Science.gov

Sample records for er-te-i ternary systems

  1. Metal biosorption equilibria in a ternary system

    SciTech Connect

    Chong, K.H.; Volesky, B.

    1996-03-20

    Equilibrium metal uptake performance of a biosorbent prepared from Ascophyllum nodosum seaweed biomass was studied using aqueous solutions containing copper, cadmium, and zinc ions in binary and ternary mixtures. Triangular equilibrium diagrams can graphically represent all the ternary equilibrium sorption data. Application of the multicomponent Langmuir model to describe the three-metal system revealed its nonideal characteristics, whereby the value of apparent dissociation constants for the respective metals differed for each system. This restricted the prediction of the ternary equilibria from the binary systems. However, some predictions of the ternary system behavior from the model were consistent with experimental data and with conclusions postulated from the three possible binary subsystems.

  2. Equal area rule methods for ternary systems

    SciTech Connect

    Shyu, G.S.; Hanif, N.S.M.; Alvarado, J.F.J.; Hall, K.R.; Eubank, P.T.

    1995-12-01

    The phase equilibrium behavior of fluid mixtures is an important design consideration for both chemical processes and oil production. Eubank and Hall have recently shown the equal area rule (EAR) applies to the composition derivative of the Gibbs energy of a binary system at fixed pressure and temperature regardless of derivative continuity. A sufficient condition for equilibria, EAR is faster and simpler than either the familiar tangent-line method or the area method of Eubank et al. Here, the authors show that EAR can be extended to ternary systems exhibiting one, two, or three phases at equilibrium. A single directional vector is searched in composition space; at equilibrium, this vector is the familiar tie line. A sensitive criterion for equilibrium under EAR is equality of orthogonal derivatives such as ({partial_derivative}g/{partial_derivative}x{sub 1}){sub x{sub 2}P,T} at the end points ({alpha} and {beta}), where g {equivalent_to} ({Delta}{sub m}G/RT). Repeated use of the binary algorithm published in the first reference allows rapid, simple solution of ternary problems, even with hand-held calculations for cases where the background model is simple (e.g., activity coefficient models) and the derivative continuous.

  3. Thermodynamic Reassessment of the Nd-Fe-B Ternary System

    NASA Astrophysics Data System (ADS)

    Zhou, G. J.; Luo, Y.; Zhou, Y.

    2016-01-01

    The Nd-B binary system and Nd-Fe-B ternary system were thermodynamically reassessed with the aim of obtaining more reasonable thermodynamic parameters and more accurate phase relations. Based on the metastable experimental information, a reasonable, self-consistent, and comprehensive thermodynamic description of the Nd-Fe-B ternary system considering the metastable phases Fe3B, Fe23Nd2B3, and Fe17Nd2B has been developed.

  4. Nucleation and interfacial adsorption in ternary systems.

    PubMed

    Philippe, T

    2015-03-01

    Nucleation is studied in incompressible ternary fluids by examining the topology of the overall landscape of the energy surface. Minimum free energy paths for nucleation (MFEPs) of a single nucleus in an infinite matrix are computed with the string method in the framework of the continuum theory of nucleation for the regular solution. Properties of the critical nucleus are compared with the predictions of the classical nucleation theory. MFEPs are found to exhibit complex nucleation pathways with non-monotonic variations of compositions in the interfacial region, specifically adsorption of a component. In the symmetric regular solution, the minority component is found to segregate at the interface during nucleation with a concomitant depletion of the nucleus core, resulting in unpredicted partition of the non-selective component. Despite increasing the gradient energy, such inhomogeneity in composition is shown to lower the nucleation barrier. PMID:25747088

  5. Thermodynamic Description of the Ternary Sb-Sn-Zn System

    NASA Astrophysics Data System (ADS)

    Gierlotka, Wojciech

    2016-04-01

    The ternary Sb-Sn-Zn system is important for two reasons: the first one is that antimony-tin-zinc alloys are promising lead-free solders, the second one is, that zinc antimonides show thermoelectric properties. Based on available literature information, the Sb-Sn-Zn system was thermodynamically described using the Calphad approach. A good agreement between calculation and experimental information was found.

  6. Applications of ternary systems in specific cosmetic formulations.

    PubMed

    Comelles, F; Megias, V; Sánchez, J; Parra, J L; Coll, J; Balaguer, F; Pelejero, C

    1989-02-01

    Synopsis The study of ternary systems leads to the understanding of the physico-chemical aspect and allows the contribution of the different components to a cosmetic formulation to be developed. The present investigation was centred in the zone of transparent get belonging to a previously studied ternary system containing a broad variety of different structural compositions. The possibility of including an active sunscreen as well as the ability to increase the water content of the gel was studied. The microscopical study of the compositions with polarized light allowed us to assign the corresponding different structures. A correlation between these structures and their physico-chemical properties, with special emphasis to rheology, has been established. PMID:19456930

  7. Thermodynamic measurement of aluminum-nickel-X ternary systems

    NASA Astrophysics Data System (ADS)

    Hu, Rongxiang

    Al, Ni based alloys are of interest for applications such as high temperature structural materials for gas turbines. A thorough knowledge of the thermodynamic properties and phase equilibria in the ternary and higher order alloy systems is required for developing this kind of alloys. Thermodynamic modeling of phase diagrams provides a more efficient manner to evaluate alloy phase equilibria aspects for alloy development than extensive experimentally studies. This modeling needs precise determination of thermodynamic properties, especially enthalpy of formation. In this work, high temperature calorimeters were used to obtain the enthalpy of formation and heat capacity of compounds in the Al-Ni-X (X: Co, Cu, Cr, Ti, Ir, Pd and Pt) ternary systems with the third element generally either a transition metal or rare earth. Lattice parameters of Al-Ni-X compounds were also studied with x-ray diffractometry. The phase diagram of the Al-Pt binary system was calculated using Thermo-Calc. The work is aimed at populating databases for computational thermodynamics, developing an understanding of alloying and clarifying phase equilibria.

  8. Solving integral equations for binary and ternary systems

    NASA Astrophysics Data System (ADS)

    Nader Lotfollahi, Mohammad; Modarress, Hamid

    2002-02-01

    Solving integral equations is an effective approach to obtain the radial distribution function (RDF) of multicomponent mixtures. In this work, by extending Gillan's approach [M. J. Gillan, Mol. Phys. 38(6), 1781 (1979)], the integral equation was solved by numerical method and was applied to both binary and ternary mixtures. The Lennard-Jones (LJ) potential function was used to express the pair molecular interactions in calculating the RDF and chemical potential. This allowed a comparison with available simulation data, on the RDF and the chemical potential, since the simulation data have been reported for the LJ potential function. The RDF and the chemical potential results indicated good agreement with the simulation data. The calculations were extended to the ternary system and the RDFs for carbon dioxide-octane-naphthalene were obtained. The numerical method used in solving integral equation was rapidly convergent and not sensitive to the first estimation. The method proposed in this work can be easily extended to more than the three-component systems.

  9. A Thermodynamic Approach to Predict Formation Enthalpies of Ternary Systems Based on Miedema's Model

    NASA Astrophysics Data System (ADS)

    Mousavi, Mahbubeh Sadat; Abbasi, Roozbeh; Kashani-Bozorg, Seyed Farshid

    2016-05-01

    A novel modification to the thermodynamic semi-empirical Miedema's model has been made in order to provide more precise estimations of formation enthalpy in ternary alloys. The original Miedema's model was modified for ternary systems based on surface concentration function revisions. The results predicted by the present model were found to be in excellent agreement with the available experimental data of over 150 ternary intermetallic compounds. The novel proposed model is capable of predicting formation enthalpies of ternary intermetallics with small discrepancies of ≤20 kJ/mol as well as providing reliable enthalpy variations.

  10. A Thermodynamic Approach to Predict Formation Enthalpies of Ternary Systems Based on Miedema's Model

    NASA Astrophysics Data System (ADS)

    Mousavi, Mahbubeh Sadat; Abbasi, Roozbeh; Kashani-Bozorg, Seyed Farshid

    2016-07-01

    A novel modification to the thermodynamic semi-empirical Miedema's model has been made in order to provide more precise estimations of formation enthalpy in ternary alloys. The original Miedema's model was modified for ternary systems based on surface concentration function revisions. The results predicted by the present model were found to be in excellent agreement with the available experimental data of over 150 ternary intermetallic compounds. The novel proposed model is capable of predicting formation enthalpies of ternary intermetallics with small discrepancies of ≤20 kJ/mol as well as providing reliable enthalpy variations.

  11. Using a Ternary Diagram to Display a System's Evolving Energy Distribution

    ERIC Educational Resources Information Center

    Brazzle, Bob; Tapp, Anne

    2016-01-01

    A ternary diagram is a graphical representation used for systems with three components. They are familiar to mineralogists (who typically use them to categorize varieties of solid solution minerals such as feldspar) but are not yet widely used in the physics community. Last year the lead author began using ternary diagrams in his introductory…

  12. Ternary system Er-Ni-In at T=870 K

    SciTech Connect

    Dzevenko, M.; Tyvanchuk, Yu.; Bratash, L.; Zaremba, V.; Havela, L.; Kalychak, Ya.

    2011-10-15

    Isothermal section of the Er-Ni-In system at T=870 K was constructed by means of X-ray powder diffraction and EDX-analyses. Nine ternary compounds, namely ErNi{sub 9}In{sub 2} (YNi{sub 9}In{sub 2}-type), Er{sub 1-1.22}Ni{sub 4}In{sub 1-0.78} (MgCu{sub 4}Sn-type), Er{sub 10}Ni{sub 9.07}In{sub 20} (Ho{sub 10}Ni{sub 9}In{sub 20}-type), ErNi{sub 1-0.60}In{sub 1-1.40} (ZrNiAl-type), Er{sub 2}Ni{sub 2}In (Mn{sub 2}AlB{sub 2}-type), Er{sub 2}Ni{sub 1.78}In (Mo{sub 2}FeB{sub 2}-type), Er{sub 5}Ni{sub 2}In{sub 4} (Lu{sub 5}Ni{sub 2}In{sub 4}-type), Er{sub 5}Ni{sub 2}In (Mo{sub 5}SiB{sub 2}-type), and Er{sub 13.53}Ni{sub 3.14}In{sub 3.33} (Lu{sub 14}Co{sub 2}In{sub 3}-type), exist in the Er-Ni-In system at this temperature. The substitution of Ni for In was observed for ErNi{sub 1-0.60}In{sub 1-1.40} and In for Er in the case of related compounds ErNi{sub 2} and ErNi{sub 4}In. Er can enter NiIn (CoSn-type) leading to including-substitution type of compound Er{sub 0-0.12}NiIn{sub 1-0.89}. Basic magnetic properties of the Er{sub 0.04}NiIn{sub 0.97}, ErNi{sub 2}, Er{sub 0.9}Ni{sub 2}In{sub 0.1}, and ErNi{sub 4}In phases were inspected. Electrical-resistivity studies were performed on the ErNiIn, ErNi{sub 0.9}In{sub 1.1}, and ErNi{sub 4}In phases. - Graphical Abstract: Phase relations in the ternary system Er-Ni-In have been established for the isothermal section at T=870 K based on X-ray phase and EDX-analyses. Nine ternary compounds were observed. Highlights: > Isothermal section of Er-Ni-In system at T=870 K was constructed. > Nine ternary compounds were detected. > Basic magnetic properties of Er{sub 0.04}NiIn{sub 0.97} and ErNi{sub 4}In phases were inspected.

  13. Normal freezing of ideal ternary systems of the pseudobinary type

    NASA Technical Reports Server (NTRS)

    Li, C. H.

    1972-01-01

    Perfect liquid mixing but no solid diffusion is assumed in normal freezing. In addition, the molar compositions of the freezing solid and remaining liquid, respectively, follow the solidus and liquidus curves of the constitutional diagram. For the linear case, in which both the liquidus and solidus are perfectly straight lines, the normal freezing equation giving the fraction solidified at each melt temperature and the solute concentration profile in the frozen solid was determined as early as 1902, and has since been repeatedly published. Corresponding equations for quadratic, cubic or higher-degree liquidus and solidus lines have also been obtained. The equation of normal freezing for ideal ternary liquid solutions solidified into ideal solid solutions of the pseudobinary type is given. Sample computations with the use of this new equation were made and are given for the Ga-Al-As system.

  14. Balancing Accuracy and Computational Efficiency for Ternary Gas Hydrate Systems

    NASA Astrophysics Data System (ADS)

    White, M. D.

    2011-12-01

    Geologic accumulations of natural gas hydrates hold vast organic carbon reserves, which have the potential of meeting global energy needs for decades. Estimates of vast amounts of global natural gas hydrate deposits make them an attractive unconventional energy resource. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. Producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. The guest-molecule exchange technology releases CH4 by replacing it with a more thermodynamically stable molecule (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, liquid CO2, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulation of the production of geologic accumulations of gas hydrates have historically suffered from relatively slow execution times, compared with other multifluid, porous media systems, due to strong nonlinearities and

  15. Phase behavior of ternary mannosylerythritol lipid/water/oil systems.

    PubMed

    Worakitkanchanakul, Wannasiri; Imura, Tomohiro; Fukuoka, Tokuma; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Rujiravanit, Ratana; Chavadej, Sumaeth; Minamikawa, Hiroyuki; Kitamoto, Dai

    2009-02-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants (BS) abundantly produced from renewable resources by yeast strains of the genus Pseudozyma. In this study, the ternary phase behaviors of two types of MELs, i.e. MEL-A and MEL-B, mixed with water and oil were investigated at 25 degrees C based on polarized optical microscopy and small-angle X-ray scattering (SAXS). When n-decane was used as an oil phase, diacetylated MEL-A formed single-phase water-in-oil (W/O) microemulsion in a remarkably large region. MEL-A, with a negative spontaneous curvature, also formed sponge (L(3)), reverse bicontinuous cubic (V(2)), and lamellar (L(alpha)) phases. Meanwhile, monoacetylated MEL-B, with the opposite configuration of the erythritol moiety, gave single-phase bicontinuous microemulsion and showed a triangular phase diagram dominated by the L(alpha) phase, suggesting that MEL-B has an almost zero spontaneous curvature. Moreover, we succeeded in preparation of oil-in-liquid crystal (O/LC) emulsion in the biphasic L(alpha)+O region of the MEL-B/water/n-decane system. The obtained gel-like emulsion was stable for at least 1 month. These results clearly demonstrated that the difference in the number of acetyl group on the headgroup and/or the chirality of the erythritol moiety drastically changed the phase behavior of MELs. Accordingly, these MELs would be quite distinctive from conventional BS hitherto reported, and would have great potential for the preparation of microemulsion and LC-based emulsion. PMID:19070997

  16. Co-In-Sb Ternary System (I): Isothermal Sections and Liquidus Projection

    NASA Astrophysics Data System (ADS)

    Tseng, Ssu-ming; Chen, Sinn-wen; Chang, Jui-shen; Tang, Yinglu; Snyder, G. Jeffrey

    2015-12-01

    The Co-In-Sb ternary system has thermoelectric application interests. Co-In-Sb ternary alloys are prepared in this study. Their equilibrium phases at 1123.15 K and 923.15 K (850 °C and 650 °C) as well as their primary solidification phases and univariant reaction temperatures are determined. The isothermal sections at 1123.15 K and 923.15 K (850 °C and 650 °C) and the liquidus projection of the Co-In-Sb ternary system are determined based on the ternary experimental results, the phase diagrams of its three constituent binary systems, and the limited phase equilibria literature. No ternary compounds are found. The phase relationships at both 1123.15 K and 923.15 K (850 °C and 650 °C) are the same. There are five phases, seven two-phase regions, and three tie-triangles which are Co-CoSb-liquid, CoSb-CoSb2-liquid, and CoSb2-CoSb3-liquid. In the liquidus projection, there are nine primary solidification phase regions, Co, CoSb, CoSb2, CoSb3, Sb, InSb, In, CoIn2, and CoIn3. There are seven invariant reactions which are two Class I, four Class II, and one Class III.

  17. Using a Ternary Diagram to Display a System's Evolving Energy Distribution

    NASA Astrophysics Data System (ADS)

    Brazzle, Bob; Tapp, Anne

    2016-04-01

    A ternary diagram is a graphical representation used for systems with three components. They are familiar to mineralogists (who typically use them to categorize varieties of solid solution minerals such as feldspar) but are not yet widely used in the physics community. Last year the lead author began using ternary diagrams in his introductory (calculus-based) physics course in a novel context—tracking the distribution of energy in a system as it transforms among three categories (e.g., gravitational, kinetic, and thermal) or transfers among three objects (e.g., inductor, capacitor, and resistor). The ternary diagram has some significant advantages over other graphical representations of energy distributions: an entire scenario can appear in a single plot, even when using very small time steps. This also means that the plot can be used to compare relative rates of energy change during various processes. Our goal for this paper is to introduce the ternary diagram and discuss these advantages in hopes that this will stimulate broader use of ternary diagrams and further research into their educational utility.

  18. Liquidus Projections of Bi-Se-Ga and Bi-Se-Te Ternary Systems

    NASA Astrophysics Data System (ADS)

    Lin, Po-han; Chen, Sinn-wen; Hwang, Jenn-dong; Chu, Hsu-shen

    2016-06-01

    This study determines the liquidus projections of both Bi-Se-Ga and Bi-Se-Te ternary systems which are constituent ternary systems of promising Bi-Se-Te-Ga thermoelectric materials. Ternary Bi-Se-Ga and Bi-Se-Te alloys are prepared. Their primary solidification phases are experimentally determined, and thermal analysis experiments are carried out. The liquidus projections are determined based on the ternary experimental results and phase diagrams of constituent binary systems. The Bi-Se-Ga system includes seven primary solidification phases, Bi, Ga, GaSe, Ga2Se3, Se, Bi2Se3, and (Bi2)n(Bi2Se3)m. In the Bi-Se-Te system, there are five primary solidification phases, Bi, (Bi2)n(Bi2Te3)m, Bi2(Se,Te)3, (Se,Te), and (Bi2)n(Bi2Se3)m. Both the (Bi2)n(Bi2Te3)m and (Bi2)n(Bi2Se3)m phases are not a single phase, but a collection of series undetermined phases. Large miscibility gaps are observed in the Bi-Se-Ga system. The temperatures of the invariant reactions, Liquid + Bi + GaSe = Ga and Liquid + Ga2Se3 = Bi + GaSe, are at 495 K (222 °C) and 533 K (260 °C), respectively.

  19. Phase Equilibria of the Fe-Ni-Sn Ternary System at 270°C

    NASA Astrophysics Data System (ADS)

    Huang, Tzu-Ting; Lin, Shih-Wei; Chen, Chih-Ming; Chen, Pei Yu; Yen, Yee-Wen

    2016-07-01

    The Fe-42 wt.% Ni alloy, also known as a 42 invar alloy (Alloy 42), is used as a lead-frame material because its thermal expansion coefficient is much closer to Si substrate than Cu or Ni substrates. In order to enhance the wettability between the substrate and solder, the Sn layer was commonly electroplated onto the Alloy 42 surface. A clear understanding of the phase equilibria of the Fe-Ni-Sn ternary system is necessary to ensure solder-joint reliability between Sn and Fe-Ni alloys. To determine the isothermal section of the Fe-Ni-Sn ternary system at 270°C, 26 Fe-Ni-Sn alloys with different compositions were prepared. The experimental results confirmed the presence of the Fe3Ni and FeNi phases at 270°C. Meanwhile, it observed that the isothermal section of the Fe-Ni-Sn ternary system was composed of 11 single-phase regions, 19 two-phase regions and nine tie-triangles. Moreover, no ternary compounds were found in the Fe-Ni-Sn system at 270°C.

  20. A ternary conjugation system for the construction of DNA libraries for Geobacillus kaustophilus HTA426.

    PubMed

    Suzuki, Hirokazu; Wada, Keisuke; Furukawa, Megumi; Doi, Katsumi; Ohshima, Toshihisa

    2013-01-01

    This report describes efficient plasmid uptake by the thermophile Geobacillus kaustophilus HTA426 by means of a ternary conjugation system, which was used to construct thermophile DNA libraries for G. kaustophilus and to identify the genes for orotidine-5'-phosphate decarboxylase by in vivo functional screening. The results indicate that the conjugation system is useful in constructing G. kaustophilus libraries, which are practical in identifying thermophile genes. PMID:24200788

  1. Phase equilibria, formation, crystal and electronic structure of ternary compounds in Ti-Ni-Sn and Ti-Ni-Sb ternary systems

    SciTech Connect

    Romaka, V.V.; Rogl, P.; Romaka, L.; Stadnyk, Yu.; Melnychenko, N.; Grytsiv, A.; Falmbigl, M.; Skryabina, N.

    2013-01-15

    The phase equilibria of the Ti-Ni-Sn and Ti-Ni-Sb ternary systems have been studied in the whole concentration range by means of X-ray and EPM analyses at 1073 K and 873 K, respectively. Four ternary intermetallic compounds TiNiSn (MgAgAs-type), TiNi{sub 2-x}Sn (MnCu{sub 2}Al-type), Ti{sub 2}Ni{sub 2}Sn (U{sub 2}Pt{sub 2}Sn-type), and Ti{sub 5}NiSn{sub 3} (Hf{sub 5}CuSn{sub 3}-type) are formed in Ti-Ni-Sn system at 1073 K. The TiNi{sub 2}Sn stannide is characterized by homogeneity in the range of 50-47 at% of Ni. The Ti-Ni-Sb ternary system at 873 K is characterized by formation of three ternary intermetallic compounds, Ti{sub 0.8}NiSb (MgAgAs-type), Ti{sub 5}Ni{sub 0.45}Sb{sub 2.55} (W{sub 5}Si{sub 3}-type), and Ti{sub 5}NiSb{sub 3} (Hf{sub 5}CuSn{sub 3}-type). The solubility of Ni in Ti{sub 0.8}NiSb decreases number of vacancies in Ti site up to Ti{sub 0.91}Ni{sub 1.1}Sb composition. - Graphical abstract: Isothermal section of the Ti-Ni-Sn phase diagram and DOS distribution in hypothetical TiNi{sub 1+x}Sn solid solution. Highlights: Black-Right-Pointing-Pointer Ti-Ni-Sn phase diagram was constructed at 1073 K. Black-Right-Pointing-Pointer Four ternary compounds are formed: TiNiSn, TiNi{sub 2-x}Sn, Ti{sub 2}Ni{sub 2}Sn, and Ti{sub 5}NiSn{sub 3}. Black-Right-Pointing-Pointer Three ternary compounds exist in Ti-Ni-Sb system at 873 K. Black-Right-Pointing-Pointer The TiNi{sub 2}Sb compound is absent.

  2. Alternative solution model for the ternary carbonate system CaCO3 - MgCO3 - FeCO3 - I. A ternary Bragg-Williams ordering model

    USGS Publications Warehouse

    McSwiggen, P.L.

    1993-01-01

    The minerals of the ternary carbonate system CaCO3 - MgCO3 - FeCO3 represent a complex series of solid solutions and ordering states. An understanding of those complexities requires a solution model that can both duplicate the subsolidus phase relationships and generate correct values for the activities. Such a solution model must account for the changes in the total energy of the system resulting from a change in the ordering state of the individual constituents. Various ordering models have been applied to binary carbonate systems, but no attempts have previously been made to model the ordering in the ternary system. This study derives a new set of equations that allow for the equilibrium degree of order to be calculated for a system involving three cations mixing on two sites, as in the case of the ternary carbonates. The method is based on the Bragg-Williams approach. From the degree of order, the mole fractions of the three cations in each of the two sites can be determined. Once the site occupancies have been established, a Margules-type mixing model can be used to determine the free energy of mixing in the solid solution and therefore the activities of the various components. ?? 1993 Springer-Verlag.

  3. New bulk glassy alloys in Cu-Zr-Ag ternary system prepared by casting and milling

    NASA Astrophysics Data System (ADS)

    Janovszky, D.; Tomolya, K.; Sveda, M.; Solyom, J.; Roosz, A.

    2009-01-01

    The thermal stability, crystallization behaviour and glass forming ability of Cu-Zr-Ag system have been investigated on the basis of a ternary phase diagram. We altered the concentration of the alloys from the Cu58Zr42 to the concentration of the deep eutectic point of the Cu-Zr-Ag ternary system and we calculated the glass forming ability parameters. This paper summerises the results of the procedure during which Cu-Zr-Ag amorphous alloys with different Ag content (0-25%) were prepared by casting and ball-milling. Wedge-shaped samples were prepared from the ingots by centrifugal casting into copper mold. The supercooled liquid region (ΔTx) exceeded 75K. Following the characterization of the cast alloys, master alloys of identical composition were milled in a Fritsch Pulverisette 2 ball-mill. The powders, milled for various periods of time were analysed by XRD in order to define the amorphous fraction.

  4. Experimental determination of the ternary diagram of the Ti-Cr-C system

    SciTech Connect

    Booker, P.H.; Hepworth, M.T.; Kunrath, A.O.

    1997-04-01

    Refractory transition metal carbides are potential candidate base materials in composite structures for high temperature applications. The phase relationships in the Ti-Cr-C ternary system above 1,300 C were investigated by means of X-ray diffraction, D.T.A., metallographic and melting point techniques. The results of this work including the isotherms for nine different temperatures are presented in this paper.

  5. Composition dependences of thermodynamical properties associated with Pb-free ternary, quaternary, and quinary solder systems

    NASA Astrophysics Data System (ADS)

    Dogan, A.; Arslan, H.

    2016-05-01

    In the present study, Chou's General Solution Model (GSM) has been used to predict the enthalpy and partial enthalpies of mixing of the liquid Ag-In-Sn ternary, Ag-In-Sn-Zn quaternary, and Ag-Au-In-Sn-Zn quinary systems. These are of technical importance to optimize lead-free solder alloys, in selected cross-sections: x In/ x Sn = 0.5/0.5 (ternary), Au-In0.1-Sn0.8-Zn0.1, Ag-In0.1-Sn0.8-Zn0.1 (quaternary), and t = x Au/ x In = 1, x In = x Sn = x Zn (quinary) at 1173, 773, and 773 K, respectively. Moreover, the activity of In content in the ternary alloy system Ag-In-Sn has been calculated and its result is compared with that determined from the experiment, while the activities of Ag contents associated with the alloys mentioned above have been calculated. The other traditional models such as of Colinet, Kohler, Muggianu, Toop, and Hillert are also included in calculations. Comparing those calculated from the proposed GSM with those determined from experimental measurements, it is seen that this model becomes considerably realistic in computerization for estimating thermodynamic properties in multicomponent systems.

  6. Phase diagram of the Al-Er-Mo ternary system at 873 K

    NASA Astrophysics Data System (ADS)

    Pan, Yanfang; Yang, Wenchao; Tang, Chenghuang; Lan, Yanni; Zhan, Yong Zhong

    2015-11-01

    The phase relationship in the Al-Er-Mo ternary system at 873 K has been investigated based on the equilibrated method mainly by means of X-ray powder diffraction and scanning electron microscopy. The existence of 10 binary compounds and two ternary compounds has been confirmed. The results present that the isothermal section at 873 K is governed by 15 single-phase regions, 29 two-phase regions and 15 three-phase regions. By using the phase-disappearing method, Al8Mo3 has a narrow homogeneity range (from 72 to 73 at% Al), while the homogeneity range of AlMo3 is from 21% to 28.5% at% Al. Also, the maximum solubility of Al in Mo is about 16 at%.

  7. A practical numerical scheme for the ternary Cahn-Hilliard system with a logarithmic free energy

    NASA Astrophysics Data System (ADS)

    Jeong, Darae; Kim, Junseok

    2016-01-01

    We consider a practically stable finite difference method for the ternary Cahn-Hilliard system with a logarithmic free energy modeling the phase separation of a three-component mixture. The numerical scheme is based on a linear unconditionally gradient stable scheme by Eyre and is solved by an efficient and accurate multigrid method. The logarithmic function has a singularity at zero. To remove the singularity, we regularize the function near zero by using a quadratic polynomial approximation. We perform a convergence test, a linear stability analysis, and a robustness test of the ternary Cahn-Hilliard equation. We observe that our numerical solutions are convergent, consistent with the exact solutions of linear stability analysis, and stable with practically large enough time steps. Using the proposed numerical scheme, we also study the temporal evolution of morphology patterns during phase separation in one-, two-, and three-dimensional spaces.

  8. Ternary inverse opal system for convenient and reversible photonic bandgap tuning.

    PubMed

    Liu, Zhan-Fang; Ding, Tao; Zhang, Guo; Song, Kai; Clays, Koen; Tung, Chen-Ho

    2008-09-16

    A ternary system, consisting of air, an air-core/dense-silica-shell core-shell particle, and liquids has been used to fabricate an inverse opal structure with low fill factor, high refractive index contrast, and reversible tuning capabilities of the bandgap spectral position. The original close-packed opal structure is a ternary self-assembled photonic crystal from monodisperse and spherical polystyrene-core/silica-shell colloidal particles with air as the void material. Calcination removed the polystyrene and converted the core-shell particles to hollow spheres with a dense shell. In a final step, liquid is infiltrated only in the voids between the hollow spheres, but does not penetrate in the shell. This allows facile and reversible tuning of the bandgap properties in an inverse opal structure. PMID:18717578

  9. Preparation of meloxicam-β-cyclodextrin-polyethylene glycol 6000 ternary system: characterization, in vitro and in vivo bioavailability.

    PubMed

    Radia, Ourezki; Rogalska, Ewa; Moulay-Hassane, Guermouche

    2012-01-01

    Ternary complexes of meloxicam (ML), a poorly water-soluble anti-inflammatory drug, with β-cyclodextrin (βCD) and polyethylene glycol (PEG) 6000 were prepared from an equimolar (ML-βCD) and 10% of PEG. Characterization of the ternary complex was carried out by differential scanning calorimetry and X-ray diffractometry. The solubility of ML increased as a function of increasing the concentration of βCD and PEG 6000. Ternary system increased significantly ML solubility in water. Ternary complexes improved drug release compared with ML and ML-βCD. The oral bioavailability of ML-βCD-PEG was investigated by administration to rat and compared with ML and ML-βCD. The results confirmed that the oral bioavailability of ML was significantly improved by complexation with βCD in the presence of PEG. PMID:21428700

  10. Phase competition in ternary Ti-Ni-Al system

    NASA Astrophysics Data System (ADS)

    Wierzba, Bartek

    2016-07-01

    In this paper the reactive diffusion in Ti-Ni-Al system is discussed at 1173 K. The calculation method based on the binary approach is presented. The key kinetic parameter is Wagner integral diffusion coefficient. The experimental and simulation results of reactive diffusion between pure Ti and β-NiAl are compared at 1173 K after 100 h.

  11. Molar Volume Modeling of Ti-Al-Nb and Ti-Al-Mo Ternary Systems

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Zhang, Chuan; Cao, Weisheng; Chen, Shuanglin; Zhang, Fan; Park, Joon Sik; Yi, Seonghoon

    2015-08-01

    Molar volume modeling was performed for both Ti-Al-Nb and Ti-Al-Mo ternary systems based on the thermodynamic modeling of these two systems. Comparison between the calculated phase equilibria and the experimental data proved the accuracy of thermodynamic modeling. With the calculated density contour curves superimposed on the equilibrium phase diagram, it provides a map for alloy developers to identify the promising alloy compositions that satisfy both the phase stability and density requirements and rule out those that fail to meet the requirements.

  12. Ternary particles for effective vaccine delivery to the pulmonary system

    NASA Astrophysics Data System (ADS)

    Terry, Treniece La'shay

    Progress in the fields of molecular biology and genomics has provided great insight into the pathogenesis of disease and the defense mechanisms of the immune system. This knowledge has lead to the classification of an array of abnormal genes, for which, treatment relies on cellular expression of proteins. The utility of DNA-based vaccines hold great promise for the treatment of genetically based and infectious diseases, which ranges from hemophilia, cystic fibrosis, and HIV. Synthetic delivery systems consisting of cationic polymers, such as polyethylenimine (PEI), are capable of condensing DNA into compact structures, maximizing cellular uptake of DNA and yielding high levels of protein expression. To date, short term expression is a major obstacle in the development of gene therapies and has halted their expansion in clinical applications. This study intends to develop a sustained release vaccine delivery system using PLA-PEG block copolymers encapsulating PEI:DNA polyplexes. To enhance the effectiveness of such DNA-based vaccines, resident antigen presenting cells, macrophages and dendritic cells, will be targeted within the alveoli regions of the lungs. Porous microspheres will be engineered with aerodynamic properties capable of achieving deep lung deposition. A fabrication technique using concentric nozzles will be developed to produce porous microspheres. It was observed that modifications in the dispersed to continuous phase ratios have the largest influence on particle size distributions, release rates and encapsulation efficiency which ranged form 80--95% with fourteen days of release. Amphiphilic block copolymers were also used to fabricate porous microspheres. The confirmation of PEG within the biodegradable polymer backbone was found to have a tremendous impact on the microsphere morphology and encapsulation efficiency which varied from 50--90%. Porous microspheres were capable of providing sustained gene expression when tested in vitro using the

  13. Predicting magnetostructural trends in FeRh-based ternary systems

    NASA Astrophysics Data System (ADS)

    Barua, Radhika; Jiménez-Villacorta, Félix; Lewis, L. H.

    2013-09-01

    Correlations between magnetic transition temperatures and the average weighted valence band electron concentration ((s + d) electrons/atom) have led to the development of a phenomenological model that predicts the influence of elemental substitution on the magnetostructural response of bulk B2-ordered Fe(Rh1-xMx) or (Fe1-xMx)Rh alloys (M = transition elements; x < 6 at. %). Validation of this model is provided through synthesis and characterization of FeRh with Cu and Au additions. The data and associated trends indicate that the lattice and electronic free energies are both equally important in driving the magnetostructural transition in the bulk FeRh system.

