Science.gov

Sample records for eranos based equilibrium

  1. Sensitivity analysis of Monju using ERANOS with JENDL-4.0

    SciTech Connect

    Tamagno, P.; Van Rooijen, W. F. G.; Takeda, T.; Konomura, M.

    2012-07-01

    This paper deals with sensitivity analysis using JENDL-4.0 nuclear data applied to the Monju reactor. In 2010 the Japan Atomic Energy Agency - JAEA - released a new set of nuclear data: JENDL-4.0. This new evaluation is expected to contain improved data on actinides and covariance matrices. Covariance matrices are a key point in quantification of uncertainties due to basic nuclear data. For sensitivity analysis, the well-established ERANOS [1] code was chosen because of its integrated modules that allow users to perform a sensitivity analysis of complex reactor geometries. A JENDL-4.0 cross-section library is not available for ERANOS. Therefore a cross-section library had to be made from the original nuclear data set, available as ENDF formatted files. This is achieved by using the following codes: NJOY, CALENDF, MERGE and GECCO in order to create a library for the ECCO cell code (part of ERANOS). In order to make sure of the accuracy of the new ECCO library, two benchmark experiments have been analyzed: the MZA and MZB cores of the MOZART program measured at the ZEBRA facility in the UK. These were chosen due to their similarity to the Monju core. Using the JENDL-4.0 ECCO library we have analyzed the criticality of Monju during the restart in 2010. We have obtained good agreement with the measured criticality. Perturbation calculations have been performed between JENDL-3.3 and JENDL-4.0 based models. The isotopes {sup 239}Pu, {sup 238}U, {sup 241}Am and {sup 241}Pu account for a major part of observed differences. (authors)

  2. YALINA analytical benchmark analyses using the deterministic ERANOS code system.

    SciTech Connect

    Gohar, Y.; Aliberti, G.; Nuclear Engineering Division

    2009-08-31

    The growing stockpile of nuclear waste constitutes a severe challenge for the mankind for more than hundred thousand years. To reduce the radiotoxicity of the nuclear waste, the Accelerator Driven System (ADS) has been proposed. One of the most important issues of ADSs technology is the choice of the appropriate neutron spectrum for the transmutation of Minor Actinides (MA) and Long Lived Fission Products (LLFP). This report presents the analytical analyses obtained with the deterministic ERANOS code system for the YALINA facility within: (a) the collaboration between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research (JIPNR) Sosny of Belarus; and (b) the IAEA coordinated research projects for accelerator driven systems (ADS). This activity is conducted as a part of the Russian Research Reactor Fuel Return (RRRFR) Program and the Global Threat Reduction Initiative (GTRI) of DOE/NNSA.

  3. Evaluation of AGNI SFR core neutronics parameters with VESTA and ERANOS

    NASA Astrophysics Data System (ADS)

    Ecrabet, Fabrice; Haeck, Wim; Chaitanya Tadepalli, Sai

    2014-06-01

    This paper presents the calculation of core neutronics parameters for so called AGNI Sodium Fast Reactor (SFR) model performed with ERANOS code and Monte Carlo depletion interface software VESTA. The AGNI core has been developed at IRSN for its own R&D needs, i.e. to test performance of calculation codes for safety assessment of a generation IV SFR project. The ERANOS code is used as reference code for SFR core calculations at IRSN. In this work, VESTA calculations have been performed and compared with corresponding ERANOS results. These calculations have a double purpose: mastering the use of tools for the evaluation of SFR core static neutronics parameters and validate the use of VESTA for SFR cores.

  4. Trunk biomechanical models based on equilibrium at a single-level violate equilibrium at other levels.

    PubMed

    Arjmand, N; Shirazi-Adl, A; Parnianpour, M

    2007-05-01

    Accurate estimation of muscle forces in various occupational tasks is critical for a reliable evaluation of spinal loads and subsequent assessment of risk of injury and management of back disorders. The majority of biomechanical models of multi-segmental spine estimate muscle forces and spinal loads based on the balance of net moments at a single level with no consideration for the equilibrium at remaining levels. This work aimed to quantify the extent of equilibrium violation and alterations in estimations when such models are performed at different levels. Results are compared with those of kinematics-driven model that satisfies equilibrium at all levels and EMG data. Regardless of the method used (optimization or EMG-assisted), single-level free body diagram models yielded estimations that substantially altered depending on the level considered (i.e., level dependency). Equilibrium of net moment was also grossly violated at remaining levels with the error increasing in more demanding tasks. These models may, however, be used to estimate spinal compression forces. PMID:17136359

  5. Learning of Chemical Equilibrium through Modelling-Based Teaching

    ERIC Educational Resources Information Center

    Maia, Poliana Flavia; Justi, Rosaria

    2009-01-01

    This paper presents and discusses students' learning process of chemical equilibrium from a modelling-based approach developed from the use of the "Model of Modelling" diagram. The investigation was conducted in a regular classroom (students 14-15 years old) and aimed at discussing how modelling-based teaching can contribute to students learning…

  6. Equilibrium reconstruction based on core magnetic measurement and its applications on equilibrium transition in Joint-TEXT tokamak

    SciTech Connect

    Chen, J.; Zhuang, G. Jian, X.; Li, Q.; Liu, Y.; Gao, L.; Wang, Z. J.

    2014-10-15

    Evaluation and reconstruction of plasma equilibrium, especially to resolve the safety factor profile, is imperative for advanced tokamak operation and physics study. Based on core magnetic measurement by the high resolution laser polarimeter-interferometer system (POLARIS), the equilibrium of Joint-TEXT (J-TEXT) plasma is reconstructed and profiles of safety factor, current density, and electron density are, therefore, obtained with high accuracy and temporal resolution. The equilibrium reconstruction procedure determines the equilibrium flux surfaces essentially from the data of POLARIS. Refraction of laser probe beam, a major error source of the reconstruction, has been considered and corrected, which leads to improvement of accuracy more than 10%. The error of reconstruction has been systematically assessed with consideration of realistic diagnostic performance and scrape-off layer region of plasma, and its accuracy has been verified. Fast equilibrium transitions both within a single sawtooth cycle and during the penetration of resonant magnetic perturbation have been investigated.

  7. Punctuated equilibrium based on a locally ambiguous niche.

    PubMed

    Gunji, Yukio-Pegio; Sakiyama, Tomoko; Murakami, Hisashi

    2014-09-01

    Punctuated equilibrium, recently regarded as the power law distribution of lifespan, is estimated with respect to self-organized criticality. Previous explanations were based on a global property, such as the selection of species depending on their fitness, however a particular entity defined through such global property cannot be relevant to the notion of "self". Here, we introduce local ambiguity of a niche with respect to function and define a function network by using two types of maps. Due to the local complex structure of the function network, motif and lateral connections, some species are easily replaced by others, and other species have long lives. Punctuated equilibrium can, therefore, be explained by local ambiguous interaction, which suggests the notion of self and supports the idea of self-organized criticality. PMID:24905426

  8. Multi-period equilibrium/near-equilibrium in electricity markets based on locational marginal prices

    NASA Astrophysics Data System (ADS)

    Garcia Bertrand, Raquel

    In this dissertation we propose an equilibrium procedure that coordinates the point of view of every market agent resulting in an equilibrium that simultaneously maximizes the independent objective of every market agent and satisfies network constraints. Therefore, the activities of the generating companies, consumers and an independent system operator are modeled: (1) The generating companies seek to maximize profits by specifying hourly step functions of productions and minimum selling prices, and bounds on productions. (2) The goals of the consumers are to maximize their economic utilities by specifying hourly step functions of demands and maximum buying prices, and bounds on demands. (3) The independent system operator then clears the market taking into account consistency conditions as well as capacity and line losses so as to achieve maximum social welfare. Then, we approach this equilibrium problem using complementarity theory in order to have the capability of imposing constraints on dual variables, i.e., on prices, such as minimum profit conditions for the generating units or maximum cost conditions for the consumers. In this way, given the form of the individual optimization problems, the Karush-Kuhn-Tucker conditions for the generating companies, the consumers and the independent system operator are both necessary and sufficient. The simultaneous solution to all these conditions constitutes a mixed linear complementarity problem. We include minimum profit constraints imposed by the units in the market equilibrium model. These constraints are added as additional constraints to the equivalent quadratic programming problem of the mixed linear complementarity problem previously described. For the sake of clarity, the proposed equilibrium or near-equilibrium is first developed for the particular case considering only one time period. Afterwards, we consider an equilibrium or near-equilibrium applied to a multi-period framework. This model embodies binary

  9. Linear irreversible heat engines based on local equilibrium assumptions

    NASA Astrophysics Data System (ADS)

    Izumida, Yuki; Okuda, Koji

    2015-08-01

    We formulate an endoreversible finite-time Carnot cycle model based on the assumptions of local equilibrium and constant energy flux, where the efficiency and the power are expressed in terms of the thermodynamic variables of the working substance. By analyzing the entropy production rate caused by the heat transfer in each isothermal process during the cycle, and using the endoreversible condition applied to the linear response regime, we identify the thermodynamic flux and force of the present system and obtain a linear relation that connects them. We calculate the efficiency at maximum power in the linear response regime by using the linear relation, which agrees with the Curzon-Ahlborn (CA) efficiency known as the upper bound in this regime. This reason is also elucidated by rewriting our model into the form of the Onsager relations, where our model turns out to satisfy the tight-coupling condition leading to the CA efficiency.

  10. Calculation of the Phenix end-of-life test 'Control Rod Withdrawal' with the ERANOS code

    SciTech Connect

    Tiberi, V.

    2012-07-01

    The Inst. of Radiological Protection and Nuclear Safety (IRSN) acts as technical support to French public authorities. As such, IRSN is in charge of safety assessment of operating and under construction reactors, as well as future projects. In this framework, one current objective of IRSN is to evaluate the ability and accuracy of numerical tools to foresee consequences of accidents. Neutronic studies step in the safety assessment from different points of view among which the core design and its protection system. They are necessary to evaluate the core behavior in case of accident in order to assess the integrity of the first barrier and the absence of a prompt criticality risk. To reach this objective one main physical quantity has to be evaluated accurately: the neutronic power distribution in core during whole reactor lifetime. Phenix end of life tests, carried out in 2009, aim at increasing the experience feedback on sodium cooled fast reactors. These experiments have been done in the framework of the development of the 4. generation of nuclear reactors. Ten tests have been carried out: 6 on neutronic and fuel aspects, 2 on thermal hydraulics and 2 for the emergency shutdown. Two of them have been chosen for an international exercise on thermal hydraulics and neutronics in the frame of an IAEA Coordinated Research Project. Concerning neutronics, the Control Rod Withdrawal test is relevant for safety because it allows evaluating the capability of calculation tools to compute the radial power distribution on fast reactors core configurations in which the flux field is very deformed. IRSN participated to this benchmark with the ERANOS code developed by CEA for fast reactors studies. This paper presents the results obtained in the framework of the benchmark activity. A relatively good agreement was found with available measures considering the approximations done in the modeling. The work underlines the importance of burn-up calculations in order to have a fine

  11. An Equilibrium-Based Model of Gas Reaction and Detonation

    SciTech Connect

    Trowbridge, L.D.

    2000-04-01

    During gaseous diffusion plant operations, conditions leading to the formation of flammable gas mixtures may occasionally arise. Currently, these could consist of the evaporative coolant CFC-114 and fluorinating agents such as F2 and ClF3. Replacement of CFC-114 with a non-ozone-depleting substitute is planned. Consequently, in the future, the substitute coolant must also be considered as a potential fuel in flammable gas mixtures. Two questions of practical interest arise: (1) can a particular mixture sustain and propagate a flame if ignited, and (2) what is the maximum pressure that can be generated by the burning (and possibly exploding) gas mixture, should it ignite? Experimental data on these systems, particularly for the newer coolant candidates, are limited. To assist in answering these questions, a mathematical model was developed to serve as a tool for predicting the potential detonation pressures and for estimating the composition limits of flammability for these systems based on empirical correlations between gas mixture thermodynamics and flammability for known systems. The present model uses the thermodynamic equilibrium to determine the reaction endpoint of a reactive gas mixture and uses detonation theory to estimate an upper bound to the pressure that could be generated upon ignition. The model described and documented in this report is an extended version of related models developed in 1992 and 1999.

  12. Benchmark of Advanced Burner Test Reactor Model Using MCNPX 2.6.0 and ERANOS 2.1

    SciTech Connect

    Kenneth Allen; Travis Knight; Samuel Bays

    2011-08-01

    Significant research is currently being performed whereby fast reactor cores have been designed to burn transuranic materials reducing the volume and long-term radiotoxicity of spent nuclear fuel. These core and depletion models depend on various computer codes. This research used MCNPX 2.6.0 and ERANOS 2.1 to model a standard 250MWt Advanced Burner Test Reactor (ABTR) core. The intent was to benchmark criticality and burnup results from a stochastic Monte Carlo code and a deterministic depletion code using a standard ABTR model created by Argonne National Laboratory. Because each of these codes solve the transport and burnup problem differently, there is a need to benchmark the core models in order to verify results and identify root causes for significant differences in results between codes. Flux calculations in ERANOS were performed using diffusion theory, Legendre polynomial approximations (using the VARIANT module) and discrete ordinates methods. The k-effective for the higher-order transport models remained within 1000 pcm of the MCNPX model. The difference between the total heavy nuclide mass balance in ERANOS using the various flux calculations and the MCNPX depletion model was less than 0.4% out to a burnup of 1095 days (67.45 GWd/MTHM). For individual heavy nuclides, the depletion models closely matched (< 5.0 % difference) throughout the depletion for isotopes of Uranium, Neptunium and Plutonium and most of the higher transuranics. Notable exceptions were 242Am, 242Cm, 243Cm and 246Cm where differences ranged from 0.1 – 0.2% after 26 days and increased to 11 - 136% at 1095 days.

  13. Evidence-Based Approaches to Improving Chemical Equilibrium Instruction

    ERIC Educational Resources Information Center

    Davenport, Jodi L.; Leinhardt, Gaea; Greeno, James; Koedinger, Kenneth; Klahr, David; Karabinos, Michael; Yaron, David J.

    2014-01-01

    Two suggestions for instruction in chemical equilibrium are presented, along with the evidence that supports these suggestions. The first is to use diagrams to connect chemical reactions to the effects of reactions on concentrations. The second is the use of the majority and minority species (M&M) strategy to analyze chemical equilibrium…

  14. Effectiveness of Instruction Based on the Constructivist Approach on Understanding Chemical Equilibrium Concepts

    ERIC Educational Resources Information Center

    Akkus, Huseyin; Kadayifci, Hakki; Atasoy, Basri; Geban, Omer

    2003-01-01

    The purpose of this study was to identify misconceptions concerning chemical equilibrium concepts and to investigate the effectiveness of instruction based on the constructivist approach over traditional instruction on 10th grade students' understanding of chemical equilibrium concepts. The subjects of this study consisted of 71 10th grade…

  15. Equilibrium II: Acids and Bases. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P3.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on equilibrium is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, focuses on the application of equilibrium principles to equilibria involving weak acids and bases, including buffer solutions and indicators. Level one uses Le Chatelier's…

  16. Quasi-Three-Dimensional Mathematical Modeling of Morphological Processes Based on Equilibrium Sediment Transport

    NASA Astrophysics Data System (ADS)

    Charafi, My. M.; Sadok, A.; Kamal, A.; Menai, A.

    A quasi-three-dimensional mathematical model has been developed to study the morphological processes based on equilibrium sediment transport method. The flow velocities are computed by a two-dimensional horizontal depth-averaged flow model (H2D) in combination with logarithmic velocity profiles. The transport of sediment particles by a flow water has been considered in the form of bed load and suspended load. The bed load transport rate is defined as the transport of particles by rolling and saltating along the bed surface and is given by the Van Rijn relationship (1987). The equilibrium suspended load transport is described in terms of an equilibrium sediment concentration profile (ce) and a logarithmic velocity (u). Based on the equilibrium transport, the bed change rate is given by integration of the sediment mass-balance equation. The model results have been compared with a Van Rijn results (equilibrium approach) and good agreement has been found.

  17. Using the Logarithmic Concentration Diagram, Log "C", to Teach Acid-Base Equilibrium

    ERIC Educational Resources Information Center

    Kovac, Jeffrey

    2012-01-01

    Acid-base equilibrium is one of the most important and most challenging topics in a typical general chemistry course. This article introduces an alternative to the algebraic approach generally used in textbooks, the graphical log "C" method. Log "C" diagrams provide conceptual insight into the behavior of aqueous acid-base systems and allow…

  18. Opicinus de Canistris: some notes from Jung's unpublished Eranos Seminar on the medieval Codex Palatinus Latinus 1993.

    PubMed

    Quaglino, Gian Piero; Romano, Augusto; Bernardini, Riccardo

    2010-06-01

    Jung held an informal seminar for a limited number of students after the end of the Eranos Conference in August, 1943. All traces of this seminar were lost until the notes taken on it by one of the students, Alwine von Keller, were found in 2006. Jung's talk consisted of a psychological commentary on a series of images in the medieval Codex Palatinus Latinus 1993, attributed to Opicinus de Canistris (1296-c.1352), a fourteenth-century Italian clergyman, mystic, miniaturist, and cartographer. Jung interpreted Opicinus' images as a series of mandalas in which the Shadow, the dark principle, does not manage to be integrated into a balanced system. Opicinus tried to settle this division into opposites, which constitutes the main problem in modern times, while remaining inside the system of Christian doctrine. However, he did not succeed in his attempt to integrate the principle of the Shadow on the doctrinal level because he was not aware of the very same division in his own unconscious. Our article points out the features in the seminar where Jung seemed to show much more originality in his interpretation than other psychoanalytic studies on Opicinus or other analytical-psychological readings of medieval Christian art. PMID:20629782

  19. Development of facile property calculation model for adsorption chillers based on equilibrium adsorption cycle

    NASA Astrophysics Data System (ADS)

    Yano, Masato; Hirose, Kenji; Yoshikawa, Minoru; Thermal management technology Team

    Facile property calculation model for adsorption chillers was developed based on equilibrium adsorption cycles. Adsorption chillers are one of promising systems that can use heat energy efficiently because adsorption chillers can generate cooling energy using relatively low temperature heat energy. Properties of adsorption chillers are determined by heat source temperatures, adsorption/desorption properties of adsorbent, and kinetics such as heat transfer rate and adsorption/desorption rate etc. In our model, dependence of adsorption chiller properties on heat source temperatures was represented using approximated equilibrium adsorption cycles instead of solving conventional time-dependent differential equations for temperature changes. In addition to equilibrium cycle calculations, we calculated time constants for temperature changes as functions of heat source temperatures, which represent differences between equilibrium cycles and real cycles that stemmed from kinetic adsorption processes. We found that the present approximated equilibrium model could calculate properties of adsorption chillers (driving energies, cooling energies, and COP etc.) under various driving conditions quickly and accurately within average errors of 6% compared to experimental data.

  20. A Simple System for Observing Dynamic Phase Equilibrium via an Inquiry-Based Laboratory or Demonstration

    ERIC Educational Resources Information Center

    Cloonan, Carrie A.; Andrew, Julie A.; Nichol, Carolyn A.; Hutchinson, John S.

    2011-01-01

    This article describes an activity that can be used as an inquiry-based laboratory or demonstration for either high school or undergraduate chemistry students to provide a basis for understanding both vapor pressure and the concept of dynamic phase equilibrium. The activity includes a simple setup to create a closed system of only water liquid and…

  1. An equilibrium-based model for measuring environmental radon using charcoal canisters.

    PubMed

    Lehnert, A L; Kearfott, K J

    2010-08-01

    Radon in indoor air is often measured using canisters of activated charcoal that function by adsorbing radon gas. The use of a diffusion barrier charcoal canister (DBCC) minimizes the effects of environmental humidity and extends the useful exposure time by several days. Many DBCC protocols model charcoal canisters as simple integrating detectors, which introduces errors due to the fact that radon uptake changes over the exposure period. Errors are compensated for by calculating a calibration factor that is nonlinear with respect to exposure time. This study involves the development and testing of an equilibrium-based model and corresponding measurement protocol that treats the charcoal canisters as a system coming into equilibrium with the surrounding radon environment. This model applies to both constant and temporally varying radon concentration situations, which was essential, as efforts are currently underway using a temporally varying radon chamber. It was found that the DBCCs equilibrate following the relationship E = (1 - e) where E is a measure of how close the DBCC is to equilibrium, t is exposure time, and q is the equilibration constant. This equilibration constant was empirically determined to be 0.019 h. The proposed model was tested in a blind test as well as compared with the currently accepted U.S. Environmental Protection Agency (U.S. EPA) model. Comparisons between the two methods showed a slight decrease in measurement error when using the equilibrium-based method as compared to the U.S. EPA method. PMID:20622564

  2. Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers.

    PubMed

    Nap, R J; Tagliazucchi, M; Szleifer, I

    2014-01-14

    This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads

  3. Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers

    SciTech Connect

    Nap, R. J.; Tagliazucchi, M.; Szleifer, I.

    2014-01-14

    This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads

  4. Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers

    NASA Astrophysics Data System (ADS)

    Nap, R. J.; Tagliazucchi, M.; Szleifer, I.

    2014-01-01

    This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads

  5. New lifting relations for estimating LBM distribution functions from corresponding macroscopic quantities, based on equilibrium and non-equilibrium moments

    NASA Astrophysics Data System (ADS)

    Salimi, M. R.; Taeibi-Rahni, M.

    2015-12-01

    Due to superior accuracy and stability of multiple relaxation time (MRT) collision operator over its single relaxation time (SRT) counterpart, new lifting relations are proposed here to construct single particle distribution functions for MRT-LBM from macroscopic variables. Using these lifting relations, a new hybrid FVM-LB method is presented (called Finite type-LB hybrid method), which is consistent with MRT-LBM. In this new hybrid method, single-particle distribution functions in MRT-LBM sub-domain boundaries are computed, using equilibrium and non-equilibrium moments. These moments are computed in Navier-Stokes/FVM sub-domain boundaries, using macroscopic variables and their derivatives. The new method is validated by solving three benchmark problems, i.e., two- and three-dimensional lid driven cavity flows and two-dimensional unsteady flow around a squared section cylinder. These problems are analyzed with pure FVM, pure LBM, and Finite type-LB hybrid method (FTLBHM) and the related results are compared with each other and with benchmark data. These comparisons clearly demonstrate the accuracy of the present novel methodology for simulating steady/unsteady flow fields in two and three dimensions.

  6. A process-based model for non-equilibrium clumped isotope effects in carbonates

    NASA Astrophysics Data System (ADS)

    Watkins, J. M.; Hunt, J. D.

    2015-12-01

    The equilibrium clumped isotope composition of carbonate minerals is independent of the composition of the aqueous solution. However, many carbonate minerals grow at rates that place them in a non-equilibrium regime with respect to carbon and oxygen isotopes with unknown consequences for clumped isotopes. We develop a process-based model that allows one to calculate the oxygen, carbon, and clumped isotope composition of calcite as a function of temperature, crystal growth rate, and solution pH. In the model, carbon and oxygen isotope fractionation occurs through the mass-dependent attachment/detachment kinetics of the isotopologues of HCO-3 and CO2-3 to and from the calcite surface, which in turn, influence the clumped isotope composition of calcite. At experimental and biogenic growth rates, the mineral is expected to inherit a clumped isotopic composition that is similar to that of the DIC pool, which helps to explain (1) why different organisms share the same clumped isotope versus temperature calibration curves, (2) why many inorganic calibration curves are slightly different from one another, and (3) why foraminifera, coccoliths, and deep sea corals can have near-equilibrium clumped isotope compositions but far-from-equilibrium carbon and oxygen isotope compositions. Some aspects of the model can be generalized to other mineral systems and should serve as a useful reference in future efforts to quantify kinetic clumped isotope effects.

  7. Equilibrium theory-based design of simulated moving bed processes under reduced purity requirements linear isotherms.

    PubMed

    Rajendran, Arvind

    2008-03-28

    The design of simulated moving bed processes under reduced purity requirements for systems whose isotherm is linear is considered. Based on the equilibrium theory of chromatography, explicit equations to uniquely identify the separation region that will ensure specified extract and raffinate purities are derived. The identification of the region requires only the knowledge of Henry constants of the solutes, the concentration of the solutes in the feed and the purity specifications. These results are validated using numerical simulations. PMID:18281052

  8. Equilibrium partition ratios, densities, and transport phenomena in nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Sung, Pil Kyung

    To simulate transport phenomena, macrosegregation and segregation defects known as "freckles" during directional solidification of Ni-base superalloys, numerical modeling can be used; hence it is essential to have reasonably accurate values of the thermodynamic and transport properties for the alloys. In this research, therefore, the equilibrium partition ratios of the solutes in the Ni-Al-Ta-Cr quaternary system, as a model alloy, were measured, and the solid- and liquid-densities in Ni-base superalloys. were estimated. Also, the importance of these properties on the sensitivity of the results of numerical simulations was studied. The partition ratios apply to equilibria between melts and gamma-phase in the range of 1615 K to 1694 K, and it was found that the equilibrium partition ratio of Ta varies from approximately 0.6 at dilute Ta to 0.85 at 17 wt.% Ta. For the same range of Ta-contents, the partition ratios of Al and Cr vary much less and range from about 0.92 to 0.96. In addition to the partition ratios, the liquidus temperatures of the liquid in equilibrium with gamma in the Ni-Al-Ta-Cr system were estimated with a multidimensional regression analysis. To calculate the densities of solid Ni-base superalloys as functions of temperature and composition, lattice parameters at 20°C and coefficients of thermal expansion (CTEs) were estimated by combining available data. The CTEs calculated from the regressions result in densities that are within 0.5% error or less for seventeen alloys. To estimate the densities of liquid Ni-base superalloys, the densities and temperature coefficients of density of the liquid transition-metals, which are used as alloy elements in Ni-base superalloys, were applied to a simple correlation. By using this approach, the estimates of the liquid densities of five Ni-base superalloys agree with the measured values to +/-2.5%. Finally, the importance of using reasonably accurate estimates of the transport properties was illustrated by

  9. Reactive solute transport in streams. 1. Development of an equilibrium- based model

    USGS Publications Warehouse

    Runkel, R.L.; Bencala, K.E.; Broshears, R.E.; Chapra, S.C.

    1996-01-01

    An equilibrium-based solute transport model is developed for the simulation of trace metal fate and transport in streams. The model is formed by coupling a solute transport model with a chemical equilibrium submodel based on MINTEQ. The solute transport model considers the physical processes of advection, dispersion, lateral inflow, and transient storage, while the equilibrium submodel considers the speciation and complexation of aqueous species, precipitation/dissolution and sorption. Within the model, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (water-borne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach.

  10. Accelerated equilibrium core composition search using a new MCNP-based simulator

    NASA Astrophysics Data System (ADS)

    Seifried, Jeffrey E.; Gorman, Phillip M.; Vujic, Jasmina L.; Greenspan, Ehud

    2014-06-01

    MocDown is a new Monte Carlo depletion and recycling simulator which couples neutron transport with MCNP and transmutation with ORIGEN. This modular approach to depletion allows for flexible operation by incorporating the accelerated progression of a complex fuel processing scheme towards equilibrium and by allowing for the online coupling of thermo-fluids feedback. MocDown also accounts for the variation of decay heat with fuel isotopics evolution. In typical cases, MocDown requires just over a day to find the equilibrium core composition for a multi-recycling fuel cycle, with a self-consistent thermo-fluids solution-a task that required between one and two weeks using previous Monte Carlo-based approaches.

  11. Equilibrium strategy-based optimization method for the coal-water conflict: A perspective from China.

    PubMed

    Xu, Jiuping; Lv, Chengwei; Zhang, Mengxiang; Yao, Liming; Zeng, Ziqiang

    2015-09-01

    Environmental water problems have become increasingly severe, with the coal-water conflict becoming one of the most difficult issues in large scale coal mining regions. In this paper, a bi-level optimization model based on the Stackelberg-Nash equilibrium strategy with fuzzy coefficients is developed to deal with environmental water problems in large scale coal fields, in which both the groundwater quality and quantity are considered. Using the proposed model, and fully considering the relationship between the authority and the collieries and also the equilibrium between economic development and environmental protection, an environmental protection based mining quotas competition mechanism is established. To deal with the inherent uncertainties, the model is defuzzified using a possibility measure, and a solution approach based on the Karush-Kuhn-Tucker condition is designed to search for the solutions. A case study is presented to demonstrate the practicality and efficiency of the model, and different constraint violation risk levels and related results are also obtained. The results showed that under the environmental protection based mining quotas competition mechanism, collieries attempt to conduct environmentally friendly exploitation to seek greater mining quotas. This demonstrates the practicality and efficiency in the proposed model of reducing the coal-water conflict. Finally, a comprehensive discussion is provided and some propositions is given as a foundation for the proposed management recommendations. PMID:26144559

  12. Unusual dileptions at RHIC a field theoretic approach based on a non-equilibrium chiral phase transition

    SciTech Connect

    Cooper, F.

    1997-09-22

    This paper contains viewgraphs on unusual dileptons at Brookhaven RHIC. A field theory approach is used based on a non-equilibrium chiral phase transformation utilizing the schroedinger and Heisenberg picture.

  13. Conjugate Acid-Base Pairs, Free Energy, and the Equilibrium Constant

    ERIC Educational Resources Information Center

    Beach, Darrell H.

    1969-01-01

    Describes a method of calculating the equilibrium constant from free energy data. Values of the equilibrium constants of six Bronsted-Lowry reactions calculated by the author's method and by a conventional textbook method are compared. (LC)

  14. Magnetic measurement based methods in determination of plasma equilibrium parameters in Damavand tokamak

    NASA Astrophysics Data System (ADS)

    Noori, E.; Sadeghi, Y.; Mehdian, H.

    2016-06-01

    Determination of plasma equilibrium parameters such as poloidal beta (βp) with half of plasma internal inductance (li) known as Shafranov parameter (asymmetry factor) (βp+𝔡li2) and edge safety factor plays very important role in primary equilibrium and stability analysis and control of tokamak plasma. In this study, the well known Shafranov semi-empirical model, based on external magnetic measurements is used to extract Shafranov parameter and effective edge safety factor in low-β operating regime of Damavand tokamak. The well known integral representation of βp+𝔡li2 was modified for non-circular tokamaks with ellipse-like cross section. After calibration of magnetic pick-up coils, Shafranov parameter was estimated with respect to the first and second Fourier harmonic of radial and poloidal components of magnetic field. The results were compared with approximate, semi-analytical determination of Shafranov parameter which is based on analytical solution of Grad-Shafranov equation (GSE). Founding evolution of Shafranov parameter, effective edge safety factor was obtained in terms of Shafranov parameter and compared with semi-empirical description. It was found that between the ramp-up and ramp-down domain of the plasma current, the result from Shafranov model is approximately in good agreement with the semi-analytical and semi-empirical benchmarks and the integral model provides more reliable trace of the Shafranov parameter in out of ramp domains of the discharge.

  15. Multi-equilibrium system based on sertraline and β-cyclodextrin supramolecular complex in aqueous solution.

    PubMed

    Passos, Joel J; De Sousa, Frederico B; Lula, Ivana S; Barreto, Elison A; Lopes, Juliana Fedoce; De Almeida, Wagner B; Sinisterra, Rubén D

    2011-12-12

    Sertraline (SRT) is a widely used antidepressant whose poor solubility in water limits its oral applicability. Thus, the aim of this work was the evaluation of a multi-equilibrium system based on β-cyclodextrin (βCD) and SRT. The inclusion compounds (ICs) were investigated by infrared spectroscopy, isothermal titration calorimetry (ITC) and (1)H and 2D ROESY nuclear magnetic resonance experiments. SRT solubility was predicted in vitro in water and biomimetic fluids. The SRT in presence of βCD at 1:1 and 1:2 molar ratios was more soluble than free SRT in all biomimetics media investigated. The FTIR-HATR showed that βCD νC-O-C stretching band was reduced in presence of SRT, suggesting the interactions between them. Additionally, titration process and Job's plot provided information on the ICs stoichiometry and evidenced the multi-equilibrium coexistence in aqueous solution. According to the ITC, SRT:βCD interaction process was spontaneous and exothermic with a high affinity binding constant (K=14,726 M(-1)). Additionally, the stoichiometry coefficient (n) was 1.63, which was comparable to that found by FITR-HATR. The (1)H and 2D ROESY verified multiple SRT sites included into the host cavity. Theoretical calculations depicted the relative energy of different proposed ICs structures, in which the 1:2 IC was the most stable. PMID:21963467

  16. Weak Acid Ionization Constants and the Determination of Weak Acid-Weak Base Reaction Equilibrium Constants in the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; McMills, Lauren; Barlag, Rebecca

    2013-01-01

    A laboratory to determine the equilibrium constants of weak acid negative weak base reactions is described. The equilibrium constants of component reactions when multiplied together equal the numerical value of the equilibrium constant of the summative reaction. The component reactions are weak acid ionization reactions, weak base hydrolysis…

  17. Chemicals loading in acetylated bamboo assisted by supercritical CO2 based on phase equilibrium data

    NASA Astrophysics Data System (ADS)

    Silviana, Petermann, M.

    2015-12-01

    Indonesia has a large tropical forest. However, the deforestation still appears annually and vastly. This reason drives a use of bamboo as wood alternative. Recently, there are many modifications of bamboo in order to prolong the shelf life. Unfortunately, the processes need more chemicals and time. Based on wood modification, esterifying of bamboo was undertaken in present of a dense gas, i.e. supercritical CO2. Calculation of chemicals loading referred to ASTM D1413-99 by using the phase equilibrium data at optimum condition by a statistical design. The results showed that the acetylation of bamboo assisted by supercritical CO2 required 14.73 kg acetic anhydride/m3 of bamboo for a treatment of one hour.

  18. Non-equilibrium quantum theory for nanodevices based on the Feynman-Vernon influence functional

    NASA Astrophysics Data System (ADS)

    Jin, Jinshuang; Wei-Yuan Tu, Matisse; Zhang, Wei-Min; Yan, YiJing

    2010-08-01

    In this paper, we present a non-equilibrium quantum theory for transient electron dynamics in nanodevices based on the Feynman-Vernon influence functional. Applying the exact master equation for nanodevices we recently developed to the more general case in which all the constituents of a device vary in time in response to time-dependent external voltages, we obtained non-perturbatively the transient quantum transport theory in terms of the reduced density matrix. The theory enables us to study transient quantum transport in nanostructures with back-reaction effects from the contacts, with non-Markovian dissipation and decoherence being fully taken into account. For a simple illustration, we apply the theory to a single-electron transistor subjected to ac bias voltages. The non-Markovian memory structure and the nonlinear response functions describing transient electron transport are obtained.

  19. Non-equilibrium photoexcited carrier effects in a graphene-based Josephson junction

    NASA Astrophysics Data System (ADS)

    Tsumura, Kohei; Furukawa, Naoki; Ito, Hironori; Watanabe, Eiichiro; Tsuya, Daiju; Takayanagi, Hideaki

    2016-01-01

    We studied the superconducting proximity effect under photoexcitation by illuminating a superconductor/monolayer graphene/superconductor (SGS) Josephson junction with monochromatic light at a wavelength of 1.31 μm. Although the critical current Ic can be controlled by the irradiation power P, its variation cannot be explained by modification of the carrier density, which has been reported for semiconductor-based Josephson junctions. The estimated electron temperature of graphene is proportional to P δ , where δ ≃ 1 / 3 . This relation clearly indicates that photogenerated non-equilibrium carrier dynamics are responsible for the variation of Ic with P. We suggest that the SGS junction can directly mediate interactions between the optical field and the superconducting state.

  20. Meat-based functional foods for dietary equilibrium omega-6/omega-3.

    PubMed

    Reglero, Guillermo; Frial, Paloma; Cifuentes, Alejandro; García-Risco, Mónica R; Jaime, Laura; Marin, Francisco R; Palanca, Vicente; Ruiz-Rodríguez, Alejandro; Santoyo, Susana; Señoráns, Francisco J; Soler-Rivas, Cristina; Torres, Carlos; Ibañez, Elena

    2008-10-01

    Nutritionists encourage improving the diet by combining meat products with fish or other sea-related foods, in order to equilibrate the omega-6/omega-3 ratio. Strong scientific evidence supports the beneficial health effects of a balanced omega-6/omega-3 PUFA (poly unsaturated fatty acids) diets. In the present work, the scientific bases of new functional meat products with both a balanced omega-6/omega-3 ratio and a synergic combination of antioxidants are discussed. The aim is to contribute to the dietary equilibrium omega-6/omega-3 and to increase the antioxidant intake. Conventional meat products supplemented with a specific fatty acids and antioxidants combination led to functional foods with healthier nutritional parameters. PMID:18686293

  1. A rigorous multiple independent binding site model for determining cell-based equilibrium dissociation constants.

    PubMed

    Drake, Andrew W; Klakamp, Scott L

    2007-01-10

    A new 4-parameter nonlinear equation based on the standard multiple independent binding site model (MIBS) is presented for fitting cell-based ligand titration data in order to calculate the ligand/cell receptor equilibrium dissociation constant and the number of receptors/cell. The most commonly used linear (Scatchard Plot) or nonlinear 2-parameter model (a single binding site model found in commercial programs like Prism(R)) used for analysis of ligand/receptor binding data assumes only the K(D) influences the shape of the titration curve. We demonstrate using simulated data sets that, depending upon the cell surface receptor expression level, the number of cells titrated, and the magnitude of the K(D) being measured, this assumption of always being under K(D)-controlled conditions can be erroneous and can lead to unreliable estimates for the binding parameters. We also compare and contrast the fitting of simulated data sets to the commonly used cell-based binding equation versus our more rigorous 4-parameter nonlinear MIBS model. It is shown through these simulations that the new 4-parameter MIBS model, when used for cell-based titrations under optimal conditions, yields highly accurate estimates of all binding parameters and hence should be the preferred model to fit cell-based experimental nonlinear titration data. PMID:17141800

  2. Stability analysis of the Gravito-Electrostatic Sheath-based solar plasma equilibrium

    NASA Astrophysics Data System (ADS)

    Karmakar, P. K.; Goutam, H. P.; Lal, M.; Dwivedi, C. B.

    2016-08-01

    We present approximate solutions of non-local linear perturbational analysis for discussing the stability properties of the Gravito-Electrostatic Sheath (GES)-based solar plasma equilibrium, which is indeed non-uniform on both the bounded and unbounded scales. The relevant physical variables undergoing perturbations are the self-solar gravity, electrostatic potential and plasma flow along with plasma population density. We methodologically derive linear dispersion relation for the GES fluctuations, and solve it numerically to identify and characterize the existent possible natural normal modes. Three distinct natural normal modes are identified and named as the GES-oscillator mode, GES-wave mode and usual (classical) p-mode. In the solar wind plasma, only the p-mode survives. These modes are found to be linearly unstable in wide-range of the Jeans-normalized wavenumber, k. The local plane-wave approximation marginally limits the validity or reliability of the obtained results in certain radial- and k-domains only. The phase and group velocities, time periods of these fluctuation modes are investigated. It is interesting to note that, the oscillation time periods of these modes are 3-10 min, which match exactly with those of the observed helio-seismic waves and solar surface oscillations. The proposed GES model provides a novel physical view of the waves and oscillations of the Sun from a new perspective of plasma-wall interaction physics. Due to simplified nature of the considered GES equilibrium, it is a neonatal stage to highlight its applicability in the real Sun. The proposed GES model and subsequent fluctuation analysis need further improvements to make it more realistic.

  3. Hidden Conformation Events in DNA Base Extrusions: A Generalized Ensemble Path Optimization and Equilibrium Simulation Study.

    PubMed

    Cao, Liaoran; Lv, Chao; Yang, Wei

    2013-08-13

    DNA base extrusion is a crucial component of many biomolecular processes. Elucidating how bases are selectively extruded from the interiors of double-strand DNAs is pivotal to accurately understanding and efficiently sampling this general type of conformational transitions. In this work, the on-the-path random walk (OTPRW) method, which is the first generalized ensemble sampling scheme designed for finite-temperature-string path optimizations, was improved and applied to obtain the minimum free energy path (MFEP) and the free energy profile of a classical B-DNA major-groove base extrusion pathway. Along the MFEP, an intermediate state and the corresponding transition state were located and characterized. The MFEP result suggests that a base-plane-elongation event rather than the commonly focused base-flipping event is dominant in the transition state formation portion of the pathway; and the energetic penalty at the transition state is mainly introduced by the stretching of the Watson-Crick base pair. Moreover to facilitate the essential base-plane-elongation dynamics, the surrounding environment of the flipped base needs to be intimately involved. Further taking the advantage of the extended-dynamics nature of the OTPRW Hamiltonian, an equilibrium generalized ensemble simulation was performed along the optimized path; and based on the collected samples, several base-flipping (opening) angle collective variables were evaluated. In consistence with the MFEP result, the collective variable analysis result reveals that none of these commonly employed flipping (opening) angles alone can adequately represent the base extrusion pathway, especially in the pre-transition-state portion. As further revealed by the collective variable analysis, the base-pairing partner of the extrusion target undergoes a series of in-plane rotations to facilitate the base-plane-elongation dynamics. A base-plane rotation angle is identified to be a possible reaction coordinate to represent

  4. Game Theory Based Security in Wireless Body Area Network with Stackelberg Security Equilibrium.

    PubMed

    Somasundaram, M; Sivakumar, R

    2015-01-01

    Wireless Body Area Network (WBAN) is effectively used in healthcare to increase the value of the patient's life and also the value of healthcare services. The biosensor based approach in medical care system makes it difficult to respond to the patients with minimal response time. The medical care unit does not deploy the accessing of ubiquitous broadband connections full time and hence the level of security will not be high always. The security issue also arises in monitoring the user body function records. Most of the systems on the Wireless Body Area Network are not effective in facing the security deployment issues. To access the patient's information with higher security on WBAN, Game Theory with Stackelberg Security Equilibrium (GTSSE) is proposed in this paper. GTSSE mechanism takes all the players into account. The patients are monitored by placing the power position authority initially. The position authority in GTSSE is the organizer and all the other players react to the organizer decision. Based on our proposed approach, experiment has been conducted on factors such as security ratio based on patient's health information, system flexibility level, energy consumption rate, and information loss rate. Stackelberg Security considerably improves the strength of solution with higher security. PMID:26759829

  5. Game Theory Based Security in Wireless Body Area Network with Stackelberg Security Equilibrium

    PubMed Central

    Somasundaram, M.; Sivakumar, R.

    2015-01-01

    Wireless Body Area Network (WBAN) is effectively used in healthcare to increase the value of the patient's life and also the value of healthcare services. The biosensor based approach in medical care system makes it difficult to respond to the patients with minimal response time. The medical care unit does not deploy the accessing of ubiquitous broadband connections full time and hence the level of security will not be high always. The security issue also arises in monitoring the user body function records. Most of the systems on the Wireless Body Area Network are not effective in facing the security deployment issues. To access the patient's information with higher security on WBAN, Game Theory with Stackelberg Security Equilibrium (GTSSE) is proposed in this paper. GTSSE mechanism takes all the players into account. The patients are monitored by placing the power position authority initially. The position authority in GTSSE is the organizer and all the other players react to the organizer decision. Based on our proposed approach, experiment has been conducted on factors such as security ratio based on patient's health information, system flexibility level, energy consumption rate, and information loss rate. Stackelberg Security considerably improves the strength of solution with higher security. PMID:26759829

  6. Statistical enhancement of a dynamic equilibrium-based damage identification strategy: Theory and experimental validation

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Lu, Bo; Su, Zhongqing; Cheng, Li

    2015-09-01

    A previously developed damage identification strategy, named Pseudo-Excitation (PE), was enhanced using a statistical processing approach. In terms of the local dynamic equilibrium of the structural component under inspection, the distribution of its vibration displacements, which are of necessity to construct the damage index in the PE, was re-defined using sole dynamic strains based on the statistical method. On top of those advantages inheriting from the original PE compared with traditional vibration-based damage detection including the independence of baseline signals and pre-developed benchmark structures, the enhanced PE (EPE) possesses improved immunity to the interference of measurement noise. Moreover, the EPE can facilitate practical implementation of online structural health monitoring, benefiting from the use of sole strain information. Proof-of-concept numerical study was conducted to examine the feasibility and accuracy of the EPE, and the effectiveness of the proposed statistical enhancement in re-constructing the vibration displacements was evaluated under noise influence; experimental validation was followed up by characterizing multi-cracks in a beam-like structure, in which the dynamic strains were measured using Lead zirconium titanate (PZT) sensors. For comparison, the original PE, the Gapped Smoothing Method (GSM), and the EPE were respectively used to evaluate the cracks. It was observed from the damage identification results that both the GSM and EPE were able to achieve higher identification accuracy than the original PE, and the robustness of the EPE in damage identification was proven to be superior than that of the GSM.

  7. Pluto's atmosphere - Models based on refraction, inversion, and vapor-pressure equilibrium

    NASA Technical Reports Server (NTRS)

    Eshleman, Von R.

    1989-01-01

    Viking spacecraft radio-occultation measurements indicate that, irrespective of substantial differences, the polar ice cap regions on Mars have inversions similar to those of Pluto, and may also share vapor pressure equilibrium characteristics at the surface. This temperature-inversion phenomenon occurs in a near-surface boundary layer; surface pressure-temperature may correspond to the vapor-pressure equilibrium with CH4 ice, or the temperature may be slightly higher to match the value derived from IRAS data.

  8. A body-force based method to generate supersonic equilibrium turbulent boundary layer profiles

    NASA Astrophysics Data System (ADS)

    Waindim, M.; Gaitonde, D. V.

    2016-01-01

    We further develop a simple counterflow body force-based approach to generate an equilibrium spatially developing turbulent boundary layer suitable for Direct Numerical Simulations (DNS) or Large Eddy Simulations (LES) of viscous-inviscid interactions. The force essentially induces a small separated region in an incoming specified laminar boundary layer. The resulting unstable shear layer then transitions and breaks down to yield the desired unsteady profile. The effects of wall thermal conditions are explored to demonstrate the capability of the method for both fixed wall and adiabatic wall conditions. We then describe an efficient method to select parameters that ensure transition by examining precursor signatures using generalized stability variables. These precursors are shown to be evident in a computational domain spanning only a small region around the trip and can also be detected using 2D simulations. Finally, the method is tested for different Mach numbers ranging from 1.7 to 2.9, with emphasis on flow field surveys, Reynolds stresses, and energy spectra. These results provide guidance on boundary conditions for desired boundary layer thickness at each Mach number. The consequences of using a much lower Reynolds number in computation relative to experiment are evident at the higher Mach number, where a self sustaining turbulent boundary layer is more difficult to obtain.

  9. Efficient Nash Equilibrium Resource Allocation Based on Game Theory Mechanism in Cloud Computing by Using Auction

    PubMed Central

    Nezarat, Amin; Dastghaibifard, GH

    2015-01-01

    One of the most complex issues in the cloud computing environment is the problem of resource allocation so that, on one hand, the cloud provider expects the most profitability and, on the other hand, users also expect to have the best resources at their disposal considering the budget constraints and time. In most previous work conducted, heuristic and evolutionary approaches have been used to solve this problem. Nevertheless, since the nature of this environment is based on economic methods, using such methods can decrease response time and reducing the complexity of the problem. In this paper, an auction-based method is proposed which determines the auction winner by applying game theory mechanism and holding a repetitive game with incomplete information in a non-cooperative environment. In this method, users calculate suitable price bid with their objective function during several round and repetitions and send it to the auctioneer; and the auctioneer chooses the winning player based the suggested utility function. In the proposed method, the end point of the game is the Nash equilibrium point where players are no longer inclined to alter their bid for that resource and the final bid also satisfies the auctioneer’s utility function. To prove the response space convexity, the Lagrange method is used and the proposed model is simulated in the cloudsim and the results are compared with previous work. At the end, it is concluded that this method converges to a response in a shorter time, provides the lowest service level agreement violations and the most utility to the provider. PMID:26431035

  10. Efficient Nash Equilibrium Resource Allocation Based on Game Theory Mechanism in Cloud Computing by Using Auction.

    PubMed

    Nezarat, Amin; Dastghaibifard, G H

    2015-01-01

    One of the most complex issues in the cloud computing environment is the problem of resource allocation so that, on one hand, the cloud provider expects the most profitability and, on the other hand, users also expect to have the best resources at their disposal considering the budget constraints and time. In most previous work conducted, heuristic and evolutionary approaches have been used to solve this problem. Nevertheless, since the nature of this environment is based on economic methods, using such methods can decrease response time and reducing the complexity of the problem. In this paper, an auction-based method is proposed which determines the auction winner by applying game theory mechanism and holding a repetitive game with incomplete information in a non-cooperative environment. In this method, users calculate suitable price bid with their objective function during several round and repetitions and send it to the auctioneer; and the auctioneer chooses the winning player based the suggested utility function. In the proposed method, the end point of the game is the Nash equilibrium point where players are no longer inclined to alter their bid for that resource and the final bid also satisfies the auctioneer's utility function. To prove the response space convexity, the Lagrange method is used and the proposed model is simulated in the cloudsim and the results are compared with previous work. At the end, it is concluded that this method converges to a response in a shorter time, provides the lowest service level agreement violations and the most utility to the provider. PMID:26431035

  11. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    SciTech Connect

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly; Kim, Young Jin; Jardine, Philip M; Watson, David B

    2007-01-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  12. The Effect of Cooperative Learning Approach Based on Conceptual Change Condition on Students' Understanding of Chemical Equilibrium Concepts

    ERIC Educational Resources Information Center

    Bilgin, Ibrahim; Geban, Omer

    2006-01-01

    The purpose of this study is to investigate the effects of the cooperative learning approach based on conceptual change conditions over traditional instruction on 10th grade students' conceptual understanding and achievement of computational problems related to chemical equilibrium concepts. The subjects of this study consisted of 87 tenth grade…

  13. Binary mixtures of rod-like colloids under shear: microscopically-based equilibrium theory and order-parameter dynamics

    NASA Astrophysics Data System (ADS)

    Lugo-Frías, Rodrigo; Klapp, Sabine H. L.

    2016-06-01

    This paper is concerned with the dynamics of a binary mixture of rod-like, repulsive colloidal particles driven out of equilibrium by means of a steady shear flow (Couette geometry). To this end we first derive, starting from a microscopic density functional in Parsons–Lee approximation, a mesoscopic free energy functional whose main variables are the orientational order parameter tensors. Based on this mesoscopic functional we then explore the stability of isotropic and nematic equilibrium phases in terms of composition and rod lengths. Second, by combining the equilibrium theory with the Doi–Hess approach for the order parameter dynamics under shear, we investigate the orientational dynamics of binary mixtures for a range of shear rates and coupling parameters. We find a variety of dynamical states, including synchronized oscillatory states of the two components, but also symmetry breaking behavior where the components display different in-plane oscillatory states.

  14. Binary mixtures of rod-like colloids under shear: microscopically-based equilibrium theory and order-parameter dynamics.

    PubMed

    Lugo-Frías, Rodrigo; Klapp, Sabine H L

    2016-06-22

    This paper is concerned with the dynamics of a binary mixture of rod-like, repulsive colloidal particles driven out of equilibrium by means of a steady shear flow (Couette geometry). To this end we first derive, starting from a microscopic density functional in Parsons-Lee approximation, a mesoscopic free energy functional whose main variables are the orientational order parameter tensors. Based on this mesoscopic functional we then explore the stability of isotropic and nematic equilibrium phases in terms of composition and rod lengths. Second, by combining the equilibrium theory with the Doi-Hess approach for the order parameter dynamics under shear, we investigate the orientational dynamics of binary mixtures for a range of shear rates and coupling parameters. We find a variety of dynamical states, including synchronized oscillatory states of the two components, but also symmetry breaking behavior where the components display different in-plane oscillatory states. PMID:27115342

  15. Community-Based Global Health Program for Maltreated Children and Adolescents in Brazil: The Equilibrium Program.

    PubMed

    Marques, Andrea Horvath; Oliveira, Paula Approbato; Scomparini, Luciana Burim; Silva, Uiara Maria Rêgo E; Silva, Angelica Cristine; Doretto, Victoria; de Medeiros Filho, Mauro Victor; Scivoletto, Sandra

    2015-01-01

    The maltreatment of children and adolescents is a global public health problem that affects high- and low-middle income countries ("LMICs"). In the United States, around 1.2 million children suffer from abuse, while in LMICs, such as Brazil, these rates are much higher (an estimated 28 million children). Exposition to early environmental stress has been associated with suboptimal physical and brain development, persistent cognitive impairment, and behavioral problems. Studies have reported that children exposed to maltreatment are at high risk of behavioral problems, learning disabilities, communication and psychiatric disorders, and general clinical conditions, such as obesity and systemic inflammation later in life. The aim of this paper is to describe The Equilibrium Program ("TEP"), a community-based global health program implemented in São Paulo, Brazil to serve traumatized and neglected children and adolescents. We will describe and discuss TEP's implementation, highlighting its innovation aspects, research projects developed within the program as well as its population profile. Finally, we will discuss TEP's social impact, challenges, and limitations. The program's goal is to promote the social and family reintegration of maltreated children and adolescents through an interdisciplinary intervention program that provides multi-dimensional bio-psycho-social treatment integrated with the diverse services needed to meet the unique demands of this population. The program's cost effectiveness is being evaluated to support the development of more effective treatments and to expand similar programs in other areas of Brazil. Policy makers should encourage early evidence-based interventions for disadvantaged children to promote healthier psychosocial environments and provide them opportunities to become healthy and productive adults. This approach has already shown itself to be a cost-effective strategy to prevent disease and promote health. PMID:26283972

  16. Community-Based Global Health Program for Maltreated Children and Adolescents in Brazil: The Equilibrium Program

    PubMed Central

    Marques, Andrea Horvath; Oliveira, Paula Approbato; Scomparini, Luciana Burim; Silva, Uiara Maria Rêgo e; Silva, Angelica Cristine; Doretto, Victoria; de Medeiros Filho, Mauro Victor; Scivoletto, Sandra

    2015-01-01

    The maltreatment of children and adolescents is a global public health problem that affects high- and low-middle income countries (“LMICs”). In the United States, around 1.2 million children suffer from abuse, while in LMICs, such as Brazil, these rates are much higher (an estimated 28 million children). Exposition to early environmental stress has been associated with suboptimal physical and brain development, persistent cognitive impairment, and behavioral problems. Studies have reported that children exposed to maltreatment are at high risk of behavioral problems, learning disabilities, communication and psychiatric disorders, and general clinical conditions, such as obesity and systemic inflammation later in life. The aim of this paper is to describe The Equilibrium Program (“TEP”), a community-based global health program implemented in São Paulo, Brazil to serve traumatized and neglected children and adolescents. We will describe and discuss TEP’s implementation, highlighting its innovation aspects, research projects developed within the program as well as its population profile. Finally, we will discuss TEP’s social impact, challenges, and limitations. The program’s goal is to promote the social and family reintegration of maltreated children and adolescents through an interdisciplinary intervention program that provides multi-dimensional bio-psycho-social treatment integrated with the diverse services needed to meet the unique demands of this population. The program’s cost effectiveness is being evaluated to support the development of more effective treatments and to expand similar programs in other areas of Brazil. Policy makers should encourage early evidence-based interventions for disadvantaged children to promote healthier psychosocial environments and provide them opportunities to become healthy and productive adults. This approach has already shown itself to be a cost-effective strategy to prevent disease and promote health. PMID

  17. Equilibrium Shaping

    NASA Astrophysics Data System (ADS)

    Izzo, Dario; Petazzi, Lorenzo

    2006-08-01

    We present a satellite path planning technique able to make identical spacecraft aquire a given configuration. The technique exploits a behaviour-based approach to achieve an autonomous and distributed control over the relative geometry making use of limited sensorial information. A desired velocity is defined for each satellite as a sum of different contributions coming from generic high level behaviours: forcing the final desired configuration the behaviours are further defined by an inverse dynamic calculation dubbed Equilibrium Shaping. We show how considering only three different kind of behaviours it is possible to acquire a number of interesting formations and we set down the theoretical framework to find the entire set. We find that allowing a limited amount of communication the technique may be used also to form complex lattice structures. Several control feedbacks able to track the desired velocities are introduced and discussed. Our results suggest that sliding mode control is particularly appropriate in connection with the developed technique.

  18. Entropy-based artificial viscosity stabilization for non-equilibrium Grey Radiation-Hydrodynamics

    SciTech Connect

    Delchini, Marc O. Ragusa, Jean C. Morel, Jim

    2015-09-01

    The entropy viscosity method is extended to the non-equilibrium Grey Radiation-Hydrodynamic equations. The method employs a viscous regularization to stabilize the numerical solution. The artificial viscosity coefficient is modulated by the entropy production and peaks at shock locations. The added dissipative terms are consistent with the entropy minimum principle. A new functional form of the entropy residual, suitable for the Radiation-Hydrodynamic equations, is derived. We demonstrate that the viscous regularization preserves the equilibrium diffusion limit. The equations are discretized with a standard Continuous Galerkin Finite Element Method and a fully implicit temporal integrator within the MOOSE multiphysics framework. The method of manufactured solutions is employed to demonstrate second-order accuracy in both the equilibrium diffusion and streaming limits. Several typical 1-D radiation-hydrodynamic test cases with shocks (from Mach 1.05 to Mach 50) are presented to establish the ability of the technique to capture and resolve shocks.

  19. Effect of Non-Equilibrium Surface Thermochemistry in Simulation of Carbon Based Ablators

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Gokcen, Tahir

    2012-01-01

    This study demonstrates that coupling of a material thermal response code and a flow solver using non-equilibrium gas/surface interaction model provides time-accurate solutions for the multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and AblatioN Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas mass conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between the material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of nonequilibrium gas/surface interaction chemistry between air and the carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.

  20. PC-based package for interactive assessment of MHD equilibrium and poloidal field coil design in axisymmetric toroidal geometry

    SciTech Connect

    Kelleher, W.P.

    1987-01-01

    In the assessment of Magnetohydrodynamic (MHD) equilibrium and Poloidal Field Coil (PFC) arrangement for toroidal axisymmetric geometry, the Grad-Shafranov equation must be solved, either analytically or numerically. Existing numerical tools have been developed primarily for mainframe usage and can prove cumbersome for screening assessments and parametric evaluations. The objective of this thesis was to develop a personal computer (PC)-based calculational tool for assessing MHD/PFC problems in a highly interactive mode, well suited for scoping studies. The approach adopted involves a two-step process: first the MHD equilibrium is calculated and then the PFC arrangement, consistent with the equilibrium, is determined in an interactive design environment. The PC-based system developed consists of two programs: (1) PCEQ, which solve the MHD equilibrium problem and (2) PFDE-SIGN, which is employed to arrive at a PFC arrangement. PCEQ provides an output file including, but not limited to, the following: poloidal beta, total beta, safety factors, q, on axis and on edge. PCEQ plots the following contours and/or profiles: flux, pressure and toroidal current density, safety factor, and ratio of plasma toroidal field to vacuum field.

