolysis

    PubMed Central

    Bär, Séverine; Rommelaere, Jean; Nüesch, Jürg P. F.

    2013-01-01

    Progeny particles of non-enveloped lytic parvoviruses were previously shown to be actively transported to the cell periphery through vesicles in a gelsolin-dependent manner. This process involves rearrangement and destruction of actin filaments, while microtubules become protected throughout the infection. Here the focus is on the intracellular egress pathway, as well as its impact on the properties and release of progeny virions. By colocalization with cellular marker proteins and specific modulation of the pathways through over-expression of variant effector genes transduced by recombinant adeno-associated virus vectors, we show that progeny PV particles become engulfed into COPII-vesicles in the endoplasmic reticulum (ER) and are transported through the Golgi to the plasma membrane. Besides known factors like sar1, sec24, rab1, the ERM family proteins, radixin and moesin play (an) essential role(s) in the formation/loading and targeting of virus-containing COPII-vesicles. These proteins also contribute to the transport through ER and Golgi of the well described analogue of cellular proteins, the secreted Gaussia luciferase in absence of virus infection. It is therefore likely that radixin and moesin also serve for a more general function in cellular exocytosis. Finally, parvovirus egress via ER and Golgi appears to be necessary for virions to gain full infectivity through post-assembly modifications (e.g. phosphorylation). While not being absolutely required for cytolysis and progeny virus release, vesicular transport of parvoviruses through ER and Golgi significantly accelerates these processes pointing to a regulatory role of this transport pathway. PMID:24068925

  14. Er3+ fluorescence in rare-earth aluminate glass

    NASA Astrophysics Data System (ADS)

    Weber, Richard; Hampton, Scott; Nordine, Paul C.; Key, Thomas; Scheunemann, Richard

    2005-08-01

    Er3+ ion fluorescence was excited with a 980-nm pump laser in Er-doped rare-earth aluminate (REAl) glasses with Er-dopant concentrations from 0.5-30mol% (oxides basis). The spectral and decay characteristics were measured at ˜1550nm from Er3+I13/24 and at ˜2750nm from Er3+I11/24. Red and green light emissions were also observed, from Er3+F9/24 and S3/24+H11/22, respectively. The fluorescence decay rates are described by a model that yields an accurate fit of results at Er concentrations from 0.5to7mol%. The radiative lifetime of Er3+I13/24 in Er:REAl glass is 6.12±0.26ms. Hydroxyl ion quenching occurs at a rate given by 9.88×10-20 aOHnEr Hz, where aOH is the glass absorption coefficient (in cm-1) at a wavelength of 2950nm and nEr is the total Er ion concentration. The I13/24 upconversion rate constant increases with the Er concentration to 1.35+0.05×10-18width="0.3em"/>cm3/s at and above 7-mol% Er2O3. Er3+I11/24 fluorescence decays primarily by multiphonon quenching to I13/24, at 7700±800Hz, a rate that is slightly less than in tellurite glasses. The addition of 20-mol% silica to the glass has only a small influence on the fluorescence decay rates and greatly improves glass formation from the liquid to allow melting and casting of Er-doped REAl glass from platinum crucibles. The application of these Er-doped glasses in laser and optical device applications is briefly discussed.

  15. Analysis of rice ER-resident J-proteins reveals diversity and functional differentiation of the ER-resident Hsp70 system in plants

    PubMed Central

    Takaiwa, Fumio

    2013-01-01

    The heat shock protein 70 (Hsp70) chaperone system participates in protein folding and quality control of unfolded proteins. To examine the roles of co-chaperones in the rice Hsp70 chaperone system in the endoplasmic reticulum (ER), the functions of six ER-resident J-proteins (OsP58A, OsP58B, OsERdj2, OsERdj3A, OsERdj3B, and OsERdj7) in rice were investigated. The expression of OsP58B, OsERdj3A, and OsERdj3B was predominantly up-regulated in roots subjected to ER stress. This response was mediated by signalling through ATF6 orthologues such as OsbZIP39 and OsbZIP60, but not through the IRE1/OsbZIP50 pathway. A co-immunoprecipitation assay demonstrated that OsP58A, OsP58B, and OsERdj3B preferentially interact with the major OsBiP, OsBiP1, while OsERdj3A interacts preferentially with OsBiP5, suggesting that there are different affinities between OsBiPs and J-proteins. In the endosperm tissue, OsP58A, OsP58B, and OsERdj2 were mainly localized in the ER, whereas OsERdj2 was localized around the outer surfaces of ER-derived protein bodies (PB-Is). Furthermore, OsERdj3A was not expressed in wild-type seeds but was up-regulated in transgenic seeds accumulating human interleukin-7 (hIL-7). Since ERdj3A–green fluorescent protein (GFP) was also detected in vacuoles of callus cells under ER stress conditions, OsERdj3A is a bona fide vacuole-localized protein. OsP58A, OsP58B and OsERdj3A were differentially accumulated in transgenic plants expressing various recombinant proteins. These results reveal the functional diversity of the rice ER-resident Hsp70 system. PMID:24153418

  16. IRS1 deficiency protects β-cells against ER stress-induced apoptosis by modulating sXBP-1 stability and protein translation.

    PubMed

    Takatani, Tomozumi; Shirakawa, Jun; Roe, Michael W; Leech, Colin A; Maier, Bernhard F; Mirmira, Raghavendra G; Kulkarni, Rohit N

    2016-01-01

    Endoplasmic reticulum (ER) stress is among several pathological features that underlie β-cell failure in the development of type 1 and type 2 diabetes. Adaptor proteins in the insulin/insulin-like-growth factor-1 signaling pathways, such as insulin receptor substrate-1 (IRS1) and IRS2, differentially impact β-cell survival but the underlying mechanisms remain unclear. Here we report that β-cells deficient in IRS1 (IRS1KO) are resistant, while IRS2 deficiency (IRS2KO) makes them susceptible to ER stress-mediated apoptosis. IRS1KOs exhibited low nuclear accumulation of spliced XBP-1 due to its poor stability, in contrast to elevated accumulation in IRS2KO. The reduced nuclear accumulation in IRS1KO was due to protein instability of Xbp1 secondary to proteasomal degradation. IRS1KO also demonstrated an attenuation in their general translation status in response to ER stress revealed by polyribosomal profiling. Phosphorylation of eEF2 was dramatically increased in IRS1KO enabling the β-cells to adapt to ER stress by blocking translation. Furthermore, significantly high ER calcium (Ca(2+)) was detected in IRS1KO β-cells even upon induction of ER stress. These observations suggest that IRS1 could be a therapeutic target for β-cell protection against ER stress-mediated cell death by modulating XBP-1 stability, protein synthesis, and Ca(2+) storage in the ER. PMID:27378176

  17. Autophagy-Related Direct Membrane Import from ER/Cytoplasm into the Vacuole or Apoplast: A Hidden Gateway also for Secondary Metabolites and Phytohormones?

    PubMed Central

    Kulich, Ivan; Žárský, Viktor

    2014-01-01

    Transportation of low molecular weight cargoes into the plant vacuole represents an essential plant cell function. Several lines of evidence indicate that autophagy-related direct endoplasmic reticulum (ER) to vacuole (and also, apoplast) transport plays here a more general role than expected. This route is regulated by autophagy proteins, including recently discovered involvement of the exocyst subcomplex. Traffic from ER into the vacuole bypassing Golgi apparatus (GA) acts not only in stress-related cytoplasm recycling or detoxification, but also in developmentally-regulated biopolymer and secondary metabolite import into the vacuole (or apoplast), exemplified by storage proteins and anthocyanins. We propose that this pathway is relevant also for some phytohormones’ (e.g., auxin, abscisic acid (ABA) and salicylic acid (SA)) degradation. We hypothesize that SA is not only an autophagy inducer, but also a cargo for autophagy-related ER to vacuole membrane container delivery and catabolism. ER membrane localized enzymes will potentially enhance the area of biosynthetic reactive surfaces, and also, abundant ER localized membrane importers (e.g., ABC transporters) will internalize specific molecular species into the autophagosome biogenesis domain of ER. Such active ER domains may create tubular invaginations of tonoplast into the vacuoles as import intermediates. Packaging of cargos into the ER-derived autophagosome-like containers might be an important mechanism of vacuole and exosome biogenesis and cytoplasm protection against toxic metabolites. A new perspective on metabolic transformations intimately linked to membrane trafficking in plants is emerging. PMID:24786101

  18. IRS1 deficiency protects β-cells against ER stress-induced apoptosis by modulating sXBP-1 stability and protein translation

    PubMed Central

    Takatani, Tomozumi; Shirakawa, Jun; Roe, Michael W.; Leech, Colin A.; Maier, Bernhard F.; Mirmira, Raghavendra G.; Kulkarni, Rohit N.

    2016-01-01

    Endoplasmic reticulum (ER) stress is among several pathological features that underlie β-cell failure in the development of type 1 and type 2 diabetes. Adaptor proteins in the insulin/insulin-like-growth factor-1 signaling pathways, such as insulin receptor substrate-1 (IRS1) and IRS2, differentially impact β-cell survival but the underlying mechanisms remain unclear. Here we report that β-cells deficient in IRS1 (IRS1KO) are resistant, while IRS2 deficiency (IRS2KO) makes them susceptible to ER stress-mediated apoptosis. IRS1KOs exhibited low nuclear accumulation of spliced XBP-1 due to its poor stability, in contrast to elevated accumulation in IRS2KO. The reduced nuclear accumulation in IRS1KO was due to protein instability of Xbp1 secondary to proteasomal degradation. IRS1KO also demonstrated an attenuation in their general translation status in response to ER stress revealed by polyribosomal profiling. Phosphorylation of eEF2 was dramatically increased in IRS1KO enabling the β-cells to adapt to ER stress by blocking translation. Furthermore, significantly high ER calcium (Ca2+) was detected in IRS1KO β-cells even upon induction of ER stress. These observations suggest that IRS1 could be a therapeutic target for β-cell protection against ER stress-mediated cell death by modulating XBP-1 stability, protein synthesis, and Ca2+ storage in the ER. PMID:27378176

  19. Lattice and magnetic properties of ErVO4 and ErPO4

    NASA Astrophysics Data System (ADS)

    Hirano, Y.; Skanthakumar, S.; Loong, C.-K.; Wakabayashi, N.; Boatner, L. A.

    2002-07-01

    The crystal-field energy-level structure of the Er3+ ground-state multiplet in ErVO4 was investigated by inelastic neutron scattering and magnetic susceptibility methods. The quantitative determination of the crystal-field-level energetics in conjunction with elastic-constant data was used to carry out a detailed analysis of the magnetoelastic contribution to the temperature dependence of the lattice parameters. X-ray-diffraction measurements show that the magnetoelastic effect is small, but the anisotropy with respect to the tetragonal c axis is unusual among the rare-earth orthovanadate and orthophosphate series. It was concluded that in ErVO4 the sixth-order multipole contribution is essential for explaining the observed thermal-expansion anomaly. A similar situation also occurs in the case of ErPO4. This result is contrary to the dominating role of the quadrupole effect found previously in many rare-earth orthovanadates and orthophosphates.

  20. Estrogen Signaling Multiple Pathways to Impact Gene Transcription

    PubMed Central

    Marino, Maria; Galluzzo, Paola; Ascenzi, Paolo

    2006-01-01

    Steroid hormones exert profound effects on cell growth, development, differentiation, and homeostasis. Their effects are mediated through specific intracellular steroid receptors that act via multiple mechanisms. Among others, the action mechanism starting upon 17β-estradiol (E2) binds to its receptors (ER) is considered a paradigmatic example of how steroid hormones function. Ligand-activated ER dimerizes and translocates in the nucleus where it recognizes specific hormone response elements located in or near promoter DNA regions of target genes. Behind the classical genomic mechanism shared with other steroid hormones, E2 also modulates gene expression by a second indirect mechanism that involves the interaction of ER with other transcription factors which, in turn, bind their cognate DNA elements. In this case, ER modulates the activities of transcription factors such as the activator protein (AP)-1, nuclear factor-κB (NF-κB) and stimulating protein-1 (Sp-1), by stabilizing DNA-protein complexes and/or recruiting co-activators. In addition, E2 binding to ER may also exert rapid actions that start with the activation of a variety of signal transduction pathways (e.g. ERK/MAPK, p38/MAPK, PI3K/AKT, PLC/PKC). The debate about the contribution of different ER-mediated signaling pathways to coordinate the expression of specific sets of genes is still open. This review will focus on the recent knowledge about the mechanism by which ERs regulate the expression of target genes and the emerging field of integration of membrane and nuclear receptor signaling, giving examples of the ways by which the genomic and non-genomic actions of ERs on target genes converge. PMID:18369406

  1. Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOP.

    PubMed

    Chen, Yong; Liu, Ju Mei; Xiong, Xin Xin; Qiu, Xin Yao; Pan, Feng; Liu, Di; Lan, Shu Jue; Jin, Si; Yu, Shang Bin; Chen, Xiao Qian

    2015-03-20

    Hepatocellular carcinomas (HCC) are highly malignant and aggressive tumors lack of effective therapeutic drugs. Piperlongumine (PL), a natural product isolated from longer pepper plants, is recently identified as a potent cytotoxic compound highly selective to cancer cells. Here, we reported that PL specifically suppressed HCC cell migration/invasion via endoplasmic reticulum (ER)-MAPKs-CHOP signaling pathway. PL selectively killed HCC cells but not normal hepatocytes with an IC50 of 10-20 µM while PL at much lower concentrations only suppressed HCC cell migration/invasion. PL selectively elevated reactive oxygen species (ROS) in HCC cells, which activated or up-regulated downstream PERK/Ire 1α/Grp78, p38/JNK/Erk and CHOP subsequently. Administration of antioxidants completely abolished PL's effects on cell death and migration/invasion. However, pharmacological inhibition of ER stress-responses or MAPKs signaling pathways with corresponding specific inhibitors only reversed PL's effect on cell migration/invasion but not on cell death. Consistently, knocking-down of CHOP by RNA interference only reversed PL-suppressed HCC cell migration. Finally, PL significantly suppressed HCC development and activated the ER-MAPKs-CHOP signaling pathway in HCC xenografts in vivo. Taken together, PL selectively killed HCC cells and preferentially inhibited HCC cell migration/invasion via ROS-ER-MAPKs-CHOP axis, suggesting a novel therapeutic strategy for the highly malignant and aggressive HCC clinically. PMID:25788268

  2. Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOP

    PubMed Central

    Chen, Yong; Liu, Ju Mei; Xiong, Xin Xin; Qiu, Xin Yao; Pan, Feng; Liu, Di; Lan, Shu Jue; Jin, Si; Yu, Shang Bin; Chen, Xiao Qian

    2015-01-01

    Hepatocellular carcinomas (HCC) are highly malignant and aggressive tumors lack of effective therapeutic drugs. Piperlongumine (PL), a natural product isolated from longer pepper plants, is recently identified as a potent cytotoxic compound highly selective to cancer cells. Here, we reported that PL specifically suppressed HCC cell migration/invasion via endoplasmic reticulum (ER)-MAPKs-CHOP signaling pathway. PL selectively killed HCC cells but not normal hepatocytes with an IC50 of 10-20 μM while PL at much lower concentrations only suppressed HCC cell migration/invasion. PL selectively elevated reactive oxygen species (ROS) in HCC cells, which activated or up-regulated downstream PERK/Ire 1α/Grp78, p38/JNK/Erk and CHOP subsequently. Administration of antioxidants completely abolished PL's effects on cell death and migration/invasion. However, pharmacological inhibition of ER stress-responses or MAPKs signaling pathways with corresponding specific inhibitors only reversed PL's effect on cell migration/invasion but not on cell death. Consistently, knocking-down of CHOP by RNA interference only reversed PL-suppressed HCC cell migration. Finally, PL significantly suppressed HCC development and activated the ER-MAPKs-CHOP signaling pathway in HCC xenografts in vivo. Taken together, PL selectively killed HCC cells and preferentially inhibited HCC cell migration/invasion via ROS-ER-MAPKs-CHOP axis, suggesting a novel therapeutic strategy for the highly malignant and aggressive HCC clinically. PMID:25788268

  3. Triangulated Mal-Signaling in Alzheimer's Disease: Roles of Neurotoxic Ceramides, ER Stress, and Insulin Resistance Reviewed

    PubMed Central

    de la Monte, Suzanne M.

    2015-01-01

    Ceramides are lipid signaling molecules that cause cytotoxicity and cell death mediated by insulin resistance, inflammation, and endoplasmic reticulum (ER) stress. However, insulin resistance dysregulates lipid metabolism, which promotes ceramide accumulation with attendant inflammation and ER stress. Herein, we discuss two major pathways, extrinsic and intrinsic, that converge and often overlap in propagating AD-type neurodegeneration via a triangulated mal-signaling network. First, we review evidence that systemic insulin resistance diseases linked to obesity, type 2 diabetes, and non-alcoholic steatohepatitis promote neurodegeneration. Mechanistically, we propose that toxic ceramides generated in extra-CNS tissues (e.g., liver) get released into peripheral blood, and subsequently transit across the blood-brain barrier into the brain where they induce brain insulin resistance, inflammation, and cell death (extrinsic pathway). Then we discuss the role of the intrinsic pathway of neurodegeneration which is mediated by endogenous or primary brain insulin/IGF resistance, and impairs neuronal and oligodendrocyte survival, energy metabolism, membrane integrity, cytoskeletal function, and AβPP-Aβ secretion. The end result is increased ER stress and ceramide generation, which exacerbate brain insulin resistance, cell death, myelin degeneration, and neuroinflammation. Altogether, the data suggest that the triangulated mal-signaling network mediated by toxic ceramides, ER stress, and insulin resistance should be targeted to disrupt positive feedback loops that drive the AD neurodegeneration cascade. PMID:22337830

  4. 150. Credit ER. Building reinforced concrete portion of Coleman Canal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    150. Credit ER. Building reinforced concrete portion of Coleman Canal inverted siphon #2. Longitudinal steel reinforcing rods are visible at bottom. (ER, v. 64 1911 p. 702). - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  5. 155. Credit ER. Hand cleaning and trimming of Coleman canal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    155. Credit ER. Hand cleaning and trimming of Coleman canal after excavation by steam shovel. (ER, v. 64 1911 p. 701). - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  6. The cervical malignant cells display a down regulation of ER-α but retain the ER-β expression

    PubMed Central

    López-Romero, Ricardo; Garrido-Guerrero, Efraín; Rangel-López, Angélica; Manuel-Apolinar, Leticia; Piña-Sánchez, Patricia; Lazos-Ochoa, Minerva; Mantilla-Morales, Alejandra; Bandala, Cindy; Salcedo, Mauricio

    2013-01-01

    The human cervix is a tissue target of sex steroid hormones as estradiol (E2) which exerts its action through of the estrogen receptors alpha and beta (ER-α and ER-β). In this study we investigated the expression of ER-α and ER-β in human invasive cervical carcinomas using immunohistochemistry and RT-PCR analyses and compared with that observed in the corresponding normal tissue. The results show nuclear expression of ER-α mainly in the first third of normal cervical epithelium, however, decreased or absent expression were present in invasive cervical carcinoma, indicating that expression of ER-α is lost in cervical cancer. Nevertheless, by RT-PCR we were able to demonstrate mRNA expression of ER-α in invasive cervical tissues. These results suggest that loss of ER-α could be due to a mechanism of post-transcriptional and/or post-translational regulation of its gene during the progression to invasive carcinoma. On the other hand, ER-β was expressed in normal cervix with an expression pattern similar to ER-α. In addition to its nuclear localization, cytoplasmic immunoreaction of ER-β was present in the epithelium of invasive cervical carcinomas, suggesting an association between cytoplasmic ER-β expression and invasive phenotype in the cervical tumors. In summary, the results show that the cervical malignant cells tend to loss the ER-α but maintain the ER-β actively expressed. Loss of expression of ER-α in neoplastic tissue suggests that the estrogenic effects could be conducted through the ER-β in human neoplastic cervical tissue. More detailed studies are needed to confirm this suggestion and to determine the role of ER-β in cervical cancer. PMID:23923078

  7. Calcium Homeostasis and ER Stress in Control of Autophagy in Cancer Cells

    PubMed Central

    Kania, Elżbieta; Pająk, Beata

    2015-01-01

    Autophagy is a basic catabolic process, serving as an internal engine during responses to various cellular stresses. As regards cancer, autophagy may play a tumor suppressive role by preserving cellular integrity during tumor development and by possible contribution to cell death. However, autophagy may also exert oncogenic effects by promoting tumor cell survival and preventing cell death, for example, upon anticancer treatment. The major factors influencing autophagy are Ca2+ homeostasis perturbation and starvation. Several Ca2+ channels like voltage-gated T- and L-type channels, IP3 receptors, or CRAC are involved in autophagy regulation. Glucose transporters, mainly from GLUT family, which are often upregulated in cancer, are also prominent targets for autophagy induction. Signals from both Ca2+ perturbations and glucose transport blockage might be integrated at UPR and ER stress activation. Molecular pathways such as IRE 1-JNK-Bcl-2, PERK-eIF2α-ATF4, or ATF6-XBP 1-ATG are related to autophagy induced through ER stress. Moreover ER molecular chaperones such as GRP78/BiP and transcription factors like CHOP participate in regulation of ER stress-mediated autophagy. Autophagy modulation might be promising in anticancer therapies; however, it is a context-dependent matter whether inhibition or activation of autophagy leads to tumor cell death. PMID:25821797

  8. Activation of HIPK2 Promotes ER Stress-Mediated Neurodegeneration in Amyotrophic Lateral Sclerosis.

    PubMed

    Lee, Sebum; Shang, Yulei; Redmond, Stephanie A; Urisman, Anatoly; Tang, Amy A; Li, Kathy H; Burlingame, Alma L; Pak, Ryan A; Jovičić, Ana; Gitler, Aaron D; Wang, Jinhua; Gray, Nathanael S; Seeley, William W; Siddique, Teepu; Bigio, Eileen H; Lee, Virginia M-Y; Trojanowski, John Q; Chan, Jonah R; Huang, Eric J

    2016-07-01

    Persistent accumulation of misfolded proteins causes endoplasmic reticulum (ER) stress, a prominent feature in many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Here we report the identification of homeodomain interacting protein kinase 2 (HIPK2) as the essential link that promotes ER-stress-induced cell death via the IRE1α-ASK1-JNK pathway. ER stress, induced by tunicamycin or SOD1(G93A), activates HIPK2 by phosphorylating highly conserved serine and threonine residues (S359/T360) within the activation loop of the HIPK2 kinase domain. In SOD1(G93A) mice, loss of HIPK2 delays disease onset, reduces cell death in spinal motor neurons, mitigates glial pathology, and improves survival. Remarkably, HIPK2 activation positively correlates with TDP-43 proteinopathy in NEFH-tTA/tetO-hTDP-43ΔNLS mice, sporadic ALS and C9ORF72 ALS, and blocking HIPK2 kinase activity protects motor neurons from TDP-43 cytotoxicity. These results reveal a previously unrecognized role of HIPK2 activation in ER-stress-mediated neurodegeneration and its potential role as a biomarker and therapeutic target for ALS. VIDEO ABSTRACT. PMID:27321923

  9. Ethylene Perception by the ERS1 Protein in Arabidopsis1

    PubMed Central

    Hall, Anne E.; Findell, Jennifer L.; Schaller, G. Eric; Sisler, Edward C.; Bleecker, Anthony B.

    2000-01-01

    Ethylene perception in Arabidopsis is controlled by a family of five genes, including ETR1, ERS1 (ethylene response sensor 1), ERS2, ETR2, and EIN4. ERS1, the most highly conserved gene with ETR1, encodes a protein with 67% identity to ETR1. To clarify the role of ERS1 in ethylene sensing, we biochemically characterized the ERS1 protein by heterologous expression in yeast. ERS1, like ETR1, forms a membrane-associated, disulfide-linked dimer. In addition, yeast expressing the ERS1 protein contains ethylene-binding sites, indicating ERS1 is also an ethylene-binding protein. This finding supports previous genetic evidence that isoforms of ETR1 also function in plants as ethylene receptors. Further, we used the ethylene antagonist 1-methylcyclopropene (1-MCP) to characterize the ethylene-binding sites of ERS1 and ETR1. We found 1-MCP to be both a potent inhibitor of the ethylene-induced seedling triple response, as well as ethylene binding by yeast expressing ETR1 and ERS1. Yeast expressing ETR1 and ERS1 showed nearly identical sensitivity to 1-MCP, suggesting that the ethylene-binding sites of ETR1 and ERS1 have similar affinities for ethylene. PMID:10938361

  10. Bcl2 at the endoplasmic reticulum protects against a Bax/Bak-independent paraptosis-like cell death pathway initiated via p20Bap31.

    PubMed

    Heath-Engel, Hannah M; Wang, Bing; Shore, Gordon C

    2012-02-01

    Bap31 is an integral ER membrane protein which functions as an escort factor in the sorting of newly synthesized membrane proteins within the endoplasmic reticulum (ER). During apoptosis signaling, Bap31 is subject to early cleavage by initiator caspase-8. The resulting p20Bap31 (p20) fragment has been shown to initiate proapoptotic ER-mitochondria Ca2+ transmission, and to exert dominant negative (DN) effects on ER protein trafficking. We now report that ectopic expression of p20 in E1A/DNp53-transformed baby mouse kidney epithelial cells initiates a non-apoptotic form of cell death with paraptosis-like morphology. This pathway was characterized by an early rise in ER Ca2+ stores and massive dilation of the ER/nuclear envelope, dependent on intact ER Ca2+ stores. Ablation of the Bax/Bak genes had no effect on these ER/nuclear envelope transformations, and delayed but did not prevent cell death. ER-restricted expression of Bcl2 in the absence of Bax/Bak, however, delayed both ER/nuclear envelope dilation and cell death. This prosurvival role of Bcl2 at the ER thus extended beyond inhibition of Bax/Bak, and correlated with its ability to lower ER Ca2+ stores. Furthermore, these results indicate that ER restricted Bcl2 is capable of antagonizing not only apoptosis, but also a non-apoptotic, Bax/Bak independent, paraptosis-like form of cell death. PMID:22197342

  11. Inhibition of autophagic flux by ROS promotes apoptosis during DTT-induced ER/oxidative stress in HeLa cells.

    PubMed

    Xiang, Xi-Yan; Yang, Xiao-Chun; Su, Jin; Kang, Jing-Song; Wu, Yao; Xue, Ya-Nan; Dong, Yu-Tong; Sun, Lian-Kun

    2016-06-01

    As targets for cancer therapy, endoplasmic reticulum (ER) stress and autophagy are closely linked. However, the signaling pathways responsible for induction of autophagy in response to ER stress and its cellular consequences appear to vary with cell type and stimulus. In the present study, we showed that dithiothreitol (DTT) induced ER stress in HeLa cells in a time- and dose-dependent fashion. With increased ER stress, reactive oxygen species (ROS) production increased and autophagy flux, assessed by intracellular accumulation of LC3B-II and p62, was inhibited. N-acetyl-L-cysteine (NAC), a classic antioxidant, exacerbated cell death induced by 3.2 mM of DTT, but attenuated that induced by 6.4 mM DTT. Low cytotoxic doses of DTT transiently activated c-JNU N-terminal kinase (JNK) and p38, whereas high dose of DTT persistently activated JNK and p38 and simultaneously reduced extracellular signal-regulated kinase (ERK) activity. Combined treatment with DTT and U0126, an inhibitor of ERK upstream activators mitogen-activated protein kinase (MAPK) kinase 1 and 2 (MEK1/2), blocked autophagy flux in HeLa cells. This effect was similar to that caused by a combination of DTT and chloroquine (CQ). These data suggested that insufficient autophagy was accompanied by increased ROS production during DTT-induced ER stress. ROS appeared to regulate MAPK signaling, switching from a pro-survival to a pro-apoptotic signal as ER stress increased. ERK inhibition by ROS during severe ER stress blocked autophagic flux. Impaired autophagic flux, in turn, aggravated ER stress, ultimately leading to cell death. Taken together, our data provide the first reported evidence that ROS may control cell fate through regulating the MAPK pathways and autophagic flux during DTT-induced ER/oxidative stress. PMID:27035858

  12. ER-12-1 completion report

    SciTech Connect

    Russell, C.E.; Gillespie, D.; Cole, J.C.; Drellack, S.L.

    1996-12-01

    The objective of drillhole ER-12-1 was to determine the hydrogeology of paleozoic carbonate rocks and of the Eleana Formation, a regional aquitard, in an area potentially downgradient from underground nuclear testing conducted in nearby Rainier Mesa. This objective was addressed through the drilling of well ER-12-1 at N886,640.26 E640,538.85 Nevada Central Coordinates. Drilling of the 1094 m (3588 ft) well began on July 19, 1991 and was completed on October 17, 1991. Drilling problems included hole deviation and hole instability that prevented the timely completion of this borehole. Drilling methods used include rotary tri-cone and rotary hammer drilling with conventional and reverse circulation using air/water, air/foam (Davis mix), and bentonite mud. Geologic cuttings and geophysical logs were obtained from the well. The rocks penetrated by the ER-12-1 drillhole are a complex assemblage of Silurian, Devonian, and Mississippian sedimentary rocks that are bounded by numerous faults that show substantial stratigraphic offset. The final 7.3 m (24 ft) of this hole penetrated an unusual intrusive rock of Cretaceous age. The geology of this borehole was substantially different from that expected, with the Tongue Wash Fault encountered at a much shallower depth, paleozoic rocks shuffled out of stratigraphic sequence, and the presence of an altered biotite-rich microporphyritic igneous rock at the bottom of the borehole. Conodont CAI analyses and rock pyrolysis analyses indicate that the carbonate rocks in ER-12-1, as well as the intervening sheets of Eleana siltstone, have been thermally overprinted following movement on the faults that separate them. The probable source of heat for this thermal disturbance is the microporphyritic intrusion encountered at the bottom of the hole, and its age establishes that the major fault activity must have occurred prior to 102.3+0.5 Ma (middle Cretaceous).

  13. Meyers Großer Sternenatlas

    NASA Astrophysics Data System (ADS)

    Brunier, Serge; Fujii, Akira

    Unendliche Weiten mal ganz aus der Nähe betrachtet. Meyers Großer Sternenatlas ist ein außergewöhnlicher Bildband über den Sternenhimmel, der die Sternbilder erstmals im gleichen Größenverhältnis zeigt, wie sie am Himmel erscheinen. Die sensationellen Astrofotos und aktuellen Aufnahmen des Hubble-Weltraumteleskops werden Gelegenheitsbeobachter und Hobbyastronomen gleichermaßen begeistern.

  14. Optical properties of RbMnF3:Er3+

    NASA Astrophysics Data System (ADS)

    Iverson, M. V.; Sibley, W. A.

    1980-03-01

    Absorption, emission, excitation, and lifetime data are presented for RbMnF3:Er3+. Evidence for Mn2+ --> Er3+ energy transfer was found from the Er3+ excitation spectra and the temperature dependence of the Mn2+ and Er3+ emissions. The presence of Er3+ in the lattice slightly changed the temperature dependence of the Mn2+ lifetime. Radiative and radiationless transitions are discussed in terms of the model of Flaherty and Di Bartolo and the quantum-mechanical single-configuration coordinate model of Struck and Fonger.

  15. The yeast ER-intramembrane protease Ypf1 refines nutrient sensing by regulating transporter abundance.

    PubMed

    Avci, Dönem; Fuchs, Shai; Schrul, Bianca; Fukumori, Akio; Breker, Michal; Frumkin, Idan; Chen, Chia-Yi; Biniossek, Martin L; Kremmer, Elisabeth; Schilling, Oliver; Steiner, Harald; Schuldiner, Maya; Lemberg, Marius K

    2014-12-01

    Proteolysis by aspartyl intramembrane proteases such as presenilin and signal peptide peptidase (SPP) underlies many cellular processes in health and disease. Saccharomyces cerevisiae encodes a homolog that we named yeast presenilin fold 1 (Ypf1), which we verify to be an SPP-type protease that localizes to the endoplasmic reticulum (ER). Our work shows that Ypf1 functionally interacts with the ER-associated degradation (ERAD) factors Dfm1 and Doa10 to regulate the abundance of nutrient transporters by degradation. We demonstrate how this noncanonical branch of the ERAD pathway, which we termed "ERAD regulatory" (ERAD-R), responds to ligand-mediated sensing as a trigger. More generally, we show that Ypf1-mediated posttranslational regulation of plasma membrane transporters is indispensible for early sensing and adaptation to nutrient depletion. The combination of systematic analysis alongside mechanistic details uncovers a broad role of intramembrane proteolysis in regulating secretome dynamics. PMID:25454947

  16. Rhomboid Family Pseudoproteases Use the ER Quality Control Machinery to Regulate Intercellular Signaling

    PubMed Central

    Zettl, Markus; Adrain, Colin; Strisovsky, Kvido; Lastun, Viorica; Freeman, Matthew

    2011-01-01

    Summary Intramembrane proteolysis governs many cellular control processes, but little is known about how intramembrane proteases are regulated. iRhoms are a conserved subfamily of proteins related to rhomboid intramembrane serine proteases that lack key catalytic residues. We have used a combination of genetics and cell biology to determine that these “pseudoproteases” inhibit rhomboid-dependent signaling by the epidermal growth factor receptor pathway in Drosophila, thereby regulating sleep. iRhoms prevent the cleavage of potential rhomboid substrates by promoting their destabilization by endoplasmic reticulum (ER)-associated degradation; this mechanism has been conserved in mammalian cells. The exploitation of the intrinsic quality control machinery of the ER represents a new mode of regulation of intercellular signaling. Inactive cognates of enzymes are common, but their functions are mostly unclear; our data indicate that pseudoenzymes can readily evolve into regulatory proteins, suggesting that this may be a significant evolutionary mechanism. PMID:21439629

  17. ER Adaptor SCAP Translocates and Recruits IRF3 to Perinuclear Microsome Induced by Cytosolic Microbial DNAs

    PubMed Central

    Yu, Huansha; Liu, Xing; Huang, Lulu; Wang, Qiang; Liu, Heng; Cui, Ye; Tang, Yijun; Zhang, Peng; Wang, Chen

    2016-01-01

    Stimulator of interferon genes (STING, also known as MITA, ERIS or MPYS) induces the activation of TBK1 kinase and IRF3 transcription factor, upon sensing of microbial DNAs. How IRF3 is recruited onto the STING signalosome remains unknown. We report here that silencing of the ER adaptor SCAP markedly impairs the IRF3-responsive gene expression induced by STING. Scap knockdown mice are more susceptible to HSV-1 infection. Interestingly, SCAP translocates from ER, via Golgi, to perinuclear microsome in a STING-dependent manner. Mechanistically, the N-terminal transmembrane domain of SCAP interacts with STING, and the C-terminal cytosolic domain of SCAP binds to IRF3, thus recruiting IRF3 onto STING signalosome. Mis-localization of SCAP abolishes its antiviral function. Collectively, this study characterizes SCAP as an essential adaptor in the STING signaling pathway, uncovering a critical missing link in DNAs-triggered host antiviral responses. PMID:26900919

  18. ER contact sites direct late endosome transport.

    PubMed

    Wijdeven, Ruud H; Jongsma, Marlieke L M; Neefjes, Jacques; Berlin, Ilana

    2015-12-01

    Endosomes shuttle select cargoes between cellular compartments and, in doing so, maintain intracellular homeostasis and enable interactions with the extracellular space. Directionality of endosomal transport critically impinges on cargo fate, as retrograde (microtubule minus-end directed) traffic delivers vesicle contents to the lysosome for proteolysis, while the opposing anterograde (plus-end directed) movement promotes recycling and secretion. Intriguingly, the endoplasmic reticulum (ER) is emerging as a key player in spatiotemporal control of late endosome and lysosome transport, through the establishment of physical contacts with these organelles. Earlier studies have described how minus-end-directed motor proteins become discharged from vesicles engaged at such contact sites. Now, Raiborg et al. implicate ER-mediated interactions, induced by protrudin, in loading plus-end-directed motor kinesin-1 onto endosomes, thereby stimulating their transport toward the cell's periphery. In this review, we recast the prevailing concepts on bidirectional late endosome transport and discuss the emerging paradigm of inter-compartmental regulation from the ER-endosome interface viewpoint. PMID:26440125

  19. Present statue of Japanese ERS-1 Project

    NASA Technical Reports Server (NTRS)

    Ishiwada, Yasufumi; Nemoto, Yoshiaki

    1986-01-01

    Earth Resources Satellite 1 (ERS-1) will be launched in the FY 1990 with the H-1 rocket from Tanegashima Space Center. ERS-1 will seek to firmly establish remote sensing technologies from space by using synthetic aperture radar and optical sensors, as well as primarily exploring for non-renewable resources and also monitoring for land use, agriculture, forestry, fishery, conservation of environment, prevention of disasters, and surveillance of coastal regions. ERS-1 is a joint project in which the main responsibility for the development of the mission equipment is assumed by the Agency of Industrial Science and Technology, MITI, and the Technology Research Association of Resources Remote Sensing System, while that for the satellite itself and launching rocket is assumed by the Science and Technology Agency (STA) and the National Space Development Agency (NASDA). In relation to this project, users have maintained a close working relationship with the manufacturers after submitting their requirements in 1984 on the specifications of the mission equipments. This missions parameters are outlined.

  20. Mapping the crossroads of immune activation and cellular stress response pathways

    PubMed Central

    Cláudio, Nuno; Dalet, Alexandre; Gatti, Evelina; Pierre, Philippe

    2013-01-01

    The innate immune cell network detects specific microbes and damages to cell integrity in order to coordinate and polarize the immune response against invading pathogens. In recent years, a cross-talk between microbial-sensing pathways and endoplasmic reticulum (ER) homeostasis has been discovered and have attracted the attention of many researchers from the inflammation field. Abnormal accumulation of proteins in the ER can be seen as a sign of cellular malfunction and triggers a collection of conserved emergency rescue pathways. These signalling cascades, which increase ER homeostasis and favour cell survival, are collectively known as the unfolded protein response (UPR). The induction or activation by microbial stimuli of several molecules linked to the ER stress response pathway have led to the conclusion that microbe sensing by immunocytes is generally associated with an UPR, which serves as a signal amplification cascade favouring inflammatory cytokines production. Induction of the UPR alone was shown to promote inflammation in different cellular and pathological models. Here we discuss how the innate immune and ER-signalling pathways intersect. Moreover, we propose that the induction of UPR-related molecules by microbial products does not necessarily reflect ER stress, but instead is an integral part of a specific transcription programme controlled by innate immunity receptors. PMID:23584529

  1. Ternary system Er-Ni-In at T=870 K

    SciTech Connect

    Dzevenko, M.; Tyvanchuk, Yu.; Bratash, L.; Zaremba, V.; Havela, L.; Kalychak, Ya.

    2011-10-15

    Isothermal section of the Er-Ni-In system at T=870 K was constructed by means of X-ray powder diffraction and EDX-analyses. Nine ternary compounds, namely ErNi{sub 9}In{sub 2} (YNi{sub 9}In{sub 2}-type), Er{sub 1-1.22}Ni{sub 4}In{sub 1-0.78} (MgCu{sub 4}Sn-type), Er{sub 10}Ni{sub 9.07}In{sub 20} (Ho{sub 10}Ni{sub 9}In{sub 20}-type), ErNi{sub 1-0.60}In{sub 1-1.40} (ZrNiAl-type), Er{sub 2}Ni{sub 2}In (Mn{sub 2}AlB{sub 2}-type), Er{sub 2}Ni{sub 1.78}In (Mo{sub 2}FeB{sub 2}-type), Er{sub 5}Ni{sub 2}In{sub 4} (Lu{sub 5}Ni{sub 2}In{sub 4}-type), Er{sub 5}Ni{sub 2}In (Mo{sub 5}SiB{sub 2}-type), and Er{sub 13.53}Ni{sub 3.14}In{sub 3.33} (Lu{sub 14}Co{sub 2}In{sub 3}-type), exist in the Er-Ni-In system at this temperature. The substitution of Ni for In was observed for ErNi{sub 1-0.60}In{sub 1-1.40} and In for Er in the case of related compounds ErNi{sub 2} and ErNi{sub 4}In. Er can enter NiIn (CoSn-type) leading to including-substitution type of compound Er{sub 0-0.12}NiIn{sub 1-0.89}. Basic magnetic properties of the Er{sub 0.04}NiIn{sub 0.97}, ErNi{sub 2}, Er{sub 0.9}Ni{sub 2}In{sub 0.1}, and ErNi{sub 4}In phases were inspected. Electrical-resistivity studies were performed on the ErNiIn, ErNi{sub 0.9}In{sub 1.1}, and ErNi{sub 4}In phases. - Graphical Abstract: Phase relations in the ternary system Er-Ni-In have been established for the isothermal section at T=870 K based on X-ray phase and EDX-analyses. Nine ternary compounds were observed. Highlights: > Isothermal section of Er-Ni-In system at T=870 K was constructed. > Nine ternary compounds were detected. > Basic magnetic properties of Er{sub 0.04}NiIn{sub 0.97} and ErNi{sub 4}In phases were inspected.

  2. Recombinant Newcastle disease virus (rL-RVG) triggers autophagy and apoptosis in gastric carcinoma cells by inducing ER stress.

    PubMed

    Bu, Xuefeng; Zhao, Yinghai; Zhang, Zhijian; Wang, Mubin; Li, Mi; Yan, Yulan

    2016-01-01

    We have reported that the recombinant avirulent Newcastle disease virus (NDV) LaSota strain expressing the rabies virus glycoprotein (rL-RVG) could induce autophagy and apoptosis in gastric carcinoma cells. In the present study, we explored the upstream regulators, endoplasmic reticulum (ER) stress that induce autophagy and apoptosis and the relationships among them. For this purpose, SGC-7901 and HGC cells were infected with rL-RVG. NDV LaSota strain and phosphate-buffered saline (PBS) were treated as the control groups. Western blotting and immunofluorescence microscopy were used to detect the expression of the ER stress-related proteins glucose-regulated protein 78 (GRP78) and the transcription factor GADD153 (CHOP), among others. The expression of beclin-1 and the conversion of light chain (LC) 3-I were used to determine the occurrence of autophagy, and flow cytometry (FCM) and western blotting were used to examine apoptosis-related protein expression. Transmission electron microscopy was also performed to monitor the ultrastructure of the cells. Moreover, small interfering (si) RNA was used to knock down CHOP expression. rL-RVG treatment increased the expression of ER stress-related proteins, such as GRP78, CHOP, activating transcriptional factor 6 (ATF6), X-box-binding protein 1 (XBP-1), and phosphorylated eukaryotic initiation factor 2 (p-eIF2α), in a time- and concentration-dependent manner, and knockdown of CHOP reduced LC3-II conversion and beclin-1 expression. When ER stress was inhibited with 4-PBA, the expression of both autophagy-related proteins and apoptosis-related proteins markedly decreased. Interestingly, inhibition of autophagy with 3-methyladenine (3MA) decreased not only apoptosis-related protein expression but also ER stress-related protein expression. Moreover, we found that downregulation of the c-Jun N-terminal kinase (JNK) pathway by SP600125 reduced LC3-II conversion, beclin-1 expression and caspase-3 activation. Collectively, the

  3. Recombinant Newcastle disease virus (rL-RVG) triggers autophagy and apoptosis in gastric carcinoma cells by inducing ER stress

    PubMed Central

    Bu, Xuefeng; Zhao, Yinghai; Zhang, Zhijian; Wang, Mubin; Li, Mi; Yan, Yulan

    2016-01-01

    We have reported that the recombinant avirulent Newcastle disease virus (NDV) LaSota strain expressing the rabies virus glycoprotein (rL-RVG) could induce autophagy and apoptosis in gastric carcinoma cells. In the present study, we explored the upstream regulators, endoplasmic reticulum (ER) stress that induce autophagy and apoptosis and the relationships among them. For this purpose, SGC-7901 and HGC cells were infected with rL-RVG. NDV LaSota strain and phosphate-buffered saline (PBS) were treated as the control groups. Western blotting and immunofluorescence microscopy were used to detect the expression of the ER stress-related proteins glucose-regulated protein 78 (GRP78) and the transcription factor GADD153 (CHOP), among others. The expression of beclin-1 and the conversion of light chain (LC) 3-I were used to determine the occurrence of autophagy, and flow cytometry (FCM) and western blotting were used to examine apoptosis-related protein expression. Transmission electron microscopy was also performed to monitor the ultrastructure of the cells. Moreover, small interfering (si) RNA was used to knock down CHOP expression. rL-RVG treatment increased the expression of ER stress-related proteins, such as GRP78, CHOP, activating transcriptional factor 6 (ATF6), X-box-binding protein 1 (XBP-1), and phosphorylated eukaryotic initiation factor 2 (p-eIF2α), in a time- and concentration-dependent manner, and knockdown of CHOP reduced LC3-II conversion and beclin-1 expression. When ER stress was inhibited with 4-PBA, the expression of both autophagy-related proteins and apoptosis-related proteins markedly decreased. Interestingly, inhibition of autophagy with 3-methyladenine (3MA) decreased not only apoptosis-related protein expression but also ER stress-related protein expression. Moreover, we found that downregulation of the c-Jun N-terminal kinase (JNK) pathway by SP600125 reduced LC3-II conversion, beclin-1 expression and caspase-3 activation. Collectively, the

  4. Tamoxifen Inhibits ER-negative Breast Cancer Cell Invasion and Metastasis by Accelerating Twist1 Degradation

    PubMed Central

    Ma, Gang; He, Jianjun; Yu, Yang; Xu, Yixiang; Yu, Xiaobin; Martinez, Jarrod; Lonard, David M.; Xu, Jianming

    2015-01-01

    Twist1 is a transcription factor driving epithelial-mesenchymal transition, invasion and metastasis of breast cancer cells. Mice with germ-line Twist1 knockout are embryonic lethal, while adult mice with inducible Twist1 knockout have no obvious health problems, suggesting that Twist1 is a viable therapeutic target for the inhibition of invasion and metastasis of breast cancer in adult patients. In this study, we expressed a luciferase protein or a Twist1-luciferase fusion protein in HeLa cells as part of a high throughput system to screen 1280 compounds in the Library of Pharmacologically Active Compounds (LOPAC) from Sigma-Aldrich for their effects on Twist1 protein expression. One of the most interesting compounds identified is tamoxifen, a selective estrogen receptor (ER) modulator used to treat ER-positive breast cancer. Tamoxifen treatment significantly accelerated Twist1 degradation in multiple cell lines including HEK293 human kidney cells, 4T1 and 168FARN mouse mammary tumor cells with either ectopically or endogenously expressed Twist1. Tamoxifen-induced Twist1 degradation could be blocked by the MG132 proteasome inhibitor, suggesting that tamoxifen induces Twist1 degradation through the ubiquitination-proteasome pathway. However, tamoxifen-induced Twist1 degradation was independent of Twist1 mRNA expression, estrogen signaling and MAPK-mediated Twist1 phosphorylation in these cells. Importantly, tamoxifen also significantly inhibited invasive behavior in Matrigel and lung metastasis in SCID-bg mice of ER-negative 4T1 mammary tumor cells, which depend on endogenous Twist1 to invade and metastasize. These results indicate that tamoxifen can significantly accelerate Twist1 degradation to suppress cancer cell invasion and metastasis, suggesting that tamoxifen can be used not only to treat ER-positive breast cancers but also to reduce Twist1-mediated invasion and metastasis in ER-negative breast cancers. PMID:25892968

  5. Tamoxifen inhibits ER-negative breast cancer cell invasion and metastasis by accelerating Twist1 degradation.

    PubMed

    Ma, Gang; He, Jianjun; Yu, Yang; Xu, Yixiang; Yu, Xiaobin; Martinez, Jarrod; Lonard, David M; Xu, Jianming

    2015-01-01

    Twist1 is a transcription factor driving epithelial-mesenchymal transition, invasion and metastasis of breast cancer cells. Mice with germ-line Twist1 knockout are embryonic lethal, while adult mice with inducible Twist1 knockout have no obvious health problems, suggesting that Twist1 is a viable therapeutic target for the inhibition of invasion and metastasis of breast cancer in adult patients. In this study, we expressed a luciferase protein or a Twist1-luciferase fusion protein in HeLa cells as part of a high throughput system to screen 1280 compounds in the Library of Pharmacologically Active Compounds (LOPAC) from Sigma-Aldrich for their effects on Twist1 protein expression. One of the most interesting compounds identified is tamoxifen, a selective estrogen receptor (ER) modulator used to treat ER-positive breast cancer. Tamoxifen treatment significantly accelerated Twist1 degradation in multiple cell lines including HEK293 human kidney cells, 4T1 and 168FARN mouse mammary tumor cells with either ectopically or endogenously expressed Twist1. Tamoxifen-induced Twist1 degradation could be blocked by the MG132 proteasome inhibitor, suggesting that tamoxifen induces Twist1 degradation through the ubiquitination-proteasome pathway. However, tamoxifen-induced Twist1 degradation was independent of Twist1 mRNA expression, estrogen signaling and MAPK-mediated Twist1 phosphorylation in these cells. Importantly, tamoxifen also significantly inhibited invasive behavior in Matrigel and lung metastasis in SCID-bg mice of ER-negative 4T1 mammary tumor cells, which depend on endogenous Twist1 to invade and metastasize. These results indicate that tamoxifen can significantly accelerate Twist1 degradation to suppress cancer cell invasion and metastasis, suggesting that tamoxifen can be used not only to treat ER-positive breast cancers but also to reduce Twist1-mediated invasion and metastasis in ER-negative breast cancers. PMID:25892968

  6. Penta-EF-Hand Protein Peflin Is a Negative Regulator of ER-To-Golgi Transport

    PubMed Central

    Held, Aaron; Sargeant, John; Thorsen, Kevin; Hay, Jesse C.

    2016-01-01

    Luminal calcium regulates vesicle transport early in the secretory pathway. In ER-to-Golgi transport, depletion of luminal calcium leads to significantly reduced transport and a buildup of budding and newly budded COPII vesicles and vesicle proteins. Effects of luminal calcium on transport may be mediated by cytoplasmic calcium sensors near ER exits sites (ERES). The penta-EF-hand (PEF) protein apoptosis-linked gene 2 (ALG-2) stabilizes sec31A at ER exit sites (ERES) and promotes the assembly of inner and outer shell COPII components. However, in vitro and intact cell approaches have not determined whether ALG-2 is a negative or positive regulator, or a regulator at all, under basal physiological conditions. ALG-2 interacts with another PEF protein, peflin, to form cytosolic heterodimers that dissociate in response to calcium. However, a biological function for peflin has not been demonstrated and whether peflin and the ALG-2/peflin interaction modulates transport has not been investigated. Using an intact, single cell, morphological assay for ER-to-Golgi transport in normal rat kidney (NRK) cells, we found that depletion of peflin using siRNA resulted in significantly faster transport of the membrane cargo VSV-G. Double depletion of peflin and ALG-2 blocked the increased transport resulting from peflin depletion, demonstrating a role for ALG-2 in the increased transport. Furthermore, peflin depletion caused increased targeting of ALG-2 to ERES and increased ALG-2/sec31A interactions, suggesting that peflin may normally inhibit transport by preventing ALG-2/sec31A interactions. This work identifies for the first time a clear steady state role for a PEF protein in ER-to-Golgi transport—peflin is a negative regulator of transport. PMID:27276012

  7. Sec35p, a Novel Peripheral Membrane Protein, Is Required for ER to Golgi Vesicle Docking

    PubMed Central

    VanRheenen, Susan M.; Cao, Xiaochun; Lupashin, Vladimir V.; Barlowe, Charles; Gerard Waters, M.