  14. Bergman Clusters, Multiple Bonds, and Defect Planes: Synthetic Outcomes of Chemical Frustration in Ternary Intermetallic Systems

    NASA Astrophysics Data System (ADS)

    Hadler, Amelia Beth

    Intermetallics crystallize in a variety of complex structures, many of which show unusual bonding or intriguing properties. Understanding what factors drive this structural chemistry would be a valuable step towards designing new intermetallics with specific structures or properties. One pathway towards understanding and predicting the structures of complex intermetallics is chemical frustration, a design tool which harnesses competition between incompatible bonding or packing modes to induce complexity in ternary intermetallic systems. The research outlined in this thesis focuses on developing chemical frustration through exploratory synthesis in ternary systems designed to induce frustration between the tetrahedral close packing of many intermetallics and the simple cubic packing seen for ionic salts or elemental metals. Syntheses in three systems yielded six new ternary intermetallics, four of which crystallize in novel structure types. Three were discovered in the Ca-Cu-Cd system: Ca5Cu2Cd and Ca2Cu 2Cd9, which adopt ternary variants of binary structures, and Ca10Cu2Cd27, which crystallizes in a new structure built from Bergman clusters. All three structures can be traced to electronic packing frustration induced by the similar electronegativities but different metallic radii of Cu and Cd. The Gd-Fe-C system yielded the new carbometalate Gd13Fe 10C13 and an oxycarbide derivative. These phases crystallize in structures built from Gd tricapped trigonal prisms interpenetrated by an Fe-C network. Theoretical analyses reveal that Fe-Fe and Fe-C multiple bonding is found throughout this network. A theoretical investigation of similar carbides uncovers additional metal-metal, metal-carbon, and carbon-carbon multiple bonding. This unusual bonding stabilizes the carbides by satisfying preferred electron counts for their transition metal sites. One new phase, Mg4.5Pd5Ge1.5, was found in the Mg-Pd-Ge system. Its structure is closely related to the CsCl-type structure of

  15. Synthesis and crystal structure investigations of ternary oxides in the Na-Pu-O system

    NASA Astrophysics Data System (ADS)

    Bykov, D. M.; Raison, P. E.; Konings, R. J. M.; Apostolidis, C.; Orlova, M.

    2015-02-01

    Ternary oxides of sodium and plutonium in oxidation states from +4 to +7 have been synthesized by solid state reactions at elevated temperatures in pure argon or oxygen atmospheres. Crystal structures of the obtained phases have been investigated by the Rietveld method using conventional X-ray powder diffraction technique. The structural analogs were found among the families of complex oxides of alkali elements and cerium, ruthenium, antimony, uranium/neptunium and osmium. The new results were compared to earlier literature data for the Na-Pu-O system.

  16. Liquidus Projection and Isothermal Section of the Ag-In-Zn Ternary System

    NASA Astrophysics Data System (ADS)

    Chang, Jui-Shen; Chen, Sinn-wen

    2015-04-01

    This study experimentally determines the liquidus projection and phase equilibria isothermal section at 773.2 K (500°C) of the Ag-In-Zn ternary system. There are ten primary solidification phases of the Ag-In-Zn ternary system. In addition to the (Ag) (In) and (Zn) phases, there are seven binary compounds: β-(Ag3In), ζ-(Ag3In), γ-(Ag9In4), AgIn2, β-(AgZn), γ-(Ag5Zn8), and ɛ-(AgZn3). No ternary compounds were found. Among all these phases, the γ-(Ag9In4) primary solidification phase has the largest compositional regime. Five invariant reactions, two Class I reactions, two Class II reactions, and one Class III reaction, are determined by thermal analysis in this study. The reactions with the lowest and highest reaction temperatures are Liquid = (In) + AgIn2 + γ-(Ag5Zn8) at 413.5 K (140.3°C) and Liquid + (Ag) + β-(AgZn) = ζ-(Ag3In) at 964.9 K (691.7°C), respectively. In the isothermal section at 773.2 K, there are six tie-triangles: (Ag) + ζ-(Ag3In) + β-(AgZn), ζ-(Ag3In) + γ-(Ag9In4) + β-(AgZn), ζ-(Ag3In) + γ-(Ag9In4) + Liquid, γ-(Ag9In4) + β-(AgZn) + Liquid, β-(AgZn) + γ -(Ag5Zn8) + Liquid, and γ-(Ag5Zn8) + ɛ-(AgZn3) + Liquid.

  17. Investigation of the phase equilibrium of alloys of the ternary system Ti-Al-Nb

    SciTech Connect

    Nartova, T.T.; Sopochkin, G.G.

    1987-09-09

    This investigation of the constitution diagram of the ternary system titanium-aluminum-niobium is limited to the specific system Ti-Ti3A1-Nb in order to establish the regions of the alpha and beta solid solutions of titanium, the solid solutions based on aluminide Ti3A1, and the phases conjugated with them. The constitution diagram of the systems Ti-A1 and Ti-Nb obtained from the data were used as the basis for constructing the constitution diagram of the ternary system. The methods of microstructural, thermal and X ray phase analysis were used in the study. The X ray pictures were taken in copper emission from powders that had been preliminarily annealed in a vacuum at 600 for 30 min. Iodic titanium, aluminum brand AV-000 and fillet niobium were used as the source materials. The alloys were remelted five times in an electric-arc furnace with a nonconsumable tungsten electrode in an argon atmosphere, and then by crucibleless melting in the suspended state. The constancy of the chemical composition of the alloys was monitored by their weight after smelting in an electric arc furnace.

  18. New real ternary and pseudoternary phases in the Li-Au-In system

    SciTech Connect

    Dmytriv, G.S.; Pavlyuk, V.V.; Pauly, H.; Eckert, J.; Ehrenberg, H.

    2011-05-15

    Two real ternary lithium gold indides LiAu{sub 2}In and Li{sub 280}Au{sub 22}In{sub 130} (Li{sub 0.65}Au{sub 0.05}In{sub 0.30}) were found in the Li-Au-In system. They are isostructural to the respective Ag-alloys. LiAu{sub 2}In crystallizes in the MnCu{sub 2}Al-type structure (Fm-3m, Heusler phase, a=6.4982(8) A, based on single crystal XRD-data) and Li{sub 280}Au{sub 22}In{sub 130} in the Li{sub 278}Ag{sub 40}In{sub 114}-type structure (F-43m, a=19.9970(2) A, based on powder XRD-data). The analogy of the two ternary systems Li-Au-In and Li-Ag-In is additionally reaffirmed by the wide homogeneity range of the pseudoternary solid solution with NaTl-type structure (Zintl phase),which expands not only in the direction of the quasibinary cut Li(Au{sub x}In{sub 1-x}) with 0{<=}x{<=}0.5, but also into the directions of both higher and lower Li-concentrations. -- Graphical abstract: Two real ternary compounds (1: Heusler phase, 2: n=6 variant of a cubic nxnxn W-type superstructure) together with one pseudoternary compound (3: Zintl phase with its broad homogeneity range). Display Omitted Highlights: {yields} 'Real' ternary phases were found in the Li-Au-In systems: LiAu{sub 2}In and Li{sub 280}Au{sub 22}In{sub 130}. {yields} The homogeneity range of 'pseudoternary' Li(Au{sub x}In{sub 1-x}) extends to the binary phase x=0. {yields} The three-element sets, both Li, Au, In and Li, Ag, In, are compound formers*. (*in the definition of Villars et al., J. Alloys Compd. 317-318, 2001, 26).

  19. Controlling the physics and chemistry of binary and ternary praseodymium and cerium oxide systems.

    PubMed

    Niu, Gang; Zoellner, Marvin Hartwig; Schroeder, Thomas; Schaefer, Andreas; Jhang, Jin-Hao; Zielasek, Volkmar; Bäumer, Marcus; Wilkens, Henrik; Wollschläger, Joachim; Olbrich, Reinhard; Lammers, Christian; Reichling, Michael

    2015-10-14

    Rare earth praseodymium and cerium oxides have attracted intense research interest in the last few decades, due to their intriguing chemical and physical characteristics. An understanding of the correlation between structure and properties, in particular the surface chemistry, is urgently required for their application in microelectronics, catalysis, optics and other fields. Such an understanding is, however, hampered by the complexity of rare earth oxide materials and experimental methods for their characterisation. Here, we report recent progress in studying high-quality, single crystalline, praseodymium and cerium oxide films as well as ternary alloys grown on Si(111) substrates. Using these well-defined systems and based on a systematic multi-technique surface science approach, the corresponding physical and chemical properties, such as the surface structure, the surface morphology, the bulk-surface interaction and the oxygen storage/release capability, are explored in detail. We show that specifically the crystalline structure and the oxygen stoichiometry of the oxide thin films can be well controlled by the film preparation method. This work leads to a comprehensive understanding of the properties of rare earth oxides and highlights the applications of these versatile materials. Furthermore, methanol adsorption studies are performed on binary and ternary rare earth oxide thin films, demonstrating the feasibility of employing such systems for model catalytic studies. Specifically for ceria systems, we find considerable stability against normal environmental conditions so that they can be considered as a "materials bridge" between surface science models and real catalysts. PMID:26355535

  20. The ternary system K2SO4MgSO4CaSO4

    USGS Publications Warehouse

    Rowe, J.J.; Morey, G.W.; Silber, C.C.

    1967-01-01

    Melting and subsolidus relations in the system K2SO4MgSO4CaSO4 were studied using heating-cooling curves, differential thermal analysis, optics, X-ray diffraction at room and high temperatures and by quenching techniques. Previous investigators were unable to study the binary MgSO4CaSO4 system and the adjacent area in the ternary system because of the decomposition of MgSO4 and CaSO4 at high temperatures. This problem was partly overcome by a novel sealed-tube quenching method, by hydrothermal synthesis, and by long-time heating in the solidus. As a result of this study, we found: (1) a new compound, CaSO4??3MgSO4 (m.p. 1201??C) with a field extending into the ternary system; (2) a high temperature form of MgSO4 with a sluggishly reversible inversion. An X-ray diffraction pattern for this polymorphic form is given; (3) the inversion of ??-CaSO4 (anhydrite) to ??-CaSO4 at 1195??C, in agreement with grahmann; (1) (4) the melting point of MgSO4 is 1136??C and that of CaSO4 is 1462??C (using sealed tube methods to prevent decomposition of the sulphates); (5) calcium langbeinite (K2SO4??2CaSO4) is the only compound in the K2SO4CaSO4 binary system. This resolved discrepancies in the results of previous investigators; (6) a continuous solid solution series between congruently melting K2SOP4??2MgSO4 (langbeinite) and incongruently melting K2SO4??2CaSO4 (calcium langbeinite); (7) the liquidus in the ternary system consists of primary phase fields of K2SO4, MgSO4, CaSO4, langbeinite-calcium langbeinite solid solution, and CaSO4??3MgSO4. The CaSO4 field extends over a large portion of the system. Previously reported fields for the compounds (K2SO4??MgSO4??nCaSO4), K2SO4??3CaSO4 and K2SO4??CaSO4 were not found; (8) a minimum in the ternary system at: 740??C, 25% MgSO4, 6% CaSO4, 69% K2SO4; and ternary eutectics at 882??C, 49% MgSO4, 19% CaSO4, 32% K2SO4; and 880??, 67??5% MgSO4, 5% CaSO4, 27??5% K2SO4. ?? 1967.

  1. Surface and interface phonon-polaritons in freestanding quantum well wire systems of polar ternary mixed crystals

    NASA Astrophysics Data System (ADS)

    Yan, C. L.; Bao, J.; Yan, Z. W.

    2016-03-01

    The surface and interface phonon-polaritons in freestanding rectangular quantum well wire systems consisting of polar ternary mixed crystals are investigated in the modified random-element-isodisplacement model and the Born-Huang approximation, based on the Maxwell's equations with the boundary conditions. The numerical results of the surface and interface phonon-polariton frequencies as functions of the wave-vector, geometric structure, and the composition of the ternary mixed crystals in GaAs/AlxGa1-xAs and ZnxCd1-xSe/ZnSe quantum well wire systems are obtained and discussed. It is shown that there are 10 and 8 branches of surface and interface phonon-polaritons in the two quantum well wire systems respectively. The effects of the "two-mode" and "one-mode" behaviors of the ternary mixed crystals on the surface and interface phonon-polariton modes are shown in the dispersion curves.

  2. Ternary hybrid systems of P3HT-CdSe-WS₂ nanotubes for photovoltaic applications.

    PubMed

    Bruno, A; Borriello, C; Haque, S A; Minarini, C; Di Luccio, T

    2014-09-01

    Hybrid heterojunctions of conjugated polymers and inorganic nanomaterials are a promising combination for obtaining high performance solar cells (SC). In this work we have explored new possible uses of the WS2 nanotubes (NTs) both as the only acceptor material blended with a polymer and in ternary systems mixed with a polymer and quantum dots (QDs). In particular we have spectroscopically investigated binary blends of poly(3-hexylthiophene) (P3HT) and WS2 NTs, P3HT and CdSe QDs, and ternary blends of P3HT, CdSe QDs and WS2 NTs. We report fluorescence quenching effects of the QD signal in the P3HT-CdSe-WS2 system with the increase of NT concentration. Static and time-resolved fluorescence studies reveal efficient resonant energy transfer from the QDs to the NTs upon photoexcitation. The evidence of energetic interaction between WS2 NTs and QDs opens new fields of application of WS2 NTs and holds very promising potential for improving charge transfer phenomena in the active layer of hybrid solar cells. PMID:25050744

  3. Acoustic studies of ternary mixture phenanthrene toluene heptane as a model of natural flocculating system

    NASA Astrophysics Data System (ADS)

    Bucek, M.; Marczak, W.

    2008-02-01

    Complexity of natural systems causes that results of experimental studies are often ambiguous and extremely unrewarding in interpretation. To overcome this difficulty, relative simple model systems may be investigated in order to provide physical grounds for further discussion. This study deals with adiabatic compressibility of liquid ternary system consisting of phenanthrene, toluene and heptane. Increase of heptane concentration in the mixture changes considerably the partial compressibility of phenanthrene, from common positive value in pure toluene up to clearly negative ones. This is most probably because of self-association of phenanthrene due to strong London forces. Heptane seems to promote the self-association. These feature of the investigated system suggests its usefulness in studies of flocculation of asphaltenes from crude oils.

  4. Preparation of pseudo-ternary library by combinatorial robot system based on wet and dry processes

    NASA Astrophysics Data System (ADS)

    Fujimoto, Kenjiro; Watanabe, Mamoru

    2005-01-01

    A fully automatic combinatorial robot system was developed for investigating inorganic materials. The system can prepare and characterize about 200 samples in 1 day. The phase relation of the pseudo-ternary LiO0.5-X-TiO2 (X: CrO1.5, FeO1.5 and NiO) system was investigated in order to determine the formation range of ramsdellite structures. A wider composition range was obtained for the ramsdellite-type compounds in the LiO0.5-CrO1.5-TiO2 system than for other compounds. It was found that the differences in the composition ranges for ramsdellite-type structures were caused by the different ionic radii of Cr3+, Fe3+ and Ni2+ in the octahedral site.

  5. Experimental measurements of vapor-liquid equilibria of the H2O + CO2 + CH4 ternary system

    USGS Publications Warehouse

    Qin, J.; Rosenbauer, R.J.; Duan, Zhenhao

    2008-01-01

    Reported are the experimental measurements on vapor-liquid equilibria in the H2O + CO2 + CH4 ternary system at temperatures from (324 to 375) K and pressures from (10 to 50) MPa. The results indicate that the CH4 solubility in the ternary mixture is about 10 % to 40 % more than that calculated by interpolation from the Henry's law constants of the binary system, H2O + CH4, and the solubility of CO2 is 6 % to 20 % more than what is calculated by the interpolation from the Henry's law constants of the binary mixture, H 2O + CO2. ?? 2008 American Chemical Society.

  6. Study of a ternary blend system for bulk heterojunction thin film solar cells

    NASA Astrophysics Data System (ADS)

    Ahmad, Zubair; Touati, Farid; Shakoor, R. A.; Al-Thani, N. J.

    2016-08-01

    In this research, we report a bulk heterojunction (BHJ) solar cell consisting of a ternary blend system. Poly(3-hexylthiophene) P3HT is used as a donor and [6,6]-phenyl C61-butyric acid methylester (PCBM) plays the role of acceptor whereas vanadyl 2,9,16,23-tetraphenoxy-29H, 31H-phthalocyanine (VOPcPhO) is selected as an ambipolar transport material. The materials are selected and assembled in such a fashion that the generated charge carriers could efficiently be transported rightwards within the blend. The organic BHJ solar cells consist of ITO/PEDOT:PSS/ternary BHJ blend/Al structure. The power conversion efficiencies of the ITO/ PEDOT:PSS/P3HT:PCBM/Al and ITO/PEDOT:PSS/ P3HT:PCBM:VOPcPhO/Al solar cells are found to be 2.3% and 3.4%, respectively. This publication was made possible by PDRA (Grant No. PDRA1-0117-14109) from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors.

  7. Phase-field simulations of solidification in binary and ternary systems using a finite element method

    NASA Astrophysics Data System (ADS)

    Danilov, D.; Nestler, B.

    2005-02-01

    We present adaptive finite element simulations of dendritic and eutectic solidification in binary and ternary alloys. The computations are based on a recently formulated phase-field model that is especially appropriate for modelling non-isothermal solidification in multicomponent multiphase systems. In this approach, a set of governing equations for the phase-field variables, for the concentrations of the alloy components and for the temperature has to be solved numerically, ensuring local entropy production and the conservation of mass and inner energy. To efficiently perform numerical simulations, we developed a numerical scheme to solve the governing equations using a finite element method on an adaptive non-uniform mesh with highest resolution in the regions of the phase boundaries. Simulation results of the solidification in ternary Ni60Cu40-xCrx alloys are presented investigating the influence of the alloy composition on the growth morphology and on the growth velocity. A morphology diagram is obtained that shows a transition from a dendritic to a globular structure with increasing Cr concentrations. Furthermore, we comment on 2D and 3D simulations of binary eutectic phase transformations. Regular oscillatory growth structures are observed combined with a topological change of the matrix phase in 3D. An outlook for the application of our methods to describe AlCu eutectics is given.

  8. Experimental study and thermodynamic assessment of the Ni-Mo-Ta ternary system

    SciTech Connect

    Cui, Y.; Lu, X.; Jin, Z.

    1999-11-01

    Phase equilibrium data of the Ni-Mo-Ta system at 1,473, 1,373, and 1,173 K were determined by means of diffusion triple and electron probe microanalysis (EPMA) techniques in this article. From the present experimental results and literature data, the Ni-Mo-Ta system was thermodynamically assessed using the CALPHAD method. A set of consistent thermodynamic parameters of each phase was obtained. A number of calculated isothermal sections are presented and compared with experimental data. They are in reasonable agreement. The present calculation was successfully used to analyze the solidification behavior of two alloys. Two subsystems, Ni-Mo and Mo-Ta, were assessed prior to the assessment of the ternary system.

  9. On the Molecular Modeling of Dilute Ternary Systems in Compressible Media. Formal Results and thermodynamic Pitfalls

    SciTech Connect

    Chialvo, Ariel A; Chialvo, Sebastian; Simonson, J Michael {Mike}

    2009-01-01

    Truncated series expansions for the species partial molar fugacity coefficients in ternary dilute systems are derived for the systematic study of mixed solutes in highly compressible media. Then, explicit molecularbased expressions for the expansion coefficients are drawn in terms of direct and total correlation function integrals associated with the actual microstructure of the reference infinite dilute system. Finally, these selfconsistent formal expressions are used (a) to derive the corresponding expressions for special systems, (b) to highlight, and discuss with examples from the literature, some frequent pitfalls in the molecular modeling of these mixtures leading to serious thermodynamic inconsistencies, and (c) to illustrate how the proposed expressions reduce exactly, in the zero-density limit, to those for the partial molar properties of mixtures obeying the 1st-order truncated virial equation of state.

  10. Discovery of a ternary pseudobrookite phase in the earth-abundant Ti-Zn-O system.

    PubMed

    Perry, Nicola H; Stevanovic, Vladan; Lim, Linda Y; Mason, Thomas O

    2016-01-28

    We combine theory with experiment in searching for "missing", stable materials within the Zn-Ti-O chemical system, leading to the discovery of a new pseudobrookite phase, ZnxTi3-xO5-δ. This ternary system was chosen for (1) technological relevance, (2) earth abundance, and (3) the fact that many compounds in this system are predicted from enthalpies of formation to be borderline stable, suggesting an important role of entropic contributions in their stabilization and making this chemical system a perfect test bed for exploring the limits of theoretical predictions. The initial set of exploratory experimental syntheses, via sintering in evacuated ampoules and quenching, resulted in a single phase ZnxTi3-xO5-δ composition with x ≈ 0.6 and an almost stoichiometric oxygen content, as evaluated by X-ray fluorescence, energy dispersive spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The theoretically calculated lowest energy crystal structure for the closest stoichiometric ZnTi5O10 composition matched that measured experimentally by synchrotron X-ray diffraction (allowing for differences attributable to cation disorder). The measured broad optical absorption, n-type electrical conductivity, and stability in acidic media are comparable to those of other ternary pseudobrookites and Ti-O Magnéli phases, suggesting comparable applicability as a robust electrode or catalyst support in electrochemical devices or water remediation. However, the new phase decomposes upon heating in air as it oxidizes. The success of the present approach to identify a "missing material" in an earth-abundant and applications-rich system suggests that future efforts to experimentally realize and theoretically confirm missing materials in this and similar systems are warranted, both scientifically and technologically. PMID:26685894

  11. Pre-scission configuration of the tri-nuclear system at spontaneous ternary fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Nasirov, A. K.; Tashkhodjaev, R. B.; von Oertzen, W.

    2016-05-01

    The potential energy surface for the pre-scission configurations of tri-nuclear systems formed in the spontaneous ternary fission of 252Cf is calculated. The fission channel 70Ni + 50Ca + 132Sn is chosen as one of the more probable channels of true ternary fission of 252Cf . A study of the collinear arrangement of the reaction products for true ternary fission is the aim of this work. The results are presented as a function of the relative distance R12 between the centres of mass of 70Ni and 132Sn and the distance from the centre of mass of 50Ca , which is perpendicular to R12. The results show that only for a particular range of the R12 values the collinear tripartion of the fissioning nucleus occurs.

  12. Electrochemical Synthesis of Binary and Ternary Refractory Compounds in the System Ti-Si-B from Chloride-Fluoride Melts

    NASA Astrophysics Data System (ADS)

    Devyatkin, Sergei V.

    2007-09-01

    Electrochemical synthesis of binary and ternary compounds in the system Ti-Si-B from chloridefluoride melts has been investigated by voltammetry and electrolysis. Electrochemical syntheses of titanium diboride, four titanium silicides (TiSi2, TiSi, Ti5Si4, Ti5Si3), silicon tetraboride and a new ternary compound, Ti5Si3B3, have been found to be one-step processes. The stoichiometry of the deposited compounds has been found to correlate with the bulk concentration of Ti, Si and B ions in the melt.

  13. Influence of oxygen partial pressure on the quasi-ternary system Cr-Mn-Ti oxide

    SciTech Connect

    Garcia-Rosales, C.; Schulze, H.A.; Naoumidis, A.; Nickel, H. . Research Centre Juelich)

    1993-11-01

    The quasi-ternary system Cr-Mn-Ti oxide was investigated at 1,000 C under oxygen partial pressures ranging from 0.21 bar to 10[sup [minus]21] bar (1 bar = 10[sup 5] Pa). X-ray diffraction analysis was used to identify phases and determine lattice parameters. The positions of phase boundaries as a function of oxygen partial pressure were measured using the emf method. The spinel MnCr[sub 2]O[sub 4] may be regarded as the most interesting compound in this system. Part of the chromium can be replaced by trivalent titanium at low oxygen partial pressures and by trivalent manganese at high pressures, and the formation of a limited solid solution with the spinel Mn[sub 2]TiO[sub 4] is possible in all cases. As a result, a coherent single-phase spinel region exists over the entire oxygen partial pressure range at 1,000 C.

  14. Liquid-liquid equilibria of the ternary system water + acetic acid + 1-hexanol

    SciTech Connect

    Fahim, M.A.; Al-Muhtaseb, S.A.; Al-Nashef, I.M.

    1997-01-01

    The recovery of organic acids from dilute solutions resulting from fermentation processes is important and many solvents have been tried to improve such recovery. Liquid-liquid equilibria for the ternary system water + acetic acid + 1-hexanol were measured over a temperature range of (288 to 323) K. The results were used to estimate the interaction parameters between each of the three compounds for the NRTL and UNIQUAC models and between each of the main groups of H{sub 2}O, CH{sub 2} (paraffinic CH{sub 2}), OH, and COOH for the UNIFAC model as a function of temperature. The estimated interaction parameters were successfully used to predict the equilibrium compositions by the three models. The NRTL equation was the most accurate model in correlating the overall equilibrium compositions of the studied system. The UNIQUAC and UNIFAC models satisfactorily predicted the equilibrium compositions.

  15. Superconductivity in the new ternary phase of the Ta-Hf-B system

    NASA Astrophysics Data System (ADS)

    Correa, Lucas Eduardo; Santos, Frederico Benedetto; Nunes, Carlos Angelo; Coelho, Gilberto Carvalho; Renosto, Sergio Tuan; Fisk, Zachary; Da Silva Machado, Antonio Jefferson

    2014-03-01

    In the Ta-B binary system the TaB phase crystallizes in the orthorhombic symmetry with CrB prototype structure which displays superconducting critical temperature close to 4.0 K. To our knowledge this binary phase (CrB prototype structure) is a just stable phase in all temperature range. In this work we will show that the substitution of Ta for Hf it is able to produce a allotropic transformation from CrB to FeB prototype structure. These results represent a new pseudo-ternary phase in the Ta - Hf -B system which is stable in high temperature. The phase found in this work present superconducting critical temperature close to 6.9 K which is sustained by specific heat, magnetization and resistivity measurements.

  16. Two novel ternary albendazole-cyclodextrin-polymer systems: dissolution, bioavailability and efficacy against Taenia crassiceps cysts.

    PubMed

    Palomares-Alonso, Francisca; González, Cesar Rivas; Bernad-Bernad, Ma Josefa; Montiel, María Dolores Castillo; Hernández, Guadalupe Palencia; González-Hernández, Iliana; Castro-Torres, Nelly; Estrada, Enrique Pinzón; Jung-Cook, Helgi

    2010-01-01

    The effect of two water-soluble polymers: pectin and polyvinylpyrrolidone in combination with beta-cyclodextrin, on the dissolution, bioavailability and cysticidal efficacy of albendazole was evaluated using a commercial suspension as reference product. The dissolution of the albendazole-beta-cyclodextrin-pectin formulation was slow and incomplete (44.7%). No statistical differences in C(max) and AUC were found between this formulation and the reference. Also its cysticidal efficacy (33%) was similar to the reference (38%). The albendazole-beta-cyclodextrin-polyvinylpyrrolidone formulation exhibited the highest dissolution rate (78.5%) and its bioavailability was also significantly increased (2.3-fold). In addition, the cysticidal activity of this formulation (83%) was greater than a commercial suspension. Our results suggest that the ternary system of albendazole-beta-cyclodextrin-polyvinylpyrrolidone could be a potential alternative for the treatment of systemic helmintic diseases and it is worth to continue its preclinical evaluation. PMID:19769931

  17. Novel siRNA delivery system using a ternary polymer complex with strong silencing effect and no cytotoxicity.

    PubMed

    Kodama, Yukinobu; Shiokawa, Yumi; Nakamura, Tadahiro; Kurosaki, Tomoaki; Aki, Keisei; Nakagawa, Hiroo; Muro, Takahiro; Kitahara, Takashi; Higuchi, Norihide; Sasaki, Hitoshi

    2014-01-01

    We developed a novel small interfering RNA (siRNA) delivery system using a ternary complex with polyethyleneimine (PEI) and γ-polyglutamic acid (γ-PGA), which showed silencing effect and no cytotoxicity. The binary complexes of siRNA with PEI were approximately 73-102 nm in particle size and 45-52 mV in ζ-potential. The silencing effect of siRNA/PEI complexes increased with an increase of PEI, and siRNA/PEI complexes with a charge ratio greater than 16 showed significant luciferase knockdown in a mouse colon carcinoma cell line regularly expressing luciferase (Colon26/Luc cells). However, strong cytotoxicity and blood agglutination were observed in the siRNA/Lipofectamine complex and siRNA/PEI16 complex. Recharging cationic complexes with an anionic compound was reported to be a promising method for overcoming these toxicities. We therefore prepared ternary complexes of siRNA with PEI (charge ratio 16) by the addition of γ-PGA to reduce cytotoxicity and deliver siRNA. As expected, the cytotoxicity of the ternary complexes decreased with an increase of γ-PGA content, which decreased the ζ-potential of the complexes. A strong silencing effect comparable to siRNA/Lipofectamine complex was discovered in ternary complexes including γ-PGA with an anionic surface charge. The high incorporation of ternary complexes into Colon26/Luc cells was confirmed with fluorescence microcopy. Having achieved knockdown of an exogenously transfected gene, the ability of the complex to mediate knockdown of an endogenous housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), was assessed in B16-F10 cells. The ternary complex (siRNA/PEI16/γ-PGA12 complex) exhibited a significant GAPDH knockdown effect. Thus, we developed a useful siRNA delivery system. PMID:25087949

  18. Chemical equilibria in the binary and ternary uranyl(VI)-hydroxide-peroxide systems.

    PubMed

    Zanonato, Pier Luigi; Di Bernardo, Plinio; Grenthe, Ingmar

    2012-03-28

    The composition and equilibrium constants of the complexes formed in the binary U(VI)-hydroxide and the ternary U(VI)-hydroxide-peroxide systems have been studied using potentiometric and spectrophotometric data at 25 °C in a 0.100 M tetramethylammonium nitrate medium. The data for the binary U(VI) hydroxide complexes were in good agreement with previous studies. In the ternary system two complexes were identified, [UO(2)(OH)(O(2))](-) and [(UO(2))(2)(OH)(O(2))(2)](-). Under our experimental conditions the former is predominant over a broad p[H(+)] region from 9.5 to 11.5, while the second is found in significant amounts at p[H(+)] < 10.5. The formation of the ternary peroxide complexes results in a strong increase in the molar absorptivity of the test solutions. The absorption spectrum for [(UO(2))(2)(OH)(O(2))(2)](-) was resolved into two components with peaks at 353 and 308 nm with molar absorptivity of 16200 and 20300 M(-1) cm(-1), respectively, suggesting that the electronic transitions are dipole allowed. The molar absorptivity of [(UO(2))(OH)(O(2))](-) at the same wave lengths are significantly lower, but still about one to two orders of magnitude larger than the values for UO(2)(2+)(aq) and the binary uranyl(VI) hydroxide complexes. It is of interest to note that [(UO(2))(OH)(O(2))](-) might be the building block in cluster compounds such as [UO(2)(OH)(O(2))](60)(60-) studied by Burns et al. (P. C. Burns, K. A. Kubatko, G. Sigmon, B. J. Fryer, J. E. Gagnon, M. R. Antonio and L. Soderholm, Angew. Chem. 2005, 117, 2173-2177). Speciation calculations using the known equilibrium constants for the U(vi) hydroxide and peroxide complexes show that the latter are important in alkaline solutions even at very low total concentrations of peroxide, suggesting that they may be involved when the uranium minerals Studtite and meta-Studtite are formed by α-radiolysis of water. Radiolysis will be much larger in repositories for spent nuclear fuel where hydrogen peroxide

  19. Homologous series of layered structures in binary and ternary Bi-Sb-Te-Se systems: Ab initio study

    NASA Astrophysics Data System (ADS)

    Govaerts, K.; Sluiter, M. H. F.; Partoens, B.; Lamoen, D.

    2014-02-01

    In order to account explicitly for the existence of long-periodic layered structures and the strong structural relaxations in the most common binary and ternary alloys of the Bi-Sb-Te-Se system, we have developed a one-dimensional cluster expansion (CE) based on first-principles electronic structure calculations, which accounts for the Bi and Sb bilayer formation. Excellent interlayer distances are obtained with a van der Waals density functional. It is shown that a CE solely based on pair interactions is sufficient to provide an accurate description of the ground-state energies of Bi-Sb-Te-Se binary and ternary systems without making the data set of ab initio calculated structures unreasonably large. For the binary alloys A1-xQx (A =Sb, Bi; Q =Te, Se), a ternary CE yields an almost continuous series of (meta)stable structures consisting of consecutive A bilayers next to consecutive A2Q3 for 00.6, the binary alloy segregates into pure Q and A2Q3. The Bi-Sb system is described by a quaternary CE and is found to be an ideal solid solution stabilized by entropic effects at T ≠0 K but with an ordered structure of alternating Bi and Sb layers for x =0.5 at T =0 K. A quintuple CE is used for the ternary Bi-Sb-Te system, where stable ternary layered compounds with an arbitrary stacking of Sb2Te3,Bi2Te3, and Te-Bi-Te-Sb-Te quintuple units are found, optionally separated by mixed Bi/Sb bilayers. Electronic properties of the stable compounds were studied taking spin-orbit coupling into account.

  20. A high-density ternary barcode detection system employing a stable fixed-period delay method

    NASA Astrophysics Data System (ADS)

    Wakaumi, Hiroo

    2011-09-01

    A fixed-period delay method is proposed to increase the detection range and detection stability of a ternary barcode detection system. The system combines an envelope differential detection technique containing nonlinear filtering and a fixed-period delay to detect the barcode over a longer range and at higher scanning speeds while being simple and capable of handling a large amount of information. The system was demonstrated with its miniaturized circuit, and it was established that the detection range of the system for a minimum bar width W = 0.25 mm was 1.8 times that of the conventional count-latch envelope differential technique because of the stable delay achieved by a shift register and the noise suppression by a nonlinear filter. In addition, the system operated at a maximum scanning speed of 8.3 times that of conventional charge-coupled device cameras under the practical detection range for W = 0.3 mm. This system is expected to facilitate the real-time identification of goods on production lines and in automated warehouses.