  1. Partition Equilibrium

    NASA Astrophysics Data System (ADS)

    Feldman, Michal; Tennenholtz, Moshe

    We introduce partition equilibrium and study its existence in resource selection games (RSG). In partition equilibrium the agents are partitioned into coalitions, and only deviations by the prescribed coalitions are considered. This is in difference to the classical concept of strong equilibrium according to which any subset of the agents may deviate. In resource selection games, each agent selects a resource from a set of resources, and its payoff is an increasing (or non-decreasing) function of the number of agents selecting its resource. While it has been shown that strong equilibrium exists in resource selection games, these games do not possess super-strong equilibrium, in which a fruitful deviation benefits at least one deviator without hurting any other deviator, even in the case of two identical resources with increasing cost functions. Similarly, strong equilibrium does not exist for that restricted two identical resources setting when the game is played repeatedly. We prove that for any given partition there exists a super-strong equilibrium for resource selection games of identical resources with increasing cost functions; we also show similar existence results for a variety of other classes of resource selection games. For the case of repeated games we identify partitions that guarantee the existence of strong equilibrium. Together, our work introduces a natural concept, which turns out to lead to positive and applicable results in one of the basic domains studied in the literature.

  2. Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation.

    PubMed

    Yin, Yudan; Niu, Lin; Zhu, Xiaocui; Zhao, Meiping; Zhang, Zexin; Mann, Stephen; Liang, Dehai

    2016-01-01

    Although numerous strategies are now available to generate rudimentary forms of synthetic cell-like entities, minimal progress has been made in the sustained excitation of artificial protocells under non-equilibrium conditions. Here we demonstrate that the electric field energization of coacervate microdroplets comprising polylysine and short single strands of DNA generates membrane-free protocells with complex, dynamical behaviours. By confining the droplets within a microfluidic channel and applying a range of electric field strengths, we produce protocells that exhibit repetitive cycles of vacuolarization, dynamical fluctuations in size and shape, chaotic growth and fusion, spontaneous ejection and sequestration of matter, directional capture of solute molecules, and pulsed enhancement of enzyme cascade reactions. Our results highlight new opportunities for the study of non-equilibrium phenomena in synthetic protocells, provide a strategy for inducing complex behaviour in electrostatically assembled soft matter microsystems and illustrate how dynamical properties can be activated and sustained in microcompartmentalized media. PMID:26876162

  3. Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation

    PubMed Central

    Yin, Yudan; Niu, Lin; Zhu, Xiaocui; Zhao, Meiping; Zhang, Zexin; Mann, Stephen; Liang, Dehai

    2016-01-01

    Although numerous strategies are now available to generate rudimentary forms of synthetic cell-like entities, minimal progress has been made in the sustained excitation of artificial protocells under non-equilibrium conditions. Here we demonstrate that the electric field energization of coacervate microdroplets comprising polylysine and short single strands of DNA generates membrane-free protocells with complex, dynamical behaviours. By confining the droplets within a microfluidic channel and applying a range of electric field strengths, we produce protocells that exhibit repetitive cycles of vacuolarization, dynamical fluctuations in size and shape, chaotic growth and fusion, spontaneous ejection and sequestration of matter, directional capture of solute molecules, and pulsed enhancement of enzyme cascade reactions. Our results highlight new opportunities for the study of non-equilibrium phenomena in synthetic protocells, provide a strategy for inducing complex behaviour in electrostatically assembled soft matter microsystems and illustrate how dynamical properties can be activated and sustained in microcompartmentalized media. PMID:26876162

  4. Development of a non-equilibrium quantum transport calculation method based on constrained density functional

    NASA Astrophysics Data System (ADS)

    Kim, Han Seul; Kim, Yong-Hoon

    2015-03-01

    We report on the development of a novel first-principles method for the calculation of non-equilibrium quantum transport process. Within the scheme, non-equilibrium situation and quantum transport within the open-boundary condition are described by the region-dependent Δ self-consistent field method and matrix Green's function theory, respectively. We will discuss our solutions to the technical difficulties in describing bias-dependent electron transport at complicated nanointerfaces and present several application examples. Global Frontier Program (2013M3A6B1078881), Basic Science Research Grant (2012R1A1A2044793), EDISON Program (No. 2012M3C1A6035684), and 2013 Global Ph.D fellowship program of the National Research Foundation. KISTI Supercomputing Center (KSC-2014-C3-021).

  5. Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation

    NASA Astrophysics Data System (ADS)

    Yin, Yudan; Niu, Lin; Zhu, Xiaocui; Zhao, Meiping; Zhang, Zexin; Mann, Stephen; Liang, Dehai

    2016-02-01

    Although numerous strategies are now available to generate rudimentary forms of synthetic cell-like entities, minimal progress has been made in the sustained excitation of artificial protocells under non-equilibrium conditions. Here we demonstrate that the electric field energization of coacervate microdroplets comprising polylysine and short single strands of DNA generates membrane-free protocells with complex, dynamical behaviours. By confining the droplets within a microfluidic channel and applying a range of electric field strengths, we produce protocells that exhibit repetitive cycles of vacuolarization, dynamical fluctuations in size and shape, chaotic growth and fusion, spontaneous ejection and sequestration of matter, directional capture of solute molecules, and pulsed enhancement of enzyme cascade reactions. Our results highlight new opportunities for the study of non-equilibrium phenomena in synthetic protocells, provide a strategy for inducing complex behaviour in electrostatically assembled soft matter microsystems and illustrate how dynamical properties can be activated and sustained in microcompartmentalized media.

  6. Helical equilibrium

    SciTech Connect

    Yoshikawa, S.

    1981-08-01

    A straight, helical plasma equilibrium equation is solved numerically for a plasma with a helical magnetic axis. As is expected, by a suitable choice of the plasma boundary, the vacuum configuration is made line ..integral.. dl/B stable. As the plasma pressure increases, the line ..integral.. dl/B criterion will improve (again as expected). There is apparently no limit on the plasma ..beta.. from the equilibrium consideration. Thus helical-axis stellarator ..beta.. will presumably be limited by MHD stability ..beta.., and not by equilibrium ..beta...

  7. Two-phase quasi-equilibrium in β-type Ti-based bulk metallic glass composites

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Pauly, S.; Tang, M. Q.; Eckert, J.; Zhang, H. F.

    2016-01-01

    The microstructural evolution of cast Ti/Zr-based bulk metallic glass composites (BMGCs) containing β-Ti still remains ambiguous. This is why to date the strategies and alloys suitable for producing such BMGCs with precisely controllable volume fractions and crystallite sizes are still rather limited. In this work, a Ti-based BMGC containing β-Ti was developed in the Ti-Zr-Cu-Co-Be system. The glassy matrix of this BMGC possesses an exceptional glass-forming ability and as a consequence, the volume fractions as well as the composition of the β-Ti dendrites remain constant over a wide range of cooling rates. This finding can be explained in terms of a two-phase quasi-equilibrium between the supercooled liquid and β-Ti, which the system attains on cooling. The two-phase quasi-equilibrium allows predicting the crystalline and glassy volume fractions by means of the lever rule and we succeeded in reproducing these values by slight variations in the alloy composition at a fixed cooling rate. The two-phase quasi-equilibrium could be of critical importance for understanding and designing the microstructures of BMGCs containing the β-phase. Its implications on the nucleation and growth of the crystalline phase are elaborated.

  8. Two-phase quasi-equilibrium in β-type Ti-based bulk metallic glass composites

    PubMed Central

    Zhang, L.; Pauly, S.; Tang, M. Q.; Eckert, J.; Zhang, H. F.

    2016-01-01

    The microstructural evolution of cast Ti/Zr-based bulk metallic glass composites (BMGCs) containing β-Ti still remains ambiguous. This is why to date the strategies and alloys suitable for producing such BMGCs with precisely controllable volume fractions and crystallite sizes are still rather limited. In this work, a Ti-based BMGC containing β-Ti was developed in the Ti-Zr-Cu-Co-Be system. The glassy matrix of this BMGC possesses an exceptional glass-forming ability and as a consequence, the volume fractions as well as the composition of the β-Ti dendrites remain constant over a wide range of cooling rates. This finding can be explained in terms of a two-phase quasi-equilibrium between the supercooled liquid and β-Ti, which the system attains on cooling. The two-phase quasi-equilibrium allows predicting the crystalline and glassy volume fractions by means of the lever rule and we succeeded in reproducing these values by slight variations in the alloy composition at a fixed cooling rate. The two-phase quasi-equilibrium could be of critical importance for understanding and designing the microstructures of BMGCs containing the β-phase. Its implications on the nucleation and growth of the crystalline phase are elaborated. PMID:26754315

  9. Reconciling kinetic and equilibrium observations of iron(III) solubility in aqueous solutions with a polymer-based model

    NASA Astrophysics Data System (ADS)

    Rose, Andrew L.; David Waite, T.

    2007-12-01

    Due to hydrolysis reactions, iron(III) forms oxyhydroxide precipitates in natural waters that minimise its availability to living organisms. Thermodynamic studies have established equilibrium concentrations of dissolved iron at various pH values, however these studies offer no insight into the kinetics of iron(III) polymerisation and subsequent precipitation. In recent work, the kinetics of iron(III) precipitation and dissolution of the precipitate have been investigated, but there are apparent discrepancies between the equilibrium solubility of iron(III) calculated from the kinetic parameters and its solubility measured by separation of the solid and dissolved phases at equilibrium. In this work, we reconcile kinetic and thermodynamic measurements using a polymer-based mechanistic model of the processes responsible for iron(III) precipitation in aqueous solutions based on a variety of previously published experimental data. This model is used to explain the existence of a solubility limit, including the effect of precipitate ageing on its solubility. We suggest that the model provides a unified approach for examining aqueous systems containing dissolved, solid-phase and surface species.

  10. Two-phase quasi-equilibrium in β-type Ti-based bulk metallic glass composites.

    PubMed

    Zhang, L; Pauly, S; Tang, M Q; Eckert, J; Zhang, H F

    2016-01-01

    The microstructural evolution of cast Ti/Zr-based bulk metallic glass composites (BMGCs) containing β-Ti still remains ambiguous. This is why to date the strategies and alloys suitable for producing such BMGCs with precisely controllable volume fractions and crystallite sizes are still rather limited. In this work, a Ti-based BMGC containing β-Ti was developed in the Ti-Zr-Cu-Co-Be system. The glassy matrix of this BMGC possesses an exceptional glass-forming ability and as a consequence, the volume fractions as well as the composition of the β-Ti dendrites remain constant over a wide range of cooling rates. This finding can be explained in terms of a two-phase quasi-equilibrium between the supercooled liquid and β-Ti, which the system attains on cooling. The two-phase quasi-equilibrium allows predicting the crystalline and glassy volume fractions by means of the lever rule and we succeeded in reproducing these values by slight variations in the alloy composition at a fixed cooling rate. The two-phase quasi-equilibrium could be of critical importance for understanding and designing the microstructures of BMGCs containing the β-phase. Its implications on the nucleation and growth of the crystalline phase are elaborated. PMID:26754315

  11. Renal regulation of acid-base equilibrium during chronic administration of mineral acid.

    PubMed

    De Sousa, R C; Harrington, J T; Ricanati, E S; Shelkrot, J W; Schwartz, W B

    1974-02-01

    load is the inability of the distal exchange mechanism to conserve the Na+ increment fully by means of H+ exchange. Escape of Na+ and K+ into the urine and the resulting stimulus to Na(+)-H+ exchange remove this constraint and are responsible for establishment of a new steady-state of acid-base equilibrium at plasma [HCO3-] levels significantly higher than those seen with HCl. The feeding of HCl in the presence of a normal salt intake led to a degree of metabolic acidosis not significantly different from that seen in dogs ingesting a low-salt diet. We suggest that the presence of dietary sodium at distal exchange sites did not enhance acid excretion because it is only after a loss of body sodium stores that sodium avidity is increased sufficiently to allow full removal of the acid load. The present findings indicate that the fundamental factors controlling acid excretion and bicarbonate reabsorption in metabolic acidosis are closely similar to those operative in metabolic alkalosis. PMID:11344560

  12. Effect of Acid-Base Equilibrium on Absorption Spectra of Humic acid in the Presence of Copper Ions

    NASA Astrophysics Data System (ADS)

    Lavrik, N. L.; Mulloev, N. U.

    2014-03-01

    The reaction between humic acid (HA, sample IHSS) and a metal ion (Cu2+) that was manifested as absorption bands in the range 210-350 nm was recorded using absorption spectroscopy. The reaction was found to be more effective as the pH increased. These data were interpreted in the framework of generally accepted concepts about the influence of acid-base equilibrium on the dissociation of salts, according to which increasing the solution pH increases the concentration of HA anions. It was suggested that [HA-Cu2+] complexes formed.

  13. Novel tannin-based adsorbent in removing cationic dye (Methylene Blue) from aqueous solution. Kinetics and equilibrium studies.

    PubMed

    Sánchez-Martín, J; González-Velasco, M; Beltrán-Heredia, J; Gragera-Carvajal, J; Salguero-Fernández, J

    2010-02-15

    Natural tannin-based adsorbent has been prepared on the basis of the gelification of Quebracho bark extract. The resulting product, Quebracho Tannin Gel (QTG) was tested as cationic dye adsorbent with Methylene Blue (MB). Kinetics of adsorption process were studied out and a period of 15 days was determined for reaching equilibrium. The influences of pH and temperature were evaluated. As pH or temperature raise q capacity of QTG increases. Theoretical modelization of dye-QTG adsorption was carried out by multiparametric adjustment according to Langmuir's hypothesis. Values of the k(l1), k(l2) and activation energies were calculated. PMID:19782466

  14. Speciation and equilibrium relations of soluble aluminum in a headwater stream at base flow and during rain events

    USGS Publications Warehouse

    Burns, Douglas A.

    1989-01-01

    In the Shenandoah National Park, Virginia, the short-term dynamics of soluble aluminum in stream water sampled during rain events differed significantly from stream water sampled during base flow conditions. Three fractions of dissolved aluminum were measured. The inorganic monomeric fraction made up approximately two thirds of the total reactive aluminum at base flow, followed by the acid-soluble and organic monomeric fractions, respectively. Equilibrium modeling showed that hydroxide complexes were the most abundant form of inorganic monomeric aluminum followed by fluoride, free aluminum ion, and sulfate. The activity of inorganic monomeric aluminum at base flow appears to be in equilibrium with an Al(OH)3 phase with solubility intermediate between microcrystalline gibbsite and natural gibbsite. During two rain events, the concentration of all three aluminum fractions increased significantly. The primary cause of the transient increase in the Al(OH)3 saturation index appears to have been the neutralization of excess H+ added by soil water through reaction with stream water HCO3- at a more rapid rate than excess inorganic monomeric aluminum could be removed from solution by hydroxide mineral precipitation. -from Author

  15. Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS

    NASA Astrophysics Data System (ADS)

    Gualda, G. A.; Ghiorso, M. S.; Begue, F.; Pamukcu, A. S.; Gravley, D. M.

    2013-12-01

    Constraining the pressure of crystallization of magmas is an important but elusive task. We propose here a method to derive crystallization pressures for rocks that preserve glass compositions (either glass inclusions or matrix glass) representative of equilibration between melt, quartz, and 1 or 2 feldspars. The method relies on the shift of the quartz-feldspar saturation surface towards higher silica with decreasing pressure. The critical realization is that melt, quartz and feldspars need to be in equilibrium at the liquidus for the melt composition of interest. Thus, this method consists of calculating the saturation surfaces for quartz and feldspars using rhyolite-MELTS over a range of pressures, and searching for the pressure at which the expected assemblage (quartz+1 feldspar or quartz+2 feldspars) is found at the liquidus. We evaluate errors resulting from uncertainties in glass composition using Monte Carlo simulations, which reveal errors of ~20-45 MPa for the quartz+2 feldspars constraint and of ~25-100 MPa for the quartz+1 feldspar constraint; actual errors are likely closer to the lower bounds of these ranges. We demonstrate that the effect of fluid-saturation is more important at higher pressures (~300 MPa) than at lower pressures (~100 MPa), but reasonable pressure estimates can be derived irrespective of fluid saturation for geologically relevant H2O concentrations (>3 wt. %). And, we show that pressures calculated using the rhyolite-MELTS geobarometer compare well with those resulting from H2O-CO2 glass inclusion barometry and Al-in-hornblende barometry for an array of natural systems for which data has been compiled from the literature. We apply the rhyolite-MELTS barometer to three systems we are currently studying in detail: (1) For the Bishop Tuff (CA, USA), we find that quartz-hosted glass inclusion compositions yield indistinguishable crystallization pressures for early-erupted and late-erupted pumice, consistent with the Bishop Tuff having

  16. Dynamic Acid/Base Equilibrium in Single Component Switchable Ionic Liquids and Consequences on Viscosity.

    PubMed

    Cantu, David C; Lee, Juntaek; Lee, Mal-Soon; Heldebrant, David J; Koech, Phillip K; Freeman, Charles J; Rousseau, Roger; Glezakou, Vassiliki-Alexandra

    2016-05-01

    The deployment of transformational nonaqueous CO2-capture solvent systems is encumbered by high viscosities even at intermediate uptakes. Using single-molecule CO2 binding organic liquids as a prototypical example, we present key molecular features that control bulk viscosity. Fast CO2-uptake kinetics arise from close proximity of the alcohol and amine sites involved in CO2 binding in a concerted fashion, resulting in a Zwitterion containing both an alkyl-carbonate and a protonated amine. The population of internal hydrogen bonds between the two functional groups determines the solution viscosity. Unlike the ion pair interactions in ionic liquids, these observations are novel and specific to a hydrogen-bonding network that can be controlled by chemically tuning single molecule CO2 capture solvents. We present a molecular design strategy to reduce viscosity by shifting the proton transfer equilibrium toward a neutral acid/amine species, as opposed to the ubiquitously accepted zwitterionic state. The molecular design concepts proposed here are readily extensible to other CO2 capture technologies. PMID:27019342

  17. Equilibrium-Based Movement Endpoints Elicited from Primary Motor Cortex Using Repetitive Microstimulation

    PubMed Central

    Van Acker, Gustaf M.; Amundsen, Sommer L.; Messamore, William G.; Zhang, Hongyu Y.; Luchies, Carl W.

    2014-01-01

    High-frequency, long-duration intracortical microstimulation (HFLD-ICMS) is increasingly being used to deduce how the brain encodes coordinated muscle activity and movement. However, the full movement repertoire that can be elicited from the forelimb representation of primary motor cortex (M1) using this method has not been systematically determined. Our goal was to acquire a comprehensive M1 forelimb representational map of movement endpoints elicited with HFLD-ICMS, using stimulus parameters optimal for evoking stable forelimb spatial endpoints. The data reveal a 3D forelimb movement endpoint workspace that is represented in a patchwork fashion on the 2D M1 cortical surface. Although cortical maps of movement endpoints appear quite disorderly with respect to movement space, we show that the endpoint locations in the workspace evoked with HFLD-ICMS of two adjacent cortical points are closer together than would be expected if the organization were random. Although there were few obvious consistencies in the endpoint maps across the two monkeys tested, one notable exception was endpoints bringing the hand to the mouth, which was located at the boundary between the hand and face representation. Endpoints at the extremes of the monkey's workspace and locations above the head were largely absent. Our movement endpoints are best explained as resulting from coactivation of agonist and antagonist muscles driving the joints toward equilibrium positions determined by the length–tension relationships of the muscles. PMID:25411500

  18. Modeling of methane and ethane hydrate formation kinetics based on non-equilibrium thermodynamics

    NASA Astrophysics Data System (ADS)

    Mottahedin, Mona; Varaminian, Farshad; Mafakheri, Kaveh

    2011-05-01

    In this study, experimental data of the kinetics of methane and ethane hydrate formation at constant volume were collected. The experiments were carried out in a batch reactor at different temperatures and pressures. The property of chemical affinity was used in the modeling of hydrate formation rate in a constant volume process. In this model a macroscopic driving force was defined which only needed the initial (experimental condition, temperature, and pressure) and final conditions (equilibrium conditions); thus, this model did not have the limitations of microscopic models, such as heat and mass transfer coefficients or population of particles, which may differ for each experiment. The experiments were carried out at temperatures 273, 274, 275.5, and 276 K for methane and 272, 273, 274, and 275 K for ethane with different initial pressures. The parameters of the model, Ar and tK , were obtained for each experiment, and the results show that the parameter of for each gas has a constant value. Subsequently, parameters of the model were used to predict experimental data and the variation of pressures with time. The results indicated that this model can well predict constant volume experimental data for crystals I hydrate former.

  19. Development of an identification method of pressure anisotropy based on equilibrium analysis and magnetics

    SciTech Connect

    Asahi, Y.; Suzuki, Y.; Watanabe, K. Y.; Cooper, W. A.

    2013-02-15

    We evaluate the fluxes measured by the magnetic flux loops installed in LHD by using a three dimensional MHD equilibrium analysis code, ANIMEC, which enable us to directly determine the calibration function between the anisotropic pressure and the measured fluxes for the non-axisymmetric plasmas for the first time. The result indicates that the diamagnetic flux represents a nearly single-valued function of the beta perpendicular with respect to the field, and the saddle loop flux represents a nearly single-valued function of an equally weighted average of the beta values parallel and perpendicular to the field, regardless of the pressure anisotropy or the amount of energetic trapped particles. The values of the beta perpendicular to the field and the equal weighting averaged beta estimated by the single-valued functions (calibration functions) are investigated in order to clarify the magnitude of deviation from those original values, and the range of anisotropy where the beta value evaluated by the magnetic flux measurement is calculated within a 10% error.

  20. Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green's functions

    SciTech Connect

    Lindskog, M. Wacker, A.; Wolf, J. M.; Liverini, V.; Faist, J.; Trinite, V.; Maisons, G.; Carras, M.; Aidam, R.; Ostendorf, R.

    2014-09-08

    We study the operation of an 8.5 μm quantum cascade laser based on GaInAs/AlInAs lattice matched to InP using three different simulation models based on density matrix (DM) and non-equilibrium Green's function (NEGF) formulations. The latter advanced scheme serves as a validation for the simpler DM schemes and, at the same time, provides additional insight, such as the temperatures of the sub-band carrier distributions. We find that for the particular quantum cascade laser studied here, the behavior is well described by simple quantum mechanical estimates based on Fermi's golden rule. As a consequence, the DM model, which includes second order currents, agrees well with the NEGF results. Both these simulations are in accordance with previously reported data and a second regrown device.

  1. Tropical forests are non-equilibrium ecosystems governed by interspecific competition based on universal 1/6 niche width.

    PubMed

    Fort, Hugo; Inchausti, Pablo

    2013-01-01

    Tropical forests are mega-diverse ecosystems that display complex and non-equilibrium dynamics. However, theoretical approaches have largely focused on explaining steady-state behaviour and fitting snapshots of data. Here we show that local and niche interspecific competition can realistically and parsimoniously explain the observed non-equilibrium regime of permanent plots of nine tropical forests, in eight different countries. Our spatially-explicit model, besides predicting with accuracy the main biodiversity metrics for these plots, can also reproduce their dynamics. A central finding is that tropical tree species have a universal niche width of approximately 1/6 of the niche axis that echoes the observed widespread convergence in their functional traits enabling them to exploit similar resources and to coexist despite of having large niche overlap. This niche width yields an average ratio of 0.25 between interspecific and intraspecific competition that corresponds to an intermediate value between the extreme claims of the neutral model and the classical niche-based model of community assembly (where interspecific competition is dominant). In addition, our model can explain and yield observed spatial patterns that classical niche-based and neutral theories cannot. PMID:24386115

  2. Numerical analysis of unsteady cavitating flow by using a modification based on an assumption of apparent phase equilibrium

    NASA Astrophysics Data System (ADS)

    Iga, Y.

    2014-03-01

    The prediction accuracy of cavitation by CFD is still not so high even in a simplest flow field around a single hydrofoil especially in transient condition at higher angle of attack, which is common problem in both commercial software and in-house solvers. In the transient condition, unsteady cavitation occurs, in which sheet cavity breaks off and cloud cavity sheds downstream periodically. At that time, the sheet cavity length tends to be underestimated in usual CFD. In the present study, modification for the phase change model is suggested, which is based on an idea of apparent phase equilibrium on gas-liquid interface with unsteady and disturbed flow. At first, a preliminary experiment has been done for evaporation on two gas- liquid interfaces with and without flow, the result contributes the evidence of the idea of apparent phase equilibrium with flow. In the result, the pressure around gas-liquid interface with flow was higher than that without flow on the occasion of evaporation, it means flow accelerates evaporation. I treat the gap of the pressure as a gap of phase equilibrium pressure macroscopically. Then, numerical simulation of cavitating flow around a hydrofoil is performed with a modification of phase change model in the transient condition at higher angle of attack which is most difficult to predict by the present solvers. In the modification, the gap of the pressure with and without flow is taken into account according to a value of a local variation of velocity in the cavitating flow filed. The formulation is similar to the PDF model for phase change model in cavitation by Singhal. The numerical results by the present modification are compared among few pressure variation components which are assumed to accelerate the evaporation in transient cavitation.

  3. Generator Control Based on Equilibrium Point Analysis of Standard One-Machine Infinite-Bus System Model—Comparison with PSS—

    NASA Astrophysics Data System (ADS)

    Kawamoto, Shunji; Zhang, Jian; Yamamoto, Hiroyoshi; Fujimoto, Koji

    We have recently proposed a new controller based on the equilibrium point analysis for model power systems. In this paper, first the Japanese standard one-machine infinite-bus system model is formulated, and the equilibrium points are analyzed. Next, complementary control inputs for AVR and GOV with limiters of the model system are determined on the basis of the analysis. Finally, it is shown that the unstable equilibrium point is eliminated by adding the proposed inputs, and then the critical clearing time can be improved in comparison with PSS of the standard model.

  4. A personal-computer-based package for interactive assessment of magnetohydrodynamic equilibrium and poloidal field coil design in axisymmetric toroidal geometry

    SciTech Connect

    Kelleher, W.P. ); Steiner, D. . Dept. of Nuclear Science)

    1989-07-01

    A personal-computer (PC)-based calculational approach assesses magnetohydrodynamic (MHD) equilibrium and poloidal field (PF) coil arrangement in a highly interactive mode, well suited for tokamak scoping studies. The system developed involves a two-step process: the MHD equilibrium is calculated and then a PF coil arrangement, consistent with the equilibrium is determined in an interactive design environment. In this paper the approach is used to examine four distinctly different toroidal configurations: the STARFIRE rector, a spherical torus (ST), the Big Dee, and an elongated tokamak. In these applications the PC-based results are benchmarked against those of a mainframe code for STARFIRE, ST, and Big Dee. The equilibrium and PF coil arrangement calculations obtained with the PC approach agree within a few percent with those obtained with the mainframe code.

  5. Comparative Analysis of the Flax Immune Receptors L6 and L7 Suggests an Equilibrium-Based Switch Activation Model.

    PubMed

    Bernoux, Maud; Burdett, Hayden; Williams, Simon J; Zhang, Xiaoxiao; Chen, Chunhong; Newell, Kim; Lawrence, Gregory J; Kobe, Bostjan; Ellis, Jeffrey G; Anderson, Peter A; Dodds, Peter N

    2016-01-01

    NOD-like receptors (NLRs) are central components of the plant immune system. L6 is a Toll/interleukin-1 receptor (TIR) domain-containing NLR from flax (Linum usitatissimum) conferring immunity to the flax rust fungus. Comparison of L6 to the weaker allele L7 identified two polymorphic regions in the TIR and the nucleotide binding (NB) domains that regulate both effector ligand-dependent and -independent cell death signaling as well as nucleotide binding to the receptor. This suggests that a negative functional interaction between the TIR and NB domains holds L7 in an inactive/ADP-bound state more tightly than L6, hence decreasing its capacity to adopt the active/ATP-bound state and explaining its weaker activity in planta. L6 and L7 variants with a more stable ADP-bound state failed to bind to AvrL567 in yeast two-hybrid assays, while binding was detected to the signaling active variants. This contrasts with current models predicting that effectors bind to inactive receptors to trigger activation. Based on the correlation between nucleotide binding, effector interaction, and immune signaling properties of L6/L7 variants, we propose that NLRs exist in an equilibrium between ON and OFF states and that effector binding to the ON state stabilizes this conformation, thereby shifting the equilibrium toward the active form of the receptor to trigger defense signaling. PMID:26744216

  6. Acid-base equilibrium during capnoretroperitoneoscopic nephrectomy in patients with end-stage renal failure: a preliminary report.

    PubMed

    Demian, A D; Esmail, O M; Atallah, M M

    2000-04-01

    We have studied the acid-base equilibrium in 12 patients with end-stage renal failure (ESRF) during capnoretroperitoneoscopic nephrectomy. Bupivacaine (12 mL, 0.375%) and morphine (2mg) were given in the lumbar epidural space, and fentanyl (0.5 microg kg(-1)) and midazolam (50 microg kg(-1)) were given intravenously. Anaesthesia was induced by thiopental, maintained with halothane carried by oxygen enriched air (inspired oxygen fraction = 0.35), and ventilation was achieved with a tidal volume of 10 mL kg(-1) at a rate of 12 min(-1). This procedure resulted in a mild degree of respiratory acidosis that was cleared within 60 min. We conclude that capnoretroperitoneoscopic nephrectomy can be performed in patients with end-stage renal failure with minimal transient respiratory acidosis that can be avoided by increased ventilation. PMID:10866009

  7. Design and Quasi-Equilibrium Analysis of a Distributed Frequency-Restoration Controller for Inverter-Based Microgrids

    SciTech Connect

    Ainsworth, Nathan G; Grijalva, Prof. Santiago

    2013-01-01

    This paper discusses a proposed frequency restoration controller which operates as an outer loop to frequency droop for voltage-source inverters. By quasi-equilibrium analysis, we show that the proposed controller is able to provide arbitrarily small steady-state frequency error while maintaing power sharing between inverters without need for communication or centralized control. We derive rate of convergence, discuss design considerations (including a fundamental trade-off that must be made in design), present a design procedure to meet a maximum frequency error requirement, and show simulation results verifying our analysis and design method. The proposed controller will allow flexible plug-and-play inverter-based networks to meet a specified maximum frequency error requirement.

  8. Mechanistic Sediment Quality Guidelines Based on Contaminant Bioavailability: Equilibrium Partitioning Sediment Benchmarks

    EPA Science Inventory

    Globally, billions of metric tons of contaminated sediments are present in aquatic systems representing a potentially significant ecological risk. Estimated costs to manage (i.e., remediate and monitor) these sediments are in the billions of U.S. dollars. Biologically-based app...

  9. Calculation of acid-base equilibrium constants at the oxide-electrolyte interface from the dependence of oxide surface charge on pH of the electrolyte

    SciTech Connect

    Gorichev, I.G.; Dorofeev, M.V.; Batrakov, V.V.

    1994-09-01

    The dependences of the catalytic activity of oxides and acid-base properties on ph of solution are similar. A procedure is developed for calculating acid-base equilibrium constants from the dependence of the oxide surface charge q on pH. The values q can be determined by potentiometric titration of aqueous suspensions of oxides. The acid-base equilibrium constants for Fe{sub 3}O{sub 4} and CuO were calculated in accordance with the proposed procedure.

  10. Adair-based hemoglobin equilibrium with oxygen, carbon dioxide and hydrogen ion activity.

    PubMed

    Mateják, Marek; Kulhánek, Tomáš; Matoušek, Stanislav

    2015-04-01

    As has been known for over a century, oxygen binding onto hemoglobin is influenced by the activity of hydrogen ions (H⁺), as well as the concentration of carbon dioxide (CO₂). As is also known, the binding of both CO₂and H⁺ on terminal valine-1 residues is competitive. One-parametric situations of these hemoglobin equilibria at specific levels of H⁺, O₂or CO₂are also well described. However, we think interpolating or extrapolating this knowledge into an 'empirical' function of three independent variables has not yet been completely satisfactory. We present a model that integrates three orthogonal views of hemoglobin oxygenation, titration, and carbamination at different temperatures. The model is based only on chemical principles, Adair's oxygenation steps and Van't Hoff equation of temperature dependences. Our model fits the measurements of the Haldane coefficient and CO₂hemoglobin saturation. It also fits the oxygen dissociation curve influenced by simultaneous changes in H⁺, CO₂and O₂, which makes it a strong candidate for integration into more complex models of blood acid-base with gas transport, where any combination of mentioned substances can appear. PMID:25594800

  11. Sub-Tg relaxation patterns in Cu-based metallic glasses far from equilibrium

    NASA Astrophysics Data System (ADS)

    Wang, Caiwei; Hu, Lina; Wei, Chen; Tong, Xu; Zhou, Chao; Sun, Qijing; Hui, Xidong; Yue, Yuanzheng

    2014-10-01

    We investigate the sub-Tg relaxation patterns (RPs) in binary and quaternary Cu-based glass ribbons (GRs) by using the hyperquenching-sub-Tg annealing-calorimetric approach. This study contributes to revealing the structural or dynamic evolution in liquids related to the observed three-stage sub-Tg relaxation processes in GRs. In this work, we have achieved the following three findings. First, the abnormal three-stage relaxation behavior is not a general phenomenon for Cu-based metallic glasses and could not be simply predicted by the large difference in the enthalpy of mixing between different elements in alloys. Second, the abnormal three-stage RP is associated with the non-monotonic change of cluster size with medium range order in supercooled liquids. Third, the existence of the liquid-liquid phase transition depicted by anomalous viscosity drop during cooling in superheated liquids could be a signature of the unusual structural change causing the abnormal three-step sub-Tg RP in the GRs. This work helps to better understand the complex structural evolution from superheated to supercooled liquids approaching Tg.

  12. Estimates of sustainable agricultural water use in northern China based on the equilibrium of groundwater

    NASA Astrophysics Data System (ADS)

    Yali, Y.; Yu, C.

    2015-12-01

    The northern plain is the important food production region in China. However, due to the lack of surface water resources, it needs overmuch exploitation of groundwater to maintain water use in agriculture, which leads to serious environmental problems. Based on the assumption that the reserves of groundwater matches the statistics and keeps on stable, the author explores the reasonable agricultural water and its spatial distribution based on the principle of sustainable utilization of water resources. According to the priorities of water resources allocation (domestic water and ecological water>industrial water>agricultural water), it is proposed to reduce agricultural water use to balance the groundwater reserves on condition that the total water supply is constant. Method: Firstly, we calculate annual average of northern groundwater reserves changes from 2004 to 2010, which is regarded as the reduction of agricultural water; Then, we estimate the food production changes using variables of typical crop water requirements and unit yields assuming that the efficiency of water use keeps the same during the entire study period; Finally, we evaluate the usage of sustainable agricultural water. The results reveal that there is a significant reduction of groundwater reserves in Haihe river basin and Xinjiang oasis regions; And the annual loss of the corn and wheat production is about 1.86 billion kg and 700 million kg respectively due to the reduction of agricultural water; What's more, in order to ensure China's food security and sustainable agricultural water use, in addition to great efforts to develop water-saving agriculture, an important adjustment in the distribution of food production is in need. This study provided a basis to the availability of agricultural water and a new perspective was put forth for an estimation of agricultural water.

  13. Chemical Equilibrium, Unit 4: Equilibria in Acid-Base Systems. A Computer-Enriched Module for Introductory Chemistry. Student's Guide and Teacher's Guide.

    ERIC Educational Resources Information Center

    Settle, Frank A., Jr.

    Presented are the teacher's guide and student materials for one of a series of self-instructional, computer-based learning modules for an introductory, undergraduate chemistry course. The student manual for this acid-base equilibria unit includes objectives, prerequisites, pretest, a discussion of equilibrium constants, and 20 problem sets.…

  14. Force-based optimization of pseudopotentials for non-equilibrium configurations

    NASA Astrophysics Data System (ADS)

    Brock, Casey N.; Paikoff, Brandon C.; Md Sallih, Muhammad I.; Tackett, Alan R.; Walker, D. Greg

    2016-04-01

    We have used a multi-objective genetic algorithm to optimize pseudopotentials for force accuracy and computational efficiency. Force accuracy is determined by comparing interatomic forces generated using the pseudopotentials and forces generated using the full-potential linearized augmented-plane wave method. This force-based optimization approach is motivated by applications where interatomic forces are important, including material interfaces, crystal defects, and molecular dynamics. Our method generates Pareto sets of optimized pseudopotentials containing various compromises between accuracy and efficiency. We have tested our method for LiF, Si0.5Ge0.5, and Mo and compared the performance of our pseudopotentials with pseudopotentials available from the ABINIT library. We show that the optimization can generate pseudopotentials with comparable accuracy (in terms of force matching and equation of state) to pseudopotentials in the literature while sometimes significantly improving computational efficiency. For example, we generated pseudopotentials for one system tested that reduced computational work by 71% without loss of accuracy. These results suggest our method can be used to generate pseudopotentials on demand that are tuned for a user's specific application, affording gains in computational efficiency.

  15. [Materno-fetal acid-base equilibrium evaluation in parturients submitted to ketamine anesthesia (author's transl)].

    PubMed

    Mauad Filho, F; Meirelles, R S

    1975-01-01

    In the present work ketamine was used as anesthetic during the labor in order to evaluate the effect of this anesthetic on the binominal fetus-mother. Two groups of parturients and their fetuses, were studied: 1) The experimental group, with 22 parturients and their fetuses submitted to ketamine anesthesia during the labord, and 2) The control group, with 20 parturients and their fetuses without any analgesic treatment during the labor. In 20 cases of the experimental group the anesthetic was injected during the delivery labor and the other two just before it. It were evaluated in the mother's blood the biochemical parameters of the acid-base balance and others collateral effects of the anesthesia; on the fetus's side the same parameters also and the cardiac frequency. The newborn were evaluated by Apgar Score during the first and fifth minutes of life. The incidence of the spontaneous delivery in the experimental group, was 78%; in 22% of these patients the forceps of relief was used. In 22 cases in which Ketamine was applied it were observed, the following events: elevation of the blood pressure (50%), perineum rigidness (18%), dreams and or hallucinations (18%), increase of the cardiac frequency (9%), apneia (4%) and nausea (4%). It was also observed an increase of uterine tonus an abolishment of abdominal press during the delivery labor, studied through the uterine electromyography register. It was noted after the Ketamine application a fall in the pH of the maternal peripherical venous blood, fetal skull blood and the pH of the blood of the umbilical vein. 22% of the newborns, from the experimental group, presented a depression in the first minute of life (Apgar less than or equals to 6). The pCO2 values in the blood of the umbilical artery were higher in the experimental group than in the control one. PMID:1241148

  16. Uncertainty analysis for an equilibrium partitioning-based estimator of polynuclear aromatic hydrocarbon bioaccumulation potential in sediments

    SciTech Connect

    Clarke, J.U.; McFarland, V.A.

    2000-02-01

    In regulatory evaluations of contaminated sediments, an equilibrium partitioning-based screening test called theoretical bioaccumulation potential (TBP) is often performed to estimate the probable concentrations of neutral organic contaminants that would eventually accumulate in aquatic organisms from continuous exposure to a sediment. The TBP is calculated from contaminant concentration and organic carbon content of the sediment, lipid content of target organisms, and a partition coefficient, usually the biota-sediment accumulation factor (BSAF). However, routine applications of TBP have not included analysis of uncertainty. This paper demonstrates two methods for uncertainty analysis of TBP: a computational method that incorporates random and systematic error and a simulation method using bootstrap resampling of replicated model input parameters to calculate statistical uncertainty measures. For prediction of polynuclear aromatic hydrocarbon (PAH) bioaccumulation in bivalves exposed to contaminated sediments, uncertainty as a factor of TBP ranged from 1.2 to 4.8 using the computational method and 0.5 to 1.9 based on bootstrap 95% confidence intervals. Sensitivity analysis indicated that BSAF parameters, especially tissue contaminant concentration and lipid content, contributed most to TBP uncertainty. In bootstrap tests of significance, TBP significantly over- or underestimated actual PAH bioaccumulation in bivalves in 41% and 10% of comparisons, respectively.

  17. Prediction of the Chapman-Jouguet chemical equilibrium state in a detonation wave from first principles based reactive molecular dynamics.

    PubMed

    Guo, Dezhou; Zybin, Sergey V; An, Qi; Goddard, William A; Huang, Fenglei

    2016-01-21

    The combustion or detonation of reacting materials at high temperature and pressure can be characterized by the Chapman-Jouguet (CJ) state that describes the chemical equilibrium of the products at the end of the reaction zone of the detonation wave for sustained detonation. This provides the critical properties and product kinetics for input to macroscale continuum simulations of energetic materials. We propose the ReaxFF Reactive Dynamics to CJ point protocol (Rx2CJ) for predicting the CJ state parameters, providing the means to predict the performance of new materials prior to synthesis and characterization, allowing the simulation based design to be done in silico. Our Rx2CJ method is based on atomistic reactive molecular dynamics (RMD) using the QM-derived ReaxFF force field. We validate this method here by predicting the CJ point and detonation products for three typical energetic materials. We find good agreement between the predicted and experimental detonation velocities, indicating that this method can reliably predict the CJ state using modest levels of computation. PMID:26688211

  18. Non-equilibrium Green's function calculation of AlGaAs-well-based and GaSb-based terahertz quantum cascade laser structures

    SciTech Connect

    Yasuda, H. Hosako, I.

    2015-03-16

    We investigate the performance of terahertz quantum cascade lasers (THz-QCLs) based on Al{sub x}Ga{sub 1−x}As/Al{sub y}Ga{sub 1−y}As and GaSb/AlGaSb material systems to realize higher-temperature operation. Calculations with the non-equilibrium Green's function method reveal that the AlGaAs-well-based THz-QCLs do not show improved performance, mainly because of alloy scattering in the ternary compound semiconductor. The GaSb-based THz-QCLs offer clear advantages over GaAs-based THz-QCLs. Weaker longitudinal optical phonon–electron interaction in GaSb produces higher peaks in the spectral functions of the lasing levels, which enables more electrons to be accumulated in the upper lasing level.

  19. A PC-based package for interactive assessment of MHD equilibrium and poloidal field coil design in axisymmetric toroidal geometry

    SciTech Connect

    Kelleher, W.; Steiner, D.

    1989-03-01

    A personal computer system was developed for use in the assessment of magnetohydrodynamic (MHD) equilibrium and Poloidal Field Coil (PFC) arrangement in toroidal axisymmetric geometry. This system involves two steps: first MHD equilibrium is calculated with the program PCEQ, then the PFC arrangement, consistent with the equilibrium, is determined in an interactive design environment using the program PFDESIGN. The PCEQ/PFDESIGN system was used to examine equilibrium for the STARFIRE reactor concept, including the design of two different PFC arrangements. The MHD/PFC calculations agree to within a few percent of mainframe code results, demonstrating the utility and accuracy of PCEQ/PFDESIGN, proving it to be an ideal tool for scoping studies.

  20. A fitting formula for radiative cooling based on non-local thermodynamic equilibrium population from weakly-ionized air plasma

    NASA Astrophysics Data System (ADS)

    Ogino, Yousuke; Nagano, Atsushi; Ishihara, Tomoaki; Ohnishi, Naofumi

    2013-08-01

    A fitting formula for radiative cooling with collisional-radiative population for air plasma flowfield has been developed. Population number densities are calculated from rate equations in order to evaluate the effects of nonequilibrium atomic and molecular processes. Many elementary processes are integrated to be applied to optically-thin plasmas in the number density range of 1012/cm3 <= N <= 1019/cm3 and the temperature range of 300 K <= T <= 40,000 K. Our results of the total radiative emissivity calculated from the collisional-radiative population are fitted in terms of temperature and total number density. To validate the analytic fitting formula, numerical simulation of a laser-induced blast wave propagation with the nonequilibrium radiative cooling is conducted and successfully reproduces the shock and plasma wave front time history observed by experiments. In addition, from the comparison between numerical simulations with the radiation cooling effect based on the fitting formula and those with a gray gas radiation model that assumes local thermodynamic equilibrium, we find that the displacement of the plasma front is slightly different due to the deviation of population probabilities. By using the fitting formula, we can easily and more accurately evaluate the radiative cooling effect without solving detailed collisional-radiative rate equations.

  1. A study of the scour-fill threshold based on Lane's equilibrium relation: The lower Yellow River

    NASA Astrophysics Data System (ADS)

    Xu, Jiongxin

    2015-12-01

    The scour-fill threshold in river channels is an expression of scour-fill equilibrium, which may be understood as the balance between the river's sediment carrying capability and the sediment load imposed by the drainage basin. In the present study, the above capability-load relation is quantified using Lane's relation, γQJ-QsD50, wherein Q is water discharge, J is channel slope, Qs is sediment transport rate, D50 is median size of bed material, and γ is the specific weight of water. On this basis, we have established scour-fill thresholds for the lower Yellow River based on data from 141 flood events. The results show that the QsD50-γQJ relation may well distinguish between the scour and fill flood events. The following equation has been established: SDRFE = 0.00099(γQJ)0.90(QsD50)- 0.60, wherein SDRFE is channel sediment delivery ratio. From the equation, the scour-fill threshold is established as: QsD50 = 0.00001(γQJ)1.5. Starting from this formula, four possible options are proposed for sediment management of the lower Yellow River.

  2. Kinetics, equilibrium, and thermodynamics investigation on the adsorption of lead(II) by coal-based activated carbon.

    PubMed

    Yi, Zhengji; Yao, Jun; Zhu, Mijia; Chen, Huilun; Wang, Fei; Liu, Xing

    2016-01-01

    The goal of this research is to investigate the feasibility of using activated coal-based activated carbon (CBAC) to adsorb Pb(II) from aqueous solutions through batch tests. Effects of contact time, pH, temperature and initial Pb(II) concentration on the Pb(II) adsorption were examined. The Pb(II) adsorption is strongly dependent on pH, but insensitive to temperature. The best pH for Pb(II) removal is in the range of 5.0-5.5 with more than 90 % of Pb(II) removed. The equilibrium time was found to be 60 min and the adsorption data followed the pseudo-second-order kinetics. Isotherm data followed Langmuir isotherm model with a maximum adsorption capacity of 162.33 mg/g. The adsorption was exothermic and spontaneous in nature. The Fourier transform infrared spectroscopy and scanning electron microscopy analysis suggested that CBAC possessed a porous structure and was rich in carboxyl and hydroxyl groups on its surface, which might play a major role in Pb(II) adsorption. These findings indicated that CBAC has great potential as an alternative adsorbent for Pb(II) removal. PMID:27504258

  3. The Gellyfish: An In-Situ Equilibrium-Based Sampler for Determining Multiple Free Metal Ion Concentrations in Marine Ecosystems

    PubMed Central

    Dong, Zhao; Lewis, Christopher G.; Burgess, Robert M.; Shine, James P.

    2016-01-01

    Free metal ions are usually the most bioavailable and toxic metal species to aquatic organisms, but they are difficult to measure due to their extremely low concentrations in the marine environment. Many of the current methods for determining free metal ions are complicated, time-consuming, and can only measure one metal at a time. We developed a new version of the ‘Gellyfish’, an in-situ equilibrium-based sampler, with significantly reduced equilibration time and the capability of measuring multiple free metal ions simultaneously. By calibrating the Gellyfish to account for its uptake of cationic metal complexes and validating them in multi-metal competition experiments, we were able to determine free metal ion concentrations previously collected over ten months at five locations in Boston Harbor for Cu, Zn, Pb, Ni, and Cd. This work generated one of the largest free metal ion datasets and demonstrated the applicability of the Gellyfish as an easy-to-use and inexpensive tool for monitoring free ion concentrations of metal mixtures in marine ecosystems. PMID:25598362

  4. Optical sensor for amine vapors based on dimer-monomer equilibrium of indium(III) octaethylporphyrin in a polymeric film.

    PubMed

    Qin, Wei; Parzuchowski, Pawel; Zhang, Wei; Meyerhoff, Mark E

    2003-01-15

    A novel transduction chemistry for the development of a polymer film-based optical sensor that responds reversibly to gas-phase amine species at sub-ppm levels is described. The sensor is based on the equilibrium of a indium(III) octaethylporphyrin hydroxide ion-bridged dimer species with corresponding monomeric porphyrins within a thin poly(vinyl chloride) film as a function of the level of volatile amine in the surrounding gas phase. The presence of amines causes the dimeric species to be converted to monomer via the ligation of the amine with the In(III) center of the porphyrin structure. This yields a significant change in the visible absorption spectrum of the film, with a decrease in the intensity of the Soret band corresponding to the dimer (lambdamax = 390 nm) and a concomitant increase in the Soret band for the monomer lambdamax = 406-408 nm). Response to different amines is based on their relative partition coefficient into the polymer film and their strength of axial ligation reactions, with a selectivity pattern of 1-butylamine > 1-propylamine > pyridine > triethylamine > ethylamine > methylamine > diethylamine > tert-butylamine > ammonia. It is further shown that a significant concentration of dimeric species within the polymer film can only be achieved if appropriate amounts of lipophilic anionic sites are also incorporated into the polymer in the form of a tetraphenylborate derivative and the resulting film is equilibrated briefly with water prior to gas-phase measurements. With optimized film compositions, 1-butylamine can be detected in the gas phase to levels approaching 0.1 ppm, while less lipophilic ammonia can be monitored down to 10 ppm, with fully reversible responses to each species. A simple mathematical model for the response of the amine sensor is presented and shown to predict the optical behavior observed. PMID:12553770

  5. Equilibrium surface tension, dynamic surface tension, and micellization properties of lactobionamide-type sugar-based gemini surfactants.

    PubMed

    Yoshimura, Tomokazu; Umezawa, Shin; Fujino, Akihiko; Torigoe, Kanjiro; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko; Esumi, Kunio

    2013-01-01

    A sugar-based gemini surfactant N,N'-dialkyl-N,N'-dilactobionamideethylenediamine (2C(n)Lac, where n represents alkyl chain lengths of 8, 10, 12, and 14) was synthesized by reacting N,N'-dialkylethylenediamine with lactobionic acid. The adsorption properties of 2C(n)Lac were characterized by equilibrium and dynamic surface tension measurements. Their micellization properties were investigated by steady-state fluorescence using pyrene as a probe and dynamic light scattering (DLS) techniques. The dependence of these properties on the alkyl chain length and the number of sugars was determined through a comparison with the corresponding monomeric surfactants C(n)MLA and previously reported sugar-based gemini surfactants containing monosaccharide gluconamide or disaccharide lactobionamide groups with a hexanediamide spacer. The critical micelle concentration (cmc) and surface tension of 2C(n)Lac are both lower than those of C(n)MLA surfactants. These lower values indicate that the synthesized sugar-based gemini surfactants have excellent micelle-forming ability in solution and high adsorption ability at the air-water interface, which result from strong interactions of the hydrogen bonds between the hydroxyls in lactobionamide groups. When the alkyl chain length of 2C(n)Lac increases to 14, premicellar formation occurs in the solution along with adsorption at the air-water interface at concentrations below the cmc. Furthermore, 2C(n)Lac forms micelles measuring 4 to 12 nm in solution, with no dependence on the alkyl chain length, and their size slightly increases with increasing concentration. PMID:23728326

  6. Detachment-Based Equilibrium of Anoikic Cell Death and Autophagic Cell Survival Through Adaptor Protein p66(Shc).

    PubMed

    Cai, Zeyuan; Zhao, Dan; Sun, Yanan; Gao, Dan; Li, Xia; Yang, Jie; Ma, Zhenyi

    2016-03-01

    Anoikis (detachment-induced cell death) confers a tumor-suppressive function in metastatic cancer cells. Autophagy, a conserved self-degradative process, enhances the anoikis resistance of detached cancer cells by maintaining cellular homeostasis. However, the mechanism of regulating cell fate-decision by balancing anoikis and autophagy has been poorly understood. Our previous studies have shown that the adaptor protein p66(Shc) mediates anoikis through RhoA activation and inhibits tumor metastasis in vivo. We also found that p66(Shc) depletion mitigates nutrient-deprivation-induced autophagy. These findings suggest p66(Shc) may coordinately regulate these two processes. To verify this hypothesis, we investigated the effect of p66(Shc) on the cell death of detached lung cancer cells, and measured autophagy markers and autophagic flux. Results showed that p66(Shc) depletion significantly inhibited anoikis, and reduced the formation of LC3B-II and the degradation of Sequestosome 1 (SQSTM1, p62) in detachment-induced cells. Using monodansylcadaverine (MDC)-LysoTracker double staining and monomeric Cherry (mCherry)-GFP-LC3 assay, we found that the autophagic flux was also mitigated by p66(Shc) depletion. In addition, p66(Shc) knockdown increased the formation of full-length X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1), which enhances anoikis sensitivity. In conclusion, p66(Shc) plays an essential role in detachment-based equilibrium of anoikic cell death and autophagic cell survival. Anat Rec, 299:325-333, 2016. © 2015 Wiley Periodicals, Inc. PMID:26643258

  7. The equilibrium dayside magnetosphere

    NASA Technical Reports Server (NTRS)

    Zavriyev, Anton; Hasegawa, Akira

    1989-01-01

    A method is presented of computing the dayside global earth magnetic field which is in equilibrium with the plasma pressure, based on satellite observations at a local region of the magnetosphere. The method, which utilizes a perturbation around a dipole magnetic field, involves computation of the global plasma pressure profile based on the equatorial (anisotropic) pressure data, derivation of the current profile which satisfies the equilibrium condition, and computation of the magnetic field using the current profile and the boundary current produced by the solar wind. The method is applied for the Active Magnetospheric Particle Tracer Explorers data, and the result of the computation is found to compare reasonably well with the observed magnetic field profile near the geomagnetic equator.

  8. Equilibrium Constants You Can Smell.

    ERIC Educational Resources Information Center

    Anderson, Michael; Buckley, Amy

    1996-01-01

    Presents a simple experiment involving the sense of smell that students can accomplish during a lecture. Illustrates the important concepts of equilibrium along with the acid/base properties of various ions. (JRH)

  9. A Laser Induced Breakdown Spectroscopy application based on Local Thermodynamic Equilibrium assumption for the elemental analysis of alexandrite gemstone and copper-based alloys

    NASA Astrophysics Data System (ADS)

    De Giacomo, A.; Dell'Aglio, M.; Gaudiuso, R.; Santagata, A.; Senesi, G. S.; Rossi, M.; Ghiara, M. R.; Capitelli, F.; De Pascale, O.

    2012-04-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an appealing technique to study laser-induced plasmas (LIPs), both from the basic diagnostics point of view and for analytical applications. LIPs are complex dynamic systems, expanding at supersonic velocities and undergoing a transition between different plasma regimes. If the Local Thermodynamic Equilibrium (LTE) condition is valid for such plasmas, several analytical methods can be employed and fast quantitative analyses can be performed on a variety of samples. In the present paper, a discussion about LTE is carried out and an innovative application to the analysis of the alexandrite gemstone is presented. In addition, a study about the influence of plasma parameters on the performance of LTE-based methods is reported for bronze and brass targets.

  10. Nonlinear Generator Control Based on Equilibrium Point Analysis for Standard One-Machine Infinite-Bus System Model

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Fujimoto, Koji; Kawamoto, Shunji

    The aim of this letter is to show that the unstable equilibrium point of the Japanese standard one-machine infinite-bus system model is eliminated by adding a simple nonlinear complementary control input to the AVR, and then the critical clearing time of the system can be more enhanced in comparison with the PSS by introducing the proposed nonlinear generator control.

  11. Is Soret equilibrium a non-equilibrium effect?

    NASA Astrophysics Data System (ADS)

    Würger, Alois

    2013-04-01

    Recent thermophoretic experiments on colloidal suspensions revived an old debate, namely whether the Soret effect is properly described by thermostatics, or necessarily requires non-equilibrium thermodynamics. Based on colloidal transport theory and the entropy production of the related viscous flow, our analysis leads to the conclusion that the equilibrium approach may work for small ions, yet fails for colloidal particles and polymers. Regarding binary molecular mixtures, our results shed some doubt on the validity of thermostatic approaches that derive the Soret coefficient from equilibrium potentials.

  12. Helical axis stellarator equilibrium model

    SciTech Connect

    Koniges, A.E.; Johnson, J.L.

    1985-02-01

    An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift.

  13. Understanding of surface pit formation mechanism of GaN grown in MOCVD based on local thermodynamic equilibrium assumption

    NASA Astrophysics Data System (ADS)

    Zhi-Yuan, Gao; Xiao-Wei, Xue; Jiang-Jiang, Li; Xun, Wang; Yan-Hui, Xing; Bi-Feng, Cui; De-Shu, Zou

    2016-06-01

    Frank’s theory describes that a screw dislocation will produce a pit on the surface, and has been evidenced in many material systems including GaN. However, the size of the pit calculated from the theory deviates significantly from experimental result. Through a careful observation of the variations of surface pits and local surface morphology with growing temperature and V/III ratio for c-plane GaN, we believe that Frank’s model is valid only in a small local surface area where thermodynamic equilibrium state can be assumed to stay the same. If the kinetic process is too vigorous or too slow to reach a balance, the local equilibrium range will be too small for the center and edge of the screw dislocation spiral to be kept in the same equilibrium state. When the curvature at the center of the dislocation core reaches the critical value 1/r 0, at the edge of the spiral, the accelerating rate of the curvature may not fall to zero, so the pit cannot reach a stationary shape and will keep enlarging under the control of minimization of surface energy to result in a large-sized surface pit. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204009 and 61204011) and the Beijing Municipal Natural Science Foundation, China (Grant No. 4142005).

  14. Equilibrium frequency of endosymbionts in multiple infections based on the balance between vertical transmission and cytoplasmic incompatibility.

    PubMed

    Kawasaki, Yuuki; Ito, Hiroshi; Kajimura, Hisashi

    2014-01-01

    Cytoplasmic incompatibility (CI)-inducing endosymbiotic bacteria, such as Wolbachia and Cardinium, have been well studied through field data and validations on the basis of numerical simulations. However, the analytically derived equilibrium frequency of multiple infections has not yet been determined, although the equilibrium for cases of single infection has been reported. In this study, we considered the difference equation for endosymbionts using three parameters: the probability of the failure of vertical transmission ([Formula: see text]), CI strength ([Formula: see text]), and the level of host inbreeding ([Formula: see text]). To analyze this model, we particularly focused on [Formula: see text], i.e., the frequency of host individuals completely infected with all [Formula: see text]-bacterial strains in the population. [Formula: see text], [Formula: see text] at the equilibrium state, was analytically calculated in the cases where [Formula: see text] and [Formula: see text] is any arbitrary value. We found that [Formula: see text] can be described using two parameters: [Formula: see text] and [Formula: see text], which is identical to [Formula: see text]. [Formula: see text] has a larger value in a system with a smaller [Formula: see text]. In addition, [Formula: see text] determines the maximum number of strains that infect a single host. Our results revealed the following: i) three parameters can be reduced to a single parameter, i.e., [Formula: see text] and ii) the threshold of the maximum number of infections is defined by [Formula: see text], which prevents additional invasions by endosymbionts. PMID:24747216

  15. Ionization and thermal equilibrium models for O star winds based on time-independent radiation-driven wind theory

    NASA Technical Reports Server (NTRS)

    Drew, J. E.