    1998-01-01

    SEC35 was identified in a novel screen for temperature-sensitive mutants in the secretory pathway of the yeast Saccharomyces cerevisiae (Wuestehube et al., 1996. Genetics. 142:393–406). At the restrictive temperature, the sec35-1 strain exhibits a transport block between the ER and the Golgi apparatus and accumulates numerous vesicles. SEC35 encodes a novel cytosolic protein of 32 kD, peripherally associated with membranes. The temperature-sensitive phenotype of sec35-1 is efficiently suppressed by YPT1, which encodes the rab-like GTPase required early in the secretory pathway, or by SLY1-20, which encodes a dominant form of the ER to Golgi target -SNARE–associated protein Sly1p. Weaker suppression is evident upon overexpression of genes encoding the vesicle-SNAREs SEC22, BET1, or YKT6. The cold-sensitive lethality that results from deleting SEC35 is suppressed by YPT1 or SLY1-20. These genetic relationships suggest that Sec35p acts upstream of, or in conjunction with, Ypt1p and Sly1p as was previously found for Uso1p. Using a cell-free assay that measures distinct steps in vesicle transport from the ER to the Golgi, we find Sec35p is required for a vesicle docking stage catalyzed by Uso1p. These genetic and biochemical results suggest Sec35p acts with Uso1p to dock ER-derived vesicles to the Golgi complex. PMID:9606204

  8. 4-Phenylbutyrate Attenuates the ER Stress Response and Cyclic AMP Accumulation in DYT1 Dystonia Cell Models

    PubMed Central

    Cho, Jin A.; Zhang, Xuan; Miller, Gregory M.; Lencer, Wayne I.; Nery, Flavia C.

    2014-01-01

    Dystonia is a neurological disorder in which sustained muscle contractions induce twisting and repetitive movements or abnormal posturing. DYT1 early-onset primary dystonia is the most common form of hereditary dystonia and is caused by deletion of a glutamic acid residue (302/303) near the carboxyl-terminus of encoded torsinA. TorsinA is localized primarily within the contiguous lumen of the endoplasmic reticulum (ER) and nuclear envelope (NE), and is hypothesized to function as a molecular chaperone and an important regulator of the ER stress-signaling pathway, but how the mutation in torsinA causes disease remains unclear. Multiple lines of evidence suggest that the clinical symptoms of dystonia result from abnormalities in dopamine (DA) signaling, and possibly involving its down-stream effector adenylate cyclase that produces the second messenger cyclic adenosine-3′, 5′-monophosphate (cAMP). Here we find that mutation in torsinA induces ER stress, and inhibits the cyclic adenosine-3′, 5′-monophosphate (cAMP) response to the adenylate cyclase agonist forskolin. Both defective mechanins are corrected by the small molecule 4-phenylbutyrate (4-PBA) that alleviates ER stress. Our results link torsinA, the ER-stress-response, and cAMP-dependent signaling, and suggest 4-PBA could also be used in dystonia treatment. Other pharmacological agents known to modulate the cAMP cascade, and ER stress may also be therapeutic in dystonia patients and can be tested in the models described here, thus supplementing current efforts centered on the dopamine pathway. PMID:25379658

  9. Potentiation of estrogen receptor activation function 1 (AF-1) by Src/JNK through a serine 118-independent pathway.

    PubMed

    Feng, W; Webb, P; Nguyen, P; Liu, X; Li, J; Karin, M; Kushner, P J

    2001-01-01

    Estrogen receptor (ER) is activated either by ligand or by signals from tyrosine kinase-linked cell surface receptors. We investigated whether the nonreceptor Src tyrosine kinase could affect ER activity. Expression of constitutively active Src or stimulation of the endogenous Src/JNK pathway enhances transcriptional activation by the estrogen-ER complex and strongly stimulates the otherwise weak activation by the unliganded ER and the tamoxifen-ER complex. Src affects ER activation function 1 (AF-1), and not ER AF-2, and does so through its tyrosine kinase activity. This effect of Src is mediated partly through a Raf/mitogen-activated ERK kinase/extracellular signal-regulated kinase (Raf/MEK/ERK) signaling cascade and partly through a MEKK/JNKK/JNK cascade. Although, as previously shown, Src action through activated ERK stimulates AF-1 by phosphorylation at S118, Src action through activated JNK neither leads to phosphorylation of S118 nor requires S118 for its action. We therefore suggest that the Src/JNK pathway enhances AF-1 activity by modification of ER AF-1-associated proteins. Src potentiates activation functions in CREB-binding protein (CBP) and glucocorticoid receptor interacting protein 1 (GRIP1), and we discuss the possibility that the Src/JNK pathway enhances the activity of these coactivators, which are known to mediate AF-1 action. PMID:11145737

  10. Rab1-dependent ER-Golgi transport dysfunction is a common pathogenic mechanism in SOD1, TDP-43 and FUS-associated ALS.

    PubMed

    Soo, Kai Y; Halloran, Mark; Sundaramoorthy, Vinod; Parakh, Sonam; Toth, Reka P; Southam, Katherine A; McLean, Catriona A; Lock, Peter; King, Anna; Farg, Manal A; Atkin, Julie D

    2015-11-01

    Several diverse proteins are linked genetically/pathologically to neurodegeneration in amyotrophic lateral sclerosis (ALS) including SOD1, TDP-43 and FUS. Using a variety of cellular and biochemical techniques, we demonstrate that ALS-associated mutant TDP-43, FUS and SOD1 inhibit protein transport between the endoplasmic reticulum (ER) and Golgi apparatus in neuronal cells. ER-Golgi transport was also inhibited in embryonic cortical and motor neurons obtained from a widely used animal model (SOD1(G93A) mice), validating this mechanism as an early event in disease. Each protein inhibited transport by distinct mechanisms, but each process was dependent on Rab1. Mutant TDP-43 and mutant FUS both inhibited the incorporation of secretory protein cargo into COPII vesicles as they bud from the ER, and inhibited transport from ER to the ER-Golgi intermediate (ERGIC) compartment. TDP-43 was detected on the cytoplasmic face of the ER membrane, whereas FUS was present within the ER, suggesting that transport is inhibited from the cytoplasm by mutant TDP-43, and from the ER by mutant FUS. In contrast, mutant SOD1 destabilised microtubules and inhibited transport from the ERGIC compartment to Golgi, but not from ER to ERGIC. Rab1 performs multiple roles in ER-Golgi transport, and over-expression of Rab1 restored ER-Golgi transport, and prevented ER stress, mSOD1 inclusion formation and induction of apoptosis, in cells expressing mutant TDP-43, FUS or SOD1. Rab1 also co-localised extensively with mutant TDP-43, FUS and SOD1 in neuronal cells, and Rab1 formed inclusions in motor neurons of spinal cords from sporadic ALS patients, which were positive for ubiquitinated TDP-43, implying that Rab1 is misfolded and dysfunctional in sporadic disease. These results demonstrate that ALS-mutant forms of TDP-43, FUS, and SOD1 all perturb protein transport in the early secretory pathway, between ER and Golgi compartments. These data also imply that restoring Rab1-mediated ER

  11. Simultaneous inhibition of the ubiquitin-proteasome system and autophagy enhances apoptosis induced by ER stress aggravators in human pancreatic cancer cells.

    PubMed

    Li, Xu; Zhu, Feng; Jiang, Jianxin; Sun, Chengyi; Zhong, Qing; Shen, Ming; Wang, Xin; Tian, Rui; Shi, Chengjian; Xu, Meng; Peng, Feng; Guo, Xingjun; Hu, Jun; Ye, Dawei; Wang, Min; Qin, Renyi

    2016-09-01

    In contrast to normal tissue, cancer cells display profound alterations in protein synthesis and degradation. Therefore, proteins that regulate endoplasmic reticulum (ER) homeostasis are being increasingly recognized as potential therapeutic targets. The ubiquitin-proteasome system and autophagy are crucially important for proteostasis in cells. However, interactions between autophagy, the proteasome, and ER stress pathways in cancer remain largely undefined. This study demonstrated that withaferin-A (WA), the biologically active withanolide extracted from Withania somnifera, significantly increased autophagosomes, but blocked the degradation of autophagic cargo by inhibiting SNARE-mediated fusion of autophagosomes and lysosomes in human pancreatic cancer (PC) cells. WA specifically induced proteasome inhibition and promoted the accumulation of ubiquitinated proteins, which resulted in ER stress-mediated apoptosis. Meanwhile, the impaired autophagy at early stage induced by WA was likely activated in response to ER stress. Importantly, combining WA with a series of ER stress aggravators enhanced apoptosis synergistically. WA was well tolerated in mice, and displayed synergism with ER stress aggravators to inhibit tumor growth in PC xenografts. Taken together, these findings indicate that simultaneous suppression of 2 key intracellular protein degradation systems rendered PC cells vulnerable to ER stress, which may represent an avenue for new therapeutic combinations for this disease. PMID:27308733

  12. ERK/MAPK regulates ERRγ expression, transcriptional activity, and receptor-mediated Tamoxifen resistance in ER+ breast cancer

    PubMed Central

    Heckler, Mary Mazzotta; Thakor, Hemang; Schafer, Cara C.; Riggins, Rebecca B.

    2014-01-01

    Background Selective estrogen receptor modulators (SERMs) such as Tamoxifen (TAM) can significantly improve breast cancer-specific survival for women with ER-positive (ER+) disease. However, resistance to TAM remains a major clinical problem. The resistant phenotype is usually not driven by loss or mutation of ER; instead, changes in multiple proliferative and/or survival pathways override the inhibitory effects of TAM. Estrogen-related receptor gamma (ERRγ) is an orphan member of the nuclear receptor superfamily that promotes TAM resistance in ER+ breast cancer cells. In this study, we sought to clarify the mechanism(s) by which this orphan nuclear receptor is regulated and, in turn, affects TAM resistance. Methods mRNA and protein expression/phosphorylation were monitored by RT-PCR and Western blotting, respectively. Site-directed mutagenesis was used to disrupt consensus ERK target sites. Cell proliferation and cell cycle progression were measured by flow cytometric methods. ERRγ transcriptional activity was assessed by dual-luciferase promoter-reporter assays. Results We show that ERRγ protein levels are affected by the activation state of ERK/MAPK, and mutation of consensus ERK target sites impairs ERRγ-driven transcriptional activity and TAM resistance. Conclusions These findings shed new light on the functional significance of ERRγ in ER+ breast cancer, and are the first to demonstrate a role for kinase regulation of this orphan nuclear receptor. PMID:24684682

  13. Crocin protects human embryonic kidney cells (HEK293) from α- and β-Zearalenol-induced ER stress and apoptosis.

    PubMed

    Ben Salem, Intidhar; Boussabbeh, Manel; Prola, Alexandre; Guilbert, Arnaud; Bacha, Hassen; Lemaire, Christophe; Abid-Essefi, Salwa

    2016-08-01

    α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL) are the major metabolites of Zearalenone (ZEN) and are known to induce many toxic effects. In the present study, we investigated the involvement of endoplasmic reticulum (ER) stress in α- and β-ZOL-mediated toxicity in human kidney cells (HEK293) and evaluated the effect of a common dietary compound Crocin (CRO), from saffron. We show that α- and β-ZOL treatment induces ER stress as evidenced by the upregulation of the 78 kDa glucose-regulated protein (GRP78) and the Growth arrest and DNA damage-inducible protein (GADD34). Activation of the ER stress response is associated with activation of the mitochondrial pathway of apoptosis. This apoptotic process is characterized by an increase in ROS generation and lipid peroxidation, a loss of mitochondrial transmembrane potential (ΔΨm) and activation of caspases. We also demonstrate that the antioxidant properties of CRO help to prevent ER stress and reduce α- and β-ZOL-induced apoptosis in HEK293 cells. Our results suggest that saffron consumption might be helpful to prevent α- and β-ZOL-induced ER stress and toxicity. PMID:27121014

  14. Charting the Secretory Pathway in a Simple Eukaryote

    PubMed Central

    2010-01-01

    George Palade, a founding father of cell biology and of the American Society for Cell Biology (ASCB), established the ultrastructural framework for an analysis of how proteins are secreted and membranes are assembled in eukaryotic cells. His vision inspired a generation of investigators to probe the molecular mechanisms of protein transport. My laboratory has dissected these pathways with complementary genetic and biochemical approaches. Peter Novick, one of my first graduate students, isolated secretion mutants of Saccharomyces cerevisiae, and through cytological analysis of single and double mutants and molecular cloning of the corresponding SEC genes, we established that yeast cells use a secretory pathway fundamentally conserved in all eukaryotes. A biochemical reaction that recapitulates the first half of the secretory pathway was used to characterize Sec proteins that comprise the polypeptide translocation channel in the endoplasmic reticulum (ER) membrane (Sec61) and the cytoplasmic coat protein complex (COPII) that captures cargo proteins into transport vesicles that bud from the ER. PMID:21079008

  15. The Noncanonical Role of ULK/ATG1 in ER-to-Golgi Trafficking Is Essential for Cellular Homeostasis.

    PubMed

    Joo, Joung Hyuck; Wang, Bo; Frankel, Elisa; Ge, Liang; Xu, Lu; Iyengar, Rekha; Li-Harms, XiuJie; Wright, Christopher; Shaw, Timothy I; Lindsten, Tullia; Green, Douglas R; Peng, Junmin; Hendershot, Linda M; Kilic, Fusun; Sze, Ji Ying; Audhya, Anjon; Kundu, Mondira

    2016-05-19

    ULK1 and ULK2 are thought to be essential for initiating autophagy, and Ulk1/2-deficient mice die perinatally of autophagy-related defects. Therefore, we used a conditional knockout approach to investigate the roles of ULK1/2 in the brain. Although the mice showed neuronal degeneration, the neurons showed no accumulation of P62(+)/ubiquitin(+) inclusions or abnormal membranous structures, which are observed in mice lacking other autophagy genes. Rather, neuronal death was associated with activation of the unfolded protein response (UPR) pathway. An unbiased proteomics approach identified SEC16A as an ULK1/2 interaction partner. ULK-mediated phosphorylation of SEC16A regulated the assembly of endoplasmic reticulum (ER) exit sites and ER-to-Golgi trafficking of specific cargo, and did not require other autophagy proteins (e.g., ATG13). The defect in ER-to-Golgi trafficking activated the UPR pathway in ULK-deficient cells; both processes were reversed upon expression of SEC16A with a phosphomimetic substitution. Thus, the regulation of ER-to-Golgi trafficking by ULK1/2 is essential for cellular homeostasis. PMID:27203176

  16. Transmembrane domain-dependent sorting of proteins to the ER and plasma membrane in yeast.

    PubMed Central

    Rayner, J C; Pelham, H R

    1997-01-01

    Sorting of membrane proteins between compartments of the secretory pathway is mediated in part by their transmembrane domains (TMDs). In animal cells, TMD length is a major factor in Golgi retention. In yeast, the role of TMD signals is less clear; it has been proposed that membrane proteins travel by default to the vacuole, and are prevented from doing so by cytoplasmic signals. We have investigated the targeting of the yeast endoplasmic reticulum (ER) t-SNARE Ufe1p. We show that the amino acid sequence of the Ufe1p TMD is important for both function and ER targeting, and that the requirements for each are distinct. Targeting is independent of Rer1p, the only candidate sorting receptor for TMD sequences currently known. Lengthening the Ufe1p TMD allows transport along the secretory pathway to the vacuole or plasma membrane. The choice between these destinations is determined by the length and composition of the TMD, but not by its precise sequence. A longer TMD is required to reach the plasma membrane in yeast than in animal cells, and shorter TMDs direct proteins to the vacuole. TMD-based sorting is therefore a general feature of the yeast secretory pathway, but occurs by different mechanisms at different points. PMID:9155009

  17. On the Use of an ER-213 Detonator to Establish a Baseline for the ER-486

    SciTech Connect

    Thomas, Keith A.; Liechty, Gary H.; Jaramillo, Dennis C.; Munger, Alan C.; McHugh, Douglas C.; Kennedy, James E.

    2014-08-19

    This report documents a series of tests using a TSD-115 fireset coupled with an ER-213, a gold exploding bridgewire (EBW) detonator. These tests were designed to fire this EBW with a smaller fireset to obtain current and voltage data as well as timing information at voltage levels below, above, and throughout the threshold firing region. This study could then create a database for comparison to our current ER-486 EBW development, which is designed to be a lower voltage (<500V) device.

  18. Bulk Er:YAP and Er:Yb:YAP optical emission studies for eyesafe laser applications

    NASA Astrophysics Data System (ADS)

    Georgiou, Efstratios; Boquillon, Jean-Pierre; Musset, Olivier

    2012-06-01

    Emission and excitation spectra of Er-doped YAP crystals reveal a broad emission band in the eyesafe region with peaks around 1545-nm and 1608-nm and pump-bands suitable for common 800-nm and 970-nm diode lasers, suggesting YAP as a candidate crystalline host for diode-pumped laser in the 1.5-μm eyesafe regime. Erbium-doped YAP-crystal results are comparable with analogous measurements on Er:Yb:YAG, which has already demostrated efficient lasing action in the eyesafe region.

  19. Nϵ-lysine acetylation in the lumen of the endoplasmic reticulum: A way to regulate autophagy and maintain protein homeostasis in the secretory pathway.

    PubMed

    Peng, Yajing; Puglielli, Luigi

    2016-06-01

    The Nϵ-lysine acetylation of cargo proteins in the lumen of the endoplasmic reticulum (ER) requires a membrane transporter (SLC33A1) and 2 acetyltransferases (NAT8B and NAT8). The ER acetylation machinery regulates the homeostatic balance between quality control/efficiency of the secretory pathway and autophagy-mediated disposal of toxic protein aggregates. We recently reported that the autophagy pathway that acts downstream of the ER acetylation machinery specifically targets protein aggregates that form within the secretory pathway. Genetic and biochemical manipulation of ER acetylation in a mouse model of Alzheimer disease is able to restore normal proteostasis and rescue the disease phenotype. Here we summarize these findings and offer an overview of the ER-acetylation machinery. PMID:27124586

  20. BOREAS Level-0 ER-2 Navigation Data

    NASA Technical Reports Server (NTRS)

    Strub, Richard; Dominguez, Roseanne; Newcomer, Jeffrey A.; Hall, Forrest G. (Editor)

    2000-01-01

    The BOREAS Staff Science effort covered those activities that were BOREAS community-level activities or required uniform data collection procedures across sites and time. These activities included the acquisition, processing, and archiving of aircraft navigation/attitude data to complement the digital image data. The level-0 ER-2 navigation data files contain aircraft attitude and position information acquired during the digital image and photographic data collection missions. Temporally, the data were acquired from April to September 1994. Data were recorded at intervals of 5 seconds. The data are stored in tabular ASCII files.

  1. Molecular Pathways: Targeting the PI3K Pathway in Cancer-BET Inhibitors to the Rescue.

    PubMed

    Stratikopoulos, Elias E; Parsons, Ramon E

    2016-06-01

    The PI3K signaling pathway is a complex and tightly regulated network that is critical for many physiologic processes, such as cell growth, proliferation, metabolism, and survival. Aberrant activation of this pathway can occur through mutation of almost any of its major nodes and has been implicated in a number of human diseases, including cancer. The high frequency of mutations in this pathway in multiple types of cancer has led to the development of small-molecule inhibitors of PI3K, several of which are currently in clinical trials. However, several feedback mechanisms either within the PI3K pathway or in compensatory pathways can render tumor cells resistant to therapy. Recently, targeting proteins of the bromodomain and extraterminal (BET) family of epigenetic readers of histone acetylation has been shown to effectively block adaptive signaling response of cancer cells to inhibitors of the PI3K pathway, which at least in some cases can restore sensitivity. BET inhibitors also enforce blockade of the MAPK, JAK/STAT, and ER pathways, suggesting they may be a rational combinatorial partner for divergent oncogenic signals that are subject to homeostatic regulation. Here, we review the PI3K pathway as a target for cancer therapy and discuss the potential use of BET inhibition to enhance the clinical efficacy of PI3K inhibitors. Clin Cancer Res; 22(11); 2605-10. ©2016 AACR. PMID:27250929

  2. Mechanism of Breast Cancer Preventive Action of Pomegranate: Disruption of Estrogen Receptor and Wnt/β-Catenin Signaling Pathways.

    PubMed

    Mandal, Animesh; Bishayee, Anupam

    2015-01-01

    A pomegranate emulsion (PE), containing various bioactive phytochemicals, has recently been found to exert substantial chemopreventive effect against 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary tumorigenesis in rats via antiproliferative and proapoptotic actions. Nevertheless, the underlying mechanisms of action are not completely understood. The present study was designed to investigate the effects of PE treatment on intratumor expression of estrogen receptor (ER)-α, ER-β,β-catenin and cyclin D1 during DMBA rat mammary carcinogenesis. Mammary tumor sections were harvested from a chemopreventive study in which PE (0.2, 1.0 and 5.0 g/kg) exhibited inhibition of mammary tumorigenesis in a dose-response manner. The expressions of ER-α, ER-β, β-catenin and cyclin D1 were analyzed by immunohistochemical techniques. PE downregulated the expression of intratumor ER-α and ER-β and lowered ER-α:ER-β ratio. PE also decreased the expression, cytoplasmic accumulation, and nuclear translocation of β-catenin, an essential transcriptional cofactor for Wnt signaling. Moreover, PE suppressed the expression of cell growth regulatory protein cyclin D1, which is a downstream target for both ER and Wnt signaling. Our current results in conjunction with our previous findings indicate that concurrent disruption of ER and Wnt/β-catenin signaling pathways possibly contributes to antiproliferative and proapoptotic effects involved in PE-mediated chemoprevention of DMBA-inflicted rat mammary tumorigenesis. PMID:26703530

  3. Dysfunction of Wntless triggers the retrograde Golgi-to-ER transport of Wingless and induces ER stress

    PubMed Central

    Zhang, Peng; Zhou, Lujun; Pei, Chunli; Lin, Xinhua; Yuan, Zengqiang

    2016-01-01

    Secreted Wnts play diverse roles in a non-cell-autonomous fashion. However, the cell-autonomous effect of unsecreted Wnts remains unknown. Endoplasmic reticulum (ER) stress is observed in specialized secretory cells and participates in pathophysiological processes. The correlation between Wnt secretion and ER stress remains poorly understood. Here, we demonstrated that Drosophila miR-307a initiates ER stress specifically in wingless (wg)-expressing cells through targeting wntless (wls/evi). This phenotype could be mimicked by retromer loss-of-function or porcupine (porc) depletion, and rescued by wg knockdown, arguing that unsecreted Wg triggers ER stress. Consistently, we found that disrupting the secretion of human Wnt5a also induced ER stress in mammalian cells. Furthermore, we showed that a C-terminal KKVY-motif of Wg is required for its retrograde Golgi-to-ER transport, thus inducing ER stress. Next, we investigated if COPI, the regulator of retrograde transport, is responsible for unsecreted Wg to induce ER stress. To our surprise, we found that COPI acts as a novel regulator of Wg secretion. Taken together, this study reveals a previously unknown Golgi-to-ER retrograde route of Wg, and elucidates a correlation between Wnt secretion and ER stress during development. PMID:26887613

  4. TFG Promotes Organization of Transitional ER and Efficient Collagen Secretion.

    PubMed

    McCaughey, Janine; Miller, Victoria J; Stevenson, Nicola L; Brown, Anna K; Budnik, Annika; Heesom, Kate J; Alibhai, Dominic; Stephens, David J

    2016-05-24

    Collagen is the most abundant protein in the animal kingdom. It is of fundamental importance during development for cell differentiation and tissue morphogenesis as well as in pathological processes such as fibrosis and cancer cell migration. However, our understanding of the mechanisms of procollagen secretion remains limited. Here, we show that TFG organizes transitional ER (tER) and ER exit sites (ERESs) into larger structures. Depletion of TFG results in dispersion of tER elements that remain associated with individual ER-Golgi intermediate compartments (ERGICs) as largely functional ERESs. We show that TFG is not required for the transport and packaging of small soluble cargoes but is necessary for the export of procollagen from the ER. Our work therefore suggests a key relationship between the structure and function of ERESs and a central role for TFG in optimizing COPII assembly for procollagen export. PMID:27184855

  5. Proteomic Analysis of Mitochondrial-Associated ER Membranes (MAM) during RNA Virus Infection Reveals Dynamic Changes in Protein and Organelle Trafficking

    PubMed Central

    Horner, Stacy M.; Wilkins, Courtney; Badil, Samantha; Iskarpatyoti, Jason; Gale, Michael

    2015-01-01

    RIG-I pathway signaling of innate immunity against RNA virus infection is organized between the ER and mitochondria on a subdomain of the ER called the mitochondrial-associated ER membrane (MAM). The RIG-I adaptor protein MAVS transmits downstream signaling of antiviral immunity, with signaling complexes assembling on the MAM in association with mitochondria and peroxisomes. To identify components that regulate MAVS signalosome assembly on the MAM, we characterized the proteome of MAM, ER, and cytosol from cells infected with either chronic (hepatitis C) or acute (Sendai) RNA virus infections, as well as mock-infected cells. Comparative analysis of protein trafficking dynamics during both chronic and acute viral infection reveals differential protein profiles in the MAM during RIG-I pathway activation. We identified proteins and biochemical pathways recruited into and out of the MAM in both chronic and acute RNA viral infections, representing proteins that drive immunity and/or regulate viral replication. In addition, by using this comparative proteomics approach, we identified 3 new MAVS-interacting proteins, RAB1B, VTN, and LONP1, and defined LONP1 as a positive regulator of the RIG-I pathway. Our proteomic analysis also reveals a dynamic cross-talk between subcellular compartments during both acute and chronic RNA virus infection, and demonstrates the importance of the MAM as a central platform that coordinates innate immune signaling to initiate immunity against RNA virus infection. PMID:25734423

  6. ESR study of AuEr dilute alloys

    NASA Astrophysics Data System (ADS)

    Dokter, H. D.; Davidov, D.; Hoekstra, F. R.; Nieuwenhuys, G. J.

    1981-06-01

    ESR linewidth and signal intensity measurements of AuEr (0.2%, 1%, 3%) dilute alloys have been carried out as a function of temperature in order to resolve previous discrepancies regarding the crystal field splitting. The data analysis indicates a splitting of (16 ± 4) K between the Γ 7 ground state and the Γ (1)8 first excited state. No evidence for an additional broadening mechanism associated with Er-Er exchange interactions was observed.

  7. Loss of a Clueless-dGRASP complex results in ER stress and blocks Integrin exit from the perinuclear endoplasmic reticulum in Drosophila larval muscle

    PubMed Central

    Wang, Zong-Heng; Rabouille, Catherine; Geisbrecht, Erika R.

    2015-01-01

    Drosophila Clueless (Clu) and its conserved orthologs are known for their role in the prevention of mitochondrial clustering. Here, we uncover a new role for Clu in the delivery of integrin subunits in muscle tissue. In clu mutants, αPS2 integrin, but not βPS integrin, abnormally accumulates in a perinuclear endoplasmic reticulum (ER) subdomain, a site that mirrors the endogenous localization of Clu. Loss of components essential for mitochondrial distribution do not phenocopy the clu mutant αPS2 phenotype. Conversely, RNAi knockdown of the Drosophila Golgi reassembly and stacking protein GRASP55/65 (dGRASP) recapitulates clu defects, including the abnormal accumulation of αPS2 and larval locomotor activity. Both Clu and dGRASP proteins physically interact and loss of Clu displaces dGRASP from ER exit sites, suggesting that Clu cooperates with dGRASP for the exit of αPS2 from a perinuclear subdomain in the ER. We also found that Clu and dGRASP loss of function leads to ER stress and that the stability of the ER exit site protein Sec16 is severely compromised in the clu mutants, thus explaining the ER accumulation of αPS2. Remarkably, exposure of clu RNAi larvae to chemical chaperones restores both αPS2 delivery and functional ER exit sites. We propose that Clu together with dGRASP prevents ER stress and therefore maintains Sec16 stability essential for the functional organization of perinuclear early secretory pathway. This, in turn, is essential for integrin subunit αPS2 ER exit in Drosophila larval myofibers. PMID:25862246

  8. Validation of ERS-1 environmental data products

    NASA Technical Reports Server (NTRS)

    Goodberlet, Mark A.; Swift, Calvin T.; Wilkerson, John C.

    1994-01-01

    Evaluation of the launch-version algorithms used by the European Space Agency (ESA) to derive wind field and ocean wave estimates from measurements of sensors aboard the European Remote Sensing satellite, ERS-1, has been accomplished through comparison of the derived parameters with coincident measurements made by 24 open ocean buoys maintained by the National Oceanic and Atmospheric Administration). During the period from November 1, 1991 through February 28, 1992, data bases with 577 and 485 pairs of coincident sensor/buoy wind and wave measurements were collected for the Active Microwave Instrument (AMI) and Radar Altimeter (RA) respectively. Based on these data, algorithm retrieval accuracy is estimated to be plus or minus 4 m/s for AMI wind speed, plus or minus 3 m/s for RA wind speed and plus or minus 0.6 m for RA wave height. After removing 180 degree ambiguity errors, the AMI wind direction retrieval accuracy was estimated at plus or minus 28 degrees. All of the ERS-1 wind and wave retrievals are relatively unbiased. These results should be viewed as interim since improved algorithms are under development. As final versions are implemented, additional assessments should be conducted to complete the validation.

  9. Radiation Hydrodynamics with FLOW-ER

    NASA Astrophysics Data System (ADS)

    Marcello, Dominic; Tohline, J. E.; Motl, P. M.

    2008-03-01

    The effects of radiative transport are an important aspect of many astrophysical fluid problems, such as binary star accretion discs and common envelope evolution. Unfortunately, the full radiative transport problem is seven dimensional and outside the realm of current computational capabilities. The gray field flux limited diffusion (FLD) approximation has been shown to provide a feasible four dimensional approximation to the full radiative transport problems in many cases. The flux is approximated through an algebraic expression which interpolates between the two extremes of diffusive and free streaming radiation. FLD allows for the exchange of energy and momentum between the fluid and radiation field. We are implementing this into our current Newtonian astrophysical fluid simulation code named FLOW-ER. Unlike other FLD codes, FLOW-ER handles shocks without the use of artificial viscosity. At this point, the code runs in 1D and 2D on a single processor. The ultimate goal is a fully 3D parallel code running on an adaptive mesh. Presented are results for test cases in 1D and 2D, compared to analytic results where available, and to ZeusMP2 when not. This research has been supported, in part, by NSF grants AST-0407070 and AST-0708551.

  10. June 1997 ER-2 Flight Measurements

    NASA Technical Reports Server (NTRS)

    Jones, Irby W.

    2003-01-01

    Within our current understanding of the atmospheric ionizing radiation, the ER-2 flight package was designed to provide a complete characterization of the physical fields and evaluate various dosimetric techniques for routine monitoring. A flight plan was developed to sample the full dynamic range of the atmospheric environment especially at altitudes relevant to the development of the High Speed Civil Transport. The flight of the instruments occurred in June of 1997 where predictive models indicated a maximum in the high altitude radiation environment occurring approximately nine months after the minimum in the solar sunspot cycle. The flights originated at Moffett field at the Ames Research Center on ER-2 aircraft designated as 706. The equipment was shipped mid- May 1997 for unpacking and checkout, size fitting, systems functional test, and preflight testing on aircraft power with flight readiness achieved on May 30, 1997. The equipment was qualified on its first engineering flight on June 2, 1997 and the subsequent science gathering flights followed during the period of June 5-15, 1997. Herein we give an account of the flight operations.

  11. ER Import Sites and Their Relationship to ER Exit Sites: A New Model for Bidirectional ER-Golgi Transport in Higher Plants.

    PubMed

    Lerich, Alexander; Hillmer, Stefan; Langhans, Markus; Scheuring, David; van Bentum, Paulien; Robinson, David G

    2012-01-01

    Per definition, ER exit sites are COPII vesiculation events at the surface of the ER and in higher plants are only visualizable in the electron microscope through cryofixation techniques. Fluorescent COPII labeling moves with Golgi stacks and locates to the interface between the ER and the Golgi. In contrast, the domain of the ER where retrograde COPI vesicles fuse, i.e., ER import sites (ERIS), has remained unclear. To identify ERIS we have employed ER-located SNAREs and tethering factors. We screened several SNAREs (SYP81, the SYP7 family, and USE1) to find a SNARE whose overexpression did not disrupt ER-Golgi traffic and which gave rise to discrete fluorescent punctae when expressed with an XFP tag. Only the Qc-SNARE SYP72 fulfilled these criteria. When coexpressed with SYP72-YFP, both the type I-membrane protein RFP-p24δ5 and the luminal marker CFP-HDEL whose ER localization are due to an efficient COPI-mediated recycling, form nodules along the tubular ER network. SYP72-YFP colocalizes with these nodules which are not seen when RFP-p24δ5 or CFP-HDEL is expressed alone or when SYP72-YFP is coexpressed with a mutant form of RFP-p24δ5 that cannot exit the ER. SYP72-YFP does not colocalize with Golgi markers, except when the Golgi stacks are immobilized through actin depolymerization. Endogenous SYP7 SNAREs, also colocalize with immobilized COPII/Golgi. In contrast, XFP-tagged versions of plant homologs to TIP20 of the Dsl1 COPI-tethering factor complex, and the COPII-tethering factor p115 colocalize perfectly with Golgi stacks irrespective of the motile status. These data suggest that COPI vesicle fusion with the ER is restricted to periods when Golgi stacks are stationary, but that when moving both COPII and COPI vesicles are tethered and collect in the ER-Golgi interface. Thus, the Golgi stack and an associated domain of the ER thereby constitute a mobile secretory and recycling unit: a unique feature in eukaryotic cells. PMID:22876251

  12. Selective killing of gastric cancer cells by a small molecule targeting ROS-mediated ER stress activation.

    PubMed

    Zou, Peng; Xia, Yiqun; Chen, Tongke; Zhang, Junru; Wang, Zhe; Chen, Wenbo; Chen, Minxiao; Kanchana, Karvannan; Yang, Shulin; Liang, Guang

    2016-06-01

    Gastric cancer is one of the leading causes of cancer mortality in the world. Curcumin is a natural product with multiple pharmacological activities, while its clinical application has been limited by the poor chemical stability. We have previously designed a series of curcumin derivatives with high stability and anticancer potentials. The present study aims to identify the anti-cancer effects and mechanisms of WZ26, an analog of curcumin, in gastric cancer cells. In vitro, WZ26 showed higher chemical stability and much stronger anti-proliferative effects than curcumin, accompanied by dose-dependent induction of cell cycle arrest and apoptosis in gastric cancer cells. Mechanistically, the novel compound WZ26 induced ROS production, resulting in the activation of JNK-mitochondrial and ER stress apoptotic pathways. Blockage of ROS production totally reversed WZ26-induced JNK activation, Bcl-2/Bax decrease, ER stress activation, and final cell apoptosis in SGC-7901 cells. WZ26 also exhibited potent anti-tumor effects in human gastric cancer cell xenograft models. WZ26 could be considered as a potential chemotherapeutic agent for the treatment of advanced gastric cancer. In addition, this study also demonstrated that ROS production could be act as a vital candidate pathway for inducing tumor cell apoptosis by targeting mitochondrial and ER stress-related death pathway. © 2015 Wiley Periodicals, Inc. PMID:26086416

  13. Genetic variations in vitamin D-related pathways and breast cancer risk in African American women in the AMBER consortium.

    PubMed

    Yao, Song; Haddad, Stephen A; Hu, Qiang; Liu, Song; Lunetta, Kathryn L; Ruiz-Narvaez, Edward A; Hong, Chi-Chen; Zhu, Qianqian; Sucheston-Campbell, Lara; Cheng, Ting-Yuan David; Bensen, Jeannette T; Johnson, Candace S; Trump, Donald L; Haiman, Christopher A; Olshan, Andrew F; Palmer, Julie R; Ambrosone, Christine B

    2016-05-01

    Studies of genetic variations in vitamin D-related pathways and breast cancer risk have been conducted mostly in populations of European ancestry, and only sparsely in African Americans (AA), who are known for a high prevalence of vitamin D deficiency. We analyzed 24,445 germline variants in 63 genes from vitamin D-related pathways in the African American Breast Cancer Epidemiology and Risk (AMBER) consortium, including 3,663 breast cancer cases and 4,687 controls. Odds ratios (OR) were derived from logistic regression models for overall breast cancer, by estrogen receptor (ER) status (1,983 ER positive and 1,098 ER negative), and for case-only analyses of ER status. None of the three vitamin D-related pathways were associated with breast cancer risk overall or by ER status. Gene-level analyses identified associations with risk for several genes at a nominal p ≤ 0.05, particularly for ER- breast cancer, including rs4647707 in DDB2. In case-only analyses, vitamin D metabolism and signaling pathways were associated with ER- cancer (pathway-level p = 0.02), driven by a single gene CASR (gene-level p = 0.001). The top SNP in CASR was rs112594756 (p = 7 × 10(-5), gene-wide corrected p = 0.01), followed by a second signal from a nearby SNP rs6799828 (p = 1 × 10(-4), corrected p = 0.03). In summary, several variants in vitamin D pathways were associated with breast cancer risk in AA women. In addition, CASR may be related to tumor ER status, supporting a role of vitamin D or calcium in modifying breast cancer phenotypes. PMID:26650177

  14. Acute ER stress regulates amyloid precursor protein processing through ubiquitin-dependent degradation.

    PubMed

    Jung, Eun Sun; Hong, HyunSeok; Kim, Chaeyoung; Mook-Jung, Inhee

    2015-01-01

    Beta-amyloid (Aβ), a major pathological hallmark of Alzheimer's disease (AD), is derived from amyloid precursor protein (APP) through sequential cleavage by β-secretase and γ-secretase enzymes. APP is an integral membrane protein, and plays a key role in the pathogenesis of AD; however, the biological function of APP is still unclear. The present study shows that APP is rapidly degraded by the ubiquitin-proteasome system (UPS) in the CHO cell line in response to endoplasmic reticulum (ER) stress, such as calcium ionophore, A23187, induced calcium influx. Increased levels of intracellular calcium by A23187 induces polyubiquitination of APP, causing its degradation. A23187-induced reduction of APP is prevented by the proteasome inhibitor MG132. Furthermore, an increase in levels of the endoplasmic reticulum-associated degradation (ERAD) marker, E3 ubiquitin ligase HRD1, proteasome activity, and decreased levels of the deubiquitinating enzyme USP25 were observed during ER stress. In addition, we found that APP interacts with USP25. These findings suggest that acute ER stress induces degradation of full-length APP via the ubiquitin-proteasome proteolytic pathway. PMID:25740315

  15. The formation and function of ER-endosome membrane contact sites.

    PubMed

    Eden, Emily R

    2016-08-01

    Recent advances in membrane contact site (MCS) biology have revealed key roles for MCSs in inter-organellar exchange, the importance of which is becoming increasingly apparent. Roles for MCSs in many essential physiological processes including lipid transfer, calcium exchange, receptor tyrosine kinase signalling, lipid droplet formation, autophagosome formation, organelle dynamics and neurite outgrowth have been reported. The ER forms an extensive and dynamic network of MCSs with a diverse range of functionally distinct organelles. MCSs between the ER and endocytic pathway are particularly abundant, suggesting important physiological roles. Here, our current knowledge of the formation and function of ER contact sites with endocytic organelles from studies in mammalian systems is reviewed. Their relatively poorly defined molecular composition and recently identified functions are discussed. In addition, likely, but yet to be established, roles for these contacts in lipid transfer and calcium signalling are considered. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. PMID:26898183

  16. Resistance to everolimus driven by epigenetic regulation of MYC in ER+ breast cancers

    PubMed Central

    Bihani, Teeru; Ezell, Scott A.; Ladd, Brendon; Grosskurth, Shaun E.; Mazzola, Anne Marie; Pietras, Mark; Reimer, Corinne; Zinda, Michael; Fawell, Stephen; D'Cruz, Celina M.

    2015-01-01

    Acquired resistance to PI3K/mTOR/Akt pathway inhibitors is often associated with compensatory feedback loops involving the activation of oncogenes. Here, we have generated everolimus resistance in ER+ breast cancer cells and in long-term estrogen deprived (LTED) models that mimic progression on anti-estrogens. This allowed us to uncover MYC as a driver of mTOR inhibitor resistance. We demonstrate that both everolimus resistance and acute treatment of everolimus can lead to the upregulation of MYC mRNA, protein expression and, consequently, the enrichment of MYC signatures as revealed by RNA sequencing data. Depletion of MYC resulted in resensitization to everolimus, confirming its functional importance in this setting. Furthermore, ChIP assays demonstrate that MYC upregulation in the everolimus resistant lines is mediated by increased association of the BRD4 transcription factor with the MYC gene. Finally, JQ1, a BRD4 inhibitor combined with everolimus exhibited increased tumor growth inhibition in 3D Matrigel models and an in vivo xenograft model. These data suggest that MYC plays an important role in mediating resistance to everolimus in ER+ and ER+/LTED models. Furthermore, given the regulation ofMYCby BRD4 in this setting, these data have implications for increased therapeutic potential of combining epigenetic agents with mTOR inhibitors to effectively downregulate otherwise difficult to target transcription factors such as MYC. PMID:25537515

  17. Activity-dependent mRNA splicing controls ER export and synaptic delivery of NMDA receptors.

    PubMed

    Mu, Yuanyue; Otsuka, Takeshi; Horton, April C; Scott, Derek B; Ehlers, Michael D

    2003-10-30

    Activity-dependent targeting of NMDA receptors (NMDARs) is a key feature of synapse formation and plasticity. Although mechanisms for rapid trafficking of glutamate receptors have been identified, the molecular events underlying chronic accumulation or loss of synaptic NMDARs have remained unclear. Here we demonstrate that activity controls NMDAR synaptic accumulation by regulating forward trafficking at the endoplasmic reticulum (ER). ER export is accelerated by the alternatively spliced C2' domain of the NR1 subunit and slowed by the C2 splice cassette. This mRNA splicing event at the C2/C2' site is activity dependent, with C2' variants predominating upon activity blockade and C2 variants abundant with increased activity. The switch to C2' accelerates NMDAR forward trafficking by enhancing recruitment of nascent NMDARs to ER exit sites via binding of a divaline motif within C2' to COPII coats. These results define a novel pathway underlying activity-dependent targeting of glutamate receptors, providing an unexpected mechanistic link between activity, mRNA splicing, and membrane trafficking during excitatory synapse modification. PMID:14642281

  18. Spectroscopy of the Er-doped lithium tetraborate glasses

    NASA Astrophysics Data System (ADS)

    Padlyak, B. V.; Lisiecki, R.; Ryba-Romanowski, W.

    2016-04-01

    The electron paramagnetic resonance (EPR), optical absorption, and luminescence (emission and excitation) spectra as well as luminescence kinetics of the Er-doped glasses with Li2B4O7 composition were investigated and analysed. The high optical quality glasses with Li2B4O7:Er composition containing 0.5 and 1.0 mol.% Er2O3 were obtained from corresponding polycrystalline compound by standard glass synthesis. The EPR spectroscopy in the 4.2-300 K temperature range and optical spectroscopy at 300 K show that the Er impurity is incorporated into the network of Li2B4O7 glass as Er3+ (4f11, 4I15/2) ions, exclusively. The local structure of the Er3+ luminescence centres in Li sites of the glass network is proposed. Based on the standard Judd-Ofelt theory the oscillator strength (Pcal) and experimental oscillator strength (Pexp) for observed absorption transitions as well as phenomenological intensity parameters (Ω2, Ω4, Ω6) for Er3+ centres in the Li2B4O7:Er glass containing 1.0 mol.% Er2O3 were calculated. Spectroscopic parameters of relevance for laser applications, including emission probabilities of transitions (Wr), branching ratios (β), and radiative lifetime (τrad) have been calculated for main observed emission transitions of the Er3+ centres in Li2B4O7:Er glasses. Experimental and calculated lifetimes were compared and quantum efficiency (η) for green (4S3/2 → 4I15/2 transition) and infrared (4I13/2 → 4I15/2 transition) emission bands has been estimated.

  19. Docosahexaenoic Acid Ameliorates Fructose-Induced Hepatic Steatosis Involving ER Stress Response in Primary Mouse Hepatocytes

    PubMed Central

    Zheng, Jinying; Peng, Chuan; Ai, Yanbiao; Wang, Heng; Xiao, Xiaoqiu; Li, Jibin

    2016-01-01

    The increase in fructose consumption is considered to be a risk factor for developing nonalcoholic fatty liver disease (NAFLD). We investigated the effects of docosahexaenoic acid (DHA) on hepatic lipid metabolism in fructose-treated primary mouse hepatocytes, and the changes of Endoplasmic reticulum (ER) stress pathways in response to DHA treatment. The hepatocytes were treated with fructose, DHA, fructose plus DHA, tunicamycin (TM) or fructose plus 4-phenylbutyric acid (PBA) for 24 h. Intracellular triglyceride (TG) accumulation was assessed by Oil Red O staining. The mRNA expression levels and protein levels related to lipid metabolism and ER stress response were determined by real-time PCR and Western blot. Fructose treatment led to obvious TG accumulation in primary hepatocytes through increasing expression of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), two key enzymes in hepatic de novo lipogenesis. DHA ameliorates fructose-induced TG accumulation by upregulating the expression of carnitine palmitoyltransferase 1A (CPT-1α) and acyl-CoA oxidase 1 (ACOX1). DHA treatment or pretreatment with the ER stress inhibitor PBA significantly decreased TG accumulation and reduced the expression of glucose-regulated protein 78 (GRP78), total inositol-requiring kinase 1 (IRE1α) and p-IRE1α. The present results suggest that DHA protects against high fructose-induced hepatocellular lipid accumulation. The current findings also suggest that alleviating the ER stress response seems to play a role in the prevention of fructose-induced hepatic steatosis by DHA. PMID:26805874

  20. Neurotoxin-induced pathway perturbation in human neuroblastoma SH-EP cells.

    PubMed

    Do, Jin Hwan

    2014-09-01

    The exact causes of cell death in Parkinson's disease (PD) remain unknown despite extensive studies on PD.The identification of signaling and metabolic pathways involved in PD might provide insight into the molecular mechanisms underlying PD. The neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) induces cellular changes characteristic of PD, and MPP(+)-based models have been extensively used for PD studies. In this study, pathways that were significantly perturbed in MPP(+)-treated human neuroblastoma SH-EP cells were identified from genome-wide gene expression data for five time points (1.5, 3, 9, 12, and 24 h) after treatment. The mitogen-activated protein kinase (MAPK) signaling pathway and endoplasmic reticulum (ER) protein processing pathway showed significant perturbation at all time points. Perturbation of each of these pathways resulted in the common outcome of upregulation of DNA-damage-inducible transcript 3 (DDIT3). Genes involved in ER protein processing pathway included ubiquitin ligase complex genes and ER-associated degradation (ERAD)-related genes. Additionally, overexpression of DDIT3 might induce oxidative stress via glutathione depletion as a result of overexpression of CHAC1. This study suggests that upregulation of DDIT3 caused by perturbation of the MAPK signaling pathway and ER protein processing pathway might play a key role in MPP(+)-induced neuronal cell death. Moreover, the toxicity signal of MPP(+) resulting from mitochondrial dysfunction through inhibition of complex I of the electron transport chain might feed back to the mitochondria via ER stress. This positive feedback could contribute to amplification of the death signal induced by MPP(+). PMID:25234470

  1. Neurotoxin-Induced Pathway Perturbation in Human Neuroblastoma SH-EP Cells

    PubMed Central

    Do, Jin Hwan

    2014-01-01

    The exact causes of cell death in Parkinson’s disease (PD) remain unknown despite extensive studies on PD.The identification of signaling and metabolic pathways involved in PD might provide insight into the molecular mechanisms underlying PD. The neurotoxin 1-methyl-4-phenylpyridinium (MPP+) induces cellular changes characteristic of PD, and MPP+-based models have been extensively used for PD studies. In this study, pathways that were significantly perturbed in MPP+-treated human neuroblastoma SH-EP cells were identified from genome-wide gene expression data for five time points (1.5, 3, 9, 12, and 24 h) after treatment. The mitogen-activated protein kinase (MAPK) signaling pathway and endoplasmic reticulum (ER) protein processing pathway showed significant perturbation at all time points. Perturbation of each of these pathways resulted in the common outcome of upregulation of DNA-damage-inducible transcript 3 (DDIT3). Genes involved in ER protein processing pathway included ubiquitin ligase complex genes and ER-associated degradation (ERAD)-related genes. Additionally, overexpression of DDIT3 might induce oxidative stress via glutathione depletion as a result of overexpression of CHAC1. This study suggests that upregulation of DDIT3 caused by perturbation of the MAPK signaling pathway and ER protein processing pathway might play a key role in MPP+-induced neuronal cell death. Moreover, the toxicity signal of MPP+ resulting from mitochondrial dysfunction through inhibition of complex I of the electron transport chain might feed back to the mitochondria via ER stress. This positive feedback could contribute to amplification of the death signal induced by MPP+. PMID:25234470

  2. Technology for the ERS-1 SAR antenna

    NASA Astrophysics Data System (ADS)

    Wagner, R.

    1984-09-01

    The metallization of CFRP waveguides, the Deployable Truss Structure (DTS) and verification in terrestrial environment of the 10 x 1 m SAR antenna of ERS-1 (ESA satellite) are discussed. Waveguide metallization was achieved indirectly with metallization of the mandrel prior to CFRP lay-up, and directly, by electroplating of manufactured CFRP components. Both techniques proved unsatisfactory, but a surface treatment applied to the metal layer in the indirect technique improves adhesion strength by an order of magnitude, and enables the waveguides to meet requirements. The DTS satisfies launch, deployment, and inflight specifications for a 5 panel/2 wing structure. Ground tests include analytical simulation of deployment with and without gravity effects, and a gravity compensation technique for tests.