  1. Phase Equilibria of the Ternary Sn-Zn-Co System at 250°C and 500°C

    NASA Astrophysics Data System (ADS)

    Wang, Chao-hong; Huang, Sheng-en; Huang, Po-yen

    2015-12-01

    The isothermal sections of the ternary Sn-Zn-Co system (<60 at.% Co) at 250°C and 500°C have been experimentally determined. A series of Sn-Zn-Co alloys of various compositions were prepared and annealed at the respective temperatures to reach phase equilibrium. The equilibrium phases in these alloys were examined metallographically and characterized by electron probe microanalysis and x-ray diffraction. In this system, the ternary solubilities of all the binary Sn-Co and Co-Zn intermetallic compounds (IMCs) are very limited. For the phase equilibria at 250°C, two ternary IMCs, T1 and T2, were found, whose compositions were Sn-25 at.%Zn-25 at.%Co and Sn-15 at.%Zn-41 at.%Co, respectively. For the phase equilibria at 500°C, in addition to the T2 phase, another ternary IMC, namely T3 (Sn-18 at.%Zn-37 at.%Co), was also found. Moreover, the phase stability of the T1 and T3 phases was investigated at temperatures of 260°C to 400°C in detail. The equilibrium phase was the T1 phase below 300°C, and changed to the T3 phase at 400°C. The crystal structures of these three ternary IMCs were also studied. The T1 phase has a cubic structure ( Pm3m), and the T2 and T3 phases are orthorhombic in space group Cmcm and Pnma, respectively.

  2. A Computationally Efficient Equation of State for Ternary Gas Hydrate Systems

    NASA Astrophysics Data System (ADS)

    White, M. D.

    2012-12-01

    The potential energy resource of natural gas hydrates held in geologic accumulations, using lower volumetric estimates, is sufficient to meet the world demand for natural gas for nearly eight decades, at current rates of increase. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. The thermodynamic complexity of gas hydrate systems makes numerical simulation a particularly attractive research tool for understanding production strategies and experimental observations. Simply stated, producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. Alternatively, the guest-molecule exchange technology releases CH4 by replacing it with more thermodynamically stable molecules (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it potentially releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, nonaqueous liquid, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulations that predict

  3. Calculation of isothermal sections of three ternary Ti-Zr-X systems

    SciTech Connect

    Lin, L.; Delaey, L.; Van Der Biest, O.; Wollants, P.

    1996-05-01

    The equilibrium phase diagram of the binary system Ti-Zr shows complete solubility in both allotropic forms, the high temperature {beta}-phase (bcc structure) and the low temperature {alpha}-phase (hexagonal structure). In the present paper the influence of additions of a third element (X = Hf, Nb, Ta) on the relative stability of both phases has been analyzed. Hf does also exhibit the two allotropic forms, and both show complete solubility for Zr and Ti. The other two elements crystallize as bcc. Nb is completely soluble in {beta}-Ti, but only at higher temperatures in {beta}-Zr. Its solubility in the {alpha}-Ti and {alpha}-Zr phases is very limited. Ta is also completely soluble in {beta}-Ti but shows only limited solubility in {beta}-Zr, {alpha}-Zr and {alpha}-Ti. Calculated isothermal sections of these three ternary equilibrium phase diagrams as well as considerations concerning thermodynamic parameters are presented and discussed in this work.

  4. Pressure-induced protein unfolding in the ternary system AOT-octane-water is different from that in bulk water.

    PubMed

    Meersman, Filip; Dirix, Carolien; Shipovskov, Stepan; Klyachko, Natalia L; Heremans, Karel

    2005-04-12

    In a cellular environment, the presence of macromolecular cosolutes and membrane interfaces can influence the folding-unfolding behavior of proteins. Here we report on the pressure stability of alpha-chymotrypsin in the ternary system bis(2-ethylhexyl)sodium sulfosuccinate-octane-water using FTIR spectroscopy. The ternary system forms anionic reverse micelles which mimic cellular conditions. We find that inclusion of a single protein molecule in a reverse micelle does not alter its conformation. When pressurized in bulk water, alpha-chymotrypsin unfolds at 750 MPa into a partially unfolded structure. In contrast, in the ternary system, the same pressure increase induces a random coil-like unfolded state, which collapses into an amorphous aggregate during the decompression phase. It is suggested that the unfolding pathway is different in a cell-mimicking environment due to the combined effect of multiple factors, including confinement. A phase transition of the reverse micellar to the lamellar phase is thought to be essential to provide the conditions required for unfolding and aggregation, though the unfolding is not a direct result of the phase transition. Our observations therefore suggest that membranes may cause the formation of alternative conformations that are more susceptible to aggregation. PMID:15807607

  5. The systems Sr-Zn-{l_brace}Si,Ge{r_brace}: Phase equilibria and crystal structure of ternary phases

    SciTech Connect

    Romaka, V.V.; Falmbigl, M.; Grytsiv, A.; Rogl, P.

    2012-02-15

    Phase relations have been established by electron probe microanalysis (EPMA) and X-ray powder diffraction (XPD) for the Sr-poor part of the ternary systems Sr-Zn-Si at 800 Degree-Sign C and Sr-Zn-Ge at 700 Degree-Sign C. In the Sr-Zn-Si system one new ternary compound SrZn{sub 2+x}Si{sub 2-x} (0{<=}x{<=}0.45) with CeAl{sub 2}Ga{sub 2} structure and a statistical mixture of Zn/Si in the 4e site was found. Neither a type-I nor a type-IX clathrate phase was encountered. This system is characterized by formation of two further phases, i.e. SrZn{sub 1-x}Si{sub 1+x} with ZrBeSi-type (0.16{<=}x{<=}0.22) and SrZn{sub 1-x}Si{sub 1+x} with AlB{sub 2}-type (0.35{<=}x{<=}0.65) with a random distribution of Zn/Si atoms in the 2c site. For the Sr-Zn-Ge system, the homogeneity regions of the isotypic phases SrZn{sub 1-x}Ge{sub 1+x} with ZrBeSi-type (0{<=}x{<=}0.17) and AlB{sub 2}-type (0.32{<=}x{<=}0.56), respectively, have been determined. Whereas the germanide SrZn{sub 2+x}Ge{sub 2-x} (CeAl{sub 2}Ga{sub 2}-type) is characterized by a homogeneity region (0{<=}x{<=}0.5), the clathrate type-I phase Sr{sub 8}Zn{sub 8}Ge{sub 38} shows a point composition. - Graphical abstract: Phase equilibria of ternary compounds in the Sr-Zn-Si-system at 800 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Phase equilibria in the Sr-Zn-Si-system are established at 800 Degree-Sign C. Black-Right-Pointing-Pointer Phase equilibria in the Sr-Zn-Ge-system are established at 700 Degree-Sign C. Black-Right-Pointing-Pointer Crystal structures of the ternary compounds were confirmed by X-ray powder diffraction. Black-Right-Pointing-Pointer All ternary compounds except the clathrate-I in the Ge-system are characterized by a homogeneity region.

  6. Cyclodextrin based ternary system of modafinil: Effect of trimethyl chitosan and polyvinylpyrrolidone as complexing agents.

    PubMed

    Patel, Parth; Agrawal, Y K; Sarvaiya, Jayrajsinh

    2016-03-01

    Modafinil is an approved drug for the treatment of narcolepsy and have a strong market presence in many countries. The drug is widely consumed for off-label uses and currently listed as a restricted drug. Modafinil has very low water solubility. To enhance the aqueous solubility of modafinil by the formation of a ternary complex with Hydroxypropyl-β-cyclodextrin and two hydrophilic polymers was the main objective of the present study. Pyrrolidone (PVP K30) and a water soluble chitosan derivative, trimethyl chitosan (TMC) were studied by solution state and solid state characterization methods for their discriminatory efficiency in solubility enhancement of modafinil. Phase solubility study depicted the highest complexation efficiency (2.22) of cyclodextrin derivative in the presence of TMC compared to the same in the presence of PVP K30 (0.08) and in the absence of any polymer (0.92). FT-IR analysis of binary and ternary complex expressed comparable contribution of both polymers in formation of inclusion complex. The thermal behaviour of binary and ternary complex, involving individual polymers disclosed the influence of TMC on polymorphism of the drug. DSC study revealed efficiency of TMC to prevent conversion of metastable polymorphic form to stable polymorphic form. Ternary complex, involving TMC enhanced water solubility of the drug 1.5 times more compared to the binary complex of the drug whereas PVP K30 reduced the Solubility. PMID:26697780

  7. Wettability of binary and ternary alloys of the system Al-Si-Mg with SiC particulates

    SciTech Connect

    Narciso, J.; Alonso, A.; Pamies, A.; Garcia-Cordovilla, C. . Centro de Investigacion y Desarrollo); Louis, E. . Centro de Investigacion y Desarrollo Univ. de Alicante . Dept. de Fisica Aplicada)

    1994-12-01

    The authors have presented results of an investigation of wettability of SiC particulates by liquid alloys of the Al-Si-Mg system. The evaluation of wetting has been carried out through the determination of the threshold pressure for infiltration of packed SiC particulates by the liquid alloy. The results indicate that whereas Si and Mg additions do not affect wetting, in the case of the ternary alloys the contact angle decreases in an amount proportional to the content of Mg[sub 2]Si.

  8. Determination of molybdenum in steel by adsorptive stripping voltammetry in a homogeneous ternary solvent system.

    PubMed

    de Andrade, J C; de Almeida, A M; Coscione, A R; Aleixo, L M

    2001-06-01

    A new alternative approach for the determination of molybdenum in steel is proposed, using adsorptive stripping voltammetry (AdSV). The determinations are performed in a homogeneous ternary solvent system (HTSS) composed of N,N-dimethylformamide, ethanol and water, with alpha-benzoinoxime (alpha BO) as the complexing agent and a sodium acetate-acetic acid buffer as the support electrolyte. The HTSS composition was optimized by mixture design modelling. The AdSV measurements were performed in the differential pulse mode using an accumulation potential of -1050 mV. Under these optimized experimental conditions, the Mo(VI)-alpha BO reduction current peak potential is observed at potentials near -1250 mV, much lower than those usually reported, and the calibration plot follows the polynomial equation I = 0.359 + 0.265 [CMo(VI)] - 0.015 [CMo(IV)]2 (r2 = 0.997), for Mo concentrations up to 10.0 micrograms L-1. There is a linear range in this calibration plot for Mo(VI) concentrations up to 0.20 microgram L-1, defined by the equation I = 0.353 + 0.385 [CMo(VI)] (r2 = 0.980). In both cases, I is the absolute value for the current in microA and CMo(VI) is the concentration of Mo in microgram L-1. The detection limit for this linear concentration range was estimated as 20 pg L-1. A RSD of 0.43% is associated with the signals at a Mo(VI) level of 0.72 microgram L-1. From the common method-interfering species tested, only iron at Fe/Mo(VI) ratios above 500 and vanadium and tungsten at M/Mo(VI) ratios above 100 appear to affect the analytical response significantly. Phosphorous may also reduce the analytical signal at P/Mo(VI) ratios above 100, due to the formation of the competitive P-Mo complex. The suggested routine procedure was tested by analyzing four stainless steel samples and the results compared well with the ICP-AES measurements. The higher sensitivity of this method permits direct determination of Mo(VI) in steels, eliminating the need of analyte concentration or

  9. Structural studies of the metal-rich region in the ternary Ta-Nb-S system

    SciTech Connect

    Yao, Xiaoqiang.

    1991-10-07

    Six new solid solution type compounds have been prepared using high temperature techniques and characterized by means of single crystal x-ray techniques during a study of the metal-rich region of the ternary Ta-Nb-S system. The structures of Nb{sub x}Ta{sub 11-x}S{sub 4} are reminiscent of niobium-rich sulfides, rather than of tantalum-rich sulfides. The coordinations of sulfur are capped trigonal prismatic while the metal coordinations are capped distorted cubic prismatic for Nb{sub x}Ta{sub 11-x}S{sub 4}, and capped distorted cubic prismatic and pentagonal prismatic for Nb{sub 12-x}Ta{sub x}S{sub 4}. The structures of Nb{sub x}Ta{sub 5-x}S{sub 2} contain homoatomic layers sequenced S-M3-M2-M1-M2-M3-S (M is mixed Nb, Ta) generating six-layer sheets, respectively. Weak S-S interactions at 3.26 and 3.19{Angstrom} between sheets contrast with the M-M binding within and between the sheets in these two novel layered compounds. The former are presumably responsible for the observed graphitic slippage of the samples. Nb{sub 21-x}Ta{sub x}S{sub 8} and Nb{sub x}Ta{sub 2-x}S are isostructural with Nb{sub 21}S{sub 8} and Ta{sub 2}S, respectively. Extended Hueckel band calculations were carried out for two layered compounds, Nb{sub x}Ta{sub 5-x}S{sub 2} (x {approx} 1.72) and Nb{sub x}ta{sub 2-x}S (x {approx} 0.95). Based upon band calculations metallic properties can be expected for these two layered compounds. The relative preference of the metal sites for the two metal elements (Ta, Nb) in two layered compounds is explained by the results of the band calculations. 17 figs., 31 tabs., 80 refs.

  10. IUPAC-NIST Solubility Data Series. 90. Hydroxybenzoic Acid Derivatives in Binary and Ternary Systems. Part II. Hydroxybenzoic Acids, Hydroxybenzoates, and Hydroxybenzoic Acid Salts in Nonaqueous Systems

    NASA Astrophysics Data System (ADS)

    Goto, Ayako; Miyamoto, Hiroshi; Salomon, Mark; Goto, Rensuke; Fukuda, Hiroshi; Königsberger, Erich; Königsberger, Lan-Chi; Scharlin, Pirketta

    2011-06-01

    The solid-liquid solubility data for well defined nonaqueous binary and ternary systems are reviewed. One component includes hydroxybenzoic acid, hydroxybenzoate, and hydroxybenzoic acid salt, and another component includes a variety of organic compounds (hydrocarbons, alcohols, halogenated hydrocarbons, carboxylic acids, esters, et al.) and carbon dioxide. The ternary systems include mixtures of organic substances of various classes and carbon dioxide. The total number of compilation sheets is 270 for six types of system. Almost all data are expressed as mass percent and mole fraction as well as the originally reported units, while some data are expressed as molar concentration. Critical evaluation was carried out for the binary nonaqueous systems of 2-, 3-, and 4-hydroxybenzoic acids and hydroxybenzoates (methylparaben, ethylparaben, propylparaben, and butylparaben) in alcohols, 1-heptane, and benzene.

  11. Peculiarities of thermoelectric half-Heusler phase formation in Gd-Ni-Sb and Lu-Ni-Sb ternary systems

    NASA Astrophysics Data System (ADS)

    Romaka, V. V.; Romaka, L.; Horyn, A.; Rogl, P.; Stadnyk, Yu; Melnychenko, N.; Orlovskyy, M.; Krayovskyy, V.

    2016-07-01

    The phase equilibria in the Gd-Ni-Sb and Lu-Ni-Sb ternary systems were studied at 873 K by X-ray and metallographic analyses in the whole concentration range. The interaction of the elements in the Gd-Ni-Sb system results the formation of five ternary compounds at investigated temperature: Gd5Ni2Sb (Mo5SiB2-type), Gd5NiSb2 (Yb5Sb3-type), GdNiSb (MgAgAs-type), Gd3Ni6Sb5 (Y3Ni6Sb5-type), and GdNi0.72Sb2 (HfCuSi2-type). At investigated temperature the Lu-Ni-Sb system is characterized by formation of the LuNiSb (MgAgAs-type), Lu5Ni2Sb (Mo5SiB2-type), and Lu5Ni0.56Sb2.44 (Yb5Sb3-type) compounds. The disordering in the crystal structure of half-Heusler GdNiSb and LuNiSb was revealed by EPMA and studied by means of Rietveld refinement and DFT modeling. The performed electronic structure calculations are in good agreement with electrical transport property studies.

  12. Phase relation and microstructure of NbCr{sub 2} Laves intermetallics in ternary Nb-Cr-X alloy systems

    SciTech Connect

    Yoshida, M.; Takasugi, T.

    1997-12-31

    The isothermal phase diagrams of ternary alloy systems Nb-Cr-V and Nb-Cr-Mo are determined by metallography, X-ray diffraction (XRD) and transmission electron microscopy (TEM) equipped with energy dispersive X-ray (EDX). In two alloy systems, the C15 NbCr{sub 2} Laves phases are equilibrated directly with bcc solid solution without forming any intermediate phases. Relatively large amount of ternary elements V and Mo are soluble in the C15 NbCr{sub 2} Laves phases. It is shown that the C15 Laves phases extend along directions so that V occupies Cr site while Mo occupies Nb site. Also, characteristic structure containing micro twins and stacking faults is observed in the C15 Laves phase alloyed with Mo. Bcc phase has a wider solid solution range in the X(=V and Mo)-rich side than the Nb-rich and Cr-rich sides. A variety of duplex microstructures are observed depending on alloy system and alloy composition.

  13. Investigating the crystallization process of a ternary alloy system with a new nano-cluster analysis by using molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Celik, F. A.; Kazanc, S.; Ozgen, S.; Yildiz, A. K.

    2011-05-01

    In this study, the crystallization process of Cu-%26,8Al-%2,5Ni ternary alloy during annealing has been investigated using molecular dynamics simulation based on the variations oflocal order and atomic rearrangements. The interactions between atoms were modeled by Sutton-Chen type of embedded atom method (SCEAM) based on many body interaction. The structural development and phase transformations are analyzed from the variations of the radial distribution function (RDF). The bonded pairs determined from Honeycutt-Andersen (HA) method for the binary alloy systems are defined as bonded triples for the ternary alloy system unlike the application in mono-atomic and binary alloy systems known in literature.

  14. Phase equilibria in the Fe-rich corner of the Nd-Fe-Ti ternary alloy system at 1100 C

    NASA Astrophysics Data System (ADS)

    Margarian, A.; Dunlop, J. B.; Day, R. K.; Kalceff, W.

    1994-11-01

    High-temperature phase relations in the Fe-rich corner of the Nd-Fe-Ti ternary alloy system have been investigated and an equilibrium phase diagram has been constructed at 1100 C. Arc-melted and annealed alloys of systematically varying compositions were characterized utilizing scanning electron microscopy, and energy dispersive x-ray microanalysis system (EDS), x-ray diffraction, and optical metallography. Three major phases have been idenfified, the well known Nd(Fe,Ti)12 '1:12' (ThMn12-type structure) and Nd2(Fe,Ti)17 '2:17' (Th2Zn17-type structure compounds, and a phase with approximate composition Nd2(Fe,Ti)19 '2:19.' The crystal structure of the latter phase has very recently been solved, and the 'ideal' composition shown to be Nd3(Fe,Ti)29 '3:29.' Quantitative EDS data has been used to identify the compositional limits for the three major phases. Annealing the '1:12' and '3:29' ternary phases at 900 C results in a slow decomposition into Nd2(Fe,Ti)17, Fe2Ti, and alpha-Fe(Ti).

  15. Ternary complexes in analytical chemistry.

    PubMed

    Babko, A K

    1968-08-01

    Reactions between a complex AB and a third component C do not always proceed by a displacement mechanism governed by the energy difference of the chemical bonds A-B and A-C. The third component often becomes part of the complex, forming a mixed co-ordination sphere or ternary complex. The properties of this ternary complex ABC are not additive functions of the properties of AB and AC. Such reactions are important in many methods in analytical chemistry, particularly in photometric analysis, extractive separation, masking, etc. The general properties of the four basic types of ternary complex are reviewed and examples given. The four types comprise the systems (a) metal ion, electronegative ligand, organic base, (b) one metal ion, two different electronegative ligands, (c) ternary heteropoly acids, and (d) two different metal ions, one ligand. PMID:18960358

  16. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    DOEpatents

    Charache, Greg W.; Baldasaro, Paul F.; Nichols, Greg J.

    1998-01-01

    A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eVternary or quaternary III-V semiconductor active layers.

  17. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    DOEpatents

    Charache, G.W.; Baldasaro, P.F.; Nichols, G.J.

    1998-06-23

    A thermophotovoltaic energy conversion device and a method for making the device are disclosed. The device includes a substrate formed from a bulk single crystal material having a bandgap (E{sub g}) of 0.4 eV < E{sub g} < 0.7 eV and an emitter fabricated on the substrate formed from one of a p-type or an n-type material. Another thermophotovoltaic energy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers. 12 figs.

  18. Investigations in the ternary praseodymium-boron-carbon system: Solid-state phase diagram and structural chemistry

    NASA Astrophysics Data System (ADS)

    Babizhetskyy, Volodymyr; Simon, Arndt; Halet, Jean-François

    2015-09-01

    The solid-state phase equilibrium in the Pr-B-C system was established using X-ray diffraction, scanning electron microscopy and electron probe microanalysis. The region up to 60 at % of Pr was studied at 1270 K, whereas the Pr-rich corner, due to the generally lower melting points, was investigated at 1070 K. Eleven ternary compounds were isolated. The existence of PrB2C2, Pr5B2C5, Pr5B4C5, Pr5B2C6, PrBC, and Pr10B9C12 was confirmed. Pr15B6C20 and Pr25B14C26 have been found only in arc-melted alloys. Three new ternary compounds were isolated, namely Pr2BC, ˜Pr4B3C13 and ˜Pr7B9C34. The monoclinic structure of Pr2BC was solved from X-ray single crystal data: space group C2/m (a = 13.088(1) Å, b = 3.6748(8) Å, c = 9.488(1) Å, β = 131.03(1)°, R1 = 0.035 (wR2 = 0.086) for 585 reflections with Io > 2σ (Io)). Additionally, the phase of Pr5B2C6 was analyzed showing a broad homogeneity range described by the formula Pr5(BC)x (7.5 ≤ x ≤ 9.3).

  19. Phase diagram, thermal stability, and high temperature oxidation of the ternary copper-nickel-iron system

    NASA Astrophysics Data System (ADS)

    Gallino, Isabella

    Due to the aluminum industry demands, a large effort has recently been devoted to the development of special alloys to be used as inert anodes for a newly designed aluminum reduction cell. The implementation of this new technology aims at the replacement of the graphite anodes that have been used for over 100 years in aluminum smelting, which would reduce fossil carbon consumption, and eliminate the emission of carbon dioxide and of perfluorocarbons. Ternary alloys containing copper, nickel, and iron have been the subject of the research activities. The present research focused on the stability of the Cu-Ni-Fe alloys at high temperatures in oxidizing and fluoridating environments. The experimental methods included thermodynamic calculations of the phase diagram (Thermocalc), optical microscopy and microprobe microstructural and chemical investigations (EMPA), small-angle neutron scattering (SANS), differential thermal analysis (DTA), and air-oxidation studies. The results have led to the optimization of the Cu-Ni-Fe ternary phase diagram and to an extensive study of the thermodynamics and kinetics of the spinodal decomposition and discontinuous reactions occurring during ageing as a function of alloy composition. The oxidizing reactions occurring in air at high temperatures at the surface of the alloys have been also discussed in terms of thermodynamic and kinetic laws. The phase formation in a fluorine containing environment as encountered in an aluminum electrolytic cell is predicted using principles of physical chemistry.

  20. Ternary systems based on PVDF, BaTiO{sub 3} and MWCNTs: Fabrication, characterization, electromagnetic simulation

    SciTech Connect

    Cacciotti, Ilaria; Valentini, Manlio; Nanni, Francesca

    2015-03-10

    In this work, ternary bulk systems based on polyvinylidene fluoride (PVDF), synthesised barium titanate (BaTiO{sub 3}, BT) nanopowder and multi walled carbon nanotubes (MWCNTs) were fabricated by film stacking technique, starting from solvent cast films. The main purpose was to investigate the influence of BT and MWCNTs addition to the polymeric matrix on its microstructural and dielectrical properties. In order to achieve it, different BT concentrations, ranging between the 60 and 75 %wt, were tested, whereas a MWCNTs content of 2 %wt was maintained constant. The morphology was studied by observation at scanning electron microscopy (SEM), the microstructure and crystalline phases investigated by X-Ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy, and the electromagnetic properties measured in the microwave region (8-12 GHz). The electromagnetic response of the investigated bulk systems was also simulated as function of the sample thickness.

  1. One-pot solvothermal preparation and enhanced photocatalytic activity of metallic silver and graphene co-doped BiVO4 ternary systems

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Wei, Yongge; Guo, Wan; Guo, Yihang; Guo, Yingna

    2015-03-01

    A series of metallic silver and graphene (GR) co-doped monoclinic BiVO4 ternary systems (Ag/GR/BiVO4) are demonstrated by a single-step solvothermal method. The phase and chemical structure, morphology, textural and optical absorption properties of the Ag/GR/BiVO4 ternary systems are well characterized, and then their simulated sunlight and visible-light photocatalytic activity were evaluated by the degradation of a typical dye pollutant, rhodamine B (RhB). For comparison, binary systems of Ag/BiVO4 and GR/BiVO4 as well as solitary BiVO4 are also tested under the same conditions. Meanwhile, the separation and transportation of the photogenerated carriers in the simulated sunlight-irradiating Ag/GR/BiVO4 ternary systems are studied by photoelectrochemistry experiments, and the active species generated during the process of photodegradation are investigated by free radical and hole scavenging experiments. On the basis of the above results, mechanism of photocatalytic degradation of RhB over the Ag/GR/BiVO4 ternary system is revealed. Finally, the reusability of the catalyst was evaluated by five consecutive catalytic runs.

  2. Excess molar enthalpies of ternary systems butan-1-ol or butan-2-ol + aniline + propanone and of binary systems butan-1-ol or butan-2-ol + propanone at the temperature 298.15 K

    SciTech Connect

    Nagata, Isamu; Tamura, Kazuhiro; Kataoka, Hideo; Ksiazczak, A.

    1996-05-01

    The excess molar enthalpies at the temperature 298.15 K for ternary systems butan-1-ol + aniline + propanone and butan-2-ol + aniline + propanone and their constituent binary systems butan-1-ol + propanone and butan-2-ol + propanone, measured with an isothermal dilution calorimeter, are reported. The experimental results have been analyzed and compared with a polynomial equation and the UNIQUAC-associated solution model with binary and ternary additional parameters.

  3. On the rheology of pendular gels and morphological developments in paste-like ternary systems based on capillary attraction.

    PubMed

    Domenech, Trystan; Velankar, Sachin S

    2015-02-28

    We investigate capillary bridging-induced gelation phenomena in silica particle suspensions and pastes, where a particle-wetting fluid is added as the third component. Increasing the wetting fluid loading in the ternary system induces a morphological transition from a pendular network to compact capillary aggregates network, with an intermediate funicular state. To our knowledge, the formation of percolated structures from compact capillary aggregates when the volume fraction of a wetting fluid approaches that of the particles is unprecedented. Such structures appear to result from the arrested coalescence of compact capillary aggregates due to the balance between the Laplace pressure and solid-like properties (yield stress, elasticity) of the aggregates. Shear-induced yielding of the ternary systems, linked to their percolating nature, is strongly influenced by the amount of wetting fluid phase. A non-monotonic dependence of the yield stress on the amount of wetting fluid is found, with the maximum yield stress obtained for a wetting fluid-to-particle volume fraction ratio of 0.2-0.3. For pendular systems, linear viscoelastic properties display a soft glassy rheological behavior above the percolation threshold (around 4 vol% particles), and complex viscosity data can be scaled using the high frequency plateau value, as well as a single characteristic relaxation time, which decreases when the particle concentration is increased. In addition, the particle concentration dependence of the yielding transition in the pendular regime appears to be efficiently described by two parameters extracted from the steady state flow curves: the yield stress and the limiting viscosity at a high shear rate. Although these non-colloidal networks result from flow-driven assembly, the scaling laws for our pendular gels are reminiscent of colloidal gels with a fractal geometry. Our studies pinpoint new pathways to create physical gels where the interparticle attraction strength is

  4. Competitive immobilization of Pb in an aqueous ternary-metals system by soluble phosphates with varying pH.

    PubMed

    Zhang, Zhuo; Ren, Jie; Wang, Mei; Song, Xinlai; Zhang, Chao; Chen, Jiayu; Li, Fasheng; Guo, Guanlin

    2016-09-01

    Chemical immobilization by phosphates has been widely and successfully applied to treat Pb in wastewater and contaminated soils. Pb in wastewaters and soils, however, always coexists with other heavy metals and their competitive reactions with phosphates have not been quantitatively and systematically studied. In this approach, immobilization of Pb, Zn, and Cd by mono-, di-, and tripotassium phosphate (KH2PO4, K2HPO4, and K3PO4) was observed in the single- and ternary-metals solutions. The immobilization rates of the three metals were determined by the residual concentration. The mineral composition and structure of the precipitates were characterized by powder X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). The results indicated that competitive reaction occurred in Pb-Zn-Cd ternary system, with immobilization rates decrease of <3.6%, <78%, and <89% for Pb, Zn and Cd (molar ratios of P: metal <1), respectively, compared to single metal system. The reaction of Pb with three phosphates exhibited intense competitiveness and the phosphates had a stronger affinity for Pb when Cl(-) was added. Pb-phosphate minerals formed by KH2PO4 with the better crystalline characteristics and largest size were very stable with a low dissolution rate (<0.02%) in the solution of pH 2.88, compared to K2HPO4 and K3PO4. This study demonstrated that Pb could be firstly and effectively immobilized by phosphates in multi-metal solutions containing Pb, Zn and Cd. Moreover, the research provided the insight of the importance of phosphate with low pH (e.g. KH2PO4) and the presence of Cl(-) for more efficient immobilization of Pb in the multi-metals pollution system. PMID:27276163

  5. Dynamics and control of recycle systems. 4. Ternary systems with one or two recycle streams

    SciTech Connect

    Tyreus, B.D. ); Luyben, W.L. . Department of Chemical Engineering)

    1993-06-01

    This paper is the fourth in a series of papers that explore the challenging problems associated with the dynamics and control of recycle systems. The reactions considered in previous papers were fairly simple. Only first-order reactions were considered, so there was only one fresh feed stream. In this paper, second-order kinetics are considered with two fresh-feed makeup streams. Two cases are considered: (1) instantaneous and complete one-pass conversion of one of the two components in the reactor so there is an excess of only one component that must be recycled and (2) incomplete conversion per pass so there are two recycle streams. It is shown that the generic liquid-recycle rule proposed by Luyben applies in both of these cases: snowballing is prevented by fixing the flow rate somewhere in the recycle system. An additional generic rule is proposed: fresh feed makeup of any component cannot be fixed unless the component undergoes complete single-pass conversion. In the complete one-pass conversion case, throughput can be set by fixing the flow rate of the limiting reactant. The makeup of the other reactant should be set by level control in the reflux drum of the distillation column. In the incomplete conversion case, two workable schemes were found: (1) Both recycle flow rates are fixed and both fresh-feed makeups are brought in on level control. Throughput is controlled by changing either the reactor temperature or the recycle flow rates. (2) One fresh-feed makeup controls reactor level and the other controls the composition in the reactor. Throughput is controlled by setting reactor temperature or reactor effluent flow rate.

  6. Solidification Pathways of Alloys in the Mg-Rich Corner of the Mg-Al-Ba Ternary System

    NASA Astrophysics Data System (ADS)

    Bryan, Zachary L.; Hooper, Ryan J.; Henderson, Hunter B.; Manuel, Michele V.

    2015-04-01

    An experimental investigation of the solidification reactions and microstructures of alloys in the Mg-rich corner of the Mg-Al-Ba ternary system has been conducted. Four distinct exothermic reactions involving the formation of α-Mg, Mg17Ba2, Mg17Al12, and a fourth phase designated as τ were observed and their onset temperatures were recorded as functions of composition. Using compositional and microstructural analysis, the Mg17Ba2 intermetallic was found to have significant solubility of Al, up to 20 at. pct. The solidification pathways of the investigated alloys involved both a Class I and Class II equilibrium reaction. A flow block diagram that outlines the observed solidification reactions is presented and discussed in reference to cast microstructures.

  7. TbNb6Sn6: the first ternary compound from the rare earth–niobium–tin system

    PubMed Central

    Oshchapovsky, Igor; Pavlyuk, Volodymyr; Fässler, Thomas F.; Hlukhyy, Viktor

    2010-01-01

    The title compound, terbium hexa­niobium hexastannide, TbNb6Sn6, is the first ternary compound from the rare earth–niobium–tin system. It has the HfFe6Ge6 structure type, which can be analysed as an inter­growth of the Zr4Al3 and CaCu5 structures. All the atoms lie on special positions; their coordination geometries and site symmetries are: Tb (dodeca­hedron) 6/mmm; Nb (distorted icosa­hedron) 2mm; Sn (Frank–Caspar polyhedron, CN = 14–15) 6mm and m2; Sn (distorted icosa­hedron) m2. The structure contains a graphite-type Sn network, Kagome nets of Nb atoms, and Tb atoms alternating with Sn2 dumbbells in the channels. PMID:21589205

  8. Gold nanoparticles interacting with β-cyclodextrin-phenylethylamine inclusion complex: a ternary system for photothermal drug release.

    PubMed

    Sierpe, Rodrigo; Lang, Erika; Jara, Paul; Guerrero, Ariel R; Chornik, Boris; Kogan, Marcelo J; Yutronic, Nicolás

    2015-07-22

    We report the synthesis of a 1:1 β-cyclodextrin-phenylethylamine (βCD-PhEA) inclusion complex (IC) and the adhesion of gold nanoparticles (AuNPs) onto microcrystals of this complex, which forms a ternary system. The formation of the IC was confirmed by powder X-ray diffraction and NMR analyses ((1)H and ROESY). The stability constant of the IC (760 M(-1)) was determined using the phase solubility method. The adhesion of AuNPs was obtained using the magnetron sputtering technique, and the presence of AuNPs was confirmed using UV-vis spectroscopy (surface plasmon resonance effect), which showed an absorbance at 533 nm. The powder X-ray diffractograms of βCD-PhEA were similar to those of the crystals decorated with AuNPs. A comparison of the one- and two-dimensional NMR spectra of the IC with and without AuNPs suggests partial displacement of the guest to the outside of the βCD due to attraction toward AuNPs, a characteristic tropism effect. The size, morphology, and distribution of the AuNPs were analyzed using TEM and SEM. The average size of the AuNPs was 14 nm. Changes in the IR and Raman spectra were attributed to the formation of the complex and to the specific interactions of this group with the AuNPs. Laser irradiation assays show that the ternary system βCD-PhEA-AuNPs in solution enables the release of the guest. PMID:26091143

  9. Melting point equations for the ternary system water/sodium chloride/ethylene glycol revisited.

    PubMed

    Benson, James D; Bagchi, Aniruddha; Han, Xu; Critser, John K; Woods, Erik J

    2010-12-01

    Partial phase diagrams are of considerable utility in the development of optimized cryobiological procedures. Recent theoretical predictions of the melting points of ternary solutions of interest to cryobiology have caused us to re-examine measurements that our group made for the ethylene-glycol-sodium chloride-water phase diagram. Here we revisit our previous experiments by measuring melting points at five ethylene-glycol to sodium chloride ratios (R values; R=5, 10, 15, 30, and 45) and five levels of concentration for each ratio. Melting points were averaged from three measurements and plotted as a function of total solute concentration for each R value studied. The new measurements differed from our original experimental values and agreed with predicted values from both theoretical models. Additionally, the data were fit to the polynomial described in our previous report and the resulting equation was obtained: T(m) = (38.3-2.145 x 10⁻¹ R)w + (81.19 - 2.909×10⁻¹ R)w², where w is the total solute mass fraction. This new equation provided good fits to the experimental data as well as published values and relates the determined polynomial constants to the R value of the corresponding isopleths of the three dimensional phase diagram, allowing the liquids curve for any R value to be obtained. PMID:20955693

  10. Phase transformations in ternary monotectic aluminum alloys

    NASA Astrophysics Data System (ADS)

    Gröbner, Joachim; Schmid-Fetzer, Rainer

    2005-09-01

    Monotectic aluminum alloys are of interest for the development of new alloys for technological applications such as self-lubricating bearings. In contrast to the well-known binary phase diagrams, many of the ternary systems are not well established. Moreover, in a ternary monotectic alloy one may encounter the four-phase equilibrium L‧+L″+solid1+solid2, whereas in a binary system only a three-phase equilibrium L‧+L″+solid1 is possible. This opens a window for generating entirely new monotectic microstructures. The basis for such developments is the knowledge of the ternary phase diagrams and the conditions under which such four-phase reactions or different extensions of the binary monotectic reactions may form. This work presents a systematic classification of monotectic ternary aluminum alloys, illustrated by real systems. The study employs thermodynamic calculations of the ternary phase diagrams.