    1989-01-01

    Ab initio ionization and thermal equilibrium models are calculated for the winds of O stars using the results of steady state radiation-driven wind theory to determine the input parameters. Self-consistent methods are used for the roles of H, He, and the most abundant heavy elements in both the statistical and the thermal equilibrium. The model grid was chosen to encompass all O spectral subtypes and the full range of luminosity classes. Results of earlier modeling of O star winds by Klein and Castor (1978) are reproduced and used to motivate improvements in the treatment of the hydrogen equilibrium. The wind temperature profile is revealed to be sensitive to gross changes in the heavy element abundances, but insensitive to other factors considered such as the mass-loss rate and velocity law. The reduced wind temperatures obtained in observing the luminosity dependence of the Si IV lambda 1397 wind absorption profile are shown to eliminate any prospect of explaining the observed O VI lambda 1036 line profiles in terms of time-independent radiation-driven wind theory.

  16. Quantitative Analysis of Caspase-1 Activity in Living Cells Through Dynamic Equilibrium of Chlorophyll-Based Nano-assembly Modulated Photoacoustic Signals.

    PubMed

    Li, Li-Li; Zeng, Qian; Liu, Wei-Jiao; Hu, Xue-Feng; Li, Yongsheng; Pan, Jie; Wan, Dong; Wang, Hao

    2016-07-20

    In situ construction of self-assemblies with unique property in living systems is a promising direction in the biomedical field. The noninvasive methods for significant enzyme activity in living cells or living subjects are imperative and meantime challenge tasks. The dynamic process of self-assembly of chlorophyll-based molecules in complex biological systems can be monitored by photoacoustic signals, which supports a noninvasive way to understand and quantitatively measure the activity of caspase-1. Furthermore, the activity of caspase-1 enables reflection of the bacterial infection in the early stage. Here, we present a biocompatible self-assembly from chlorophyll-peptide derivatives and first correlate the dynamic equilibrium with ratiometric photoacoustic signals. The intracellular equilibrium was managed by a bacterial infection precaution protein, i.e., caspase-1. This system offers a trial of noninvasive method to quantitative detection and real-time monitoring of bacterial infection in the early stage. PMID:27341352

  17. Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics.

    PubMed

    Elhadj, Selim; Matthews, Manyalibo J; Yang, Steven T; Cooke, Diane J

    2012-01-16

    Evaporation kinetics of fused silica were measured up to ≈3000K using CO(2) laser heating, while solid-gas phase chemistry of silica was assessed with hydrogen, air, and nitrogen. Enhanced evaporation in hydrogen was attributed to an additional reduction pathway, while oxidizing conditions pushed the reaction backwards. The observed mass transport limitations supported use of a near-equilibrium analysis for interpreting kinetic data. A semi-empirical model of the evaporation kinetics is derived that accounts for heating, gas chemistry and transport properties. The approach described should have application to materials laser processing, and in applications requiring knowledge of thermal decomposition chemistry under extreme temperatures. PMID:22274500

  18. Estimation of EEC, unattached fraction and equilibrium factor for the assessment of radiological dose using pin-hole cup dosimeters and deposition based progeny sensors.

    PubMed

    Bangotra, Pargin; Mehra, Rohit; Kaur, Kirandeep; Kanse, Sandeep; Mishra, Rosaline; Sahoo, B K

    2015-10-01

    High concentration of radon ((222)Rn), thoron ((220)Rn) and their decay products in environment may increase the risk of radiological exposure to the mankind. The (222)Rn, (220)Rn concentration and their separate attached and unattached progeny concentration in units of EEC have been measured in the dwellings of Muktsar and Mansa districts of Punjab (India), using Pin-hole cup dosimeters and deposition based progeny sensors (DTPS/DRPS). The indoor (222)Rn and (220)Rn concentration was found to vary from 21 Bqm(-3) to 94 Bqm(-3) and 17 Bqm(-3) to 125 Bqm(-3). The average EEC (attached + unattached) of (222)Rn and (220)Rn was 25 Bqm(-3) and 1.8 Bqm(-3). The equilibrium factor for (222)Rn and (220)Rn in studied area was 0.47 ± 0.13 and 0.05 ± 0.03. The equilibrium factor and unattached fraction of (222)Rn and (220)Rn has been calculated separately. Dose conversion factors (DCFs) of different models have been calculated from unattached fraction for the estimation of annual effective dose in the studied area. From the experimental data a correlation relationship has been observed between unattached fraction (f(p)(Rn)) and equilibrium factor (F(Rn)). The present work also aims to evaluate an accurate expression among available expression in literature for the estimation of f(p)(Rn). PMID:26117280

  19. Thermodynamic equilibrium composition analysis of methanol autothermal reforming for proton exchanger membrane fuel cell based on FLUENT Software

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Wang, Shudong

    Methanol autothermal reforming was thermodynamically analyzed using FLUENT software. The calculation methodology using this software is simple and convenient, and its validity was confirmed by comparing the obtained data with previous studies. As a function of the effects of temperature, pressure, molar steam-to-carbon ratio (S/C), and molar oxygen-to-carbon ratio (O/C) on the objective products, favorable operational parameters were evaluated, under which H 2 yield maximizes, the CO molar fraction minimizes and carbon deposition can be eliminated. The equilibrium constants of the possible reactions involved in oxidative methanol steam reforming, coupled with the reaction mechanism for the entire investigated temperature range, were elucidated and discussed. On the basis of the concluded possible mechanisms, three areas are inferred. In each individual area, H 2 or CO yield reached a maximum, or solid C was efficiently suppressed. Therein, a favorable operational range is proposed to assure the most optimized product yield.

  20. A Differential Evolution Algorithm Based on Nikaido-Isoda Function for Solving Nash Equilibrium in Nonlinear Continuous Games.

    PubMed

    He, Feng; Zhang, Wei; Zhang, Guoqiang

    2016-01-01

    A differential evolution algorithm for solving Nash equilibrium in nonlinear continuous games is presented in this paper, called NIDE (Nikaido-Isoda differential evolution). At each generation, parent and child strategy profiles are compared one by one pairwisely, adapting Nikaido-Isoda function as fitness function. In practice, the NE of nonlinear game model with cubic cost function and quadratic demand function is solved, and this method could also be applied to non-concave payoff functions. Moreover, the NIDE is compared with the existing Nash Domination Evolutionary Multiplayer Optimization (NDEMO), the result showed that NIDE was significantly better than NDEMO with less iterations and shorter running time. These numerical examples suggested that the NIDE method is potentially useful. PMID:27589229

  1. Electrospray mass spectrometry of some proteins and the aqueous solution acid/base equilibrium model in the negative ion detection mode

    NASA Astrophysics Data System (ADS)

    Le Blanc, J. C. Y.; Guevremont, R.; Siu, K. W. M.

    1993-06-01

    Basic solutions of myoglobin, [beta]-lactoglobulin, pepsin and ubiquitin have been examined by means of electrospray mass spectrometry in the negative ion detection mode. The distribution of protein ions in the mass spectra was found to correlate well with the distribution of protein species in solution calculated from published titration data. These results lend further credibility to an earlier proposed aqueous solution acid/base equilibrium model, which relates the "bellshape" ion distribution observed in the electrospray mass spectrometry of proteins to the distribution of protein ions in solution.

  2. Calculation of the acid-base equilibrium constants at the alumina/electrolyte interface from the ph dependence of the adsorption of singly charged ions (Na+, Cl-)

    NASA Astrophysics Data System (ADS)

    Gololobova, E. G.; Gorichev, I. G.; Lainer, Yu. A.; Skvortsova, I. V.

    2011-05-01

    A procedure was proposed for the calculation of the acid-base equilibrium constants at an alumina/electrolyte interface from experimental data on the adsorption of singly charged ions (Na+, Cl-) at various pH values. The calculated constants (p K {1/0}= 4.1, p K {2/0}= 11.9, p K {3/0}= 8.3, and p K {4/0}= 7.7) are shown to agree with the values obtained from an experimental pH dependence of the electrokinetic potential and the results of potentiometric titration of Al2O3 suspensions.

  3. Antarctic seawater temperature evaluation based on stable isotope measurements on Adamussium colbecki shells: kinetic effects vs. isotopic equilibrium

    NASA Astrophysics Data System (ADS)

    Trevisiol, A.; Bergamasco, A.; Montagna, P.; Sprovieri, M.; Taviani, M.

    2013-10-01

    A year-long controlled growth experiment of 60 specimens of the Antarctic bivalve Adamussium colbecki was conducted in Terra Nova Bay (Ross Sea) to evaluate its reliability as a suitable archive of water mass properties. Nine shells were sub-sampled for stable oxygen and carbon isotope analysis to study the inter and intra specimen variations. Slow-growing A. colbecki precipitate their calcitic shells close to the expected oxygen and carbon isotopic equilibrium, whereas the fast-growing individuals are strongly influenced by biogenetic and kinetic effects. The equation of Kim and O'Neil (1997) is considered a fair approximation for the δ18O-temperature relationship in slow-growing individuals. The reconstructed temperature is closer to the mean experimental summer temperature than the annual one. This fact is interpreted as reflecting a possible winter decrease of shell growth, the salinity variation and the corrections for negative temperature on calibrating the δ18O-temperature relationship. Our results support the hypothesis that A. colbecki might represent a good archive for encoding Antarctic Shelf water summer temperature information. Further improvements in adopting A. colbecki as a paleotemperature archive will require the evaluation of the seasonal variability in shell growth rate through culturing slow-growing A. colbecki individuals at near-freezing temperatures to calibrate a species-specific δ18O-temperature equation.

  4. Soft-spring wall based non-periodic boundary conditions for non-equilibrium molecular dynamics of dense fluids

    SciTech Connect

    Ghatage, Dhairyashil; Tomar, Gaurav Shukla, Ratnesh K.

    2015-03-28

    Non-equilibrium molecular dynamics (MD) simulations require imposition of non-periodic boundary conditions (NPBCs) that seamlessly account for the effect of the truncated bulk region on the simulated MD region. Standard implementation of specular boundary conditions in such simulations results in spurious density and force fluctuations near the domain boundary and is therefore inappropriate for coupled atomistic-continuum calculations. In this work, we present a novel NPBC model that relies on boundary atoms attached to a simple cubic lattice with soft springs to account for interactions from particles which would have been present in an untruncated full domain treatment. We show that the proposed model suppresses the unphysical fluctuations in the density to less than 1% of the mean while simultaneously eliminating spurious oscillations in both mean and boundary forces. The model allows for an effective coupling of atomistic and continuum solvers as demonstrated through multiscale simulation of boundary driven singular flow in a cavity. The geometric flexibility of the model enables straightforward extension to nonplanar complex domains without any adverse effects on dynamic properties such as the diffusion coefficient.

  5. Removal of aluminium from aqueous solutions using PAN-based adsorbents: characterisation, kinetics, equilibrium and thermodynamic studies.

    PubMed

    Aly, Zaynab; Graulet, Adrien; Scales, Nicholas; Hanley, Tracey

    2014-03-01

    Economic adsorbents in bead form were fabricated and utilised for the adsorption of Al(3+) from aqueous solutions. Polyacrylonitrile (PAN) beads, PAN powder and the thermally treated PAN beads (250 °C/48 h/Ar and 600 °C/48 h/Ar-H2) were characterised using different techniques including Fourier transform infrared spectroscopy, X-ray diffraction, specific surface analysis (Brunauer-Emmett-Teller), thermogravimetric analysis as well as scanning electron microscopy. Effects of pH, contact time, kinetics and adsorption isotherms at different temperatures were investigated in batch mode experiments. Aluminium kinetic data best fit the Lagergren pseudo-second-order adsorption model indicating a one-step, surface-only, adsorption process with chemisorption being the rate limiting step. Equilibrium adsorption data followed a Langmuir adsorption model with fairly low monolayer adsorption capacities suitable for freshwater clean-up only. Various constants including thermodynamic constants were evaluated from the experimental results obtained at 20, 40 and 60 °C. Positive values of ΔH° indicated that the adsorption of Al(3+) onto all three adsorbents was endothermic with less energy input required for PAN powder compared to PAN beads and low-temperature thermally treated PAN. Negative ΔG° values indicated that the aluminium adsorption process was spontaneous for all adsorbents examined. PMID:24297464

  6. Soft-spring wall based non-periodic boundary conditions for non-equilibrium molecular dynamics of dense fluids

    NASA Astrophysics Data System (ADS)

    Ghatage, Dhairyashil; Tomar, Gaurav; Shukla, Ratnesh K.

    2015-03-01

    Non-equilibrium molecular dynamics (MD) simulations require imposition of non-periodic boundary conditions (NPBCs) that seamlessly account for the effect of the truncated bulk region on the simulated MD region. Standard implementation of specular boundary conditions in such simulations results in spurious density and force fluctuations near the domain boundary and is therefore inappropriate for coupled atomistic-continuum calculations. In this work, we present a novel NPBC model that relies on boundary atoms attached to a simple cubic lattice with soft springs to account for interactions from particles which would have been present in an untruncated full domain treatment. We show that the proposed model suppresses the unphysical fluctuations in the density to less than 1% of the mean while simultaneously eliminating spurious oscillations in both mean and boundary forces. The model allows for an effective coupling of atomistic and continuum solvers as demonstrated through multiscale simulation of boundary driven singular flow in a cavity. The geometric flexibility of the model enables straightforward extension to nonplanar complex domains without any adverse effects on dynamic properties such as the diffusion coefficient.

  7. The effect of parameters of equilibrium-based 3-D biomechanical models on extracted muscle synergies during isometric lumbar exertion.

    PubMed

    Eskandari, A H; Sedaghat-Nejad, E; Rashedi, E; Sedighi, A; Arjmand, N; Parnianpour, M

    2016-04-11

    A hallmark of more advanced models is their higher details of trunk muscles represented by a larger number of muscles. The question is if in reality we control these muscles individually as independent agents or we control groups of them called "synergy". To address this, we employed a 3-D biomechanical model of the spine with 18 trunk muscles that satisfied equilibrium conditions at L4/5, with different cost functions. The solutions of several 2-D and 3-D tasks were arranged in a data matrix and the synergies were computed by using non-negative matrix factorization (NMF) algorithms. Variance accounted for (VAF) was used to evaluate the number of synergies that emerged by the analysis, which were used to reconstruct the original muscle activations. It was showed that four and six muscle synergies were adequate to reconstruct the input data of 2-D and 3-D torque space analysis. The synergies were different by choosing alternative cost functions as expected. The constraints affected the extracted muscle synergies, particularly muscles that participated in more than one functional tasks were influenced substantially. The compositions of extracted muscle synergies were in agreement with experimental studies on healthy participants. The following computational methods show that the synergies can reduce the complexity of load distributions and allow reduced dimensional space to be used in clinical settings. PMID:26747515

  8. Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS. Part 2: application to Taupo Volcanic Zone rhyolites

    NASA Astrophysics Data System (ADS)

    Bégué, Florence; Gualda, Guilherme A. R.; Ghiorso, Mark S.; Pamukcu, Ayla S.; Kennedy, Ben M.; Gravley, Darren M.; Deering, Chad D.; Chambefort, Isabelle

    2014-11-01

    Constraining the pressure of crystallisation of large silicic magma bodies gives important insight into the depth and vertical extent of magmatic plumbing systems; however, it is notably difficult to constrain pressure at the level of detail necessary to understand shallow magmatic systems. In this study, we use the recently developed rhyolite-MELTS geobarometer to constrain the crystallisation pressures of rhyolites from the Taupo Volcanic Zone (TVZ). As sanidine is absent from the studied deposits, we calculate the pressures at which quartz and feldspar are found to be in equilibrium with melt now preserved as glass (the quartz +1 feldspar constraint of Gualda and Ghiorso, Contrib Mineral Petrol 168:1033. doi:10.1007/s00410-014-1033-3. 2014). We use glass compositions (matrix glass and melt inclusions) from seven eruptive deposits dated between ~320 and 0.7 ka from four distinct calderas in the central TVZ, and we discuss advantages and limitations of the rhyolite-MELTS geobarometer in comparison with other geobarometers applied to the same eruptive deposits. Overall, there is good agreement with other pressure estimates from the literature (amphibole geobarometry and H2O-CO2 solubility models). One of the main advantages of this new geobarometer is that it can be applied to both matrix glass and melt inclusions—regardless of volatile saturation. The examples presented also emphasise the utility of this method to filter out spurious glass compositions. Pressure estimates obtained with the new rhyolite-MELTS geobarometer range between ~250 to ~50 MPa, with a large majority at ~100 MPa. These results confirm that the TVZ hosts some of the shallowest rhyolitic magma bodies on the planet, resulting from the extensional tectonic regime and thinning of the crust. Distinct populations with different equilibration pressures are also recognised, which is consistent with the idea that multiple batches of eruptible magma can be present in the crust at the same time and

  9. Ab Initio Path-Integral Calculations of Kinetic and Equilibrium Isotope Effects on Base-Catalyzed RNA Transphosphorylation Models

    PubMed Central

    Wong, Kin-Yiu; Yuqing, Xu; York, Darrin M.

    2014-01-01

    Detailed understandings of the reaction mechanisms of RNA catalysis in various environments can have profound importance for many applications, ranging from the design of new biotechnologies to the unraveling of the evolutionary origin of life. An integral step in the nucleolytic RNA catalysis is self-cleavage of RNA strands by 2′-O-transphosphorylation. Key to elucidating a reaction mechanism is determining the molecular structure and bonding characteristics of transition state. A direct and powerful probe of transition state is measuring isotope effects on biochemical reactions, particularly if we can reproduce isotope effect values from quantum calculations. This paper significantly extends the scope of our previous joint experimental and theoretical work in examining isotope effects on enzymatic and non-enzymatic 2′-O-transphosphorylation reaction models that mimic reactions catalyzed by RNA enzymes (ribozymes), and protein enzymes such as ribonuclease A (RNase A). Native reactions are studied, as well as reactions with thio substitutions representing chemical modifications often used in experiments to probe mechanism. Here, we report and compare results from eight levels of electronic-structure calculations for constructing the potential energy surfaces in kinetic and equilibrium isotope effects (KIE and EIE) computations, including a “gold-standard” coupled-cluster level of theory [CCSD(T)]. In addition to the widely-used Bigeleisen equation for estimating KIE and EIE values, internuclear anharmonicity and quantum tunneling effects were also computed using our recently-developed ab initio path-integral method, i.e., automated integration-free path-integral (AIF-PI) method. The results of this work establish an important set of benchmarks that serve to guide calculations of KIE and EIE for RNA catalysis. PMID:24841935

  10. Shape characteristics of equilibrium and non-equilibrium fractal clusters

    NASA Astrophysics Data System (ADS)

    Mansfield, Marc L.; Douglas, Jack F.

    2013-07-01

    It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other

  11. Shape characteristics of equilibrium and non-equilibrium fractal clusters.

    PubMed

    Mansfield, Marc L; Douglas, Jack F

    2013-07-28

    It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other

  12. Mathematical modeling of non-equilibrium sorption

    NASA Astrophysics Data System (ADS)

    Kaliev, Ibragim A.; Mukhambetzhanov, Saltanbek T.; Sabitova, Gulnara S.; Sakhit, Anghyz E.

    2016-08-01

    We consider the system of equations modeling the process of non-equilibrium sorption. Difference approximation of differential problem by the implicit scheme is formulated. The solution of the difference problem is constructed using the sweep method. Based on the numerical results we can conclude the following: when the relaxation time decreases to 0, then the solution of non-equilibrium problem tends with increasing time to solution of the equilibrium problem.

  13. An investigation of equilibrium concepts

    NASA Technical Reports Server (NTRS)

    Prozan, R. J.

    1982-01-01

    A different approach to modeling of the thermochemistry of rocket engine combustion phenomena is presented. The methodology described is based on the hypothesis of a new variational principle applicable to compressible fluid mechanics. This hypothesis is extended to treat the thermochemical behavior of a reacting (equilibrium) gas in an open system.

  14. Getting Freshman in Equilibrium.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1983

    1983-01-01

    Various aspects of chemical equilibrium were discussed in six papers presented at the Seventh Biennial Conference on Chemical Education (Stillwater, Oklahoma 1982). These include student problems in understanding hydrolysis, helping students discover/uncover topics, equilibrium demonstrations, instructional strategies, and flaws to kinetic…

  15. Application of Molecular Interaction Volume Model for Phase Equilibrium of Sn-Based Binary System in Vacuum Distillation

    NASA Astrophysics Data System (ADS)

    Kong, Lingxin; Yang, Bin; Xu, Baoqiang; Li, Yifu

    2014-09-01

    Based on the molecular interaction volume model (MIVM), the activities of components of Sn-Sb, Sb-Bi, Sn-Zn, Sn-Cu, and Sn-Ag alloys were predicted. The predicted values are in good agreement with the experimental data, which indicate that the MIVM is of better stability and reliability due to its good physical basis. A significant advantage of the MIVM lies in its ability to predict the thermodynamic properties of liquid alloys using only two parameters. The phase equilibria of Sn-Sb and Sn-Bi alloys were calculated based on the properties of pure components and the activity coefficients, which indicates that Sn-Sb and Sn-Bi alloys can be separated thoroughly by vacuum distillation. This study extends previous investigations and provides an effective and convenient model on which to base refining simulations for Sn-based alloys.

  16. Lysozyme adsorption in pH-responsive hydrogel thin-films: the non-trivial role of acid-base equilibrium.

    PubMed

    Narambuena, Claudio F; Longo, Gabriel S; Szleifer, Igal

    2015-09-01

    We develop and apply a molecular theory to study the adsorption of lysozyme on weak polyacid hydrogel films. The theory explicitly accounts for the conformation of the network, the structure of the proteins, the size and shape of all the molecular species, their interactions as well as the chemical equilibrium of each titratable unit of both the protein and the polymer network. The driving forces for adsorption are the electrostatic attractions between the negatively charged network and the positively charged protein. The adsorption is a non-monotonic function of the solution pH, with a maximum in the region between pH 8 and 9 depending on the salt concentration of the solution. The non-monotonic adsorption is the result of increasing negative charge of the network with pH, while the positive charge of the protein decreases. At low pH the network is roughly electroneutral, while at sufficiently high pH the protein is negatively charged. Upon adsorption, the acid-base equilibrium of the different amino acids of the protein shifts in a nontrivial fashion that depends critically on the particular kind of residue and solution composition. Thus, the proteins regulate their charge and enhance adsorption under a wide range of conditions. In particular, adsorption is predicted above the protein isoelectric point where both the solution lysozyme and the polymer network are negatively charged. This behavior occurs because the pH in the interior of the gel is significantly lower than that in the bulk solution and it is also regulated by the adsorption of the protein in order to optimize protein-gel interactions. Under high pH conditions we predict that the protein changes its charge from negative in the solution to positive within the gel. The change occurs within a few nanometers at the interface of the hydrogel film. Our predictions show the non-trivial interplay between acid-base equilibrium, physical interactions and molecular organization under nanoconfined conditions

  17. General equilibrium of an ecosystem.

    PubMed

    Tschirhart, J

    2000-03-01

    Ecosystems and economies are inextricably linked: ecosystem models and economic models are not linked. Consequently, using either type of model to design policies for preserving ecosystems or improving economic performance omits important information. Improved policies would follow from a model that links the systems and accounts for the mutual feedbacks by recognizing how key ecosystem variables influence key economic variables, and vice versa. Because general equilibrium economic models already are widely used for policy making, the approach used here is to develop a general equilibrium ecosystem model which captures salient biological functions and which can be integrated with extant economic models. In the ecosystem model, each organism is assumed to be a net energy maximizer that must exert energy to capture biomass from other organisms. The exerted energies are the "prices" that are paid to biomass, and each organism takes the prices as signals over which it has no control. The maximization problem yields the organism's demand for and supply of biomass to other organisms as functions of the prices. The demands and supplies for each biomass are aggregated over all organisms in each species which establishes biomass markets wherein biomass prices are determined. A short-run equilibrium is established when all organisms are maximizing and demand equals supply in every biomass market. If a species exhibits positive (negative) net energy in equilibrium, its population increases (decreases) and a new equilibrium follows. The demand and supply forces in the biomass markets drive each species toward zero stored energy and a long-run equilibrium. Population adjustments are not based on typical Lotka-Volterra differential equations in which one entire population adjusts to another entire population thereby masking organism behavior; instead, individual organism behavior is central to population adjustments. Numerical simulations use a marine food web in Alaska to

  18. Novel free-boundary equilibrium and transport solver with theory-based models and its validation against ASDEX Upgrade current ramp scenarios

    NASA Astrophysics Data System (ADS)

    Fable, E.; Angioni, C.; Casson, F. J.; Told, D.; Ivanov, A. A.; Jenko, F.; McDermott, R. M.; Medvedev, S. Yu; Pereverzev, G. V.; Ryter, F.; Treutterer, W.; Viezzer, E.; the ASDEX Upgrade Team

    2013-12-01

    Tokamak scenario development requires an understanding of the properties that determine the kinetic profiles in non-steady plasma phases and of the self-consistent evolution of the magnetic equilibrium. Current ramps are of particular interest since many transport-relevant parameters explore a large range of values and their impact on transport mechanisms has to be assessed. To this purpose, a novel full-discharge modelling tool has been developed, which couples the transport code ASTRA (Pereverzev et al 1991 IPP Report 5/42) and the free boundary equilibrium code SPIDER (Ivanov et al 2005 32nd EPS Conf. on Plasma Physics vol 29C (ECA) P-5.063 and http://epsppd.epfl.ch/Tarragona/pdf/P5_063.pdf), utilizing a specifically designed coupling scheme. The current ramp-up phase can be accurately and reliably simulated using this scheme, where a plasma shape, position and current controller is applied, which mimics the one of ASDEX Upgrade. Transport of energy is provided by theory-based models (e.g. TGLF (Staebler et al 2007 Phys. Plasmas 14 055909)). A recipe based on edge-relevant parameters (Scott 2000 Phys. Plasmas 7 1845) is proposed to resolve the low current phase of the current ramps, where the impact of the safety factor on micro-instabilities could make quasi-linear approaches questionable in the plasma outer region. Current ramp scenarios, selected from ASDEX Upgrade discharges, are then simulated to validate both the coupling with the free-boundary evolution and the prediction of profiles. Analysis of the underlying transport mechanisms is presented, to clarify the possible physics origin of the observed L-mode empirical energy confinement scaling. The role of toroidal micro-instabilities (ITG, TEM) and of non-linear effects is discussed.

  19. Equilibrium sampling by reweighting nonequilibrium simulation trajectories

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  20. Equilibrium sampling by reweighting nonequilibrium simulation trajectories.

    PubMed

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems. PMID:27078486

  1. Optical Fluoride Sensor Based on Monomer-Dimer Equilibrium of Scandium(III)-Octaethylporphyrin in a Plasticized Polymeric Film

    PubMed Central

    Kang, Youngjea; Kampf, Jeff W.; Meyerhoff, Mark E.

    2007-01-01

    A fluoride-selective optical sensor based on scandium(III) octaethylporphyrin (Sc(III)OEP) as an ionophore within a plasticized PVC film is described. The presence of fluoride ion in the aqueous sample phase increases the formation of a difluoro-bridged Sc(III)OEP dimer species in the polymer film. The ability of the Sc(III) porphyrin to form the dimeric structure in the presence of fluoride is confirmed by UV-Vis spectroscopy and X-ray crystallography. For more practical sensing applications, a pH chromoionophore (ETH 7075) is added to the plasticized PVC film along with Sc(III)OEP and the observed optical response is based on co-extraction of protons with sample phase fluoride to create the dimeric porphyrin and a protonated chromoionophore species. The selectivity pattern observed is F-≫ClO4-, SCN-, NO3->Br-, Cl-. Only organic salicylate is a significant interferent. Fast and reversible fluoride response is observed over the range of 10-4 ~10-2 M fluoride, allowing use of the sensing film in a waveguide configuration for flow-injection measurements. PMID:17719905

  2. Chemical Principles Revisited: Chemical Equilibrium.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1980-01-01

    Describes: (1) Law of Mass Action; (2) equilibrium constant and ideal behavior; (3) general form of the equilibrium constant; (4) forward and reverse reactions; (5) factors influencing equilibrium; (6) Le Chatelier's principle; (7) effects of temperature, changing concentration, and pressure on equilibrium; and (8) catalysts and equilibrium. (JN)

  3. A Lakatosian Conceptual Change Teaching Strategy Based on Student Ability to Build Models with Varying Degrees of Conceptual Understanding of Chemical Equilibrium

    NASA Astrophysics Data System (ADS)

    Niaz, M.

    The main objective of this study is to construct a Lakatosian teaching strategy that can facilitate conceptual change in students'' understanding of chemical equilibrium. The strategy is based on the premise that cognitive conflicts must have been engendered by the students themselves in trying to cope with different problem solving strategies. Results obtained (based on Venezuelan freshman students) show that the performance of the experimental group of students was generally better (especially on the immediate post tests) than that of the control group. It is concluded that a conceptual change teaching strategy must take into consideration the following aspects: a) core beliefs of the students in the topic (cf. ''hard core'', Lakatos 1970); b) exploration of the relationship between core beliefs and student alternative conceptions (misconceptions); c) cognitive complexity of the core belief can be broken down into a series of related and probing questions; d) students resist changes in their core beliefs by postulating ''auxiliary hypotheses'' in order to resolve their contradictions; e) students'' responses based on their alternative conceptions must be considered not as wrong, but rather as models, perhaps in the same sense as used by scientists to break the complexity of a problem; and f) students'' misconceptions be considered as alternative conceptions (theories) that compete with the present scientific theories and at times recapitulate theories scientists held in the past.

  4. Computing Equilibrium Chemical Compositions

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  5. Napoleon Is in Equilibrium

    PubMed Central

    Phillips, Rob

    2016-01-01

    It has been said that the cell is the test tube of the twenty-first century. If so, the theoretical tools needed to quantitatively and predictively describe what goes on in such test tubes lag sorely behind the stunning experimental advances in biology seen in the decades since the molecular biology revolution began. Perhaps surprisingly, one of the theoretical tools that has been used with great success on problems ranging from how cells communicate with their environment and each other to the nature of the organization of proteins and lipids within the cell membrane is statistical mechanics. A knee-jerk reaction to the use of statistical mechanics in the description of cellular processes is that living organisms are so far from equilibrium that one has no business even thinking about it. But such reactions are probably too hasty given that there are many regimes in which, because of a separation of timescales, for example, such an approach can be a useful first step. In this article, we explore the power of statistical mechanical thinking in the biological setting, with special emphasis on cell signaling and regulation. We show how such models are used to make predictions and describe some recent experiments designed to test them. We also consider the limits of such models based on the relative timescales of the processes of interest. PMID:27429713

  6. Napoleon Is in Equilibrium

    NASA Astrophysics Data System (ADS)

    Phillips, Rob

    2015-03-01

    It has been said that the cell is the test tube of the twenty-first century. If so, the theoretical tools needed to quantitatively and predictively describe what goes on in such test tubes lag sorely behind the stunning experimental advances in biology seen in the decades since the molecular biology revolution began. Perhaps surprisingly, one of the theoretical tools that has been used with great success on problems ranging from how cells communicate with their environment and each other to the nature of the organization of proteins and lipids within the cell membrane is statistical mechanics. A knee-jerk reaction to the use of statistical mechanics in the description of cellular processes is that living organisms are so far from equilibrium that one has no business even thinking about it. But such reactions are probably too hasty given that there are many regimes in which, because of a separation of timescales, for example, such an approach can be a useful first step. In this article, we explore the power of statistical mechanical thinking in the biological setting, with special emphasis on cell signaling and regulation. We show how such models are used to make predictions and describe some recent experiments designed to test them. We also consider the limits of such models based on the relative timescales of the processes of interest.

  7. Large-scale screening of metal hydrides for hydrogen storage from first-principles calculations based on equilibrium reaction thermodynamics.

    PubMed

    Kim, Ki Chul; Kulkarni, Anant D; Johnson, J Karl; Sholl, David S

    2011-04-21

    Systematic thermodynamics calculations based on density functional theory-calculated energies for crystalline solids have been a useful complement to experimental studies of hydrogen storage in metal hydrides. We report the most comprehensive set of thermodynamics calculations for mixtures of light metal hydrides to date by performing grand canonical linear programming screening on a database of 359 compounds, including 147 compounds not previously examined by us. This database is used to categorize the reaction thermodynamics of all mixtures containing any four non-H elements among Al, B, C, Ca, K, Li, Mg, N, Na, Sc, Si, Ti, and V. Reactions are categorized according to the amount of H(2) that is released and the reaction's enthalpy. This approach identifies 74 distinct single step reactions having that a storage capacity >6 wt.% and zero temperature heats of reaction 15 ≤ΔU(0)≤ 75 kJ mol(-1) H(2). Many of these reactions, however, are likely to be problematic experimentally because of the role of refractory compounds, B(12)H(12)-containing compounds, or carbon. The single most promising reaction identified in this way involves LiNH(2)/LiH/KBH(4), storing 7.48 wt.% H(2) and having ΔU(0) = 43.6 kJ mol(-1) H(2). We also examined the complete range of reaction mixtures to identify multi-step reactions with useful properties; this yielded 23 multi-step reactions of potential interest. PMID:21409194

  8. Estimation of polycyclic aromatic hydrocarbon concentrations in the water column based on tissue residues in mussels and salmon: An equilibrium partitioning approach

    SciTech Connect

    Neff, J.M.; Burns, W.A.

    1996-12-01

    Equilibrium partitioning was used to estimate concentrations of dissolved polycyclic aromatic hydrocarbons (PAHs) in the water column from PAH residues in tissues of mussels and juvenile pink salmon collected from coastal marine waters affected by the Exxon Valdez oil spill. Estimated concentrations were within factors of 2 to 5 for fish and 5 to 10 for mussels of average total dissolved and particulate PAHs measured in concurrent water samples. Temporal trends of estimated and measured water-column PAH concentrations were comparable. Water-column PAH concentrations estimated from residues in tissues of mussels (Mytilus trossulus) were higher than estimates based on residues in tissues of juvenile pink salmon (Oncorhynchus gorbuscha). Possible reasons for this difference include seasonal variations in mussel lipid content, differences in PAH uptake and depuration rates between fish and mussels, differences in how fish and mussels interact with particulate oil, and possible short exposure times for juvenile pink salmon. All of these factors may play a role. In any event, estimates of dissolved PAHs in the water column, based on PAH residues in either fish or mussel tissue, confirm that PAH concentrations generally did not exceed water quality standards for protection of marine life.

  9. Equilibrium games in networks

    NASA Astrophysics Data System (ADS)

    Li, Angsheng; Zhang, Xiaohui; Pan, Yicheng; Peng, Pan

    2014-12-01

    It seems a universal phenomenon of networks that the attacks on a small number of nodes by an adversary player Alice may generate a global cascading failure of the networks. It has been shown (Li et al., 2013) that classic scale-free networks (Barabási and Albert, 1999, Barabási, 2009) are insecure against attacks of as small as O(logn) many nodes. This poses a natural and fundamental question: Can we introduce a second player Bob to prevent Alice from global cascading failure of the networks? We proposed a game in networks. We say that a network has an equilibrium game if the second player Bob has a strategy to balance the cascading influence of attacks by the adversary player Alice. It was shown that networks of the preferential attachment model (Barabási and Albert, 1999) fail to have equilibrium games, that random graphs of the Erdös-Rényi model (Erdös and Rényi, 1959, Erdös and Rényi, 1960) have, for which randomness is the mechanism, and that homophyly networks (Li et al., 2013) have equilibrium games, for which homophyly and preferential attachment are the underlying mechanisms. We found that some real networks have equilibrium games, but most real networks fail to have. We anticipate that our results lead to an interesting new direction of network theory, that is, equilibrium games in networks.

  10. A Lakatosian Conceptual Change Teaching Strategy Based on Student Ability To Build Models with Varying Degrees of Conceptual Understanding of Chemical Equilibrium.

    ERIC Educational Resources Information Center

    Niaz, Mansoor

    1998-01-01

    Reports on a study that constructs a Lakatosian teaching strategy that can facilitate conceptual change in students' understanding of chemical equilibrium. Results indicate that the experimental group performed better on tests. Contains 81 references. (DDR)

  11. A New Methodology for Open Pit Slope Design in Karst-Prone Ground Conditions Based on Integrated Stochastic-Limit Equilibrium Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Cao, Ping; Ma, Guowei; Fan, Wenchen; Meng, Jingjing; Li, Kaihui

    2016-07-01

    Using the Chengmenshan Copper Mine as a case study, a new methodology for open pit slope design in karst-prone ground conditions is presented based on integrated stochastic-limit equilibrium analysis. The numerical modeling and optimization design procedure contain a collection of drill core data, karst cave stochastic model generation, SLIDE simulation and bisection method optimization. Borehole investigations are performed, and the statistical result shows that the length of the karst cave fits a negative exponential distribution model, but the length of carbonatite does not exactly follow any standard distribution. The inverse transform method and acceptance-rejection method are used to reproduce the length of the karst cave and carbonatite, respectively. A code for karst cave stochastic model generation, named KCSMG, is developed. The stability of the rock slope with the karst cave stochastic model is analyzed by combining the KCSMG code and the SLIDE program. This approach is then applied to study the effect of the karst cave on the stability of the open pit slope, and a procedure to optimize the open pit slope angle is presented.

  12. Reversible inhibition of proton release activity and the anesthetic-induced acid-base equilibrium between the 480 and 570 nm forms of bacteriorhodopsin.

    PubMed Central

    Boucher, F; Taneva, S G; Elouatik, S; Déry, M; Messaoudi, S; Harvey-Girard, E; Beaudoin, N

    1996-01-01

    In purple membrane added with general anesthetics, there exists an acid-base equilibrium between two spectral forms of the pigment: bR570 and bR480 (apparent pKa = 7.3). As the purple 570 nm bacteriorhodopsin is reversibly transformed into its red 480 nm form, the proton pumping capability of the pigment reversibly decreases, as indicated by transient proton release measurements and proton translocation action spectra of mixture of both spectral forms. It happens in spite of a complete photochemical activity in bR480 that is mostly characterized by fast deprotonation and slow reprotonation steps and which, under continuous illumination, bleaches with a yield comparable to that of bR570. This modified photochemical activity has a correlated specific photoelectrical counterpart: a faster proton extrusion current and a slower reprotonation current. The relative areas of all photocurrent phases are reduced in bR480, most likely because its photochemistry is accompanied by charge movements for shorter distances than in the native pigment, reflecting a reversible inhibition of the pumping activity. PMID:8789112

  13. Princeton spectral equilibrium code: PSEC

    SciTech Connect

    Ling, K.M.; Jardin, S.C.

    1984-03-01

    A fast computer code has been developed to calculate free-boundary solutions to the plasma equilibrium equation that are consistent with the currents in external coils and conductors. The free-boundary formulation is based on the minimization of a mean-square error epsilon while the fixed-boundary solution is based on a variational principle and spectral representation of the coordinates x(psi,theta) and z(psi,theta). Specific calculations using the Columbia University Torus II, the Poloidal Divertor Experiment (PDX), and the Tokamak Fusion Test Reactor (TFTR) geometries are performed.

  14. [Principle of genetic equilibrium for two gene loci].

    PubMed

    Pan, Shen-Yuan; Qu, Ai; Hui, Peng; Li, Ai-Ling

    2004-03-01

    Because linkage equilibrium is introduced by directly quoting the conclusions or imprecise mathematical reasoning in most of textbooks, many students are puzzled with the problem of linkage equilibrium when they learn population genetics. Based on the radical conditions of genetic equilibrium, the principle of linkage equilibrium condition and process, for two gene loci is introduced by precise mathematical reasoning. The article may provide reference to teachers and students in the teaching and learning of population genetics. PMID:15639991

  15. An Updated Equilibrium Machine

    ERIC Educational Resources Information Center

    Schultz, Emeric

    2008-01-01

    A device that can demonstrate equilibrium, kinetic, and thermodynamic concepts is described. The device consists of a leaf blower attached to a plastic container divided into two chambers by a barrier of variable size and form. Styrofoam balls can be exchanged across the barrier when the leaf blower is turned on and various air pressures are…

  16. Stochastic approach to equilibrium and nonequilibrium thermodynamics

    NASA Astrophysics Data System (ADS)

    Tomé, Tânia; de Oliveira, Mário J.

    2015-04-01

    We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.

  17. Stochastic approach to equilibrium and nonequilibrium thermodynamics.

    PubMed

    Tomé, Tânia; de Oliveira, Mário J

    2015-04-01

    We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions. PMID:25974471

  18. Local Nash Equilibrium in Social Networks

    PubMed Central

    Zhang, Yichao; Aziz-Alaoui, M. A.; Bertelle, Cyrille; Guan, Jihong

    2014-01-01

    Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures. PMID:25169150

  19. A DFT-based comparative equilibrium study of thermal dehydration and hydrolysis of CaCl₂ hydrates and MgCl₂ hydrates for seasonal heat storage.

    PubMed

    Pathak, Amar Deep; Nedea, Silvia; Zondag, Herbert; Rindt, Camilo; Smeulders, David

    2016-04-21

    Salt hydrates store solar energy in chemical form via a reversible dehydration-hydration reaction. However, as a side reaction to dehydration, hydrolysis (HCl formation) may occur in chloride based salt hydrates (specially in MgCl2 hydrates), affecting the durability of the storage system. The mixture of CaCl2 and MgCl2 hydrates has been shown experimentally to have exceptional cycle stability and improved kinetics. However, the optimal operating conditions for the mixture are unknown. To understand the appropriate balance between dehydration and hydrolysis kinetics in the mixtures, it is essential to gain in-depth insight into the mixture components. We present a GGA-DFT level study to investigate the various gaseous structures of CaCl2 hydrates and to understand the relative stability of their conformers. The hydration strength and relative stability of conformers are dominated by electrostatic interactions. A wide network of intramolecular homonuclear and heteronuclear hydrogen bonds is observed in CaCl2 hydrates. Equilibrium product concentrations are obtained during dehydration and hydrolysis reactions under various temperature and pressure conditions. The trend of the dehydration curve with temperature in CaCl2 hydrates is similar to the experiments. Comparing these results to those of MgCl2 hydrates, we find that CaCl2 hydrates are more resistant towards hydrolysis in the temperature range of 273-800 K. Specifically, the present study reveals that the onset temperatures of HCl formation, a crucial design parameter for MgCl2 hydrates, are lower than for CaCl2 hydrates except for the mono-hydrate. PMID:27004734

  20. Higher-order compositional modeling of three-phase flow in 3D fractured porous media based on cross-flow equilibrium

    SciTech Connect

    Moortgat, Joachim Firoozabadi, Abbas

    2013-10-01

    Numerical simulation of multiphase compositional flow in fractured porous media, when all the species can transfer between the phases, is a real challenge. Despite the broad applications in hydrocarbon reservoir engineering and hydrology, a compositional numerical simulator for three-phase flow in fractured media has not appeared in the literature, to the best of our knowledge. In this work, we present a three-phase fully compositional simulator for fractured media, based on higher-order finite element methods. To achieve computational efficiency, we invoke the cross-flow equilibrium (CFE) concept between discrete fractures and a small neighborhood in the matrix blocks. We adopt the mixed hybrid finite element (MHFE) method to approximate convective Darcy fluxes and the pressure equation. This approach is the most natural choice for flow in fractured media. The mass balance equations are discretized by the discontinuous Galerkin (DG) method, which is perhaps the most efficient approach to capture physical discontinuities in phase properties at the matrix-fracture interfaces and at phase boundaries. In this work, we account for gravity and Fickian diffusion. The modeling of capillary effects is discussed in a separate paper. We present the mathematical framework, using the implicit-pressure-explicit-composition (IMPEC) scheme, which facilitates rigorous thermodynamic stability analyses and the computation of phase behavior effects to account for transfer of species between the phases. A deceptively simple CFL condition is implemented to improve numerical stability and accuracy. We provide six numerical examples at both small and larger scales and in two and three dimensions, to demonstrate powerful features of the formulation.

  1. An Updated Equilibrium Machine

    NASA Astrophysics Data System (ADS)

    Schultz, Emeric

    2008-08-01

    A device that can demonstrate equilibrium, kinetic, and thermodynamic concepts is described. The device consists of a leaf blower attached to a plastic container divided into two chambers by a barrier of variable size and form. Styrofoam balls can be exchanged across the barrier when the leaf blower is turned on and various air pressures are applied. Equilibrium can be approached from different distributions of balls in the container under different conditions. The Le Châtelier principle can be demonstrated. Kinetic concepts can be demonstrated by changing the nature of the barrier, either changing the height or by having various sized holes in the barrier. Thermodynamic concepts can be demonstrated by taping over some or all of the openings and restricting air flow into container on either side of the barrier.

  2. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  3. Solids Far from Equilibrium

    NASA Astrophysics Data System (ADS)

    Godrèche, C.

    2011-03-01

    Preface; 1. Shape and growth of crystals P. Nozières; 2. Instabilities of planar solidification fronts B. Caroli, C. Caroli and B. Roulet; 3. An introduction to the kinetics of first-order phase transition J. S. Langer; 4. Dendritic growth and related topics Y. Pomeau and M. Ben Amar; 5. Growth and aggregation far from equilibrium L. M. Sander; 6. Kinetic roughening of growing surfaces J. Krug and H. Spohn; Acknowledgements; References; Index.

  4. Exoplanet Equilibrium Chemistry Calculations

    NASA Astrophysics Data System (ADS)

    Blumenthal, Sarah; Harrington, J.; Bowman, M.; Blecic, J.

    2013-10-01

    Recently, Agundez et al. (2012, A&A 548, A73) used a chemical kinetics code to study a model HD 209458b (equilibrium temperature of 1450 K, assuming full redistribution and 0 albedo). They found that thermochemistry dominates most of the dayside, but that significant compositional gradients may exist across the dayside. We calculate equilibrium-chemistry molecular abundances for several model exoplanets, using NASA's open-source Chemical Equilibrium Abundances code (McBride and Gordon 1996). We vary the degree of radiation redistribution to the dark side, ranging from total redistribution to instantaneous reradiation. Atomically, both the solar abundance multiple and the carbon fraction vary. Planet substellar temperatures range from just above 1200 K, where photochemistry should no longer be important, to those of hot planets (3000 K). We present synthetic abundance images for the key spectroscopic molecules CO, CH4, and H2O for several hot-Jupiter model planets. This work was supported by the NASA Planetary Atmospheres grant NNX12AI69G.

  5. Equilibrium Electroconvective Instability

    NASA Astrophysics Data System (ADS)

    Rubinstein, I.; Zaltzman, B.

    2015-03-01

    Since its prediction 15 years ago, hydrodynamic instability in concentration polarization at a charge-selective interface has been attributed to nonequilibrium electro-osmosis related to the extended space charge which develops at the limiting current. This attribution had a double basis. On the one hand, it has been recognized that neither equilibrium electro-osmosis nor bulk electroconvection can yield instability for a perfectly charge-selective solid. On the other hand, it has been shown that nonequilibrium electro-osmosis can. The first theoretical studies in which electro-osmotic instability was predicted and analyzed employed the assumption of perfect charge selectivity for the sake of simplicity and so did the subsequent studies of various time-dependent and nonlinear features of electro-osmotic instability. In this Letter, we show that relaxing the assumption of perfect charge selectivity (tantamount to fixing the electrochemical potential of counterions in the solid) allows for the equilibrium electroconvective instability. In addition, we suggest a simple experimental test for determining the true, either equilibrium or nonequilibrium, origin of instability in concentration polarization.

  6. A numerical study of EGS heat extraction process based on a thermal non-equilibrium model for heat transfer in subsurface porous heat reservoir

    NASA Astrophysics Data System (ADS)

    Chen, Jiliang; Jiang, Fangming

    2016-02-01

    With a previously developed numerical model, we perform a detailed study of the heat extraction process in enhanced or engineered geothermal system (EGS). This model takes the EGS subsurface heat reservoir as an equivalent porous medium while it considers local thermal non-equilibrium between the rock matrix and the fluid flowing in the fractured rock mass. The application of local thermal non-equilibrium model highlights the temperature-difference heat exchange process occurring in EGS reservoirs, enabling a better understanding of the involved heat extraction process. The simulation results unravel the mechanism of preferential flow or short-circuit flow forming in homogeneously fractured reservoirs of different permeability values. EGS performance, e.g. production temperature and lifetime, is found to be tightly related to the flow pattern in the reservoir. Thermal compensation from rocks surrounding the reservoir contributes little heat to the heat transmission fluid if the operation time of an EGS is shorter than 15 years. We find as well the local thermal equilibrium model generally overestimates EGS performance and for an EGS with better heat exchange conditions in the heat reservoir, the heat extraction process acts more like the local thermal equilibrium process.

  7. Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS—Part 3: Application to the Peach Spring Tuff (Arizona-California-Nevada, USA)

    NASA Astrophysics Data System (ADS)

    Pamukcu, Ayla S.; Gualda, Guilherme A. R.; Ghiorso, Mark S.; Miller, Calvin F.; McCracken, Reba G.

    2015-03-01

    Establishing the depths of magma accumulation is critical to understanding how magmas evolve and erupt, but developing methods to constrain these pressures is challenging. We apply the new rhyolite-MELTS phase-equilibria geobarometer—based on the equilibrium between melt, quartz, and two feldspars—to matrix glass compositions from Peach Spring Tuff (Arizona-California-Nevada, USA) high-silica rhyolite. We compare the results to those from amphibole geothermobarometry, projection of glass compositions onto the haplogranitic ternary, and glass SiO2 geobarometry. Quartz + 2 feldspar rhyolite-MELTS pressures span a relatively small range (185-230 MPa), consistent with nearly homogeneous crystal compositions, and are similar to estimates based on projection onto the haplogranitic ternary (250 ± 50 MPa) and on glass SiO2 (255-275 MPa). Amphibole geothermobarometry gives much wider pressure ranges (temperature-independent: ~65-300 MPa; temperature-dependent: ~75-295 MPa; amphibole-only: ~80-950 MPa); average Anderson and Smith (Am Mineral 80:549-559, 1995) + Blundy and Holland (Contrib Miner Petrol 104:208-224, 1990) or Holland and Blundy (Contrib Miner Petrol 116:433-447, 1994—Thermometer A, B) pressures are most similar to phase-equilibria results (~220, 210, 190 MPa, respectively). Crystallization temperatures determined previously with rhyolite-MELTS (742 °C), Zr-in-sphene (769 ± 20 °C), and zircon saturation (770-780 °C) geothermometry are similar, but temperatures from amphibole geothermometry (~450-955 °C) are notably different; the average Anderson and Smith + Holland and Blundy (1994—Thermometer B; ~710 °C) temperature is most consistent with previous estimates. The rhyolite-MELTS geobarometer effectively culls glass compositions affected by alteration or analytical issues; Peach Spring glass compositions that yield pressure estimates reveal a tight range of plausible Na2O and K2O contents, suggesting that low Na2O and high K2O contents of many

  8. Structural design using equilibrium programming

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.

    1992-01-01

    Multiple nonlinear programming methods are combined in the method of equilibrium programming. Equilibrium programming theory has been appied to problems in operations research, and in the present study it is investigated as a framework to solve structural design problems. Several existing formal methods for structural optimization are shown to actually be equilibrium programming methods. Additionally, the equilibrium programming framework is utilized to develop a new structural design method. Selected computational results are presented to demonstrate the methods.

  9. Theory for non-equilibrium statistical mechanics.

    PubMed

    Attard, Phil

    2006-08-21

    This paper reviews a new theory for non-equilibrium statistical mechanics. This gives the non-equilibrium analogue of the Boltzmann probability distribution, and the generalization of entropy to dynamic states. It is shown that this so-called second entropy is maximized in the steady state, in contrast to the rate of production of the conventional entropy, which is not an extremum. The relationships of the new theory to Onsager's regression hypothesis, Prigogine's minimal entropy production theorem, the Langevin equation, the formula of Green and Kubo, the Kawasaki distribution, and the non-equilibrium fluctuation and work theorems, are discussed. The theory is worked through in full detail for the case of steady heat flow down an imposed temperature gradient. A Monte Carlo algorithm based upon the steady state probability density is summarized, and results for the thermal conductivity of a Lennard-Jones fluid are shown to be in agreement with known values. Also discussed is the generalization to non-equilibrium mechanical work, and to non-equilibrium quantum statistical mechanics. As examples of the new theory two general applications are briefly explored: a non-equilibrium version of the second law of thermodynamics, and the origin and evolution of life. PMID:16883388

  10. Iron isotope fractionation between aqueous Fe(II) and goethite revisited: New insights based on a multi-direction approach to equilibrium and isotopic exchange rate modification

    NASA Astrophysics Data System (ADS)

    Frierdich, Andrew J.; Beard, Brian L.; Reddy, Thiruchelvi R.; Scherer, Michelle M.; Johnson, Clark M.

    2014-08-01

    The Fe isotope compositions of naturally occurring Fe oxide minerals provide insights into biogeochemical processes that occur in modern and ancient environments. Key to understanding isotopic variations in such minerals is knowledge of the equilibrium Fe isotope fractionation factors between common minerals and aqueous Fe species. Because experimental measurements of isotopic fractionation may reflect a combination of kinetic and equilibrium fractionations during rapid dissolution and precipitation, even in experiments that employ the three-isotope method, assessment of the attainment of equilibrium is often difficult. Here, we re-examine Fe isotope exchange, via a 57Fe tracer, and natural mass-dependent fractionation, through changes in initial 56Fe/54Fe ratios, between aqueous Fe(II) (Fe(II)aq) and goethite. This approach uses the three-isotope method, but is distinct in its evaluation of kinetic isotope fractionation and the attainment of equilibrium by: (i) employing a multi-direction approach to equilibrium at 22 °C via reaction of three Fe(II)aq solutions that had different initial 56Fe/54Fe ratios, (ii) conducting isotopic exchange experiments at elevated temperature (50 °C), and (iii) modifying the rate of isotopic exchange through a combination of trace-element substitutions and particle coarsening to evaluate corresponding temporal changes in fractionation trajectories that may reflect changing instantaneous fractionation factors. We find that rapid isotopic exchange produces kinetic isotope effects between Fe(II)aq and goethite, which shifts the 56Fe/54Fe ratios of Fe(II)aq early in reactions toward that of goethite, indicating that the instantaneous Fe(II)aq-goethite fractionation factor under kinetic conditions is small. Importantly, however, this kinetic fractionation is “erased” with continued reaction, and this is evident by the congruence for multiple-exchange trajectories of distinct initial Fe(II)aq solutions toward the same final value

  11. Non-equilibrium DMFT - Polaritonics

    NASA Astrophysics Data System (ADS)

    Lubatsch, Andreas; Frank, Regine

    Non-equilibrium physics recently really becomes important with the progress of ultrafast laser sciences. However in our understanding there is still a gap between equilibrium physics and the non-equilibrium, even though numerical methods have been advanced in recent years. We compare in this talk novel results at hand with equilibrium physics. The comparison will show that especially theoretical efforts are needed to explain many - so far - unresolved problems and to predict novel research on the basis of ab initio computing. We specifically discuss several non-equilibrium extensions of DMFT, numerical methods as well as semi-analytical solvers.

  12. Thermal equilibrium of goats.

    PubMed

    Maia, Alex S C; Nascimento, Sheila T; Nascimento, Carolina C N; Gebremedhin, Kifle G

    2016-05-01

    The effects of air temperature and relative humidity on thermal equilibrium of goats in a tropical region was evaluated. Nine non-pregnant Anglo Nubian nanny goats were used in the study. An indirect calorimeter was designed and developed to measure oxygen consumption, carbon dioxide production, methane production and water vapour pressure of the air exhaled from goats. Physiological parameters: rectal temperature, skin temperature, hair-coat temperature, expired air temperature and respiratory rate and volume as well as environmental parameters: air temperature, relative humidity and mean radiant temperature were measured. The results show that respiratory and volume rates and latent heat loss did not change significantly for air temperature between 22 and 26°C. In this temperature range, metabolic heat was lost mainly by convection and long-wave radiation. For temperature greater than 30°C, the goats maintained thermal equilibrium mainly by evaporative heat loss. At the higher air temperature, the respiratory and ventilation rates as well as body temperatures were significantly elevated. It can be concluded that for Anglo Nubian goats, the upper limit of air temperature for comfort is around 26°C when the goats are protected from direct solar radiation. PMID:27157333

  13. On applicability of the photochemical-equilibrium approach for retrieval of O and H mesospheric distributions from the satellite-based measurements of the airglow emission and ozone concentration

    NASA Astrophysics Data System (ADS)

    Feigin, Alexander; Belikovich, Mikhail; Kulikov, Mikhail

    2016-04-01

    Atomic oxygen and hydrogen are known to be among key components for the photochemistry and energy balance of the Earth's atmosphere between approximately 80 and 100 km altitude (mesopause region). Therefore, obtaining information about the vertical distributions of O and H concentrations is an important task in studies of this region. Solving of this problem is rather difficult due to the absence of regular methods which allow one to direct measurements of distributions of these components in mesosphere. However, indirect methods used to retrieve O and H distributions from the satellite-based measurements of the OH and O2(1D) airglow emission, as well as the data of IR and microwave O3 measurements have a sufficiently long development history. These methods are rooted in the use of the condition of photochemical equilibrium of ozone density in the range of altitudes from 50 to 100 km. A significant factor is that an insufficient volume of such measurement data forces researchers to use approximate ("truncated") photochemical-equilibrium conditions. In particular, it is assumed that in the daytime the ozone production reaction is perfectly balanced by ozone photodissociation, whereas during the night the only ozone sink is the reaction of ozone with atomic hydrogen, which, in its turn, leads to formation of excited OH and airglow emission of the latter. The presentation analyzes applicability of the photochemical-equilibrium conditions both in the total and truncated forms for description of the spatio-temporal evolution of mesospheric ozone during a year. The analysis is based on year-long time series generated by a 3D chemical transport model, which reproduces correctly various types of atmosphere dynamics in the range of altitudes from 50 to 100 km. These data are used to determine statistics of the ratio between the correct (calculated dynamically) distributions of the O3 density and its uncontracted and truncated equilibrium values for the conditions of the

  14. Equilibrium gas flow computations. I - Accurate and efficient calculation of equilibrium gas properties

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Vinokur, Marcel

    1989-01-01

    This paper treats the accurate and efficient calculation of thermodynamic properties of arbitrary gas mixtures for equilibrium flow computations. New improvements in the Stupochenko-Jaffe model for the calculation of thermodynamic properties of diatomic molecules are presented. A unified formulation of equilibrium calculations for gas mixtures in terms of irreversible entropy is given. Using a highly accurate thermo-chemical data base, a new, efficient and vectorizable search algorithm is used to construct piecewise interpolation procedures with generate accurate thermodynamic variable and their derivatives required by modern computational algorithms. Results are presented for equilibrium air, and compared with those given by the Srinivasan program.