  3. Final Technical Report for Award # ER64999

    SciTech Connect

    Metcalf, William W.

    2014-10-08

    This report provides a summary of activities for Award # ER64999, a Genomes to Life Project funded by the Office of Science, Basic Energy Research. The project was entitled "Methanogenic archaea and the global carbon cycle: a systems biology approach to the study of Methanosarcina species". The long-term goal of this multi-investigator project was the creation of integrated, multiscale models that accurately and quantitatively predict the role of Methanosarcina species in the global carbon cycle under dynamic environmental conditions. To achieve these goals we pursed four specific aims: (1) genome sequencing of numerous members of the Order Methanosarcinales, (2) identification of genomic sources of phenotypic variation through in silico comparative genomics, (3) elucidation of the transcriptional networks of two Methanosarcina species, and (4) development of comprehensive metabolic network models for characterized strains to address the question of how metabolic models scale with genetic distance.

  4. A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii

    SciTech Connect

    Fan, J.; Xu, C.; Andre, C.

    2011-06-23

    Neutral lipid metabolism has been extensively studied in yeast, plants and mammals. In contrast, little information is available regarding the biochemical pathway, enzymes and regulatory factors involved in the biosynthesis of triacylglycerol (TAG) in microalgae. In the conventional TAG biosynthetic pathway widely accepted for yeast, plants and mammals, TAG is assembled in the endoplasmic reticulum (ER) from its immediate precursor diacylglycerol (DAG) made by ER-specific acyltransferases, and is deposited exclusively in lipid droplets in the cytosol. Here, we demonstrated that the unicellular microalga Chlamydomonas reinhardtii employs a distinct pathway that uses DAG derived almost exclusively from the chloroplast to produce TAG. This unique TAG biosynthesis pathway is largely dependent on de novo fatty acid synthesis, and the TAG formed in this pathway is stored in lipid droplets in both the chloroplast and the cytosol. These findings have wide implications for understanding TAG biosynthesis and storage and other areas of lipid metabolism in microalgae and other organisms.

  5. CW YVO4:Er Laser with Resonant Pumping

    NASA Astrophysics Data System (ADS)

    Gorbachenya, K. N.; Kisel, V. E.; Yasukevich, A. S.; Matrosov, V. N.; Tolstik, N. A.; Kuleshov, N. V.

    2015-05-01

    The lasing characteristics of a YVO4:Er laser with resonant pumping in the 1.5-1.6 μm range are studied. Lasing is obtained at λ = 1603 nm with a differential efficiency of up to 61%. YVO4:Er crystals are found to offer promise for use in efficient resonantly (in-band) pumped lasers.

  6. Reaction Diffusion Modeling of Calcium Dynamics with Realistic ER Geometry

    PubMed Central

    Means, Shawn; Smith, Alexander J.; Shepherd, Jason; Shadid, John; Fowler, John; Wojcikiewicz, Richard J. H.; Mazel, Tomas; Smith, Gregory D.; Wilson, Bridget S.

    2006-01-01

    We describe a finite-element model of mast cell calcium dynamics that incorporates the endoplasmic reticulum's complex geometry. The model is built upon a three-dimensional reconstruction of the endoplasmic reticulum (ER) from an electron tomographic tilt series. Tetrahedral meshes provide volumetric representations of the ER lumen, ER membrane, cytoplasm, and plasma membrane. The reaction-diffusion model simultaneously tracks changes in cytoplasmic and ER intraluminal calcium concentrations and includes luminal and cytoplasmic protein buffers. Transport fluxes via PMCA, SERCA, ER leakage, and Type II IP3 receptors are also represented. Unique features of the model include stochastic behavior of IP3 receptor calcium channels and comparisons of channel open times when diffusely distributed or aggregated in clusters on the ER surface. Simulations show that IP3R channels in close proximity modulate activity of their neighbors through local Ca2+ feedback effects. Cytoplasmic calcium levels rise higher, and ER luminal calcium concentrations drop lower, after IP3-mediated release from receptors in the diffuse configuration. Simulation results also suggest that the buffering capacity of the ER, and not restricted diffusion, is the predominant factor influencing average luminal calcium concentrations. PMID:16617072

  7. How to Avoid the ER If You Have Asthma

    MedlinePlus

    ... How to Avoid the ER if You Have Asthma KidsHealth > For Teens > How to Avoid the ER if You Have Asthma Print A A A Text Size What's in ... is the last resort for someone who has asthma. If a flare-up is really out of ...

  8. A KDEL Retrieval System for ER-Golgi Transport of Japanese Encephalitis Viral Particles

    PubMed Central

    Wang, Robert YL; Wu, Yu-Jen; Chen, Han-Shan; Chen, Chih-Jung

    2016-01-01

    Evidence has emerged that RNA viruses utilize the host secretory pathway for processing and trafficking mature viral particles and for exiting the infected cells. Upon completing the complex assembly process, the viral particles take advantage of the cellular secretory trafficking machinery for their intracellular trafficking toward the Golgi organelle and budding or export of virions. In this study, we showed that Japanese encephalitis virus (JEV)-induced extracellular GRP78 contains no KDEL motif using an anti-KDEL-specific antibody. Overexpression of the KDEL-truncated GRP78 in the GPR78 knocked down cells significantly reduced JEV infectivity, suggesting that the KDEL motif is required for GRP78 function in the release of JE viral particles. In addition, we demonstrated the KDELR protein, an ER-Golgi retrieval system component, is associated with viral envelope proteins and is engaged in the subcellular localization of viral particles in Golgi. More importantly, accumulation of intracellular virions was observed in the KDELR knocked down cells, indicating that the KDELR protein mediated the intracellular trafficking of JE viral particles. Altogether, we demonstrated that intracellular trafficking of JE assembled viral particles was mediated by the host ER-Golgi retrieval system prior to exit by the secretory pathway. PMID:26861384

  9. Targeted siRNA Screens Identify ER-to-Mitochondrial Calcium Exchange in Autophagy and Mitophagy Responses in RPE1 Cells

    PubMed Central

    MacVicar, Thomas D. B.; Mannack, Lilith V. J. C.; Lees, Robert M.; Lane, Jon D.

    2015-01-01

    Autophagy is an important stress response pathway responsible for the removal and recycling of damaged or redundant cytosolic constituents. Mitochondrial damage triggers selective mitochondrial autophagy (mitophagy), mediated by a variety of response factors including the Pink1/Parkin system. Using human retinal pigment epithelial cells stably expressing autophagy and mitophagy reporters, we have conducted parallel screens of regulators of endoplasmic reticulum (ER) and mitochondrial morphology and function contributing to starvation-induced autophagy and damage-induced mitophagy. These screens identified the ER chaperone and Ca2+ flux modulator, sigma non-opioid intracellular receptor 1 (SIGMAR1), as a regulator of autophagosome expansion during starvation. Screens also identified phosphatidyl ethanolamine methyl transferase (PEMT) and the IP3-receptors (IP3Rs) as mediators of Parkin-induced mitophagy. Further experiments suggested that IP3R-mediated transfer of Ca2+ from the ER lumen to the mitochondrial matrix via the mitochondrial Ca2+ uniporter (MCU) primes mitochondria for mitophagy. Importantly, recruitment of Parkin to damaged mitochondria did not require IP3R-mediated ER-to-mitochondrial Ca2+ transfer, but mitochondrial clustering downstream of Parkin recruitment was impaired, suggesting involvement of regulators of mitochondrial dynamics and/or transport. Our data suggest that Ca2+ flux between ER and mitochondria at presumed ER/mitochondrial contact sites is needed both for starvation-induced autophagy and for Parkin-mediated mitophagy, further highlighting the importance of inter-organellar communication for effective cellular homeostasis. PMID:26110381

  10. Targeted siRNA Screens Identify ER-to-Mitochondrial Calcium Exchange in Autophagy and Mitophagy Responses in RPE1 Cells.

    PubMed

    MacVicar, Thomas D B; Mannack, Lilith V J C; Lees, Robert M; Lane, Jon D

    2015-01-01

    Autophagy is an important stress response pathway responsible for the removal and recycling of damaged or redundant cytosolic constituents. Mitochondrial damage triggers selective mitochondrial autophagy (mitophagy), mediated by a variety of response factors including the Pink1/Parkin system. Using human retinal pigment epithelial cells stably expressing autophagy and mitophagy reporters, we have conducted parallel screens of regulators of endoplasmic reticulum (ER) and mitochondrial morphology and function contributing to starvation-induced autophagy and damage-induced mitophagy. These screens identified the ER chaperone and Ca2+ flux modulator, sigma non-opioid intracellular receptor 1 (SIGMAR1), as a regulator of autophagosome expansion during starvation. Screens also identified phosphatidyl ethanolamine methyl transferase (PEMT) and the IP3-receptors (IP3Rs) as mediators of Parkin-induced mitophagy. Further experiments suggested that IP3R-mediated transfer of Ca2+ from the ER lumen to the mitochondrial matrix via the mitochondrial Ca2+ uniporter (MCU) primes mitochondria for mitophagy. Importantly, recruitment of Parkin to damaged mitochondria did not require IP3R-mediated ER-to-mitochondrial Ca2+ transfer, but mitochondrial clustering downstream of Parkin recruitment was impaired, suggesting involvement of regulators of mitochondrial dynamics and/or transport. Our data suggest that Ca2+ flux between ER and mitochondria at presumed ER/mitochondrial contact sites is needed both for starvation-induced autophagy and for Parkin-mediated mitophagy, further highlighting the importance of inter-organellar communication for effective cellular homeostasis. PMID:26110381

  11. Erbium induced magnetic properties of Er/ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Jayachandraiah, C.; Sivakumar, K.; Divya, A.; Krishnaiah, G.

    2016-05-01

    Pure and Er (2, 3 and 4 at. %) doped ZnO nanoparticles have been synthesized by chemical co-precipitation method. EDS spectrum confirmed the presence of Zn, O and Er in the synthesized samples. The XRD measurements confirmed the hexagonal wurtzite structure of ZnO for all samples. The crystallite size of the samples decreases with increase in concentration and are compatible with the results that obtained from TEM analysis.EPR spectra exhibitedferromagnetic signals the substitution Er The possible ferromagnetic zinc interstials signal is appeared for 2 at. % of Er dopant. The room temperature ferromagnetic is observed only for 2 at. % of Er while all other samples exhibiting weak ferromagnetic nature.

  12. Leptin signalling pathways in hypothalamic neurons.

    PubMed

    Kwon, Obin; Kim, Ki Woo; Kim, Min-Seon

    2016-04-01

    Leptin is the most critical hormone in the homeostatic regulation of energy balance among those so far discovered. Leptin primarily acts on the neurons of the mediobasal part of hypothalamus to regulate food intake, thermogenesis, and the blood glucose level. In the hypothalamic neurons, leptin binding to the long form leptin receptors on the plasma membrane initiates multiple signaling cascades. The signaling pathways known to mediate the actions of leptin include JAK-STAT signaling, PI3K-Akt-FoxO1 signaling, SHP2-ERK signaling, AMPK signaling, and mTOR-S6K signaling. Recent evidence suggests that leptin signaling in hypothalamic neurons is also linked to primary cilia function. On the other hand, signaling molecules/pathways mitigating leptin actions in hypothalamic neurons have been extensively investigated in an effort to treat leptin resistance observed in obesity. These include SOCS3, tyrosine phosphatase PTP1B, and inflammatory signaling pathways such as IKK-NFκB and JNK signaling, and ER stress-mitochondrial signaling. In this review, we discuss leptin signaling pathways in the hypothalamus, with a particular focus on the most recently discovered pathways. PMID:26786898

  13. 20 CFR 228.17 - Adjustments to the widow(er)'s, disabled widow(er)'s, surviving divorced spouse's, and remarried...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Adjustments to the widow(er)'s, disabled widow..., disabled widow(er)'s, surviving divorced spouse's, and remarried widow(er)'s tier I annuity amount. (a) If the employee died before attaining age 62 and after 1978 and the widow(er), disabled...

  14. 20 CFR 228.17 - Adjustments to the widow(er)'s, disabled widow(er)'s, surviving divorced spouse's, and remarried...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Adjustments to the widow(er)'s, disabled..., disabled widow(er)'s, surviving divorced spouse's, and remarried widow(er)'s tier I annuity amount. (a) If the employee died before attaining age 62 and after 1978 and the widow(er), disabled...

  15. 20 CFR 228.17 - Adjustments to the widow(er)'s, disabled widow(er)'s, surviving divorced spouse's, and remarried...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Adjustments to the widow(er)'s, disabled..., disabled widow(er)'s, surviving divorced spouse's, and remarried widow(er)'s tier I annuity amount. (a) If the employee died before attaining age 62 and after 1978 and the widow(er), disabled...

  16. 20 CFR 228.17 - Adjustments to the widow(er)'s, disabled widow(er)'s, surviving divorced spouse's, and remarried...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true Adjustments to the widow(er)'s, disabled widow..., disabled widow(er)'s, surviving divorced spouse's, and remarried widow(er)'s tier I annuity amount. (a) If the employee died before attaining age 62 and after 1978 and the widow(er), disabled...

  17. 20 CFR 228.17 - Adjustments to the widow(er)'s, disabled widow(er)'s, surviving divorced spouse's, and remarried...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Adjustments to the widow(er)'s, disabled..., disabled widow(er)'s, surviving divorced spouse's, and remarried widow(er)'s tier I annuity amount. (a) If the employee died before attaining age 62 and after 1978 and the widow(er), disabled...

  18. GRP78 Interacting Partner Bag5 Responds to ER Stress and Protects Cardiomyocytes From ER Stress-Induced Apoptosis.

    PubMed

    Gupta, Manish K; Tahrir, Farzaneh G; Knezevic, Tijana; White, Martyn K; Gordon, Jennifer; Cheung, Joseph Y; Khalili, Kamel; Feldman, Arthur M

    2016-08-01

    Bag5 is a member of the BAG family of molecular chaperone regulators and is unusual in that it consists of five BAG domains, which function as modulators of chaperone activity. Bag family proteins play a key role in cellular as well as in cardiac function and their differential expression is reported in heart failure. In this study, we examined the importance of a Bag family member protein, Bag5, in cardiomyocytes during endoplasmic reticulum (ER) stress. We found that expression of Bag5 in cardiomyocytes is significantly increased with the induction of ER stress in a time dependent manner. We have taken gain-in and loss-of functional approaches to characterize Bag5 protein function in cardiomyocytes. Adenoviral mediated expression of Bag5 significantly decreased cell death as well as improved cellular viability in ER stress. Along with this, ER stress-induced CHOP protein expression is significantly decreased in cells that overexpress Bag5. Conversely, we found that siRNA-mediated knockdown of Bag5 caused cell death, increased cytotoxicity, and decreased cellular viability in cardiomyocytes. Mechanistically, we found that Bag5 protein expression is significantly increased in the ER during ER stress and that this in turn modulates GRP78 protein stability and reduces ER stress. This study suggests that Bag5 is an important regulator of ER function and so could be exploited as a tool to improve cardiomyocyte function under stress conditions. J. Cell. Biochem. 117: 1813-1821, 2016. © 2016 Wiley Periodicals, Inc. PMID:26729625

  19. Molecular mechanism of ER stress-induced gene expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in macrophages.

    PubMed

    Huang, Yan; Wang, Yarui; Li, Xiaofeng; Chen, Zhaolin; Li, Xiaohui; Wang, Huan; Ni, Mingming; Li, Jun

    2015-06-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, whose members are capable of inducing apoptosis and inflammation. Endoplasmic reticulum stress (ERS) plays a key role in immune surveillance in macrophages. TRAIL mRNA and protein expression have previously been detected in macrophages; however, whether ERS has any effects on TRAIL expression in macrophages has not yet been determined. Here, we demonstrate that thapsigargin (TG) and tunicamycin (TM), two ERS inducers activated macrophages were able to increase TRAIL mRNA and protein expression in RAW264.7 macrophages, the culture supernatant of THP-1 cells, and mouse peritoneal macrophages, indicating that ERS as a potent inducer of TRAIL transcription and expression in macrophages. This effect was blocked by the specific JNK inhibitor SP600125 and transcription factor AP-1 inhibitor SR 1130. Interestingly, at the molecular level, regulation of TRAIL expression by ERS was accompanied by a significant decrease in cytokine signaling suppressor 3 (SOCS3). SOCS3 siRNA clearly increased the expression of TRAIL mRNA and protein under ERS by activating the AP-1 components phosphorylated c-Jun and phosphorylated c-Fos in RAW264.7 cells. In contrast, over-expression of SOCS3 reversed ERS-induced TRAIL expression. These findings provide in vitro evidence that SOCS3 plays a critical negative role in the regulation of ERS-induced TRAIL expression via the Jun N-terminal kinase/AP-1 signaling pathway in macrophages. PMID:25827060

  20. Cellular cholesterol accumulation modulates high fat high sucrose (HFHS) diet-induced ER stress and hepatic inflammasome activation in the development of non-alcoholic steatohepatitis.

    PubMed

    Bashiri, Amir; Nesan, Dinushan; Tavallaee, Ghazaleh; Sue-Chue-Lam, Ian; Chien, Kevin; Maguire, Graham F; Naples, Mark; Zhang, Jing; Magomedova, Lilia; Adeli, Khosrow; Cummins, Carolyn L; Ng, Dominic S

    2016-07-01

    Non-alcoholic steatohepatitis (NASH), is the form of non-alcoholic fatty liver disease posing risk to progress into serious long term complications. Human and pre-clinical models implicate cellular cholesterol dysregulation playing important role in its development. Mouse model studies suggest synergism between dietary cholesterol and fat in contributing to NASH but the mechanisms remain poorly understood. Our laboratory previously reported the primary importance of hepatic endoplasmic reticulum cholesterol (ER-Chol) in regulating hepatic ER stress by comparing the responses of wild type, Ldlr-/-xLcat+/+ and Ldlr-/-xLcat-/- mice, to a 2% high cholesterol diet (HCD). Here we further investigated the roles of ER-Chol and ER stress in HFHS diet-induced NASH using the same strains. With HFHS diet feeding, both WT and Ldlr-/-xLcat+/+ accumulate ER-Chol in association with ER stress and inflammasome activation but the Ldlr-/-xLcat-/- mice are protected. By contrast, all three strains accumulate cholesterol crystal, in correlation with ER-Chol, albeit less so in Ldlr-/-xLcat-/- mice. By comparison, HCD feeding per se (i) is sufficient to promote steatosis and activate inflammasomes, and (ii) results in dramatic accumulation of cholesterol crystal which is linked to inflammasome activation in Ldlr-/-xLcat-/- mice, independent of ER-Chol. Our data suggest that both dietary fat and cholesterol each independently promote steatosis, cholesterol crystal accumulation and inflammasome activation through distinct but complementary pathways. In vitro studies using palmitate-induced hepatic steatosis in HepG2 cells confirm the key roles by cellular cholesterol in the induction of steatosis and inflammasome activations. These novel findings provide opportunities for exploring a cellular cholesterol-focused strategy for treatment of NASH. PMID:27090939

  1. Up Conversion Measurements in Er:YAG; Comparison with 1.6 Micrometer Laser Performance

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Walsh, Brian M.; Amzajerdian, Farzin; Reichle, Donald J.; Busch, George E.; Carrion, William A.

    2011-01-01

    Up conversion significantly affects Er:YAG lasers. Measurements performed here for low Er concentration are significantly different than reported high Er concentration. The results obtained here are used to predict laser performance and are compared with experimental results.

  2. Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction.

    PubMed

    Eden, Emily R; White, Ian J; Tsapara, Anna; Futter, Clare E

    2010-03-01

    The epidermal growth factor receptor (EGFR) is a critical determinator of cell fate. Signalling from this receptor tyrosine kinase is spatially regulated by progression through the endocytic pathway, governing receptor half-life and accessibility to signalling proteins and phosphatases. Endocytosis of EGFR is required for interaction with the protein tyrosine phosphatase PTP1B (ref. 1), which localizes to the cytoplasmic face of the endoplasmic reticulum (ER), raising the question of how PTP1B comes into contact with endosomal EGFR. We show that EGFR-PTP1B interaction occurs by means of direct membrane contacts between the perimeter membrane of multivesicular bodies (MVBs) and the ER. The population of EGFR interacting with PTP1B is the same population that undergo ESCRT-mediated (endosomal sorting complex required for transport) sorting within MVBs, and PTP1B activity promotes the sequestration of EGFR on to MVB internal vesicles. Membrane contacts between endosomes and the ER form in both the presence and absence of stimulation by EGF. Thus membrane contacts between endosomes and the ER may represent a global mechanism for direct interaction between proteins on these two organelles. PMID:20118922

  3. Ultraviolet upconversion fluorescence of Er3+ in Yb3+/Er3+-codoped Gd2O3 nanotubes.

    PubMed

    Zheng, Kezhi; Zhao, Dan; Zhang, Daisheng; Liu, Zhenyu; Qin, Weiping

    2011-11-01

    Under 980 nm excitation, room-temperature ultraviolet (UV) upconversion (UC) emissions of Er3+ from the 4G(9/2), 2K(13/2), and 2P(3/2) states were observed in Gd2O3:Yb3+/Er3+ nanotubes, which were synthesized via a simple wet-chemical route at low temperature and ambient pressure followed by a subsequent heat treatment at 800 degrees C. The experimental results exhibited that these UV emissions came from four-photon UC processes. In the Gd2O3:Yb3+/Er3+ nanocrystals, the energy transfers (ETs) from Yb3+ to Er3+ played important roles in populating the high-energy states of Er3+ ions. This material provides a possible candidate for building UV compact solid-state lasers or fiber lasers. PMID:22413290

  4. Non-conventional trafficking of the cystic fibrosis transmembrane conductance regulator through the early secretory pathway.

    PubMed

    Yoo, Jin-San; Moyer, Bryan D; Bannykh, Sergei; Yoo, Hyeon-Mi; Riordan, John R; Balch, William E

    2002-03-29

    The mechanism(s) of cystic fibrosis transmembrane conductance regulator (CFTR) trafficking from the endoplasmic reticulum (ER) through the Golgi apparatus, the step impaired in individuals afflicted with the prevalent CFTR-DeltaF508 mutation leading to cystic fibrosis, is largely unknown. Recent morphological observations suggested that CFTR is largely absent from the Golgi in situ (Bannykh, S. I., Bannykh, G. I., Fish, K. N., Moyer, B. D., Riordan, J. R., and Balch, W. E. (2000) Traffic 1, 852-870), raising the possibility of a novel trafficking pathway through the early secretory pathway. We now report that export of CFTR from the ER is regulated by the conventional coat protein complex II (COPII) in all cell types tested. Remarkably, in a cell type-specific manner, processing of CFTR from the core-glycosylated (band B) ER form to the complex-glycosylated (band C) isoform followed a non-conventional pathway that was insensitive to dominant negative Arf1, Rab1a/Rab2 GTPases, or the SNAp REceptor (SNARE) component syntaxin 5, all of which block the conventional trafficking pathway from the ER to the Golgi. Moreover, CFTR transport through the non-conventional pathway was potently blocked by overexpression of the late endosomal target-SNARE syntaxin 13, suggesting that recycling through a late Golgi/endosomal system was a prerequisite for CFTR maturation. We conclude that CFTR transport in the early secretory pathway can involve a novel pathway between the ER and late Golgi/endosomal compartments that may influence developmental expression of CFTR on the cell surface in polarized epithelial cells. PMID:11799116

  5. Design of pathway preferential estrogens that provide beneficial metabolic and vascular effects without stimulating reproductive tissues.

    PubMed

    Madak-Erdogan, Zeynep; Kim, Sung Hoon; Gong, Ping; Zhao, Yiru C; Zhang, Hui; Chambliss, Ken L; Carlson, Kathryn E; Mayne, Christopher G; Shaul, Philip W; Korach, Kenneth S; Katzenellenbogen, John A; Katzenellenbogen, Benita S

    2016-01-01

    There is great medical need for estrogens with favorable pharmacological profiles that support desirable activities for menopausal women, such as metabolic and vascular protection, but that lack stimulatory activities on the breast and uterus. We report the development of structurally novel estrogens that preferentially activate a subset of estrogen receptor (ER) signaling pathways and result in favorable target tissue-selective activity. Through a process of structural alteration of estrogenic ligands that was designed to preserve their essential chemical and physical features but greatly reduced their binding affinity for ERs, we obtained "pathway preferential estrogens" (PaPEs), which interacted with ERs to activate the extranuclear-initiated signaling pathway preferentially over the nuclear-initiated pathway. PaPEs elicited a pattern of gene regulation and cellular and biological processes that did not stimulate reproductive and mammary tissues or breast cancer cells. However, in ovariectomized mice, PaPEs triggered beneficial responses both in metabolic tissues (adipose tissue and liver) that reduced body weight gain and fat accumulation and in the vasculature that accelerated repair of endothelial damage. This process of designed ligand structure alteration represents a novel approach to develop ligands that shift the balance in ER-mediated extranuclear and nuclear pathways to obtain tissue-selective, non-nuclear PaPEs, which may be beneficial for postmenopausal hormone replacement. The approach may also have broad applicability for other members of the nuclear hormone receptor superfamily. PMID:27221711

  6. In Vitro Study of Er:YAG and Er, Cr:YSGG Laser Irradiation on Human Gingival Fibroblast Cell Line.

    PubMed

    Talebi-Ardakani, Mohammad Reza; Torshabi, Maryam; Karami, Elahe; Arbabi, Elham; Rezaei Esfahrood, Zeinab

    2016-04-01

    The ultimate goal of the periodontal treatments is a regeneration of periodontium. Recently, laser irradiations are commonly used to improve wound repair. Because of many controversies about the effects of laser on soft tissue regeneration, more in vitro studies are still needed. The aim of the present in vitro study was to compare the effects of different doses of Er:YAG (erbium-doped:yttrium, aluminum, garnet) and Er, Cr:YSGG (erbium, chromium-doped: yttrium, scandium, gallium, garnet) laser treatment on human gingival fibroblasts (HGF) proliferation. In this randomized single-blind controlled in vitro trial, HGF cells were irradiated using Er:YAG and Er, Cr:YSGG laser for 10 and 30 seconds or remained unexposed as a control group. After a culture period of 24 and 48 hours, HGF cell proliferation was evaluated by MTT assay. The data were subjected to one-sided analysis of variance and Tukey multiple comparison tests. Our results showed Er:YAG application for 10 and 30 seconds as well as Er, Cr:YSGG irradiation for 10 and 30 seconds induced statistically significant (P<0.05) proliferation of HGF cells as compared with the control at 24 hours up to 18.39%, 26.22%, 21.21%, and 17.06% respectively. In 48 hour incubations, Er:YAG and Er, Cr:YSGG irradiation for 10 and 30 seconds significantly increased cellular proliferation up to 22.9%, 32.24%, 30.52% and 30.02% respectively (P<0.05). This study demonstrates that Er:YAG and Er, Cr:YSGG laser significantly increased HGF cell proliferation compared to the control specimens. This higher proliferation can lead to increased wound repair in clinical conditions. PMID:27309266

  7. Resveratrol triggers ER stress-mediated apoptosis by disrupting N-linked glycosylation of proteins in ovarian cancer cells.

    PubMed

    Gwak, HyeRan; Kim, Soochi; Dhanasekaran, Danny N; Song, Yong Sang

    2016-02-28

    Malignant tumors have a high glucose demand and alter cellular metabolism to survive. Herein, focusing on the utility of glucose metabolism as a therapeutic target, we found that resveratrol induced endoplasmic reticulum (ER) stress-mediated apoptosis by interrupting protein glycosylation in a cancer-specific manner. Our results indicated that resveratrol suppressed the hexosamine biosynthetic pathway and interrupted protein glycosylation through GSK3β activation. Application of either biochemical intermediates of the hexosamine pathway or small molecular inhibitors of GSK3β reversed the effects of resveratrol on the disruption of protein glycosylation. Additionally, an ER UDPase, ectonucleoside triphosphate diphosphohydrolase 5 (ENTPD5), modulated protein glycosylation by Akt attenuation in response to resveratrol. By inhibition or overexpression of Akt functions, we confirmed that the glycosylation activities were dependent on ENTPD5 expression and regulated by the action of Akt in ovarian cancer cells. Resveratrol-mediated disruption of protein glycosylation induced cellular apoptosis as indicated by the up-regulation of GADD153, followed by the activation of ER-stress sensors (PERK and ATF6α). Thus, our results provide novel insight into cancer cell metabolism and protein glycosylation as a therapeutic target for cancers. PMID:26704305

  8. Coupled ER to Golgi Transport Reconstituted with Purified Cytosolic Proteins

    PubMed Central

    Barlowe, Charles

    1997-01-01

    A cell-free vesicle fusion assay that reproduces a subreaction in transport of pro-α-factor from the ER to the Golgi complex has been used to fractionate yeast cytosol. Purified Sec18p, Uso1p, and LMA1 in the presence of ATP and GTP satisfies the requirement for cytosol in fusion of ER-derived vesicles with Golgi membranes. Although these purified factors are sufficient for vesicle docking and fusion, overall ER to Golgi transport in yeast semi-intact cells depends on COPII proteins (components of a membrane coat that drive vesicle budding from the ER). Thus, membrane fusion is coupled to vesicle formation in ER to Golgi transport even in the presence of saturating levels of purified fusion factors. Manipulation of the semi-intact cell assay is used to distinguish freely diffusible ER- derived vesicles containing pro-α-factor from docked vesicles and from fused vesicles. Uso1p mediates vesicle docking and produces a dilution resistant intermediate. Sec18p and LMA1 are not required for the docking phase, but are required for efficient fusion of ER- derived vesicles with the Golgi complex. Surprisingly, elevated levels of Sec23p complex (a subunit of the COPII coat) prevent vesicle fusion in a reversible manner, but do not interfere with vesicle docking. Ordering experiments using the dilution resistant intermediate and reversible Sec23p complex inhibition indicate Sec18p action is required before LMA1 function. PMID:9382859

  9. Ammonia synthesis and ER-MCFC-technology - a profitable combination?

    SciTech Connect

    Dijkema, G.P.J.; Vervoort, J.; Daniels, R.J.E.; Luteijn, C.P.

    1996-12-31

    Similar to stand-alone ER-MCFC power systems industrial ammonia production facilities include hydrogen-rich synthesis-gas production. Therefore, integration of ER-MCFC stacks in a conventional industrial ammonia plant was investigated. By preliminary process design calculations three promising process structures were evaluated: (1) ER-MCFC is fed by the ammonia plant`s steam-reformer; anode off-gas to firing (2) similar to structure 1; in this case the anode off-gas is redirected to the ammonia process (3) ER-MCFC is fed by ammonia-synthesis purge gas The results indicate that for options 1 and 3 a return-on-investment for the ER-MCFC of around 8% is achievable at a stack cost of $250/kW and a revenue of 7c/kWh. Option 2 is not profitable, because of the associated reduction in ammonia production. The degree of hydrogen-utilization in the ER-MCFC to be selected for maximum profit varies with the process structure and indicates that there is scope for ER-MCFC stacks which operate at low hydrogen-utilization.

  10. Er3+ diffusion in LiTaO3 crystal

    NASA Astrophysics Data System (ADS)

    Zhang, De-Long; Zhang, Qun; Wong, Wing-Han; Pun, Edwin Yue-Bun

    2015-12-01

    Some Er3+-doped LiTaO3 plates were prepared by in-diffusion of Er-metal film locally coated onto congruent Z-cut substrate in air at a wide temperature range from 1000 to 1500 °C. After diffusion, Er3+-doping effect on LiTaO3 refractive index and Li2O out-diffusion arising from Er3+ in-diffusion were studied at first. Refractive indices at the doped and undoped surface parts were measured by prism coupling technique and the surface composition was estimated. The results show that Er3+ dopant has small contribution to the LiTaO3 index. Li2O out-diffusion is slight (Li2O content loss <0.3 mol%) for the temperature below 1300 °C while is moderate (Li2O content loss <0.6 mol%) for the temperature above 1400 °C. The Er3+ profile was studied by secondary ion mass spectrometry. The study shows that the diffused Er3+ ions follow either a complementary error function or a Gaussian profile. Characteristic parameters including diffusivity, diffusion constant, activation energy, solubility, solubility constant and heat of solution were obtained and compared with the LiNbO3 case. The comparison shows that the diffusivity and solubility in LiTaO3 are considerably smaller than in LiNbO3 because of the difference of Ta and Nb in atomic weight.

  11. ER Stress-induced Aberrant Neuronal Maturation and Neurodevelopmental Disorders.

    PubMed

    Kawada, Koichi; Iekumo, Takaaki; Kaneko, Masayuki; Nomura, Yasuyuki; Okuma, Yasunobu

    2016-01-01

    Neurodevelopmental disorders, which include autism spectrum disorder, are congenital impairments in the growth and development of the central nervous system. They are mainly accentuated during infancy and childhood. Autism spectrum disorder may be caused by environmental factors, genomic imprinting of chromosome 15q11-q13 regions, and gene defects such as those in genes encoding neurexin and neuroligin, which are involved in synaptogenesis and synaptic signaling. However, regardless of the many reports on neurodevelopmental disorders, the pathogenic mechanism and treatment of neurodevelopmental disorders remain unclear. Conversely, it has been reported that endoplasmic reticulum (ER) stress is involved in neurodegenerative diseases. ER stress is increased by environmental factors such as alcohol consumption and smoking. Here we show the recent results on ER stress-induced neurodevelopmental disorders. ER stress led to a decrease in the mRNA levels of the proneural factors Hes1/5 and Pax6, which maintain an undifferentiated state of the neural cells. This stress also led to a decrease in nestin expression and an increase in beta-III tubulin expression. In addition, dendrite length was shortened by ER stress in microtubule-associated protein-2 (MAP-2) positive cells. However, the ubiquitin ligase HRD1 expression was increased by ER stress. By suppressing HRD1 expression, the ER stress-induced decrease in nestin and MAP-2 expression and increase in beta-III tubulin returned to control levels. Therefore, we suggest that ER stress induces abnormalities in neuronal differentiation and maturation via HRD1 expression. These results suggest that targeting ER stress may facilitate quicker approaches toward the prevention and treatment of neurodevelopmental disorders. PMID:27252060

  12. Laser cooling of Er3+-doped solids

    NASA Astrophysics Data System (ADS)

    Nemova, Galina; Kashyap, Raman

    2010-10-01

    We consider theoretically a mechanism for laser cooling in rare-earth-doped low-phonon materials based simultaneously on two cooling cycles: a traditional cooling cycle with an anti-Stokes fluorescence transition as well as an infrared-to-visible upconversion cycle, to overcome the self-termination effects in either anti-Stokes or upconversion cooling on its own. Our simulations, performed for erbium-doped potassium-lead chloride crystal ( Er3+:KPl 2Cl 5) known to be an extremely low phonon energy host, uses two pump wavelengths corresponding to the long wavelength tails of the absorption spectra of the 4I15/2 → 4I13/2 and 4I15/2 → 4I9/2 transitions. The contribution of each pump source to the cooling process is comprehensively investigated. We show that, although the energy gap between 4I15/2 and 4I9/2 levels exceeds the energy gap between 4I15/2 and 4I13/2 levels and cooling process is more efficient with the cycle based on the 4I15/2 → 4I13/2 transition, the second cooling cycle based on the 4I15/2 → 4I9/2 transition can be used as a supplementary one.

  13. Large-scale ER-damper for seismic protection

    NASA Astrophysics Data System (ADS)

    McMahon, Scott; Makris, Nicos

    1997-05-01

    A large scale electrorheological (ER) damper has been designed, constructed, and tested. The damper consists of a main cylinder and a piston rod that pushes an ER-fluid through a number of stationary annular ducts. This damper is a scaled- up version of a prototype ER-damper which has been developed and extensively studied in the past. In this paper, results from comprehensive testing of the large-scale damper are presented, and the proposed theory developed for predicting the damper response is validated.

  14. Characterization of the Ers Regulon of Enterococcus faecalis▿

    PubMed Central

    Riboulet-Bisson, Eliette; Sanguinetti, Maurizio; Budin-Verneuil, Aurélie; Auffray, Yanick; Hartke, Axel; Giard, Jean-Christophe

    2008-01-01

    Ers has been qualified as the PrfA-like transcriptional regulator of Enterococcus faecalis. In a previous study we reported that Ers is important for the survival within macrophages of this opportunist pathogenic bacterium. In the present work we have used proteomic and microarray expression profiling of E. faecalis JH2-2 and an ers-deleted mutant (Δers mutant) strains to define the Ers regulon. In addition to EF_0082 (encoding a putative facilitator family transporter), already known to be under Ers regulation, three genes or operons displayed a significant decrease (confirmed by reverse transcription quantitative PCR) in expression in the Δers mutant. The first locus corresponds to three genes: arcA, arcB, and arcC1 (arcABC). These genes are members of the ADI operon, encoding enzymes of the arginine deiminase system. The second is the EF_1459 gene, which encodes a hypothetical protein and is located within a putative phage genetic element. Lastly, Ef_3319 is annotated as the alpha subunit of the citrate lyase encoded by citF. citF is a member of a putative 12-gene operon involved in citrate catabolism. Moreover, the promoter sequence, similar to the “PrfA box” and found in the promoter regions of ers and EF_0082, has been shown to be included in the DNA segment recognized by Ers. Phenotypic analysis of the Δers mutant strain revealed a growth defect when cultured with arginine or citrate as the energy source; this was not seen for the wild type. As expected, similar results were obtained with mutants in which arcA and citF were inactivated. In addition, in the mouse peritonitis model of virulence, the Δers mutant appeared significantly less lethal than the JH2-2 wild-type strain. Taken together, these results indicate that the regulator Ers has a pleiotropic effect, especially in the cellular metabolism and virulence of E. faecalis. PMID:18426870

  15. Arctic geodynamics: Arctic science and ERS-1 satellite altimetry

    NASA Technical Reports Server (NTRS)

    Anderson, Allen Joel; Sandwell, David T.

    1994-01-01

    A detailed gravity field map of the mid Arctic Ocean, spreading ridge system was produced on the basis of ERS-1 satellite altimetry data. Areas of special concern, the Barents and Kara Seas, and areas surrounding the islands of Svalbard, Frans Josef Land and Novoya Zemlya are reviewed. ERS-1 altimetry covers unique Arctic and Antarctic latitudes above 72 degrees. Before ERS-1 it was not possible to study these areas with satellite altimetry. Gravity field solutions for the Barents Sea, portions of the Arctic Ocean and the Norwegian sea are shown. The largest gravity anomalies occur along the Greenland fracture zone as well as along transform faults near Svalbard.

  16. Inhibitors of Protein Translocation Across the ER Membrane.

    PubMed

    Kalies, Kai-Uwe; Römisch, Karin

    2015-10-01

    Protein translocation into the endoplasmic reticulum (ER) constitutes the first step of protein secretion. ER protein import is essential in all eukaryotic cells and is particularly critical in fast-growing tumour cells. Thus, the process can serve as target both for potential cancer drugs and for bacterial virulence factors. Inhibitors of protein transport across the ER membrane range from broad-spectrum to highly substrate-specific and can interfere with virtually any stage of this multistep process, and even with transport of endocytosed antigens into the cytosol for cross-presentation. PMID:26122014

  17. Pathway-based analysis of breast cancer

    PubMed Central

    Song, Dong; Cui, Miao; Zhao, Gang; Fan, Zhimin; Nolan, Katherine; Yang, Ying; Lee, Peng; Ye, Fei; Zhang, David Y

    2014-01-01

    Introduction: Although HER2 and ER pathways are predominant pathways altered in breast cancer, it is now well accepted that many other signaling pathways are also involved in the pathogenesis of breast cancer. The understanding of these additional pathways may assist in identifying new therapeutic approaches for breast cancer. Methods: 13 invasive ductal carcinoma tissues and 5 benign breast tissues were analyzed for the mRNA expression level of 1243 cancer pathway-related genes using SmartChip (WaferGen, CA), a real-time PCR-base method. In addition, the levels of 131 cancer pathway-related proteins and phosphoproteins in 33 paired breast cancers were measured using our innovative Protein Pathway Array. Results: Out of 1,243 mRNAs, 68.7% (854) were detected in breast cancer and 395 mRNAs were statistically significant (fold change >2) between benign and cancer tissues. Of these mRNAs, 105 only expressed in breast cancer tissues and 33 mRNAs only expressed in normal breast tissues. Out of 131 proteins and phosphoproteins, 68% (89) were detected in cancer tissues and 57 proteins were significantly differentiated between tumor and normal tissues. Interestingly, only 3 genes (CDK6, Vimentin and SLUG) showed decreases in both protein and mRNA. Six proteins (BCL6, CCNE1, PCNA, PDK1, SRC and XIAP) were differentially expressed between tumor and normal tissues but no differences were observed at mRNA levels. Analyses of mRNA and protein data using Ingenuity Pathway Analysis showed more than 15 pathways were altered in breast cancer and 6 of which were shared between mRNAs and proteins, including p53, IL17, HGF, NGF, PTEN and PI3K/AKT pathways. Conclusions: There is a broad dysregulation of various pathways in breast cancer both at protein levels and mRNA levels. It is important to note that mRNA expression does not correlate with protein level, suggesting different regulation mechanisms between proteins and mRNAs. PMID:24936222

  18. Electron spin resonance study of Er-concentration effect in GaAs;Er,O containing charge carriers

    SciTech Connect

    Elmasry, F.; Okubo, S.; Ohta, H.; Fujiwara, Y.

    2014-05-21

    Er-concentration effect in GaAs;Er,O containing charge carriers (n-type, high resistance, p-type) has been studied by X-band Electron spin resonance (ESR) at low temperature (4.7 K < T < 18 K). Observed A, B, and C types of ESR signals were identical to those observed previously in GaAs:Er,O without carrier. The local structure around Er-2O centers is not affected by carriers because similar angular dependence of g-values was observed in both cases (with/without carrier). For temperature dependence, linewidth and lineshape analysis suggested the existence of Er dimers with antiferromagnetic exchange interaction of about 7 K. Moreover, drastic decrease of ESR intensity for C signal in p-type sample was observed and it correlates with the decrease of photoluminescence (PL) intensity. Possible model for the Er-2O trap level in GaAs:Er,O is discussed from the ESR and PL experimental results.

  19. Sigma-1 Receptor Chaperone at the ER-Mitochondrion Interface Mediates the Mitochondrion-ER-Nucleus Signaling for Cellular Survival

    PubMed Central

    Mori, Tomohisa; Hayashi, Teruo; Hayashi, Eri; Su, Tsung-Ping

    2013-01-01

    The membrane of the endoplasmic reticulum (ER) of a cell forms contacts directly with mitochondria whereby the contact is referred to as the mitochondrion-associated ER membrane or the MAM. Here we found that the MAM regulates cellular survival via an MAM-residing ER chaperone the sigma-1 receptor (Sig-1R) in that the Sig-1R chaperones the ER stress sensor IRE1 to facilitate inter-organelle signaling for survival. IRE1 is found in this study to be enriched at the MAM in CHO cells. We found that IRE1 is stabilized at the MAM by Sig-1Rs when cells are under ER stress. Sig-1Rs stabilize IRE1 and thus allow for conformationally correct IRE1 to dimerize into the long-lasting, activated endonuclease. The IRE1 at the MAM also responds to reactive oxygen species derived from mitochondria. Therefore, the ER-mitochondrion interface serves as an important subcellular entity in the regulation of cellular survival by enhancing the stress-responding signaling between mitochondria, ER, and nucleus. PMID:24204710

  20. Return of Collective Rotation in {sup 157}Er and {sup 158}Er at Ultrahigh Spin

    SciTech Connect

    Paul, E. S.; Twin, P. J.; Evans, A. O.; Choy, P. T. W.; Nolan, P. J.; Pipidis, A.; Riley, M. A.; Campbell, D. B.; Simpson, J.; Appelbe, D. E.; Joss, D. T.; Clark, R. M.; Cromaz, M.; Fallon, P.; Goergen, A.; Lee, I. Y.; Macchiavelli, A. O.; Ward, D.; Ragnarsson, I.

    2007-01-05

    A new frontier of discrete-line {gamma}-ray spectroscopy at ultrahigh spin has been opened in the rare-earth nuclei {sup 157,158}Er. Four rotational structures, displaying high moments of inertia, have been identified, which extend up to spin {approx}65({Dirac_h}/2{pi}) and bypass the band-terminating states in these nuclei which occur at {approx}45({Dirac_h}/2{pi}). Cranked Nilsson-Strutinsky calculations suggest that these structures arise from well-deformed triaxial configurations that lie in a valley of favored shell energy which also includes the triaxial strongly deformed bands in {sup 161-167}Lu.

  1. Er3+ infrared fluorescence affected by spatial distribution synchronicity of Ba2+ and Er3+ in Er3+-doped BaO-SiO2 glasses

    NASA Astrophysics Data System (ADS)

    Masuno, Atsunobu; Inoue, Hiroyuki; Saito, Yoshihiro

    2016-02-01

    Glasses with the composition xBaO-(99.9 - x)SiO2-0.1ErO3/2 (0 ≤x ≤ 34.9) were fabricated by a levitation technique. The glasses in the immiscibility region were opaque due to chemical inhomogeneity, while the other glasses were colorless and transparent. The scanning electron microscope observations and electron probe microanalysis scan profiles revealed that more Er3+ ions were preferentially distributed in the regions where more Ba2+ ions existed in the chemically inhomogeneous glasses. The synchronicity of the spatial distributions of the two ions initially increased with increasing x and then decreased when the Ba2+ concentration exceeded a certain value. The peak shape and lifetime of the fluorescence at 1.55 μm depended on x as well as the spatial distribution of both ions. These results indicate that although ErOn polyhedra are preferentially coordinated with Ba2+ ions and their local structure is affected by the coordination of Ba2+, there is a maximum in the amount of Ba2+ ions that can coordinate ErOn polyhedra since the available space for Ba2+ ions is limited. These findings provide us with efficient ways to design the chemical composition of glasses with superior Er3+ fluorescence properties for optical communication network systems.

  2. Lipid-sorting by ceramide structure from plasma membrane to ER for the cholera toxin receptor ganglioside GM1

    PubMed Central

    Chinnapen, Daniel J.-F.; Hsieh, Wan-Ting; te Welscher, Yvonne M.; Saslowsky, David E.; Kaoutzani, Lydia; Brandsma, Eelke; D’Auria, Ludovic; Park, Hyejung; Wagner, Jessica S.; Drake, Kimberly R.; Kang, Minchul; Benjamin, Thomas; Ullman, M. David; Costello, Catherine E.; Kenworthy, Anne K.; Baumgart, Tobias; Massol, Ramiro H.; Lencer, Wayne I.

    2012-01-01

    SUMMARY The glycosphingolipid GM1 binds cholera toxin (CT) on host cells and carries it retrograde from the plasma membrane (PM) through endosomes, the trans-Golgi (TGN), and the endoplasmic reticulum (ER) to induce toxicity. To elucidate how a membrane lipid can specify trafficking in these pathways, we synthesized GM1 isoforms with alternate ceramide domains and imaged their trafficking in live cells. Only GM1 with unsaturated acyl chains sorted efficiently from PM to TGN and ER. Toxin binding, which effectively crosslinks GM1 lipids, was dispensable, but membrane cholesterol and the lipid raft-associated proteins actin and flotillin were required. The results implicate a protein-dependent mechanism of lipid-sorting by ceramide structure and provide a molecular explanation for the diversity and specificity of retrograde trafficking by CT in host cells. PMID:22975326

  3. Endoplasmic reticulum stress-mediated pathways to both apoptosis and autophagy: Significance for melanoma treatment

    PubMed Central

    Hassan, Mohamed; Selimovic, Denis; Hannig, Matthias; Haikel, Youssef; Brodell, Robert T; Megahed, Mossaad

    2015-01-01

    Melanoma is the most aggressive form of skin cancer. Disrupted intracellular signaling pathways are responsible for melanoma's extraordinary resistance to current chemotherapeutic modalities. The pathophysiologic basis for resistance to both chemo- and radiation therapy is rooted in altered genetic and epigenetic mechanisms that, in turn, result in the impairing of cell death machinery and/or excessive activation of cell growth and survival-dependent pathways. Although most current melanoma therapies target mitochondrial dysregulation, there is increasing evidence that endoplasmic reticulum (ER) stress-associated pathways play a role in the potentiation, initiation and maintenance of cell death machinery and autophagy. This review focuses on the reliability of ER-associated pathways as therapeutic targets for melanoma treatment. PMID:26618107

  4. Endoplasmic reticulum stress-mediated pathways to both apoptosis and autophagy: Significance for melanoma treatment.

    PubMed

    Hassan, Mohamed; Selimovic, Denis; Hannig, Matthias; Haikel, Youssef; Brodell, Robert T; Megahed, Mossaad

    2015-11-20

    Melanoma is the most aggressive form of skin cancer. Disrupted intracellular signaling pathways are responsible for melanoma's extraordinary resistance to current chemotherapeutic modalities. The pathophysiologic basis for resistance to both chemo- and radiation therapy is rooted in altered genetic and epigenetic mechanisms that, in turn, result in the impairing of cell death machinery and/or excessive activation of cell growth and survival-dependent pathways. Although most current melanoma therapies target mitochondrial dysregulation, there is increasing evidence that endoplasmic reticulum (ER) stress-associated pathways play a role in the potentiation, initiation and maintenance of cell death machinery and autophagy. This review focuses on the reliability of ER-associated pathways as therapeutic targets for melanoma treatment. PMID:26618107

  5. The Grand Banks ERS-1 SAR wave spectra validation experiment

    NASA Technical Reports Server (NTRS)

    Vachon, P. W.; Dobson, F. W.; Smith, S. D.; Anderson, R. J.; Buckley, J. R.; Allingham, M.; Vandemark, D.; Walsh, E. J.; Khandekar, M.; Lalbeharry, R.

    1993-01-01

    As part of the ERS-1 validation program, the ERS-1 Synthetic Aperture Radar (SAR) wave spectra validation experiment was carried out over the Grand Banks of Newfoundland (Canada) in Nov. 1991. The principal objective of the experiment was to obtain complete sets of wind and wave data from a variety of calibrated instruments to validate SAR measurements of ocean wave spectra. The field program activities are described and the rather complex wind and wave conditions which were observed are summarized. Spectral comparisons with ERS-1 SAR image spectra are provided. The ERS-1 SAR is shown to have measured swell and range traveling wind seas, but did not measure azimuth traveling wind seas at any time during the experiment. Results of velocity bunching forward mapping and new measurements of the relationship between wind stress and sea state are also shown.