  11. Spectroscopic evidence for ternary surface complexes in the lead(II)-malonic acid-hematite system

    USGS Publications Warehouse

    Lenhart, J.J.; Bargar, J.R.; Davis, J.A.

    2001-01-01

    Using extended X-ray absorption fine structure (EXAFS) and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) measurements, we examined the sorption of Pb(II) to hematite in the presence of malonic acid. Pb LIII-edge EXAFS measurements performed in the presence of malonate indicate the presence of both Fe and C neighbors, suggesting that a major fraction of surface-bound malonate is bonded to adsorbed Pb(II). In the absence of Pb(II), ATR-FTIR measurements of sorbed malonate suggest the formation of more than one malonate surface complex. The dissimilarity of the IR spectrum of malonate sorbed on hematite to those for aqueous malonate suggest at least one of the sorbed malonate species is directly coordinated to surface Fe atoms in an inner-sphere mode. In the presence of Pb, little change is seen in the IR spectrum for sorbed malonate, indicating that geometry of malonate as it coordinates to sorbed Pb(II) adions is similar to the geometry of malonate as it coordinates to Fe in the hematite surface. Fits of the raw EXAFS spectra collected from pH 4 to pH 8 result in average Pb-C distances of 2.98 to 3.14 A??, suggesting the presence of both four- and six-membered Pb-malonate rings. The IR results are consistent with this interpretation. Thus, our results suggest that malonate binds to sorbed Pb(II) adions, forming ternary metal-bridging surface complexes. ?? 2001 Academic Press.

  12. On the importance of thermodynamic investigations for the re-assessment of selected ternary Fe-base systems

    NASA Astrophysics Data System (ADS)

    Presoly, P.; Bernhard, C.

    2016-07-01

    Reliable thermodynamic data are essential for the design and the production of new alloying systems. Particularly, the knowledge of the high-temperature phase transformations (TLiquid, TSolid, TPerit, Tγ→δ) are important for the solidification and the further processing. Investigations of selected commercial Dual-Phase, TRIP and high-Mn TWIP steels by DTA/DSC measurements show that the experimental results differ significantly from the calculation results of thermodynamic databases with respect to the phase transformation temperature and sequence. Based on these findings, it is very important to identify the defective subsystems of complex alloys in order to optimise the thermodynamic databases. In order to verify a quaternary system, e.g. the Fe-C-Si-Mn system, it is important to check the corresponding ternary subsystems. This was performed by DSC measurements of selected model alloys. By doing so, it was found that in Si- and Mn-alloyed Dual-Phase steels the thermodynamic description of the Fe-Si-Mn system is currently inadequate. This is a very important result, since all new designed steel grades for the automotive industry are based on a Fe-C-Si-Mn matrix.

  13. New ternary praseodymium germanides

    SciTech Connect

    Fedyna, M.F.; Pecharskii, V.K.; Bodak, O.I.

    1987-09-01

    Using the powder method (DRON-2.0 diffractometer; Fe K/sub ..cap alpha../ radiation; theta/2theta recording method, sin theta/sub max//lambda = 5 nm/sup -1/), the crystal structure of the ternary compounds Pr/sub 1-x/(NiGe)/sub 13/ (x = 0.24), Pr/sub 3/Ni/sub 4/Ge/sub 4/, Pr/sub 1-x/(CoGe)/sub 13/ (x = 0.31), Pr/sub 2/Co/sub 3/Ge/sub 5/, and PrFe/sub 1-x/Ge/sub 3/ (x = 0.46) were determined. The germanides P/sub 1-x/(NiGe)/sub 13/ and Pr/sub 1-x/(NiGe)/sub 13/ belong to the structural type of CeNi/sub 8.5/Si/sub 4.5/ and the ternary compounds Pr/sub 3/Ni/sub 4/Ge/sub 4/, Pr/sub 2/Co/sub 3/Ge/sub 5/, and PrFe/sub 1-x/Ge/sub 3/ crystallize in the structural types of U/sub 3/Ni/sub 4/Si/sub 4/, U/sub 2/Co/sub 3/Si/sub 5/, and BaNiSn/sub 3/. During investigations of the equilibrium phase diagrams of the systems Pr-/Fe, Co, Ni/-Ge, new ternary compounds were discovered, viz., Pr/sub 1-x/(NiGe)/sub 13/ (X = 0.24), Pr/sub 3/Ni/sub 4/Ge/sub 4/, Pr/sub 1-x/(CoGe)/sub 13/ (x = 0.31), Pr/sub 2/Co/sub 3/Ge/sub 5/, PrFe/sub 1-x/Ge/sub 3/ (x = 0.46).

  14. Studies of high temperature ternary phases in mixed-metal-rich early transition metal sulfide and phosphide systems

    SciTech Connect

    Marking, G.A.

    1994-01-04

    Investigations of ternary mixed early transition metal-rich sulfide and phosphide systems resulted in the discovery of new structures and new phases. A new series of Zr and Hf - group V transition metal - sulfur K-phases was synthesized and crystallographically characterized. When the group V transition metal was Nb or Ta, the unit cell volume was larger than any previously reported K-phase. The presence of adventitious oxygen was determined in two K-phases through a combination of neutron scattering and X-ray diffraction experiments. A compound Hf{sub 10}Ta{sub 3}S{sub 3} was found to crystallize in a new-structure type similar to the known gamma brasses. This structure is unique in that it is the only reported {open_quotes}stuffed{close_quotes} gamma-brass type structure. The metal components, Hf and Ta, are larger in size and more electropositive than the metals found in normal gamma brasses (e.g. Cu and Zn) and because of the larger metallic radii, sulfur can be incorporated into the structure where it plays an integral role in stabilizing this phase relative to others. X-ray single-crystal, X-ray powder and neutron powder refinements were performed on this structure. A new structure was found in the ternary Nb-Zr-P system which has characteristics in common with many known early transition metal-rich sulfides, selenides, and phosphides. This structure has the simplest known interconnection of the basic building blocks known for this structural class. Anomalous scattering was a powerful tool for differentiating between Zr and Nb when using Mo K{alpha} X-radiation. The compounds ZrNbP and HfNbP formed in the space group Prima with the simple Co{sub 2}Si structure which is among the most common structures found for crystalline solid materials. Solid solution compounds in the Ta-Nb-P, Ta-Zr-P, Nb-Zr-P, Hf-Nb-P, and Hf-Zr-S systems were crystallographically characterized. The structural information corroborated ideas about bonding in metal-rich compounds.

  15. Experimental Investigation and Thermodynamic Calculation of the Phase Equilibria in the Mg-Gd-Mn Ternary System

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Hu, Biao; Xu, Honghui; Liu, Shuhong; Zhou, Tao; Jin, Zhanpeng

    2015-10-01

    The phase equilibria of the Mg-Gd-Mn system at 773 K (500 °C) were investigated with sixteen alloys, by means of X-ray diffraction technique and electron probe microanalyses. Eight three-phase equilibria were accurately determined. No ternary compound was observed at 773 K (500 °C). The solubility of the third elements in the binary phases was measured. The isothermal section of the Mg-Gd-Mn system at 773 K (500 °C) was firstly established. It is worth mentioning that the three-phase field GdMg3-GdMg5-( αMn) was experimentally observed and is different from the three-phase field GdMg3-GdMg5-GdMn12 predicted using only the binary interaction parameters. Using the CALPHAD method, a thermodynamic modeling of the Mg-Gd-Mn system has been carried out in order to reasonably describe the experimental observations. The substitutional solution and sublattice models were used to describe the solution phases and intermediate phases. Comprehensive comparison between the calculated and measured isothermal sections shows that the experimental information is satisfactorily accounted for by the present thermodynamic modeling.

  16. Direct phase coexistence molecular dynamics study of the phase equilibria of the ternary methane-carbon dioxide-water hydrate system.

    PubMed

    Michalis, Vasileios K; Tsimpanogiannis, Ioannis N; Stubos, Athanassios K; Economou, Ioannis G

    2016-09-14

    Molecular dynamics simulation is used to predict the phase equilibrium conditions of a ternary hydrate system. In particular, the direct phase coexistence methodology is implemented for the determination of the three-phase coexistence temperature of the methane-carbon dioxide-water hydrate system at elevated pressures. The TIP4P/ice, TraPPE-UA and OPLS-UA forcefields for water, carbon dioxide and methane respectively are used, in line with our previous studies of the phase equilibria of the corresponding binary hydrate systems. The solubility in the aqueous phase of the guest molecules of the respective binary and ternary systems is examined under hydrate-forming conditions, providing insight into the predictive capability of the methodology as well as the combination of these forcefields to accurately describe the phase behavior of the ternary system. The three-phase coexistence temperature is calculated at 400, 1000 and 2000 bar for two compositions of the methane-carbon dioxide mixture. The predicted values are compared with available calculations with satisfactory agreement. An estimation is also provided for the fraction of the guest molecules in the mixed hydrate phase under the conditions examined. PMID:27507133

  17. Thermochemistry of binary Na-NaH and ternary Na-O-H systems and the kinetics of reaction of hydrogen/water with liquid sodium - a review

    NASA Astrophysics Data System (ADS)

    Gnanasekaran, T.

    A review of the literature data on the binary Na-H and ternary Na-O-H systems has been carried out. Influence of dissolved oxygen on Sieverts' constant for hydrogen in sodium is analysed and an expression for the variation of Sieverts' constant with oxygen concentration is derived. Data on equilibrium hydrogen partial pressures over Na(l)-NaH(s) phase mixtures are assessed and an expression for variation of Gibbs energy of formation of NaH(s) with temperature is obtained. Analysis of the phase diagram and thermochemical information on the ternary Na-O-H system has been carried out. Kinetics of the reaction of water/steam and gaseous hydrogen with liquid sodium are also presented and the need to resolve the disagreement among the literature data is brought out.

  18. All-optical symmetric ternary logic gate

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanay

    2010-09-01

    Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.

  19. Ternary polyplex micelles with PEG shells and intermediate barrier to complexed DNA cores for efficient systemic gene delivery.

    PubMed

    Li, Junjie; Chen, Qixian; Zha, Zengshi; Li, Hui; Toh, Kazuko; Dirisala, Anjaneyulu; Matsumoto, Yu; Osada, Kensuke; Kataoka, Kazunori; Ge, Zhishen

    2015-07-10

    Simultaneous achievement of prolonged retention in blood circulation and efficient gene transfection activity in target tissues has always been a major challenge hindering in vivo applications of nonviral gene vectors via systemic administration. Herein, we constructed novel rod-shaped ternary polyplex micelles (TPMs) via complexation between the mixed block copolymers of poly(ethylene glycol)-b-poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-b-PAsp(DET)) and poly(N-isopropylacrylamide)-b-PAsp(DET) (PNIPAM-b-PAsp(DET)) and plasmid DNA (pDNA) at room temperature, exhibiting distinct temperature-responsive formation of a hydrophobic intermediate layer between PEG shells and pDNA cores through facile temperature increase from room temperature to body temperature (~37 °C). As compared with binary polyplex micelles of PEG-b-PAsp(DET) (BPMs), TPMs were confirmed to condense pDNA into a more compact structure, which achieved enhanced tolerability to nuclease digestion and strong counter polyanion exchange. In vitro gene transfection results demonstrated TPMs exhibiting enhanced gene transfection efficiency due to efficient cellular uptake and endosomal escape. Moreover, in vivo performance evaluation after intravenous injection confirmed that TPMs achieved significantly prolonged blood circulation, high tumor accumulation, and promoted gene expression in tumor tissue. Moreover, TPMs loading therapeutic pDNA encoding an anti-angiogenic protein remarkably suppressed tumor growth following intravenous injection into H22 tumor-bearing mice. These results suggest TPMs with PEG shells and facilely engineered intermediate barrier to inner complexed pDNA have great potentials as systemic nonviral gene vectors for cancer gene therapy. PMID:25912408

  20. Novel Stable Compounds in the C-H-O Ternary System at High Pressure

    PubMed Central

    Saleh, Gabriele; Oganov, Artem R.

    2016-01-01

    The chemistry of the elements is heavily altered by high pressure, with stabilization of many new and often unexpected compounds, the emergence of which can profoundly change models of planetary interiors, where high pressure reigns. The C-H-O system is one of the most important planet-forming systems, but its high-pressure chemistry is not well known. Here, using state-of-the-art variable-composition evolutionary searches combined with quantum-mechanical calculations, we explore the C-H-O system at pressures up to 400 GPa. Besides uncovering new stable polymorphs of high-pressure elements and known molecules, we predicted the formation of new compounds. A 2CH4:3H2 inclusion compound forms at low pressure and remains stable up to 215 GPa. Carbonic acid (H2CO3), highly unstable at ambient conditions, was predicted to form exothermically at mild pressure (about 1 GPa). As pressure rises, it polymerizes and, above 314 GPa, reacts with water to form orthocarbonic acid (H4CO4). This unexpected high-pressure chemistry is rationalized by analyzing charge density and electron localization function distributions, and implications for general chemistry and planetary science are also discussed. PMID:27580525

  1. Novel Stable Compounds in the C-H-O Ternary System at High Pressure.

    PubMed

    Saleh, Gabriele; Oganov, Artem R

    2016-01-01

    The chemistry of the elements is heavily altered by high pressure, with stabilization of many new and often unexpected compounds, the emergence of which can profoundly change models of planetary interiors, where high pressure reigns. The C-H-O system is one of the most important planet-forming systems, but its high-pressure chemistry is not well known. Here, using state-of-the-art variable-composition evolutionary searches combined with quantum-mechanical calculations, we explore the C-H-O system at pressures up to 400 GPa. Besides uncovering new stable polymorphs of high-pressure elements and known molecules, we predicted the formation of new compounds. A 2CH4:3H2 inclusion compound forms at low pressure and remains stable up to 215 GPa. Carbonic acid (H2CO3), highly unstable at ambient conditions, was predicted to form exothermically at mild pressure (about 1 GPa). As pressure rises, it polymerizes and, above 314 GPa, reacts with water to form orthocarbonic acid (H4CO4). This unexpected high-pressure chemistry is rationalized by analyzing charge density and electron localization function distributions, and implications for general chemistry and planetary science are also discussed. PMID:27580525

  2. Syntheses and structural characterization of zirconium-tin and zirconium-lead binary and ternary systems

    SciTech Connect

    Kwon, Y.U.

    1991-01-28

    The binary zirconium-tin system was reinvestigated. The A15 phase appears to be a line phase with a Zr{sub 4}Sn composition. The Zr{sub 5}Sn{sub 3} (Mn{sub 5}Si{sub 3}-type) and Zr{sub 5}Sn{sub 4} (Ti{sub 5}Ga{sub 4}-type) compounds are line phases below 1000{degree}C, the latter being a self-interstitial phase of the former. ZrSn{sub 2} is the tin-richest phase. There is an one-phase region between these phases with partial self-interstitials at high temperatures. The zirconium-lead system behaves similarly: there are an A15 phase with a Zr{sub {approximately}5.8}Pb composition, Zr{sub 5}Pb{sub 3} (Mn{sub 5}Si{sub 3}-type) and Zr{sub 5}Pb{sub 4} (Ti{sub 5}Ga{sub 4-type}) compounds, and a high temperature solid solution between Zr{sub 5}Pb{sub >3.5} and Zr{sub 5}Pb{sub 4} from below 1000{degree}C; however, the ZrSn{sub 2} analogue is not formed. The Mn{sub 5}Si{sub 3}-type phases in these systems can accommodate third elements interstitially to form stoichiometric compounds Zr{sub 5}Sn{sub 3}Z (Z = B, C, N, O, Al, Si, P, S, Cu, Zn, Ga, Ge, and As and Se) and Zr{sub 5}Pb{sub 3}Z (Z = Al, Si, P, S, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Ag, Cd, In, Sn, Sb and Te) as well as their self-interstitial derivatives. The systems Zr-Sn-T, T = Fe, Co and Ni, did not produce stoichiometric interstitial phases Zr{sub 5}Sn{sub 3}T. Instead, the interstitial phases for these elements are formed only with excess tin that partially occupies the interstitial site together with a T element. Reducing the amount of tin in these systems yields two new phases; Zr{sub 5}Sn{sub 2+x}Fe{sub 1-x} (0 {le} {times} {le} 0.28) (W{sub 5}Si{sub 3}-type) and Zr{sub 6}Sn{sub 2}Fe (Zr{sub 6}Al{sub 2}Co-type) as characterized by X-ray single crystal analyses. A cobalt analogue for the latter was also synthesized.

  3. Temperature dependence of phase behavior for ternary systems composed of ionic liquid + sucrose + water.

    PubMed

    Wu, Bo; Zhang, Yumei; Wang, Huaping; Yang, Lingling

    2008-10-16

    In this work, temperature dependence of phase behaviors for the [Bmim]BF 4 + sucrose + water system was investigated. It was found that interaction of [Bmim]BF 4 with sucrose is exothermic, and lowering temperature is favorable for phase separation. In addition, a "[Bmim] (+)-induced structural changes" model was developed and used to interpret the temperature effect, whereby the salting-out effect was thought to be an entropy driving process through analysis of the structural interaction and the electrostatic interaction. PMID:18808091

  4. Chemical effects in ion mixing of a ternary system (metal-SiO2)

    NASA Technical Reports Server (NTRS)

    Banwell, T.; Nicolet, M.-A.; Sands, T.; Grunthaner, P. J.

    1987-01-01

    The mixing of Ti, Cr, and Ni thin films with SiO2 by low-temperature (- 196-25 C) irradiation with 290 keV Xe has been investigated. Comparison of the morphology of the intermixed region and the dose dependences of net metal transport into SiO2 reveals that long range motion and phase formation probably occur as separate and sequential processes. Kinetic limitations suppress chemical effects in these systems during the initial transport process. Chemical interactions influence the subsequent phase formation.

  5. Comparative study on metal biosorption by two macroalgae in saline waters: single and ternary systems.

    PubMed

    Figueira, Paula; Henriques, Bruno; Teixeira, Ana; Lopes, Cláudia B; Reis, Ana T; Monteiro, Rui J R; Duarte, A C; Pardal, M A; Pereira, E

    2016-06-01

    The biosorption capability of two marine macroalgae (green Ulva lactuca and brown Fucus vesiculosus) was evaluated in the removal of toxic metals (Hg, Cd and Pb) from saline waters, under realistic conditions. Results showed that, independently of the contamination scenario tested, both macroalgae have a remarkable capacity to biosorb Hg and Pb. In single-contaminant systems, by using only c.a. 500 mg of non-pre-treated algae biomass (size <200 μm) per litter, it was possible to achieve removal efficiencies between 96 and 99 % for Hg and up to 86 % for Pb. Despite the higher removal of Hg, equilibrium was reached more quickly for Pb (after 8 h). In multi-contaminant systems, macroalgae exhibited a similar selectivity toward the target metals: Hg > Pb> > Cd, although Pb removal by U. lactuca was more inhibited than that achieved by F. vesiculosus. Under the experimental conditions used, none of the macroalgae was effective to remove Cd (maximum removal of 20 %). In all cases, the kinetics of biosorption was mathematically described with success. Globally, it became clear that the studied macroalgae may be part of simple, efficient, and cost-effective water treatment technologies. Nevertheless, Fucus vesiculosus has greater potential, since it always presented higher initial sorption rates and higher removal efficiencies. PMID:26961530

  6. Phase behaviour of the ternary system: monoolein-water-branched polyethylenimine.

    PubMed

    Kumar, Manoj; Kumaraswamy, Guruswamy

    2015-07-28

    Addition of a branched polymer, polyethyleneimine, significantly alters the organization of a glycerol monooleate (GMO) lipid-water system. We present detailed data over a wide range of compositions (water content from 10 to 40%, relative to GMO and PEI fractions from 0 to 4%) and temperatures (25-80 °C). The PEI molecular weight effects are examined using polymers over a range from 0.8 to 25 kDa. Addition of PEI induces the formation of higher curvature reverse phases. In particular, PEI induces the formation of the Fd3m phase: a discontinuous phase comprising reverse micelles of two different sizes stacked in a cubic AB2 crystal. The formation of the Fd3m phase at room temperature, upon addition of polar, water soluble PEI is unusual, since such phases typically are formed only upon addition of apolar oils. The largest stability window for the Fd3m phase is observed for PEI with a molecular weight = 2 kDa. We discuss how PEI influences the formation and stability of high curvature phases. PMID:26081120

  7. Predicting magnetostructural trends in equiatomic FeRh-based ternary systems

    NASA Astrophysics Data System (ADS)

    Barua, Radhika; Jimenez-Villacorta, Felix; Lewis, Laura; Nanomagnetism Group Team

    2013-03-01

    A phenomenological model is proposed to predict the influence of elemental substitution on the magnetostructural transition temperatures and Curie temperatures of nominally-equiatomic FeRh-based compounds with the B2 (CsCl)-type crystal structure. Clear trends in the characteristic magnetic transition temperatures, as reported in the literature, are found as a function of the averaged weighted valence band electrons ((s + d) electrons/atom) in compounds of composition Fe(Rh1-xMx) or (Fe1-xMx) Rh (M = 3 d, 4 d or 5 d transition metals). Substitution of 3 d or 4 d elements (<= 6.5 atomic %) into B2-type FeRh causes the magnetostructural transition temperature Tt to increase to a maximum around a critical valence band electron concentration of 8.5 electrons/atom and then decrease. Substitution of 5 d transition metal atoms echoes this trend but shifts it to higher transition temperatures. These data and associated trends allow deductions that the stability of the ground state antiferromagnetic phase of the FeRh-based system depends both on the size of the constituent atoms as well as the character of the valence electrons. Research was performed under the auspices of the U.S. Dept. of Energy, Division of Materials Science, Office of Basic Energy Sciences (Contract No. DE-SC0005250).

  8. Supramolecular aggregates of oligosaccharides with co-solvents in ternary systems for the solubilizing approach of triamcinolone.

    PubMed

    de Medeiros, Arthur S A; Zoppi, Ariana; Barbosa, Euzébio G; Oliveira, Jonas I N; Fernandes-Pedrosa, Matheus F; Longhi, Marcela R; da Silva-Júnior, Arnóbio A

    2016-10-20

    A second compound is generally associated with oligosaccharides as a strategy to maximize the solubilizing effect for nonpolar compounds. This study elucidated the role and the mechanism whereby liquid compounds interact in these supramolecular aggregates in the solubilization of triamcinolone. Three different oligosaccharides (beta-cyclodextrin, 2-hydroxipropil-beta-cyclodextrin, and randomly methylated beta-cyclodextrin) and two potent co-solvents (triethanolamine and N-methyl pyrrolidone) were carefully evaluated by using three distinct experimental approaches. Incredibly stable complexes were formed with cyclodextrins (CDs). The structure of the complexes was elucidated by magnetic resonance spectra 2D-ROESY. The interactions of the protons of ring "A" of the drug with H(3) and H(5) protons of the CD cavity observed in the binary complexes remained in both ternary complexes. Unlike the observed ternary associations with triethanolamine, N-methyl pyrrolidone competed with the triamcinolone CD cavity and considerably decreased the stability of the complex and the solubility of the drug. The molecular dynamics (MD) and quantum mechanics:molecular mechanics (QM:MM) calculations supported that triethanolamine stabilized the drug-CD interactions for the conformer identified in the 2D-ROESY experiments, improving the quality and uniformity of the formed complex. The role played by the co-solvent in the ternary complexes depends on its specific ability to interact with the CD cavity in the presence of the drug, which can be predicted in theoretical studies to select the best candidate. PMID:27474653

  9. Coordination Reactions and Noncovalent Interactions of Polyamines with Nucleotides in Binary Systems and with Nucleotides and Copper(II) Ion in Ternary Systems

    PubMed Central

    Lomozik, Lechoslaw; Gasowska, Anna; Krzysko, Grzegorz; Bregier-Jarzebowska, Romualda

    2010-01-01

    Interactions of nucleotides (AMP, CMP) and 1,2-diaminopropane (tn-1) or 2-methyl-1,2-diaminopropane (tn-2) in metal-free systems as well as in the systems including copper(II) ions were studied. The composition and overall stability constants of the complexes formed were determined by the potentiometric method, whereas the interaction centres and coordination sites were identified by spectroscopic methods. It was found that phosphate groups of nucleotides and the protonated amine groups of polyamines are the centres of interaction. The differences in the interactions with the polyamines which act as models of biogenic amines are impacted by the presence of lateral chains (methylene groups) in tn-1 and tn-2. In the ternary systems with Cu(II) ions, the heteroligand complexes are mainly of the ML⋯L' type, in which the protonated polyamine is engaged in noncovalent interactions with the anchoring Cu(II)-nucleotide complex. The complexes formed in the Cu/NMP)/tn-1 system are more stable than those formed in the system with tn-2. The mode of coordination in the complex is realised mainly through the phosphate groups of the nucleotide with involvement of the endocyclic nitrogen atoms in a manner which depends upon the steric conditions and in particular on the number of the methylene groups in the polyamine molecule. PMID:20885917

  10. Synthesis of thin films in boron-carbon-nitrogen ternary system by microwave plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kukreja, Ratandeep Singh

    The Boron Carbon Nitorgen (B-C-N) ternary system includes materials with exceptional properties such as wide band gap, excellent thermal conductivity, high bulk modulus, extreme hardness and transparency in the optical and UV range that find application in most fields ranging from micro-electronics, bio-sensors, and cutting tools to materials for space age technology. Interesting materials that belong to the B-C-N ternary system include Carbon nano-tubes, Boron Carbide, Boron Carbon Nitride (B-CN), hexagonal Boron Nitride ( h-BN), cubic Boron Nitride (c-BN), Diamond and beta Carbon Nitride (beta-C3N4). Synthesis of these materials requires precisely controlled and energetically favorable conditions. Chemical vapor deposition is widely used technique for deposition of thin films of ceramics, metals and metal-organic compounds. Microwave plasma enhanced chemical vapor deposition (MPECVD) is especially interesting because of its ability to deposit materials that are meta-stable under the deposition conditions, for e.g. diamond. In the present study, attempt has been made to synthesize beta-carbon nitride (beta-C3N4) and cubic-Boron Nitride (c-BN) thin films by MPECVD. Also included is the investigation of dependence of residual stress and thermal conductivity of the diamond thin films, deposited by MPECVD, on substrate pre-treatment and deposition temperature. Si incorporated CNx thin films are synthesized and characterized while attempting to deposit beta-C3N4 thin films on Si substrates using Methane (CH4), Nitrogen (N2), and Hydrogen (H2). It is shown that the composition and morphology of Si incorporated CNx thin film can be tailored by controlling the sequence of introduction of the precursor gases in the plasma chamber. Greater than 100mum size hexagonal crystals of N-Si-C are deposited when Nitrogen precursor is introduced first while agglomerates of nano-meter range graphitic needles of C-Si-N are deposited when Carbon precursor is introduced first in the

  11. Retention Mechanisms of Citric Acid in Ternary Kaolinite-Fe(III)-Citrate Acid Systems Using Fe K-edge EXAFS and L3,2-edge XANES Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Jianjun; Wang, Jian; Pan, Weinan; Regier, Tom; Hu, Yongfeng; Rumpel, Cornelia; Bolan, Nanthi; Sparks, Donald

    2016-05-01

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. These findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.

  12. Retention Mechanisms of Citric Acid in Ternary Kaolinite-Fe(III)-Citrate Acid Systems Using Fe K-edge EXAFS and L3,2-edge XANES Spectroscopy

    PubMed Central

    Yang, Jianjun; Wang, Jian; Pan, Weinan; Regier, Tom; Hu, Yongfeng; Rumpel, Cornelia; Bolan, Nanthi; Sparks, Donald

    2016-01-01

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. These findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils. PMID:27212680

  13. Retention Mechanisms of Citric Acid in Ternary Kaolinite-Fe(III)-Citrate Acid Systems Using Fe K-edge EXAFS and L3,2-edge XANES Spectroscopy.

    PubMed

    Yang, Jianjun; Wang, Jian; Pan, Weinan; Regier, Tom; Hu, Yongfeng; Rumpel, Cornelia; Bolan, Nanthi; Sparks, Donald

    2016-01-01

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. These findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils. PMID:27212680

  14. Carbon dioxide induced bubble formation in a CH4-CO2-H2O ternary system: a molecular dynamics simulation study.

    PubMed

    Sujith, K S; Ramachandran, C N

    2016-02-01

    The extraction of methane from its hydrates using carbon dioxide involves the decomposition of the hydrate resulting in a CH4-CO2-H2O ternary solution. Using classical molecular dynamics simulations, we investigate the evolution of dissolved gas molecules in the ternary system at different concentrations of CO2. Various compositions considered in the present study resemble the solution formed during the decomposition of methane hydrates at the initial stages of the extraction process. We find that the presence of CO2 aids the formation of CH4 bubbles by causing its early nucleation. Elucidation of the composition of the bubble revealed that in ternary solutions with high concentration of CO2, mixed gas bubbles composed of CO2 and CH4 are formed. To understand the role of CO2 in the nucleation of CH4 bubbles, the structure of the bubble formed was analyzed, which revealed that there is an accumulation of CO2 at the interface of the bubble and the surrounding water. The aggregation of CO2 at the bubble-water interface occurs predominantly when the concentration of CO2 is high. Radial distribution function for the CH4-CO2 pair indicates that there is an increasingly favorable direct contact between dissolved CH4 and CO2 molecules in the bubble-water interface. It is also observed that the presence of CO2 at the interface results in the decrease in surface tension. Thus, CO2 leads to greater stability of the bubble-water interface thereby bringing down the critical size of the bubble nuclei. The results suggest that a rise in concentration of CO2 helps in the removal of dissolved CH4 thereby preventing the accumulation of methane in the liquid phase. Thus, the presence of CO2 is predicted to assist the decomposition of methane hydrates in the initial stages of the replacement process. PMID:26762545

  15. IUPAC-NIST Solubility Data Series. 90. Hydroxybenzoic Acid Derivatives in Binary, Ternary, and Multicomponent Systems. Part I. Hydroxybenzoic Acids, Hydroxybenzoates, and Hydroxybenzoic Acid Salts in Water and Aqueous Systems

    NASA Astrophysics Data System (ADS)

    Goto, Rensuke; Fukuda, Hiroshi; Königsberger, Erich; Königsberger, Lan-Chi

    2011-03-01

    The solubility data for well-defined binary, ternary, and multicomponent systems of solid-liquid type are reviewed. One component, which is 2-, 3-, and 4-hydroxybenzoic acids, 4-hydroxybenzoate alkyl esters (parabens), or hydroxybenzoic acid salts, is in the solid state at room temperature and another component is liquid water, meaning that all of the systems are aqueous solutions. The ternary or multicomponent systems include organic substances of various classes (hydrocarbons of several structural types, halogenated hydrocarbons, alcohols, acids, ethers, esters, amides, and surfactants) or inorganic substances. Systems reported in the primary literature from 1898 through 2000 are compiled. For seven systems, sufficient binary data for hydroxybenzoic acids or parabens in water are available to allow critical evaluation. Almost all data are expressed as mass and mole fractions as well as the originally reported units, while some data are expressed as molar concentration.

  16. Ternary and Quaternary Composition Diagrams: An Overview of the Subject.

    ERIC Educational Resources Information Center

    MacCarthy, Patrick

    1983-01-01

    Reviews graphical methods for representing ternary and quaternary systems, focusing on use of triangular composition diagrams. Examines some of the relevant geometry of triangles in general, showing that right isosceles triangles possess some very advantageous features for representing ternary systems. (JN)

  17. Characterization of a pseudo ternary phase diagram of poloxamer 407 systems for potential application of 5-aminolevulinic acid in photodynamic therapy.

    PubMed

    van Hemelrijck, Carlos; Müller-Goymann, Christel C

    2011-11-28

    A poloxamer 407 (POX) gel containing dimethyl isosorbide (DMIS), isopropyl alcohol (IPA), propylene glycol dicaprylocaprate (MIG) and water has been suggested in a previous study for permeation enhancement of 5-aminolevulinic acid (ALA) across isolated human stratum corneum. The purpose of this study was to characterize other formulations coming from the same pseudo ternary phase diagram as the "Thermogel" in order to find out which of them show appropriate characteristics to be used as a vehicle for ALA since it could be shown that variation of the ingredients' content had an influence on the permeation rate. A pseudo ternary phase diagram was developed with water, a fixed combination of 1:1 of IPA and DMIS and a fixed ratio of 4:1 POX to MIG. The systems were categorized according to their consistencies and ringing gel characteristics with special emphasis on appropriate formulations for dermal application. Polarizing microscopy enabled a clear differentiation between isotropic and anisotropic systems. Wide angle X-ray diffraction analyzes confirmed that anisotropy was due to crystalline POX. Furthermore both methods showed that IPA/DMIS was an inferior solvent mixture for POX related to water. PMID:21925581

  18. Determination of the compositional fluctuation in the perovskite ternary system PbZrO/sub 3/-PbTiO/sub 3/-Pb(Mg/sub 1/3/Ta/sub 2/3/)O/sub 3/

    SciTech Connect

    Kakegawa, K.; Kawakami, M.; Sasaki, Y.