  15. Statistical physics ""Beyond equilibrium

    SciTech Connect

    Ecke, Robert E

    2009-01-01

    The scientific challenges of the 21st century will increasingly involve competing interactions, geometric frustration, spatial and temporal intrinsic inhomogeneity, nanoscale structures, and interactions spanning many scales. We will focus on a broad class of emerging problems that will require new tools in non-equilibrium statistical physics and that will find application in new material functionality, in predicting complex spatial dynamics, and in understanding novel states of matter. Our work will encompass materials under extreme conditions involving elastic/plastic deformation, competing interactions, intrinsic inhomogeneity, frustration in condensed matter systems, scaling phenomena in disordered materials from glasses to granular matter, quantum chemistry applied to nano-scale materials, soft-matter materials, and spatio-temporal properties of both ordinary and complex fluids.

  16. Exploring Chemical Equilibrium with Poker Chips: A General Chemistry Laboratory Exercise

    ERIC Educational Resources Information Center

    Bindel, Thomas H.

    2012-01-01

    A hands-on laboratory exercise at the general chemistry level introduces students to chemical equilibrium through a simulation that uses poker chips and rate equations. More specifically, the exercise allows students to explore reaction tables, dynamic chemical equilibrium, equilibrium constant expressions, and the equilibrium constant based on…

  17. Forebody and base region real gas flow in severe planetary entry by a factored implicit numerical method. II - Equilibrium reactive gas

    NASA Technical Reports Server (NTRS)

    Davy, W. C.; Green, M. J.; Lombard, C. K.

    1981-01-01

    The factored-implicit, gas-dynamic algorithm has been adapted to the numerical simulation of equilibrium reactive flows. Changes required in the perfect gas version of the algorithm are developed, and the method of coupling gas-dynamic and chemistry variables is discussed. A flow-field solution that approximates a Jovian entry case was obtained by this method and compared with the same solution obtained by HYVIS, a computer program much used for the study of planetary entry. Comparison of surface pressure distribution and stagnation line shock-layer profiles indicates that the two solutions agree well.

  18. Thermodynamic equilibrium at heterogeneous pressure

    NASA Astrophysics Data System (ADS)

    Vrijmoed, Johannes C.; Podladchikov, Yuri Y.

    2014-05-01

    Recent advances in metamorphic petrology point out the importance of grain-scale pressure variations in high-temperature metamorphic rocks. Pressures derived from chemical zonation using unconventional geobarometry based on equal chemical potentials fit mechanically feasible pressure variations. Here a thermodynamic equilibrium method is presented that predicts chemical zoning as a result of pressure variations by Gibbs energy minimization. Equilibrium thermodynamic prediction of the chemical zoning in the case of pressure heterogeneity is done by constraint Gibbs minimization using linear programming techniques. Compositions of phases considered in the calculation are discretized into 'pseudo-compounds' spanning the entire compositional space. Gibbs energies of these discrete compounds are generated for a given range and resolution of pressures for example derived by barometry or from mechanical model predictions. Gibbs energy minimization is subsequently performed considering all compounds of different composition and pressure. In addition to constraining the system composition a certain proportion of the system is constraint at a specified pressure. Input pressure variations need to be discretized and each discrete pressure defines an additional constraint for the minimization. The proportion of the system at each different pressure is equally distributed over the number of input pressures. For example if two input pressures P1 and P2 are specified, two constraints are added: 50 percent of the system is constraint at P1 while the remaining 50 percent is constraint at P2. The method has been tested for a set of 10 input pressures obtained by Tajčmanová et al. (2014) using their unconventional geobarometry method in a plagioclase rim around kyanite. Each input pressure is added as constraint to the minimization (1/10 percent of the system for each discrete pressure). Constraining the system composition to the average composition of the plagioclase rim

  19. Equilibrium Potentials of Membrane Electrodes

    PubMed Central

    Wang, Jui H.; Copeland, Eva

    1973-01-01

    A simple thermodynamic theory of the equilibrium potentials of membrane electrodes is formulated and applied to the glass electrode for measurement of pH. The new formulation assumes the selective adsorption or binding of specific ions on the surface of the membrane which may or may not be permeable to the ion, and includes the conventional derivation based on reversible ion transport across membranes as a special case. To test the theory, a platinum wire was coated with a mixture of stearic acid and methyl-tri-n-octyl-ammonium stearate. When this coated electrode was immersed in aqueous phosphate solution, its potential was found to be a linear function of pH from pH 2 to 12 with a slope equal to the theoretical value of 59.0 mV per pH unit at 24°. PMID:4516194

  20. Neoclassical equilibrium in gyrokinetic simulations

    SciTech Connect

    Garbet, X.; Dif-Pradalier, G.; Nguyen, C.; Sarazin, Y.; Grandgirard, V.; Ghendrih, Ph.

    2009-06-15

    This paper presents a set of model collision operators, which reproduce the neoclassical equilibrium and comply with the constraints of a full-f global gyrokinetic code. The assessment of these operators is based on an entropy variational principle, which allows one to perform a fast calculation of the neoclassical diffusivity and poloidal velocity. It is shown that the force balance equation is recovered at lowest order in the expansion parameter, the normalized gyroradius, hence allowing one to calculate correctly the radial electric field. Also, the conventional neoclassical transport and the poloidal velocity are reproduced in the plateau and banana regimes. The advantages and drawbacks of the various model operators are discussed in view of the requirements for neoclassical and turbulent transport.

  1. The Nash equilibrium: a perspective.

    PubMed

    Holt, Charles A; Roth, Alvin E

    2004-03-23

    In 1950, John Nash contributed a remarkable one-page PNAS article that defined and characterized a notion of equilibrium for n- person games. This notion, now called the "Nash equilibrium," has been widely applied and adapted in economics and other behavioral sciences. Indeed, game theory, with the Nash equilibrium as its centerpiece, is becoming the most prominent unifying theory of social science. In this perspective, we summarize the historical context and subsequent impact of Nash's contribution. PMID:15024100

  2. Grinding kinetics and equilibrium states

    NASA Technical Reports Server (NTRS)

    Opoczky, L.; Farnady, F.

    1984-01-01

    The temporary and permanent equilibrium occurring during the initial stage of cement grinding does not indicate the end of comminution, but rather an increased energy consumption during grinding. The constant dynamic equilibrium occurs after a long grinding period indicating the end of comminution for a given particle size. Grinding equilibrium curves can be constructed to show the stages of comminution and agglomeration for certain particle sizes.

  3. Chemical Equilibrium Composition of Aqueous Systems

    Energy Science and Technology Software Center (ESTSC)

    1996-12-30

    MINEQL is a subroutine package to calculate equilibrium composition of an aqueous system, accounting for mass transfer. MINEQL-EIR contains an additional base on enthalpy and heat capacity data and has the option to do calculations at temperatures different from 25 degrees C.

  4. Analytic prediction of airplane equilibrium spin characteristics

    NASA Technical Reports Server (NTRS)

    Adams, W. M., Jr.

    1972-01-01

    The nonlinear equations of motion are solved algebraically for conditions for which an airplane is in an equilibrium spin. Constrained minimization techniques are employed in obtaining the solution. Linear characteristics of the airplane about the equilibrium points are also presented and their significance in identifying the stability characteristics of the equilibrium points is discussed. Computer time requirements are small making the method appear potentially applicable in airplane design. Results are obtained for several configurations and are compared with other analytic-numerical methods employed in spin prediction. Correlation with experimental results is discussed for one configuration for which a rather extensive data base was available. A need is indicated for higher Reynolds number data taken under conditions which more accurately simulate a spin.

  5. Modeling equilibrium Fe isotope fractionation

    NASA Astrophysics Data System (ADS)

    Anbar, A.; Jarzecki, A.; Spiro, T.

    2003-04-01

    Research into the stable isotope biogeochemistry of Fe and other transition metals has been driven primarily by analytical innovations which have revealed significant isotope effects in nature and the laboratory. Further development of these new isotope systems requires complementary theoretical research to guide analytical efforts. The results of the first such studies show some discrepancies with experiments. For example, Johnson et al. (2002) report an experimentally-determined 56Fe/54Fe equilibrium fractionation factor between Fe(II) and Fe(III) aquo complexes of ˜1.0025. This effect is ˜50% smaller than predicted theoretically by Schauble et al. (2001). It is important to resolve such discrepancies. Equilibrium isotope fractionation factors can be predicted from vibrational spectroscopic data of isotopically-substituted complexes, or from theoretical predictions of some or all of these frequencies obtained using force field models. The pioneering work of Schauble et al. (2001) utilized a modified Urey-Bradley force field (MUBFF) model. This approach is limiting in at least three ways: First, it is not ab initio, requiring as input some measured vibrational frequencies. Such data are not always available, or may have significant uncertainties. Second, the MUBFF does not include potentially important effects of solvent interaction. Third, because it makes certain assumptions about molecular symmetry, the MUBFF-based approach is not able to model the spectra of mixed-ligand complexes. To address these limitations, we are evaluating the use of density functional theory (DFT) as an ab initio method to predict vibrational frequencies of isotopically-substituted complexes and, hence, equilibrium fractionation factors. In a preliminary examination of the frequency shift upon isotope substitution of the bending and asymmetric stretching modes of the tetrahedral FeCl_42- complex, we find substantial differences between MUBFF and DFT predictions. Results for other Fe

  6. Rapid-Equilibrium Enzyme Kinetics

    ERIC Educational Resources Information Center

    Alberty, Robert A.

    2008-01-01

    Rapid-equilibrium rate equations for enzyme-catalyzed reactions are especially useful because if experimental data can be fit by these simpler rate equations, the Michaelis constants can be interpreted as equilibrium constants. However, for some reactions it is necessary to use the more complicated steady-state rate equations. Thermodynamics is…

  7. Using Analogies to Prevent Misconceptions about Chemical Equilibrium

    ERIC Educational Resources Information Center

    Sahin Pekmez, Esin

    2010-01-01

    The main purpose of this study was to find the effectiveness of using analogies to prevent misconceptions about chemical equilibrium. Nineteen analogies, which were based on dynamic aspects of chemical equilibrium and application of Le Chatelier's principle, were developed. The participations of this study consisted of 11th grade students (n: 151)…

  8. Understanding Chemical Reaction Kinetics and Equilibrium with Interlocking Building Blocks

    ERIC Educational Resources Information Center

    Cloonan, Carrie A.; Nichol, Carolyn A.; Hutchinson, John S.

    2011-01-01

    Chemical reaction kinetics and equilibrium are essential core concepts of chemistry but are challenging topics for many students, both at the high school and undergraduate university level. Visualization at the molecular level is valuable to aid understanding of reaction kinetics and equilibrium. This activity provides a discovery-based method to…

  9. Chemical Equilibrium, Unit 3: Chemical Equilibrium Calculations. A Computer-Enriched Module for Introductory Chemistry. Student's Guide and Teacher's Guide.

    ERIC Educational Resources Information Center

    Jameson, Cynthia J.

    Presented are the teacher's guide and student materials for one of a series of self-instructional, computer-based learning modules for an introductory, undergraduate chemistry course. The student manual for this unit on chemical equilibrium calculations includes objectives, prerequisites, a discussion of the equilibrium constant (K), and ten…

  10. Application of novel, low-cost, laterite-based adsorbent for removal of lead from water: Equilibrium, kinetic and thermodynamic studies.

    PubMed

    Chatterjee, Somak; De, Sirshendu

    2016-01-01

    Contamination of groundwater by carcinogenic heavy metal, e.g., lead is an important issue and possibility of using a natural rock, laterite, is explored in this work to mitigate this problem. Treated laterite (TL- prepared using hydrochloric acid and sodium hydroxide) was successfully utilized for this purpose. The adsorbent was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), and Fourier Transform Infrared Spectroscopy (FTIR) to highlight its physical and chemical properties. Optimized equilibrium conditions were 1 g L(-1) adsorbent concentration, 0.26 mm size and a pH of 7 ± 0.2. Monolayer adsorption capacity of lead on treated laterite was 15 mg/g, 14.5 and 13 mg g(-1) at temperatures of 303 K, 313 K and 323 K, respectively. The adsorption was exothermic and physical in nature. At 303 K, value of effective diffusivity of (De) and mass transfer co-efficient (Kf) of lead onto TL were 6.5 × 10(-10) m(2)/s and 3.3 × 10(-4) m/s, respectively (solved from shrinking core model of adsorption kinetics). Magnesium and sulphate show highest interference effect on the adsorption of lead by TL. Efficacy of the adsorbent has been verified using real-life contaminated groundwater. Thus, this work demonstrates performance of a cost-effective media for lead removal. PMID:26646980

  11. Spin-polarization and spin-dependent logic gates in a double quantum ring based on Rashba spin-orbit effect: Non-equilibrium Green's function approach

    SciTech Connect

    Eslami, Leila Esmaeilzadeh, Mahdi

    2014-02-28

    Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from −1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted.

  12. Study on an effective industrial waste-based adsorbent for the adsorptive removal of phosphorus from wastewater: equilibrium and kinetics studies.

    PubMed

    Xie, Ruzhen; Chen, Yao; Cheng, Ting; Lai, Yuguo; Jiang, Wenju; Yang, Zhishan

    2016-01-01

    In this work, an effective adsorbent for removing phosphate from aqueous solution was developed from modifying industrial waste--lithium silica fume (LSF). The characterization of LSF before and after modification was investigated using an N2 adsorption-desorption technique (Brunauer-Emmett-Teller, BET), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Studies were conducted to investigate the effect of adsorbent dose, initial solution pH, contact time, phosphate concentration, and temperature on phosphate removal using this novel adsorbent. The specific surface area for modified LSF (LLSF) is 24.4024 m(2)/g, improved 69.8% compared with unmodified LSF. XRD result suggests that the lanthanum phosphate complex was formed on the surface of LLSF. The maximum phosphate adsorption capacity was 24.096 mg P/g for LLSF, and phosphate removal was favored in the pH range of 3-8. The kinetic data fitted pseudo-second-order kinetic equation, intra-particle diffusion was not the only rate controlling step. The adsorption isotherm results illustrated that the Langmuir model provided the best fit for the equilibrium data. The change in free energy (△G(0)), enthalpy (△H(0)) and entropy (△S(0)) revealed that the adsorption of phosphate on LLSF was spontaneous and endothermic. It was concluded that by modifying with lanthanum, LSF can be turned to be a highly efficient adsorbent in phosphate removal. PMID:27120644

  13. Unified theory of quantized electrons, phonons, and photons out of equilibrium: A simplified ab initio approach based on the generalized Baym-Kadanoff ansatz

    NASA Astrophysics Data System (ADS)

    de Melo, Pedro Miguel M. C.; Marini, Andrea

    2016-04-01

    We present a full ab initio description of the coupled out-of-equilibrium dynamics of photons, phonons, and electrons. In the present approach, the quantized nature of the electromagnetic field as well as of the nuclear oscillations is fully taken into account. The result is a set of integrodifferential equations, written on the Keldysh contour, for the Green's functions of electrons, phonons, and photons where the different kinds of interactions are merged together. We then concentrate on the electronic dynamics in order to reduce the problem to a computationally feasible approach. By using the generalized Baym-Kadanoff ansatz and the completed collision approximation, we introduce a series of efficient but controllable approximations. In this way, we reduce all equations to a set of decoupled equations for the density matrix that describe all kinds of static and dynamical correlations. The final result is a coherent, general, and inclusive scheme to calculate several physical quantities: carrier dynamics, transient photoabsorption, and light emission, all of which include, at the same time, electron-electron, electron-phonon, and electron-photon interactions. We further discuss how all these observables can be easily calculated within the present scheme using a fully atomistic ab initio approach.

  14. Understanding thermal equilibrium through activities

    NASA Astrophysics Data System (ADS)

    Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura; Ladage, Savita; Pradhan, Hemachandra

    2015-03-01

    Thermal equilibrium is a basic concept in thermodynamics. In India, this concept is generally introduced at the first year of undergraduate education in physics and chemistry. In our earlier studies (Pathare and Pradhan 2011 Proc. episteme-4 Int. Conf. to Review Research on Science Technology and Mathematics Education pp 169-72) we found that students in India have a rather unsatisfactory understanding of thermal equilibrium. We have designed and developed a module of five activities, which are presented in succession to the students. These activities address the students’ alternative conceptions that underlie their lack of understanding of thermal equilibrium and aim at enhancing their understanding of the concept.

  15. Philicities, Fugalities, and Equilibrium Constants.

    PubMed

    Mayr, Herbert; Ofial, Armin R

    2016-05-17

    The mechanistic model of Organic Chemistry is based on relationships between rate and equilibrium constants. Thus, strong bases are generally considered to be good nucleophiles and poor nucleofuges. Exceptions to this rule have long been known, and the ability of iodide ions to catalyze nucleophilic substitutions, because they are good nucleophiles as well as good nucleofuges, is just a prominent example for exceptions from the general rule. In a reaction series, the Leffler-Hammond parameter α = δΔG(⧧)/δΔG° describes the fraction of the change in the Gibbs energy of reaction, which is reflected in the change of the Gibbs energy of activation. It has long been considered as a measure for the position of the transition state; thus, an α value close to 0 was associated with an early transition state, while an α value close to 1 was considered to be indicative of a late transition state. Bordwell's observation in 1969 that substituent variation in phenylnitromethanes has a larger effect on the rates of deprotonation than on the corresponding equilibrium constants (nitroalkane anomaly) triggered the breakdown of this interpretation. In the past, most systematic investigations of the relationships between rates and equilibria of organic reactions have dealt with proton transfer reactions, because only for few other reaction series complementary kinetic and thermodynamic data have been available. In this Account we report on a more general investigation of the relationships between Lewis basicities, nucleophilicities, and nucleofugalities as well as between Lewis acidities, electrophilicities, and electrofugalities. Definitions of these terms are summarized, and it is suggested to replace the hybrid terms "kinetic basicity" and "kinetic acidity" by "protophilicity" and "protofugality", respectively; in this way, the terms "acidity" and "basicity" are exclusively assigned to thermodynamic properties, while "philicity" and "fugality" refer to kinetics

  16. Generalized convective quasi-equilibrium principle

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi; Plant, Robert S.

    2016-03-01

    A generalization of Arakawa and Schubert's convective quasi-equilibrium principle is presented for a closure formulation of mass-flux convection parameterization. The original principle is based on the budget of the cloud work function. This principle is generalized by considering the budget for a vertical integral of an arbitrary convection-related quantity. The closure formulation includes Arakawa and Schubert's quasi-equilibrium, as well as both CAPE and moisture closures as special cases. The formulation also includes new possibilities for considering vertical integrals that are dependent on convective-scale variables, such as the moisture within convection. The generalized convective quasi-equilibrium is defined by a balance between large-scale forcing and convective response for a given vertically-integrated quantity. The latter takes the form of a convolution of a kernel matrix and a mass-flux spectrum, as in the original convective quasi-equilibrium. The kernel reduces to a scalar when either a bulk formulation is adopted, or only large-scale variables are considered within the vertical integral. Various physical implications of the generalized closure are discussed. These include the possibility that precipitation might be considered as a potentially-significant contribution to the large-scale forcing. Two dicta are proposed as guiding physical principles for the specifying a suitable vertically-integrated quantity.

  17. Equilibrium Molecular Thermodynamics from Kirkwood Sampling

    PubMed Central

    2015-01-01

    We present two methods for barrierless equilibrium sampling of molecular systems based on the recently proposed Kirkwood method (J. Chem. Phys.2009, 130, 134102). Kirkwood sampling employs low-order correlations among internal coordinates of a molecule for random (or non-Markovian) sampling of the high dimensional conformational space. This is a geometrical sampling method independent of the potential energy surface. The first method is a variant of biased Monte Carlo, where Kirkwood sampling is used for generating trial Monte Carlo moves. Using this method, equilibrium distributions corresponding to different temperatures and potential energy functions can be generated from a given set of low-order correlations. Since Kirkwood samples are generated independently, this method is ideally suited for massively parallel distributed computing. The second approach is a variant of reservoir replica exchange, where Kirkwood sampling is used to construct a reservoir of conformations, which exchanges conformations with the replicas performing equilibrium sampling corresponding to different thermodynamic states. Coupling with the Kirkwood reservoir enhances sampling by facilitating global jumps in the conformational space. The efficiency of both methods depends on the overlap of the Kirkwood distribution with the target equilibrium distribution. We present proof-of-concept results for a model nine-atom linear molecule and alanine dipeptide. PMID:25915525

  18. Equilibrium and Orientation in Cephalopods.

    ERIC Educational Resources Information Center

    Budelmann, Bernd-Ulrich

    1980-01-01

    Describes the structure of the equilibrium receptor system in cephalopods, comparing it to the vertebrate counterpart--the vestibular system. Relates the evolution of this complex system to the competition of cephalopods with fishes. (CS)

  19. Equilibrium ignition for ICF capsules

    SciTech Connect

    Lackner, K.S.; Colgate, S.A.; Johnson, N.L.; Kirkpatrick, R.C.; Menikoff, R.; Petschek, A.G.

    1993-12-31

    There are two fundamentally different approaches to igniting DT fuel in an ICF capsule which can be described as equilibrium and hot spot ignition. In both cases, a capsule which can be thought of as a pusher containing the DT fuel is imploded until the fuel reaches ignition conditions. In comparing high-gain ICF targets using cryogenic DT for a pusher with equilibrium ignition targets using high-Z pushers which contain the radiation. The authors point to the intrinsic advantages of the latter. Equilibrium or volume ignition sacrifices high gain for lower losses, lower ignition temperature, lower implosion velocity and lower sensitivity of the more robust capsule to small fluctuations and asymmetries in the drive system. The reduction in gain is about a factor of 2.5, which is small enough to make the more robust equilibrium ignition an attractive alternative.

  20. Edge equilibrium code for tokamaks

    SciTech Connect

    Li, Xujing; Drozdov, Vladimir V.

    2014-01-15

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.

  1. A search for equilibrium states

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1982-01-01

    An efficient search algorithm is described for the location of equilibrium states in a search set of states which differ from one another only by the choice of pure phases. The algorithm has three important characteristics: (1) it ignores states which have little prospect for being an improved approximation to the true equilibrium state; (2) it avoids states which lead to singular iteration equations; (3) it furnishes a search history which can provide clues to alternative search paths.

  2. Ringed Accretion Disks: Equilibrium Configurations

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Stuchlík, Z.

    2015-12-01

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  3. Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood-brain barrier permeability, plasma protein binding, and brain tissue binding.

    PubMed

    Liu, Xingrong; Smith, Bill J; Chen, Cuiping; Callegari, Ernesto; Becker, Stacey L; Chen, Xi; Cianfrogna, Julie; Doran, Angela C; Doran, Shawn D; Gibbs, John P; Hosea, Natilie; Liu, Jianhua; Nelson, Frederick R; Szewc, Mark A; Van Deusen, Jeffery

    2005-06-01

    This study was designed 1) to examine the effects of blood-brain barrier (BBB) permeability [quantified as permeability-surface area product (PS)], unbound fraction in plasma (f(u,plasma)), and brain tissue (f(u,brain)) on the time to reach equilibrium between brain and plasma and 2) to investigate the drug discovery strategies to design and select compounds that can rapidly penetrate the BBB and distribute to the site of action. The pharmacokinetics of seven model compounds: caffeine, CP-141938 [methoxy-3-[(2-phenyl-piperadinyl-3-amino)-methyl]-phenyl-N-methyl-methane-sulfonamide], fluoxetine, NFPS [N[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine], propranolol, theobromine, and theophylline in rat brain and plasma after subcutaneous administration were studied. The in vivo log PS and log f(u,brain) calculated using a physiologically based pharmacokinetic model correlates with in situ log PS (R(2) = 0.83) and in vitro log f(u,brain) (R(2) = 0.69), where the in situ PS and in vitro f(u,brain) was determined using in situ brain perfusion and equilibrium dialysis using brain homogenate, respectively. The time to achieve brain equilibrium can be quantitated with a proposed parameter, intrinsic brain equilibrium half-life [t(1/2eq,in) = V(b)ln2/(PS . f(u,brain))], where V(b) is the physiological volume of brain. The in vivo log t(1/2eq,in) does not correlate with in situ log PS (R(2) < 0.01) but correlates inversely with log(PS . f(u,brain)) (R(2) = 0.85). The present study demonstrates that rapid brain equilibration requires a combination of high BBB permeability and low brain tissue binding. A high BBB permeability alone cannot guarantee a rapid equilibration. The strategy to select compounds with rapid brain equilibration in drug discovery should identify compounds with high BBB permeability and low nonspecific binding in brain tissue. PMID:15743928

  4. Study Modules for Calculus-Based General Physics. [Includes Modules 11-14: Collisions; Equilibrium of Rigid Bodies; Rotational Dynamics; and Fluid Mechanics].

    ERIC Educational Resources Information Center

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  5. Exploring Chemical and Thermal Non-equilibrium in Nitrogen Arcs

    NASA Astrophysics Data System (ADS)

    Ghorui, S.; Das, A. K.

    2012-12-01

    Plasma torches operating with nitrogen are of special importance as they can operate with usual tungsten based refractory electrodes and offer radical rich non-oxidizing high temperature environment for plasma chemistry. Strong gradients in temperature as well as species densities and huge convective fluxes lead to varying degrees of chemical non-equilibrium in associated regions. An axi-symmetric two-temperature chemical non-equilibrium model of a nitrogen plasma torch has been developed to understand the effects of thermal and chemical non-equilibrium in arcs. A 2-D finite volume CFD code in association with a non-equilibrium property routine enabled extraction of steady state self-consistent distributions of various plasma quantities inside the torch under various thermal and chemical non-equilibrium conditions. Chemical non-equilibrium has been incorporated through computation of diffusive and convective fluxes in each finite volume cell in every iteration and associating corresponding thermodynamic and transport properties through the scheme of 'chemical non-equilibrium parameter' introduced by Ghorui et. al. Recombination coefficient data from Nahar et. al. and radiation data from Krey and Morris have been used in the simulation. Results are presented for distributions of temperature, pressure, velocity, current density, electric potential, species densities and chemical non-equilibrium effects. Obtained results are compared with similar results under LTE.

  6. Uniqueness of Nash equilibrium in vaccination games.

    PubMed

    Bai, Fan

    2016-12-01

    One crucial condition for the uniqueness of Nash equilibrium set in vaccination games is that the attack ratio monotonically decreases as the vaccine coverage level increasing. We consider several deterministic vaccination models in homogeneous mixing population and in heterogeneous mixing population. Based on the final size relations obtained from the deterministic epidemic models, we prove that the attack ratios can be expressed in terms of the vaccine coverage levels, and also prove that the attack ratios are decreasing functions of vaccine coverage levels. Some thresholds are presented, which depend on the vaccine efficacy. It is proved that for vaccination games in homogeneous mixing population, there is a unique Nash equilibrium for each game. PMID:27465224

  7. Tuning universality far from equilibrium

    PubMed Central

    Karl, Markus; Nowak, Boris; Gasenzer, Thomas

    2013-01-01

    Possible universal dynamics of a many-body system far from thermal equilibrium are explored. A focus is set on meta-stable non-thermal states exhibiting critical properties such as self-similarity and independence of the details of how the respective state has been reached. It is proposed that universal dynamics far from equilibrium can be tuned to exhibit a dynamical transition where these critical properties change qualitatively. This is demonstrated for the case of a superfluid two-component Bose gas exhibiting different types of long-lived but non-thermal critical order. Scaling exponents controlled by the ratio of experimentally tuneable coupling parameters offer themselves as natural smoking guns. The results shed light on the wealth of universal phenomena expected to exist in the far-from-equilibrium realm. PMID:23928853

  8. Adiabatic evolution of plasma equilibrium

    PubMed Central

    Grad, H.; Hu, P. N.; Stevens, D. C.

    1975-01-01

    A new theory of plasma equilibrium is introduced in which adiabatic constraints are specified. This leads to a mathematically nonstandard structure, as compared to the usual equilibrium theory, in which prescription of pressure and current profiles leads to an elliptic partial differential equation. Topologically complex configurations require further generalization of the concept of adiabaticity to allow irreversible mixing of plasma and magnetic flux among islands. Matching conditions across a boundary layer at the separatrix are obtained from appropriate conservation laws. Applications are made to configurations with planned islands (as in Doublet) and accidental islands (as in Tokamaks). Two-dimensional, axially symmetric, helically symmetric, and closed line equilibria are included. PMID:16578729

  9. Phase coexistence far from equilibrium

    NASA Astrophysics Data System (ADS)

    Dickman, Ronald

    2016-04-01

    Investigation of simple far-from-equilibrium systems exhibiting phase separation leads to the conclusion that phase coexistence is not well defined in this context. This is because the properties of the coexisting nonequilibrium systems depend on how they are placed in contact, as verified in the driven lattice gas with attractive interactions, and in the two-temperature lattice gas, under (a) weak global exchange between uniform systems, and (b) phase-separated (nonuniform) systems. Thus, far from equilibrium, the notions of universality of phase coexistence (i.e., independence of how systems exchange particles and/or energy), and of phases with intrinsic properties (independent of their environment) are lost.

  10. Fundamental Research in Engineering Education. Development of Concept Questions and Inquiry-Based Activities in Thermodynamics and Heat Transfer: An Example for Equilibrium vs. Steady-State

    ERIC Educational Resources Information Center

    Vigeant, Margot; Prince, Michael; Nottis, Katharyn

    2011-01-01

    This study examines the use of inquiry-based instruction to promote the understanding of critical concepts in thermodynamics and heat transfer. Significant research shows that students frequently enter our courses with tightly held misconceptions about the physical world that are not effectively addressed through traditional instruction. Students'…

  11. Chemical Principles Revisited: Using the Equilibrium Concept.

    ERIC Educational Resources Information Center

    Mickey, Charles D., Ed.

    1981-01-01

    Discusses the concept of equilibrium in chemical systems, particularly in relation to predicting the position of equilibrium, predicting spontaneity of a reaction, quantitative applications of the equilibrium constant, heterogeneous equilibrium, determination of the solubility product constant, common-ion effect, and dissolution of precipitates.…

  12. Modeling of bi-equilibrium states in dielectric elastomer

    NASA Astrophysics Data System (ADS)

    Peng, Longgui

    2014-03-01

    Dielectric elastomer is a soft active material, producing fast deformation under voltage-activation. Under a specific boundary condition, trussed dielectric elastomer elongates mimicking the behavior of biological muscle. During this process, dielectric elastomer experiences a snap from one deformation mode to another, though both at the electromechanical equilibrium states. Based on thermodynamics, models are established to investigate electromechanical coupling at the two equilibrium states. Particular emphasis is devoted to establishing the governing equations of the two deformation modes with physical interpretations. The transition of equilibrium state is discussed, to predict the attainable stable state for application.

  13. DYNAMIC EQUILIBRIUM IN THERAPEUTIC SITUATIONS.

    ERIC Educational Resources Information Center

    CARROLL, EDWARD J.

    THE CONCEPT OF DYNAMIC EQUILIBRIUM IS USED TO EXAMINE THE OCCURRENCE OF CHANGE IN A THERAPEUTIC INTERVIEW AND TO PROPOSE A THEORY OF THERAPY. BY ANALYZING THE WORKINGS OF THE PSYCHOSOCIAL SYSTEM THROUGH THE GENERAL SYSTEMS THEORY, IT IS POSSIBLE TO SEE HOW CHANGE OCCURS IN AN INDIVIDUAL FAMILY OR COMMUNITY. APPLIED TO A FAMILY INTERVIEW, THE MODEL…

  14. Magnetospheric equilibrium with anisotropic pressure

    SciTech Connect

    Cheng, C.Z.

    1991-07-01

    Self-consistent magnetospheric equilibrium with anisotropic pressure is obtained by employing an iterative metric method for solving the inverse equilibrium equation in an optimal flux coordinate system. A method of determining plasma parallel and perpendicular pressures from either analytic particle distribution or particle distribution measured along the satellite's path is presented. The numerical results of axisymmetric magnetospheric equilibrium including the effects of finite beta, pressure anisotropy, and boundary conditions are presented for a bi-Maxwellian particle distribution. For the isotropic pressure cases, the finite beta effect produces an outward expansion of the constant magnetic flux surfaces in relation to the dipole field lines, and along the magnetic field the toroidal ring current is maximum at the magnetic equator. The effect of pressure anisotropy is found to further expand the flux surfaces outward. Along the magnetic field lines the westward ring current can be peak away from the equator due to an eastward current contribution resulting from pressure anisotropy. As pressure anisotropy increases, the peak westward current can become more singular. The outer boundary flux surface has significant effect on the magnetospheric equilibrium. For the outer flux boundary resembling dayside compressed flux surface due to solar wind pressure, the deformation of the magnetic field can be quite different from that for the outer flux boundary resembling the tail-like surface. 23 refs., 17 figs.

  15. Understanding Thermal Equilibrium through Activities

    ERIC Educational Resources Information Center

    Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura; Ladage, Savita; Pradhan, Hemachandra

    2015-01-01

    Thermal equilibrium is a basic concept in thermodynamics. In India, this concept is generally introduced at the first year of undergraduate education in physics and chemistry. In our earlier studies (Pathare and Pradhan 2011 "Proc. episteme-4 Int. Conf. to Review Research on Science Technology and Mathematics Education" pp 169-72) we…

  16. TEA: A Code Calculating Thermochemical Equilibrium Abundances

    NASA Astrophysics Data System (ADS)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2016-07-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows & Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows & Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  17. ISIDORE, a probe for in situ trace metal speciation based on Donnan membrane technique with related electrochemical detection part 1: Equilibrium measurements.

    PubMed

    Parat, Corinne; Pinheiro, J P

    2015-10-01

    This work presents the development of a new probe (ISIDORE probe) based on the hyphenation of a Donnan Membrane Technique device (DMT) to a screen-printed electrode through a flow-cell to determine the free zinc, cadmium and lead ion concentration in natural samples, such as a freshwater river. The probe displays many advantages namely: (i) the detection can be performed on-site, which avoids all problems inherent to sampling, transport and storage; (ii) the low volume of the acceptor solution implies shorter equilibration times; (ii) the electrochemical detection system allows monitoring the free ion concentration in the acceptor solution without sampling. PMID:26481984

  18. A collision history-based approach to Sensitivity/Perturbation calculations in the continuous energy Monte Carlo code SERPENT

    SciTech Connect

    Giuseppe Palmiotti

    2015-05-01

    In this work, the implementation of a collision history-based approach to sensitivity/perturbation calculations in the Monte Carlo code SERPENT is discussed. The proposed methods allow the calculation of the eects of nuclear data perturbation on several response functions: the eective multiplication factor, reaction rate ratios and bilinear ratios (e.g., eective kinetics parameters). SERPENT results are compared to ERANOS and TSUNAMI Generalized Perturbation Theory calculations for two fast metallic systems and for a PWR pin-cell benchmark. New methods for the calculation of sensitivities to angular scattering distributions are also presented, which adopts fully continuous (in energy and angle) Monte Carlo estimators.

  19. Synthesis, characterization, equilibrium study and biological activity of Cu(II), Ni(II) and Co(II) complexes of polydentate Schiff base ligand.

    PubMed

    El-Sherif, Ahmed A; Shehata, Mohamed R; Shoukry, Mohamed M; Barakat, Mohammad H

    2012-10-01

    Schiff base ligand, 1,4-bis[(2-hydroxybenzaldehyde)propyl]piperazine (BHPP), and its Cu(II), Ni(II) and Co(II) metal complexes were synthesized and characterized by elemental analysis, magnetic susceptibility, molar conductance and spectral (IR and UV-vis) studies. The ground state of BHPP ligand was investigated using the BUILDER module of MOE. Metal complexes are formed in the 1:1 (M:L) ratio as found from the elemental analysis and found to have the general formula [ML]·nH(2)O, where M=Co(II), Ni(II) and Cu(II), L=BHPP. In all the studied complexes, the (BHPP) ligand behaves as a hexadentate divalent anion with coordination involving the two azomethine nitrogen's, the two nitrogen atoms of piperazine ring and the two deprotonated phenolic OH-groups. The magnetic and spectral data indicates octahedral geometry of metal(II) complexes. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria and fungi. They were found to be more active against Gram-positive than Gram-negative bacteria. Protonation constants of (BHPP) ligand and stability constants of its Cu(2+), Co(2+) and Ni(2+) complexes were determined by potentiometric titration method in 50% DMSO-water solution at ionic strength of 0.1 M sodium nitrate. It has been observed that the protonated Schiff base ligand (BHPP) have four protonation constants. The divalent metal ions Cu(2+), Ni(2+) and Co(2+) form 1:1 complexes. PMID:22935596

  20. Synthesis, characterization, equilibrium study and biological activity of Cu(II), Ni(II) and Co(II) complexes of polydentate Schiff base ligand

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ahmed A.; Shehata, Mohamed R.; Shoukry, Mohamed M.; Barakat, Mohammad H.

    2012-10-01

    Schiff base ligand, 1,4-bis[(2-hydroxybenzaldehyde)propyl]piperazine (BHPP), and its Cu(II), Ni(II) and Co(II) metal complexes were synthesized and characterized by elemental analysis, magnetic susceptibility, molar conductance and spectral (IR and UV-vis) studies. The ground state of BHPP ligand was investigated using the BUILDER module of MOE. Metal complexes are formed in the 1:1 (M:L) ratio as found from the elemental analysis and found to have the general formula [ML]·nH2O, where M = Co(II), Ni(II) and Cu(II), L = BHPP. In all the studied complexes, the (BHPP) ligand behaves as a hexadentate divalent anion with coordination involving the two azomethine nitrogen's, the two nitrogen atoms of piperazine ring and the two deprotonated phenolic OH-groups. The magnetic and spectral data indicates octahedral geometry of metal(II) complexes. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria and fungi. They were found to be more active against Gram-positive than Gram-negative bacteria. Protonation constants of (BHPP) ligand and stability constants of its Cu2+, Co2+ and Ni2+ complexes were determined by potentiometric titration method in 50% DMSO-water solution at ionic strength of 0.1 M sodium nitrate. It has been observed that the protonated Schiff base ligand (BHPP) have four protonation constants. The divalent metal ions Cu2+, Ni2+ and Co2+ form 1:1 complexes.

  1. Non-Equilibrium Properties from Equilibrium Free Energy Calculations

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Calculating free energy in computer simulations is of central importance in statistical mechanics of condensed media and its applications to chemistry and biology not only because it is the most comprehensive and informative quantity that characterizes the eqUilibrium state, but also because it often provides an efficient route to access dynamic and kinetic properties of a system. Most of applications of equilibrium free energy calculations to non-equilibrium processes rely on a description in which a molecule or an ion diffuses in the potential of mean force. In general case this description is a simplification, but it might be satisfactorily accurate in many instances of practical interest. This hypothesis has been tested in the example of the electrodiffusion equation . Conductance of model ion channels has been calculated directly through counting the number of ion crossing events observed during long molecular dynamics simulations and has been compared with the conductance obtained from solving the generalized Nernst-Plank equation. It has been shown that under relatively modest conditions the agreement between these two approaches is excellent, thus demonstrating the assumptions underlying the diffusion equation are fulfilled. Under these conditions the electrodiffusion equation provides an efficient approach to calculating the full voltage-current dependence routinely measured in electrophysiological experiments.

  2. Methane on Mars: Thermodynamic Equilibrium and Photochemical Calculations

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Summers, M. E.; Ewell, M.

    2010-01-01

    The detection of methane (CH4) in the atmosphere of Mars by Mars Express and Earth-based spectroscopy is very surprising, very puzzling, and very intriguing. On Earth, about 90% of atmospheric ozone is produced by living systems. A major question concerning methane on Mars is its origin - biological or geological. Thermodynamic equilibrium calculations indicated that methane cannot be produced by atmospheric chemical/photochemical reactions. Thermodynamic equilibrium calculations for three gases, methane, ammonia (NH3) and nitrous oxide (N2O) in the Earth s atmosphere are summarized in Table 1. The calculations indicate that these three gases should not exist in the Earth s atmosphere. Yet they do, with methane, ammonia and nitrous oxide enhanced 139, 50 and 12 orders of magnitude above their calculated thermodynamic equilibrium concentration due to the impact of life! Thermodynamic equilibrium calculations have been performed for the same three gases in the atmosphere of Mars based on the assumed composition of the Mars atmosphere shown in Table 2. The calculated thermodynamic equilibrium concentrations of the same three gases in the atmosphere of Mars is shown in Table 3. Clearly, based on thermodynamic equilibrium calculations, methane should not be present in the atmosphere of Mars, but it is in concentrations approaching 30 ppbv from three distinct regions on Mars.

  3. Adaptive Implicit Non-Equilibrium Radiation Diffusion

    SciTech Connect

    Philip, Bobby; Wang, Zhen; Berrill, Mark A; Rodriguez Rodriguez, Manuel; Pernice, Michael

    2013-01-01

    We describe methods for accurate and efficient long term time integra- tion of non-equilibrium radiation diffusion systems: implicit time integration for effi- cient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while control- ling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  4. Phonon Mapping in Flowing Equilibrium

    NASA Astrophysics Data System (ADS)

    Ruff, J. P. C.

    2015-03-01

    When a material conducts heat, a modification of the phonon population occurs. The equilibrium Bose-Einstein distribution is perturbed towards flowing-equilibrium, for which the distribution function is not analytically known. Here I argue that the altered phonon population can be efficiently mapped over broad regions of reciprocal space, via diffuse x-ray scattering or time-of-flight neutron scattering, while a thermal gradient is applied across a single crystal sample. When compared to traditional transport measurements, this technique offers a superior, information-rich new perspective on lattice thermal conductivity, wherein the band and momentum dependences of the phonon thermal current are directly resolved. The proposed method is benchmarked using x-ray thermal diffuse scattering measurements of single crystal diamond under transport conditions. CHESS is supported by the NSF & NIH/NIGMS via NSF Award DMR-1332208.

  5. Connective stability of competitive equilibrium

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.

    1975-01-01

    The purpose of this paper is to derive necessary and sufficient conditions for the connective stability of nonlinear matrix systems described by the equation x-dot = A(t, x) x, where the matrix A(t, x) has time-varying nonlinear elements. The results obtained can be used to study the stability of competitive equilibrium in fields as diverse as economics and engineering, model ecosystems, and the arms race.-

  6. Punctuated equilibrium comes of age

    NASA Astrophysics Data System (ADS)

    Gould, Stephan Jay; Eldredge, Niles

    1993-11-01

    The intense controversies that surrounded the youth of punctuated equilibrium have helped it mature to a useful extension of evolutionary theory. As a complement to phyletic gradualism, its most important implications remain the recognition of stasis as a meaningful and predominant pattern within the history of species, and in the recasting of macroevolution as the differential success of certain species (and their descendants) within clades.

  7. Equilibrium and non-equilibrium properties of finite-volume crystallites

    NASA Astrophysics Data System (ADS)

    Degawa, Masashi

    Finite volume effects on equilibrium and non-equilibrium properties of nano-crystallites are studied theoretically and compared to both experiment and simulation. When a system is isolated or its size is small compared to the correlation length, all equilibrium and close-to-equilibrium properties will depend on the system boundary condition. Specifically for solid nano-crystallites, their finite size introduces global curvature to the system, which alters its equilibrium properties compared to the thermodynamic limit. Also such global curvature leads to capillary-induced morphology changes of the surface. Interesting dynamics can arise when the crystallite is supported on a substrate, with crossovers of the dominant driving force from the capillary force and crystallite-substrate interactions. To address these questions, we introduce thermodynamic functions for the boundary conditions, which can be derived from microscopic models. For nano-crystallites, the boundary is the surface (including interfaces), the thermodynamic description is based on the steps that define the shape of the surface, and the underlying microscopic model includes kinks. The global curvature of the surface introduces metastable states with different shapes governed by a constant of integration of the extra boundary condition, which we call the shape parameter c. The discrete height of the steps introduces transition states in between the metastable states, and the lowest energy accessible structure (energy barrier less 10k BT) as a function of the volume has been determined. The dynamics of nano-crystallites as they relax from a non-equilibrium structure is described quantitatively in terms of the motion of steps in both capillary-induced and interface-boundary-induced regimes. The step-edge fluctuations of the top facet are also influenced by global curvature and volume conservation and the effect yields different dynamic scaling exponents from a pure 1D system. Theoretical results are

  8. Multicomponent Equilibrium Models for Testing Geothermometry Approaches

    SciTech Connect

    Cooper, D. Craig; Palmer, Carl D.; Smith, Robert W.; McLing, Travis L.

    2013-02-01

    Geothermometry is an important tool for estimating deep reservoir temperature from the geochemical composition of shallower and cooler waters. The underlying assumption of geothermometry is that the waters collected from shallow wells and seeps maintain a chemical signature that reflects equilibrium in the deeper reservoir. Many of the geothermometers used in practice are based on correlation between water temperatures and composition or using thermodynamic calculations based a subset (typically silica, cations or cation ratios) of the dissolved constituents. An alternative approach is to use complete water compositions and equilibrium geochemical modeling to calculate the degree of disequilibrium (saturation index) for large number of potential reservoir minerals as a function of temperature. We have constructed several “forward” geochemical models using The Geochemist’s Workbench to simulate the change in chemical composition of reservoir fluids as they migrate toward the surface. These models explicitly account for the formation (mass and composition) of a steam phase and equilibrium partitioning of volatile components (e.g., CO2, H2S, and H2) into the steam as a result of pressure decreases associated with upward fluid migration from depth. We use the synthetic data generated from these simulations to determine the advantages and limitations of various geothermometry and optimization approaches for estimating the likely conditions (e.g., temperature, pCO2) to which the water was exposed in the deep subsurface. We demonstrate the magnitude of errors that can result from boiling, loss of volatiles, and analytical error from sampling and instrumental analysis. The estimated reservoir temperatures for these scenarios are also compared to conventional geothermometers. These results can help improve estimation of geothermal resource temperature during exploration and early development.

  9. The assumption of equilibrium in models of migration.

    PubMed

    Schachter, J; Althaus, P G

    1993-02-01

    In recent articles Evans (1990) and Harrigan and McGregor (1993) (hereafter HM) scrutinized the equilibrium model of migration presented in a 1989 paper by Schachter and Althaus. This model used standard microeconomics to analyze gross interregional migration flows based on the assumption that gross flows are in approximate equilibrium. HM criticized the model as theoretically untenable, while Evans summoned empirical as well as theoretical objections. HM claimed that equilibrium of gross migration flows could be ruled out on theoretical grounds. They argued that the absence of net migration requires that either all regions have equal populations or that unsustainable regional migration propensities must obtain. In fact some moves are inter- and other are intraregional. It does not follow, however, that the number of interregional migrants will be larger for the more populous region. Alternatively, a country could be divided into a large number of small regions that have equal populations. With uniform propensities to move, each of these analytical regions would experience in equilibrium zero net migration. Hence, the condition that net migration equal zero is entirely consistent with unequal distributions of population across regions. The criticisms of Evans were based both on flawed reasoning and on misinterpretation of the results of a number of econometric studies. His reasoning assumed that the existence of demand shifts as found by Goldfarb and Yezer (1987) and Topel (1986) invalidated the equilibrium model. The equilibrium never really obtains exactly, but economic modeling of migration properly begins with a simple equilibrium model of the system. A careful reading of the papers Evans cited in support of his position showed that in fact they affirmed rather than denied the appropriateness of equilibrium modeling. Zero net migration together with nonzero gross migration are not theoretically incompatible with regional heterogeneity of population, wages, or

  10. Modulation and Salt-Induced Reverse Modulation of the Excited-State Proton-Transfer Process of Lysozymized Pyranine: The Contrasting Scenario of the Ground-State Acid-Base Equilibrium of the Photoacid.

    PubMed

    Das, Ishita; Panja, Sudipta; Halder, Mintu

    2016-07-28

    Here we report on the excited-state behavior in terms of the excited-state proton-transfer (ESPT) reaction as well as the ground-state acid-base property of pyranine [8-hydroxypyrene-1,3,6-trisulfonate (HPTS)] in the presence of an enzymatic protein, human lysozyme (LYZ). HPTS forms a 1:1 ground-state complex with LYZ having the binding constant KBH = (1.4 ± 0.05) × 10(4) M(-1), and its acid-base equilibrium gets shifted toward the deprotonated conjugate base (RO(-)), resulting in a downward shift in pKa. This suggests that the conjugate base (RO(-)) is thermodynamically more favored over the protonated (ROH) species inside the lysozyme matrix, resulting in an increased population of the deprotonated form. However, for the release of the proton from the excited photoacid, interestingly, the rate of proton transfer gets slowed down due to the "slow" acceptor biological water molecules present in the immediate vicinity of the fluorophore binding region inside the protein. The observed ESPT time constants, ∼140 and ∼750 ps, of protein-bound pyranine are slower than in bulk aqueous media (∼100 ps, single exponential). The molecular docking study predicts that the most probable binding location of the fluorophore is in a region near to the active site of the protein. Here we also report on the effect of external electrolyte (NaCl) on the reverse modulation of ground-state prototropy as well as the ESPT process of the protein-bound pyranine. It is found that there is a dominant role of electrostatic forces in the HPTS-LYZ interaction process, because an increase in ionic strength by the addition of NaCl dislodges the fluorophore from the protein pocket to the bulk again. The study shows a considerably different perspective of the perturbation offered by the model macromolecular host used, unlike the available literature reports on the concerned photoacid. PMID:27355857

  11. Morphodynamic equilibrium of alluvial estuaries

    NASA Astrophysics Data System (ADS)

    Tambroni, Nicoletta; Bolla Pittaluga, Michele; Canestrelli, Alberto; Lanzoni, Stefano; Seminara, Giovanni

    2014-05-01

    The evolution of the longitudinal bed profile of an estuary, with given plan-form configuration, subject to given tidal forcing at the mouth and prescribed values of water and sediment supply from the river is investigated numerically. Our main goal is to ascertain whether, starting from some initial condition, the bed evolution tends to reach a unique equilibrium configuration asymptotically in time. Also, we investigate the morphological response of an alluvial estuary to changes in the tidal range and hydrologic forcing (flow and sediment supply). Finally, the solution helps characterizing the transition between the fluvially dominated region and the tidally dominated region of the estuary. All these issues play an important role also in interpreting how the facies changes along the estuary, thus helping to make correct paleo-environmental and sequence-stratigraphic interpretations of sedimentary successions (Dalrymple and Choi, 2007). Results show that the model is able to describe a wide class of settings ranging from tidally dominated estuaries to fluvially dominated estuaries. In the latter case, the solution is found to compare satisfactory with the analytical asymptotic solution recently derived by Seminara et al. (2012), under the hypothesis of fairly 'small' tidal oscillations. Simulations indicate that the system always moves toward an equilibrium configuration in which the net sediment flux in a tidal cycle is constant throughout the estuary and equal to the constant sediment flux discharged from the river. For constant width, the bed equilibrium profile of the estuarine channel is characterized by two distinct regions: a steeper reach seaward, dominated by the tide, and a less steep upstream reach, dominated by the river and characterized by the undisturbed bed slope. Although the latter reach, at equilibrium, is not directly affected by the tidal wave, however starting from an initial uniform stream with the constant 'fluvial' slope, the final

  12. Torque equilibrium attitude control for Skylab reentry

    NASA Technical Reports Server (NTRS)

    Glaese, J. R.; Kennel, H. F.

    1979-01-01

    All the available torque equilibrium attitudes (most were useless from the standpoint of lack of electrical power) and the equilibrium seeking method are presented, as well as the actual successful application during the 3 weeks prior to Skylab reentry.

  13. Temperature of systems out of thermodynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Garden, J.-L.; Richard, J.; Guillou, H.

    2008-07-01

    Two phenomenological approaches are currently used in the study of the vitreous state. One is based on the concept of fictive temperature introduced by Tool [J. Res. Natl. Bur. Stand. 34, 199 (1945)] and recently revisited by Nieuwenhuizen [Phys. Rev. Lett. 80, 5580 (1998)]. The other is based on the thermodynamics of irreversible processes initiated by De Donder at the beginning of the last century [L'Affinité (Gauthier-Villars, Paris, 1927)] and recently used by Möller et al. for a thorough study of the glass transition [J. Chem. Phys. 125, 094505 (2006)]. This latter approach leads to the possibility of describing the glass transition by means of the freezing-in of one or more order parameters connected to the internal structural degrees of freedom involved in the vitrification process. In this paper, the equivalence of the two preceding approaches is demonstrated, not only for glasses but in a very general way for any system undergoing an irreversible transformation. This equivalence allows the definition of an effective temperature for all systems departed from equilibrium generating a positive amount of entropy. In fact, the initial fictive temperature concept of Tool leads to the generalization of the notion of temperature for systems out of thermodynamic equilibrium, for which glasses are just particular cases.

  14. Open problems in non-equilibrium physics

    SciTech Connect

    Kusnezov, D.

    1997-09-22

    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.

  15. A survey of upwind methods for flows with equilibrium and non-equilibrium chemistry and thermodynamics

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Garrett, J.; Cinnella, P.

    1989-01-01

    Several versions of flux-vector split and flux-difference split algorithms were compared with regard to general applicability and complexity. Test computations were performed using curve-fit equilibrium air chemistry for an M = 5 high-temperature inviscid flow over a wedge, and an M = 24.5 inviscid flow over a blunt cylinder for test computations; for these cases, little difference in accuracy was found among the versions of the same flux-split algorithm. For flows with nonequilibrium chemistry, the effects of the thermodynamic model on the development of flux-vector split and flux-difference split algorithms were investigated using an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Several numerical examples are presented, including nonequilibrium air chemistry in a high-temperature shock tube and nonequilibrium hydrogen-air chemistry in a supersonic diffuser.

  16. Thermal equilibrium in Einstein's elevator.

    PubMed

    Sánchez-Rey, Bernardo; Chacón-Acosta, Guillermo; Dagdug, Leonardo; Cubero, David

    2013-05-01

    We report fully relativistic molecular-dynamics simulations that verify the appearance of thermal equilibrium of a classical gas inside a uniformly accelerated container. The numerical experiments confirm that the local momentum distribution in this system is very well approximated by the Jüttner function-originally derived for a flat spacetime-via the Tolman-Ehrenfest effect. Moreover, it is shown that when the acceleration or the container size is large enough, the global momentum distribution can be described by the so-called modified Jüttner function, which was initially proposed as an alternative to the Jüttner function. PMID:23767501

  17. Conformations of Proteins in Equilibrium

    NASA Astrophysics Data System (ADS)

    Micheletti, Cristian; Banavar, Jayanth R.; Maritan, Amos

    2001-08-01

    We introduce a simple theoretical approach for an equilibrium study of proteins with known native-state structures. We test our approach with results on well-studied globular proteins, chymotrypsin inhibitor (2ci2), barnase, and the alpha spectrin SH3 domain, and present evidence for a hierarchical onset of order on lowering the temperature with significant organization at the local level even at high temperatures. A further application to the folding process of HIV-1 protease shows that the model can be reliably used to identify key folding sites that are responsible for the development of drug resistance.

  18. A continuum model for flocking: Obstacle avoidance, equilibrium, and stability

    NASA Astrophysics Data System (ADS)

    Mecholsky, Nicholas Alexander

    The modeling and investigation of the dynamics and configurations of animal groups is a subject of growing attention. In this dissertation, we present a partial-differential-equation based continuum model of flocking and use it to investigate several properties of group dynamics and equilibrium. We analyze the reaction of a flock to an obstacle or an attacking predator. We show that the flock response is in the form of density disturbances that resemble Mach cones whose configuration is determined by the anisotropic propagation of waves through the flock. We investigate the effect of a flock 'pressure' and pairwise repulsion on an equilibrium density distribution. We investigate both linear and nonlinear pressures, look at the convergence to a 'cold' (T → 0) equilibrium solution, and find regions of parameter space where different models produce the same equilibrium. Finally, we analyze the stability of an equilibrium density distribution to long-wavelength perturbations. Analytic results for the stability of a constant density solution as well as stability regimes for constant density solutions to the equilibrium equations are presented.

  19. Non-equilibrium phase transitions

    SciTech Connect

    Mottola, E.; Cooper, F.M.; Bishop, A.R.; Habib, S.; Kluger, Y.; Jensen, N.G.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Non-equilibrium phase transitions play a central role in a very broad range of scientific areas, ranging from nuclear, particle, and astrophysics to condensed matter physics and the material and biological sciences. The aim of this project was to explore the path to a deeper and more fundamental understanding of the common physical principles underlying the complex real time dynamics of phase transitions. The main emphasis was on the development of general theoretical tools to deal with non-equilibrium processes, and of numerical methods robust enough to capture the time-evolving structures that occur in actual experimental situations. Specific applications to Laboratory multidivisional efforts in relativistic heavy-ion physics (transition to a new phase of nuclear matter consisting of a quark-gluon plasma) and layered high-temperature superconductors (critical currents and flux flow at the National High Magnetic Field Laboratory) were undertaken.

  20. Magnetospheric equilibrium with anisotropic pressure

    SciTech Connect

    Cheng, C.Z. )

    1992-02-01

    Self-consistent magnetospheric equilibria with anisotropic pressure are obtained by employing an iterative metric method for solving the inverse equilibrium equation in an optimal flux coordinate system. A method of determining plasma parallel and perpendicular pressures from either analytic particle distributions or particle distributions measured along a satellite's path is presented. The numerical results of axisymmetric magnetospheric equilibria including the effects of finite beta, pressure anisotropy, and boundary conditions are presented for a bi-Maxwellian particle distribution. For the isotropic pressure cases the finite beta effect produces an outward expansion of the constant magnetic flux surfaces in relation to the dipole field lines, and along the magnetic field the toroidal ring current is maximum at the magnetic equator. The effect of pressure anisotropy is found to further expand the flux surfaces outward. Along the magnetic field lines the westward ring current can be peak away from the equator owing to an eastward current contribution resulting from pressure anisotropy. As pressure anisotropy increases, the peak westward current can become more singular. The outer boundary flux surface has a significant effect on the magnetospheric equilibrium. For the outer flux boundary resembling the dayside compressed flux surface due to solar wind pressure, the deformation of the magnetic field can be quite different from that for the outer flux boundary resembling the taillike flux surface.