  6. Properties of ER Fluids Comprised of Liquid Crystalline Polymers

    NASA Astrophysics Data System (ADS)

    Inoue, Akio; Ide, Yoichiroh; Maniwa, Shyunji; Yamada, Hiroyuki; Oda, Hiroji

    Side-chain liquid crystalline polysiloxanes (LCS) diluted with solvents show a large increase in viscosity and a newtonian flow under an electric field. Two types of solvent-diluted LCSs, A and B, are presented and their properties are described in this paper. Type A shows a large temperature-dependent ER effect a quick response of msec. order to an electric field and a dynamic behavior similar to that of a low molecular weight liquid crystal. Type B shows a stable ER effect throughout a wide range of temperatures up to 150°C, a two-step response of shear stress curve upon application of DC electric field and a micron-sized droplets structure which deforms with the electric field. The generation mechanisms of ER effect on the two types were discussed with the data of dynamic and morphological changes, referring those on a low molecular liquid crystal and a particle dispersion type ER fluid.

  7. Play 'Pokemon Go' without Landing in The ER

    MedlinePlus

    ... medlineplus.gov/news/fullstory_159911.html Play 'Pokemon Go' Without Landing in the ER Distracted walking a ... in pursuit of digital monsters via the "Pokemon Go" game. But players distracted by their smartphones risk ...

  8. ERS-1 and Almaz ocean wave monitoring experiments

    NASA Technical Reports Server (NTRS)

    Beal, R. C.; Tilley, D. G.

    1992-01-01

    Preliminary results from two ocean wave monitoring experiments conducted in 1991 using the high-altitude ERS-1 synthetic aperture radar (SAR) and the low-altitude ex-USSR Almaz 1 SAR are presented. ERS-1 imagery of the Gulf Stream supports the idea that a future wide-swath scansar will be a valuable tool for monitoring large-scale ocean dynamics at high resolution. A direct comparison of ERS-1 and Almaz 1 ocean wave spectra shows major deficiencies in the ERS-1 high range-to-velocity ratio R/V sensor that are partially resolved with the lower-altitude Almaz platform. Optimum wave imaging from space will require both a low R/V and low off-nadir angle.

  9. ER-2 High Altitude Solar Cell Calibration Flights

    NASA Technical Reports Server (NTRS)

    Myers, Matthew G.; Piszczor, Michael F.

    2015-01-01

    The first flights of the ER-2 solar cell calibration demonstration were conducted during September-October of 2014. Three flights were performed that not only tested out the equipment and operational procedures, but also demonstrated the capability of this unique facility by conducting the first short-circuit measurements on a variety of test solar cells. Very preliminary results of these first flights were presented at the 2014 Space Photovoltaic Research and Technology (SPRAT) Conference in Cleveland, OH shortly following these first flights. At the 2015 Space Power Workshop, a more detailed description of these first ER-2 flights will be presented, along with the final flight data from some of the test cells that were flown and has now been reduced and corrected for ER-2 atmospheric flight conditions. Plans for ER-2 flights during the summer of 2015 will also be discussed.

  10. Oncogenic BRAF induces chronic ER stress condition resulting in increased basal autophagy and apoptotic resistance of cutaneous melanoma.

    PubMed

    Corazzari, M; Rapino, F; Ciccosanti, F; Giglio, P; Antonioli, M; Conti, B; Fimia, G M; Lovat, P E; Piacentini, M

    2015-06-01

    The notorious unresponsiveness of metastatic cutaneous melanoma to current treatment strategies coupled with its increasing incidence constitutes a serious worldwide clinical problem. Moreover, despite recent advances in targeted therapies for patients with BRAF(V600E) mutant melanomas, acquired resistance remains a limiting factor and hence emphasises the acute need for comprehensive pre-clinical studies to increase the biological understanding of such tumours in order to develop novel effective and longlasting therapeutic strategies. Autophagy and ER stress both have a role in melanoma development/progression and chemoresistance although their real impact is still unclear. Here, we show that BRAF(V600E) induces a chronic ER stress status directly increasing basal cell autophagy. BRAF(V600E)-mediated p38 activation stimulates both the IRE1/ASK1/JNK and TRB3 pathways. Bcl-XL/Bcl-2 phosphorylation by active JNK releases Beclin1 whereas TRB3 inhibits the Akt/mTor axes, together resulting in an increase in basal autophagy. Furthermore, we demonstrate chemical chaperones relieve the BRAF(V600E)-mediated chronic ER stress status, consequently reducing basal autophagic activity and increasing the sensitivity of melanoma cells to apoptosis. Taken together, these results suggest enhanced basal autophagy, typically observed in BRAF(V600E) melanomas, is a consequence of a chronic ER stress status, which ultimately results in the chemoresistance of such tumours. Targeted therapies that attenuate ER stress may therefore represent a novel and more effective therapeutic strategy for BRAF mutant melanoma. PMID:25361077

  11. Pentoxifylline triggers autophagy via ER stress response that interferes with Pentoxifylline induced apoptosis in human melanoma cells.

    PubMed

    Sharma, Kapil; Ishaq, Mohammad; Sharma, Gaurav; Khan, Mohammad Aslam; Dutta, Rajesh Kumar; Majumdar, Sekhar

    2016-03-01

    Pentoxifylline (PTX), a non-specific phosphodiesterase inhibitor is known to inhibit the growth of various cancer cells including melanoma. Here in this study, we have found that PTX induces autophagy in human melanoma cell lines (A375 and MeWo). Induction of autophagy is associated with the increase in Atg5 expression as knockdown of Atg5 effectively inhibited PTX mediated autophagy. A decrease in mTOR activation was also observed after PTX treatment. We observed that autophagy was activated as a downstream effector mechanism of ER stress induced by PTX. ER stress response was confirmed by upregulation of IRE-1α, GRP78 and CHOP expression. PTX treatment also resulted in an increase in intracellular calcium (Ca(2+)) level. Ca(2+) is the central player as blocking Ca(2+) by intracellular calcium chelator (BAPTA-AM) effectively inhibited the PTX induced ER stress response as well as autophagy. Moreover, silencing of CHOP also resulted in autophagy inhibition with a decrease in Atg5 expression. Collectively, PTX triggers ER stress response followed by induction of autophagy via involvement of Ca(2+)→CHOP→Atg5 signalling cascade. Interestingly, inhibition of intracellular calcium level by BAPTA-AM significantly increased PTX mediated cell death by augmenting intrinsic apoptotic pathway. Inhibition of autophagy by the ATG5 siRNA and pharmacological inhibitor, chloroquine also enhances PTX induced cell death. Taken together, our results clearly indicate that activation of ER stress response and autophagy provides resistance to PTX mediated apoptosis, and thus, interferes with the anticancer activity of PTX in human melanoma cells. PMID:26793997

  12. Bcl-2 antagonists interact synergistically with bortezomib in DLBCL cells in association with JNK activation and induction of ER stress.

    PubMed

    Dasmahapatra, Girija; Lembersky, Dmitry; Rahmani, Mohamed; Kramer, Lora; Friedberg, Jonathan; Fisher, Richard I; Dent, Paul; Grant, Steven

    2009-05-01

    Mechanisms underlying interactions between the proteasome inhibitor bortezomib and small molecule Bcl-2 antagonists were examined in GC- and ABC-type human DLBCL (diffuse lymphocytic B-cell lymphoma) cells. Concomitant or sequential exposure to non- or minimally toxic concentrations of bortezomib or other proteasome inhibitors and either HA14-1 or gossypol resulted in a striking increase in Bax/Bak conformational change/translocation, cytochrome c release, caspase activation and synergistic induction of apoptosis in both GC- and ABC-type cells. These events were associated with a sharp increase in activation of the stress kinase JNK and evidence of ER stress induction (e.g., eIF2alpha phosphorylation, activation of caspases-2 and -4, and Grp78 upregulation). Pharmacologic or genetic (e.g., shRNA knockdown) interruption of JNK signaling attenuated HA14-1/bortezomib lethality and ER stress induction. Genetic disruption of the ER stress pathway (e.g., in cells expressing caspase-4 shRNA or DN-eIF2alpha) significantly attenuated lethality. The toxicity of this regimen was independent of ROS generation. Finally, HA14-1 significantly increased bortezomib-mediated JNK activation, ER stress induction, and lethality in bortezomib-resistant cells. Collectively these findings indicate that small molecule Bcl-2 antagonists promote bortezomib-mediated mitochondrial injury and lethality in DLBCL cells in association with enhanced JNK activation and ER stress induction. They also raise the possibility that such a strategy may be effective in different DLBCL sub-types (e.g., GC- or ABC), and in bortezomib-resistant disease. PMID:19270531

  13. Bcl-2 antagonists interact synergistically with bortezomib in DLBCL cells in association with JNK activation and induction of ER stress

    PubMed Central

    Dasmahapatra, Girija; Lembersky, Dmitry; Rahmani, Mohamed; Kramer, Lora; Friedberg, Jonathan; Fisher, Richard I.; Dent, Paul; Grant, Steven

    2010-01-01

    Mechanisms underlying interactions between the proteasome inhibitor bortezomib and small molecule Bcl-2 antagonists were examined in GC- and ABC-type human DLBCL (diffuse lymphocytic B-cell lymphoma) cells. Concomitant or sequential exposure to non- or minimally toxic concentrations of bortezomib or other proteasome inhibitors and either HA14-1 or gossypol resulted in a striking increase in Bax/Bak conformational change/translocation, cytochrome c release, caspase activation and synergistic induction of apoptosis in both GC- and ABC-type cells. These events were associated with a sharp increase in activation of the stress kinase JNK and evidence of ER stress induction (e.g., eIF2α phosphorylation, activation of caspases-2 and -4, and Grp78 upregulation). Pharmacologic or genetic (e.g., shRNA knockdown) interruption of JNK signaling attenuated HA14-1/bortezomib lethality and ER stress induction. Genetic disruption of the ER stress pathway (e.g., in cells expressing caspase-4 shRNA or DN-eIF2α) significantly attenuated lethality. The toxicity of this regimen was independent of ROS generation. Finally, HA14-1 significantly increased bortezomib-mediated JNK activation, ER stress induction, and lethality in bortezomib-resistant cells. Collectively these findings indicate that small molecule Bcl-2 antagonists promote bortezomib-mediated mitochondrial injury and lethality in DLBCL cells in association with enhanced JNK activation and ER stress induction. They also raise the possibility that such a strategy may be effective in different DLBCL sub-types (e.g., GC- or ABC), and in bortezomib-resistant disease. PMID:19270531

  14. Apoptosis-linked Gene-2 (ALG-2)/Sec31 Interactions Regulate Endoplasmic Reticulum (ER)-to-Golgi Transport

    PubMed Central

    Helm, Jared R.; Bentley, Marvin; Thorsen, Kevin D.; Wang, Ting; Foltz, Lauren; Oorschot, Viola; Klumperman, Judith; Hay, Jesse C.

    2014-01-01

    Luminal calcium released from secretory organelles has been suggested to play a regulatory role in vesicle transport at several steps in the secretory pathway; however, its functional roles and effector pathways have not been elucidated. Here we demonstrate for the first time that specific luminal calcium depletion leads to a significant decrease in endoplasmic reticulum (ER)-to-Golgi transport rates in intact cells. Ultrastructural analysis revealed that luminal calcium depletion is accompanied by increased accumulation of intermediate compartment proteins in COPII buds and clusters of unfused COPII vesicles at ER exit sites. Furthermore, we present several lines of evidence suggesting that luminal calcium affected transport at least in part through calcium-dependent interactions between apoptosis-linked gene-2 (ALG-2) and the Sec31A proline-rich region: 1) targeted disruption of ALG-2/Sec31A interactions caused severe defects in ER-to-Golgi transport in intact cells; 2) effects of luminal calcium and ALG-2/Sec31A interactions on transport mutually required each other; and 3) Sec31A function in transport required luminal calcium. Morphological phenotypes of disrupted ALG-2/Sec31A interactions were characterized. We found that ALG-2/Sec31A interactions were not required for the localization of Sec31A to ER exit sites per se but appeared to acutely regulate the stability and trafficking of the cargo receptor p24 and the distribution of the vesicle tether protein p115. These results represent the first outline of a mechanism that connects luminal calcium to specific protein interactions regulating vesicle trafficking machinery. PMID:25006245

  15. Bidentate Ligands on Osmium(VI) Nitrido Complexes Control Intracellular Targeting and Cell Death Pathways

    PubMed Central

    Suntharalingam, Kogularamanan; Johnstone, Timothy C.; Bruno, Peter M.; Lin, Wei; Hemann, Michael T.; Lippard, Stephen J.

    2013-01-01

    The cellular response evoked by anti-proliferating osmium(VI) nitrido compounds of general formula OsN(N^N)Cl3 (N^N = 2,2′-bipyridine 1, 1,10-phenanthroline 2, 3,4,7,8-tetramethyl-1,10-phenanthroline 3, or 4,7-diphenyl-1,10-phenanthroline 4) can be tuned by subtle ligand modifications. Complex 2 induces DNA damage, resulting in activation of the p53 pathway, cell cycle arrest at the G2/M phase, and caspase-dependent apoptotic cell death. In contrast, 4 evokes ER stress leading to the upregulation of proteins of the unfolded protein response pathway, increase in ER size, and p53-independent apoptotic cell death. To the best of our knowledge, 4 is the first osmium compound to induce ER stress in cancer cells. PMID:24041161

  16. Comparison of laser phacovaporization using the Er:YAG and the Er:YSGG laser

    NASA Astrophysics Data System (ADS)

    Gailitis, Raymond P.; Patterson, Scott W.; Samuels, Mark A.; Hagen, Kerry B.; Ren, Qiushi; Waring, George O., III

    1992-08-01

    Future advances in cataract surgery aim to remove the crystalline lens through a small opening such that the capsular bag, once devoid of lens epithelial cells, may be refilled with a clear polymer which may exhibit the elastic properties of a young lens and restore accommodation. Several different lasers are currently being investigated for laser cataract surgery including the excimer, pulsed visible and short infrared, and mid infrared lasers. Taking advantage of the strong water absorption peak at 2.94 micrometers , we have investigated the laser tissue interaction of the Er:YAG (2.94 micrometers ) and Er:YSGG (2.79 micrometers ) which have water absorption coefficients of 13,000 cm-1 and 7,000 cm-1, respectively. We have devised a delivery system which measures the ablation time versus radiant energy through a known thickness on a lens nucleus in free air for these two wavelengths. The current presentation compares the ablation rates versus radiant exposure of these two lasers in human lens nuclei. We also show the histopathology from ablated lenses of these two different wavelengths at different radiant exposures. Integration with fiberoptics and clinical applications is discussed.

  17. 5 d-4 f luminescence of Er 3+ in YAG:Er 3+

    NASA Astrophysics Data System (ADS)

    Aleksanyan, Eduard; Harutunyan, Vachagan; Kostanyan, Radik; Feldbach, Eduard; Kirm, Marco; Liblik, Peeter; Makhov, Vladimir N.; Vielhauer, Sebastian

    2009-04-01

    Interconfigurational 4 f105 d ↔ 4 f11 transitions of the Er 3+ ion in the YAG host were studied under both VUV photon (synchrotron radiation) and electron beam excitation. It was found that the lowest low-spin 5 d level of the Er 3+ ion has a rather large energy gap to the next lower 4 f2D(2) 5/2 crystal-field level, which results in a relatively low rate of nonradiative transitions from this 5 d level leading to the appearance of weak spin-allowed 5 d-4 f luminescence at low temperature. The lowest high-spin 5 d level, from which spin-forbidden 5 d-4 f radiative transitions could occur potentially, is situated only at ˜500 cm -1 above the 4D1/2 level. Such close location allows fast depopulation of the 5 d level resulting in the absence of spin-forbidden 5 d-4 f luminescence and appearance of 4D1/2 4 f-4 f luminescence.

  18. Co- and Post-Translational Protein Folding in the ER.

    PubMed

    Ellgaard, Lars; McCaul, Nicholas; Chatsisvili, Anna; Braakman, Ineke

    2016-06-01

    The biophysical rules that govern folding of small, single-domain proteins in dilute solutions are now quite well understood. The mechanisms underlying co-translational folding of multidomain and membrane-spanning proteins in complex cellular environments are often less clear. The endoplasmic reticulum (ER) produces a plethora of membrane and secretory proteins, which must fold and assemble correctly before ER exit - if these processes fail, misfolded species accumulate in the ER or are degraded. The ER differs from other cellular organelles in terms of the physicochemical environment and the variety of ER-specific protein modifications. Here, we review chaperone-assisted co- and post-translational folding and assembly in the ER and underline the influence of protein modifications on these processes. We emphasize how method development has helped advance the field by allowing researchers to monitor the progression of folding as it occurs inside living cells, while at the same time probing the intricate relationship between protein modifications during folding. PMID:26947578

  19. Memantine ER/Donepezil: A Review in Alzheimer's Disease.

    PubMed

    Greig, Sarah L

    2015-11-01

    A once-daily, fixed-dose combination of memantine extended-release (ER)/donepezil 28/10 mg (Namzaric™) is available in the USA for patients with moderate to severe Alzheimer's disease (AD) on stable memantine and donepezil therapy. The fixed-dose formulation is bioequivalent to coadministration of the individual drugs. In a 24-week, phase III trial in patients with moderate to severe AD, addition of memantine ER 28 mg once daily to stable cholinesterase inhibitor (ChEI) therapy was more effective than add-on placebo on measures of cognition, global clinical status, dementia behaviour and semantic processing ability, although between-group differences on a measure of daily function did not significantly differ. In subgroup analyses in donepezil-treated patients, add-on memantine ER was more effective than add-on placebo on measures of cognition, dementia behaviour and semantic processing, although there were no significant between-group differences on measures of global clinical status and daily function. Memantine ER plus ChEI combination therapy was generally well tolerated in the phase III trial, with diarrhoea, dizziness and influenza occurring at least twice as often with add-on memantine ER as add-on placebo in donepezil-treated patients. Thus, memantine ER plus donepezil combination therapy is an effective and well tolerated treatment option for patients with moderate to severe AD. The fixed-dose combination is potentially more convenient than coadministration of the individual agents. PMID:26519339

  20. Lockheed ER-2 #806 high altitude research aircraft in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    ER-2 tail number 806, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  1. Lockheed ER-2 high altitude research aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    ER-2 tail number 706, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  2. Lockheed ER-2 #809 high altitude research aircraft in flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    ER-2 tail number 809, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  3. Lockheed ER-2 #809 high altitude research aircraft in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    ER-2 tail number 809, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  4. Lockheed ER-2 #806 high altitude research aircraft during landing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    ER-2 tail number 806, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  5. Oceanographic results from analysis of ERS-1 altimetry

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Shum, C. K.; Chambers, D. P.; Peterson, G. E.; Ries, J. C.

    1994-01-01

    Large scale dynamic ocean topography and its variations were observed using ERS-1 radar altimeter measurements. The altimeter measurements analyzed are primarily from the ESA ocean product (OPR02) and from the Interim Geophysical Data Records (IGDR) generated by NOAA from the fast delivery (FD) data during the ERS-1 35 day repeat orbit phase. The precise orbits used for the dynamic topography solution are computed using dual satellite crossover measurements from ERS-1 and TOPEX (Topology Ocean Experiment)/Poseidon (T/P) as additional tracking data, and using improved models and constants which are consistent with T/P. Analysis of the ERS-1 dynamic topography solution indicates agreement with the T/P solution at the 5 cm root mean square level, with regional differences as large as 15 cm tide gauges at the 8 to 9 cm level. There are differences between the ERS-1 OPR02 and IGDR determined dynamic topography solutions on the order of 5 cm root mean square. Mesoscale oceanic variability time series obtained using collinear analysis of the ERS-1 altimeter data show good qualitative agreement when compared with the T/P results.

  6. Hormone-related pathways and risk of breast cancer subtypes in African American women.

    PubMed

    Haddad, Stephen A; Lunetta, Kathryn L; Ruiz-Narváez, Edward A; Bensen, Jeannette T; Hong, Chi-Chen; Sucheston-Campbell, Lara E; Yao, Song; Bandera, Elisa V; Rosenberg, Lynn; Haiman, Christopher A; Troester, Melissa A; Ambrosone, Christine B; Palmer, Julie R

    2015-11-01

    We sought to investigate genetic variation in hormone pathways in relation to risk of overall and subtype-specific breast cancer in women of African ancestry (AA). Genotyping and imputation yielded data on 143,934 SNPs in 308 hormone-related genes for 3663 breast cancer cases (1098 ER-, 1983 ER+, 582 ER unknown) and 4687 controls from the African American Breast Cancer Epidemiology and Risk (AMBER) Consortium. AMBER includes data from four large studies of AA women: the Carolina Breast Cancer Study, the Women's Circle of Health Study, the Black Women's Health Study, and the Multiethnic Cohort Study. Pathway- and gene-based analyses were conducted, and single-SNP tests were run for the top genes. There were no strong associations at the pathway level. The most significantly associated genes were GHRH, CALM2, CETP, and AKR1C1 for overall breast cancer (gene-based nominal p ≤ 0.01); NR0B1, IGF2R, CALM2, CYP1B1, and GRB2 for ER+ breast cancer (p ≤ 0.02); and PGR, MAPK3, MAP3K1, and LHCGR for ER- disease (p ≤ 0.02). Single-SNP tests for SNPs with pairwise linkage disequilibrium r (2) < 0.8 in the top genes identified 12 common SNPs (in CALM2, CETP, NR0B1, IGF2R, CYP1B1, PGR, MAPK3, and MAP3K1) associated with overall or subtype-specific breast cancer after gene-level correction for multiple testing. Rs11571215 in PGR (progesterone receptor) was the SNP most strongly associated with ER- disease. We identified eight genes in hormone pathways that contain common variants associated with breast cancer in AA women after gene-level correction for multiple testing. PMID:26458823

  7. Iminosugars Inhibit Dengue Virus Production via Inhibition of ER Alpha-Glucosidases—Not Glycolipid Processing Enzymes

    PubMed Central

    Sayce, Andrew C.; Alonzi, Dominic S.; Killingbeck, Sarah S.; Tyrrell, Beatrice E.; Hill, Michelle L.; Caputo, Alessandro T.; Iwaki, Ren; Kinami, Kyoko; Ide, Daisuke; Kiappes, J. L.; Beatty, P. Robert; Kato, Atsushi; Harris, Eva; Dwek, Raymond A.; Miller, Joanna L.; Zitzmann, Nicole

    2016-01-01

    It has long been thought that iminosugar antiviral activity is a function of inhibition of endoplasmic reticulum-resident α-glucosidases, and on this basis, many iminosugars have been investigated as therapeutic agents for treatment of infection by a diverse spectrum of viruses, including dengue virus (DENV). However, iminosugars are glycomimetics possessing a nitrogen atom in place of the endocyclic oxygen atom, and the ubiquity of glycans in host metabolism suggests that multiple pathways can be targeted via iminosugar treatment. Successful treatment of patients with glycolipid processing defects using iminosugars highlights the clinical exploitation of iminosugar inhibition of enzymes other than ER α-glucosidases. Evidence correlating antiviral activity with successful inhibition of ER glucosidases together with the exclusion of alternative mechanisms of action of iminosugars in the context of DENV infection is limited. Celgosivir, a bicyclic iminosugar evaluated in phase Ib clinical trials as a therapeutic for the treatment of DENV infection, was confirmed to be antiviral in a lethal mouse model of antibody-enhanced DENV infection. In this study we provide the first evidence of the antiviral activity of celgosivir in primary human macrophages in vitro, in which it inhibits DENV secretion with an EC50 of 5 μM. We further demonstrate that monocyclic glucose-mimicking iminosugars inhibit isolated glycoprotein and glycolipid processing enzymes and that this inhibition also occurs in primary cells treated with these drugs. By comparison to bicyclic glucose-mimicking iminosugars which inhibit glycoprotein processing but do not inhibit glycolipid processing and galactose-mimicking iminosugars which do not inhibit glycoprotein processing but do inhibit glycolipid processing, we demonstrate that inhibition of endoplasmic reticulum-resident α-glucosidases, not glycolipid processing, is responsible for iminosugar antiviral activity against DENV. Our data suggest that

  8. Attenuation of PKR-like ER Kinase (PERK) Signaling Selectively Controls Endoplasmic Reticulum Stress-induced Inflammation Without Compromising Immunological Responses.

    PubMed

    Guthrie, Lauren N; Abiraman, Kavitha; Plyler, Emily S; Sprenkle, Neil T; Gibson, Sara A; McFarland, Braden C; Rajbhandari, Rajani; Rowse, Amber L; Benveniste, Etty N; Meares, Gordon P

    2016-07-22

    Inflammation and endoplasmic reticulum (ER) stress are associated with many neurological diseases. ER stress is brought on by the accumulation of misfolded proteins in the ER, which leads to activation of the unfolded protein response (UPR), a conserved pathway that transmits signals to restore homeostasis or eliminate the irreparably damaged cell. We provide evidence that inhibition or genetic haploinsufficiency of protein kinase R-like endoplasmic reticulum kinase (PERK) can selectively control inflammation brought on by ER stress without impinging on UPR-dependent survival and adaptive responses or normal immune responses. Using astrocytes lacking one or both alleles of PERK or the PERK inhibitor GSK2606414, we demonstrate that PERK haploinsufficiency or partial inhibition led to reduced ER stress-induced inflammation (IL-6, CCL2, and CCL20 expression) without compromising prosurvival responses. In contrast, complete loss of PERK blocked canonical PERK-dependent UPR genes and promoted apoptosis. Reversal of eIF2α-mediated translational repression using ISRIB potently suppressed PERK-dependent inflammatory gene expression, indicating that the selective modulation of inflammatory gene expression by PERK inhibition may be linked to attenuation of eIF2α phosphorylation and reveals a previously unknown link between translational repression and transcription of inflammatory genes. Additionally, ER-stressed astrocytes can drive an inflammatory M1-like phenotype in microglia, and this can be attenuated with inhibition of PERK. Importantly, targeting PERK neither disrupted normal cytokine signaling in astrocytes or microglia nor impaired macrophage phagocytosis or T cell polarization. Collectively, this work suggests that targeting PERK may provide a means for selective immunoregulation in the context of ER stress without disrupting normal immune function. PMID:27226638

  9. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models.

    PubMed

    Kim, Hee Suk; Lim, Jang Mi; Kim, Joo Young; Kim, Yongjin; Park, Serkin; Sohn, Jeongwon

    2016-03-15

    We reported previously that panaxydol, a component of Panax ginseng roots, induced mitochondria-mediated apoptosis preferentially in transformed cells. This study demonstrates that EGFR activation and the resulting ER stress mediate panaxydol-induced apoptosis, and that panaxydol suppresses in vivo tumor growth in syngeneic and xenogeneic mouse tumor models. In addition, we elucidated that CaMKII and TGF-β-activated kinase (TAK1) participate in p38/JNK activation by elevated cytoplasmic Ca(2+) concentration ([Ca(2+)]c). In MCF-7 cells, EGFR was activated immediately after exposure to panaxydol, and this activation was necessary for induction of apoptosis, suggesting that panaxydol might be a promising anticancer candidate, especially for EGFR-addicted cancer. Activation of PLCγ followed EGFR activation, resulting in Ca(2+) release from the endoplasmic reticulum (ER) via inositol triphosphate and ryanodine receptors. ER Ca(2+) release triggered mitochondrial Ca(2+) uptake indirectly through oxidative stress and ensuing ER stress. Elevated [Ca(2+)]c triggered sequential activation of calmodulin/CaMKII, TAK1 and p38/JNK. As shown previously, p38 and JNK activate NADPH oxidase. Here, it was shown that the resulting oxidative stress triggered ER stress. Among the three signaling branches of the unfolded protein response, protein kinase R-like ER kinase (PERK), but not inositol-requiring enzyme 1 or activating transcription factor 6, played a role in transmitting the apoptosis signal. PERK induced C/EBP homologous protein (CHOP), and CHOP elevated Bim expression, initiating mitochondrial Ca(2+) uptake and apoptosis. In summary, we identified roles of EGFR, the CAMKII-TAK1-p38/JNK pathway, and ER stress in panaxydol-induced apoptosis and demonstrated the in vivo anticancer effect of panaxydol. PMID:26421996

  10. Design of pathway-preferential estrogens that provide beneficial metabolic and vascular effects without stimulating reproductive tissues

    PubMed Central

    Madak-Erdogan, Zeynep; Kim, Sung-Hoon; Gong, Ping; Zhao, Yiru C.; Zhang, Hui; Chambliss, Ken L.; Carlson, Kathryn E.; Mayne, Christopher G.; Shaul, Philip W.; Korach, Kenneth S.; Katzenellenbogen, John A.; Katzenellenbogen, Benita S.

    2016-01-01

    There is great medical need for estrogens with favorable pharmacological profiles, that support desirable activities for menopausal women such as metabolic and vascular protection but that lack stimulatory activities on the breast and uterus. Here, we report the development of structurally novel estrogens that preferentially activate a subset of estrogen receptor (ER) signaling pathways and result in favorable target tissue-selective activity. Through a process of structural alteration of estrogenic ligands that was designed to preserve their essential chemical and physical features but greatly reduced their binding affinity for ERs, we obtained “Pathway Preferential Estrogens” (PaPEs) which interacted with ERs to activate the extranuclear-initiated signaling pathway preferentially over the nuclear-initiated pathway. PaPEs elicited a pattern of gene regulation and cellular and biological processes that did not stimulate reproductive and mammary tissues or breast cancer cells. However, in ovariectomized mice, PaPEs triggered beneficial responses both in metabolic tissues (adipose tissue and liver) that reduced body weight gain and fat accumulation and in the vasculature that accelerated repair of endothelial damage. This process of designed ligand structure alteration represents a novel approach to develop ligands that shift the balance in ER-mediated extranuclear and nuclear pathways to obtain tissue-selective, non-nuclear pathway-preferential estrogens, which may be beneficial for postmenopausal hormone replacement. The approach may also have broad applicability for other members of the nuclear hormone receptor superfamily. PMID:27221711

  11. Deletion of the BH3-only protein puma protects motoneurons from ER stress-induced apoptosis and delays motoneuron loss in ALS mice

    PubMed Central

    Kieran, Dairín; Woods, Ina; Villunger, Andreas; Strasser, Andreas; Prehn, Jochen H. M.

    2007-01-01

    BH3-only proteins couple diverse stress signals to the evolutionarily conserved mitochondrial apoptosis pathway. Previously, we reported that the activation of the BH3-only protein p53-up-regulated mediator of apoptosis (Puma) was necessary and sufficient for endoplasmic reticulum (ER) stress- and proteasome inhibition-induced apoptosis in neuroblastoma and other cancer cells. Defects in protein quality control have also been suggested to be a key event in ALS, a fatal neurodegenerative condition characterized by motoneuron degeneration. Using the SOD1G93A mouse model as well as human post mortem samples from ALS patients, we show evidence for increased ER stress and defects in protein degradation in motoneurons during disease progression. Before symptom onset, we detected a significant up-regulation of Puma in motoneurons of SOD1G93A mice. Genetic deletion of puma significantly improved motoneuron survival and delayed disease onset and motor dysfunction in SOD1G93A mice. However, it had no significant effect on lifespan, suggesting that other ER stress-related cell-death proteins or other factors, such as excitotoxicity, necrosis, or inflammatory injury, may contribute at later disease stages. Indeed, further experiments using cultured motoneurons revealed that genetic deletion of puma protected motoneurons against ER stress-induced apoptosis but showed no effect against excitotoxic injury. These findings demonstrate that a single BH3-only protein, the ER stress-associated protein Puma, plays an important role during the early stages of chronic neurodegeneration in vivo. PMID:18077368

  12. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus

    PubMed Central

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species. PMID:27446060

  13. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus.

    PubMed

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-Hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species. PMID:27446060

  14. Bond strength of composites on Er:YAG and Er,Cr:YSGG laser-irradiated enamel

    NASA Astrophysics Data System (ADS)

    Apel, Christian; Gutknecht, Norbert

    1999-02-01

    In an in vitro study the bond strength of composite materials on Er:YAG and Er,Cr:YSGG laser-radiated enamel was examined. The results achieved on enamel surfaces conditioned conventionally using the acid etching method served as a control. On 80 extracted cariesfree third molars an enamel area of 4 X 4 mm was conditioned with three different systems. The Er:YAG laser was used at pulse frequencies of 8 Hz, 10 Hz, 12 Hz and 15 Hz using an energy of 120 mJ at each setting. The Er,Cr:YSGG laser was used at the settings of 20 Hz/50 mJ, 20 Hz/100 mJ and 20 Hz/150 mJ. The repetition rate for this device is constantly 20 Hz. In the reference group 10 teeth were etched with 37% phosphoric acid. In order to be able to perform the tensile tests under standard conditions metal brackets were placed on the conditioned surfaces. The 'Orthodontic-Bonding-System' was used as an adhesive system. The brackets were pulled off from the etched surfaces vertically to the tooth using a tensile testing machine. The results confirmed the highest bond strengths in the group of enamel surfaces which have been conditioned with acid etching gel. The bond strength of the Er:YAG laser (8, 10 and 12 Hz)- and Er,Cr:YSGG laser (20 Hz/150 mJ)-conditioned enamel surfaces was not significantly lower.

  15. Rab1 defines a novel pathway connecting the pre-Golgi intermediate compartment with the cell periphery.

    PubMed

    Sannerud, Ragna; Marie, Michaël; Nizak, Clément; Dale, Hege Avsnes; Pernet-Gallay, Karin; Perez, Franck; Goud, Bruno; Saraste, Jaakko

    2006-04-01

    The function of the pre-Golgi intermediate compartment (IC) and its relationship with the endoplasmic reticulum (ER) and Golgi remain only partially understood. Here, we report striking segregation of IC domains in polarized PC12 cells that develop neurite-like processes. Differentiation involves expansion of the IC and movement of Rab1-containing tubules to the growth cones of the neurites, whereas p58- and COPI-positive IC elements, like rough ER and Golgi, remain in the cell body. Exclusion of Rab1 effectors p115 and GM130 from the neurites further indicated that the centrifugal, Rab1-mediated pathway has functions that are not directly related to ER-to-Golgi trafficking. Disassembly of COPI coats did not affect this pathway but resulted in missorting of p58 to the neurites. Live cell imaging showed that green fluorescent protein (GFP)-Rab1A-containing IC elements move bidirectionally both within the neurites and cell bodies, interconnecting different ER exit sites and the cis-Golgi region. Moreover, in nonpolarized cells GFP-Rab1A-positive tubules moved centrifugally towards the cell cortex. Hydroxymethylglutaryl-CoA reductase, the key enzyme of cholesterol biosynthesis, colocalized with slowly sedimenting, Rab1-enriched membranes when the IC subdomains were separated by velocity sedimentation. These results reveal a novel pathway directly connecting the IC with the cell periphery and suggest that this Rab1-mediated pathway is linked to the dynamics of smooth ER. PMID:16421253

  16. Crosstalk between endoplasmic reticulum stress and mitochondrial pathway mediates cadmium-induced germ cell apoptosis in testes.

    PubMed

    Ji, Yan-Li; Wang, Hua; Zhao, Xian-Feng; Wang, Qun; Zhang, Cheng; Zhang, Ying; Zhao, Mei; Chen, Yuan-Hua; Meng, Xiu-Hong; Xu, De-Xiang

    2011-12-01

    Cadmium (Cd) is associated with male infertility and poor semen quality in humans. Increasing evidence demonstrates that Cd induces testicular germ cell apoptosis in rodent animals. However, the molecular mechanisms of Cd-induced testicular germ cell apoptosis remain poorly understood. In the present study, we investigated the role of endoplasmic reticulum (ER) stress on Cd-evoked germ cell apoptosis in testes. We show that spliced form of XBP-1, the target of the IRE1 pathway, was significantly increased in testes of mice injected with CdCl(2). GRP78, an ER chaperone, and CHOP, a downstream target of the PERK pathway, were upregulated in testes of Cd-treated mice. In addition, acute Cd exposure significantly caused eIF2α and JNK phosphorylation in testes, indicating that the unfolded protein response pathway in testes was activated by Cd. Interestingly, phenylbutyric acid (PBA), an ER chemical chaperone, attenuated Cd-induced ER stress and protected against germ cell apoptosis in testes. In addition, PBA significantly attenuated Cd-evoked release of cytochrome c from mitochondria to cytoplasm in testes. Taken together, these results suggest that crosstalk between ER stress signaling and mitochondrial pathway mediates Cd-induced testicular germ cell apoptosis. PMID:21908765

  17. Protein kinase RNA- like endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in reactive oxygen species (ROS)- mediated endoplasmic reticulum stress- induced apoptosis in diabetic cardiomyopathy

    PubMed Central

    2013-01-01

    Background Endoplasmic reticulum (ER) stress is considered one of the mechanisms contributing to reactive oxygen species (ROS)- mediated cell apoptosis. In diabetic cardiomyopathy (DCM), cell apoptosis is generally accepted as the etiological factor and closely related to cardiac ROS generation. ER stress is proposed the link between ROS and cell apoptosis; however, the signaling pathways and their roles in participating ER stress- induced apoptosis in DCM are still unclear. Methods In this study, we investigated the signaling transductions in ROS- dependent ER stress- induced cardiomocyte apoptosis in animal model of DCM. Moreover, in order to clarify the roles of IRE1 (inositol - requiring enzyme-1), PERK (protein kinase RNA (PKR)- like ER kinase) and ATF6 (activating transcription factor-6) in conducting apoptotic signal in ROS- dependent ER stress- induced cardiomocyte apoptosis, we further investigated apoptosis in high- glucose incubated cardiomyocytes with IRE1, ATF6 and PERK- knocked down respectively. Results we demonstrated that the ER stress sensors, referred as PERK, IRE1 and ATF6, were activated in ROS- mediated ER stress- induced cell apoptosis in rat model of DCM which was characterized by cardiac pump and electrical dysfunctions. The deletion of PERK in myocytes exhibited stronger protective effect against apoptosis induced by high- glucose incubation than deletion of ATF6 or IRE in the same myocytes. By subcellular fractionation, rather than ATF6 and IRE1, in primary cardiomyocytes, PERK was found a component of MAMs (mitochondria-associated endoplasmic reticulum membranes) which was the functional and physical contact site between ER and mitochondria. Conclusions ROS- stimulated activation of PERK signaling pathway takes the major responsibility rather than IRE1 or ATF6 signaling pathways in ROS- medicated ER stress- induced myocyte apoptosis in DCM. PMID:24180212

  18. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress

    PubMed Central

    Antonucci, Laura; Fagman, Johan B.; Kim, Ju Youn; Todoric, Jelena; Gukovsky, Ilya; Mackey, Mason; Ellisman, Mark H.; Karin, Michael

    2015-01-01

    Pancreatic acinar cells possess very high protein synthetic rates as they need to produce and secrete large amounts of digestive enzymes. Acinar cell damage and dysfunction cause malnutrition and pancreatitis, and inflammation of the exocrine pancreas that promotes development of pancreatic ductal adenocarcinoma (PDAC), a deadly pancreatic neoplasm. The cellular and molecular mechanisms that maintain acinar cell function and whose dysregulation can lead to tissue damage and chronic pancreatitis are poorly understood. It was suggested that autophagy, the principal cellular degradative pathway, is impaired in pancreatitis, but it is unknown whether impaired autophagy is a cause or a consequence of pancreatitis. To address this question, we generated Atg7Δpan mice that lack the essential autophagy-related protein 7 (ATG7) in pancreatic epithelial cells. Atg7Δpan mice exhibit severe acinar cell degeneration, leading to pancreatic inflammation and extensive fibrosis. Whereas ATG7 loss leads to the expected decrease in autophagic flux, it also results in endoplasmic reticulum (ER) stress, accumulation of dysfunctional mitochondria, oxidative stress, activation of AMPK, and a marked decrease in protein synthetic capacity that is accompanied by loss of rough ER. Atg7Δpan mice also exhibit spontaneous activation of regenerative mechanisms that initiate acinar-to-ductal metaplasia (ADM), a process that replaces damaged acinar cells with duct-like structures. PMID:26512112

  19. Programming of Fetal Insulin Resistance in Pregnancies with Maternal Obesity by ER Stress and Inflammation

    PubMed Central

    Sáez, Pablo J.; Villalobos-Labra, Roberto; Farías-Jofré, Marcelo

    2014-01-01

    The global epidemics of obesity during pregnancy and excessive gestational weight gain (GWG) are major public health problems worldwide. Obesity and excessive GWG are related to several maternal and fetal complications, including diabetes (pregestational and gestational diabetes) and intrauterine programming of insulin resistance (IR). Maternal obesity (MO) and neonatal IR are associated with long-term development of obesity, diabetes mellitus, and increased global cardiovascular risk in the offspring. Multiple mechanisms of insulin signaling pathway impairment have been described in obese individuals, involving complex interactions of chronically elevated inflammatory mediators, adipokines, and the critical role of the endoplasmic reticulum (ER) stress-dependent unfolded protein response (UPR). However, the underlying cellular processes linking MO and IR in the offspring have not been fully elucidated. Here, we summarize the state-of-the-art evidence supporting the possibility that adverse metabolic postnatal outcomes such as IR in the offspring of pregnancies with MO and/or excessive GWG may be related to intrauterine activation of ER stress response. PMID:25093191

  20. Structural Mechanism of ER Retrieval of MHC Class I by Cowpox

    PubMed Central

    McCoy, William H.; Wang, Xiaoli; Yokoyama, Wayne M.; Hansen, Ted H.; Fremont, Daved H.

    2012-01-01

    One of the hallmarks of viral immune evasion is the capacity to disrupt major histocompatibility complex class I (MHCI) antigen presentation to evade T-cell detection. Cowpox virus encoded protein CPXV203 blocks MHCI surface expression by exploiting the KDEL-receptor recycling pathway, and here we show that CPXV203 directly binds a wide array of fully assembled MHCI proteins, both classical and non-classical. Further, the stability of CPXV203/MHCI complexes is highly pH dependent, with dramatically increased affinities at the lower pH of the Golgi relative to the endoplasmic reticulum (ER). Crystallographic studies reveal that CPXV203 adopts a beta-sandwich fold similar to poxvirus chemokine binding proteins, and binds the same highly conserved MHCI determinants located under the peptide-binding platform that tapasin, CD8, and natural killer (NK)-receptors engage. Mutagenesis of the CPXV203/MHCI interface identified the importance of two CPXV203 His residues that confer low pH stabilization of the complex and are critical to ER retrieval of MHCI. These studies clarify mechanistically how CPXV203 coordinates with other cowpox proteins to thwart antigen presentation. PMID:23209377

  1. Lens ER-stress response during cataract development in Mip-mutant mice.

    PubMed

    Zhou, Yuefang; Bennett, Thomas M; Shiels, Alan

    2016-08-01

    Major intrinsic protein (MIP) is a functional water-channel (AQP0) that also plays a key role in establishing lens fiber cell architecture. Genetic variants of MIP have been associated with inherited and age-related forms of cataract; however, the underlying pathogenic mechanisms are unclear. Here we have used lens transcriptome profiling by microarray-hybridization and qPCR to identify pathogenic changes during cataract development in Mip-mutant (Lop/+) mice. In postnatal Lop/+ lenses (P7) 99 genes were up-regulated and 75 were down-regulated (>2-fold, p=<0.05) when compared with wild-type. A pathway analysis of up-regulated genes in the Lop/+ lens (P7) was consistent with endoplasmic reticulum (ER)-stress and activation of the unfolded protein response (UPR). The most up-regulated UPR genes (>4-fold) in the Lop/+ lens included Chac1>Ddit3>Atf3>Trib3>Xbp1 and the most down-regulated genes (>5-fold) included two anti-oxidant genes, Hspb1 and Hmox1. Lop/+ lenses were further characterized by abundant TUNEL-positive nuclei within central degenerating fiber cells, glutathione depletion, free-radical overproduction, and calpain hyper-activation. These data suggest that Lop/+ lenses undergo proteotoxic ER-stress induced cell-death resulting from prolonged activation of the Eif2ak3/Perk-Atf4-Ddit3-Chac1 branch of the UPR coupled with severe oxidative-stress. PMID:27155571

  2. Lithium Induces ER Stress and N-Glycan Modification in Galactose-Grown Jurkat Cells

    PubMed Central

    Kátai, Emese; Yahiro, Rikki K. K.; Poór, Viktor S.; Montskó, Gergely; Zrínyi, Zita; Kovács, Gábor L.; Miseta, Attila

    2013-01-01

    We previously reported that lithium had a significant impact on Ca2+ regulation and induced unfolded protein response (UPR) in yeast cells grown on galactose due to inhibition of phosphoglucomutase (PGM), however the exact mechanism has not been established yet. In this study, we analysed lithium's effect in galactose-fed cells to clarify whether these ER-related changes are the result of a relative hypoglycemic state. Furthermore, we investigated whether the alterations in galactose metabolism impact protein post-translational modifications. Thus, Jurkat cells were incubated in glucose or galactose containing media with or without lithium treatment. We found that galactose-fed and lithium treated cells showed better survivability than fasting cells. We also found higher UDP-Hexose and glycogen levels in these cells compared to fasting cells. On the other hand, the UPR (X-box binding protein 1 mRNA levels) of galactose-fed and lithium treated cells was even greater than in fasting cells. We also found increased amount of proteins that contained N-linked N-acetyl-glucosamine, similar to what was reported in fasting cells by a recent study. Our results demonstrate that lithium treatment of galactose-fed cells can induce stress responses similar to hypoglycemia, however cell survival is still secured by alternative pathways. We propose that clarifying this process might be an important addition toward the better understanding of the molecular mechanisms that regulate ER-associated stress response. PMID:23894652

  3. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery

    PubMed Central

    Schuck, Sebastian; Gallagher, Ciara M.; Walter, Peter

    2014-01-01

    ABSTRACT Selective autophagy of damaged or redundant organelles is an important mechanism for maintaining cell homeostasis. We found previously that endoplasmic reticulum (ER) stress in the yeast Saccharomyces cerevisiae causes massive ER expansion and triggers the formation of large ER whorls. Here, we show that stress-induced ER whorls are selectively taken up into the vacuole, the yeast lysosome, by a process termed ER-phagy. Import into the vacuole does not involve autophagosomes but occurs through invagination of the vacuolar membrane, indicating that ER-phagy is topologically equivalent to microautophagy. Even so, ER-phagy requires neither the core autophagy machinery nor several other proteins specifically implicated in microautophagy. Thus, autophagy of ER whorls represents a distinct type of organelle-selective autophagy. Finally, we provide evidence that ER-phagy degrades excess ER membrane, suggesting that it contributes to cell homeostasis by controlling organelle size. PMID:25052096

  4. Gene-based analysis of the fibroblast growth factor receptor signaling pathway in relation to breast cancer in African American women: the AMBER consortium.

    PubMed

    Ruiz-Narváez, Edward A; Haddad, Stephen A; Lunetta, Kathryn L; Yao, Song; Bensen, Jeannette T; Sucheston-Campbell, Lara E; Hong, Chi-Chen; Haiman, Christopher A; Olshan, Andrew F; Ambrosone, Christine B; Palmer, Julie R

    2016-01-01

    We conducted gene-based analysis in 26 genes in the FGFR signaling pathway to identify genes carrying genetic variation affecting risk of breast cancer and the specific estrogen receptor (ER) subtypes. Tagging single-nucleotide polymorphisms (SNPs) for each gene were selected and genotyped on a customized Illumina Exome Array. Imputation was carried out using 1000 Genomes haplotypes. The analysis included 3237 SNPs in 3663 breast cancer cases (including 1983 ER-positive, and 1098 ER-negative) and 4687 controls from the African American Breast Cancer Epidemiology and Risk consortium, a collaborative project of four large studies of breast cancer in African American women (Carolina Breast Cancer Study, Black Women's Health Study, Women's Circle of Health Study, and Multiethnic Cohort). We used a multi-locus adaptive joint (AdaJoint) test to determine the association of each gene in the FGFR signaling pathway with overall breast cancer and ER subtypes. The FGF1 gene was significantly associated with risk of ER-negative breast cancer (P = 0.001). The FGFR2 gene was associated with risk of overall breast cancer (P = 0.002) and ER-positive breast cancer (P = 0.002). The FGF1 gene affects risk of ER-negative breast cancer in African American women. We confirmed the association of the FGFR2 gene with risk of overall and ER-positive breast cancer. These results highlight the importance of the FGFR signaling pathway in the pathogenesis of breast cancer, and suggest that different genes in the same pathway may be associated with different ER breast cancer subtypes. PMID:26743380

  5. Multiple Pathways Influence Mitochondrial Inheritance in Budding Yeast

    PubMed Central

    Frederick, Rebecca L.; Okamoto, Koji; Shaw, Janet M.

    2008-01-01

    Yeast mitochondria form a branched tubular network. Mitochondrial inheritance is tightly coupled with bud emergence, ensuring that daughter cells receive mitochondria from mother cells during division. Proteins reported to influence mitochondrial inheritance include the mitochondrial rho (Miro) GTPase Gem1p, Mmr1p, and Ypt11p. A synthetic genetic array (SGA) screen revealed interactions between gem1Δ and deletions of genes that affect mitochondrial function or inheritance, including mmr1Δ. Synthetic sickness of gem1Δ mmr1Δ double mutants correlated with defective mitochondrial inheritance by large buds. Additional studies demonstrated that GEM1, MMR1, and YPT11 each contribute to mitochondrial inheritance. Mitochondrial accumulation in buds caused by overexpression of either Mmr1p or Ypt11p did not depend on Gem1p, indicating these three proteins function independently. Physical linkage of mitochondria with the endoplasmic reticulum (ER) has led to speculation that distribution of these two organelles is coordinated. We show that yeast mitochondrial inheritance is not required for inheritance or spreading of cortical ER in the bud. Moreover, Ypt11p overexpression, but not Mmr1p overexpression, caused ER accumulation in the bud, revealing a potential role for Ypt11p in ER distribution. This study demonstrates that multiple pathways influence mitochondrial inheritance in yeast and that Miro GTPases have conserved roles in mitochondrial distribution. PMID:18245340

  6. Effects of Y3+/Er3+ ratio on the 2.7 μm emission of Er3+ ions in oxyfluoride glass-ceramics

    NASA Astrophysics Data System (ADS)

    Zhao, Zhiyong; Liu, Chao; Xia, Mengling; Wang, Jing; Han, Jianjun; Xie, Jun; Zhao, Xiujian

    2016-04-01

    Y3+/Er3+ ions co-doped oxyfluoride glass-ceramics were investigated to realize efficient 2.7 μm emission. Incorporation of Er3+ ions into the fluoride nanocrystals was confirmed by the X-ray diffraction patterns, absorption spectra, emission spectra and Judd-Ofelt analysis. With an increase in the Y3+/Er3+ ratio, radiative lifetime, quantum efficiency and emission cross section of the 2.7 μm emission from Er3+ ions were greatly improved, due to the reduced effective concentration of Er3+ ions and suppressed cross relaxation processes among Er3+ ions in the fluoride nanocrystals. Compared to other Er3+-doped glasses, Y3+/Er3+ co-doped oxyfluoride glass-ceramics showed a promising potential for gain medium.