    1988-10-01

    A method was developed for the determination of a region of compositional fluctuation in the perovskite ternary solid-solution system PbZrO/sub 3/-PbTiO/sub 3/-Pb(Mg/sub 1/3/Ta/sub 2/3/)O/sub 3/. The compositional fluctuation in the ternary system extends two-dimensionally on the phase diagram. The method described in this paper utilized the fact that the compositional fluctuation region abuts on the curves of composition whose lattice spacing is the lower or higher fluctuation limit. The fluctuation limits of the lattice spacing were estimated from X-ray diffraction analysis.

  19. Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods

    SciTech Connect

    Lewis, Amanda; Zhao, Hongbin; Hopkins, Scott

    2014-09-30

    This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled “Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods.” The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistance to carbon and sulfur species. These compositions were deposited on Pall AccuSep® supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.

  20. Identification of phases of various oil, surfactant/ co-surfactants and water system by ternary phase diagram.

    PubMed

    Syed, Haroon K; Peh, Kok K

    2014-01-01

    The objective of this study was to select appropriate surfactants or blends of surfactants and oil to study the ternary phase diagram behavior and identify various phases obtained from the oil and surfactant/surfactant mixture combinations of different HLB. The phases include conventional emulsion, gel/viscous and transparent/translucent microemulsion. Pseudoternary phase diagrams of water, oil and S/Smix of various HLB values range of 9.65-15 were constructed by using water titration method at room temperature. Visual analysis, conductivity and dye dilution test (methylene blue) were performed after each addition and mixing of water, to identify phases as microemulsion, o/w or w/o emulsion (turbid/milky) and transparent gel/turbid viscous. High gel or viscous area was obtained with Tween 80 and surfactant mixture of Tween 80 and Span 80 with all oils. The results indicated that non-ionic surfactants and PG of different HLB values exhibited different pseudoternary phase diagram characteristics but no microemulsions originated from mineral and olive oils. The w/o emulsion occupied a large area in the ternary phase triangle when HLB value of the surfactant/Smix decreased. The o/w emulsion area was large with increasing HLB value of surfactant/Smix. PMID:25272651

  1. Polysaccharide-based polyanion--polycation--polyanion ternary systems. A preliminary analysis of interpolyelectrolyte interactions in dilute solutions.

    PubMed

    Donati, Ivan; Feresini, Massimo; Travan, Andrea; Marsich, Eleonora; Lapasin, Romano; Paoletti, Sergio

    2011-11-14

    The present contribution deals with the preparation and characterization of ternary mixtures of polysaccharides with potential applications in the field of tissue engineering. Two natural polyanions, i.e., alginate and hyaluronic acid, and a polycation, a lactose-modified chitosan (chitlac), were mixed in dilute conditions. The miscibility between the three components was explored in the presence of different amounts of supporting simple salt. These analyses allowed to identify the experimental conditions avoiding polymer phase separation and leading to either solution of independent polymers or soluble nonstoichiometric interpolyelectrolyte complexes. The characterization of the interpolyelectrolyte complexes was tackled by means of viscometry, light scattering, fluorescence quenching, and energy transfer. The electrostatic interactions taking place among the different polyelectrolytes led to synergistic effects on the viscosity of the polymer mixtures which strongly depend on the ionic strength. It has been found that, starting from binary soluble complexes of alginate and chitlac, the addition of hyaluronan led to the dissolution of the complexes. At variance, the addition of alginate to a phase-separated binary mixture of hyaluronan and chitlac led to the formation of soluble complexes composed of all three polysaccharides and, eventually, to their dissolution. In addition, the results showed that at low ionic strength the overall properties of the ternary mixtures depend on their order of mixing. PMID:21995461

  2. Three Alkali-Metal-Gold-Gallium Systems. Ternary Tunnel Structures and Some Problems with Poorly Ordered Cations

    SciTech Connect

    Smetana, Volodymyr; Miller, Gordon J.; Corbett, John D.

    2012-06-27

    Six new intermetallic compounds have been characterized in the alkali metal (A = Na, Rb, Cs)–gold–gallium systems. Three isostructural compounds with the general composition A0.55Au2Ga2, two others of AAu3Ga2 (A = Rb, Cs), and the related Na13Au41.2Ga30.3 were synthesized via typical high-temperature reactions and their crystal structures determined by single-crystal X-ray diffraction analysis: Na0.56(9)Au2Ga2 (I, I4/mcm, a = 8.718(1) Å, c = 4.857(1) Å, Z = 4), Rb0.56(1)Au2Ga2 (II, I4/mcm, a = 8.950(1) Å, c = 4.829(1) Å, Z = 4), Cs0.54(2)Au2Ga2 (III, I4/mcm, a = 9.077(1) Å, c = 4.815(1) Å, Z = 4), RbAu3Ga2 (IV, Pnma, a = 13.384(3) Å, b = 5.577(1) Å, c = 7.017(1) Å, Z = 4), CsAu3Ga2 (V, Pnma, a = 13.511(3) Å, b = 5.614(2) Å, c = 7.146(1) Å, Z = 4), Na13Au41.2(1)Ga30.3(1) (VI, P6 mmm, a = 19.550(3) Å, c = 8.990(2) Å, Z = 2). The first three compounds (I–III) are isostructural with tetragonal K0.55Au2Ga2 and likewise contain planar eight-member Au/Ga rings that stack along c to generate tunnels and that contain varying degrees of disordered Na–Cs cations. The cation dispositions are much more clearly and reasonably defined by electron density mapping than through least-squares refinements with conventional anisotropic ellipsoids. Orthorhombic AAu3Ga2 (IV, V) are ordered ternary Rb and Cs derivatives of the SrZn5 type structure, demonstrating structural variability within the AAu3Ga2 family. All attempts to prepare an isotypic “NaAu3Ga2” were not successful, but yielded only a similar composition Na13Au41.2Ga30.3 (NaAu3.17Ga2.33) (VI) in a very different structure with two types of cation sites. Crystal orbital Hamilton population (COHP) analysis obtained from tight-binding electronic structure calculations for idealized I–IV via linear muffin-tin-orbital (LMTO) methods emphasized the major contributions of heteroatomic Au–Ga bonding to the structural stability of these compounds. The relative minima (pseudogaps) in the DOS curves for IV

  3. Ternary systems of nonionic surfactant Brij 35, water and various simple alcohols: Structural investigations by small-angle X-ray scattering and dynamic light scattering.

    PubMed

    Tomsic, Matija; Bester-Rogac, Marija; Jamnik, Andrej; Kunz, Werner; Touraud, Didier; Bergmann, Alexander; Glatter, Otto

    2006-02-01

    Structural properties of ternary systems composed of nonionic surfactant dodecyl-poly(ethylene oxide-23) ether (C12E23, commercial name: Brij 35), water and various alcohols from ethanol to 1-decanol have been investigated using small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS) techniques. All measurements were performed at the temperature 25 degrees C. SAXS experimental data were put on absolute scale using water as a secondary standard. The data of water-rich mixtures at low to moderate surfactant concentrations were evaluated using the generalized indirect Fourier transformation method (GIFT), which is based on the simultaneous determination of the intra- and inter-particle scattering contributions. In this way, the size and the shape of interacting scattering particles in real space could be deduced. The systems with a relatively low surfactant concentration (5 mass%) were studied most extensively. In these cases, the water-rich regions of the phase diagrams could be investigated into more detail, since in the alcohol-rich regions problems with the GIFT evaluation of the SAXS data were encountered. The presented results demonstrate the level of structural details that can be obtained on the basis of scattering methods and point out the specific stages of data evaluation and interpretation where one must be extremely precautious. As such they reveal the inner structuration of the complex ternary systems of our present interest. In parallel, they also indicate that the longer chain alcohols actually behave as real oil phases in the studied systems, as one might expect, and also confirm the well-known properties of different short to medium chain alcohols that act as co-solvents and/or co-surfactants in microemulsion systems depending on their chain length. PMID:16085085

  4. The equilibrium state in the Si-O-C ternary system during SiC growth by chemical substitution of atoms

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Osipov, A. V.

    2015-03-01

    The equilibrium state in the silicon-carbon-oxygen (Si-O-C) ternary system has been calculated in the framework of the thermodynamics of chemical reactions. It is established that, in the practically important temperature interval of 1000°C < T < 1400°C, the system initially consisting of crystalline Si and gaseous CO tends toward an equilibrium state comprising a mixture of four solid phases (Si, C, SiC, and SiO2) and vapor mixture (predominantly of SiO, CO, Si, and CO2). Equilibrium partial pressures of all gases in the mixture have been calculated. An optimum regime of SiC film growth from Si by the method of atomic substitution is proposed, whereby only SiC phase is growing while SiO2 and C phases are not formed.

  5. A tunable amorphous p-type ternary oxide system: The highly mismatched alloy of copper tin oxide

    SciTech Connect

    Isherwood, Patrick J. M. Walls, John M.; Butler, Keith T.; Walsh, Aron

    2015-09-14

    The approach of combining two mismatched materials to form an amorphous alloy was used to synthesise ternary oxides of CuO and SnO{sub 2}. These materials were analysed across a range of compositions, and the electronic structure was modelled using density functional theory. In contrast to the gradual reduction in optical band gap, the films show a sharp reduction in both transparency and electrical resistivity with copper contents greater than 50%. Simulations indicate that this change is caused by a transition from a dominant Sn 5s to Cu 3d contribution to the upper valence band. A corresponding decrease in energetic disorder results in increased charge percolation pathways: a “compositional mobility edge.” Contributions from Cu(II) sub band-gap states are responsible for the reduction in optical transparency.

  6. Retention mechanisms of citric acid in ternary kaolinite-Fe(III)-citrate acid systems using Fe K-edge EXAFS and L3,2-edge XANES spectroscopy

    DOE PAGESBeta

    Yang, Jianjun; Wang, Jian; Pan, Weinan; Regier, Tom; Hu, Yongfeng; Rumpel, Cornelia; Bolan, Nanthi; Sparks, Donald

    2016-05-23

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L-3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/ormore » coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less

  7. Ternary fission of superheavy elements

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, M.; Vijayaraghavan, K. R.; Manimaran, K.

    2016-01-01

    Ternary fission of superheavy nuclei is studied within the three-cluster model potential energy surfaces (PESs). Due to shell effects, the stability of superheavy nuclei has been predicted to be associated with Z =114 , 120, and 126 for protons and N =184 for neutrons. Taking some representative nuclei we have extended the ternary fission studies to superheavy nuclei. We adopted two minimization procedures to minimize the potential and considered different arrangements of the fragments. The PES from one-dimensional minimization reveals a strong cluster region favoring various ternary breakups for an arrangement in which the lightest fragment is kept at the center. The PES obtained from two-dimensional minimization reveals strong preference of ternary fragmentation in the true ternary fission region. Though the dominant decay mode of superheavy nuclei is α decay, the α -accompanied ternary breakup is found to be a nonfavorable one. Further, the prominent ternary combinations are found to be associated with the neutron magic number.

  8. Solubility relations in the ternary system NaCl-CsCl-H2O at 1 atm. 1. Solubilities of halite from 20 to 100 °C

    USGS Publications Warehouse

    Chou, I.-Ming; Lee, R.D.

    1983-01-01

    Solubilities of halite in the ternary system NaCl-CsCl-H2O have been determined by the visual polythermal method at 1 atm from 20 to 100??C along five constant CsCl/(CsCl + H2O) weight ratio lines. These five constant weight ratios are 0.1, 0.2, 0.3, 0.4, and 0.5. The maximum uncertainties in these measurements are ??0.02 wt % NaCl and ??0.15??C. The data along each constant CsCl/(CsCl + H2O) weight ratio line were regressed to a smooth curve. The maximum deviation of the measured solubilities from the smooth curves is 0.06 wt % NaCl. Isothermal solubilities of halite were calculated from smoothed curves at 25, 50, and 75??C.

  9. Ternary liquid-liquid equilibria of dimethyl carbonate + 2-propanol + water system at 303.15 and 313.15 K

    NASA Astrophysics Data System (ADS)

    Ginting, Rizqy Romadhona; Mustain, Asalil; Tetrisyanda, Rizki; Gunardi, Ignatius; Wibawa, Gede

    2015-12-01

    In this work, liquid-liquid equilibria data of dimethyl carbonate (DMC) + 2-propanol + water system were accurately determined at 303.15 and 313.15 K using stirred and jacketed equilibrium cell under atmospheric pressure. The reliabilities of the experimental data were confirmed using Bachman-Brown correlation giving r-squared value of 0.9993 and 0.9983 at 303.15 and 313.15 K, respectively. Experimental data obtained in this work exhibit Treybal's Type I ternary phase behavior. The selectivity and distribution coefficient of DMC increases with addition of DMC concentration in the organic phase. On the other hand, the effect of temperature to phase boundary was found to be not significant. The data were correlated well using the Non-Random Two Liquid (NRTL) and Universal Quasi-Chemical (UNIQUAC) activity coefficient models with root-mean-square deviation of 1.5% and 1.3%, respectively.

  10. Sn–Ag–Cu nanosolders: Melting behavior and phase diagram prediction in the Sn-rich corner of the ternary system

    PubMed Central

    Roshanghias, Ali; Vrestal, Jan; Yakymovych, Andriy; Richter, Klaus W.; Ipser, Herbert

    2015-01-01

    Melting temperatures of Sn–Ag–Cu (SAC) alloys in the Sn-rich corner are of interest for lead-free soldering. At the same time, nanoparticle solders with depressed melting temperatures close to the Sn–Pb eutectic temperature have received increasing attention. Recently, the phase stability of nanoparticles has been the subject of plenty of theoretical and empirical investigations. In the present study, SAC nanoparticles of various sizes have been synthesized via chemical reduction and the size dependent melting point depression of these particles has been specified experimentally. The liquidus projection in the Sn-rich corner of the ternary SAC system has also been calculated as a function of particle size, based on the CALPHAD-approach. The calculated melting temperatures were compared with those obtained experimentally and with values reported in the literature, which revealed good agreement. The model also predicts that with decreasing particle size, the eutectic composition shifts towards the Sn-rich corner. PMID:26082567

  11. Synthesis and crystal structure of MgB{sub 12}Si{sub 2}-The first ternary compound in the system B/Mg/Si

    SciTech Connect

    Ludwig, Thilo; Hillebrecht, Harald . E-mail: harald.hillebrecht@ac.uni-freiburg.de

    2006-06-15

    We report on the synthesis of MgB{sub 12}Si{sub 2} the first ternary compound in the system B/Mg/Si. Yellow transparent single crystals were yielded from the elements at 1600 deg. C in h-BN crucibles welded in Ta ampoules. MgB{sub 12}Si{sub 2} crystallizes orthorhombic in the space group Pnma with a=10.9797(11)A, b=6.1098(7)A, c=8.3646(12)A and Z=4. The crystal structure is characterized by layers of B{sub 12} icosahedra, connected by isolated Si atoms to a three-dimensional framework. Mg atoms are placed in voids of the framework. Each icosahedron forms 8 B-Si bonds and 4 exohedral B-B bonds. The Si atoms are tetrahedrally coordinated by B atoms of the B{sub 12} icosahedra.

  12. An attempt to stabilize tanshinone IIA solid dispersion by the use of ternary systems with nano-CaCO3 and poloxamer 188

    PubMed Central

    Yan, Hong-mei; Zhang, Zhen-hai; Jiang, Yan-rong; Ding, Dong-mei; Sun, E.; Jia, Xiao-bin

    2014-01-01

    Background: Tanshinone IIA (TSIIA) on solid dispersions (SDs) has thermodynamical instability of amorphous drug. Ternary solid dispersions (tSDs) can extend the stability of the amorphous form of drug. Poloxamer 188 was used as a SD carrier. Nano-CaCO3 played an important role in adsorption of biomolecules and is being developed for a host of biotechnological applications. Objective: The aim of the present study was to investigate the dissolution behavior and accelerated stability of TSIIA on solid dispersions (SDs) by the use of ternary systems with nano-CaCO3 and poloxamer 188. Materials and Methods: The TSIIA tSDs were prepared by a spray-drying method. First, the effect of combination of poloxamer 188 and nano-CaCO3 on TSIIA dissolution was studied. Subsequently, a set of complementary techniques (DSC, XRPD, SEM and FTIR) was used to monitor the physical changes of TSIIA in the SDs. Finally, stability test was carried out under the conditions 40°C/75% RH for 6 months. Results: The characterization of tSDs by differential scanning calorimetry analysis (DSC) and X-ray powder diffraction (XRPD) showed that TSIIA was present in its amorphous form. Fourier transforms infrared spectroscopy (FTIR) suggested the presence of interactions between TSIIA and carriers in tSDs. Improvement in the dissolution rate was observed for all SDs. The stability study conducted on SDs with nano-CaCO3 showed stable drug content and dissolution behavior, over the period of 6 months as compared with freshly prepared SDs. Conclusion: SDs preparation with nano-CaCO3 and poloxamer 188 may be a promising approach to enhance the dissolution and stability of TSIIA. PMID:24991109

  13. Impact of Ternary Solvent System in Stability-Indicating Assay Method of Bambuterol: Design of Experiments Approach.

    PubMed

    Abiramasundari, A; Joshi, Amita; Joshi, Rahul; Pandya, Dhaivat; Sharma, Jayesh; Sudarsanam, V; Vasu, Kamala K

    2016-02-01

    High-performance liquid chromatography method for anti-asthmatic β2-agonist drug bambuterol, its process-related impurities and its major degradation products was developed and validated using quality by design concept. A 3(3) full factorial design was employed to study the effect of three independent factors, namely, ratio of organic modifiers in mobile phase, pH of the buffer and flow rate of the mobile phase. The responses considered were retention time of the last peak and resolution of poorly separated peaks (drug and PR-4 and drug and DP-3). The optimum conditions for separation were determined with the aid of design of experiments. The optimized ternary solvent composition was a mixture of 10 mM ammonium acetate buffer (pH 6.0), methanol and acetonitrile in the ratio of 90:5: 5 (v/v/v) in solvent reservoir A and 10:45:45 (v/v/v) in solvent reservoir B. The separation of the analytes was achieved by using a gradient method. The predictability criteria of the optimized method demonstrated good correlation between observed and predicted response. The method was validated for specificity, linearity, accuracy, precision and robustness in compliance with the International Conference on Harmonization guidelines Q2R1. PMID:26362115

  14. Clusterization in Ternary Fission

    NASA Astrophysics Data System (ADS)

    Kamanin, D. V.; Pyatkov, Y. V.

    This lecture notes are devoted to the new kind of ternary decay of low excited heavy nuclei called by us "collinear cluster tri-partition" (CCT) due to the features of the effect observed, namely, decay partners fly away almost collinearly and at least one of them has magic nucleon composition. At the early stage of our work the process of "true ternary fission" (fission of the nucleus into three fragments of comparable masses) was considered to be undiscovered for low excited heavy nuclei. Another possible prototype—three body cluster radioactivity—was also unknown. The most close to the CCT phenomenon, at least cinematically, stands so called "polar emission", but only very light ions (up to isotopes of Be) were observed so far.

  15. Ternary drop collisions

    NASA Astrophysics Data System (ADS)

    Hinterbichler, Hannes; Planchette, Carole; Brenn, Günter

    2015-10-01

    It has been recently proposed to use drop collisions for producing advanced particles or well-defined capsules, or to perform chemical reactions where the merged drops constitute a micro-reactor. For all these promising applications, it is essential to determine whether the merged drops remain stable after the collision, forming a single entity, or if they break up. This topic, widely investigated for binary drop collisions of miscible and immiscible liquid, is quite unexplored for ternary drop collisions. The current study aims to close this gap by experimentally investigating collisions between three equal-sized drops of the same liquid arranged centri-symmetrically. Three drop generators are simultaneously operated to obtain controlled ternary drop collisions. The collision outcomes are observed via photographs and compared to those of binary collisions. Similar to binary collisions, a regime map is built, showing coalescence and bouncing as well as reflexive and stretching separation. Significant differences are observed in the transitions between these regimes.

  16. Designing thin film materials — Ternary borides from first principles

    PubMed Central

    Euchner, H.; Mayrhofer, P.H.

    2015-01-01

    Exploiting the mechanisms responsible for the exceptional properties of aluminum based nitride coatings, we apply ab initio calculations to develop a recipe for designing functional thin film materials based on ternary diborides. The combination of binary diborides, preferring different structure types, results in supersaturated metastable ternary systems with potential for phase transformation induced effects. For the exemplary cases of MxW1 − xB2 (with M = Al, Ti, V) we show by detailed ab initio calculations that the respective ternary solid solutions are likely to be experimentally accessible by modern depositions techniques. PMID:26082562

  17. Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend.

    PubMed

    Costa, Luciano T; Sun, Bing; Jeschull, Fabian; Brandell, Daniel

    2015-07-14

    This paper presents atomistic molecular dynamics simulation studies of lithium bis(trifluoromethane)sulfonylimide (LiTFSI) in a blend of 1-ethyl-3-methylimidazolium (EMIm)-TFSI and poly(ethylene oxide) (PEO), which is a promising electrolyte material for Li- and Li-ion batteries. Simulations of 100 ns were performed for temperatures between 303 K and 423 K, for a Li:ether oxygen ratio of 1:16, and for PEO chains with 26 EO repeating units. Li(+) coordination and transportation were studied in the ternary electrolyte system, i.e., PEO16LiTFSI⋅1.0 EMImTFSI, by applying three different force field models and are here compared to relevant simulation and experimental data. The force fields generated significantly different results, where a scaled charge model displayed the most reasonable comparisons with previous work and overall consistency. It is generally seen that the Li cations are primarily coordinated to polymer chains and less coupled to TFSI anion. The addition of EMImTFSI in the electrolyte system enhances Li diffusion, associated to the enhanced TFSI dynamics observed when increasing the overall TFSI anion concentration in the polymer matrix. PMID:26178124

  18. Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend

    SciTech Connect

    Costa, Luciano T.

    2015-07-14

    This paper presents atomistic molecular dynamics simulation studies of lithium bis(trifluoromethane)sulfonylimide (LiTFSI) in a blend of 1-ethyl-3-methylimidazolium (EMIm)-TFSI and poly(ethylene oxide) (PEO), which is a promising electrolyte material for Li- and Li-ion batteries. Simulations of 100 ns were performed for temperatures between 303 K and 423 K, for a Li:ether oxygen ratio of 1:16, and for PEO chains with 26 EO repeating units. Li{sup +} coordination and transportation were studied in the ternary electrolyte system, i.e., PEO{sub 16}LiTFSI⋅1.0 EMImTFSI, by applying three different force field models and are here compared to relevant simulation and experimental data. The force fields generated significantly different results, where a scaled charge model displayed the most reasonable comparisons with previous work and overall consistency. It is generally seen that the Li cations are primarily coordinated to polymer chains and less coupled to TFSI anion. The addition of EMImTFSI in the electrolyte system enhances Li diffusion, associated to the enhanced TFSI dynamics observed when increasing the overall TFSI anion concentration in the polymer matrix.

  19. Competitive adsorption of Cd(II), Zn(II) and Ni(II) from their binary and ternary acidic systems using tourmaline.

    PubMed

    Liu, Haibin; Wang, Cuiping; Liu, Jingting; Wang, Baolin; Sun, Hongwen

    2013-10-15

    The adsorption of Cd(II), Zn(II) and Ni(II) from aqueous solutions in binary and ternary component systems by tourmaline was investigated. Kinetic data were accurately fitted to pseudo-second order and internal diffusion models, which indicated that the adsorption of heavy metals occurred on the interior surface of the sorbent and internal diffusion was the controlling mechanism during heavy metal ion adsorption but was not the only rate-controlling step. Additionally, tourmaline had a very good adsorption capacity for Cd(II), Zn(II) and Ni(II) in multi-component aqueous solutions at strongly acidic pH values (in contrast to industrial wastewater pH values). This good adsorption capacity is attributed to the fact that tourmaline can automatically adjust the pH values of acidic (except pH 2.0 and 3.0), neutral or alkaline aqueous solutions to 6.0. Adsorption isotherms and separation factors showed that tourmaline displays a high selectivity toward one metal in a two-component or a three-component system with an affinity order of Cd(II) > Zn(II) > Ni(II). Thermodynamic parameters indicated that heavy metal adsorption was feasible, spontaneous, and endothermic. Therefore, tourmaline should be explored as a material for removing pollutants from the strongly acidic wastewater. PMID:23851318

  20. Structural Characteristics of Homogeneous Hydrophobic Ionic Liquid-HNO3-H2O Ternary System: Experimental Studies and Molecular Dynamics Simulations.

    PubMed

    Fu, Jing; Yang, Y Isaac; Zhang, Jun; Chen, Qingde; Shen, Xinghai; Gao, Yi Qin

    2016-06-16

    The solubility of water in the hydrophobic ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) increases significantly in the presence of HNO3. [C2mim][NTf2] is completely miscible with HNO3 but immiscible with water. The triangular phase diagram of the ternary system [C2mim][NTf2]-HNO3-H2O was determined at 300.1 K. The homogeneous [C2mim][NTf2]-HNO3-H2O phase is thermodynamically stable, while it can be separated into two phases with an increase of water content. Experiments (electrospray ionization mass spectrometry, Fourier transform infrared spectrometry, and (1)H-nuclear magnetic resonance spectrometry) and molecular dynamics simulations were carried out to investigate the interaction between [C2mim][NTf2], HNO3, and water in the homogeneous phase. It was found that NO3(-) ions interact with both C2mim(+) and water via H-bonding and act as a "bridge" to induce a large amount of water to be dissolved in the hydrophobic IL phase. This confirms that the complexes [C2mim-NTf2-C2mim](+) and [NTf2-C2mim-NTf2](-) exist in the homogeneous [C2mim][NTf2]-HNO3-H2O system at the concentration of HNO3 up to 27.01 wt % and of water as high as 20.74 wt %. PMID:27196811

  1. Ternary system based on fluorophore-surfactant assemblies--Cu²⁺ for highly sensitive and selective detection of arginine in aqueous solution.

    PubMed

    Cao, Jianhua; Ding, Liping; Hu, Wenting; Chen, Xiangli; Chen, Xiao; Fang, Yu

    2014-12-23

    A new cationic dansyl derivative-based (DIlSD) fluorescence probe was designed and synthesized. Its combination with anionic surfactant SDS assemblies shows enhanced fluorescence intensity and blue-shifted maximum wavelength. Its fluorescence can be slightly quenched by Cu(2+); however, the fluorescence quenching efficiency by Cu(2+) is highly increased upon titration of arginine (Arg). As a result, the ternary system containing the cationic fluorophore, anionic surfactant, and Cu(2+) functions as a highly sensitive and selective sensor to Arg. The optimized sensor system displays a detection limit of 170 nM, representing the highest sensitivity to Arg in total aqueous solution by a fluorescent sensor. Control experiments reveal that the imidazolium groups in the fluorophore, the anionic surfactant, and Cu(2+) all play important roles in the process of sensing Arg. The electrostatic interaction between the cationic fluorophore and anionic surfactants facilitates the binding of imidazolium rings with Cu(2+), the surfactant surface-anchored Cu(2+) is responsible for further binding of Arg, and the electrostatic interaction between anionic surfactants and positively charged amino acids accounts for the selective responses to Arg. PMID:25453500

  2. Equilibria in the ternary system SrCl2-KCl-H2O and the quaternary system SrCl2-KCl-NaCl-H2O at 323 K

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Sang, Shi-Hua; Zhong, Si-Yao; Huang, Wang-Yin

    2015-12-01

    The experimental studies on phase equilibria in the ternary system SrCl2-NaCl-H2O and the quaternary system SrCl2-KCl-NaCl-H2O at 323 K were done by the method of isothermal solution saturation. Solubilities and densities of the solution were determined experimentally. The phase diagrams and density-composition diagrams were plotted based on the experimental data. The phase diagram of the ternary system SrCl2-KCl-H2O at 323 K consists of one invariant point, two univariant curves, and two crystallization regions (SrCl2 · 6H2O and KCl). The phase diagrams of the quaternary system SrCl2-KCl-NaCl-H2O at 323 K consist of one invariant point, three univariant curves, and three crystallization regions (SrCl2 · 6H2O, NaCl, and KCl). A brief discussion of the experimental results is described.

  3. Systems R-Fe-O (R=Ho, Er): Thermodynamic properties of ternary oxides using differential scanning calorimetry and solid-state electrochemical cells

    SciTech Connect

    Parida, S.C. . E-mail: sureshp@apsara.barc.ernet.in; Rakshit, S.K.; Dash, S.; Singh, Ziley; Sen, B.K.; Venugopal, V.

    2006-07-15

    The thermodynamic properties of three different types of ternary oxides RFeO{sub 3}(s), R{sub 3}Fe{sub 5}O{sub 12}(s) and RFe{sub 2}O{sub 4}(s) (where R=Ho and Er) have been determined by calorimetric and solid-state galvanic cell methods. Heat capacities of RFeO{sub 3}(s) and R{sub 3}Fe{sub 5}O{sub 12}(s) have been determined by differential scanning calorimetry from 130 to 860K. Heat capacity measurements from 130 to 860K revealed {lambda}-type anomalies for RFeO{sub 3}(s) and R{sub 3}Fe{sub 5}O{sub 12}(s) compounds which are assigned due to magnetic order-disorder transitions. The oxygen chemical potentials corresponding to the three-phase equilibria involving these ternary oxides have been determined by using solid-state electrochemical cells. The standard molar Gibbs energies of formation of RFeO{sub 3}(s), R{sub 3}Fe{sub 5}O{sub 12}(s) and RFe{sub 2}O{sub 4}(s) have been computed from the oxygen potential data. Based on the thermodynamic information, oxygen potential diagrams have been computed for the systems R-Fe-O (R=Ho and Er) at two different temperatures: T=1250 and 1450K. Thermodynamic functions like C{sub p,m}{sup o}, S{sub m}{sup o}, H{sup o}, G{sup o}, (H{sub T}{sup o}-H{sub 0}{sup o}), (H{sub T}{sup o}-H{sub 298.15K}{sup o}), -(G{sub T}{sup o}-H{sub 298.15K}{sup o})/T, {delta}{sub f}H{sub m}{sup o}, and {delta}{sub f}G{sub m}{sup o} have been generated for the compounds RFeO{sub 3}(s) and R{sub 3}Fe{sub 5}O{sub 12}(s) based on the experimental data obtained in this study and the available data in the literature.

  4. Highly Robust Hybrid Photocatalyst for Carbon Dioxide Reduction: Tuning and Optimization of Catalytic Activities of Dye/TiO2/Re(I) Organic-Inorganic Ternary Systems.

    PubMed

    Won, Dong-Il; Lee, Jong-Su; Ji, Jung-Min; Jung, Won-Jo; Son, Ho-Jin; Pac, Chyongjin; Kang, Sang Ook

    2015-10-28

    Herein we report a detailed investigation of a highly robust hybrid system (sensitizer/TiO2/catalyst) for the visible-light reduction of CO2 to CO; the system comprises 5'-(4-[bis(4-methoxymethylphenyl)amino]phenyl-2,2'-dithiophen-5-yl)cyanoacrylic acid as the sensitizer and (4,4'-bis(methylphosphonic acid)-2,2'-bipyridine)Re(I)(CO)3Cl as the catalyst, both of which have been anchored on three different types of TiO2 particles (s-TiO2, h-TiO2, d-TiO2). It was found that remarkable enhancements in the CO2 conversion activity of the hybrid photocatalytic system can be achieved by addition of water or such other additives as Li(+), Na(+), and TEOA. The photocatalytic CO2 reduction efficiency was enhanced by approximately 300% upon addition of 3% (v/v) H2O, giving a turnover number of ≥570 for 30 h. A series of Mott-Schottky (MS) analyses on nanoparticle TiO2 films demonstrated that the flat-band potential (V(fb)) of TiO2 in dry DMF is substantially negative but positively shifts to considerable degrees in the presence of water or Li(+), indicating that the enhancement effects of the additives on the catalytic activity should mainly arise from optimal alignment of the TiO2 V(fb) with respect to the excited-state oxidation potential of the sensitizer and the reduction potential of the catalyst in our ternary system. The present results confirm that the TiO2 semiconductor in our heterogeneous hybrid system is an essential component that can effectively work as an electron reservoir and as an electron transporting mediator to play essential roles in the persistent photocatalysis activity of the hybrid system in the selective reduction of CO2 to CO. PMID:26456369

  5. Study of fatigue and fracture behavior of NbCr{sub 2}-based alloys: Phase stability in Nb-Cr-Ni ternary system

    SciTech Connect

    Zhu, J.H.; Liaw, P.K.; Liu, C.T.

    1997-12-01

    Phase stability in a ternary Nb-Cr-Ni Laves phase system was studied in this paper. Their previous study in NbCr{sub 2}-based transition-metal Laves phases has shown that the average electron concentration factor, e/a, is the dominating factor in controlling the phase stability of NbCr{sub 2}-based Laves phases when the atomic size ratios are kept identical. Since Ni has ten out-shell electrons, the substitution of Ni for Cr in NbCr{sub 2} will increase the average electron concentration of the alloy, thus leading to the change of the crystal structures from C15 to C14. In this paper, a number of pseudo-binary Nb(Cr,Ni){sub 2} alloys were prepared, and the crystal structures of the alloys after a long heat-treatment at 1000 C as a function of the Ni content were determined by the X-ray diffraction technique. The boundaries of the C15/C14 transition were determined and compared to their previous predictions. It was found that the electron concentration and phase stability correlation is obeyed in the Nb-Cr-Ni system. However, the e/a ratio corresponding to the C15/C14 phase transition was found to move to a higher value than the predicted one. The changes in the lattice constant, Vickers hardness and fracture toughness were also determined as a function of the Ni content, which were discussed in light of the phase stability difference of the alloys.