  1. Equilibrium Studies of Designed Metalloproteins.

    PubMed

    Gibney, B R

    2016-01-01

    Complete thermodynamic descriptions of the interactions of cofactors with proteins via equilibrium studies are challenging, but are essential to the evaluation of designed metalloproteins. While decades of studies on protein-protein interaction thermodynamics provide a strong underpinning to the successful computational design of novel protein folds and de novo proteins with enzymatic activity, the corresponding paucity of data on metal-protein interaction thermodynamics limits the success of computational metalloprotein design efforts. By evaluating the thermodynamics of metal-protein interactions via equilibrium binding studies, protein unfolding free energy determinations, proton competition equilibria, and electrochemistry, a more robust basis for the computational design of metalloproteins may be provided. Our laboratory has shown that such studies provide detailed insight into the assembly and stability of designed metalloproteins, allow for parsing apart the free energy contributions of metal-ligand interactions from those of porphyrin-protein interactions in hemeproteins, and even reveal their mechanisms of proton-coupled electron transfer. Here, we highlight studies that reveal the complex interplay between the various equilibria that underlie metalloprotein assembly and stability and the utility of making these detailed measurements. PMID:27586343

  2. Are the Concepts of Dynamic Equilibrium and the Thermodynamic Criteria for Spontaneity, Nonspontaneity, and Equilibrium Compatible?

    ERIC Educational Resources Information Center

    Silverberg, Lee J.; Raff, Lionel M.

    2015-01-01

    Thermodynamic spontaneity-equilibrium criteria require that in a single-reaction system, reactions in either the forward or reverse direction at equilibrium be nonspontaneous. Conversely, the concept of dynamic equilibrium holds that forward and reverse reactions both occur at equal rates at equilibrium to the extent allowed by kinetic…

  3. Typicality of Thermal Equilibrium and Thermalization in Isolated Macroscopic Quantum Systems

    NASA Astrophysics Data System (ADS)

    Tasaki, Hal

    2016-06-01

    Based on the view that thermal equilibrium should be characterized through macroscopic observations, we develop a general theory about typicality of thermal equilibrium and the approach to thermal equilibrium in macroscopic quantum systems. We first formulate the notion that a pure state in an isolated quantum system represents thermal equilibrium. Then by assuming, or proving in certain classes of nontrivial models (including that of two bodies in thermal contact), large-deviation type bounds (which we call thermodynamic bounds) for the microcanonical ensemble, we prove that to represent thermal equilibrium is a typical property for pure states in the microcanonical energy shell. We believe that the typicality, along with the empirical success of statistical mechanics, provides a sound justification of equilibrium statistical mechanics. We also establish the approach to thermal equilibrium under two different assumptions; one is that the initial state has a moderate energy distribution, and the other is the energy eigenstate thermalization hypothesis.

  4. Non-equilibrium many body dynamics

    SciTech Connect

    Creutz, M.; Gyulassy, M.

    1997-09-22

    This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop.

  5. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    SciTech Connect

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  6. Equilibrium Model of Precipitation in Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Thomas, Brian G.; O'Malley, Ron

    2011-02-01

    The formation of precipitates during thermal processing of microalloyed steels greatly influences their mechanical properties. Precipitation behavior varies with steel composition and temperature history and can lead to beneficial grain refinement or detrimental transverse surface cracks. This work presents an efficient computational model of equilibrium precipitation of oxides, sulfides, nitrides, and carbides in steels, based on satisfying solubility limits including Wagner interaction between elements, mutual solubility between precipitates, and mass conservation of alloying elements. The model predicts the compositions and amounts of stable precipitates for multicomponent microalloyed steels in liquid, ferrite, and austenite phases at any temperature. The model is first validated by comparing with analytical solutions of simple cases, predictions using the commercial package JMat-PRO, and previous experimental observations. Then it is applied to track the evolution of precipitate amounts during continuous casting of two commercial steels (1004 LCAK and 1006Nb HSLA) at two different casting speeds. This model is easy to modify to incorporate other precipitates, or new thermodynamic data, and is a useful tool for equilibrium precipitation analysis.

  7. Structural design using equilibrium programming formulations

    NASA Astrophysics Data System (ADS)

    Scotti, Stephen J.

    1995-06-01

    Solutions to increasingly larger structural optimization problems are desired. However, computational resources are strained to meet this need. New methods will be required to solve increasingly larger problems. The present approaches to solving large-scale problems involve approximations for the constraints of structural optimization problems and/or decomposition of the problem into multiple subproblems that can be solved in parallel. An area of game theory, equilibrium programming (also known as noncooperative game theory), can be used to unify these existing approaches from a theoretical point of view (considering the existence and optimality of solutions), and be used as a framework for the development of new methods for solving large-scale optimization problems. Equilibrium programming theory is described, and existing design techniques such as fully stressed design and constraint approximations are shown to fit within its framework. Two new structural design formulations are also derived. The first new formulation is another approximation technique which is a general updating scheme for the sensitivity derivatives of design constraints. The second new formulation uses a substructure-based decomposition of the structure for analysis and sensitivity calculations. Significant computational benefits of the new formulations compared with a conventional method are demonstrated.

  8. The empirical equilibrium structure of diacetylene

    NASA Astrophysics Data System (ADS)

    Thorwirth, Sven; Harding, Michael E.; Muders, Dirk; Gauss, Jürgen

    2008-09-01

    High-level quantum-chemical calculations are reported at the MP2 and CCSD(T) levels of theory for the equilibrium structure and the harmonic and anharmonic force fields of diacetylene, H sbnd C tbnd C sbnd C tbnd C sbnd H. The calculations were performed employing Dunning's hierarchy of correlation-consistent basis sets cc-pV XZ, cc-pCV XZ, and cc-pwCV XZ, as well as the ANO2 basis set of Almlöf and Taylor. An empirical equilibrium structure based on experimental rotational constants for 13 isotopic species of diacetylene and computed zero-point vibrational corrections is determined (reemp:r=1.0615 Å,r=1.2085 Å,r=1.3727 Å) and in good agreement with the best theoretical structure (CCSD(T)/cc-pCV5Z: r=1.0617 Å, r=1.2083 Å, r=1.3737 Å). In addition, the computed fundamental vibrational frequencies are compared with the available experimental data and found in satisfactory agreement.

  9. Structural design using equilibrium programming formulations

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.

    1995-01-01

    Solutions to increasingly larger structural optimization problems are desired. However, computational resources are strained to meet this need. New methods will be required to solve increasingly larger problems. The present approaches to solving large-scale problems involve approximations for the constraints of structural optimization problems and/or decomposition of the problem into multiple subproblems that can be solved in parallel. An area of game theory, equilibrium programming (also known as noncooperative game theory), can be used to unify these existing approaches from a theoretical point of view (considering the existence and optimality of solutions), and be used as a framework for the development of new methods for solving large-scale optimization problems. Equilibrium programming theory is described, and existing design techniques such as fully stressed design and constraint approximations are shown to fit within its framework. Two new structural design formulations are also derived. The first new formulation is another approximation technique which is a general updating scheme for the sensitivity derivatives of design constraints. The second new formulation uses a substructure-based decomposition of the structure for analysis and sensitivity calculations. Significant computational benefits of the new formulations compared with a conventional method are demonstrated.

  10. String fluid in local equilibrium

    NASA Astrophysics Data System (ADS)

    Schubring, Daniel; Vanchurin, Vitaly

    2014-10-01

    We study the solutions of string fluid equations under the assumption of a local equilibrium which was previously obtained in the context of the kinetic theory. We show that the fluid can be foliated into noninteracting submanifolds whose equations of motion are exactly that of the wiggly strings considered previously by Vilenkin and Carter. In a special case of negligible statistical variance in either the left- or the right-moving directions of microscopic strings, the submanifolds are described by the action of a null-current-carrying chiral string. When both variances vanish the submanifolds are described by the Nambu-Goto action and the string fluid reduces to the string dust introduced by Stachel.

  11. Local non-equilibrium thermodynamics

    PubMed Central

    Jinwoo, Lee; Tanaka, Hajime

    2015-01-01

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation. PMID:25592077

  12. Equilibrium calculations of firework mixtures

    SciTech Connect

    Hobbs, M.L.; Tanaka, Katsumi; Iida, Mitsuaki; Matsunaga, Takehiro

    1994-12-31

    Thermochemical equilibrium calculations have been used to calculate detonation conditions for typical firework components including three report charges, two display charges, and black powder which is used as a fuse or launch charge. Calculations were performed with a modified version of the TIGER code which allows calculations with 900 gaseous and 600 condensed product species at high pressure. The detonation calculations presented in this paper are thought to be the first report on the theoretical study of firework detonation. Measured velocities for two report charges are available and compare favorably to predicted detonation velocities. However, the measured velocities may not be true detonation velocities. Fast deflagration rather than an ideal detonation occurs when reactants contain significant amounts of slow reacting constituents such as aluminum or titanium. Despite such uncertainties in reacting pyrotechnics, the detonation calculations do show the complex nature of condensed phase formation at elevated pressures and give an upper bound for measured velocities.

  13. Local non-equilibrium thermodynamics.

    PubMed

    Jinwoo, Lee; Tanaka, Hajime

    2015-01-01

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation. PMID:25592077

  14. Hierarchical condensation near phase equilibrium

    NASA Astrophysics Data System (ADS)

    Olemskoi, A. I.; Yushchenko, O. V.; Borisyuk, V. N.; Zhilenko, T. I.; Kosminska, Yu. O.; Perekrestov, V. I.

    2012-06-01

    A novel mechanism of new phase formation is studied both experimentally and theoretically in the example of quasi-equilibrium stationary condensation in an ion-plasma sputterer. Copper condensates are obtained to demonstrate that a specific network structure is formed as a result of self-assembly in the course of deposition. The fractal pattern related is inherent in the phenomena of diffusion limited aggregation. Condensate nuclei are shown to form statistical ensemble of hierarchically subordinated objects distributed in ultrametric space. The Langevin equation and the Fokker-Planck equation related are found to describe stationary distribution of thermodynamic potential variations at condensation. Time dependence of the formation probability of branching structures is found to clarify the experimental situation.

  15. Mean gas opacity for circumstellar environments and equilibrium temperature degeneracy

    NASA Astrophysics Data System (ADS)

    Malygin, M. G.; Kuiper, R.; Klahr, H.; Dullemond, C. P.; Henning, Th.

    2014-08-01

    Context. In a molecular cloud dust opacity typically dominates over gas opacity, yet in the vicinities of forming stars dust is depleted, and gas is the sole provider of opacity. In the optically thin circumstellar environments the radiation temperature cannot be assumed to be equal to the gas temperature, hence the two-temperature Planck means are necessary to calculate the radiative equilibrium. Aims: By using the two-temperature mean opacity one does obtain the proper equilibrium gas temperature in a circumstellar environment, which is in a chemical equilibrium. A careful consideration of a radiative transfer problem reveals that the equilibrium temperature solution can be degenerate in an optically thin gaseous environment. Methods: We compute mean gas opacities based on the publicly available code DFSYNTHE by Kurucz and Castelli. We performed the calculations assuming local thermodynamic equilibrium and an ideal gas equation of state. The values were derived by direct integration of the high-resolution opacity spectrum. Results: We produced two sets of gas opacity tables: Rosseland means and two-temperature Planck means. For three metallicities [Me/H] = 0.0, ± 0.3 we covered the parameter range 3.48 ≤ log Trad [K] ≤ 4.48 in radiation temperature, 2.8 ≤ log Tgas [K] ≤ 6.0 in gas temperature, and -10 ≤ log P [dyn cm-2] ≤ 6 in gas pressure. We show that in the optically thin circumstellar environment for a given stellar radiation field and local gas density there are several equilibrium gas temperatures possible. Conclusions: We conclude that, in general, equilibrium gas temperature cannot be determined without treating the temperature evolution. The opacity tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A91 as well as via http://www.mpia.de/~malygin

  16. Punctuated equilibrium dynamics in human communications

    NASA Astrophysics Data System (ADS)

    Peng, Dan; Han, Xiao-Pu; Wei, Zong-Wen; Wang, Bing-Hong

    2015-10-01

    A minimal model based on network incorporating individual interactions is proposed to study the non-Poisson statistical properties of human behavior: individuals in system interact with their neighbors, the probability of an individual acting correlates to its activity, and all the individuals involved in action will change their activities randomly. The model reproduces varieties of spatial-temporal patterns observed in empirical studies of human daily communications, providing insight into various human activities and embracing a range of realistic social interacting systems, particularly, intriguing bimodal phenomenon. This model bridges priority queueing theory and punctuated equilibrium dynamics, and our modeling and analysis is likely to shed light on non-Poisson phenomena in many complex systems.

  17. Conformational equilibrium in supramolecular chemistry: Dibutyltriuret case

    PubMed Central

    Mroczyńska, Karina; Kaczorowska, Małgorzata; Kolehmainen, Erkki; Grubecki, Ireneusz; Pietrzak, Marek

    2015-01-01

    Summary The association of substituted benzoates and naphthyridine dianions was used to study the complexation of dibutyltriuret. The title molecule is the simplest molecule able to form two intramolecular hydrogen bonds. The naphthyridine salt was used to break two intramolecular hydrogen bonds at a time while with the use of substituted benzoates the systematic approach to study association was achieved. Both, titrations and variable temperature measurements shed the light on the importance of conformational equilibrium and its influence on association in solution. Moreover, the associates were observed by mass spectrometry. The DFT-based computations for complexes and single bond rotational barriers supports experimental data and helps understanding the properties of multiply hydrogen bonded complexes. PMID:26664631

  18. Nash equilibrium and multi criterion aerodynamic optimization

    NASA Astrophysics Data System (ADS)

    Tang, Zhili; Zhang, Lianhe

    2016-06-01

    Game theory and its particular Nash Equilibrium (NE) are gaining importance in solving Multi Criterion Optimization (MCO) in engineering problems over the past decade. The solution of a MCO problem can be viewed as a NE under the concept of competitive games. This paper surveyed/proposed four efficient algorithms for calculating a NE of a MCO problem. Existence and equivalence of the solution are analyzed and proved in the paper based on fixed point theorem. Specific virtual symmetric Nash game is also presented to set up an optimization strategy for single objective optimization problems. Two numerical examples are presented to verify proposed algorithms. One is mathematical functions' optimization to illustrate detailed numerical procedures of algorithms, the other is aerodynamic drag reduction of civil transport wing fuselage configuration by using virtual game. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.

  19. DSMC predictions of non-equilibrium reaction rates.

    SciTech Connect

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2010-04-01

    A set of Direct Simulation Monte Carlo (DSMC) chemical-reaction models recently proposed by Bird and based solely on the collision energy and the vibrational energy levels of the species involved is applied to calculate nonequilibrium chemical-reaction rates for atmospheric reactions in hypersonic flows. The DSMC non-equilibrium model predictions are in good agreement with theoretical models and experimental measurements. The observed agreement provides strong evidence that modeling chemical reactions using only the collision energy and the vibrational energy levels provides an accurate method for predicting non-equilibrium chemical-reaction rates.

  20. Explicit Integration of Extremely Stiff Reaction Networks: Partial Equilibrium Methods

    SciTech Connect

    Guidry, Mike W; Billings, J. J.; Hix, William Raphael

    2013-01-01

    In two preceding papers [1,2] we have shown that, when reaction networks are well removed from equilibrium, explicit asymptotic and quasi-steady-state approximations can give algebraically stabilized integration schemes that rival standard implicit methods in accuracy and speed for extremely stiff systems. However, we also showed that these explicit methods remain accurate but are no longer competitive in speed as the network approaches equilibrium. In this paper we analyze this failure and show that it is associated with the presence of fast equilibration timescales that neither asymptotic nor quasi-steady-state approximations are able to remove efficiently from the numerical integration. Based on this understanding, we develop a partial equilibrium method to deal effectively with the new partial equilibrium methods, give an integration scheme that plausibly can deal with the stiffest networks, even in the approach to equilibrium, with accuracy and speed competitive with that of implicit methods. Thus we demonstrate that algebraically stabilized explicit methods may offer alternatives to implicit integration of even extremely stiff systems, and that these methods may permit integration of much larger networks than have been feasible previously in a variety of fields.

  1. Novel mapping in non-equilibrium stochastic processes

    NASA Astrophysics Data System (ADS)

    Heseltine, James; Kim, Eun-jin

    2016-04-01

    We investigate the time-evolution of a non-equilibrium system in view of the change in information and provide a novel mapping relation which quantifies the change in information far from equilibrium and the proximity of a non-equilibrium state to the attractor. Specifically, we utilize a nonlinear stochastic model where the stochastic noise plays the role of incoherent regulation of the dynamical variable x and analytically compute the rate of change in information (information velocity) from the time-dependent probability distribution function. From this, we quantify the total change in information in terms of information length { L } and the associated action { J }, where { L } represents the distance that the system travels in the fluctuation-based, statistical metric space parameterized by time. As the initial probability density function’s mean position (μ) is decreased from the final equilibrium value {μ }* (the carrying capacity), { L } and { J } increase monotonically with interesting power-law mapping relations. In comparison, as μ is increased from {μ }*,{ L } and { J } increase slowly until they level off to a constant value. This manifests the proximity of the state to the attractor caused by a strong correlation for large μ through large fluctuations. Our proposed mapping relation provides a new way of understanding the progression of the complexity in non-equilibrium system in view of information change and the structure of underlying attractor.

  2. EQUILIBRIUM PARTIAL PRESSURE OF SULFUR DIOXIDE IN ALKALINE SCRUBBING PROCESSES

    EPA Science Inventory

    The report gives results of IERL-RTP in-house studies in which equilibrium partial pressure of SO2 was measured as a function of pH, temperature, and concentration of sulfur (IV) on various scrubber liquors. These studies were done for potassium-, sodium-, and citrate-based scrub...

  3. Microcomputer Calculation of Equilibrium Constants from Molecular Parameters of Gases.

    ERIC Educational Resources Information Center

    Venugopalan, Mundiyath

    1989-01-01

    Lists a BASIC program which computes the equilibrium constant as a function of temperature. Suggests use by undergraduates taking a one-year calculus-based physical chemistry course. Notes the program provides for up to four species, typically two reactants and two products. (MVL)

  4. Composition and Thermodynamic Properties of Air in Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Moeckel, W E; Weston, Kenneth C

    1958-01-01

    Charts have been prepared relating the thermodynamic properties of air in chemical equilibrium for temperatures to 15,000 degrees k and for pressures 10(-5) to 10 (plus 4) atmospheres. Also included are charts showing the composition of air, the isentropic exponent, and the speed of sound. These charts are based on thermodynamic data calculated by the National Bureau of Standards.

  5. Equilibrium-Staged Separations Using Matlab and Mathematica

    ERIC Educational Resources Information Center

    Binous, Housam

    2008-01-01

    We show a new approach, based on the utilization of Matlab and Mathematica, for solving liquid-liquid extraction and binary distillation problems. In addition, the author shares his experience using these two softwares to teach equilibrium staged separations at the National Institute of Applied Sciences and Technology. (Contains 7 figures.)

  6. Determining Equilibrium Position For Acoustical Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Aveni, G.; Putterman, S.; Rudnick, J.

    1989-01-01

    Equilibrium position and orientation of acoustically-levitated weightless object determined by calibration technique on Earth. From calibration data, possible to calculate equilibrium position and orientation in presence of Earth gravitation. Sample not levitated acoustically during calibration. Technique relies on Boltzmann-Ehrenfest adiabatic-invariance principle. One converts resonant-frequency-shift data into data on normalized acoustical potential energy. Minimum of energy occurs at equilibrium point. From gradients of acoustical potential energy, one calculates acoustical restoring force or torque on objects as function of deviation from equilibrium position or orientation.

  7. 1-D EQUILIBRIUM DISCRETE DIFFUSION MONTE CARLO

    SciTech Connect

    T. EVANS; ET AL

    2000-08-01

    We present a new hybrid Monte Carlo method for 1-D equilibrium diffusion problems in which the radiation field coexists with matter in local thermodynamic equilibrium. This method, the Equilibrium Discrete Diffusion Monte Carlo (EqDDMC) method, combines Monte Carlo particles with spatially discrete diffusion solutions. We verify the EqDDMC method with computational results from three slab problems. The EqDDMC method represents an incremental step toward applying this hybrid methodology to non-equilibrium diffusion, where it could be simultaneously coupled to Monte Carlo transport.

  8. Passive equilibrium studies on ZT-P

    SciTech Connect

    Pickrell, M.M.; Reass, W.A.

    1987-12-01

    The poloidal field system of ZT-P was modified by the addition of a transformer, which coupled the magnetizing and equilibrium circuits. ZT-P is a small, air core, Reversed Field Pinch, operated at the Los Alamos National Laboratory. It is used as test bed for the much larger ZT-H, RFP experiment, now under construction at LANL. Planned experiments include size scaling measurements and determining the effect of low time constant measurements and determining the effect of low time constant shell operation. ZT-P has had an entirely passive equilibrium system, which did not provide a well centered equilibrium, although a tolerable equilibrium was realized by removing half of the equilibrium coil set. The transformer was added to the poloidal field system to adjust the equilibrium current for a centered plasma, while using the entire coil set. It also had the effect of reducing the dependence of the equilibrium on the plasma resistance. Stable, well centered discharges were achieved over a broad range of plasma currents. The improved equilibrium also lowered the loop voltage and extended the discharge lifetime. These experiments also investigated the unique problems of equilibrium systems on air core RFP devices. 26 refs., 6 figs.

  9. EASI - EQUILIBRIUM AIR SHOCK INTERFERENCE

    NASA Technical Reports Server (NTRS)

    Glass, C. E.

    1994-01-01

    New research on hypersonic vehicles, such as the National Aero-Space Plane (NASP), has raised concerns about the effects of shock-wave interference on various structural components of the craft. State-of-the-art aerothermal analysis software is inadequate to predict local flow and heat flux in areas of extremely high heat transfer, such as the surface impingement of an Edney-type supersonic jet. EASI revives and updates older computational methods for calculating inviscid flow field and maximum heating from shock wave interference. The program expands these methods to solve problems involving the six shock-wave interference patterns on a two-dimensional cylindrical leading edge with an equilibrium chemically reacting gas mixture (representing, for example, the scramjet cowl of the NASP). The inclusion of gas chemistry allows for a more accurate prediction of the maximum pressure and heating loads by accounting for the effects of high temperature on the air mixture. Caloric imperfections and specie dissociation of high-temperature air cause shock-wave angles, flow deflection angles, and thermodynamic properties to differ from those calculated by a calorically perfect gas model. EASI contains pressure- and temperature-dependent thermodynamic and transport properties to determine heating rates, and uses either a calorically perfect air model or an 11-specie, 7-reaction reacting air model at equilibrium with temperatures up to 15,000 K for the inviscid flowfield calculations. EASI solves the flow field and the associated maximum surface pressure and heat flux for the six common types of shock wave interference. Depending on the type of interference, the program solves for shock-wave/boundary-layer interaction, expansion-fan/boundary-layer interaction, attaching shear layer or supersonic jet impingement. Heat flux predictions require a knowledge (from experimental data or relevant calculations) of a pertinent length scale of the interaction. Output files contain flow

  10. Equilibrium coexistence of three amphiboles

    USGS Publications Warehouse

    Robinson, P.; Jaffe, H.W.; Klein, C., Jr.; Ross, M.

    1969-01-01

    Electron probe and wet chemical analyses of amphibole pairs from the sillimanite zone of central Massachusetts and adjacent New Hampshire indicated that for a particular metamorphic grade there should be a restricted composition range in which three amphiboles can coexist stably. An unequivocal example of such an equilibrium three amphibole rock has been found in the sillimanite-orthoclase zone. It contains a colorless primitive clinoamphibole, space group P21/m, optically and chemically like cummingtonite with blue-green hornblende exsolution lamellae on (100) and (-101) of the host; blue-green hornblende, space group C2/m, with primitive cummingtonite exsolution lamellae on (100) and (-101) of the host; and pale pinkish tan anthophyllite, space group Pnma, that is free of visible exsolution lamellae but is a submicroscopic intergrowth of two orthorhombic amphiboles. Mutual contacts and coarse, oriented intergrowths of two and three host amphiboles indicate the three grew as an equilibrium assemblage prior to exsolution. Electron probe analyses at mutual three-amphibole contacts showed little variation in the composition of each amphibole. Analyses believed to represent most closely the primary amphibole compositions gave atomic proportions on the basis of 23 oxygens per formula unit as follows: for primitive cummingtonite (Na0.02Ca0.21- Mn0.06Fe2+2.28Mg4.12Al0.28) (Al0.17Si7.83), for hornblende (Na0.35Ca1.56Mn0.02Fe1.71Mg2.85Al0.92) (Al1.37Si6.63), and for anthophyllite (Na0.10Ca0.06Mn0.06Fe2.25Mg4.11Al0.47) (Al0.47Si7.53). The reflections violating C-symmetry, on X-ray single crystal photographs of the primitive cummingtonite, are weak and diffuse, and suggest a partial inversion from a C-centered to a primitive clinoamphibole. Single crystal photographs of the anthophyllite show split reflections indicating it is an intergrowth of about 80% anthophyllite and about 20% gedrite which differ in their b crystallographic dimensions. Split reflections are

  11. CO2 and humidity removal system for extended Shuttle missions - CO2, H2O, and trace contaminant equilibrium testing

    NASA Technical Reports Server (NTRS)

    Davis, S. H.; Kissinger, L. D.

    1977-01-01

    The equilibrium relationships for the co-adsorption of CO2 and H2O on an amine coated acrylic ester are presented. The equilibrium data collection and reduction techniques are discussed. Based on the equilibrium relationship, other modes of operation of systems containing HS-C are discussed and specific space applications for HS-C are presented. Equilibrium data for 10 compounds which are found as trace contaminants in closed environments are also presented.

  12. Spectral Quasi-Equilibrium Manifold for Chemical Kinetics.

    PubMed

    Kooshkbaghi, Mahdi; Frouzakis, Christos E; Boulouchos, Konstantinos; Karlin, Iliya V

    2016-05-26

    The Spectral Quasi-Equilibrium Manifold (SQEM) method is a model reduction technique for chemical kinetics based on entropy maximization under constraints built by the slowest eigenvectors at equilibrium. The method is revisited here and discussed and validated through the Michaelis-Menten kinetic scheme, and the quality of the reduction is related to the temporal evolution and the gap between eigenvalues. SQEM is then applied to detailed reaction mechanisms for the homogeneous combustion of hydrogen, syngas, and methane mixtures with air in adiabatic constant pressure reactors. The system states computed using SQEM are compared with those obtained by direct integration of the detailed mechanism, and good agreement between the reduced and the detailed descriptions is demonstrated. The SQEM reduced model of hydrogen/air combustion is also compared with another similar technique, the Rate-Controlled Constrained-Equilibrium (RCCE). For the same number of representative variables, SQEM is found to provide a more accurate description. PMID:27116566

  13. Non equilibrium statistical mechanics of geophysical flows

    NASA Astrophysics Data System (ADS)

    Bouchet, F.

    2012-04-01

    Onsager first proposed to explain the self organization of turbulent flows using the statistical mechanics framework. Generalization of those ideas to the class of 2D-Euler and Quasi-Gestrophic models led to the Robert-Sommeria-Miller theory. This approach was successful in modeling many geophysical phenomena: the Great Red Spot of Jupiter [2, 1], drift of mesoscale ocean vortices [3, 1], self-organization of Quasi-Geostrophic dynamics in mid-basin jets similar to the Gulf-Stream and the Kuroshio [3, 1], and so on. However, this type of equilibrium theories fail to take into account forces and dissipation. This is a strong limitation for many geophysical phenomena. Interestingly, it is possible to circumvent these difficulties using the most modern theoretical development of non-equilibrium statistical mechanics: large deviation [4] and instanton theories. As an example, we will discuss geophysical turbulent flows which have more than one attractor (bistability or mutistability). For instance, paths of the Kuroshio [5], the Earth's magnetic field reversal, atmospheric flows [6], MHD experiments [7], 2D turbulence experiments [8, 9], 3D flows [10] show this kind of behavior. On Navier-Stokes and Quasi-Geostrophic turbulent flows, we predict the conditions for existence of rare transitions between attractors, and the dynamics of those transitions. We discuss how these results are probably connected to the long debated existence of multi-stability in the atmosphere and oceans, and how non-equilibrium statistical mechanics can allow to settle this issue. Generalization of statistical mechanics to more comprehensive hydrodynamical models, which include gravity wave dynamics and allow for the possibility of energy transfer through wave motion, would be extremely interesting. Namely, both are essential in understanding energy balance of geophysical flows. However, due to difficulties in essential theoretical parts of the statistical mechanics approach, previous methods

  14. Non-Equilibrium Effects on Hypersonic Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Kim, Pilbum

    Understanding non-equilibrium effects of hypersonic turbulent boundary layers is essential in order to build cost efficient and reliable hypersonic vehicles. It is well known that non-equilibrium effects on the boundary layers are notable, but our understanding of the effects are limited. The overall goal of this study is to improve the understanding of non-equilibrium effects on hypersonic turbulent boundary layers. A new code has been developed for direct numerical simulations of spatially developing hypersonic turbulent boundary layers over a flat plate with finite-rate reactions. A fifth-order hybrid weighted essentially non-oscillatory scheme with a low dissipation finite-difference scheme is utilized in order to capture stiff gradients while resolving small motions in turbulent boundary layers. The code has been validated by qualitative and quantitative comparisons of two different simulations of a non-equilibrium flow and a spatially developing turbulent boundary layer. With the validated code, direct numerical simulations of four different hypersonic turbulent boundary layers, perfect gas and non-equilibrium flows of pure oxygen and nitrogen, have been performed. In order to rule out uncertainties in comparisons, the same inlet conditions are imposed for each species, and then mean and turbulence statistics as well as near-wall turbulence structures are compared at a downstream location. Based on those comparisons, it is shown that there is no direct energy exchanges between internal and turbulent kinetic energies due to thermal and chemical non-equilibrium processes in the flow field. Instead, these non-equilibria affect turbulent boundary layers by changing the temperature without changing the main characteristics of near-wall turbulence structures. This change in the temperature induces the changes in the density and viscosity and the mean flow fields are then adjusted to satisfy the conservation laws. The perturbation fields are modified according to

  15. Relation between absorbed dose, charged particle equilibrium and nuclear transformations: a non-equilibrium thermodynamics point of view.

    PubMed

    Alvarez-Romero, J T

    2006-01-01

    We present a discussion to show that the absorbed dose D is a time-dependent function. This time dependence is demonstrated based on the concepts of charged particle equilibrium and on radiation equilibrium within the context of thermodynamic non-equilibrium. In the latter, the time dependence is due to changes of the rest mass energy of the nuclei and elementary particles involved in the terms summation operator Q and Q that appear in the definitions of energy imparted epsilon and energy deposit epsilon(i), respectively. In fact, nothing is said about the averaging operation of the non-stochastic quantity mean energy imparted epsilon, which is used in the definition of D according to ICRU 60. It is shown in this research that the averaging operation necessary to define the epsilon employed to get D cannot be performed with an equilibrium statistical operator rho(r) as could be expected. Rather, the operation has to be defined with a time-dependent non-equilibrium statistical operator rho(r, t); therefore, D is a time-dependent function D(r,t). PMID:16731692

  16. A Unified Kinetics and Equilibrium Experiment: Rate Law, Activation Energy, and Equilibrium Constant for the Dissociation of Ferroin

    ERIC Educational Resources Information Center

    Sattar, Simeen

    2011-01-01

    Tris(1,10-phenanthroline)iron(II) is the basis of a suite of four experiments spanning 5 weeks. Students determine the rate law, activation energy, and equilibrium constant for the dissociation of the complex ion in acid solution and base dissociation constant for phenanthroline. The focus on one chemical system simplifies a daunting set of…

  17. Equilibrium Tail Distribution Due to Touschek Scattering

    SciTech Connect

    Nash,B.; Krinsky, S.

    2009-05-04

    Single large angle Coulomb scattering is referred to as Touschek scattering. In addition to causing particle loss when the scattered particles are outside the momentum aperture, the process also results in a non-Gaussian tail, which is an equilibrium between the Touschek scattering and radiation damping. Here we present an analytical calculation for this equilibrium distribution.

  18. A Holistic Equilibrium Theory of Organization Development

    ERIC Educational Resources Information Center

    Yang, Baiyin; Zheng, Wei

    2005-01-01

    This paper proposes a holistic equilibrium theory of organizational development (OD). The theory states that there are three driving forces in organizational change and development--rationality, reality, and liberty. OD can be viewed as a planned process of change in an organization so as to establish equilibrium among these three interacting…

  19. Zeroth Law, Entropy, Equilibrium, and All That

    ERIC Educational Resources Information Center

    Canagaratna, Sebastian G.

    2008-01-01

    The place of the zeroth law in the teaching of thermodynamics is examined in the context of the recent discussion by Gislason and Craig of some problems involving the establishment of thermal equilibrium. The concept of thermal equilibrium is introduced through the zeroth law. The relation between the zeroth law and the second law in the…

  20. Equilibrium figures in geodesy and geophysics.

    NASA Astrophysics Data System (ADS)

    Moritz, H.

    There is an enormous literature on geodetic equilibrium figures, but the various works have not always been interrelated, also for linguistic reasons (English, French, German, Italian, Russian). The author attempts to systematize the various approaches and to use the standard second-order theory for a study of the deviation of the actual earth and of the equipotential reference ellipsoid from an equilibrium figure.

  1. Implementing an Equilibrium Law Teaching Sequence for Secondary School Students to Learn Chemical Equilibrium

    ERIC Educational Resources Information Center

    Ghirardi, Marco; Marchetti, Fabio; Pettinari, Claudio; Regis, Alberto; Roletto, Ezio

    2015-01-01

    A didactic sequence is proposed for the teaching of chemical equilibrium law. In this approach, we have avoided the kinetic derivation and the thermodynamic justification of the equilibrium constant. The equilibrium constant expression is established empirically by a trial-and-error approach. Additionally, students learn to use the criterion of…

  2. Disturbances in equilibrium function after major earthquake

    NASA Astrophysics Data System (ADS)

    Honma, Motoyasu; Endo, Nobutaka; Osada, Yoshihisa; Kim, Yoshiharu; Kuriyama, Kenichi

    2012-10-01

    Major earthquakes were followed by a large number of aftershocks and significant outbreaks of dizziness occurred over a large area. However it is unclear why major earthquake causes dizziness. We conducted an intergroup trial on equilibrium dysfunction and psychological states associated with equilibrium dysfunction in individuals exposed to repetitive aftershocks versus those who were rarely exposed. Greater equilibrium dysfunction was observed in the aftershock-exposed group under conditions without visual compensation. Equilibrium dysfunction in the aftershock-exposed group appears to have arisen from disturbance of the inner ear, as well as individual vulnerability to state anxiety enhanced by repetitive exposure to aftershocks. We indicate potential effects of autonomic stress on equilibrium function after major earthquake. Our findings may contribute to risk management of psychological and physical health after major earthquakes with aftershocks, and allow development of a new empirical approach to disaster care after such events.

  3. Probing local equilibrium in nonequilibrium fluids.

    PubMed

    del Pozo, J J; Garrido, P L; Hurtado, P I

    2015-08-01

    We use extensive computer simulations to probe local thermodynamic equilibrium (LTE) in a quintessential model fluid, the two-dimensional hard-disks system. We show that macroscopic LTE is a property much stronger than previously anticipated, even in the presence of important finite-size effects, revealing a remarkable bulk-boundary decoupling phenomenon in fluids out of equilibrium. This allows us to measure the fluid's equation of state in simulations far from equilibrium, with an excellent accuracy comparable to the best equilibrium simulations. Subtle corrections to LTE are found in the fluctuations of the total energy which strongly point to the nonlocality of the nonequilibrium potential governing the fluid's macroscopic behavior out of equilibrium. PMID:26382354

  4. How Far from Equilibrium Is Active Matter?

    NASA Astrophysics Data System (ADS)

    Fodor, Étienne; Nardini, Cesare; Cates, Michael E.; Tailleur, Julien; Visco, Paolo; van Wijland, Frédéric

    2016-07-01

    Active matter systems are driven out of thermal equilibrium by a lack of generalized Stokes-Einstein relation between injection and dissipation of energy at the microscopic scale. We consider such a system of interacting particles, propelled by persistent noises, and show that, at small but finite persistence time, their dynamics still satisfy a time-reversal symmetry. To do so, we compute perturbatively their steady-state measure and show that, for short persistent times, the entropy production rate vanishes. This endows such systems with an effective fluctuation-dissipation theorem akin to that of thermal equilibrium systems. Last, we show how interacting particle systems with viscous drags and correlated noises can be seen as in equilibrium with a viscoelastic bath but driven out of equilibrium by nonconservative forces, hence providing energetic insight into the departure of active systems from equilibrium.

  5. Comparison of equilibrium and non-equilibrium distribution coefficients for the human drug carbamazepine in soil.

    PubMed

    Williams, C F; Watson, J E; Nelson, S D

    2014-01-01

    The distribution coefficient (KD) for the human drug carbamazepine was measured using a non-equilibrium technique. Repacked soil columns were prepared using an Airport silt loam (Typic Natrustalf) with an average organic matter content of 2.45%. Carbamazepine solutions were then leached through the columns at 0.5, 1.0 and 1.5 mL min(-1) representing average linear velocities of 1.8, 3.5 and 5.3 cm h(-1) respectively. Each flow rate was replicated three times and three carbamazepine pulses were applied to each column resulting in a total of 9 columns with 27 total carbamazepine pulses. Breakthrough curves were used to determine KD using the parameter fitting software CXTFIT. Results indicate that as flow rate decreased from 5.3 to 1.8 cm h(-1), KD increased an average of 21%. Additionally, KD determined by column leaching (14.7-22.7 L kg(-1)) was greater than KD determined by a 2h batch equilibrium adsorption (12.6 L kg(-1)). Based on these KD's carbamazepine would be generally characterized as non-mobile in the soil investigated. However, repeated carbamazepine applications resulted in an average 22% decrease in KD between the first and third applications. Decreasing KD is attributed to differences in sorption site kinetics and carbamazepine residence time in contact with the soil. This would indicate that the repeated use of reclaimed wastewater at high application rates for long-term irrigation or groundwater recharge has the potential to lead to greater transport of carbamazepine than KD determined by batch equilibrium would predict. PMID:24050717

  6. Response to Contradiction: Conflict Resolution Strategies Used by Students in Solving Problems of Chemical Equilibrium.

    ERIC Educational Resources Information Center

    Niaz, Mansoor

    2001-01-01

    Illustrates how a novel problem of chemical equilibrium based on a closely related sequence of items can facilitate students' conceptual understanding. Students were presented with a chemical reaction in equilibrium to which a reactant was added as an external effect. Three studies were conducted to assess alternative conceptions. (Author/SAH)

  7. Students' Understanding of Equilibrium and Stability: The Case of Dynamic Systems

    ERIC Educational Resources Information Center

    Canu, Michaël; de Hosson, Cécile; Duque, Mauricio

    2016-01-01

    Engineering students in control courses have been observed to lack an understanding of equilibrium and stability, both of which are crucial concepts in this discipline. The introduction of these concepts is generally based on the study of classical examples from Newtonian mechanics supplemented with a control system. Equilibrium and stability are…

  8. Non-equilibrium Transport of Light

    NASA Astrophysics Data System (ADS)

    Wang, Chiao-Hsuan; Taylor, Jacob

    Non-equilibrium Transport of Light The thermalization of light under conditions of parametric coupling to a bath provides a robust chemical potential for light. We study non-equilibrium transport of light using non-equilibrium Green's function approach under the parametric coupling scheme, and explore a potential photonic analogue to the Landauer transport equation. Our results provide understandings of many-body states of photonic matter with chemical potential imbalances. The transport theory of light paves the way for quantum simulation and even practical applications of diode-like circuits using quantum photonic sources in the microwave and optical domain.

  9. New Simulator for Non-Equilibrium Modeling of Hydrate Reservoirs

    NASA Astrophysics Data System (ADS)

    Kvamme, B.; Qorbani Nashaqi, K.; Jemai, K.; Vafaei, M.

    2014-12-01

    Due to Gibbs phase rule and combination of first and second law of thermodynamics, hydrate in nature cannot be in equilibrium since they come from different parent phases. In this system hydrate formation and dissociation is affected by local variables such as pressure, temperature and composition with mass and energy transport restrictions. Available simulators have attempted to model hydrate phase transition as an equilibrium reaction. Although those which treated the processes of formation and dissociation as kinetics used model of Kim and Bishnoi based on laboratory PVT experiment, and consequently hard to accept up scaling to real reservoirs condition. Additionally, they merely check equilibrium in terms of pressure and temperature projections and disregard thermodynamic requirements for equilibrium especially along axes of concentrations in phases. Non-equilibrium analysis of hydrate involves putting aside all the phase transitions which are not possible and use kinetic evaluation to measure phase transitions progress in each grid block for each time step. This procedure is Similar to geochemical reservoir simulators logic. As a result RetrasoCodeBright has been chosen as hydrate reservoir simulator and our work involves extension of this code. RetrasoCodeBright (RCB) is able to handle competing processes of formation and dissociation of hydrates as pseudo reactions at each node and each time step according to the temperature, pressure and concentration. Hydrates can therefore be implemented into the structure as pseudo minerals, with appropriate kinetic models. In order to implement competing nature of phase transition kinetics of hydrate formation, we use classical nucleation theory based on Kvamme et al. as a simplified model inside RCB and use advanced theories to fit parameters for the model (PFT). Hydrate formation and dissociation can directly be observed through porosity changes in the specific areas of the porous media. In this work which is in

  10. Evaluation of the Diffusive Equilibrium Models by the IMAGE RPI

    NASA Astrophysics Data System (ADS)

    Ozhogin, Pavel; Reinisch, Bodo W.; Song, Paul; Tu, Jiannan

    2013-04-01

    Using measured field-aligned electron density profiles, this study investigates the validity of the diffusive equilibrium model in Earth's plasmasphere. This model which describes the electron and ion densities along a magnetic field line in the plasmasphere has been widely used for ray tracing and pitch-angle scattering calculations. It is based on the hydrostatic equilibrium with the electrostatic force that acts on ions and electrons along geomagnetic field lines while actually there is no motion or diffusion of the plasma involved. The model requires multiple input parameters: electron density and ion composition (H+, He+, O+) at a base level for a magnetic field line in the ionosphere, and the (electron or ion) temperature in the plasmasphere. It has been recognized that these input parameters have to be flexible from one field line to another so that the model output does not contradict some known observed relationships. However, while the flexibility provides the possibility to fit any individual observed density distribution which is measured across many different field lines, the model prediction becomes questionable along a single field line. Before the launch of the IMAGE satellite in 2000 no plasma density measurements along a single field line were available, and therefore the validity of the diffusive equilibrium models had not been independently verified. Our qualitative and quantitative analysis shows that the fundamental functional form of the diffusive equilibrium model is inconsistent with the large database of field-aligned electron density distributions obtained by the radio plasma imager (RPI) instrument onboard the IMAGE satellite. Review of the procedures used in the derivation of the original diffusive equilibrium model suggests that the physical processes described by the mathematical procedures are fundamentally incorrect.

  11. 3D Equilibrium Reconstructions in DIII-D

    NASA Astrophysics Data System (ADS)

    Lao, L. L.; Ferraro, N. W.; Strait, E. J.; Turnbull, A. D.; King, J. D.; Hirshman, H. P.; Lazarus, E. A.; Sontag, A. C.; Hanson, J.; Trevisan, G.

    2013-10-01

    Accurate and efficient 3D equilibrium reconstruction is needed in tokamaks for study of 3D magnetic field effects on experimentally reconstructed equilibrium and for analysis of MHD stability experiments with externally imposed magnetic perturbations. A large number of new magnetic probes have been recently installed in DIII-D to improve 3D equilibrium measurements and to facilitate 3D reconstructions. The V3FIT code has been in use in DIII-D to support 3D reconstruction and the new magnetic diagnostic design. V3FIT is based on the 3D equilibrium code VMEC that assumes nested magnetic surfaces. V3FIT uses a pseudo-Newton least-square algorithm to search for the solution vector. In parallel, the EFIT equilibrium reconstruction code is being extended to allow for 3D effects using a perturbation approach based on an expansion of the MHD equations. EFIT uses the cylindrical coordinate system and can include the magnetic island and stochastic effects. Algorithms are being developed to allow EFIT to reconstruct 3D perturbed equilibria directly making use of plasma response to 3D perturbations from the GATO, MARS-F, or M3D-C1 MHD codes. DIII-D 3D reconstruction examples using EFIT and V3FIT and the new 3D magnetic data will be presented. Work supported in part by US DOE under DE-FC02-04ER54698, DE-FG02-95ER54309 and DE-AC05-06OR23100.

  12. Temperature lapse rates at restricted thermodynamic equilibrium. Part II: Saturated air and further discussions

    NASA Astrophysics Data System (ADS)

    Björnbom, Pehr

    2016-03-01

    In the first part of this work equilibrium temperature profiles in fluid columns with ideal gas or ideal liquid were obtained by numerically minimizing the column energy at constant entropy, equivalent to maximizing column entropy at constant energy. A minimum in internal plus potential energy for an isothermal temperature profile was obtained in line with Gibbs' classical equilibrium criterion. However, a minimum in internal energy alone for adiabatic temperature profiles was also obtained. This led to a hypothesis that the adiabatic lapse rate corresponds to a restricted equilibrium state, a type of state in fact discussed already by Gibbs. In this paper similar numerical results for a fluid column with saturated air suggest that also the saturated adiabatic lapse rate corresponds to a restricted equilibrium state. The proposed hypothesis is further discussed and amended based on the previous and the present numerical results and a theoretical analysis based on Gibbs' equilibrium theory.

  13. The Conceptual Change Approach to Teaching Chemical Equilibrium

    ERIC Educational Resources Information Center

    Canpolat, Nurtac; Pinarbasi, Tacettin; Bayrakceken, Samih; Geban, Omer

    2006-01-01

    This study investigates the effect of a conceptual change approach over traditional instruction on students' understanding of chemical equilibrium concepts (e.g. dynamic nature of equilibrium, definition of equilibrium constant, heterogeneous equilibrium, qualitative interpreting of equilibrium constant, changing the reaction conditions). This…

  14. Cavity turnover and equilibrium cavity densities in a cottonwood bottomland

    USGS Publications Warehouse

    Sedgwick, James A.; Knopf, Fritz L.

    1992-01-01

    A fundamental factor regulating the numbers of secondary cavity nesting (SCN) birds is the number of extant cavities available for nesting. The number of available cavities may be thought of as being in an approximate equilibrium maintained by a very rough balance between recruitment and loss of cavities. Based on estimates of cavity recruitment and loss, we ascertained equilibrium cavity densities in a mature plains cottonwood (Populus sargentii) bottomland along the South Platte River in northeastern Colorado. Annual cavity recruitment, derived from density estimates of primary cavity nesting (PCN) birds and cavity excavation rates, was estimated to be 71-86 new cavities excavated/100 ha. Of 180 active cavities of 11 species of cavity-nesting birds found in 1985 and 1986, 83 were no longer usable by 1990, giving an average instantaneous rate of cavity loss of r = -0.230. From these values of cavity recruitment and cavity loss, equilibrium cavity density along the South Platte is 238-289 cavities/100 ha. This range of equilibrium cavity density is only slightly above the minimum of 205 cavities/100 ha required by SCN's and suggests that cavity availability may be limiting SCN densities along the South Platte River. We submit that snag management alone does not adequately address SCN habitat needs, and that cavity management, expressed in terms of cavity turnover and cavity densities, may be more useful.

  15. Parameter uncertainty in chemical equilibrium calculations using fuzzy set theory

    NASA Astrophysics Data System (ADS)

    Schulz, K.; Huwe, B.; Peiffer, S.

    1999-04-01

    A method based on fuzzy set theory is presented to incorporate imprecise thermodynamic parameters into chemical equilibrium calculations of aqueous systems. Imprecision may arise from uncertainties in experimental parameter determination as well as from inconsistency of available data in the literature. Fuzzy numbers with different shapes of membership functions are used to express imprecision in a non-probabilistic sense. A solution algorithm for a system of nonlinear algebraic equations calculating the chemical equilibrium composition is combined with level set operations to solve the fuzzy chemical equlibrium problem. The method results in multiple minimizing/maximizing procedures from which the membership functions of equilibrium species concentrations are determined. An application of the proposed method to an aqueous cadmium-sulfide system illustrates the acquisition of membership functions for the thermodynamic constants out of given information. Stochastic information on measurement data are appropriately transformed into fuzzy numbers to allow for the combined calculation of different kinds of uncertainty. The results of four calculation scenarios show their strong impact on the resulting membership functions of chemical equilibrium composition and are discussed in the context of data evaluation and decision making in geochemistry.

  16. An Elementary Discussion of Chemical Equilibrium.

    ERIC Educational Resources Information Center

    David, Carl W.

    1988-01-01

    This discussion uses a more difficult reaction as the prototype to derive the standard equation for chemical equilibrium. It can be used by students who can understand and use partial derivatives. (CW)

  17. Spreadsheet Templates for Chemical Equilibrium Calculations.

    ERIC Educational Resources Information Center

    Joshi, Bhairav D.

    1993-01-01

    Describes two general spreadsheet templates to carry out all types of one-equation chemical equilibrium calculations encountered by students in undergraduate chemistry courses. Algorithms, templates, macros, and representative examples are presented to illustrate the approach. (PR)

  18. Equilibrium Reconstruction on the Large Helical Device

    SciTech Connect

    Samuel A. Lazerson, D. Gates, D. Monticello, H. Neilson, N. Pomphrey, A. Reiman S. Sakakibara, and Y. Suzuki

    2012-07-27

    Equilibrium reconstruction is commonly applied to axisymmetric toroidal devices. Recent advances in computational power and equilibrium codes have allowed for reconstructions of three-dimensional fields in stellarators and heliotrons. We present the first reconstructions of finite beta discharges in the Large Helical Device (LHD). The plasma boundary and magnetic axis are constrained by the pressure profile from Thomson scattering. This results in a calculation of plasma beta without a-priori assumptions of the equipartition of energy between species. Saddle loop arrays place additional constraints on the equilibrium. These reconstruction utilize STELLOPT, which calls VMEC. The VMEC equilibrium code assumes good nested flux surfaces. Reconstructed magnetic fields are fed into the PIES code which relaxes this constraint allowing for the examination of the effect of islands and stochastic regions on the magnetic measurements.

  19. Points of Equilibrium in Electrostatic Fields.

    ERIC Educational Resources Information Center

    Rogers, Peter J.

    1979-01-01

    Discusses the electric field line pattern for four equal charges of the same sign placed at the corners of a square. The electric field intensity and the point of equilibrium are interpreted, taking into account three dimensions. (HM)

  20. IEHI: Ionization Equilibrium for Heavy Ions

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.

    2015-07-01

    IEHI, written in Fortran, outputs a simple "coronal" ionization equilibrium (i.e., collisional ionization and auto-ionization balanced by radiative and dielectronic recombination) for a plasma at a given electron temperature.

  1. Surface roughness effects on equilibrium temperature.

    NASA Technical Reports Server (NTRS)

    Houchens, A. F.; Hering, R. G.

    1972-01-01

    An analysis is presented for evaluation of equilibrium temperature distribution on radiatively adiabatic, adjoint planes which are uniformly irradiated by a collimated solar flux. The analysis employs a semigrey spectral model. Radiation properties for surface emitted radiation are obtained from the expressions of electromagnetic theory for smooth surfaces. Rough surface properties for solar radiation are given by the Beckmann bidirectional reflectance model. Numerical solutions to the governing equations yield equilibrium temperature distributions for a range of the influencing parameters. Surface roughness has little influence on equilibrium temperature for materials with high values for solar absorptance. However, for low or intermediate values of solar absorptance, roughness effects on the spatial distribution of reflected solar radiation can significantly alter equilibrium temperature particularly at surface elements where radiant interaction is small.

  2. Equilibrium fluctuation energy of gyrokinetic plasma

    SciTech Connect

    Krommes, J.A.; Lee, W.W.; Oberman, C.

    1985-11-01

    The thermal equilibrium electric field fluctuation energy of the gyrokinetic model of magnetized plasma is computed, and found to be smaller than the well-known result (k)/8..pi.. = 1/2T/(1 + (klambda/sub D/)/sup 2/) valid for arbitrarily magnetized plasmas. It is shown that, in a certain sense, the equilibrium electric field energy is minimum in the gyrokinetic regime. 13 refs., 2 figs.

  3. The Theory of Variances in Equilibrium Reconstruction

    SciTech Connect

    Zakharov, Leonid E.; Lewandowski, Jerome; Foley, Elizabeth L.; Levinton, Fred M.; Yuh, Howard Y.; Drozdov, Vladimir; McDonald, Darren

    2008-01-14

    The theory of variances of equilibrium reconstruction is presented. It complements existing practices with information regarding what kind of plasma profiles can be reconstructed, how accurately, and what remains beyond the abilities of diagnostic systems. The σ-curves, introduced by the present theory, give a quantitative assessment of quality of effectiveness of diagnostic systems in constraining equilibrium reconstructions. The theory also suggests a method for aligning the accuracy of measurements of different physical nature.

  4. Edge Equilibrium Code (EEC) For Tokamaks

    SciTech Connect

    Li, Xujling

    2014-02-24

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids

  5. Pre-equilibrium studies in monoisotopic praseodymium

    SciTech Connect

    Singh, B.P.; Mustafa, M.M.; Sankarcharyulu, M.G.V.

    1994-12-31

    Measurement and analysis of excitation functions in {alpha}-induced reactions has become an important tool for studying the pre-equilibrium (PE) phenomenon. As part of the programme of precise measurement and analysis of excitation functions in reactions for a large number of nuclei, the authors report the measurement of excitation functions for the reactions {sup 141}Pr({alpha},n){sup 144}Pm and {sup 141}Pr({alpha},2n){sup 143}Pm in the energy range from threshold to {approx}40 MeV. To the best of their knowledge, these excitation functions have been measured for the first time. Measurements have been performed using stacked foil activation technique. The irradiation has been carried out at the Variable Energy Cyclotron Centre (VECC), Calcutta, India using the {alpha}-beam of {approx} 40 MeV. The post irradiation analysis has been done using the HPGe detector coupled to the ORTEC`s PC based multichannel analyser. The analysis of the excitation functions has been carried out using the semi-classical computer codes ACT and ALICE-82. These codes use Hauser-Feshbach/ Welsskopf-Ewing formalism for compound nucleus calculations and exciton/hybrid model for simulating PE contributions. The quantum mechanical statistical multistep code EXIFON has also been used for the analysis of these excitation functions. The comparison of results with different codes will be presented.

  6. A theoretical analysis of vertical flow equilibrium

    SciTech Connect

    Yortsos, Y.C.

    1992-01-01

    The assumption of Vertical Flow Equilibrium (VFE) and of parallel flow conditions, in general, is often applied to the modeling of flow and displacement in natural porous media. However, the methodology for the development of the various models is rather intuitive, and no rigorous method is currently available. In this paper, we develop an asymptotic theory using as parameter the variable R{sub L} = (L/H){radical}(k{sub V})/(k{sub H}). It is rigorously shown that present models represent the leading order term of an asymptotic expansion with respect to 1/R{sub L}{sup 2}. Although this was numerically suspected, it is the first time that is is theoretically proved. Based on the general formulation, a series of models are subsequently obtained. In the absence of strong gravity effects, they generalize previous works by Zapata and Lake (1981), Yokoyama and Lake (1981) and Lake and Hirasaki (1981), on immiscible and miscible displacements. In the limit of gravity-segregated flow, we prove conditions for the fluids to be segregated and derive the Dupuit and Dietz (1953) approximations. Finally, we also discuss effects of capillarity and transverse dispersion.

  7. Equilibrium reconstruction in the START tokamak

    NASA Astrophysics Data System (ADS)

    Appel, L. C.; Bevir, M. K.; Walsh, M. J.

    2001-02-01

    The computation of magnetic equilibria in the START spherical tokamak is more difficult than those in more conventional large aspect ratio tokamaks. This difficulty arises partly as a result of the use of induction compression to generate high current plasma, as this precludes the positioning of magnetic diagnostics close to the outboard side of the plasma. In addition, the effect of a conducting wall with a high, but finite, conductivity must be included. A method is presented for obtaining plasma equilibrium reconstructions based on the EFIT code. New constraints are used to relate isoflux surface locations deduced from radial profile measurements of electron temperature. A model of flux diffusion through the vessel wall is developed. It is shown that neglecting flux diffusion in the vessel wall can lead to a significant underestimate in the calculation of the plasma βt. Using a relatively sparse set of magnetic signals, βt can be obtained to within a fractional error of +/-10%. Using constraints to relate isoflux surface locations, the principle involved in determining the internal q profile is demonstrated.

  8. Knowledge Management through the Equilibrium Pattern Model for Learning

    NASA Astrophysics Data System (ADS)

    Sarirete, Akila; Noble, Elizabeth; Chikh, Azeddine

    Contemporary students are characterized by having very applied learning styles and methods of acquiring knowledge. This behavior is consistent with the constructivist models where students are co-partners in the learning process. In the present work the authors developed a new model of learning based on the constructivist theory coupled with the cognitive development theory of Piaget. The model considers the level of learning based on several stages and the move from one stage to another requires learners' challenge. At each time a new concept is introduced creates a disequilibrium that needs to be worked out to return back to its equilibrium stage. This process of "disequilibrium/equilibrium" has been analyzed and validated using a course in computer networking as part of Cisco Networking Academy Program at Effat College, a women college in Saudi Arabia. The model provides a theoretical foundation for teaching especially in a complex knowledge domain such as engineering and can be used in a knowledge economy.

  9. Complementary relations in non-equilibrium stochastic processes

    NASA Astrophysics Data System (ADS)

    Kim, Eun-jin; Nicholson, S. B.

    2015-08-01

    We present novel complementary relations in non-equilibrium stochastic processes. Specifically, by utilising path integral formulation, we derive statistical measures (entropy, information, and work) and investigate their dependence on variables (x, v), reference frames, and time. In particular, we show that the equilibrium state maximises the simultaneous information quantified by the product of the Fisher information based on x and v while minimising the simultaneous disorder/uncertainty quantified by the sum of the entropy based on x and v as well as by the product of the variances of the PDFs of x and v. We also elucidate the difference between Eulerian and Lagrangian entropy. Our theory naturally leads to Hamilton-Jacobi relation for forced-dissipative systems.

  10. CET89 - CHEMICAL EQUILIBRIUM WITH TRANSPORT PROPERTIES, 1989

    NASA Technical Reports Server (NTRS)

    Mcbride, B.