  7. Activation cross sections of proton and deuteron induced nuclear reactions on holmium and erbium, related to the production of (161)Er and (160)Er medical isotopes.

    PubMed

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Baba, M

    2016-09-01

    Experimental excitation functions for long-lived products in proton induced reactions were measured with the activation method in the 37-65MeV energy range on natural holmium. Stacked foil irradiation technique and high resolution gamma spectrometry were used in order to measure cross-section data for the production of (161)Er, (160)Er and (1)(59,157)Dy. For comparison of the production routes of medically related (161)Er and (160)Er radioisotopes new experimental cross section data were deduced for the (162)Er(p,x)(161,160)Er and (162)Er(d,x)(161,160)Er reactions by re-evaluating gamma-ray spectra from earlier measurements. No earlier data were found in the literature for these reactions. The experimental data are compared with results of TALYS theoretical code reported in TENDL-2015. PMID:27451109

  8. Neurophysiology and itch pathways.

    PubMed

    Schmelz, Martin

    2015-01-01

    As we all can easily differentiate the sensations of itch and pain, the most straightforward neurophysiologic concept would consist of two specific pathways that independently encode itch and pain. Indeed, a neuronal pathway for histamine-induced itch in the peripheral and central nervous system has been described in animals and humans, and recently several non-histaminergic pathways for itch have been discovered in rodents that support a dichotomous concept differentiated into a pain and an itch pathway, with both pathways being composed of different "flavors." Numerous markers and mediators have been found that are linked to itch processing pathways. Thus, the delineation of neuronal pathways for itch from pain pathways seemingly proves that all sensory aspects of itch are based on an itch-specific neuronal pathway. However, such a concept is incomplete as itch can also be induced by the activation of the pain pathway in particular when the stimulus is applied in a highly localized spatial pattern. These opposite views reflect the old dispute between specificity and pattern theories of itch. Rather than only being of theoretic interest, this conceptual problem has key implication for the strategy to treat chronic itch as key therapeutic targets would be either itch-specific pathways or unspecific nociceptive pathways. PMID:25861773

  9. ER bodies in plants of the Brassicales order: biogenesis and association with innate immunity

    PubMed Central

    Nakano, Ryohei T.; Yamada, Kenji; Bednarek, Paweł; Nishimura, Mikio; Hara-Nishimura, Ikuko

    2014-01-01

    The endoplasmic reticulum (ER) forms highly organized network structures composed of tubules and cisternae. Many plant species develop additional ER-derived structures, most of which are specific for certain groups of species. In particular, a rod-shaped structure designated as the ER body is produced by plants of the Brassicales order, which includes Arabidopsis thaliana. Genetic analyses and characterization of A. thaliana mutants possessing a disorganized ER morphology or lacking ER bodies have provided insights into the highly organized mechanisms responsible for the formation of these unique ER structures. The accumulation of proteins specific for the ER body within the ER plays an important role in the formation of ER bodies. However, a mutant that exhibits morphological defects of both the ER and ER bodies has not been identified. This suggests that plants in the Brassicales order have evolved novel mechanisms for the development of this unique organelle, which are distinct from those used to maintain generic ER structures. In A. thaliana, ER bodies are ubiquitous in seedlings and roots, but rare in rosette leaves. Wounding of rosette leaves induces de novo formation of ER bodies, suggesting that these structures are associated with resistance against pathogens and/or herbivores. ER bodies accumulate a large amount of β-glucosidases, which can produce substances that potentially protect against invading pests. Biochemical studies have determined that the enzymatic activities of these β-glucosidases are enhanced during cell collapse. These results suggest that ER bodies are involved in plant immunity, although there is no direct evidence of this. In this review, we provide recent perspectives of ER and ER body formation in A. thaliana, and discuss clues for the functions of ER bodies. We highlight defense strategies against biotic stress that are unique for the Brassicales order, and discuss how ER structures could contribute to these strategies. PMID

  10. Comparative life cycle assessment of three biohydrogen pathways.

    PubMed

    Djomo, Sylvestre Njakou; Blumberga, Dagnija

    2011-02-01

    A life cycle assessment was performed to quantify and compare the energetic and environmental performances of hydrogen from wheat straw (WS-H(2)), sweet sorghum stalk (SSS-H(2)), and steam potato peels (SPP-H(2)). Inventory data were derived from a pilot plant. Impacts were assessed using the impact 2002+ method. When co-product was not considered, the greenhouse gas (GHG) emissions were 5.60 kg CO(2eq) kg(-1) H(2) for WS-H(2), 5.32 kg CO(2eq) kg(-1) H(2) for SSS-H(2), and 5.18 kg CO(2eq) kg(-1) H(2) for SPP-H(2). BioH(2) pathways reduced GHG emissions by 52-56% compared to diesel and by 54-57% compared to steam methane reforming production of H(2). The energy ratios (ER) were also comparable: 1.08 for WS-H(2), 1.14 for SSS-H(2) and 1.17 for SPP-H(2). A shift from SPP-H(2) to WS-H(2) would therefore not affect the ER and GHG emissions of these BioH(2) pathways. When co-product was considered, a shift from SPP-H(2) to WS-H(2) or SSS-H(2) decreased the ER, while increasing the GHG emissions significantly. Co-product yield should be considered when selecting BioH(2) feedstocks. PMID:21112211

  11. Er:YAG laser debonding of porcelain veneers

    NASA Astrophysics Data System (ADS)

    Buu, Natalie; Morford, Cynthia; Finzen, Frederick; Sharma, Arun; Rechmann, Peter

    2010-02-01

    The removal of porcelain veneers using Er:YAG lasers has not been previously described in the scientific literature. This study was designed to systematically investigate the efficacy of an Er:YAG laser on veneer debonding without damaging the underlying tooth structure, as well as preserving a new or misplaced veneer. Initially, Fourier Transform Infrared Spectroscopy (FTIR) was used on flat porcelain veneer samples (IPS Empress Esthetic; Ivoclar Vivadent, Amherst, NY) to assess which infrared laser wavelengths are transmitted through the veneer. Additionally, FTIR spectra from a veneer bonding cement (RelyX Veneer Cement A1; 3M ESPE, St. Paul, MN) were obtained. While the veneer material showed no characteristic water absorption bands in the FTIR, the bonding cement has a broad H2O/OH absorption band coinciding with the ER:YAG laser emission wavelength. Consequently Er:YAG laser energy transmission through different veneer thicknesses was measured. The porcelain veneers transmitted 11 - 18 % of the incident Er:YAG laser energy depending on their thicknesses (Er:YAG laser: LiteTouch by Syneron; wavelength 2,940 nm, 10 Hz repetition rate, pulse duration 100 μs at 133 mJ/pulse; straight sapphire tip 1,100 μm diameter; Syneron, Yokneam, Israel). Initial signs of cement ablation occurred at approximately 1.8 - 4.0 J/cm2. This can be achieved by irradiating through the veneer with the fiber tip positioned at a distance of 3-6 mm from the veneer surface, and operating the Er:YAG laser with 133 mJ output energy. All eleven veneers bonded on extracted anterior incisor teeth were easily removed using the Er:YAG laser. The removal occurred without damaging underlying tooth structure as verified by light microscopic investigation (Incident Light Microscope Olympus B 50, Micropublisher RTV 3.3 MP, Image Pro software, Olympus). The debonding mainly occurred at the cement/veneer interface. When the samples were stored in saline solution for 5 days and/or an air-waterspray was

  12. 184AA3: a xenograft model of ER+ breast adenocarcinoma.

    PubMed

    Hines, William C; Kuhn, Irene; Thi, Kate; Chu, Berbie; Stanford-Moore, Gaelen; Sampayo, Rocío; Garbe, James C; Stampfer, Martha; Borowsky, Alexander D; Bissell, Mina J

    2016-01-01

    Despite the prevalence and significant morbidity resulting from estrogen receptor positive (ER(+)) breast adenocarcinomas, there are only a few models of this cancer subtype available for drug development and arguably none for studying etiology. Those models that do exist have questionable clinical relevance. Given our goal of developing luminal models, we focused on six cell lines derived by minimal mutagenesis from normal human breast cells, and asked if any could generate clinically relevant xenografts, which we then extensively characterized. Xenografts of one cell line, 184AA3, consistently formed ER(+) adenocarcinomas that had a high proliferative rate and other features consistent with "luminal B" intrinsic subtype. Squamous and spindle cell/mesenchymal differentiation was absent, in stark contrast to other cell lines that we examined or others have reported. We explored intratumoral heterogeneity produced by 184AA3 by immunophenotyping xenograft tumors and cultured cells, and characterized marker expression by immunofluorescence and flow cytometry. A CD44(High) subpopulation was discovered, yet their tumor forming ability was far less than CD44(Low) cells. Single cell cloning revealed the phenotypic plasticity of 184AA3, consistent with the intratumoral heterogeneity observed in xenografts. Characterization of ER expression in cultures revealed ER protein and signaling is intact, yet when estrogen was depleted in culture, and in vivo, it did not impact cell or tumor growth, analogous to therapeutically resistant ER(+) cancers. This model is appropriate for studies of the etiology of ovarian hormone independent adenocarcinomas, for identification of therapeutic targets, predictive testing, and drug development. PMID:26661596

  13. Mechanisms determining the morphology of the peripheral ER.

    PubMed

    Shibata, Yoko; Shemesh, Tom; Prinz, William A; Palazzo, Alexander F; Kozlov, Michael M; Rapoport, Tom A

    2010-11-24

    The endoplasmic reticulum (ER) consists of the nuclear envelope and a peripheral network of tubules and membrane sheets. The tubules are shaped by the curvature-stabilizing proteins reticulons and DP1/Yop1p, but how the sheets are formed is unclear. Here, we identify several sheet-enriched membrane proteins in the mammalian ER, including proteins that translocate and modify newly synthesized polypeptides, as well as coiled-coil membrane proteins that are highly upregulated in cells with proliferated ER sheets, all of which are localized by membrane-bound polysomes. These results indicate that sheets and tubules correspond to rough and smooth ER, respectively. One of the coiled-coil proteins, Climp63, serves as a "luminal ER spacer" and forms sheets when overexpressed. More universally, however, sheet formation appears to involve the reticulons and DP1/Yop1p, which localize to sheet edges and whose abundance determines the ratio of sheets to tubules. These proteins may generate sheets by stabilizing the high curvature of edges. PMID:21111237

  14. ER-2: Flying Laboratory for Earth Science Studies

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC), (Edwards, California, USA) has two Lockheed Martin Corporation (Bethesda, Maryland) Earth Research-2 (ER-2) aircraft that serve as high-altitude and long-range flying laboratories. The ER-2 has been utilized to conduct scientific studies of stratospheric and tropospheric chemistry, land-use mapping, disaster assessment, preliminary testing and calibration and validation of satellite sensors. The ER-2 aircraft provides experimenters with a wide array of payload accommodation areas with suitable environment control with required electrical and mechanical interfaces. Missions may be flown out of DFRC or from remote bases worldwide. The NASA ER-2 is utilized by a variety of customers, including U.S. Government agencies, civilian organizations, universities, and state governments. The combination of the ER-2 s range, endurance, altitude, payload power, payload volume and payload weight capabilities complemented by a trained maintenance and operations team provides an excellent and unique platform system to the science community.

  15. Hippocampal ER stress and learning deficits following repeated pyrethroid exposure.

    PubMed

    Hossain, Muhammad M; DiCicco-Bloom, Emanuel; Richardson, Jason R

    2015-01-01

    Endoplasmic reticulum (ER) stress is implicated as a significant contributor to neurodegeneration and cognitive dysfunction. Previously, we reported that the widely used pyrethroid pesticide deltamethrin causes ER stress-mediated apoptosis in SK-N-AS neuroblastoma cells. Whether or not this occurs in vivo remains unknown. Here, we demonstrate that repeated deltamethrin exposure (3 mg/kg every 3 days for 60 days) causes hippocampal ER stress and learning deficits in adult mice. Repeated exposure to deltamethrin caused ER stress in the hippocampus as indicated by increased levels of C/EBP-homologous protein (131%) and glucose-regulated protein 78 (96%). This was accompanied by increased levels of caspase-12 (110%) and activated caspase-3 (50%). To determine whether these effects resulted in learning deficits, hippocampal-dependent learning was evaluated using the Morris water maze. Deltamethrin-treated animals exhibited profound deficits in the acquisition of learning. We also found that deltamethrin exposure resulted in decreased BrdU-positive cells (37%) in the dentate gyrus of the hippocampus, suggesting potential impairment of hippocampal neurogenesis. Collectively, these results demonstrate that repeated deltamethrin exposure leads to ER stress, apoptotic cell death in the hippocampus, and deficits in hippocampal precursor proliferation, which is associated with learning deficits. PMID:25359175

  16. Pathway Analysis Revealed Potential Diverse Health Impacts of Flavonoids that Bind Estrogen Receptors

    DOE PAGESBeta

    Ye, Hao; Ng, Hui; Sakkiah, Sugunadevi; Ge, Weigong; Perkins, Roger; Tong, Weida; Hong, Huixiao

    2016-03-26

    Flavonoids are frequently used as dietary supplements in the absence of research evidence regarding health benefits or toxicity. Furthermore, ingested doses could far exceed those received from diet in the course of normal living. Some flavonoids exhibit binding to estrogen receptors (ERs) with consequential vigilance by regulatory authorities at the U.S. EPA and FDA. Regulatory authorities must consider both beneficial claims and potential adverse effects, warranting the increases in research that has spanned almost two decades. Here, we report pathway enrichment of 14 targets from the Comparative Toxicogenomics Database (CTD) and the Herbal Ingredients’ Targets (HIT) database for 22 flavonoidsmore » that bind ERs. The selected flavonoids are confirmed ER binders from our earlier studies, and were here found in mainly involved in three types of biological processes, ER regulation, estrogen metabolism and synthesis, and apoptosis. Besides cancers, we conjecture that the flavonoids may affect several diseases via apoptosis pathways. We find diseases such as amyotrophic lateral sclerosis, viral myocarditis and non-alcoholic fatty liver disease could be implicated. More generally, apoptosis processes may be importantly evolved biological functions of flavonoids that bind ERs and high dose ingestion of those flavonoids could adversely disrupt the cellular apoptosis process.« less

  17. Pathway Analysis Revealed Potential Diverse Health Impacts of Flavonoids that Bind Estrogen Receptors

    PubMed Central

    Ye, Hao; Ng, Hui Wen; Sakkiah, Sugunadevi; Ge, Weigong; Perkins, Roger; Tong, Weida; Hong, Huixiao

    2016-01-01

    Flavonoids are frequently used as dietary supplements in the absence of research evidence regarding health benefits or toxicity. Furthermore, ingested doses could far exceed those received from diet in the course of normal living. Some flavonoids exhibit binding to estrogen receptors (ERs) with consequential vigilance by regulatory authorities at the U.S. EPA and FDA. Regulatory authorities must consider both beneficial claims and potential adverse effects, warranting the increases in research that has spanned almost two decades. Here, we report pathway enrichment of 14 targets from the Comparative Toxicogenomics Database (CTD) and the Herbal Ingredients’ Targets (HIT) database for 22 flavonoids that bind ERs. The selected flavonoids are confirmed ER binders from our earlier studies, and were here found in mainly involved in three types of biological processes, ER regulation, estrogen metabolism and synthesis, and apoptosis. Besides cancers, we conjecture that the flavonoids may affect several diseases via apoptosis pathways. Diseases such as amyotrophic lateral sclerosis, viral myocarditis and non-alcoholic fatty liver disease could be implicated. More generally, apoptosis processes may be importantly evolved biological functions of flavonoids that bind ERs and high dose ingestion of those flavonoids could adversely disrupt the cellular apoptosis process. PMID:27023590

  18. Protein–Protein and Protein–Membrane Associations in the Lignin Pathway[W][OA

    PubMed Central

    Bassard, Jean-Etienne; Richert, Ludovic; Geerinck, Jan; Renault, Hugues; Duval, Frédéric; Ullmann, Pascaline; Schmitt, Martine; Meyer, Etienne; Mutterer, Jerôme; Boerjan, Wout; De Jaeger, Geert; Mely, Yves; Goossens, Alain; Werck-Reichhart, Danièle

    2012-01-01

    Supramolecular organization of enzymes is proposed to orchestrate metabolic complexity and help channel intermediates in different pathways. Phenylpropanoid metabolism has to direct up to 30% of the carbon fixed by plants to the biosynthesis of lignin precursors. Effective coupling of the enzymes in the pathway thus seems to be required. Subcellular localization, mobility, protein–protein, and protein–membrane interactions of four consecutive enzymes around the main branch point leading to lignin precursors was investigated in leaf tissues of Nicotiana benthamiana and cells of Arabidopsis thaliana. CYP73A5 and CYP98A3, the two Arabidopsis cytochrome P450s (P450s) catalyzing para- and meta-hydroxylations of the phenolic ring of monolignols were found to colocalize in the endoplasmic reticulum (ER) and to form homo- and heteromers. They moved along with the fast remodeling plant ER, but their lateral diffusion on the ER surface was restricted, likely due to association with other ER proteins. The connecting soluble enzyme hydroxycinnamoyltransferase (HCT), was found partially associated with the ER. Both HCT and the 4-coumaroyl-CoA ligase relocalized closer to the membrane upon P450 expression. Fluorescence lifetime imaging microscopy supports P450 colocalization and interaction with the soluble proteins, enhanced by the expression of the partner proteins. Protein relocalization was further enhanced in tissues undergoing wound repair. CYP98A3 was the most effective in driving protein association. PMID:23175744

  19. A functional link between the co-translational protein translocation pathway and the UPR

    PubMed Central

    Plumb, Rachel; Zhang, Zai-Rong; Appathurai, Suhila; Mariappan, Malaiyalam

    2015-01-01

    Upon endoplasmic reticulum (ER) stress, the transmembrane endoribonuclease Ire1α performs mRNA cleavage reactions to increase the ER folding capacity. It is unclear how the low abundant Ire1α efficiently finds and cleaves the majority of mRNAs at the ER membrane. Here, we reveal that Ire1α forms a complex with the Sec61 translocon to cleave its mRNA substrates. We show that Ire1α's key substrate, XBP1u mRNA, is recruited to the Ire1α-Sec61 translocon complex through its nascent chain, which contains a pseudo-transmembrane domain to utilize the signal recognition particle (SRP)-mediated pathway. Depletion of SRP, the SRP receptor or the Sec61 translocon in cells leads to reduced Ire1α-mediated splicing of XBP1u mRNA. Furthermore, mutations in Ire1α that disrupt the Ire1α-Sec61 complex causes reduced Ire1α-mediated cleavage of ER-targeted mRNAs. Thus, our data suggest that the Unfolded Protein Response is coupled with the co-translational protein translocation pathway to maintain protein homeostasis in the ER during stress conditions. DOI: http://dx.doi.org/10.7554/eLife.07426.001 PMID:25993558

  20. Hepatitis C Virus Subgenomic Replicons Induce Endoplasmic Reticulum Stress Activating an Intracellular Signaling Pathway

    PubMed Central

    Tardif, Keith D.; Mori, Kazutoshi; Siddiqui, Aleem

    2002-01-01

    Hepatitis C virus (HCV) replicates from a ribonucleoprotein (RNP) complex that is associated with the endoplasmic reticulum (ER) membrane. The replication activities of the HCV subgenomic replicon are shown here to induce ER stress. In response to this stress, cells expressing HCV replicons induce the unfolded protein response (UPR), an ER-to-nucleus intracellular signaling pathway. The UPR is initiated by the proteolytic cleavage of a transmembrane protein, ATF6. The resulting cytoplasmic protein fragment of ATF6 functions as a transcription factor in the nucleus and activates selective genes required for an ER stress response. ATF6 activation leads to increased transcriptional levels of GRP78, an ER luminal chaperone protein. However, the overall level of GRP78 protein is decreased. While ER stress is also known to affect translational attenuation, cells expressing HCV replicons have lower levels of phosphorylation of the α subunit of eukaryotic initiation factor 2. Interestingly, cap-independent internal ribosome entry site-mediated translation directed by the 5′ noncoding region of HCV and GRP78 is activated in cells expressing HCV replicons. These studies provide insight into the effects of HCV replication on intracellular events and the mechanisms underlying liver pathogenesis. PMID:12097557

  1. ERK/MAPK regulates ERRγ expression, transcriptional activity and receptor-mediated tamoxifen resistance in ER+ breast cancer.

    PubMed

    Heckler, Mary M; Thakor, Hemang; Schafer, Cara C; Riggins, Rebecca B

    2014-05-01

    Selective estrogen receptor modulators such as tamoxifen (TAM) significantly improve breast cancer-specific survival for women with estrogen receptor-positive (ER+) disease. However, resistance to TAM remains a major clinical problem. The resistant phenotype is usually not driven by loss or mutation of the estrogen receptor; instead, changes in multiple proliferative and/or survival pathways over-ride the inhibitory effects of TAM. Estrogen-related receptor γ (ERRγ) is an orphan member of the nuclear receptor superfamily that promotes TAM resistance in ER+ breast cancer cells. This study sought to clarify the mechanism(s) by which this orphan nuclear receptor is regulated, and hence affects TAM resistance. mRNA and protein expression/phosphorylation were monitored by RT-PCR and western blotting, respectively. Site-directed mutagenesis was used to disrupt consensus extracellular signal-regulated kinase (ERK) target sites. Cell proliferation and cell-cycle progression were measured by flow cytometric methods. ERRγ transcriptional activity was assessed by dual-luciferase promoter-reporter assays. We show that ERRγ protein levels are affected by the activation state of ERK/mitogen-activated protein kinase, and mutation of consensus ERK target sites impairs ERRγ-driven transcriptional activity and TAM resistance. These findings shed new light on the functional significance of ERRγ in ER+ breast cancer, and are the first to demonstrate a role for kinase regulation of this orphan nuclear receptor. PMID:24684682

  2. ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability

    PubMed Central

    Ticconi, Carla A.; Lucero, Rocco D.; Sakhonwasee, Siriwat; Adamson, Aaron W.; Creff, Audrey; Nussaume, Laurent; Desnos, Thierry; Abel, Steffen

    2009-01-01

    Inadequate availability of inorganic phosphate (Pi) in the rhizosphere is a common challenge to plants, which activate metabolic and developmental responses to maximize Pi acquisition. The sensory mechanisms that monitor environmental Pi status and regulate root growth via altered meristem activity are unknown. Here, we show that phosphate deficiency response 2 (PDR2) encodes the single P5-type ATPase of Arabidopsis thaliana. PDR2 functions in the endoplasmic reticulum (ER) and is required for proper expression of scarecrow (SCR), a key regulator of root patterning, and for stem-cell maintenance in Pi-deprived roots. We further show that the multicopper oxidase encoded by low phosphate root 1 (LPR1) is targeted to the ER and that LPR1 and PDR2 interact genetically. Because the expression domains of both genes overlap in the stem-cell niche and distal root meristem, we propose that PDR2 and LPR1 function together in an ER-resident pathway that adjusts root meristem activity to external Pi. Our data indicate that the Pi-conditional root phenotype of pdr2 is not caused by increased Fe availability in low Pi; however, Fe homeostasis modifies the developmental response of root meristems to Pi availability. PMID:19666499

  3. The Role of ER Bodies in Brassicaceae Resistance under Clinorotation

    NASA Astrophysics Data System (ADS)

    Romanchuk, S. M.; Kordyum, E. L.

    2013-02-01

    Results of the electron-microscopic investigation of root apices of Arabidopsis thaliana 3- and 7-day old seedlings grown in the stationary conditions and under clinorotation are presented. It was shown the similarity in the root apex cell ultrastructure in control and under clinorotation. In the same time there were some differences in the ultrustructure of statocytes and the distal elongation zone under clinorotation. For the first time, the sensitivity of ER-bodies, which are derivative of granular endoplasmic reticulum and contain a β-glucosidase enzyme, to the influence of simulated microgravity that was demonstrated by increasing quantity and area of ER-bodies per cell section, as well as by higher variability of their shape under clinorotation. A degree of these changes correlated with the duration of clinorotation. On the basis of obtained data, a protective role of ER-bodies in adaptation of plants to microgravity is discussed.

  4. Mitochondrial Dynamics and the ER: The Plant Perspective

    PubMed Central

    Mueller, Stefanie J.; Reski, Ralf

    2015-01-01

    Whereas contact sites between mitochondria and the ER have been in the focus of animal and fungal research for several years, the importance of this organellar interface and the molecular effectors are largely unknown for plants. This work gives an introduction into known evolutionary differences of molecular effectors of mitochondrial dynamics and interactions between animals, fungi, and plants. Using the model plant Physcomitrella patens, we provide microscopic evidence for the existence of mitochondria-ER interactions in plants and their correlation with mitochondrial constriction and fission. We further investigate a previously identified protein of unknown function (MELL1), and show that it modulates the amount of mitochondrial association to the ER, as well as mitochondrial shape and number. PMID:26779478

  5. Er:YAG laser metal and ceramic bracket debonding

    NASA Astrophysics Data System (ADS)

    Dostálová, Tat'jana; Remeš, Marek; Jelínková, Helena; Å ulc, Jan; Němec, Michal; Vyhlídal, David

    2016-02-01

    The goal of the study was investigation of Er:YAG radiation (wavelength 2.94 μm) interaction with various metal and ceramic brackets and adhesive materials. The source of radiation was a free-running Er: YAG laser generating pulses with energy 280 mJ, 250 μs long and repetition rate 6 Hz (mean power 1.7 W). During the treatment lasting 140 s, water cooling was implemented and only the brackets were irradiated. It has been observed that the brackets were removed easily after the Er:YAG laser irradiation, and temperature rise was limited also for metal brackets. SEM investigation has confirmed less damage of enamel in comparison with non-irradiated samples.

  6. A Frame Manipulation Algebra for ER Logical Stage Modelling

    NASA Astrophysics Data System (ADS)

    Furtado, Antonio L.; Casanova, Marco A.; Breitman, Karin K.; Barbosa, Simone D. J.

    The ER model is arguably today's most widely accepted basis for the conceptual specification of information systems. A further common practice is to use the Relational Model at an intermediate logical stage, in order to adequately prepare for physical implementation. Although the Relational Model still works well in contexts relying on standard databases, it imposes certain restrictions, not inherent in ER specifications, which make it less suitable in Web environments. This paper proposes frames as an alternative to move from ER specifications to logical stage modelling, and treats frames as an abstract data type equipped with a Frame Manipulation Algebra (FMA). It is argued that frames, with a long tradition in AI applications, are able to accommodate the irregularities of semi-structured data, and that frame-sets generalize relational tables, allowing to drop the strict homogeneity requirement. A prototype logic-programming tool has been developed to experiment with FMA. Examples are included to help describe the use of the operators.

  7. ER Protein Processing Under Oxidative Stress: Implications and Prevention.

    PubMed

    Khalil, Mahmoud F; Valenzuela, Carlos; Sisniega, Daniella; Skouta, Rachid; Narayan, Mahesh

    2016-06-01

    Elevated levels of mitochondrial nitrosative stress have been associated with the pathogenesis of both Parkinson's and Alzheimer's diseases. The mechanism involves catalytic poisoning of the endoplasmic reticulum (ER)-resident oxidoreductase chaperone, protein disulfide isomerase (PDI), and the subsequent accumulation of ER-processed substrate proteins. Using a model system to mimic mitochondrial oxidative and nitrosative stress, we demonstrate a PDI-independent mechanism whereby reactive oxygen species (ROS) compromise regeneration rates of disulfide bond-containing ER-processed proteins. Under ROS-duress, the secretion-destined traffic adopts disulfide-exposed structures making the protein flux retrotranslocation biased. We also demonstrate that ROS-compromised protein maturation rates can be rescued by the polyphenol ellagic acid (EA). Our results are significant in that they reveal an additional mechanism which could promote neurodegenerative disorders. Furthermore, our data reveal that EA possesses therapeutic potential as a lead prophylactic agent against oxidative/nitrosative stress-related neurodegenerative diseases. PMID:26983927

  8. Phosphoinositide kinase signaling controls ER-PM cross-talk

    PubMed Central

    Omnus, Deike J.; Manford, Andrew G.; Bader, Jakob M.; Emr, Scott D.; Stefan, Christopher J.

    2016-01-01

    Membrane lipid dynamics must be precisely regulated for normal cellular function, and disruptions in lipid homeostasis are linked to the progression of several diseases. However, little is known about the sensory mechanisms for detecting membrane composition and how lipid metabolism is regulated in response to membrane stress. We find that phosphoinositide (PI) kinase signaling controls a conserved PDK-TORC2-Akt signaling cascade as part of a homeostasis network that allows the endoplasmic reticulum (ER) to modulate essential responses, including Ca2+-regulated lipid biogenesis, upon plasma membrane (PM) stress. Furthermore, loss of ER-PM junctions impairs this protective response, leading to PM integrity defects upon heat stress. Thus PI kinase–mediated ER-PM cross-talk comprises a regulatory system that ensures cellular integrity under membrane stress conditions. PMID:26864629

  9. Ultra-High Spin Spectroscopy In Er Nuclei

    NASA Astrophysics Data System (ADS)

    Simpson, J.

    2008-11-01

    The discoveries observed in the ongoing conflict between collective and single-particle nuclear behaviour with increasing angular momentum have driven the field of nuclear spectroscopy for many decades and have given rise to new nuclear phenomena. Recently a new frontier of γ spectroscopy at ultra-high spin has been opened in the rare-earth region with rotational bands that bypass the classic band-terminating states that appear at spin 45ℏ in the N 90 Er nuclei. These weakly populated rotational structures have characteristics of triaxial strongly-deformed bands. Such structures have been observed in 157,158,160Er, following a series of experiments using the Gammasphere spectrometer. These observations herald a return to collective excitations at spins of about 50 to 65ℏ. This talk reviews the status of the spectroscopy and understanding of the observed structures in these Er and neighbouring nuclei.

  10. On the accuracy of ERS-1 orbit predictions

    NASA Technical Reports Server (NTRS)

    Koenig, Rolf; Li, H.; Massmann, Franz-Heinrich; Raimondo, J. C.; Rajasenan, C.; Reigber, C.

    1993-01-01

    Since the launch of ERS-1, the D-PAF (German Processing and Archiving Facility) provides regularly orbit predictions for the worldwide SLR (Satellite Laser Ranging) tracking network. The weekly distributed orbital elements are so called tuned IRV's and tuned SAO-elements. The tuning procedure, designed to improve the accuracy of the recovery of the orbit at the stations, is discussed based on numerical results. This shows that tuning of elements is essential for ERS-1 with the currently applied tracking procedures. The orbital elements are updated by daily distributed time bias functions. The generation of the time bias function is explained. Problems and numerical results are presented. The time bias function increases the prediction accuracy considerably. Finally, the quality assessment of ERS-1 orbit predictions is described. The accuracy is compiled for about 250 days since launch. The average accuracy lies in the range of 50-100 ms and has considerably improved.

  11. Ultra-High Spin Spectroscopy In Er Nuclei

    SciTech Connect

    Simpson, J.

    2008-11-11

    The discoveries observed in the ongoing conflict between collective and single-particle nuclear behaviour with increasing angular momentum have driven the field of nuclear spectroscopy for many decades and have given rise to new nuclear phenomena. Recently a new frontier of {gamma} spectroscopy at ultra-high spin has been opened in the rare-earth region with rotational bands that bypass the classic band-terminating states that appear at spin 45({Dirac_h}/2{pi}) in the N 90 Er nuclei. These weakly populated rotational structures have characteristics of triaxial strongly-deformed bands. Such structures have been observed in {sup 157,158,160}Er, following a series of experiments using the Gammasphere spectrometer. These observations herald a return to collective excitations at spins of about 50 to 65({Dirac_h}/2{pi}). This talk reviews the status of the spectroscopy and understanding of the observed structures in these Er and neighbouring nuclei.

  12. Genes Involved in the Endoplasmic Reticulum N-Glycosylation Pathway of the Red Microalga Porphyridium sp.: A Bioinformatic Study

    PubMed Central

    Levy-Ontman, Oshrat; Fisher, Merav; Shotland, Yoram; Weinstein, Yacob; Tekoah, Yoram; Arad, Shoshana Malis

    2014-01-01

    N-glycosylation is one of the most important post-translational modifications that influence protein polymorphism, including protein structures and their functions. Although this important biological process has been extensively studied in mammals, only limited knowledge exists regarding glycosylation in algae. The current research is focused on the red microalga Porphyridium sp., which is a potentially valuable source for various applications, such as skin therapy, food, and pharmaceuticals. The enzymes involved in the biosynthesis and processing of N-glycans remain undefined in this species, and the mechanism(s) of their genetic regulation is completely unknown. In this study, we describe our pioneering attempt to understand the endoplasmic reticulum N-Glycosylation pathway in Porphyridium sp., using a bioinformatic approach. Homology searches, based on sequence similarities with genes encoding proteins involved in the ER N-glycosylation pathway (including their conserved parts) were conducted using the TBLASTN function on the algae DNA scaffold contigs database. This approach led to the identification of 24 encoded-genes implicated with the ER N-glycosylation pathway in Porphyridium sp. Homologs were found for almost all known N-glycosylation protein sequences in the ER pathway of Porphyridium sp.; thus, suggesting that the ER-pathway is conserved; as it is in other organisms (animals, plants, yeasts, etc.). PMID:24514561

  13. Luminescent properties of Er and Si co-implanted silicates

    NASA Astrophysics Data System (ADS)

    Pellegrino, P.; Garrido, B.; Lebour, Y.; Moreno, J. A.; Garcia, C.; Morante, J. R.; Bettotti, P.; Pavesi, L.; Prassas, M.

    2005-02-01

    An extensive research for optical active materials at 1540 nm is currently being carried out, on the steam of the strong need for optoelectronic devices which can be integrated with the mainstream Si technology. The formation of silica films doped with Er and Si clusters has been shown as one of the promising approaches. We explored the emission properties of different silicate glasses co-implanted with silicon and Er ions to various doses. As starting materials we used soda-lime and aluminium silicates, glasses which show a larger optical bandwidth than silica at 1540 nm. A Si multi-implantation scheme has been adopted for a planar profile. The best conditions to precipitate Si and activate the Er atoms have been investigated. Optimal annealing temperatures have been found around 500 °C, depending on the particular composition of the original glass substrate. The structural analysis of the resulting structures ensures that the best emission properties are the ones for which a phase separation between the implanted Si and the matrix occurs, even without the formation of crystalline aggregates. A comprehensive study of the emission properties is given as a function of the matrix characteristics, Si and Er content, excitation wavelength and power density. It is shown an increase of the emission enhancement of the Er atoms due to the presence of Si cluster when increasing the excitation power. Modelling of the interaction between the absorbing Si nanoprecipitates and the emitting Er atoms has been carried out, in order to estimate the relevant physical parameters which describe the PL process.

  14. ER Chaperone BiP/GRP78 Is Required for Myelinating Cell Survival and Provides Protection during Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Hussien, Yassir; Podojil, Joseph R.; Robinson, Andrew P.; Lee, Amy S.; Miller, Steven D.

    2015-01-01

    Myelinating cells synthesize large amounts of membrane protein through the secretory pathway, which makes these cells particularly sensitive to perturbations of the endoplasmic reticulum (ER). Ig binding protein (BiP), also known as glucose-regulated protein 78 (GRP78), is a critical ER chaperone that also plays a pivotal role in controlling the cellular response to ER stress. To examine the potential importance of BiP to myelinating cells, we used a conditional knock-out approach to BiP gene inactivation in oligodendrocytes during development, in adulthood, and in response to experimental autoimmune encephalomyelitis (EAE), an animal model of the inflammatory demyelinating disorder multiple sclerosis (MS). During development, mice lacking functional BiP gene expression in oligodendrocytes developed tremors and ataxia and died before reaching maturity. When BiP gene inactivation in oligodendrocytes was initiated in adulthood, the mice displayed severe neurological symptoms including tremors and hind-limb paralysis. The inactivation of BiP in oligodendrocytes during development or in adulthood resulted in oligodendrocyte loss and corresponding severe myelin abnormalities. Mice heterozygous for the oligodendrocyte-specific inactivation of BiP, which were phenotypically normal without evidence of neuropathology, displayed an exacerbated response to EAE that correlated with an increased loss of oligodendrocytes. Furthermore, mice in which the BiP gene was specifically inactivated in developing Schwann cells displayed tremor that progressed to hindlimb paralysis, which correlated with diminished numbers of myelinating Schwann cells and severe PNS hypomyelination. These studies demonstrate that BiP is critical for myelinating cell survival and contributes to the protective response of oligodendrocyte against inflammatory demyelination. SIGNIFICANCE STATEMENT The myelinating cells, oligodendrocytes in the CNS and Schwann cells in the PNS, are responsible for synthesizing

  15. Alpha-synuclein Toxicity in the Early Secretory Pathway: How It Drives Neurodegeneration in Parkinsons Disease

    PubMed Central

    Wang, Ting; Hay, Jesse C.

    2015-01-01

    Alpha-synuclein is a predominant player in the pathogenesis of Parkinson's Disease. However, despite extensive study for two decades, its physiological and pathological mechanisms remain poorly understood. Alpha-synuclein forms a perplexing web of interactions with lipids, trafficking machinery, and other regulatory factors. One emerging consensus is that synaptic vesicles are likely the functional site for alpha-synuclein, where it appears to facilitate vesicle docking and fusion. On the other hand, the dysfunctions of alpha-synuclein are more dispersed and numerous; when mutated or over-expressed, alpha-synuclein affects several membrane trafficking and stress pathways, including exocytosis, ER-to-Golgi transport, ER stress, Golgi homeostasis, endocytosis, autophagy, oxidative stress, and others. Here we examine recent developments in alpha-synuclein's toxicity in the early secretory pathway placed in the context of emerging themes from other affected pathways to help illuminate its underlying pathogenic mechanisms in neurodegeneration. PMID:26617485

  16. PATHWAYS - ELECTRON TUNNELING PATHWAYS IN PROTEINS

    NASA Technical Reports Server (NTRS)

    Beratan, D. N.

    1994-01-01

    The key to understanding the mechanisms of many important biological processes such as photosynthesis and respiration is a better understanding of the electron transfer processes which take place between metal atoms (and other groups) fixed within large protein molecules. Research is currently focused on the rate of electron transfer and the factors that influence it, such as protein composition and the distance between metal atoms. Current models explain the swift transfer of electrons over considerable distances by postulating bridge-mediated tunneling, or physical tunneling pathways, made up of interacting bonds in the medium around and between donor and acceptor sites. The program PATHWAYS is designed to predict the route along which electrons travel in the transfer processes. The basic strategy of PATHWAYS is to begin by recording each possible path element on a connectivity list, including in each entry which two atoms are connected and what contribution the connection would make to the overall rate if it were included in a pathway. The list begins with the bonded molecular structure (including the backbone sequence and side chain connectivity), and then adds probable hydrogen bond links and through-space contacts. Once this list is completed, the program runs a tree search from the donor to the acceptor site to find the dominant pathways. The speed and efficiency of the computer search offers an improvement over manual techniques. PATHWAYS is written in FORTRAN 77 for execution on DEC VAX series computers running VMS. The program inputs data from four data sets and one structure file. The software was written to input BIOGRAF (old format) structure files based on x-ray crystal structures and outputs ASCII files listing the best pathways and BIOGRAF vector files containing the paths. Relatively minor changes could be made in the input format statements for compatibility with other graphics software. The executable and source code are included with the

  17. Imiquimod induces ER stress and Ca(2+) influx independently of TLR7 and TLR8.

    PubMed

    Nyberg, William A; Espinosa, Alexander

    2016-05-13

    Endoplasmic reticulum (ER) stress is a physiological response to protein overload or misfolded proteins in the ER. Certain anti-cancer drugs, e.g. bortezomib and nelfinavir, induce ER stress implying that this could be a successful therapeutic strategy against several forms of cancer. To find novel ER-stress inducers we screened a panel of natural and synthetic Toll-like receptor (TLR) agonists against human keratinocytes and identified the anti-cancer drug imiquimod (IMQ) as a potent inducer of ER stress. Other TLR7 and TLR8 agonists, including resiquimod and gardiquimod, did not induce ER stress, demonstrating that IMQ induces ER stress independently of TLR7 and TLR8. We further confirmed this by showing that IMQ could still induce ER stress in mouse Tlr7(-/-) cells. IMQ also induced a rapid and transient influx of extracellular Ca(2+) together with the release of Ca(2+) from internal stores. Depletion of Ca(2+) from the ER is a known cause of ER stress suggesting that IMQ induces ER stress via depletion of ER Ca(2+). The ER-stress inducing property of IMQ is possibly of importance for its efficacy in treating basal cell carcinoma, in situ melanoma, and squamous cell carcinoma. Our data could potentially be harnessed for rational design of even more potent ER-stress inducers and new anti-cancer drugs. PMID:27003259

  18. Elevated systemic expression of ER stress related genes is associated with stress-related mental disorders in the Detroit Neighborhood Health Study

    PubMed Central

    Nevell, Lisa; Zhang, Kezhong; Aiello, Allison; Koenen, Karestan; Galea, Sandro; Soliven, Richelo; Zhang, Chao; Wildman, Derek E.; Uddin, Monica

    2014-01-01

    Background The role of Endoplasmic Reticulum (ER) stress response in mental illness is not well understood. Human studies and animal models of depression show elevated brain ER stress response. In addition, some ER stress associated disorders (e.g. cardiovascular disease) show higher rates of depression compared to the general population, raising the possibility that ER stress response contributes to depression risk. It remains unknown, however, if ER stress response is present among individuals suffering from other stress-related mental illness, and whether such a response would be evident in a non-clinical sample. This study tests for systemic changes in ER stress response associated with major depressive disorder (MDD) or post-traumatic stress disorder (PTSD) among community-dwelling individuals. Methods We analyzed expression of BiP, EDEM1, CHOP, and XBP1, the major indicators of ER stress response, with Real-Time PCR in leukocyte-derived RNA samples from 86 participants of the Detroit Neighborhood Health Study. Participants were selected based on the presence of either past year MDD or past year PTSD; controls were age and sex matched. Results Relative to controls, MDD is associated with a 1.34-fold increase in BiP (P=0.004), 1.35-fold increase in EDEM1 (P=0.001), 1.68-fold increase in CHOP (P=0.002), and 1.60-fold increase in XBP1 (P=0.004). These results remained significant after correction for multiple testing. In contrast, PTSD is associated with a 1.27 fold increase in EDEM1 expression only (P=0.027), a result that is attenuated to non-significance following adjustment for multiple testing; however, a subsample of participants with past month PTSD showed elevated expression of BiP and EDEM1 (uncorrected p value 0.049 and 0.017, respectively). Conclusions These data indicate systemic and persistent activation of the ER stress response pathway in MDD among community-dwelling individuals. Systemic activation of the ER stress response may also occur in PTSD

  19. Essential Roles of the Kar2/BiP Molecular Chaperone Downstream of the UPR Pathway in Cryptococcus neoformans

    PubMed Central

    Jung, Kwang-Woo; Kang, Hyun Ah; Bahn, Yong-Sun

    2013-01-01

    The endoplasmic reticulum (ER) is a central hub where secreted or membrane-bound proteins are maturated and folded properly in eukaryotes. Maintenance of ER homeostasis is particularly important for human fungal pathogens, such as Cryptococcus neoformans, which encounter a plethora of host-mediated stresses during infection. Our previous study demonstrated that the unfolded protein response (UPR) pathway, composed of the evolutionarily conserved Ire1 kinase and the unique Hxl1 transcription factor, has pleiotropic roles in ER stress response, thermotolerance, antifungal drug resistance, and virulence in C. neoformans. Here, we functionally characterized an ER-resident molecular chaperone, Kar2/BiP, in C. neoformans. Conditional expression of KAR2 by the copper-regulated promoter revealed that Kar2 is essential for the viability of C. neoformans. Constitutive expression of KAR2 by the strong histone H3 promoter partially restores resistance to ER stress, cell wall stress, thermotolerance, and genotoxic stress in ire1Δ and hxl1Δ mutants, suggesting that Kar2 mainly functions downstream of the UPR pathway. Furthermore, Kar2 appears to control azole resistance in C. neoformans downstream of the UPR pathway without regulation of ERG11 or ERG3. Interestingly, we discovered that azole treatment is sensed as ER-stress and subsequently activates the Ire1-dependent Hxl1 splicing event and induction of KAR2 by the UPR pathway. In contrast, the constitutive expression of Kar2 is not sufficient to restore the Ire1-mediated regulation of capsule production in C. neoformans UPR mutants. In conclusion, this study demonstrates that Kar2 is not only essential for vegetative growth but also required for response and adaptation to the environmental stresses and antifungal drugs downstream of the UPR pathway in C. neoformans. PMID:23484059

  20. Next generation Er:YAG fractional ablative laser

    NASA Astrophysics Data System (ADS)

    Heinrich, A.; Vizhanyo, A.; Krammer, P.; Summer, S.; Gross, S.; Bragagna, T.; Böhler, C.

    2011-03-01

    Pantec Biosolutions AG presents a portable fractional ablative laser system based on a miniaturized diode pumped Er:YAG laser. The system can operate at repetition rates up to 500 Hz and has an incorporated beam deflection unit. It is smaller, lighter and cost efficient compared to systems based on lamp pumped Er:YAG lasers and incorporates a skin layer detection to guarantee precise control of the microporation process. The pulse parameters enable a variety of applications in dermatology and in general medicine, as demonstrated by first results on transdermal drug delivery of FSH (follicle stimulating hormone).

  1. Integral field spectroscopy of SN 2002er with PMAS

    NASA Astrophysics Data System (ADS)

    Christensen, L.; Becker, T.; Jahnke, K.; Kelz, A.; Roth, M. M.; Sánchez, S. F.; Wisotzki, L.

    2003-04-01

    We present observations of the Type Ia supernova SN 2002er during the brightening phase. The observations were performed with the Potsdam Multi Aperture Spectrophotometer (PMAS) integral field instrument. Due to the 8arcsecx8 arcsec field of view of the spectrograph an accurate background subtraction was possible. Results from analyses of the evolution of absorption features in comparisons with other SNe show that SN 2002er is a fairly bright Type Ia supernova with a peak brightness of MB=-19.6+/-0.1.

  2. High power, diode pumped Er:YAG for dentistry

    NASA Astrophysics Data System (ADS)

    Hagen, C.; Heinrich, A.; Nussbaumer, B.

    2011-03-01

    Pantec Medical Laser presents a diode pumped Er:YAG laser for dental and hard tissue applications. The diode pumped laser is practically maintenance free and ensures reliable operation over several thousand hours. The high repetition rate with up to 15 W average output power, allows treatments otherwise not feasible with low repetition rate, lamp pumped Er:YAG systems. The variable pulse duration of 10 to 200 μs combined with the good beam quality ensures precise and fast treatment. First results on enamel ablation as well as the power scalability of the technology to 200 mJ and 30 W average power are also shown.

  3. Computational modelling of Er(3+): Garnet laser materials

    NASA Astrophysics Data System (ADS)

    Spangler, Lee H.

    1994-12-01

    The Er(3+) ion has attracted a lot of interest for four reasons: (1) Its (4)I(sub 13/2) yields (4)I(sub 15/2) transition lases in the eyesafe region near 1.5 micron; (2) the (4)I(sub 13/2) transition lases near 2.8 micron, an important wavelength for surgical purposes; (3) it displays surprisingly efficient upconversion with lasing observed at 1.7, 1.2, 0.85, 0.56, 0.55, and 0.47 micron following 1.5 micron pumping; and (4) it has absorption bands at 0.96 and 0.81 micron and thus can be diode pumped. However, properties desirable for upconversion reduce the efficiency of 1.5 and 3 micron laser operation and vice versa. Since all of the processes are influenced by the host via the crystal field induced stark splittings in the Er levels, this project undertook modelling of the host influence on the Er lasinng behavior. While growth and measurement of all ten Er(3+) doped garnets is the surest way of identifying hosts which maximize upconversion (or conversly, 1.5 and 3 micron performance), it is also expensive - costing approximately $10,000/material or approximately $100,000 for the materials computationally investigated here. The calculations were performed using a quantum mechanical point charge model developed by Clyde Morrison at Harry Diamond Laboratories. The programs were used to fit the Er:YAG experimental energy levels so that the crystal field parameters, B(sub nm) could be extracted. From these radial factors, rho (sub n) were determined for Er(3+) in garnets. These, in combination with crystal field components, Anm, available from X-ray data, were used to predict energy levels for Er in the other nine garnet hosts. The levels in Er:YAG were fit with an rms error of 12.2/cm over a 22,000/cm range. Predicted levels for two other garnets for which literature values were available had rms errors of less than 17/cm , showing the calculations to be reliable. Based on resonances between pairs of calculated stark levels, the model predicts GSGG as the best host

  4. ADMiER-ing thin but complex fluids

    NASA Astrophysics Data System (ADS)

    McDonnell, Amarin G.; Bhattacharjee, Pradipto K.; Pan, Sharadwata; Hill, David; Danquah, Michael K.; Friend, James R.; Yeo, Leslie Y.; Prabhakar, Ranganathan

    2011-12-01

    The Acoustics Driven Microfluidic Extensional Rheometer (ADMiER) utilises micro litre volumes of liquid, with viscosities as low as that of water, to create valid and observable extensional flows, liquid bridges that pinch off due to capillary forces in this case. ADMiER allows the study fluids that have been beyond conventional methods and also study more subtle fluid properties. We can observe polymeric fluids with solvent viscosities far below those previously testable, accentuating elastic effects. Also, it has enabled the testing of aqueous solutions of living motile particles, which significantly change fluid properties, opening up the potential for diagnostic applications.

  5. ERS-1 scatterometer measurements over the Southern Ocean

    NASA Technical Reports Server (NTRS)

    Freilich, M. H.

    1994-01-01

    Backscatter cross section measurements from the ERS-1 Active Microwave Instrument (AMI) scatterometer were reprocessed to vector winds using the Freilich-Dunbar model function and a meteorologically aided ambiguity removal scheme. This consistent data set was used to examine the wind field over the Southern Ocean from 20 to 60 deg South. The large number of ERS-1 measurements allows relatively accurate calculation of annual mean wind, stress, and curl fields as well as overall statistics of the winds at mid to high southern latitudes. The long duration of the data time series allows preliminary examination of low frequency (semi annual) wind variability.