  6. Phase Equilibria of the Ternary Sn-Pb-Co System at 250°C and Interfacial Reactions of Co with Sn-Pb Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Chao-hong; Kuo, Chun-yi; Yang, Nian-cih

    2015-11-01

    The isothermal section of the ternary Sn-Pb-Co system at 250°C was experimentally determined through a series of the equilibrated Sn-Pb-Co alloys of various compositions. The equilibrium phases were identified on the basis of compositional analysis. For the Sn-Co intermetallic compounds (IMCs), CoSn3, CoSn2, CoSn and Co3Sn2, the Pb solubility was very limited. There exist five tie-triangle regions. The Co-Pb system involves one monotectic reaction, so the phase separation of liquid alloys near the Co-Pb side occurred prior to solidification. The immiscibility field was also determined. Additionally, interfacial reactions between Co and Sn-Pb alloys were conducted. The reaction phase for the Sn-48 at.%Pb and Sn-58 at.%Pb at 250°C was CoSn3 and CoSn2, respectively. Both of them were simultaneously formed in the Sn-53 at.%Pb/Co. The formed IMCs were closely associated to the phase equilibria relationship of the liquid-CoSn3-CoSn2 tie-triangle. Furthermore, with increasing temperatures, the phase formed in equilibrium with Sn-37 wt.%Pb was found to transit from CoSn3 to CoSn2 at 275°C. We propose a simple method of examining the phase transition temperature in the interfacial reactions to determine the boundaries of the liquid-CoSn3-CoSn2 tie-triangles at different temperatures.

  7. On the growth of ternary system HNO{sub 3}/H{sub 2}SO{sub 4}/H{sub 2} aerosol particles in the stratosphere

    SciTech Connect

    Hamill, P.; Tabazadeh, A.; Kinne, S.; Toon, O.B.

    1996-04-01

    The authors present model study results on the formation of ternary aerosols of nitric acid, sulfuric acid, and water in the stratosphere. The aerosol particles grow by means of a heteromolecular condensation process. The authors assume the particles are in equilibrium with the background water vapor.

  8. Ternary boride product and process

    NASA Technical Reports Server (NTRS)

    Clougherty, Edward V. (Inventor)

    1976-01-01

    A hard, tough, strong ceramic body is formed by hot pressing a mixture of a powdered metal and a powdered metal diboride. The metal employed is zirconium, titanium or hafnium and the diboride is the diboride of a different member of the same group of zirconium, titanium or hafnium to form a ternary composition. During hot pressing at temperatures above about 2,000.degree.F., a substantial proportion of acicular ternary monoboride is formed.

  9. Voltammetric study of the boric acid-salicylaldehyde-H-acid ternary system and its application to the voltammetric determination of boron.

    PubMed

    Kajiwara, Mari; Ito, Yoshio N; Miyazaki, Yoshinobu; Fujimori, Takao; Takehara, Kô; Yoshimura, Kazuhisa

    2015-02-14

    The ternary system of boric acid, salicylaldehyde (SA) and H-acid (HA) was voltammetrically studied from kinetic and equilibrium points of view. The effect of the SA substituents was also studied by using two analogs, 5-fluorosalicylaldehyde (F-SA) and 5-methylsalicylaldehyde (Me-SA). The three cathodic peaks of Azomethine H (AzH), Azomethine H-boric acid complex (AzB), and free SA were observed in the solution containing boric acid, SA and HA. The peak potentials of AzH and SA were shifted to negative potentials with increasing pH, while the peak potential of AzB was pH-independent. This difference indicates that a proton participates in the charge-transfer steps of the AzH and SA reductions, but not in that of the AzB reduction. The formation constants for the AzB complexation were similar among all the examined analogs. In the kinetic study, the reaction rate was higher in an acidic condition for the AzH formation, but in a neutral condition for the AzB formation. The rate constants for the AzB complexes were in the order of F-SA > SA ≈ Me-SA, indicating that the fluoro group accelerates the F-AzB complexation. The AzB complexation mechanism is considered to consist of more than three steps, i.e., the pre-equilibrium of the salicylaldehyde-boric acid complex (SA-B) formation, the nucleophilic attack of HA on SA-B, and the remaining some steps to form AzB. Based on these results, the voltammetric determination method of boron using F-SA was optimized, which allowed the boron concentration to be determined within only 5 min with a 0.03 mg B dm(-3) detection limit. PMID:25584642

  10. Ternary fission of 466, 476 184X formed in U + U collisions

    NASA Astrophysics Data System (ADS)

    Karthikraj, C.; Subramanian, S.; Selvaraj, S.

    2016-06-01

    Recently, the very rare process of nuclear ternary fission has been of great interest in nuclear dynamics. Based on the statistical theory of fission, we discuss here the ternary-fission mass distribution of 466, 476 184X formed in low-energy U + U collisions for different heavy third fragments at T = 1 and 2MeV. The expected ternary configurations 208 Pb + 208 Pb + 50 Ca and 204 Hg + 204 Hg + 58 Cr are obtained from the ternary fission of 466 184X at T = 2 MeV. In addition, for both the systems, various possible ternary modes are listed for different heavy third fragments. Our results clearly indicate that the favored ternary configurations have either proton and/or neutron shell closure nucleus as one of their partners.

  11. Ternary phase behaviour and vesicle formation of a sodium N-lauroylsarcosinate hydrate/1-decanol/water system

    NASA Astrophysics Data System (ADS)

    Akter, Nasima; Radiman, Shahidan; Mohamed, Faizal; Rahman, Irman Abdul; Reza, Mohammad Imam Hasan

    2011-08-01

    The phase behaviour of a system composed of amino acid-based surfactant (sodium N-lauroylsarcosinate hydrate), 1-decanol and deionised water was investigated for vesicle formation. Changing the molar ratio of the amphiphiles, two important aggregate structures were observed in the aqueous corner of the phase diagram. Two different sizes of microemulsions were found at two amphiphile-water boundaries. A stable single vesicle lobe was found for 1∶2 molar ratios in 92 wt% water with vesicles approximately 100 nm in size and with high zeta potential value. Structural variation arises due to the reduction of electrostatic repulsions among the ionic headgroups of the surfactants and the hydration forces due to adsorbed water onto monolayer's. The balance of these two forces determines the aggregate structures. Analysis was followed by the molecular geometrical structure. These findings may have implications for the development of drug delivery systems for cancer treatments, as well as cosmetic and food formulations.

  12. The SmS-Ga/sub 2/S/sub 3/ section of the ternary Sm-Ga-S system

    SciTech Connect

    Alieva O.A.; Aliev, O.M.

    1986-09-01

    The SmS-Ga/sub 2/S/sub 3/ section of the Sm-Ga-S system is investigated by differential-thermal, XPA, and microstructural analyses and changes in the microhardness. The XPA was performed with a DRON-2 diffractometer using CuK /SUB a/ radiation. Microstructural analysis showed that alloys containing 0-2, 33.3, and 50 mole % SmS were single-phase and the rest were two-phase.

  13. Computational study of atomic mobility for the bcc phase of the U-Pu-Zr ternary system

    NASA Astrophysics Data System (ADS)

    Li, Weibang; Hu, Rui; Cui, Y.-W.; Zhong, Hong; Chang, Hui; Li, Jinshan; Zhou, Lian

    2010-12-01

    Experimental diffusion data in literature has been evaluated to assess the atomic mobility for the bcc phase in the U-Pu-Zr system by means of the DICTRA-type (Diffusion Controlled TRAnsformation) phenomenological treatment. The developed mobility database has been validated by comprehensive comparisons made between the experimental and calculated diffusion coefficients, as well as other interesting details resulting from interdiffusion, e.g. the concentration profile and the diffusion path of diffusion couples.

  14. Local spin density functional investigations of the chemical bonding and of the magnetism in some uranium ternary intermetallic systems: How physics and chemistry can meet in the solid state

    SciTech Connect

    Matar, S.F.

    2000-04-20

    The electronic and magnetic structures of different uranium-based ternary intermetallic systems are self-consistently calculated within local spin density functional theory using the augmented spherical wave method. The influence of hybridization on the chemical bonding and on the magnetic behavior is discussed from the densities of states as well as from the crystal orbital overlap population. From this the author addresses the mechanisms of chemical bonding and of the onset of magnetism. The original concept of building blocks between different intermetallic systems is discussed.

  15. Ternary phase behaviour and vesicle formation of a sodium N-lauroylsarcosinate hydrate/1-decanol/water system

    PubMed Central

    Akter, Nasima; Radiman, Shahidan; Mohamed, Faizal; Rahman, Irman Abdul; Reza, Mohammad Imam Hasan

    2011-01-01

    The phase behaviour of a system composed of amino acid-based surfactant (sodium N-lauroylsarcosinate hydrate), 1-decanol and deionised water was investigated for vesicle formation. Changing the molar ratio of the amphiphiles, two important aggregate structures were observed in the aqueous corner of the phase diagram. Two different sizes of microemulsions were found at two amphiphile-water boundaries. A stable single vesicle lobe was found for 1∶2 molar ratios in 92 wt% water with vesicles approximately 100 nm in size and with high zeta potential value. Structural variation arises due to the reduction of electrostatic repulsions among the ionic headgroups of the surfactants and the hydration forces due to adsorbed water onto monolayer's. The balance of these two forces determines the aggregate structures. Analysis was followed by the molecular geometrical structure. These findings may have implications for the development of drug delivery systems for cancer treatments, as well as cosmetic and food formulations. PMID:22355590

  16. Reaction of plutonium with water kinetic and equilibrium behavior of binary and ternary phases in the Pu + O + H system

    SciTech Connect

    Haschke, J.M.; Hodges, A.E. III; Bixby, G.E.; Lucas, R.L.

    1983-02-03

    The kinetic and equilibrium behavior of the Pu + O + H system has been studied by measuring the production of hydrogen gas formed by a sequence of hydrolysis reactions. The kinetic dependence of the Pu + H/sub 2/O reaction on salt concentration and temperature has been defined. The metal is quantitatively converted to a fine black powder which has been identified as plutonium monoxide monohydride, PuOH. Other hydrolysis products formed in aqueous media include a second oxide hydride, Pu/sub 7/O/sub 9/H/sub 3/, and the oxides Pu/sub 2/O/sub 3/, Pu/sub 7/O/sub 12/, Pu/sub 9/O/sub 16/, Pu/sub 10/O/sub 18/, Pu/sub 12/O/sub 22/, and PuO/sub 2/. Thermal decomposition products of PuOH include Pu/sub 2/O/sub 2/H and PuO. A tentative phase diagram for Pu + O + H is presented and structural relationships of the oxide hydrides and oxides are discussed. 10 figures, 5 tables.

  17. Investigation of Blend Miscibility of a Ternary PS/PCHMA/PMMA System Using SIMS and Mean-Field Theory

    SciTech Connect

    Harton,S.; Koga, T.; Stevie, F.; Araki, T.; Ade, H.

    2005-01-01

    Poly(cyclohexyl methacrylate) (PCHMA) and polystyrene (PS) are miscible with each other, but each is highly immiscible with PMMA. Identifiable by the asymmetries in the binary mean-field interaction parameters {chi}, PS preferentially segregates to the PCHMA/PMMA interface. Secondary ion mass spectrometry was used to provide real-space depth profiles of deuterated PS (dPS) in a miscible blend with PCHMA. The initial dPS concentration was varied from 5 to 20% (v/v), and the blend film was annealed at 150 C on a film of PMMA for 42 h. X-ray reflectometry was used to determine the interfacial width between PCHMA and PMMA at 150 C. Using self-consistent mean-field theory, good agreement was found between the experimental and theoretical interfacial excess Z* of dPS at each concentration. Because of their similar glass transition temperatures ({approx}100 C for PS and PCHMA) and the ability of PS and PCHMA to be controllably synthesized with low polydispersities, we anticipate this blend to be a model system for future investigations of such phenomena as diffusion in miscible blends and diffusion near surfaces and interfaces.

  18. Large scale simulations of the mechanical properties of layered transition metal ternary compounds for fossil energy power system applications

    SciTech Connect

    Ching, Wai-Yim

    2014-12-31

    Advanced materials with applications in extreme conditions such as high temperature, high pressure, and corrosive environments play a critical role in the development of new technologies to significantly improve the performance of different types of power plants. Materials that are currently employed in fossil energy conversion systems are typically the Ni-based alloys and stainless steels that have already reached their ultimate performance limits. Incremental improvements are unlikely to meet the more stringent requirements aimed at increased efficiency and reduce risks while addressing environmental concerns and keeping costs low. Computational studies can lead the way in the search for novel materials or for significant improvements in existing materials that can meet such requirements. Detailed computational studies with sufficient predictive power can provide an atomistic level understanding of the key characteristics that lead to desirable properties. This project focuses on the comprehensive study of a new class of materials called MAX phases, or Mn+1AXn (M = a transition metal, A = Al or other group III, IV, and V elements, X = C or N). The MAX phases are layered transition metal carbides or nitrides with a rare combination of metallic and ceramic properties. Due to their unique structural arrangements and special types of bonding, these thermodynamically stable alloys possess some of the most outstanding properties. We used a genomic approach in screening a large number of potential MAX phases and established a database for 665 viable MAX compounds on the structure, mechanical and electronic properties and investigated the correlations between them. This database if then used as a tool for materials informatics for further exploration of this class of intermetallic compounds.

  19. Material properties of perovskites in the quasi-ternary system LaFeO3-LaCoO3-LaNiO3

    NASA Astrophysics Data System (ADS)

    Tietz, F.; Arul Raj, I.; Ma, Q.; Baumann, S.; Mahmoud, A.; Hermann, R. P.

    2016-05-01

    An overview is presented on the variation of electrical conductivity, oxygen permeation, and thermal expansion coefficient as a function of the composition of perovskites in the quasi-ternary system LaFeO3-LaCoO3-LaNiO3. Powders of thirteen nominal perovskite compositions were synthesized under identical conditions by the Pechini method. The powder X-ray diffraction data of two series, namely La(Ni0.5Fe0.5)1-xCoxO3 and LaNi0.5-xFexCo0.5O3, are presented after the powders had been sintered at 1100 °C for 6 h in air. The measurements revealed a rhombohedral structure for all compositions except LaNi0.5Fe0.5O3 for which 60% rhombohedral and 40% orthorhombic phase was found. The maximum DC electrical conductivity value of the perovskites at 800 °C was 1229 S cm-1 for the composition LaCoO3 and the minimum was 91 S cm-1 for the composition LaCo0.5Fe0.5O3. The oxygen permeation of samples with promising conductivities at 800 °C was one order of magnitude lower than that of La0.6Sr0.4Co0.8Fe0.2O3 (LSCF). The highest value of 0.017 ml cm-2 min-1 at 950 °C was obtained with LaNi0.5Co0.5O3. The coefficients of thermal expansion varied in the range of 13.2×10-6 K-1 and 21.9×10-6 K-1 for LaNi0.5Fe0.5O3 and LaCoO3, respectively. 57Fe Mössbauer spectroscopy was used as probe for the oxidation states, local environment and magnetic properties of iron ions as a function of chemical composition. The substitution had a great influence on the chemical properties of the materials.

  20. Material properties of perovskites in the quasi-ternary system LaFeO3 LaCoO3 LaNiO3

    DOE PAGESBeta

    Tietz, Frank; Raj, I. Arul; Ma, Q.; Baumann, S.; Mahmoud, A.; Hermann, Raphael P

    2016-01-01

    An overview is presented on the variation of electrical conductivity, oxygen permeation, oxygen surface exchange and thermal expansion coefficient as a function of the composition of perovskites in the quasi-ternary system LaFeO3-LaCoO3-LaNiO3. Powders of thirteen nominal perovskite compositions were synthesized under identical conditions by the Pechini method. The powder X-ray diffraction data of two series, namely La(Ni0.5Fe0.5)1-xCoxO3 and LaNi0.5- xFexCo0.5O3, are presented after the powders had been sintered at 1100 C for 6 h in air. The measurements revealed a rhombohedral structure for all compositions except LaNi0.5Fe0.5O3 for which 60% rhombohedral and 40% orthorhombic phase was found. The maximum DCmore » electrical conductivity value of the perovskites at 800 C was 1229 S cm-1 for the composition LaCoO3 and the minimum was 91 S cm-1 for the composition LaCo0.5Fe0.5O3. The oxygen permeation of samples with promising conductivities at 800 C was one order of magnitude lower than that of La0.6Sr0.4Co0.8Fe0.2O3 (LSCF). The highest value of 0.017 ml cm-2 min-1 at 950 C was obtained with LaNi0.5Co0.5O3. The coefficients of thermal expansion varied in the range of 13.2 x 10-6 K-1 and 21.9 x 10-6 K-1 for LaNi0.5Fe0.5O3 and LaCoO3, respectively. 57Fe M ssbauer spectroscopy was used as probe for the oxidation states, local environment and magnetic properties of iron ions as a function of chemical composition. The substitution had a great influence on the chemical properties of the materials.« less

  1. Material properties of perovskites in the quasi-ternary system LaFeO3–LaCoO3–LaNiO3

    DOE PAGESBeta

    Tietz, F.; Arul Raj, I.; Ma, Q.; Baumann, S.; Mahmoud, A.; Hermann, R. P.

    2016-02-02

    We present an overview on the variation of electrical conductivity, oxygen permeation, oxygen surface exchange and thermal expansion coefficient as a function of the composition of perovskites in the quasi-ternary system LaFeO3–LaCoO3–LaNiO3. Powders of thirteen nominal perovskite compositions were synthesized under identical conditions by the Pechini method. The powder X-ray diffraction data of two series, namely La(Ni0.5Fe0.5)1-xCoxO3 and LaNi0.5- xFexCo0.5O3, are presented after the powders had been sintered at 1100 C for 6 h in air. The measurements revealed a rhombohedral structure for all compositions except LaNi0.5Fe0.5O3 for which 60% rhombohedral and 40% orthorhombic phase was found. Moreover, the maximummore » DC electrical conductivity value of the perovskites at 800 C was 1229 S cm-1 for the composition LaCoO3 and the minimum was 91 S cm-1 for the composition LaCo0.5Fe0.5O3. The oxygen permeation of samples with promising conductivities at 800 C was one order of magnitude lower than that of La0.6Sr0.4Co0.8Fe0.2O3 (LSCF). The highest value of 0.017 ml cm-2 min-1 at 950 C was obtained with LaNi0.5Co0.5O3. The coefficients of thermal expansion varied in the range of 13.2 x 10-6 K-1 and 21.9 x 10-6 K-1 for LaNi0.5Fe0.5O3 and LaCoO3, respectively. 57Fe M ssbauer spectroscopy was used as probe for the oxidation states, local environment and magnetic properties of iron ions as a function of chemical composition. Ultimately, the substitution had a great influence on the chemical properties of the materials.« less

  2. Material properties of perovskites in the quasi-ternary system LaFeO3 LaCoO3 LaNiO3

    SciTech Connect

    Tietz, Frank; Raj, I. Arul; Ma, Q.; Baumann, S.; Mahmoud, A.; Hermann, Raphael P

    2016-01-01

    An overview is presented on the variation of electrical conductivity, oxygen permeation, oxygen surface exchange and thermal expansion coefficient as a function of the composition of perovskites in the quasi-ternary system LaFeO3-LaCoO3-LaNiO3. Powders of thirteen nominal perovskite compositions were synthesized under identical conditions by the Pechini method. The powder X-ray diffraction data of two series, namely La(Ni0.5Fe0.5)1-xCoxO3 and LaNi0.5- xFexCo0.5O3, are presented after the powders had been sintered at 1100 C for 6 h in air. The measurements revealed a rhombohedral structure for all compositions except LaNi0.5Fe0.5O3 for which 60% rhombohedral and 40% orthorhombic phase was found. The maximum DC electrical conductivity value of the perovskites at 800 C was 1229 S cm-1 for the composition LaCoO3 and the minimum was 91 S cm-1 for the composition LaCo0.5Fe0.5O3. The oxygen permeation of samples with promising conductivities at 800 C was one order of magnitude lower than that of La0.6Sr0.4Co0.8Fe0.2O3 (LSCF). The highest value of 0.017 ml cm-2 min-1 at 950 C was obtained with LaNi0.5Co0.5O3. The coefficients of thermal expansion varied in the range of 13.2 x 10-6 K-1 and 21.9 x 10-6 K-1 for LaNi0.5Fe0.5O3 and LaCoO3, respectively. 57Fe M ssbauer spectroscopy was used as probe for the oxidation states, local environment and magnetic properties of iron ions as a function of chemical composition. The substitution had a great influence on the chemical properties of the materials.

  3. Alternative solution model for the ternary carbonate system CaCO3 - MgCO3 - FeCO3 - II. Calibration of a combined ordering model and mixing model

    USGS Publications Warehouse

    McSwiggen, P.L.

    1993-01-01

    Earlier attempts at solution models for the ternary carbonate system have been unable to adequately accommodate the cation ordering which occurs in some of the carbonate phases. The carbonate solution model of this study combines a Margules type of interaction model with a Bragg-Williams type of ordering model. The ordering model determines the equilibrium state of order for a crystal, from which the cation distribution within the lattice can be obtained. The interaction model addresses the effect that mixing different cation species within a given cation layer has on the total free energy of the system. An ordering model was derived, based on the Bragg-Williams approach; it is applicable to ternary systems involving three cations substituting on two sites, and contains three ordering energy parameters (WCaMg, WCaFe, and WCaMgFe). The solution model of this study involves six Margules-type interaction parameters (W12, W21, W13, W31, W23, and W32). Values for the two sets of energy parameters were calculated from experimental data and from compositional relationships in natural assemblages. ?? 1993 Springer-Verlag.

  4. Solubility of [C60(=C(COOH)2)3] in the [C60(=C(COOH)2)3]-SmCl3-H2O ternary system at 25°C

    NASA Astrophysics Data System (ADS)

    Pestov, I. A.; Keskinov, V. A.; Semenov, K. N.; Charykov, N. A.; Letenko, D. G.; Nikitin, V. A.

    2015-06-01

    The solubility diagram for the C60(=C(COOH)2)3-SmCl3-H2O ternary system at 25°C is studied by means of isothermal saturation in sealed vials. The compositions of saturated solutions are determined by a combination of the methods of titrimetric (chelatometric) and spectrophotometric (from electronic absorption spectra) chemical analysis. It is established that the solubility diagram of the specified system is a simple eutonic and consists of two branches that correspond to the crystallization of C60(=C(COOH)2)3·3H2O and SmCl3·6H2O crystalline hydrates and contains one invariant point: the eutonic point corresponding to the joint crystallization of both solid phases of constant composition. It is found that the eutonic mixture is strongly enriched by one of the components, SmCl3, while on the C60(=C(COOH)2)3·3H2O crystallization branch, which occupies an overwhelming part of the ternary diagram, the express salting-out of C60(=C(COOH)2)3 is observed upon an increase in the concentration of the salt component, i.e., SmCl3.

  5. Ternary generalization of Heisenberg's algebra

    NASA Astrophysics Data System (ADS)

    Kerner, Richard

    2015-06-01

    A concise study of ternary and cubic algebras with Z3 grading is presented. We discuss some underlying ideas leading to the conclusion that the discrete symmetry group of permutations of three objects, S3, and its abelian subgroup Z3 may play an important role in quantum physics. We show then how most of important algebras with Z2 grading can be generalized with ternary composition laws combined with a Z3 grading. We investigate in particular a ternary, Z3-graded generalization of the Heisenberg algebra. It turns out that introducing a non-trivial cubic root of unity, , one can define two types of creation operators instead of one, accompanying the usual annihilation operator. The two creation operators are non-hermitian, but they are mutually conjugate. Together, the three operators form a ternary algebra, and some of their cubic combinations generate the usual Heisenberg algebra. An analogue of Hamiltonian operator is constructed by analogy with the usual harmonic oscillator, and some properties of its eigenfunctions are briefly discussed.

  6. Pt-B System Revisited: Pt2B, a New Structure Type of Binary Borides. Ternary WAl12-Type Derivative Borides.

    PubMed

    Sologub, Oksana; Salamakha, Leonid; Rogl, Peter; Stöger, Berthold; Bauer, Ernst; Bernardi, Johannes; Giester, Gerald; Waas, Monika; Svagera, Robert

    2015-11-16

    On the basis of a detailed study applying X-ray single-crystal and powder diffraction, differential scanning calorimetry, and scanning electron microscopy analysis, it was possible to resolve existing uncertainties in the Pt-rich section (≥65 atom % Pt) of the binary Pt-B phase diagram above 600 °C. The formation of a unique structure has been observed for Pt2B [X-ray single-crystal data: space group C2/m, a = 1.62717(11) nm, b = 0.32788(2) nm, c = 0.44200(3) nm, β = 104.401(4)°, RF2 = 0.030]. Within the homogeneity range of "Pt3B", X-ray powder diffraction phase analysis prompted two structural modifications as a function of temperature. The crystal structure of "hT-Pt3B" complies with the hitherto reported structure of anti-MoS2 [space group P63/mmc, a = 0.279377(2) nm, c = 1.04895(1) nm, RF = 0.075, RI = 0.090]. The structure of the new "[Formula: see text]T-Pt3B" is still unknown. The formation of previously reported Pt∼4B has not been confirmed from binary samples. Exploration of the Pt-rich section of the Pt-Cu-B system at 600 °C revealed a new ternary compound, Pt12CuB6-y [X-ray single-crystal data: space group Im3̅, a = 0.75790(2) nm, y = 3, RF2 = 0.0129], which exhibits the filled WAl12-type structure accommodating boron in the interstitial trigonal-prismatic site 12e. The isotypic platinum-aluminum-boride was synthesized and studied. The solubility of copper in binary platinum borides has been found to attain ∼7 atom % Cu for Pt2B but to be insignificant for "[Formula: see text]T-Pt3B". The architecture of the new Pt2B structure combines puckered layers of boron-filled and empty [Pt6] octahedra (anti-CaCl2-type fragment) alternating along the x axis with a double layer of boron-semifilled [Pt6] trigonal prisms interbedded with a layer of empty tetrahedra and tetragonal pyramids (B-deficient α-T[Formula: see text]I fragment). Assuming boron vacancies ordering (space group R3), the Pt12CuB6-y structure exhibits serpentine-like columns of edge

  7. Thermodynamics of the formation of sulfuric acid dimers in the binary (H2SO4-H2O) and ternary (H2SO4-H2O-NH3) system

    NASA Astrophysics Data System (ADS)

    Kürten, A.; Münch, S.; Rondo, L.; Bianchi, F.; Duplissy, J.; Jokinen, T.; Junninen, H.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Almeida, J.; Amorim, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Franchin, A.; Kirkby, J.; Kupc, A.; Makhmutov, V.; Petäjä, T.; Praplan, A. P.; Riccobono, F.; Steiner, G.; Tomé, A.; Tsagkogeorgas, G.; Wagner, P. E.; Wimmer, D.; Baltensperger, U.; Kulmala, M.; Worsnop, D. R.; Curtius, J.

    2015-09-01

    Sulfuric acid is an important gas influencing atmospheric new particle formation (NPF). Both the binary (H2SO4-H2O) system and the ternary system involving ammonia (H2SO4-H2O-NH3) may be important in the free troposphere. An essential step in the nucleation of aerosol particles from gas-phase precursors is the formation of a dimer, so an understanding of the thermodynamics of dimer formation over a wide range of atmospheric conditions is essential to describe NPF. We have used the CLOUD chamber to conduct nucleation experiments for these systems at temperatures from 208 to 248 K. Neutral monomer and dimer concentrations of sulfuric acid were measured using a chemical ionization mass spectrometer (CIMS). From these measurements, dimer evaporation rates in the binary system were derived for temperatures of 208 and 223 K. We compare these results to literature data from a previous study that was conducted at higher temperatures but is in good agreement with the present study. For the ternary system the formation of H2SO4·NH3 is very likely an essential step in the formation of sulfuric acid dimers, which were measured at 210, 223, and 248 K. We estimate the thermodynamic properties (dH and dS) of the H2SO4·NH3 cluster using a simple heuristic model and the measured data. Furthermore, we report the first measurements of large neutral sulfuric acid clusters containing as many as 10 sulfuric acid molecules for the binary system using chemical ionization-atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometry.

  8. The Various Collinear Ternary Fission Decays in 252Cf(sf)

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Nasirov, A. K.; Pyatkov, Yu. V.; Kamanin, D. V.

    2015-06-01

    The collinear cluster decay in 252Cf(sf,fff), with three cluster fragments of different masses (e.g.132Sn,52-48Ca,68-72Ni), which has been observed by the FOBOS group in JINR, has established a new decay mode, the CCT (Collinear Cluster Tri-partition) of heavy nuclei. The same type of ternary fission decay has been observed in the reaction 235U(nth,fff). This collinear "true ternary fission" of heavy nuclei has been predicted many times in theoretical works during the last decades. In the present contribution we show that other ternary decay modes occur, in particular the symmetric ternary fission (FFF) into three fragments of almost equal size (e.g. Z=98→Zi = 32, 34, 32) in the same system. The different ternary fission channels are predicted with potential energy (PES) calculations for two mass parameters, M1(A1) and M3(A3). The deeper valleys point to the favored decay channels. An important aspect for the probability of the ternary decay modes are the internal barriers, which are presented here. The PES's show pronounced minima for several choices for favored ternary fragmentations. With these predictions, a variety of collinear ternary fission modes in the experimental data have been established.

  9. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes.

    PubMed

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-01-01

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs. PMID:26041586

  10. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    DOE PAGESBeta

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increasedmore » hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.« less

  11. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    SciTech Connect

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.

  12. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    PubMed Central

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-01-01

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs. PMID:26041586

  13. Ternary Fission Studies by Correlation Measurements with Ternary Particles

    NASA Astrophysics Data System (ADS)

    Mutterer, Manfred

    2011-10-01

    The rare ternary fission process has been studied mainly by inclusive measurements of the energy distributions and fractional yields of the light charged particles (LCPs) from fission, or by experiments on the angular and energy correlation between LCPs and fission fragments (FFs). The present contribution presents a brief overview of more elaborate correlation measurements that comprise the emission of neutrons and γ rays with LCPs and FFs, or the coincident registration of two LCPs. These measurements have permitted identification of new modes of particle-accompanied fission, such as the population of excited states in LCPs, the formation of neutron-unstable nuclei as short-lived intermediate LCPs, as well as the sequential decay of particle-unstable LCPs and quaternary fission. Furthermore, the neutron multiplicity numbers bar ν (A) and distributions of fragment masses A, measured for the ternary fission modes with various LCP isotopes, give a valuable hint of the role played by nuclear shell structure in the fission process near scission. Finally, two different hitherto unknown asymmetries in ternary α-particle emission with respect to the fission axis, called the TRI and ROT effect, were studied in fission reactions induced by polarised cold neutrons.

  14. Quantum description of T-odd correlations in ternary fission

    SciTech Connect

    Bunakov, V. E.; Kadmensky, S. G.

    2008-07-15

    A quantum version of a unified description of two T-odd effects recently observed in the ternary fission of nuclei that is induced by polarized neutrons is considered. These effects are explained by the effect of the Coriolis interaction of the rotating fissile system on the angular distributions of light charged particles in the interior and exterior regions of the nucleus.

  15. Kinematic Viscosity and Density of Binary and Ternary Mixtures Containing Hydrocolloids, Sodium Chloride, and Water

    NASA Astrophysics Data System (ADS)

    Assis, Tassia F.; Rojas, Edwin E. Garcia; Guimarães, Guilherme C.; Coelho, Marcos C.; Ramos, Andresa V.; Costa, Bernardo S.; Coimbra, Jane S. R.

    2010-03-01

    The kinematic viscosity and density of binary aqueous solutions containing xanthan gum and ternary aqueous solutions containing carboxymethyl cellulose and sodium chloride have been measured from 303 K to 318 K at different values of pH. The viscosity and density for binary and ternary systems showed increases with a higher concentration of hydrocolloids (xanthan gum or carboxymethyl cellulose) and reductions with increasing temperature. The presence of NaCl in the ternary systems produced an electro-viscous effect that influenced the viscosity and density of the system. The models used to predict the viscosity, density, and apparent specific volume demonstrated satisfactory results in comparisons with experimental data.

  16. Surface Segregation in Ternary Alloys

    NASA Technical Reports Server (NTRS)

    Good, Brian; Bozzolo, Guillermo H.; Abel, Phillip B.

    2000-01-01

    Surface segregation profiles of binary (Cu-Ni, Au-Ni, Cu-Au) and ternary (Cu-Au-Ni) alloys are determined via Monte Carlo-Metropolis computer simulations using the BFS method for alloys for the calculation of the energetics. The behavior of Cu or Au in Ni is contrasted with their behavior when both are present. The interaction between Cu and Au and its effect on the segregation profiles for Cu-Au-Ni alloys is discussed.

  17. A theoretical investigation into the cooperativity effect between the H∙∙∙O and H∙∙∙F⁻ interactions and electrostatic potential upon 1:2 (F⁻:N-(Hydroxymethyl)acetamide) ternary-system formation.

    PubMed

    Tian, Qing-Ping; Wang, Yan-Hong; Shi, Wen-Jing; Song, Shu-Qin; Tang, Hai-Fei

    2013-12-01

    The cooperativity effects between the O/N-H∙∙∙F(-) anionic hydrogen-bonding and O/N-H∙∙∙O hydrogen-bonding interactions and electrostatic potentials in the 1:2 (F(-):N-(Hydroxymethyl)acetamide (signed as "ha")) ternary systems are investigated at the B3LYP/6-311++G** and MP2/6-311++G** levels. A comparison of the cooperativity effect in the "F(-)∙∙∙ha∙∙∙ha" and "FH∙∙∙ha(-)∙∙∙ha" systems is also carried out. The result shows that the increase of the H∙∙∙O interaction energy in the O-H∙∙∙O-H, N-H∙∙∙O-H or N-H∙∙∙O = C link is more notable than that in the O-H∙∙∙O = C contact upon ternary-system formation. The cooperativity effect is found in the complex formed by the O/N-H∙∙∙F(-) and O/N-H∙∙∙O interactions, while the anti-cooperativity effect is present in the system with only the O/N-H∙∙∙F(-) H-bond or the "FH∙∙∙ha(-)∙∙∙ha" complex by the N(-)∙∙∙H-F contact. Atoms in molecules (AIM) analysis and shift of electron density confirm the existence of cooperativity. The most negative surface electrostatic potential (V(S,min)) correlates well with the interaction energy E' int.(ha∙∙∙F-) and synergetic energy E(syn.), respectively. The relationship between the change of V(S,min) (i.e., ΔV(S,min)) and E(syn.) is also found. PMID:24114326

  18. Synthesis, conductivity, and X-ray photoelectron spectrum of Bi 2Sr 2CuO 7+X. A new ternary bismuth-oxide system exhibiting metallic conductivity

    NASA Astrophysics Data System (ADS)

    Porter, Leigh Christopher; Appelman, Evan; Beno, Mark A.; Cariss, Carolyn S.; Carlson, K. Douglas; Cohen, Harry; Geiser, Urs; Thorn, R. J.; Williams, Jack M.