    1994-01-01

    Scientists and engineers need chemical equilibrium composition data to calculate the theoretical thermodynamic properties of a chemical system. This information is essential in the design and analysis of equipment such as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical processing equipment. The substantial amount of numerical computation required to obtain equilibrium compositions and transport properties for complex chemical systems led scientists at NASA's Lewis Research Center to develop CET89, a program designed to calculate the thermodynamic and transport properties of these systems. CET89 is a general program which will calculate chemical equilibrium compositions and mixture properties for any chemical system with available thermodynamic data. Generally, mixtures may include condensed and gaseous products. CET89 performs the following operations: it 1) obtains chemical equilibrium compositions for assigned thermodynamic states, 2) calculates dilute-gas transport properties of complex chemical mixtures, 3) obtains Chapman-Jouguet detonation properties for gaseous species, 4) calculates incident and reflected shock properties in terms of assigned velocities, and 5) calculates theoretical rocket performance for both equilibrium and frozen compositions during expansion. The rocket performance function allows the option of assuming either a finite area or an infinite area combustor. CET89 accommodates problems involving up to 24 reactants, 20 elements, and 600 products (400 of which may be condensed). The program includes a library of thermodynamic and transport properties in the form of least squares coefficients for possible reaction products. It includes thermodynamic data for over 1300 gaseous and condensed species and transport data for 151 gases. The subroutines UTHERM and UTRAN convert thermodynamic and transport data to unformatted form for faster processing. The program conforms to the FORTRAN 77 standard, except for

  11. Phenomenon of life: between equilibrium and non-linearity.

    PubMed

    Galimov, E M

    2004-12-01

    A model of ordering applicable to biological evolution is presented. It is shown that a steady state (more precisely approaching to a steady state) system of irreversible processes, under conditions of disproportionation of entropy, produces a lower-entropy product, that is, ordering. The ordering is defined as restricting of degrees of freedom: freedom of motion, interactions etc. The model differs from previous ones in that it relates the ordering to processes running not far from equilibrium, described in the linear field of non-equilibrium thermodynamics. It is shown that a system, which includes adenosine triphosphate (ATP) to adenosine diphosphate (ADP) conversion meets the demands of the physical model: it provides energy maintaining steady state conditions, and hydrolysis of ATP proceeding with consumption of water can be tightly conjugated with the most important reactions of synthesis of organic polymers (peptides, nucleotide chains etc.), which proceed with release of water. For these and other reasons ATP seems to be a key molecule of prebiotic evolution. It is argued that the elementary chemical reaction proceeding under control of an enzyme is not necessarily far from equilibrium. The experimental evidence supporting this idea, is presented. It is based on isotope data. Carbon isotope distribution in biochemical systems reveals regularity, which is inherent to steady state systems of chemical reactions, proceeding not far from equilibrium. In living organisms this feature appears at the statistical level, as many completely irreversible and non-linear processes occur in organisms. However not-far-from-equilibrium reactions are inherent to biochemical systems as a matter of principle. They are reconcilable with biochemical behavior. Extant organisms are highly evolved entities which, however, show in their basis the same features, as the simplest chemical systems must have had been involved in the origin of life. Some consequences following from the

  12. Application of equilibrium analysis to a Fischer-Tropsch product

    SciTech Connect

    Norval, G.W. ); Phillips, M.J. )

    1990-11-01

    In the Fischer-Tropsch (FT) process, synthesis gas is converted, inter alia, to aliphatic hydrocarbons, consisting predominantly of n-alkanes and n-alkenes, over iron- or cobalt-based catalysts. The product composition follows an Anderson-Schults-Flory (ASF) distribution. In this paper, the authors demonstrate that the ASF distribution (Eq. (1)) can be derived from an equilibrium basis, and the consequences arising therefrom are discussed.

  13. BOOK REVIEW: Relativistic Figures of Equilibrium

    NASA Astrophysics Data System (ADS)

    Mars, M.

    2009-08-01

    Compact fluid bodies in equilibrium under its own gravitational field are abundant in the Universe and a proper treatment of them can only be carried out using the full theory of General Relativity. The problem is of enormous complexity as it involves two very different regimes, namely the interior and the exterior of the fluid, coupled through the surface of the body. This problem is very challenging both from a purely theoretical point of view, as well as regarding the obtaining of realistic models and the description of their physical properties. It is therefore an excellent piece of news that the book 'Relativistic Figures of Equilibrium' by R Meinel, M Ansorg, A Kleinwächter, G Neugebauer and D Petroff has been recently published. This book approaches the topic in depth and its contents will be of interest to a wide range of scientists working on gravitation, including theoreticians in general relativity, mathematical physicists, astrophysicists and numerical relativists. This is an advanced book that intends to present some of the present-day results on this topic. The most basic results are presented rather succinctly, and without going into the details, of their derivations. Although primarily not intended to serve as a textbook, the presentation is nevertheless self-contained and can therefore be of interest both for experts on the field as well as for anybody wishing to learn more about rotating self-gravitating compact bodies in equilibrium. It should be remarked, however, that this book makes a rather strong selection of topics and concentrates fundamentally on presenting the main results obtained by the authors during their research in this field. The book starts with a chapter where the fundamental aspects of rotating fluids in equilibrium, including its thermodynamic properties, are summarized. Of particular interest are the so-called mass-shedding limit, which is the limit where the body is rotating so fast that it is on the verge of starting

  14. Classifying magnetic and superfluid equilibrium states in magnets with the spin s = 1

    NASA Astrophysics Data System (ADS)

    Kovalevskii, M. Yu.

    2016-03-01

    Based on the method of quasiaverages, we classify magnetic and superfluid equilibrium states in magnets with the spin s = 1. Under certain simplifications, assumptions about the residual symmetry of degenerate states and the transformation properties of order parameter operators under transformations generated by additive integrals of motions lead to linear algebraic equations for a classification of the equilibrium means of the order parameters. We consider different cases of the magnetic SO(3) or SU(3) symmetry breaking and obtain solutions for the vector and tensor order parameters for particular forms of the parameters of the residual symmetry generators. We study the equilibriums of magnets with simultaneously broken phase and magnetic symmetries. We find solutions of the classification equations for superfluid equilibrium states and establish relations between the parameters of the residual symmetry generator that allow the thermodynamic coexistence of nonzero equilibrium means of the order parameters.

  15. Near-equilibrium dumb-bell-shaped figures for cohesionless small bodies

    NASA Astrophysics Data System (ADS)

    Descamps, Pascal

    2016-02-01

    In a previous paper (Descamps, P. [2015]. Icarus 245, 64-79), we developed a specific method aimed to retrieve the main physical characteristics (shape, density, surface scattering properties) of highly elongated bodies from their rotational lightcurves through the use of dumb-bell-shaped equilibrium figures. The present work is a test of this method. For that purpose we introduce near-equilibrium dumb-bell-shaped figures which are base dumb-bell equilibrium shapes modulated by lognormal statistics. Such synthetic irregular models are used to generate lightcurves from which our method is successfully applied. Shape statistical parameters of such near-equilibrium dumb-bell-shaped objects are in good agreement with those calculated for example for the Asteroid (216) Kleopatra from its dog-bone radar model. It may suggest that such bilobed and elongated asteroids can be approached by equilibrium figures perturbed be the interplay with a substantial internal friction modeled by a Gaussian random sphere.

  16. Numerical study of ion orbits in EAST plasmas with a current-reversal equilibrium configuration

    NASA Astrophysics Data System (ADS)

    Zhong, Yi-jun; Gong, Xue-yu; Hu, Ye-ming; Li, Xin-xia

    2015-06-01

    By solving the Grad-Shafranov equation in the cylindrical coordinate system, we numerically obtain the tokamak plasma equilibrium configurations of the conventional mode and the high-to-lowfield-side current-reversal equilibrium mode (HL-CREC) by using the discharge parameters for the Experimental Advanced Superconductor Tokamak (EAST). By coupling with the particle's motion equation, we obtain the orbits of trapped particles and passing particles under both equilibrium configurations. We find that the orbit of the passing particle in the HL-CREC is wholly confined on the low-field side and that the half width of the banana orbit of trapped particles increases greatly compared with those in the conventional equilibrium configuration. In addition, the ion loss is studied based on the Monte Carlo method. The results show that for ions near the plasma edge, a much high ion loss rate can be obtained in HL-CREC than that in the conventional equilibrium configuration.

  17. Solution Structures of Hauser Base (i)Pr2NMgCl and Turbo-Hauser Base (i)Pr2NMgCl·LiCl in THF and the Influence of LiCl on the Schlenk-Equilibrium.

    PubMed

    Neufeld, Roman; Teuteberg, Thorsten L; Herbst-Irmer, Regine; Mata, Ricardo A; Stalke, Dietmar

    2016-04-13

    Grignard reagents that are at the simplest level described as "RMgX" (where R is an organic substituent and X a halide) are one of the most widely utilized classes of synthetic reagents. Lately, especially Grignard reagents with amido ligands of the type R1R2NMgX, so-called Hauser bases, and their Turbo analogue R1R2NMgX·LiCl play an outranging role in modern synthetic chemistry. However, because of their complex solution behavior, where Schlenk-type equilibria are involved, very little is known about their structure in solution. Especially the impact of LiCl on the Schlenk-equilibrium was still obscured by complexity and limited analytical access. Herein, we present unprecedented insights into the solution structure of the Hauser base (i)Pr2NMgCl 1 and the Turbo-Hauser base (i)Pr2NMgCl·LiCl 2 at various temperatures in THF-d8 solution by employing a newly elaborated diffusion ordered spectroscopy (DOSY) NMR method hand-in-hand with theoretical calculations. PMID:27011251

  18. Punctuated equilibrium in software evolution.

    PubMed

    Gorshenev, A A; Pis'mak, Yu M

    2004-12-01

    An approach based on the paradigm of self-organized criticality is proposed for experimental investigation and theoretical modeling of software evolution. The dynamics of modifications is studied for three free, open source programs MOZILLA, FREE-BSD, and EMACS using the data from version control systems. Scaling laws typical for self-organized criticality found. A model of software evolution presenting the natural selection principle is proposed. Results of numerical and analytical investigation of the model are presented. They are in good agreement with data collected for real-world software. PMID:15697556

  19. Equilibrium and non-equilibrium emission of complex fragments

    SciTech Connect

    Bowman, D.R.

    1989-08-01

    Complex fragment emission (Z{gt}2) has been studied in the reactions of 50, 80, and 100 MeV/u {sup 139}La + {sup 12}C, and 80 MeV/u {sup 139}La + {sup 27}Al, {sup nat}Cu, and {sup 197}Au. Charge, angle, and energy distributions were measured inclusively and in coincidence with other complex fragments, and were used to extract the source rapidities, velocity distributions, and cross sections. The experimental emission velocity distributions, charge loss distributions, and cross sections have been compared with calculations based on statistical compound nucleus decay. The binary signature of the coincidence events and the sharpness of the velocity distributions illustrate the primarily 2-body nature of the {sup 139}La + {sup 12}C reaction mechanism between 50 and 100 MeV/u. The emission velocities, angular distributions, and absolute cross sections of fragments of 20{le}Z{le}35 at 50 MeV/u, 19{le}Z{le}28 at 80 MeV/u, and 17{le}Z{le}21 at 100 MeV/u indicate that these fragments arise solely from the binary decay of compound nuclei formed in incomplete fusion reactions in which the {sup 139}La projectile picks up about one-half of the {sup 12}C target. In the 80 MeV/u {sup 139}La + {sup 27}Al, {sup nat}Cu, and {sup 197}Au reactions, the disappearance of the binary signature in the total charge and velocity distributions suggests and increase in the complex fragment and light charged particle multiplicity with increasing target mass. As in the 80 and 100 MeV/u {sup 139}La + {sup 12}C reactions, the lighter complex fragments exhibit anisotropic angular distributions and cross sections that are too large to be explained exclusively by statistical emission. 143 refs., 67 figs.

  20. Non-Equilibrium Transitions of Heliospheric plasma

    NASA Astrophysics Data System (ADS)

    Livadiotis, G.; McComas, D. J.

    2011-12-01

    Recent advances in Space Physics theory have established the connection between non-extensive Statistical Mechanics and space plasmas by providing a theoretical basis for the empirically derived kappa distributions commonly used to describe the phase space distribution functions of these systems [1]. The non-equilibrium temperature and the kappa index that govern these distributions are the two independent controlling parameters of non-equilibrium systems [1-3]. The significance of the kappa index is primarily given by its role in identifying the non-equilibrium stationary states, and measuring their "thermodynamic distance" from thermal equilibrium [4], while its physical meaning is connected to the correlation between the system's particles [5]. For example, analysis of the IBEX high Energetic Neutral Atom spectra [6] showed that the vast majority of measured kappa indices are between ~1.5 and ~2.5, consistent with the far-equilibrium "cavity" of minimum entropy discovered by Livadiotis & McComas [2]. Spontaneous procedures that can increase the entropy, move the system gradually toward equilibrium, that is the state with the maximum (infinite) kappa index. Other external factors that may decrease the entropy, move the system back to states further from equilibrium where the kappa indices are smaller. Newly formed pick-up ions can play this critical role in the solar wind and other space plasmas. We have analytically shown that their highly ordered motion can reduce the average entropy in the plasma beyond the termination shock, inside the inner heliosheath [7]. Non-equilibrium transitions have a key role in understanding the governing thermodynamical processes of space plasmas. References 1. Livadiotis, G., & McComas, D. J. 2009, JGR, 114, 11105. 2. Livadiotis, G., & McComas, D. J. 2010a, ApJ, 714, 971. 3. Livadiotis, G., & McComas, D. J. 2010c, in AIP Conf. Proc. 9, Pickup Ions Throughout the Heliosphere and Beyond, ed. J. LeRoux, V. Florinski, G. P. Zank, & A

  1. A Computationally Efficient Multicomponent Equilibrium Solver for Aerosols (MESA)

    SciTech Connect

    Zaveri, Rahul A.; Easter, Richard C.; Peters, Len K.

    2005-12-23

    This paper describes the development and application of a new multicomponent equilibrium solver for aerosol-phase (MESA) to predict the complex solid-liquid partitioning in atmospheric particles containing H+, NH4+, Na+, Ca2+, SO4=, HSO4-, NO3-, and Cl- ions. The algorithm of MESA involves integrating the set of ordinary differential equations describing the transient precipitation and dissolution reactions for each salt until the system satisfies the equilibrium or mass convergence criteria. Arbitrary values are chosen for the dissolution and precipitation rate constants such that their ratio is equal to the equilibrium constant. Numerically, this approach is equivalent to iterating all the equilibrium reactions simultaneously with a single iteration loop. Because CaSO4 is sparingly soluble, it is assumed to exist as a solid over the entire RH range to simplify the algorithm for calcium containing particles. Temperature-dependent mutual deliquescence relative humidity polynomials (valid from 240 to 310 K) for all the possible salt mixtures were constructed using the comprehensive Pitzer-Simonson-Clegg (PSC) activity coefficient model at 298.15 K and temperature-dependent equilibrium constants in MESA. Performance of MESA is evaluated for 16 representative mixed-electrolyte systems commonly found in tropospheric aerosols using PSC and two other multicomponent activity coefficient methods – Multicomponent Taylor Expansion Method (MTEM) of Zaveri et al. [2004], and the widely-used Kusik and Meissner method (KM), and the results are compared against the predictions of the Web-based AIM Model III or available experimental data. Excellent agreement was found between AIM, MESA-PSC, and MESA-MTEM predictions of the multistage deliquescence growth as a function of RH. On the other hand, MESA-KM displayed up to 20% deviations in the mass growth factors for common salt mixtures in the sulfate-poor cases while significant discrepancies were found in the predicted multistage

  2. Planetary cratering 2: Studies of saturation equilibrium

    NASA Astrophysics Data System (ADS)

    Hartmann, William K.; Gaskell, Robert W.

    1997-01-01

    A realistic computer model has been developed to display images of imaginary cratered surfaces, taking into account empirically measured input size distributions of primary and secondary craters, ejecta blanket morphology including feathering with distance, obliteration due to ejecta from outside the imaged area, lighting effects, etc. The model allows us to track surface evolution of morphology as new craters are added. Using the model as well as lunar photos, we have studied the approach to saturation equilibrium (defined as a condition when no further proportionate increase in crater density occurs as input cratering increases). We find that an identifiable saturation equilibrium occurs close to a level previously identified for this state (Hartmann 1984), typically fluctuating around a crater density from about 0.4 to 2 times that level. This result is fairly robust vis-a-vis the range of model parameters we have chosen. Flooding, basin ejecta blankets, and other obliterative effects can introduce structure and oscillations within this range, even after saturation equilibrium is achieved. These findings may constrain or revise certain earlier interpretations of satellite and planet surface evolution and impactor populations which were predicated on the assumed absence of saturation equilibrium. In our fourth experimental run, we found that suppression of "sandblasting" by sub-resolution impacts allows the smallest secondaries to rise above the saturation equilibrium line, a result that might be relevant to a similar situation on Gaspra and perhaps some other asteroids.

  3. IONIZATION EQUILIBRIUM TIMESCALES IN COLLISIONAL PLASMAS

    SciTech Connect

    Smith, Randall K.; Hughes, John P. E-mail: jph@physics.rutgers.ed

    2010-07-20

    Astrophysical shocks or bursts from a photoionizing source can disturb the typical collisional plasma found in galactic interstellar media or the intergalactic medium. The spectrum emitted by this plasma contains diagnostics that have been used to determine the time since the disturbing event, although this determination becomes uncertain as the elements in the plasma return to ionization equilibrium. A general solution for the equilibrium timescale for each element arises from the elegant eigenvector method of solution to the problem of a non-equilibrium plasma described by Masai and Hughes and Helfand. In general, the ionization evolution of an element Z in a constant electron temperature plasma is given by a coupled set of Z + 1 first-order differential equations. However, they can be recast as Z uncoupled first-order differential equations using an eigenvector basis for the system. The solution is then Z separate exponential functions, with the time constants given by the eigenvalues of the rate matrix. The smallest of these eigenvalues gives the scale of the slowest return to equilibrium independent of the initial conditions, while conversely the largest eigenvalue is the scale of the fastest change in the ion population. These results hold for an ionizing plasma, a recombining plasma, or even a plasma with random initial conditions, and will allow users of these diagnostics to determine directly if their best-fit result significantly limits the timescale since a disturbance or is so close to equilibrium as to include an arbitrarily long time.

  4. Torque equilibrium attitude control for Skylab reentry

    NASA Technical Reports Server (NTRS)

    Glaese, J. R.; Kennel, H. F.

    1980-01-01

    The method of torque equilibrium attitude control used to control the reentry of Skylab to an altitude below 150 km without the use of thruster fuel once the attitude was established is discussed. The Skylab attitude and pointing control system, which included rate gyros, sun sensors, star tracker, the Apollo telescope mount digital computer, control moment gyros and cold-gas attitude thrusters, is presented. The 12 torque equilibrium attitudes found at which aerodynamic, gravity gradient and gyroscopic torques would balance are indicated, and the three of those at which the solar power supply would be adequate for attitude control are illustrated. The equilibrium seeking method employed is then examined, and the operation and performance of the torque equilibrium attitude control system during the three weeks prior to Skylab reentry are discussed. It is concluded that the torque equilibrium attitude control method developed for Skylab was successful in performing its assigned mission, and will be valuable for the design of future, low-altitude spacecraft or tethered vehicles.

  5. The thermal vacuum for non-equilibrium steady state

    NASA Astrophysics Data System (ADS)

    Imai, Ryosuke; Kuwahara, Yukiro; Nakamura, Yusuke; Yamanaka, Yoshiya

    Our purpose is to construct a theoretical description of non-equilibrium steady state (NESS), employing thermo field dynamics (TFD). TFD is the operator-based formalism of thermal quautum field theory, where every degree of freedom is doubled and thermal averages are given by expectation values of the thermal vacuum. To specify the thermal vacuum for NESS is a non-trivial issue, and we attempt it on the analogy between the superoperator formalism and TFD. Using the thermal vacuum thus obtained, we analyze the NESS which is realized in the two-reservoir model. It will be shown that the NESS vacuum of the model coincides with the fixed point solutions of the quantum transport equation derived by the self-consistent renormalization of the self-energy in non-equilibrium TFD.

  6. Direct Phase Equilibrium Simulations of NIPAM Oligomers in Water.

    PubMed

    Boţan, Vitalie; Ustach, Vincent; Faller, Roland; Leonhard, Kai

    2016-04-01

    NIPAM (N-isopropylacrylamide)-based polymers in water show many interesting properties in experiments, including a lower critical solution temperature (LCST) at 305 K and a conformational transition of single chains at the same temperature. The results of many simulation studies suggest that standard force fields are able to describe the conformational transition and the phase equilibrium well. We show by performing long molecular dynamics simulations of the direct liquid-liquid phase equilibrium of NIPAM trimers in water that there is no LCST in the expected temperature range for any of the force fields under study. The results show further that the relaxation times of single-chain simulations are considerably longer than anticipated. Conformational transitions of single polymers can therefore not necessarily be used as surrogates for a real phase transition. PMID:26991504

  7. Punctuated equilibrium and power law in economic dynamics

    NASA Astrophysics Data System (ADS)

    Gupta, Abhijit Kar

    2012-02-01

    This work is primarily based on a recently proposed toy model by Thurner et al. (2010) [3] on Schumpeterian economic dynamics (inspired by the idea of economist Joseph Schumpeter [9]). Interestingly, punctuated equilibrium has been shown to emerge from the dynamics. The punctuated equilibrium and Power law are known to be associated with similar kinds of biologically relevant evolutionary models proposed in the past. The occurrence of the Power law is a signature of Self-Organised Criticality (SOC). In our view, power laws can be obtained by controlling the dynamics through incorporating the idea of feedback into the algorithm in some way. The so-called 'feedback' was achieved by introducing the idea of fitness and selection processes in the biological evolutionary models. Therefore, we examine the possible emergence of a power law by invoking the concepts of 'fitness' and 'selection' in the present model of economic evolution.

  8. Non-equilibrium Flows of Reacting Air Components in Nozzles

    NASA Astrophysics Data System (ADS)

    Bazilevich, S. S.; Sinitsyn, K. A.; Nagnibeda, E. A.

    2008-12-01

    The paper presents the results of the investigation of non-equilibrium flows of reacting air mixtures in nozzles. State-to-state approach based on the solution of the equations for vibrational level populations of molecules and atomic concentrations coupled to the gas dynamics equations is used. For the 5-component air mixture (N2, O2, NO, N, O) non-equilibrium distributions and gasdynamical parameters are calculated for different conditions in a nozzle throat. The influence of various kinetic processes on distributions and gas dynamics parameters is studied. The paper presents the comparison of the results with ones obtained for binary mixtures of molecules and atoms and various models of elementary processes.

  9. Radiative-convective equilibrium models of Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Appleby, J. F.; Hogan, J. S.

    1984-09-01

    Radiative-convective equilibrium models for Jupiter and Saturn have been produced in a study concentrating on the stratospheric energy balance and the possible role of aerosol heating. These models are compared directly with the thermal structure profiles obtained from Voyager radio occultation measurements. The method is based on a straightforward flux divergence formulation derived from earlier work. The balance between absorbed and emitted energies is computed iteratively at each level in the atmosphere, assuming local thermodynamic equilibrium and employing a standard treatment of opacities. Results for Jupiter indicate that a dust-free model furnishes a good mean thermal profile for the stratosphere when compared with the Voyager 1 radio occultation measurements. Observations of the equatorial region exhibit periodic vertical structure. The Saturn models are relatively simple and in good agreement with the Voyager 2 radio occultation temperature profiles at all levels. Aerosol heating played a minor role in Saturn's midlatitude stratospheric energy balance at the time of the Voyager 2 encounter.

  10. Novel liquid equilibrium valving on centrifugal microfluidic CD platform.

    PubMed

    Al-Faqheri, Wisam; Ibrahim, Fatimah; Thio, Tzer Hwai Gilbert; Arof, Hamzah; Madou, Marc

    2013-01-01

    One of the main challenges faced by researchers in the field of microfluidic compact disc (CD) platforms is the control of liquid movement and sequencing during spinning. This paper presents a novel microfluidic valve based on the principle of liquid equilibrium on a rotating CD. The proposed liquid equilibrium valve operates by balancing the pressure produced by the liquids in a source and a venting chamber during spinning. The valve does not require external forces or triggers, and is able to regulate burst frequencies with high accuracy. In this work, we demonstrate that the burst frequency can be significantly raised by making just a small adjustment of the liquid height in the vent chamber. Finally, the proposed valve ng method can be used separately or combined with other valving methods in advance microfluidic processes. PMID:24110984

  11. Magnetospheric equilibrium configurations and slow adiabatic convection

    NASA Technical Reports Server (NTRS)

    Voigt, Gerd-Hannes

    1986-01-01

    This review paper demonstrates how the magnetohydrostatic equilibrium (MHE) theory can be used to describe the large-scale magnetic field configuration of the magnetosphere and its time evolution under the influence of magnetospheric convection. The equilibrium problem is reviewed, and levels of B-field modelling are examined for vacuum models, quasi-static equilibrium models, and MHD models. Results from two-dimensional MHE theory as they apply to the Grad-Shafranov equation, linear equilibria, the asymptotic theory, magnetospheric convection and the substorm mechanism, and plasma anisotropies are addressed. Results from three-dimensional MHE theory are considered as they apply to an intermediate analytical magnetospheric model, magnetotail configurations, and magnetopause boundary conditions and the influence of the IMF.

  12. Equilibrium versus disequilibrium of barchan dunes

    NASA Astrophysics Data System (ADS)

    El belrhiti, Hicham; Douady, Stéphane

    2011-02-01

    Barchans are crescentic dunes which occur in mainly mono-directional winds. Shape, aspect ratios and velocities of these dunes have been studied as if they were in equilibrium. However, following a study of the shape and migration of 11 barchans of different sizes for 18 months in the field on Moroccan Atlantic Sahara, we show that they only appear to be in a stationary state if studied over a long timeframe (at the scale of the year or several years), but are never in equilibrium at the scale of weeks or months. Rather, they are always 'trying' to reach a possible equilibrium state but never have enough time to accomplish this. This may be the main reason for the large variation observed in previous measurements, and justifies some caution in what can be deduced from them.

  13. Non-equilibrium quantum heat machines

    NASA Astrophysics Data System (ADS)

    Alicki, Robert; Gelbwaser-Klimovsky, David

    2015-11-01

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.

  14. MCNP modelling of the PBMR equilibrium core

    SciTech Connect

    Albornoz, F.; Korochinsky, S.

    2006-07-01

    A complete MCNP model of the PBMR equilibrium core is presented, which accounts for the same fuel regions defined in the PBMR core management code, as well as for complete fuel and reflector temperature distributions. This comprehensive 3D model is the means to calculate and characterize the neutron and photon boundary sources of the equilibrium core, and is also used to support some specific core neutronic studies needing detailed geometry modelling. Due to the geometrical modelling approach followed, an unrealistic partial cutting of fuel kernels and pebbles is introduced in the model. The variations introduced by this partial cutting both on the packing fraction and on the uranium load of the modelled core and its corresponding effect on core reactivity and flux levels, have been investigated and quantified. A complete set of high-temperature cross-section data was applied to the calculation of the PBMR equilibrium core, and its effect on the calculated core reactivity is also reported. (authors)

  15. Extragradient methods for searching for equilibrium points in the parametric problem of equilibrium programming

    NASA Astrophysics Data System (ADS)

    Artem'eva, L. A.

    2014-12-01

    The parametric problem of equilibrium programming is examined. The mathematical programming problem, the search for a saddle-point, the multicriteria search for a Pareto point, etc. are particular cases of this parametric problem. The primal and dual variants of the extragradient method are proposed as a tool for searching for equilibrium points. The convergence of both variants is analyzed.

  16. Equilibrium and kinetic selectivity profiling on the human adenosine receptors.

    PubMed

    Guo, Dong; Dijksteel, Gabrielle S; van Duijl, Tirsa; Heezen, Maxime; Heitman, Laura H; IJzerman, Adriaan P

    2016-04-01

    Classical evaluation of target selectivity is usually undertaken by measuring the binding affinity of lead compounds against a number of potential targets under equilibrium conditions, without considering the kinetics of the ligand-receptor interaction. In the present study we propose a combined strategy including both equilibrium- and kinetics-based selectivity profiling. The adenosine receptor (AR) was chosen as a prototypical drug target. Six in-house AR antagonists were evaluated in a radioligand displacement assay for their affinity and in a competition association assay for their binding kinetics on three AR subtypes. One of the compounds with a promising kinetic selectivity profile was also examined in a [(35)S]-GTPγS binding assay for functional activity. We found that XAC and LUF5964 were kinetically more selective for the A1R and A3R, respectively, although they are non-selective in terms of their affinity. In comparison, LUF5967 displayed a strong equilibrium-based selectivity for the A1R over the A2AR, yet its kinetic selectivity thereon was less pronounced. In a GTPγS assay, LUF5964 exhibited insurmountable antagonism on the A3R while having a surmountable effect on the A1R, consistent with its kinetic selectivity profile. This study provides evidence that equilibrium and kinetic selectivity profiling can both be important in the early phases of the drug discovery process. Our proposed combinational strategy could be considered for future medicinal chemistry efforts and aid the design and discovery of different or even better leads for clinical applications. PMID:26930564

  17. Putting A Human Face on Equilibrium

    NASA Astrophysics Data System (ADS)

    Glickstein, Neil

    2005-03-01

    A short biography of chemist Fritz Haber is used to personalize the abstract concepts of equilibrium chemistry for high school students in an introductory course. In addition to giving the Haber Bosch process an historic, an economic, and a scientific background the reading and subsequent discussion allows students for whom the human perspective is of paramount importance a chance to investigate the irony of balance or equilibrium in Haber's life story. Since the inclusion of the Haber biography, performance in the laboratory and on examinations for those students who are usually only partially engaged has dramatically improved.

  18. Isodynamic axisymmetric equilibrium near the magnetic axis

    SciTech Connect

    Arsenin, V. V.

    2013-08-15

    Plasma equilibrium near the magnetic axis of an axisymmetric toroidal magnetic confinement system is described in orthogonal flux coordinates. For the case of a constant current density in the vicinity of the axis and magnetic surfaces with nearly circular cross sections, expressions for the poloidal and toroidal magnetic field components are obtained in these coordinates by using expansion in the reciprocal of the aspect ratio. These expressions allow one to easily derive relationships between quantities in an isodynamic equilibrium, in which the absolute value of the magnetic field is constant along the magnetic surface (Palumbo’s configuration)

  19. Equilibrium stellar systems with genetic algorithms

    NASA Astrophysics Data System (ADS)

    Gularte, E.; Carpintero, D. D.

    In 1979, M Schwarzschild showed that it is possible to build an equilibrium triaxial stellar system. However, the linear programmation used to that goal was not able to determine the uniqueness of the solution, nor even if that solution was the optimum one. Genetic algorithms are ideal tools to find a solution to this problem. In this work, we use a genetic algorithm to reproduce an equilibrium spherical stellar system from a suitable set of predefined orbits, obtaining the best solution attainable with the provided set. FULL TEXT IN SPANISH

  20. Algorithm For Hypersonic Flow In Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1989-01-01

    Implicit, finite-difference, shock-capturing algorithm calculates inviscid, hypersonic flows in chemical equilibrium. Implicit formulation chosen because overcomes limitation on mathematical stability encountered in explicit formulations. For dynamical portion of problem, Euler equations written in conservation-law form in Cartesian coordinate system for two-dimensional or axisymmetric flow. For chemical portion of problem, equilibrium state of gas at each point in computational grid determined by minimizing local Gibbs free energy, subject to local conservation of molecules, atoms, ions, and total enthalpy. Major advantage: resulting algorithm naturally stable and captures strong shocks without help of artificial-dissipation terms to damp out spurious numerical oscillations.

  1. Computing Properties Of Chemical Mixtures At Equilibrium

    NASA Technical Reports Server (NTRS)

    Mcbride, B. J.; Gordon, S.

    1995-01-01

    Scientists and engineers need data on chemical equilibrium compositions to calculate theoretical thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93 is general program that calculates chemical equilibrium compositions and properties of mixtures for any chemical system for which thermodynamic data are available. Includes thermodynamic data for more than 1,300 gaseous and condensed species and thermal-transport data for 151 gases. Written in FORTRAN 77.

  2. Far-from-equilibrium kinetic processes

    NASA Astrophysics Data System (ADS)

    Rubí, J. Miguel; Pérez-Madrid, Agustin

    2015-12-01

    We analyze the kinetics of activated processes that take place under far-from-equilibrium conditions, when the system is subjected to external driving forces or gradients or at high values of affinities. We use mesoscopic non-equilibrium thermodynamics to show that when a force is applied, the reaction rate depends on the force. In the case of a chemical reaction at high affinity values, the reaction rate is no longer constant but depends on affinity, which implies that the law of mass action is no longer valid. This result is in good agreement with the kinetic theory of reacting gases, which uses a Chapman-Enskog expansion of the probability distribution.

  3. Dynamically defined measures and equilibrium states

    NASA Astrophysics Data System (ADS)

    Werner, Ivan

    2011-12-01

    A technique of dynamically defined measures is developed and its relation to the theory of equilibrium states is shown. The technique uses Carathéodory's method and the outer measure introduced in a previous work by I. Werner [Math. Proc. Camb. Phil. Soc. 140(2), 333-347 (2006), 10.1017/S0305004105009072]. As an application, equilibrium states for contractive Markov systems [I. Werner, J. London Math. Soc. 71(1), 236-258 (2005), 10.1112/S0024610704006088] are obtained.

  4. Isodynamic axisymmetric equilibrium near the magnetic axis

    NASA Astrophysics Data System (ADS)

    Arsenin, V. V.

    2013-08-01

    Plasma equilibrium near the magnetic axis of an axisymmetric toroidal magnetic confinement system is described in orthogonal flux coordinates. For the case of a constant current density in the vicinity of the axis and magnetic surfaces with nearly circular cross sections, expressions for the poloidal and toroidal magnetic field components are obtained in these coordinates by using expansion in the reciprocal of the aspect ratio. These expressions allow one to easily derive relationships between quantities in an isodynamic equilibrium, in which the absolute value of the magnetic field is constant along the magnetic surface (Palumbo's configuration).

  5. Pions in and out of equilibrium

    SciTech Connect

    Gavin, S.

    1991-12-01

    Can final state scattering wrestle the secondaries in nucleus-nucleus collisions into a fluid state near local thermal equilibrium What do the pion p{sub T} spectra measured in pp, pA and SPS light ion experiments already tell us about the approach to equilibrium To begin to address these questions, we must face the nonequilibrium nature of hadronic evolution in the late stages of these collisions. I will outline efforts to apply transport theory to the nonequilibrium pion fluid at midrapidity focusing on two phenomena: partial thermalization and pion conservation.

  6. Pions in and out of equilibrium

    SciTech Connect

    Gavin, S.

    1991-12-01

    Can final state scattering wrestle the secondaries in nucleus-nucleus collisions into a fluid state near local thermal equilibrium? What do the pion p{sub T} spectra measured in pp, pA and SPS light ion experiments already tell us about the approach to equilibrium? To begin to address these questions, we must face the nonequilibrium nature of hadronic evolution in the late stages of these collisions. I will outline efforts to apply transport theory to the nonequilibrium pion fluid at midrapidity focusing on two phenomena: partial thermalization and pion conservation.

  7. Non-equilibrium diffusion combustion of a fuel droplet

    NASA Astrophysics Data System (ADS)

    Tyurenkova, Veronika V.

    2012-06-01

    A mathematical model for the non-equilibrium combustion of droplets in rocket engines is developed. This model allows to determine the divergence of combustion rate for the equilibrium and non-equilibrium model. Criterion for droplet combustion deviation from equilibrium is introduced. It grows decreasing droplet radius, accommodation coefficient, temperature and decreases on decreasing diffusion coefficient. Also divergence from equilibrium increases on reduction of droplet radius. Droplet burning time essentially increases under non-equilibrium conditions. Comparison of theoretical and experimental data shows that to have adequate solution for small droplets it is necessary to use the non-equilibrium model.

  8. EquilTheTA: Thermodynamic and transport properties of complex equilibrium plasmas

    SciTech Connect

    Colonna, G.; D'Angola, A.

    2012-11-27

    EquilTheTA (EQUILibrium for plasma THErmodynamics and Transport Applications) is a web-based software which calculates chemical equilibrium product concentrations from any set of reactants and determines thermodynamic and transport properties for the product mixture in wide temperature and pressure ranges. The program calculates chemical equilibrium by using a hierarchical approach, thermodynamic properties and transport coefficients starting from recent and accurate databases of atomic and molecular energy levels and collision integrals. In the calculations, Debye length and cut-off are consistently updated and virial corrections (up to third order) can be considered. Transport coefficients are calculated by using high order approximations of the Chapman-Enskog method.

  9. KEMOD: A mixed chemical kinetic and equilibrium model of aqueous and solid phase geochemical reactions

    SciTech Connect

    Yeh, G.T.; Iskra, G.A.; Szecsody, J.E.; Zachara, J.M.; Streile, G.P.

    1995-01-01

    This report presents the development of a mixed chemical Kinetic and Equilibrium MODel in which every chemical species can be treated either as a equilibrium-controlled or as a kinetically controlled reaction. The reaction processes include aqueous complexation, adsorption/desorption, ion exchange, precipitation/dissolution, oxidation/reduction, and acid/base reactions. Further development and modification of KEMOD can be made in: (1) inclusion of species switching solution algorithms, (2) incorporation of the effect of temperature and pressure on equilibrium and rate constants, and (3) extension to high ionic strength.

  10. Punctuated equilibrium in an evolving bacterial population

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Indranath; Bose, Indrani

    1999-08-01

    Recently, Lenski et al. have carried out an experiment on bacterial evolution. Their findings support the theory of punctuated equilibrium in biological evolution. We show that the M=2 Bak-Sneppen model can explain some of the experimental results in a qualitative manner.

  11. Payload specialists Patrick Baudry conducts equilibrium experiments

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Payload specialists Patrick Baudry participates in an experiment involving equilibrium and vertigo. He is anchored to the orbiter floor by foot restraints and is wearing a device over his eyes to measure angular head movement and up and down eye movement.

  12. Equilibrium thermodynamics in modified gravitational theories

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu; Geng, Chao-Qiang; Tsujikawa, Shinji

    2010-04-01

    We show that it is possible to obtain a picture of equilibrium thermodynamics on the apparent horizon in the expanding cosmological background for a wide class of modified gravity theories with the Lagrangian density f(R,ϕ,X), where R is the Ricci scalar and X is the kinetic energy of a scalar field ϕ. This comes from a suitable definition of an energy-momentum tensor of the “dark” component that respects to a local energy conservation in the Jordan frame. In this framework the horizon entropy S corresponding to equilibrium thermodynamics is equal to a quarter of the horizon area A in units of gravitational constant G, as in Einstein gravity. For a flat cosmological background with a decreasing Hubble parameter, S globally increases with time, as it happens for viable f(R) inflation and dark energy models. We also show that the equilibrium description in terms of the horizon entropy S is convenient because it takes into account the contribution of both the horizon entropy S' in non-equilibrium thermodynamics and an entropy production term.

  13. Calculating Shocks In Flows At Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Eberhardt, Scott; Palmer, Grant

    1988-01-01

    Boundary conditions prove critical. Conference paper describes algorithm for calculation of shocks in hypersonic flows of gases at chemical equilibrium. Although algorithm represents intermediate stage in development of reliable, accurate computer code for two-dimensional flow, research leading up to it contributes to understanding of what is needed to complete task.

  14. Teaching Chemical Equilibrium with the Jigsaw Technique

    ERIC Educational Resources Information Center

    Doymus, Kemal

    2008-01-01

    This study investigates the effect of cooperative learning (jigsaw) versus individual learning methods on students' understanding of chemical equilibrium in a first-year general chemistry course. This study was carried out in two different classes in the department of primary science education during the 2005-2006 academic year. One of the classes…

  15. A Progression of Static Equilibrium Laboratory Exercises

    ERIC Educational Resources Information Center

    Kutzner, Mickey; Kutzner, Andrew

    2013-01-01

    Although simple architectural structures like bridges, catwalks, cantilevers, and Stonehenge have been integral in human societies for millennia, as have levers and other simple tools, modern students of introductory physics continue to grapple with Newton's conditions for static equilibrium. As formulated in typical introductory physics…

  16. Equilibrium rotation in field-reversed configurations

    SciTech Connect

    Steinhauer, Loren

    2008-01-15

    The turbulence that drives anomalous transport in field-reversed configurations (FRCs) is believed to break the otherwise closed magnetic surfaces inside the separatrix. This places electrons in the core of the plasma in electrical contact with those in the periphery. This effect was proposed and investigated in the context of spheromaks [D. D. Ryutov, Phys. Plasmas 14, 022506 (2007)]. The opening up of internal magnetic field lines serves to regulate the electrostatic potential in the interior of the plasma, and in turn drives ion rotation. In effect, 'end-shorting', a well-known phenomenon in the FRC scrape-off layer, also extends into the plasma interior. For conditions relevant to experiments, the ion rotation can be expressed in terms of equilibrium properties (density and temperature gradients) and as such is the 'equilibrium' rotation. This theory is incomplete in that it neglects evolving, transport-related effects that modify the equilibrium and, indirectly, the rotation rate. Consequently, the equilibrium rotation theory is only partially successful in predicting experimental results: although it predicts the average rotation well, the estimated degree of rotational shear seems unlikely, especially at late times in the plasma lifetime.

  17. Equilibrium free energies from nonequilibrium processes

    SciTech Connect

    Jarzynski, C.

    1997-10-29

    A recent result, relating the (irreversible) work performed on a system during a non quasistatic process, to the Helmholtz free energy difference between two equilibrium states of the system, is discussed. A proof of this result is given for the special case when the evolution of the system in question is modeled by a Langevin equation in configuration space.

  18. Conditions for the Existence of Market Equilibrium.

    ERIC Educational Resources Information Center

    Bryant, William D. A.

    1997-01-01

    Maintains that most graduate-level economics textbooks rarely mention the need for consumers to be above their minimum wealth position as a condition for market equilibrium. Argues that this omission leaves students with a mistaken sense about the range of circumstances under which market equilibria can exist. (MJP)

  19. General Equilibrium Models: Improving the Microeconomics Classroom

    ERIC Educational Resources Information Center

    Nicholson, Walter; Westhoff, Frank

    2009-01-01

    General equilibrium models now play important roles in many fields of economics including tax policy, environmental regulation, international trade, and economic development. The intermediate microeconomics classroom has not kept pace with these trends, however. Microeconomics textbooks primarily focus on the insights that can be drawn from the…

  20. The 'Schwarzschild-Kerr' Equilibrium Configurations

    SciTech Connect

    Manko, V. S.; Ruiz, E.

    2010-12-07

    We discuss the possibility of equilibrium between a Schwarzschild black hole possessing zero intrinsic angular momentum and a hyperextreme Kerr source. The balance occurs due to frame-dragging exerted by the latter source on the black-hole constituent, thus giving rise to a non-zero horizon's angular velocity parallel to the angular momentum of the Kerr object.

  1. Spontaneity and Equilibrium II: Multireaction Systems

    ERIC Educational Resources Information Center

    Raff, Lionel M.

    2014-01-01

    The thermodynamic criteria for spontaneity and equilibrium in multireaction systems are developed and discussed. When N reactions are occurring simultaneously, it is shown that G and A will depend upon N independent reaction coordinates, ?a (a = 1,2, ..., N), in addition to T and p for G or T and V for A. The general criteria for spontaneity and…

  2. Assessing Students' Conceptual Understanding of Solubility Equilibrium.

    ERIC Educational Resources Information Center

    Raviolo, Andres

    2001-01-01

    Presents a problem on solubility equilibrium which involves macroscopic, microscopic, and symbolic levels of representation as a resource for the evaluation of students, and allows for assessment as to whether students have acquired an adequate conceptual understanding of the phenomenon. Also diagnoses difficulties with regard to previous…

  3. Competitive Equilibrium and Classroom Pit Markets.

    ERIC Educational Resources Information Center

    Ruffle, Bradley J.

    2003-01-01

    Describes a pit-market experiment using the work of Charles A. Holt to illustrate to students the real world relevance of the competitive equilibrium concept. Explains how to set up and conduct a pit-market experiment, discusses features of the data, and provides accompanying materials. (JEH)

  4. Effective equilibrium theory of nonequilibrium quantum transport

    NASA Astrophysics Data System (ADS)

    Dutt, Prasenjit; Koch, Jens; Han, Jong; Le Hur, Karyn

    2011-12-01

    The theoretical description of strongly correlated quantum systems out of equilibrium presents several challenges and a number of open questions persist. Here, we focus on nonlinear electronic transport through an interacting quantum dot maintained at finite bias using a concept introduced by Hershfield [S. Hershfield, Phys. Rev. Lett. 70 2134 (1993)] whereby one can express such nonequilibrium quantum impurity models in terms of the system's Lippmann-Schwinger operators. These scattering operators allow one to reformulate the nonequilibrium problem as an effective equilibrium problem associated with a modified Hamiltonian. In this paper, we provide a pedagogical analysis of the core concepts of the effective equilibrium theory. First, we demonstrate the equivalence between observables computed using the Schwinger-Keldysh framework and the effective equilibrium approach, and relate Green's functions in the two theoretical frameworks. Second, we expound some applications of this method in the context of interacting quantum impurity models. We introduce a novel framework to treat effects of interactions perturbatively while capturing the entire dependence on the bias voltage. For the sake of concreteness, we employ the Anderson model as a prototype for this scheme. Working at the particle-hole symmetric point, we investigate the fate of the Abrikosov-Suhl resonance as a function of bias voltage and magnetic field.

  5. Exploring Chemical Equilibrium in Hot Jovians

    NASA Astrophysics Data System (ADS)

    Blumenthal, Sarah; Harrington, Joseph; Mandell, Avi; Hébrard, Eric; Venot, Olivia; Cubillos, Patricio; Blecic, Jasmina; Challener, Ryan

    2016-01-01

    It has been established that equilibrium chemistry is usually achieved deep in the atmosphere of hot Jovians where timescales are short (Line and Yung 2013). Thus, equilibrium chemistry has been used as a starting point (setting initial conditions) for evaluating disequilibrium processes. We explore parameters of setting these initial conditions including departures from solar metallicity, the number of species allowed in a system, the types of species allowed in a system, and different thermodynamic libraries in an attempt to create a standard for evaluating equilibrium chemistry. NASA's open source code Chemical Equilibrium and Applications (CEA) is used to calculate model planet abundances by varying the metallicity, in the pressure regime 0.1 to 1 bar. These results are compared to a variety of exoplanets(Teq between 600 and 2100K) qualitatively by color maps of the dayside with different temperature redistributions. Additionally, CEA (with an up-dated thermodynamic library) is compared with the thermochemical model presented in Venotet al. (2012) for HD 209458b and HD 189733b. This same analysis is then applied to the cooler planet HD 97658b. Spectra are generated and we compare both models' outputs using the open source codetransit (https://github.com/exosports/transit) using the opacities of 15 molecules. We make the updated CEA thermodyanamic library and supporting Python scripts to do the CEA analyses available open source. Thiswork was supported by NASA Planetary Atmospheres grant NNX12AI69G.

  6. Exploring Equilibrium Chemistry for Hot Exoplanets

    NASA Astrophysics Data System (ADS)

    Blumenthal, Sarah; Harrington, Joseph; Mandell, Avi; Hébrard, Eric; Venot, Olivia; Cubillos, Patricio; Challener, Ryan

    2015-11-01

    It has been established that equilibrium chemistry is usually achieved deep in the atmosphere of hot Jovians where timescales are short (Line and Young 2013). Thus, equilibrium chemistry has been used as a starting point (setting initial conditions) for evaluating disequilibrium processes. We explore parameters of setting these initial conditions including departures from solar metallicity, the number of species allowed in a system, the types of species allowed in a system, and different thermodynamic libraries in an attempt to create a standard for evaluating equilibrium chemistry. NASA's open source code Chemical Equilibrium and Applications (CEA) is used to calculate model planet abundances by varying the metallicity, in the pressure regime of 0.1 to 1 bar. These results are compared to a variety of exoplanets (Teq between 600 and 2100K) qualitatively by color maps of the dayside with different temperature redistributions. Additionally, CEA (with an updated thermodynamic library) is validated with the thermochemical model presented in Venot et al. (2012) for HD 209458b and HD 189733b. This same analysis has then been extended to the cooler planet HD 97658b. Spectra are generated from both models’ abundances using the open source code transit (https://github.com/exosports/transit) using the opacities of 15 molecules. We make the updated CEA thermodyanamic library and supporting Python scripts to do the CEA analyses available open source. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G.

  7. Local-equilibrium formalism applied to mechanics of solids

    SciTech Connect

    Kestin, J.

    1992-08-01

    The lecture starts with an expression of good wishes to George Herrmann on the occasion of his seventieth birthday and continues with a lament that the majority of research workers in the field of solid mechanics have failed to appreciate the power and relevance of ``conventional`` thermodynamics which is based on the acceptance of the hypothesis of local equilibrium (principle of local state). The lecture then proceeds to motivate the essential concepts of conventional thermodynamics and emphasizes the differences between the description of nonequilibrium states in physical space and equilibrium states in the Gibbsian phase space. It is asserted that the subject acquires its simplest form by the recognition of the relevance of Bridgman`s internal variables. With their aid it is possible to define the accompanying equilibrium state and the accompanying reversible process. An elimination of internal energy between the field equation of energy (First Law) and the Gibbs equation in rate form results in an explicit expression for the local rate of entropy production, {theta}. It is asserted that the preceding elements supplemented with appropriate rate equations result in a closed system of partial differential equations whose solution, subject to appropriate initial and boundary conditions, constitutes the process (``history``) under consideration. 11 refs.

  8. Local-equilibrium formalism applied to mechanics of solids

    SciTech Connect

    Kestin, J.

    1992-01-01

    The lecture starts with an expression of good wishes to George Herrmann on the occasion of his seventieth birthday and continues with a lament that the majority of research workers in the field of solid mechanics have failed to appreciate the power and relevance of conventional'' thermodynamics which is based on the acceptance of the hypothesis of local equilibrium (principle of local state). The lecture then proceeds to motivate the essential concepts of conventional thermodynamics and emphasizes the differences between the description of nonequilibrium states in physical space and equilibrium states in the Gibbsian phase space. It is asserted that the subject acquires its simplest form by the recognition of the relevance of Bridgman's internal variables. With their aid it is possible to define the accompanying equilibrium state and the accompanying reversible process. An elimination of internal energy between the field equation of energy (First Law) and the Gibbs equation in rate form results in an explicit expression for the local rate of entropy production, {theta}. It is asserted that the preceding elements supplemented with appropriate rate equations result in a closed system of partial differential equations whose solution, subject to appropriate initial and boundary conditions, constitutes the process ( history'') under consideration. 11 refs.

  9. Probing receptor-ligand interactions by sedimentation equilibrium

    NASA Astrophysics Data System (ADS)

    Philo, John S.

    1997-05-01

    While sedimentation equilibrium is most commonly used to characterize the molecular weight and state of association of single proteins, this technique is also a very powerful tool for probing the interactions between two or more different proteins, and can characterize both the binding stoichiometry and the equilibrium constants. To resolve the complex binding interactions that can occur in such systems, it is crucial to globally fit data from many experiments to a common binding model, including samples made with different mixing ratios and a wide range of total concentration. It is often also essential to constrain the parameters during fitting so that the fits correctly reproduce the molar ratio of proteins used in making each sample. We have applied this methodology to probe mechanisms of receptor activation for a number of hematopoietic receptors and their cognate ligands, using receptor extracellular domains expressed as soluble proteins. Such data can potentially help in the design of improved or new protein therapeutics, as well as in efforts to create small- molecular mimetics of protein hormones through structure- based drug design. Sedimentation equilibrium has shown that stem cell factor, erythropoietin, and granulocyte-colony stimulating factor can each dimerize their respective receptors in solution, but the mechanism of ligand-induced receptor dimerization for these three systems are strikingly different.

  10. Equilibrium and off-equilibrium trap-size scaling in one-dimensional ultracold bosonic gases

    SciTech Connect

    Campostrini, Massimo; Vicari, Ettore

    2010-12-15

    We study some aspects of equilibrium and off-equilibrium quantum dynamics of dilute bosonic gases in the presence of a trapping potential. We consider systems with a fixed number of particles and study their scaling behavior with increasing the trap size. We focus on one-dimensional bosonic systems, such as gases described by the Lieb-Liniger model and its Tonks-Girardeau limit of impenetrable bosons, and gases constrained in optical lattices as described by the Bose-Hubbard model. We study their quantum (zero-temperature) behavior at equilibrium and off equilibrium during the unitary time evolution arising from changes of the trapping potential, which may be instantaneous or described by a power-law time dependence, starting from the equilibrium ground state for an initial trap size. Renormalization-group scaling arguments and analytical and numerical calculations show that the trap-size dependence of the equilibrium and off-equilibrium dynamics can be cast in the form of a trap-size scaling in the low-density regime, characterized by universal power laws of the trap size, in dilute gases with repulsive contact interactions and lattice systems described by the Bose-Hubbard model. The scaling functions corresponding to several physically interesting observables are computed. Our results are of experimental relevance for systems of cold atomic gases trapped by tunable confining potentials.

  11. Accurate equilibrium structures of fluoro- and chloroderivatives of methane

    NASA Astrophysics Data System (ADS)

    Vogt, Natalja; Demaison, Jean; Rudolph, Heinz Dieter

    2014-11-01

    This work is a systematic study of molecular structure of fluoro-, chloro-, and fluorochloromethanes. For the first time, the accurate ab initio structure is computed for 10 molecules (CF4, CClF3, CCl2F2, CCl3F, CHClF2, CHCl2F, CH2F2, CH2ClF, CH2Cl2, and CCl4) at the coupled cluster level of electronic structure theory including single and double excitations augmented by a perturbational estimate of the effects of connected triple excitations [CCSD(T)] with all electrons being correlated and Gaussian basis sets of at least quadruple-ζ quality. Furthermore, when possible, namely for the molecules CH2F2, CH2Cl2, CH2ClF, CHClF2, and CCl2F2, accurate semi-experimental equilibrium (rSEe) structure has also been determined. This is achieved through a least-squares structural refinement procedure based on the equilibrium rotational constants of all available isotopomers, determined by correcting the experimental ground-state rotational constants with computed ab initio vibration-rotation interaction constants and electronic g-factors. The computed and semi-experimental equilibrium structures are in excellent agreement with each other, but the rSEe structure is generally more accurate, in particular for the CF and CCl bond lengths. The carbon-halogen bond length is discussed within the framework of the ligand close-packing model as a function of the atomic charges. For this purpose, the accurate equilibrium structures of some other molecules with alternative ligands, such as CH3Li, CF3CCH, and CF3CN, are also computed.

  12. Spontaneous Formation of Closed-Field Torus Equilibrium via Current Jump Observed in an Electron-Cyclotron-Heated Plasma

    SciTech Connect

    Yoshinaga, T.; Uchida, M.; Tanaka, H.; Maekawa, T.

    2006-03-31

    Spontaneous current jump resulting in the formation of closed field equilibrium has been observed in electron-cyclotron-heated toroidal plasmas under steady external fields composed of a toroidal field and a relatively weak vertical field in the low aspect ratio torus experiment device. This bridges the gap between the open field equilibrium maintained by a pressure-driven current in the external field and the closed field equilibrium at a larger current. Experimental results and theoretical analyses suggest a current jump model that is based on the asymmetric electron confinement along the field line appearing upon simultaneous transitions of field topology and equilibrium.

  13. Figures of Equilibrium among Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Hestroffer, D.; Tanga, P.

    2005-12-01

    The original idea of Farinella et al. [1] that rubble pile asteroids can have figures of equilibrium, is rehabilitated. Albeit asteroids generally have a broad distribution of shapes and do not follow sequences of (hydrostatic) equilibrium, we show that some asteroids are indeed Jacobi or Darwin ellipsoids. Such statement is obtained from an analysis of their ellipsoidal shape (a:b:c) together with recent measures of their mass and bulk density [2,3]. This means that both their shape and adimensional rotation frequency sbond Ω =Ω /(π ρ G) follow sequences of equilibrium [4,5]. Jacobi and Darwin figures are obtained for uniformly rotating mass of (inviscid as well as compressible) fluids and relatively large angular momentum. Interestingly these objects appear to preferably be binaries. We moreover show that the porosity of such objects is relatively large (approx. 40%) indicating that they are loose rubble piles, yet with dense packing. Last we show that, given the observed bulk-densities, these bodies must be homogeneous bodies of uniform density distribution. Thus, though solid-solid friction must occur in such aggregates, the surface of these bodies is a surface of level similar to that of inviscid fluids. Comparison to other asteroids of similar mass either possessing a moonlet or with no known satellites should shed light on their formation history and/or constrains on collisional evolution. Binaries with low eccentricities and inclination (hence prograde orbit) should preferably be the outcome of catastrophic disruption as is supposed for members of dynamical family [6,7]. Future work and analysis of the typical reaccumulation time scales, typical angular momentum, possible post-reaccumulation cosmic shaking, etc. shall help to know how the fate of collisions or catastrophic breakup of a parent body can differ yielding to binaries with equilibrium figures. In any case the existence of a figure of equilibrium appears to be highly correlated to the presence

  14. Equilibrium and non-equilibrium dynamics simultaneously operate in the Galápagos islands.

    PubMed

    Valente, Luis M; Phillimore, Albert B; Etienne, Rampal S

    2015-08-01

    Island biotas emerge from the interplay between colonisation, speciation and extinction and are often the scene of spectacular adaptive radiations. A common assumption is that insular diversity is at a dynamic equilibrium, but for remote islands, such as Hawaii or Galápagos, this idea remains untested. Here, we reconstruct the temporal accumulation of terrestrial bird species of the Galápagos using a novel phylogenetic method that estimates rates of biota assembly for an entire community. We show that species richness on the archipelago is in an ascending phase and does not tend towards equilibrium. The majority of the avifauna diversifies at a slow rate, without detectable ecological limits. However, Darwin's finches form an exception: they rapidly reach a carrying capacity and subsequently follow a coalescent-like diversification process. Together, these results suggest that avian diversity of remote islands is rising, and challenge the mutual exclusivity of the non-equilibrium and equilibrium ecological paradigms. PMID:26105791

  15. Experimental Determination of Equilibrium and Non-equilibrium Thermodynamic Propertiesof Natural Porous Media.

    NASA Astrophysics Data System (ADS)

    Peluso, F.; Arienzo, I.