  6. Pilot James Barrilleaux with ER-2 aircraft on ramp

    NASA Technical Reports Server (NTRS)

    1998-01-01

    James Barrilleaux is the assistant chief pilot for ER-2s in the Flight Crew Branch of NASA's Dryden Flight Research Center, Edwards, California. The ER-2s--civilian variants of the military U-2S reconnaissance aircraft--are part of NASA's Airborne Science program. The ER-2s can carry airborne scientific payloads of up to 2,600 pounds to altitudes of about 70,000 feet to investigate such matters as earth resources, celestial phenomena, atmospheric chemistry and dynamics, and oceanic processes. Barrilleaux has held his current position since February 1998. Barrilleaux joined NASA in 1986 as a U-2/ER-2 pilot with NASA's Airborne Science program at Ames Research Center, Moffett Field, California. He flew both the U-2C (until 1989) and the ER-2 on a wide variety of missions both domestic and international. Barrilleaux flew high-altitude operations over Antarctica in which scientific instruments aboard the ER-2 defined the cause of ozone depletion over the continent, known as the ozone hole. He has also flown the ER-2 over the North Pole. Barrilleaux served for 20 years in the U.S. Air Force before he joined NASA. He completed pilot training at Reese Air Force Base, Lubbock, Texas, in 1966. He flew 120 combat missions as a F-4 fighter pilot over Laos and North Vietnam in 1970 and 1971. He joined the U-2 program in 1974, becoming the commander of an overseas U-2 operation in 1982. In 1983, he became commander of the squadron responsible for training all U-2 pilots and SR-71 crews located at Beale Air Force Base, Marysville, California. He retired from the Air Force as a lieutenant colonel in 1986. On active duty, he flew the U-2, F-4 Phantom, the T-38, T-37, and the T-33. His decorations included two Distinguished Flying Crosses, 12 Air Medals, two Meritorious Service Medals, and other Air Force and South Vietnamese awards. Barrilleaux earned a bachelor of science degree in chemical engineering from Texas A&M University, College Station, in 1964 and a master of science

  7. Thermal effects in Er:strengthened-glass laser

    NASA Astrophysics Data System (ADS)

    Tilleman, Michael M.; Jackel, Steven M.; Moshe, Inon

    1998-06-01

    We report the development of a high-power Er:strengthened- glass laser emitting at the eye-safe 1.535 μm wavelength. The flashlamp pumped Cr:Yb:Er:glass produced 330 mJ output @ 0.45% slope efficiency. Thermo-optical measurements indicated strong thermal lensing, of 16 diopter/kW and mild birefringence induced depolarization of 5% at 200 W. In terms of radial and birefringence elastooptical coefficients these data determine the values of 0.075 +/- 0.002 and 0.0094, respectively. For a hemispherical resonator configuration a TEM00 beam was achieved.

  8. Ocean wind field measurement performance of the ERS-1 scatterometer

    NASA Technical Reports Server (NTRS)

    Hans, P.; Schuessler, H.

    1984-01-01

    The Active Microwave Instrumentation (AMI), which will be implemented on the ERS-1, is a 5.3 GHz multipurpose radar for land surface imaging, ocean wave spectrum measurement and wind observations over oceans. The imaging and wave measurements apply Synthetic Aperture Radar (SAR) techniques, while wind field detection is performed by the Scatterometer as part of the AMI. The Scatterometer system design was developed and optimized with the aid of a performance simulator. This paper, aimed at giving an overview, is presented about the: (1) ERS-1 Scatterometer system design; (2) Error budget; and the (3) Overall calibration concept.

  9. Computational modelling of Er(3+): Garnet laser materials

    NASA Technical Reports Server (NTRS)

    Spangler, Lee H.

    1994-01-01

    The Er(3+) ion has attracted a lot of interest for four reasons: (1) Its (4)I(sub 13/2) yields (4)I(sub 15/2) transition lases in the eyesafe region near 1.5 micron; (2) the (4)I(sub 13/2) transition lases near 2.8 micron, an important wavelength for surgical purposes; (3) it displays surprisingly efficient upconversion with lasing observed at 1.7, 1.2, 0.85, 0.56, 0.55, and 0.47 micron following 1.5 micron pumping; and (4) it has absorption bands at 0.96 and 0.81 micron and thus can be diode pumped. However, properties desirable for upconversion reduce the efficiency of 1.5 and 3 micron laser operation and vice versa. Since all of the processes are influenced by the host via the crystal field induced stark splittings in the Er levels, this project undertook modelling of the host influence on the Er lasinng behavior. While growth and measurement of all ten Er(3+) doped garnets is the surest way of identifying hosts which maximize upconversion (or conversly, 1.5 and 3 micron performance), it is also expensive - costing approximately $10,000/material or approximately $100,000 for the materials computationally investigated here. The calculations were performed using a quantum mechanical point charge model developed by Clyde Morrison at Harry Diamond Laboratories. The programs were used to fit the Er:YAG experimental energy levels so that the crystal field parameters, B(sub nm) could be extracted. From these radial factors, rho (sub n) were determined for Er(3+) in garnets. These, in combination with crystal field components, Anm, available from X-ray data, were used to predict energy levels for Er in the other nine garnet hosts. The levels in Er:YAG were fit with an rms error of 12.2/cm over a 22,000/cm range. Predicted levels for two other garnets for which literature values were available had rms errors of less than 17/cm , showing the calculations to be reliable. Based on resonances between pairs of calculated stark levels, the model predicts GSGG as the best host

  10. Clinical highlights from the 2011 ERS Congress in Amsterdam

    PubMed Central

    Spruit, Martijn A.; Chavannes, Niels H.; Herth, Felix J.F.; Poletti, Venerino; Ley, Sebastian; Burghuber, Otto C.; Clini, Enrico; Cottin, Vincent

    2012-01-01

    This article reports on selected papers pertinent to the most important clinical problems in the field of respiratory medicine. Expert authors from the Clinical Assembly of the European Respiratory Society (ERS) have selected updated reports related to presentations given at the 2011 ERS Annual Congress, which was held in Amsterdam (the Netherlands) and attended by more than 20,000 participants. The hot topics and selected abstracts from the scientific groups of the Clinical Assembly are discussed here in the context of recent literature. PMID:22408196

  11. Genetic variants in the mTOR pathway and breast cancer risk in African American women.

    PubMed

    Cheng, Ting-Yuan David; Ambrosone, Christine B; Hong, Chi-Chen; Lunetta, Kathryn L; Liu, Song; Hu, Qiang; Yao, Song; Sucheston-Campbell, Lara; Bandera, Elisa V; Ruiz-Narváez, Edward A; Haddad, Stephen; Troester, Melissa A; Haiman, Christopher A; Bensen, Jeannette T; Olshan, Andrew F; Palmer, Julie R; Rosenberg, Lynn

    2016-01-01

    The phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin (mTOR) pathway has been implicated in breast carcinogenesis. However, there has been no large-scale investigation of genetic variants in the mTOR pathway and breast cancer risk. We examined 28847 single-nucleotide polymorphisms (SNPs) in 61 mTOR pathway genes in the African American Breast Cancer Epidemiology and Risk consortium of 3663 cases [1983 estrogen receptor-positive (ER+) and 1098 ER-negative (ER-)] and 4687 controls. Gene-level analyses were conducted using the adaptive rank truncated product (ARTP) test for 10773 SNPs that were not highly correlated (r (2) < 0.8), and SNP-level analyses were conducted with logistic regression. Among genes that were prioritized (nominal P < 0.05, ARTP tests), associations were observed for intronic SNPs TSC2 rs181088346 [odds ratio (OR) of each copy of variant allele = 0.77, 95% confidence interval (CI) = 0.65-0.88 for all breast cancer] and BRAF rs114729114 (OR = 1.53, 95% CI = 1.24-1.91 for all breast cancer and OR = 2.03, 95% CI = 1.50-2.76 for ER- tumors). For ER- tumors, intronic SNPs PGF rs11542848 (OR = 1.38, 95% CI = 1.15-1.66) and rs61759375 (OR = 1.34, 95% CI = 1.14-1.57) and MAPK3 rs78564187 (OR = 1.26, 95% CI = 1.11-1.43) were associated with increased risk. These SNPs were significant at a gene-wide level (Bonferroni-corrected P < 0.05). The variant allele of RPS6KB2 rs35363135, a synonymous coding SNP, was more likely to be observed in ER- than ER+ tumors (OR = 1.18, 95% CI = 1.05-1.31, gene-wide Bonferroni-corrected P = 0.06). In conclusion, specific mTOR pathway genes are potentially important to breast cancer risk and to the ER negativity in African American women. PMID:26577839

  12. Inelastic-neutron-scattering study of the Er3+ energy levels in ErBa2Cu3O7

    NASA Astrophysics Data System (ADS)

    Soderholm, L.; Loong, C.-K.; Kern, S.

    1992-05-01

    Magnetic excitation spectra of ErBa2Cu3O7 have been measured by use of inelastic neutron scattering. Optimal experimental conditions allow the resolution of the transitions between the Er3+ ground state and all seven excited states within the 4I15/2 Russell-Saunders ground multiplet. The data are analyzed in terms of an intermediate-coupling crystal-field model, calculated using spherical-tensor techniques. Calculated spectra based on the results of this analysis are consistent with all experimental spectra, including those obtained at higher temperatures. The eigenfunctions and eigenvalues obtained from this analysis are used to calculate the magnetic properties expected of Er3+ in this crystal environment.

  13. ER stress related factor ATF6 and caspase-12 trigger apoptosis in neonatal hypoxic-ischemic encephalopathy

    PubMed Central

    Liu, Luran; Liu, Chang; Lu, Yuting; Liu, Lina; Jiang, Yan

    2015-01-01

    The specific and available markers proteins of neonatal hypoxic-ischemic encephalopathy (HIE) injury are correlated with disease severity and the disability in childhood. Exploring the mechanism of HIE is very helpful to the targeted therapeutic approach in clinical. This study aims to explore the cell death-related proteins or biomarkers that plays roles in the HIE injury. In this study, 15 patients were included the 487 autopsies patients performed at the Department of Pathology. The lactate dehydrogenase (LDH) assay was used to detect the cell viability of NGF-differentiated PC12 cell. TUNEL assay was employed to examine the apoptotic cells in embedded slides samples. Three ER stress-related protein, including ATF6, p-Perk and IRE-1 were investigated using Western blot assay for the ER stress examination. The apoptosis associated caspase-12 and CHOP protein were detected by Western blot. The results indicated that LDH activity of living cells during hypoxia was significantly enhanced to 45% and 64% after 8 hours and 24 hours. The TUNEL results showed that plenty of the PC12 cells became the positive staining cells when treated with 0.1% O2 hypoxia. ER stress UPR pathway protein, cleaved ATF6, was increased significantly when treated with 0.1% O2 compared with the cells treated with 20% O2. Furthermore, the caspase 12 activation was triggered when the cells treated with the 0.1% O2. In conclusion, apoptosis is served as an important factor that triggers the HIE brain injury through cleaving the ATF6 and caspase-12 ER stress-related protein. PMID:26261584

  14. RB-pathway disruption in breast cancer: differential association with disease subtypes, disease-specific prognosis and therapeutic response.

    PubMed

    Ertel, Adam; Dean, Jeffry L; Rui, Hallgeir; Liu, Chengbao; Witkiewicz, Agnes K; Knudsen, Karen E; Knudsen, Erik S

    2010-10-15

    In breast cancer, inactivation of the RB tumor suppressor gene is believed to occur via multiple mechanisms to facilitate tumorigenesis. However, the prognostic and predictive value of RB status in disease-specific clinical outcomes has remained uncertain. We investigated RB pathway deregulation in the context of both ER-positive and ER-negative disease using combined microarray datasets encompassing over 900 breast cancer patient samples. Disease-specific characteristics of RB pathway deregulation were investigated in this dataset by evaluating correlation among pathway genes as well as differential expression across patient tumor populations defined by ER status. Survival analysis among these breast cancer samples demonstrates that the RB-loss signature is associated with poor disease outcome within several independent cohorts. Within the ER-negative subpopulation, the RB-loss signature is associated with improved response to chemotherapy and longer relapse-free survival. Additionally, while individual genes in the RB target signature closely reproduce its prognostic value, they also serve to predict and monitor response to therapeutic compounds, such as the cytostatic agent PD-0332991. These results indicate that the RB-loss signature expression is associated with poor outcome in breast cancer, but predicts improved response to chemotherapy based on data in ER-negative populations. While the RB-loss signature, as a whole, demonstrates prognostic and predictive utility, a small subset of markers could be sufficient to stratify patients based on RB function and inform the selection of appropriate therapeutic regimens. PMID:20948315

  15. Endoplasmic reticulum stress-mediated autophagy contributes to bluetongue virus infection via the PERK-eIF2α pathway.

    PubMed

    Lv, Shuang; Sun, En-Cheng; Xu, Qing-Yuan; Zhang, Ji-Kai; Wu, Dong-Lai

    2015-10-23

    Bluetongue virus (BTV) is an important pathogen of wild and domestic ruminants. We have previously reported that BTV1 infection induced autophagy for its own benefit, but how this occurs remains unclear. Here, the classical autophagy features including autophagsomes formation, GFP-LC3 dots and LC3-II conversation were shown in BTV1-infected cells, we also found the endoplasmic reticulum (ER) stress was triggered by BTV1 infection, which was demonstrated by the increased transcription level of the ER stress marker GRP78 and the expanded morphology of ER. During ER stress, PERK and eIF2α phosphorylation increased along with BTV1 infection, consistent with the elevated LC3 level, indicating that the PERK pathway of the unfolded protein response (UPR) was activated. In addition, both the blockage of PERK by GSK2656157 or knockdown of eIF2α by siRNA reduced the level of LC3, which suggested that the PERK-eIF2α pathway contributed to autophagy induced by BTV1. Furthermore, inactivation of PERK or silencing of eIF2α both significantly reduced the expression of VP2 protein and the viral yields in the supernatants. In sum, these data suggest that ER stress mediates autophagy via the PERK-eIF2α pathway and contributes to BTV1 replication, thus offering new insight into the molecular mechanisms of the BTV-host interaction. PMID:26363458

  16. Uric acid enhances PKC-dependent eNOS phosphorylation and mediates cellular ER stress: A mechanism for uric acid-induced endothelial dysfunction

    PubMed Central

    LI, PENG; ZHANG, LINA; ZHANG, MEI; ZHOU, CHANGYONG; LIN, NAN

    2016-01-01

    The mechanism by which hyperuricemia induced-endothelial dysfunction contributes to cardiovascular diseases (CVDs) is not yet fully understood. In the present study, we used uric acid (UA) to trigger endothelial dysfunction in cultured endothelial cells, and investigated the effects of induced reactive oxygen species (ROS) generation, endoplasmic reticulum (ER) stress induction, and the protein kinase C (PKC)-dependent endothelial nitric oxide synthase (eNOS) signaling pathway. Human umbilical vein endothelial cells (HUVECs) were incubated with 6, 9 or 12 mg/dl UA, ROS scavenger polyethylene glycol-superoxide dismutase (PEG-SOD), ER stress inhibitor 4-phenylbutyric acid (4-PBA), and PKC inhibitor polymyxin B for 6–48 h. Nitric oxide (NO) production, eNOS activity, intracellular ROS, ER stress levels, and the interaction between eNOS and calmodulin (CaM) and cytosolic calcium levels were assessed using fluorescence microscopy and western blot analysis. Apoptosis was assessed by annexin V staining. UA increased HUVEC apoptosis and reduced eNOS activity and NO production in a dose- and time-dependent manner. Intracellular ROS was elevated after 3 h, while ER stress level increased after 6 h. UA did not alter intracellular Ca2+, CaM, or eNOS concentration, or eNOS Ser1177 phosphorylation. However, PKC-dependent eNOS phosphorylation at Thr495 was greatly enhanced, and consequently interaction between eNOS and CaM was reduced. Cellular ROS depletion, ER stress inhibition and PKC activity reduction inhibited the effect of UA on eNOS activity, NO release and apoptosis in HUVECs. Thus, we concluded that UA induced HUVEC apoptosis and endothelial dysfunction by triggering oxidative and ER stress through PKC/eNOS-mediated eNOS activity and NO production. PMID:26935704

  17. Metformin prevents endoplasmic reticulum stress-induced apoptosis through AMPK-PI3K-c-Jun NH2 pathway

    USGS Publications Warehouse

    Jung, T.W.; Lee, M.W.; Lee, Y.-J.; Kim, S.M.

    2012-01-01

    Type 2 diabetes mellitus is thought to be partially associated with endoplasmic reticulum (ER) stress toxicity on pancreatic beta cells and the result of decreased insulin synthesis and secretion. In this study, we showed that a well-known insulin sensitizer, metformin, directly protects against dysfunction and death of ER stress-induced NIT-1 cells (a mouse pancreatic beta cell line) via AMP-activated protein kinase (AMPK) and phosphatidylinositol-3 (PI3) kinase activation. We also showed that exposure of NIT-1 cells to metformin (5mM) increases cellular resistance against ER stress-induced NIT-1 cell dysfunction and death. AMPK and PI3 kinase inhibitors abolished the effect of metformin on cell function and death. Metformin-mediated protective effects on ER stress-induced apoptosis were not a result of an unfolded protein response or the induced inhibitors of apoptotic proteins. In addition, we showed that exposure of ER stressed-induced NIT-1 cells to metformin decreases the phosphorylation of c-Jun NH(2) terminal kinase (JNK). These data suggest that metformin is an important determinant of ER stress-induced apoptosis in NIT-1 cells and may have implications for ER stress-mediated pancreatic beta cell destruction via regulation of the AMPK-PI3 kinase-JNK pathway.

  18. Realization of an Er 2D MOT for a Na+Er mixture experiment

    NASA Astrophysics Data System (ADS)

    Anderson, Neil; Banik, Swarnav; Gutierrez, Monica; Kumar, Avinash; Eckel, Stephen; Campbell, Gretchen

    2016-05-01

    We have realized a dual-species sodium and erbium 2D MOT. This compact source allows us to rapidly switch between loading either species into 3D MOTs in a main chamber. We have characterized the flux from this source and the resulting loading rates into the 3D MOTs. This new source opens possibilities of studying lanthanide-alkali collisions and Feshbach spectra, possibly opening new pathways to realizing interesting quantum many body systems.

  19. Pahute Mesa Well Development and Testing Analyses for Wells ER-20-7, ER-20-8 #2, and ER-EC-11, Revision 1

    SciTech Connect

    Greg Ruskauff

    2011-12-01

    This report analyzes the following data collected from ER-20-7, ER-20-8 No.2, and ER-EC-11 during WDT operations: (1) Chemical indicators of well development (Section 2.0); (2) Static hydraulic head (Section 3.0); (3) Radiochemistry and geochemistry (Section 4.0); (4) Drawdown observed at locations distal to the pumping well (Section 5.0); and (5) Drilling water production, flow logs, and temperature logs (Section 6.0). The new data are further considered with respect to existing data as to how they enhance or change interpretations of groundwater flow and transport, and an interim small-scale conceptual model is also developed and compared to Phase I concepts. The purpose of well development is to remove drilling fluids and drilling-associated fines from the formation adjacent to a well so samples reflecting ambient groundwater water quality can be collected, and to restore hydraulic properties near the well bore. Drilling fluids can contaminate environmental samples from the well, resulting in nonrepresentative measurements. Both drilling fluids and preexisting fines in the formation adjacent to the well can impede the flow of water from the formation to the well, creating artifacts in hydraulic response data measured in the well.

  20. Determination of the Er3+ to Yb3+ energy transfer efficiency in Er3+/Yb3+-codoped YVO4 crystals

    NASA Astrophysics Data System (ADS)

    Di Paolo, R. E.; Cantelar, E.; Wang, X. M.; Tsuboi, T.; Cussó, F.

    2001-09-01

    The energy transfer efficiency from Er3+ to Yb3+ ions in yttrium orthovanadate single crystals (YVO4) is experimentally obtained, by using a method based on the simultaneous and multiwavelength measurement of photoacoustic and luminescent signals after pulsed laser excitation. The result is reached by comparing with the predictions from Judd-Ofelt analysis and the lifetime measurements. The energy transfer between the ions, from Er3+ to Yb3+, must be considered in order to fit the experimental results. A value of energy transfer efficiency (Ψ = 0.16) is obtained.

  1. Yip1A, a Novel Host Factor for the Activation of the IRE1 Pathway of the Unfolded Protein Response during Brucella Infection

    PubMed Central

    Taguchi, Yuki; Imaoka, Koichi; Kataoka, Michiyo; Uda, Akihiko; Nakatsu, Daiki; Horii-Okazaki, Sakuya; Kunishige, Rina; Kano, Fumi; Murata, Masayuki

    2015-01-01

    Brucella species replicate within host cells in the form of endoplasmic reticulum (ER)-derived vacuoles. The mechanisms by which the bacteria are sequestered into such vacuoles and obtain a continuous membrane supply for their replication remain to be elucidated. In the present study, we provided several lines of evidence that demonstrate the mechanism by which B. abortus acquires the ER-derived membrane. First, during Brucella infection, the IRE1 pathway, but not the PERK and ATF6 pathways, of the unfolded protein response (UPR) was activated in a time-dependent manner, and the COPII vesicle components Sar1, Sec23, and Sec24D were upregulated. Second, a marked accretion of ER-derived vacuoles was observed around replicating bacteria using fluorescent microscopy and electron microscopy. Third, we identified a novel host factor, Yip1A, for the activation of the IRE1 pathway in response to both tunicamycin treatment and infection with B. abortus. We found that Yip1A is responsible for the phosphorylation of IRE1 through high-order assembly of Ire1 molecules at ER exit sites (ERES) under the UPR conditions. In Yip1A-knockdown cells, B. abortus failed to generate the ER-derived vacuoles, and remained in endosomal/lysosomal compartments. These results indicate that the activation of the IRE1 pathway and the subsequent formation of ER-derived vacuoles are critical for B. abortus to establish a safe replication niche, and that Yip1A is indispensable for these processes. Furthermore, we showed that the autophagy-related proteins Atg9 and WIPI1, but not DFCP1, were required for the biogenesis of the ER-derived membrane compartments.  On the basis of our findings, we propose a model for intracellular Brucella replication that exploits the host UPR and ER-derived vacuole formation machineries, both of which depend on Yip1A-mediated IRE1 activation. PMID:25742138

  2. Optical transitions of Er3+ ions in fluorozirconate glass

    NASA Astrophysics Data System (ADS)

    Shinn, M. D.; Sibley, W. A.; Drexhage, M. G.; Brown, R. N.

    1983-06-01

    Optical-absorption, -emission, and -excitation spectra are presented for Er3+ ions in fluorozirconate glass. Measured oscillator strengths of the transitions between J manifolds at 300 and 15 K are compared with calculated electric and magnetic dipole oscillator strengths. Radiative rates for five luminescing states were calculated. The nonradiative rates from these excited states were determined by calculating the difference between the measured rates and the calculated radiative rates. The low-temperature nonradiative rates are in agreement with the phenomenological energy-gap law followed by rare-earth ions in a number of crystals and glasses. The temperature dependence of the lifetimes was analyzed using the Huang-Rhys theory of multiphonon emission. Values for the 4I112 radiative and nonradiative rates obtained by the above methods are compared with those obtained applying the method Flaherty and DiBartolo used to study MnF2: Er3+. The multiphonon emission rates in fluorozirconate glass are much lower than the rates for the same levels of Er3+ in oxide glasses. Measurements of the bandwidths of the ground and excited states of Er3+ and the nearly exponential decay of the emissions indicate a relatively narrow distribution of site symmetries compared to oxide glasses.

  3. Calcium and ER stress mediate hepatic apoptosis after burn injury

    PubMed Central

    Gauglitz, Gerd G.; Song, Juquan; Kulp, Gabriela A.; Finnerty, Celeste C.; Cox, Robert A.; Barral, José M.; Herndon, David N.; Boehning, Darren

    2009-01-01

    Abstract A hallmark of the disease state following severe burn injury is decreased liver function, which results in gross metabolic derangements that compromise patient survival. The underlying mechanisms leading to hepatocyte dysfunction after burn are essentially unknown. The aim of the present study was to determine the underlying mechanisms leading to hepatocyte dysfunction and apoptosis after burn. Rats were randomized to either control (no burn) or burn (60% total body surface area burn) and sacrificed at various time‐points. Liver was either perfused to isolate primary rat hepatocytes, which were used for in vitro calcium imaging, or liver was harvested and processed for immunohistology, transmission electron microscopy, mitochondrial isolation, mass spectroscopy or Western blotting to determine the hepatic response to burn injury in vivo. We found that thermal injury leads to severely depleted endoplasmic reticulum (ER) calcium stores and consequent elevated cytosolic calcium concentrations in primary hepatocytes in vitro. Burn‐induced ER calcium depletion caused depressed hepatocyte responsiveness to signalling molecules that regulate hepatic homeostasis, such as vasopressin and the purinergic agonist ATP. In vivo, thermal injury resulted in activation of the ER stress response and major alterations in mitochondrial structure and function – effects which may be mediated by increased calcium release by inositol 1,4,5‐trisphosphate receptors. Our results reveal that thermal injury leads to dramatic hepatic disturbances in calcium homeostasis and resultant ER stress leading to mitochondrial abnormalities contributing to hepatic dysfunction and apoptosis after burn injury. PMID:20141609

  4. Staff Survey Results, 2000-2001. E&R Report.

    ERIC Educational Resources Information Center

    Wildman, Wanda N.

    Evaluation and Research (E&R) staff of the Wake County Public Schools (WCPSS), North Carolina, have conducted spring surveys of school staff since 1992. This report contains information from the survey distributed in March 2001. Completed surveys were returned by 5,755 staff members. Survey results indicate that in the year 2000, more staff…

  5. OpenER, a Dutch Initiative in Open Educational Resources

    ERIC Educational Resources Information Center

    Schuwer, Robert; Mulder, Fred

    2009-01-01

    Over the period 2006-2008, the Dutch Open Universiteit Nederland conducted an experiment in which Open Educational Resources (OER) were offered in an effort to bridge the gap between informal and formal learning and to establish a new style of entry portal to higher education with no barriers at all. OpenER received considerable attention both in…

  6. School Officials and the Courts: Update 1984. ERS Monograph.

    ERIC Educational Resources Information Center

    Beckham, Joseph C.

    This is the seventh in a series of Educational Research Service (ERS) monographs designed to summarize judicial decisions on elementary and secondary education issues by state and federal courts. These cases, dating from June 30, 1983 to June 30, 1984, were selected on the basis of their relevance to contemporary problems in public schools, their…

  7. Er:YAG laser dentistry in special needs patients

    PubMed Central

    Fornaini, Carlo; Clini, Fabio; Fontana, Matteo; Cella, Luigi; Oppici, Aldo

    2015-01-01

    Objective: Between a quarter and a third of adults with intellectual disability is estimated to have dental anxiety. Unpleasant stimuli, such as the injection of local anaesthesia or the noise and vibration of rotary instruments, may provoke anxiety and subsequent low compliance until the opposition to the treatment. The use of Er:YAG laser in conservative dentistry had a great development in these last years thank to new devices and also to their advantages when compared to the conventional instruments. The aim of this clinical study was to show the advantages of the Er:YAG laser in the conservative treatment of Special Care patients. Methods: Four cases are here described to show the Er:YAG laser use in our Unit on special needs patients. Results and conclusions: Based on the experience gained on conservative laser-assisted treatments performed in a time of 5 years at our Dentistry, Special Needs and Maxillo-Facial Surgery Unit we may affirm that Er:YAG laser may be considered as a good way to improve the cooperation, to reduce anxiety related to rotating instruments and to reach better results with equal or shorter operating times. PMID:26557733

  8. Historisches Rätsel Er hatte den Durchblick

    NASA Astrophysics Data System (ADS)

    Loos, Andreas

    2002-03-01

    Seine Jugend ist voller Schicksalsschläge: Mit zwölf Jahren wird er als elftes und jüngstes Kind eines Glasermeisters Vollwaise, mit vierzehn stürzt das Haus seines Pflegevaters und Lehrherren über ihm zusammen. Auch ist ihm kein langes Leben vergönnt: Mit gerade 39 Jahren ereilt ihn die Lungen- und Nervenschwindsucht.

  9. Concentrating and recycling energy in lanthanide codopants for efficient and spectrally pure emission: the case of NaYF4:Er3+/Tm3+ upconverting nanocrystals.

    PubMed

    Chan, Emory M; Gargas, Daniel J; Schuck, P James; Milliron, Delia J

    2012-09-01

    In lanthanide-doped materials, energy transfer (ET) between codopant ions can populate or depopulate excited states, giving rise to spectrally pure luminescence that is valuable for the multicolor imaging and simultaneous tracking of multiple biological species. Here, we use the case study of NaYF(4) nanocrystals codoped with Er(3+) and Tm(3+) to theoretically investigate the ET mechanisms that selectively enhance and suppress visible upconversion luminescence under near-infrared excitation. Using an experimentally validated population balance model and using a path-tracing algorithm to objectively identify transitions with the most significant contributions, we isolated a network of six pathways that combine to divert energy away from the green-emitting manifolds and concentrate it in the Tm(3+):(3)F(4) manifold, which then participates in energy transfer upconversion (ETU) to populate the red-emitting Er(3+):(4)F(9/2) manifold. We conclude that the strength of this ETU process is a function of the strong coupling of the Tm(3+):(3)F(4) manifold and its ground state, the near-optimum band alignment of Er(3+) and Tm(3+) manifolds, and the concentration of population in Tm(3+):(3)F(4). These factors, along with the ability to recycle energy not utilized for red emission, also contribute to the enhanced quantum yield of NaYF(4):Er(3+)/Tm(3+). We generalize a scheme for applying these energy concentration and recycling pathways to other combinations of lanthanide dopants. Ultimately, these ET pathways and others elucidated by our theoretical modeling will enable the programming of physical properties in lanthanide-doped materials for a variety of applications that demand strong and precisely defined optical transitions. PMID:22551408

  10. Trafficking of the bZIP transmembrane transcription factor CREB-H into alternate pathways of ERAD and stress-regulated intramembrane proteolysis.

    PubMed

    Bailey, Daniel; Barreca, Cristina; O'Hare, Peter

    2007-12-01

    CREB-H is an ATF6-related, transmembrane transcription factor that, in response to endoplasmic reticulum (ER)-associated stress, is cleaved by Golgi proteases and transported to the nucleus to effect appropriate adaptive responses. We characterize the ER processing and turnover of CREB-H with results which have important implications for ER stress regulation and signalling. We show that CREB-H is glycosylated and demonstrate that both the ER and nuclear forms of CREB-H have short half-lives. We also show that CREB-H is subject to cycles of retrotranslocation, deglycosylation and degradation through the ER-associated degradation (ERAD) pathway. Proteasome inhibition resulted in accumulation of a cytosolic intermediate but additionally, in contrast to inhibition of glycosylation, promoted specific cleavage of CREB-H and nuclear transport of the N-terminal-truncated product. Our data indicate that under normal conditions CREB-H is transported back from the ER to the cytosol, where it is subject to ERAD, but under conditions that repress proteasome function or promote load CREB-H is diverted from this pathway instead undergoing cleavage and nuclear transport. Finally, we identify a cytoplasmic determinant involved in CREB-H ER retention, deletion of which results in constitutive Golgi transport and corresponding cleavage. We present a model where cellular stresses may be sensed at different levels by different members of the basic and leucine zipper domain transmembrane proteins. PMID:17875199

  11. Spectroscopic properties of Nd, Er codoped glasses for solar pumped fiber lasers

    NASA Astrophysics Data System (ADS)

    Mizuno, Shintaro; Ito, Hiroshi; Hasegawa, Kazuo; Kawai, Hiroyuki; Nasu, Hiroyuki; Hughes, Mark A.; Suzuki, Takenobu; Ohishi, Yasutake

    2011-03-01

    The absorption and fluorescence characteristics of Er doped and Nd, Er codoped fluoride glasses were investigated under illumination of the simulated sunlight, laser or a monochromatic light filtered from a Xe lamp. Er was used as a sensitizing agent enhancing the energy conversion and the emission efficiency of Nd ions in fluoride glass intended for the sunlight excitation. Er doped fluoride glasses showed four emission peaks under simulated sunlight illumination at the wavelengths of 550, 848, 980, and 1530 nm attributed to the electronic transitions of Er3+ ions. The quantum efficiency of the emission from all of the bands had a peak at x = 0.5 mol. % Er and with the maximum of 73 %. The intensity of each emission band showed different ratios for various ErF3 contents. It is expected that concentration quenching of 4S3/2 state is easy to occur with high concentration of ErF3 compared to the other states. The energy transfer from Er to Nd was studied using a monochromatic light illumination which is absorbed by Er3+ ions only. Strong contribution of Er absorption to the 1.05 μm emission of Nd, Er co-doped fluoride glass was observed. Er was confirmed as a suitable sensitizer for the enhanced energy conversion and emission efficiency of Nd ions in ZBLAN glasses which are proposed for highly efficient solar pumped fiber lasers.

  12. Functional characterization of estrogen receptor subtypes, ER{alpha} and ER{beta}, mediating vitellogenin production in the liver of rainbow trout

    SciTech Connect

    Leanos-Castaneda, Olga Kraak, Glen van der

    2007-10-15

    The estrogen-dependent process of vitellogenesis is a key function on oviparous fish reproduction and it has been widely used as an indicator of xenoestrogen exposure. The two estrogen receptor (ER) subtypes, ER{alpha} and ER{beta}, are often co-expressed in the liver of fish. The relative contribution of each ER subtype to modulate vitellogenin production by hepatocytes was studied using selected compounds known to preferentially interact with specific ER subtypes: propyl-pyrazole-triol (PPT) an ER{alpha} selective agonist, methyl-piperidino-pyrazole (MPP) an ER{alpha} selective antagonist, and diarylpropionitrile (DPN) an ER{beta} selective agonist. First, the relative binding affinity of the test compounds to estradiol for rainbow trout hepatic nuclear ER was determined using a competitive ligand binding assay. All the test ligands achieved complete displacement of specific [{sup 3}H]-estradiol binding from the nuclear ER extract. This indicates that the test ligands have the potential to modify the ER function in the rainbow trout liver. Secondly, the ability of the test compounds to induce or inhibit vitellogenin production by primary cultures of rainbow trout hepatocytes was studied. Estradiol and DPN were the only compounds that induced a dose-dependent increase on vitellogenin synthesis. The lack of vitellogenin induction by PPT indicates that ER{alpha} could not have a role on this reproductive process whereas the ability of DPN to induce vitellogenin production supports the participation of ER{beta}. In addition, this hypothesis is reinforced by the results obtained from MPP plus estradiol. On one hand, the absence of suppressive activity of MPP in the estradiol-induced vitellogenin production does not support the participation of ER{alpha}. On the other hand, once blocked ER{alpha} with MPP, the only manifestation of agonist activity of estradiol would be achieved via ER{beta}. In conclusion, the present results indicate that vitellogenin production is

  13. Precise satellite orbit determination with particular application to ERS-1

    NASA Astrophysics Data System (ADS)

    Fernandes, Maria Joana Afonso Pereira

    The motivation behind this study is twofold. First to assess the accuracy of ERS-1 long arc ephemerides using state of the art models. Second, to develop improved methods for determining precise ERS-1 orbits using either short or long arc techniques. The SATAN programs, for the computation of satellite orbits using laser data were used. Several facilities were added to the original programs: the processing of PRARE range and altimeter data, and a number of algorithms that allow more flexible solutions by adjusting a number of additional parameters. The first part of this study, before the launch of ERS-1, was done with SEAS AT data. The accuracy of SEASAT orbits computed with PRARE simulated data has been determined. The effect of temporal distribution of tracking data along the arc and the extent to which altimetry can replace range data have been investigated. The second part starts with the computation of ERS-1 long arc solutions using laser data. Some aspects of modelling the two main forces affecting ERS-l's orbit are investigated. With regard to the gravitational forces, the adjustment of a set of geopotential coefficients has been considered. With respect to atmospheric drag, extensive research has been carried out on determining the influence on orbit accuracy of the measurements of solar fluxes (P10.7 indices) and geomagnetic activity (Kp indices) used by the atmospheric model in the computation of atmospheric density at satellite height. Two new short arc methods have been developed: the Constrained and the Bayesian method. Both methods are dynamic and consist of solving for the 6 osculating elements. Using different techniques, both methods overcome the problem of normal matrix ill- conditioning by constraining the solution. The accuracy and applicability of these methods are discussed and compared with the traditional non-dynamic TAR method.

  14. Systemic effects of AGEs in ER stress induction in vivo.

    PubMed

    Adamopoulos, Christos; Mihailidou, Chrysovalantou; Grivaki, Christofora; Papavassiliou, Kostas A; Kiaris, Hippokratis; Piperi, Christina; Papavassiliou, Athanasios G

    2016-08-01

    Emerging evidence indicates that accumulation of advanced glycation end products (AGEs) in human tissues may contribute to cell injury, inflammation and apoptosis through induction of endoplasmic reticulum (ER) stress. Human metabolism relies on ER homeostasis for the coordinated response of all metabolic organs by controlling the synthesis and catabolism of various nutrients. In vitro studies have demonstrated AGE-induced enhancement of unfolded protein response (UPR) in different cell types including endothelial, neuronal, pancreatic cells and podocytes, suggesting this crosstalk as an underlying pathological mechanism that contributes to metabolic diseases. In this minireview, we describe in vivo studies undertaken by our group and others that demonstrate the diverse systemic effects of AGEs in ER stress induction in major metabolic tissues such as brain, kidney, liver and pancreas of normal mice. Administration of high-AGEs content diet to normal mice for the period of 4 weeks upergulates the mRNA and protein levels of ER chaperone Bip (GRP78) indicative of UPR initiation in all major metabolic organs and induces activation of the pivotal transcription factor XBP1 that regulates glucose and lipid metabolism. Furthermore, animals with genetic ablation of UPR-activated transcription factor C/EBP homologous protein CHOP allocated in high-AGEs diet, exhibited relative resistance to UPR induction (BiP levels) and XBP1 activation in major metabolic organs. Since CHOP presents a critical mediator that links accumulation and aggregation of unfolded proteins with induction of oxidative stress and ER stress-related apoptosis, it is revealed as an important molecular target for the management of metabolic diseases. PMID:27236787

  15. Pathways from Poverty.

    ERIC Educational Resources Information Center

    Baldwin, Barbara, Ed.

    1995-01-01

    Articles in this theme issue are based on presentations at the Pathways from Poverty Workshop held in Albuquerque, New Mexico, on May 18-25, 1995. The event aimed to foster development of a network to address rural poverty issues in the Western Rural Development Center (WRDC) region. Articles report on outcomes from the Pathways from Poverty…

  16. ER stress-induced protein, VIGG, disturbs plant cation homeostasis, which is correlated with growth retardation and robustness to ER stress

    SciTech Connect

    Katoh, Hironori; Fujita, Keiko; Takuhara, Yuki; Ogawa, Atsushi; Suzuki, Shunji

    2011-02-18

    Highlights: {yields} VIGG is an ER stress-induced protein in plant. {yields} We examine the characteristics of VIGG-overexpressing Arabidopsis plants. {yields} VIGG-overexpressing plants reveal growth retardation and robustness to ER stress. {yields} VIGG disturbs cation homeostasis in plant. -- Abstract: VIGG is a putative endoplasmic reticulum (ER) resident protein induced by virus infection and ER stress, and is correlated with fruit quality in grapevine. The present study was undertaken to determine the biological function of VIGG in grapevine. Experiments using fluorescent protein-VIGG fusion protein demonstrated that VIGG is localized in ER and the ER targeting sequence is in the N-terminus. The overexpression of VIGG in Arabidopsis plant led to growth retardation. The rosette leaves of VIGG-overexpressing plants were smaller than those of the control plants and rolled at 42 days after seeding. VIGG-overexpressing plants revealed robustness to ER stress as well as the low expression of ER stress marker proteins, such as the luminal binding proteins. These characteristics of VIGG-overexpressing plants were supported by a microarray experiment that demonstrated the disruption of genes related to ER stress response and flowering, as well as cation mobility, in the plants. Finally, cation homeostasis in the plants was disturbed by the overexpression of VIGG. Taken together, these results suggest that VIGG may disturb cation homeostasis in plant, which is correlated with the robustness to ER stress and growth retardation.

  17. SEAP activity serves for demonstrating ER stress induction by glucolipotoxicity as well as testing ER stress inhibitory potential of therapeutic agents.

    PubMed

    Lenin, Raji; Mohan, Viswanathan; Balasubramanyam, Muthuswamy

    2015-06-01

    Endoplasmic reticulum (ER) stress is emerging as a unifying paradigm and one of the underlying mechanisms in the genesis of diabetes and its complications. While this has prompted the development of ER stress inhibitors, there is a limitation in monitoring of ER stress in vitro and in vivo by reliable methodologies. We validated the secreted alkaline phosphatase (SEAP) activity as a surrogate marker of ER stress in mouse β-TC6 cells exposed to glucolipotoxicity or tunicamycin and studied insulin secretion along with alterations in ER stress markers. SEAP activity assay was measured using the Great EscAPe SEAP kit, insulin levels were determined by Mercodia reagents and mRNA expression of ER stress markers was quantified by real-time PCR. SEAP activity in β-cells was significantly decreased (indicating increased ER stress) on exposure either to glucolipotoxicity or tunicamycin. This was accompanied by an increased mRNA expression of ER stress markers (GRP-78, PERK, IRE1α, ATF6, XBP-1, and CHOP) and decreased insulin secretion. Treating the cells with phenylbutyric acid normalized SEAP activity, decreased mRNA expression of ER stress markers and improved insulin secretion. Interestingly, cells exposed to different classes of anti-diabetes agents or compounds such as resveratrol resisted ER stress. Methylglyoxal also induces ER stress and this was counteracted by aminoguanidine. Out study demonstrates SEAP activity as a novel ER stress monitoring assay to investigate the therapeutic value of agents with ER stress inhibitory potential. Future studies should focus on the exercise of adopting this reporter assay for high-throughput screening mode of drug discovery. PMID:25776571

  18. NASA ER-2: Flying Laboratory for Earth Science Studies and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2007-01-01

    This viewgraph presentation shows views of the ER-2, NASA's Flying Laboratory for Earth Science Studies and Remote Sensing. The presentation briefly reviews the successes of the ER-2, and what the facility provides.

  19. 78 FR 40484 - Determination That METADATE ER (Methylphenidate Hydrochloride) Extended-Release Tablet, 10...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... HUMAN SERVICES Food and Drug Administration Determination That METADATE ER (Methylphenidate... Administration (FDA) has determined that METADATE ER (methylphenidate hydrochloride (HCl)) extended-release... determination will allow FDA to approve abbreviated new drug applications (ANDAs) for methylphenidate...

  20. Measuring Trends in Salaries and Wages in Public Schools: ERS Composite Indicator of Changes. ERS Information Aid.

    ERIC Educational Resources Information Center

    Educational Research Service, Arlington, VA.

    The composite indicator, published annually by the Educational Research Service (ERS), was designed to reflect overall changes in average salaries and wages paid by public school systems. The purpose of this book is to describe the nature of the indicator, how it is compiled on a national and state basis, and how local school systems can compile…

  1. Fukutin-related protein mutations that cause congenital muscular dystrophy result in ER-retention of the mutant protein in cultured cells.

    PubMed

    Esapa, Christopher T; McIlhinney, R A Jeffrey; Blake, Derek J

    2005-01-15

    Mutations in the gene encoding fukutin-related protein (FKRP) cause a spectrum of diseases including congenital muscular dystrophy type 1C (MDC1C), limb girdle muscular dystrophy 2I (LGMD2I) and congenital muscular dystrophies (CMDs) with brain malformations and mental retardation. Although these diseases are associated with abnormal dystroglycan processing, the cellular consequences of the idiosyncratic FKRP mutations have not been determined. Here we show, in cultured cells, that FKRP mutants associated with the more severe disease phenotypes (S221R, A455D, P448L) are retained in the endoplasmic reticulum (ER), whereas the wild-type protein and the mutant L276I that causes LGMD2I are found predominantly in the Golgi apparatus. The ER-retained proteins have a shorter half-life than the wild-type FKRP and are preferentially degraded by the proteasome. Furthermore, calnexin binds preferentially to the ER-retained mutants suggesting that it may participate in the quality control pathway for FKRP. These data provide the first evidence that the ER-retention of mutant FKRP may play a role in the pathogenesis of CMD and potentially explain why the allelic disorder LGMD2I is milder, because the mutated protein is able to reach the Golgi apparatus. PMID:15574464

  2. Prostaglandin EP2 receptor signaling protects human trabecular meshwork cells from apoptosis induced by ER stress through down-regulation of p53.

    PubMed

    Kalouche, Georges; Boucher, Céline; Coste, Annick; Debussche, Laurent; Orsini, Cécile; Baudouin, Christophe; Debeir, Thomas; Vigé, Xavier; Rostène, William

    2016-09-01

    E-prostanoid receptor subtype 2 (EP2) agonists are currently under clinical development as hypotensive agents for the treatment of ocular hypertension. However, the effects of EP2 receptor agonists on trabecular meshwork (TM) alterations leading to primary open-angle glaucoma (POAG) are still unknown. Here, we evaluated whether EP2 receptor activation exhibits protective functions on TM cell death induced by endoplasmic reticulum (ER) stress. We show that the EP2 receptor agonist butaprost protects TM cell death mediated by the ER stress inducer tunicamycin through a cyclic AMP (cAMP)-dependent mechanism, but independent of the classical cAMP sensors, protein kinase A and exchange proteins activated by cAMP. The ER stress-induced intrinsic apoptosis inhibited by the EP2 receptor agonist was correlated with a decreased accumulation of the cellular stress sensor p53. In addition, p53 down-regulation was associated with inhibition of its transcriptional activity, which led to decreased expression of the pro-apoptotic p53-upregulated modulator of apoptosis (PUMA). The stabilization of p53 by nutlin-3a abolished butaprost-mediated cell death protection. In conclusion, we showed that EP2 receptor activation protects against ER stress-dependent mitochondrial apoptosis through down-regulation of p53. The specific inhibition of this pathway could reduce TM alterations observed in POAG patients. PMID:27321910

  3. The Unfolded Protein Response Element IRE1α Senses Bacterial Proteins Invading the ER to Activate RIG-I and Innate Immune Signaling

    PubMed Central

    Cho, Jin A.; Lee, Ann-Hwee; Platzer, Barbara; Cross, Benedict C.S.; Gardner, Brooke M.; De Luca, Heidi; Luong, Phi; Harding, Heather P.; Glimcher, Laurie H.; Walter, Peter; Fiebiger, Edda; Ron, David; Kagan, Jonathan C.; Lencer, Wayne I.

    2013-01-01

    SUMMARY The plasma membrane and all membrane-bound organelles except for the Golgi and endoplasmic reticulum (ER) are equipped with pattern-recognition molecules to sense microbes or their products and induce innate immunity for host defense. Here, we report that inositol-requiring-1α (IRE1α), an ER protein that signals in the unfolded protein response (UPR), is activated to induce inflammation by binding a portion of cholera toxin as it co-opts the ER to cause disease. Other known UPR transducers, including the IRE1α-dependent transcription factor XBP1, are dispensable for this signaling. The inflammatory response depends instead on the RNase activity of IRE1α to degrade endogenous mRNA, a process termed regulated IRE1α-dependent decay (RIDD) of mRNA. The mRNA fragments produced engage retinoic-acid inducible gene 1 (RIG-I), a cyto-solic sensor of RNA viruses, to activate NF-κB and interferon pathways. We propose IRE1α provides for a generalized mechanism of innate immune surveillance originating within the ER lumen. PMID:23684307

  4. The non-apoptotic action of Bcl-xL: regulating Ca(2+) signaling and bioenergetics at the ER-mitochondrion interface.

    PubMed

    Williams, Abasha; Hayashi, Teruo; Wolozny, Daniel; Yin, Bojiao; Su, Tzu-Chieh; Betenbaugh, Michael J; Su, Tsung-Ping

    2016-06-01

    Bcl-2 family proteins are known to competitively regulate Ca(2+); however, the specific inter-organelle signaling pathways and related cellular functions are not fully elucidated. In this study, a portion of Bcl-xL was detected at the ER-mitochondrion interface or MAM (mitochondria-associated ER membrane) in association with type 3 inositol 1,4,5-trisphosphate receptors (IP3R3); an association facilitated by the BH4 and transmembrane domains of Bcl-xL. Moreover, increasing Bcl-xL expression enhanced transient mitochondrial Ca(2+) levels upon ER Ca(2+) depletion induced by short-term, non-apoptotic incubation with thapsigargin (Tg), while concomitantly reducing cytosolic Ca(2+) release. These mitochondrial changes appear to be IP3R3-dependent and resulted in decreased NAD/NADH ratios and higher electron transport chain oxidase activity. Interestingly, extended Tg exposure stimulated ER stress, but not apoptosis, and further enhanced TCA cycling. Indeed, confocal analysis indicated that Bcl-xL translocated to the MAM and increased its interaction with IP3R3 following extended Tg treatment. Thus, the MAM is a critical cell-signaling junction whereby Bcl-xL dynamically interacts with IP3R3 to coordinate mitochondrial Ca(2+) transfer and alters cellular metabolism in order to increase the cells' bioenergetic capacity, particularly during periods of stress. PMID:27155879

  5. Research Advances on Pathways of Nickel-Induced Apoptosis

    PubMed Central

    Guo, Hongrui; Chen, Lian; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan

    2015-01-01

    High concentrations of nickel (Ni) are harmful to humans and animals. Ni targets a number of organs and produces multiple toxic effects. Apoptosis is important in Ni-induced toxicity of the kidneys, liver, nerves, and immune system. Apoptotic pathways mediated by reactive oxygen species (ROS), mitochondria, endoplasmic reticulum (ER), Fas, and c-Myc participate in Ni-induced cell apoptosis. However, the exact mechanism of apoptosis caused by Ni is still unclear. Understanding the mechanism of Ni-induced apoptosis may help in designing measures to prevent Ni toxicity. PMID:26703593

  6. Redirection of peroxisomal alcohol oxidase of Hansenula polymorpha to the secretory pathway.

    PubMed

    van der Heide, Meis; Leão, Adriana N; Van der Klei, Ida J; Veenhuis, Marten

    2007-10-01

    We report on the rerouting of peroxisomal alcohol oxidase (AO) to the secretory pathway of Hansenula polymorpha. Using the leader sequence of the Saccharomyces cerevisiae mating factor alpha (MFalpha) as sorting signal, AO was correctly sorted to the endoplasmic reticulum (ER), which strongly proliferated in these cells. The MFalpha presequence, but not the prosequence, was cleaved from the protein. AO protein was present in the ER as monomers that lacked FAD, and hence was enzymatically inactive. Furthermore, the recombinant AO protein was subject to gradual degradation, possibly because the protein did not fold properly. However, when the S. cerevisiae invertase signal sequence (ISS) was used, secretion of AO protein was observed in conjunction with bulk of the protein being localized to the ER. The amount of secreted AO protein increased with increasing copy numbers of the AO expression cassette integrated into the genome. The secreted AO protein was correctly processed and displayed enzyme activity. PMID:17419772

  7. Localization and interactions between Arabidopsis auxin biosynthetic enzymes in the TAA/YUC-dependent pathway.

    PubMed

    Kriechbaumer, Verena; Botchway, Stanley W; Hawes, Chris

    2016-07-01

    The growth regulator auxin is involved in all key developmental processes in plants. A complex network of a multiplicity of potential biosynthetic pathways as well as transport, signalling plus conjugation and deconjugation lead to a complex and multifaceted system system for auxin function. This raises the question how such a system can be effectively organized and controlled. Here we report that a subset of auxin biosynthetic enzymes in the TAA/YUC route of auxin biosynthesis is localized to the endoplasmic reticulum (ER). ER microsomal fractions also contain a significant percentage of auxin biosynthetic activity. This could point toward a model of auxin function using ER membrane location and subcellular compartmentation for supplementary layers of regulation. Additionally we show specific protein-protein interactions between some of the enzymes in the TAA/YUC route of auxin biosynthesis. PMID:27208541

  8. Site symmetry of Er3+ in In0.5Ga0.5P

    NASA Astrophysics Data System (ADS)

    Jeong, B. S.; Hong, Y. K.; An, J. Y.; Choi, J. C.; Chung, C. H.; Park, H. L.