    1988-06-01

    The preparation and some of the properties relating to the superconductive state of the newly discovered ternary bismuth oxide, Bi 2Sr 2Cu 2O 7+x, are described. Conductivity behavior ranging from semiconductive to metallic is observed when four-probe AC resistivity measurements are carried out on pressed pellet specimens that have been annealed under different conditions. From a determination of the total oxygen present by an iodometric titration, it was found that metallic conductivity was associated with a higher oxygen content. An X-ray photoelectron experiment was carried out in order to determine whether bismuth or copper was present as the mixed-valent species. The XPS spectrum of the Bi 4 f orbital electrons in the oxide was nearly identical to that observed in Bi 2O 3, with no evidence of any Bi 5+.

  19. Synthesis conductivity, and x ray photoelectron spectrum of Bi2Sr2Cu(sub 7+x). A new ternary bismuth-oxide system exhibiting metallic conductivity

    NASA Astrophysics Data System (ADS)

    Porter, Leigh Christopher; Appleman, Evan; Beno, Mark A.; Cariss, Carolyn S.; Carlson, K. Douglas; Cohen, Harry; Geiser, Urs; Thorn, R. J.; Williams, John M.

    The preparation and some of the properties relating to the superconductive state of the newly discovered ternary bismuth oxides, Bi2Sr2Cu2O(7+x), are described. Conductivity behavior ranging from semiconductive to metallic is observed when four-probe ac resistivity measurements are carried out on pressed pellet specimens that have been annealed under different conditions. From a determination of the total oxygen present by an iodometric titration, it was found that metallic conductivity was associated with a higher oxygen content. An x ray photoelectron experiment was carried out in order to determine whether bismuth or copper was present as the mixed valent species. The XPS spectrum of the Bi 4f orbital electrons in the oxides was nearly identical to that observed in Bi2O3, with no evidence of any Bi5(+).

  20. Effect of ultrasound-assisted crystallization in the diastereomeric salt resolution of tetramisole enantiomers in ternary system with O,O'-dibenzoyl-(2R,3R)-tartaric acid.

    PubMed

    Szeleczky, Zsolt; Kis-Mihály, Erzsébet; Semsey, Sándor; Pataki, Hajnalka; Bagi, Péter; Pálovics, Emese; Marosi, György; Pokol, György; Fogassy, Elemér; Madarász, János

    2016-09-01

    The diastereomeric salt resolution of racemic tetramisole was studied using ultrasound irradiation. We examined the effect of power and duration of ultrasonic irradiation on the properties of the crystalline phase formed by ultrasound-assisted crystallization and the result of the whole optical resolution. The results were compared with reference experiment without using ultrasound. The US time (5-30min) caused higher enantiomeric excess. Although yield was lower continuously high resolving efficiency could have been reached through ultrasound. We had the best results with 4.3W ultrasound power when resolvability was even higher than the best of reference. Furthermore, we accomplished a deep and thorough examination of the salts that possibly could form in this resolution. One of the four diastereomeric salts, which have been identified by powder X-ray diffraction, FTIR-spectroscopy, and differential scanning calorimetry (DSC) in the ternary system of the two tetramisole enantiomers and the resolving agent, namely the bis[(S)-tetramisole]-dibenzoyl-(R,R)-tartrate salt have been proven the key compound in the resolution process, and presented the highest melting point of 166°C (dec.) among the four salts. The originally expected diastereomeric bitartrate salts with 1:1M base:acid ratio [(S)-tetramisole-dibenzoyl-(R,R)-hydrogen-tartrate salt and (R)-tetramisole-dibenzoyl-(R,R)-hydrogen-tartrate salt] and their 'racemic' co-crystal [(RS)-tetramisole-dibenzoyl-(R,R)-hydrogen-tartrate salt] showed somewhat lower melting points (152, 145, and 150°C, respectively) and their crystallization was also prevented by application of ultrasound. Based on the melting points and enthalpies of fusion measured by DSC, all the binary and ternary phase diagrams have been newly established and calculated in the system with help of classical modelling equations of liquidus curves. PMID:27150740

  1. Density and Viscosity of Ternary Mixtures of kappa -Carrageenan, Sodium Chloride, and Water

    NASA Astrophysics Data System (ADS)

    Ramos, Andresa V.; Rojas, Edwin E. Garcia; Giraldo-Zuniga, Abraham D.

    2013-02-01

    The viscosity and density of ternary mixtures containing kappa -carrageenan, sodium chloride, and water have been measured from (303 to 318) K at different values of pH. The presence of NaCl in the ternary systems produced an electro-viscous effect that influenced the viscosity and density of the system. The polynomial models used to correlate the viscosity and density gave good fits to the experimental data.

  2. Mixed ternary heterojunction solar cell

    DOEpatents

    Chen, Wen S.; Stewart, John M.

    1992-08-25

    A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.

  3. Effect of Alloying Elements on Nb-Rich Portion of Nb-Si-X Ternary Systems and In Situ Crack Observation of Nb-Si-Based Alloys

    NASA Astrophysics Data System (ADS)

    Miura, Seiji; Hatabata, Toru; Okawa, Takuya; Mohri, Tetsuo

    2014-01-01

    To find a new route for microstructure control and to find additive elements beneficial for improving high-temperature strength, a systematic investigation is performed on hypoeutectic Nb-15 at. pct Si-X ternary alloys containing a transition element, Fe, Co, Ni, Cu, Ru, Rh, Pd, Re, Os, Ir, Pt, or Au. Information on phase equilibrium is classified in terms of phase stability of silicide phases, α Nb5Si3, Nb4SiX, and Nb3Si, and the relationship between microstructure and mechanical properties both at room temperature and high temperature is investigated. All the additive elements are found to stabilize either α Nb5Si3 or Nb4SiX but destabilize Nb3Si. A microstructure of Nbss/α Nb5Si3 alloy composed of spheroidized α Nb5Si3 phase embedded in the Nbss matrix is effective for toughening, regardless of the initial as-cast microstructure. Also the plastic deformation of Nbss dendrites may effectively suppress the propagation of longer cracks. High-temperature strength of alloys is governed by the deformation of Nbss phase and increases with higher melting point additives.

  4. Synergistic effect of the core-shell structured Sn/SnO2/C ternary anode system with the improved sodium storage performance

    NASA Astrophysics Data System (ADS)

    Cheng, Yayi; Huang, Jianfeng; Li, Jiayin; Xu, Zhanwei; Cao, Liyun; Qi, Hui

    2016-08-01

    Sn/SnO2/C ternary composite with core-shell structures is synthesized using a hydrothermal method and subsequent heat treatment at 973 K. This Sn/SnO2/C composite exhibits the micro-sphere structure that nanosized Sn and SnO2 particles are well encapsulated in the carbon matrix. As anode for sodium-ion batteries, the composite displays superior cycling stability and rate capability to SnO2/C and Sn/C composites. It delivers a high initial discharge capacity of 1110 mAh g-1 with good cyclability. Even at a high current density of 1000 mA g-1, a reversible capacity of 120 mAh g-1 is still remained. The enhanced sodium storage performance of Sn/SnO2/C anode is attributed to the synergistic effect provided by Sn, SnO2 and unique core-shell structure. Since the deformation of Sn can increase the reversible capacity of the SnO2 electrode and the carbon matrix could act as a buffer to accommodate the volume change.

  5. Multi-modal fission in collinear ternary cluster decay of 252Cf(sf, fff)

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Nasirov, A. K.; Tashkhodjaev, R. B.

    2015-06-01

    We discuss the multiple decay modes of collinear fission in 252Cf(sf, fff), with three fragments as suggested by the potential energy surface (PES). Fission as a statistical decay is governed by the phase space of the different decay channels, which are suggested in the PES-landscape. The population of the fission modes is determined by the minima in the PES at the scission points and on the internal potential barriers. The ternary collinear decay proceeds as a sequential process, in two steps. The originally observed ternary decay of 252Cf(sf) into three different masses (e.g. 132-140Sn, 52-48Ca, 68-72Ni), observed by the FOBOS group in the FLNR (Flerov Laboratory for Nuclear Reactions) of the JINR (Dubna) the collinear cluster tripartition (CCT), is one of the ternary fission modes. This kind of "true ternary fission" of heavy nuclei has often been predicted in theoretical works during the last decades. In the present note we discuss different ternary fission modes in the same system. The PES shows pronounced minima, which correspond to several modes of ternary fragmentations. These decays have very similar dynamical features as the previously observed CCT-decays. The data obtained in the experiments on CCT allow us to extract the yields for different decay modes using specific gates on the measured parameters, and to establish multiple modes of the ternary fission decay.

  6. True ternary fission of superheavy nuclei

    SciTech Connect

    Zagrebaev, V. I.; Karpov, A. V.; Greiner, Walter

    2010-04-15

    True ternary fission with formation of a heavy third fragment is quite possible for superheavy nuclei because of the strong shell effects leading to a three-body clusterization with the two doubly magic tinlike cores. The simplest way to discover this phenomenon in the decay of excited superheavy nuclei is a detection of two tinlike clusters with appropriate kinematics in low-energy collisions of medium-mass nuclei with actinide targets. The three-body quasi-fission process could be even more pronounced for giant nuclear systems formed in collisions of heavy actinide nuclei. In this case a three-body clusterization might be proved experimentally by the detection of two coincident leadlike fragments in low-energy U + U collisions.

  7. The comparison of binary- and ternary-fission configurations close to the instant of scission

    NASA Astrophysics Data System (ADS)

    Guseva, I. S.; Gagarski, A. M.; Gusev, Yu. I.; Petrov, G. A.; Valski, G. V.

    2013-07-01

    A new way to bring into comparison the binary- and ternary-fission configurations is proposed. The method is founded on recently discovered ROT effect. The angle of fission axis deflection from its initial orientation at the moment of scission comes into existence as a result of dividing system rotation and carries information about fissioning nucleus deformation. The comparison of proper angles for binary and ternary fission can be used to estimate the difference in the rupture configurations.

  8. TERNARY ALLOY-CONTAINING PLUTONIUM

    DOEpatents

    Waber, J.T.

    1960-02-23

    Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.

  9. Nicral ternary alloy having improved cyclic oxidation resistance

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Lowell, C. E.; Khan, A. S.

    1982-01-01

    NiCrAl alloys are improved by the addition of zirconium. These alloys are in the Beta or gamma/gamma' + Beta region of the ternary system. Zirconium is added in a very low amount between 0.06 and 0.20 weight percent. There is a narrow optimum zirconium level at the low value of 0.13 weight percent. Maximum resistance to cyclic oxidation is achieved when the zirconium addition is at the optimum value.

  10. Temperature sequences for categorizing all ternary distillation boundary maps

    SciTech Connect

    Peterson, E.J.; Partin, L.R.

    1997-05-01

    Temperature sequences are formulated as a complete method of categorizing the feasible distillation boundary maps (DBMs) for ternary systems which commonly have unique binary and ternary azeotropes. DBMs are simplified versions of residue curve maps. The method requires the boiling temperatures at system pressure of pure components and azeotropes, if they exist. Seven position numbers are assigned to the pure components (three) and azeotropes (three binary, one ternary). The boiling temperatures are sorted to rank the position numbers. The temperature sequence is defined as the ranking of position numbers. The position numbers of missing azeotropes are excluded from the sequence. An algorithm searches all possible temperature sequences for feasible DBMs. The result is a complete listing of 125 DBMs, 307 temperature sequences, and 382 [temperature sequence, DBM] pairs. Lookup tables simplify the procedure for finding the DBM(s) for a temperature sequence or finding the temperature sequences for a DBM. Example applications are presented for applying the technique in the initial screening for distillation system synthesis.

  11. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    SciTech Connect

    Choi, B. William; Chiu, Ing L.

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  12. Multinuclear high-resolution NMR study of compounds from the ternary system NaF-CaF2-AlF3: from determination to modeling of NMR parameters.

    PubMed

    Martineau, C; Body, M; Legein, C; Silly, G; Buzaré, J-Y; Fayon, F

    2006-12-11

    27Al and 23Na NMR satellite transition spectroscopy and 3Q magic-angle-spinning spectra are recorded for three compounds from the ternary NaF-CaF2-AlF3 system. The quadrupolar frequency nuQ, asymmetry parameter etaQ, and isotropic chemical shift deltaiso are extracted from the spectrum reconstructions for five aluminum and four sodium sites. The quadrupolar parameters are calculated using the LAPW-based ab initio code WIEN2k. It is necessary to perform a structure optimization of all compounds to ensure a fine agreement between experimental and calculated parameters. By a comparison of experimental and calculated values, an attribution of all of the 27Al and 23Na NMR lines to the crystallographic sites is achieved. High-speed 19F NMR MAS spectra are recorded and reconstructed for the same compounds, leading to the determination of 18 isotropic chemical shifts. The superposition model developed by Bureau et al. is used, allowing a bijective assignment of the 19F NMR lines to the crystallographic sites. PMID:17140229

  13. Copper(II) and cadmium(II) sorption onto ferrihydrite in the presence of phthalic acid: some properties of the ternary complex.

    PubMed

    Song, Yantao; Swedlund, Peter J; Singhal, Naresh

    2008-06-01

    Copper, cadmium, and phthalic acid (H2Lp) adsorption by ferrihydrite was examined for binary and ternary systems. In binary systems adsorption was well reproduced using the diffuse layer model (DLM), and H2Lp adsorption was analogous to that of inorganic diprotic acids in terms of the relationship between the adsorption constants and acidity constants. In ternary systems H2Lp caused both the enhancement (due to ternary complexformation) and inhibition (due to solution complex formation) of Cu2+ and Cd2+ sorption depending on the conditions. The DLM could only describe the effect of H2Lp on metal ion sorption by including ternary complexes of the form [triple bond]FeOHMLp (0), where [triple bond]FeOH is a surface site and M is Cu or Cd. The relationship between binary metal adsorption constants and the ternary complex adsorption constants from this and previous studies suggest several properties of ternary complexes. First, ternary complex structures on both ferrihydrite and goethite are either the same or similar. Second, those cations having large adsorption constants also have large equilibrium constants for ternary complex formation. Third, ligands forming stronger solution complexes with cations will also form stronger surface ternary complexes though, because of the strong solution complex, they will not necessarily enhance cation adsorption. PMID:18589959

  14. A Structural Molar Volume Model for Oxide Melts Part II: Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 Melts—Ternary and Multicomponent Systems

    NASA Astrophysics Data System (ADS)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    A structural molar volume model based on the silicate tetrahedral Q-species has been developed to accurately predict the molar volume of molten oxides. In this study, the molar volumes of ternary and multicomponent melts in the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 system are reviewed and compared with the predicted molar volumes from the newly developed structural model. The model can accurately predict the molar volumes using binary model parameters without any ternary or multicomponent parameters. The nonlinear behavior in the molar volume of silicate melts is well predicted by the present model.

  15. Ternary Ag/epoxy adhesive with excellent overall performance.

    PubMed

    Ji, Yan-Hong; Liu, Yu; Huang, Gui-Wen; Shen, Xiao-Jun; Xiao, Hong-Mei; Fu, Shao-Yun

    2015-04-22

    Excellent electrical conductivity (EC) generally conflicts with high lap shear strength (LSS) for electrically conductive adhesives (ECAs) since EC increases while LSS decreases with increasing conductive filler content. In this work, the ECAs with the excellent overall performance are developed based on the ternary hybrid of Ag microflakes (Ag-MFs), Ag nanospheres (Ag-NSs), and Ag nanowires (Ag-NWs). First, a low silver content adhesive system is determined. Then, the effects of the relative contents of Ag fillers on the EC and the LSS are studied. It is shown that a small amount of Ag-NSs or Ag-NWs can dramatically improve the EC for the Ag-MF/epoxy adhesives. The Ag-NSs and Ag-NWs with appropriate contents have a synergistic effect in improving the EC. Meanwhile, the LSS of the as-prepared adhesive with the appropriate Ag contents reaches an optimal value. Both the EC and the LSS of the as-prepared ternary hybrid ECA with a low content of 40 wt % Ag are higher than those of the commercial ECAs filled with the Ag-MF content over 60 wt %. Finally, the ternary hybrid ECA with the optimal formulation is shown to be promising for printing the radio frequency identification tag antennas as an immediate application example. PMID:25835391

  16. RNA polymerase II ternary transcription complexes generated in vitro.

    PubMed Central

    Ackerman, S; Bunick, D; Zandomeni, R; Weinmann, R

    1983-01-01

    Ternary transcription complexes have been formed with a HeLa cell extract, a specific DNA template, and nucleoside triphosphates. The assay depends on the formation of sarkosyl-resistant initiation complexes which contain RNA polymerase II, template DNA, and radioactive nucleoside triphosphates. Separation from the other elements in the in vitro reaction is achieved by electrophoresis in agarose - 0.25% sarkosyl gels. The mobility of the ternary complexes in this system cannot be distinguished from naked DNA. Formation of this complex is dependent on all parameters necessary for faithful in vitro transcription. Complexes are formed with both the plasmid vector and the specific adenovirus DNA insert containing a eucaryotic promoter. The formation of the complex on the eucaryotic DNA is sequence-dependent. An undecaribonucleotide predicted from the template DNA sequence remains associated with the DNA in the ternary complex and can be isolated if the chain terminator 3'-0-methyl GTP is used, or after T1 ribonuclease treatment of the RNA, or if exogenous GTP is omitted from the in vitro reaction. This oligonucleotide is not detected in association with the plasmid vector. Phosphocellulose fractionation of the extract indicates that at least one of the column fractions required for faithful runoff transcription is required for complex formation. A large molar excess of abortive initiation events was detected relative to the level of productive transcription events, indicating a 40-fold higher efficiency of transcription initiation vs. elongation. Images PMID:6193489

  17. Ternary Inclusion Complexes of Rifaximin with β-Cyclodextrin and Sodium Deoxycholate for Solubility Enhancement.

    PubMed

    Kaur, Parminderjit; Rampal, Ankit; Singh Bedi, Preet M; Bedi, Neena

    2015-01-01

    Rifaximin is a rifamycin derivative, having extremely poor aqueous solubility. The objective of present study was to improve dissolution and solubility of drug using β-cyclodextrin inclusion complexes and also to evaluate the effect of presence of sodium deoxycholate on solubilization efficiency of β-cyclodextrin. The stochiometry of inclusion complexes of binary (drug-cyclodextrin) and ternary system (drug-cyclodextrin-sodium deoxycholate) were determined by phase solubility studies at 25 °C. The stability constants (K1:2) calculated from phase solubility analysis were 126 M(-1) and 267 M(-1) for binary and ternary systems respectively. The inclusion complexes were prepared by solvent evaporation method with the inclusion efficiency of 43% and 56.9% for binary and ternary systems followed by their characterization using fourier transform infrared spectroscopy, X-ray diffractometry, differential scanning calorimetry and in-vitro antibacterial activity. The solubility of drug was improved by 4.3 and 11.9 folds in binary and ternary inclusion complexes, respectively. Therefore, it can be concluded that the ternary inclusion complexation having better solubilization efficiency as compared to binary complexation. PMID:26279215

  18. Numerical prediction of the thermodynamic properties of ternary Al-Ni-Hf alloys

    NASA Astrophysics Data System (ADS)

    Romanowska, Jolanta; Kotowski, Sławomir; Zagula-Yavorska, Maryana

    2014-10-01

    Thermodynamic properties of ternary Al-Hf-Ni system, such as exG, μAl, μNi and μZr at 1373K were predicted on the basis of thermodynamic properties of binary systems included in the investigated ternary system. The idea of predicting exG values was regarded as the calculation of excess Gibbs energy values inside a certain area (a Gibbs triangle) unless all boundary conditions, that is values of exG on all legs of the triangle are known. exG and Lijk ternary interaction parameters in the Muggianu extension of the Redlich-Kister formalism are calculated numerically using Wolfram Mathematica 9 software.

  19. Optimal Symmetric Ternary Quantum Encryption Schemes

    NASA Astrophysics Data System (ADS)

    Wang, Yu-qi; She, Kun; Huang, Ru-fen; Ouyang, Zhong

    2016-07-01

    In this paper, we present two definitions of the orthogonality and orthogonal rate of an encryption operator, and we provide a verification process for the former. Then, four improved ternary quantum encryption schemes are constructed. Compared with Scheme 1 (see Section 2.3), these four schemes demonstrate significant improvements in term of calculation and execution efficiency. Especially, under the premise of the orthogonal rate ɛ as secure parameter, Scheme 3 (see Section 4.1) shows the highest level of security among them. Through custom interpolation functions, the ternary secret key source, which is composed of the digits 0, 1 and 2, is constructed. Finally, we discuss the security of both the ternary encryption operator and the secret key source, and both of them show a high level of security and high performance in execution efficiency.

  20. Ternary fission induced by polarized neutrons

    NASA Astrophysics Data System (ADS)

    Gönnenwein, Friedrich

    2013-12-01

    Ternary fission of (e,e) U- and Pu- isotopes induced by cold polarized neutrons discloses some new facets of the process. In the so-called ROT effect shifts in the angular distributions of ternary particles relative to the fission fragments show up. In the so-called TRI effect an asymmetry in the emission of ternary particles relative to a plane formed by the fragment momentum and the spin of the neutron appear. The two effects are shown to be linked to the components of angular momentum perpendicular and parallel to the fission axis at the saddle point of fission. Based on theoretical models the spectroscopic properties of the collective transitional states at the saddle point are inferred from experiment.

  1. The liquidus phase relations in the MgO-FeO-SiO2 ternary system in the deep lower mantle: Implication for the solidification of a basal magma ocean

    NASA Astrophysics Data System (ADS)

    Morishita, A.; Nomura, R.; Hirose, K.

    2015-12-01

    The large low shear velocity provinces (LLSVPs) observed in the lowermost mantle represent anomalously dense bodies, which may have been formed as a consequence of solidification of a basal magma ocean [Labrosse et al., 2007 Nature; Nomura et al., 2011 Nature]. Recent melting experiments have demonstrated that 1) MgSiO3-rich perovskite (bridgmanite) is the first phase to crystallize from melts with a wide range of (Mg+Fe)/Si ratios in the middle to deep lower mantle and 2) iron is preferentially partitioned into melt rather than solid [Tateno et al., 2014 JGR], suggesting that melts evolve towards an FeO-rich and SiO2-poor composition upon crystallization. However, the mineral assemblage and chemical composition of LLSVPs still remain largely uncertain. Here we carried out melting experiments at both shallow and deep lower mantle pressures using a laser-heated diamond-anvil cell (DAC), in order to examine the melting phase equilibria in the MgO-FeO-SiO2 ternary system. A focused ion beam (FIB) and field-emission-type electron microprobe (FE-EPMA) were used for textural and chemical characterization of samples recovered from the DAC. They exhibited a melting texture with quenched partial melt at the hottest part and one or two solid phases at its outside. Our result demonstrate that a crystallizing solid assemblage changes from bridgmanite, bridgmanite + (Mg,Fe)O ferropericlase, SiO2 seifertite + FeO-rich (Mg,Fe)O magnesiowüstite, and to seifertite + FeO upon fractional crystallization from a pyrolitic melt at the core-mantle boundary pressure. These also suggest that a residual melt left after extensive solidification is strongly enrich in FeO and thus exceedingly heavy and stable at the base of the mantle, which possibly represents an ultralow velocity zone (ULVZ).

  2. Single Crystal Fibers of Yttria-Stabilized Cubic Zirconia with Ternary Oxide Additions

    NASA Technical Reports Server (NTRS)

    Ritzert, F. J.; Yun, H. M.; Miner, R. V.

    1997-01-01

    Single crystal fibers of yttria (Y2O3)-stabilized cubic zirconia, (ZrO2) with ternary oxide additions were grown using the laser float zone fiber processing technique. Ternary additions to the ZrO2-Y2O3 binary system were studied aimed at increasing strength while maintaining the high coefficient of thermal expansion of the binary system. Statistical methods aided in identifying the most promising ternary oxide candidate (Ta2O5, Sc2O3, and HfO2) and optimum composition. The yttria, range investigated was 14 to 24 mol % and the ternary oxide component ranged from 1 to 5 mol %. Hafnium oxide was the most promising ternary oxide component based on 816 C tensile strength results and ease of fabrication. The optimum composition for development was 81 ZrO2-14 Y203-5 HfO2 based upon the same elevated temperature strength tests. Preliminary results indicate process improvements could improve the fiber performance. We also investigated the effect of crystal orientation on strength.

  3. Ternary fission of nuclei into comparable fragments

    SciTech Connect

    Karpeshin, F. F.

    2015-07-15

    The problem of nuclear fission into three comparable fragments is considered. A mechanism of true ternary fission is proposed. In contrast to sequential fission, where the three fragments arise upon two sequential events of binary fission, the mechanism in question relies on a scenario that originally involves fission into three fragments. This mechanism is driven by a hexadecapole deformation of the fissioning nucleus, in contrast to binary fission associated with quadrupole vibrations of the nuclear surface. The fragment-mass ratios are estimated. The dynamics of formation of collinear fragments and their subsequent motion in opposite directions is traced. The calculated probability of true ternary fission complies with observed values.

  4. Measurement and thermodynamic model study on equilibrium solubility in the ternary system KCl-KBr-H2O at 323.15 K

    NASA Astrophysics Data System (ADS)

    Meng, Ling-Zong; Li, Dan; Ma, Cun-Yun; Liu, Kai-Xuan

    2014-12-01

    The solubilities and the refractive indices of the KCl-KBr-H2O system at 323.15 K were studied with the isothermal dissolution method. The phase diagram and refractive index diagram were plotted for this system at 323.15 K. There is only one crystallization field of the solid solution K(Cl, Br). The system belongs to the solid solution type. The refractive indices of the equilibrium solution varies regularly with w(KCl) increasing. The calculated refractive index data are in good agreement with the experimental data. The parameter ΨK, Cl, Br at 323.15 K was fitted using the measured solubility data in this study. The equilibrium constant equation for the equilibrium solids at 323.15 K were obtained using the different Pitzer parameters from the literature or this work with a method using the activity product constant. The calculated solubilities agree well with experimental values.

  5. REMOVAL OF ADDED NITRATE IN THE SINGLE, BINARY, AND TERNARY SYSTEMS OF COTTON BURR COMPOST, ZEROVALENT IRON, AND SEDIMENT: IMPLICATIONS FOR GROUNDWATER NITRATE REMEDIATION USING PERMEABLE REACTIVE BARRIERS

    EPA Science Inventory

    Recent research has shown that carbonaceous solid materials and zerovalent iron (Fe0) may potentially be used as media in permeable reactive barriers (PRBs) to degrade groundwater nitrate via heterotrophic denitrification in the solid carbon system, and via abiotic reduction and ...

  6. Fast Ternary and Quaternary Breakup of the {sup 197}Au+{sup 197}Au System in Collisions at 15 MeV/nucleon

    SciTech Connect

    Skwira-Chalot, I.; Siwek-Wilczynska, K.; Wilczynski, J.; Swiderski, L.; Auditore, L.; Trifiro, A.; Trimarchi, M.; Baran, V.; Brzychczyk, J.

    2008-12-31

    A new reaction mechanism of violent reseparation of a heavy nucleus-nucleus system, {sup 197}Au+{sup 197}Au, into three or four massive fragments in collisions at 15 MeV/nucleon has been observed. After reseparation, the fragments are almost exactly aligned, thus showing a very short time scale of the reseparation process, of about 70-80 fm/c.

  7. Plutonium microstructures. Part 2. Binary and ternary alloys

    SciTech Connect

    Cramer, E.M.; Bergin, J.B.

    1983-12-01

    This report is the second of three parts that exhibit illustrations of inclusions in plutonium metal from inherent and tramp impurities, of intermetallic and nonmetallic constituents from alloy additions, and of the effects of thermal and mechanical treatments. This part includes illustrations of the microstructures in binary cast alloys and a few selected ternary alloys that result from measured additions of diluent elements, and of the microconstituents that are characteristic of phase fields in extended alloy systems. Microhardness data are given and the etchant used in the preparation of each sample is described.

  8. Some aspects on thermodynamic properties, phase diagram and alloy formation in the ternary system BAs GaAs—Part I: Analysis of BAs thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Dumont, H.; Monteil, Y.

    2006-05-01

    Owing to the lack of available thermodynamic data based on experimental measurements of heat capacity, decomposition reaction or vapour pressure measurements, the problem of BAs stability is considered. We propose a new set of thermodynamic data for enthalpy of formation, entropy and Gibbs free energy of Bas compound. By using thermodynamic database, our approach is based on the semi-empirical trends and analogy in the variation of those quantities for several binary series in different III-V systems like arsenides, nitrides and phosphides. Thus, the values for BAs were derived by extrapolation from Al to boron-based compounds (BAs, BP and, BN). For pure BAs(s), we predict a low enthalpy of formation in the standard state of ΔfH0(BAs)≈-30 kJ/mol at 300 K and a Gibbs free energy of ΔfG0(BAs)≈-40±5 kJ/mol indicating a lower stability of this compound than GaAs. Those values are contradictory discussed with trends in the cohesive energy of several III-V systems. A cohesive energy of ˜900 kJ/mol (9.4 eV) is proposed in agreement with Philips's rule.

  9. True ternary fission of 252Cf(sf), the collinear decay into fragments of similar size

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Nasirov, A. K.

    2014-12-01

    The ternary decay in 252Cf(sf, fff), with three cluster fragments of different masses (e.g.132Sn,52-48Ca,68-72Ni), has been observed by the FOBOS group in JINR. This work has established a new decay mode of heavy nuclei, the collinear cluster tripartition, (CCT). This "true ternary fission" of heavy nuclei has been predicted many times in theoretical works during the last decades. In the present report we discuss true ternary fission (FFF) into three nuclei of almost equal size (e.g. Z=98 → Zi = 32, 34, 32) and other fission modes in the same system. The possible fission channels for 252 Cf(sf) are predicted from potential-energy (PES) calculations. These PES's show pronounced minima for several ternary fragmentation decays, suggesting a variety of collinear ternary fission modes. The FFF-decays have very similar dynamical features as the previously observed collinear CCT-decays, the central fragment has very small kinetic energy. The data of the cited experiment allow the extraction of the yield for some FFF-decays, by using specific gates on the measured parameters.

  10. Ternary Dy-Er-Al magnetic refrigerants

    DOEpatents

    Gschneidner, K.A. Jr.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant. 29 figs.

  11. Ternary rare earth-lanthanide sulfides

    DOEpatents

    Takeshita, Takuo; Gschneidner JR., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  12. Ternary Dy-Er-Al magnetic refrigerants

    DOEpatents

    Gschneidner, Jr., Karl A.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant.

  13. TERNARY ALLOYS OF URANIUM, COLUMBIUM, AND ZIRCONIUM

    DOEpatents

    Foote, F.G.

    1960-08-01

    Ternary alloys of uranium are described which are useful as neutron- reflecting materials in a fast neutron reactor. They are especially resistant to corrosion caused by oxidative processes of gascous or aqueous origin and comprise uranium as the predominant metal with zirconiunn and niobium wherein the total content of the minor alloying elements is between 2 and 8% by weight.

  14. Does Science Also Prefer a Ternary Pattern?

    ERIC Educational Resources Information Center

    Pogliani, L.; Klein, D. J.; Balaban, A. T.

    2006-01-01

    Through the importance of the number three in our culture and the strange preference for a ternary pattern of our nature one can perceive how and why number theory degraded to numerology. The strong preference of our minds for simple patterns can be read as the key to understanding not only the development of numerology, but also why scientists…

  15. Amorphous stabilization and dissolution enhancement of amorphous ternary solid dispersions: combination of polymers showing drug-polymer interaction for synergistic effects.

    PubMed

    Prasad, Dev; Chauhan, Harsh; Atef, Eman

    2014-11-01

    The purpose of this study was to understand the combined effect of two polymers showing drug-polymer interactions on amorphous stabilization and dissolution enhancement of indomethacin (IND) in amorphous ternary solid dispersions. The mechanism responsible for the enhanced stability and dissolution of IND in amorphous ternary systems was studied by exploring the miscibility and intermolecular interactions between IND and polymers through thermal and spectroscopic analysis. Eudragit E100 and PVP K90 at low concentrations (2.5%-40%, w/w) were used to prepare amorphous binary and ternary solid dispersions by solvent evaporation. Stability results showed that amorphous ternary solid dispersions have better stability compared with amorphous binary solid dispersions. The dissolution of IND from the ternary dispersion was substantially higher than the binary dispersions as well as amorphous drug. Melting point depression of physical mixtures reveals that the drug was miscible in both the polymers; however, greater miscibility was observed in ternary physical mixtures. The IR analysis confirmed intermolecular interactions between IND and individual polymers. These interactions were found to be intact in ternary systems. These results suggest that the combination of two polymers showing drug-polymer interaction offers synergistic enhancement in amorphous stability and dissolution in ternary solid dispersions. PMID:25196860

  16. Design of a novel quantum reversible ternary up-counter

    NASA Astrophysics Data System (ADS)

    Houshmand, Pouran; Haghparast, Majid

    2015-08-01

    Reversible logic has been recently considered as an interesting and important issue in designing combinational and sequential circuits. The combination of reversible logic and multi-valued logic can improve power dissipation, time and space utilization rate of designed circuits. Only few works have been reported about sequential reversible circuits and almost there are no paper exhibited about quantum ternary reversible counter. In this paper, first we designed 2-qutrit and 3-qutrit quantum reversible ternary up-counters using quantum ternary reversible T-flip-flop and quantum reversible ternary gates. Then we proposed generalized quantum reversible ternary n-qutrit up-counter. We also introduced a new approach for designing any type of n-qutrit ternary and reversible counter. According to the results, we can conclude that applying second approach quantum reversible ternary up-counter is better than the others.