    Experimental investigation of the behavior of porous media is a field of interest of modern non-equilibrium thermodynamics. In the frame of a multi-disciplinary re- search project we are performing in our laboratory experimental tests to measure equilibrium and nonequilibrium thermodynamic properties of natural porous media. Aim of our study is to characterize some stone samples and to verify whether a mass transport due to coupled pressure and temperature gradients (thermo-mechanic) is ap- preciable in this kind of porous medium. We have designed an apparatus that allows to measure the volume flux across a porous sample at various, predefined pressures and temperatures, both in isothermal and non isothermal conditions. A mechanical piston compels a liquid to flow through the sample, previously saturated under vacuum with the same fluid. Knowing the geometrical dimensions of the stone, the volume flux is estimated by measuring the time needed to a known amount of liquid to flow across the sample. Measurements have been performed in isothermal conditions at various temperatures and in non-isothermal conditions. Non-isothermal measurements have been performed both in unsteady and steady-state thermal conditions. Before to be undergone to a measurement cycle, samples are dried and weighted. Then they are sat- urated under vacuum with pure distilled water and weighted once again. By difference between the two measurements, porosity is determined. In all examined samples the volume flux has been found linear with respect to the applied pressure at the various temperatures. The values of volume flux in unsteady thermal conditions are consid- erably higher than the one obtained at the same pressure in isothermal conditions at the higher temperature (T=+45rC). This could be the evidence of a thermo-mechanic effect, pushing the water from hot to cold. Once the steady thermal state is reached, however, this effect disappears. Only measurements performed in unsteady thermal

  16. Gas absorption using a nanofluid solvent: kinetic and equilibrium study

    NASA Astrophysics Data System (ADS)

    Azizi, S.; Peyghambarzadeh, S. M.; Saremi, M.; Tahmasebi, H.

    2014-12-01

    An experimental study has been performed to explore gas absorption in a nanofluid solvent. Propane and propylene were separately absorbed in a non-aqueous based nanofluid composed of N-methyl 2-pyrolidone (NMP) + small amount of TiO2 nanoparticle. Absorption was performed at different initial pressures and nanoparticle concentrations. Results showed that the addition of small amount of nanoparticle enhances the rate of absorption. Nanofluid decreased the time needed to achieve equilibrium and increased the maximum amount of gas absorbed.

  17. Model of opacity and emissivity of non-equilibrium plasma

    NASA Astrophysics Data System (ADS)

    Politov, V. Y.

    2008-05-01

    In this work the model describing absorption and emission properties of the non-equilibrium plasma is presented. It is based on the kinetics equations for populations of the ground, singly and doubly excited states of multi-charged ions. After solving these equations, the states populations together with the spectroscopic data, supplied in the special database for a lot ionization stages, are used for building the spectral distributions of plasma opacity and emissivity in STA approximation. Results of kinetics simulation are performed for such important X-ray converter as gold, which is investigated intensively in ICF-experiments.

  18. Equilibrium Macroscopic Structure Revisited from Spatial Constraint

    NASA Astrophysics Data System (ADS)

    Yuge, Koretaka

    2016-02-01

    In classical systems, we reexamine how macroscopic structures in equilibrium state connect with spatial constraint on the systems. For example, volume and density as the constraint for liquids in rigid box, and crystal lattice as the constraint for crystalline solids. We find that in disordered states, equilibrium macroscopic structure, depending on temperature and on multibody interactions in the system, can be well characterized by a single special microscopic structure independent of temperature and of interactions. The special microscopic structure depends only on the spatial constraint. We demonstrate the present findings providing (i) significantly efficient and systematic prediction of macroscopic structures for possible combination of constituents in multicomponent systems using first-principles calculations, and (ii) unique and accurate prediction of multibody interactions in given system from measured macroscopic structure, without performing trial-and-error simulation.

  19. Absence of equilibrium chiral magnetic effect

    NASA Astrophysics Data System (ADS)

    Zubkov, M. A.

    2016-05-01

    We analyze the (3 +1 )D equilibrium chiral magnetic effect (CME). We apply derivative expansion to the Wigner transform of the two-point Green function. This technique allows us to express the response of electric current to the external electromagnetic field strength through the momentum space topological invariant. We consider the wide class of the lattice regularizations of quantum field theory (that includes, in particular, the regularization with Wilson fermions) and also certain lattice models of solid state physics (including those of Dirac semimetals). It appears that in these models the mentioned topological invariant vanishes identically at nonzero chiral chemical potential. That means that the bulk equilibrium CME is absent in those systems.

  20. Instability of quantum equilibrium in Bohm's dynamics

    PubMed Central

    Colin, Samuel; Valentini, Antony

    2014-01-01

    We consider Bohm's second-order dynamics for arbitrary initial conditions in phase space. In principle, Bohm's dynamics allows for ‘extended’ non-equilibrium, with initial momenta not equal to the gradient of phase of the wave function (as well as initial positions whose distribution departs from the Born rule). We show that extended non-equilibrium does not relax in general and is in fact unstable. This is in sharp contrast with de Broglie's first-order dynamics, for which non-standard momenta are not allowed and which shows an efficient relaxation to the Born rule for positions. On this basis, we argue that, while de Broglie's dynamics is a tenable physical theory, Bohm's dynamics is not. In a world governed by Bohm's dynamics, there would be no reason to expect to see an effective quantum theory today (even approximately), in contradiction with observation. PMID:25383020

  1. Punctuated equilibrium in a neontological context.

    PubMed

    Monroe, Melanie J; Bokma, Folmer

    2010-09-01

    The theory of punctuated equilibrium, which proposes that biological species evolve rapidly when they originate rather than gradually over time, has sparked intense debate between palaeontologists and evolutionary biologists about the mode of character evolution and the importance of natural selection. Difficulty in interpreting the fossil record prevented consensus, and it remains disputed as to what extent gradual change in established species is responsible for phenotypic differences between species. Against the historical background of the concept of evolution concentrated in speciation events, we review attempts to investigate tempo and mode of evolution using present-day species since the introduction of the theory of punctuated equilibrium in 1972. We discuss advantages, disadvantages, and prospects of using neontological data, methodological advances, and the findings of some recent studies. PMID:20514523

  2. Spectra from pair-equilibrium plasmas

    NASA Technical Reports Server (NTRS)

    Zdziarski, A. A.

    1984-01-01

    A numerical model of relativistic nonmagnetized plasma with uniform temperature and electron density distributions is considered, and spectra from plasma in pair equilibrium are studied. A range of dimensionless temperature (T) greater than about 0.2 is considered. The spectra from low pair density plasmas in pair equilibrium vary from un-Comptonized bremsstrahlung spectra at Thomson cross section tau(N) much less than one to Comptonized bremsstrahlung spectra with tau(N) over one. For high pair density plasmas the spectra are flat for T greater than about one, and have broad intensity peaks at energy roughly equal to 3T for T less than one. In the latter region the total luminosity is approximately twice the annihilation luminosity. All spectra are flat in the X-ray region, in contradiction to observed AGN spectra. For dimensionless luminosity greater than about 100, the cooling time becomes shorter than the Thomson time.

  3. Adaptive resolution simulation in equilibrium and beyond

    NASA Astrophysics Data System (ADS)

    Wang, H.; Agarwal, A.

    2015-09-01

    In this paper, we investigate the equilibrium statistical properties of both the force and potential interpolations of adaptive resolution simulation (AdResS) under the theoretical framework of grand-canonical like AdResS (GC-AdResS). The thermodynamic relations between the higher and lower resolutions are derived by considering the absence of fundamental conservation laws in mechanics for both branches of AdResS. In order to investigate the applicability of AdResS method in studying the properties beyond the equilibrium, we demonstrate the accuracy of AdResS in computing the dynamical properties in two numerical examples: The velocity auto-correlation of pure water and the conformational relaxation of alanine dipeptide dissolved in water. Theoretical and technical open questions of the AdResS method are discussed in the end of the paper.

  4. Equilibrium fluctuation theorems compatible with anomalous response

    NASA Astrophysics Data System (ADS)

    Velazquez, L.; Curilef, S.

    2010-12-01

    Previously, we have derived a generalization of the canonical fluctuation relation between heat capacity and energy fluctuations C = β2langδU2rang, which is able to describe the existence of macrostates with negative heat capacities C < 0. In this work, we extend our previous results for an equilibrium situation with several control parameters to account for the existence of states with anomalous values in other response functions. Our analysis leads to the derivation of three different equilibrium fluctuation theorems: the fundamental and the complementary fluctuation theorems, which represent the generalization of two fluctuation identities already obtained in previous works, and the associated fluctuation theorem, a result that has no counterpart in the framework of Boltzmann-Gibbs distributions. These results are applied to study the anomalous susceptibility of a ferromagnetic system, in particular, the case of the 2D Ising model.

  5. Phase Equilibrium Investigations of Planetary Materials

    NASA Technical Reports Server (NTRS)

    Grove, T. L.

    2005-01-01

    This grant provided funds to carry out phase equilibrium studies on the processes of chemical differentiation of the moon and the meteorite parent bodies, during their early evolutionary history. Several experimental studies examined processes that led to the formation of lunar ultramafic glasses. Phase equilibrium studies were carried out on selected low-Ti and high-Ti lunar ultramafic glass compositions to provide constraints on the depth range, temperature and processes of melt generation and/or assimilation. A second set of experiments examined the role of sulfide melts in core formation processes in the earth and terrestrial planets. The major results of each paper are discussed, and copies of the papers are attached as Appendix I.

  6. Equilibrium configurations of degenerate fluid spheres

    SciTech Connect

    Whitman, P.G.

    1985-04-01

    Equilibrium configurations of degenerate fluid spheres which assume a polytropic form in the ultrahigh-density regime are considered. We show that analytic solutions more general than those of Misner and Zapolsky exist which possess the asymptotic equation of state. Simple expressions are derived which indicate this nature of the fluids in the extreme relativistic limit, and the stability of these interiors is considered in the asymptotic region.

  7. Equilibrium Gold Nanoclusters Quenched with Biodegradable Polymers

    PubMed Central

    Murthy, Avinash K.; Stover, Robert J.; Borwankar, Ameya U.; Nie, Golay D.; Gourisankar, Sai; Truskett, Thomas M.; Sokolov, Konstantin V.; Johnston, Keith P.

    2013-01-01

    Although sub-100 nm nanoclusters of metal nanoparticles are of interest in many fields including biomedical imaging, sensors and catalysis, it has been challenging to control their morphologies and chemical properties. Herein, a new concept is presented to assemble equilibrium Au nanoclusters of controlled size by tuning the colloidal interactions with a polymeric stabilizer, PLA(1k)-b-PEG(10k)-b-PLA(1k). The nanoclusters form upon mixing a dispersion of ~5 nm Au nanospheres with a polymer solution followed by partial solvent evaporation. A weakly adsorbed polymer quenches the equilibrium nanocluster size and provides steric stabilization. Nanocluster size is tuned from ~20 nm to ~40 nm by experimentally varying the final Au nanoparticle concentration and the polymer/Au ratio, along with the charge on the initial Au nanoparticle surface. Upon biodegradation of the quencher, the nanoclusters reversibly and fully dissociate to individual ~5 nm primary particles. Equilibrium cluster size is predicted semi-quantitatively with a free energy model that balances short-ranged depletion and van der Waals attractions with longer-ranged electrostatic repulsion, as a function of the Au and polymer concentrations. The close spacings of the Au nanoparticles in the clusters produce strong NIR extinction over a broad range of wavelengths from 650 to 900 nm, which is of practical interest in biomedical imaging. PMID:23230905

  8. BINARY NEUTRON STARS IN QUASI-EQUILIBRIUM

    SciTech Connect

    Taniguchi, Keisuke; Shibata, Masaru

    2010-05-15

    Quasi-equilibrium sequences of binary neutron stars are constructed for a variety of equations of state in general relativity. Einstein's constraint equations in the Isenberg-Wilson-Mathews approximation are solved together with the relativistic equations of hydrostationary equilibrium under the assumption of irrotational flow. We focus on unequal-mass sequences as well as equal-mass sequences, and compare those results. We investigate the behavior of the binding energy and total angular momentum along a quasi-equilibrium sequence, the endpoint of sequences, and the orbital angular velocity as a function of time, changing the mass ratio, the total mass of the binary system, and the equation of state of a neutron star. It is found that the orbital angular velocity at the mass-shedding limit can be determined by an empirical formula derived from an analytic estimation. We also provide tables for 160 sequences, which will be useful as a guideline of numerical simulations for the inspiral and merger performed in the near future.

  9. Equilibrium gold nanoclusters quenched with biodegradable polymers.

    PubMed

    Murthy, Avinash K; Stover, Robert J; Borwankar, Ameya U; Nie, Golay D; Gourisankar, Sai; Truskett, Thomas M; Sokolov, Konstantin V; Johnston, Keith P

    2013-01-22

    Although sub-100 nm nanoclusters of metal nanoparticles are of interest in many fields including biomedical imaging, sensors, and catalysis, it has been challenging to control their morphologies and chemical properties. Herein, a new concept is presented to assemble equilibrium Au nanoclusters of controlled size by tuning the colloidal interactions with a polymeric stabilizer, PLA(1k)-b-PEG(10k)-b-PLA(1k). The nanoclusters form upon mixing a dispersion of ~5 nm Au nanospheres with a polymer solution followed by partial solvent evaporation. A weakly adsorbed polymer quenches the equilibrium nanocluster size and provides steric stabilization. Nanocluster size is tuned from ~20 to ~40 nm by experimentally varying the final Au nanoparticle concentration and the polymer/Au ratio, along with the charge on the initial Au nanoparticle surface. Upon biodegradation of the quencher, the nanoclusters reversibly and fully dissociate to individual ~5 nm primary particles. Equilibrium cluster size is predicted semiquantitatively with a free energy model that balances short-ranged depletion and van der Waals attractions with longer-ranged electrostatic repulsion, as a function of the Au and polymer concentrations. The close spacings of the Au nanoparticles in the clusters produce strong NIR extinction over a broad range of wavelengths from 650 to 900 nm, which is of practical interest in biomedical imaging. PMID:23230905

  10. Hamiltonian approach to the magnetostatic equilibrium problem

    SciTech Connect

    Tessarotto, M.; Zheng, Lin Jin; Johnson, J.L.

    1995-02-01

    The purpose of this paper is to investigate the classical scalar-pressure magnetostatic equilibrium problem for non-symmetric configurations in the framework of a Hamiltonian approach. Requiring that the equilibrium admits locally, in a suitable subdomain, a family of nested toroidal magnetic surfaces, the Hamiltonian equations describing the magnetic flux lines in such a subdomain are obtained for general curvilinear coordinate systems. The properties of such Hamiltonian system are investigated. A representation of the magnetic field in terms of arbitrary general curvilinear coordinates is thus obtained. Its basic feature is that the magnetic field must fulfill suitable periodicity constraints to be imposed on arbitrary rational magnetic surfaces for general non-symmetric toroidal equilibria, i.e., it is quasi-symmetric. Implications for the existence of magnetostatic equilibria are pointed out. In particular, it is proven that a generalized equilibrium equation exists for such quasi-symmetric equilibria, which extends the Grad-Shafranov equation to fully three-dimensional configurations. As an application, the case is considered of quasi-helical equilibria, i.e., displaying a magnetic field magnitude depending on the poloidal ({chi}) and toroidal ({var_theta}) angles only in terms of {alpha}={chi}-N{theta} with N an arbitrary integer.

  11. Analytical Ultracentrifugation: Sedimentation Velocity and Sedimentation Equilibrium

    PubMed Central

    Cole, James L.; Lary, Jeffrey W.; Moody, Thomas; Laue, Thomas M.

    2009-01-01

    Analytical ultracentrifugation (AUC) is a versatile and powerful method for the quantitative analysis of macromolecules in solution. AUC has broad applications for the study of biomacromolecules in a wide range of solvents and over a wide range of solute concentrations. Three optical systems are available for the analytical ultracentrifuge (absorbance, interference and fluorescence) that permit precise and selective observation of sedimentation in real time. In particular, the fluorescence system provides a new way to extend the scope of AUC to probe the behavior of biological molecules in complex mixtures and at high solute concentrations. In sedimentation velocity, the movement of solutes in high centrifugal fields is interpreted using hydrodynamic theory to define the size, shape and interactions of macromolecules. Sedimentation equilibrium is a thermodynamic method where equilibrium concentration gradients at lower centrifugal fields are analyzed to define molecule mass, assembly stoichiometry, association constants and solution nonideality. Using specialized sample cells and modern analysis software, researchers can use sedimentation velocity to determine the homogeneity of a sample and define whether it undergoes concentration-dependent association reactions. Subsequently, more thorough model-dependent analysis of velocity and equilibrium experiments can provide a detailed picture of the nature of the species present in solution and their interactions. PMID:17964931

  12. Bifurcated helical core equilibrium states in tokamaks

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Chapman, I. T.; Schmitz, O.; Turnbull, A. D.; Tobias, B. J.; Lazarus, E. A.; Turco, F.; Lanctot, M. J.; Evans, T. E.; Graves, J. P.; Brunetti, D.; Pfefferlé, D.; Reimerdes, H.; Sauter, O.; Halpern, F. D.; Tran, T. M.; Coda, S.; Duval, B. P.; Labit, B.; Pochelon, A.; Turnyanskiy, M. R.; Lao, L.; Luce, T. C.; Buttery, R.; Ferron, J. R.; Hollmann, E. M.; Petty, C. C.; van Zeeland, M.; Fenstermacher, M. E.; Hanson, J. M.; Lütjens, H.

    2013-07-01

    Tokamaks with weak to moderate reversed central shear in which the minimum inverse rotational transform (safety factor) qmin is in the neighbourhood of unity can trigger bifurcated magnetohydrodynamic equilibrium states, one of which is similar to a saturated ideal internal kink mode. Peaked prescribed pressure profiles reproduce the ‘snake’ structures observed in many tokamaks which has led to a novel explanation of the snake as a bifurcated equilibrium state. Snake equilibrium structures are computed in simulations of the tokamak à configuration variable (TCV), DIII-D and mega amp spherical torus (MAST) tokamaks. The internal helical deformations only weakly modulate the plasma-vacuum interface which is more sensitive to ripple and resonant magnetic perturbations. On the other hand, the external perturbations do not alter the helical core deformation in a significant manner. The confinement of fast particles in MAST simulations deteriorate with the amplitude of the helical core distortion. These three-dimensional bifurcated solutions constitute a paradigm shift that motivates the applications of tools developed for stellarator research in tokamak physics investigations.

  13. Recovery of postural equilibrium control following spaceflight

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.; Reschke, M. F.; Black, F. O.; Doxey, D. D.; Harm, D. L.

    1992-01-01

    Decreased postural stability is observed in most astronauts immediately following spaceflight. Because ataxia may present postflight operational hazards, it is important to determine the incidence of postural instability immediately following landing and the dynamics of recovery of normal postural equilibrium control. It is postulated that postflight postural instability results from in-flight adaptive changes in central nervous system (CNS) processing of sensory information from the visual, vestibular, and proprioceptive systems. The purpose of the present investigation was to determine the magnitude and time course of postflight recovery of postural equilibrium control and, hence, readaptation of CNS processing of sensory information. Thirteen crew members from six spaceflight missions were studied pre- and postflight using a modified commercial posturography system. Postural equilibrium control was found to be seriously disrupted immediately following spaceflight in all subjects. Readaptation to the terrestrial environment began immediately upon landing, proceeded rapidly for the first 10-12 hours, and then proceeded much more slowly for the subsequent 2-4 days until preflight stability levels were reachieved. It is concluded that the overall postflight recovery of postural stability follows a predictable time course.

  14. Statistical approach to partial equilibrium analysis

    NASA Astrophysics Data System (ADS)

    Wang, Yougui; Stanley, H. E.

    2009-04-01

    A statistical approach to market equilibrium and efficiency analysis is proposed in this paper. One factor that governs the exchange decisions of traders in a market, named willingness price, is highlighted and constitutes the whole theory. The supply and demand functions are formulated as the distributions of corresponding willing exchange over the willingness price. The laws of supply and demand can be derived directly from these distributions. The characteristics of excess demand function are analyzed and the necessary conditions for the existence and uniqueness of equilibrium point of the market are specified. The rationing rates of buyers and sellers are introduced to describe the ratio of realized exchange to willing exchange, and their dependence on the market price is studied in the cases of shortage and surplus. The realized market surplus, which is the criterion of market efficiency, can be written as a function of the distributions of willing exchange and the rationing rates. With this approach we can strictly prove that a market is efficient in the state of equilibrium.

  15. Radioactive equilibrium in ancient marine sediments

    USGS Publications Warehouse

    Breger, I.A.

    1955-01-01

    Radioactive equilibrium in eight marine sedimentary formations has been studied by means of direct determinations of uranium, radium and thorium. Alpha-particle counting has also been carried out in order to cross-calibrate thick-source counting techniques. The maximum deviation from radioactive equilibrium that has been noted is 11 per cent-indicating that there is probably equilibrium in all the formations analyzed. Thick-source alpha-particle counting by means of a proportional counter or an ionization chamber leads to high results when the samples contain less than about 10 p.p.m. of uranium. For samples having a higher content of uranium the results are in excellent agreement with each other and with those obtained by direct analytical techniques. The thorium contents that have been obtained correspond well to the average values reported in the literature. The uranium content of marine sediments may be appreciably higher than the average values that have been reported for sedimentary rocks. Data show that there is up to fourteen times the percentage of uranium as of thorium in the formations studied and that the percentage of thorium never exceeds that of uranium. While the proximity of a depositional environment to a land mass may influence the concentration of uranium in a marine sediment, this is not true with thorium. ?? 1955.

  16. Equilibrium configurations and stability of a damaged body under uniaxial tractions

    NASA Astrophysics Data System (ADS)

    Lanzoni, Luca; Tarantino, Angelo Marcello

    2015-02-01

    This paper deals with the equilibrium problem in nonlinear dissipative inelasticity of damaged bodies subject to uniaxial loading. To model the damage effects, a damage function, affecting the stored energy function, is defined. In the framework of the continuum thermodynamics theory, the constitutive law for damaged hyperelastic materials and an inequality for the energy release rate are derived. By means of an energy-based damage criterion, the irreversible evolution law for the damage function is obtained. After formulating the equilibrium boundary value problem, explicit expressions governing the global development of the equilibrium paths are written. Successively, the stability of the equilibrium solutions are assessed through the energy criterion. For a damaged body under uniaxial loading, seven inequalities are derived. These conditions, if fulfilled, ensure the stability of the solutions under each type of small perturbation. Finally, a number of applications for compressible neo-Hookean and Mooney-Rivlin materials are performed.

  17. On the Vertical Equilibrium of the Local Galactic Disk and the Search for Disk Dark Matter

    NASA Astrophysics Data System (ADS)

    Sánchez-Salcedo, F. J.; Flynn, Chris; Hidalgo-Gámez, A. M.

    2011-04-01

    Estimates of the dynamical surface mass density at the solar Galactocentric distance are commonly derived assuming that the disk is in vertical equilibrium with the Galactic potential. This assumption has recently been called into question, based on the claim that the ratio between the kinetic and the gravitational energy in such solutions is a factor of three larger than required if virial equilibrium is to hold. Here we show that this ratio between energies was overestimated and that the disk solutions are likely to be in virial equilibrium after all. We additionally demonstrate, using one-dimensional numerical simulations, that the disks are indeed in equilibrium. Hence, given the uncertainties, we find no reason to cast doubt on the steady-state solutions which are traditionally used to measure the matter density of the disk.

  18. On Non-Equilibrium Thermodynamics of Space-Time and Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Munkhammar, Joakim

    Based on recent results from general relativistic statistical mechanics and black hole information transfer limits, a space-time entropy-action equivalence is proposed as a generalization of the holographic principle. With this conjecture, the action principle can be replaced by the second law of thermodynamics, and for the Einstein-Hilbert action the Einstein field equations are conceptually the result of thermodynamic equilibrium. For non-equilibrium situations, Jaynes' information-theoretic approach to maximum entropy production is adopted instead of the second law of thermodynamics. As it turns out for appropriate choices of constants, quantum gravity is obtained. For the special case of a free particle the Bekenstein-Verlinde entropy-to-displacement relation of holographic gravity and thus the traditional holographic principle emerges. Although Jacobson's original thermodynamic equilibrium approach proposed that gravity might not necessarily be quantized, this particular non-equilibrium treatment might require it.

  19. Equilibrium selectivity alone does not create K+-selective ion conduction in K+ channels

    NASA Astrophysics Data System (ADS)

    Liu, Shian; Lockless, Steve W.

    2013-11-01

    Potassium (K+) channels are selective for K+ over Na+ ions during their transport across membranes. We and others have previously shown that tetrameric K+ channels are primarily occupied by K+ ions in their selectivity filters under physiological conditions, demonstrating the channel’s intrinsic equilibrium preference for K+ ions. Based on this observation, we hypothesize that the preference for K+ ions over Na+ ions in the filter determines its selectivity during ion conduction. Here, we ask whether non-selective cation channels, which share an overall structure and similar individual ion-binding sites with K+ channels, have an ion preference at equilibrium. The variants of the non-selective Bacillus cereus NaK cation channel we examine are all selective for K+ over Na+ ions at equilibrium. Thus, the detailed architecture of the K+ channel selectivity filter, and not only its equilibrium ion preference, is fundamental to the generation of selectivity during ion conduction.

  20. Determination of equilibrium constants of alkaline earth metal ion chelates with Dowex A-1 chelating resin.

    PubMed

    Harju, L; Krook, T

    1995-03-01

    A complexation chemistry model is applied to chelating ion-exchange systems and a method is presented for the determination of equilibrium constants for metal ion chelates with these resins. Protonation constants for the iminodiacetic based chelating resin Dowex A-1 were determined from potentiometric pH-data. Equilibrium constants were determined for 1:1 beryllium, magnesium, calcium, strontium and barium chelates with the resin in a wide pH range by measuring the concentrations of respective metal ions in the aqueous phase with direct current plasma atomic emission spectrometry (DCP-AES). A batch technique was used for the equilibrium experiments. At pH below 7 protonated 1:1 species were also found to be formed with the resin. From the obtained equilibrium constants, theoretical distribution coefficients were calculated as function of pH for respective metal ion resin system. PMID:18966248

  1. ON THE VERTICAL EQUILIBRIUM OF THE LOCAL GALACTIC DISK AND THE SEARCH FOR DISK DARK MATTER

    SciTech Connect

    Sanchez-Salcedo, F. J.; Flynn, Chris; Hidalgo-Gamez, A. M.

    2011-04-20

    Estimates of the dynamical surface mass density at the solar Galactocentric distance are commonly derived assuming that the disk is in vertical equilibrium with the Galactic potential. This assumption has recently been called into question, based on the claim that the ratio between the kinetic and the gravitational energy in such solutions is a factor of three larger than required if virial equilibrium is to hold. Here we show that this ratio between energies was overestimated and that the disk solutions are likely to be in virial equilibrium after all. We additionally demonstrate, using one-dimensional numerical simulations, that the disks are indeed in equilibrium. Hence, given the uncertainties, we find no reason to cast doubt on the steady-state solutions which are traditionally used to measure the matter density of the disk.

  2. Modeling Inflation Using a Non-Equilibrium Equation of Exchange

    NASA Technical Reports Server (NTRS)

    Chamberlain, Robert G.

    2013-01-01

    Inflation is a change in the prices of goods that takes place without changes in the actual values of those goods. The Equation of Exchange, formulated clearly in a seminal paper by Irving Fisher in 1911, establishes an equilibrium relationship between the price index P (also known as "inflation"), the economy's aggregate output Q (also known as "the real gross domestic product"), the amount of money available for spending M (also known as "the money supply"), and the rate at which money is reused V (also known as "the velocity of circulation of money"). This paper offers first a qualitative discussion of what can cause these factors to change and how those causes might be controlled, then develops a quantitative model of inflation based on a non-equilibrium version of the Equation of Exchange. Causal relationships are different from equations in that the effects of changes in the causal variables take time to play out-often significant amounts of time. In the model described here, wages track prices, but only after a distributed lag. Prices change whenever the money supply, aggregate output, or the velocity of circulation of money change, but only after a distributed lag. Similarly, the money supply depends on the supplies of domestic and foreign money, which depend on the monetary base and a variety of foreign transactions, respectively. The spreading of delays mitigates the shocks of sudden changes to important inputs, but the most important aspect of this model is that delays, which often have dramatic consequences in dynamic systems, are explicitly incorporated.macroeconomics, inflation, equation of exchange, non-equilibrium, Athena Project

  3. Dynamic processes of conceptual change: Analysis of constructing mental models of chemical equilibrium

    NASA Astrophysics Data System (ADS)

    Chiu, Mei-Hung; Chou, Chin-Cheng; Liu, Chia-Ju

    2002-10-01

    The purpose of this study was to investigate students' mental models of chemical equilibrium using dynamic science assessments. Research in chemical education has shown that students at various levels have misconceptions about chemical equilibrium. According to Chi's theory of conceptual change, the concept of chemical equilibrium has constraint-based features (e.g., random, simultaneous, uniform activities) that might prevent students from deeply understanding the nature of the concept of chemical equilibrium. In this study, we examined how students learned and constructed their mental models of chemical equilibrium in a cognitive apprenticeship context. Thirty 10th-grade students participated in the study: 10 in a control group and 20 in a treatment group. Both groups were presented with a series of hands-on chemical experiments. The students in the treatment group were instructed based on the main features of cognitive apprenticeship (CA), such as coaching, modeling, scaffolding, articulation, reflection, and exploration. However, the students in the control group (non-CA group) learned from the tutor without explicit CA support. The results revealed that the CA group significantly outperformed the non-CA group. The students in the CA group were capable of constructing the mental models of chemical equilibrium - including dynamic, random activities of molecules and interactions between molecules in the microworld - whereas the students in the non-CA group failed to construct similar correct mental models of chemical equilibrium. The study focuses on the process of constructing mental models, on dynamic changes, and on the actions of students (such as self-monitoring/self-correction) who are learning the concept of chemical equilibrium. Also, we discuss the implications for science education.

  4. On the Concept "Chemical Equilibrium": The Associative Framework.

    ERIC Educational Resources Information Center

    Gussarsky, Esther; Gorodetsky, Malka

    1990-01-01

    Word associations were used to map high school students' concepts of "chemical equilibrium" and "equilibrium." It was found that the preconception of the two concepts was differentiated on noncritical dimensions. (Author/CW)

  5. Existence of best proximity pairs and equilibrium pairs

    NASA Astrophysics Data System (ADS)

    Kim, Won Kyu; Lee, Kyoung Hee

    2006-04-01

    In this paper, using the fixed point theorem for Kakutani factorizable multifunctions, we shall prove new existence theorems of best proximity pairs and equilibrium pairs for free abstract economies, which include the previous fixed point theorems and equilibrium existence theorems.

  6. Thermodynamics and Kinetics of Chemical Equilibrium in Solution.

    ERIC Educational Resources Information Center

    Leenson, I. A.

    1986-01-01

    Discusses theory of thermodynamics of the equilibrium in solution and dissociation-dimerization kinetics. Describes experimental procedure including determination of molar absorptivity and equilibrium constant, reaction enthalpy, and kinetics of the dissociation-dimerization reaction. (JM)

  7. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system.

    PubMed

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-01

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies. PMID:26786848

  8. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system

    NASA Astrophysics Data System (ADS)

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-01

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.

  9. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system

    PubMed Central

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-01

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion–fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies. PMID:26786848

  10. Coupled discretization of multicomponent diffusion problems in equilibrium and non-equilibrium plasmas

    NASA Astrophysics Data System (ADS)

    Peerenboom, Kim; Ten Thije Boonkkamp, Jan; van Dijk, Jan; Kroesen, Gerrit

    2013-09-01

    Solving balance equations is the essence of any fluid simulation of reactive, multicomponent plasmas. For plasmas in chemical non-equilibrium, balance equations are solved for all species of interest. When reactions are very fast with respect to transport time scales - and the plasma approaches chemical equilibrium - species abundances can be obtained from equilibrium relations. However, in many cases, balance equations still need to be solved for the elements, since the elemental composition can vary significantly in reactive multicomponent plasmas. Both in equilibrium and in non-equilibrium the species diffusive fluxes in these balance equations are governed by the Stefan-Maxwell equations. The use of Stefan-Maxwell diffusion leads to a coupled set of balance equations. Furthermore, this coupled set of equations is subject to charge and mass conservation constraints. Due to these complications the set of balance equations is often artificially decoupled to fit in the traditional finite volume discretization schemes and the constraints are explicitly applied. This approach can lead to very poor convergence behavior. We will present a new approach using a finite volume discretization scheme that takes into account the coupling and treats the constraints implicitly.

  11. Fractal Geometry of Equilibrium Payoffs in Discounted Supergames

    NASA Astrophysics Data System (ADS)

    Berg, Kimmo; Kitti, Mitri

    2014-08-01

    This paper examines the pure-strategy subgame-perfect equilibrium payoffs in discounted supergames with perfect monitoring. It is shown that the equilibrium payoffs can be identified as sub-self-affine sets or graph-directed iterated function systems. We propose a method to estimate the Hausdorff dimension of the equilibrium payoffs and relate it to the equilibrium paths and their graph presentation.

  12. Student understanding of static equilibrium: Predicting and accounting for balancing

    NASA Astrophysics Data System (ADS)

    Ortiz, Luanna G.; Heron, Paula R. L.; Shaffer, Peter S.

    2005-06-01

    We report on an investigation of student ability to account for static equilibrium in the simple familiar case in which an object is balanced on a frictionless pivot or fulcrum. Written questions were administered to more than 1000 university students who had completed the relevant instruction in introductory calculus-based physics. Almost all the students were able to answer questions about simple systems composed of point-like objects. However, when the mass distribution was continuous, most students attributed equilibrium to forces of equal magnitude applied on both sides of the fulcrum. Moreover, many students treated horizontal and tilted bodies, even if they were at rest, as distinct cases. The difficulties we identified were very persistent. Hands-on activities that were not influenced by research results had no discernible effect on student performance. Direct attempts to address specific difficulties using lecture demonstrations based on the research tasks described in this article led to some improvement. Greater success has been achieved by using a tutorial in which students work in small groups on experiments and exercises suggested by research findings.

  13. Phase equilibrium in coal liquefaction processes. Final report

    SciTech Connect

    Chao, K.C.

    1984-08-01

    Gas-liquid equilibrium data have been determined in simulation of coal liquefaction process conditions in mixtures of light gases + heavy hydrocarbons to add to the accumulated data previously reported in EPRI AP-1593. The mixture systems newly investigated are: methane + 9,10 dihydrophenanthrene; hydrogen + methane + 1-methylnaphthalene; hydrogen + carbon dioxide + tetralin; hydrogen + carbon dioxide + 1-methynaphthalene; hydrogen + carbon dioxide + quinoline; nitrogen + tetralin, + n-hexadecane, + 1-methylnaphthalene, + quinoline, and + m-cresol. Correlations for the solubilities of methane and carbon dioxide have been developed from the data based on the use of solubility parameter. The solubility of hydrogen was correlated in EPRI AP-1593. Two equations of state are developed for the description of both the gas solubility and the vaporization of the heavy oil. The Chain-of-Rotators (COR) equation of state explicitly accounts for the rotational molecular motion contribution to the pressure of a fluid. The Cubic-Chain-of-Rotators (CCOR) equation is obtained upon simplifying the COR equation. Interaction constants in the CCOR equation have been determined for the light gases with the heavy hydrocarbons based on data from this project, and the constants are correlated. Equilibrium flash vaporization has been experimentally determined for three coal liquids and for their mixtures with hydrogen. The data are correlated with the CCOR equation of state. 74 figures, 46 tables.

  14. Concept maps about chemical equilibrium and students' achievement scores

    NASA Astrophysics Data System (ADS)

    Wilson, Jan

    1996-06-01

    The purpose of this study was to examine relationships between structural characteristics of students' concept maps about chemical equilibrium and independent measures of their achievement in chemistry. Fifty students in 1991 and seventy students in 1992 completed a concept-mapping task using twenty-four specified concepts. Using similarities in concept map structure, based on the presence or absence of linked pairs of concepts, non-metric multidimensional scaling (MDS) was used to plot the location of the concept maps in coordinate space. The distribution of maps was based on differences in their structure, but also reflected levels of student achievement on independent tests. The relationship between the coordinate location of each student's maps and his or her test scores on independent chemistry achievement tests was sought by canonical correlation analysis of the 1991 data set. This revealed significant relationships between the MDS coordinates and test scores of recall of knowledge and its application. Multiple regression analysis of sixty-one students' maps from the 1992 data set against their percentile rank scores on a national chemistry quiz revealed significant relationships. The results are interpreted as revealing structural differences in conceptual organisation about chemical equilibrium among students with different levels of achievement and thus relative expertise in the domain. The significant relationship between map structure and cognitive process scores in chemistry also supports the view that the organisation of declarative knowledge influences its accessibility in cognitive tasks.

  15. Predicting long-term and short-term tidal flat morphodynamics using a dynamic equilibrium theory

    NASA Astrophysics Data System (ADS)

    Hu, Zhan; Wang, Zheng Bing; Zitman, Tjerk J.; Stive, Marcel J. F.; Bouma, Tjeerd J.

    2015-09-01

    Dynamic equilibrium theory is a fruitful concept, which we use to systematically explain the tidal flat morphodynamic response to tidal currents, wind waves, sediment supply, and other sedimentological drivers. This theory stems from a simple analytical model that derives the tide- or wave-dominated tidal flat morphology by assuming that morphological equilibrium is associated with uniform bed shear stress distribution. Many studies based on observation and process-based modeling tend to agree with this analytical model. However, a uniform bed shear stress rarely exists on actual or modeled tidal flats, and the analytical model cannot handle the spatially and temporally varying bed shear stress. In the present study, we develop a model based on the dynamic equilibrium theory and its core assumption. Different from the static analytical model, our model explicitly accounts for the spatiotemporal bed shear stress variations for tidal flat dynamic prediction. To test our model and the embedded theory, we apply the model for both long-term and short-term morphological predictions. The long-term modeling is evaluated qualitatively against previous process-based modeling. The short-term modeling is evaluated quantitatively against high-resolution bed-level monitoring data obtained from a tidal flat in Netherlands. The model results show good performances in both qualitative and quantitative tests, indicating the validity of the dynamic equilibrium theory. Thus, this model provides a valuable tool to enhance our understanding of the tidal flat morphodynamics and to apply the dynamic equilibrium theory for realistic morphological predictions.

  16. 14 CFR 67.205 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Ear, nose, throat, and equilibrium. 67.205... (CONTINUED) AIRMEN MEDICAL STANDARDS AND CERTIFICATION Second-Class Airman Medical Certificate § 67.205 Ear, nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a second-class...

  17. 14 CFR 67.305 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Ear, nose, throat, and equilibrium. 67.305... (CONTINUED) AIRMEN MEDICAL STANDARDS AND CERTIFICATION Third-Class Airman Medical Certificate § 67.305 Ear, nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a third-class...

  18. 14 CFR 67.305 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Ear, nose, throat, and equilibrium. 67.305... (CONTINUED) AIRMEN MEDICAL STANDARDS AND CERTIFICATION Third-Class Airman Medical Certificate § 67.305 Ear, nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a third-class...

  19. 14 CFR 67.105 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Ear, nose, throat, and equilibrium. 67.105... (CONTINUED) AIRMEN MEDICAL STANDARDS AND CERTIFICATION First-Class Airman Medical Certificate § 67.105 Ear, nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a first-class...

  20. 14 CFR 67.105 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Ear, nose, throat, and equilibrium. 67.105... (CONTINUED) AIRMEN MEDICAL STANDARDS AND CERTIFICATION First-Class Airman Medical Certificate § 67.105 Ear, nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a first-class...

  1. 14 CFR 67.305 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Ear, nose, throat, and equilibrium. 67.305... (CONTINUED) AIRMEN MEDICAL STANDARDS AND CERTIFICATION Third-Class Airman Medical Certificate § 67.305 Ear, nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a third-class...

  2. 14 CFR 67.105 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Ear, nose, throat, and equilibrium. 67.105... (CONTINUED) AIRMEN MEDICAL STANDARDS AND CERTIFICATION First-Class Airman Medical Certificate § 67.105 Ear, nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a first-class...

  3. 14 CFR 67.205 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Ear, nose, throat, and equilibrium. 67.205... (CONTINUED) AIRMEN MEDICAL STANDARDS AND CERTIFICATION Second-Class Airman Medical Certificate § 67.205 Ear, nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a second-class...

  4. 14 CFR 67.305 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Ear, nose, throat, and equilibrium. 67.305... (CONTINUED) AIRMEN MEDICAL STANDARDS AND CERTIFICATION Third-Class Airman Medical Certificate § 67.305 Ear, nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a third-class...

  5. 14 CFR 67.205 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Ear, nose, throat, and equilibrium. 67.205... (CONTINUED) AIRMEN MEDICAL STANDARDS AND CERTIFICATION Second-Class Airman Medical Certificate § 67.205 Ear, nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a second-class...

  6. 14 CFR 67.305 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Ear, nose, throat, and equilibrium. 67.305... (CONTINUED) AIRMEN MEDICAL STANDARDS AND CERTIFICATION Third-Class Airman Medical Certificate § 67.305 Ear, nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a third-class...

  7. 14 CFR 67.205 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Ear, nose, throat, and equilibrium. 67.205... (CONTINUED) AIRMEN MEDICAL STANDARDS AND CERTIFICATION Second-Class Airman Medical Certificate § 67.205 Ear, nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a second-class...

  8. 14 CFR 67.205 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Ear, nose, throat, and equilibrium. 67.205... (CONTINUED) AIRMEN MEDICAL STANDARDS AND CERTIFICATION Second-Class Airman Medical Certificate § 67.205 Ear, nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a second-class...

  9. 14 CFR 67.105 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Ear, nose, throat, and equilibrium. 67.105... (CONTINUED) AIRMEN MEDICAL STANDARDS AND CERTIFICATION First-Class Airman Medical Certificate § 67.105 Ear, nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a first-class...

  10. 14 CFR 67.105 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Ear, nose, throat, and equilibrium. 67.105... (CONTINUED) AIRMEN MEDICAL STANDARDS AND CERTIFICATION First-Class Airman Medical Certificate § 67.105 Ear, nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a first-class...

  11. Investigating High School Students' Understanding of Chemical Equilibrium Concepts

    ERIC Educational Resources Information Center

    Karpudewan, Mageswary; Treagust, David F.; Mocerino, Mauro; Won, Mihye; Chandrasegaran, A. L.

    2015-01-01

    This study investigated the year 12 students' (N = 56) understanding of chemical equilibrium concepts after instruction using two conceptual tests, the "Chemical Equilibrium Conceptual Test 1" ("CECT-1") consisting of nine two-tier multiple-choice items and the "Chemical Equilibrium Conceptual Test 2"…

  12. Towards breaking temperature equilibrium in multi-component Eulerian schemes

    SciTech Connect

    Grove, John W; Masser, Thomas

    2009-01-01

    We investigate the effects ofthermal equilibrium on hydrodynamic flows and describe models for breaking the assumption ofa single temperature for a mixture of components in a cell. A computational study comparing pressure-temperature equilibrium simulations of two dimensional implosions with explicit front tracking is described as well as implementation and J-D calculations for non-equilibrium temperature methods.

  13. Hanging an Airplane: A Case Study in Static Equilibrium

    ERIC Educational Resources Information Center

    Katz, Debora M.

    2009-01-01

    Our classrooms are filled with engineering majors who take a semester-long course in static equilibrium. Many students find this class too challenging and drop their engineering major. In our introductory physics class, we often breeze through static equilibrium; to physicists equilibrium is just a special case of Newton's second law. While it is…

  14. Equilibrium and shot noise in mesoscopic systems

    SciTech Connect

    Martin, T.

    1994-10-01

    Within the last decade, there has been a resurgence of interest in the study of noise in Mesoscopic devices, both experimentally and theoretically. Noise in solid state devices can have different origins: there is 1/f noise, which is believed to arise from fluctuations in the resistance of the sample due to the motion of impurities. On top of this contribution is a frequency independent component associated with the stochastic nature of electron transport, which will be the focus of this paper. If the sample considered is small enough that dephasing and inelastic effects can be neglected, equilibrium (thermal) and excess noise can be completely described in terms of the elastic scattering properties of the sample. As mentioned above, noise arises as a consequence of random processes governing the transport of electrons. Here, there are two sources of randomness: first, electrons incident on the sample occupy a given energy state with a probability given by the Fermi-Dirac distribution function. Secondly, electrons can be transmitted across the sample or reflected in the same reservoir where they came from with a probability given by the quantum mechanical transmission/reflection coefficients. Equilibrium noise refers to the case where no bias voltage is applied between the leads connected to the sample, where thermal agitation alone allows the electrons close to the Fermi level to tunnel through the sample. In general, equilibrium noise is related to the conductance of the sample via the Johnson-Nyquist formula. In the presence of a bias, in the classical regime, one expects to recover the full shot noise < {Delta}{sup 2}I >= 2I{Delta}{mu} as was observed a long time ago in vacuum diodes. In the Mesoscopic regime, however, excess noise is reduced below the shot noise level. The author introduces a more intuitive picture, where the current passing through the device is a superposition of pulses, or electron wave packets, which can be transmitted or reflected.

  15. Equilibrium defects and concentrations in nickel aluminide

    SciTech Connect

    Bai, B.; Collins, G.S.

    1999-07-01

    Perturbed angular correlation of gamma rays was applied to determine properties of equilibrium defects in B2 NiAl near the stoichiometric composition. Point defects were detected through quadrupole interactions they induce at In probe atoms on the Al sublattice. Well-resolved signals were observed for probe atoms having zero, one or two Ni-vacancies (V{sub Ni}) in the first neighbor shell. The fractions of probes in different sites are analyzed using a thermodynamic model to determine defect properties as follows. The equilibrium high-temperature defect is determined to be the triple defect combination (two V{sub Ni} and one Ni-antisite atom) through the variation of the vacancy concentration with composition and not, for example, the Schottky vacancy pair. The binding enthalpy of V{sub Ni} with a probe atom was determined to be in the range 0.18--0.24 eV. Site fractions were measured for three samples having 50.03, 50.14 and 50.91 at.% Ni at temperatures up to 1300 C. Vacancy concentrations were deduced from the site fractions and binding enthalpy. The equilibrium constant for formation of the triple defect was determined as a function of temperature from the vacancy concentrations and sample compositions. The formation enthalpy was found to be in the range 1.65--1.83 eV, depending on the binding enthalpy. The formation entropy was found to be {minus}3.2(4)k{sub B}. The large, negative value of the formation entropy probably cannot be explained in terms of a binding entropy, and the authors speculate that triple defects harden the B2 lattice, perhaps by disrupting the well-known 1/3 {l{underscore}angle}111{r{underscore}angle} soft mode lattice instability in B2 and bcc materials.

  16. Evidence for equilibrium gels of valence-limited particles.

    PubMed

    Dudukovic, Nikola A; Zukoski, Charles F

    2014-10-21

    We explore the formation and structure of gels produced from solutions of the aromatic dipeptide derivative molecule fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF) in dimethyl sulfoxide (DMSO). Mixing these solutions with water results in the self-assembly of Fmoc-FF molecules into space-filling fibrous networks, exhibiting mechanical properties characteristic of gels. Using confocal fluorescence microscopy, we observe the gel transition in situ and find that, upon the addition of water, the solution undergoes a rapid transition to a non-equilibrium state forming ∼ 2 μm spheres, followed by the formation of fibers 5-10 nm in diameter, nucleating at a sphere surface and expanding into the solution as the remaining spheres dissolve, extending the network. The gel aging process is associated with the network becoming increasingly uniform through apparent redissolution/reaggregation of the Fmoc-FF molecules, corresponding to the observed increase in the elastic modulus to a plateau value. We demonstrate that this increase in uniformity and elastic modulus can be expedited by controlling the temperature of the system, as well as that these gels are thermally reversible, further indicating that the system is in equilibrium in its fibrous network state. X-ray scattering information suggests that the packing of the molecules within a fiber is based on π-π stacking of β-sheets, consistent with models proposed in the literature for similar systems, implying that each particle (molecule) possesses a limited number of interaction sites. These observations provide experimental evidence that these low molecular weight gelator molecules can be considered valence-limited "patchy" particles, which associate at low enough temperature to form equilibrium gels. PMID:25155031

  17. Facilitated Oriented Spin Models: Some Non Equilibrium Results

    NASA Astrophysics Data System (ADS)

    Cancrini, N.; Martinelli, F.; Schonmann, R.; Toninelli, C.

    2010-03-01

    We perform the rigorous analysis of the relaxation to equilibrium for some facilitated or kinetically constrained spin models (KCSM) when the initial distribution ν is different from the reversible one, μ. This setting has been intensively studied in the physics literature to analyze the slow dynamics which follows a sudden quench from the liquid to the glass phase. We concentrate on two basic oriented KCSM: the East model on ℤ, for which the constraint requires that the East neighbor of the to-be-update vertex is vacant and the AD model on the binary tree introduced in Aldous and Diaconis (J. Stat. Phys. 107(5-6):945-975, 2002), for which the constraint requires the two children to be vacant. It is important to observe that, while the former model is ergodic at any p≠1, the latter displays an ergodicity breaking transition at p c =1/2. For the East we prove exponential convergence to equilibrium with rate depending on the spectral gap if ν is concentrated on any configuration which does not contain a forever blocked site or if ν is a Bernoulli( p') product measure for any p'≠1. For the model on the binary tree we prove similar results in the regime p, p'< p c and under the (plausible) assumption that the spectral gap is positive for p< p c . By constructing a proper test function, we also prove that if p'> p c and p≤ p c convergence to equilibrium cannot occur for all local functions. Finally, in a short appendix, we present a very simple argument, different from the one given in Aldous and Diaconis (J. Stat. Phys. 107(5-6):945-975, 2002), based on a combination of some combinatorial results together with "energy barrier" considerations, which yields the sharp upper bound for the spectral gap of East when p↑1.

  18. Equilibrium water and solute uptake in silicone hydrogels.

    PubMed

    Liu, D E; Dursch, T J; Oh, Y; Bregante, D T; Chan, S Y; Radke, C J

    2015-05-01

    Equilibrium water content of and solute partitioning in silicone hydrogels (SiHys) are investigated using gravimetric analysis, fluorescence confocal laser-scanning microscopy (FCLSM), and back extraction with UV/Vis-absorption spectrophotometry. Synthesized silicone hydrogels consist of silicone monomer, hydrophilic monomer, cross-linking agent, and triblock-copolymer macromer used as an amphiphilic compatibilizer to prevent macrophase separation. In all cases, immiscibility of the silicone and hydrophilic polymers results in microphase-separated morphologies. To investigate solute uptake in each of the SiHy microphases, equilibrium partition coefficients are obtained for two hydrophilic solutes (i.e., theophylline and caffeine dissolved in aqueous phosphate-buffered saline) and two oleophilic solutes (i.e., Nile Red and Bodipy Green dissolved in silicone oil), respectively. Measured water contents and aqueous-solute partition coefficients increase linearly with increasing solvent-free hydrophilic-polymer volume fraction. Conversely, oleophilic-solute partition coefficients decrease linearly with rising solvent-free hydrophilic-polymer volume fraction (i.e., decreasing hydrophobic silicone-polymer fraction). We quantitatively predict equilibrium SiHy water and solute uptake assuming that water and aqueous solutes reside only in hydrophilic microdomains, whereas oleophilic solutes partition predominately into silicone microdomains. Predicted water contents and solute partition coefficients are in excellent agreement with experiment. Our new procedure permits a priori estimation of SiHy water contents and solute partition coefficients based solely on properties of silicone and hydrophilic homopolymer hydrogels, eliminating the need for further mixed-polymer-hydrogel experiments. PMID:25725471

  19. Thermo-chemical dynamics and chemical quasi-equilibrium of plasmas in thermal non-equilibrium

    SciTech Connect

    Massot, Marc; Graille, Benjamin; Magin, Thierry E.

    2011-05-20

    We examine both processes of ionization by electron and heavy-particle impact in spatially uniform plasmas at rest in the absence of external forces. A singular perturbation analysis is used to study the following physical scenario, in which thermal relaxation becomes much slower than chemical reactions. First, electron-impact ionization is investigated. The dynamics of the system rapidly becomes close to a slow dynamics manifold that allows for defining a unique chemical quasi-equilibrium for two-temperature plasmas and proving that the second law of thermodynamics is satisfied. Then, all ionization reactions are taken into account simultaneously, leading to a surprising conclusion: the inner layer for short time scale (or time boundary layer) directly leads to thermal equilibrium. Global thermo-chemical equilibrium is reached within a short time scale, involving only chemical reactions, even if thermal relaxation through elastic collisions is assumed to be slow.

  20. Stochastic linearization of turbulent dynamics of dispersive waves in equilibrium and non-equilibrium state

    NASA Astrophysics Data System (ADS)

    Jiang, Shixiao W.; Lu, Haihao; Zhou, Douglas; Cai, David

    2016-08-01

    Characterizing dispersive wave turbulence in the long time dynamics is central to understanding of many natural phenomena, e.g., in atmosphere ocean dynamics, nonlinear optics, and plasma physics. Using the β-Fermi–Pasta–Ulam nonlinear system as a prototypical example, we show that in thermal equilibrium and non-equilibrium steady state the turbulent state even in the strongly nonlinear regime possesses an effective linear stochastic structure in renormalized normal variables. In this framework, we can well characterize the spatiotemporal dynamics, which are dominated by long-wavelength renormalized waves. We further demonstrate that the energy flux is nearly saturated by the long-wavelength renormalized waves in non-equilibrium steady state. The scenario of such effective linear stochastic dynamics can be extended to study turbulent states in other nonlinear wave systems.

  1. Equilibrium of an elastically confined liquid drop

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk-Min; Kim, Ho-Young; Puëll, Jérôme; Mahadevan, L.

    2008-05-01

    When a liquid drop is confined between an elastic plate and a rigid substrate, it spreads spontaneously due to the effects of interfacial forces, eventually reaching an equilibrium shape determined by the balance between elastic and capillary effects. We provide an analytical theory for the static shape of the sheet and the extent of liquid spreading and show that our experiments are quantitatively consistent with the theory. The theory is relevant for the first step of painting when a brush is brought down on to canvas. More mundanely, it allows us to understand the stiction of microcantilevers to wafer substrates occurring in microelectromechanical fabrication processes.

  2. Secular equilibrium of radium in Western coal

    SciTech Connect

    Casella, V.R.; Fleissner, J.G.; Styron, C.E.

    1980-01-01

    Concentrations of radium-226, radium-228, and thorium-228 in coal from six Western states have been measured by gamma spectroscopy. The existence of secular equilibrium was verified for radium-226 and previously measured uranium-238 and also for radium-228 and thorium-228. The measured radionuclide concentrations for Western coal averaged about 0.3 pCi/g for radium-226 and 0.2 pCi/g for radium-228 and thorium-228. These average values are not greatly different from those in coal from other provinces of the United States.

  3. Process for operating equilibrium controlled reactions

    DOEpatents

    Nataraj, Shankar; Carvill, Brian Thomas; Hufton, Jeffrey Raymond; Mayorga, Steven Gerard; Gaffney, Thomas Richard; Brzozowski, Jeffrey Richard

    2001-01-01

    A cyclic process for operating an equilibrium controlled reaction in a plurality of reactors containing an admixture of an adsorbent and a reaction catalyst suitable for performing the desired reaction which is operated in a predetermined timed sequence wherein the heating and cooling requirements in a moving reaction mass transfer zone within each reactor are provided by indirect heat exchange with a fluid capable of phase change at temperatures maintained in each reactor during sorpreaction, depressurization, purging and pressurization steps during each process cycle.

  4. Non-equilibrium Dynamics of DNA Nanotubes

    NASA Astrophysics Data System (ADS)

    Hariadi, Rizal Fajar

    Can the fundamental processes that underlie molecular biology be understood and simulated by DNA nanotechnology? The early development of DNA nanotechnology by Ned Seeman was driven by the desire to find a solution to the protein crystallization problem. Much of the later development of the field was also driven by envisioned applications in computing and nanofabrication. While the DNA nanotechnology community has assembled a versatile tool kit with which DNA nanostructures of considerable complexity can be assembled, the application of this tool kit to other areas of science and technology is still in its infancy. This dissertation reports on the construction of non-equilibrium DNA nanotube dynamic to probe molecular processes in the areas of hydrodynamics and cytoskeletal behavior. As the first example, we used DNA nanotubes as a molecular probe for elongational flow measurement in different micro-scale flow settings. The hydrodynamic flow in the vicinity of simple geometrical objects, such as a rigid DNA nanotube, is amenable to rigorous theoretical investigation. We measured the distribution of elongational flows produced in progressively more complex settings, ranging from the vicinity of an orifice in a microfluidic chamber to within a bursting bubble of Pacific ocean water. This information can be used to constrain theories on the origin of life in which replication involves a hydrodynamically driven fission process, such as the coacervate fission proposed by Oparin. A second theme of this dissertation is the bottom-up construction of a de novo artificial cytoskeleton with DNA nanotubes. The work reported here encompasses structural, locomotion, and control aspects of non-equilibrium cytoskeletal behavior. We first measured the kinetic parameters of DNA nanotube assembly and tested the accuracy of the existing polymerization models in the literature. Toward recapitulation of non-equilibrium cytoskeletal dynamics, we coupled the polymerization of DNA

  5. Computational methods for reactive transport modeling: A Gibbs energy minimization approach for multiphase equilibrium calculations

    NASA Astrophysics Data System (ADS)

    Leal, Allan M. M.; Kulik, Dmitrii A.; Kosakowski, Georg

    2016-02-01

    We present a numerical method for multiphase chemical equilibrium calculations based on a Gibbs energy minimization approach. The method can accurately and efficiently determine the stable phase assemblage at equilibrium independently of the type of phases and species that constitute the chemical system. We have successfully applied our chemical equilibrium algorithm in reactive transport simulations to demonstrate its effective use in computationally intensive applications. We used FEniCS to solve the governing partial differential equations of mass transport in porous media using finite element methods in unstructured meshes. Our equilibrium calculations were benchmarked with GEMS3K, the numerical kernel of the geochemical package GEMS. This allowed us to compare our results with a well-established Gibbs energy minimization algorithm, as well as their performance on every mesh node, at every time step of the transport simulation. The benchmark shows that our novel chemical equilibrium algorithm is accurate, robust, and efficient for reactive transport applications, and it is an improvement over the Gibbs energy minimization algorithm used in GEMS3K. The proposed chemical equilibrium method has been implemented in Reaktoro, a unified framework for modeling chemically reactive systems, which is now used as an alternative numerical kernel of GEMS.