    1995-01-01

    The site and site symmetry of Er3+ in LPE grown In0.5Ga0.5P have been investigated for the first time through Raman and polarized luminescence spectroscopic techniques. The Er3+ site was found to be ErIn in In0.5Ga0.5P. The site symmetry of Er3+ in In0.5Ga0.5P was positively confirmed asC2v.

  9. SMARCE1 Promotes chicken embryonic gonad development by regulating ER α and AR expression.

    PubMed

    Gong, P; Yang, Y; Lei, W; Feng, Y; Li, S; Peng, X; Gong, Y

    2012-01-01

    SMARCE1 is one of some differentially expressed genes screened from a subtracted cDNA library between females and males during the period of sex differentiation. To understand the potential role of SMARCE1 in avian sex determination and differentiation, over-expression of SMARCE1 was performed in chicken embryos using the RCASBP.B retrovirus. Results showed that SMARCE1 expression was up-regulated in the infected embryonic gonads at the investigated stages (E6.5-E12.5) assessed by quantitative real-time RT-PCR, whole mount in situ hybridization and immunohistochemistry. With the over-expression of SMARCE1, CYP19A1, FOXL2, ERα, and SOX9 expression was significantly up-regulated while AR expression was significantly decreased in the male and/or female chicken gonad. Nevertheless, DMRT1 and AMH expression was not changed after the over-expression of SMARCE1. It is proposed that it might be via the SMARCE1-FOXL2 pathway that CYP19A1 expression was activated, and DMRT1 expression may be independent of the SMARCE1-SOX9 pathway. Meanwhile, the SMARCE1-AR pathway might be antagonized by up-regulated expression of ERα via estrogen-ER/androgen-AR signaling. The results of HE staining showed that the ovarian cortex was thickened and both testis seminiferous cord and interstitial cells were increased with the over-expression of SMARCE1. In conclusion, SMARCE1 can promote chicken embryonic gonad development by regulating the ERα and AR expression. PMID:22584849

  10. Early and sustained exposure to high-sucrose diet triggers hippocampal ER stress in young rats.

    PubMed

    Pinto, Bruno Araújo Serra; Melo, Thamys Marinho; Flister, Karla Frida Torres; França, Lucas Martins; Kajihara, Daniela; Tanaka, Leonardo Yuji; Laurindo, Francisco Rafael Martins; Paes, Antonio Marcus de Andrade

    2016-08-01

    Early-life environmental insults have been shown to promote long-term development of chronic non-communicable diseases, including metabolic disturbances and mental illnesses. As such, premature consumption of high-sugar foods has been associated to early onset of detrimental outcomes, whereas underlying mechanisms are still poorly understood. In the present study, we sought to investigate whether early and sustained exposure to high-sucrose diet promotes metabolic disturbances that ultimately might anticipate neurological injuries. At postnatal day 21, weaned male rats started to be fed a standard chow (10 % sucrose, CTR) or a high-sucrose diet (25 % sucrose, HSD) for 9 weeks prior to euthanasia at postnatal day 90. HSD did not alter weight gain and feed efficiency between groups, but increased visceral, non-visceral and brown adipose tissue accumulation. HSD rats demonstrated elevated blood glucose levels in both fasting and fed states, which were associated to impaired glucose tolerance. Peripheral insulin sensitivity did not change, whereas hepatic insulin resistance was supported by increased serum triglyceride levels, as well as higher TyG index values. Assessment of hippocampal gene expression showed endoplasmic reticulum (ER) stress pathways were activated in HSD rats, as compared to CTR. HSD rats had overexpression of unfolded protein response sensors, PERK and ATF6; ER chaperone, PDIA2 and apoptosis-related genes, CHOP and Caspase 3; but decreased expression of chaperone GRP78. Finally, HSD rats demonstrated impaired neuromuscular function and anxious behavior, but preserved cognitive parameters. In conclusion, our data indicate that early exposure to HSD promote metabolic disturbances, which disrupt hippocampus homeostasis and might precociously affect its neurobehavioral functions. PMID:27154727

  11. Involvement of mitochondrial dysfunction and ER-stress in the physiopathology of equine osteochondritis dissecans (OCD).

    PubMed

    Desjardin, Clémence; Chat, Sophie; Gilles, Mailys; Legendre, Rachel; Riviere, Julie; Mata, Xavier; Balliau, Thierry; Esquerré, Diane; Cribiu, Edmond P; Betch, Jean-Marc; Schibler, Laurent

    2014-06-01

    Osteochondrosis (OC) is a developmental bone disorder affecting several mammalian species including the horse. Equine OC is described as a focal disruption of endochondral ossification, leading to osteochondral lesions (osteochondritis dissecans, OCD) that may release free bodies within the joint. OCD lesions trigger joint swelling, stiffness and lameness and affects about 30% of the equine population. OCD is considered as multifactorial but its physiopathology is still poorly understood and genes involved in genetic predisposition are still unknown. Our study compared two healthy and two OC-affected 18-month-old French Trotters diagnosed with OCD lesions at the intermediate ridge of the distal tibia. A comparative shot-gun proteomic analysis of non-wounded cartilage and sub-chondral bone from healthy (healthy samples) and OC-affected foals (predisposed samples) identified 83 and 53 modulated proteins, respectively. These proteins are involved in various biological pathways including matrix structure and maintenance, protein biosynthesis, folding and transport, mitochondrial activity, energy and calcium metabolism. Transmission electron microscopy revealed typical features of mitochondrial swelling and ER-stress, such as large, empty mitochondria, and hyper-dilated rough endoplasmic reticulum, in the deep zone of both OC lesions and predisposed cartilage. Abnormal fibril organization surrounding chondrocytes and abnormal features at the ossification front were also observed. Combining these findings with quantitative trait loci and whole genome sequencing results identified about 140 functional candidate genes carrying putative damaging mutations in 30 QTL regions. In summary, our study suggests that OCD lesions may result from defective hypertrophic terminal differentiation associated with mitochondrial dysfunction and ER-stress, leading to impaired cartilage and bone biomechanical properties, making them prone to fractures. In addition, 11 modulated proteins and

  12. Cocaine-mediated microglial activation involves the ER stress-autophagy axis.

    PubMed

    Guo, Ming-Lei; Liao, Ke; Periyasamy, Palsamy; Yang, Lu; Cai, Yu; Callen, Shannon E; Buch, Shilpa

    2015-01-01

    Cocaine abuse leads to neuroinflammation, which, in turn, contributes to the pathogenesis of neurodegeneration associated with advanced HIV-1 infection. Autophagy plays important roles in both innate and adaptive immune responses. However, the possible functional link between cocaine and autophagy has not been explored before. Herein, we demonstrate that cocaine exposure induced autophagy in both BV-2 and primary rat microglial cells as demonstrated by a dose- and time-dependent induction of autophagy-signature proteins such as BECN1/Beclin 1, ATG5, and MAP1LC3B. These findings were validated wherein cocaine treatment of BV-2 cells resulted in increased formation of puncta in cells expressing either endogenous MAP1LC3B or overexpressing GFP-MAP1LC3B. Specificity of cocaine-induced autophagy was confirmed by treating cells with inhibitors of autophagy (3-MA and wortmannin). Intriguingly, cocaine-mediated induction of autophagy involved upstream activation of 2 ER stress pathways (EIF2AK3- and ERN1-dependent), as evidenced by the ability of the ER stress inhibitor salubrinal to ameliorate cocaine-induced autophagy. In vivo validation of these findings demonstrated increased expression of BECN1, ATG5, and MAP1LC3B-II proteins in cocaine-treated mouse brains compared to untreated animals. Increased autophagy contributes to cocaine-mediated activation of microglia since pretreatment of cells with wortmannin resulted in decreased expression and release of inflammatory factors (TNF, IL1B, IL6, and CCL2) in microglial cells. Taken together, our findings suggest that cocaine exposure results in induction of autophagy that is closely linked with neuroinflammation. Targeting autophagic proteins could thus be considered as a therapeutic strategy for the treatment of cocaine-related neuroinflammation diseases. PMID:26043790

  13. Glucocorticoids alleviate intestinal ER stress by enhancing protein folding and degradation of misfolded proteins

    PubMed Central

    Das, Indrajit; Png, Chin Wen; Oancea, Iulia; Hasnain, Sumaira Z.; Lourie, Rohan; Proctor, Martina; Eri, Rajaraman D.; Sheng, Yong; Crane, Denis I.; Florin, Timothy H.

    2013-01-01

    Endoplasmic reticulum (ER) stress in intestinal secretory cells has been linked with colitis in mice and inflammatory bowel disease (IBD). Endogenous intestinal glucocorticoids are important for homeostasis and glucocorticoid drugs are efficacious in IBD. In Winnie mice with intestinal ER stress caused by misfolding of the Muc2 mucin, the glucocorticoid dexamethasone (DEX) suppressed ER stress and activation of the unfolded protein response (UPR), substantially restoring goblet cell Muc2 production. In mice lacking inflammation, a glucocorticoid receptor antagonist increased ER stress, and DEX suppressed ER stress induced by the N-glycosylation inhibitor, tunicamycin (Tm). In cultured human intestinal secretory cells, in a glucocorticoid receptor-dependent manner, DEX suppressed ER stress and UPR activation induced by blocking N-glycosylation, reducing ER Ca2+ or depleting glucose. DEX up-regulated genes encoding chaperones and elements of ER-associated degradation (ERAD), including EDEM1. Silencing EDEM1 partially inhibited DEX’s suppression of misfolding-induced ER stress, showing that DEX enhances ERAD. DEX inhibited Tm-induced MUC2 precursor accumulation, promoted production of mature mucin, and restored ER exit and secretion of Winnie mutant recombinant Muc2 domains, consistent with enhanced protein folding. In IBD, glucocorticoids are likely to ameliorate ER stress by promoting correct folding of secreted proteins and enhancing removal of misfolded proteins from the ER. PMID:23650437

  14. ER-Mitochondria contact sites: A new regulator of cellular calcium flux comes into play.

    PubMed

    Krols, Michiel; Bultynck, Geert; Janssens, Sophie

    2016-08-15

    Endoplasmic reticulum (ER)-mitochondria membrane contacts are hotspots for calcium signaling. In this issue, Raturi et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201512077) show that the thioredoxin TMX1 inhibits the calcium pump SERCA2b at ER-mitochondria contact sites, thereby affecting ER-mitochondrial calcium transfer and mitochondrial bioenergetics. PMID:27528654

  15. The E3 Ubiquitin Ligase IDOL Induces the Degradation of the Low Density Lipoprotein Receptor Family Members VLDLR and ApoER2*

    PubMed Central

    Hong, Cynthia; Duit, Sarah; Jalonen, Pilvi; Out, Ruud; Scheer, Lilith; Sorrentino, Vincenzo; Boyadjian, Rima; Rodenburg, Kees W.; Foley, Edan; Korhonen, Laura; Lindholm, Dan; Nimpf, Johannes; van Berkel, Theo J. C.; Tontonoz, Peter; Zelcer, Noam

    2010-01-01

    We have previously identified the E3 ubiquitin ligase-inducible degrader of the low density lipoprotein receptor (LDLR) (Idol) as a post-translational modulator of LDLR levels. Idol is a direct target for regulation by liver X receptors (LXRs), and its expression is responsive to cellular sterol status independent of the sterol-response element-binding proteins. Here we demonstrate that Idol also targets two closely related LDLR family members, VLDLR and ApoE receptor 2 (ApoER2), proteins implicated in both neuronal development and lipid metabolism. Idol triggers ubiquitination of the VLDLR and ApoER2 on their cytoplasmic tails, leading to their degradation. We further show that the level of endogenous VLDLR is sensitive to cellular sterol content, Idol expression, and activation of the LXR pathway. Pharmacological activation of the LXR pathway in mice leads to increased Idol expression and to decreased Vldlr levels in vivo. Finally, we establish an unexpected functional link between LXR and Reelin signaling. We demonstrate that LXR activation results in decreased Reelin binding to VLDLR and reduced Dab1 phosphorylation. The identification of VLDLR and ApoER2 as Idol targets suggests potential roles for this LXR-inducible E3 ligase in the central nervous system in addition to lipid metabolism. PMID:20427281

  16. Involvement of ER stress in retinal cell death

    PubMed Central

    Shimazawa, Masamitsu; Inokuchi, Yuta; Ito, Yasushi; Murata, Hiroshi; Aihara, Makoto; Miura, Masayuki; Araie, Makoto

    2007-01-01

    Purpose To clarify whether endoplasmic reticulum (ER) stress is involved in retinal cell death, using cultured retinal ganglion cells (RGC-5, a rat ganglion cell line transformed with E1A virus), and transgenic mice ER stress-activated indicator (ERAI) mice carrying a human XBP1 and venus a variant of green fluorescent protein (GFP) fusion gene. Methods RGC-5 damage was induced by tunicamycin, and cell viability was measured by double nuclear staining (Hoechst 33342 and either YO-PRO-1 or propidium iodide). The expressions of glucose-regulated protein 78(GRP78)/BiP, the phosphorylated form of eukaryotic initiation factor 2α (p-eIF2α), and C/EBP-homologous (CHOP) protein after tunicamycin (in vitro or in vivo) or N-methyl-D-aspartate (NMDA; in vivo) treatment were measured using immunoblot or immunostaining. ERAI mice carrying the F-XBP1-DBD-venus expression gene were used to monitor ER-stress in vivo. Twenty-four hours after intravitreal injection of tunicamycin or NMDA, or after raising intraocular pressure (IOP), the retinal fluorescence intensity was visualized in anesthetized animals using an ophthalmoscope and in retinal flatmount or cross-section specimens using laser confocal microscopy. Results Treatment with tunicamycin induced apoptotic cell death in RGC-5 and also induced production of ER stress-related proteins (BiP, the phosphorylated form of eIF2α, and CHOP protein). In vivo, tunicamycin induced retinal ganglion cell (RGC) loss and thinning of the inner plexiform layer, 7 days after intravitreal injection. In flatmounted retinas of ERAI mice, the fluorescence intensity arising from the XBP-1-venus fusion protein, indicating ER-stress activation, was increased at 24 h after tunicamycin, NMDA, or IOP elevation. In transverse cross-sections from ERAI mice, the fluorescence intensity was first increased in cells of the ganglion cell and inner plexiform layers at 12 and 24 h, respectively, after NMDA injection, and it was localized to ganglion and

  17. Er and Yb isotope fractionation in planetary materials

    NASA Astrophysics Data System (ADS)

    Albalat, Emmanuelle; Telouk, Philippe; Albarède, Francis

    2012-11-01

    Terrestrial planets are depleted in volatile elements relative to solar abundances. Little is known, however, about volatility at the high temperatures relevant to asteroidal collisions and to the giant lunar impact. Although refractory rare-earth elements have overall similar crystallochemical properties, some differ in their temperatures of condensation from the nebular gas. This is the case for Yb, which condenses at ˜1490K and in the vapor is mostly in elemental form. By contrast, Er, largely present as ErO, condenses at ˜1660K. We analyzed the Er and Yb isotopic compositions in 33 terrestrial basalts, garnets, different classes of chondrites and achondrites, and lunar samples by MC-ICP-MS. The range of mass-dependent isotope fractionation is larger for Yb (0.43‰ per amu) than Er (0.23‰) isotopes. For terrestrial rocks, a positive correlation between δYb and La/Yb suggests that the isotopic differences between Er and Yb can be accounted for by the presence of small fractions of Yb2+. Yb is isotopically heavy in kimberlite and light in garnets. Ytterbium behaves similarly to Fe, with Yb3+ being more incompatible than the much less abundant Yb2+. In addition, the coexistence of divalent and trivalent sites in the garnet structure and the preference of heavy isotopes for stable bonds makes Yb in garnet isotopically light. The deficit of heavy Yb isotopes in lunar basaltic samples relative to the Earth, chondrites, and eucrites provides new evidence that the Moon formed by the condensation of silicate vapor in the aftermath of the giant lunar impact. Separation of vapor from melt and of heavy from light isotopes is first expected during the adiabatic expansion of the initial vapor plume. Subsequently, friction between melt and gas tends to further enrich the Moon feeding zone in silicate vapor to compensate the inward migration of melt out of the pre-lunar disk. A major consequence of interpreting the present lunar data by vapor/melt segregation is that the

  18. Identification of novel estrogen receptor (ER) agonists that have additional and complementary anti-cancer activities via ER-independent mechanism.

    PubMed

    Kim, Taelim; Kim, Hye-In; An, Ji-Young; Lee, Jun; Lee, Na-Rae; Heo, Jinyuk; Kim, Ji-Eun; Yu, Jihyun; Lee, Yong Sup; Inn, Kyung-Soo; Kim, Nam-Jung

    2016-04-01

    In this study, a series of bis(4-hydroxy)benzophenone oxime ether derivatives such as 12c, 12e and 12h were identified as novel estrogen receptor (ER) agonists that have additional and complementary anti-proliferative activities via ER-independent mechanism in cancer cells. These compounds are expected to overcome the therapeutic limitation of existing ER agonists such as estradiol and tamoxifen, which have been known to induce the proliferation of cancer cells. PMID:26905830

  19. Efficient visible upconversion luminescence in Er3+ and Er3+/Yb3+ co-doped Y2O3 phosphors obtained by solution combustion reaction

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Haritha, P.; Venkatramu, V.; Kim, S. H.

    Combustion derived Er3+ -doped Y2O3 and Er3+/Yb3+co-doped Y2O3 powders have been characterized by X-ray diffraction, energy dispersive X-ray analysis, Fourier transform infrared spectroscopy and laser excited spectroscopy. Formation of Y2O3 phosphor was confirmed by X-ray diffraction and energy dispersive X-ray analysis. The vibrational properties of Y2O3 powder was studied by Fourier transform infrared spectroscopy. The luminescence spectra of Er3+ -doped and Er3+/Yb3+ co-doped Y2O3 powders were studied under 379 nm excitation. The strong up-conversion luminescence for Er3+ -doped and Er3+/Yb3+ co-doped Y2O3 powders have been observed under 978 nm laser excitation. The effect of Yb3+ addition on optical and luminescence properties of Er3+:Y2O3 powders were studied. The ratio of red to green intensity has been enhanced when Er3+ -doped Y2O3 is co-doped with Yb3+ ions. The effect of co-doping of Yb3+ ions on the visible luminescence intensity of Er3+ has been studied and the mechanism responsible for the variation in the green and red intensity is discussed.

  20. Efficient visible upconversion luminescence in Er3+ and Er3+/Yb3+ co-doped Y2O3 phosphors obtained by solution combustion reaction.

    PubMed

    Singh, Vijay; Haritha, P; Venkatramu, V; Kim, S H

    2014-05-21

    Combustion derived Er(3+) -doped Y2O3 and Er(3+)/Yb(3+)co-doped Y2O3 powders have been characterized by X-ray diffraction, energy dispersive X-ray analysis, Fourier transform infrared spectroscopy and laser excited spectroscopy. Formation of Y2O3 phosphor was confirmed by X-ray diffraction and energy dispersive X-ray analysis. The vibrational properties of Y2O3 powder was studied by Fourier transform infrared spectroscopy. The luminescence spectra of Er(3+) -doped and Er(3+)/Yb(3+) co-doped Y2O3 powders were studied under 379nm excitation. The strong up-conversion luminescence for Er(3+) -doped and Er(3+)/Yb(3+) co-doped Y2O3 powders have been observed under 978nm laser excitation. The effect of Yb(3+) addition on optical and luminescence properties of Er(3+):Y2O3 powders were studied. The ratio of red to green intensity has been enhanced when Er(3+) -doped Y2O3 is co-doped with Yb(3+) ions. The effect of co-doping of Yb(3+) ions on the visible luminescence intensity of Er(3+) has been studied and the mechanism responsible for the variation in the green and red intensity is discussed. PMID:24682034

  1. Development of a stable ERroGFP variant suitable for monitoring redox dynamics in the ER

    PubMed Central

    Hoseki, Jun; Oishi, Asami; Fujimura, Takaaki; Sakai, Yasuyoshi

    2016-01-01

    The endoplasmic reticulum (ER) is an essential organelle for cellular metabolic homeostasis including folding and maturation of secretory and membrane proteins. Disruption of ER proteostasis has been implicated in the pathogenesis of various diseases such as diabetes and neurodegenerative diseases. The ER redox state, which is an oxidative environment suitable for disulfide-bond formation, is essential for ER protein quality control. Hence, detection of the ER redox state, especially in living cells, is essential to understand the mechanism by which the redox state of the ER is maintained. However, methods to detect the redox state of the ER have not been well-established because of inefficient folding and stability of roGFP variants with oxidative redox potential like roGFP-iL. Here we have improved the folding efficiency of ER-targeted roGFP-iL (ERroGFP-iL) in cells by introducing superfolder GFP (sfGFP) mutations. Four specific amino acid substitutions (S30R, Y39N, T105N and I171V) greatly improved folding efficiency in Escherichia coli and in the ER of HeLa cells, as well as the thermostability of the purified proteins. Introduction of these mutations also enhanced the dynamic range for redox change both in vitro and in the ER of living cells. ER-targeted roGFP-S4 (ERroGFP-S4) possessing these four mutations could detect physiological redox changes within the ER. ERroGFP-S4 is therefore a novel probe suitable for monitoring redox change in the ER. ERroGFP-S4 can be applied to detect aberrant ER redox states associated with various pathological conditions and to identify the mechanisms used to maintain the redox state of the ER. PMID:26934978

  2. Brucella suis vaccine strain S2-infected immortalized caprine endometrial epithelial cell lines induce non-apoptotic ER-stress.

    PubMed

    Wang, Xiangguo; Lin, Pengfei; Yin, Yanlong; Zhou, Jinhua; Lei, Lanjie; Zhou, Xudong; Jin, Yaping; Wang, Aihua

    2015-05-01

    Brucella, which is regarded as an intracellular pathogen responsible for a zoonotic disease called brucellosis, survives and proliferates within several types of phagocytic and non-phagocytic cells. Brucella infects not only their preferred hosts but also other domestic and wild animal species, inducing abortion and infertility. Therefore, the interaction between uterine cells and Brucella is important for understanding the pathogenesis of this disease. In this study, we describe the Brucella suis vaccine strain S2 (B.suis.S2) infection and replication in the immortalized caprine endometrial epithelial cell line hTERT-EECs and the induced cellular and molecular response modulation in vitro. We found that B.suis S2 was able to infect and replicate to high titers and inhibit the proliferation of EECs and induce non-apoptotic pathways, as determined by B.suis.S2 detection using MTT and acridine orange/ethidium bromide (AO/EB) staining and flow cytometry. We explored the evidence of non-apoptotic pathways using real-time quantitative RT-PCR and by western blot analysis. Finally, we discovered the over-expression of GRP78, ATF4, ATF6, PERK, eIF2α, CHOP, and cytochrome c (Cyt-c) but not IRE1, xbp-1, and caspase-3 in B.suis.S2 (HK)-attacked and B.suis.S2-infected cells, suggesting that the molecular mechanism of ER stress sensor activation by B.suis.S2 is basically concomitant with that by B.suis.S2 (HK) and that ER stress, especially the PERK pathway, plays an important role in the process of B.suis.S2 infecting EEC, which may, in part, explain the role of the uterus in the pathogenesis of B.suis.S2. PMID:25633898

  3. Taxol induces paraptosis independent of both protein synthesis and MAPK pathway.

    PubMed

    Sun, Qingrui; Chen, Tongsheng; Wang, Xiaoping; Wei, Xunbin

    2010-02-01

    Our recent studies have shown that high concentration of taxol induced a caspase-independent paraptosis-like cell death and cytoplasmic vacuolization derived predominantly from endoplasmic reticulum (ER) swelling in human lung carcinoma cell lines (ASTC-a-1). In this report, we further explored the relationship between taxol-induced cell death and vacuolization, and the roles of protein synthesis, mitogen-activated protein kinase kinases (MEK), c-jun N-terminal kinase (JNK) and P38 in taxol-induced paraptosis. Enhanced green fluorescent protein (EGFP) was used to probe the cell morphological change, while ER-targeted red fluorescent protein (er-RFP) was used to probe ER spatial distribution. Real-time monitoring of the ER swelling dynamics during the formation of vacuolization inside single living cells co-expressing EGFP and er-RFP further demonstrated that taxol-induced cytoplasmic vacuolization was from the ER restructuring due to fusion and swelling. PI staining showed that taxol-induced vacuolization was not necrosis. These results further demonstrated that the taxol-induced cell death was neither apoptosis nor necrosis, and fitted the criteria of paraptosis characterized by cytoplasmic vacuolization, caspase-independence, lack of apoptotic morphology and insensitivity to broad caspase inhibitor. Our data further indicated that taxol-induced paraptosis required neither protein synthesis nor the participation of MEK, JNK, and P38, which was different from the insulin-like growth factor I receptor (IGFIR)-induced paraptosis. These results suggest that high concentration of taxol activates an alternative paraptotic cell death pathway. PMID:19918793

  4. Multiple magnetic transitions in Er2Ni2Pb

    NASA Astrophysics Data System (ADS)

    Chinchure, Aravind D.; Muñoz-Sandoval, E.; Mydosh, J. A.

    2001-07-01

    We have fabricated single-phase samples and measured the bulk properties for one (Er) of a series of ternary, heavy rare-earth, 221 ``plumbide'' intermetallic compounds R2Ni2Pb (R=rare earths). These materials form in the orthorhombic (space group Cmmm) structure which is isostructural to Mn2AlB2 compounds. Our results of susceptibility, magnetization, heat capacity, and (magneto) resistivity on Er2Ni2Pb show (sharp) multiple antiferromagnetic transitions and strong field dependences in all bulk properties for the temperature range 2-10 K. We relate this magnetic behavior to the unusual R symmetry (partially frustrated) of the highly anisotropic plumbide crystal structure.

  5. Techniques and applications of SAR interferometry for ERS-1

    NASA Technical Reports Server (NTRS)

    Werner, Charles L.; Small, David L.; Rosen, Paul A.; Hensley, Scott; Zebker, Howard A.

    1993-01-01

    The ERS-1 Synthetic Aperture Radar (SAR) demonstrated that it is possible to measure high resolution topography over large areas using interferometry with repeat orbit data sets. Given that the ERS-1 orbit is known with high precision, an automatic system for generation of interferograms is presented. Least squares estimation using ground control points provides an accurate method for determining the precise interferometric baseline. The system parameters which affect the accuracy of the Digital Elevation Models (DEM's) are errors in the interferometric baseline, decorrelation caused by baseline separation, thermal noise, and surface change. An adaptive filter based on the local interferometric coherence was developed to improve phase unwrapping of the interferogram. Final accuracies of the DEM's generated for single scene pairs in Alaska (U.S.) and Bonn (Germany) are on the order of 5 to 10 m.

  6. Polarization maintaining linear cavity Er-doped fiber femtosecond laser

    NASA Astrophysics Data System (ADS)

    Jang, Heesuk; Jang, Yoon-Soo; Kim, Seungman; Lee, Keunwoo; Han, Seongheum; Kim, Young-Jin; Kim, Seung-Woo

    2015-10-01

    We present a polarization-maintaining (PM) type of Er-doped fiber linear oscillator designed to produce femtosecond laser pulses with high operational stability. Mode locking is activated using a semiconductor saturable absorber mirror (SESAM) attached to one end of the linear PM oscillator. To avoid heat damage, the SESAM is mounted on a copper-silicon-layered heat sink and connected to the linear oscillator through a fiber buffer dissipating the residual pump power. A long-term stability test is performed to prove that the proposed oscillator design maintains a soliton-mode single-pulse operation without breakdown of mode locking over a week period. With addition of an Er-doped fiber amplifier, the output power is raised to 180 mW with 60 fs pulse duration, from which an octave-spanning supercontinuum is produced.

  7. Er:YAG and adhesion in conservative dentistry : clinical overview

    PubMed Central

    Fornaini, Carlo

    2013-01-01

    The notion of utilizing laser technology in conservative dentistry was proposed in 1990 by Hibst and Keller, who introduced the possibility of using an Er:YAG laser as alternative to conventional instruments such as the turbine and micro-motor. In subsequent years a continuing effort has been made by clinicians, researchers and commercial companies to improve the technology. The aim of this clinical study is to demonstrate, by the description of different clinical cases, the possibilities and the advantages of using Er:YAG lasers in conservative dentistry and to show that better results may be achieved in terms of stronger adhesion, less invasiveness, reduced pain as well as greater comfort and satisfaction of patients. PMID:24155547

  8. Preliminary analysis of ERS-1 SAR for forest ecosystem studies

    NASA Technical Reports Server (NTRS)

    Dobson, M. G.; Pierce, Leland; Sarabandi, Kamal; Ulaby, Fawwaz T.; Sharik, Terry

    1992-01-01

    An image obtained by the C-band VV-polarized ERS-1 SAR is examined with respect to potential land applications. A scene obtained near noon on August 15, 1991, along the U.S.-Canadian border near Sault Ste. Marie is calibrated relative to an array of trihedral corner reflectors and active radar calibrators distributed across the swath. Extensive contemporaneous ground observations of forest stands are used to predict the radar backscattering coefficient sigma at the time of the SAR overpass using a first-order vector radiative transfer model. These predictions generally agree with the calibrated ERS-1 data to within 1 dB. It is demonstrated that the dynamic range of sigma is sufficient to perform limited discrimination of various forest and grassland communities even for a single-date observation. Furthermore, retrieval of near-surface soil moisture is feasible for grass-covered soils when plant biomass is less than 1 tonne/ha.

  9. Thermal lensing and stress in Cr,Er:YSGG

    NASA Astrophysics Data System (ADS)

    Gollihar, William A.; Margo, Satrijo T.; DeShazer, Larry G.; Kennedy, Chandler J.

    1995-04-01

    Thermal and stress lensing effects have been measured in a Cr,Er:YSGG rod by observing a transmitted 1064 nm Nd:YAG beam diverging from an operating Cr,Er:YSGG laser. The results compare favorably with theory and estimated thermal-optic properties of YSGG, which is intermediate between YAG and GSGG. Numerical simulations of the laser agree substantially with the threshold and power observed and show a heat generation rate which is consistent with our observations of lensing. Thermal fracture of the rod has been observed on several occasions, leading to an estimate of the thermal fracture figure of merit which is also intermediate between YAG and GSGG. Back focal distances of less than 20 cm occur in the vicinity of half the thermal rupture limit.

  10. Atmospheric Ionizing Radiation (AIR) ER-2 Preflight Analysis

    NASA Technical Reports Server (NTRS)

    Tai, Hsiang; Wilson, John W.; Maiden, D. L.

    1998-01-01

    Atmospheric ionizing radiation (AIR) produces chemically active radicals in biological tissues that alter the cell function or result in cell death. The AIR ER-2 flight measurements will enable scientists to study the radiation risk associated with the high-altitude operation of a commercial supersonic transport. The ER-2 radiation measurement flights will follow predetermined, carefully chosen courses to provide an appropriate database matrix which will enable the evaluation of predictive modeling techniques. Explicit scientific results such as dose rate, dose equivalent rate, magnetic cutoff, neutron flux, and air ionization rate associated with those flights are predicted by using the AIR model. Through these flight experiments, we will further increase our knowledge and understanding of the AIR environment and our ability to assess the risk from the associated hazard.

  11. Tunable eye-safe Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Němec, M.; Šulc, J.; Indra, L.; Fibrich, M.; Jelínková, H.

    2015-01-01

    Er:YAG crystal was investigated as the gain medium in a diode (1452 nm) pumped tunable laser. The tunability was reached in an eye-safe region by an intracavity birefringent filter. The four tuning bands were obtained peaking at wavelengths 1616, 1632, 1645, and 1656 nm. The broadest continuous tunability was 6 nm wide peaking at 1616 nm. The laser was operating in a pulsed regime (10 ms pulse length, 10 Hz repetition rate). The maximum mean output power was 26.5 mW at 1645 nm. The constructed system demonstrated the tunability of a resonantly diode-pumped Er:YAG laser which could be useful in the development of compact diode-pumped lasers for spectroscopic applications.

  12. 100-megawatt power Q-switched Er-glass laser

    NASA Astrophysics Data System (ADS)

    Taboada, John; Taboada, John M.; Stolarski, David J.; Zohner, Justin J.; Chavey, Lucas J.; Hodnett, Harvey M.; Noojin, Gary D.; Thomas, Robert J.; Kumru, Semih S.; Cain, Clarence P.

    2006-02-01

    A very high energy Q-switched Er-glass laser is reported. We incorporated a rotating, resonant mirror/Porro-cavity reflector optical arrangement to achieve very high shutter speeds on the cavity Q of a laser designed for energetic, flashlamp-pumped, 600-μs, 1540-nm pulses. Reproducible 3.75-J, 35-ns, 1533-nm laser pulses were obtained at a repetition rate less than 1 minute. Our work shows that reliable, very high energy, Q-switched, Er-glass laser pulses at 1533 nm can be generated mechanically with no apparent damage to laser cavity components. We demonstrate the applications of this "eye safe" wavelength to energetic processes such as LIBS and materials processing. The laser could also serve as a new tool for bioeffects studies and targeting applications.

  13. Alaska SAR processor implementation of E-ERS-1

    NASA Technical Reports Server (NTRS)

    Cuddy, David; Chen, Ming-Je; Bicknell, Tom

    1992-01-01

    The synthetic aperture radar (SAR) data processing algorithm used by the Alaska SAR Facility (ASF) for the European Space Agency's first Remote-Sensing Satellite (E-ERS-1) SAR data are examined. Preprocessing highlights two features: signal measurement, which includes signal-to-noise ratio, replica measurement, and noise measurement; and Doppler measurement, which includes clutter lock and autofocus. The custom pipeline architecture performs the main processing with controls at the input interface, range correlator, corner-turn memory, azimuth correlator, and multi-look memory. The control software employs a flexible control scheme. The Committee on Earth Observation Satellites (CEOS) format encapsulates the ASF products. System performance for SAR image processing of E-ERS-1 data is reviewed.

  14. Er-doped planar waveguides for power amplifier applications

    NASA Astrophysics Data System (ADS)

    Mackenzie, J. I.; Murugan, G. S.; Yu, A. W.; Abshire, J. B.

    2013-03-01

    New devices are required to provide effective tools for DIAL or LIDAR measurements from space, which will enable improved mapping of the concentration and distribution of CO2 in our atmosphere. Here we present characteristics of Er-doped thin film waveguides, with an extended gain bandwidth, which are applicable to planar waveguide power amplifiers for wavelengths around the 1572 nm CO2 absorption peaks. Planar waveguide films have been fabricated by sputtering of fluorophosphate and tellurite based glasses onto oxidised silicon wafers, and their properties characterized. The deposition parameters for undoped and Er,Yb-doped films have been assessed and studied, achieving losses of <1.5 dB/cm at 633 nm for the as deposited waveguides. A comparison between the two host materials is made and the potential performance discussed.

  15. Transformation pathways of liposomes.

    PubMed

    Hotani, H

    1984-09-01

    Liposomes undergoing transformation were observed by dark-field light microscopy in order to study the role of lipid in morphogenesis of biological vesicular structures. Liposomes were found to transform sequentially in a well-defined manner through one of several transformation pathways. A circular biconcave form was an initial shape in all the pathways and it transformed into a stable thin flexible filament or small spheres via a variety of regularly shaped vesicles which possessed geometrical symmetry. The transformation was reversible up to a certain point in each pathway. Osmotic pressure was found to be the driving force for the transformations. Biological membrane vesicles such as trypsinized red cell ghosts also transformed by similar pathways. PMID:6548263

  16. Updating the Wnt pathways

    PubMed Central

    Yu, Jia; Virshup, David M.

    2014-01-01

    In the three decades since the discovery of the Wnt1 proto-oncogene in virus-induced mouse mammary tumours, our understanding of the signalling pathways that are regulated by the Wnt proteins has progressively expanded. Wnts are involved in an complex signalling network that governs multiple biological processes and cross-talk with multiple additional signalling cascades, including the Notch, FGF (fibroblast growth factor), SHH (Sonic hedgehog), EGF (epidermal growth factor) and Hippo pathways. The Wnt signalling pathway also illustrates the link between abnormal regulation of the developmental processes and disease manifestation. Here we provide an overview of Wnt-regulated signalling cascades and highlight recent advances. We focus on new findings regarding the dedicated Wnt production and secretion pathway with potential therapeutic targets that might be beneficial for patients with Wnt-related diseases. PMID:25208913

  17. PDT: death pathways

    NASA Astrophysics Data System (ADS)

    Kessel, David

    2007-02-01

    Cellular targets of photodynamic therapy include mitochondria, lysosomes, the endoplasmic reticulum (ER) and the plasma membrane. PDT can evoke necrosis, autophagy and apoptosis, or combinations of these, depending on the PDT dose, the site(s) of photodamage and the cellular phenotype. It has been established that loss of viability occurs even when the apoptotic program is inhibited. Studies assessing effects of ER or mitochondrial photodamage, involving loss of Bcl-2 function, indicate that low-dose PDT elicited a rapid autophagic response in L1210 cells. This was attributed to the ability of autophagy to recycle photodamaged organelles, and there was partial protection from loss of viability. This effect was not observed in L1210/Atg7, where autophagy was silenced. At higher PDT doses, apoptotic cells were observed within 60 min in both cell lines, but more so in L1210. The ability of L1210 cells to undergo autophagy did not offer protection from cell death at the higher PDT dose. Previous studies had indicated that autophagy can contribute to cell death, since L1210 cells that do not undergo an initial apoptotic response often contain multiple autophagic vacuoles 24 hr later. With L1210/Atg7, apoptosis alone may account for the loss of viability at an LD 90 PDT dose.

  18. PHLDA3 overexpression in hepatocytes by endoplasmic reticulum stress via IRE1–Xbp1s pathway expedites liver injury

    PubMed Central

    Han, Chang Yeob; Lim, Sang Woo; Koo, Ja Hyun; Kim, Won; Kim, Sang Geon

    2016-01-01

    Objective Endoplasmic reticulum (ER) stress is involved in liver injury, but molecular determinants are largely unknown. This study investigated the role of pleckstrin homology-like domain, family A, member-3 (PHLDA3), in hepatocyte death caused by ER stress and the regulatory basis. Design Hepatic PHLDA3 expression was assessed in HCV patients with hepatitis and in several animal models with ER stress. Immunoblottings, PCR, reporter gene, chromatin immunoprecipitation (ChIP) and mutation analyses were done to explore gene regulation. The functional effect of PHLDA3 on liver injury was validated using lentiviral delivery of shRNA. Results PHLDA3 was overexpressed in relation to hepatocyte injury in patients with acute liver failure or liver cirrhosis or in toxicant-treated mice. In HCV patients with liver injury, PHLDA3 was upregulated in parallel with the induction of ER stress marker. Treatment of mice with tunicamycin (Tm) (an ER stress inducer) increased PHLDA3 expression in the liver. X box-binding protein-1 (Xbp1) was newly identified as a transcription factor responsible for PHLDA3 expression. Inositol-requiring enzyme 1 (IRE1) (an upstream regulator of Xbp1) was required for PHLDA3 induction by Tm, whereas other pathways (c-Jun N-terminal kinase (JNK), protein kinase RNA-like endoplasmic reticulum kinase (PERK) and activating transcription factor 6 (ATF6)) were not. PHLDA3 overexpression correlated with the severity of hepatocyte injury in animal or cell model of ER stress. In p53-deficient cells, ER stress inducers transactivated PHLDA3 with a decrease in cell viability. ER stress-induced hepatocyte death depended on serine/threonine protein kinase B (Akt) inhibition by PHLDA3. Lentiviral delivery of PHLDA3 shRNA to mice abrogated p-Akt inhibition in the liver by Tm, attenuating hepatocyte injury. Conclusions ER stress in hepatocytes induces PHLDA3 via IRE1–Xbp1s pathway, which facilitates liver injury by inhibiting Akt. PMID:25966993

  19. Endoplasmic reticulum stress-regulated CXCR3 pathway mediates inflammation and neuronal injury in acute glaucoma

    PubMed Central

    Ha, Y; Liu, H; Xu, Z; Yokota, H; Narayanan, S P; Lemtalsi, T; Smith, S B; Caldwell, R W; Caldwell, R B; Zhang, W

    2015-01-01

    Acute glaucoma is a leading cause of irreversible blindness in East Asia. The mechanisms underlying retinal neuronal injury induced by a sudden rise in intraocular pressure (IOP) remain obscure. Here we demonstrate that the activation of CXCL10/CXCR3 axis, which mediates the recruitment and activation of inflammatory cells, has a critical role in a mouse model of acute glaucoma. The mRNA and protein expression levels of CXCL10 and CXCR3 were significantly increased after IOP-induced retinal ischemia. Blockade of the CXCR3 pathway by deleting CXCR3 gene significantly attenuated ischemic injury-induced upregulation of inflammatory molecules (interleukin-1β and E-selectin), inhibited the recruitment of microglia/monocyte to the superficial retina, reduced peroxynitrite formation, and prevented the loss of neurons within the ganglion cell layer. In contrast, intravitreal delivery of CXCL10 increased leukocyte recruitment and retinal cell apoptosis. Inhibition of endoplasmic reticulum (ER) stress with chemical chaperones partially blocked ischemic injury-induced CXCL10 upregulation, whereas induction of ER stress with tunicamycin enhanced CXCL10 expression in retina and primary retinal ganglion cells. Interestingly, deleting CXCR3 attenuated ER stress-induced retinal cell death. In conclusion, these results indicate that ER stress-medicated activation of CXCL10/CXCR3 pathway has an important role in retinal inflammation and neuronal injury after high IOP-induced ischemia. PMID:26448323

  20. Traffic pattern of cystic fibrosis transmembrane regulator through the early exocytic pathway.

    PubMed

    Bannykh, S I; Bannykh, G I; Fish, K N; Moyer, B D; Riordan, J R; Balch, W E

    2000-11-01

    The pathway of transport of the cystic fibrosis transmembrane regulator (CFTR) through the early exocytic pathway has not been examined. In contrast to most membrane proteins that are concentrated during export from the ER and therefore readily detectable at elevated levels in pre-Golgi intermediates and Golgi compartments, wild-type CFTR could not be detected in these compartments using deconvolution immunofluorescence microscopy. To determine the basis for this unusual feature, we analyzed CFTR localization using quantitative immunoelectron microscopy (IEM). We found that wild-type CFTR is present in pre-Golgi compartments and peripheral tubular elements associated with the cis and trans faces of the Golgi stack, albeit at a concentration 2-fold lower than that found in the endoplasmic reticulum (ER). delta F508 CFTR, a mutant form that is not efficiently delivered to the cell surface and the most common mutation in cystic fibrosis, could also be detected at a reduced concentration in pre-Golgi intermediates and peripheral cis Golgi elements, but not in post-Golgi compartments. Our results suggest that the low level of wild-type CFTR in the Golgi region reflects a limiting step in selective recruitment by the ER export machinery, an event that is largely deficient in delta F508. We raise the possibility that novel modes of selective anterograde and retrograde traffic between the ER and the Golgi may serve to regulate CFTR function in the early secretory compartments. PMID:11208075

  1. Roles of STAT3 in Protein Secretion Pathways during the Acute-Phase Response

    PubMed Central

    Ahyi, Ayele-Nati N.; Quinton, Lee J.; Jones, Matthew R.; Ferrari, Joseph D.; Pepper-Cunningham, Zachary A.; Mella, Juan R.; Remick, Daniel G.

    2013-01-01

    The acute-phase response is characteristic of perhaps all infections, including bacterial pneumonia. In conjunction with the acute-phase response, additional biological pathways are induced in the liver and are dependent on the transcription factors STAT3 and NF-κB, but these responses are poorly understood. Here, we demonstrate that pneumococcal pneumonia and other severe infections increase expression of multiple components of the cellular secretory machinery in the mouse liver, including the endoplasmic reticulum (ER) translocon complex, which mediates protein translation into the ER, and the coat protein complexes (COPI and COPII), which mediate vesicular transport of proteins to and from the ER. Hepatocyte-specific mutation of STAT3 prevented the induction of these secretory pathways during pneumonia, with similar results observed following pharmacological activation of ER stress by using tunicamycin. These findings implicate STAT3 in the unfolded protein response and suggest that STAT3-dependent optimization of secretion may apply broadly. Pneumonia also stimulated the binding of phosphorylated STAT3 to promoter regions of secretion-related genes in the liver, supporting a direct role for STAT3 in their transcription. Altogether, these results identify a novel function of STAT3 during the acute-phase response, namely, the induction of secretory machinery in hepatocytes. This may facilitate the processing and delivery of newly synthesized loads of acute-phase proteins, enhancing innate immunity and preventing liver injury during infection. PMID:23460517

  2. Search for two-phonon vibrations in /sup 168/Er

    SciTech Connect

    Kleppinger, E.W.; Yates, S.W.

    1983-08-01

    The low-lying level structure of /sup 168/Er has been examined by the (n,n'..gamma..) reaction and all known levels with J<7 and E/sub x/< or =2.0 MeV are observed. The discovery of a level at 1893 keV calls for a reexamination of the completeness of the level scheme assumed previously for this nucleus. No new low-lying candidates for two-phonon ..gamma.. vibrations are observed.

  3. Final Report DE-FG02-07ER64416

    SciTech Connect

    Seymour, Joseph D.

    2014-02-01

    The document provides the Final Report for DE-FG02-07ER64416 on the use of magnetic resonance (MR) methods to quantify transport in porous media impacted by biological and chemical processes. Products resulting from the research in the form of peer reviewed publications and conference presentations are presented. The research correlated numerical simulations and MR measurements to test simulation methodology. Biofilm and uranium detection by MR was demonstrated.

  4. Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus

    PubMed Central

    Lu, Qiping; Haragopal, Hariprakash; Slepchenko, Kira G; Stork, Christian; Li, Yang V

    2016-01-01

    Zinc (Zn2+) is required for numerous cellular functions. As such, the homeostasis and distribution of intracellular zinc can influence cellular metabolism and signaling. However, the exact distribution of free zinc within live cells remains elusive. Previously we showed the release of zinc from thapsigargin/IP3-sensitive endoplasmic reticulum (ER) storage in cortical neurons. In the present study, we investigated if other cellular organelles also contain free chelatable zinc and function as organelle storage for zinc. To identify free zinc within the organelles, live cells were co-stained with Zinpyr-1, a zinc fluorescent dye, and organelle-specific fluorescent dyes (MitoFluor Red 589: mitochondria; ER Tracker Red: endoplasmic reticulum; BODIPY TR ceramide: Golgi apparatus; Syto Red 64: nucleus). We examined organelles that represent potential storing sites for intracellular zinc. We showed that zinc fluorescence staining was co-localized with MitoFluor Red 589, ER Tracker Red, and BODIPY TR ceramide respectively, suggesting the presence of free zinc in mitochondria, endoplasmic reticulum, and the Golgi apparatus. On the other hand, cytosol and nucleus had nearly no detectable zinc fluorescence. It is known that nucleus contains high amount of zinc binding proteins that have high zinc binding affinity. The absence of zinc fluorescence suggests that there is little free zinc in these two regions. It also indicates that the zinc fluorescence detected in mitochondria, ER and Golgi apparatus represents free chelatable zinc. Taken together, our results support that these organelles are potential zinc storing organelles during cellular zinc homeostasis. PMID:27186321

  5. Prodigiosin activates endoplasmic reticulum stress cell death pathway in human breast carcinoma cell lines

    SciTech Connect

    Pan, Mu-Yun; Shen, Yuh-Chiang; Lu, Chien-Hsing; Yang, Shu-Yi; Ho, Tsing-Fen; Peng, Yu-Ta; Chang, Chia-Che

    2012-12-15

    endoplasmic reticulum (ER) stress inducer. ► Prodigiosin-induced cytotoxicity involves ER stress-mediated cell death. ► Prodigiosin transcriptionally induces CHOP to suppress BCL2 for evoking cell death. ► Prodigiosin engages the IRE1–JNK and PERK–eIF2α pathways to up-regulate CHOP.

  6. Increase in cellular triacylglycerol content and emergence of large ER-associated lipid droplets in the absence of CDP-DG synthase function

    PubMed Central

    He, Yue; Yam, Candice; Pomraning, Kyle; Chin, Jacqueline S. R.; Yew, Joanne Y.; Freitag, Michael; Oliferenko, Snezhana

    2014-01-01

    Excess fatty acids and sterols are stored as triacylglycerols and sterol esters in specialized cellular organelles, called lipid droplets. Understanding what determines the cellular amount of neutral lipids and their packaging into lipid droplets is of fundamental and applied interest. Using two species of fission yeast, we show that cycling cells deficient in the function of the ER-resident CDP-DG synthase Cds1 exhibit markedly increased triacylglycerol content and assemble large lipid droplets closely associated with the ER membranes. We demonstrate that these unusual structures recruit the triacylglycerol synthesis machinery and grow by expansion rather than by fusion. Our results suggest that interfering with the CDP-DG route of phosphatidic acid utilization rewires cellular metabolism to adopt a triacylglycerol-rich lifestyle reliant on the Kennedy pathway. PMID:25318672

  7. Increase in cellular triacylglycerol content and emergence of large ER-associated lipid droplets in the absence of CDP-DG synthase function.