  17. Quantum minimax receiver for ternary coherent state signal in the presence of thermal noise

    NASA Astrophysics Data System (ADS)

    Kato, Kentaro

    2013-02-01

    This paper is concerned with the minimax strategy in quantum signal detection theory. First we show a numerical calculation method for finding a solution to the quantum minimax decision problem in the case that the average probability of decision errors is used as the quality function of a quantum communication system. To verify the numerical calculation method, ternary coherent state signal is considered in the absence of thermal noise. After that, the error probability of the quantum minimax receiver for the ternary coherent state signal in the pressure of thermal noise is computed by using this numerical calculation method.

  18. Isothermal sections of the quasi-ternary systems Ag2S(Se)-Ga2S(Se)3-In2S(Se)3 at 820 K and the physical properties of the ternary phases Ga5.5In4.5S15, Ga6In4Se15 and Ga5.5In4.5S15:Er3+, Ga6In4Se15:Er3+

    NASA Astrophysics Data System (ADS)

    Ivashchenko, I. A.; Danyliuk, I. V.; Gulay, L. D.; Halyan, V. V.; Olekseyuk, I. D.

    2016-05-01

    Isothermal sections of the quasi-ternary systems Ag2S(Se)-Ga2S(Se)3-In2S(Se)3 at 820 K were compared. Along the 50 mol% Ag2S(Se), both systems feature continuous solid solutions with the chalcopyrite structure. Along the 17 mol% Ag2S(Se), the interactions at the AgIn5S(Se)8-"AgGa5S(Se)8" sections are different. In the Ag2S-Ga2S3-In2S3 system the existence of the layered phase AgGaxIn5-xS8, 2.25≤x≤2.85, was confirmed (S.G. P63mc). The Ag2Se-Ga2Se3-In2Se3 system features the formation of solid solution (up to 53 mol% Ga2Se3) based on AgIn5Se8 (S.G. P-42m). Crystal structure, atomic coordinates were determined by powder diffraction method for samples from the homogeneity region of AgIn5Se8. Specific conductivities of the crystals Ga6In4Se15 (1.33·10-6 Ω-1 m-1), Ga5.94In3.96Er0.1Se15 (3.17·10-6 Ω-1 m-1), Ga5.5In4.5S15 (7.94·10-6 Ω-1 m-1), Ga5.46In4.47Er0.07S15 (1·10-9 Ω-1 m-1) were measured at room temperature. Optical absorption and photoconductivity spectra were recorded in the range 400-760 nm. The introduction of erbium leads to an increase in the absorption coefficient and to the appearance of absorption bands at 530, 660, 810, 980, 1530 nm.

  19. Construction of Lines of Constant Density and Constant Refractive Index for Ternary Liquid Mixtures.

    ERIC Educational Resources Information Center

    Tasic, Aleksandar Z.; Djordjevic, Bojan D.

    1983-01-01

    Demonstrates construction of density constant and refractive index constant lines in triangular coordinate system on basis of systematic experimental determinations of density and refractive index for both homogeneous (single-phase) ternary liquid mixtures (of known composition) and the corresponding binary compositions. Background information,…

  20. Bioreducible polyether-based pDNA ternary polyplexes: Balancing particle stability and transfection efficiency

    PubMed Central

    Lai, Tsz Chung; Kataoka, Kazunori; Kwon, Glen S.

    2016-01-01

    Polyplex particles formed with plasmid DNA (pDNA) and Pluronic P85-block-poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (P85-b-P[Asp(DET)]) demonstrated highly effective transfection ability compared to PEG-based block cationomer, PEG-b-P[Asp(DET)]. Ternary polyplexes comprising PEG-b-P[Asp(DET)], poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)-b-P[Asp(DET)] (P(EPE)-b-P[Asp(DET)]) used as an analog of P85-b-P[Asp(DET)], and pDNA were prepared in this work aiming at maintaining adequate transfection efficiency while solving the stability issues of the P85-b-P[Asp(DET)] polyplexes. Furthermore, a bioreducible P(EPE)-SS-P[Asp(DET)] possessing a redox potential-sensitive disulfide linkage between the P(EPE) polymer and the cationic block was used as a substitute for P(EPE)-b-P[Asp(DET)] during ternary complex formation to investigate whether the trans-fection ability of the ternary polyplex system could be enhanced by triggered release of P(EPE) polymers from the polyplexes. The ternary complexes showed significant improvement in terms of stability against salt-induced aggregation compared to binary complexes, although the gene delivery ability dropped with the amount of PEG-b-P[Asp(DET)] used for complexation. By manipulating the difference in redox potential between the extracellular and intracellular environments, the reducible ternary complexes achieved higher transfection compared to the non-reducible polyplexes; moreover, the reducible poly-plexes exhibited comparable stability to the non-reducible ones. These results suggest that reducible ternary complexes could provide satisfactory transfection efficiency without comprising the colloidal stability of the particles. PMID:22000077

  1. Plasmonic spectral tunability of conductive ternary nitrides

    NASA Astrophysics Data System (ADS)

    Kassavetis, S.; Bellas, D. V.; Abadias, G.; Lidorikis, E.; Patsalas, P.

    2016-06-01

    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as TixTa1-xN, TixZr1-xN, TixAl1-xN, and ZrxTa1-xN share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400-700 nm) and UVA (315-400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementioned broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.

  2. Modulated Binary-Ternary Dual Semiconductor Heterostructures.

    PubMed

    Prusty, Gyanaranjan; Guria, Amit K; Mondal, Indranil; Dutta, Anirban; Pal, Ujjwal; Pradhan, Narayan

    2016-02-18

    A generic modular synthetic strategy for the fabrication of a series of binary-ternary group II-VI and group I-III-VI coupled semiconductor nano-heterostructures is reported. Using Ag2 Se nanocrystals first as a catalyst and then as sacrificial seeds, four dual semiconductor heterostructures were designed with similar shapes: CdSe-AgInSe2 , CdSe-AgGaSe2 , ZnSe-AgInSe2 , and ZnSe-AgGaSe2 . Among these, dispersive type-II heterostructures are further explored for photocatalytic hydrogen evolution from water and these are observed to be superior catalysts than the binary or ternary semi-conductors. Details of the chemistry of this modular synthesis have been studied and the photophysical processes involved in catalysis are investigated. PMID:26800297

  3. Ternary rare earth-lanthanide sulfides

    DOEpatents

    Takeshita, Takuo; Gschneidner, Jr., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: La.sub.3-x M.sub.x S.sub.4 where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  4. Plotting and Analyzing Data Trends in Ternary Diagrams Made Easy

    NASA Astrophysics Data System (ADS)

    John, Cédric M.

    2004-04-01

    Ternary plots are used in many fields of science to characterize a system based on three components. Triangular plotting is thus useful to a broad audience in the Earth sciences and beyond. Unfortunately, it is typically the most expensive commercial software packages that offer the option to plot data in ternary diagrams, and they lack features that are paramount to the geosciences, such as the ability to plot data directly into a standardized diagram and the possibility to analyze temporal and stratigraphic trends within this diagram. To address these issues, δPlot was developed with a strong emphasis on ease of use, community orientation, and availability free of charges. This ``freeware'' supports a fully graphical user interface where data can be imported as text files, or by copying and pasting. A plot is automatically generated, and any standard diagram can be selected for plotting in the background using a simple pull-down menu. Standard diagrams are stored in an external database of PDF files that currently holds some 30 diagrams that deal with different fields of the Earth sciences. Using any drawing software supporting PDF, one can easily produce new standard diagrams to be used with δPlot by simply adding them to the library folder. An independent column of values, commonly stratigraphic depths or ages, can be used to sort the data sets.

  5. Finding new ternary transition metal selenides and sulphides

    NASA Astrophysics Data System (ADS)

    Narayan, Awadhesh; Bhutani, Ankita; Eckstein, James N.; Shoemaker, Daniel P.; Wagner, Lucas K.

    The transition metal oxides exhibit many interesting physical properties, and have been explored in detail over time. Recently, the transition metal chalchogenides including selenium and sulfur have been of interest because of their correlated electron properties, as seen in the iron based superconductors and the layered transition metal dichalchogenides. However, the chalchogenides are much less explored than the oxides, and there is an open question of whether there may be new materials heretofore undiscovered. We perform a systematic combined theoretical and experimental search over ternary phase diagrams that are empty in the Inorganic Crystal Structure Database containing cations, transition metals, and one of selenium or sulfur. In these 27 ternary systems, we use a probabilistic model to reduce the likelihood of false negative predictions, which results in a list of 24 candidate materials. We then conduct a variety of synthesis experiments to check the candidate materials for stability. While the prediction method did obtain compositions that are stable, none of the candidate materials formed in our experiments. We come to the conclusion that these phase diagrams are either truly empty or have unusual structures or synthesis requirements. This work was supported by the Center for Emergent Superconductivity, Department of Energy Frontier Research Center under Grant No. DEAC0298CH1088.

  6. Kinetics of radiation-induced segregation in ternary alloys. [LMFBR

    SciTech Connect

    Lam, N.Q.; Kumar, A.; Wiedersich, H.

    1982-01-01

    Model calculations of radiation-induced segregation in ternary alloys have been performed, using a simple theory. The theoretical model describes the coupling between the fluxes of radiation-induced defects and alloying elements in an alloy A-B-C by partitioning the defect fluxes into those occurring via A-, B-, and C-atoms, and the atom fluxes into those taking place via vacancies and interstitials. The defect and atom fluxes can be expressed in terms of concentrations and concentration gradients of all the species present. With reasonable simplifications, the radiation-induced segregation problem can be cast into a system of four coupled partial-differential equations, which can be solved numerically for appropriate initial and boundary conditions. Model calculations have been performed for ternary solid solutions intended to be representative of Fe-Cr-Ni and Ni-Al-Si alloys under various irradiation conditions. The dependence of segregation on both the alloy properties and the irradiation variables, e.g., temperature and displacement rate, was calculated. The sample calculations are in good qualitative agreement with the general trends of radiation-induced segregation observed experimentally.

  7. A high-throughput search for new ternary superalloys

    NASA Astrophysics Data System (ADS)

    Nyshadham, Chandramouli; Hansen, Jacob; Oses, Corey; Curtarolo, Stefano; Hart, Gus

    In 2006 an unexpected new superalloy, Co3[Al,W], was discovered. This new alloy is cobalt-based, in contrast to conventional superalloys, which are nickel-based. Inspired by this new discovery, we performed first-principles calculations, searching through 2224 ternary metallic systems of the form A3[B0.5C0.5], where A = Ni/Co/Fe and [B, C] = all binary combinations of 40 different elements chosen from the periodic table. We found 175 new systems that are better than the Co3[Al, W] superalloy. 75 of these systems are brand new--they have never been reported in experimental literature. These 75 new potential superalloys are good candidates for further experiments. Our calculations are consistent with current experimental literature where data exists. Work supported under: ONR (MURI N00014-13-1-0635).

  8. Triethanolamine Stabilization of Methotrexate-β-Cyclodextrin Interactions in Ternary Complexes

    PubMed Central

    Barbosa, Jahamunna A. A.; Zoppi, Ariana; Quevedo, Mario A.; de Melo, Polyanne N.; de Medeiros, Arthur S. A.; Streck, Letícia; de Oliveira, Alice R.; Fernandes-Pedrosa, Matheus F.; Longhi, Marcela R.; da Silva-Júnior, Arnóbio A.

    2014-01-01

    The interaction of methotrexate (MTX) with beta-cyclodextrin (β-CD) in the presence of triethanolamine (TEA) was investigated with the aim to elucidate the mechanism whereby self-assembly cyclodextrin systems work in association with this third component. Solubility diagram studies showed synergic increment of the MTX solubility to be about thirty-fold. Experiments using 2D ROESY and molecular modeling studies revealed the inclusion of aromatic ring III of the drug into β-CD cavity, in which TEA contributes by intensifying MTX interaction with β-CD and stabilizes MTX:β-CD:TEA ternary complex by electrostatic interaction. The maintenance of these interactions in solid phase was also studied in ternary MTX:β-CD:TEA and comparisons were made with freeze dried binary MTX:β-CD and physical mixtures. FTIR studies evidenced that MTX–β-CD interaction remained in solid ternary complexes, which was also supported by thermal (differential scanning calorimetry (DSC), thermogravimetric analysis (TG)/first derivative of TG analysis (DTG) and C,N,H elementary analysis) and structural (X-ray diffraction analysis, (XRD)) studies, mainly regarding the increment of drug stability. The efficient in vitro drug dissolution studies successfully demonstrated the contribution of ternary complexes, which highlights the importance of this possible new raw material for further applications in drug delivery systems. PMID:25257529

  9. Ternary compounds and phase equilibria in Ti-Ge-C and Ti-Ge-B

    SciTech Connect

    Kephart, J.S.; Carim, A.H.

    1998-09-01

    Bulk samples of nearly single-phase Ti{sub 2}GeC and Ti{sub 3}GeC{sub 2} were fabricated using a synthesis process similar to one developed to produce bulk Ti{sub 3}SiC{sub 2}. Elemental powders were stored and mixed under argon and 2 g pellets were uniaxially pressed and encapsulated in quartz under vacuum for annealing. Additional samples were synthesized to establish the isothermal section of the ternary Ti-Ge-C phase diagram at 1200 C. The only ternary compounds present were Ti{sub 3}GeC{sub 2} and Ti{sub 2}GeC, and the equilibria between these and other phases in the system were established for the first time. Attempts at substituting boron for carbon in Ti{sub 3}GeC{sub 2} and Ti{sub 2}GeC by the same technique proved unsuccessful. The phase distributions in Ti-Ge-B samples at 1200 C were consistent with a previously established ternary diagram at 700 C which indicated that no ternary phases of this or any other type are present at equilibrium in the Ti-Ge-B system.

  10. Triethanolamine stabilization of methotrexate-β-cyclodextrin interactions in ternary complexes.

    PubMed

    Barbosa, Jahamunna A A; Zoppi, Ariana; Quevedo, Mario A; de Melo, Polyanne N; de Medeiros, Arthur S A; Streck, Letícia; de Oliveira, Alice R; Fernandes-Pedrosa, Matheus F; Longhi, Marcela R; da Silva-Júnior, Arnóbio A

    2014-01-01

    The interaction of methotrexate (MTX) with beta-cyclodextrin (β-CD) in the presence of triethanolamine (TEA) was investigated with the aim to elucidate the mechanism whereby self-assembly cyclodextrin systems work in association with this third component. Solubility diagram studies showed synergic increment of the MTX solubility to be about thirty-fold. Experiments using 2D ROESY and molecular modeling studies revealed the inclusion of aromatic ring III of the drug into β-CD cavity, in which TEA contributes by intensifying MTX interaction with β-CD and stabilizes MTX:β-CD:TEA ternary complex by electrostatic interaction. The maintenance of these interactions in solid phase was also studied in ternary MTX:β-CD:TEA and comparisons were made with freeze dried binary MTX:β-CD and physical mixtures. FTIR studies evidenced that MTX-β-CD interaction remained in solid ternary complexes, which was also supported by thermal (differential scanning calorimetry (DSC), thermogravimetric analysis (TG)/first derivative of TG analysis (DTG) and C,N,H elementary analysis) and structural (X-ray diffraction analysis, (XRD)) studies, mainly regarding the increment of drug stability. The efficient in vitro drug dissolution studies successfully demonstrated the contribution of ternary complexes, which highlights the importance of this possible new raw material for further applications in drug delivery systems. PMID:25257529

  11. Balanced ternary addition using a gated silicon nanowire

    NASA Astrophysics Data System (ADS)

    Mol, J. A.; van der Heijden, J.; Verduijn, J.; Klein, M.; Remacle, F.; Rogge, S.

    2011-12-01

    Ternary logic has the lowest cost of complexity, here, we demonstrate a CMOS hardware implementation of a ternary adder using a silicon metal-on-insulator single electron transistor. Gate dependent rectifying behavior of a single electron transistor (SET) results in a robust three-valued output as a function of the potential of the single electron transistor island. Mapping logical, ternary inputs to the three gates controlling the potential of the single electron transistor island allows us to perform complex, inherently ternary operations, on a single transistor.

  12. Characteristics of CVD ternary refractory nitride diffusion barriers

    SciTech Connect

    Fleming, J.G.; Smith, P.M.; Custer, J.S.

    1996-11-01

    A range of different ternary refractory nitride compositions have been deposited by CVD (chemical vapor deposition) for the systems TiSiN, WBN, and WSiN. The precursors used are readily available. The structure, electrical, and barrier properties of the films produced by CVD are similar to those observed for films with similar compositions deposited by PVD (physical vapor deposition). The step coverage of the CVD processes developed is good and in some cases, exceptional. A combination of desirable resistivity, step coverage, and barrier properties exists simultaneously over a reasonable range of compositions for each system. Initial attempts to integrate WSiN films into a standard 0.5 micrometer CMOS process flow in place of a sputtered Ti/TiN stack were successful.

  13. The Growth and Characterization of Germanium-Carbon Alloy Thin Films and Solid Phase Equilibria for Metal-Silicon - Ternary Systems: Magnesium, Calcium, Strontium, Barium, Scandium, Yttrium, Lanthanum, Titanium, Zirconium and Hafnium

    NASA Astrophysics Data System (ADS)

    Yuan, Haojie

    1992-09-01

    Thin films of pure germanium-carbon alloys (Ge _{rm x}C _{rm 1-x} with 0 <=q x <=q 1) have been grown on Si and Al_2O_3 substrates by pulsed laser ablation in a high vacuum chamber. The films were analyzed by x-ray 0-20 diffraction (XRD), x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), conductivity measurements and optical absorption spectroscopy. The analyses of these new materials showed that films of all compositions were amorphous, free of contamination and uniform in composition. By changing the film composition, the optical band gap of these semiconducting films was varied from 0.00 eV to 0.85 eV for x = 0.0 to 1.0 respectively. According to the AES results, the carbon atoms in the Ge-C alloy thin film samples have a bonding structure that is a mixture of sp^2 and sp^3 hybridizations. The presence of the sp^2 C is apparently what causes the bandgap of amorphous Ge-C alloys to decrease with increasing carbon concentration. The solidus portion of the ternary phase diagrams of the type M-Si-O, where M = Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Zr and Hf have been derived at 298K and 1 atm oxygen partial pressure by investigating the bulk reactions possible in these systems. These phase diagrams, which have been determined by experiments and by calculations using thermodynamic data available, can be used to predict the occurrence of the reaction products or the stability of the phases present at the interfaces between different solid materials. Hence, they provide guides in designing thin film structures and in selecting candidate materials to form chemically stable interfaces. A research effort has been made on the investigation of the growth of diamond thin films from a carbon containing solid-CI_4, using laser ablation technique. The film grown by laser ablation from CI _4 is mainly composed of carbon with very small amount of oxygen and iodine as indicated by x-ray photoelectron spectroscopy data. The Auger electron spectroscopy result shows

  14. GaSb based ternary and quaternary diffused junction devices for TPV applications

    SciTech Connect

    Sundaram, V.S.; Saban, S.B.; Morgan, M.D.; Horne, W.E.; Evans, B.D.; Ketterl, J.R.; Morosini, M.B.; Patel, N.B.; Field, H.

    1997-03-01

    In this work we report the characteristics of ternary, GaInSb (Eg=0.70eV) and quarternary, GaInAsSb (Eg=0.5eV) diffused junction photovoltaic devices. The unique feature of the quarternary device is the extended long-wavelength response to 2.1 microns enabling the efficient use of the blackbody-like thermal sources operating at 1373 K in thermophotovoltaic energy conversion systems. The ternary device was fabricated by diffusing zinc into a n-type (100) oriented GaInSb substrate. For the quarternary, a four micron thick Te doped GaInAsSb layer grown by LPE on a n-type GaSb(100) wafer was used as the starting substrate for zinc diffusion. The ternary device exhibits an open circuit voltage of 0.38 V, Fill Factor of 0.63 and a short circuit current of 0.8A/cm{sup 2}, while the corresponding values for the quarternary device are 0.25 V, 0.58 and 0.8A/cm{sup 2}, respectively. The peak internal quantum efficiency for the ternary is over 90{percent} and that of the quarternary is above 75{percent}. Process optimization should improve the performance charcateristics of the quarternary. {copyright} {ital 1997 American Institute of Physics.}

  15. Solid-state characterization and dissolution properties of meloxicam-moringa coagulant-PVP ternary solid dispersions.

    PubMed

    Noolkar, Suhail B; Jadhav, Namdeo R; Bhende, Santosh A; Killedar, Suresh G

    2013-06-01

    The effect of ternary solid dispersions of poor water-soluble NSAID meloxicam with moringa coagulant (obtained by salt extraction of moringa seeds) and polyvinylpyrrolidone on the in vitro dissolution properties has been investigated. Binary (meloxicam-moringa and meloxicam-polyvinylpyrrolidone (PVP)) and ternary (meloxicam-moringa-PVP) systems were prepared by physical kneading and ball milling and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffractometry. The in vitro dissolution behavior of meloxicam from the different products was evaluated by means of United States Pharmacopeia type II dissolution apparatus. The results of solid-state studies indicated the presence of strong interactions between meloxicam, moringa, and PVP which were of totally amorphous nature. All ternary combinations were significantly more effective than the corresponding binary systems in improving the dissolution rate of meloxicam. The best performance in this respect was given by the ternary combination employing meloxicam-moringa-PVP ratio of [1:(3:1)] prepared by ball milling, with about six times increase in percent dissolution rate, whereas meloxicam-moringa (1:3) and meloxicam-PVP (1:4) prepared by ball milling improved dissolution of meloxicam by almost 3- and 2.5-folds, respectively. The achieved excellent dissolution enhancement of meloxicam in the ternary systems was attributed to the combined effects of impartation of hydrophilic characteristic by PVP, as well as to the synergistic interaction between moringa and PVP. PMID:23483432

  16. Utilizing Energy Transfer in Binary and Ternary Bulk Heterojunction Organic Solar Cells.

    PubMed

    Feron, Krishna; Cave, James M; Thameel, Mahir N; O'Sullivan, Connor; Kroon, Renee; Andersson, Mats R; Zhou, Xiaojing; Fell, Christopher J; Belcher, Warwick J; Walker, Alison B; Dastoor, Paul C

    2016-08-17

    Energy transfer has been identified as an important process in ternary organic solar cells. Here, we develop kinetic Monte Carlo (KMC) models to assess the impact of energy transfer in ternary and binary bulk heterojunction systems. We used fluorescence and absorption spectroscopy to determine the energy disorder and Förster radii for poly(3-hexylthiophene-2,5-diyl), [6,6]-phenyl-C61-butyric acid methyl ester, 4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl]squaraine (DIBSq), and poly(2,5-thiophene-alt-4,9-bis(2-hexyldecyl)-4,9-dihydrodithieno[3,2-c:3',2'-h][1,5]naphthyridine-5,10-dione). Heterogeneous energy transfer is found to be crucial in the exciton dissociation process of both binary and ternary organic semiconductor systems. Circumstances favoring energy transfer across interfaces allow relaxation of the electronic energy level requirements, meaning that a cascade structure is not required for efficient ternary organic solar cells. We explain how energy transfer can be exploited to eliminate additional energy losses in ternary bulk heterojunction solar cells, thus increasing their open-circuit voltage without loss in short-circuit current. In particular, we show that it is important that the DIBSq is located at the electron donor-acceptor interface; otherwise charge carriers will be trapped in the DIBSq domain or excitons in the DIBSq domains will not be able to dissociate efficiently at an interface. KMC modeling shows that only small amounts of DIBSq (<5% by weight) are needed to achieve substantial performance improvements due to long-range energy transfer. PMID:27456294

  17. Ternary logic and mass quantum numbers

    SciTech Connect

    Sheppeard, M. D.

    2010-06-15

    Koide's prediction of the tau mass may be formulated as a condition on the three eigenvalues of a quantum Fourier series, using simple parameters, and similar triplets have been found for neutrino and hadron masses [2]. Assuming these parameters arise from quantum gravity, one would like to understand them from the more abstract context of category theory. In particular, whereas the logic of lepton spin is a linear analogue of the ordinary Boolean logic of the category of sets, mass triplets suggest an analogous ternary logic, requiring higher dimensional categorical structures.

  18. Ternary compound electrode for lithium cells

    DOEpatents

    Raistrick, Ian D.; Godshall, Ned A.; Huggins, Robert A.

    1982-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  19. Ternary compound electrode for lithium cells

    DOEpatents

    Raistrick, I.D.; Godshall, N.A.; Huggins, R.A.

    1980-07-30

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  20. Neutron Damage and MAX Phase Ternary Compounds

    SciTech Connect

    Barsoum, Michael; Hoffman, Elizabeth; Sindelar, Robert; Garcua-Duaz, Brenda; Kohse, Gordon

    2014-06-17

    The Demands of Gen IV nuclear power plants for long service life under neutron radiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ C) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the response of a new class of machinable, conductive, layered, ternary transition metal carbides and nitrides - the so-called MAX phases - to low and moderate neutron dose levels.

  1. Normal state properties of the ternary molybdenum sulfides

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Alterovitz, S. A.

    1978-01-01

    By making a large number of normal state and superconducting properties measurements, all on the same ternary molybdenum sulfide samples, we obtain values for Fermi surface and superconducting parameters. From these we conclude that sputtered ternary molybdenum sulfides are not completely in the dirty superconductor limit, and that they are d-band metals with a high electron carrier density.

  2. Convective instabilities in a ternary alloy mushy layer

    NASA Astrophysics Data System (ADS)

    Anderson, Daniel; Guba, Peter

    2014-11-01

    We investigate a mathematical model of convection, thermal and solutal diffusion in a primary mushy layer during the solidification of a ternary alloy. In particular, we explore the influence of phase-change effects, such as solute rejection, latent heat and background solidification, in a linear stability analysis of a non-convecting base state solution. We identify how different rates of diffusion (e.g. double diffusion) as well as how different rates of solute rejection (double solute rejection) play a role in this system. Novel modes of instability that can be present under statically stable conditions are identified. Parcel arguments are proposed to explain the physical mechanisms that give rise to the instabilities. This work was supported in part by the U.S. National Science Foundation, DMS-1107848 (D.M.A.) and by the Slovak Scientific Grant Agency, VEGA 1/0711/12 (P.G.).

  3. Symmetric weak ternary quantum homomorphic encryption schemes

    NASA Astrophysics Data System (ADS)

    Wang, Yuqi; She, Kun; Luo, Qingbin; Yang, Fan; Zhao, Chao

    2016-03-01

    Based on a ternary quantum logic circuit, four symmetric weak ternary quantum homomorphic encryption (QHE) schemes were proposed. First, for a one-qutrit rotation gate, a QHE scheme was constructed. Second, in view of the synthesis of a general 3 × 3 unitary transformation, another one-qutrit QHE scheme was proposed. Third, according to the one-qutrit scheme, the two-qutrit QHE scheme about generalized controlled X (GCX(m,n)) gate was constructed and further generalized to the n-qutrit unitary matrix case. Finally, the security of these schemes was analyzed in two respects. It can be concluded that the attacker can correctly guess the encryption key with a maximum probability pk = 1/33n, thus it can better protect the privacy of users’ data. Moreover, these schemes can be well integrated into the future quantum remote server architecture, and thus the computational security of the users’ private quantum information can be well protected in a distributed computing environment.

  4. Microstructural Investigations On Ni-Ta-Al Ternary Alloys

    SciTech Connect

    Negache, M.; Souami, N.

    2010-01-05

    The Ni-Al-Ta ternary alloys in the Ni-rich part present complex microstructures. They are composed of multiple phases that are formed according to the nominal composition of the alloy, primary Ni(gamma), Ni{sub 3}Al(gamma'), Ni{sub 6}AlTa(tau{sub 3}), Ni{sub 3}Ta(delta) or in equilibrium: two solid phases (gamma'-tau{sub 3}), (tau{sub 3}-delta), (tau{sub 3}-gamma), (gamma-delta) or three solid phases (gamma'-tau{sub 3}-delta). The nature and the volume fraction of these phases give these alloys very interesting properties at high temperature, and this makes them attractive for specific applications. We have developed a series of ternary alloys in electric arc furnace, determining their solidification sequences using Differential Thermal Analysis (DTA), characterized by SEM-EDS, X-ray diffraction and by a microhardness tests. The follow-up results made it possible to make a correlation between the nature of the formed phases and their solidifying way into the Ni{sub 75}Al{sub x}Ta{sub y} (x+y = 25at.%) system, which are varied and complex. In addition to the solid solution Ni (gamma), the formed intermetallics compounds (gamma', tau{sub 3} and delta) has been identified and correlated with a complex balance between phases.We noticed that the hardness increases with the tantalum which has a hardening effect and though the compound Ni{sub 3}Ta(delta) is the hardest. The below results provide a better understanding of the complex microstructure of these alloys.

  5. Phase diagrams of the sections As/sub 2/S/sub 3/-Tl/sub 3/AsS/sub 4/, Tl/sub 3/AsS/sub 4/-S, and Tl/sub 3/AsS/sub 4/-Tl/sub 2/S of the ternary system As-Tl-S

    SciTech Connect

    Vorob'ev, Yu.I.; Velikova, N.G.; Kirilenko, V.V.; Shchelokov, R.N.

    1987-12-01

    Using DTA and XPA methods, microstructural investigations, and microhardness measurements, phase diagrams of the quasibinary sections As/sub 2/S/sub 3/-Tl/sub 3/AsS/sub 4/, Tl/sub 3/AsS/sub 4/-S, and Tl/sub 3/AsS/sub 4/-Tl/sub 2/S, are characterized by five ternary compounds Tl/sub 3/As/sub 5/S/sub 10/, Tl/sub 9/As/sub 5/S/sub 15/, Tl/sub 9/As/sub 3/S/sub 13/, Tl/sub 3/AsS/sub 6/, and Tl/sub 8/As/sub 2/S/sub 9/, which decompose by peritectic reactions at 198, 307, 408, 362, and 318/degree/C, respectively. Interplanar spacings and line intensities are given for the detected compounds. Glass formation is considered in the Tl-As-S system.

  6. Phase equilibria in the quasi-ternary system Ag2Se-Ga2Se3-In2Se3 and physical properties of (Ga0.6In0.4)2Se3, (Ga0.594In0.396Er0.01)2Se3 single crystals

    NASA Astrophysics Data System (ADS)

    Ivashchenko, I. A.; Danyliuk, I. V.; Olekseyuk, I. D.; Halyan, V. V.

    2014-02-01

    The quasi-ternary system Ag2Se-Ga2Se3-In2Se3 was investigated by differential thermal, X-ray phase, X-ray structure, microstructure analysis and microhardness measurements. Five quasi-binary phase diagrams, six polythermal sections, isothermal section at 820 K and the liquidus surface projection were constructed. The character and temperature of the invariant processes were determined. The specific resistance of the single crystals (Ga0.6In0.4)2Se3, (Ga0.594In0.396Er0.01)2Se3 was measured, 7.5×105 and 3.15×105 Ω m, respectively, optical absorption spectra in the 600-1050 nm range were recorded at room temperature, and the band gap energy was estimated which is 1.95±0. 01 eV for both samples.

  7. [Construction of Three-Dimensional Isobologram for Ternary Pollutant Mixtures].

    PubMed

    2015-12-01

    Tongji University, Shanghai 200092, China) Isobolographic analysis was widely used in the interaction assessment of binary mixtures. However, how to construct a three-dimensional (3D) isobologram for the assessment of toxicity interaction within ternary mixtures is still not reported up to date. The main purpose of this paper is to develop a 3D isobologram where the relative concentrations of three components are acted as three coordinate axes in 3D space to examine the toxicity interaction within ternary mixtures. Taking six commonly used pesticides in China, including three herbicides (2, 4-D, desmetryne and simetryn) and three insecticides ( dimethoate, imidacloprid and propoxur) as the mixture components, the uniform design ray procedure (UD-Ray) was used to rationally design the concentration composition of various components in the ternary mixtures so that effectively and comprehensively reflected the variety of actual environmental concentrations. The luminescent inhibition toxicities of single pesticides and their ternary mixtures to Vibrio fischeri at various concentration levels were determined by the microplate toxicity analysis. Selecting concentration addition (CA) as the addition reference, 3D isobolograms were constructed to study the toxicity interactions of various ternary mixtures. The results showed that the 3D isobologram could clearly and directly exhibit the toxicity interactions of ternary mixtures, and extend the use of isobolographic analysis into the ternary mixtures. PMID:27011996

  8. Flashpoint prediction for ternary mixtures of alcohols with water for CFD simulation of unsteady flame propagation during explosion

    NASA Astrophysics Data System (ADS)

    Skřínský, Jan; Vereš, Ján; Ševčíková, Silvie Petránková

    2016-06-01

    Aqueous solutions of binary and ternary mixtures of alcohols are of considerable interest for a wide range of scientists and technologists. Simple dimensionless experimental formulae based on rational reciprocal and polynomial functions are proposed for correlation of the flashpoint data of binary mixtures of two components. The formulae are based on data obtained from flashpoint experiments and predictions. The main results are the derived experimental flashpoint values for ternary mixtures of two aqueous-organic solutions and the model prediction of maximum explosion pressure values for the studied mixtures. Potential application for the results concerns the assessment of fire and explosion hazards, and the development of inherently safer designs for chemical processes containing binary and ternary partially miscible mixtures of an aqueous-organic system. The goal of this article is to present the results of modelling using these standard models and to demonstrate its importance in the area of CFD simulation.

  9. Intrinsic DX Centers in Ternary Chalcopyrite Semiconductors

    SciTech Connect

    Lany, S.; Zunger, A.

    2008-01-01

    In III-V and II-VI semiconductors, certain nominally electron-donating impurities do not release electrons but instead form deep electron-traps known as 'DX centers.' While in these compounds, such traps occur only after the introduction of foreign impurity atoms, we find from first-principles calculations that in ternary I-III-VI{sub 2} chalcopyrites like CuInSe{sub 2} and CuGaSe{sub 2}, DX-like centers can develop without the presence of any extrinsic impurities. These intrinsic DX centers are suggested as a cause of the difficulties to maintain high efficiencies in CuInSe{sub 2}-based thin-film solar-cells when the band gap is increased by addition of Ga.

  10. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.