  6. Revised lattice Boltzmann model for traffic flow with equilibrium traffic pressure

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Lu, Wei-Zhen; Xue, Yu; He, Hong-Di

    2016-02-01

    A revised lattice Boltzmann model concerning the equilibrium traffic pressure is proposed in this study to tackle the phase transition phenomena of traffic flow system. The traditional lattice Boltzmann model has limitation to investigate the complex traffic phase transitions due to its difficulty for modeling the equilibrium velocity distribution. Concerning this drawback, the equilibrium traffic pressure is taken into account to derive the equilibrium velocity distribution in the revised lattice Boltzmann model. In the proposed model, a three-dimensional velocity-space is assumed to determine the equilibrium velocity distribution functions and an alternative, new derivative approach is introduced to deduct the macroscopic equations with the first-order accuracy level from the lattice Boltzmann model. Based on the linear stability theory, the stability conditions of the corresponding macroscopic equations can be obtained. The outputs indicate that the stability curve is divided into three regions, i.e., the stable region, the neutral stability region, and the unstable region. In the stable region, small disturbance appears in the initial uniform flow and will vanish after long term evolution, while in the unstable region, the disturbance will be enlarged and finally leads to the traffic system entering the congested state. In the neutral stability region, small disturbance does not vanish with time and maintains its amplitude in the traffic system. Conclusively, the stability of traffic system is found to be enhanced as the equilibrium traffic pressure increases. Finally, the numerical outputs of the proposed model are found to be consistent with the recognized, theoretical results.

  7. Dynamics of Charged Particles in an Adiabatic Thermal Beam Equilibrium

    NASA Astrophysics Data System (ADS)

    Chen, Chiping; Wei, Haofei

    2010-11-01

    Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It is found that the widths of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic particle motion in the adiabatic thermal beam equilibrium.

  8. Non-equilibrium statistical mechanics of geophysical flows

    NASA Astrophysics Data System (ADS)

    Bouchet, F.; Simonnet, E.

    2010-12-01

    We describe the dynamics of two-dimensional and quasi-geostrophic flows with stochastic forces. It exhibits extremely long correlations times, related to multi-scale dynamics, and collective behaviors such as bistability and multistability. We show that in regimes of weak forces and dissipation, dominated by the large scales inertial dynamics, equilibrium statistical mechanics provides extremely precise predictions for the self-organized large scale flows. This is true for amuch larger range of parameters than would have been expected, explaining a renewed interest for statistical mechanics approaches. Non-equilibrium theory, based on kinetic theories (or equivalently Mori-Zwanzig projections) gives explicit predictions for algebraic correlations of the velocity field, and for the large scale mean flow. We also describe briefly recent applications to ocean jets and vortices, explaining the detailed structure of inertial mid-basin jets and both the structure, and westward and poleward drifts of oceans rings and eddies. References: F. BOUCHET and E. SIMONNET, Random Changes of Flow Topology in Two-Dimensional and Geophysical Turbulence, Physical Review Letters 102 (2009), no. 9, 094504-+. F. BOUCHET and J. SOMMERIA, Emergence of intense jets and Jupiter's Great Red Spot as maximum-entropy structures, Journal of Fluid Mechanics 464 (2002), 165-207. A. VENAILLE and F. BOUCHET, Ocean rings and jets as statistical equilibrium states, submitted to JPO F. BOUCHET and A. VENAILLE, Statistical mechanics of two-dimensional and geophysical flows, submitted to Physics Reports Non-equilibrium phase transitions in the dynamics of the 2D Navier-Stokes equations with stochastic forces in a doubly periodic domain of aspect ratio d. The two main plots are the time series and probability density functions (PDFs) of the modulus of the largest scale Fourrier component, illustrating random changes between dipoles (|z1| close to 0.55) and unidirectional flows (|z1| close to 0.). The small

  9. Equilibrium and Stability Analysis of PEGASUS Plasmas

    NASA Astrophysics Data System (ADS)

    Sontag, Aaron

    2001-10-01

    Magnetic equilibrium analyses of low-A discharges in the PEGASUS Toroidal Experiment have been performed using EFIT and a locally developed code which incorporates a nonlinear least-squares fitting routine coupled to a Grad-Shafranov solver. Induced currents in the continuous, resistive vessel wall are estimated using a time-evolving current filament model and are constrained during the reconstruction by wall-mounted flux loops and B-dot coils. With I_wall/Ip up to 2, the poloidal field due to the walls often dominates early in the discharge. A recent upgrade of the internal magnetics set to include 20 poloidal flux loops, a poloidal array of 20 B-dot coils, and a diamagnetic loop has increased the accuracy of equilibrium reconstructions. Plasmas with A < 1.3, Ip on the order of 0.15 MA, 0.2 < li < 0.8, and betat < 25% have been analyzed. The presence of a broad q ~ 2 region inside the plasma corresponds to the growth of a large 2/1 internal mode. Ideal stability analyses have been performed using DCON.

  10. Emergence and pseudo-equilibrium in geomorphology

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan D.

    2011-09-01

    Many geomorphic system states and behaviors often interpreted as tendencies toward establishment and maintenance of steady-state equilibrium are actually emergent outcomes of two simple principles: gradient selection and threshold-mediated modulation. The principle of gradient selection is simply that geomorphic features associated with gradient-driven flows persist and grow relative to other features and pathways. The principle of threshold-mediated modulation reflects the inherent limits on system development along any particular pathway. Thresholds not only define a restricted state space for any given geomorphic system, but may also result in oscillatory behavior around an intermediate condition that resembles fluctuations around a steady-state equilibrium. Together, these principles often produce outcomes that mimic steady-state equilibria. Examples are given involving several aspects of fluvial systems (channel profiles, alluvial channel changes, and drainage density), hillslope gradients, and barchan dunes. Steady-states indeed occur in Earth surface systems, and are a useful simplification in some models. However, the assumption that such states are somehow normative, or the only natural condition, is incorrect, and can lead to problems in geomorphic interpretations, environmental restoration and management, and conceptions of how Earth systems work.

  11. Mineral equilibrium in fractionated nebular systems

    NASA Technical Reports Server (NTRS)

    Wood, John A.; Hashimoto, Akihiko

    1993-01-01

    We investigated the equilibrium mineral assemblages in chemically fractionated nebular systems, using a computer routine that finds the set of minerals and gases which minimizes the Gibbs free energy of a system with stipulated elemental abundances. Diagrams are presented showing the equilibrium mineralogy, as a function of temperature (400-2300 K), for unfractionated solar material and five fractionated systems. The fractionated systems were defined by mixing, in various proportions, the following four volatility components that solar material can be divided into: refractory dust, carbonaceous matter, ices, and H2 gas. Dust enrichment is seen to increase temperatures of condensation/evaporation and the Fe(2+) content of mafic minerals and to permit existence of stable melt phases. Enrichment of dust and organic matter produces mineral assemblages that are similar in many ways to those of enstatite chondrites, but with mafic minerals that are far more reduced than those in primitive enstatite chondrites. Enrichment of dust, organics, and ices leads to highly ferrous mineralogies even at the highest temperatures but does not predict the stability of hydrous phases above about 450 K.

  12. Mineral equilibrium in fractionated nebular systems

    NASA Astrophysics Data System (ADS)

    Wood, J. A.; Hashimoto, A.

    1993-05-01

    We investigated the equilibrium mineral assemblages in chemically fractionated nebular systems, using a computer routine that finds the set of minerals and gases which minimizes the Gibbs free energy of a system with stipulated elemental abundances. Diagrams are presented showing the equilibrium mineralogy, as a function of temperature (400-2300 K), for unfractionated solar material and five fractionated systems. The fractionated systems were defined by mixing, in various proportions, the following four volatility components that solar material can be divided into: refractory dust, carbonaceous matter, ices, and H2 gas. Dust enrichment is seen to increase temperatures of condensation/evaporation and the Fe(2+) content of mafic minerals and to permit existence of stable melt phases. Enrichment of dust and organic matter produces mineral assemblages that are similar in many ways to those of enstatite chondrites, but with mafic minerals that are far more reduced than those in primitive enstatite chondrites. Enrichment of dust, organics, and ices leads to highly ferrous mineralogies even at the highest temperatures but does not predict the stability of hydrous phases above about 450 K.

  13. Symmetries in fluctuations far from equilibrium.

    PubMed

    Hurtado, Pablo I; Pérez-Espigares, Carlos; del Pozo, Jesús J; Garrido, Pedro L

    2011-05-10

    Fluctuations arise universally in nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. To sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation that links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager's reciprocity relations and Green-Kubo formulas. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields. PMID:21493865

  14. Symmetries in fluctuations far from equilibrium

    PubMed Central

    Hurtado, Pablo I.; Pérez-Espigares, Carlos; del Pozo, Jesús J.; Garrido, Pedro L.

    2011-01-01

    Fluctuations arise universally in nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. To sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation that links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti–Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager’s reciprocity relations and Green–Kubo formulas. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields. PMID:21493865

  15. Equilibrium Reconstructions and Eddy Currents in LTX

    NASA Astrophysics Data System (ADS)

    Schmitt, J. C.; Bialek, J.; Hansen, C. H.; Majeski, R.; Menard, J. E.

    2015-11-01

    The Lithium Tokamak eXperiment (LTX) is a spherical tokamak with a close-fitting low-recycling wall of lithium deposited on a stainless steel-lined copper shell. The combination of low resistivity of the copper shell, toroidal and poloidal breaks in the shell and transient coil and plasma currents results in long-lived non-axisymmetric eddy currents in the shell which produce a non-axisymmetric magnetic field. Magnetic sensors measure a ``local'' magnetic field in the toroidal break region that differs from the toroidally-averaged field. To use these signals as constraints in 2-D axisymmetric equilibrium reconstructions requires compensation of the 3-D components present in the signals. The work will will discuss the results of the 3-D modeling of the eddy currents and magnetic fields with the VALEN code, along with the progress made with equilibrium reconstructions with PSI-TRI and LRDfit. Work supported by US DOE contract DE-AC02-09CH11466.

  16. In command of non-equilibrium.

    PubMed

    Roduner, Emil; Radhakrishnan, Shankara Gayathri

    2016-05-21

    The second law of thermodynamics is well known for determining the direction of spontaneous processes in the laboratory, life and the universe. It is therefore often called the arrow of time. Less often discussed but just as important is the effect of kinetic barriers which intercept equilibration and preserve highly ordered, high energy non-equilibrium states. Examples of such states are many modern materials produced intentionally for technological applications. Furthermore, all living organisms fuelled directly by photosynthesis and those fuelled indirectly by living on high energy nutrition represent preserved non-equilibrium states. The formation of these states represents the local reversal of the arrow of time which only seemingly violates the second law. It has been known since the seminal work of Prigogine that the stabilisation of these states inevitably requires the dissipation of energy in the form of waste heat. It is this feature of waste heat dissipation following the input of energy that drives all processes occurring at a non-zero rate. Photosynthesis, replication of living organisms, self-assembly, crystal shape engineering and distillation have this principle in common with the well-known Carnot cycle in the heat engine. Drawing on this analogy, we subsume these essential and often sophisticated driven processes under the term machinery of life. PMID:27146424

  17. Equilibrium stellar systems with spindle singularities

    NASA Technical Reports Server (NTRS)

    Shapiro, Stuart L.; Teukolsky, Saul A.

    1992-01-01

    Equilibrium sequences of axisymmetric Newtonian clusters that tend toward singular states are constructed. The distribution functions are chosen to be of the form f = f(E, Jz). The numerical method then determines the density and gravitational potential self-consistently to satisfy Poisson's equation. For the prolate models, spindle singularities arise from the depletion of angular momentum near the symmetry axis. While the resulting density enhancement is confined to the region near the axis, the influence of the spindle extends much further out through its tidal gravitational field. Centrally condensed prolate clusters may contain strong-field regions even though the spindle mass is small and the mean cluster eccentricity is not extreme. While the calculations performed here are entirely Newtonian, the issue of singularities is an important topic in general relativity. Equilibrium solutions for relativistic star clusters can provide a testing ground for exploring this issue. The methods used in this paper for building nonspherical clusters can be extended to relativistic systems.

  18. Equilibrium properties of hcp titanium and zirconium

    SciTech Connect

    Lu, Z.; Singh, D.; Krakauer, H.

    1987-11-15

    The electronic and structural properties of hexagonal-close-packed titanium and zirconium are determined from self-consistent linearized augmented-plane-wave (LAPW) calculations within the framework of the local-density-functional approximation (LDA). The equilibrium lattice parameters, bulk moduli, Poisson's ratios, and cohesive energies are obtained from the total energies calculated as functions of the a and c lattice parameters. As found in other LDA calculations, the cohesive energies are overestimated compared to experiment, but otherwise generally good agreement with experiment is obtained. The uncertainty in the results due to the particular choice of the LDA exchange-correlation potential is also examined by performing parallel calculations using the Kohn-Sham-Gaspar X..cap alpha.. (..cap alpha.. = (2/3) exchange-only potential. We find that these calculations yield equilibrium volumes which differ by 6--8 % (with the X..cap alpha.. results in better agreement with experiment) with proportional differences in other structural properties, which we take to be an indication of the intrinsic reliability of the LDA.

  19. Equilibrium properties of hcp titanium and zirconium

    NASA Astrophysics Data System (ADS)

    Lu, Zhi-Wei; Singh, David; Krakauer, Henry

    1987-11-01

    The electronic and structural properties of hexagonal-close-packed titanium and zirconium are determined from self-consistent linearized augmented-plane-wave (LAPW) calculations within the framework of the local-density-functional approximation (LDA). The equilibrium lattice parameters, bulk moduli, Poisson's ratios, and cohesive energies are obtained from the total energies calculated as functions of the a and c lattice parameters. As found in other LDA calculations, the cohesive energies are overestimated compared to experiment, but otherwise generally good agreement with experiment is obtained. The uncertainty in the results due to the particular choice of the LDA exchange-correlation potential is also examined by performing parallel calculations using the Kohn-Sham-Gaspar Xα (α=(2/3) exchange-only potential. We find that these calculations yield equilibrium volumes which differ by 6-8 % (with the Xα results in better agreement with experiment) with proportional differences in other structural properties, which we take to be an indication of the intrinsic reliability of the LDA.

  20. Equilibrium crystal phases of triblock Janus colloids.

    PubMed

    Reinhart, Wesley F; Panagiotopoulos, Athanassios Z

    2016-09-01

    Triblock Janus colloids, which are colloidal spheres decorated with attractive patches at each pole, have recently generated significant interest as potential building blocks for functional materials. Their inherent anisotropy is known to induce self-assembly into open structures at moderate temperatures and pressures, where they are stabilized over close-packed crystals by entropic effects. We present a numerical investigation of the equilibrium phases of triblock Janus particles with many different patch geometries in three dimensions, using Monte Carlo simulations combined with free energy calculations. In all cases, we find that the free energy difference between crystal polymorphs is less than 0.2 kBT per particle. By varying the patch fraction and interaction range, we show that large patches stabilize the formation of structures with four bonds per patch over those with three. This transition occurs abruptly above a patch fraction of 0.30 and has a strong dependence on the interaction range. Furthermore, we find that a short interaction range favors four bonds per patch, with longer range increasingly stabilizing structures with only three bonds per patch. By quantifying the effect of patch geometry on the stability of the equilibrium crystal structures, we provide insights into the fundamental design rules for constructing complex colloidal crystals. PMID:27609002

  1. Diluted equilibrium sterile neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Patwardhan, Amol V.; Fuller, George M.; Kishimoto, Chad T.; Kusenko, Alexander

    2015-11-01

    We present a model where sterile neutrinos with rest masses in the range ˜keV to ˜MeV can be the dark matter and be consistent with all laboratory, cosmological, and large-scale structure, as well as x-ray constraints. These sterile neutrinos are assumed to freeze out of thermal and chemical equilibrium with matter and radiation in the very early Universe, prior to an epoch of prodigious entropy generation ("dilution") from out-of-equilibrium decay of heavy particles. In this work, we consider heavy, entropy-producing particles in the ˜TeV to ˜EeV rest-mass range, possibly associated with new physics at high-energy scales. The process of dilution can give the sterile neutrinos the appropriate relic densities, but it also alters their energy spectra so that they could act like cold dark matter, despite relatively low rest masses as compared to conventional dark matter candidates. Moreover, since the model does not rely on active-sterile mixing for producing the relic density, the mixing angles can be small enough to evade current x-ray or lifetime constraints. Nevertheless, we discuss how future x-ray observations, future lepton number constraints, and future observations and sophisticated simulations of large-scale structure could, in conjunction, provide evidence for this model and/or constrain and probe its parameters.

  2. Equilibrium spin pulsars unite neutron star populations

    NASA Astrophysics Data System (ADS)

    Ho, Wynn C. G.; Klus, H.; Coe, M. J.; Andersson, Nils

    2014-02-01

    Many pulsars are formed with a binary companion from which they can accrete matter. Torque exerted by accreting matter can cause the pulsar spin to increase or decrease, and over long times, an equilibrium spin rate is achieved. Application of accretion theory to these systems provides a probe of the pulsar magnetic field. We compare the large number of recent torque measurements of accreting pulsars with a high-mass companion to the standard model for how accretion affects the pulsar spin period. We find that many long spin period (P ≳ 100 s) pulsars must possess either extremely weak (B < 1010 G) or extremely strong (B > 1014 G) magnetic fields. We argue that the strong-field solution is more compelling, in which case these pulsars are near spin equilibrium. Our results provide evidence for a fundamental link between pulsars with the slowest spin periods and strong magnetic fields around high-mass companions and pulsars with the fastest spin periods and weak fields around low-mass companions. The strong magnetic fields also connect our pulsars to magnetars and strong-field isolated radio/X-ray pulsars. The strong field and old age of our sources suggest their magnetic field penetrates into the superconducting core of the neutron star.

  3. Turbulence modeling for non-equilibrium flow

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1995-01-01

    The work performed during this year has involved further assessment and extension of the k-epsilon-v(exp 2) model, and initiation of work on scalar transport. The latter is introduced by the contribution of Y. Shabany to this volume. Flexible, computationally tractable models are needed for engineering CFD. As computational technology has progressed, the ability and need to use elaborate turbulence closure models has increased. The objective of our work is to explore and develop new analytical frameworks that might extend the applicability of the modeling techniques. In past years the development of a method for near-wall modeling was described. The method has been implemented into a CFD code and its viability has been demonstrated by various test cases. Further tests are reported herein. Non-equilibrium near-wall models are needed for some heat transfer applications. Scalar transport seems generally to be more sensitive to non-equilibrium effects than is momentum transport. For some applications turbulence anisotropy plays a role and an estimate of the full Reynolds stress tensor is needed. We have begun work on scalar transport per se, but in this brief I will only report on an extension of the k-epsilon-v(exp 2) model to predict the Reynolds stress tensor.

  4. Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks

    NASA Astrophysics Data System (ADS)

    Kachan, Devin Michael

    Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. In this dissertation, I explore the role of both thermal and active fluctuations within cross-linked polymer networks. The systems I study are in large part inspired by the amazing physics found within the cytoskeleton of eukaryotic cells. I first predict and verify the existence of a thermal Casimir force between cross-linkers bound to a semi-flexible polymer. The calculation is complicated by the appearance of second order derivatives in the bending Hamiltonian for such polymers, which requires a careful evaluation of the the path integral formulation of the partition function in order to arrive at the physically correct continuum limit and properly address ultraviolet divergences. I find that cross linkers interact along a filament with an attractive logarithmic potential proportional to thermal energy. The proportionality constant depends on whether and how the cross linkers constrain the relative angle between the two filaments to which they are bound. The interaction has important implications for the synthesis of biopolymer bundles within cells. I model the cross-linkers as existing in two phases: bound to the bundle and free in solution. When the cross-linkers are bound, they behave as a one-dimensional gas of particles interacting with the Casimir force, while the free phase is a simple ideal gas. Demanding equilibrium between the two phases, I find a discontinuous transition between a sparsely and a densely bound bundle. This discontinuous condensation transition induced by the long-ranged nature of the Casimir interaction allows for a similarly abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase and a higher cross link density bundle network. This work is supported by the results of finite element Brownian dynamics simulations of semiflexible filaments and transient cross-linkers. I

  5. Electrostatic interaction of two charged macroparticles in an equilibrium plasma

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.; Pal', A. F.; Starostin, A. N.

    2015-11-01

    This article is a critical review of publications devoted to studying the electrostatic interaction of two charged macroparticles in an equilibrium plasma. It is shown from an analysis of the force of interaction based on the Maxwell stress tensor that two macroparticles with identical charges in the Poisson-Boltzmann model always repel each other both in isothermal and nonisothermal plasmas. At distances between macroparticles for which the Boltzmann exponents can be linearized, the interaction between macroparticles is completely described by the Debye-Hückel model. The correction to free energy due to the electrostatic interaction in the system of two macroparticles is determined by integrating the correction to the internal energy and by direct calculation of the correction for entropy. It is shown that the free energy coincides with the Yukawa potential. The coincidence of the interaction energy obtained by integrating the force of interaction with the free energy leads to the conclusion about the potential nature of the force of interaction between two macroparticles in an equilibrium plasma. The effect of the outer boundary on the electrostatic interaction force is analyzed; it is shown that the type of interaction depends on the choice of the boundary conditions at the outer boundary. It is also shown that the accumulation of space charge near the outer boundary can lead to the attraction of similarly charged particles at distances comparable with the radius of the outer boundary.

  6. Altering the equilibrium condition in Sr-doped lanthanum manganite.

    SciTech Connect

    Carter, J. D.; Krumpelt, M.; Vaughey, J.; Wang, X.

    1999-05-28

    The material of choice for a solid oxide fuel cell cathode based on a yttria-stabilized zirconia (YSZ) electrolyte is doped lanthanum manganite, (La, Sr)MnO{sub 3}. It excels at many of the attributes necessary for a system to work at the required operating temperature and is flexible enough to allow for materials optimization. Although strontium-doping increases the electronic conductivity of the material, the ionic conductivity of the material remains negligible under operating conditions. Studies have shown that the internal equilibrium of the material heavily favors oxidation of the manganese and rather than the loss of lattice oxygen as a charge compensation mechanism. This lack of oxygen vacancies in the structure retards the ability of the material to conduct oxygen ions; thus the optimized system requires a large number of engineered triple point boundary locations to work efficiently. We have successfully doped the host LSM lattice to alter the interred equilibrium of the material to increase its ionic conductivity and thus lower the cathodic overpotential of the system. Our presentation will discuss these new materials, the results of cell tests, and a number of characterization experiments performed.

  7. Signal Propagation in Proteins and Relation to Equilibrium Fluctuations

    PubMed Central

    Chennubhotla, Chakra; Bahar, Ivet

    2007-01-01

    Elastic network (EN) models have been widely used in recent years for describing protein dynamics, based on the premise that the motions naturally accessible to native structures are relevant to biological function. We posit that equilibrium motions also determine communication mechanisms inherent to the network architecture. To this end, we explore the stochastics of a discrete-time, discrete-state Markov process of information transfer across the network of residues. We measure the communication abilities of residue pairs in terms of hit and commute times, i.e., the number of steps it takes on an average to send and receive signals. Functionally active residues are found to possess enhanced communication propensities, evidenced by their short hit times. Furthermore, secondary structural elements emerge as efficient mediators of communication. The present findings provide us with insights on the topological basis of communication in proteins and design principles for efficient signal transduction. While hit/commute times are information-theoretic concepts, a central contribution of this work is to rigorously show that they have physical origins directly relevant to the equilibrium fluctuations of residues predicted by EN models. PMID:17892319

  8. Distinguishing two Population Processes with Identical Equilibrium Densities

    NASA Astrophysics Data System (ADS)

    Jakeman, E.; Hopcraft, K. I.; Matthews, J. O.

    2003-04-01

    We analyze the relationship between the evolution of simple population processes and the rate of emigration of individuals. An external monitoring scheme is defined by counting the number leaving the population in fixed time intervals. This is the analogue of photon counting in quantum optics. It is a reasonable measurement in many situations of interest and also has the merit of being analytically tractable. The formalism we develop is used to investigate the statistical and correlation properties of two stochastic population models that give rise to identical first order probability densities. The first is the birth-death- immigration process for which many well-known results can be found in the literature. The second is based on a population sustained by multiple immigration. This model is a generalization of the pair process investigated previously [1]. It can be used to generate populations with a range of equilibrium densities including those with power law tails to be described in a companion paper. Here we show that, in the case of a geometric distribution of multiples, the equilibrium density is negative binomial and higher order joint statistical properties must be used to distinguish the model from the conventional birth-death-immigration process. Formulae characterizing the integrated counting statistics of the two models are derived and it is shown how they may be exploited to achieve this objective.

  9. Electrostatic interaction of two charged macroparticles in an equilibrium plasma

    SciTech Connect

    Filippov, A. V. Pal’, A. F.; Starostin, A. N.

    2015-11-15

    This article is a critical review of publications devoted to studying the electrostatic interaction of two charged macroparticles in an equilibrium plasma. It is shown from an analysis of the force of interaction based on the Maxwell stress tensor that two macroparticles with identical charges in the Poisson–Boltzmann model always repel each other both in isothermal and nonisothermal plasmas. At distances between macroparticles for which the Boltzmann exponents can be linearized, the interaction between macroparticles is completely described by the Debye–Hückel model. The correction to free energy due to the electrostatic interaction in the system of two macroparticles is determined by integrating the correction to the internal energy and by direct calculation of the correction for entropy. It is shown that the free energy coincides with the Yukawa potential. The coincidence of the interaction energy obtained by integrating the force of interaction with the free energy leads to the conclusion about the potential nature of the force of interaction between two macroparticles in an equilibrium plasma. The effect of the outer boundary on the electrostatic interaction force is analyzed; it is shown that the type of interaction depends on the choice of the boundary conditions at the outer boundary. It is also shown that the accumulation of space charge near the outer boundary can lead to the attraction of similarly charged particles at distances comparable with the radius of the outer boundary.

  10. Static and dynamic properties of large polymer melts in equilibrium

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiao-Ping; Kremer, Kurt

    2016-04-01

    We present a detailed study of the static and dynamic behaviors of long semiflexible polymer chains in a melt. Starting from previously obtained fully equilibrated high molecular weight polymer melts [G. Zhang et al., ACS Macro Lett. 3, 198 (2014)], we investigate their static and dynamic scaling behaviors as predicted by theory. We find that for semiflexible chains in a melt, results of the mean square internal distance, the probability distributions of the end-to-end distance, and the chain structure factor are well described by theoretical predictions for ideal chains. We examine the motion of monomers and chains by molecular dynamics simulations using the ESPResSo++ package. The scaling predictions of the mean squared displacement of inner monomers, center of mass, and relations between them based on the Rouse and the reptation theory are verified, and related characteristic relaxation times are determined. Finally, we give evidence that the entanglement length Ne,PPA as determined by a primitive path analysis (PPA) predicts a plateau modulus, GN 0 = /4 5 ( ρ k B T / N e ) , consistent with stresses obtained from the Green-Kubo relation. These comprehensively characterized equilibrium structures, which offer a good compromise between flexibility, small Ne, computational efficiency, and small deviations from ideality, provide ideal starting states for future non-equilibrium studies.

  11. Network representations of knowledge about chemical equilibrium: Variations with achievement

    NASA Astrophysics Data System (ADS)

    Wilson, Janice M.

    This study examined variation in the organization of domain-specific knowledge by 50 Year-12 chemistry students and 4 chemistry teachers. The study used nonmetric multidimensional scaling (MDS) and the Pathfinder network-generating algorithm to investigate individual and group differences in student concepts maps about chemical equilibrium. MDS was used to represent the individual maps in two-dimensional space, based on the presence or absence of paired propositional links. The resulting separation between maps reflected degree of hierarchical structure, but also reflected independent measures of student achievement. Pathfinder was then used to produce semantic networks from pooled data from high and low achievement groups using proximity matrices derived from the frequencies of paired concepts. The network constructed from maps of higher achievers (coherence measure = 0.18, linked pairs = 294, and number of subjects = 32) showed greater coherence, more concordance in specific paired links, more important specific conceptual relationships, and greater hierarchical organization than did the network constructed from maps of lower achievers (coherence measure = 0.12, linked pairs = 552, and number of subjects = 22). These differences are interpreted in terms of qualitative variation in knowledge organization by two groups of individuals with different levels of relative expertise (as reflected in achievement scores) concerning the topic of chemical equilibrium. The results suggest that the technique of transforming paired links in concept maps into proximity matrices for input to multivariate analyses provides a suitable methodology for comparing and documenting changes in the organization and structure of conceptual knowledge within and between individual students.

  12. Geometric aspects in extended approach of equilibrium classical fluctuation theory

    NASA Astrophysics Data System (ADS)

    Velazquez, L.

    2011-11-01

    Previously, an extended approach of equilibrium classical fluctuation theory was developed compatible with the existence of anomalous response functions, e.g. states with negative heat capacities. Now, the geometric aspects associated with this new framework are analyzed. The analysis starts from the so-called reparametrization invariance: a special symmetry of distribution functions dp (I|θ) employed in classical equilibrium statistical mechanics that allows us to express the thermo-statistical relations in the same mathematical appearance in different coordinate representations. The existence of reparametrization invariance can be related to three different geometric frameworks: (1) a non-Riemannian formulation for classical fluctuation theory based on the concept of reparametrization dualities; (2) a Riemannian formulation defined on the manifold {P} of control parameters θ, where the main theorems of inference theory appear as dual counterparts of general fluctuation theorems, and Boltzmann-Gibbs distributions ωBG(I|θ) = exp(-θiIi)/Z(θ) admit a geometric generalization; and finally, (3) a Riemannian formulation defined on the manifold {M}_{\\theta } of macroscopic observables I, which appears as a counterpart approach of inference geometry.

  13. Universality in equilibrium and away from it: A personal perspective

    SciTech Connect

    Munoz, Miguel A.

    2011-03-24

    In this talk/paper I discuss the concept of universality in phase transitions and the question of whether universality classes are more robust in equilibrium than away from it. In both of these situations, the main ingredients determining universality are symmetries, conservation laws, the dimension of the space and of the order-parameter and the presence of long-range interactions or quenched disorder. The existence of detailed-balance and fluctuation-dissipation theorems imposes severe constraints on equilibrium systems, allowing to define universality classes in a very robust way; instead, non-equilibrium allows for more variability. Still, quite robust non-equilibrium universality classes have been identified in the last decades. Here, I discuss some examples in which (i) non-equilibrium phase transitions are simply controlled by equilibrium critical points, i.e. non-equilibrium ingredients turn out to be irrelevant in the renormalization group sense and (ii) non-equilibrium situations in which equilibrium seems to come out of the blue, generating an adequate effective description of intrinsically non-equilibrium problems. Afterwards, I shall describe different genuinely non-equilibrium phase transitions in which introducing small, apparently innocuous changes (namely: presence or absence of an underlying lattice, parity conservation in the overall number of particles, existence of an un-accessible vacuum state, deterministic versus stochastic microscopic rules, presence or absence of a Fermionic constraint), the critical behavior is altered, making the case for lack of robustness. However, it will be argued that in all these examples, there is an underlying good reason (in terms of general principles) for universality to be altered. The final conclusions are that: (i) robust universality classes exist both in equilibrium and non-equilibrium; (ii) symmetry and conservation principles are crucial in both, (iii) non-equilibrium allows for more variability (i

  14. Direct Determination of the Equilibrium Unbinding Potential Profile for a Short DNA Duplex from Force Spectroscopy Data

    SciTech Connect

    Noy, A

    2004-05-04

    Modern force microscopy techniques allow researchers to use mechanical forces to probe interactions between biomolecules. However, such measurements often happen in non-equilibrium regime, which precludes straightforward extraction of the equilibrium energy information. Here we use the work averaging method based on Jarzynski equality to reconstruct the equilibrium interaction potential from the unbinding of a complementary 14-mer DNA duplex from the results of non-equilibrium single-molecule measurements. The reconstructed potential reproduces most of the features of the DNA stretching transition, previously observed only in equilibrium stretching of long DNA sequences. We also compare the reconstructed potential with the thermodynamic parameters of DNA duplex unbinding and show that the reconstruction accurately predicts duplex melting enthalpy.

  15. Comparison of equilibrium and non-equilibrium distribution coefficients for the human drug carbamazepine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The distribution coefficient (KD) for the human drug carbamazepine was measured using a non-equilibrium technique. Repacked soil columns were prepared using an Airport silt loam (Typic Natrustalf) with an average organic matter content of 2.45%. Carbamazepine solutions were then leached through th...

  16. Reconstructing equilibrium entropy and enthalpy profiles from non-equilibrium pulling.

    PubMed

    Jeong, Daun; Andricioaei, Ioan

    2013-03-21

    The Jarzynski identity can be applied to instances when a microscopic system is pulled repeatedly but quickly along some coordinate, allowing the calculation of an equilibrium free energy profile along the pulling coordinate from a set of independent non-equilibrium trajectories. Using the formalism of Wiener stochastic path integrals in which we assign temperature-dependent weights to Langevin trajectories, we derive exact formulae for the temperature derivatives of the free energy profile. This leads naturally to analytical expressions for decomposing a free energy profile into equilibrium entropy and internal energy profiles from non-equilibrium pulling. This decomposition can be done from trajectories evolved at a unique temperature without repeating the measurement as done in finite-difference decompositions. Three distinct analytical expressions for the entropy-energy decomposition are derived: using a time-dependent generalization of the weighted histogram analysis method, a quasi-harmonic spring limit, and a Feynman-Kac formula. The three novel formulae of reconstructing the pair of entropy-energy profiles are exemplified by Langevin simulations of a two-dimensional model system prototypical for force-induced biomolecular conformational changes. Connections to single-molecule experimental means to probe the functionals needed in the decomposition are suggested. PMID:23534630

  17. Equilibrium and non-equilibrium cluster phases in colloids with competing interactions.

    PubMed

    Mani, Ethayaraja; Lechner, Wolfgang; Kegel, Willem K; Bolhuis, Peter G

    2014-07-01

    The phase behavior of colloids that interact via competing interactions - short-range attraction and long-range repulsion - is studied by computer simulation. In particular, for a fixed strength and range of repulsion, the effect of the strength of an attractive interaction (ε) on the phase behavior is investigated at various colloid densities (ρ). A thermodynamically stable equilibrium colloidal cluster phase, consisting of compact crystalline clusters, is found below the fluid-solid coexistence line in the ε-ρ parameter space. The mean cluster size is found to linearly increase with the colloid density. At large ε and low densities, and at small ε and high densities, a non-equilibrium cluster phase, consisting of elongated Bernal spiral-like clusters, is observed. Although gelation can be induced either by increasing ε at constant density or vice versa, the gelation mechanism is different in either route. While in the ρ route gelation occurs via a glass transition of compact clusters, gelation in the ε route is characterized by percolation of elongated clusters. This study both provides the location of equilibrium and non-equilibrium cluster phases with respect to the fluid-solid coexistence, and reveals the dependencies of the gelation mechanism on the preparation route. PMID:24824226

  18. Using Performance Reference Compounds (PRCs) to measure dissolved water concentrations (Cfree) in the water column: Assessing equilibrium models

    EPA Science Inventory

    Equilibrium-based passive sampling methods are often used in aquatic environmental monitoring to measure hydrophobic organic contaminants (HOCs) and in the subsequent evaluation of their effects on ecological and human health. HOCs freely dissolved in water (Cfree) will partition...

  19. Equilibrium pricing in an order book environment: Case study for a spin model

    NASA Astrophysics Data System (ADS)

    Meudt, Frederik; Schmitt, Thilo A.; Schäfer, Rudi; Guhr, Thomas

    2016-07-01

    When modeling stock market dynamics, the price formation is often based on an equilibrium mechanism. In real stock exchanges, however, the price formation is governed by the order book. It is thus interesting to check if the resulting stylized facts of a model with equilibrium pricing change, remain the same or, more generally, are compatible with the order book environment. We tackle this issue in the framework of a case study by embedding the Bornholdt-Kaizoji-Fujiwara spin model into the order book dynamics. To this end, we use a recently developed agent based model that realistically incorporates the order book. We find realistic stylized facts. We conclude for the studied case that equilibrium pricing is not needed and that the corresponding assumption of a "fundamental" price may be abandoned.

  20. An Initial Non-Equilibrium Porous-Media Model for CFD Simulation of Stirling Regenerators

    NASA Technical Reports Server (NTRS)

    Tew, Roy C.; Simon, Terry; Gedeon, David; Ibrahim, Mounir; Rong, Wei

    2006-01-01

    The objective of this paper is to define empirical parameters for an initial thermal non-equilibrium porous-media model for use in Computational Fluid Dynamics (CFD) codes for simulation of Stirling regenerators. The two codes currently used at Glenn Research Center for Stirling modeling are Fluent and CFD-ACE. The codes porous-media models are equilibrium models, which assume solid matrix and fluid are in thermal equilibrium. This is believed to be a poor assumption for Stirling regenerators; Stirling 1-D regenerator models, used in Stirling design, use non-equilibrium regenerator models and suggest regenerator matrix and gas average temperatures can differ by several degrees at a given axial location and time during the cycle. Experimentally based information was used to define: hydrodynamic dispersion, permeability, inertial coefficient, fluid effective thermal conductivity, and fluid-solid heat transfer coefficient. Solid effective thermal conductivity was also estimated. Determination of model parameters was based on planned use in a CFD model of Infinia's Stirling Technology Demonstration Converter (TDC), which uses a random-fiber regenerator matrix. Emphasis is on use of available data to define empirical parameters needed in a thermal non-equilibrium porous media model for Stirling regenerator simulation. Such a model has not yet been implemented by the authors or their associates.

  1. Equilibrium and Kinetics of Block Copolymers Micelles

    NASA Astrophysics Data System (ADS)

    Mysona, Joshua; Morse, David

    Both equilibrium properties of micelles, such as the critical micelle concentration (CMC), and dynamical properties such as the micelle lifetime are difficult to study in simulations because of the slow dynamics of the processes by which micelles are created and destroyed. We first discuss a method of precisely identifying the CMC in a simple model of block copolymer micelles in a homopolymer matrix, which makes use of thermodynamic integration to compute the free energy of formation. We then examine the free energy barriers to competing mechanisms for creating and destroying micelles, which could occur predominantly either by a step-wise process involving insertion and extraction of single molecules or by fission and fusion of entire micelles.

  2. Radiative equilibrium and escape of Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Erwin, Justin; Koskinen, Tommi T.; Yelle, Roger V.

    2015-11-01

    Observations of Pluto’s extend atmosphere by the New Horizons spacecraft motivate an update to our modeling effort on Pluto’s atmosphere. New Horizons observations have already improved our constraints on planet radius and surface pressure, which are key to modeling the atmospheric structure. We model the radiative conductive equilibrium in the lower atmosphere combined with the UV driven escape model of the upper atmosphere. The non-LTE radiative transfer model in the lower atmosphere include heating and cooling by CH4, CO, and HCN. The escape model of the upper atmosphere is updated to include diffusion and escape of each molecular component. These results will be used to aid in the analysis and better understanding of the full atmospheric structure.

  3. Thermal equilibrium of two quantum Brownian particles

    SciTech Connect

    Valente, D. M.; Caldeira, A. O.

    2010-01-15

    The influence of the environment in the thermal equilibrium properties of a bipartite continuous variable quantum system is studied. The problem is treated within a system-plus-reservoir approach. The considered model reproduces the Brownian motion when the two particles are isolated and induces an effective interaction between them, depending on the choice of the spectral function of the bath. The coupling between the system and the environment guarantees the translational invariance of the system in the absence of an external potential. The entanglement between the particles is measured by the logarithmic negativity, which is shown to monotonically decrease with the increase of the temperature. A range of finite temperatures is found in which entanglement is still induced by the reservoir.

  4. Information thermodynamics of near-equilibrium computation.

    PubMed

    Prokopenko, Mikhail; Einav, Itai

    2015-06-01

    In studying fundamental physical limits and properties of computational processes, one is faced with the challenges of interpreting primitive information-processing functions through well-defined information-theoretic as well as thermodynamic quantities. In particular, transfer entropy, characterizing the function of computational transmission and its predictability, is known to peak near critical regimes. We focus on a thermodynamic interpretation of transfer entropy aiming to explain the underlying critical behavior by associating information flows intrinsic to computational transmission with particular physical fluxes. Specifically, in isothermal systems near thermodynamic equilibrium, the gradient of the average transfer entropy is shown to be dynamically related to Fisher information and the curvature of system's entropy. This relationship explicitly connects the predictability, sensitivity, and uncertainty of computational processes intrinsic to complex systems and allows us to consider thermodynamic interpretations of several important extreme cases and trade-offs. PMID:26172697

  5. Equilibrium properties of chemically reacting gases

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The equilibrium energy, enthalpy, entropy, specific heat at constant volume and constant pressure, and the equation of state of the gas are all derived for chemically reacting gas mixtures in terms of the compressibility, the mol fractions, the thermodynamic properties of the pure gas components, and the change in zero point energy due to reaction. Results are illustrated for a simple diatomic dissociation reaction and nitrogen is used as an example. Next, a gas mixture resulting from combined diatomic dissociation and atomic ionization reactions is treated and, again, nitrogen is used as an example. A short discussion is given of the additional complexities involved when precise solutions for high-temperature air are desired, including effects caused by NO produced in shuffle reactions and by other trace species formed from CO2, H2O and Ar found in normal air.

  6. Anisotropic pressure tokamak equilibrium and stability considerations

    SciTech Connect

    Salberta, E.R.; Grimm, R.C.; Johnson, J.L.; Manickam, J.; Tang, W.M.

    1987-02-01

    Investigation of the effect of pressure anisotropy on tokamak equilibrium and stability is made with an MHD model. Realistic perpendicular and parallel pressure distributions, P/sub perpendicular/(psi,B) and P/sub parallel/(psi,B), are obtained by solving a one-dimensional Fokker-Planck equation for neutral beam injection to find a distribution function f(E, v/sub parallel//v) at the position of minimum field on each magnetic surface and then using invariance of the magnetic moment to determine its value at each point on the surface. The shift of the surfaces of constant perpendicular and parallel pressure from the flux surfaces depends strongly on the angle of injection. This shift explains the observed increase or decrease in the stability conditions. Estimates of the stabilizing effect of hot trapped ions indicates that a large fraction must be nonresonant and thus decoupled from the bad curvature before it becomes important.

  7. Extant mammal body masses suggest punctuated equilibrium.

    PubMed

    Mattila, Tiina M; Bokma, Folmer

    2008-10-01

    Is gradual microevolutionary change within species simultaneously the source of macroevolutionary differentiation between species? Since its first publication, Darwin's original idea that phenotypic differences between species develop gradually over time, as the accumulation of small selection-induced changes in successive generations has been challenged by palaeontologists claiming that, instead, new species quickly acquire their phenotypes to remain virtually unchanged until going extinct again. This controversy, widely known as the 'punctuated equilibrium' debate, remained unresolved, largely owing to the difficulty of distinguishing biological species from fossil remains. We analysed body masses of 2143 existing mammal species on a phylogeny comprising 4510 (i.e. nearly all) extant species to estimate rates of gradual (anagenetic) and speciational (cladogenetic) evolution. Our Bayesian estimates from mammals as well as separate sub-clades such as primates and carnivores suggest that gradual evolution is responsible for only a small part of body size variation between mammal species. PMID:18595835

  8. The Equilibrium Spreading Tension of Pulmonary Surfactant.

    PubMed

    Dagan, Maayan P; Hall, Stephen B

    2015-12-01

    Monomolecular films at an air/water interface coexist at the equilibrium spreading tension (γ(e)) with the bulk phase from which they form. For individual phospholipids, γ(e) is single-valued, and separates conditions at which hydrated vesicles adsorb from tensions at which overcompressed monolayers collapse. With pulmonary surfactant, isotherms show that monolayers compressed on the surface of bubbles coexist with the three-dimensional collapsed phase over a range of surface tensions. γ(e) therefore represents a range rather than a single value of surface tension. Between the upper and lower ends of this range, rates of collapse for spread and adsorbed films decrease substantially. Changes during adsorption across this narrow region of coexistence between the two- and three-dimensional structures at least partially explain how alveolar films of pulmonary surfactant become resistant to collapse. PMID:26583569

  9. Oppositely charged colloids out of equilibrium

    NASA Astrophysics Data System (ADS)

    Vissers, T.

    2010-11-01

    Colloids are particles with a size in the range of a few nanometers up to several micrometers. Similar to atomic and molecular systems, they can form gases, liquids, solids, gels and glasses. Colloids can be used as model systems because, unlike molecules, they are sufficiently large to be studied directly with light microscopy and move sufficiently slow to study their dynamics. In this thesis, we study binary systems of polymethylmethacrylate (PMMA) colloidal particles suspended in low-polar solvent mixtures. Since the ions can still partially dissociate, a surface charge builds up which causes electrostatic interactions between the colloids. By carefully tuning the conditions inside the suspension, we make two kinds of particles oppositely charged. To study our samples, we use Confocal Laser Scanning Microscopy (CLSM). The positively and negatively charged particles can be distinguished by a different fluorescent dye. Colloids constantly experience a random motion resulting from random kicks of surrounding solvent molecules. When the attractions between the oppositely charged particles are weak, the particles can attach and detach many times and explore a lot of possible configurations and the system can reach thermodynamic equilibrium. For example, colloidal ‘ionic’ crystals consisting of thousands to millions of particles can form under the right conditions. When the attractions are strong, the system can become kinetically trapped inside a gel-like state. We observe that when the interactions change again, crystals can even emerge again from this gel-like phase. By using local order parameters, we quantitatively study the crystallization of colloidal particles and identify growth defects inside the crystals. We also study the effect of gravity on the growth of ionic crystals by using a rotating stage. We find that sedimentation can completely inhibit crystal growth and plays an important role in crystallization from the gel-like state. The surface

  10. Plasmon damping in graphene out of equilibrium

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyuan; Basov, Dimitri; Fogler, Michael

    Motivated by recent experiments with graphene under high photoexcitation, we study theoretically plasmons of graphene in the two-temperature regime, i.e., the regime where electrons are much hotter than the lattice. We calculate the plasmon damping due to scattering of electrons by acoustic phonons, which is the dominant intrinsic contribution in clean graphene. As the system relaxes to equilibrium, the plasmon frequency adiabatically changes with time. We show that this causes a partial compensation of the plasmon damping. A similar mechanism may apply to another collective mode (the energy wave) predicted to exist in graphene in the low-frequency hydrodynamic regime. Implications for infrared and THz pump-probe experiments are discussed.

  11. Equilibrium spin pulsars unite neutron star populations

    NASA Astrophysics Data System (ADS)

    Ho, Wynn; Klus, Helen; Coe, Malcolm; Andersson, Nils

    2015-08-01

    We compare the large number of recent torque measurements of accreting pulsars with a high-mass companion to the standard model for how accretion affects the pulsar spin period. We find that many long spin period (P > 100 s) pulsars must possess either extremely weak (B < 10^10 G) or extremely strong (B > 10^14 G) magnetic fields. We argue that the strong-field solution is more compelling, in which case these pulsars are near spin equilibrium. Our results provide evidence for a fundamental link between pulsars with the slowest spin periods and strong magnetic fields around high-mass companions and pulsars with the fastest spin periods and weak fields around low-mass companions. The strong magnetic fields also connect our pulsars to magnetars and strong-field isolated radio/X-ray pulsars. The strong field and old age of our sources suggests their magnetic field penetrates into the superconducting core of the neutron star.

  12. Equilibrium and Stability of Coronal Helmet Streamers

    NASA Astrophysics Data System (ADS)

    Glukhov, Vyacheslav Sergeevich

    1997-05-01

    Equilibrium states and stability of partially open magentic field structures in the solar corona are studied. Soft X-ray observations of the birth and evolution of a giant coronal helmet streamer suggest that the energy source responsible for the X-ray manifestation of the structure is most probably located in the lower corona. The downward heat flux is the indication that a significant part of the source's energy is transported to the top of the structure and converted there to a disposable form. It is shown that by applying the thermodynamic equilibrium model of the corona to the two-dimensional X-ray data it is possible to reconstruct the three-dimensional form of the coronal helmet. The general significance of the projective geometry effects for the observation of the solar corona is discussed. The hypothesis of thermal pressure increase as the cause of the observed helmet expansion is verified numerically. It is shown that in the solar corona a relatively small variations of the pressure distribution in the closed field region can cause huge variations in the geometry of a coronal helmet streamer. Numerical simulations of the morphology and energy accumulation in helmet-like structures subject to photospheric shear motion show that the magnetic field surrounding a partially open structure can inhibit catastrophic expansion of the structure as its energy grows. Stability of a coronal streamer in the framework of the neutral current sheet model is studied theoretically. It is shown that effects of viscosity and the finite Larmor radius dominate effects of inertial fluid motion in the tearing mode instability of a neutral current sheet. Two new regimes of the instability are discovered. It is proven that in the solar corona the rates of growth of the neutral current sheet instability are much smaller than previously believed. Implications of the obtained results are discussed.

  13. Experimental studies in non-equilibrium physics

    NASA Astrophysics Data System (ADS)

    Cressman, John Robert, Jr.

    This work is a collection of three experiments aimed at studying different facets of non-equilibrium dynamics. Chapter I concerns strongly compressible turbulence, which turns out to be very different from incompressible turbulence. The focus is on the dispersion of contaminants in such a flow. This type of turbulence can be studied, at very low mach number, by measuring the velocity fields of particles that float on a turbulently stirred body of water. It turns out that in the absence of incompressibility, the turbulence causes particles to cluster rather than to disperse. The implications of the observations are far reaching and include the transport of pollutants on the oceans surface, phytoplankton growth, as well as industrial applications. Chapter II deals with the effects of polymer additives on drag reduction and turbulent suppression, a well-known phenomenon that is not yet understood. In an attempt to simplify the problem, the effects of a polymer additive were investigated in a vortex street formed in a flowing soap film. Measurements suggest that an increase in elongational viscosity is responsible for a substantial reduction in periodic velocity fluctuations. This study also helps to illuminate the mechanism responsible for vortex separation in the wake of a bluff body. Chapter III describes an experiment designed to test a theoretical approach aimed at generalizing the classical fluctuation dissipation theorem (FDT). This theorem applies to systems driven only slightly away from thermal equilibrium, whereas ours, a liquid crystal under-going electroconvection, is so strongly driven, that the FDT does not apply. Both theory and experiment focus on the flux in global power fluctuations. Physical limitations did not permit a direct test of the theory, however it was possible to establish several interesting characteristics of the system: the source of the fluctuations is the transient defect structures that are generated when the system is driven hard

  14. Radiation temperature of non-equilibrium plasmas

    SciTech Connect

    Arunasalam, V.

    1991-07-01

    In fusion devices measurements of the radiation temperature T{sub r} ({omega}, k) near the electron cyclotron frequency {omega}{sub C} and the second harmonic 2{omega}{sub C} in directions nearly perpendicular to the confining magnetic field B (i.e., k {approx} k {perpendicular}) serve to map out the electron temperature profiles T{sub e}(r,t). For optically thick plasma at thermodynamic equilibrium T{sub r} = T{sub e}. However, there is increasing experimental evidence for the presence of non-equilibrium electron distributions (such as a drifting Maxwellian with appreciable values of the streaming parameter {omicron} = v{sub d}/v{sub t}, a bi- Maxwellian, and anisotropic Maxwellian with T {perpendicular} {ne} T {parallel}, etc.,) in tokamak plasmas, especially in the presence of radio-frequency heating. Here, we examine (both non-relativistically and relativistically) the dependence of T{sub r} on {omicron}, T{perpendicular}/T{parallel}, T{sub h}/T{sub b}, n{sub h}/n{sub b}etc., where n{sub b}, n{sub h}, T{sub b}, T{sub h} are the densities and temperatures, respectively, of the bulk and the hot components of the bi-Maxwellian plasma. Our bi-Maxwellian results predict that the ratio T{sub r}/T{sub e} is a very sensitive function of the ratios n{sub h}/n{sub b} and T{sub h}/T{sub b}. Further, these relativistic and non-relativistic results satisfy the well-known limit c {yields} {infinity} correspondence principle'', showing that the intensity of the emission and absorption line is independent of the line broadening mechanism. 44 refs., 2 figs.

  15. Marsh Equilibrium Theory: A Paleo Perspective

    NASA Astrophysics Data System (ADS)

    Morris, J. T.; Kemp, A.; Barber, D. C.; Culver, S. J.; Kegel, J.; Horton, B.

    2014-12-01

    Salt marshes adapt to changes in sea level by means of biogeomorphological feedback. These feedbacks maintain a dynamic equilibrium with sea level, within limits. Reconstructions of sea-level changes derived from salt-marsh sediment provide a paleo perspective for evaluating these feedbacks and for predicting the ecological effects of future sea-level rise. The Marsh Equilibrium Model (MEM) was modified to accommodate long records of sea level and sediment physical and chemical variables derived from high resolution (decadal and decimeter) reconstruction of sea level spanning the late Holocene using foraminifera preserved in North Carolina salt-marsh sediments. Model outputs from a run of nearly 1100-yr show periods of time when the marsh was predicted to be positioned near the top of the tidal frame (inundation time near zero) and times when the marsh was much deeper in the intertidal zone (inundation time of ca. 0.4). An elevation at mean sea level would correspond to an inundation time of 0.5, which is close to the lower limit of the vegetation and is indicative of a marsh that is just forming or, alternatively, a marsh that is on the verge of collapse. The model also indicates that the standing biomass on the marsh surface and sediment organic matter (SOM) content would have varied in harmony with the inundation time. In times past when the inundation time and the opportunity for mineral sedimentation decreased, the sediment organic matter (SOM) content increased. The low SOM concentration near the marsh surface today is consistent with a marsh that is low in the tidal frame. The SOM depth profile is a function of the relative elevation of the marsh, as well as changes in the input of inorganic sediment to the estuary. To effectively manage and preserve valuable salt-marsh ecosystems it is critical to accurately predict their response to projected sea-level changes.

  16. A Progression of Static Equilibrium Laboratory Exercises

    NASA Astrophysics Data System (ADS)

    Kutzner, Mickey; Kutzner, Andrew

    2013-10-01

    Although simple architectural structures like bridges, catwalks, cantilevers, and Stonehenge have been integral in human societies for millennia, as have levers and other simple tools, modern students of introductory physics continue to grapple with Newton's conditions for static equilibrium. As formulated in typical introductory physics textbooks, these two conditions appear as ΣF=0(1) and Στ=0,(2) where each torque τ is defined as the cross product between the lever arm vector r and the corresponding applied force F, τ =r×F,(3) having magnitude, τ =Frsinθ.(4) The angle θ here is between the two vectors F and r. In Eq. (1), upward (downward) forces are considered positive (negative). In Eq. (2), counterclockwise (clockwise) torques are considered positive (negative). Equation (1) holds that the vector sum of the external forces acting on an object must be zero to prevent linear accelerations; Eq. (2) states that the vector sum of torques due to external forces about any axis must be zero to prevent angular accelerations. In our view these conditions can be problematic for students because a) the equations contain the unfamiliar summation notation Σ, b) students are uncertain of the role of torques in causing rotations, and c) it is not clear why the sum of torques is zero regardless of the choice of axis. Gianino5 describes an experiment using MBL and a force sensor to convey the meaning of torque as applied to a rigid-body lever system without exploring quantitative aspects of the conditions for static equilibrium.

  17. Uncertainty Quantification of Equilibrium Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Lucas, D. D.; Brandon, S. T.; Covey, C. C.; Domyancic, D. M.; Johannesson, G.; Klein, R.; Tannahill, J.; Zhang, Y.

    2011-12-01

    Significant uncertainties exist in the temperature response of the climate system to changes in the levels of atmospheric carbon dioxide. We report progress to quantify the uncertainties of equilibrium climate sensitivity using perturbed parameter ensembles of the Community Earth System Model (CESM). Through a strategic initiative at the Lawrence Livermore National Laboratory, we have been developing uncertainty quantification (UQ) methods and incorporating them into a software framework called the UQ Pipeline. We have applied this framework to generate a large number of ensemble simulations using Latin Hypercube and other schemes to sample up to three dozen uncertain parameters in the atmospheric (CAM) and sea ice (CICE) model components of CESM. The parameters sampled are related to many highly uncertain processes, including deep and shallow convection, boundary layer turbulence, cloud optical and microphysical properties, and sea ice albedo. An extensive ensemble database comprised of more than 46,000 simulated climate-model-years of recent climate conditions has been assembled. This database is being used to train surrogate models of CESM responses and to perform statistical calibrations of the CAM and CICE models given observational data constraints. The calibrated models serve as a basis for propagating uncertainties forward through climate change simulations using a slab ocean model configuration of CESM. This procedure is being used to quantify the probability density function of equilibrium climate sensitivity accounting for uncertainties in climate model processes. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was funded by the Uncertainty Quantification Strategic Initiative Laboratory Directed Research and Development Project at LLNL under project tracking code 10-SI-013. (LLNL-ABS-491765)

  18. Path integral Liouville dynamics for thermal equilibrium systems

    NASA Astrophysics Data System (ADS)

    Liu, Jian

    2014-06-01

    We show a new imaginary time path integral based method—path integral Liouville dynamics (PILD), which can be derived from the equilibrium Liouville dynamics [J. Liu and W. H. Miller, J. Chem. Phys. 134, 104101 (2011)] in the Wigner phase space. Numerical tests of PILD with the simple (white noise) Langevin thermostat have been made for two strongly anharmonic model problems. Since implementation of PILD does not request any specific form of the potential energy surface, the results suggest that PILD offers a potentially useful approach for general condensed phase molecular systems to have the two important properties: conserves the quantum canonical distribution and recovers exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits.

  19. Path integral Liouville dynamics for thermal equilibrium systems

    SciTech Connect

    Liu, Jian

    2014-06-14

    We show a new imaginary time path integral based method—path integral Liouville dynamics (PILD), which can be derived from the equilibrium Liouville dynamics [J. Liu and W. H. Miller, J. Chem. Phys. 134, 104101 (2011)] in the Wigner phase space. Numerical tests of PILD with the simple (white noise) Langevin thermostat have been made for two strongly anharmonic model problems. Since implementation of PILD does not request any specific form of the potential energy surface, the results suggest that PILD offers a potentially useful approach for general condensed phase molecular systems to have the two important properties: conserves the quantum canonical distribution and recovers exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits.

  20. Honeybee combs: construction through a liquid equilibrium process?

    NASA Astrophysics Data System (ADS)

    Pirk, C. W. W.; Hepburn, H. R.; Radloff, S. E.; Tautz, J.

    Geometrical investigations of honeycombs and speculations on how honeybees measure and construct the hexagons and rhombi of their cells are centuries old. Here we show that honeybees neither have to measure nor construct the highly regular structures of a honeycomb, and that the observed pattern of combs can be parsimoniously explained by wax flowing in liquid equilibrium. The structure of the combs of honeybees results from wax as a thermoplastic building medium, which softens and hardens as a result of increasing and decreasing temperatures. It flows among an array of transient, close-packed cylinders which are actually the self-heated honeybees themselves. The three apparent rhomboids forming the base of each cell do not exist but arise as optical artefacts from looking through semi-transparent combs.