    PubMed

    He, Yue; Yam, Candice; Pomraning, Kyle; Chin, Jacqueline S R; Yew, Joanne Y; Freitag, Michael; Oliferenko, Snezhana

    2014-12-15

    Excess fatty acids and sterols are stored as triacylglycerols and sterol esters in specialized cellular organelles, called lipid droplets. Understanding what determines the cellular amount of neutral lipids and their packaging into lipid droplets is of fundamental and applied interest. Using two species of fission yeast, we show that cycling cells deficient in the function of the ER-resident CDP-DG synthase Cds1 exhibit markedly increased triacylglycerol content and assemble large lipid droplets closely associated with the ER membranes. We demonstrate that these unusual structures recruit the triacylglycerol synthesis machinery and grow by expansion rather than by fusion. Our results suggest that interfering with the CDP-DG route of phosphatidic acid utilization rewires cellular metabolism to adopt a triacylglycerol-rich lifestyle reliant on the Kennedy pathway. PMID:25318672

  8. Root canal preparation with Er:YSGG laser

    NASA Astrophysics Data System (ADS)

    Benthin, Hartmut; Ertl, Thomas P.; Onal, B.; Schruender, Stephan; Mueller, Gerhard J.

    1994-12-01

    The high level of efficiency of hard tissue ablation with Er:YAG and Er:YSGG lasers is well known. Of these lasers it is possible only to transmit Er:YSGG laser radiation with OH reduced quartz fibers. Most of the fibers we use in this study were prepared as hemispherical fiber tips. Fifty single rooted teeth were divided into ten groups (n equals 5). After conventional opening of the pulp chamber, root canal preparation was performed in five groups under water only using the laser. In the other five groups preparation with K-files to size 35 was performed before treatment with laser radiation. All teeth were axially separated with direct access to the root canal and examined in SEM investigations. The groups were compared by measuring the areas with patent dentin tubules. Representative areas were examined by TEM. The temperature at the root surface was measured during laser irradiation with thermocouples positioned at several points. The in-vitro study of the effect of the high delivered energy (50 - 100 mJ per pulse) in the root canal showed a good ablation effect. Most of the dentin tubules were opened. The increase in temperature at the root surface was tolerable.

  9. Electron paramagnetic resonance of Er3+ ions in aluminum nitride

    NASA Astrophysics Data System (ADS)

    Yang, Shan; Evans, S. M.; Halliburton, L. E.; Slack, G. A.; Schujman, S. B.; Morgan, K. E.; Bondokov, R. T.; Mueller, S. G.

    2009-01-01

    An electron paramagnetic resonance (EPR) spectrum from Er3+ ions has been observed in a bulk single crystal of aluminum nitride (AlN). These Er3+ ions were introduced into the crystal during growth and had a concentration of approximately 2×1016 cm-3. The Er3+ EPR signal, monitored at 4.5 K, exhibits axial symmetry (the unique axis is parallel to the c axis in this wurtzite lattice) and shows well-resolved hyperfine splittings due to E167r nuclei. An absence of site splittings in the EPR angular dependence indicates that these erbium ions, replacing aluminum ions in the AlN crystal, have no nearby defects. Principal values for the g and hyperfine matrices are g∥=4.337, g⊥=7.647, |A∥|=454 MHz, and |A⊥|=796 MHz. Forbidden transitions, appearing in the low-field portion of the hyperfine spectrum when the magnetic field is rotated a few degrees away from the c axis, give |P|=7.8 MHz for the nuclear electric quadrupole parameter.

  10. Completion Report for Well Cluster ER-5-4

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office; Bechtel Nevada

    2005-02-01

    Well Cluster ER-5-4 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The cluster consists of two wells, positioned about 30 meters apart on the same drill pad, constructed as part of a hydrogeologic investigation program for Frenchman Flat at the Nevada Test Site. Detailed lithologic descriptions with preliminary stratigraphic assignments for the well cluster are included in this report. These are based on composite drill cuttings collected every 3 meters, and 156 sidewall samples taken at various depths below 192 meters in both boreholes, supplemented by geophysical log data. Detailed petrographic, chemical, and mineralogical studies of rock samples were conducted on 122 samples. Well ER-5-4 penetrated approximately 1,120 meters of Quaternary and Tertiary alluvium before reaching total depth in Tertiary volcanic rocks at 1,137.5 meters. The deeper Well ER-5-4 No.2 penetrated 1,120.4 meters of alluvial sediments, and was terminated within Tertiary volcanic rocks at a depth of 2,133.6 meters, indicating that Paleozoic rocks are deeper than expected at this site.

  11. Completion Report for Well Cluster ER-6-1

    SciTech Connect

    Bechtel Nevada

    2004-10-01

    Well Cluster ER-6-1 was constructed for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Division at the Nevada Test Site, Nye County, Nevada. This work was initiated as part of the Groundwater Characterization Project, now known as the Underground Test Area Project. The well cluster is located in southeastern Yucca Flat. Detailed lithologic descriptions with stratigraphic assignments for Well Cluster ER-6-1 are included in this report. These are based on composite drill cuttings collected every 3 meters and conventional core samples taken below 639 meters, supplemented by geophysical log data. Detailed petrographic, chemical, and mineralogical studies of rock samples were conducted on 11 samples to resolve complex interrelationships between several of the Tertiary tuff units. Additionally, paleontological analyses by the U.S. Geological Survey confirmed the stratigraphic assignments below 539 meters within the Paleozoic sedimentary section. All three wells in the Well ER-6-1 cluster were drilled within the Quaternary and Tertiary alluvium section, the Tertiary volcanic section, and into the Paleozoic sedimentary section.

  12. Er + medium energy ion implantation into lithium niobate

    NASA Astrophysics Data System (ADS)

    Svecova, B.; Nekvindova, P.; Mackova, A.; Oswald, J.; Vacik, J.; Grötzschel, R.; Spirkova, J.

    2009-05-01

    Erbium-doped lithium niobate (Er:LiNbO3) is a prospective photonics component, operating at 1.5 μm, which could find its use chiefly as an optical amplifier or waveguide laser. In this study, we have focused on the properties of the optically active Er:LiNbO3 layers, which are fabricated by medium energy ion implantation under various experimental conditions. Erbium ions were implanted at energies of 330 and 500 keV with fluences of 1.0 × 1015, 2.5 × 1015 and 1.0 × 1016 cm-2 into LiNbO3 single-crystalline cuts of various orientations. The as-implanted samples were annealed in air at 350 °C for 5 h. The depth distribution and diffusion profiles of the implanted Er were measured by Rutherford Backscattering Spectroscopy (RBS) using 2 MeV He+ ions. The projected range RP and projected range straggling ΔRP were calculated employing the SRIM code. The damage distribution and structural changes were described using the RBS/channelling method. Changes of the lithium concentration depth distribution were studied by Neutron Depth Profiling (NDP). The photoluminescence spectra of the samples were measured to determine whether the emission was in the desired region of 1.5 μm. The obtained data made it possible to reveal the relations between the structural changes of erbium-implanted lithium niobate and its luminescence properties important for photonics applications.

  13. Capsaicin induces apoptosis in PC12 cells through ER stress.

    PubMed

    Krizanova, Olga; Steliarova, Iveta; Csaderova, Lucia; Pastorek, Michal; Hudecova, Sona

    2014-02-01

    Capsaicin, the pungent agent in chili peppers, has been shown to act as a tumor-suppressor in cancer. In our previous study, capsaicin was shown to induce apoptosis in the rat pheochromocytoma cell line (PC12 cells). Thus, the aim of the present study was to determine the potential mechanism by which capsaicin induces apoptosis. We treated PC12 cells with 50, 100 and 500 µM capsaicin and measured the reticular calcium content and expression of the reticular calcium transport systems. These results were correlated with endoplasmic reticulum (ER) stress markers CHOP, ATF4 and X-box binding protein 1 (XBP1), as well as with apoptosis induction. We observed that capsaicin decreased reticular calcium in a concentration-dependent manner. Simultaneously, expression levels of the sarco/endoplasmic reticulum pump and ryanodin receptor of type 2 were modified. These changes were accompanied by increased ER stress, as documented by increased stress markers. Thus, from these results we propose that in PC12 cells capsaicin induces apoptosis through increased ER stress. PMID:24337105

  14. ER Suspensions of Sulfonated Poly(Styrene-CO-Divinylbenzene) Particles

    NASA Astrophysics Data System (ADS)

    Kawakami, Toshihiro; Aizawa, Ryuji; Konishi, Masayoshi; Asako, Yoshinobu

    Two ER suspensions (ERF1 and ERF2) containing highly sulfonated poly(styrene-co-divinylbenzene) particles (ERP) were newly prepared. The ERP concentration was 20 wt% in ERF1 and 40 wt% in ERF2. The ER properties of the suspensions were investigated in view of applications to practical devices. The investigated properties were zero-field viscosity, dispersion stability, induced shear stress, current density, response time, shear rate and temperature dependence of the induced shear stress and current density, response time, shear rate and temperature dependence of the induced shear stress and the current density. electrical durability. In the results, it was found that ERF1 and ERF2 had a very high potential for practical applicatons. The remarkable characteristic of ERF1 was the very low zero-field viscosity of 35 mPa·s at 25°C. The remarkable characteristic of ERF2 was very large induced shear stress and under applying DC 4 kV/mm at 25°C, the induced shear stress was 5.1 kPa. As an application example, the ERFs can be efficiently used for an ER Cutting Machine incorporating variable speed rodless cylinders. The machine has worked smoothly for one and a half years, although the characteristic of control slightly changed.

  15. Post examination of copper ER sensors exposed to bentonite

    NASA Astrophysics Data System (ADS)

    Kosec, Tadeja; Kranjc, Andrej; Rosborg, Bo; Legat, Andraž

    2015-04-01

    Copper corrosion in saline solutions under oxic conditions is one of concerns for the early periods of disposal of spent nuclear fuel in deep geological repositories. The main aim of the study was to investigate the corrosion behaviour of copper during this oxic period. The corrosion rate of pure copper was measured by means of thin electrical resistance (ER) sensors that were placed in a test package containing an oxic bentonite/saline groundwater environment at room temperature for a period of four years. Additionally, the corrosion rate was monitored by electrochemical impedance spectroscopy (EIS) measurements that were performed on the same ER sensors. By the end of the exposure period the corrosion rate, as estimated by both methods, had dropped to approximately 1.0 μm/year. The corrosion rate was also estimated by the examination of metallographic cross sections. The post examination tests which were used to determine the type and extent of corrosion products included different spectroscopic techniques (XRD and Raman analysis). It was confirmed that the corrosion rate obtained by means of physical (ER) and electrochemical techniques (EIS) was consistent with that estimated from the metallographic cross section analysis. The corrosion products consisted of cuprous oxide and paratacamite, which was very abundant. From the types of attack it can be concluded that the investigated samples of copper in bentonite underwent uneven general corrosion.

  16. Tunable, diode side-pumped Er: YAG laser

    DOEpatents

    Hamilton, Charles E.; Furu, Laurence H.

    1997-01-01

    A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 .mu.m, and is tunable over a 6 nm range near about 2.936 .mu.m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 .mu.m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 .mu.m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems.

  17. An Overview of ER-2 Platform Science during TC4

    NASA Astrophysics Data System (ADS)

    Platnick, S.; Newman, P. A.

    2007-12-01

    The NASA high-altitude ER-2 aircraft flew 11 science flight out of San Jose, Costa Rica during July and August 2007 as part of the NASA-sponsored Tropical Composition, Clouds and Climate Coupling Experiment (TC4). The ER-2 flew a remote sensing payload consisting of passive optical and microwave imagers (MAS/MASTER, CoSSIR, AMPR), a high spectral resolution IR imager (S-HIS), active sensors (CPL lidar, CRS and EDOP radars), spectral solar (SSFR) and IR flux radiometers, a microwave temperature profiler (MTP), and a visible video camera (MVIS). This suite of sensors provided a high spatial resolution simulator for cloud, aerosol, sounding, and trace gas retrieval capabilities from the "A-Train" constellation, in particular, the Aqua, CloudSat, and CALIPSO satellites. In this talk we present an overview of the ER-2 TC4 science and validation objectives, and a summary of the campaign accomplishments. Science goals included observations of convective system development, anvil cirrus property evolution (i.e., microphysics, optical properties, narrow and broadband radiative fluxes), tropical Tropopause Transition Layer (TTL) and subvisual cirrus detection and characterization, marine boundary layer cloud properties, aerosol transport and optical properties, and trace gas and atmospheric state characteristics. Coordination with the DC-8 and/or WB-57 aircrafts allowed for validation of various retrievals from these observations. Morning flights (due to adverse local afternoon weather conditions) included coordination with the Terra spacecraft when feasible.

  18. Tunable, diode side-pumped Er:YAG laser

    DOEpatents

    Hamilton, C.E.; Furu, L.H.

    1997-04-22

    A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 {micro}m, and is tunable over a 6 nm range near about 2.936 {micro}m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 {micro}m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 {micro}m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems. 4 figs.

  19. Identifying Branched Metabolic Pathways by Merging Linear Metabolic Pathways

    NASA Astrophysics Data System (ADS)

    Heath, Allison P.; Bennett, George N.; Kavraki, Lydia E.

    This paper presents a graph-based algorithm for identifying complex metabolic pathways in multi-genome scale metabolic data. These complex pathways are called branched pathways because they can arrive at a target compound through combinations of pathways that split compounds into smaller ones, work in parallel with many compounds, and join compounds into larger ones. While most previous work has focused on identifying linear metabolic pathways, branched metabolic pathways predominate in metabolic networks. Automatic identification of branched pathways has a number of important applications in areas that require deeper understanding of metabolism, such as metabolic engineering and drug target identification. Our algorithm utilizes explicit atom tracking to identify linear metabolic pathways and then merges them together into branched metabolic pathways. We provide results on two well-characterized metabolic pathways that demonstrate that this new merging approach can efficiently find biologically relevant branched metabolic pathways with complex structures.

  20. Cell death pathways associated with PDT

    NASA Astrophysics Data System (ADS)

    Kessel, David; Reiners, John J., Jr.

    2006-02-01

    Photodynamic therapy leads to both direct and indirect tumor cell death. The latter also involves the consequences of vascular shut-down and immunologic effects. While these factors are a major factor in tumor eradication, there is usually an element of direct cell killing that can reduce the cell population by as much as 2-3 logs. Necrosis was initially believed to represent the predominant PDT death mechanism. An apoptotic response to PDT was first reported by Oleinick in 1991, using a sensitizer that targets the anti-apoptotic protein Bcl-2. Apoptosis leads to fragmentation of DNA and of cells into apoptotic bodies that are removed by phagocytosis. Inflammatory effects are minimized, and the auto- catalytic elements of the process can amplify the death signal. In this study, we examined consequences of Bcl-2 photodamage by a porphycene sensitizer that targets the ER and causes photodamage to the anti-apoptotic protein Bcl-2. Death patterns after Bcl-2 inactivation by a small-molecular antagonist were also assessed. In addition to apoptosis, we also characterized a hitherto undescribed PDT effect, the initiation of autophagy. Autophagy was initially identified as a cell survival pathway, allowing the recycling of components as nutrients become scarce. We propose that autophagy can also represent both a potential survival pathway after PDT damage to cellular organelles, as well as a cell-death pathway. Recent literature reports indicate that autophagy, as well as apoptosis, can be evoked after down-regulation of Bcl-2, a result consistent with results reported here.

  1. Emodin and Aloe-Emodin Suppress Breast Cancer Cell Proliferation through ER α Inhibition.

    PubMed

    Huang, Pao-Hsuan; Huang, Chih-Yang; Chen, Mei-Chih; Lee, Yueh-Tsung; Yue, Chia-Herng; Wang, Hsin-Yi; Lin, Ho

    2013-01-01

    The anthraquinones emodin and aloe-emodin are abundant in rhubarb. Several lines of evidence indicate that emodin and aloe-emodin have estrogenic activity as phytoestrogens. However, their effects on estrogen receptor α (ER α ) activation and breast cancer cell growth remain controversial. The goal of this study is to investigate the effects and molecular mechanisms of emodin and aloe-emodin on breast cancer cell proliferation. Our results indicate that both emodin and aloe-emodin are capable of inhibiting breast cancer cell proliferation by downregulating ER α protein levels, thereby suppressing ER α transcriptional activation. Furthermore, aloe-emodin treatment led to the dissociation of heat shock protein 90 (HSP90) and ER α and increased ER α ubiquitination. Although emodin had similar effects to aloe-emodin, it was not capable of promoting HSP90/ER α dissociation and ER α ubiquitination. Protein fractionation results suggest that aloe-emodin tended to induce cytosolic ER α degradation. Although emodin might induce cytosolic ER α degradation, it primarily affected nuclear ER α distribution similar to the action of estrogen when protein degradation was blocked. In conclusion, our data demonstrate that emodin and aloe-emodin specifically suppress breast cancer cell proliferation by targeting ER α protein stability through distinct mechanisms. These findings suggest a possible application of anthraquinones in preventing or treating breast cancer in the future. PMID:23864887

  2. Vesicle-associated membrane protein 7 is expressed in intestinal ER.

    PubMed

    Siddiqi, Shadab A; Mahan, James; Siddiqi, Shahzad; Gorelick, Fred S; Mansbach, Charles M

    2006-03-01

    Intestinal dietary triacylglycerol absorption is a multi-step process. Triacylglycerol exit from the endoplasmic reticulum (ER) is the rate-limiting step in the progress of the lipid from its apical absorption to its basolateral membrane export. Triacylglycerol is transported from the ER to the cis Golgi in a specialized vesicle, the pre-chylomicron transport vesicle (PCTV). The vesicle-associated membrane protein 7 (VAMP7) was found to be more concentrated on PCTVs compared with ER membranes. VAMP7 has been previously identified associated with post-Golgi sites in eukaryotes. To examine the potential role of VAMP7 in PCTV trafficking, antibodies were generated that identified a 25 kDa band consistent with VAMP7 but did not crossreact with VAMP1,2. VAMP7 was concentrated on intestinal ER by immunofluorescence microscopy. Immunoelectron microscopy showed that the ER proteins Sar1 and rBet1 were present on PCTVs and colocalized with VAMP7. Iodixanol gradient centrifugation showed VAMP7 to be isodense with ER and endosomes. Although VAMP7 localized to intestinal ER, it was not present in the ER of liver and kidney. Anti-VAMP7 antibodies reduced the transfer of triacylglycerol, but not newly synthesized proteins, from the ER to the Golgi by 85%. We conclude that VAMP7 is enriched in intestinal ER and that it plays a functional role in the delivery of triacylglycerol from the ER to the Golgi. PMID:16495485

  3. Molecular Pathways: Immunosuppressive Roles of IRE1α-XBP1 Signaling in Dendritic Cells of the Tumor Microenvironment.

    PubMed

    Cubillos-Ruiz, Juan R; Bettigole, Sarah E; Glimcher, Laurie H

    2016-05-01

    The endoplasmic reticulum (ER) is a massive cytoplasmic membrane network that functions primarily to ensure proper folding and posttranslational modification of newly synthesized secreted and transmembrane proteins. Abnormal accumulation of unfolded proteins in this organelle causes a state of "ER stress," which is a hallmark feature of various diseases, including cancer, neurodegeneration, and metabolic dysfunction. Cancer cells exploit the IRE1α-XBP1 arm of the ER stress response to efficiently adjust their protein-folding capacity and ensure survival under hostile tumor microenvironmental conditions. However, we recently found that dendritic cells (DC) residing in the ovarian cancer microenvironment also experience sustained ER stress and demonstrate persistent activation of the IRE1α-XBP1 pathway. This previously unrecognized process disrupts metabolic homeostasis and antigen-presenting capacity in DCs, thereby crippling their natural ability to support the protective functions of infiltrating antitumor T cells. In this review, we briefly discuss some of the mechanisms that fuel ER stress in tumor-associated DCs, the biologic processes altered by aberrant IRE1α-XBP1 signaling in these innate immune cells, and the unique immunotherapeutic potential of targeting this pathway in cancer hosts. Clin Cancer Res; 22(9); 2121-6. ©2016 AACR. PMID:26979393

  4. ER-PM Contacts Define Actomyosin Kinetics for Proper Contractile Ring Assembly.

    PubMed

    Zhang, Dan; Bidone, Tamara C; Vavylonis, Dimitrios

    2016-03-01

    The cortical endoplasmic reticulum (ER), an elaborate network of tubules and cisternae [1], establishes contact sites with the plasma membrane (PM) through tethering machinery involving a set of conserved integral ER proteins [2]. The physiological consequences of forming ER-PM contacts are not fully understood. Here, we reveal a kinetic restriction role of ER-PM contacts over ring compaction process for proper actomyosin ring assembly in Schizosaccharomyces pombe. We show that fission yeast cells deficient in ER-PM contacts exhibit aberrant equatorial clustering of actin cables during ring assembly and are particularly susceptible to compromised actin filament crosslinking activity. Using quantitative image analyses and computer simulation, we demonstrate that ER-PM contacts function to modulate the distribution of ring components and to constrain their compaction kinetics. We propose that ER-PM contacts have evolved as important physical modulators to ensure robust ring assembly. PMID:26877082

  5. ER-PM contacts define actomyosin kinetics for proper contractile ring assembly

    PubMed Central

    Zhang, Dan; Bidone, Tamara; Vavylonis, Dimitrios

    2015-01-01

    Summary The cortical endoplasmic reticulum (ER), an elaborate network of tubules and cisternae [1], establishes contact sites with the plasma membrane (PM) through tethering machinery involving a set of conserved integral ER proteins [2]. The physiological consequences of forming ER-PM contacts are not fully understood. Here, we reveal a kinetic restriction role of ER-PM contacts over ring compaction process for proper actomyosin ring assembly in Schizosaccharomyces pombe (S. pombe). We show that fission yeast cells deficient in ER-PM contacts exhibit aberrant equatorial clustering of actin cables during ring assembly and are particularly susceptible to compromised actin filament crosslinking activity. Using quantitative image analyses and computer simulation, we demonstrate that ER-PM contacts function to modulate the distribution of ring components and to constrain their compaction kinetics. We propose that ER-PM contacts have evolved as important physical modulators to ensure robust ring assembly. PMID:26877082

  6. Exposure of Jurkat cells to bis (tri-n-butyltin) oxide (TBTO) induces transcriptomics changes indicative for ER- and oxidative stress, T cell activation and apoptosis

    SciTech Connect

    Katika, Madhumohan R.; Hendriksen, Peter J.M.; Loveren, Henk van; Peijnenburg, Ad

    2011-08-01

    Tributyltin oxide (TBTO) is an organotin compound that is widely used as a biocide in agriculture and as an antifouling agent in paints. TBTO is toxic for many cell types, particularly immune cells. The present study aimed to identify the effects of TBTO on the human T lymphocyte cell line Jurkat. Cells were treated with 0.2 and 0.5 {mu}M TBTO for 3, 6, 12 and 24 h and then subjected to whole genome gene expression microarray analysis. The biological interpretation of the gene expression profiles revealed that endoplasmic reticulum (ER) stress is among the earliest effects of TBTO. Simultaneously or shortly thereafter, oxidative stress, activation of NFKB and NFAT, T cell activation, and apoptosis are induced. The effects of TBTO on genes involved in ER stress, NFAT pathway, T cell activation and apoptosis were confirmed by qRT-PCR. Activation and nuclear translocation of NFATC1 and the oxidative stress response proteins NRF2 and KEAP1 were confirmed by immunocytology. Taking advantage of previously published microarray data, we demonstrated that the induction of ER stress, oxidative stress, T cell activation and apoptosis by TBTO is not unique for Jurkat cells but does also occur in mouse thymocytes both ex vivo and in vivo and rat thymocytes ex vivo. We propose that the induction of ER stress leading to a T cell activation response is a major factor in the higher sensitivity of immune cells above other types of cells for TBTO. - Research Highlights: > The human T lymphocyte cell line Jurkat was exposed to TBTO. > Whole-genome microarray experiments were performed. > Data analysis revealed the induction of ER stress and activation of NFAT and NFKB. > Exposure to TBTO also led to T cell activation, oxidative stress and apoptosis.

  7. Enhancement of hexokinase II inhibitor-induced apoptosis in hepatocellular carcinoma cells via augmenting ER stress and anti-angiogenesis by protein disulfide isomerase inhibition.

    PubMed

    Yu, Su Jong; Yoon, Jung-Hwan; Yang, Jong-In; Cho, Eun Ju; Kwak, Min Sun; Jang, Eun Sun; Lee, Jeong-Hoon; Kim, Yoon Jun; Lee, Hyo-Suk; Kim, Chung Yong

    2012-02-01

    3-bromopyruvate (3-BP), a hexokinase (HK) II inhibitor, promotes tumor cell death by inducing endoplasmic reticulum (ER) stress in human hepatocellular carcinoma (HCC) cell lines. Protein disulfide isomerase (PDI) is an essential folding catalyst and attenuates ER stress by folding the misfolded proteins. We examined if PDI is expressed in hypoxic HCC cells, and evaluated its inhibition potentiated HK II inhibitor-induced ER stress in hypoxic HCC cells. HCC apoptotic cell death was assessed by DAPI staining and apoptotic signaling pathways were explored by immunoblot analysis. An in vivo model of HCC was established in C3H mice intradermally with implanted MH134 cells. 3-BP with/without a PDI inhibitor (bacitracin) was subsequently administered. The anti-tumor efficacies were evaluated by measuring tumor volumes and quantifying apoptotic cells and microvessel densities (MVDs). HCC cells were found to express PDI in a hypoxia-inducible manner. The simultaneous treatment of bacitracin and 3-BP enhanced 3-BP-induced apoptosis. This enhancement was attributed to increased ER stress and JNK activation compared to the cells treated with just 3-BP. In an in vivo model of HCC, tumor growth was significantly suppressed in mice co-treated with bacitracin and 3-BP, and the percentages of apoptotic cells significantly increased and MVDs significantly decreased. These results demonstrated that PDI was induced in hypoxic HCC tissue and that PDI inhibition enhanced HK II inhibitor-induced anti-tumor efficacy synergistically via augmenting ER stress and anti-angiogenesis in vivo. Thus, blockage of PDI activity in combination with HK II inhibitor may be therapeutically useful in HCCs. PMID:22350012

  8. Analysis of the miRNA-mRNA-lncRNA networks in ER+ and ER- breast cancer cell lines.

    PubMed

    Wu, Qian; Guo, Li; Jiang, Fei; Li, Lei; Li, Zhong; Chen, Feng

    2015-12-01

    Recently, rapid advances in bioinformatics analysis have expanded our understanding of the transcriptome to a genome-wide level. miRNA-mRNA-lncRNA interactions have been shown to play critical regulatory role in cancer biology. In this study, we discussed the use of an integrated systematic approach to explore new facets of the oestrogen receptor (ER)-regulated transcriptome. The identification of RNAs that are related to the expression status of the ER may be useful in clinical therapy and prognosis. We used a network modelling strategy. First, microarray expression profiling of mRNA, lncRNA and miRNA was performed in MCF-7 (ER-positive) and MDA-MB-231 cells (ER- negative). A co-expression network was then built using co-expression relationships of the differentially expressed mRNAs and lncRNAs. Finally, the selected miRNA-mRNA network was added to the network. The key miRNA-mRNA-lncRNA interaction can be inferred from the network. The mRNA and non-coding RNA expression profiles of the cells with different ER phenotypes were distinct. Among the aberrantly expressed miRNAs, the expression levels of miR-19a-3p, miR-19b-3p and miR-130a-3p were much lower in the MCF-7 cells, whereas that of miR-148b-3p was much higher. In a cluster of miR-17-92, the expression levels of six of seven miRNAs were lower in the MCF-7 cells, in addition to miR-20b in the miR-106a-363 cluster. However, the levels of all the miRNAs in the miR-106a-25 cluster were higher in the MCF-7 cells. In the co-expression networking, CD74 and FMNL2 gene which is involved in the immune response and metastasis, respectively, had a stronger correlation with ER. Among the aberrantly expressed lncRNAs, lncRNA-DLEU1 was highly expressed in the MCF-7 cells. A statistical analysis revealed that there was a co-expression relationship between ESR1 and lncRNA-DLEU1. In addition, miR-19a and lncRNA-DLEU1 are both located on the human chromosome 13q. We speculate that miR-19a might be co-expressed with lncRNA-DLEU1

  9. Resveratrol augments ER stress and the cytotoxic effects of glycolytic inhibition in neuroblastoma by downregulating Akt in a mechanism independent of SIRT1

    PubMed Central

    Graham, Regina M; Hernandez, Fiorela; Puerta, Nataly; De Angulo, Guillermo; Webster, Keith A; Vanni, Steven

    2016-01-01

    Cancer cells typically display increased rates of aerobic glycolysis that are correlated with tumor aggressiveness and a poor prognosis. Targeting the glycolytic pathway has emerged as an attractive therapeutic route mainly because it should spare normal cells. Here, we evaluate the effects of combining the inhibition of glycolysis with application of the polyphenolic compound resveratrol (RSV) in neuroblastoma (NB) cancer cell lines. Inhibiting glycolysis with 2-deoxy-D-glucose (2-DG) significantly reduced NB cell viability and was associated with increased endoplasmic reticulum (ER) stress and Akt activity. Administration of 2-DG increased the expression of the ER molecular chaperones GRP78 and GRP94, the prodeath protein C/EBP homology protein (CHOP) and the phosphorylation of Akt at S473, T450 and T308. Combined treatment with both RSV and 2-DG reduced GRP78, GRP94 and Akt phosphorylation but increased CHOP and NB cell death when compared with the administration of 2-DG alone. The selective inhibition of Akt activity also decreased 2-DG-induced GRP78 and GRP94 expression and increased CHOP expression, suggesting that Akt can modulate ER stress. Protein phosphatase 1α (PP1α) was activated by RSV, as indicated by a reduction in PP1α phosphorylation at T320. Pretreatment of cells with tautomycin, a selective PP1α inhibitor, prevented the RSV-mediated decrease in Akt phosphorylation, suggesting that RSV enhances 2-DG-induced cell death by activating PP1 and downregulating Akt. The RSV-mediated inhibition of Akt in the presence of 2-DG was not prevented by the selective inhibition of SIRT1, a known target of RSV, indicating that the effects of RSV on this pathway are independent of SIRT1. We propose that RSV inhibits Akt activity by increasing PP1α activity, thereby potentiating 2-DG-induced ER stress and NB cell death. PMID:26891914

  10. Scandium effect on the luminescence of Er-Sc silicates prepared from multi-nanolayer films

    NASA Astrophysics Data System (ADS)

    Najar, Adel; Omi, Hiroo; Tawara, Takehiko

    2014-07-01

    Polycrystalline Er-Sc silicates (Er x Sc2- x Si2O7 and Er x Sc2- x SiO5) were fabricated using multilayer nanostructured films of Er2O3/SiO2/Sc2O3 deposited on SiO2/Si substrates by RF sputtering and thermal annealing at high temperature. The films were characterized by synchrotron radiation grazing incidence X-ray diffraction, cross-sectional transmission electron microscopy, energy-dispersive X-ray spectroscopy, and micro-photoluminescence measurements. The Er-Sc silicate phase Er x Sc2- x Si2O7 is the dominant film, and Er and Sc are homogeneously distributed after thermal treatment because of the excess of oxygen from SiO2 interlayers. The Er concentration of 6.7 × 1021 atoms/cm3 was achieved due to the presence of Sc that dilutes the Er concentration and generates concentration quenching. During silicate formation, the erbium diffusion coefficient in the silicate phase is estimated to be 1 × 10-15 cm2/s at 1,250°C. The dominant Er x Sc2 - x Si2O7 layer shows a room-temperature photoluminescence peak at 1,537 nm with the full width at half maximum (FWHM) of 1.6 nm. The peak emission shift compared to that of the Y-Er silicate (where Y and Er have almost the same ionic radii) and the narrow FWHM are due to the small ionic radii of Sc3+ which enhance the crystal field strength affecting the optical properties of Er3+ ions located at the well-defined lattice sites of the Sc silicate. The Er-Sc silicate with narrow FWHM opens a promising way to prepare photonic crystal light-emitting devices.

  11. STIM1 Is a Novel Component of ER-Chlamydia trachomatis Inclusion Membrane Contact Sites

    PubMed Central

    Agaisse, Hervé; Derré, Isabelle

    2015-01-01

    Productive developmental cycle of the obligate intracellular bacterial pathogen Chlamydia trachomatis depends on the interaction of the replicative vacuole, named the inclusion, with cellular organelles. We have recently reported the formation of ER-Inclusion membrane contact sites (MCSs), where the endoplasmic reticulum (ER) is in apposition to the inclusion membrane. These platforms contain the C. trachomatis inclusion membrane protein IncD, the mammalian ceramide transfer protein CERT and the ER resident proteins VAPA/B and were proposed to play a role in the non-vesicular trafficking of lipids to the inclusion. Here, we identify STIM1 as a novel component of ER-Inclusion MCSs. STIM1, an ER calcium (Ca2+) sensor that relocate to ER-Plasma Membrane (PM) MCSs upon Ca2+ store depletion, associated with C. trachomatis inclusion. STIM1, but not the general ER markers Rtn3C and Sec61ß, was enriched at the inclusion membrane. Ultra-structural studies demonstrated that STIM1 localized to ER-Inclusion MCSs. Time-course experiments showed that STIM1, CERT and VAPB co-localized throughout the developmental cycle. By contrast, Orai1, the PM Ca2+ channel that interacts with STIM1 at ER-PM MCSs, did not associate with C. trachomatis inclusion. Upon ER Ca2+ store depletion, a pool of STIM1 relocated to ER-PM MCSs, while the existing ER-Inclusion MCSs remained enriched in STIM1. Finally, we have identified the CAD domain, which mediates STIM1-Orai1 interaction, as the minimal domain required for STIM1 enrichment at ER-Inclusion MCSs. Altogether this study identifies STIM1 as a novel component of ER-C. trachomatis inclusion MCSs. We discuss the potential role(s) of STIM1 during the infection process. PMID:25915399

  12. Inflammatory pathways in spondyloarthritis.

    PubMed

    Hreggvidsdottir, Hulda S; Noordenbos, Troy; Baeten, Dominique L

    2014-01-01

    Spondyloarthritis is the second most common form of chronic inflammatory arthritis and a unique hallmark of the disease is pathologic new bone formation. Several cytokine pathways have been genetically associated with ankylosing spondylitis (AS), the prototypic subtype of SpA, and additional evidence from human and animal studies support a role of these pathways in the disease. TNF has a key role in SpA as blockade significantly reduces inflammation and destruction, however the treatment does not halt new bone formation. New insights into the TNF pathway were recently obtained from an animal model specifically overexpressing the transmembrane form of TNF. This model leads to axial and peripheral new bone formation which is not seen in soluble TNF overexpression models, indicating different pathogenic roles of soluble and transmembrane TNF in arthritis development. Besides TNF, the IL-23/IL-17 axis is emerging as an important inflammatory pathway in SpA, as a SNP in the IL-23R locus has been associated with developing AS, mice overexpressing IL-23 develop SpA-like features and IL-17 blockade has been shown to be efficacious for AS patients in a phase II trial. In this review, we focus on the cytokine pathways that have recently been genetically associated with SpA, i.e. TNF, IL-1, IL-6 and IL-23/IL-17. We review the current genetic, experimental and human in vivo data available and discuss how these different pathways are involved in the pathophysiology of SpA. Additionally, we discuss how these pathways relate to the pathogenic new bone formation in SpA. PMID:23969080

  13. Novel mechanism of enhancing IRE1α-XBP1 signalling via the PERK-ATF4 pathway

    PubMed Central

    Tsuru, Akio; Imai, Yasutaka; Saito, Michiko; Kohno, Kenji

    2016-01-01

    Mammalian inositol-requiring enzyme 1α (IRE1α) is the most conserved of all endoplasmic reticulum (ER) stress sensors, which includes activating transcription factor (ATF) 6 and double-stranded RNA-dependent protein kinase (PKR)-like ER kinase (PERK). IRE1α has been known to splice X-box binding protein 1 (XBP1) mRNA, which is induced by ATF6 under ER stress. This spliced XBP1 mRNA is translated into the active transcription factor that promotes the expression of specific genes to alleviate ER stress. Herein, we report that in addition to the induction of XBP1 expression by ATF6, IRE1α expression is induced by ATF4, which is downstream of PERK, under ER stress. Increased IRE1α expression results in a higher splicing ratio of XBP1 mRNA. This effect was not transient and affected not only the intensity but also the duration of the activated state of this pathway. These multiple regulatory mechanisms may modulate the response to various levels or types of ER stress. PMID:27052593

  14. Penalized differential pathway analysis of integrative oncogenomics studies.

    PubMed

    van Wieringen, Wessel N; van de Wiel, Mark A

    2014-04-01

    Through integration of genomic data from multiple sources, we may obtain a more accurate and complete picture of the molecular mechanisms underlying tumorigenesis. We discuss the integration of DNA copy number and mRNA gene expression data from an observational integrative genomics study involving cancer patients. The two molecular levels involved are linked through the central dogma of molecular biology. DNA copy number aberrations abound in the cancer cell. Here we investigate how these aberrations affect gene expression levels within a pathway using observational integrative genomics data of cancer patients. In particular, we aim to identify differential edges between regulatory networks of two groups involving these molecular levels. Motivated by the rate equations, the regulatory mechanism between DNA copy number aberrations and gene expression levels within a pathway is modeled by a simultaneous-equations model, for the one- and two-group case. The latter facilitates the identification of differential interactions between the two groups. Model parameters are estimated by penalized least squares using the lasso (L1) penalty to obtain a sparse pathway topology. Simulations show that the inclusion of DNA copy number data benefits the discovery of gene-gene interactions. In addition, the simulations reveal that cis-effects tend to be over-estimated in a univariate (single gene) analysis. In the application to real data from integrative oncogenomic studies we show that inclusion of prior information on the regulatory network architecture benefits the reproducibility of all edges. Furthermore, analyses of the TP53 and TGFb signaling pathways between ER+ and ER- samples from an integrative genomics breast cancer study identify reproducible differential regulatory patterns that corroborate with existing literature. PMID:24552967

  15. WatER: The proposed Water Elevation Recovery satellite mission

    NASA Astrophysics Data System (ADS)

    Alsdorf, D.; Mognard, N.; Rodriguez, E.; Participants, W.

    2005-12-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of the spatial and temporal dynamics of surface water storage and discharge globally. The core mission objective is to describe and understand the continental water cycle and the hydrological processes (e.g., floodplain hydraulics) at work in a river basin. The key question that will be answered by WatER is: "Where is water stored on Earth's land surfaces, and how does this storage vary in space and time?" WatER will facilitate societal needs by (1) improving our understanding of flood hazards; (2) freely providing water volume information to countries who critically rely on rivers that cross political borders; and (3) mapping the variations in water bodies that contribute to disease vectors (e.g., malaria). Conventional altimeter profiles are, without question, incapable of supplying the measurements needed to address scientific and societal questions. WatER will repeatedly measure the spatially distributed water surface elevations (h) of wetlands, rivers, lakes, reservoirs, etc. Successive h measurements yield dh/dt, (t is time), hence a volumetric change in water stored or lost. Individual images of h yield dh/dx (x is distance), hence surface water slope, which is necessary for estimating streamflow. WatER's main instrument is a Ka-band radar interferometer (KaRIN) which is the only technology capable of supplying the required imaging capability of h. KaRIN has a rich heritage based on (1) the many highly successful ocean observing radar altimeters, (2) the Shuttle Radar Topography Mission (SRTM), and (3) the development effort of the Wide Swath Ocean Altimeter (WSOA). The interferometric altimeter is a near-nadir viewing, 120 km wideswath based instrument that uses interferometric SAR processing of the returned pulses to yield single-look 5m azimuth and 10m to 70m range resolution, with an elevation accuracy of approximately 50 cm. Polynomial based averaging of heights along the

  16. COMPLETION REPORT FOR WELL CLUSTER ER-5-3

    SciTech Connect

    BECHTEL NEVADA

    2005-12-01

    Well Cluster ER-5-3 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This cluster of 3 wells was drilled in 2000 and 2001 as part of a hydrogeologic investigation program in Frenchman Flat. The first borehole in the cluster, Well ER-5-3, was drilled in February and March 2000. A 47.0-centimeter surface hole was drilled and cased off to the depth of 374.8 meters. The hole diameter was decreased to 31.1 centimeters for drilling to a total depth of 794.3 meters within welded ash-flow tuff. A piezometer string with 1 slotted interval was installed in the annulus of the surface casing, open to the saturated alluvium. A completion string with 2 slotted intervals was installed in the main hole, open to saturated alluvium and to the welded tuff aquifer. A second piezometer string with 1 slotted interval open to the welded-tuff aquifer was installed outside the completion string. Well ER-5-3 No.2 was drilled about 30 meters west of the first borehole in March 2000, and was recompleted in March 2001. A 66.0-centimeter hole was drilled and cased off to the depth of 613.8 meters. The hole diameter was decreased to 44.5 centimeters and the borehole was drilled and cased off to the depth of 849.0 meters. The hole diameter was decreased once more to 31.1 centimeters for drilling to a total depth of 1,732.2 meters in dolomite. A completion string open to the dolomite (lower carbonate aquifer) was installed. Well ER-5-3 No.3 was drilled approximately 30 meters north of the first 2 boreholes in February 2001. A 66.0-centimeter hole was drilled and cased off to the depth of 36.6 meters, then the main 25.1-centimeter-diameter hole was drilled to a total depth of 548.6 meters in alluvium. A slotted stainless-steel tubing string was installed in the saturated alluvium. A preliminary composite, static water level was measured at

  17. Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity

    PubMed Central

    Niemann, Michael C. E.; Bartrina, Isabel; Ashikov, Angel; Weber, Henriette; Spíchal, Lukáš; Strnad, Miroslav; Strasser, Richard; Bakker, Hans; Schmülling, Thomas; Werner, Tomáš

    2015-01-01

    The formation of glycoconjugates depends on nucleotide sugars, which serve as donor substrates for glycosyltransferases in the lumen of Golgi vesicles and the endoplasmic reticulum (ER). Import of nucleotide sugars from the cytosol is an important prerequisite for these reactions and is mediated by nucleotide sugar transporters. Here, we report the identification of REPRESSOR OF CYTOKININ DEFICIENCY 1 (ROCK1, At5g65000) as an ER-localized facilitator of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc) transport in Arabidopsis thaliana. Mutant alleles of ROCK1 suppress phenotypes inferred by a reduced concentration of the plant hormone cytokinin. This suppression is caused by the loss of activity of cytokinin-degrading enzymes, cytokinin oxidases/dehydrogenases (CKXs). Cytokinin plays an essential role in regulating shoot apical meristem (SAM) activity and shoot architecture. We show that rock1 enhances SAM activity and organ formation rate, demonstrating an important role of ROCK1 in regulating the cytokinin signal in the meristematic cells through modulating activity of CKX proteins. Intriguingly, genetic and molecular analysis indicated that N-glycosylation of CKX1 was not affected by the lack of ROCK1-mediated supply of UDP-GlcNAc. In contrast, we show that CKX1 stability is regulated in a proteasome-dependent manner and that ROCK1 regulates the CKX1 level. The increased unfolded protein response in rock1 plants and suppression of phenotypes caused by the defective brassinosteroid receptor bri1-9 strongly suggest that the ROCK1 activity is an important part of the ER quality control system, which determines the fate of aberrant proteins in the secretory pathway. PMID:25535363

  18. Nobiletin Induces Protective Autophagy Accompanied by ER-Stress Mediated Apoptosis in Human Gastric Cancer SNU-16 Cells.

    PubMed

    Moon, Jeong Yong; Cho, Somi Kim

    2016-01-01

    Nobiletin, a major component of citrus fruits, is a polymethoxyflavone derivative that exhibits anticancer activity against several forms of cancer, including SNU-16 human gastric cancer cells. To explore the nobiletin-induced cell death mechanism, we examined the changes in protein expression caused by nobiletin in human gastric cancer SNU-16 cells by means of two-dimensional gel electrophoresis (2-DGE), followed by peptide mass fingerprinting (PMF) analysis. Seventeen of 20 selected protein spots were successfully identified, including nine upregulated and eight downregulated proteins. In nobiletin-treated SNU-16 cells the glucose-regulated protein 78 kDa (GRP78) mRNA level was induced most significantly among six proteins related to cell survival and death. Western blot analysis was used to confirm the expression of GRP78 protein. We detected increases in the levels of the ER-stress related proteins inositol requiring enzyme 1 alpha (IRE1-α), activating transcription factor 4 (ATF-4), and C/EBP homology protein (CHOP), as well as GRP78, in response to nobiletin in SNU-16 cells. Furthermore, the ER stress-mediated apoptotic protein caspase-4 was proteolytically activated by nobiletin. Pretreatment with chloroquine, an autophagy inhibitor, strongly augmented apoptosis in SNU-16 cells, as evidenced by decreased cell viability, an increased number of sub-G1 phase cells and increased levels of cleaved PARP. Our results suggest that nobiletin-induced apoptosis in SNU-16 cells is mediated by pathways involving intracellular ER stress-mediated protective autophagy. Thus, the combination of nobiletin and an autophagy inhibitor could be a promising treatment for gastric cancer patients. PMID:27428937

  19. ER Chaperone BiP/GRP78 Is Required for Myelinating Cell Survival and Provides Protection during Experimental Autoimmune Encephalomyelitis.

    PubMed

    Hussien, Yassir; Podojil, Joseph R; Robinson, Andrew P; Lee, Amy S; Miller, Steven D; Popko, Brian

    2015-12-01

    Myelinating cells synthesize large amounts of membrane protein through the secretory pathway, which makes these cells particularly sensitive to perturbations of the endoplasmic reticulum (ER). Ig binding protein (BiP), also known as glucose-regulated protein 78 (GRP78), is a critical ER chaperone that also plays a pivotal role in controlling the cellular response to ER stress. To examine the potential importance of BiP to myelinating cells, we used a conditional knock-out approach to BiP gene inactivation in oligodendrocytes during development, in adulthood, and in response to experimental autoimmune encephalomyelitis (EAE), an animal model of the inflammatory demyelinating disorder multiple sclerosis (MS). During development, mice lacking functional BiP gene expression in oligodendrocytes developed tremors and ataxia and died before reaching maturity. When BiP gene inactivation in oligodendrocytes was initiated in adulthood, the mice displayed severe neurological symptoms including tremors and hind-limb paralysis. The inactivation of BiP in oligodendrocytes during development or in adulthood resulted in oligodendrocyte loss and corresponding severe myelin abnormalities. Mice heterozygous for the oligodendrocyte-specific inactivation of BiP, which were phenotypically normal without evidence of neuropathology, displayed an exacerbated response to EAE that correlated with an increased loss of oligodendrocytes. Furthermore, mice in which the BiP gene was specifically inactivated in developing Schwann cells displayed tremor that progressed to hindlimb paralysis, which correlated with diminished numbers of myelinating Schwann cells and severe PNS hypomyelination. These studies demonstrate that BiP is critical for myelinating cell survival and contributes to the protective response of oligodendrocyte against inflammatory demyelination. PMID:26631473

  20. Role of the Endoplasmic Reticulum Pathway in the Medial Prefrontal Cortex in Post-Traumatic Stress Disorder Model Rats.

    PubMed

    Wen, Lili; Han, Fang; Shi, Yuxiu; Li, Xiaoyan

    2016-08-01

    Previous studies revealed that patients with post-traumatic stress disorder (PTSD) have a smaller than normal medial prefrontal cortex (mPFC), and PTSD rats [single prolonged stress, (SPS)] have an increased mPFC neuron apoptosis, which are related to the severity of PTSD symptoms. Three signalling pathways [protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1)] in the endoplasmic reticulum (ER) play a critical role in resisting apoptosis. The aim of this study was to investigate whether the three branches of ER signalling are involved in SPS-induced mPFC neuron apoptosis. We used transmission electron microscopy (TEM) to detect morphological changes in ER and fluorescence spectrophotometry to detect the concentration of intracellular calcium in mPFC. We used molecular biological techniques to detect the expression levels of three branch signalling pathways of ER: phosphorylated PERK (p-PERK)/phosphorylated eukaryotic translation initiation factor 2A (p-eIF2a), ATF6a/X-box binding protein 1 (XBP1), and IRE1a. In addition, the ER molecular chaperone 78-kDa glucose-regulated protein (GRP78) and the ER-related apoptosis factors caspase family and Bax also were examined. Apoptosis neurons were detected by terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling. The results showed that the concentration of calcium in mPFC was increased in SPS rats. Using TEM, we found that mPFC neurons in SPS rats showed an expanded ER and chromatin margination. The increased expressions of p-PERK/p-eIF2a, ATF6a/XBP1, and IRE1 in response to SPS were also observed, although the degrees of increase were different. In addition, the protein and mRNA expression of GRP78 was increased in SPS rats; the upregulation of ER-related apoptosis factors and apoptosis neurons after SPS stimulation was observed. These results suggested that the three signalling pathways of unfolded protein

  1. The ribosome quality control pathway can access nascent polypeptides stalled at the Sec61 translocon.

    PubMed

    von der Malsburg, Karina; Shao, Sichen; Hegde, Ramanujan S

    2015-06-15

    Cytosolic ribosomes that stall during translation are split into subunits, and nascent polypeptides trapped in the 60S subunit are ubiquitinated by the ribosome quality control (RQC) pathway. Whether the RQC pathway can also target stalls during cotranslational translocation into the ER is not known. Here we report that listerin and NEMF, core RQC components, are bound to translocon-engaged 60S subunits on native ER membranes. RQC recruitment to the ER in cultured cells is stimulated by translation stalling. Biochemical analyses demonstrated that translocon-targeted nascent polypeptides that subsequently stall are polyubiquitinated in 60S complexes. Ubiquitination at the translocon requires cytosolic exposure of the polypeptide at the ribosome-Sec61 junction. This exposure can result from either failed insertion into the Sec61 channel or partial backsliding of translocating nascent chains. Only Sec61-engaged nascent chains early in their biogenesis were relatively refractory to ubiquitination. Modeling based on recent 60S-RQC and 80S-Sec61 structures suggests that the E3 ligase listerin accesses nascent polypeptides via a gap in the ribosome-translocon junction near the Sec61 lateral gate. Thus the RQC pathway can target stalled translocation intermediates for degradation from the Sec61 channel. PMID:25877867

  2. Atorvastatin up-regulates TRIB3 independent of ATF4-CHOP pathway in atherosclerotic patients

    PubMed Central

    Bi, Shao-Jie; Wang, Chun-Yan; Zhang, Juan; Lv, Zhao-Peng; Li, Yi-Xin

    2015-01-01

    Background: Macrophage apoptosis triggered by endoplasmic reticulum (ER) stress contributes